
DI Hermann Felbinger, BSc

Characterizing Quality Assessment and
Redundancy Elimination of Test Suites

Without Execution

Doctoral Thesis

submitted to

Graz University of Technology

Institute of Softwaretechnology

Supervisor:

Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa

Graz, 2020

A�davit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present PhD thesis.

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen
als solche kenntlich gemacht habe. Das in tugrazonline hochgeladene
Textdokument ist mit der vorliegenden Dissertation identisch.

Datum Unterschrift

iii

Abstract

Deciding whether a given test suite is effective enough is certainly a chal-
lenging task. To state whether a System Under Test is sufficiently tested
requires an assessment of the test suite quality. Existing methods to assess
the quality of a test suite either are based on the structure of an implementa-
tion or determine the quality by using fault injection, called mutation score.
In this thesis we introduce a method, which is based on inductive inference
to assess the quality of a test suite and propose methods to augment or
reduce a test suite depending on the quality assessment result.
In general the idea to assess the quality of a test suite is to use the similarity
or if possible equivalence between a model inferred from a test suite and the
system under test as a measure of test suite adequacy, which is the ability of
a test suite to expose errors in the system under test. Focusing on a software
program’s functionality, for assessing test suites of Boolean functions, we
use machine learning in order to infer a special binary decision diagram
from the considered test suites and extract a total variable order, if possible.
Intuitively, if a reduced ordered binary decision diagram derived from the
Boolean functions representing the program under test’s specification ac-
tually coincides with that of the test suite (using the same variable order),
we conclude that the test suite is effective enough. That is, any program
that passes such a test suite should clearly show the desired input-output
behavior. For general purpose systems under test we define similarity by
using the root mean squared error computed from the differences of the
system under test’s output and the model output for certain inputs not used
for model inference.

Also removing redundancies from test suites is an important task of software
testing in order to keep test suites as small as possible, but not to harm
the test suite’s fault detection capabilities. A straightforward algorithm
for test suite reduction would select elements of the test suite randomly

v

and remove them if and only if the reduced test suite fulfills the same
or similar structural coverage or mutation score. Such algorithms rely on
the execution of the program and the repeated computation of coverage or
mutation score. In this thesis, we present an alternative approach that purely
relies on a model inferred from the original test suite without requiring
the execution of the program under test. The idea is to remove those tests
that do not change the inferred model. The equivalence relation underlying
the comparisons plays obviously a significant role for the effectiveness
achieved and efficiency experienced. We explore five such relations that
take different aspects into account and investigate their impact on test suite
reduction, their effectiveness in fault detection, and computation time. We
report corresponding results, and show as well as prove that the equivalence
relations build a taxonomy. In order to evaluate the approach we carried
out an experimental study showing that reductions of 60-99% are possible
while still keeping coverage and mutation score almost the same.

vi

Kurzfassung

Ein Urteil zur Entscheidung zu finden, ob eine gegebene Menge an Test-
fällen ausreichend wirkungsvoll ist, ist eine anspruchsvolle Aufgabe. Dieses
Urteil erfordert eine Bewertung der Qualität dieser Testfälle. Bestehende
Methoden zur Bewertung der Qualität von Testfällen basieren entweder auf
der Struktur oder Mutationen der Implementierung. Die Methode, die wir in
dieser Arbeit vorschlagen, basiert auf induktiver Ableitung um die Qualität
von Testfällen zu bewerten, sowie, abhängig von den Bewertungsergebnis-
sen, Methoden zur Erweiterung und Reduktion von Testfällen.
Die Methode zur Bewertung der Qualität von Testfällen basiert auf der Idee,
die Ähnlichkeit bzw. wenn möglich die Äquivalenz zwischen einem Modell,
abgeleitet von Testfällen, und dem zu testended System als Maß für die
Qualtiät anzuwenden. Als Qualität wird hier bezeichnet, wie geeignet die
Testfälle insgesamt zum Finden von Fehlern im zu testenden System sind.
Mit dem Fokus auf Testen der Funktionalität benutzen wir zum Testen von
Bool’schen Funktionen Maschienen Lernen, um ein binäres Entscheidungs-
diagramm aus den betrachteten Testfällen abzuleiten und, wenn möglich,
eine Anordnung der Variablen. Wenn dann ein reduziertes geordnetes
binäres Entscheidungsdiagramm abgeleitet aus den Bool’schen Funktionen,
die die zu testenden Systemspezifikationen darstellen, mit jenem abgeleitet
aus den Testfällen übereinstimmt (mit der selben Anordnung der Variablen),
schließen wir daraus, dass die Testfälle ausreichend sind. Wenn die Test-
fälle ausreichend sind, zeigt jedes Programm, das alle Testfälle besteht, das
gewünschte Verhalten von Eingaben und entsprechenden Ausgaben. Allge-
mein für zu testende Systeme definieren wir Ähnlichkeit als radizierten mit-
tleren quadratischen Fehler, berechnet aus der Differenz der Ausgaben des
zu testenden Systems und jenen des abgeleiteten Models für alle Eingaben,
die zum Ableiten eines Models in Betracht gezogen wurden.

Auch das Entfernen von redundanten Testfällen ist eine wichtige Aufgabe

vii

im Bereicht Softwaretesten. Dabei wird die Anzahl der Testfälle durch Ent-
fernen redundanter Testfälle so gering wie möglich gehalten, während die
Qualität der Testfälle insgesamt gleich bleibt. Ein simpler Algorithmus zur
Reduktion von Testfällen wäre randomisiert Testfälle auszuwählen und zu
entfernen solange die übgrigen Testfälle die gleiche bzw. ähnliche struk-
turelle Abdeckung oder Mutationswert erreichen. Derartige Algorithmen
erfordern die mehrmalige Ausführung des zu testenden Systems und die
mehrmalige Berechnung der Abdeckung der des Mutationswerts. Hier wird
ein alternativer Ansatz beschrieben, der auf der Ableitung von Modellen aus
den initialen Testfällen basiert, während das zu testende System nicht ausge-
führt werden muss. Dabei werden nur Testfälle entfernt, die das abgeleitete
Modell im Vergleich zum Modell, abgeleitet aus den originalen Testfällen,
nicht verändern. Die dem Vergleich unterliegende Äquivalenzrelation spielt
eine signifikante Rolle für die erreichte Effizienz bei der Reduktion. In
dieser Arbeit wurden fünf Äquivalenzrelationen, die verschiedene Aspekte
und deren Einflüsse auf die Testfallreduktion und Rechenzeit betrachten,
untersucht. Dazu beschreiben wir entsprechende experimentelle Ergebnisse
und beweisen, dass diese Äquivalenzrelationen eine Taxonomie bilden. Um
den Ansatz zu evaluieren führten wir eine experimentelle Studie durch, die
zeigt, dass Reduktionen von 60-99% möglich sind, während die Abdeckung
und der Mutationswert nahezu unverändert bleiben.

viii

Acknowledgements

First, I would like to express my sincere gratitude to my advisor Prof. Franz
Wotawa for the continuous support of my PhD study and research, for his
patience, motivation, enthusiasm, and immense knowledge. His guidance
helped me in all the time of research and writing of this thesis. I could not
have imagined having a better advisor and mentor for my PhD study. I
thank Radu Mateescu for reviewing the thesis, his support and commitment
to act as a referee assessing the thesis and as an examiner for the defense of
the thesis.
My sincere thanks also goes to Alexandre Petrenko for the ideas and fruitful
discussions we had and also the opportunity to visit him and his research
group, which was a great experience and a very productive time.

I thank my colleagues and collaborators for the stimulating discussions,
for enlightening me the first glance of research, and for all the fun we
have had in the last years. I would also like to thank my friends for their
seemingly inexhaustible well of support. I thank my brother and sister
and their families, and my parents for providing me with an exceptionally
stimulating childhood.

Foremost I would like to thank the love of my life Nadja and our incredible
children for their dedication, patience and support in every matter.

ix

Contents

Abstract v

I. Introduction 1

1. Introduction 3
1.1. Thesis Statement . 5

1.2. Contributions and Outline . 6

II. Combinatorial Testing 9

2. t-way Combinatorial Testing 11
2.1. Input Modeling . 13

2.2. Oracle for test case generation 13

3. Adapting Unit Tests by Generating Combinatorial Test Data 15
3.1. Introduction . 15

3.2. Preliminaries . 17

3.2.1. Conventional and Parameterized Unit Tests 17

3.2.2. Test Generalization . 18

3.3. Test Suite Adaption . 20

3.3.1. Overview . 20

3.3.2. Test Generalization . 20

3.3.3. Test Generation . 21

3.3.4. Example . 23

3.4. Empirical Study . 25

3.4.1. Subject Applications . 25

3.4.2. Study Setup . 26

xi

Contents

3.4.3. Combinatorial Coverage of Conventional Unit Tests . 27

3.4.4. Coverage . 29

3.4.5. Mutation Score . 29

3.5. Evaluation and Threats to Validity 31

3.6. Related Work . 32

3.7. Summary . 33

III. Model Inference Based Quality Assessment 35

4. Test Suite Quality Assessment 37
4.1. Existing Quality Assessment Methods 38

4.1.1. Mutation Score . 38

4.1.2. Code Coverage . 39

4.1.3. Combinatorial Coverage 39

4.2. Model Inference Based Quality Assessment 39

5. Empirical Study Of Correlation Between Mutation Score And
Model Inference Based Test Suite Adequacy Assessment 43
5.1. Pearson Correlation . 44

5.2. Experimental Results . 46

5.2.1. Examples . 46

5.2.2. Results . 50

5.3. Evaluation . 56

5.4. Related Work . 58

5.5. Summary . 59

6. Classifying Test Suite E�ectiveness via Model Inference and
ROBBDs 61
6.1. Preliminaries . 63

6.1.1. Reduced Ordered Binary Decision Diagrams 66

6.2. Classifying Test Suite Effectiveness 66

6.2.1. Learning a Decision Tree from a Test Suite 68

6.2.2. Isolating a Total Variable Order from DT 69

6.2.3. Reducing the Learned Decision Tree DT to an ROBDD 76

6.2.4. Creating an ROBDD for the SUT’s specification 76

6.3. Experimental Results . 77

xii

Contents

6.4. Related Research . 79

6.5. Summary . 81

7. Mutation Score, Coverage, Model Inference: Quality Assess-
ment For t-way Combinatorial Test Suites 85
7.1. Model Inference . 86

7.1.1. Model contains all o ∈ O criterion 87

7.1.2. Model inference based quality valuation 88

7.2. Experimental Results . 88

7.2.1. Tools . 88

7.2.2. Example Programs and Input Models 90

7.2.3. Mutation score results 94

7.2.4. Code Coverage Results 98

7.2.5. Model Inference Results 100

7.3. Discussion . 101

7.4. Threats to validity . 105

7.5. Related Work . 105

7.6. Summary . 107

IV. Model Inference Based Test Suite Reduction 109

8. Test Suite Reduction Does Not Necessarily Require Executing
The Program Under Test 111
8.1. Basic Definitions . 114

8.1.1. Decision tree inference 115

8.2. Test Suite Reduction Approach 115

8.2.1. Syntactic Equivalence 116

8.2.2. Equivalence Based on a Misclassification Rate 116

8.2.3. Test Suite Reduction . 117

8.3. Experimental Results and Evaluation 118

8.3.1. Example Programs . 118

8.3.2. Tools . 120

8.3.3. Reductions With Proposed Equivalence Check Methods120

8.3.4. Test Suite Reduction Results Using Syntactic Equivalence127

8.3.5. Evaluation . 134

8.3.6. Threats To Validity . 141

xiii

Contents

8.4. Related Work . 141

8.5. Summary . 143

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its
Impact on Test Suite Reduction 145
9.1. Preliminaries . 146

9.1.1. Decision Tree Learning 148

9.2. Equivalence Taxa . 149

9.3. Experimental Evaluation . 155

9.3.1. Results . 155

9.3.2. Discussion . 156

9.4. Related Work . 159

9.5. Summary . 161

V. Future Work 163

10.Directions for Quality Assessment of Test Suites Without Exe-
cution 165

Bibliography 167

xiv

List of Figures

1.1. ISO/IEC 25010 quality model [2]. 4

3.1. Overview of the Test Suite Adaption 21

3.2. Combinatorial Coverage of Existing Conventional Unit Test
(CUT). 24

3.3. Combinatorial Coverage of CUTs from Apache Commons
Lang. 28

3.4. Combinatorial Coverage of CUTs from Apache Commons
Math. 28

3.5. Combinatorial Coverage of CUTs from JFreeChart. 29

3.6. Combinatorial Coverage of CUTs from Joda-Time. 29

4.1. Schema of model inference based quality assessment. 40

5.1. State machine showing the POP3 example. 47

5.2. State machine showing the CAS example [59]. 49

5.3. Correlation of mutation score and root mean squared error
for the TCAS example. 51

5.4. Correlation of mutation score and root mean squared error
for the Triangle example. 52

5.5. Correlation of mutation score and root mean squared error
for the BMI example. 53

5.6. Correlation of mutation score and root mean squared error
for the UTF8 example. 54

5.7. Correlation of mutation score and root mean squared error
for the POP3 example. 55

5.8. Correlation of mutation score and root mean squared error
for the CAS example. 56

6.1. An illustration of our approach for a simple Boolean function. 62

xv

List of Figures

6.2. Process of our test suite classification approach. 67

6.3. Reduction of ordered decision tree to ROBDD, from left to
right [72]. 77

6.4. The 20 TCAS II examples taken from [77]. 80

7.1. Mutation score and test suite size per t-way combinatorial
test suite for the BMI example. 96

7.2. Mutation score and test suite size per t-way combinatorial
test suite for the Triangle example. 96

7.3. Mutation score and test suite size per t-way combinatorial
test suite for the UTF8 example. 97

7.4. Mutation score and test suite size per t-way combinatorial
test suite for the TCAS example. 97

7.5. Mutation score and test suite size per t-way combinatorial
test suite for the J48 example. 98

7.6. Mutation score and test suite size per t-way combinatorial
test suite for the Soot-PDG example. 99

8.1. Decision tree inferred from all test cases in Table 8.1 and from
a subset containing only three of these test cases. 114

8.2. Decision tree inferred from 2 of 4 test cases in Table 8.1
excluding test case #3 and #4. 114

8.3. Reduction of T for the TCAS example for four different con-
figurations and 25 executions of Reduce for each configuration.121

8.4. Reduction of T for the BMI example for four different config-
urations and 25 executions of Reduce for each configuration. 122

8.5. Reduction of T for the Triangle example for four different con-
figurations and 25 executions of Reduce for each configuration.122

8.6. Reduction of T for the POP3 example for four different con-
figurations and 25 executions of Reduce for each configuration.123

8.7. Reduction of T for the CAS example for four different config-
urations and 25 executions of Reduce for each configuration. 124

8.8. Reduction of T for the UTF8 example for four different con-
figurations and 25 executions of Reduce for each configuration.124

8.9. Reduction of T for the CC example for four different configu-
rations and 25 executions of Reduce for each configuration. . 125

8.10. Reduction results for the TCAS example. 128

xvi

List of Figures

8.11. Reduction results for the Triangle example. 129

8.12. Reduction results for the BMI example. 130

8.13. Reduction results for the UTF8 example. 132

8.14. Reduction results for the POP3 example. 133

8.15. Reduction results for the CAS example. 135

8.16. Reduction results for the CC example. 136

9.1. Taxonomy of equivalence relation in respect of their strength. 147

9.2. Structurally (left), spine- (middle), and decision-equivalent
(right) trees. 150

9.3. Table (left) and misclassification-equivalent (right) trees. . . . 153

9.4. Triangle results. 156

9.5. UTF8 results. 157

9.6. TCAS results. 157

9.7. Mutation score of reduced test suites. 159

xvii

Part I.

Introduction

1

1. Introduction

In the past 35 years software applications have spread out from the original
data processing and scientific computing domains into our daily lives, such
as phones, cars, kitchen appliances, and services which transferred to the
internet. In general software products and products driven by software must
meet two challenges. First, software development cost should be low and
software should be deployed in a short time to stay competitive. Second,
software must adhere quality attributes like usability, dependability, and
safety.
McCall et al. [1] gave in their report, a concept of software quality in terms
of quality factors and quality criteria:

• Factor: a condition or characteristic which actively contributes to the
quality of the software. For standardization purposes, all factors will be
related to a normalized cost to either perform the activity characterized
by the factor or to operate with that degree of quality. For example,
maintainability is the effort required to locate and fix an error in an
operational program. This effort required may be expressed in units
such as time, money, or manpower. The following rules were used to
determine the prime set of quality factors:

– A condition or characteristic which contributes to software qual-
ity,

– a user-related characteristic,
– related to cost either to perform the activity characterized by the

function or to operate with that degree of quality,
– relative characteristic between software products.

• Criteria: Attributes of the software or software production process by
which the factors can be judged and defined. The following rules are
applied to the determination of criteria:

3

1. Introduction

Figure 1.1.: ISO/IEC 25010 quality model [2].

– Attributes of the software or software products of the develop-
ment process; i.e., criteria are software oriented while factors are
user oriented,

– may display a hierarchical relationship with subcriteria,
– may affect more than one factor.

• Metrics: Measures of the criteria or subcriteria related to the quality
factors. The measures may be objective or subjective. The units of the
metrics are chosen as the ratio of actual occurrences to the possible
number of occurrences.

Correctness, reliability, efficiency, testability, maintainability, and reusability
are examples of quality factors whereas a quality criterion is an attribute of
a quality factor that is related to software development. The ISO/IEC 25000

series of standards provide a quality model with eight independent quality
characteristics and sub-characteristics, as shown in Figure 1.1, which are
related to the initial software quality concept of McCall et al. [1].

To assess the achieved software quality testing plays an important role.
On the one hand, software quality is improved during development by
continuously repeating the→ test→ find defects→ fix→ loop. On the other
hand, system level tests have to be executed to assess the software quality
before releasing the software. As explained in Osterweil et al. [3] software
quality assessment can be divided into two broad categories, namely, static
analysis and dynamic testing.

• Static Analysis: A systematic examination of program structure for
the purpose of showing that certain properties are true. Static analysis

4

1. Introduction

does not require to execute the software under test.
• Dynamic Testing: Entails executing the software under test and exam-

ining the outcomes. The behavior of the software under test is reflected
by the relation of provided inputs and given outcomes after executing
the software.

Both, static analysis and dynamic testing are complementary used to iden-
tify as many faults as possible. A software failure occurs when the executed
software does not perform as required and expected. Therefore, a failure is a
deviation of the behavior of an executed program from its intended behavior.
A software fault is a malformation whose execution causes a failure, and
an error is a flaw in human reasoning and performance that leads to the
creation of the fault [3].

If the developed software is a simple web application, a smartphone app, or
a safety critical system in the automotive industry, quality assurance in terms
of robustness, performance, correct functionality, etc., for these products
requires testing. In general, the more critical the developed software product
is in terms of safety and security, the more effort is put into quality assurance.
This effort is limited by resources which are mainly computational power
and time. Therefore, exhaustive testing by providing all possible input
variations is in general not feasible in finite time. Structured methods to
create test cases tackle this issue. Numerous of these methods already exist
and still new methods are developed, especially for new software based and
software supported technologies. The most popular methods are stochastic
based random input selection, model based test creation, where a reference
model of the developed software product supports the test creation.

1.1. Thesis Statement

The focus of this thesis is on improving our understanding and characteriza-
tion of quality assessment and redundancy elimination of test suites without
execution. As mentioned earlier, software testing requires the execution of
the software under test. For complex systems a huge number of tests causes
impractical execution time. Existing quality metrics, such as code coverage

5

1. Introduction

and mutation score require the source code of the software under test to
be available, where also drawbacks such as changes in the behavior due
to code instrumentation, or not manageable execution effort due to high
number of mutants exist. Another metric, which is also applicable without
having the source code of the program under test, but only the binaries is
combinatorial coverage. Combinatorial coverage is focusing on the input
space of the software under test.

This thesis begins with analyzing combinatorial testing and continues with
definitions and empirical investigations of model inference based quality
assessment, where the correlation to existing quality assessment methods
is analyzed. The test suites were generated automatically with various
techniques, such as random, property based, and combinatorial testing.
Another approach to assess the quality of test suites, applicable for Boolean
functions, is based on reduced ordered binary decision diagrams for which
the equivalence problem is decidable. The definition of these methods and
the reduced execution time to obtain results allows to adapt these methods
also for redundancy elimination.

We thus formulate the following thesis statement:

Developing an understanding of software and software quality requires
testing. The inevitable part of dynamic testing requires test input defi-
nition, execution, and analyzing the result. Specifically, quantifying the
confidence that the executed test cases are able to identify all deviations
of the software under test to the intended behavior and the elimination
of redundancies requires a metric whose calculation is feasible within
limited time.

1.2. Contributions and Outline

In this section we present an overview of the research problems investigated
within this thesis. Following the above thesis statement this thesis makes
the following contributions:

• In Part 2 we study combinatorial testing, which is used throughout
this thesis. As a first investigation we extend manually created test

6

1. Introduction

cases by combinatorial testing and show how this affects the test suite
quality. In this chapter we generalized conventional unit tests into
parameterized unit tests for which we generated the input values by
using combinatorial testing. For the combinatorial test case generation
we used the input domains extracted from the conventional unit tests.
The empirical evaluation also provides results showing the combina-
torial coverage of the existing, manually created test cases. We also
show how adapting the existing unit tests affects the mutation score.
This chapter is based on the work “Adapting Unit Tests by Generating
Combinatorial Test Data” [4].
• In Part 3 we introduce a model inference based quality assessment

approach. In this chapter we start with giving an overview of existing
test suite quality assessment methods. Then we define how to infer
a model from a test suite. We show two different approaches how
to quantify the quality. First we show for programs with discrete
outcomes (number of possible outcomes > 2) and state based systems,
where it is possible to monitor the current state, how model inference
is related to the actual outcomes. In a second approach we classify
the test suite effectiveness for Boolean functions by inferring reduced
ordered binary decision diagrams from the Boolean functions and
the test suite, and decide on their equivalence whether the actual test
suite is effective or not. In the empirical evaluation we show how
the model inference approaches relate to existing quality assessment
approaches, such as code coverage, mutation score, and combinatorial
coverage. This chapter is based on the papers “Test Suite Quality
Assessment Using Model Inference Techniques” [5], “Empirical Study
of Correlation Between Mutation Score and Model Inference Based Test
Suite Adequacy Assessment” [6], “Classifying Test Suite Effectiveness
via Model Inference and ROBBDs” [7], and “Mutation Score, Coverage,
Model Inference: Quality Assessment for T-Way Combinatorial Test-
Suites” [8].
• We introduce in Part 4 an approach to reduce the size of a test suite

based on the previously introduced model inference based quality
assessment approach. This reduction approach allows to eliminate
redundancies in a test suite without executing the software under test.
Also we define various relations how to compare inferred models from
a test suite. We show how these relations build a taxonomy. In an

7

1. Introduction

empirical evaluation we compare our approach with a conventional
approach by time and effectiveness of the reduction, and show how
the defined relations affect the reduction. This chapter is based on
the papers “Test-Suite Reduction Does Not Necessarily Require Exe-
cuting the Program under Test” [9] and “A “strength of decision tree
equivalence”-taxonomy and its impact on test suite reduction” [10].

We give an overview of related literature within the respective chapters.
Finally, in Chapter 5 we conclude the thesis and give some directions for
model inference based quality assessment of test suites without execution.

8

Part II.

Combinatorial Testing

9

2. t-way Combinatorial Testing

In the last years one of the main topics of software quality assurance
research is automatic test case generation. When choosing an automatic
test generation approach, the quality of the generated test suites has to be
ensured. Different test generation approaches target different types of fault
[11], [12]. One approach to generate test cases is t-way combinatorial testing.
This approach has been well studied in the last 20 years [12]. Combinatorial
testing is supposed to detect interaction triggered faults. Combinatorial
testing includes modeling of the inputs, constraints [13], failure diagnosis,
prioritization, and test generation. Additionally combinatorial testing serves
to reduce the full Cartesian product space of a set of values from the input
parameters, which may be extremely large in real-world applications.

Combinatorial testing was introduced to detect faults triggered by interac-
tions of parameters in the program under test, and is therefore also called
Combinatorial Interaction Testing. Combinatorial testing tests a program
with covering arrays as test suite. The covering arrays test a subset of the
exhaustive set of parameter value combinations. Parameters can be config-
uration parameters, internal or external events. We assume the program
under test has a set of n parameters P = {p1, ..., pn} and each parameter
pi ∈ P has a set of discrete values Vi. An exhaustive test suite is the product
of V1 × ...×Vn. In t-way combinatorial testing we use the binomial coeffi-
cient (n

t), which result is the number of ways to choose t parameters from n
parameters, to calculate the number of possible combinations within P. A
combination is defined as:

Definition 1 (Combination) A combination c ∈ C is a set of parameters, where
C contains all possible distinct subsets of P with size t.

11

2. t-way Combinatorial Testing

In t-way combinatorial testing the value of t is named strength. E.g. 2-way
combinatorial testing has strength 2 and for each of the (n

2) pairs (pi, pj) ∈ P
all cartesian products of Vi ×Vj exist in the generated test suite.

The tool which we used in this work to generate t-way combinatorial tests
uses the IPOG algorithm. The IPOG algorithm is an extension of the IPO-
algorithm (In Parameter Order) [14]. IPO covers ”one-parameter-at-a-time”
through horizontal and vertical extension mechanisms. As a t-way strategy
IPO has been extended into IPOG [15], because IPO only supports pairwise
or 2-way combinatorial test generation. The combinations of the first t
parameters are initially generated as a partial test suite, that is based on
the values of the parameters in these combinations. The test suite is then
extended with the values of the next parameters using horizontal and
vertical extension mechanisms. Horizontal extension extends the partial test
suite with values of the next parameter to cover the maximum number of
interactions. Upon completion of horizontal extension, vertical extension
may be summoned to generate additional test cases that cover all of the
uncovered interactions. More recently, a number of variants have been
developed to improve IPOG performance (IPOG-D [16], IPOF and IPOF2

[17]).

A test case and a test suite in combinatorial testing are defined as:

Definition 2 (Test Case) A test case is a tuple (v1, ..., vn, o) ∈ V1× ...×Vn×O,
where V1, ..., Vn are the sets of possible values for the parameters in P and vi ∈ Vi.
O is the set of possible outcomes of the program under test when executing the
program with input values from V1 × ...×Vn, and o ∈ O.

Definition 3 (Test Suite) A test suite Tt is a set of test cases that cover all
interactions of strength t.

In combinatorial testing also constraints over parameters can be used [13],
which prevent the generation of certain valuations of combinations. In
addition to the resulting combinations, additional interaction relations can
be specified. An interaction relation is a set of parameters which requires
that all value combinations of these parameters have to be in the test suite,
because they can affect the program under test and therefore may trigger a

12

2. t-way Combinatorial Testing

failure. The interaction relations can be viewed as covering requirements,
specifying which combinations should be covered while testing.

2.1. Input Modeling

In combinatorial testing an input model consists of parameters, values,
interaction relations and constraints. More precisely: parameters that may
affect the program under test and values that should be selected for each pa-
rameter, interaction relations that exist between parameters, and constraints
that exist between values of the different parameters, which are used to
exclude combinations that are not meaningful from the domain semantics.
In this thesis we created the input models manually by investigating the
source code.

2.2. Oracle for test case generation

Because there exists no oracle in combinatorial testing by default, if we
do not have a formal model of the program under test, we had to choose
a different strategy to obtain the expected outcomes for the generated
test cases in this work. Here we executed the original program with the
parameter values of a covering array from V1 × ...×Vn as generated, and
added the outcome of the original program as expected outcome to each of
the test cases.

13

3. Adapting Unit Tests by

Generating Combinatorial

Test Data

This chapter is based on the work “Adapting Unit Tests by Generating
Combinatorial Test Data” [4].

Conventional unit tests are still mainly handcrafted. Generalizing conven-
tional unit tests to parameterized unit tests supports automatic test data
generation. Parameterized unit tests accept parameters and describe the
behavior of the method under test for all test arguments. Methods that were
introduced to instantiate parameterized unit tests with concrete values as
test data are based on search based approaches, dynamic symbolic execu-
tion, or property based testing. In this chapter, we introduce an approach
that retrofits existing conventional unit tests into parameterized unit tests by
generalization, and generate test data by combinatorial valuation to adapt
existing conventional unit test suites.

3.1. Introduction

In software development, projects should have a suite of unit tests. These
unit tests often have been collected over time, some of them checking specific
and subtle cases. According to [18] writing Parameterized Unit Tests (PUTs)
is more challenging than writing CUTs (also named closed traditional unit
tests in [18]). Because of this challenge and the fact that PUTs came up in
the year 2005 [19] where CUTs already existed, CUTs are mainly used in
software development projects.

15

3. Adapting Unit Tests by Generating Combinatorial Test Data

As introduced in [19] the input data for PUTs can be generated automatically.
In their work Tillmann et al. used dynamic symbolic execution to create
path constraints from which they derived input values for the variables by
constraint satisfaction. In our work we made use of the existing input data
within CUTs and generate t-way combinatorial valuations from these input
data. Consequently our approach is limited to methods under test with two
or more input parameters. We provide an algorithm that is used to manually
retrofit CUTs into PUTs. This algorithm extracts the input parameters from
the CUT that are necessary to create a PUT. Furthermore the algorithm
extracts the existing input data within the CUTs. These input data are used
as a basis to generate t-way combinatorial valuations as inputs of the PUTs.
With this approach we can adjust an existing test suite, meaning that its
size can either decrease or grow while maintaining or even increasing the
existing test suite quality. To assess a test suite’s quality we calculate its
mutation score and code coverage. This approach is very appealing to apply
in all variants of software development projects and domains, because with
feasible effort you can increase the quality of existing test suites without
knowing any details of the program under test. Combinatorial test suites are
usually of high quality in terms of fault detection [8, 11, 20–25]. Therefore
the developer/tester only has to make sure that the existing input values in
the CUTs are valuable e.g. they represent all possible boundary values.

Adapting a test suite can be either extending or reducing it. There exist
multiple test suite reduction approaches which are based on coverage,
mutation score, or model inference [9, 26–31]. Extending a test suite usually
requires more input data which can be added manually, generated randomly,
or derived from symbolic execution. In this chapter we adapt the existing
test suites without additional input data by generating t-way combinatorial
valuations from the existing data.

For our empirical study we use four example applications from the Defects4J
collection [32]. Defects4J’s purpose is to enable controlled testing studies for
Java. It is a collection of reproducible bugs and supporting infrastructure
for several open source projects. From these example applications we gener-
alized CUTs into PUTs, created input models for the generator of the t-way
combinatorial valuations, derived the expected outcomes for the generated
valuations, executed the tests and collected code coverage and mutation
score results by using the Defects4J framework.

16

3. Adapting Unit Tests by Generating Combinatorial Test Data

3.2. Preliminaries

In this section we introduce the necessary preliminaries for our unit test
adaption approach. These preliminaries are the conventional and parame-
terized unit tests and how to generalize from conventional to parameterized
unit tests.

3.2.1. Conventional and Parameterized Unit Tests

Conventional Unit Test (CUT): In this thesis we define CUTs as test
methods within a test class. These test methods are parameterless and e.g.
in the Java unit testing framework JUnit [33] decorated with an annotation
like @Test. A CUT only explores a particular aspect of the behavior of
the unit under test. CUTs also contain oracles which are represented as
assertions that compare the observed behavior with expected results after
executing the test. An example for a CUT is shown in Listing 3.1.

Listing 3.1: Conventional Unit Test

@Test
public void testAdd () {

C a l c u l a t o r c a l c = new C a l c u l a t o r () ;
i n t r e s u l t = c a l c . add (2 , 3) ;
a s s e r t E q u a l s (5 , r e s u l t) ;

}

Parameterized Unit Test (PUT): In this thesis we define PUTs as a
generalization of CUTs by allowing parameters. With a PUT the behavior of
a method is tested for an entire set of input values. An example for a PUT
is shown in Listing 3.2.

Listing 3.2: Parameterized Unit Test

@Test
public void testAdd (i n t a , i n t b ,

i n t expected) {
C a l c u l a t o r c a l c = new C a l c u l a t o r () ;

17

3. Adapting Unit Tests by Generating Combinatorial Test Data

i n t r e s u l t = c a l c . add (a , b) ;
a s s e r t E q u a l s (expected , r e s u l t) ;

}

3.2.2. Test Generalization

To achieve test generalization from CUTs to PUTs we lean on a methodology
introduced in [34]. The methodology from [34] is based on Algorithm 1.
The algorithm requires a set of CUTs for a method under test M as input.
Procedure Parameterize(cut) (Line 7) identifies concrete values in the CUTs
(cut ∈ CUTs) and promotes them as parameters for a PUT put. Then in
GeneralizeTestOracle(cut, put) (Line 8) the assertions from the CUT cut are
generalized into generalized test oracles in the PUT put. The remainder of
the algorithm describes four additional steps which are: the generation of
CUTs based on dynamic symbolic execution, adding assumptions to guide
the generation, handling mock objects to interact with external resources,
and adding factory methods to generate objects for non-primitive param-
eters. In this work we do not apply these steps and therefore adapt the
algorithm from Figure 1 for our needs as introduced in Section 3.3.2.
In practice generalizing a test oracle can be a complex task, since deter-
mining the expected outcomes for the generated input values is not trivial.
Therefore the developers of the Microsoft Pex test generation tool proposed
15 PUT patterns which can be used to analyze existing CUTs and generalize
the contained oracles. These 15 patterns can be found in [35]. In this thesis
mainly the Arrange, Act, Assert-pattern was used, which is based on the
assumption that a CUT is organized in 3 sections:

• Arrange: set up the unit under test.
• Act: exercise the unit under test, capturing any resulting state.
• Assert: verify the behavior through assertions.

As an example we can use the CUT in Listing 3.1 and the PUT in Listing
3.2. In this example as an arrangement we have to create an object from
Calculator. To act means to exercise the method under test which is the
method add in this example. And finally we have to add the assertions from
the CUT to the PUT.

18

3. Adapting Unit Tests by Generating Combinatorial Test Data

Algorithm 1 Test Generalization Algorithm [34]
Require: CUTs for an m
Ensure: PUTs

1: Set PUTs = φ, gAllCUTs = φ
2: for all cut ∈ CUTs do
3: if gAllCUTs.contains(cut) then
4: continue
5: end if
6: Set put = φ, gCUTs = φ, break = false
7: put = Parameterize(cut)
8: put = GeneralizeTestOracle(cut, put)
9: gCUTs = GenerateCUTs(put)

10: repeat
11: while !Execute(gCUTs) do
12: if LegalValueIssue(gCUTs) then
13: put = AddAssumption(put)
14: else
15: ReportDefect()
16: continue
17: end if
18: end while
19: if !Cov(m, gCUTs) ⊇ Cov(m, cut) then
20: if NPTypeParam(put) then
21: put = AddFactoryMethod(put)
22: end if
23: if EnviInteractionIssue(m) then
24: put = AddMockObj(put)
25: end if
26: else
27: break = true
28: end if
29: until break
30: PUTs.Add(put), gAllCUTs.Add(gCUTs)
31: end forreturn PUTs

19

3. Adapting Unit Tests by Generating Combinatorial Test Data

3.3. Test Suite Adaption

In this section we first introduce our test generalization approach where we
retrofit existing CUTs into PUTs. Then we show how to generate input data
for these PUTs using the t-way combinatorial testing generation technique
and give an example for our test suite adaption approach.

3.3.1. Overview

Our test suite adaption approach includes two major steps, which are
first the generalization of CUTs into PUTs and second the generation of
combinatorial valuations of existing input data from the CUTs. These major
steps are divided into smaller substeps. An overview of these substeps is
shown in Figure 3.1. On the left in Figure 3.1 we have a set of CUTs and a
method under test which serve as inputs for the first step of our adaption
approach. In this first step where we generalize the CUTs, we extract the
input parameters from the method under test and the CUTs, and we also
extract the input values from the CUTs. Next we create a PUT, where we
provide the extracted input parameters and transfer the arrangements, e.g.
the initialization of some objects required to execute a test, to the PUT.
In the second step where we generate the combinatorial valuations from
the extracted input values, we also execute the generated combinatorial
valuations on the method under test and investigate manually whether
the output value is correct and can be used as the expected output for the
PUT. Then we provide the combinatorial valuations and the corresponding
expected output values to the PUT.

3.3.2. Test Generalization

To generalize CUTs into PUTs we provide a manual approach. This ap-
proach is based on our test generalization Algorithm 2 which is a modified
version of Algorithm 1. Our test suite adaption approach is limited to CUTs
for a method under test which is defined as:

20

3. Adapting Unit Tests by Generating Combinatorial Test Data

Figure 3.1.: Overview of the Test Suite Adaption

Definition 4 (Method Under Test) A method under test m is a method from
the set of methods under test M’, which is a subset of the set M. M contains all
methods under test from the current system under test, where each method has a
different name or a distinct signature. M’ ⊆ M contains all methods under test
that contain two or more input parameters.

Algorithm 2 iterates through all CUTs and extracts the input parameters
(line 3) and the input values for these parameters (line 4). Then we have
to check if an extracted value for a certain parameter already exists in the
set of input data and if not, add the value to the input data (lines 5 to 15).
Finally we have to generalize the test oracle from the so far generalized test
oracle in the PUT, the current retrofitted CUT, and the input parameters
(line 17). The algorithm returns the PUT and the extracted input data from
the CUTs.

3.3.3. Test Generation

In this work we generate combinatorial input valuations for a PUT. There-
fore a PUT and the corresponding combinatorial input valuations represent

21

3. Adapting Unit Tests by Generating Combinatorial Test Data

Algorithm 2 Test Generalization Algorithm for Test Suite Adaption
Require: CUTs for an m ∈ M’
Ensure: put, InputData

1: Set InputData = φ, addValue = True
2: for all cut ∈ CUTs do
3: InputParams = Parameterize(m)
4: data = getValues(cut)
5: for all idx ∈ range(0, size(data)) do
6: for all tmpData ∈ InputData do
7: if data[idx] == tmpData[idx] then
8: addValue = False
9: end if

10: end for
11: if addValue then
12: InputData.add(idx, data[idx])
13: else
14: addValue = True
15: end if
16: end for
17: put = GeneralizeTestOracle(put, cut, InputParams)
18: end for
19: return put, InputData

22

3. Adapting Unit Tests by Generating Combinatorial Test Data

a test suite Tt as introduced in Definition 3. In this work we generate
combinatorial valuations for strength t=2. As shown in Algorithm 2 we
use only input data of existing CUTs for the generation of combinatorial
valuations.

3.3.4. Example

In this section we give an example that shows the test suite adaption
approach. As example we use a CUT from the NumberUtilsTests class within
the Apache Commons Lang application. The CUT is shown in Listing 3.3.

From the test case in Listing 3.3 we can see that the method under test
has three input parameters. The test also contains four assertions. Each
assertion contains a call of the method under test with a different combina-
tion of the input values. This test contains the values low and mid for the
first input parameter of the method under test, low, mid, and high for the
second input parameter, and low and high for the third parameter. These
combinations provide 68.75% 2-way combinatorial coverage and 33.33%
3-way combinatorial coverage as shown in Figure 3.2.

Listing 3.3: Conventional Unit Test

@Test
public void testMinimumByte () {

f i n a l byte low = 1 2 3 ;
f i n a l byte mid = 123 + 1 ;
f i n a l byte high = 123 + 2 ;
a s s e r t E q u a l s (

"minimum(byte , byte , byte) 1 f a i l e d " ,
low , NumberUtils . min (low , mid , high)) ;

a s s e r t E q u a l s (
"minimum(byte , byte , byte) 1 f a i l e d " ,
low , NumberUtils . min (mid , low , high)) ;

a s s e r t E q u a l s (
"minimum(byte , byte , byte) 1 f a i l e d " ,
low , NumberUtils . min (mid , high , low)) ;

a s s e r t E q u a l s (

23

3. Adapting Unit Tests by Generating Combinatorial Test Data

2−way 3−way

t−ways

%
 C

ov
er

ag
e

0

10

20

30

40

50

60

70

80

90

100

2−way 3−way

t−ways

%
 C

ov
er

ag
e

Figure 3.2.: Combinatorial Coverage of Existing CUT.

"minimum(byte , byte , byte) 1 f a i l e d " ,
low , NumberUtils . min (low , mid , low)) ;

}

Listing 3.4: Parameterized Unit Test

@Test
public void testMinimumByte (

byte low , byte mid , byte high ,
byte expected) {

a s s e r t E q u a l s (expected ,
NumberUtils . min (low , mid , high)) ;

}

After generalizing the CUT from Listing 3.3 into the PUT in 3.4 we generate
the combinatorial valuations as shown in Table 3.1 which serve as inputs
for the PUT and obtain the expected output values manually.

24

3. Adapting Unit Tests by Generating Combinatorial Test Data

Table 3.1.: 2-way Combinatorial Valuations for the Input Values Extracted from the CUT.
low low mid
low mid high
low high low
mid low high
mid mid low
mid high mid
high low low
high mid mid
high high high

3.4. Empirical Study

In this section we introduce the subject applications and tools which we
chose to answer the following research questions:

• RQ1: Does a 2-way combinatorial valuation of existing data in a test
suite of CUTs increase code coverage and mutation score?
• RQ2: Does a manually written test suite of CUTs in general grow

when replacing the CUTs with PUTs where the parameter valuations
represent 2-way combinatorial valuations of existing values in the test
suite?

To answer these questions we provide data about combinatorial coverage in
existing test suites of CUTs and give results of code coverage and mutation
score for both CUTs and PUTs in this section.

3.4.1. Subject Applications

For our empirical study we selected four Java applications from the De-
fects4J [32] repository [36]. Defects4J provides a framework to checkout,
compile, and test several open source Java applications. For each of these
applications multiple versions are available where each version is either a
buggy version for a certain bug or a fixed version for that particular bug. To
assess the quality of the provided test suites the Defects4J framework also

25

3. Adapting Unit Tests by Generating Combinatorial Test Data

Table 3.2.: Basic Information About Selected Applications for Empirical Study
Name Versions Version Modified Class Mutants
Lang 65 fixed 1 NumberUtils 913

Math 106 fixed 4 euclidean.threed.SubLine 74

JFreeChart 26 fixed 8 data.time.Week 165

Joda-Time 27 fixed 12 LocalDate 610

comes integrated with the code coverage tool Cobertura [37] and the Major
mutation framework [38]. With Cobertura we measure line and branch cov-
erage of the provided test suites and with Major we measure the mutation
score of the test suites.

The four Java applications which we selected are Apache Commons Lang1,
Apache Commons Math2, JFreeChart3, and Joda-Time4.

3.4.2. Study Setup

For the selected applications in our study we give the number of existing
versions, the version we applied in this study, the class that was modified
by a patch to fix a bug, and the number of generated mutants in Table 3.2.
For each version a buggy one and a fixed one exists. In each buggy version
only a single bug is implemented. In the fixed versions the patch that fixes
the bug is already integrated.

For each of the four applications we selected a class that was modified to
fix a certain bug. Defects4J contains a list of relevant test classes for each
version of the applications. These relevant test classes contain CUTs which
we retrofitted manually into PUTs by applying Algorithm 2. Since we adapt
the existing tests by generating combinatorial valuations for the PUTs we
retrofitted only CUTs which used more than two different input variables for
the test and at least two different values for these input variables are present

1https://commons.apache.org/proper/commons-lang/
2http://commons.apache.org/proper/commons-math/
3http://www.jfree.org/jfreechart/
4http://www.joda.org/joda-time/

26

3. Adapting Unit Tests by Generating Combinatorial Test Data

Table 3.3.: Example test suite with four combinatorial valuations, four input parameters
and two input values for each parameter. [40]

a b c d
0 0 0 0

0 1 1 0

1 0 0 1

0 1 1 1

in the test class. From these values we generated combinatorial valuations by
using the combinatorial testing tool ACTS 3.05 (Automated Combinatorial
Testing for Software)6. Then we generated 2-way combinatorial valuations
for the PUTs. We manually added the expected values for the test oracles to
each combinatorial valuation.

To show the combinatorial coverage of the existing CUTs which we retrofitted
into PUTs we used the combinatorial coverage measurement tool CCM [39].
Combinatorial coverage or t-way combinatorial coverage for a method under
test with n input parameters is the proportion of t-way combinations of
these n input parameters for which all input values are covered. E.g. if we
have a test suite as shown in Table 3.3 with four binary variables a, b, c, d
and each row represents a combinatorial valuation then there should be six
2-way combinations ab, ac, ad, bc, bd, cd in the test suite. In Table 3.3 only
bd and cd have all possible combinations (00, 01, 10, 11) covered. So the
combinatorial coverage is 2/3=66.6%.

3.4.3. Combinatorial Coverage of Conventional Unit

Tests

In this section we show the combinatorial coverage of the existing CUTs.
Since we do not use constraints in our example applications for the gen-
eration of combinatorial valuations with ACTS, we automatically obtain

5http://csrc.nist.gov/groups/SNS/acts
6The input models are freely available for download from

https://bitbucket.org/hfelbinger/iwct2018

27

https://bitbucket.org/hfelbinger/iwct2018

3. Adapting Unit Tests by Generating Combinatorial Test Data

2−way 3−way

t−ways

%
 C

ov
er

ag
e

0

10

20

30

40

50

60

70

80

90

100

2−way 3−way

t−ways

%
 C

ov
er

ag
e

Figure 3.3.: Combinatorial Coverage of
CUTs from Apache Commons
Lang.

2−way 3−way

t−ways

%
 C

ov
er

ag
e

0

10

20

30

40

50

60

70

80

90

100

2−way 3−way

t−ways

%
 C

ov
er

ag
e

Figure 3.4.: Combinatorial Coverage of
CUTs from Apache Commons
Math.

100% combinatorial coverage for the newly generated 2-way combinatorial
valuations.

As shown in Figure 3.3 the combinatorial coverage of the CUTs from the
Apache Commons Lang example is 68.57% for 2-way combinations and 44%
for 3-way combinations. To achieve 100% 2-way combinatorial coverage we
had to increase the number of test cases from 56 CUTs to 111 combinatorial
valuations for the PUT.

Figure 3.4 shows that the combinatorial coverage of the CUTs from the
Apache Commons Math example is 62.85% for 2-way combinations and
30.1% for 3-way combinations. There are 7 CUTs, which we increased to 81

combinatorial valuations to achieve 100% 2-way combinatorial coverage for
Apache Commons Math.

The combinatorial coverage for 2-way combinations is 57.68% and for 3-way
combinations is 25% for the CUTs of the JFreeChart example, as shown
in Figure 3.5. We increased the 7 CUTs to 12 combinatorial valuations to
achieve 100% 2-way combinatorial coverage for JFreeChart.

28

3. Adapting Unit Tests by Generating Combinatorial Test Data

2−way 3−way

t−ways

%
 C

ov
er

ag
e

0

10

20

30

40

50

60

70

80

90

100

2−way 3−way

t−ways

%
 C

ov
er

ag
e

Figure 3.5.: Combinatorial Coverage of
CUTs from JFreeChart.

2−way 3−way

t−ways

%
 C

ov
er

ag
e

0

10

20

30

40

50

60

70

80

90

100

2−way 3−way

t−ways

%
 C

ov
er

ag
e

Figure 3.6.: Combinatorial Coverage of
CUTs from Joda-Time.

As shown in Figure 3.6 the 2-way combinatorial coverage of the CUTs is
50%, 3-way is 25% for the Joda-Time example. Increasing the number of
CUTs from 3 to 6 combinatorial valuations for the PUT resulted in 100%
2-way combinatorial coverage.

3.4.4. Coverage

The results for line coverage and condition coverage are shown in Table
3.4. These results show that for 3 examples line and condition coverage are
equivalent for CUTs and PUTs. Only for the JFreeChart example, both line
and condition coverage, increase by about 5%.

3.4.5. Mutation Score

The mutation scores for the CUTs and PUTs are listed in Table 3.5. Addi-
tionally the sizes of the test suites are shown. The test suite size is either the

29

3. Adapting Unit Tests by Generating Combinatorial Test Data

Table 3.4.: Code Coverage results for CUTs and PUTs.
name test type line cov. (%) cond. cov. (%)

Lang CUT 10.6 4.6
PUT 10.6 4.6

Math CUT 20.8 25

PUT 20.8 25

JFreeChart CUT 31.9 17.6
PUT 36.2 22.1

Joda-Time CUT 4.3 0

PUT 4.3 0

Table 3.5.: Mutation score results for CUTs and PUTs and the respective test suite sizes.
name test type ms (%) test suite size

Lang CUT 37.9 56

PUT 41.4 111

Math CUT 80 7

PUT 100 81

JFreeChart CUT 28 7

PUT 42.1 12

Joda-Time CUT 39.1 3

PUT 39.1 6

number of CUTs or the number of combinatorial valuations for a PUT. For
the Apache Commons Lang example the mutation score increases by about
5% whereas the test suite size increases by almost 100% from CUTs to PUTs.
The mutation score for the Apache Commons Math example increases by
20% and the test suite size by more than 1000%. For JFreeChart the test suite
size also increases by about 100% and the mutation score increases by 14%.
Finally for Joda-Time the mutation scores are equivalent but the test suite
size increases by 100%.

30

3. Adapting Unit Tests by Generating Combinatorial Test Data

3.5. Evaluation and Threats to Validity

In this work we did not change or add any input values when generalizing
CUTs into PUTs. If the programmer/tester missed to create CUTs with input
values that are boundary values or equivalence classes, we also did not have
these values for the generation of combinatorial valuations. Therefore the
growth of code coverage and mutation score are not that high compared to
the growth of the test suite size. As an answer for RQ1 we derive from our
results, that a 2-way combinatorial valuation of existing data in a test suite
of CUTs increases code coverage and mutation score.
Answering RQ2 depends on the extent of the existing test suite. If the
programmer/test would have created a test suite that has 100% 3-way
combinatorial coverage it should be possible to reduce the test suite size for
2-way combinations. Since this is usually not the case as also shown in our
empirical results, we assume that generally the test suite size grows.

In our empirical evaluation we did not eliminate equivalent mutants. When
investigating the examples manually we figured out that there were several
equivalent mutants for each example application except for Apache Com-
mons Math.
Also the level of abstraction when selecting the input data for the combi-
natorial valuation might affect the results. E.g. in one case we used every
single integer value in the CUTs and for another case abstracted the integer
values in different calls of a constructor to input values where all these
values are equivalent:

• Case 1: x.call(1,2,3) and x.call(2,3,4) result in 3 different input parame-
ters with 2 values each.
• Case 2: x.call(1,2,3) and x.call(2,3,4) result in 1 input parameter with 2

values where the values are (1,2,3) and (2,3,4).

It is also very important to say that our approach only works for methods
under test with at least two input variables.

31

3. Adapting Unit Tests by Generating Combinatorial Test Data

3.6. Related Work

When Tillmann et al. [19] introduced PUTs, their idea was to use symbolic
computation to derive test inputs. They use the path conditions within the
program under test and find covering input values for each path. PUTs have
their origins in testing algebraic specifications. Work on testing algebraic
specifications was started by Bernot et al. [41]. They use axioms to describe
the test purpose, to obtain concrete data, and to derive new theorems. In this
work we use PUTs just as a generalization from existing CUTs and generate
the test inputs with a combinatorial testing tool. The input values used
for the generation of the test inputs, are already included in the CUTs. We
assume that the CUTs were created manually and therefore the programmer
that created the tests also selected the input values very wisely.

Thummalapenta et al. [34] investigated the costs and benefits of retrofitting
CUTs as PUTs. They propose a methodology that helps to systematically
retrofit existing CUTs into PUTs. Furthermore they provide an empirical
analysis which shows that with PUTs the fault detection capabilities and
code coverage increase with feasible effort. In their work they used the test
generation tool Pex [42] which accepts PUTs and uses dynamic symbolic
execution to generate test inputs. In contrast we use the combinatorial
testing tool ACTS 3.0 to generate the test inputs, but we have to find the
expected output values manually, because there is no suitable technique to
generate test oracles automatically in combinatorial testing.

In [43] Fraser and Zeller present an approach to generate PUTs with sym-
bolic pre- and postconditions to characterize test inputs and test results.
Their empirical evaluation results show that the PUTs are more expressive,
need fewer computation steps, and achieve higher code coverage than CUTs.
In their work Fraser and Zeller use a search based approach to iteratively
derive new test inputs and mutation testing to identify possible oracles
[44].

Saff et al. [45] use the term theory-based testing for their generalization
approach of example based testing. Theories are closely related to PUTs.
They use an input generator that tries to achieve path coverage, while
attempting to execute every possible outcome. The input generator uses a
combination of static and dynamic analyses to iteratively explore a certain

32

3. Adapting Unit Tests by Generating Combinatorial Test Data

unit of code. Therefore they use constraint solving and some heuristics
that allow to explore otherwise unreachable paths e.g. for Integer values a
heuristic would be to use the constant values 0, 1, and -1.

In their very recent work Peleg et al. [46] present a framework that synthe-
sizes property based tests from existing CUTs. Since property based testing
combines parametric testing with value generators, property based testing
is closely related to parametric unit testing. The difference is that property
based testing uses value generators that generate randomly large numbers
of inputs defined by a generator to check whether the assertions hold. They
implemented the tool called JARVIS to automatically generalize CUTs. In
contrast we generalized the CUTs into PUTs manually.

In [18] Xie et al. propose a mutation analysis approach for analyzing PUTs.
In this work we compare the mutation scores of CUTs and PUTs where
both use the same input data, but with different or more combinations. Xie
et al. propose a set of mutation operators for systematically mutating PUTs
written by developers.

3.7. Summary

Each software under development should contain unit tests. These unit
tests are mainly manually written CUTs. PUTs are a generalized form of
CUTs. In this chapter we present an approach to manually generalize from
CUTs to PUTs, extract the input data from the CUTs, generate combinatorial
valuations from these input data, and derive the expected outcomes for the
combinatorial valuations.
We provide an empirical study using 4 Java examples from the Defects4J
collection. The results show that 2-way combinatorial coverage for the CUTs
in these examples is in the range of 50 to 70%. Nevertheless our approach
facilitates a growth of mutation score and code coverage.

33

Part III.

Model Inference Based Quality

Assessment

35

4. Test Suite Quality

Assessment

When testing programs or systems, in practice the question when to stop
testing naturally arises. To answer this question, it is significant to assess
the quality of the underlying test suite in terms of its adequacy with respect
to extract faults for a particular program or system under test. In testing
practice we are either using certain coverage criteria or mutation score
that a test suite has to ensure to serve this purpose. Where coverage gives
an indication whether a test suite causes the execution of certain parts
of the system under test, alone or in combination, mutation score is a
measure for the fault detection capabilities of a test suite directly. Measuring
coverage causes a small computational overhead during execution, whereas
the mutation score requires the execution of a certain amount of program
variants, i.e., the mutants. Therefore, computing the mutation score might
be too time consuming in practice.

In this chapter, we follow an alternative approach for assuring the fault
detection capabilities of test suites. The approach is based on machine
learning. The underlying idea is to extract a model from the test suite and
to compare the obtained model with the original program or a reference
test suite. In case both the model and a model from the Software Under
Test (SUT) are equivalent or very similar, it is evident that the test suite
captures the behavior of the SUT in sufficient detail. Otherwise, there are test
cases missing in the test suite. The question now is whether the difference
between the learned model and the SUT is a good measure for assuring test
suite quality?

37

4. Test Suite Quality Assessment

4.1. Existing Quality Assessment Methods

In this section we describe the three assessment methods mutation score,
code coverage, and combinatorial coverage.

4.1.1. Mutation Score

The mutation score is the result of mutation testing. Mutation testing [47] is
a fault-based testing technique where modifications of the SUT lead to faulty
versions of the SUT. These faulty versions are called mutants. A mutant is
said to be a killed mutant, if a test suite can distinguish the mutant from
the original program. Mutation score is defined as:

Definition 5 (Mutation score) Mutation score µ is the proportion between killed
mutants k and the number of existing mutants n.

µ = k
n

In this chapter we used mutants for Java source code from the following
categories, which are described in detail in [48]:

• Operator Replacement Binary (ORB): Replace all occurrences of arith-
metic (AOR), logical (LOR), shift (SOR), conditional (COR), and rela-
tional (ROR) operators with all valid alternatives.
• Literal Value Replacement (LVR): Force literals to take a positive value,

a negative value, and zero. Additionally, all reference initializations
are replaced by null.

Mutation score is in [0,1]. We assess a test suite to be of maximum adequacy
if the mutation score is 1 and a test suite to be inadequate if the mutation
score is 0.

38

4. Test Suite Quality Assessment

4.1.2. Code Coverage

To assess code coverage the degree to which test cases exercise the source
code of the program is measured. There exist several different metrics to
assess code coverage [49], e.g.:

• Statement Coverage: To reach full statement coverage, each statement
of the program code has to be executed at least once.
• Decision Coverage: To reach that 100% decision coverage a test suite

has to be provided s.t. each decision has a true and a false outcome at
least once. In other words, each branch direction must be traversed at
least once.
• MC/DC Coverage: To achieve 100% modified condition/decision cov-

erage (MC/DC) requires a test suite where each condition within a
decision is shown by execution to independently and correctly affect
the outcome of the decision [50].

4.1.3. Combinatorial Coverage

Combinatorial testing is a black box testing technique using valuations for
input parameters or configuration parameters. Therefore, for a given test
set for n parameters, simple t-way combinatorial coverage is the proportion
of t-way combinations of n variables for which all valuations are fully
covered [40].

4.2. Model Inference Based Quality Assessment

In this thesis we investigate a new method for test suite evaluation that is
based on an inferred model from the test suite. The idea is to use the
similarity between the inferred model and the system under test as a
measure of test suite adequacy, which is the ability of a test suite to expose
errors in the system under test. Therefore, we infer a model from a test suite
by learning a decision tree. As shown in Figure 4.1 we need a test suite T
which is divided into two distinct subsets Tequiv and Tdt. For the empirical

39

4. Test Suite Quality Assessment

Test Suite

T

SUT Decision Tree

: ⊆ TTdt Tdt

∧ ∩ ⇔ ∅Tdt Tequiv

: ⊆ TTequiv Tequiv

∧ ∩ ⇔ ∅Tequiv Tdt

equivalent outcomes for ?Tequiv

Figure 4.1.: Schema of model inference based quality assessment.

evaluation we decided to use a relative size ratio of 9:1 for subsets Tequiv
and Tdt respectively. The test suite for which we assess its adequacy is Tdt.
Therefore we infer a model from Tdt. The second subset Tequiv is used to
assess the adequacy by comparing the outcomes from the SUT and from the
inferred model when executing the test suite. If all outcomes are equivalent,
we assess a test suite Tdt to be adequate. If different outcomes appear from
the SUT and the inferred model when executing the same test case from
Tequiv, we calculate the root mean squared error to assess the adequacy
defined as follows:

Definition 6 (root mean squared error) The root mean squared error rmse mea-
sures the differences from the outcomes of an SUT and a decision tree of n test cases.

rmse =

√
(p1 − a1)2 + ... + (pn − an)2

n
p1, p2, ..., pn are the outcomes from the inferred model
a1, a2, ..., an are the outcomes from the SUT

The root mean squared error is in [0,1] where 0 indicates maximum adequacy
and 1 indicates an inadequate test suite.
If the outcomes of the learned decision tree and the SUT are different
for the ith test case, the difference of (pi − ai) depends on the number of
different categories the decision tree and the SUT categorize and on possible

40

4. Test Suite Quality Assessment

misclassifications while learning the decision tree. The difference of (pi− ai)
is

(pi − ai) =

2

#categories if no misclassifications exist,
P(pi|lea f)
#categories if misclassifications exist,

0 if pi equals ai.

Wrongly classified, or misclassified test cases cause probability distributions
P(pi|lea f) for the classified test cases at the leaf nodes. This probability
distribution affects the root mean squared error, but depends on the num-
ber of misclassifications and is calculated for each learned decision tree
individually.

The decision tree learning method we used in this work was the C4.5
algorithm as introduced in [51]. In real world applications only a test suite
Tdt exists, which requires in addition to create a set Tequiv to assess the
adequacy of Tdt.

41

5. Empirical Study Of

Correlation Between

Mutation Score And Model

Inference Based Test Suite

Adequacy Assessment

This chapter is based on the work “Empirical Study of Correlation Be-
tween Mutation Score and Model Inference Based Test Suite Adequacy
Assessment” [6].

In this chapter we address the question whether the difference between an
inferred model from a test suite and the SUT is a good measure for assuring
test suite quality. To give an answer to this question, we carried out an
experimental evaluation that is based on one specific setting.

The setting comprises a set of Java programs together with a corresponding
test suite from which we learn decision trees. Checking program equivalence
is an undecidable problem of computer science in general. However, in order
to check for equivalence or at least to establish reasons about equivalence
or similarity of programs, someone might use statistical methods. When
taking a sufficient number of test inputs and executing both, the program
and the potentially equivalent program, leads to always the same output,
the evidence of equivalence raises. We make use of the same idea to define
similarity as a measure based on behavioral differences when applying a
random set of test cases to both, the model and the SUT as introduced in
Section 4.2. To measure the behavioral differences we make use of the root

43

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

mean squared error between the outputs of the model and the SUT for the
tests.

In order to judge whether the model inferred from the test suite can be a
measure for the fault detection capabilities, the carried out experimental
evaluation compares the mutation score of the test suite with the similar-
ity between the inferred model and the test suite. In case both measures
correlate, model inference and mutation score can be assumed as equiva-
lent approaches for assuring fault detection capabilities of test suites. The
contributions of this chapter are as follows:

• Introduction of an alternative approach for test suite adequacy assess-
ment based on machine learning, where we infer a model from the
test suite and compute the similarity between the model and the SUT.
• An experimental evaluation of the model inference approach in order

to answer the question whether model similarity and mutation score
are equally good in assuring fault detection capabilities of test suites.

5.1. Pearson Correlation

In this work we investigate whether a relationship between mutation score
and a model inference based adequacy assessment exists. To quantify this
relationship we calculate the Pearson Correlation coefficient [52] between
mutation score and the root mean squared error of the model inference
based assessment. The Pearson Correlation coefficient indicates the extent
to which two variables have a linear relationship and is defined as:

Definition 7 (Pearson Correlation Coefficient) The Pearson Correlation coef-
ficient r measures the linear correlation between two variables.

r =

n

∑
i=1

(xi − x̄)(yi − ȳ)√√√√√ n

∑
i=1

(xi − x̄)2

√√√√√ n

∑
i=1

(yi − ȳ)2

n is the number of test cases,

44

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

Table 5.1.: Strength interpretations of the Pearson Correlation coefficient r
r strength
0.00-0.19 very weak
0.20-0.39 weak
0.40-0.59 moderate
0.60-0.79 strong
0.80-1.0 very strong

x1, x2, ..., xn are the results for the root mean squared error of Tdt,
y1, y2, ..., yn are the results for the mutation score of Tdt,
x̄ is the sample mean for x1, ..., xn (and analogously for ȳ)

The resulting Pearson Correlation coefficient is in [-1,1]. The linear relation-
ship is indicated by the direction (sign +/-) and the strength of r. According
to Evans [53] the result for the Pearson Correlation coefficient can be inter-
preted in strength by the value of r as shown in Table 5.1.

When interpreting the direction of the Pearson Correlation coefficient a
value of r = 0 indicates no correlation, a value r < 0 indicates negative
correlation, and a value r > 0 indicates positive correlation.
For the empirical evaluation we created a sample of 100 test suites Tdt where
all test suites in the sample have the same size. The test cases for Tdt are
selected randomly. For each member of the sample we calculated mutation
score and the root mean squared error.
To obtain a reasonable result from the calculation of the Pearson Correlation
coefficient, the data should be sampled from populations with normal
distributions. To test whether the 100 mutation score results and the 100

root mean squared error results for each example are normally distributed,
we used the Shapiro-Wilk test [54]. From the Shapiro-Wilk test we conclude
that our input data to calculate the Pearson Correlation coefficient most
likely come from a normally distributed population.
Since we assume that a growing mutation score indicates a reduction of the
root mean squared error, we expect the Pearson Correlation coefficient to be
the right tool to confirm this assumption.

45

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

5.2. Experimental Results

For the empirical evaluation of the Pearson Correlation coefficient between
mutation score and root mean squared error we used six example programs
and their corresponding test suites. As depicted in Figure 4.1 we divided
the given test suite T of each program into a subset Tdt ⊂ T and a subset
Tequiv ⊂ T. We take Tdt as the test suite for which adequacy is assessed on
the one hand by mutation score and on the other hand by model inference.
To obtain the mutation score we have to execute the test cases in Tdt for each
mutant. To get the root mean squared error an additional set of test cases
Tequiv is required, but these additional test cases have to be executed only
once. We presume that all test cases in T pass if they would be executed on
the original SUT.

5.2.1. Examples

For the experimental evaluation we make use of six Java programs:

1. TCAS: For the traffic collision avoidance system
(TCAS) an implementation in C with a test suite and mutants can be
found in [55]. Here we use a Java implementation. Also the mutants
were translated into Java.

2. BMI: The body mass index (BMI) example is a program that categorizes
a person by means of weight and height into one of five different
categories. For this example we used the source code published in
[56].

3. Triangle: The triangle example program [57] determines whether the
inputs correspond to a valid triangle and if so, whether the valid
triangle is equilateral, scalene, or isosceles.

4. POP3: The POP3 example is a state machine. A graphical representa-
tion of the implemented state machine is shown in Figure 5.1.

5. CAS: The car alarm system (CAS) example is a state machine. A
graphical representation of the implemented state machine is shown
in Figure 5.2.

46

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

Figure 5.1.: State machine showing the POP3 example.

6. UTF8: The Guava UTF8 example is a part of Google’s Guava library,
which checks if an input sequence of bytes is a well formed UTF8

encoded input. The source code of the UTF8 function can be found at
[58].

The input types for the examples are either continuous or enumerated,
where an enumerated input is limited by a finite number of different values.
The outputs for all six examples in this work are categorical.
The examples TCAS, BMI, UTF8 and Triangle appear as single transition
functions, without any externally observable states, that process input vec-
tors of continuous type values. The input for the UTF8 example is a vector of
four bytes where validity is checked for the input bytes consecutively. There-

47

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

fore the UTF8 example represents a state machine, without any externally
observable states, with transitions after a valid input byte was processed.
If the input vector for the UTF8 example contains less than four bytes, the
other bytes remain unknown (indicated by ’?’). Decision tree learning can
be used even when some input values are unknown. Missing input values
for decision tree learning are estimated. For estimation either the value that
is most common among the test vectors for the input value is used, or prob-
abilities are estimated for the input values. For the four examples, namely
TCAS, BMI, Triangle, and UTF8 we consider a test case tc to be a test vector
of k input values and an expected output value, e.g., tc = (in1, .., ink, out).
For the POP3 and CAS examples a test case is a sequence s of n test vectors,
e.g., s = 〈tc1, .., tcn〉 where n varies. Each test vector in s consists of four
values where the first value is the input value, the second value is the
expected outcome after executing the previous test vector, the third value
is the current state, and the fourth value is the expected outcome after
executing the current test vector. The inputs for the POP3 and the CAS
examples are enumerated.

The attributes source lines of code (SLOC), number of output categories
(categories), size of the test suite T (|T|), and number of mutants (# mutants)
for the six examples are given in Table 5.2. Despite the mutants for the TCAS
example the mutants for the remaining examples use only a single mutation
per mutant. For the TCAS example we used the existing test suite and
generated random test cases for the other examples. The size of a test suite
is the number of test cases it contains. Table 5.3 displays different properties
for T, the learned decision tree from T, and the control flow graph for the
six examples. The least number of inputs (k) is two for the BMI example
and the maximum is 12 for the TCAS example. As mentioned before k is
3 for POP3 and CAS, which are the input value, the previous expected
outcome, and the current state. Because for CAS and POP3 each test case
is a sequence of test vectors, the number of test vectors n is much higher
than the size of the test suite. For the examples BMI, Triangle, and UTF8

misclassifications (misc.) appear even when learning the decision tree from
T. The decision tree with the most nodes is the decision tree for TCAS with
a size of 372 nodes and 256 leaves. Also for TCAS the maximum number
of edges which can be counted when traversing the decision tree from the
root node to a leaf node is the highest with len. 12 whereas len. is just 2 for

48

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

Figure 5.2.: State machine showing the CAS example [59].

49

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

Table 5.2.: Attributes SLOC (source lines of code), size of the test suite TS, and number of
mutants of the example programs.

Name SLOC categories |T| #mutants
TCAS 100 3 1,545 41

BMI 19 5 1,000 28

Triangle 30 4 1,000 35

POP3 122 10 1,000 167

CAS 110 5 1,000 167

UTF8 56 2 1,000 147

Table 5.3.: The properties of the initial test suite, the learned tree, and the control flow
graph for the 6 examples.

test suite learned tree cfg
ex. k n misc. size leaves len. size
TCAS 12 1545 0 372 256 12 431

BMI 2 1000 9 107 54 9 67

Trian. 3 1000 246 57 29 14 99

POP3 3 25117 0 165 123 2 695

CAS 3 54437 0 33 28 2 511

UTF8 4 1000 83 33 17 11 229

POP3 and CAS. Further we extracted the control flow graphs (cfg) of the six
examples and counted the nodes in the graphs where the highest numbers
of nodes are given by POP3 and CAS with size 695 and 511 respectively.

5.2.2. Results

As introduced in Sections 4.1.1 and 4.2 we obtained the values for mutation
score and root mean squared error to calculate the Pearson Correlation
coefficient for the six examples described in Section 5.2.1. To calculate the
values for the root mean squared error we used the Java library Weka 3.7
[60].

50

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

0,4

0,5

0,6

M
u

ta
ti

o
n

 S
co

re

0

0,1

0,2

0,3

M
u

ta
ti

o
n

 S
co

re

0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Root mean squared error

Figure 5.3.: Correlation of mutation score and root mean squared error for the TCAS
example.

We selected 100 random subsets for Tdt from each of the six example test
suites and acquired mutation score and root mean squared error for each of
the Tdts.

Figure 5.3 shows the results for mutation score and root mean squared error
for the TCAS example. The Pearson Correlation coefficient for the TCAS
example is rTCAS = 0.22. The mutation score results are in the interval [0.07,
0.57] and the root mean squared error results are in the interval [0.33, 0.6].

In Figure 5.4 the results for the Triangle example are shown. The mutation
score results are in the interval [0.33, 0.78] and the root mean squared error
results are in the interval [0.45, 0.65]. For the Triangle example the Pearson
Correlation coefficient is rTriangle = 0.332.

For the BMI example the resulting mutation scores and root mean squared
errors are shown in Figure 5.5. The mutation score results are in the interval
[0.17, 0.86] and the root mean squared error results are in the interval [0.32,

51

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

0,5

0,6

0,7

0,8

0,9

M
u

ta
ti

o
n

 S
co

re

0

0,1

0,2

0,3

0,4

0,5

M
u

ta
ti

o
n

 S
co

re

0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Root mean squared error

Figure 5.4.: Correlation of mutation score and root mean squared error for the Triangle
example.

52

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

0,5

0,6

0,7

0,8

0,9

M
u

ta
ti

o
n

 S
co

re

0

0,1

0,2

0,3

0,4

0,5

M
u

ta
ti

o
n

 S
co

re

0

0 0,1 0,2 0,3 0,4 0,5 0,6

Root mean squared error

Figure 5.5.: Correlation of mutation score and root mean squared error for the BMI example.

0.53]. The Pearson Correlation coefficient for the BMI example is rBMI = 0.21.

The results of mutation score and root mean squared error for the UTF8

example are shown in Figure 5.6. The mutation score results are in the
interval [0.11, 0.42] and the root mean squared error results are in the
interval [0.32, 0.72]. The resulting Pearson Correlation coefficient for the
UTF8 example is rUTF8 = 0.202.

Figure 5.7 shows the 100 mutation score and root mean squared error results
for the POP3 example. The mutation score results are in the interval [0.24,
1.0] and the root mean squared error results are in the interval [0.11, 0.22].
For the POP3 example the Pearson Correlation coefficient is rPOP3 = −0.632.

In Figure 5.8 the results for the CAS example are shown. The mutation score
results are in the interval [0.1, 0.38] and the root mean squared error results

53

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

0,25

0,3

0,35

0,4

0,45

M
u

ta
ti

o
n

 S
co

re

0

0,05

0,1

0,15

0,2

0,25

M
u

ta
ti

o
n

 S
co

re

0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Root mean squared error

Figure 5.6.: Correlation of mutation score and root mean squared error for the UTF8

example.

54

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

0,8

1

1,2

1,4

M
u

ta
ti

o
n

 S
co

re

0

0,2

0,4

0,6

0,8

M
u

ta
ti

o
n

 S
co

re

0

0 0,05 0,1 0,15 0,2 0,25

Root mean squared error

Figure 5.7.: Correlation of mutation score and root mean squared error for the POP3

example.

55

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

0,25

0,3

0,35

0,4
M

u
ta

ti
o

n
 S

co
re

0

0,05

0,1

0,15

0,2

M
u

ta
ti

o
n

 S
co

re

0

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14

Root mean squared error

Figure 5.8.: Correlation of mutation score and root mean squared error for the CAS exam-
ple.

are in the interval [0.0, 0.12]. For the CAS example the Pearson Correlation
coefficient is rCAS = −0.871.

The six figures showing the results for mutation score and root mean
squared error also contain a trendline each which was created by linear
regression as explained in [61]. This trendline supports the visualization of
the Pearson Correlation coefficient.

5.3. Evaluation

We interpret the Pearson Correlation coefficients obtained from our results
as explained in Table 5.1. For the examples TCAS, Triangle, BMI, and UTF8

the correlation is weak. The correlation for the POP3 example is strong and
for the CAS example the correlation is very strong. The optimal Pearson
correlation coefficient, which could indicate that we can use model inference

56

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

based adequacy assessment instead of mutation score is -1. This follows
from the assumption that if the mutation score of a test suite is high, the
root mean squared error is low and vice versa.
The examples resulting in a weak correlation indicate that mutation score
could not be replaced by model inference based adequacy assessment. To
verify this claim we ran two additional experiments for TCAS, Triangle, BMI,
and UTF8. First we changed the size ratio of Tdt and Tequal from 1:9 to 1:4,
3:7, 2:3, and 1:1. Second we divided the mutants into categories as explained
in Section 4.1.1 and analyzed whether a correlation between model inference
based quality assessment and the mutation score of certain categories of
mutants exists.
Changing the sizes of Tdt and Tequal did not affect the Pearson correlation
coefficient significantly. We were able to categorize the mutants into the six
categories: AOR, LVR, ROR, COR, SOR, and LOR. To obtain the Pearson
Correlation coefficient we created again 100 test suites Tdt for each mutant
category, for each example, and processed mutation score and root mean
squared error.

For the four examples TCAS, Triangle, BMI, and UTF8 no sign of linear
correlation was obtained for any category of mutants. The examples POP3

and CAS result in a strong and very strong correlation respectively. This
originates from the facts that POP3 and CAS use enumerated inputs and that
the test sequences from which the models are inferred contain additionally
to the inputs and outputs also information about the current state and
the preceding output. As shown in Table 5.3 the learned decision trees for
POP3 and CAS have at most two edges from the root to any leaf node. For
all other examples the inputs are continuous values which ranges can be
split multiple times while growing a decision tree. The algorithm to learn
the decision tree is essential for the obtained results. For examples with
continuous types we obtain binary decision trees which split value ranges.
For the examples with enumerated input types we obtain decision trees
with an outgoing edge from a node for each possible value the variable
represented by the node can be assigned to. The sizes of the control flow
graphs for POP3 and CAS are highest, but to obtain similar coverage results
for all examples also the number of test vectors is highest for these two
examples.

57

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

5.4. Related Work

In their recent work Fraser and Walkinshaw [56] answer the question
whether there exists a relationship between their adequacy score and the
ability of a test suite to detect defects. The authors also use the term ade-
quacy, which was defined in [62] where a test suite is adequate if it implies
no errors in the SUT if it executes correctly. In [56] the authors do not obtain
a positive correlation at all for their examples with categorical outcomes
when using a similar machine learning based test suite adequacy assessment.
The approach introduced in this work to assess the adequacy of a test suite
by model inference is similar to the idea of probably approximately correct
(PAC) learning [63]. PAC provides a theoretical framework for evaluating
model accuracy.
The same method of learning a decision tree from a test suite using the
C4.5 algorithm is applied by Papadopoulos and Walkinshaw in [64]. In [64]
the authors use the decision tree as input model for test case generation to
extend an existing test suite.
In [65] the authors demonstrate empirically that there is a low to moderate
correlation between coverage and effectiveness of a test suite. To assess
effectiveness they also use the mutation score of a test suite. The authors
calculate two different correlation coefficients. First they calculate the Pear-
son Correlation coefficient as we did in this work. Second they calculate the
Kendall Correlation coefficient [66], which yields similar results as obtained
by the Pearson Correlation coefficient.
Just et al. investigate in [67] whether mutants are a valid substitute for
real faults. Their results show a statistically significant correlation between
mutant detection and real fault detection, independent of coverage.

In [68] the author introduces a definition of test data adequacy. She points
out that if the behavior of a system can be inferred from a test suite, it
can be concluded, that the SUT’s behavior is adequately tested. She also
describes practical limitations, which origin in the fact that equivalence is
not decidable. In [69] Zhu et al. review the theories of inductive inference
and their relevance to software testing.

58

5. Empirical Study Of Correlation Between Mutation Score And

Model Inference Based Test Suite Adequacy Assessment

5.5. Summary

We conclude that there can be a linear correlation between mutation score
and model inference based test suite adequacy assessment. However, this
relationship depends on the data within a test suite and the input types
of the SUT. In contrast to related work we added information about the
current state and the previous output of the SUT to each test case in a test
suite for certain examples, that resulted in a clear linear correlation.
The examples resulting in a weak positive correlation, are the examples with
continuous input types and without information about internal states of an
SUT within a test suite. The types of the inputs and the information about
internal states within the test suite seem to be the essential reasons why for
some examples a linear correlation exists and for some not. We address the
open research on the detailed differences of the examples and the test suites
in future work.

Generally we obtained results for the root mean squared error of an inferred
model with ranges from 0.11 up to 0.4. These results, and the related work,
clearly show us, that it is possible to assess the adequacy of a test suite by
model inference. In future work we will prepare some real world examples
and also investigate whether there exist linear correlations between model
inference based test suite adequacy assessment and various coverage assess-
ment methods. Further we will apply different machine learning methods
to infer models from a test suite and adopt other similarity measures to
assess the approximations of the inferred model and the SUT. From these
improvements we will get better insights when to use a model inference
based method, which only depends on the inputs and outputs of a program,
and when to use test suite adequacy assessment methods, which depend
on source code modifications.

59

6. Classifying Test Suite

E�ectiveness via Model

Inference and ROBBDs

This chapter is based on the work “Classifying Test Suite Effectiveness via
Model Inference and ROBBDs” [7].

Test suite generation and in turn the decision whether a test suite is good
enough are certainly quite complex tasks. In this chapter, we focus on the
latter and in particular on the functional aspect. That is, we would like to
know whether a given test suite examines the functionality of our program
to the best of our knowledge. Certainly, a test suite examining all possible
input combinations would be an assuring approach, but exhaustive testing
of the entire I/O space is certainly impossible in most cases due to the sheer
number of required tests.

Now, let us consider the example of a Boolean function as illustrated in
Figure 6.1. The function has n = 3 input variables, and let us assume that we
have an exhaustive test suite TS containing 2n test cases s.t. all input combi-
nations are tested. While TS certainly is effective due to checking the entire
I/O space, for a subset T ⊆ TS, T’s effectiveness is unclear. If we assume
there to be, e.g., 40 inputs, exhaustive testing with 240 test cases is however
certainly impossible. Our idea now is to learn a canonical representation
from T that we then compare to a corresponding representation derived
from the program under test’s specification, in order to check whether they
are equivalent. In case of equivalence, we then assume that the test suite
captures the same behavior as the program. This leads us to the immedi-
ate and important question: What is an attractive canonical representation
suitable for a test suite and the tested program?

61

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

Figure 6.1.: An illustration of our approach for a simple Boolean function.

As described in Section 6.2, we use reduced ordered binary decision dia-
grams (ROBDDs) as our canonical format. In particular, like illustrated in
Figure 6.1, we infer a binary decision tree DT from the considered test suite
T via machine learning. In the learning algorithm proposed in Section 6.2.1,
similar to the algorithm C4.5 (see Section 6.1) we take the local information
gain into account when choosing the next decision variable. Consequently,
the variable order in DT ’s individual paths is determined via the entropy
of the local situations in order to come up with a “good” order. Our next
step is to derive an ordering graph O for DT as described in Section 6.2.2,
and if it is cycle-free, we extract a total variable order and reduce DT to an
ROBDD (for the latter see Section 6.2.3). Afterwards we derive an ROBDD
for the system under test (SUT) from its Boolean functions’ specification
with the concept described in Section 6.2.4.

Our argument is that if the two ROBDDs coincide, then a program satisfying
T should implement the desired I/O behavior. Our experiments reported
in Section 6.3 show an excellent correlation between our classification and
fault identification capabilities. Note that if O features cycles, then there
are contradicting variable orders in DT ’s paths (see Sec. 6.2.2) that we
would need to resolve by reordering the variables in some paths (this is not
implemented yet).

62

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

Table 6.1.: A table reporting on the performance of several test suites T ⊆ TS for the
example shown in Figure 6.1.

|T| # subsets T eff. T ratio [%]
8 1 1 100.00

7 8 4 50.00

6 28 7 25.00

5 56 5 8.93

4 70 1 1.43

3 56 0 0.00

Now let us come back to our example. If we consider Table 6.1, we can see,
e.g., that for a subset size of 4 (= n + 1), out of the (2n

n+1) = 70 subsets, there
is a single one that we would consider to be effective, and that the likelihood
of achieving this with some T ⊆ TS increases with a higher subset size.
While our approach cannot yet be used to derive missing test cases, it can
serve for adding a quality label to some existing test suite T.

When using only a subset of (n+1) test cases of the test suite to infer a
model and classifying the efficiency of each of the (2n

n+1) = 70 different
subsets of size (n+1), only one subset can be classified as an efficient test
suite. From this efficient test suite we infer a model from which we extract
a variable order that is transferred to the creation of the ROBDD from the
Boolean function. Only for the efficient test suite the created ROBDD and
the inferred model, reduced to an ROBDD, are equivalent. For different
subset sizes we obtained the results as shown in Table 6.1.

6.1. Preliminaries

We use Boolean functions as abstract representation format for a program (or
also a combinatorial circuit) in our approach. Static Single Assignment form
as discussed in [70] and digitizing non-Boolean variables (via predicates)
would help to use our work also for more complex programs.

An n-ary Boolean function f : Bn → B with n inputs maps n Boolean
(B = {0, 1} represents the Boolean values False and True as usual) input

63

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

values to a single Boolean output value. A test case t in a test suite T thus is
a vector (x1, .., xn+1) defining n input values and f ’s expected output when
executing t. For our implementation, we consider the following unary and
binary standard operators in a Boolean function: ¬ (not), ∧ (and), ∨ (or),
and ⊕ (xor).

An essential ingredient of our approach is that we learn a decision tree from
a test suite. As depicted in more detail in Section 6.2.1, we use an altered
version of the widely used C4.5 algorithm [51] for this. The algorithm
computes the entropy and information gain when selecting nodes/variables
while growing the tree. So let us first define these two terms.

In information theory, entropy is commonly used as a measure of purity or
impurity of an arbitrary set of examples, and we would like to choose an
optimal next decision variable in this respect. In our case, for a test suite
T, we take a Boolean output variable (if there are more, we have to choose
one) and can derive the entropy E(T) with respect to this variable according
to Equation 6.1. In this equation, pt represents the proportion of test cases
s.t. the considered output variable’s value is True, and p f gives the same
proportion for False (pt + p f = 1). If all test cases result in the same output
value, then entropy is 0, while an entropy of 1 indicates pt = p f = 0.5. In
general, we have 0 ≤ E(T) ≤ 1.

E(T) ≡ −pt log2 pt − p f log2 p f . (6.1)

Due to base 2, entropy is a measure for the expected encoding length in bits.
That is, entropy can be interpreted as the minimum number of bits needed
to encode the classification of an arbitrary test case from a test suite. If not
an integer, the value represents the average number of required bits.

When growing the tree, the variables for nodes n ∈ N are selected by
investigating the effectiveness of the various input variables in classifying
the test cases. Informally, the information gain of a variable reports the
expected reduction in entropy caused by partitioning the test suite according
to this variable. Formally, the information gain Gain(T, v) of variable v for a
set of test cases T is computed as of Equation 6.2, where Values(v) returns
the domain of variable v (which is B in our case) and Tb ⊆ T denotes T’s
subset s.t. v has value b ∈ Values(v). Coming back to the learning algorithm,
it selects a variable with the highest information gain. If there is no variable

64

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

v s.t. Gain(T, v) > 0, the current node becomes a leaf labeled by b ∈ B

s.t. b is the most probable classification of the inputs leading to this leaf.
Consequently, there can still be misclassifications.

Gain(T, v) ≡ E(T) − ∑
b∈Values(v)

|Tb|
|T| E(Tb). (6.2)

We use special binary decision diagrams (BDDs) [71] as canonical format
for our comparison. A BDD describes a Boolean function f via a rooted,
directed acyclic graph. In particular, the BDD consists of nodes N for repre-
senting the consideration of a Boolean variable, two nodes L representing
f ’s two possible outcomes False and True, and directed edges E connecting
the nodes as follows. Each node n ∈ N is labeled by a variable var (n) and
has a pair of outgoing edges e0(n) and e1(n) leading to a child node for the
corresponding evaluation (the i of ei(n)) of variable var (n). Nodes in L have
no outgoing edge.

A canonical variant of BDDs are reduced ordered binary decision diagrams
(ROBDD)s [72]. A specific feature of an ROBDD is that it implements a
certain variable order in the graph, i.e., there is a total order s.t. for n, n′ ∈ N
we have that if v1 = var (n) appears before v2 = var (n′) in some path, then
this is the case for all paths Πk in the BDD (the BDD is an OBDD then)
s.t. both variables appear in them. Furthermore, an ROBDD is reduced,
which means that each node in the OBDD represents a different Boolean
function. Due to the resulting canonicity of an ROBBD, we can easily decide
equivalence:

Definition 8 Two ROBDDs A and B are equivalent iff their root nodes are
equivalent. Two nodes n1 ∈ A and n2 ∈ B are equivalent if they are either

1. leaf nodes with the same label, or
2. non-leaf nodes that have the same label and the same pairs of outgoing edges

(e0(n1), e0(n2)) and (e1(n1), e1(n2)) lead to equivalent nodes respectively.

Determining two ROBDDs’ equivalence is linear in the size of the smaller (if
not equivalent) ROBDD where its size is given by the number of its nodes.

65

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

6.1.1. Reduced Ordered Binary Decision Diagrams

As explained in [71], binary decision diagrams (BDD)s represent Boolean
functions as rooted, directed acyclic graphs. A BDD consists of nodes
N representing Boolean variables, two nodes L representing the possible
outcomes of the Boolean functions, and edges E connecting the nodes. Each
node n ∈ N is labeled by a variable name and has a pair of outgoing edges
e0(n) and e1(n) each directing to a child node where e0(n) is labeled 0 and
e1(n) is labeled 1 for the valuation of the variable represented by n.
In this work we use reduced ordered binary decision diagrams (ROBDD)s
[72]. An ROBDD follows a certain order of the nodes in the graph. Within
the graph exists a total ordering v1 ∈ V < v2 ∈ V over the set of variables V
of the Boolean function represented by the root node. A total order ensures
that for each path from the root node to a leaf node a certain order is
kept. These graphs are canonical representations of the respective Boolean
functions. The order which variable to select while growing the tree is
transferred from the inferred decision tree as shown in Figure 6.2 in this
work.

6.2. Classifying Test Suite E�ectiveness

Via comparing the canonical representations of the test suite and the pro-
gram under test, we aim to decide whether a test suite is effective enough.
The basic steps of our approach at achieving this are illustrated in Fig-
ure 6.2.

Our initial step is to learn a decision tree DT from the considered test suite T,
where we report on the details of this step in Subsection 6.2.1. An important
prerequisite here is that the test cases in T are unique, since duplicates affect
the information gain as computed for selecting the next decision variable
in a tree. Like we mentioned in the introduction, furthermore the output
variables’ values have to be deterministic for the input values (as provided
by some t ∈ T).

As depicted in Subsection 6.2.2, we then investigate the variable orders in
the individual paths in DT and derive a total variable order if possible, i.e.,

66

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

Figure 6.2.: Process of our test suite classification approach.

if DT is ordered. If there is such a total variable order Ψ, we reduce DT
to an ROBDD as described in Subsection 6.2.3. Furthermore, we derive an
ROBDD for the program or system under test as depicted in Subsection 6.2.4,
using the same order Ψ.

In our last step, we finally compare the two resulting ROBDDs according to
Definition 8, using the recursive function isEqual given in Algorithm 3.

Algorithm 3 Function to decide whether two ROBDDs are equivalent.
1: function isEqual(Node n1, Node n2)
2: if isLeaf(n1) and isLeaf(n2) and label(n1) == label(n2) then
3: return True
4: else if isLeaf(n1) or isLeaf(n2) then
5: return False
6: else
7: return label(n1) == label(n2) and

isEqual(true(n1), true(n2)) and
isEqual(false(n1), false(n2))

8: end if
9: end function

67

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

6.2.1. Learning a Decision Tree from a Test Suite

Aiming at deriving a representative ROBDD for T, we certainly would
like to avoid any misclassification of a test as it could occur with C4.5
(see Section 6.1). To this end, we extended the algorithm as shown in
Algorithm 4.

Algorithm 4 Function to learn a decision tree from a test suite T .
1: function ADDNODE(T , V, N)
2: v, g← MAX_IG(T , V, E(T))
3: if g > 0 then
4: N.v← v
5: N.true← ADDNODE(Tvt ⊆ T , V′ ← V \ {v}, N′ ← new_node())
6: N.false← ADDNODE(Tv f ⊆ T , V′, N′ ← new_node())
7: else
8: if E(T) > 0 then
9: v← V.head

10: N.v← v
11: N.true← ADDNODE(Tvt ⊆ T , V′ ← V \ {v}, N′ ← new_node())
12: N.false← ADDNODE(Tv f ⊆ T , V′, N′ ← new_node())
13: else
14: N.name← OUT(T)
15: end if
16: end if
17: return N
18: end function

Our recursive function ADDNODE takes as input a test suite T, a set of variables
V, and a node N, and returns the root node of a binary decision tree. Initially,
the set V contains n Boolean input variables of the tested Boolean function.
Node N is a new and empty node in DT , where we assign N’s properties
inside ADDNODE. These properties are N.v, and two successor nodes N.true
and N.false. As stated in the preliminaries, there are two types of nodes.
First, decision nodes which represent a test of some input variable v ∈ V
(s.t. N.v = v) which divides the local T ′ into two subsets T ′vt

and T ′v f

according to the value of variable v. Correspondingly, each such decision

68

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

node has exactly two successor nodes. Then there are leaf nodes, reporting
the output’s value of the test cases classified to this node (thus N.v ∈ B). A
leaf node does not have any successor nodes.

In line 2, the function MAX_IG returns a variable v and its information gain g
s.t. g is the maximum gain of all v ∈ V (obviously there could be more than
one such v). If there is such a variable with g > 0, we select it and recursively
update N.v and the true and false successor nodes. The two recursive calls
of ADDNODE use as input Tvt ⊆ T s.t. v is True (or the complement Tv f for
False), the variable set V′ ← V \ {v} s.t. v was removed from V, and a fresh
new node N′.

If there is no variable with g > 0, our adaption takes control. That is, if there
are still different output values for T indicated by entropy E(T) > 0, we
select the first variable from V (V.head) as decision variable and proceed like
for a decision variable selected as of above (with corresponding recursive
calls for the successor nodes). If all expected outcomes for the tests in T
coincide (E(T) = 0), N is a leaf node to be assigned this expected outcome
OUT(T).

Note that we assume the test suites to be deterministic. Thus Algorithm 4

derived from C4.5 is guaranteed to terminate without misclassifications.

6.2.2. Isolating a Total Variable Order from DT

Two crucial questions for our approach are whether there is a total variable
order fitting the learned decision tree DT, and in turn how to extract such
an order so as to use it for generating an ROBDD for the SUT. For tackling
these questions, we start by constructing an ordering graph as of Def. 10. But
let us first define a path Π in DT and its variable sequence Φ = var (Π), as
well as DT ’s alphabet.

Definition 9 A path Π of length |Π| = n in a decision tree DT is a sequence of
nodes π0...πn−1 such that there is an edge from πi to πi+1 (πi is parent of πi+1)
for 0 ≤ i < n− 2. The path of some node s in DT is the node sequence from DT ’s
root node r to s. Φ = var (Π) is the sequence of variables φi considered at the
individual nodes πi in Π s.t. φi = var (πi). For the leaves, that per definition have

69

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

no variable label but are labeled either False or True, we have ε = var (πi) s.t. in
this case we have |Φ| = |Π| − 1. The alphabet Σ = alphabet (DT) is the union
of the variables considered at the individual nodes in DT.

Definition 10 An ordering graph O for a decision tree DT is a directed graph
represented by the tuple (Q, q0, T ⊆ Q×Q, Σ, l : Q→ Σ, λ : Σ→ Q) such that

• Σ = alphabet(DT) is a finite alphabet inherited from DT
• Q is a finite set of nodes, where |Q| = |Σ| and for each σ ∈ Σ there is some

qσ ∈ Q s.t. l(qσ) = σ
• q0 is the root node, where l(q0) = var(r) such that r is DT ’s root node
• T is the transition relation, where (qσ, qδ) ∈ T iff DT features two nodes s

and d s.t. (1) s is a parent of d, and (2) l(qσ) = var (s) and l(qδ) = var (d).
• l is a labeling function that assigns each q ∈ Q some σ ∈ Σ.
• λ is a function that returns for some σ ∈ Σ a qσ ∈ Q such that l(qσ) = σ.

Corollary 1 Due to |Q| = |Σ| and the definition of Q, we have that for every
σ ∈ Σ there is a unique q ∈ Q such that l(q) = σ.

When deriving an ordering graph for a given decision tree, the construction
of Q, q0, l and λ is straightforward, and for T we can use Algorithm 5. This
algorithm’s idea is to traverse the whole tree from the leaves towards the
root, and whenever we end up at the root or some state that we have visited
before, we proceed with the next leaf. For each node visited in this process,
we add its incoming edge to T, so that we end up with the edge collection
required by Definition 10. It is easy to see that the algorithm terminates and
that its run-time is linear in the amount of nodes in DT .

Via the following Theorem 1, we can then decide whether there is a total
variable order that aggregates the individual partial orders as defined via
var (Π) by the available paths Π in DT. For our investigations it will suffice
to focus on the leaves’ paths since all other paths are contained in them.

Theorem 1 For a decision tree DT with alphabet Σ there exists a total variable
order that does not contradict any path from the root to some leaf if and only if there
is no cycle in the corresponding ordering graph O as of Definition 10.

70

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

Algorithm 5 Function to create T of an ordering graph for a binary tree DT.
1: function createT(DT)
2: unmark(DT.nodes)

3: T ← ∅
4: L←list of DT ’s leaves, e.g., sorted according to depth.
5: while |L| > 0 do
6: node← L.pop()
7: node← node′ = parent of node // skip leaf (has no variable label)
8: next← False
9: while (!next) do

10: if marked(node) then // proc. w. next leaf
11: next← True
12: else if node has parent node′ then
13: T ← T ∪ {(node.variable, node’.variable)}
14: mark(node)
15: node← node′

16: else
17: mark(node)
18: end if
19: end while
20: end while
21: return T
22: end function

71

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

Proof 1 (sketch) A basic observation about ordering graphs is that for any edge in
DT from s to d s.t. var (s) = σ ∈ Σ and var (d) = δ ∈ Σ, there is also a directed
edge from qσ to qδ in O s.t. l(qσ) = σ and l(qδ) = δ. It is important to note that,
according to Def. 10, O does not contain any other edges.

Now, let us assume that the partial variable orders as defined by the individual
paths in DT contradict each other. That is, there are some variables σ and δ in
Σ s.t. in some path Π1 we have i < j for σ = var (π1

i) and δ = var (π1
j),

but there is also some path Π2 s.t. j < i for σ = var (π2
i) and δ = var (π2

j).
Since for any such edge in DT , there is a corresponding directed edge in O,
this means that qδ = λ(δ) is reachable from qσ = λ(σ) via the node sequence
λ(var (π1

i)) . . . λ(var (π1
j)), while qσ is reachable from qδ via the sequence im-

plied by Π2 (i.e., λ(var (π2
j)) . . . λ(var (π2

i))). Consequently, O has a cycle.

Now let us assume that for any two variables σ and δ in Σ and the paths Πk that
consider both variables, we have for σ = var (πk

i) and δ = var (πk
j) that either

i < j for all k or j < i for all k. In other words, there are no contradictions between
the individual partial orders of DT ’s paths. Without losing generality let us assume
i < j. Consequently, qδ is reachable from qσ via any sequence implied by some path
Πk in DT that features σ and δ. However, qσ is unreachable from qδ. That is, due
to our observation on O’s edges, this would require the presence of a path in DT
where we would consider qδ before qσ, but which contradicts our assumption. With
the definition of Q, we thus cannot have a cycle in O, so that O is indeed a directed
acyclic graph (DAG).

For identifying cycles in a directed graph, we can use, e.g, the STRONG-
CONNECT algorithm depicted in [73].

If the ordering graph is indeed a DAG, we can retrieve some total order
Ψ (as a sequence of ψi ∈ Σ) via the topological sorting algorithm variant
CREATEORDER given as Algorithm 6. The underlying idea is as follows: It
is easy to see that we have that for every σ ∈ Σ, the source nodes qα of
qσ’s incoming edges define the complete set of variables α ∈ Σ that are
considered right before σ for some path in DT . Consequently these variables
also have to appear before σ in a total order, and we have to consider this
property in a recursive way (reasoning again from α). For easy access, we
thus store T’s edges in a fashion that every q ∈ Q has a list of parents q.inlist

72

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

and a list of children q.outlist . Now, if we traverse O starting with q0, and
follow the outgoing edges of some qσ only whenever all of qσ’s incoming
edges have been followed, we can establish a total order by appending σ ∈ Σ
to the order (once) whenever the outgoing edges of qσ “become available”.
If O is indeed a DAG, we can do so in a breadth-first manner (for a cycle
this obviously would not work).

Algorithm 6 Function to derive a total order Ψ of an acyclic ordering graph
O.

1: function createOrder(O)
2: assert isDAG(O)
3: Ω← ∅
4: Ψ← [l(q0)]
5: for all qi ∈ q0.outlist do
6: remove q0 from qi.inlist
7: Ω← Ω ∪ {qi}
8: end for
9: while |Ω| > 0 do

10: pop qσ from Ω such that |qσ.inlist| = 0
11: for all qi ∈ qσ.outlist do
12: remove qσ from qi.inlist
13: if qi /∈ Ω then
14: Ω← Ω ∪ {qi}
15: end if
16: end for
17: Ψ.append(l(qσ))
18: end while
19: return Ψ
20: end function

In our algorithm, thus, whenever we add a variable δ to Ψ (line 17), we
remove the obligation of δ having to appear prior to σ for all σ s.t. λ(σ) is
a child of λ(δ) in line 12 (or 6 for q0’s children). Obviously, whenever all
obligations have been met for some σ s.t. |λ(σ).inlist | = 0, we can select
σ (line 10) and append it to Ψ (line 17). Since there is no reason to search
for such a σ in the whole Σ, we keep a worklist Ω containing those λ(σ)
for which some of σ’s obligations already have been met (and have been

73

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

removed from λ(σ).inlist). This worklist is filled with nodes in two ways.
That is, the first node without any obligation is obviously the root note,
so that we have l(q0) as first item of Ψ (line 3) and initially fill Ω with
q0’s children (lines 5-7) after treating them as described above (line 6). The
second option is that, whenever we remove in line 11 an obligation from
λ(σ) when considering some δ 6= l(q0) s.t. λ(δ) is λ(σ)’s parent, we search
whether the node is already in Ω and add it if this is not the case (lines
13-15).

Now let us show that this algorithm is complete and sound. That is (1) that
it can always derive a sequence Ψ (a total order) from some acyclic ordering
graph O, and (b) that a derived sequence Ψ is indeed a total order for DT .

Theorem 2 For some acyclic ordering graph O, Algorithm 6 terminates and
derives a sequence Ψ of variables ψi ∈ Σ.

Proof 2 (sketch) Due to line 4 and the fact that we only append σ ∈ Σ (l : Q→ Σ)
to Ψ in line 17, this leaves us to show that the algorithm terminates correctly if O
is a DAG. Given the algorithm’s structure, the crucial lines in this respect are lines
9 and 10. That is, line 2 is no problem if O is a DAG, but we have to show that Ω
becomes empty at some point such that we leave the while loop, and that we can
indeed pop some qσ in line 10 for avoiding a deadlock.

Let us start with the latter s.t. Ω is non-empty. Now let us assume that Ω contains
some qσ s.t. |qσ.inlist| > 0 with qδ ∈ qσ.inlist. Due to T and lines 10 to 15, this
means that either qδ is in Ω, or one of its ancestors λ(var (πk

i)) in path Πk in DT
s.t. i < j for δ = l(πk

j). That is, since we initialized Ω with all children of q0,
due to lines 10 to 15 the only way for none of them to be in Ω would be that all
obligations of qδ were already fulfilled and qδ was already chosen in line 10 and
added to Ψ. But then qδ would not be in qσ.inlist (see also the argument below).
Assuming λ(var (πk

i)) to be in Ω then means that either we could choose this
node if its inlist is empty, or via its inlist we could again find some node in Ω as
described above. Since O is acyclic and |Q| = |Σ| is finite, the number of times
we have to do this until finding some node in Ω s.t. its inlist is empty is limited.
It directly follows that if |Ω| > 0, then there is also always a node qσ in Ω s.t.
|qσ.inlist| = 0 that we can choose in line 10.

74

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

Now let us show that Ω becomes empty eventually, which directly follows from the
fact that |Q| is finite and that we have that some qσ ∈ Q is added to Ω only once.
That is, if q0 is a parent of qσ, then we add it to Ω in line 7. If not, then, when
the first of qσ’s parents is chosen in line 10, we add qσ to Ω in line 14. When in
Ω, qσ is not added a second time due to line 13. After qσ was chosen in line 10
(and consequently removed from Ω) it will never be added again. That is, all of
σ’s obligations regarding variables that have to appear prior to σ have been met
s.t. λ(σ).inlist became empty–there is no further incoming edge that has not been
considered so far and could add qσ to Ω via lines 11 to 14. Since |Q| is finite and
there is always a node to choose in line 10, thus Ω becomes empty at some point s.t.
the algorithm terminates successfully if O is acyclic.

Corollary 2 Each σ ∈ Σ appears exactly once in Ψ as of Theorem 2.

The validity of the corollary is easy to see via Corollary 1, the definitions
of T and Q, and the fact that some q ∈ Q is added and removed from Ω
(s.t. q’s label is appended to Ψ) exactly once (for the latter see the proof of
Theorem 2). That is, every q aside q0 (but whose label is initially appended
to Ψ in line 4) has some incoming edge(s) and if O is a DAG it is finally
added to Ω (lines 7 or 14) when the first of its parents is selected (lines 5 or
10) as well as finally selected itself in line 10 (s.t. l(q) is appended to Ψ in
line 17) since the algorithm terminates (for both see the proof of Theorem 2).
From Corollary 1 it then directly follows that each σ ∈ Σ appears exactly
once in Ψ.

Theorem 3 The sequence Ψ returned by the algorithm as of Fig. 6 for some acyclic
ordering graph O is a total order. This means that for every path Π in O’s DT
we have for any 0 ≤ i, j < |Π| s.t. i 6= j that k < m if i < j or k > m if i > j for
ψk = λ(πi) and ψm = λ(πj).

Proof 3 (sketch) This directly follows from Corollary 2 and the proof of Theorem 2.
That is, since qσ is removed from Ω and appended to Σ only if all the obligations
about variables that have to be present in Ω prior to σ (as encoded “recursively”
in λ(σ).inlist), it is ensured that there is no path in DT that has some variable α
being considered before σ s.t. α is not in Ψ when adding σ. Due to Corollary 2, we
furthermore have that every σ ∈ Σ is present in Ψ and appears exactly once. Thus
Ψ is a total order as desired.

75

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

6.2.3. Reducing the Learned Decision Tree DT to an

ROBDD

If we successfully retrieved a total variable order from DT, we use an
algorithm depicted by Bryant in [74] to reduce our ordered decision tree to
an ROBDD. The idea behind his algorithm is to implement the following
three rules [72]:

1. Remove duplicate leaf nodes: Eliminate all but one DT’s leaf nodes
with the same label and redirect all edges from the eliminated nodes
to the corresponding remaining equivalent one.

2. Remove duplicate nodes representing variables: If two nodes n1, n2 ∈
N have the same label, the outgoing edges e0(n1) and e0(n2) point to
equivalent nodes, and also the outgoing edges e1(n1) and e1(n2) point
to equivalent nodes, then eliminate n1 and redirect all its incoming
edges to n2.

3. Remove redundant tests: If a node n’s outgoing edges e0(n) and e1(n)
lead to the same node n′, eliminate n and redirect its incoming edges
to n′.

Figure 6.3 illustrates the application of these three reduction rules on an
example decision tree with three variables. From left to right, we first
applied rule 1, such that we only have two leaf nodes, one for each b ∈ B.
Then we merge redundant nodes (rule 2) leaving us with only two nodes
labeled with x3 instead of four. In the last step, we remove two nodes with
redundant / meaningless tests for x2 and x3 arriving at the ROBDD on the
right. If none of the three reduction rules is applicable anymore, then the
result is an ROBDD.

6.2.4. Creating an ROBDD for the SUT's speci�cation

For creating an ROBDD from a Boolean function f , we use the algo-
rithm presented in [75]. The underlying scheme is based on the if-then-
else normal form (INF), where a Boolean function is built entirely via the
if-then-else operator, e.g., the if-then-else operator x → y0, y1 is defined by
x → y0, y1 = (x ∧ y0) ∨ (¬x ∧ y1). From f ’s INF we create an ROBDD by

76

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

Figure 6.3.: Reduction of ordered decision tree to ROBDD, from left to right [72].

applying Shannon expansion [76], where the total variable order Ψ obtained
from DT is used to replace the variables by constants in B. Please note
that any variable v present in T but not appearing in DT or Ψ (v is of no
consequence) should be appended to Ψ for this construction (but should be
absent from the ROBDD in the end).

When replacing the variables by Boolean constants, the Shannon cofactors
emerge. Each cofactor can be viewed as an outgoing edge of a node in the
ROBDD where the replaced variable represents the node. While creating the
ROBDD, equivalent nodes are replaced such that after finalizing the ROBDD
none of the reduction rules introduced in Section 6.2.3 can be applied.

Since the size of the ROBDD depends heavily on the variable order used,
and finding a variable order that minimizes an ROBDD’s size is a co-NP-
complete problem [74], we extract a variable order from DT via entropy-
based learning, rather than trying to come up with an ideal order for the
SUT’s ROBDD to be used then also for the test suite T’s ROBDD.

6.3. Experimental Results

For evaluating our approach, we investigated its performance for 20 ex-
amples taken from [77] representing formal specifications (as shown in
Figure 6.4) for TCAS II, an aircraft collision avoidance system. For these 20

Boolean specifications with 5 to 14 Boolean input variables, we generated

77

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

corresponding Boolean functions and exhaustive test suites featuring all
possible input combinations.

The results reported in Table 6.3 were obtained by generating 100 different
random test suites T s.t. we could classify T for each example. Since we
cannot yet classify T if its ordering graph has some cycle, we sometimes had
to create more than the 100, where the corresponding number of discarded
ones is given in Table 6.2 (there were next to none classifiable duplicates that
we had to discard). Each T was derived by randomly selecting test cases t
from an example’s exhaustive test suite s.t. t ∈ T with a probability of 0.5.

For each of an example’s 100 test suites, we calculated the mutation score,
i.e., the proportion of mutants that T was able to kill. If some T showed
different behavior for a mutant f ′ compared to f , then T was able to kill
the mutant. For generating the mutants f ′ we replaced f ’s binary operators
with alternatives, where the number of resulting mutants (# f ′) is given in
Table 6.2.

Considering our classification into effective and ineffective test suites (sets
T+ and T−), and comparing it to the maximum mutation score (1.0 for all
examples), we would get only a few “false” positives (MS(T ∈ T+)) like for
example 8, where one of the two T ∈ T+ killed only 14 out of 16 mutants (we
found those two remaining mutants to be equivalent after closer inspection).
For the total 37 Ts classified to be effective for some example, this means
that only for one T the corresponding MS(T) was less than the maximum
achievable mutation score. Since T+ was underrepresented in the random
test suites (as we expected), we generated for each of the six examples
1/6/9/10/15/20 another 100 test suites s.t. we could classify 50 as effective

Table 6.2.: Number of detected cycles while creating 100 random test suites and the number
of mutants # f ′ for each example.

example 1 2 3 4 5 6 7 8 9 10

cycles 155 197 444289 0 18 72 898 6 0 144

f ′ 22 34 45 4 19 27 20 16 9 14

example 11 12 13 14 15 16 17 18 19 20

cycles 75391 340002 192 43 47 641685 8588 2216 54 0

f ′ 18 16 12 11 16 36 10 10 8 7

78

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

and 50 as ineffective and report their performance in Table 6.3. Note that
for examples 2, 3, 12, 14, and 16 we could not derive 50 effective test suites,
likely a downside of us currently requiring O to be acyclic. Out of those 300

effective Ts only one for example 15 did not have MS(T) = 1.00 (= max.)
but killed 16 out of 17 generated mutants only (MS(T) = 0.94). If we
consider the ratio between T+ and T− from Table 8.7 we can also say that
our approach is quite conservative in handing out its quality label. Keeping
in mind that T does not provide the entire truth table, thus the learned
classification is certainly attractive from those two points of view, at least
considering our first experiments. Since we saw in our experiments also that
some Ts with an ideal mutation score of 1.0 were classified as ineffective
(T ∈ T−), there is the immediate question whether the computed mutation
scores were holistic enough, and what would be an ideal benchmark for
comparing our classification (since it could also have been more precise
than the mutants).

In terms of encoding efficiency, we see in Table 6.3 that the average size
(amount of decision nodes) in the ROBBD R derived for some T was below
2 ∗ #v, and most of the times ranged between #v and #v + #v

2 . Even the max-
imum size for any R was below 2.5 ∗ #v. Thus it seems that our information
gain based learning of DT gives a compact ROBDD R with a size far below
the worst case 2#v − 1 [71].

The run-time for our classification can vary quite a bit with the example.
For examples 10 and 20, it took us about 117 seconds and about 0.5 seconds
to classify all 100 test suites as of Table 6.3, which we find to be quite
attractive.

6.4. Related Research

In [68], Weyuker introduces a method to assess test data adequacy through
program inference. Weyuker defines the relation that if a program is ade-
quately tested, then it is correct, but a correct program does not imply that it
has been adequately tested. For assessing adequacy, Weyuker uses inference
adequacy, where a test suite is adequate if and only if the test suite contains
sufficient data to infer the computations defined in the program under test

79

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

and its specifications. Weyuker infers programs in a subset of Lisp, but we
learn a decision tree from the test data. Inference adequacy also depends
on the determination of equivalence, but equivalence of a specification, a
program, and an inferred program is in general undecidable. Therefore
Weyuker uses approximations to make the inference adequacy criterion
usable. Since T gives an incomplete truth table, our learned decision tree
DT also is some sort of approximation. In [78] Walkinshaw introduces a test
suite adequacy assessment method based on inductive inference, which does
not require exact inference, but uses the Probably Approximately Correct
(PAC) [63] framework for approximations. To determine equivalence of the
inferred model of the test suite and the program under test’s specifications
we transfer both into ROBDDs where equivalence is decidable.

A family of different strategies, including MAX-A and MAX-B, for automat-
ically generating test cases for Boolean expressions in disjunctive normal
form (DNF) is given in [77], where they investigate also the fault detection
effectiveness of the different strategies. For our evaluation we used their
examples, but in contrast to evaluating test case generation (TCG), our
approach classifies any given test suite T. In [79], Chen et al. describe how
to generate test suites that satisfy the MUMCUT strategy for testing Boolean
expressions in DNF. The MUMCUT strategy guarantees to detect seven fault

1. (¬(a ∧ b)) ∧ (d ∧ (¬e) ∧ (¬f) ∨ (¬d) ∧ e ∧ (¬f) ∨ (¬d) ∧ (¬e) ∧ (¬f)) ∧ (a ∧ c ∧ (d ∨ e) ∧ h ∨ a ∧ (d ∨ e) ∧ (¬h) ∨ b ∧ (e ∨ f))
2. (a ∧ ((c ∨ d ∨ e) ∧ g ∨ a ∧ f ∨ c ∧ (f ∨ g ∨ h ∨ i)) ∨ (a ∨ b) ∧ (c ∨ d ∨ e) ∧ i) ∧ (¬(a ∧ b)) ∧ (¬(c ∧ d)) ∧ (¬(c ∧ e)) ∧ (¬(d ∧ e)) ∧ (¬(f ∧

g)) ∧ (¬(f ∧ h)) ∧ (¬(f ∧ i)) ∧ (¬(g ∧ h)) ∧ (¬(h ∧ i))
3. (a ∧ ((¬d) ∨ (¬e) ∨ d ∧ e ∧ (¬((¬f) ∧ g ∧ h ∧ (¬i) ∨ (¬g) ∧ h ∧ i)) ∧ (¬((¬f) ∧ g ∧ l ∧ k ∨ (¬g) ∧ (¬i) ∧ k))) ∨ (¬((¬f) ∧ g ∧ h ∧ (¬i) ∨

(¬g) ∧ h ∧ i)) ∧ (¬((¬f) ∧ g ∧ l ∧ k ∨ (¬g) ∧ (¬i) ∧ k)) ∧ (b ∨ c ∧ (¬m) ∨ f)) ∧ (a ∧ (¬b) ∧ (¬c) ∨ (¬a) ∧ b ∧ (¬c) ∨ (¬a) ∧ (¬b) ∧ c)
4. a ∧ ((¬b) ∨ (¬c)) ∧ (d ∨ e)
5. a ∧ ((¬b) ∨ (¬c) ∨ b ∧ c ∧ (¬((¬f) ∧ g ∧ h ∧ (¬i) ∨ (¬g) ∧ h ∧ i)) ∧ (¬((¬f) ∧ g ∧ l ∧ k ∨ (¬g) ∧ (¬i) ∧ k))) ∨ f
6. ((¬a) ∧ b ∨ a ∧ (¬b)) ∧ (¬(c ∧ d)) ∧ (f ∧ (¬g) ∧ (¬h) ∨ (¬f) ∧ g ∧ (¬h) ∨ (¬f) ∧ (¬g) ∧ (¬h)) ∧ (¬(j ∧ k)) ∧ ((a ∧ c ∨ b ∧ d) ∧ e ∧ (f ∨ (i
∧ (g ∧ j ∨ h ∧ k))))

7. ((¬a) ∧ b ∨ a ∧ (¬b)) ∧ (¬(c ∧ d)) ∧ (¬(g ∧ h)) ∧ (¬(j ∧ k)) ∧ ((a ∧ c ∨ b ∧ d) ∧ e ∧((¬i) ∨ (¬g) ∧ k ∨ (¬j) ∧ ((¬h) ∨ (¬k))))
8. ((¬a) ∧ b ∨ a ∧ (¬b)) ∧ (¬(c ∧ d)) ∧ (¬(g ∧ h)) ∧ ((a ∧ c ∨ b ∧ d) ∧ e ∧ (f ∧ g ∨ (¬f) ∧ h))
9. (¬(c ∧ d)) ∧ ((¬e) ∧ f ∧ (¬g) ∧ (¬a) ∧ (b ∧ c ∨ (¬b) ∧ d))

10. a ∧ (¬b) ∧ (¬c) ∧ d ∧ (¬e) ∧ f ∧ (g ∨ (¬g) ∧ (h ∨ i)) ∧ (¬(j ∧ k ∨ (¬j) ∧ l ∨ m))
11. a ∧ (¬b) ∧ (¬c) ∧ ((¬(f ∧ (g ∨ (¬g) ∧ (h ∨ i)))) ∨ f ∧ (g ∨ (¬g) ∧ (h ∨ i)) ∧ (¬d) ∧ (¬e)) ∧ (¬(j ∧ k ∨ (¬j) ∧ l ∧ (¬m)))
12. a ∧ (¬b) ∧ (¬c) ∧ f ∧ (g ∨ (¬g) ∧ (h ∨ i)) ∧ ((¬e) ∧ (¬n) ∨ d) ∨ (¬n) ∧ (j ∧ k ∨ (¬j) ∧ l ∧ (¬m))
13. a ∨ b ∨ c ∨ (¬c) ∧ (¬d) ∧ e ∧ f ∧ (¬g) ∧ (¬h) ∨ i ∧ (j ∨ k) ∧ (¬l)
14. a ∧ (¬b) ∧ (¬c) ∧ f ∧ (g ∨ (¬g) ∧ (h ∨ i)) ∧ ((¬e) ∧ (¬n) ∨ d) ∨ (¬n) ∧ (j ∧ k ∨ (¬j) ∧ l ∧ (¬m))
15. a ∧ ((c ∨ d ∨ e) ∧ g ∨ a ∧ f ∨ c ∧ (f ∨ g ∨ h ∨ i)) ∨ (a ∨ b) ∧ (c ∨ d ∨ e) ∧ i
16. a ∧ ((¬d) ∨ (¬e) ∨ d ∧ e ∧ (¬((¬f) ∧ g ∧ h ∧ (¬i) ∨ (¬g) ∧ h ∧ i)) ∧ (¬((¬f) ∧ g ∧ l ∧ k ∨ (¬g) ∧ (¬i) ∧ k))) ∨ (¬((¬f) ∧ g ∧ h ∧ (¬i) ∨

(¬g) ∧ h ∧ i)) ∧ (¬((¬f) ∧ g ∧ l ∧ k ∨ (¬g) ∧ (¬i) ∧ k)) ∧ (b ∨ c ∧ (¬m) ∨ f)
17. (a ∧ c ∨ b ∧ d) ∧ e ∧ (f ∨ (i ∧ (g ∧ j ∨ h ∧ k)))
18. (a ∧ c ∨ b ∧ d) ∧ e ∧ ((¬i) ∨ (¬g) ∧ (¬k) ∨ (¬j) ∧ ((¬h) ∨ (¬k)))
19. (a ∧ c ∨ b ∧ d) ∧ e ∧ (f ∧ g ∨ (¬f) ∧ h)
20. (¬e) ∧ f ∧ (¬g) ∧ (¬a) ∧ (b ∧ c ∨ (¬b) ∧ d)

Figure 6.4.: The 20 TCAS II examples taken from [77].

80

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

types found in Boolean expressions. Also in that paper, the examples from
[77] were used to evaluate their approach. In contrast to MAX-A, MAX-B,
and MUMCUT, for our approach it is not necessary for the program under
test’s specifications to appear in a certain normal form.

A strategy to assess the effectiveness of a test suite for decisions (i.e. Boolean
expressions) is the modified condition/decision coverage (MCDC) criterion
[50] which requires that each condition within a decision is shown by
execution to independently affect the outcome of the decision. Showing that
each condition independently affects the decision’s outcome requires either
that the test case generation was directed to satisfy the MCDC criterion,
or to execute the program with the inputs from the test suite and check
which conditions affect the outcome. Our classification approach does not
require the execution of the program under test. MCDC requires for n input
variables a test suite at least of size n + 1. We saw the requirement reflected
also in our experiments when considering T+. Since the size of a BDD is
very sensitive to its variable order, Friedman and Supowit showed in [80]
an algorithm for finding an optimal one which is in O(n2

3
n). Grumberg et

al. propose in [81] an approach in which the variable ordering algorithm
for creating BDDs gains experience from training models and uses the
learned knowledge for finding good orders. In our work, we use entropy
and information gain measures for the concrete example and a specific local
situation for establishing the variable order.

In contrast to the work about learning automata [82–85] which is based on
active learning while executing the program under test, our approach is
passive which means that executing the program under test to classify the
test suite effectiveness is not necessary.

6.5. Summary

In this chapter, we proposed a new approach at classifying a test suite
T’s effectiveness in identifying a program’s functional faults. To this end,
we tailored a special learning algorithm from C4.5 in order to learn a
representative decision tree DT from T. If possible, we showed how to
isolate a total variable order Ψ from DT via a derived ordering graph, so

81

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

that we then use Ψ when deriving a corresponding reduced ordered binary
decision diagram also for the SUT’s specification. If we were able to retrieve
an order Ψ, we reduce also DT to an ROBDD in order to check the two
ROBDDs for equivalence.

Our argument is that if they are equivalent, we can assume that a pro-
gram satisfying T implements the desired functionality as described by the
specification (in the form of Boolean functions). In our initial experiments
as reported in this chapter, we computed the mutation score for random
test suites and compared it to our classification. Even if we assume only
the maximum mutation score to be the benchmark for our effectiveness
classification (without some error margin), there were only very few “false
positives”, i.e. 2 out of 337 effective Ts. That we classified also some test
suites with a perfect mutation score to be ineffective raises the question
whether our mutations, and the mutation score in general, is holistic enough
as benchmark for our classification, or if our effectiveness label was more
precise than the considered mutations. A corresponding investigation with
more examples from multiple domains and further mutation operators
[86–88] will be subject to future work.

Aside conducting more experiments and evaluating further benchmark
options, future research will also target the question of whether there
would be more attractive representations like multi-terminal binary decision
diagrams [89] (compared to an ROBDD) for our cause. Currently we are
working on finding a suitable approximation metric that relaxes exact
equality. Also the implementation of a reordering algorithm is on our
agenda, so that we can use our approach also if the initial ordering graph is
not acyclic.

82

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

Table 6.3.: Performance for 100 random T classified as effective T+ or ineffective T−.

|T
∈

T i
|

M
S(

T
∈

T i
)

|T
∈

T i
|

M
S(

T
∈

T i
)

sa
m

pl
e
|T

i|
m

in
.

av
g.

m
ax

.
m

in
.

av
g.

m
ax

.
sa

m
pl

e
|T

i|
m

in
.

av
g.

m
ax

.
m

in
.

av
g.

m
ax

.

1
T +

1
6

3
6

3
6

3
1

.0
0

1
.0

0
1

.0
0

1
1

T +
0

-
-

-
-

-
-

T −
9

9
4

9
6

2
7

8
0

.6
4

0
.9

6
1

.0
0

T −
1

0
0

3
9

7
3

4
0

9
9

4
2

1
9

1
.0

0
1

.0
0

1
.0

0

2
T +

0
-

-
-

-
-

-
1

2
T +

0
-

-
-

-
-

-
T −

1
0

0
2

1
3

2
5

0
2

8
9

0
.7

4
0

.8
7

1
.0

0
T −

1
0

0
7

4
9

8
0

5
8

7
5

0
.9

4
0

.9
9

1
.0

0

3
T +

0
-

-
-

-
-

-
1

3
T +

0
-

-
-

-
-

-
T −

1
0

0
3

3
1

3
9

8
4

4
4

0
.7

5
0

.9
3

1
.0

0
T −

1
0

0
1

9
8

7
2

0
4

5
2

1
3

2
1

.0
0

1
.0

0
1

.0
0

4
T +

5
1

8
2

2
2

4
1

.0
0

1
.0

0
1

.0
0

1
4

T +
0

-
-

-
-

-
-

T −
9

5
9

1
5

2
1

0
.7

5
0

.9
9

1
.0

0
T −

1
0

0
4

4
6

3
7

7
1

.0
0

1
.0

0
1

.0
0

5
T +

1
2

6
5

2
6

5
2

6
5

1
.0

0
1

.0
0

1
.0

0
1

5
T +

2
2

2
3

4
2

5
9

2
7

8
1

.0
0

1
.0

0
1

.0
0

T −
9

9
2

2
6

2
5

2
2

8
8

0
.9

5
0

.9
8

1
.0

0
T −

7
8

2
3

1
2

5
4

2
8

2
0

.8
8

0
.9

9
1

.0
0

6
T +

1
1

0
3

1
1

0
3

1
1

0
3

1
1

.0
0

1
.0

0
1

.0
0

1
6

T +
0

-
-

-
-

-
-

T −
9

9
9

6
6

1
0

0
0

1
0

7
5

0
.7

0
0

.9
4

1
.0

0
T −

1
0

0
1

6
4

1
9

2
2

3
5

0
.6

9
0

.9
4

1
.0

0

7
T +

0
-

-
-

-
-

-
1

7
T +

0
-

-
-

-
-

-
T −

1
0

0
4

7
5

4
9

8
5

5
3

0
.8

5
0

.9
7

1
.0

0
T −

1
0

0
9

6
8

1
0

1
9

1
0

6
7

1
.0

0
1

.0
0

1
.0

0

8
T +

2
1

2
5

1
2

7
1

2
9

0
.8

8
0

.9
4

1
.0

0
1

8
T +

1
5

0
4

5
0

4
5

0
4

1
.0

0
1

.0
0

1
.0

0

T −
9

8
1

0
2

1
2

5
1

5
8

0
.6

9
0

.9
5

1
.0

0
T −

9
9

4
7

3
5

1
0

5
4

7
1

.0
0

1
.0

0
1

.0
0

9
T +

1
7

1
7

1
7

1
1

.0
0

1
.0

0
1

.0
0

1
9

T +
0

-
-

-
-

-
-

T −
9

9
5

0
6

3
7

3
0

.5
5

0
.9

2
1

.0
0

T −
1

0
0

1
0

3
1

2
4

1
4

3
1

.0
0

1
.0

0
1

.0
0

1
0

T +
1

4
2

1
1

4
2

1
1

4
2

1
1

1
.0

0
1

.0
0

1
.0

0
2

0
T +

2
6

1
6

9
7

7
1

.0
0

1
.0

0
1

.0
0

T −
9

9
3

9
7

8
4

0
9

0
4

2
1

9
0

.8
6

0
.9

9
1

.0
0

T −
9

8
4

7
6

3
7

8
0

.8
5

0
.9

8
1

.0
0

83

6. Classifying Test Suite E�ectiveness via Model Inference and

ROBBDs

Table 6.4.: The experimental results for 6 of the 20 example specifications.

ex
.

#v
∅
|R
|

m
ax

.|
R
|

M
S(

T
∈

T +
)
=

1
M

S(
T
∈

T −
)
=

1
∅
|T
∈

T +
|

∅
|T
∈

T −
|

1
7

1
1
.0

6
1
5

5
0

2
2

6
8

.5
6

6
3
.4

2

6
1
1

1
7
.0

4
2
6

5
0

3
9

1
8
4
7

.3
8

1
8
4
8
.1

8

9
7

9
.3

6
1
2

5
0

3
0

6
7

.5
6

6
5
.1

8

1
0

1
3

1
4
.3

4
1
7

5
0

4
8

5
4
6
7

.1
6

5
4
5
7
.6

2

1
5

9
1
1
.0

5
1
5

4
9

4
0

2
5
9
.0

6
2
5
2
.7

8

2
0

7
7
.8

1
4

5
0

3
2

3
1

.1
8

2
5
.8

4

84

7. Mutation Score, Coverage,

Model Inference: Quality

Assessment For t-way

Combinatorial Test Suites

This chapter is based on the work “Mutation Score, Coverage, Model Infer-
ence: Quality Assessment for T-Way Combinatorial Test-Suites” [8]. In this
chapter we investigate the test suite quality, measured by mutation score
[90], code coverage [91] and model inference for test suites created from
t-way combinatorial interaction test case generation. Therefore the most
important question of course is: (RQ1) How does incrementing t affect the
test suite quality?

As a consequence from the limitations of assessing a test suite’s quality
by mutation score or coverage, we introduce a new quality assessment
approach in this chapter. This new quality assessment approach is based
on model inference. We infer a model from a test suite and assess the test
suite’s quality by evaluating the inferred model. The underlying idea is to
use a test suite which is known to be of high quality and compare it to
another test suite of unknown quality, to obtain a quality valuation for the
test suite of unknown quality. As a comparison method we infer a model
from the test suite and evaluate the inferred model by using a set of test
data, which contains only the test cases from the high quality test suite that
are not in the test suite of unknown quality. As an instantiation of model
inference we use decision tree learning [51]. Therefore, for evaluation we
classify the test data according to their input values down the tree to the
leaf nodes and check whether the label of the leaf node corresponds to
the expected outcome of the test case. Since this new approach does not

85

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

require the execution of the program under test, it could drop the limitations
of mutation score and coverage computation. Consequently, for this new
approach, we ask the following question: (RQ2) Does a model inference
based test suite quality assessment approach show similar differences for
test suite quality of test suites generated with different t as mutation score
or code coverage?

In our experimental evaluation we used 6 examples to answer both research
questions. First we created the input models for the respective parameters
of the examples. Then, from these input models, we generated the t-way
combinatorial test suites (we used the original unmodified examples as
oracle to obtain the expected outcome for each test case). The experimental
results show that increasing t leads to an enhancement of the quality of a test
suite. Furthermore, the results show, that under restrictive conditions the
introduced model inference based quality assessment approach is applicable
and provides results similar to mutation score and code coverage.

7.1. Model Inference

In this chapter we infer a model from a test suite Tt by learning a decision
tree again. We used again the C4.5 algorithm as introduced in [51]. Other
than in Chapter 5 and Chapter 6 where model inference is used to evaluate
the effectiveness or quality of a test suite by comparing the test suite to
the program under test, we compute the quality valuation by comparing
test suites by each other. The test suite for which we assess its quality is
compared to the test suite Ttmax . We assume Ttmax to be a test suite of highest
quality. We assess a test suite to be of highest quality if the following two
conditions hold:

1. The inferred model contains all possible outcomes of the set of out-
comes O as leaf nodes.

2. The inferred model classifies a set of test data TD correctly to these
leaf nodes.

The set of test data TD is the test suite Ttmax excluding test cases which exist
in other test suites with lower strength for the same program under test.

86

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

The test suite Ttmax is a test suite generated with highest strength tmax. tmax is
either n if the number of parameters n is less than 6, or 6 otherwise, because
6 is the highest strength supported by the test case generator we used in
this work. Therefore TD is defined as:

Definition 11 (Test Data) The test data TD are a subset of Ttmax and are calcu-
lated as:

TD = Ttmax \
t<tmax⋃

t=1

Tt (7.1)

For a test suite Tt that is not of highest quality its quality is approximated by
using the three values from: 1. the root mean squared error while inferring
the model, 2. the model’s root mean squared error after classifying TD, and
3. the number of outcomes from O which do not appear as leaf nodes in the
inferred model.

If the outcomes from TD and the inferred model do not coincide when
classifying a test case from TD down the learned decision tree, we calculate
the root mean squared error as defined in Definition 6, but instead of the
outcomes of an SUT we use the outcomes of TD.
If the outcomes of the inferred model and the ith test case in TD are different,
the difference of (pi − ai) depends on the number of different categories
the inferred model and TD categorize and on possible misclassifications
(misclassified tests) of test cases from Tt while inferring the model. A
consequence of misclassified test cases from TS while inferring the model is
a root mean squared error RMSET > 0.

7.1.1. Model contains all o ∈ O criterion

Checking whether an inferred model contains all o ∈ O requires to collect
all distinct leaf node labels of the inferred model into a set L. The set O
is built from all distinct outcomes from all test cases in the test suites T1,
..., Ttmax . Since the model is inferred from a test suite Tt and O contains all
distinct outcomes from Tt, ensures that |L| ≤ |O|. Therefore we use the
value missing classes MC when assessing the quality of a test suite. MC is
defined as:

87

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Definition 12 (Missing Classes) Missing classes MC is the proportion between
the number of outcomes which do not exist as leaf node label in the inferred model
of Tt and the number of all possible outcomes |O|.

MC =
|O| − |L|
|O| (7.2)

7.1.2. Model inference based quality valuation

The model inference based quality valuation is calculated from the classifi-
cation results and the proportion of missing classes MC of a model inferred
from the test suite under evaluation. The classification results are the RMSE
obtained by classifying the test data TD and RMSET which indicates mis-
classifications of T from which the model was initially inferred. Therefore,
we define the valuation MI as:

Definition 13 (Model Inference Based Quality Valuation) The value of MI
is calculated as

MI = 1− (RMSE−MC + RMSET) (7.3)

7.2. Experimental Results

In this Section we describe the experimental results we obtained for mutation
score, code coverage, and our model inference based assessment approach
as well as the tools we applied to obtain these results.

7.2.1. Tools

We used different tools to generate the t-way combinatorial test suites,
generate mutants, instrument source code and analyze code coverage, and to
infer models from a test suite for model inference based quality valuation.

88

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

◦ Test case generator: To generate t-way combinatorial test suites for our
examples we used again the tool ACTS 3.01 (Automated Combinatorial
Testing for Software). The tool implements various test case generation
algorithms. Because we also used constraints in some examples we
had to choose either IPOG or IPOG-F [17] which support constraints
usage. A list of test case generators can be found in [92]. We decided
to use ACTS, because it is free and publicly available, it is a Java
tool that we can integrate in our tool chain, it is very popular in
combinatorial testing research literature, and it can generate test cases
up to 6-way interactions. Currently, three input types are supported:
enum, boolean, and integer.
◦ Mutants generator: The Major2 mutation framework is divided into

two parts. First, a mutation generator for Java programs, and second,
an analysis back-end to execute JUnit test cases and assess the test
suite quality. In this work we use the first part to generate mutants for
our sample programs with the exception of TCAS where we used the
existing mutants. Major is integrated into OpenJDK3 and generates
mutants during compilation. A detailed description can be found in
[38].
◦ Coverage analyzer: CodeCover4 is a freely available so called glass

box testing Java tool which we can use as a library in our tool chain.
Glass box testing meaning the execution and recording of source
code artifacts which are statements, branches, loops, etc.. Here we
use CodeCover to instrument and analyze the code coverage of the
example test suites we generated.
◦ Model inference: Weka [60, 93] is a collection of machine learning

algorithm implementations for data mining tasks. It can be used as
a standalone application or as a library in projects running within
the Java Virtual Machine. Here we used Weka as a library to infer a
decision tree from a test suite within a Java program. The Java program
which includes the C4.5 algorithm is called J48 in Weka. For the J48

algorithm we changed from the standard settings the pruning settings
of the inferred tree such that pruning is not performed. Furthermore

1http://csrc.nist.gov/groups/SNS/acts
2www.mutation-testing.org
3http://openjdk.java.net/
4www.codecover.org

89

http://csrc.nist.gov/groups/SNS/acts
www.mutation-testing.org
http://openjdk.java.net/
www.codecover.org

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Table 7.1.: Lines of code and number of mutants per example.
name SLOC #mutants
BMI 19 28

Triangle 30 35

UTF8 56 147

TCAS 100 41

J48 3406 3107

Soot-PDG 1701 567

we set the minimum number of instances (here test cases) per leaf to
one (1).

7.2.2. Example Programs and Input Models

To evaluate empirically the quality of t-way combinatorial test suites we use
6 Java programs for which the number of source lines of code (SLOC) and
the number of mutants (#mutants) are given in Table 7.1.

BMI

The BMI example [56] accepts 2 numeric floating point input parameters
which represent weight and height values for which a body mass index is
calculated. The returned body mass index is one of 5 possible outcomes.
Table 7.2 shows the input model of the BMI example where we use 4

different values for height and 8 different values for weight.

Table 7.2.: BMI input model.
Parameter Values

height {1.6, 1.8, 2.0, 2.2}
weight {73, 74, 99, 100, 119, 120, 159, 160}

90

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Triangle

This example [57] uses 3 numeric input parameters representing the lengths
of the 3 sides of a triangle and returns which type of triangle can be built
with these values. 4 possible types exist where 3 types represent valid
triangles and one represents an invalid triangle. The input model is given
in Table 7.3.

Table 7.3.: Triangle input model.
Parameter Values

a {−1, 0, 1, 3, 4, 5, 2147483647}
b {−1, 0, 1, 3, 4, 5, 2147483647}
c {−1, 0, 1, 3, 4, 5, 2147483647}

UTF8

Guava UTF8
5 (UTF8) is a function in Google’s Guava library which checks

if an input sequence of up to 4 bytes is a well formed UTF8 encoded input.
The input model for the 4 input parameters, which represent the input
sequence, is given in Table 7.4. The values in the table are 8-bit signed
Integer values.

In this example we also use some constraints which are shown in Table 7.5.
These constraints ensure that, if an input parameter in the byte sequence is

Table 7.4.: UTF8 input model.
Parameter Values

b1 {0,−1, 127,−128,−62,−63,−33,−32,−31,−30,
−20,−19,−18,−17,−16,−15,−14,−13,−12,−11}

b2 {−128,−65,−64,−97,−96,−112,−113, ?}
b3 {−128,−65,−64, ?}
b4 {−128,−65,−64, ?}

5https://github.com/google/guava

91

https://github.com/google/guava

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Table 7.5.: Constraints of UTF8 example.
constraints

(b2 ==?) => (b3 ==?)
(b3 ==?) => (b4 ==?)

Table 7.6.: TCAS input model.
Parameter Values

Cur_Vertical_Sep {299, 300, 601}
High_Confidence {0, 1}

Two_of_Three_Reports_Valid {0, 1}
Own_Tracked_Alt {1, 2}

Own_Tracked_Alt_Rate {600, 601}
Other_Tracked_Alt {1, 2}

Alt_Layer_Value {0, 1, 2, 3}
Up_Separation {0, 399, 400, 499, 500,

639, 640, 739, 740, 840}
Down_Separation {0, 399, 400, 499, 500,

639, 640, 739, 740, 840}
Other_RAC {0, 1, 2}

Other_Capability {1, 2}
Climb_Inhibit {0, 1}

empty then also the following bytes are empty. Empty values are represented
by ′?′.

TCAS

The TCAS6 example implements an aircraft collision avoidance system for
which mutants exist. The input model is shown in Table 7.6.

6http://sir.unl.edu/portal/bios/tcas.php

92

http://sir.unl.edu/portal/bios/tcas.php

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Table 7.7.: J48 input model.
Parameter Values Parameter Values

-U {F, T} -S {F, T}
-O {F, T} -L {F, T}
-C {0.0, 0.1, 0.9, 1.0} -A {F, T}
-M {0, 1, 2, 5} -J {F, T}
-R {F, T} -Q {0, 1, 100}
-N {0, 3, 10} -B {F, T}

-dNMSAV {F, T}

Table 7.8.: Constraints of J48 example.
constraints
¬(U ∧ S)
¬(U ∧ R)
¬R ∨ ¬C
¬U ∨ ¬C
R ∨ ¬N

J48

We introduced Weka in Section 7.2.1 as tool, but we also used the J48

classifier package from Weka as an example for our empirical evaluation.
The input for the J48 classifier is a set of data to build a classifier from. In
this example we used the configuration parameters of the classifier to build
t-way combinatorial test suites from.

The input model for this example is given in Table 7.7 and the constraints
which prevent invalid configurations are listed in Table 7.8.

Soot-PDG

Soot7 is a framework for analyzing and transforming Java and Android
applications. Here we use only the part of Soot which constructs an in-

7https://sable.github.io/soot/

93

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

traprocedural program dependency graph (PDG) [94]. The input is a Java
source file containing a single method with nested control statements up to
a nesting depth of 6 levels. For each level one of the control statements from
table 7.9 is selected. We grouped the control statements into 3 groups. The
artifacts labeled with a ′∗′ are only used in the innermost nesting, which is
level 6, because they do not represent branching statements which allow fur-
ther nesting. The selection is conducted by combining t-way combinatorial
test case generation and random input selection.

Table 7.9.: Soot-PDG control statements.
Artifacts

Group 1 Group 2 Group 3

IF-ELSE_IF-ELSE ENHANCED_FOR THROW∗

SWITCH ENHANCED_FOR_BREAK RETURN∗

SWITCH_BREAK ENHANCED_FOR_CONTINUE CALLABLE∗

TRY_CATCH_FINALLY BASIC_FOR NOP
LINEAR_RECURSION BASIC_FOR_BREAK
NOP BASIC_FOR_CONTINUE

WHILE
WHILE_BREAK
WHILE_CONTINUE
DO_WHILE
DO_WHILE_BREAK
DO_WHILE_CONTINUE
NOP

Table 7.10 shows the input model for the Soot-PDG example. It lists 6 param-
eters which represent the levels of nesting. The values for the parameters
are the groups of Table 7.9 from which a control statement is randomly
selected while building a test case.

7.2.3. Mutation score results

Here we show the mutation scores of the t-way combinatorial test suites for
each example.

The BMI example has only two parameters, therefore we generated only
two test suites. The results in Figure 7.1 show that an increasing mutation

94

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Table 7.10.: Soot-PDG input model.
Parameter Values

L1 {1, 2}
L2 {1, 2}
L3 {1, 2}
L4 {1, 2}
L5 {1, 2}
L6 {1, 2, 3}

score correlates with an increasing test suite size. The t-way combinatorial
test suite with tmax achieves a maximum mutation score of µ = 1.

Because the Triangle example has only 3 parameters we generated only 3

test suites with tmax = 3. The results for the Triangle example are shown in
Figure 7.2. These results also, as in the BMI example, show a correlation of
mutation score and test suite size. Again the t-way combinatorial test suite
with tmax achieves a maximum mutation score of µ = 1.

The UTF8 example has only 4 parameters. The results for the 4 t-way
combinatorial test suites are shown in Figure 7.3. The mutation scores show
a degressive curve for increasing t, but test suite size shows a progressive
curve. Also here a mutation score of µ = 1 was achieved.

The TCAS example has 12 parameters and we generated a test suite for each
t ∈ {1, ..., 6}. Here we used given mutants for which the mutation score
results are shown in Figure 7.4. Again the mutation scores show a nearly
degressive curve for increasing t, but test suite size shows a progressive
curve. Also here a mutation score of µ = 1 was achieved.

We generated a test suite for each t ∈ {1, ..., 6} for the J48 example which
has 13 different configuration parameters. Figure 7.5 shows the mutation
score and the test suite size for the generated test suites. We executed the
test suite with 3 different datasets (*.arff files) from which we learned the
decision trees. These datasets contained different attribute types, which
are numeric, nominal, or date (for decision tree learning, attributes of type
String are not supported by Weka). For each dataset we obtained a set of
killed mutants, therefore we calculated the mutation score from the union
of these sets of killed mutants. The test suite size shows a progressive curve,

95

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

0.80

0.85

0.90

0.95

1.00

m
u

ta
ti

o
n

 s
c
o

r
e

te
s
t

s
u

it
e
 s

iz
e

0

5

10

15

20

25

30

1 2

t

ms

size

Figure 7.1.: Mutation score and test suite size per t-way combinatorial test suite for the
BMI example.

0.5

0.6

0.7

0.8

0.9

1.0

m
u

ta
ti

o
n

 s
c
o

r
e

te
s
t

s
u

it
e
 s

iz
e

0

50

100

150

200

250

300

350

1 2 3

t

ms

size

Figure 7.2.: Mutation score and test suite size per t-way combinatorial test suite for the
Triangle example.

96

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

0.5

0.6

0.7

0.8

0.9

1.0

m
u

ta
ti

o
n

 s
c
o

r
e

te
s
t

s
u

it
e
 s

iz
e

0

500

1000

1500

1 2 3 4

t

 ms

 size

Figure 7.3.: Mutation score and test suite size per t-way combinatorial test suite for the
UTF8 example.

0.0

0.2

0.4

0.6

0.8

1.0

m
u

ta
ti

o
n

 s
c
o

r
e

te
s
t

s
u

it
e
 s

iz
e

0

2000

4000

6000

8000

10000

1 2 3 4 5 6

t

ms

size

Figure 7.4.: Mutation score and test suite size per t-way combinatorial test suite for the
TCAS example.

97

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

0.36

0.38

0.40

0.42

0.44

m
u

ta
ti

o
n

 s
c
o

r
e

te
s
t

s
u

it
e
 s

iz
e

0

500

1000

1500

2000

2500

1 2 3 4 5 6

t

ms

size

Figure 7.5.: Mutation score and test suite size per t-way combinatorial test suite for the J48

example.

but the mutation score almost does not change for t-way combinatorial test
suites with t ≥ 2.

In the input model for the Soot-PDG example we defined 6 parameters.
Because we combined random input selection and t-way combinatorial
test suite generation in this example we generated 10 test suites for each
t ∈ {1, ..., 6}. Table 7.11 shows the min., max., and average mutation score
results of the 10 test suites for each t. The mutation score shown in Figure
7.6 is the average mutation score from Table 7.11. Again the test suite size
shows a progressive curve and the mutation score for t ≥ 2 increases almost
linearly.

7.2.4. Code Coverage Results

We divided the coverage results into two Tables 7.12 and 7.13, because we
generated and analyzed for the Soot-PDG example multiple test suites for
each strength and for the remaining examples we generated only a single
test suite per strength. The code coverage results for the Soot-PDG example

98

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Table 7.11.: Mutation score of Soot-PDG example.
t min. max. avg.
1 0.31 0.40 0.36

2 0.37 0.42 0.40

3 0.37 0.44 0.41

4 0.37 0.45 0.42

5 0.41 0.45 0.44

6 0.45 0.45 0.45

0.36

0.38

0.40

0.42

0.44

m
u

ta
ti

o
n

 s
c
o

r
e

te
s
t

s
u

it
e
 s

iz
e

0

20

40

60

80

1 2 3 4 5 6

t

ms

size

Figure 7.6.: Mutation score and test suite size per t-way combinatorial test suite for the
Soot-PDG example.

99

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

are shown in Table 7.12. We used the same 10 test suites for each t as
used for computing the mutation score and calculated the min., max., and
average values for statement, branch, and MC/DC coverage. The differences
of coverage for the Soot-PDG example from T1 to T6 are only in the range of
15% to 23%. The higher the strength, the closer are the values for min., max.,
and avg. coverage. The coverage results for the other examples are shown
in Table 7.13. For the three examples BMI, Triangle, and UTF8 we achieved
100% statement, branch, and MC/DC coverage for Ttmax . Achieving 100%
coverage for the TCAS example is impossible due to unreachable code. The
coverage results for the J48 example are almost equivalent for all test suites
from T1 to T6.

Table 7.12.: Coverage Results of Soot-PDG test suites.
coverage

statement branch MC/DC
t min. max. avg. min. max. avg. min. max. avg.
1 57.41 67.12 61.95 29.30 46.48 37.66 35.86 51.31 43.06

2 61.32 71.16 66.36 39.06 49.22 44.69 44.76 53.66 49.55

3 64.46 72.91 68.48 39.45 52.34 47.77 45.03 55.76 52.20

4 61.73 73.18 69.77 39.84 53.13 48.44 45.29 56.28 52.38

5 66.98 73.32 72.36 44.53 53.52 51.84 48.69 56.54 55.24

6 72.91 73.32 73.11 52.34 53.52 52.93 55.76 56.54 56.15

7.2.5. Model Inference Results

Here we show the results of MI for the t-way combinatorial test suites,
which are calculated as introduced in Section 7.1. Since we generated 10

test suites for each t of the Soot-PDG example, we also had to create 10 test
data sets TD. We used these test data sets TD to assess the test suites and
obtained the intermediate results as shown in Table 7.14. These results show
the min., max., and average values of the size |L|, the number of incorrectly
classified test cases from TD, and the RMSE. The results show that the
number of distinct leaves increases with higher strength, but the number of
incorrectly classified test cases from TD only slightly decreases.

Table 7.15 shows the MI results for the 6 example programs. As the test
suites Ttmax have an MI of 1, test suites of high quality have an MI of 1 or

100

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Table 7.13.: Coverage Results.
t

1 2 3 4 5 6

BM
I statem. 85.71 100.00

branch 87.50 100.00

MC/DC 87.50 100.00

Tr
ia

ng
le statem. 61.54 92.31 100.00

branch 75.00 91.67 100.00

MC/DC 56.25 75.00 100.00

U
TF

8 statem. 85.71 100.00 100.00 100.00

branch 85.00 100.00 100.00 100.00

MC/DC 57.50 100.00 100.00 100.00

TC
A

S statem. 50.00 94.44 94.44 97.22 97.22 97.22

branch 08.33 83.33 83.33 91.67 91.67 91.67

MC/DC 15.00 70.00 70.00 85.00 85.00 85.00

J4
8

statem. 48.22 49.81 49.81 49.81 49.81 49.81

branch 48.06 51.74 51.74 51.74 51.74 51.74

MC/DC 48.24 50.88 50.88 50.88 50.88 50.88

close to 1. Only the examples UTF8 and TCAS have test suites of quality
> 0.9 for a test suite strength < tmax. The resulting MI1 for the J48 and
Soot-PDG example indicate test suites of lowest quality compared to a test
suite Ttmax , but the results for the Soot-PDG example in general are very low,
which indicates that the quality valuation MI might not be applicable for
this example.

7.3. Discussion

Because for the UTF8 example there exist several invalid input byte se-
quences, creating the input model for the UTF8 example required more
effort than for the BMI and Triangle examples. In all three examples BMI,
Triangle, and UTF8 the number of input parameters n is smaller than 6.
If the number of input parameters is less or equal to 6, the generated test
suite Ttmax is the exhaustive test suite of the provided input model, if no

101

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Table 7.14.: MI Results for Soot-PDG.
|L| incorr. RMSE

t min. max. avg. min. max. avg. min. max. avg.
1 2 3 2.8 59 96 88.1 0.0915 0.1160 0.1010

2 4 8 6.1 58 94 70.5 0.0917 0.1121 0.1002

3 9 14 11.4 65 81 74.1 0.0963 0.1124 0.1051

4 13 27 20.6 60 78 71.0 0.0970 0.1079 0.1029

5 25 34 29.0 63 82 72.6 0.0960 0.1086 0.1035

constraints exist (there exist constraints for the UTF8 example). We conclude
that for the 3 smaller examples the created input models are well chosen
and the test suites Ttmax are of highest quality, because mutation score and
coverage of Ttmax are the maximum values. Considering the MI results, we
see that mutation score, coverage, and MI show similar characteristics with
increasing t.

For the TCAS example we took the same input model as provided in [25].
Also for the TCAS example the results of mutation score, coverage, and MI
show similar characteristics. Achieving a coverage of 100% is not possible
for the TCAS example, because it contains unreachable code. As discussed
in [25] the strength of the mutants (or faults) to evaluate the TCAS example
is higher than 6, which means that the minimum number of parameters
that must be involved to trigger the fault is higher than 6. Thanks to the test
generation algorithm which adds those values for the parameters in a test
case randomly, which are not relevant in the current combination, the test
suites can achieve highest quality coincidentally.

For the J48 example we obtained coverage results of around 50% for state-
ment, branch, and MC/DC coverage and a max. mutation score of 0.44 from
all generated t-way combinatorial test suites. These results encouraged us to
run 2 different analyses to figure out the reasons for these weak results. First
we analyzed whether there are certain types of mutants which could not be
killed (same as in Chapter 5), because we only used a small set of inputs
and used for generating the test suites the configuration parameters. But
as shown in Table 7.16 there is no type of mutants which shows significant
differences of mutation score to the overall mutation score.

Second we investigated the mutants in detail where we figured out that

102

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Table 7.15.: Model Inference Results without Ttmax where MI is 1 (results indexed by t).
BMI Triangle UTF8 TCAS J48 Soot-PDG

|O| 5 4 2 3 161 124.6
|TD| 24 288 1115 10860 2633 96

MC1 0.2 0.5 0 0.67 0.9689 0.9775

RMSE1 0.5164 0.4488 0.4442 0.0508 0.0982 0.1010

RMSETS1 0 0 0 0 0 0

MI1 0.2836 0.0512 0.5558 0.2792 0 0
MC2 0.25 0 0.33 0.8882 0.9508

RMSE2 0.32 0.3738 0.1722 0.0986 0.1002

RMSETS2 0 0.1651 0 0 0

MI2 0.43 0.7913 0.4978 0.0132 0
MC3 0 0.33 0.6211 0.9083

RMSE3 0.2831 0.0825 0.1009 0.1051

RMSETS3 0.1899 0 0 0

MI3 0.9088 0.5875 0.278 0
MC4 0 0.2174 0.8354

RMSE4 0.0907 0.1018 0.1029

RMSETS4 0 0 0

MI4 0.9093 0.6808 0.0617
MC5 0 0.0373 0.7672

RMSE5 0.0405 0.1023 0.1035

RMSETS5 0 0 0

MI5 0.9595 0.8604 0.1293

there were:

1. 8 mutants in an abstract class which methods were never executed.
2. 437 mutants in 4 classes implementing a Naive Bayes classifier [95]

which is never executed.
3. 52 mutants in a class that was only used from a different package

implementing a rule-based classifier [95].
4. 2 mutants that could not be killed because their execution was pre-

vented by our constraints.
5. 208 mutants that occur in methods which are provided as an API, but

do not contribute to learn a decision tree.
6. ∼400 mutants that can only be killed with different input files.

Since we only used 3 different input files to learn a decision tree there were

103

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

Table 7.16.: Mutation score per mutant type per t for the J48 example.
type #mutants µt=1 µt=2 µt=3 µt=4 µt=5 µt=6

AOR 708 0.5579 0.6314 0.6384 0.6384 0.6384 0.6384

LVR 1065 0.3831 0.4282 0.4310 0.4319 0.4319 0.4319

ROR 577 0.2617 0.2912 0.2912 0.2912 0.2912 0.2912

STD 366 0.2432 0.2814 0.2814 0.2814 0.2814 0.2814

COR 382 0.4031 0.4738 0.4764 0.4764 0.4764 0.4764

ORU 9 0.3333 0.4444 0.4444 0.4444 0.4444 0.4444

about 400 mutants which definitely could have been killed with different
input files. In this chapter we investigated the effect of increasing t when
generating combinatorial test suites over configuration parameters. There-
fore, after investigating the unkilled mutants, we can raise the mutation
score results, due to unreachable code thanks to a small set of inputs, to:
µt=1=0.6003, µt=2=0.6798, µt=3=0.6843,
µt=4=0.6848, µt=5=0.6848, µt=6=0.6848.
The investigation of the unkilled mutants also explains the low coverage
results. Analyzing the MI results shows that the test suites T1, T2, and T3
have a very high MC which means that most of the decision trees learned
with the configuration parameters in T6 could not be created with these
smaller test suites. To compare the decision trees we used the textual output
of Weka and checked for textual equivalence.

To generate the Soot-PDG test suites we combined t-way combinatorial test
generation and random input selection. Since we only obtained an average
statement coverage of 73.11% we conclude that there were again unkilled
mutants in unreachable code, as explained for the J48 example. The average
mutation score from T2 is 0.40 and only slightly raises to 0.45 for T6. For the
Soot-PDG example mutation score and coverage correlate linearly, but MI
is not applicable for this example, because every input leads to a different
program dependency graph. Here we also used the textual outputs of the
program dependency graphs from Soot and compared them by checking
for textual equivalence.

For the examples with |O| smaller than the test suite sizes, the results of
mutation score, coverage, and MI are similar. When |O| is bigger than the
test suites the quality assessment using MI does not provide any meaningful

104

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

results as shown in the J48 and the Soot-PDG examples. This origins in the
fact that the inferred models do not contain leaf nodes to which certain test
cases in TD could be classified.

7.4. Threats to validity

The mutation score results might differ slightly, because we did not in-
vestigate the behavior of the mutants and therefore can not exclude the
occurrence of equivalent mutants. Considering the selection of the examples
for the experimental analysis, the examples are either very small, measured
in lines of code, or represent only parts of a bigger program, because ex-
amples with more lines of code and more mutants are not executable in
feasible time. Furthermore we did not investigate test suites with strength
t > 6.

7.5. Related Work

Ghandehari et al. in [96] used 7 C-programs from the Siemens suite8 and
measured effectiveness of a test suite in two dimensions, i.e., code coverage
and fault detection. They compared effectiveness of t-way combinatorial
test suites and random test suites. To generate t-way combinatorial test
suites they used the test case generation tool PICT [22]. PICT uses a greedy,
random algorithm for t-way test generation which allows the user to specify
a seed manually. In addition the authors generated for each t-way test suite
a random test suite of the same size, where they used the same input model
for random test generation as for combinatorial test generation. In most
cases t-way testing was as effective as, or more effective than random testing.
Overall the differences between the two test generation methods are not as
significant for these small examples as one would probably have expected.
The 7 C-programs vary only between 141 and 512 lines of code, whereas
we use example programs of up to 3406 lines of code. In [97] the authors

8http://sir.unl.edu

105

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

described the seeded faults in the 7 C-programs as follows:"The faults are
mostly changes in single lines of code, but a few involve multiple changes.
Many of the faults take the form of simple mutations or missing code".
Therefore these faults are essentially mutants. In [25] the authors report
the details of modeling the input parameters for combinatorial testing
of examples from the Siemens suite and show the effectiveness of test
suites generated by combinatorial testing. The effectiveness is measured in
terms of the number of detected faulty versions. Their results show that
combinatorial testing is more effective than random testing, but for 5 out
of the 7 examples only 2-way combinations were possible, one 3-way, and
one 6-way. In this work we used examples with up to 13 parameters and
provide different results for some 6-way combinatorial test suites.
Another study comparing the effectiveness in terms of mutation score
of automatically generated tests, constructed using random and t-way
combinatorial techniques is provided in [23]. The empirical evaluation
contains 10 functions with 12 to 62 lines of code for which combinatorial
t-way test suites for t ∈ {2,..,5} were generated. Their results show that 2-way
combinatorial test suites are not as effective as random test suites of the
same size, and that random test suites can be effective but are not reliable.
The authors of [98] conducted four relatively large projects, in which they
applied model based testing and pairwise combinatorial test generation to
systems with millions of lines of code. In their work they chose sequences
of steps based on operational profiles and used 2-way combinatorial test
generation to choose the values tested in each step. From the generated
test suites 2% to 23% of the test cases failed. These test cases revealed
so far undetected faults. Schroeder et al. compared in [24] fault detection
effectiveness of t-way combinatorial test suites and random test suites in
terms of code coverage. They concluded that t-way combinatorial test suites
were no more effective than random test suites of the same size. The authors
of [99] analyzed code coverage achieved by t-way combinatorial testing.
They conclude that for 2-way combinations block coverage was comparable
with exhaustive testing, but for an acceptable path coverage higher values
for t are required.
In [100] the authors show that software failures in a variety of domains
were caused by combinations of relatively few conditions. From an analysis
of 15 years of recall data [21] they conclude that t-way combinatiorial test
generation for a max. of t = 6 is enough to detect all faults. In [12] Nie

106

7. Mutation Score, Coverage, Model Inference: Quality

Assessment For t-way Combinatorial Test Suites

and Leung provide a survey of combinatorial testing. They investigated
the history of combinatorial testing where they analyzed 93 papers and
assigned them to certain combinatorial testing research categories, which
are: modeling for combinatorial testing, test suite generation, constraints,
failure diagnosis, prioritization, metric, evaluation, testing procedure, and
the state of research.

7.6. Summary

We conclude that the quality of t-way combinatorial test suites increases
with higher strength. The quality of a test suite heavily depends on the
input model. Therefore the answer for RQ1 is that in this chapter for the
used Java examples incrementing t affects the test suite quality such that
the quality raises. The three applied quality assessment criteria, which are
mutation score, coverage, and model inference based assessment, show
similar quality differences from test suite to test suite for different strength
t. We intend to use our newly introduced model inference based quality
assessment criterion as a supplementary criterion for mutation score and
coverage that delivers results in a short time and does not affect the behavior
of the program under test, due to intrusive instrumentations. The answer
for RQ2 is, that our newly introduced quality assessment criterion is appli-
cable to compute quality differences of different test suites under restricted
conditions. If the number of possible outcomes of a program under test is
higher than the number of test cases in a test suite whose quality should
be assessed the criterion does not provide meaningful results. In future
work we extend our empirical evaluation considering more examples from
an application domain, i.e., automotive control software. Here the open re-
search question is, whether generating a test suite with higher strength and
reducing it e.g. by test suite reduction as introduced in Chapter 8 provides
higher quality test suites, than t-way combinatorial test suites generated
with lower strength. Also we will investigate the applicability of our model
inference approach for test suite prioritization, where an overview of current
approaches is given in [101].

107

Part IV.

Model Inference Based Test

Suite Reduction

109

8. Test Suite Reduction Does

Not Necessarily Require

Executing The Program

Under Test

This chapter is based on the work “Test-Suite Reduction Does Not Necessar-
ily Require Executing the Program under Test” [9].

Removing redundancies from test suites is an important task of software
testing in order to keep test suites as small as possible, but not to harm
the test suite’s fault detection capabilities. A straightforward algorithm for
test suite reduction would select elements of the test suite randomly and
remove them if and only if the reduced test suite fulfills the same or similar
coverage or mutation score. Such algorithms rely on the execution of the
program and the repeated computation of coverage or mutation score.

When systems and programs evolve over time, their corresponding test
suites become bigger and bigger causing an increase of computation time
needed to execute the test suite. In addition, over time some elements of
the test suite might lead to a redundancy within the test suite [102]. In
order to optimize the test suite, redundant elements have to be eliminated.
Such a redundancy elimination can be performed based on analyzing the
program and identifying test cases leading to execution traces that are
covered by execution traces of other tests (e.g., [103], [29]). Alternatively,
we are able to remove tests that do not change the obtained coverage or
mutation score value (e.g., [26–28, 104–107]). All these reduction methods
have in common that they require the program under test to be repeatedly
executed. Depending on the computational complexity and the underlying

111

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

test suite, such reduction can take a longer time. Hence, leading to the
question whether there are faster approaches for redundancy elimination.
Answering this question with yes, requires to introduce such a method,
which does not rely on program execution or analysis for test suite reduction.
One idea going in this direction would be to replace the program with an
appropriate model, which would require additional effort if done manually
(e.g., [108]). At this point we bring in another idea. Every test suite should at
least partially capture the behavior of the program under test in a sufficient
way. Hence, why not using the test suite itself to obtain the required model?
For model extraction we make use of available machine learning techniques.
In this way, we are able to automate the whole test suite reduction approach
and furthermore do not require the program to be executed. The proposed
test suite reduction approach now works as the following process: We
obtain a model from the original test suite. Then we successively select
test cases from the test suite, remove them, and learn again a model from
the reduced test suite. In case the model of the original test suite and the
new model are equivalent, the reduced test suite should have the same
capabilities as the original one and we again repeat this process. Otherwise,
the test case is added again to the current test suite. The process stops in
case no test case can be removed without changing the model. The most
important question of course is RQ1: Is the proposed test suite reduction
approach able to reduce a test suite without compromising coverage or
mutation score substantially? In order to answer this question we have
to evaluate the approach. For this purpose, we introduce an instantiation
of the approach that relies on decision trees as models and decision tree
inference as their corresponding machine learning technique where we
use the C4.5 algorithm [51] for inference. Of course there are many other
machine learning techniques that can be used. We selected decision trees,
because of the underlying application domain of embedded systems we
had in mind. There the programs often implement state machines using
state transfer functions, which are more or less represented using nested
conditional statements.

We further on present the test suite reduction algorithm and provide results
from the empirical evaluation of the algorithm also in comparison with
traditional test suite reduction based on coverage and mutation score. The
empirical evaluation is based on 7 example programs. These examples

112

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

and examples of similar size (size in lines of code) were already used
to evaluate model learning, test suite reduction, and test case generation
approaches (e.g., [56], [64], [109], [59], [9]). The obtained results of our model
learning based reduction approach are very promising, showing substantial
reductions and almost no decline of coverage and mutation score. E.g. in
[110] the authors also reduced the TCAS test suite and obtained average
reductions of 76.87% and 86.88%. But they also reported a huge decline of
the mutation score of 55.1% and 63.95%. As shown in Section 8.3, we obtain
for the TCAS test suite a reduction of up to 70.87% with a max. mutation
score decline of 7.32%. Compared with traditional test suite reduction, we
are able to compute the reduced test suites in a fraction of time which is
shown empirically to answer RQ2: Is our model learning based test suite
reduction approach more efficient regarding size and execution time than a
coverage and mutation score based reduction approach?

In Example 1 we provide an introductory example of a simple test suite T
containing 4 test cases, and show different decision trees inferred from T
and subsets of T.

Example 1 (Introductory example) Table 8.1 represents an example test suite
for the Boolean expression (x > 0) ∨ (y > 0). A decision tree inferred from this
test suite is shown in Figure 8.1. The decision tree inferred from the test suite in
Table 8.1 excluding the test case with index #4 is the same decision tree as inferred
from all existing test cases. The test suite used to infer the decision tree from Figure
8.2 was the test suite from Table 8.1 excluding the test cases with indexes #3 and
#4.

Table 8.1.: Test suite for a Boolean expression with two input variables x and y of type
Integer, Boolean output, and # as index of the test cases.

x y out
1 0 0 F
2 1 0 T
3 0 1 T
4 1 1 T

113

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

Figure 8.1.: Decision tree inferred from all
test cases in Table 8.1 and from
a subset containing only three
of these test cases.

Figure 8.2.: Decision tree inferred from 2 of
4 test cases in Table 8.1 exclud-
ing test case #3 and #4.

8.1. Basic De�nitions

In our approach we reduce test suites T, containing test cases, to subsets
of these test cases. We consider a test case to be either a test vector tc of k
input values and an expected output value, e.g., tc = (in1, .., ink, out) or a
sequence ts of n test vectors, e.g., ts = 〈tc1, .., tcn〉. A test case can either fail
or pass. A test case passes if the expected outcomes from the vectors are
equivalent to the outputs of the program under test after it was executed
with the input values from the test vectors, otherwise it fails. The input
types can be either discrete or numeric. Outputs are discrete. From such a
test suite we infer a decision tree.
In this chapter we provide a new test suite reduction approach where we
define reduction as follows:

Definition 14 (Reduction) Given a test suite T and a reduced test suite T’ ⊆ T,
reduction is the difference in size of the two test suites, given in %, and calculated as:

Reduction = (|T|−|T’|
|T| 100).

114

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

8.1.1. Decision tree inference

Also in this chapter for test suite reduction we utilize the widely used C4.5
algorithm [51] to infer a decision tree (V, E) from a test suite T. A decision
tree is a tree (V, E) having nodes V and edges E between nodes with the
usual restrictions applying to trees. The tree has decision nodes, and leaf
nodes. Each decision node represents a decision (i.e. a relational equation),
e.g., x > 0 for numeric inputs or x equals ”open” for discrete inputs. A leaf
node represents a classification, which is one of the discrete output values.
E.g., the decision tree shown in Figure 8.1 has two decision nodes x > 0 and
y > 0, and three leaf nodes F, T, T. The root node of the tree is a decision
node having only outgoing edges.

8.2. Test Suite Reduction Approach

Our reduction approach is based on changes in the test suite that do not
cause changes in the learned model. After each reduction we learn a new
model from the reduced test suite. Whenever a reduction causes a change in
the learned model, in comparison to the model we had before the reduction,
we detect the change. In order to detect these changes, we have to provide a
notion of equivalence for the learned models, i.e., the decision trees. In this
chapter, we define two methods to check for equivalence, where one model
is learned from the reduced test suite T’, and the other, learned from the
original test suite T, serves as reference model. The first method determines
syntactic equivalence of two models and the second method is based on a
misclassification rate.

For simplicity, we assume a function ρ: DT→ V with the universe of decision
trees DT under consideration as input domain that returns the root node of
a decision tree. E.g. the root node of the decision tree shown in Figure 8.1
is the decision node x > 0. We assume a function λ: V → D ∪ C with the
union of the set of decisions D and the set of classifications C as range that
returns the content of a node. The content of a node is either a decision for
decision nodes, or a classification for leaf nodes. E.g., the union of D ∪ C
for the decision tree in Figure 8.1 is {x > 0, y > 0} ∪ {F, T, T}. Because we

115

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

infer binary decision trees, the answer of a decision, e.g., whether x > 0 or
not, is represented by a label of an outgoing edge from the decision node
that can be accessed via the γ: E → {True, False} function. E.g. the outgoing
edges of the root node from the decision tree in Figure 8.1 are labeled with
T and F (short for True and False).

8.2.1. Syntactic Equivalence

Two decision trees are syntactically equivalent if and only if each node in
a decision tree has a corresponding node in the other decision tree, rep-
resenting the identical content and each edge in the decision tree has a
corresponding edge in the other decision tree with the same label and con-
necting the same pair of nodes. This form of equivalence can be represented
using a function equal: V ×V → {True, False}, which we define recursively
as follows: Given two decision trees (V1, E1) ∈ DT and (V2, E2) ∈ DT, and
nodes n1, m1 ∈ V1 and n2, m2 ∈ V2, equal returns True, if and only if:

1. λ(n1) = λ(n2) (The content of the corresponding nodes has to be
equivalent)

2. |{(n1, m1)|m1 is a direct successor of n1}| = |{(n2, m2)|m2 is a direct
successor of n2}| (The number of outgoing edges has to be equivalent)

3. ∀(n1, m1)∃(n2, m2)[m1 is a direct successor of n1 ∧m2 is a direct succes-
sor of n2 ∧ γ(n1, m1) = γ(n2, m2) ∧ equal(m1, m2)] (The correspond-
ing outgoing edges and the sub-decision trees have to be equivalent)

Otherwise, equal returns False. Using this function, we define syntactic
equivalence of two decision trees as follows:

Definition 15 (Syntactic equivalence) Given two decision trees (V1, E1) and
(V2, E2), these decision trees are syntactically equivalent if and only if the function
equal(ρ(V1, E1), ρ(V2, E2)) returns True.

8.2.2. Equivalence Based on a Misclassi�cation Rate

Two decision trees, a reference decision tree (V1, E1) inferred from a test suite
T, and a decision tree (V2, E2) inferred from a test suite T’ are equivalent

116

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

regarding their misclassification rate, if the following two conditions hold:
First, the misclassification rate of (V2, E2), when evaluating T (therefore the
reduced test cases serve as test data for the machine learning algorithm),
is less than or equal to the misclassification rate of (V1, E1). Second, for all
distinct classifications which exist in (V1, E1) an equivalent classification
exists in (V2, E2). The misclassification rate is defined as:

Definition 16 (Misclassification rate) The misclassification rate MR of a deci-
sion tree (V, E) is the ratio of the number of incorrectly classified test cases TF ⊆ T
to the number of all classified test cases T.

MR(V, E) =
|TF|
|T| (8.1)

In the remainder of this work equivalence based on the misclassification
rate is named semantic equivalence. Thus we define semantic equivalence
as follows:

Definition 17 (Semantic equivalence) A decision tree (V2, E2) is semantically
equivalent to a reference decision tree (V1, E1) when classifying a test suite T, if the
following equation holds:

MR(V2, E2) ≤ MR(V1, E1) ∧
∀v∃w[v ∈ Classifications(V1, E1)∧

w ∈ Classifications(V2, E2) ∧ v = w]

8.2.3. Test Suite Reduction

The algorithm Reduce for reducing a test suite without executing the
program under test is shown in Algorithm 7. As a result the algorithm
yields a reduced test suite T’. Reduce requires three inputs, i.e., a test suite
T, an integer number iterations > 0, and an integer number retries > 0.
T is a test suite containing all initially given test cases, iterations declares
how often the function Reduce is restarted, and retries is the maximum
number of attempts, where a test case is removed from T randomly, until a

117

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

decision tree is inferred, which is equivalent to the decision tree inferred
from T. The decision trees are inferred in function inferDecisionTree(T)
using the C4.5 algorithm as explained in Section 8.1. Equivalence of the
models in Reduce is checked either syntactically or semantically (set by
configuration) as explained in Sections 8.2.1 and 8.2.2. During execution the
function Reduce finds a subset tT’ of test cases from T for each iteration.
After each iteration of Reduce, the size of tT’ is compared to the size of
T’. If the size of tT’ is smaller than the size of T’, tT’ is assigned to T’. This
ensures that the algorithm returns the smallest reduced test suite which was
found, but Reduce does not guarantee to find a reduced test suite.

8.3. Experimental Results and Evaluation

In this Section we provide experimental results to answer the research
questions posed for this chapter.

8.3.1. Example Programs

We evaluated our approach on seven different example programs which
are:

1. TCAS: See Section 5.2
2. BMI: See Section 5.2
3. Triangle: See Section 5.2
4. POP3: See Section 5.2
5. Car Alarm System (CAS): See Section 5.2
6. Guava UTF8 (UTF8): See Section 5.2
7. Cruise Control1 (CC): Simulates a car and its cruising controller.

The attributes source lines of code (SLOC), number of distinct discrete
output values (classifications), size of the test suite T (|T|), and number of
mutants (s) for the seven examples are given in Table 8.2. The size of a test
suite is the number of test cases it contains.

1http://sir.unl.edu/portal/bios/Cruise%20Control.php

118

http://sir.unl.edu/portal/bios/Cruise%20Control.php

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

Algorithm 7 Function to reduce a test suite T.
1: function Reduce(T , iterations, retries)
2: T’ = T
3: DT = inferDecisionTree(T)
4: for all i in range(0, iterations) do
5: tT’ = T’
6: while true do
7: found = False
8: for all j in range(0, retries) do
9: t = getRandomTestCase(T’)

10: tT’ = tT’\t
11: DT2 = inferDecisionTree(tT’)
12: if DT equals DT2 then
13: f ound = True
14: break
15: else
16: tT’ = tT’ ∪ t
17: end if
18: end for
19: if !found then
20: break
21: end if
22: end while
23: if |tT’| < |T’| then
24: T’ = tT’
25: end if
26: end for
27: return T’
28: end function

119

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

Table 8.2.: Attributes of the example programs.
Name SLOC classifications |T| s
TCAS 100 3 1,545 41

BMI 19 5 1,000 28

Triangle 30 4 1,000 35

POP3 122 10 1,000 167

CAS 110 5 1,000 167

UTF8 56 2 1,000 147

CC 261 4 1,000 363

8.3.2. Tools

In this work we utilized different existing software tools to implement
and evaluate our test suite reduction approach. The different tools are
ScalaCheck2 for test case generation, Weka3 for model learning, CodeCover4

to measure the coverage of a test-suite, and the Major mutation framework5

to generate mutants with the exception of TCAS and CC where we rely on
the existing mutants.

8.3.3. Reductions With Proposed Equivalence Check

Methods

The test suites of the seven example programs were reduced with a Java
implementation of Reduce. This reduction was executed using four different
configurations for decision tree inference and the equivalence check. Two
configurations utilized syntactical equivalence with first requiring the infer-
ence to classify a minimum of one test case per leaf node (min 1) and second a
minimum of two test cases per leaf node (min 2). The other two configurations
were also first with a minimum of one test case per leaf node and second
with two test cases, but with semantic equivalence. We used the values

2www.scalacheck.org
3www.cs.waikato.ac.nz/ml/weka/
4www.codecover.org
5www.mutation-testing.org

120

www.scalacheck.org
www.cs.waikato.ac.nz/ml/weka/
www.codecover.org
www.mutation-testing.org

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

40

45

50

55

60

65

70

75

1 iteration/10% of
testsuite size as retries

1/20%

1/30%

1/40%

1/50%

3/10%

3/20%

3/30%

3/40%

3/50%

5/10%

5/20%
5/30%5/40%

5/50%

7/10%

7/20%

7/30%

7/40%

7/50%

9/10%

9/20%

9/30%

9/40%

9/50%

syntactic / min: 1

syntactic / min: 2

semantic / min: 1

semantic / min: 2

Figure 8.3.: Reduction of T for the TCAS example for four different configurations and 25

executions of Reduce for each configuration.

L = {1, 3, 5, 7, 9} for iterations and M = {10, 20, 30, 40, 50} for retries where
the values for retries are values in % relative to |T|, e.g., if |T| = 1000 and
r ∈ M = 10% then retries = |T|∗r

100 = 100. Each of the four configurations was
executed once with each of the 25 value pairs in L×M.

The first results were obtained by executing Reduce for T of the TCAS
example. The results for Reduction are shown in Figure 8.3. These results
show that Reduction > 60% is possible for each of the four different config-
urations.

Figure 8.4 shows the 25 executions for each of the four different configura-
tions for T of the BMI example. For this example results of Reduction > 80%
were obtained. In Figure 8.5 the results for T of the Triangle example
are shown. For the Triangle example results of Reduction > 70% were
achieved.

The results for the two state machine examples, namely POP3 and CAS,
are very similar. Figure 8.6 shows the results for T of the POP3 example
and Figure 8.7 shows the results for T of the CAS example. For both state

121

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

70

72

74

76

78

80

82

84

1 iteration/10% of
testsuite size as retries

1/20%
1/30%

1/40%

1/50%

3/10%

3/20%

3/30%

3/40%

3/50%

5/10%

5/20%
5/30%5/40%

5/50%

7/10%

7/20%

7/30%

7/40%

7/50%

9/10%

9/20%

9/30%

9/40%
9/50%

syntactic / min: 1

syntactic / min: 2

semantic / min: 1

semantic / min: 2

Figure 8.4.: Reduction of T for the BMI example for four different configurations and 25

executions of Reduce for each configuration.

0

10

20

30

40

50

60

70

80

1 iteration/10% of
testsuite size as retries

1/20%
1/30%

1/40%

1/50%

3/10%

3/20%

3/30%

3/40%

3/50%

5/10%

5/20%
5/30%5/40%

5/50%

7/10%

7/20%

7/30%

7/40%

7/50%

9/10%

9/20%

9/30%

9/40%
9/50%

syntactic / min: 1

syntactic / min: 2

semantic / min: 1

semantic / min: 2

Figure 8.5.: Reduction of T for the Triangle example for four different configurations and
25 executions of Reduce for each configuration.

122

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

94,5

95

95,5

96

96,5

97

97,5

1 iteration/10% of
testsuite size as retries

1/20%
1/30%

1/40%

1/50%

3/10%

3/20%

3/30%

3/40%

3/50%

5/10%

5/20%
5/30%5/40%

5/50%

7/10%

7/20%

7/30%

7/40%

7/50%

9/10%

9/20%

9/30%

9/40%
9/50%

syntactic / min: 1

syntactic / min: 2

semantic / min: 1

semantic / min: 2

Figure 8.6.: Reduction of T for the POP3 example for four different configurations and 25

executions of Reduce for each configuration.

machine examples we obtained results of Reduction > 96% for each of the
four configurations. The results for T of the UTF8 example are shown in
Figure 8.8. Results of Reduction > 90% are possible for each of the four
configurations.

The results for T of the CC example are shown in Figure 8.9. Results of
Reduction > 99% are possible for each of the four configurations.

An overview of the results for Reduction from the seven examples is given
in Tables 8.3 and 8.4. Table 8.3 shows the min., max., and avg. value of
Reduction for each example, which were obtained by the 100 executions of
Reduce (4 configurations * 25 value pairs for iterations and retries).

123

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

98,2

98,4

98,6

98,8

99

99,2

99,4

99,6

99,8

1 iteration/10% of
testsuite size as retries

1/20%
1/30%

1/40%

1/50%

3/10%

3/20%

3/30%

3/40%

3/50%

5/10%

5/20%
5/30%5/40%

5/50%

7/10%

7/20%

7/30%

7/40%

7/50%

9/10%

9/20%

9/30%

9/40%
9/50%

syntactic / min: 1

syntactic / min: 2

semantic / min: 1

semantic / min: 2

Figure 8.7.: Reduction of T for the CAS example for four different configurations and 25

executions of Reduce for each configuration.

70

75

80

85

90

95

1 iteration/10% of
testsuite size as retries

1/20%
1/30%

1/40%

1/50%

3/10%

3/20%

3/30%

3/40%

3/50%

5/10%

5/20%
5/30%5/40%

5/50%

7/10%

7/20%

7/30%

7/40%

7/50%

9/10%

9/20%

9/30%

9/40%
9/50%

syntactic / min: 1

syntactic / min: 2

semantic / min: 1

semantic / min: 2

Figure 8.8.: Reduction of T for the UTF8 example for four different configurations and 25

executions of Reduce for each configuration.

124

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

98,6

98,8

99

99,2

99,4

99,6

99,8

1 iteration/10% of
testsuite size as retries

1/20%
1/30%

1/40%

1/50%

3/10%

3/20%

3/30%

3/40%

3/50%

5/10%

5/20%
5/30%5/40%

5/50%

7/10%

7/20%

7/30%

7/40%

7/50%

9/10%

9/20%

9/30%

9/40%
9/50%

syntactic / min: 1

syntactic / min: 2

semantic / min: 1

semantic / min: 2

Figure 8.9.: Reduction of T for the CC example for four different configurations and 25

executions of Reduce for each configuration.

Table 8.3.: Reductions with proposed equivalence check methods.
Reduction (%)

Name min. max. avg.
TCAS 45.11 70.87 62.49

BMI 75.10 82.20 80.08

Triangle 34.00 74.40 58.79

POP3 95.60 97.50 96.74

CAS 98.80 99.70 99.44

UTF8 75.80 91.10 88.27

CC 99.10 99.80 99.58

125

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

Table 8.4.: Reductions with proposed equivalence check methods.
Reduction (%)

syntactic semantic
Name min. max. avg. min. max. avg.
TCAS 52.56 69.39 62.43 45.11 70.87 62.54

BMI 75.10 82.00 79.95 77.20 82.20 80.20

Triangle 34.00 74.40 58.62 34.70 74.20 58.96

POP3 95.90 97.50 96.77 95.60 97.40 96.72

CAS 98.80 99.70 99.42 98.90 99.70 99.46

UTF8 75.80 91.10 88.23 83.70 91.10 88.32

CC 99.20 99.80 99.61 99.10 99.80 99.54

min. 1 per lea f node min. 2 per lea f node
Name min. max. avg. min. max. avg.
TCAS 45.11 64.01 58.54 57.93 70.87 66.43

BMI 75.10 80.80 79.08 79.70 82.20 81.07

Triangle 34.00 74.40 59.56 38.20 73.20 58.02

POP3 96.30 97.50 97.15 95.60 96.80 96.33

CAS 99.30 99.70 99.58 98.80 99.50 99.30

UTF8 75.80 90.30 87.54 83.70 91.10 89.00

CC 99.10 99.80 99.57 99.30 99.80 99.59

126

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

8.3.4. Test Suite Reduction Results Using Syntactic

Equivalence

In this section, to obtain a reduced test suite T’ we executed Reduce with
different value pairs for iterations and retries, and syntactic equivalence. After
some initial experiments we used the values L = {1, 2, 3, 4, 5} for iterations
and as in Section 8.3.3 with M = {10, 20, 30, 40, 50} for retries which are
values in % relative to |T|. We executed each pair in L×M (e.g., iterations=1,
retries=10% of |T|) 25 times.

Figure 8.10 shows the results for Reduction of the TCAS example. These
reductions cut the original test suite by around 60%. The box plots in Figure
8.10 are grouped by the five different values for iterations. These results
show that for an increasing number of iterations the rectangles and whiskers
in the plot become narrower and the median reduction value only slightly
rises for an increasing number of retries. An example test vector tc1 ∈ T for
the TCAS example is the vector
tc1 = (958, 1, 1, 2597, 574, 4253, 0, 399, 400, 0, 0, 1, unresolved)
with the last value (unresolved) as expected outcome and the remaining
values as inputs. In Figure 8.11 the results for Reduction of the Triangle
example test suite are shown. The results are similar to the results of
the TCAS example at around 60%. Also the different values for iterations
and retries similarly affect the results. An example test vector tc2 ∈ T for
the Triangle example from which the decision trees during execution of
Reduce are inferred is the vector tc2 = (64, 64, 64, equilateral) with the
last value (equilateral) as expected outcome and the remaining values as
inputs. An example test vector tc3 ∈ T for the BMI example from which
the decision trees during execution of Reduce are inferred is the vector
tc3 = (1.717075, 183.332056, veryobese) with the last value (veryobese) as
expected outcome.

The results for Reduction of the BMI example are shown in Figure 8.12. The
results for Reduction are around 80%. Also for this example the increasing
values for iterations cause the rectangles in the plot to become narrower and
for increasing values of retries Reduction slightly rises.

For the UTF8 example the results of Reduction are shown in Figure 8.13. The
results for Reduction of this example test suite are around 87%. Increasing

127

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

45

50

55

60

number of retries in % of test suite size

re
du

ct
io

n
(%

)

10 40 10 40 10 40 10 40 10 40

45

50

55

60

1 2 3 4 5

number of iterations

Figure 8.10.: Reduction results for the TCAS example.

128

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

30

40

50

60

70

80

number of retries in % of test suite size

re
du

ct
io

n
(%

)

10 40 10 40 10 40 10 40 10 40

30

40

50

60

70

80

1 2 3 4 5

number of iterations

Figure 8.11.: Reduction results for the Triangle example.

129

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

70

72

74

76

78

80

number of retries in % of test suite size

re
du

ct
io

n
(%

)

10 40 10 40 10 40 10 40 10 40

70

72

74

76

78

80

1 2 3 4 5

number of iterations

Figure 8.12.: Reduction results for the BMI example.

130

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

values for iterations affect the rectangles in the plot to become narrower and
increasing values for retries affect slightly risings of Reduction. An example
test vector tc4 ∈ T for the UTF8 example from which the decision trees
during execution of Reduce are inferred, is the vector tc4 = (0, ?, ?, ?, True)
with the last value (True) as expected outcome and the remaining values
as inputs. An input for the UTF8 example consists of up to four bytes. In
tc4 the input has a length of only one byte but, as the expected outcome
indicates, is a valid UTF8 sequence. Decision tree inference can be used even
when some input values have unknown values which are given as ? in tc4.
It is common to estimate missing input values for decision tree inference.
For estimation either the value that is most common among the test vectors
in T for the input variable is used, or probabilities are estimated based on
the observed frequencies of the various values for the input variable from
which a value is derived.

Figure 8.14 shows the results for Reduction of the POP3 example. The
reductions cut the original test suite by around 97%. For this example,
with increasing values for iterations, the rectangles become narrower, but
increasing values for retries hardly affect the results. For the POP3 example
a test case is a sequence ts = 〈tc1, .., tcn〉 of n test vectors. As input for
decision tree inference we use the test vectors tc1, .., tcn from all ts ∈ T.
An example test vector tc5 ∈ ts for the POP3 example, from which the
decision trees during execution of Reduce are inferred, is the vector tc5 =
(USER(0),off , 1, passr), where the first value is the input value, the second
value is the expected outcome after executing the last test vector from the
current test case ts, the third value is a label representing the current state
of the program under test, and the fourth value is the expected outcome
after executing tc5. The decision trees are inferred from the test vectors of
all remaining test cases ts ∈ T’, but Reduce removes entire test cases.

In Figure 8.15 the results for Reduction of T from the CAS example are
shown. The results for this example test suite are around 99.6%. Also for
this example the increasing values for iterations cause the rectangles in the
plot to become narrower but increasing values for retries hardly affect the
results. For the CAS example a test case is a sequence ts = 〈tc1, .., tcn〉 of n
test vectors. An example test vector tc6 ∈ ts, used as input for decision tree
inference, is tc6 = (opendoor, armed, PCAlarm, activated_ f lash_alarm). The

131

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

75

80

85

90

number of retries in % of test suite size

re
du

ct
io

n
(%

)

10 40 10 40 10 40 10 40 10 40

75

80

85

90

1 2 3 4 5

number of iterations

Figure 8.13.: Reduction results for the UTF8 example.

132

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

96.4

96.6

96.8

97.0

97.2

97.4

97.6

number of retries in % of test suite size

re
du

ct
io

n
(%

)

10 40 10 40 10 40 10 40 10 40

96.4

96.6

96.8

97.0

97.2

97.4

97.6

1 2 3 4 5

number of iterations

Figure 8.14.: Reduction results for the POP3 example.

133

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

properties of the values in the test vectors are the same as explained for the
POP3 example.

Figure 8.16 shows the results for Reduction of the CC example. The reduc-
tions cut the original test suite by around 99.5%. For this example, with
increasing values for iterations, the rectangles become narrower, but increas-
ing values for retries hardly affect the results. For the CC example a test case
is a sequence ts = 〈tc1, .., tcn〉 of n test vectors. As input for decision tree
inference we use the test vectors tc1, .., tcn from all ts ∈ T. An example test
vector tc7 ∈ ts for the CC example, from which the decision trees during
execution of Reduce are inferred, is the vector tc7 = (accelerator, true, 0, 1),
where the first value is the input value, the second value is true, if the speed
of the car is the equivalent to the speed after executing the last test vector
from the current test case ts. The third value represents the current state
of the speed control, and the fourth value is the current state of the Cruise
Control.

8.3.5. Evaluation

To evaluate our results we created an adapted version of Reduce, namely
CMReduce, where we used coverage and mutation score for the equivalence
check. As shown in Algorithm 8 decision tree inference from reduce is
replaced by a function to obtain coverage and mutation score in CMReduce.
CMReduce uses the tool CodeCover and the mutants as listed in Table 8.2
and returns the two values MC/DC coverage6 and mutation score for
the provided test suite. Coverage and mutation score of a test suite are
equivalent to coverage and mutation score of a different test suite if both
values are equivalent.

Table 8.5 shows the differences of Reduction from using Reduce to using
CMReduce. The execution time to obtain the results for Reduction is given
in Table 8.6. The values in Tables 8.5 and 8.6 are the min., max., and avg.
values of the results obtained in Section 8.3.4 and the results of executing
CMReduce with iterations = 1 and retries = 10% of |T|. The results in Table

6The applied tool to measure coverage, namely CodeCover, implements the Ludewig
term coverage, which subsumes MC/DC for Boolean short circuit semantics.

134

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

99.1

99.2

99.3

99.4

99.5

99.6

99.7

number of retries in % of test suite size

re
du

ct
io

n
(%

)

10 40 10 40 10 40 10 40 10 40

99.1

99.2

99.3

99.4

99.5

99.6

99.7

1 2 3 4 5

number of iterations

Figure 8.15.: Reduction results for the CAS example.

135

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

98.6

98.8

99.0

99.2

99.4

99.6

99.8

number of retries in % of test suite size

re
du

ct
io

n
(%

)

10 40 10 40 10 40 10 40 10 40

98.6

98.8

99.0

99.2

99.4

99.6

99.8

1 2 3 4 5

number of iterations

Figure 8.16.: Reduction results for the CC example.

136

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

Algorithm 8 Function to reduce a test suite T by coverage and mutation
score.

1: function CMReduce(T , iterations, retries)
2: T’ = T
3: COV = getCovAndMS(T)
4: for all i in range(0, iterations) do
5: tT’ = T
6: while true do
7: found = False
8: for all j in range(0, retries) do
9: t = getRandomTestCase(tT’)

10: tT’ = tT’\t
11: COV2 = getCovAndMS(tT’)
12: if COV equals COV2 then
13: found = True
14: else
15: tT’ = tT’ ∪ t
16: end if
17: end for
18: if !found then
19: break
20: end if
21: end while
22: if |tT’| < |T’| then
23: T’ = tT’
24: end if
25: end for
26: return T’
27: end function

137

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

Table 8.5.: Model learning based Reduction results (ml based) vs coverage+mutation score
based Reduction (cm) results.

Reduction (%)
ml based cm

Name min. max. avg.
TCAS 41.75 63.50 58.54 98.9
BMI 69.80 80.60 79.10 99.5
Triangle 22.40 80.00 59.19 99.3
POP3 96.40 97.70 97.17 99.4
CAS 99.10 99.70 99.57 99.6
UTF8 73.30 91.10 87.66 94.4
CC 98.00 99.80 99.50 99.5

8.6 show that Reduce is multiple times faster than CMReduce. Further
the results in Table 8.5 show that the results of Reduction differ by up to
76% for test suites, where a test case is a single vector, but for test suites
where a test case is a sequence of vectors the maximum difference is only
3%. Knowing these initial results we answer RQ2 as follows: The model
learning based test suite reduction approach is not more efficient regarding
size than the coverage and mutation score based reduction approach, but
for some examples the results are almost equivalent. Regarding execution
time the model learning based reduction approach is multiple times faster.
That is because for our approach it is not necessary to execute the program
under test.

We further evaluated our results of Reduction against a random reduction.
For this random reduction we took the avg. Reduction of our results from
Section 8.3.4 and cut this size from the original test suite T of each example
by randomly selected test cases. To get a representative result we executed
this random reductions 25 times. These evaluation results are shown in
Table 8.7. Table 8.7 shows the min., max., and avg. values for statement
coverage, decision coverage, MC/DC coverage, and mutation score (µ) for
the test suites T’r and the test suites T’ml. We obtained T’r by random
reduction and gained T’ml in Section 8.3.4 (ml based). The results in Table
8.7 show that for the TCAS example the coverage results are not different
for T’r and T’ml. A difference of the mutation score for the TCAS example

138

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

Table 8.6.: Reduction time to obtain Reduction results with model learning based (ml based)
and coverage+mutation score based (cm) methods.

reduction time (sec)
ml based cm

Name min. max. avg.
TCAS 21.2 654.0 212.6 3692

BMI 5.2 81.9 28.5 1856

Triangle 9.7 206.8 69.9 1916

POP3 5.1 58.1 24.0 5708

CAS 7.0 81.1 35.0 188,925

UTF8 2.7 28.9 11.3 2809

CC 6.4 53.5 20.5 34,221

is shown where the mutation score for T’ml is higher. For the Triangle
example and the BMI example coverage and mutation score of T’r and T’ml
are equivalent to the coverage and mutation score of T. Mutation score
of the POP3 example is for both, T’r and T’ml, equivalent to the mutation
score of T. There are almost no differences of statement coverage, decision
coverage, and MC/DC coverage for T’ml to these values of T. For T’r the
coverage results are considerably lower. The CAS example shows clearly
that coverage and mutation score of T’ml are higher than for T’r. The UTF8

example provides higher values for statement coverage for T’r than for T’ml.
Decision coverage, MC/DC coverage, and mutation score are higher for
T’ml. The CC example shows that coverage and mutation score of T’ml are
higher than for T’r. Knowing these results we can answer RQ1 partially. Our
model learning based reduction approach does not compromise coverage
and mutation score as severely as a random reduction. For examples where
coverage and mutation score of the initial test suite are at maximum or close
to maximum, coverage and mutation score for the test suites reduced by
our approach, are close to coverage and mutation score of the initial test
suite. Since the results are consistently better for our model learning based
approach than a random reduction, our approach might be used to reduce
a test suite.

139

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

Table 8.7.: Results of random reduced using same reduction size as obtained by model
learning based reduction vs model learning based (ml based) reduction.

st
at

em
en

t
-

RT
S r

(%
)

st
at

em
en

t
-

RT
S m

l
(%

)
de

ci
si

on
-

RT
S r

(%
)

de
ci

si
on

-
RT

S m
l

(%
)

N
am

e
m

in
.

m
ax

.
av

g.
m

in
.

m
ax

.
av

g.
m

in
.

m
ax

.
av

g.
m

in
.

m
ax

.
av

g.
T

C
A

S
9

7
.2

2
9

7
.2

2
9

7
.2

2
9

7
.2

2
9

7
.2

2
9

7
.2

2
9

1
.6

7
9

1
.6

7
9

1
.6

7
9

1
.6

7
9

1
.6

7
9

1
.6

7

BM
I

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

Tr
ia

ng
le

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

PO
P3

8
4
.7

8
1

0
0

.0
0

9
3
.1

3
9

7
.8

0
1

0
0

.0
0

9
9

.9
9

9
0

.3
8

1
0

0
.0

0
9

4
.7

7
9

8
.0

8
1

0
0
.0

0
9

9
.9

9

C
A

S
6

2
.3

0
9

5
.0

8
7

7
.7

7
9

3
.4

4
9

6
.7

2
9

6
.6

9
4

2
.8

6
8

3
.3

3
6

4
.1

9
8

0
.9

5
8

5
.7

1
8

5
.6

7

U
T

F8
9

2
.8

5
1

0
0

.0
0

9
9
.1

4
8

5
.7

1
0

0
.0

0
9

6
.7

1
9

0
.0

0
1

0
0

.0
0

9
6

.2
0

9
0

.0
0

1
0

0
.0

0
9

7
.7

0

C
C

7
0
.0

0
8

2
.0

0
7

8
.0

8
6

2
.0

0
8

6
.0

0
7

9
.5

3
5

9
.3

8
7

8
.1

3
7

2
.0

0
5

0
.0

0
8

4
.3

8
7

4
.2

2

M
C

/D
C

-
RT

S r
(%

)
M

C
/D

C
-

RT
S m

l
(%

)
µ

-
RT

S r
([

0.
.1
])

µ
-

RT
S m

l
([

0.
.1
])

N
am

e
m

in
.

m
ax

.
av

g.
m

in
.

m
ax

.
av

g.
m

in
.

m
ax

.
av

g.
m

in
.

m
ax

.
av

g.
T

C
A

S
8

5
8

5
8

5
8

5
8

5
8

5
0

.8
5

1
.0

0
0

.9
6

0
.9

3
1
.0

0
0

.9
7

BM
I

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
.0

0
1

.0
0

1
.0

0
1

.0
0

1
.0

0
1

.0
0

Tr
ia

ng
le

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
1

0
0

.0
0

1
.0

0
1

.0
0

1
.0

0
1

.0
0

1
.0

0
1

.0
0

PO
P3

9
4
.0

5
1

0
0

.0
0

9
6
.7

6
9

8
.8

0
1

0
0

.0
0

9
9

.9
9

1
.0

0
1

.0
0

1
.0

0
1

.0
0

1
.0

0
1

.0
0

C
A

S
3

9
.7

7
6

2
.5

0
5

1
.0

5
6

5
.9

1
6

8
.1

8
6

8
.1

6
0

.1
3

0
.4

3
0

.2
7

0
.4

1
0
.4

6
0

.4
4

U
T

F8
7

2
.5

0
9

7
.5

0
8

6
.1

0
8

5
.0

0
1

0
0

.0
0

9
3

.6
4

0
.5

2
0

.9
0

0
.7

5
0

.8
0

0
.9

9
0

.9
0

C
C

6
2
.5

0
8

1
.2

5
7

5
.1

3
5

0
.0

0
8

7
.5

0
7

7
.3

3
0

.1
8

0
.3

5
0

.3
0

0
.2

5
0
.3

8
0

.3
3

140

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

8.3.6. Threats To Validity

The selected examples in this chapter are used to investigate whether model
learning based test suite reduction is possible in principle. Hence additional
examples with more lines of code will be investigated in future work to
underpin the approach. Since the structure (control flow, data flow, lines
of code, etc.) of the program under test affects the approach, with more
examples a possible classification can be created, where we can derive from
the structure of the program under test whether the reduction approach is
applicable.
In this chapter only two of the numerous existing methods to check whether
two decision trees are equivalent were applied. Because the results are
promising using these equivalence methods, additional methods are shown
in Chapter 9. The test suites were generated randomly for various examples.
Therefore of course, as for all test suite reduction approaches, the question,
whether a test suite which is already of minimal size for a certain test
purpose, is recognized as such from the reduction approach or not, arises.

8.4. Related Work

Harrold et al. [26] developed a test suite reduction technique based on a
heuristic that selects a representative test suite from the original test suite
by approximating the optimal reduced set. A representative test suite is a
potential subset of test cases from the original test suite, which provides the
same coverage. Their approach requires an association between a testing
requirement and test cases, which satisfy the requirement. Since selecting
a subset of test cases from the original test suite that satisfies all testing
requirements with minimal cardinality is known as the NP-complete problem
of finding the minimum cardinality hitting set, they introduce a heuristic to
approximate the minimum cardinality. They also detect redundant test cases
with this approach as we do in our work, but in addition they remove ob-
solete test cases from a test suite if a test requirement does not exist anymore.

141

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

Lin and Huang [110] introduce a test suite reduction technique called re-
duction with tie-breaking (RTB). In their paper they show the integration
of their technique into two existing test suite reduction techniques, which
are the technique introduced in [26] and the technique introduced in [111].
As an extension they use, additionally to a primary coverage criterion for
the test requirements, a second coverage criterion to avoid elimination of a
test case, which is more likely to detect faults when more than one test case
has the same importance with respect to the primary coverage criterion in
both cases. In their work they provide very interesting results, which can
be directly compared to the results in our work as explained in detail in
Chapter 8.
Taylor et al. [112] present a multi-objective search-based technique using
behavior inference as fitness metric, to reduce a test suite. Behavior inference
is a test adequacy metric first suggested in 1983 [68]. Taylor et al. infer finite
state machines (FSM)s as models from execution traces of a test suite. They
compare the FSM inferred from execution traces of a reduced test suite
to the FSM inferred from execution traces of the original test suite, and
thus compare the behavior coverage of test sets that produce them. Their
results show that as long as the FSMs are equivalent, assessed by a Balanced
Classification Rate, the reduced test suite retains the fault finding capability
of the original test suite. The authors demonstrate that the reduced test suite
retains all of the fault finding capability of the original test suite by using
mutation testing, which also holds for our approach.
Briand et al. [109] describe a test suite refinement approach that relies on the
black box testing technique Category Partition and machine learning. They
use categories and choices to define the functional properties of a program
under test where categories are associated with choices. E.g. a category
representing an inequality relation has two choices of an inequality relation
which are either greater than or less than. Based on these categories they
transform test cases into abstract test cases. These abstractions are tuples of
choices and an expected output value or an equivalence class of expected
output values. Like in our work, they use the C4.5 algorithm to learn a
decision tree in [109]. But in contrast to our work where we learn a decision
tree from the raw values in a test suite, they learn decision trees from the
abstractions obtained by category partitioning.
The decision trees learned by the abstractions are used to learn rules that
relate categories or choices to equivalence classes of output values. They

142

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

analyze these rules to determine if some test cases are redundant or addi-
tional test cases are required. Potential problems which indicate redundancy
or required improvements are misclassifications, too many test cases for a
rule, unused categories, missing combinations of choices. These problems
origin in different potential causes which are e.g. redundant test cases for
the problem of too many test cases for a rule. They also provide case studies
where students created the category partitioning manually. These categories
and choices are used with a test suite to iteratively learn a decision tree,
analyze the results, and improve the test suite. The studies showed that
the resulting test suites were significantly more effective in terms of fault
detection while only requiring a modest size increase in comparison to the
originally provided test suite.
Because scientific work in test suite reduction has been done since decades,
a tremendous amount of related publications exist. However, detailed
overviews of test suite reduction literature can be found in [113] and [30].

8.5. Summary

In this chapter we introduced an algorithm for test suite reduction, which
is based on model learning. The underlying idea is, any test case that is
not relevant for learning a model from a test suite can be removed. In
our implementation we utilized a decision tree inference algorithm for
model learning and introduced two different notions of model equivalence.
Furthermore, we compared the outcome of the approach with a traditional
reduction approach based on coverage and mutation score of a test suite.
For this purpose, we did an empirical evaluation that is based on seven
example programs and their test suites to answer the two research questions
posed in Chapter 8. The answer for RQ1 is that coverage and mutation
score for the test suites reduced by our approach are close to coverage and
mutation score of the original test suite. Coverage and mutation score for
the randomly reduced test suites show much higher differences. For RQ2

the answer is that our model learning based reduction approach is multiple
times faster, but not as efficient in size as a traditional approach depending
on the content of a test case and the types of the inputs. On average the

143

8. Test Suite Reduction Does Not Necessarily Require Executing

The Program Under Test

obtained reduction was greater than 60% without substantial reduction of
coverage and mutation score.

In future work, we will extend our empirical evaluation considering more
examples from the application domain, i.e., automotive control software.
Here the open research question is whether the program’s structure, e.g., the
existence of loops or recursive functions, or the use of certain expressions
in the code, impacts the reduction results when using a specific machine
learning algorithm.

144

9. A �Strength of Decision Tree

Equivalence�-Taxonomy and

Its Impact on Test Suite

Reduction

This chapter is based on the work “A “strength of decision tree equivalence”-
taxonomy and its impact on test suite reduction” [10].

An attractive feature of the approach introduced in Chapter 8 is that we do
not need to execute the program under test for assessing the fault detection
capabilities when removing a test case. The underlying idea was that every
test suite T should at least partially capture the behavior of the program
under test in a sufficient way. The strategy then is to use machine learning
for model extraction, in order to derive representative characterizations from
T and a reduced test suite T′. We introduced in Chapter 8 the following
reduction process: Initially, we learn a characterizing decision tree from T,
and when successively trying to remove test cases t ∈ T, we infer for each
potential removal another decision tree from the updated test suite T′. If
the decision tree for T′ is equivalent to the initial one, we assume that the
fault detection capabilities were not affected, and proceed with trying to
remove further test cases. Otherwise, we go back one step and re-add t. The
reduction terminates after a preconfigured number of unsuccessful, random
tries to remove a further test case. With avoiding to execute T, we still could
achieve reductions from 60 to 99% in our evaluation. Our approach for
decision tree learning is limited to test cases t represented as some vector
t = 〈x1, .., xk, out〉 of k input values and an expected output value out. The
inputs are either numeric of an infinite domain, numeric of a finite domain,

145

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

or discrete strings or numbers. The output type has to be of a finite domain,
whose values then build the labels of the decision trees’ leaf nodes.

Since such a test suite reduction depends on an equivalence relation for
decision trees, the following questions arise immediately: Which methods
are there for determining equivalence? Are there more than structural and
misclassification equivalence as discussed and used in Chapter 8 (coined
syntactic and semantic equivalence there), and is there a relation between
them? What is their impact on the efficiency and effectiveness of the reduc-
tion process?

Imagining variants, one has to take the characteristics of the derived trees
into account. According to [114], optimizing a decision tree to a minimal
number of nodes which would allow us to compare minimal or canonical
ones, is in NP. Thus, the algorithm used to infer the decision trees in
Chapter 8 is based on a statistical measure (the information gain of variables)
and does not stringently build optimal decision trees. Consequently, trees
inferred from different test suites might appear different in respect of their
strict structure. Exploring flexibility in this respect, we consider five variants
for checking some trees’ equivalence. In particular, we consider in Section 9.2
structural (≡), spine (=s), decision (=d), table (=t), and misclassification
(=m) equivalence aiming to cover and explore various decision tree aspects.
We show and prove that these variants build a taxonomy as shown in
Figure 9.1 in respect of their strength. We report in Section 9.3 on our
corresponding experiments, considering computation time and the achieved
reductions as well as the impact on fault detection capabilities. In Section 9.5
we conclude on our findings and line out future work.

9.1. Preliminaries

In this chapter, we infer a decision tree D from a test suite T via the well-
known algorithm C4.5 [51]. Such a decision tree is a directed tree D = (V, E)
having nodes V and directed edges E connecting nodes. V can be split into
decision nodes and leaf nodes, where a decision node has outgoing edges
and represents a decision (i.e., a relational equation) like x > 0 (see Fig. 9.2)
for some numeric input x, or x equals 〈discrete value〉 for discrete inputs.

146

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

Figure 9.1.: Taxonomy of equivalence relation in respect of their strength.

A leaf node is a terminal one and offers a discrete classification. An edge
(v, v′) is a pair of nodes (v, v′ ∈ V), where v is parent of v′. For simplicity,
we assume a function ρ: DT → V that returns the root node of a decision
tree, with the universe of decision trees DT under consideration as input
domain. Further we assume a function λ: V → J ∪ C that returns the
content of a node, with the union of the set of decisions J and the set of
classifications C as range. The decision trees in this chapter are binary such
that each decision node has exactly two outgoing edges. The answer of a
decision, e.g., whether we have x > 0, is represented by an edge label that
can be accessed via a function γ: E → {T, F}. In our decision trees, paths
are sequences containing nodes and connecting edges, starting from the
root node, following down the tree, and ending at a leaf node. We define a
path Π in a decision tree as follows:

Definition 18 (Path) A path Π of length |Π| = l in a decision tree D is a
sequence of nodes v0...vl−1 such that there is an edge from vi to vi+1 for 0 ≤ i <
l − 1, starting with v0 = ρ(D) and ending at a leaf node vl−1.

With C4.5, decision trees are constructed top down, where decision nodes get
selected using a statistical property called information gain that measures how
well a decision separates the t ∈ T according to their expected outcome[61].
A test case t is classified in a decision tree by following the decision nodes
from the root node, down the tree to some leaf node, according to the
values in t. Not necessarily all input variables appear in a decision tree, but
numeric variables can occur also multiple times in different decision nodes,
even in the same path. We define equivalence for decision trees as follows:

147

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

Definition 19 (Equivalence Relation) Decision Tree Equivalence is a reflexive,
symmetrical, and transitive binary relation R between two decision trees D1 and
D2 from the universe of decision trees DT, such that:
reflexivity: ∀D ∈ DT : D R D
symmetry: ∀D1, D2 ∈ DT : D1 R D2 → D2 R D1
trans.: ∀D1, D2, D3 ∈ DT : D1 R D2 ∧ D2 R D3 → D1 R D3

In our work, we consider the equivalence of decision trees when reducing
test suites. When trying to remove test cases from a test suite T without
effecting changes in the decision tree, the achieved reduction is an indicator
of the reduction process’ effectivity as shown in Definition 14.

9.1.1. Decision Tree Learning

When we infer a decision tree, we derive a hypothesis h regarding an ap-
proximation of a function f that we can use to predict f ’s outcome for future
input values. Strategies for estimating the accuracy of such a hypothesis
include k-folds cross validation [115], or assessment with additional input
and output values [61]. In principle, for evaluating a hypothesis h, we can
use the function error(h, S) as given in Equation 9.1 in order to obtain a
result in the range 0..1:

error(h, S) =
1
|S| ∑t∈S

δ(f (t), h(t)) (9.1)

Equation 9.1 requires three parts: First, some set S that should be different
to T (from which the hypothesis was learned) containing vectors t of input
values and an expected output. Second, the target function f : Ik → O,
where I is the type of the k inputs and O represents the set of all possible
outputs. Third, a function δ that detects deviating outcomes of f and h–
returning 1 if f (t) 6= h(t) for some t ∈ S and 0 otherwise.

148

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

9.2. Equivalence Taxa

For our investigation, we considered five decision tree equivalence relations,
ranging from structural equivalence to misclassification equivalence. Before
showing at the end of this section that they form a taxonomy in respect
of their strength, let us formally introduce them for the decision trees
D1 = (V1, E1) and D2 = (V2, E2) first.

The first method determines structural equivalence of two decision trees, the
second method determines spine equivalence, the third method determines
decision equivalence, the fourth method is based on distinct classifications
to determine table equivalence, and the fifth method is based on a misclas-
sification rate and determines misclassification equivalence. The definitions
of structural and misclassification equivalence were partially adopted from
Chapter 8 where structural equivalence is named syntactic equivalence and
misclassification equivalence is named semantic equivalence.

Structural Equivalence (≡): Two decision trees D1 and D2 are structurally
equivalent, if and only if each node v1 ∈ V1 has a corresponding node
v2 ∈ V2 and each edge e1 ∈ E1 has a corresponding edge e2 ∈ E2 connecting
an equivalent pair of nodes. Structural equivalence can be represented using
a function equal: V × V → {True, False}, which we define recursively as
follows: For two decision trees D1, D2, and nodes v1 ∈ V1, v2 ∈ V2, equal

returns True, if and only if:

1. λ(v1) = λ(v2)
2. ∀(v1, vi) ∈ E1, ∃(v2, vj) ∈ E2, 0 ≤ i, j < 2|

γ(v1, vi) = γ(v2, vj) ∧ equal(vi, vj) (and vice versa)

Using this function, we define structural equivalence of two decision trees
as follows:

Definition 20 (Structural equivalence) Two given decision trees D1, D2 are
structurally equivalent if and only if the function equal(ρ(D1), ρ(D2)) returns
True.

EQUAL terminates if it detects different node contents or different edge
labels, or if all nodes have been visited.

149

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

Figure 9.2.: Structurally (left), spine- (middle), and decision-equivalent (right) trees.

Example 2 (Structural equivalence) Figure 9.2 shows two structurally equiva-
lent decision trees where decision nodes, leaf nodes, and edges are equivalent and on
the same position in both decision trees.

Spine Equivalence (=s): A decision tree consists of a set of spines SP. A
spine (Π, c) ∈ SP is described by a path Π to a leaf node v, such that
c = λ(v). Spine equivalence requires bag equivalence to hold, which is
defined as:

Definition 21 (Bag equivalence) Two paths Π1 and Π2 are equivalent as bags,
if except for the ordering they contain nodes with precisely the same content
and with equivalently labelled outgoing edges, such that for all v1 ∈ Π1 there
exists an equivalent node v2 ∈ Π2 and vice versa, where λ(v1) = λ(v2) and
γ(v1, vi) = γ(v2, vj).

From the definitions of a path and bag equivalence, we define spine equiva-
lence as:

150

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

Definition 22 (Spine equivalence) Two decision trees D1 and D2 are spine
equivalent if for the respective sets of spines SP1 and SP2, for every spine (Π1, c1) ∈
SP1 there exists a spine (Π2, c2) ∈ SP2 and vice versa, such that Π1 and Π2 are
bag equivalent and c1 = c2.

Example 3 (Spine equivalence) Figure 9.2 shows two spine equivalent decision
trees where the order of decision nodes in the paths differ, but the spines are
equivalent. However, these decision trees are not structurally equivalent.

Decision Equivalence (=d): A constraint built from a spine’s path is a
conjunction of equivalence relations that contain a decision node’s content
and its outgoing edge’s label for all decision nodes in the path. Satisfying
a constraint classifies the inputs to that spine’s c. In a decision tree, there
may be multiple spines for some c. For decision equivalence, we thus build
a summarizing constraint for each c as a disjunction of the corresponding
conjunctions of the individual spines for c. E.g., from the top right decision
tree in Figure 9.2, a constraint ψ of paths from spines with c = 1 is (x >
0 = F ∧ x < 0 = T) ∨ (x > 0 = T ∧ x > 1 = T). More formally, we define
decision equivalence as:

Definition 23 (Decision equivalence) Two decision trees D1 and D2 are deci-
sion equivalent, if for all leaf nodes v1 ∈ V1 an equivalent leaf node v2 ∈ V2 exists,
and for each constraint ψ1 of D1 there exists a constraint ψ2 in D2 where the
following equation holds:

ψ1 equals ψ2 (9.2)

Equation 9.2 is true, if no valuation exists for which ψ1 is satisfiable and ψ2
is unsatisfiable, and vice versa.

Example 4 (Decision equivalence) Figure 9.2 shows two decision equivalent
decision trees that do not contain the same decision nodes and are therefore not
spine equivalent.

151

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

Table Equivalence (=t): A decision tree D classifies all test cases t ∈ T
according to the input values in t to a leaf node, as introduced in Section 9.1.
A test case t is misclassified, if λ(v) for the leaf node v to which t was
classified and the value out of t differ. Otherwise t is classified correctly. This
principle is also used in hypothesis evaluation as introduced in Section 9.1,
where the function h(t) returns the content of the leaf node to which t was
classified, but unlike for hypothesis evaluation, here the outcome of the
target function f (t) is the value of out that is already included in t. We
create a set M of pairs (h(t), out) that contains for each t ∈ T the content
of the leaf node to which t was classified and the value out of t. Note that
we have |M| = |T|. Two sets M1 and M2 are equivalent, if for each pair
(h(t)1, out1) ∈ M1 there is a pair (h(t)2, out2) ∈ M2 such that h(t)1 = h(t)2
and out1 = out2, and vice versa. Consequently, we define table equivalence
as:

Definition 24 (Table Equivalence) Two decision trees D1 and D2 are table
equivalent, when classifying a test suite T yields two equivalent sets M1 for
D1 and M2 for D2.

Example 5 (Table equivalence) Figure 9.3 shows two decision trees that are
table equivalent if T does not contain a test case t = 〈1, 1, 1〉, because then
h(t) 6= out only for the lower decision tree. These decision trees are not decision
equivalent.

Misclassification Equivalence (=m): Two decision trees D1 and D2 are
equivalent regarding their misclassification rate error(D, T), if the following
two conditions hold:

1. error(D2, T) = error(D1, T).
2. For all distinct contents in the leaf nodes C1 ⊂ V1 an equivalent

classification exists in the leaf nodes C2 ⊂ V2 and vice versa.

Definition 25 (Misclassification equivalence) A decision tree D2 is misclas-
sification equivalent to a reference decision tree D1, when classifying T, if the
following equation holds:

error(D2, T) = error(D1, T) ∧
∀v1 ∈ C1, ∃v2 ∈ C2|v1 = v2 (and vice versa) (9.3)

152

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

Figure 9.3.: Table (left) and misclassification-equivalent (right) trees.

Example 6 (Misclassification equivalence) Figure 9.3 shows two decision trees
where the same classifications exist in both decision trees as visualized by the leaf
nodes. If T contains two test cases t1 = 〈0, 0, 2〉 and t2 = 〈1, 2, 2〉, the decision
trees are misclassification equivalent, but not table equivalent.

Theorem 4 The five defined methods to determine equivalence of decision trees
can be presented in a subset order, where for a decision tree D inferred from a
test suite T, subsets DT≡ ⊂ DT, DT=s ⊂ DT, DT=d ⊂ DT, DT=t ⊂ DT, and
DT=m ⊂ DT from the universe of decision trees DT exist, which contain decision
trees that were inferred from a test suite T′⊆ T, and are equivalent to D. These
subsets are ordered as
DT≡ ⊆ DT=s ⊆ DT=d ⊆ DT=t ⊆ DT=m , for subsets
DT≡ ⊂ DT representing structural equivalent decision trees,
DT=s ⊂ DT representing spine equivalent decision trees,
DT=d ⊂ DT representing decision equivalent decision trees,
DT=t ⊂ DT representing table equivalent decision trees, and
DT=m ⊂ DT representing misclassification equivalent decision trees.

153

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

Proof 4 (sketch) Structural equivalence implies that all paths are equivalent. If
all paths are equivalent, spine equivalence is ensured. If paths in two decision
trees only have different orders of nodes, the decision trees are spine equivalent,
but not structurally equivalent. Spine equivalence implies that all nodes contain
the same content. Building constraints from the paths in spines ensures that the
constraints are equivalent, because they contain the same contents of nodes and the
same outgoing edges of the decision nodes. If a node is missing or redundant in a
path of two decision equivalent decision trees, this contradicts spine equivalence.
Decision equivalence implies that each possible input valuation leads to an equiv-
alent classification or misclassification. Equivalent classifications for all possible
input values ensure table equivalence, because table equivalence depends only on
the classification of a test suite T, which contains only a subset of all possible input
values. If a pair of decision trees is table equivalent, but test cases are missing for
boundary values of the decisions, different decision nodes in a path lead to equivalent
classifications for a test suite T, but not for each possible input valuation. This
fact contradicts decision equivalence. Table equivalence implies that two decision
trees provide equivalent classifications for a test suite T, independently of whether a
test case was correctly classified or misclassified. If all test cases in T are equally
classified or misclassified, misclassification equivalence is given. A misclassification
equivalent pair of decision trees where classifying a test suite T yields the same
misclassification rate, but different test cases from T are misclassified, violates table
equivalence. �

As stated in Theorem 4, structural equivalence is the strongest method to
determine equivalence of two decision trees, meaning that even if the four
other equivalence check methods evaluate to true, structural equivalence
can be false. Decision equivalence is the costliest method due to the NP-
completeness of determining inequality of two constraints. Misclassification
equivalence is the weakest method to determine equivalence of two decision
trees, because it neither considers the structure of the decision tree nor the
relation of inputs to outputs.

154

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

9.3. Experimental Evaluation

We used three different Java programs for our proof-of-concept experiments,
generated combinatorial test suites using the tool ACTS, and evaluated the
reduced test suites’ fault detection effectiveness via their mutation score.
For generating mutants, we used the Major mutation framework [38].

9.3.1. Results

The three examples are Triangle, TCAS, and UTF8, as introduced in Sec-
tion 5.2. For test suite reduction, we used again a Java implementation of
the REDUCE Algorithm 7 and instantiated the equals method in REDUCE
at line 12 by all 5 equivalence methods introduced in Section 9.2. The input
values for iterations and retries of REDUCE were set to 2 and |T|10 respectively,
since the results in Chatper 8 show that these values allow high reductions.
To infer decision trees from a test suite, we used the Java library Weka
[93] and its implementation J48 of the algorithm C4.5. In the configuration
options of Weka, we disabled pruning and set the minimum number of
leaf nodes to 1. The expected outcome for a test case was derived with
the original program. We obtained test suites of size 343 (Triangle), 1840

(UTF8), and 11021 (TCAS), and generated 35 (Triangle) and 147 (UTF8)
mutants. For the TCAS example, we used the 41 existing mutants1. In order
to determine decision equivalence, we applied the SMT-solver Z3 [116] that
provides a Java-API. For calculating the misclassification rate, we used the
decision tree evaluation method integrated in the Weka library. Since the
REDUCE algorithm selects potentially redundant test cases randomly, we
executed the algorithm for each example 10 times per equivalence method
and plot the execution time and the resulting reduction for each execution.
All experiments ran on a MacBook Pro with an Intel Core i5 2.7GHz CPU,
16GB RAM, an SSD, and OS X 10.11.6. The resulting reductions and the
runtime to obtain these reductions for the Triangle example are shown in
Figure 9.4. The results in Figure 9.4 show that decision equivalence is multi-
ple times slower than other equivalence methods. Structural equivalence is

1http://sir.unl.edu/portal/bios/tcas.php

155

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

65 70 75 80 85 90 95

1
2

3
4

5

re
du

ct
io

n
tim

e
in

 s
ec

65 70 75 80 85 90 95
reduction in %

structural
spine
decision
table
misclassification

Figure 9.4.: Triangle results.

fastest, misclassification and table equivalence allow the highest reductions.
Reductions of structural equivalence are lowest. The results in Figure 9.5 for
the UTF8 example show that structural and spine equivalence are fastest,
but the reductions are around 30% lower than for the other equivalence
methods. Also for the UTF8 example decision equivalence was slowest. For
the TCAS example the results in Figure 9.6 show that all reductions only
vary in a range of around 10%. Also for TCAS, structural and spine equiva-
lence are fastest and decision equivalence is slowest on average. The highest
reductions were obtained by table and misclassification equivalence.

9.3.2. Discussion

Our results suggest that structural equivalence, whose complexity is linear in
the number of nodes in a decision tree, is the fastest and decision equivalence
is the slowest equivalence method. Deciding decision equivalence is an NP-
complete problem and each pair of equivalent constraints in two decision

156

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

60 70 80 90 100

10
15

20
25

re
du

ct
io

n
tim

e
in

 s
ec

60 70 80 90 100
reduction in %

structural
spine
decision
table
misclassification

Figure 9.5.: UTF8 results.

88 90 92 94 96 98

10
0

15
0

20
0

25
0

30
0

35
0

re
du

ct
io

n
tim

e
in

 s
ec

88 90 92 94 96 98
reduction in %

structural
spine
decision
table
misclassification

Figure 9.6.: TCAS results.

157

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

trees gives the worst case. When using misclassification equivalence, which
allows the highest reductions, the time to reduce T was slightly higher
than for structural equivalence. For evaluating a potential loss of the test
suite’s fault detection effectiveness, we derived the mutation score for all
reduced test suites as reported in Figure 9.7. The mutation score of the
initial test suites was 1 for each example. For each example in Figure 9.7,
the equivalence methods are ordered according to their strength from left to
right, starting on the left with the strongest one. The results show that for
the strongest equivalence method there was almost no decline of mutation
score, but for weaker methods the mutation score decreased. In particular
for the UTF8 example, the median mutation score dropped to values in the
range 0.6 to 0.7 for decision, table, and misclassification equivalence. These
weak mutation scores origin in the fact that the initial test suite contained
test cases with unknown values, which were approximated automatically
while inferring a tree by the C4.5 algorithm. These approximations increased
potential uncertainties of the tree to predict future outputs for additional
input values. The dots in the plots for Triangle, UTF8, and TCAS represent
outliers from the obtained results.

Using structural or spine equivalence provided similar reductions at similar
costs. Although decision equivalence allowed high reductions, the computa-
tion time was highest from all equivalence methods. Table and misclassifica-
tion equivalence provided the highest reduction results for our examples,
consuming more time than structural and spine equivalence (but in most
cases less time than decision equivalence). The mutation score results sug-
gest the highest loss of fault detection effectiveness to occur when using
table or misclassification equivalence. Therefore, if the execution time of the
tests in the finally reduced test suite is low, structural equivalence should
be chosen. If keeping the fault detection capabilities as high as possible
for a reduced test suite, also structural equivalence should be chosen. In
all other cases the results suggest that misclassification equivalence is an
educated choice. Promising results of an empirical evaluation of structural
and misclassification equivalence were shown in Chapter 8. With our results,
we clarify that the runtime of the reduction approach depends on three
parts. First, the runtime depends on the size of the test suite and the domain
sizes of the inputs. The latter affects the run-time spent for the algorithm
C4.5, since we have to learn a decision tree for each potentially removable

158

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

Triangle UTF8 TCAS

0.5

0.6

0.7

0.8

0.9

1.0

st
ru

ct
ur

al

sp
in

e

de
ci

si
on

ta
bl

e

m
is

cl
as

s.

st
ru

ct
ur

al

sp
in

e

de
ci

si
on

ta
bl

e

m
is

cl
as

s.

st
ru

ct
ur

al

sp
in

e

de
ci

si
on

ta
bl

e

m
is

cl
as

s.

equivalence

m
ut

at
io

n
sc

or
e

Figure 9.7.: Mutation score of reduced test suites.

test case. Second, as we surmised, the runtime depends on the complexity
of the equivalence relation used. Last, but not least, we saw that the runtime
increases also with the achieved reduction.

9.4. Related Work

Safavian and Landgrebe provide a survey of decision tree classifiers in
[117]. They address the design, search strategies, issues like missing values
and robustness, and potential problems of decision trees in their survey. In
[118] Moret provides a common framework of definitions and notations for
decision trees. In [119] Dattatreya and Kanal introduce the usage of decision
trees in pattern recognition. In this context they define pattern recognition

159

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

as "the assignment of a physical object or an event to one of the prespecified
categories". They consolidate the major methodologies for decision tree
design, bring out those methodologies’ commonalities, provide insight into
multistage classification, explode the myth that decision trees are always
simple to design and use, mention areas of applications of decision trees,
and aid a decision tree designer to select an appropriate technique for the
particular problem of interest.
Cockett introduces in [120] different notions of decision tree equivalence.
These notions are structural, decision, and transposition equivalence that
are similar to some of the notions we use in this work, which are structural,
spine, and decision equivalence, but Cockett uses the notion of coalgebras
to describe decision trees and the equivalence relations. In [121] Zantema
presents a simple efficient algorithm to establish whether two decision
trees are equivalent or not. This algorithm is an axiomatization for decision
equivalence as we use it in this work. The complexity of this algorithm is
bounded by the product of the number of nodes n and m of both decision
trees (O(n ∗m)). The algorithm only processes decision trees representing
discrete valued variables as decision nodes. In our work we also cover
numeric inputs, which are handled by binary splits. The authors in [122]
present an algorithm that reduces a decision tree by replacing the decision
tree with a smaller equivalent decision tree. To find an irreducible tree
using the reduction algorithm they also use decision and transposition
equivalence. In [123] the authors address the question, whether for a given
decision tree, a decision tree equivalent to the given one can be found, for
which no decision equivalent decision tree of smaller size exists. Breslow
and Aha provide an overview over methods how to simplify a decision tree
in [124].

The underlying idea that a model inferred from a test suite can be used to
indicate the fault detection effectiveness of the test suite was already intro-
duced in Chapter 5. The promising results in Chapter 8, where reductions
of 60-99% were possible, while still keeping coverage and mutation score
almost the same, led to this work, where we used the same reduction algo-
rithm. Briand et al. [109] describe a test suite refinement approach that relies
on the black box testing technique Category-Partition [125] and machine
learning. They use categories and choices to define the functional properties
of a program under test, where categories are associated with choices. E.g. a

160

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

category representing an inequality relation has two choices of an inequality
relation that are either greater than or less than. Based on these categories
they transform test cases into abstract test cases. These abstractions are
tuples of choices and an expected output value or an equivalence class of
expected output values. Like in our work, they use the C4.5 algorithm [51]
to learn a decision tree in [109]. But in contrast to our work, where we learn
a decision tree from the raw values in a test suite, they learn decision trees
from the abstractions obtained by category-partitioning.

Since test suite reduction has been of interest for decades, there is a tremen-
dous amount of further related work. We refer the interested reader to [113]
and [30] for detailed overviews.

9.5. Summary

In this chapter, we introduce a “strength of decision tree equivalence”-
taxonomy of five different equivalence relations. Decision tree equivalence
is a crucial part of a recently introduced test suite reduction approach that
does not require to execute the program under test. We came up with five
different methods to determine this equivalence and provide a theorem
and a corresponding proof that these methods form a taxonomy in respect
of their strength. As a proof of concept, our experiments show that the
equivalence method indeed has a high impact on the effectiveness and
efficiency when reducing a test suite. The results yield structural and spine
equivalence as the methods with the lowest costs, but also with the smallest
reduction. Decision equivalence is the costliest in respect of computation
time, but achieves high reductions. When determining equivalence with
table and misclassification equivalence, the reductions are very high, but
suffer from the highest decrease in fault detection effectiveness.

Underpinning the reduction approach itself and the selection of the most
appropriate equivalence relation will require an evaluation with additional,
realistic scenarios. If some T does not contain redundancies, no reduction
is possible. For detecting that T does not contain redundancies structural
equivalence should be chosen, because it is the least time consuming relation
to determine. Since the structure (control flow, data flow, lines of code,

161

9. A �Strength of Decision Tree Equivalence�-Taxonomy and Its

Impact on Test Suite Reduction

etc.) of the program under test affects the reduction, with more examples
possibly a classification can be created such that we could derive from the
program structure in combination with background information on how T
was generated which equivalence method would be best suited.

For our current experiments, we used first order mutants for evaluating the
effectiveness in fault detection, but towards applicability of the reduction
approach in practice, an examination with higher order mutants shall be
part of future work. In future work we will extend also our empirical evalua-
tion, considering more examples from application domains like automotive
control software.

162

Part V.

Future Work

163

10. Directions for Quality

Assessment of Test Suites

Without Execution

Quality assessment of test suites has a long history. Various metrics were
introduced and investigated empirically. Due to the increasing complexity
of systems controlled by software also testing requires more and more
effort. In this work we introduced a new method to assess the quality of a
test suite, based on model inference, which is also applicable to eliminate
redundancies in a test suite. This method does not necessarily require the
execution of the test cases and does not require any instrumentation within
the source or binary code. Therefore the effort to assess the quality of a test
suite and eliminating redundancies can be reduced.
Beyond a general introduction of model inference based quality assessment
we give an introduction of combinatorial, random, and property based test
case generation, which were used to prepare the empirical results in this
work. Also existing quality assessment methods are explained in detail,
to support benchmarking of the newly introduced approach with existing
approaches.
We started with investigating existing methods to automatically generate
test cases and went into detail with combinatorial testing. Combinatorial
testing allows to generate automatically a test suite that satisfies a quality
metric called combinatorial coverage. Since combinatorial testing becomes
more and more popular also in industrial applications, the results we found
by generalizing manually written test cases and generating new combina-
torial instantiations of these test cases are very promising. Additionally,
property based and random test suite generation were applied the existing
quality assessment methods, mutation score and code coverage, were im-

165

10. Directions for Quality Assessment of Test Suites Without

Execution

plemented. Based on these results we analyzed the correlation of the test
suite quality assessment results with the results obtained from our newly
introduced approach. For Boolean functions we introduced an effectiveness
classification metric where an inferred model and the original function
are transferred into the representation of reduced ordered binary decision
diagrams, for which the equivalence problem is decidable.
Additionally we applied model inference based quality assessment to elimi-
nate redundancies in test suites. For this approach we introduced equiva-
lence relations, which can be represented in a taxonomy, that allow to assess
the difference of the original test suite and the reduced test suite.

As the complexity of cyber physical systems continuously grows, this re-
quires more and more the application of automatic test suite generation.
Various methods and tools already exist for test suite generation, which en-
force the necessity for an adaptable and feasible quality assessment method.
The presented model inference based approaches give a basis for using ma-
chine learning or artificial intelligence in general, to be applied for quality
assessment and redundancy elimination. Integration of other or combination
of additional artificial intelligence approaches could build on the presented
approaches.
As a consequence of the growing complexity also the respective test suites
are massively growing. An at the moment ubiquitous example is the devel-
opment of highly automated and autonomous driving systems. This area
requires a huge amount of testing, due to the infinite number of events that
possibly can occur on the road, and the consequences that can happen, due
to erroneous software. To reduce the testing effort demands quality assess-
ment and especially redundancy elimination. For this reason, a direction for
future work of the presented approaches should be their application in an
industrial application, e.g., highly automated and autonomous driving.

166

Bibliography

[1] Jim A McCall, Paul K Richards, and Gene F Walters. Factors in software
quality. volume i. concepts and definitions of software quality. Tech. rep.
GENERAL ELECTRIC CO SUNNYVALE CA, 1977 (cit. on pp. 3, 4).

[2] Systems and software engineering – Systems and software Quality Re-
quirements and Evaluation (SQuaRE) – Guide to SQuaRE. Standard.
Geneva, CH: International Organization for Standardization, Mar.
2014 (cit. on p. 4).

[3] Leon Osterweil. “Strategic Directions in Software Quality.” In: ACM
Computing Surveys 28.4 (Dec. 1996), pp. 738–750 (cit. on pp. 4, 5).

[4] H. Felbinger, F. Wotawa, and M. Nica. “Adapting Unit Tests by
Generating Combinatorial Test Data.” In: 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops.
IEEE, 2018, pp. 352–355 (cit. on pp. 7, 15).

[5] Hermann Felbinger. “Test Suite Quality Assessment Using Model
Inference Techniques.” In: 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST). IEEE. 2015, pp. 1–2

(cit. on p. 7).

[6] Hermann Felbinger, Franz Wotawa, and Mihai Nica. “Empirical
Study of Correlation Between Mutation Score and Model Inference
Based Test Suite Adequacy Assessment.” In: 11th International Work-
shop on Automation of Software Test. ACM, 2016, pp. 43–49 (cit. on
pp. 7, 43).

[7] Hermann Felbinger, Ingo Pill, and Franz Wotawa. “Classifying Test
Suite Effectiveness via Model Inference and ROBBDs.” In: 10th Inter-
national Conference on Tests and Proofs. 2016, pp. 76–93 (cit. on pp. 7,
61).

167

Bibliography

[8] H. Felbinger, F. Wotawa, and M. Nica. “Mutation Score, Coverage,
Model Inference: Quality Assessment for T-Way Combinatorial Test-
Suites.” In: 2017 IEEE International Conference on Software Testing,
Verification and Validation Workshops. IEEE. 2017, pp. 171–180 (cit. on
pp. 7, 16, 85).

[9] H. Felbinger, F. Wotawa, and M. Nica. “Test-Suite Reduction Does
Not Necessarily Require Executing the Program under Test.” In:
2016 IEEE International Conference on Software Quality, Reliability and
Security Companion. IEEE, 2016, pp. 23–30 (cit. on pp. 8, 16, 111, 113).

[10] Hermann Felbinger, Ingo Pill, and Franz Wotawa. “A “strength of
decision tree equivalence”-taxonomy and its impact on test suite
reduction.” In: IFIP International Conference on Testing Software and
Systems. Springer. 2017, pp. 197–212 (cit. on pp. 8, 145).

[11] D. Richard Kuhn. “Fault Classes and Error Detection Capability
of Specification-based Testing.” In: ACM Transactions on Software
Engineering and Methodology 8.4 (), pp. 411–424 (cit. on pp. 11, 16).

[12] Changhai Nie and Hareton Leung. “A Survey of Combinatorial
Testing.” In: ACM Computing Surveys 43.2 (), 11:1–11:29 (cit. on pp. 11,
106).

[13] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. “Interaction
Testing of Highly-configurable Systems in the Presence of Con-
straints.” In: Proceedings of the 2007 International Symposium on Software
Testing and Analysis. London, United Kingdom: ACM, 2007, pp. 129–
139 (cit. on pp. 11, 12).

[14] Yu Lei and Kuo-Chung Tai. “In-Parameter-Order: A Test Generation
Strategy for Pairwise Testing.” In: The 3rd IEEE International Sympo-
sium on High-Assurance Systems Engineering. IEEE, 1998, pp. 254–261

(cit. on p. 12).

[15] Yu Lei et al. “IPOG: A General Strategy for T-Way Software Testing.”
In: Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems. IEEE, 2007,
pp. 549–556 (cit. on p. 12).

168

Bibliography

[16] Yu Lei et al. “IPOG/IPOG-D: efficient test generation for multi-way
combinatorial testing.” In: Software Testing, Verification and Reliability
18.3 (2008), pp. 125–148 (cit. on p. 12).

[17] Michael Forbes et al. “Refining the In-parameter-order strategy for
constructing covering arrays.” In: Journal of Research of the National
Institute of Standards and Technology 113.5 (2008), pp. 287–297 (cit. on
pp. 12, 89).

[18] T. Xie et al. “Mutation Analysis of Parameterized Unit Tests.” In:
2009 IEEE International Conference on Software Testing, Verification, and
Validation Workshops. IEEE, 2009, pp. 177–181 (cit. on pp. 15, 33).

[19] Nikolai Tillmann and Wolfram Schulte. “Parameterized Unit Tests.”
In: Proceedings of the 10th European Software Engineering Conference.
ACM, 2005, pp. 253–262 (cit. on pp. 15, 16, 32).

[20] Justyna Petke et al. “Practical combinatorial interaction testing: Em-
pirical findings on efficiency and early fault detection.” In: IEEE
Transactions on Software Engineering 41.9 (2015), pp. 901–924 (cit. on
p. 16).

[21] Dolores R Wallace and D Richard Kuhn. “Failure modes in medical
device software: an analysis of 15 years of recall data.” In: Interna-
tional Journal of Reliability, Quality and Safety Engineering 8.04 (2001),
pp. 351–371 (cit. on pp. 16, 106).

[22] Jacek Czerwonka. “Pairwise testing in the real world: Practical exten-
sions to test-case scenarios.” In: Proceedings of 24th Pacific Northwest
Software Quality Conference. 2006, pp. 419–430 (cit. on pp. 16, 105).

[23] Michael Ellims, Darrel Ince, and Marian Petre. “The Effectiveness of
T-Way Test Data Generation.” In: Proceedings of the 27th International
Conference on Computer Safety, Reliability, and Security. Springer-Verlag,
2008, pp. 16–29 (cit. on pp. 16, 106).

[24] P. J. Schroeder, P. Bolaki, and V. Gopu. “Comparing the fault detec-
tion effectiveness of n-way and random test suites.” In: Proceedings of
the International Symposium on Empirical Software Engineering. IEEE,
2004, pp. 49–59 (cit. on pp. 16, 106).

169

Bibliography

[25] L. S. G. Ghandehari et al. “Applying Combinatorial Testing to the
Siemens Suite.” In: 2013 IEEE International Conference on Software
Testing, Verification and Validation Workshops. IEEE, 2013, pp. 362–371

(cit. on pp. 16, 102, 106).

[26] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. “A Methodology
for Controlling the Size of a Test Suite.” In: ACM Transactions on
Software Engineering Methodology 2.3 (1993), pp. 270–285 (cit. on pp. 16,
111, 141, 142).

[27] James A Jones and Mary Jean Harrold. “Test-suite reduction and
prioritization for modified condition/decision coverage.” In: IEEE
Transactions on Software Engineering 29.3 (2003), pp. 195–209 (cit. on
pp. 16, 111).

[28] W. E. Wong et al. “Test set size minimization and fault detection
effectiveness: a case study in a space application.” In: Proceedings of
the 21st International Conference on Computers, Software and Applications.
1997, pp. 522–528 (cit. on pp. 16, 111).

[29] Gordon Fraser and Franz Wotawa. “Redundancy Based Test-suite
Reduction.” In: Proceedings of the 10th International Conference on Fun-
damental Approaches to Software Engineering. Springer-Verlag, 2007,
pp. 291–305 (cit. on pp. 16, 111).

[30] S. Yoo and M. Harman. “Regression Testing Minimization, Selection
and Prioritization: A Survey.” In: Software Testing, Verifification And
Reliability 22.2 (2012), pp. 67–120 (cit. on pp. 16, 143, 161).

[31] Macario Polo Usaola, Pedro Reales Mateo, and Beatriz Pérez Laman-
cha. “Reduction of Test Suites Using Mutation.” In: Proceedings of
the 15th International Conference on Fundamental Approaches to Software
Engineering. Springer-Verlag, 2012, pp. 425–438 (cit. on p. 16).

[32] René Just, Darioush Jalali, and Michael D. Ernst. “Defects4J: A
Database of Existing Faults to Enable Controlled Testing Studies
for Java Programs.” In: Proceedings of the 2014 International Symposium
on Software Testing and Analysis. ISSTA 2014. ACM, 2014, pp. 437–440

(cit. on pp. 16, 25).

[33] JUnit. http://junit.org (cit. on p. 17).

170

http://junit.org

Bibliography

[34] Suresh Thummalapenta et al. “Retrofitting Unit Tests for Parameter-
ized Unit Testing.” In: Proceedings of the 14th International Conference
on Fundamental Approaches to Software Engineering. Springer-Verlag,
2011, pp. 294–309 (cit. on pp. 18, 19, 32).

[35] Peli de Halleux and Nikolai Tillmann. “Parameterized Test Patterns
For Effective Testing with Pex.” In: (2008) (cit. on p. 18).

[36] Defects4J. https://github.com/rjust/defects4j. Version 1.1.0 (cit.
on p. 25).

[37] Cobertura - A code coverage utility for Java. http://cobertura.github.
io/cobertura/. Version 2.0.3 (cit. on p. 26).

[38] Rene Just, Franz Schweiggert, and Gregory M. Kapfhammer. “MA-
JOR: An Efficient and Extensible Tool for Mutation Analysis in a Java
Compiler.” In: Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 2011, pp. 612–615

(cit. on pp. 26, 89, 155).

[39] I. D. Mendoza et al. “CCM: A Tool for Measuring Combinatorial
Coverage of System State Space.” In: 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement. IEEE,
2013, pp. 291–291 (cit. on p. 27).

[40] D Richard Kuhn et al. “Combinatorial coverage measurement con-
cepts and applications.” In: 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation Workshops. IEEE. 2013,
pp. 352–361 (cit. on pp. 27, 39).

[41] Gilles Bernot, Marie Claude Gaudel, and Bruno Marre. “Software
Testing Based on Formal Specifications: A Theory and a Tool.” In:
Software Engineering Journal 6.6 (1991), pp. 387–405 (cit. on p. 32).

[42] Pex and Moles – Isolation and White Box Unit Testing for .NET. https:
//www.microsoft.com/en-us/research/project/pex-and-moles-

isolation-and-white-box-unit-testing-for-net/ (cit. on p. 32).

[43] Gordon Fraser and Andreas Zeller. “Generating Parameterized Unit
Tests.” In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis. ACM, 2011, pp. 364–374 (cit. on p. 32).

171

https://github.com/rjust/defects4j
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/
https://www.microsoft.com/en-us/research/project/pex-and-moles-isolation-and-white-box-unit-testing-for-net/
https://www.microsoft.com/en-us/research/project/pex-and-moles-isolation-and-white-box-unit-testing-for-net/
https://www.microsoft.com/en-us/research/project/pex-and-moles-isolation-and-white-box-unit-testing-for-net/

Bibliography

[44] Gordon Fraser and Andreas Zeller. “Mutation-driven Generation
of Unit Tests and Oracles.” In: Proceedings of the 19th International
Symposium on Software Testing and Analysis. ACM, 2010, pp. 147–158

(cit. on p. 32).

[45] David Saff, Marat Boshernitsan, and Michael D. Ernst. Theories in
Practice : Easy-to-Write Specifications that Catch Bugs. Tech. rep. MIT
Computer Science and Artificial Intelligence Laboratory, 2008 (cit. on
p. 32).

[46] Hila Peleg, Dan Rasin, and Eran Yahav. “Generating Tests by Exam-
ple.” In: Proceedings of the 19th International Conference on Verification,
Model Checking, and Abstract Interpretation. Springer International
Publishing, 2018, pp. 406–429 (cit. on p. 33).

[47] Yue Jia and Mark Harman. “An Analysis and Survey of the De-
velopment of Mutation Testing.” In: IEEE Transactions on Software
Engineering 37.5 (2011), pp. 649–678 (cit. on p. 38).

[48] René Just, Gregory M. Kapfhammer, and Franz Schweiggert. “Using
Non-redundant Mutation Operators and Test Suite Prioritization to
Achieve Efficient and Scalable Mutation Analysis.” In: Proceedings
of the 2012 23rd IEEE International Symposium on Software Reliability
Engineering. IEEE Computer Society, 2012, pp. 11–20 (cit. on p. 38).

[49] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Soft-
ware Testing. 3rd. Wiley Publishing, 2011 (cit. on p. 39).

[50] Joseph Chilenski and Steven P Miller. “Applicability of modified con-
dition/decision coverage to software testing.” In: Software Engineering
Journal 9.5 (1994), pp. 193–200 (cit. on pp. 39, 81).

[51] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers Inc., 1993 (cit. on pp. 41, 64, 85, 86, 112, 115, 146,
161).

[52] Karl Pearson. “Mathematical Contributions to the Theory of Evo-
lution. III. Regression, Heredity, and Panmixia.” In: Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 187 (1896), pp. 253–318 (cit. on p. 44).

[53] J. D. Evans. Straightforward Statistics for the Behavioral Sciences. Brook-
s/Cole Publishing, Pacific Grove, 1996 (cit. on p. 45).

172

Bibliography

[54] S. S. SHAPIRO and M. B. WILK. “An analysis of variance test for
normality (complete samples).” In: Biometrika 52.3-4 (1965), pp. 591–
611 (cit. on p. 45).

[55] Software-artifact Infrastructure Repository. http : / / sir . unl . edu /

portal/bios/tcas.php. Accessed: 2016-01-13 (cit. on p. 46).

[56] Gordon Fraser and Neil Walkinshaw. “Assessing and generating
test sets in terms of behavioural adequacy.” In: Software Testing,
Verification and Reliability 25.8 (2015), pp. 749–780 (cit. on pp. 46, 58,
90, 113).

[57] Daniel Hoffman et al. “Bad Pairs in Software Testing.” In: Testing
– Practice and Research Techniques. Springer Berlin Heidelberg, 2010,
pp. 39–55 (cit. on pp. 46, 91).

[58] Guava UTF8 source code. https://github.com/google/guava/blob/
master/guava/src/com/google/common/base/Utf8.java. Accessed:
2016-01-13 (cit. on p. 47).

[59] B.K. Aichernig, F. Lorber, and S. Tiran. “Integrating Model-Based
Testing and Analysis Tools via Test Case Exchange.” In: Sixth Interna-
tional Symposium on Theoretical Aspects of Software Engineering (TASE).
2012, pp. 119–126 (cit. on pp. 49, 113).

[60] Weka 3: Data Mining Software in Java. http://www.cs.waikato.ac.
nz/ml/weka/. Accessed: 2016-01-14 (cit. on pp. 50, 89).

[61] Tom M. Mitchell. Machine learning. Vol. 8. McGraw-Hill Boston, MA,
1997 (cit. on pp. 56, 147, 148).

[62] John B. Goodenough and Susan L. Gerhart. “Toward a theory of
test data selection.” In: IEEE Transactions on Software Engineering 1.2
(1975), pp. 156–173 (cit. on p. 58).

[63] L. G. Valiant. “A Theory of the Learnable.” In: Communications of the
ACM 27.11 (1984), pp. 1134–1142 (cit. on pp. 58, 80).

[64] Petros Papadopoulos and Neil Walkinshaw. “Black-box Test Genera-
tion from Inferred Models.” In: Proceedings of the Fourth International
Workshop on Realizing Artificial Intelligence Synergies in Software Engi-
neering. IEEE, 2015, pp. 19–24 (cit. on pp. 58, 113).

173

http://sir.unl.edu/portal/bios/tcas.php
http://sir.unl.edu/portal/bios/tcas.php
https://github.com/google/guava/blob/master/guava/src/com/google/common/base/Utf8.java
https://github.com/google/guava/blob/master/guava/src/com/google/common/base/Utf8.java
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

Bibliography

[65] Laura Inozemtseva and Reid Holmes. “Coverage is Not Strongly
Correlated with Test Suite Effectiveness.” In: Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp. 435–
445 (cit. on p. 58).

[66] M. G. Kendall. “A New Measure of Rank Correlation.” In: Biometrika
30.1/2 (1938), pp. 81–93 (cit. on p. 58).

[67] René Just et al. “Are Mutants a Valid Substitute for Real Faults
in Software Testing?” In: Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM,
2014, pp. 654–665 (cit. on p. 58).

[68] Elaine J. Weyuker. “Assessing Test Data Adequacy Through Program
Inference.” In: ACM Transactions on Programmming Languages and
Systems 5.4 (1983), pp. 641–655 (cit. on pp. 58, 79, 142).

[69] Hong Zhu, Patrick Hall, and John May. “Inductive inference and
software testing.” In: Software Testing, Verification and Reliability 2.2
(1992), pp. 69–81 (cit. on p. 58).

[70] M. M. Brandis and H. Mössenböck. “Single-pass generation of static
assignment form for structured languages.” In: ACM TOPLAS 16(6)
(1994), pp. 1684–1698 (cit. on p. 63).

[71] S. B. Akers. “Binary Decision Diagrams.” In: IEEE Transactions on
Computers 27.6 (1978), pp. 509–516 (cit. on pp. 65, 66, 79).

[72] Randal E. Bryant. “Symbolic Boolean Manipulation with Ordered
Binary-decision Diagrams.” In: ACM Computing Surveys 24.3 (1992),
pp. 293–318 (cit. on pp. 65, 66, 76, 77).

[73] Robert Tarjan. “Depth-first search and linear graph algorithms.”
In: 12th Annual Symposium on Switching and Automata Theory. 1971,
pp. 114–121 (cit. on p. 72).

[74] E. Randal Bryant. “Graph-Based Algorithms for Boolean Function
Manipulation.” In: IEEE Transactions on Computers 35.8 (1986), pp. 677–
691 (cit. on pp. 76, 77).

[75] Henrik Reif Andersen. “An introduction to binary decision dia-
grams.” In: Lecture notes, available online, IT University of Copenhagen
(1997) (cit. on p. 76).

174

Bibliography

[76] Claude.E. Shannon. “The synthesis of two-terminal switching cir-
cuits.” In: The Bell System Technical Journal 28.1 (1949), pp. 59–98 (cit.
on p. 77).

[77] Elaine J. Weyuker, Tarak Goradia, and Ashutosh Singh. “Automat-
ically generating test data from a Boolean specification.” In: IEEE
Transactions on Software Engineering 20.5 (1994), pp. 353–363 (cit. on
pp. 77, 80, 81).

[78] Neil Walkinshaw. “The Practical Assessment of Test Sets with Induc-
tive Inference Techniques.” In: Proceedings of the 5th Int. Academic and
Industrial Conference on Testing - Practice and Research Techniques (TAIC
PART). 2010, pp. 165–172 (cit. on p. 80).

[79] T.Y. Chen, M.F. Lau, and Y.T. Yu. “MUMCUT: a fault-based strategy
for testing Boolean specifications.” In: Proceedings of the Sixth Asia
Pacific Software Engineering Conference. 1999, pp. 606–613 (cit. on p. 80).

[80] S. J. Friedman and K. J. Supowit. “Finding the Optimal Variable
Ordering for Binary Decision Diagrams.” In: Proceedings of the 24th
ACM/IEEE Design Automation Conference. 1987, pp. 348–356 (cit. on
p. 81).

[81] Orna Grumberg, Shlomi Livne, and Shaul Markovitch. “Learning to
Order BDD Variables in Verification.” In: Journal of Artificial Intelli-
gence Research 18.1 (2003), pp. 83–116 (cit. on p. 81).

[82] Bernhard Steffen, Falk Howar, and Maik Merten. “Introduction to ac-
tive automata learning from a practical perspective.” In: Formal Meth-
ods for Eternal Networked Software Systems. Springer, 2011, pp. 256–296

(cit. on p. 81).

[83] Karl Meinke and Muddassar A Sindhu. “Incremental learning-based
testing for reactive systems.” In: Tests and Proofs. Springer, 2011,
pp. 134–151 (cit. on p. 81).

[84] Muzammil Shahbaz and Roland Groz. “Inferring mealy machines.”
In: FM 2009: Formal Methods. Springer, 2009, pp. 207–222 (cit. on
p. 81).

[85] Neil Walkinshaw, Ramsay Taylor, and John Derrick. “Inferring ex-
tended finite state machine models from software executions.” In:
Empirical Software Engineering (2015), pp. 1–43 (cit. on p. 81).

175

Bibliography

[86] Christopher Henard, Mike Papadakis, and Yves Le Traon. “MutaLog:
A Tool for Mutating Logic Formulas.” In: Proceedings of the 7th IEEE
International Conference on Software Testing, Verification, and Validation
Workshops. IEEE, 2014, pp. 399–404 (cit. on p. 82).

[87] Man F. Lau and Yuen T. Yu. “An Extended Fault Class Hierarchy
for Specification-based Testing.” In: ACM Transactions on Software
Engineering and Methodology 14.3 (2005), pp. 247–276 (cit. on p. 82).

[88] T. K. Paul and M. F. Lau. “Redefinition of Fault Classes in Logic
Expressions.” In: Proceedings of the 12th International Conference on
Quality Software. IEEE, 2012, pp. 144–153 (cit. on p. 82).

[89] Edmund M. Clarke, Masahiro Fujita, and Xudong Zhao. “Multi-
Terminal Binary Decision Diagrams and Hybrid Decision Diagrams.”
In: Representations of Discrete Functions. Springer, 1996, pp. 93–108

(cit. on p. 82).

[90] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. “Hints on Test Data
Selection: Help for the Practicing Programmer.” In: Computer 11.4
(1978), pp. 34–41 (cit. on p. 85).

[91] Paul Ammann, Jeff Offutt, and Hong Huang. “Coverage Criteria for
Logical Expressions.” In: Proceedings of the 14th International Sympo-
sium on Software Reliability Engineering. IEEE, 2003 (cit. on p. 85).

[92] Pairwise Testing - Available Tools. http://www.pairwise.org/tools.
asp. Accessed: 2016-09-21 (cit. on p. 89).

[93] Mark Hall et al. “The WEKA Data Mining Software: An Update.” In:
SIGKDD Explorations Newsletter 11.1 (2009), pp. 10–18 (cit. on pp. 89,
155).

[94] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program
Dependence Graph and Its Use in Optimization.” In: ACM Transac-
tions on Programming Languages and Systems 9.3 (1987), pp. 319–349

(cit. on p. 94).

[95] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning
tools and techniques. 2005 (cit. on p. 103).

176

http://www.pairwise.org/tools.asp
http://www.pairwise.org/tools.asp

Bibliography

[96] Laleh Sh Ghandehari et al. “An empirical comparison of combi-
natorial and random testing.” In: 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation Workshops.
IEEE, 2014, pp. 68–77 (cit. on p. 105).

[97] Monica Hutchins et al. “Experiments of the Effectiveness of Dataflow-
and Controlflow-based Test Adequacy Criteria.” In: Proceedings of the
16th International Conference on Software Engineering. IEEE Computer
Society Press, 1994, pp. 191–200 (cit. on p. 105).

[98] S. R. Dalal et al. “Model-based Testing in Practice.” In: Proceedings of
the 21st International Conference on Software Engineering. ACM, 1999,
pp. 285–294 (cit. on p. 106).

[99] I. S. Dunietz et al. “Applying Design of Experiments to Software
Testing: Experience Report.” In: Proceedings of the 19th International
Conference on Software Engineering. ACM, 1997, pp. 205–215 (cit. on
p. 106).

[100] D. R. Kuhn, D. R. Wallace, and A. M. Gallo Jr. “Software Fault Inter-
actions and Implications for Software Testing.” In: IEEE Transactions
on Software Engineering 30.6 (2004), pp. 418–421 (cit. on p. 106).

[101] Christopher Henard et al. “Comparing White-box and Black-box Test
Prioritization.” In: Proceedings of the 38th International Conference on
Software Engineering. ICSE ’16. Austin, Texas: ACM, 2016, pp. 523–534

(cit. on p. 107).

[102] I. Pill et al. “Analyzing the reduction of test suite redundancy.” In:
2015 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). 2015, pp. 65–65 (cit. on p. 111).

[103] Gregg Rothermel and Mary Jean Harrold. “A Safe, Efficient Re-
gression Test Selection Technique.” In: ACM Transactions on Software
Engineering and Methodology 6.2 (1997), pp. 173–210 (cit. on p. 111).

[104] Tsong Yueh Chen and Man Fai Lau. “Dividing Strategies for the
Optimization of a Test Suite.” In: Information Processing Letters 60.3
(1996), pp. 135–141 (cit. on p. 111).

177

Bibliography

[105] A. Jefferson Offutt, Jie Pan, and Jeffrey M. Voas. “Procedures for
reducing the size of coverage-based test sets.” In: Proceedings of the
12th International Conference on Testing Computer Software. ACM, 1995,
pp. 111–123 (cit. on p. 111).

[106] G. Rothermel et al. “An empirical study of the effects of minimization
on the fault detection capabilities of test suites.” In: Proceedings of
the International Conference on Software Maintenance. 1998, pp. 34–43

(cit. on p. 111).

[107] W. Eric Wong et al. “Effect of Test Set Minimization on Fault Detec-
tion Effectiveness.” In: Proceedings of the 17th International Conference
on Software Engineering. ACM, 1995, pp. 41–50 (cit. on p. 111).

[108] B. Korel, L. H. Tahat, and B. Vaysburg. “Model based regression
test reduction using dependence analysis.” In: Proceedings of the
International Conference on Software Maintenance. 2002, pp. 214–223

(cit. on p. 112).

[109] Lionel C. Briand, Yvan Labiche, and Zaheer Bawar. “Using Machine
Learning to Refine Black-Box Test Specifications and Test Suites.”
In: 8th International Conference on Quality Software. 2008, pp. 135–144

(cit. on pp. 113, 142, 160, 161).

[110] Jun-Wei Lin and Chin-Yu Huang. “Analysis of Test Suite Reduction
with Enhanced Tie-breaking Techniques.” In: Information and Software
Technology 51.4 (2009), pp. 679–690 (cit. on pp. 113, 142).

[111] T.Y. Chen and M.F. Lau. “A new heuristic for test suite reduction.” In:
Information and Software Technology 40.5-6 (1998), pp. 347–354 (cit. on
p. 142).

[112] Ramsay Taylor et al. “Using Behaviour Inference to Optimise Regres-
sion Test Sets.” In: Testing Software and Systems. 2012, pp. 184–199

(cit. on p. 142).

[113] Swarnendu Biswas et al. “Regression Test Selection Techniques: A
Survey.” In: Informatica 35.3 (2011), pp. 289–321 (cit. on pp. 143, 161).

[114] Laurent Hyafil and Ronald Rivest. “Constructing optimal binary
decision trees is NP-complete.” In: Information Proc. Letters 5.1 (1976),
pp. 15–17 (cit. on p. 146).

178

Bibliography

[115] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning. Springer Series in Statistics. Springer New York
Inc., 2009 (cit. on p. 148).

[116] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT
Solver.” In: Proceedings of 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Berlin, Heidel-
berg: Springer, 2008, pp. 337–340 (cit. on p. 155).

[117] S. R. Safavian and D. Landgrebe. “A survey of decision tree classifier
methodology.” In: IEEE Transactions on Systems, Man, and Cybernetics
21.3 (1991), pp. 660–674 (cit. on p. 159).

[118] Bernard ME Moret. “Decision trees and diagrams.” In: ACM Comput-
ing Surveys (CSUR) 14.4 (1982), pp. 593–623 (cit. on p. 159).

[119] G.R. Dattatreya and L.N. Kanal. “Progress in Pattern Recognition 2.”
In: Elsevier Science Publishers B.V., 1985. Chap. Decision Trees in
Pattern Recognition, pp. 189–240 (cit. on p. 159).

[120] J.R.B. Cockett. “Discrete decision theory: manipulations.” In: Theoret-
ical Computer Science 54.2 (1987), pp. 215–236 (cit. on p. 160).

[121] Hans Zantema. “Decision trees: Equivalence and propositional opera-
tions.” In: 10th Netherlands/Belgium Conf. on AI (NAIC). 1998, pp. 157–
166 (cit. on p. 160).

[122] J. R. B. Cockett and J. A. Herrera. “Decision Tree Reduction.” In:
Journal of the ACM 37.4 (1990), pp. 815–842 (cit. on p. 160).

[123] Hans Zantema and Hans L. Bodlaender. “Finding small equivalent
decision trees is hard.” In: International Journal of Foundations of com-
puter science 11.2 (2000), pp. 343–354 (cit. on p. 160).

[124] Leonard A. Breslow and David W. Aha. “Simplifying Decision Trees:
A Survey.” In: The Knowledge Engineering Review 12.1 (1997), pp. 1–40

(cit. on p. 160).

[125] T. J. Ostrand and M. J. Balcer. “The Category-partition Method for
Specifying and Generating Functional Tests.” In: Communications of
the ACM 31.6 (1988), pp. 676–686 (cit. on p. 160).

179

