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Zusammenfassung

Um den standig steigenden Bediirfnissen an die Mobilitdt der heutigen Gesellschaft gerecht zu
werden, bedarf es einens optimalen Ausbaus des Verkehrsnetzes. Eine aktuelle und repréasentaive
Beurteilung des Ist-Zustandes ist notwending und um eine angemessene Planung durchfiihren zu
konnen. Durch die weite Verbreitung von Mobiltelefonen bietet eine Standortanalyse, basierend
auf den Trajektorien bestehend aus Positionen von Mobilfunkdaten-Events, eine Momentaufnahme
der individuellen Mobilitat. Diese Arbeit zielt auf die Fahrtzweckerkennung einzelner Trajektorien
ab, da diese die Basis der Planung bildet. Ziel ist es, ein System zu entwerfen, zu testen
und zu validieren, welches in der Lage ist eine rohe Mobilfunktrajektorie in eine Serie von
Aktivitaten, wie zum Beispiel Zuhause zu sein oder Einkaufen zu gehen, umzuwandeln. Die
grofiten Herausforderungen sind die schlechte zeitliche und vorallem die schlechte raumliche
Auflésung der Mobilfunk-Positionen (je nach Gebiet 100m-5000m) sowie das Fehlen von annotierten
Trainingsdaten.

Zur Verbesserung der zeitlichen und rdumlichen Auflésung wird in dieser Arbeit eine neue
Vorverarbeitungsmethode fiir Mobilfunktrajektorien in Form eines Extended Kalman Filters mit
variabler Messkovarianz vorgestellt. Ein Neuronalen Netzwerk, dass auf Basis von Daten einer
offentlichen Umfrage trainiert wurde, wird dann zur Automatisierung der Aktivitdtenerkennung
stationdrer Segmente verwendet. Lange Aktivitdten wie zu Hause oder am Arbeitsplatz zu sein
werden mit einer Genauigkeit von mehr als 78% erkannt. Kiirzere Aktivitaten (z.B. Einkaufen
oder Tennisspielen) lassen sich jedoch nicht zuverlédssig unterscheiden. Die rdumliche Auflésung
der aktuellen Mobilfunktechnologie ist der limitierende Faktor. Die Ergebnisse dieser Studie
deuten darauf hin, dass die vorgeschlagene Methode es erm6glicht niitzliche Informationen tiber
fiir die Stadtplanung relevante Fahrtzwecke zu gewinnen.

Schliisselworter:  Fahrtzweckerkennung, Aktivitdtenerkennung, Mobilfunktrajektorien, Neuronales
Netzwerk, Big Data






Abstract

Optimal expansion of the transport network is important to meet the ever-increasing demands
of mobility. Timely and representative assessment of the current state is necessary in order to
be able to carry out appropriate planning. Mobile phones are widely in use. Analysis of mobile
phone location data provides a snapshot of individual mobility and allows effective planing.
This thesis aims at detecting trip purposes as they are the base for planning decisions. Its goal
is to design, test and validate a data processing pipeline capable of converting a raw mobile
phone location trajectory into a sequence of characteristic activities such as being at home, at
work or going shopping. The biggest challenges are the poor temporal and especially spatial
resolution (accurate to 100m-5000m depending on the location) of phone trajectories and the
lack of labeled training data for supervised learning. To train machines to segment a trajectory
and assign activities, labels describing the activity of training segments are needed.

To enhance temporal and spatial resolution, this work introduces a new preprocessing method
for mobile phone trajectories in the form of an Extended Kalman Filter with variable measurement
covariance. A neural network based classifier trained on public survey data is then used to
automate the labeling of stationary trajectory segments.

Long activities such as being at home or at work can be detected with an accuracy greater
than 78%. Shorter activities (for instance going shopping or playing tennis), however, cannot
be reliably distinguished . The spatial resolution of current mobile network technology is the
limiting factor. The results of this study suggest that the proposed method allows extracting
useful information on certain trip activities needed in urban planning.

Keywords: Trip-purpose imputation, Activity recognition, Mobile phone trajectories, Artificial
neural network, Big data
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Introduction

The overall population of the world is still growing, which is not only putting pressure on
Earth’s natural resources, but also increasing stress in many other domains. Creating enough
living space, waste management or commuting traffic are examples of challenges we are already
facing, and that are expected to grow in the future.

Urban planning has ever been demanding and most decisions are made based on the experience
of domain experts. However, due to the increasing computational power available, it is now
possible to make educated choices, not just based on experience, but on insights created from
huge amounts of data collected and processed near real-time. Demands with regard to mobility
can be identified and suitable alternatives offered. In a concrete example, one could look at all
commuters that drive into a city, check where they live and provide a better public transport
system based on this information.

This work targets the base of these analyses by proposing a novel method to obtain bespoken
insights from big data. It tackles the problem of imputing a trip purpose, such as traveling
to work when the input is a mobile phone trajectory. Similar to a Global Positioning System
(GPS) track, those trajectories are created by mobile phone providers, estimating the location
of a phone user throughout the day. In this work trip purposes will be expressed in Courier
style, for instance Home or Work.

Even though every mobile phone provider creates vast amounts of location data as a byproduct
of running their regular service, the main problem of supervised machine learning, having labeled
training data, persists. The high spatial uncertainty of the recorded locations ranging from a
maximum accuracy of a few hundred meters in a city to multiple kilometers in the countryside
pose an additional problem. To have ground truth data, this work collected a sample of about
250 days, where not only the mobile phone trajectory of a participant was retrieved, but they
were also asked to record their GPS track and complete journal of all their activities.

The goal of this work was to train and validate a state of the art machine learning classifier.
Contrary to many preceding studies [17,37], this work tries to provide a clear and reproducible
measure of the annotation quality.

1.1 History

To get insights into human mobility, the gold standard has long been questionnaires. Participants
were asked to fill in details about their daily trips. These forms were then manually entered
into computers to be able to analyze them. As one can imagine, this is very costly and does not
scale well for bigger sample sizes. So only small and sometimes not representative samples were
taken, which were then extrapolated to the whole population. Also, only temporal patterns were
recorded, as there was no way of accessing spatial information.

With the rise of home computers and public access to the internet around the 1980s, data
acquisition was simplified as participants could now directly fill out forms, eliminating the
manpower needed for digitizing the samples. However, the problem remained that subjects
had to manually fill out forms, leaving room for errors whilst transferring the data.

Another big information source was added when GPS receivers became publicly available.
This meant that, in addition to the temporal records, it was now possible to record spatial
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1 Introduction

records for deeper analysis of the datasets. With mobile phones becoming capable of recording
GPS tracks, this got even easier. There is no longer a need for an extra device to acquire tracks,
which eliminates the possibility of forgetting the GPS receiver. An excerpt of studies using GPS
datasets can be found in Table 1.1.

The most recent development are apps that track a person’s movement, preprocess the GPS
data, and present the user with an optimized form of annotating the collected data, lowering
the burden of participating as much as possible.

This thesis takes this idea one step further. By annotating mobile phone data, participants
would only need to carry their phone. This is achieved by developing a system that can
automatically annotate anonymized trajectories. It does not only simplify the whole process,
but also scales well for big sample sizes and other countries as long as there is sufficient cell
phone coverage. Datasets containing mobile phone trajectories are harder to come by, as one
relies on cell phone providers to give out data, leading to far less studies using them. Table 1.2
shows an excerpt of studies using these datasets.

1.2 Trip purpose

In the classical sense, a trip purpose is defined by the activity performed at the end of a trip.
As an example, if one travels from his or her home to work, the trip purpose would be Work.

As those purposes can be split indefinitely finely, a finite set of possible activities has to be
defined. The present work uses a definition based on a survey done by the Austrian government,
therefore the trip purposes used there were taken. An overview can be seen in the data collection
section (Table 2.1).

1.3 Mobile phone trajectories

The raw data used for extracting trip journals are anonymized mobile phone trajectories. Mobile
phone data, also called Call Detail Recordings (CDRs), can be recorded and displayed in different
ways. A single CDR contains, for example, call start time, end time, duration and can further
contain location information, which is important for this application. Based on the processing
done by the phone provider, this can be the location of the cell tower used (as used in [17,20]),
or the provider can estimate a location based on simple triangulation or more sophisticated
movement models (used in [1,37]).

As the field of insights from phone data is rapidly growing at the moment, companies specialize
in preprocessing raw mobile phone events from a cell phone carrier to get better spatial estimations.
Simplified, their algorithms blend information about cell towers such as their locations as well
as how the antennas on those towers are oriented to improve the location estimation. All mobile
phone trajectories collected in this work are preprocessed by a proprietary algorithm from VIAVI
Solutions Inc. (San Jose, CA, USA).

If one collects all recorded datapoints of one person and sorts them by their timestamp, this is
then called a trajectory. In Figure 1.1 one can see an example of a raw mobile phone trajectory
as well as the matching GPS track taken from the dataset recorded for this thesis.

Anonymization CDRs are usually connected to the user by the use of the International
Mobile Subscriber Identity (IMSI). This identifier is linked to the SIM card of a user. To protect
the privacy of users, the IMSI is replaced by a random identifier before it leaves the cell phone
carrier. To ensure that a person cannot be tracked over longer periods of time, this identifier is
changed every 24 hours. This is important, as for analysis purposes, as no features that would
include a time span of more than a day, for instance 'number of weekly visits’, can be extracted
from the data.

— 14 -




1.3 Mobile phone trajectories

Table 1.1: Overview of previous GPS based datasets. Translated from [19]

Year

data

Collection

Region collection Device Sample size period Used in
3 days (2
Atlanta 1990 Car 30 Vehicles waves per [38]
(USA)
week)
Borliange 186 more than
(Sweden) 2000-2002 Car Vehicles 30 days [39)
. 7 days (15
Netherlands 2007 GPS device 1104 (3]
waves)
Minneapolis 187
(USA) 2008 Car Vehicles 13 weeks [21,22]
Nagoya 2008 Smartphone 30 subjects 5 weeks [10]
(Japan)
Greater
Cincinnati Total of
Region 2009 GPS beacon 4133 ways 3 days [32]
(USA)
Shanghai .
(China) 2009 GPS beacon 50 subjects 3 days 6]
New York 49
City (USA) 2010 GPS beacon participants 1to 5 days [4]
Wuhan 10
City 2010 GPS beacon ficipant 1 month [16]
(China) participants
Waterloo .
(Canada) 2011 GPS beacon 108 cyclists 2 weeks [36]
Zurich 156
(Switzerland) 2012 GPS beacon participants 7 days [26]
Einhoven
and 329 3 months (3
Rotterdam 2012-2013 GPS beacon participants waves) 7]
(Netherlands)
Flandern .
) 2013 Car 28 Vehicles 1 Year [9]
(Belgium)
Shanghai
(China) 2013 - 2015 Car 28 Cars 7 Days [40]
Vienna 37
(Austria) o), GPS beacon and ) i) 8 Weeks  [25)
and Dublin smartphone 17 (Dublin)
(Ireland) b
Stockholm 171
(Sweden) 2015 Smartphone participants 7 days 2]
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1 Introduction

Table 1.2: Overview of previous mobile phone based datasets. Translated from [19]

Region Year . of  data Sample size COI.I ection Used in
collection period

France 2007 23 million (Orange Network) 154 Days [17]

Burope 92009 - 2011 80 users of a European Cell phone Longer 120]

providers than year

Boston 2 million Users of different US cell

(USA) 2010 phone carriers 2 months (1]

Vienna 1 million users of an Austrian cell

(Austria) 2012 phone provider 2 weeks 137

474

—— Raw mobile phone trajectory

- Reference GPS trajectory

47

Latitude

46.9

Longitude

Figure 1.1: Raw Trajectory. 21.03.2018, subject 2
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1.4 Trip purpose imputation

1.4 Trip purpose imputation

When one tries to impute trip purposes from raw trajectories, the process is twofold. In a first
step, called preprocessing, the trajectory is cleansed (see noisy raw trajectory; Figure 1.1) and
clustered into stationary and moving segments. In a second step, all stationary sections are
annotated with an activity.

As one can imagine, the quality of the labeling is highly dependent on the preprocessing.
There is currently no gold standard on how to preprocess raw phone trajectories, so this work
implements and validates the complete processing pipeline. The following paragraphs describe
the main purpose as well as the challenges faced by each block:

Preprocessing has two main goals. First, one tries to remove as much noise induced by the
measurements as possible. Secondly, the trajectory has to be segmented into stationary and
moving segments. The main challenge in preprocessing is the calculation of the best possible
reconstruction of the true path. This is especially true for mobile phone trajectories, as they
have a neither a good spatial nor temporal resolution.

Annotation is the task of assigning an activity to every stationary segment. As can be
assumed, the detail to which activities can be differentiated strongly depends on the spatial
and temporal resolution of the segments. The main difficulty lies in the distinction of activities
based on features from the segments.

To summarize, the goals of this work are:
1. Collection of a reference dataset to validate the proposed methods.
2. A new method to smooth trajectories with poor spatial and temporal resolution.

3. Use of modern pattern recognition algorithms to automate annotation.

— 17 -
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Methods

The goal of this work is to design, implement and validate a system that can perform trip
purpose imputation on raw mobile phone trajectories. Similar to previous work, this is done
by first splitting the trajectories into stationary and moving segments. Afterwards, features
are extracted from the stationary segments, which are then fed into a classifier to predict the
activity.

The current chapter is split into two main parts. The first provides an overview of the data
collected for this thesis. The second part describes the complete processing pipeline needed to
convert a raw mobile phone trajectory to a series of annotated segments.

2.1 Data collection

GPS can be seen as the ground truth for mobile phone trajectories, therefore both were collected
to test and validate the developed methods. Participants were asked to record their daily trips
using Modalyzer [15], a smartphone-based app which records GPS tracks. The app also provides
automatic segmentation, meaning that trips are already segmented in stationary and moving
segments. Moving segments are automatically tagged with a mode of transport. Participants
then had to fill in a trip purpose for the stationary ones. As an example, if someone would
take the bus to get from their home to work, the trip purpose would be Work and the mode of
transport would be Bus.

In addition to the GPS tracks and the trip diaries, the corresponding mobile phone trajectory
was retrieved. This means that participants had to have a phone from the partnering mobile
phone carrier, as the carrier would then selectively revert the anonymization of the IMSI for the
chosen phones. If a participant had a different carrier, or did not want to allow deanonymization
on their phone, a test phone was provided.

The dataset was recorded in two waves. The first wave included 8 users and ranged from
March 2018 to May 2018; however, not all users were participating all the time. In total, 94
days were recorded in those months. This first wave was conducted as part of the master thesis
by A. Lechner [19]. The second wave started mid-September and lasted until November 2018 and
data was collected withing the frame of the current thesis. The details about the study can be
found in [19]. The second wave was recorded with seven entirely new participants. Their mean
age was 30.86 years, two of them were female the rest male. Combining the two waves changed
the overall mean age to 33.12 years and overall there were 11 male and 5 female participants.

In total 223 days were recorded, resulting in a total number of 1248 stationary segments in
the dataset. As participants also recorded Transit, which is the change of transportation mode,
these segments have been removed. A split by the trip purpose can be found in Table 2.1.

In the current work, all proposed methods are applied to a trajectory recorded on the
21.03.2018 by subject 2 (see Figure 1.1). This trajectory was chosen as it is located both in the
city as well as on the countryside. Additionally, it features multiple transportation modes. As
a reference, Figure 2.1 shows all the nearby cell towers. The recorded trip journal can be seen
in Table 2.2.

A second example (subject 15 on the 01.11.2018, Figure 2.2) is used to show a worst case
scenario. This sample was recorded entirely on the countryside. When comparing the reference
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2 Methods

Table 2.1: Number of stationary segments grouped by the trip purpose for the data collected in this thesis.
Drop off could for example be bringing a child to school or picking it up again. Education applies
to all pupils and students when they are in school. Leisure can be anything from sports to going
out in a bar. Private are activities such as going to the doctor or a hairdresser. Visiting is
used when one is invited to somebody else’s home. Work related is used to denote work-related
tasks not happening at work

Number of Segments Percent
Trip purpose

Drop off 14 1.49
Education 7 0.74
Home 450 47.77
Leisure 126 13.38
Other 15 1.59
Private 46 4.88
Shopping 85 9.02
Visiting 24 2.55
Work 172 18.26
Work related 3 0.32

GPS track with the mobile phone trajectory, it is especially interesting to see that the mobile
phone data-points are sometimes mapped to the east, whereas in reality, the subject has never
been there. Further investigation revealed that this happened mainly during the stationary
segments at home. In the Figure, Home would be the point most north on the trajectory.
Therefore, it can be concluded that there is a bias and not just random noise when measuring
the location. Also, looking at Figure 2.2 it looks as if the company providing the location
estimates would map somewhere close to the cell towers.

471

—— Raw mobile phone trajectory

- Reference GPS trajectory

47.05

47

5
&

Latitude

46.9

468

— T T - t T
15 15.2 15.4 15.6
Longitude

Figure 2.1: Raw trajectory. Red dots indicate the position of cell towers. 21.03.2018, subject 2
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2.1 Data collection

Latitude

Table 2.2: Recorded trip journal, 21.03.2018, subject 2. All times are UTC

Start time FEnd time Stationary/Moving Transportation mode Activity

10:00 15:12 Stationary - Work
15:12 15:19 Moving Walking -
15:19 15:29 Moving Tram -
15:29 15:32 Moving Walking -
15:32 15:38 Stationary - Transit
15:38 16:15 Moving Train -
16:15 16:21 Moving Car -
16:21 24:00 Stationary - Home

Table 2.3: Recorded trip journal, 01.11.2018, subject 15. All times are UTC

Start time End time Stationary/Moving Transportation mode Activity

00:00 13:28 Stationary - Home
13:28 13:31 Moving Car -
13:31 13:44 Moving Walking -
13:44 14:23 Stationary - Private
14:23 14:35 Moving Walking -
14:36 14:39 Moving Car -
14:39 24:00 Stationary - Home

— Raw mobile phone trajectory

- Reference GPS trajectory

13.85
Longitude

Figure 2.2: Raw Trajectory on the countryside. Red dots indicate the location of cell towers. As a space
reference, the diameter of the red dots is relative to the scale of the map (compare also Figure
2.1). 01.11.2018, subject 15




2 Methods

2.2 Processing pipeline

The following section is split into three main parts. The first provides some background
information on Kalman filters as well as Artificial Neural Networks (ANNs). The second
describes all steps taken to preprocess trajectories. The third and final part deals with the
annotation of the found stationary segments. An overview of all steps described can be found
in Figure 2.3. First the data is cleaned by a set of rules (Data selection) then observations
with a too high speed are removed (Speed filter). The resulting trajectory is smoothed with
a Kalman filter and then segmented into stationary and moving segments. For the stationary
segments features are then extracted and fed into an ANN to annotate them with a trip purpose
(Annotation).

Raw trajectory

Preprocessing

Data selection — Speed filter = Kalman filter [ Segmentation

Trip purpose imputation

Feature extraction — Annotation

Trip purposes

Figure 2.3: Overview of the processing for mobile phone trajectories

2.2.1 Background

Extended Kalman filter

The Kalman filter was first introduced in the 1960s by R.E. Kalman [18] and is a general method
to smooth measurement series, taking the uncertainty of observations into account. It uses its
internal filter state X in conjunction with an internal dynamic model (written as matrix Fy) to
estimate the next step.

X = Fixp_1 + Bruyg (2.1)

One can also include an external input ug controlled by the control-input matrix Bj; however
there is usually no external input when measuring spatial trajectories. Therefore, it will not be
considered in the following equations.
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2.2 Processing pipeline

Also, as can be seen in Equation 2.1, the update step is performed using matrix Fj allowing
only for linear changes in state. As most real-world models are non-linear, the extended Kalman
filter has been proposed. It assumes that X; = f(Xp—_1). As one will see further down, Fy
is still needed for the propagation of the covariance, and is thus it is estimated using a linear
approximation at point Xj:

_ 6f (%)

F,. = 2.2
k 0%l (2.2)

The full Kalman filter is then usually written in two steps, predict and update. Predict
increases the internal state as well as the internal covariance matrix P using F.

X = f(Xk-1) (2:3)
P, =FPy 1 F} +Qy (2.4)

Where Q) is the process noise matrix, added to allow for small errors in the model. The scaling
of Q. is one of the critical hyperparameters that need to be set from the outside.

The update step then takes the next measurement into consideration, correcting the estimate
X and the internal covariance P based on the uncertainty Ry of the measurement zg:

Vi = zp — Hpxg (2.5)
Si = Ry + H,P,H} (2.6)
K}, = Py H; S, (2.7)
X = X + Ki¥i (2:8)
P, = (I - K H,)Pr(I - K Hy)" + KR KF (2.9)

where H, is a function that converts the internal state Xy, which can have an arbitrary number
of dimensions, into the measurement dimensions of z; (which are usually limited), so z = Hx.
As a note, K}, is usually known as Kalman gain, as it is the factor that determines how much
to trust the measurement compared to the estimate made using the internal state.

Artificial neural networks

This work uses an ANN (sometimes also called Multi Layer Perceptron (MLP)) to classify the
activity of the segments created in the previous sections. The basic idea of a simple perceptron
has already been proposed as early as 1957 [29], which also led the the first big hype in machine
learning. This abruptly ended when Minsky and Seymour published a book about the limitations
of the perceptron in 1969 [24], leading to the first Artificial Intelligence (AI) winter.

The main drawback was not being able to train a network containing multiple perceptrons.
This changed with the introduction of backpropagation for neural networks in 1986 by Rumelhart
and colleagues [30], leading to the next big advances. Still, standard backpropagation was not
able to train deep networks (deep meaning that they have many hidden layers) and the hardware
limited the application of the algorithm on huge datasets. This led to yet another Al winter.
The reason neural networks and especially deep learning is so popular in the present is mainly
due to new network structures such as Convolutional Neural Networks (CNNs) or Recurrent
Neural Networks (RNNs), new training algorithms such as Adam or Adagrad and new types of
neurons that can hold information from the past such as Long Short Term Memory (LSTM)
cells.

With the dataset in this work being fairly small (ca. 300,000 samples), and also having only
7 features per sample (compared to the 30,000 features when training with 100x100 pixel color
images), no deep network structure should be required. An example of the general structure can
be seen in Figure 2.4. When one increases the number of hidden layers as well as the number of
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2 Methods

hidden units in those, this increases the maximum complexity that can be learned.

Input layer Hidden layer Output layer

activity,

activity,

activitys

activity,

activitys

ofelelele

Figure 2.4: Structure of fully connected feed-forward ANN. The number of meurons in the input layer
corresponds to the number of features (see 2.2.3). The number of neurons in the output layer
corresponds to the number of different trip purposes that should be predicted. One can choose to
add an arbitrary number of hidden layers with an arbitrary number of neurons inbetween, these
are Hyperparameters that needs to be optimized. Image taken from [10].

As the input and the output layer of the network are fixed (see Figure 2.4), one still has a lot
of hyperparameters to set, the following gives an overview of those, including options and their
influence on the result:

Network layout As already discussed above, one can choose the number of hidden layers as
well as the number of hidden neurons in them. A greater number increases the model’s capacity
to learn, but is also prone to overfitting, as this gives the model the capability to 'memorize’ the
dataset.

Activation function Each node or neuron in the network takes the inputs of all neurons,
weighs them with their specific weights, sums them up and then its output is this sum passed
through the activation function.

) =" (Z wilad ™ + bﬁ-”) ~g'(z)) (210)
k

with [I] denoting the I-th layer, k being the k-th neuron, a being the activation and w;j, weight
for connecting the k-th neuron in the previous layer with j-th neuron in the current layer and
b denoting the added bias. The activation function g, usually some kind of nonlinear function,
can be exchanged and is the hyperparameter to optimize. Traditionally this was set to a tanh
or a sigmoid function. Recent advances in ANN however, suggest that Rectified Linear Units
(ReLUs) or Concatenated Rectified Linear Unitss (CReLUs) are a better choice, reaching a
better overall performance.

As usual in multiclass classification tasks, the activation function of the last layer is a softmax
function:

o

a['last,layer] _ U(Z)j e~ (2.11)

! T e
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2.2 Processing pipeline

with z being a vector consisting of all results that are usually fed into activation functions. This
outputs one probability for every class, and all probabilities add up to one.

Optimization algorithm Learning in the neural network means changing the weights wﬂ
(see (2.10)) in the network. This is done by an algorithm called backpropagation. In a nutshell,
one passes batchsize number of samples trough the network (forward pass) and checks the
outcome against the truth. The average error is then calculated and passed backwards through
the network (backward pass). Weights are then changed based on their contribution to the error.
Weights (connections) with bigger error will receive a greater change.

The basic algorithm for this procedure is called Gradient Descent (GD). In its original form,
batchsize would be equal to the samplesize, meaning the network sees all samples before making
a change to the weights. As this would take too long with big datasets, one now normally uses
Stochastic Gradient Descent (SGD), where the batchsize is usually in the range of 1-10 samples.
Strictly speaking, SGD requires the batchsize to be 1, using bigger batches is usually reffered to
as Mini-batch GD. It has also been shown that, even though one does not go down the error
surface in an ideal way, the randomness introduced by SGD helps to prevent getting stuck in
local minima.

After calculating the gradient, SGD will then change the weight relative to a factor called
learning rate. As one would want this to be bigger in the beginning to allow for quick learning
and then becoming finer as training continues, people started to introduce decays depending on
the iteration for example exponential.

Nowadays, algorithms performing an optimization of the learning rate have been proposed.
Some of the most used ones are:

e AdaGrad
AdaDelta

e Adam

RMSProp

Disadvantages of the algorithms above include the need to save a bigger state space and a
greater computational cost when calculating the gradient as well as the step size.

Learning rate As discussed above in optimization algorithm, the learning rate poses a problem
with regular GD. If one has to set it, it is usually beneficial to use some kind of decay, e.g.
exponential decay to ensure a faster convergence.

Batch size As mentioned in optimization algorithm, one usually takes mini batches of about
32 samples to make an update.

Number of epochs An iteration includes the forward pass of batchsize samples and the
following backpropagation of the error. An epoch is done as soon as the network has seen every
single sample once. If one increases the number of iterations, the network gets to see the data
more often and has the ability to learn more. On the other hand, this can result in a loss
of generalization if there is not regularization. A common method for finding the number of
iterations is to split the training set once more, to obtain a set which can serve as determining
base when to stop. This technique is called ’early-stopping’.
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Dropout One of the biggest improvements in training neural networks has been the introduction
of a technique called dropout in 2014 by Srivastava et al. [33]. It uses the very simple idea of

setting the output ay] of a percentage of neurons to zero during one iteration. This forces
the network not to be dependent on certain neurons, distributing knowledge over all neurons.
Dropout can be seen as regularization technique and is usually written in the form of a keep

probability, which is the percentage of neurons to keep active.

In addition to the network layout, one needs to optimize, validate and implement the network.
These topics are covered in the following paragraphs:

Optimization The current standard for finding the best set of hyperparameters is to use a
grid search. As one can imagine, having eight unknowns to optimize, this requires a lot of time.
Therefore, it is essential to use sensible search ranges. However, this work’s aim is not to provide
an optimized version of the network, but rather a proof of concept that a network can learn
information given the features described in the next section.

Validation When using k-fold cross-validation for smaller datasets, this (normally) increases
the immense computation by the factor of k. As the dataset is fairly large, however, one usually
shuffles the data and does a stratified split into training set, validation set and testing set. Since
no cross-validation is done, one needs to make sure to have big sample sizes on the testing as
well as on the validation set. This work uses a split of 50%-25%-25% for training, validation,
and testing respectively.

As for the performance measure used, one has to watch out for the class imbalance (see Table
2.1). Even though there are nine classes in total, a classifier that would always predict Home
would already score close to 50% accuracy. Therefore, not just the accuracy (precision), but
also a confusion matrix is reported.

Implementation The whole network was implemented in TensorFlow™, a graph-based computing
framework originally developed by Google™. The idea behind this approach is that one designs
a graph of interconnected operations and TensorFlow™, then does all the mathematics behind
the scenes. The low-level implementation of the graph is optimized to the current computing
architecture, offering options to also run on a Graphics Processing Unit (GPU) featuring a
greater speed for the matrix multiplications needed in ANNs. This greatly reduces computation
time.

Numerical features were normalized by their mean and standard deviation on the testing set.
Categorical features were one-hot encoded using TensorFlow’s™ ’Feature Columns’.

The whole training process was visualized using TensorBoard™, insights into the classification
were achieved using the What-If Tool (WIT).
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2.2.2 Preprocessing

As in any application of machine learning, the basis for good and correct results lies in a
clean dataset. To accomplish this, many different options have been considered in the past.
Data preprocessing in the field of trip purpose imputation still relies heavily on the knowledge
of domain experts, as for most cases the datasources as well as the exact problem formulation
differs. Preprocessing of spatial trajectories is often done only with rule-based methods [3,25,36],
which due to their discrete nature usually don’t generalize well.

Data selection

Trajectories consist of a variable number of datapoints per day, depending heavily on the activity
of the mobile phone user. The more active a user is, the more datapoints are created during a
day; however, not every event like a call or using the internet triggers an event.

As can be imagined, purpose imputation is next to impossible when there are not enough
datapoints during a day. Therefore, trajectories that consist of less than a certain amount
of observations are removed. Finding this threshold is a trade-off between removing possibly
incorrect samples vs. keeping enough valuable training data. On average, a user in the dataset
collected for this thesis had 658.41 events per day. In comparison, the average Austrian in the
datastream coming from the phone provider has 421 observations per day.

Empirical investigation has shown that trajectories having below 250 observations do not
contain enough information to be useful and are therefore rejected. For the dataset collected in
this study, in total 12 trajectories have been removed because of this rule.

Speed filter

All location estimation from CDRs is subjected to noise. As with measurements in general, this
can be split into randomly and systematically made errors. A systematic one has a constant bias,
for instance a cell tower with an incorrect saved location. This would produce a wrong result
whenever this tower is involved in the estimation. And if one averages all observations at this
tower, the mean error would be the distance to the real location. Random measurement noise,
however, is noise that occurs through stochastic processes while measuring. If one would average
measurements taken on the same spot, the mean position would approach the real coordinates
the more measurements there are.

So additional to whole trajectories being rejected, certain observations might also be incorrect.
Rule-based approaches target different properties of a trajectory; for this thesis, only one rule
using the maximum speed was applied. An algorithm was then developed to remove observations
with a speed higher than this maximum. It was set to 230 km/h per hour, as the fastest
possibility in Austria would be a Railjet (train) traveling at a maximum speed of 230 km/h. A
complete description of the algorithm used can be found in Algorithm 1.

Algorithm 1 Speed based filter for one trajectory

1: procedure HIGHSPEEDFILTER

2 previous_index <+ 0

3 fori=1 to number of observations - 1 do

4 At + timestamp(observations[i]) — timestamp(observations|previous_index])

5: Ax < distance(location(observations|i)), location(observation|previous_index]))
6 speed «— Ax /At

7 if speeed < 230km/h then

8 Keep observation at position ¢

9 previous_index <+ 1

10: t41+1
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Table 2.4: Percentage of rejected sample based on the cutoff speed

Cutoff speed (km/h) Percentage of rejected observations

0 300 5.23
1 250 6.58
2 230 7.36
3 200 8.80
4 150 12.65
5 100 19.86

This threshold reduced the number of observations on the dataset collected by this thesis by
7.36%. A comparison of how many observations would have been rejected depending on the
speed threshold can be found in Table 2.4. As one can see, thresholds above 200km /h lead to a
decrease of less than 10% of the data. If one lowers the threshold further down, however, a lot of
datapoints are rejected and one would not just remove noise but possibly correct measurements.

Kalman filter

The process of removing random noise from temporal measurement sequences has been a topic
not only limited to spatial trajectories. Although, at the moment in most areas where research
is done with mobile phone trajectories they are mostly not processed [1,17,20,37] or only with
rule-based methods as described in the current above. The standard for GPS preprocessing has
long been Kalman filtering or its altered versions such as the Extended Kalman Filter (EKF)
or the Unscented Kalman Filter (UKF) (see 2.2.1 for background on the Kalman filter).

Even though previous work on preprocessing of mobile phone trajectories done by Horn et
al. [14] suggested that rule-based methods outperform Kalman filtering, this work suggest a
novel approach, using an EKF with a variable measurement covariance R based on the current
location of the measurement.

In this concrete case of using mobile phone data, the internal state vector, the measurement
vector as well as observation model (H) look like this:

o R o

Here z and y are the longitude and latitude respectively, v is the overall speed and ¢ is the
direction of the speed vector.

Usually a Kalman filter works with a constant and comparatively small step size At. This is
true for GPS data as it is usually sampled with approximately 1 Hz. Unlike GPS data, mobile
phone data is fairly sparse, depending on the phone usage. Irregular time deltas are the norm,
with value ranging from a few seconds up to half an hour or even an hour in the worst cases.

This leads to an internal model that should incorporate the step size as a factor. The model
chosen here is a simple linear model, assuming that the subject moves into direction ¢ with
constant velocity v for a given At:

T x v COS ¢
IESEE SIVE EA IS 1 R R (2.13)
o] |o 0

— 98 —




2.2 Processing pipeline

Looking at equation 2.2 one can then derive F:

1 0 Atcos¢p —vAtsing
|0 1 Atsing vAtcos¢
F = 00 1 0 (2.14)
0 0 0 1

In addition to having many observations, the measurement noise in GPS data can, as a first
approximation, be seen as a normal distribution, with an accuracy that is, depending on the
location is somewhere in a range of few tens of meters. On the other hand, location estimates
based on mobile phone data are usually quite noisy, based on how many cell phone towers are
situated in close proximity. If there are fewer towers, and/or they are further away, the accuracy
drops considerably.

As a result, when people usually take one measurement covariance R when using GPS data,
with mobile phone data one has to consider R as a function of the current location. This work
uses a Kernel density estimation (KDE) to estimate the variance on a certain location. The
covariance is then assumed to be diagonal matrix, having this variance as diagonal entries. The
base for the KDE are the locations of all cell towers from the data providing carrier in Austria.
A density is then estimated using an exponential kernel with a bandwidth of 400 (using the
scikit-learn [27] KDE implementation). This gives a density estimate for every point in
Austria. The estimate is then inverted and scaled with an empirical factor to give an estimate
for the variance.

This leaves only Q as an unknown. The first idea was to run grid search to find the optimal
parameters. As an error measure, the mean square error of the trajectories was taken. This lead
to unsatisfying results, however, as the mean square error does not seem to be the best measure
in this case. As a result, optimization was done by hand, using a custom-built tool to visualize
the internal filter state as well as the covariance matrices. The final state of Q was set to:

10(AH)2 0 0 0

0 10(At)? 0 0
= 2.15
Q 0 0 At 0 (2.15)
0 0 0 0.001At

The filter was initialized using the first measurement as x and y, v and ¢ have been set to zero.
No smoothing (e.g. Rauch-Tung-Striebel (RTS) algorithm [28]) was used, as this would increase
computation time to an unfeasible amount.

Segmentation

If one would had an ideal trajectory, segmentation could easily be done by just looking at
the current speed. As can be seen in Figure 2.5, this cannot be done with raw mobile phone
trajectories. One could now smooth this curve, but as there are many possible different modes
of transportation used, a simple filter would not be able to keep all the information. This is
especially relevant with regard to a slow walk in the city, compared to a commuting train ride
home.

The idea now is to use the velocity v from the internal filter state X as a velocity profile. Due
to the nature of the Kalman filter implemented, it only allows changes to the velocity trough
the process noise (Q) and is therefore limited in its changing rate. As the change is not only
dependent on the value of Q, but also on the Kalman gain K, the velocity will be filtered based
on the internal state. This results in less smoothing for small velocities and more for higher
velocities.

The segmentation algorithm will then split the trajectory based on this velocity. As a first
threshold, all observations with a velocity less than vy, = 8km/h are marked as stationary, the
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Unfiltered speed during a day
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Figure 2.5: Speed profile of the raw trajectory. For better visualization the mazimum speed was limited to
250 km/h, peaks would go up to around 800 km/h. 21.03.2018, subject 2

rest is marked as moving. This first threshold was set arbitrarily and does not matter as much
as long as it is high enough to allow for a lot of stationary segments. These will then be merged
or converted to moving segments in the following steps. As the velocity of the trajectory is
still not perfect, a rule-based approach, similar to the ones used in [9,25], was used to remove
unfitting segments.

All in all, two rules were applied, the first one defining that a stationary segment must at
least have a length of ¢,,in_stationary- The second rule states that all stationary segments that are
closer than a certain distance AZy,in_stationary Should be merged together, removing the moving
segment in between them.

As also discussed in previous work [1,9,25,37], a suitable time for At,,in_stationary has to be
chosen. In particular it should be long enough so as not to detect short stops at red lights
or when someone switches the mode of transport, from example car to a train. Of course,
a simple threshold cannot achieve a perfect separation; however, with a sufficiently long time
Alyin_stationary, this can at least be improved.

To find the ideal values for tpin_stationary and AZpin_stationary @ grid search was performed.
Search ranges were 5 to 20 minutes in steps of one minute for ¢,,in_stationary @nd 300 to 1500
meters in 100 meter steps for AZymin_stationary- As a reference for segmentation, mobile phone
trajectories from the collected dataset were annotated based on the trip records that were filled
out in the Modalyzer app. To score the performance of the algorithm, each trajectory was
split into artificial observations with a At of five minutes. A state, either stationary or moving,
was then assigned to each of these datapoints. As the average person spends more time being
stationary rather than moving, one has to be careful when choosing a measure for the accuracy.
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Speed of a Kalman filtered trajectory

120 -

100 ~

80 1

60 1

Speed in km/h

40 -

20 1

. N

T T T T T T T T T T T T T T T
O H H L L o H L o o o L HH Hon
F PP F PP P PSS PO

S I U O R I i L

Figure 2.6: Speed profile created from the internal state v from %X of the applied Kalman filter (2.2.1).
21.08.2018, subject 2

To correct this imbalance, a balanced accuracy measure was used. In a binary context such as
this, it is the mean of sensitivity (true positive rate) and specificity (true negative rate), or the
area under the ROC curve. For the optimization a 5-fold cross-validation was used.
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2.2.3 Trip purpose imputation
Feature extraction

As with all classical machine learning algorithms, the raw data, in this case the segments, have
to be converted to features for a machine to be able to process the information. The creation of
those features is crucial for the ability of the algorithm to learn and is more of a creative process.

It is also the most critical step, as with the wrong features no patterns can be discovered.

Table 2.5: Comparison of features used in previous works. Translated from [19].

Year Author Features Reference

2001 Wolf et al. Duration, Start time [38]

9003 Aschausen et al. Duration, Start time, Activity, Visit 139]
fequency, Day of week

92005 Griffin & Huang Duration, Start time, Cluster specific [12]
parameters
Duration, Start  time, Repetition

2007 McGowen & McNally duration, Repetition location, Change in [23]
household

2009 Huang et al. Start time, Activity order, Day of week [16]
Start time, Trip duration, Trip distance,

2010 Deng & Ji Trip speed, Day of week, Transportation [6]
mode

2010 Chen et al. Start time, Activity Order [4]

2013 Shen & Stopher Start time, duration, activity order [31]

9013 Montini et al. Start time, Duration, Day of week, Mode 126]
of transport, Clusterspecific parameters
Start and End time of trips (before
and after activity), Duration (of current,

2013 Lu et al. previous, following segment), Activity [22]
order (first, last or in-between), Day of
week, Mode of transport

92015 Feng & Timmermans Start time, Duration, Trip duration, Mode 8]
of transport

92015 Alexander et al. Start time, Visiting frequency, Day of ]
week

92015 Widhalm et al St.a'rt. time, Duration, Activity order, 137]
Visiting frequency

92016 Xiao ot al. Start time, Duration, Day of week, Mode 140]
of transport

2016 Han & Sohn Start time, Duration [13]
Start time, Duration, End time, Trip

2016 Gong et al. duration, Day of week [10]

2017 Usyukov Start time, Duration [36]

92017 Janzen ot al. Trip duration, Trip distance, Month, [17]

Weekend part
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With trip purpose imputation being a very established topic already, certain types of features
have been proposed in previous studies. An overview of those can be found in Table 2.5.

The features used in this work were mainly dictated by their availability in the dataset used
for training the classifier (see 2.2.3). It is, however, crucial to consider that the classifier
was not trained with the data recorded for this study, as it would have been biased by the
unrepresentative nature of it. More information about the training data (’Osterreich unterwegs’
(OEU) dataset) for the classifier can be found in the next section. Where other works were using
spatial features, such as landuse or distances to Point of Interests (POIs), this was not possible
here as the training data from OEU did only include spatial information on a municipality level.
The data does however include sociodemographic information such as an age range and the
home municipality.

Some of this demographic information is also available in the data coming from the net
provider, as customers have an opt-in option to share their data when signing their contract.
As not everybody opts-in, the classifier has to be prepared in a way that some of the data is
missing.

In general, if the dataset is big enough, all possible features can be added. The idea is to let
the algorithm itself figure out which are useful and which are not. In this work the following
features were extracted:

Start time The start time of the segment in hours relative to midnight. The distribution of
the start time split by the trip purpose can be seen in Figure 2.7 and Figure 2.8. Numerical.

Distribution of 'Start Time' split by activity
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Figure 2.7: Distribution of activity start times relative to midnight (Local time). As most Home segments
start at midnight, a second plot (Figure 2.8) is provided to show its distribution during the day.
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Distribution of 'Start Time' for activity Home
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Figure 2.8: Distribution of ‘Start Time’ for activity Home. Only segments starting after 2 am (Local time),

to show the distribution without the peak around midnight (see Figure 2.7 for the complete
distribution,).

Duration The duration of a segment in hours. An overview of the distribution split by
activities is plotted in Figure 2.9. Numerical.
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Figure 2.9: Distribution of the duration of different activities, extracted from the OFU dataset.
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Activity Order The order of the activity during the day. Similar to the approach in [26]
acceptable values were 'first’, 'middle’ or ’last’ corresponding to the position of the segment in
a trajectory. The distribution of activity order can be seen in Figure 2.10. Categorical.

Distribution of 'Activity order'
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Figure 2.10: Distribution of activity order in the OEU dataset.

Day type Measure for the type of day. Categories are "Working day’, ’Saturday’, ’Sunday’,
where holidays are included in ’Sunday’. The distribution in test dataset can be seen in Figure
2.11. Categorical.
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Figure 2.11: Distribution of day types in the OFEU dataset.
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Location Type Each district and therefore each municipality can be assigned one of the
following:

"Vienna’

"Major city without Vienna’
"Central district’
"Peripheral district’

An overview of which district belongs to which location type can be found in Figure 2.12.
Categorical.

Grouping of districts to location types
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Figure 2.12: Overview of the_location type, translated from [84].  Location type is based on how remote
the district is (OROK 2005). Districts with an asterisk are different OROK 2005, based on
suggestions from the states.

Age Split into the following categories:

0-17 years

18-29 years

30-39 years

70-79 years
older than 80

NOT_SET
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This is also the same format as provided by the cell phone company; however, only around 30%
of all trajectories are enriched with sociodemographic information. The age distribution of the
test dataset can be seen in Figure 2.13. Categorical.
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Figure 2.13: Distribution of age groups in the training dataset.

Gender Possible values are "Male’, "Female’ or ’'NOT_SET’. This is also only set if is sociodemographic
information is available for a trajectory. The age distribution of the test dataset can be seen in
Figure 2.14. Categorical.
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Figure 2.1/4: Distribution of gender in the OEU dataset.
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Annotation

As the recorded dataset for this thesis (2.1) is not representative for the Austrian population,
an algorithm trained on this data would not be able to generalize well and be biased towards
the daily routines in the collected dataset.

For this purpose, data collected for the survey OEU [35] was used. The study was conducted
on behalf of the Austrian government in 2013/2014 and incorporated 38,220 participants. The
focus, however, was not on the trip purpose, but on the ways between activities. In total
196,604 ways, were recorded and, when looking at the stationary segments between those ways,
this results in 307,890 annotated segments.

The complete cleaned dataset used for all the analysis is available to download online. Each of
the recorded ways includes detailed information such as the time, municipality, purpose, season
the trip start as well as the trip end municipality. Additionally, each trip is associated with an
anonymized person, offering sociodemographic information that can be used for analysis.

Table 2.6: Number of stationary segments grouped by the trip purpose for the OEU data. For an elaborate
description of the different activities please consult Table 2.1

Number of Segments Percent
Trip purpose

Drop off 9104 3.66
Education 7591 3.05
Home 130981 52.65
Leisure 25807 10.37
Other 173 0.07
Private 16031 6.44
Shopping 18721 7.53
Visiting 12086 4.86
Work 21987 8.84
Work related 6276 2.52

As can be seen when comparing Table 2.1 to Table 2.6, the smaller dataset collected for this
thesis shows a different distribution. This is due to the fact that the sample in the collected
dataset is smaller and was recorded mostly by men between the age of 25 and 40 in the area
of Graz and is therefore not representative of the Austrian population. When one extracts the
same target group of young men living near Graz from the OEU dataset, segment wise feature
statistics from the dataset collected by this study match the extracted data.

As it usually not feasible to run a grid search for tuning all hyperparameters in the ANN,
optimizing is performed through trial and error using educated ranges. Some work has already
been done on which parameters to optimize first [11], but as they are all interconnected there is
no gold standard. In a first step, the optimizer was set to Adam to allow for faster convergence
and be less dependent on the learning rate. Also, the batch size was fixed to 32 as it mostly affects
convergence performance and usually people use a power of two to better fit computer hardware.
The first test network trained was intentionally too big with 1000 neurons in one hidden layer.
After learning, and of course overfitting, was observed, the network was regularized by decreasing
the keep probability for dropout until overfitting could not be seen any longer. The network was
then decreased in size without loosing too much accuracy on the test set to speed up training
and evaluation performance. The final hyperparameters of the model then were:

e Network layout: One hidden layer with 500 hidden neurons each

e Activation function: ReLU
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Optimization algorithm: Adam

Learning rate: 0.001. This was kept at the default value of the TensorFlow™ AdamOptimizer
as it is not decisive because the algorithm performs an automatic decay.

Batch size: Was set to 32. This is a compromise as a batchsize of one would be desirable,
however, the added computational effort and therefore the increased computation time
allow this for a dataset with this many samples and limited computing hardware.

Number of epochs: Was set to 50. No overfitting was observed, but the loss did not increase
anymore afterwards.

Dropout: The keep probability was set to 0.5, dropping 50% of all neurons at every batch.
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Results

The following sections show results of the different processing blocs seen in Figure 2.3.

3.1 Processing pipeline

3.1.1 Speed filter

Figure 3.1 shows the outcome of a trajectory filtered with the developed speed filter (Algorithm
1). As discussed in section 2.2.2, a cutoff of 200 km/h was chosen. The corresponding speed
profile of the same trajectory can be seen in Figure 3.2.

3.1.2 Kalman filter

The outcome of the reference trajectory being filtered with the Kalman filter developed in 2.2.1
is shown in Figure 3.3. Having parts in the countryside as well as parts in the city, this trajectory
serves as a good example. However, as one trajectory cannot be representative for the whole
testset, the negative example (Figure 2.2) was also filtered with the Kalman filter (Figure 3.4).
All trajectories shown in plots in this section have been preprocessed using the speed filter.

= Trajectory after speed filte:

—— Reference GPS frajectory
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Figure 8.1: Trajectory filtered with the speed filter (Algorithm 1) with a cutoff vin of 200 km/h. 21.03.2018,
subject 2
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Speed of a trajectory filtered with the rule based speed filter
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Figure 8.2: Speed profile after the trajectory was filtered with the speed filter (Algorithm 1, vy, = 230km/h).
As expected, there are no velocities higher than 230 km/h anymore. 21.03.2018, subject 2
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Figure 3.3: Raw trajectory from filtered with speed filter (Algorithm 1, vy, = 230km/h). 21.08.2018, subject
2




3.1 Processing pipeline

|
= Trajectory after Kalman filter

—— Reference GPS frajectory

Latitude

t T u T T t T T T T T T T = t
13.6 13.65 13.7 13.75
Longitude

Figure 3.4: Raw trajectory from the countryside filtered with speed filter (Algorithm 1, vy, = 230km/h) and
Kalman filter. 01.11.2018, subject 15

3.1.3 Segmentation

Using the metric described in 2.2.2, the optimized values found were:
b tmin_stationary = 15 min
b A:L'min_stationary = 700m

With these values, the best balanced accuracy was 77%. The general accuracy (number of
correct observations divided by all observations) was also calculated, as it gives a good measure
of how well a whole day can be split. With the setting above, an accuracy of 91% was achieved,
meaning that all 207 trajectories considered, on average 91% of the day, the segmentation was
correct.

One can see an example of a segmented trajectory in Figure 3.6. As a comparison, the same
trajectory was segmented based on the trip journal (Table 2.2); the result can be seen in (Figure
3.6). In the example a balanced accuracy of 99.68% as well as a regular accuracy of 99.40% was
reached.
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« Correctly segmented trajectory
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Figure 3.5: Trajectory segmented using the collected trip journal (Ground truth). Stationary segments were
replaced with a circle, with the middle being in the centroid of all observations. 21.03.2018,
subject 2
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Figure 3.6: Trajectory segmented with the method presented in 2.2.2. Stationary segments were replaced
with a circle, with the middle being in the centroid of all observations. 21.03.2018, subject 2
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3.1 Processing pipeline

3.1.4 Trip purpose imputation

The overall classification accuracy on the OEU test dataset was 67.84%. However as this dataset
is highly imbalanced, this is not a good measure of the classifiers’ performance. An overview
of the class imbalance is given in Table 2.6. For a better understanding of the classification, a
confusion matrix of the results is provided in Figure 3.7.

Confusion matrix. Values are percentage row-wise true labels

Drop off
Education
Home
Leisure

Other

True label

Private
Shopping
Visiting
Work

Work related

Predicted label

Figure 8.7: Confusion matrix after classifying the test set. Cell values are row-wise percentages of all true
labels. For a class balance overview see Table 2.6
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3.2 Application Example: One day of data

To test the complete system, the whole pipeline was applied to data created by all customers
of the phone provider for a day. In total, one day consists of about 3,000,000 trajectories. The
phone company also has an optional opt-in upon contract signing, allowing them to add basic
demographics to each user; as a result so some trajectories have additional information such as
age-group or gender attached. The size of this dataset proves a further challenge, as one day
consists of about 70 GB, creating the need for optimized algorithms to process the data in a
feasible time.

The following plots show simple metrics of all activities created by applying the here developed
methods. Figure 3.8 shows the number of activities per trajectory, Figure 3.9 gives an overview
of how the detected activities are distributed.

The other three Figures (3.10, 3.11, 3.12) are plots of one activity class, shown for Graz, Styria.
To create these plots, the location of all stationary segments of the given activity were plotted
on a map. The brightness of each pixel correlates with the number of underlying segments of
the given activity. Major employers and shopping centers in Graz were identified.

Activities per user. Average: 4.42

400000 -

300000 -

200000 -

Number of Users

100000 A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Activities

Figure 3.8: Activity per user, cutoff at 10 activities per user to better fit the data
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Activity distribution
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Figure 3.10: Distribution of all detected stationary Home segments in the area of Graz
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Activity type: Work
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Figure 3.11: Distribution of all detected stationary Work segments in the area of Graz. Magna is an
automotive company with 12,000 employees worldwide
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Figure 3.12: Distribution of all detected stationary Shopping segments in the area of Graz
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Discussion

4.1 Processing pipeline

4.1.1 Speed filter

As one can see from the filtered speed profile (Figure 3.2, compare to unfiltered, Figure 2.5), all
observations with a speed greater than 230 km/h are removed, but the rest of the speed profile
is still very noisy.

When comparing the spatial plots before (Figure 1.1) and after (Figure 3.1), a great reduction
in outliers, especially those with a big magnitude, can be observed. Which is important, as the
current implementation of the Kalman filter assumes that the measurement noise is normally
distributed.

4.1.2 Kalman filter

The example of the trajectory filtered with the Kalman filter (Figure 3.3, compare to unfiltered
Figure 1.1) shows that the noise is greatly reduced by the filter. In contrast, if the raw data is
fairly noisy (Figure 2.2), the Kalman filter could not improve the result much. This is possibly
due to the fact that the measurement noise in this case is not anywhere near normally distributed.
Analysis has shown, that while the person was at home in the morning, most position estimates
have been made a few kilometers to the east. As there is no workaround to this problem as
long as the bias is not known, this was communicated to VIAVI (San Jose, CA, USA), the
company providing the estimation. According to them they are currently working on a method
that provides a greater accuracy while estimating.

Also, when looking at the filtered version of the standard trajectory in the current work
(Figure 3.3, the participant was going from north to south on his way Home from Work), with the
selected parameters, the filter seems to be somewhat inert, leading to an overshoot after long
straights. This is because the speed v and its corresponding angle ¢ of the internal filter X state
can only change due to the process noise Q in the model. Manual optimization showed that
there had to be some trade-off. If one would allow for faster changes reducing the overshoot,
this would also lead to additional noise on other trajectories.

Also, manual optimization in itself is a problem as it takes a lot of time and as on optimal
solution may not be found. One could think of improving this, for example by trying different
error measures such as the ones proposed by Deng et al. [5]. One hast to ensure that the measure
also takes the temporal component into account and does not just compare spatial relations.

The current work only performs a qualitative analysis of the filter, as finding an appropriate
error measure has proven to be challenging. Analyses to quantify the results are currently being
performed.

4.1.3 Segmentation

The values for Azpin_stationary = 700m and tpin_stationary = 15 min found by optimization are
similar to the ones suggested in the works of Widhalm et al. [37] (1km, 15 minutes) as well as
Alexander et al. [1] (500m, 10min). Again, these boundaries are usually set to smaller values
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when dealing with GPS data (ca. 100m, also about 10min [9,25]), but due to the poor spatial
and temporal resolution of mobile phone trajectories, looser thresholds ones have to be allowed.

In general, when comparing the correctly segmented trajectory (Figure 3.5, trip journal in
Table 2.2) to the one segmented by the developed algorithm (Figure 3.6), it can see that, as
expected, Work (northmost activity) and Home (southernmost activity) were detected, whereas
stationary segments result from a change in the mode of transportation were not recognized.
This is due to a minimum stationary duration t,,in_stationary 0f 15 minutes.

Looking at the speed profile after Kalman filtering, however, (Figure 2.6) and comparing this
to the recorded trip journal of participant 2 (Table 2.2), one can clearly see that the information
about the Tram trip as well as the stop after the Train ride is in the data and could be extracted
using a smaller value for t,,in_stationary-

One might have noticed that the accuracy of the example trajectory is greater than 99%
(Figure 3.6) even though four stationary segments have not been detected. This is because all of
these segments were shorter than one minute as they denote a change in mode of transportation
(see Table 2.2). Due to the nature of the scoring, missing short stationary segments does not
reduce the accuracy by much.

4.1.4 Trip purpose imputation

As one can see in the confusion matrix (see Figure 3.7), the classification performance is best
for Home and Work with 90.35% and 77.99% accuracy respectively. This is possibly due to the
nature of these activities being usually very long (see Figure 2.9).

With 58.23% the classification of Education also works quite well. As one would suspect,
its feature values are quite similar to those of Work with the main difference being in the Age.
Further investigation using the WIT showed that for most Education samples misclassified as
Work (16.47%), the age was not in group ’< 17’. The expected performance on a real dataset will
therefore be lower as only about 30% of all real trajectories have sociodemographic information.

The classes Private, Visiting, Personal and Leisure are often mixed. This is the case as
the used features do not provide enough information to distinguish between them in most cases
(see for example Figures 2.7 and 2.9).

For the Other class the main problem lies in the fact that only 0.07% of the classifier training
dataset is this class. This also shows that almost all activities can be put into one of the other
categories, as especially Leisure as well as Personal are not so strictly defined.

As a conclusion, one can say that Home and Work can be distinguished quite best the rest
of the activities. The others can most probably not be distinguished with the currently used
features as they are too similar.

4.2 Application Example: One day of data

When one first compares the 4.42 average number of observations on the predicted data (Figure
3.8) with the 4.2 in classifier training data (coming from OEU), the result looks quite promising.
On the other hand, a big part of the detected trajectories has only one segment, which cannot
be seen in the OEU dataset. There only about 2% of all people having only one activity per
day. This is most probably due to the poor dataquality in the countryside, resulting in the
segmentation algorithm not being able to find more than one stationary segment as the speed
of the filtered trajectory is too high.

When looking at the single activity plots of Graz (Figures 3.10, 3.11 and 3.12), one can clearly
see a difference in their distributions. In the plots for Work and Shopping some POIs have been
highlighted and will be discussed below.

As a first example, when one compares the plots for Home and Work for the POI Magna (a big
car company), a clear discrepancy can be observed. When looking at hotspots for Shopping,
the major shopping centers (Murpark, Shoppingcity Seiersberg, Shopping nord) light up as
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expected. However, also Graz’s main train station seems to be very dense. Further investigation,
not only restricted to Graz, shows that a lot of activities at public transport hubs are classified
as Shopping. This is probably due to the lack of a distinct Transit class as this is missing
from the classifier training data. It would also give an explanation for the over-representation
of Shopping in the overall activity distribution (Figure 3.9).

One can also observe that no segments were classified Other and Visiting. For Other the
answer can simply be that it was underrepresented in the training dataset (0.07%). For Visiting
no obvious reason was found.

4.3 Improvements

There is still a big potential for improvement in every part of the processing pipeline. For
example, at the moment the estimated measurement variance R is guessed using only the density
of the cell tower locations. A more sophisticated model, using also the information about the
type and configuration of the used antenna as well as its beam characteristic, could provide a
much better and physically accurate value.

Also, at the moment, the filter uses only past information to calculate the current position.
If there is no need for the filter to work in real time, one could include future observations to
improve the classification, using for example the RTS algorithm [28].

The segmentation algorithm is already quite sufficient and an improvement in Kalman filtering;
and as a result, better velocity profile should further increase its accuracy.

By far biggest improvement could presumably be made with regard to classification. Even
though the current classifier seems to be at the limit given the current features, other classifiers
could be tested. One could think of building a hierarchical classifier, splitting the current
multiclass-classifier into separate ’One-vs-rest’ classifiers. This would include the benefit that
in each stage, different features could be used. Also, after each stage, different checks could
be performed. For example, after Home-vs-rest, one could check if all detected Home segments
are within a given radius from another, as most people have only one home. Additionally,
if sociodemographic information is added to a trajectory this can also the home municipality,
adding even more semantic information. As seen in the previous section, short segments such
as shopping or personal cannot easily be distinguished by the current classifier. Therefore, one
could use the data from the dataset collected in this thesis to train classifiers lower down in the
hierarchy, having the benefit of an accurate location in the training data. This would enable
the use of more accurate spatial features such as distance to the nearest shop or educational
institution.

Also, instead of the class output, one could look the output probabilities of the softmax layer,
introduce a threshold and use only samples with a classification probability above that threshold.

4.4 QOutlook

As seen from the results of the real-world example, the proposed system can be used to help
modeling commuting traffic in cities, which is one important step in the direction of planning
new infrastructure.

Also, in future years, the change from 4G cell networks to 5G will bring a tremendous accuracy
improvement. For once because the nature of 5G requires the cell towers to be at most a kilometer
apart, but also because the antenna technology changes, enabling better location estimation.
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