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Iron rusts from disuse; water loses
its purity from stagnation... even so
does inaction sap the vigor of the
mind.

Leonardo da Vinci (1452 - 1519)
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Abstract

Over the years, magnetic resonance imaging (MRI) has evolved to one of the leading

imaging modalities in medical diagnosis, because of its high soft tissue contrast without

deposing ionizing radiation. Besides pure morphological imaging, MRI can also provide

quantitative or semi-quantitative information about physical and physiological processes

or the micro-structure of the tissue, which can serve as biomarker for several diseases.

Among others, these are blood flow, diffusion, perfusion, quantitative susceptibility, fat

content or tissue relaxation times. The main drawback of MRI is the inherently long

acquisition time. To overcome this problem, several strategies were proposed over the

years, by improving imaging sequences and data acquisition trajectories to increase the

acquired data per time. With this development in combination with improved hardware,

the physiological limits in terms of peripheral nerve stimulation and RF energy deposition

were reached.

Another way to accelerate the MR data acquisition is to reduce the amount of acquired

data below the Nyquist limit and to reconstruct the image using mathematical methods.

Because of the ill-posedness of this inverse problem, regularization becomes necessary to

stabilize the solution of the reconstruction. The theory of variational methods is perfectly

suited for this purpose.

Some applications have very high requirement according the homogeneity of the fields

necessary to obtain an MRI signal. These are the static magnetic field B0 and the radio

frequency (RF) field B1. Careful coil design, low manufacturing tolerances, and shimming

approaches for B0 and B1 lead already to very homogeneous field distributions, but the

magnetic and electric properties of biological tissue lead to field distortions which are

specific for a certain patient. To correct for influences arising from that, filed mapping

becomes necessary.

This thesis covers the physical background of field inhomogeneities in B0 and B1,

as well as the most important mapping methods and shimming approaches to increase

their homogeneity. Moreover, the mathematical background of image reconstruction is
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described, as well as a deviation of the most important regularization functionals and

their numerical solution. This thesis also considers the questions, how variational methods

can be applied to either increase the accuracy of an acquired field map or to reconstruct

highly accurate field maps from highly undersampled data. For this purpose, two different

algorithms are described, one to gain highly accurate B0 maps dedicated for the separation

of fat and water signal components and the other one for the reconstruction of B+
1 field

maps from highly accelerated Bloch-Siegert data. Several examples are shown for phantom

and in-vivo measurements at 3 T and 7 T.

Keywords: magnetic resonance imaging (MRI), field mapping, B1 mapping, B0 map-

ping, water/fat separation, variational methods, Bloch-Siegert shift imaging



Kurzfassung

Die Magnetresonanz Tomographie (MRT) hat sich über die Jahre zu einer der führenden

Bildgebungs-Modalitäten in der medizinischen Diagnose entwickelt, aufgrund des hohen

Weichteilkontrasts ohne die Verwendung ionisierender Strahlung. Neben der reinen

morphologischen Bildgebung bietet die MRT auch eine Reihe von quantitativen und

semi-quantitativen Informationen über physikalische und physiologische Prozesse oder die

Gewebsmikrostruktur, die als Biomarker für verschiedene Krankheiten dienen können.

Unter anderem sind dies: Blutfluss, Diffusion, Perfusion, quantitative Suszeptibilität,

Fettgehalt oder Gewebsrelaxationszeiten. Der größte Nachteil dieser Technologie ist

die messprinzipbedingte hohe Akquisitionszeit. Um dieses Problem zu lösen wurden

über die Jahre etliche Strategien vorgestellt, die vorrangig die Bildgebungssequenzen

und die Akquisitionstrajektorien verbessern um die aufgenommenen Daten pro

Zeiteinheit zu vergrößern. Diese Entwicklung führte in Kombination mit verbesserter

Hardware dazu, dass die physiologischen Grenzen für periphere Nervenstimulationen und

HF-Energiedeposition im Gewebe erreicht wurden.

Die MR Datenakquisition kann auch über eine Reduktion der aufgenommenen Daten

unter die Nyquistrate beschleunigt werden, wobei das Bild unter Verwendung mathema-

tischer Methoden rekonstruiert werden muss. Da dieses inverse Problem äußerst schlecht

gestellt sein kann, wird die Verwendung von Regularisierung notwendig um das Rekon-

struktionsergebnis zu stabilisieren. Zu diesem Zweck ist die Theorie der varationellen

Methoden hervorragend geeignet.

Viele Anwendungen stellen hohe Anforderungen an die Homogenität der verwende-

ten Felder, die notwendig sind um ein MR Signal zu erzeugen. Dies sind das statische

Magnetfeld B0 und das Hochfrequenzfeld (HF) B1. Sorgfältiges Spulendesign, geringe

Fertigungstoleranzen und Shimming Ansätze für B0 und B1 führen bereits zu äußerst

homogenen Feldverteilungen, aber die elektrischen und magnetischen Eigenschaften von

biologischem Gewebe führen zu Feldverzerrungen, die auch noch patientenabhängig sind.
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Um die daraus resultierenden Einflüsse zu korrigieren, ist es notwendig die Feldverteilung

zu messen.

Diese Arbeit umfasst den physikalischen Hintergrund der Entstehung von Feldinho-

mogenitäten für B0 und B1, sowie die wichtigsten Methoden zu deren Messung und die

wichtigsten Ansätze deren Homogenität zu erhöhen (Shimming). Weiters wird der mathe-

matische Hintergrund der Bildrekonstruktion beschrieben, sowie die wichtigsten Regular-

isierungsfunktionale und deren numerische Lösung hergeleitet. Diese Arbeit beschäftigt

sich mit der Frage, wie varationelle Methoden angewendet werden können um entweder die

Genauigkeit einer akquirierten “field map” zu erhöhen oder eine sehr genaue “field maps”

aus hoch unter-abgetasteten Daten zu rekonstruieren. Zu diesem Zweck werden zwei Al-

gorithmen beschrieben, einer um die Genauigkeit der B0 Schätzung zu erhöhen, speziell

zugeschnitten für die Anwendung um Fett und Wasser Signalkomponenten zu trennen und

ein zweiter für die Rekonstruktion von B+
1 maps aus hoch unter-abgetasteten Daten der

Bloch-Siegert Methode. Einige Beispiele für Phantom- und in-vivo Messungen auf 3 T und

7 T werden vorgestellt.

Schlüsselwörter: Magnetresonanz Tomographie (MRT), Feld mapping, B1 mapping,

B0 mapping, Wasser/Fett Signal Trennung, variationelle Methoden, Bloch-Siegert shift

imaging
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1
Introduction and Motivation

Genius is one percent inspira-

tion and ninety-nine percent

perspiration.

Thomas Edison

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Introduction

Since the 1980s, Magnetic Resonance Imaging (MRI) established as a powerful tomo-

graphic imaging modality in clinical practice. Compared to the x-ray based Computer

Tomography (CT), the main advantages of MRI is the absence of ionizing radiation mak-

ing this technology non-invasive. Also, it gives a much better soft tissue contrast. Over the

years continuous improvements in hardware, sequence design, and image reconstruction

led to higher resolutions with better Signal-to-Noise Ratio (SNR) in a shorter acquisition

time. Besides the pure morphological imaging with different contrasts, the development

also led to a variety of different methods enabling the possibility to investigate differ-

ent physical and physiological quantities. These quantities are an important source of

information in clinical research and for the diagnosis of many diseases, which cannot be

provided by any other imaging modality. For example, Diffusion Weighted Imaging (DWI)

[44, 171, 298] or Diffusion Tensor Imaging (DTI) [5, 10] enables the possibility to measure

the micro-structural orientation of, e.g., axon fibers with diameters in the range of µm;

Arterial Spin Labeling (ASL) [3, 66] which is a method to quantify the perfusion in a

1
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certain tissue without contrast agents; blood flow velocity which is used in Phase Contrast

Angiography (PCA) [74, 224, 310] or functional MRI (fMRI) [164] where the signal is

proportional to the activity in a certain brain region. Further examples are Quantitative

Susceptibility Mapping (QSM) [316, 330] or fat/water separation (chemical-shift imaging)

[67, 239], where the signal is separated in its water and fat content according their shift

in resonance (Larmor) frequency.

To generate an MRI signal, two different magnetic fields are necessary: The static

magnetic field (B0 field) and the Radio Frequency (RF) field (B1 field) with a frequency

that is matched to the Larmor-frequency of the investigated nucleus. From the macro-

scopic point of view, the B0 field leads to a partial alignment of the magnetic moments

in the observed nuclei (usually hydrogen) along the direction of the B0 field, resulting

in a net magnetization along that direction. Furthermore, the magnetic moments start

to precess around this direction with a frequency (Larmor frequency) proportional to the

field strength and the nucleus dependent gyromagnetic ratio γ. If the frequency of the B1

field is matched to the Larmor frequency, it deflects the net magnetization out of its equi-

librium direction resulting in a coherent precession in the transverse plane perpendicular

to the main field direction, which induces a measurable signal in properly oriented receive

coil. [104]

Because the resonance frequency depends on the B0 field strength, the spatial homo-

geneity requirements on the magnet hardware are very high. Differences in field strength

of only 10 ppm would change the resonance frequency by ≈ 1.2 kHz (at 3 T), which is al-

ready a large value for many applications. Modern MRI systems can reach a peak to peak

homogeneity in a spherical volume with a diameter of 45 cm lower then 5 ppm and lower

than 2 ppm for a diameter of 30 cm [120, Part I.]. These values are already very impressive

and can only be reached with an enormous effort in designing the supra-conducting main

field coil and the static and dynamic shim hardware. In standard morphological imaging,

the achieved homogeneity is sufficient to generate high quality images in different anatom-

ical regions. However, some applications have much stronger requirements on the main

field homogeneity such as chemical shift imaging (fat/water separation) [67, 239] or QSM

[316, 330]. The different chemical environment of hydrogen in fat and water leads to dif-

ferent resonance frequencies, which are 3.5 ppm apart (chemical shift). The simplest way

to separate these two signal components is to acquire an in-phase and an opposed-phase

echo. The sum and the difference of these two signals result in the pure water or pure fat

signal, respectively [67]. If the additional main field inhomogeneity is greater then half

the chemical shift, a water signal appears as a fat signal and vice versa, which leads to

so called fat water swaps. The above mentioned peak to peak field deviation of 2 ppm in

the 30 cm sphere is already in that range. Beside these technical sources, the patient itself

introduces additional inhomogeneities due to discontinuous susceptibility variations along

tissue borders; most problematic are air/tissue interfaces, which are typically in the range

of a few ppm. If an accurate B0 field map is available, the adverse effects can be corrected

to a certain degree e.g. to remove the unwanted fat water swaps.
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Also, the B1 field suffers from inhomogeneous distribution over the Field of View

(FOV), which is basically a result of the interaction of the RF field with the biological

tissue. Due to the high frequency, eddy currents are induced inside the tissue which consists

of displacement and conducting currents depending on the conductivity σ and permitivity

ε distribution inside the body. These currents interact with the incident field and alter the

effectively “seen” field in a certain voxel, leading to an inhomogeneous distribution. The

situation gets worse, if the main field strength and with that the corresponding Larmor

frequency increases. The increasing frequency leads to a reduction in wavelength, which

is about 15 cm at the maximum available clinical field strength of 7 T, being in the range

of the dimension of the usually examined anatomy e.g. the head. If the wavelength is

smaller than the object of interest, standing wave phenomena can occur which can lead to a

complete cancellation of the B1 field at certain points. Currently the highest field strength

for a human system is 10.5 T (2018) and a system with 11.7 T is under construction [165],

which makes the problem more severe. The achieved flip angle, which is very important

for image contrast, is proportional to the magnitude of the actual B1 field reached at

a certain position in space. Inhomogeneities in the B1 field lead to an inhomogeneous

flip angle distribution, which is responsible for a very inhomogeneous image contrast and

introduces modeling errors in several applications related to quantitative MRI (qMRI) in

which the fitting model depends on the flip angle [65, 257]. To correct these errors, an

accurate mapping of the B1 field distribution is necessary. If more than one transmit

channel is available (parallel transmit (pTX) systems) and the magnitude along with the

phase of each channel can be controlled independently, then this inhomogeneities can be

balanced out to a certain degree, which is called B1 shimming [149, 303, 337]. Nevertheless,

for the calibration of such a system the actual subject dependent magnitude and phase of

the individual B1 field distributions of each channel must be measured in advance.

In contrast to other imaging modalities, MRI is a quite slow technique, because data

is acquired successively line by line with a certain Repetition Time (TR) which can be

in the order of seconds. Over the years many things were done to reduce the acquisition

time in MRI examinations by the development of faster and more effective sequences. A

few developments are worth to mention here such as Multiple Spin Echo (MSE) [78] or

Turbo Spin Echo (TSE) [119] where the signal is refocused many times in a Spin Echo

(SE) sequence [107], interleaved acquisition of different slices in a volume to make use of

the waiting time during a TR or imaging in a kind of steady state where no full relaxation

of the magnetization is needed to reduce the TR as it is done in spoiled Gradient Recalled

Echo (GRE) [105] or balanced Steady State Free Precession (bSSFP) [112, 338] type

sequences. For very special applications this even led to the development of a sequence

where the whole data space (k-space) is acquired after a single excitation by continuous

refocusing the signal with gradients of different polarity the so called Echo Planar Imaging

(EPI) sequence [210]. This sequence is very prone to artifacts which can be corrected to

a certain degree. Furthermore, the requirements on the imaging hardware concerning

timing, B0 field homogeneity, gradient linearity and eddy current compensation are very
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high.

Besides acceleration through faster and more efficient data acquisition, people started

to develop methods to reconstruct images from under-sampled data. According to Shan-

non’s and Nyquist’s sampling theorem [223, 263, 264] for a given FOV and resolution,

a minimum amount of data has to be acquired to guarantee a unique reconstruction. If

less data is acquired it is called under-sampling. In the Cartesian case e.g. a 2-fold ac-

celeration is reached by leaving out every second line in k-space, which leads to artifacts

known as back-folding. The first methods used to reconstruct artifact free images out of

under-sampled data are know as Parallel Imaging (PI) where the coil sensitivity profiles

(RF receive field B−1 ) of a phased array receive coil are used to unfold the images. The

two most prominent variants are Sensitivity Encoding (SENSE) [234] and Generalized

Auto-calibrating Partial Parallel Acquisition (GRAPPA) [99]. Over the time more so-

phisticated algorithms developed known as Compressed Sensing (CS) in combination with

random under-sampling patterns and data acquisition trajectories like radial, golden angle

radial, spiral, and many more [194, 195], enabling a much higher acceleration potential

than classical PI methods. Here, the reconstruction is typically performed by solving

an optimization problem, searching for an image which fits best to the measured data.

The solution of these optimization problems can be be quite ill-posed where variational

modeling is used to stabilize the solution by the incorporation of prior knowledge about

the spacial structure of the image to be reconstructed. First it was introduced by Rudin

et al. [247] for the purpose of image denoising, where a Total Variation (TV) image prior

was used. In MRI , the concept of variational modeling was first introduce by Block et al.

[28] for the reconstruction of undersampled radial k-space data, where the same TV prior

was used. The drawback of TV is that this functional is not accurate enough to capture

the image structure, which led to the development of higher order functionals like Total

Generalized Variation (TGV) [38] for image reconstruction [159] and Infimal Convolution

Total Generalized Variation (ICTGV) for the reconstruction of dynamic image series [255].

Both image priors lead to more natural appearing images and enable a higher acceleration

potential.

However, acceleration of MRI data acquisition is still an important research topic. In

sequence design, a technique called Simultaneous Multi-Slice (SMS) [7, 169] gains more

and more interest, where the first ideas already date back to the 1980s [212]. Recent

developments showed the application of SMS to EPI with improved slice separation with

blipped-Controlled Aliasing in Parallel Imaging (CAIPI) [262] or wave-CAIPI [22] for

3D acquisition. Furthermore, for the application of high resolution diffusion imaging a

combination of SMS and in-slab 3D-phase encoding was developed [261]. Another recent

development is Echo Planar Time-resolved Imaging (EPTI) [313] enabling high temporal

resolution and an enormous distortion reduction in EPI acquisition, also in a motion robust

variant [77]. Nowadays, in image reconstruction methods of machine learning and Artificial

Intelligence (AI) are getting of increasing importance as it was shown by Hammernik et

al. [110] that artifact free images can be gained out of Cartesian undersampled data and
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a similar approach is described for dynamic imaging also by Hammernik et al. [109].

In terms of field mapping two things are very important, where variational modeling

can be beneficial: First the acquisition time and second the accuracy. Due to the fact that

field mapping is only used as a calibration or a correction method without any diagnostic

information, the acquisition speed is even more important, which can be improved by

under-sampling. As stated above, variational modeling can be used to enforce a certain

spacial property of the reconstruction result, which is very beneficial especially in combi-

nation with under-sampling. Field variations are usually smooth in space which can be

enforced by proper regularization. According to accuracy, if field mapping is used i.e.,

for fat/water imaging to avoid fat/water swaps, an accurate field estimate is required. In

order to achieve that, variational modeling can be used to separate the frequency shift

induce by the chemical shift between water and fat and that one induce by the underlying

field distribution, without acquiring additional data. This is possible because the spatial

behavior of these two effects are different.

1.2 Contribution and Outline

Variational modeling is a widely used technique for many applications in computer vision.

Among others, it is used for image denoising [247], image deblurring [47] or image segmen-

tation [40]. As already mentioned, the main applications for variational modeling in MRI

are image denoising and to stabilize the solution for the reconstruction from undersampled

data. In this thesis, the application of variational modeling for Magnetic Resonance (MR)

field mapping is exploited according to several aspects. The main contribution of this

thesis is the development of a reconstruction algorithm, based on variational modeling, to

obtain highly accurate RF field maps (B+
1 mapping) from highly undersampled data using

the method of Bloch-Siegert (BS). The performance of this algorithm is investigated with

respect to its acceleration potential, the applicability of different undersampling patterns,

the use of different acquisitions sequences and the influence of very high field strengths,

i.e., 7 T. Another contribution is the application of variational modeling to obtain highly

accurate B0 field maps, for the separation of the signal contributions from fat and water.

The outline of this thesis is as follows: Chapter 2 starts with an overview of the prin-

ciples of MRI , and describes the contribution of the involved field to generate an Nuclear

Magnetic Resonance (NMR) signal in Section 2.1. The technical limitations in generating

homogeneous fields and the involved coils for both B0 and B1 fields, as well as the physical

principles of their interaction with matter and these additional influences on field homo-

geneity are considered in Sections 2.2 and 2.3. At the end of Chapter 2, different methods

and important aspects for the mapping of the B0 and B1 field are considered in Sections 2.4

and 2.5. In Chapter 3, the basics of MR image reconstruction from undersampled data

are reviewed. Furthermore, common regularization functionals which are used throughout

this thesis including their applicability in field mapping and suitable algorithms to solve

these optimization problems are described. Chapter 4 considers potential applications for
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field mapping, with special focus on the separation of fat and water signal contributions.

Here, the basic principles from the early beginning with the seminal work of Dixon [67],

over several improvements to current state of the art methods incorporating approaches

similar to variational modeling are reviewed in Section 4.1. In Section 4.2, some commonly

used model for qMRI are introduced to show their dependence on the flip angle and the

B+
1 field distribution. In Chapter 5, the contributions of this thesis to BS based B+

1

mapping and undersampled data acquisition is described. Section 5.1 describes a robust

data acquisition scheme for BS based B+
1 mapping to be robust against phase variations

during the acquisition. In Section 5.2, the reconstruction algorithm to obtain accurate

B+
1 field maps from highly undersampled data is described as well as its performance

for the application of different undersampling patterns. In Section 5.3, the combination

of undersampling and EPI readout is considered, and in Section 5.4, the application of

the reconstruction algorithm and its acceleration potential under the conditions of a field

strength of 7 T is investigated. In Chapter 6, a method to obtain a reliable B0 field map

for the separation of the fat and water contributions to the MRI signal based on TGV

regularization is introduced and Chapter 7 gives a summary of the outcome of this thesis

and gives a future outlook.



2
Physical Principles of Magnetic Resonance Imaging and Field

Mapping

Life is like riding a bicycle. To

keep your balance, you must

keep moving.

Albert Einstein
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In this chapter, the basic physical principles of Magnetic Resonance Imaging (MRI), from

the quantum mechanical point of view to a macroscopic signal description as a funda-

mental interaction with different kind of magnetic fields, are discussed. Furthermore, the

limitations in field homogeneity including technical and physiological origins of field distor-

tion for both the static magnetic field and the Radio Frequency (RF) field are described.

Furthermore, the technical methods to improve field homogenity are elaborated. At the

end of this chapter, different methods for mapping inhomogeneous field distributions are

considered.

2.1 Signal Generation and involved Fields

The signal in MRI , or more general Nuclear Magnetic Resonance (NMR), is the result of

the interaction of a nuclear quantum mechanical spin with an external magnetic field
#–

B0.

7
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In this section, the properties of the quantum mechanical nuclear spin and its behavior in

the presence of an external magnetic field are described. Moreover, a model to describe the

signal from a phenomenological point of view (classical description) is introduced. Thus,

in combination with relaxation, it gives the famous Bloch equations [27]. As an important

part in signal generation, the interaction of the nuclear spins with an on-resonant RF

field is described from a macroscopic point of view. Furthermore, the signal demodulation

during receive and the signal to noise behavior is considered. At the end of this section,

spatial signal encoding is described, in particular slice selective excitation and Fourier

encoding leading to the so called k-space. This section is mainly based on Haacke et al.

“Magnetic Resonance Imaging” [104].

2.1.1 Nuclear Spin

Subatomic particles such as electrons, protons, and neutrons have an angular momentum
#–

J , which is a quantum mechanical property and has contributions from the orbital motion
#–

L and the intrinsic spin
#–

S of a certain particle

#–

J =
#–

L +
#–

S . (2.1)

In NMR, the observed signal is only gained by an interaction with the nucleus, so that the

orbital contribution
#–

L to the total angular momentum
#–

J can be neglected or is identical

zero (
#–

L = 0) for the most important nuclei, leading to

#–

J =
#–

S . (2.2)

In an external magnetic field
#–

B0, the z-component µz of the magnetic moment #–µ (see

Eq. (2.6)) and therefore also the corresponding angular momentum Jz can only have

discrete values. The z-direction is given by the direction of
#–

B0. This behavior was first

shown in the famous experiment by Stern and Gerlach [91], where only two spots were

observed for the deflection of silver of a silver atom ray in an inhomogeneous magnetic

field. The z-component of the angular momentum Jz must be an integer or half integer

multiply mj of the Plank’s constant ~ = h/2π (h = 6.626 · 10−34 J s)

Jz = mj~. (2.3)

The factor mj , called the magnetic quantum number, can take 2j + 1 values according to

mj = −j,−j + 1, . . . , j − 1, j, (2.4)

where, j is the spin quantum number which can take positive integer and half integer

values. This means that the z-component of a nucleus with spin quantum number of

j = 1/2 can be aligned parallel (mj = +1/2) or antiparallel (mj = −1/2) to the external

field, as it is for the hydrogen nucleus. The total angular momentum is related to the
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Planck’s constant by

J =
√
j(j + 1) ~. (2.5)

The combination of an angular momentum with an electrical charge, which can be seen

as a circling current, results in a magnetic moment #–µ .
#–

J and #–µ are connected by a

proportionality constant γ (gyromagnetic ratio) which is specific for every nucleus or

particle
#–µ = γ

#–

J . (2.6)

The associated energy E of a magnetic moment #–µ in a magnetic field
#–

B0 is given by their

dot product and can be written by using Eqs. (2.3) and (2.6) as

E = − #–µ · #–

B0 = −γmj~B0. (2.7)

The energy difference ∆E between the two possible energy states is

∆E = E

(
mj = −1

2

)
− E

(
mj = +

1

2

)
=

1

2
γ~B0 −

(
−1

2
γ~B0

)
= ~ω0, (2.8)

which denotes that a transition from the parallel to the antiparallel state or vice versa is

equivalent by absorbing or emitting a photon with the angular frequency ω0, respectively.

This is visualized in Figure 2.1. The transition frequency ω0 is the well known Larmor

frequency, which is proportional to the magnitude of the external field B0 and is equivalent

to the precession frequency of #–µ derived from the classical model in Section 2.1.3 given as

ω0 = γB0. (2.9)

The most important nucleus in medical imaging is the 1H-nucleus, which consists of a

single proton with a gyromagnetic ratio of γ = 2π · 42.58 MHz T−1 and a spin quantum

number of j = 1/2. The high importance in MRI comes from the high gyromagnetic

ratio and more important the high concentration in human tissue (see Table 2.1). Not all

nuclei show magnetic resonance behavior, because, according to Pauli’s principle [228], the

nucleons (protons and neutrons) in a nucleus group with opposing sign in magnetic spin

quantum number, leading to a zero net magnetic moment. Only nuclei with an unpaired

magnetic moment can be “seen” in NMR. Beside the 1H nucleus, other NMR-nuclei in

human tissue exist, e.g. 23Na, 31P, 17O, and 19F, but their relevance is restricted to very

special applications which are far beyond the scope of this thesis. Their properties are

shown in Table 2.1. All further considerations are tailored to the 1H nucleus.

In general, also shell electrons show magnetic resonance behavior, called Electron Spin

Resonance (ESR), nevertheless, in medical imaging ESR is of no importance due to several

reasons e.g. the much higher frequency and the lower signal. This section is mainly based

on Haacke et al. “Magnetic Resonance Imaging” [104, Ch.5].
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Figure 2.1: Schematic representation of the Zeeman energy splitting for a j = 1/2 nucleus in

a magnetic field
#–

B0 and the direction of the corresponding magnetic moment #–µ z. The magnetic
moment parallel to

#–

B0 with mj = +1/2 has the lower energy. Figure inspired by Haacke et al.
“Magnetic Resonance Imaging” [104, p.71].

nucleus spin quantum number j γ in 2π·MHz T−1 av. concentration in human tissue

1H 1/2 42.58 88 M
23Na 3/2 11.27 80 mM
31P 1/2 17.25 75 mM
17O 5/2 -5.77 16 mM
19F 1/2 40.08 4 µM
13C 1/2 10.71 –
15N 1/2 -4.31 –

Table 2.1: Biologically relevant nuclei with their spin quantum number j, gyromagnetic ratio γ
and their average concentration in human tissue. Negative γ indicates that angular momentum

#–

J
and magnetic moment #–µ point in the opposite direction. Values are from Haacke et al. “Magnetic
Resonance Imaging” [104, p.27] and Westbrook et al. [319, p.5].

2.1.2 Macroscopic Magnetization and Boltzmann Distribution

In thermal equilibrium, the direction of the spins’ magnetic moments is arbitrarily dis-

tributed and macroscopically no net magnetization can be observed. In an external static

magnetic field
#–

B0, the nuclear magnetic moments #–µ undergo a partial alignment parallel

and antiparallel to the direction of
#–

B0 according to Eqs. (2.3) and (2.6). The energy for the

parallel orientation mj = +1/2 is lower than for the antiparallel orientation mj = −1/2

(Eq. (2.7)), so that the probability for the parallel state is slightly higher, which leads

to a macroscopic observable magnetization
# –

M0 along the field direction (see Figure 2.2).

The macroscopic magnetization is the sum over all nuclear magnetic moments inside the
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observed volume V normalized to it

# –

M =
1

V

∑
V

#–µ i. (2.10)

The probability for a certain spin to be either in +1/2 or in −1/2 state follows the

Boltzmann distribution

p± =
e±

γ~B0
2kT

e+
γ~B0
2kT + e−

γ~B0
2kT

, (2.11)

where k is the Boltzmann constant (k = 1.38·10−23J K−1) and T the absolute temperature

in K. Out of Eq. (2.11), the relation between the number of parallel N+1/2 and antiparallel

N−1/2 aligned spins is given by
N+1/2

N−1/2
= e

γ~B0
kT . (2.12)

With that and a 1st-order Taylor series expansion of the exponential function, the magni-

tude of the thermal equilibrium magnetization M0 is given by

M0 = ρ0
γ2~2B0

4kT
, (2.13)

where, ρ0 is the spin density (ρ0 = N/V ) with the total number of spins in a volume

N = N+1/2 + N−1/2. M0 is very important, because it is direct proportional to the

maximum available signal. However, the NMR signal is based on the quantum mechanical

property of a certain nucleus, the signal behavior can be described exactly by methods of

classical physics. In Hanson et al. [113], it is described why quantum mechanics is not

necessary to understand the signal behavior in MRI . In the next section, a model will

be derived arising from the mechanical equivalent, the gyroscopic equations. However,

the same equations can be derived as solution of the Schrödinger equation by using the

Hamiltonian operators. However, this topic is beyond the scope of this thesis, but for the

interested reader a detailed deviation is described in Haacke et al. “Magnetic Resonance

Imaging” [104, Ch.5, and 6].

2.1.3 Classical Description

In classical physics, every object carrying a magnetic moment #–µ (e.g. an electric current

flowing through a loop coil ( #–µ = IcAc
#–n)) tends to align the magnetic moment along the

direction of an external applied magnetic field
#–

B0. The generated torque
#–

D is proportional

to the crossproduct between magnetic moment #–µ and external field
#–

B

#–

D = #–µ × #–

B. (2.14)
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Figure 2.2: Without magnetic field the spin’s magnetic moments are arbitrarily orient so that
no net magnetization can be observed. Partial alignment of the magnetic moments and the higher
probability for the mj = +1/2 state lead to a net magnetization

# –

M0 it the direction of the magnetic

field
#–

B0.

Figure 2.3: In the classical description the magnetic moment of a spin behaves such as a gyro-
scope. The change of the magnetic moment due to the torque generated between

#–

B and #–µ leads
to a precession movement of the magnetic moment around the magnetic field direction. Figure
inspired by Haacke et al. “Magnetic Resonance Imaging” [104, p.29].

Any non-zero torque applied to a system results in a change of its angular momentum
#–

J

d
#–

J

dt
=

#–

D. (2.15)

Since
#–

J and #–µ are related to each other by Eq. (2.6), the following relation can be derived

by combining Eqs. (2.14) and (2.15)

d #–µ

dt
= γ #–µ × #–

B, (2.16)

which is the analogue to the gyroscopic equation. Out of this relation, where the time

derivative of a vector is given by a cross product involving itself, the change in #–µ is
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perpendicular to #–µ and
#–

B0 where the magnitude of #–µ stays unchanged. This leads to a

circular precession around the external field direction
#–

B, which is depicted in Figure 2.3.

Calculating the angular frequency of the precession out of Eq. (2.16) comes to the same

result as Eq. (2.9) derived from the energy level difference, the already described Larmor

frequency.

ω0 = γB0 (2.17)

The solution of Eq. (2.16) describes the precession of one single magnetic moment #–µ

around the
#–

B0 direction as

µx(t) = µx(0) cosω0t+ µy(0) sinω0t,

µy(t) = µy(0) cosω0t− µx(0) sinω0t,

µz(t) = µz(0),

(2.18)

with µx(t), µy(t) and µz(t) being the Cartesian components of #–µ . Eq. (2.18) can also be

written by using the rotation matrix Rz defined in the Appendix (see Eq. (A.12))

#–µ(t) = Rz(ω0t)
#–µ(0). (2.19)

Rather than using the magnetic moment of a single spin, which follows quantum me-

chanical rules (see Section 2.1.1), #–µ in Eq. (2.16) can be replaced by the macroscopic

magnetization
# –

M from Eq. (2.10) leading to

d
# –

M(t)

dt
= γ

# –

M(t)× #–

B(t), (2.20)

# –

M (0) =
# –

M0,

with the boundary condition that the magnetization at time point t = 0 is the thermal

equilibrium magnetization from Eq. (2.13), which is aligned to the external field. However,

the static magnetic field alone cannot create a measurable MRI signal, an additional time

varying RF field is necessary. The previous section is mainly based on Haacke et al.

“Magnetic Resonance Imaging” [104, Ch.2].

2.1.4 RF–Excitation and Rotating Coordinate System

To gain an MRI signal, the net magnetization
# –

M0 has to be deflected out of its thermal

equilibrium direction. For that purpose, an RF field (B+
1 ) is applied, whose frequency ω

has to be matched to the Larmor frequency ω0 of the nucleus of interest. This is where

the term “resonance” in NMR and MRI originates. If the resonance condition is fulfilled

(ω = ω0), the magnetization vector
# –

M is pushed down on a spiral path as depicted in
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a b

c d

Figure 2.4: Excitation by applying an RF field in the laboratory frame versus rotating frame for
the onresonant case (ω = ω0). (a) and (b) Excitation in the laboratory frame, the active component

of the
#–

B1 filed rotates in the transverse plane (x − y plane) and the magnetization vector
# –

M is
pushed downwards on a spiral path. The path is simulated for ω0 = 40ω1. (c) Magnetization
# –

M is rotating in the transverse plane with ω0 after excitation, producing a detectable signal. (d)

Excitation in the rotating frame, the coordinate system is rotating with ω0, such that
#–

B1 is oriented
along an axis of the transverse plane.

# –

M is moved downwards by a simple rotation with ω1. Figure
is inspired by Haacke et al. “Magnetic Resonance Imaging” [104, p.6 and 44].

Figure 2.4(a) and (b). For example, by applying an external field of the form of

#–

B(t) =

 B1(t) cosωt

−B1(t) sinωt

B0

 , (2.21)

with the circular polarized RF component rotating in the transverse (x − y) plane, the

magnetization vector
# –

M can be described by rewriting Eq. (2.20) leading to the following

differential equation

d
# –

M

dt
= γ

 MyB0 +MzB1 sinωt

MzB1 cosωt−MxB0

−MxB1 sinωt−MyB1 cosωt

 . (2.22)

However, Eq. (2.22) seems to be quite simple, it can only be solved numerically, because a

closed form solution does not exist. To simplify the equations, the magnetization behavior
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is usually described in a rotating coordinate system (rotating frame), which is rotating

around the z-axis of the corresponding static coordinate system (laboratory frame) with

the angular frequency ω of the incident RF field. In the rotating frame, the
#–

B+
1 field

vector stands still with a certain orientation in the transverse plane described by the

initial phase φ0. In the ideal onresonant case (ω = ω0), also the magnetization vector
# –

M

stands still, which means that the magnetization undergoes a simple rotation around the

applied
#–

B+
1 field with angular frequency ω1 = γB+

1 , as shown in Figure 2.4(d). Because

of the coordinate transformation from the laboratory frame to the rotating frame, the

effective field
#–

Beff has to be introduced which is defined by

#–

Beff =
#–

B −
#–ω

γ
, (2.23)

where #–ω is the direction of the coordinate system’s rotation (typically, the z-axis). For

the applied field in Eq. (2.21), this means that the z-component becomes zero, such that

the precession of
# –

M stops and the RF component is aligned along the x-axis

#–

Beff (t) =

 B1(t)

0

0

 . (2.24)

With that, the magnetization
# –

M will undergo a simple rotation around the x-axis in the

rotating frame. If B1(t) is constant over time,
# –

M can be described as follows

Mx(t) = Mx(0),

My(t) = My(0) cosω1t−Mz(0) sinω1t,

Mz(t) = −My(0) sinω1t+My(0) cosω1t.

(2.25)

Similar to Eq. (2.19), this can also be rewritten in vector/matrix notation with the rotation

matrix Rx defined in the Appendix (see Eq. (A.10))

# –

M(t) = Rx(ω1t)
# –

M(0). (2.26)

This means that a constant RF field B+
1 applied for a certain time Tp along an arbitrary

axis in the transverse plane of the rotating frame leads to a flip of the magnetization by

an angle α. The flip angle α is defined with respect to the z-axis and is given by

α = γB+
1 Tp. (2.27)

The B+
1 field is usually applied with a time varying magnitude B1(t) (RF envelop), the so

called RF pulse, where the changes in B1(t) are several orders of magnitude slower then
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ω. The resulting flip angle is given by

α = γ

∫ Tp

0
B+

1 (t)dt. (2.28)

However, in practice the onresonant case is nearly never fulfilled, so for ω 6= ω0, the more

general form of a rotation around the effective field, introduced in Eq. (2.23), must be

considered. For B+
1 along the x-axis of the rotating frame,

#–

Beff (t) is calculated by

#–

Beff (t) =

 B1(t)

0

B0 − ω
γ

 . (2.29)

In this case,
# –

M rotates around the direction of
#–

Beff with the angular frequency ωeff

ωeff = γBeff = γ

√(
B0 −

ω

γ

)2

+B2
1 =

√
(ω0 − ω)2 + ω2

1 , (2.30)

graphically visualized in Figure 2.5. The angle θ between
#–

Beff and the transverse plane

and is given by

θ = arccos

(
B0 − ω/γ

B1

)
. (2.31)

Assuming again that the B+
1 field is aligned with the x-axis in the rotating frame, the

behavior of
# –

M can be calculated by a coordinate transformation, where the whole coordi-

nate system is rotated by −θ such that
#–

Beff is in the transverse plane (along the x-axis

in this case). After the rotation around
#–

Beff , the coordinate system is rotated back into

the initial orientation.

# –

M(t) = Ry(θ)Rx(ωeff t)Ry(−θ)
# –

M(0) (2.32)

The process of tilting
# –

M is called excitation and leads to a coherent precession of the

transverse component of
# –

M with the Larmor frequency ω0 (see Figure 2.4(c)). The trans-

verse component of
# –

M , which is proportional to sin(α), induces measurable signal in an

external receive coil oriented perpendicular to the transverse plane. The rotation matrices

Rx, Ry, and Rz are defined in the Appendix (see Eqs. (A.10) to (A.12)).

2.1.4.1 Polarization of the B+
1 Field

Polarization refers to the oscillation direction of the RF field. Consider a linearly polarized

coil producing a
#–

B+
1 field along the x-axis of the laboratory frame given by

#–

Blin
1 (t) =

(
B1 cosωt

0

)
. (2.33)
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Figure 2.5: Excitation in the general case ω 6= ω0 in the rotating frame. The magnetization
vector

# –

M is rotating around an effective field
#–

Beff with ωeff , resulting as the vectorial sum of the

RF field
#–

B1 and the resonance offset ∆
#–

B0. Figure inspired by Haacke et al. “Magnetic Resonance
Imaging” [104, p.47].

Mathematically, this can be separated into two circularly polarized fields with clockwise
#–

Bcw
1 (t) and counterclockwise

#–

Bccw
1 (t) rotation with half the magnitude, given as

#–

Blin
1 (t) =

1

2

(
#–

Bcw
1 (t) +

#–

Bccw
1 (t)

)
=

1

2

[(
B1 cosωt

B1 sinωt

)
+

(
B1 cosωt

−B1 sinωt

)]
. (2.34)

With the representation in the rotating frame, it is obvious that only the component rotat-

ing in the same direction as the precession of the magnetization vector
# –

M (the clockwise

direction) has a tilting contribution. So in this case, half the energy of the transmit coil

is dissipated in the tissue without any active contribution. However, the counterclock-

wise part also contributes in tissue heating, leading to twice the Specific Absorption Rate

(SAR). The SAR is a measure how much energy is dissipated in the subject per unit body

mass (see Section 2.3.4). Instead of a linear polarized field, usually, a clockwise circularly

polarized RF field
#–

Bcw
1 (t) is used for MRI excitation. This can be reached by applying

two linear polarized fields which are phase shifted by 90◦ and applied perpendicular to

each other. It can be realized using a birdcage coil, where only the clockwise circularly

polarized field
#–

Bcw
1 is generated.

#–

Bcw
1 (t) =

(
B1 cosωt

−B1 sinωt

)
(2.35)

The whole previous section (Section 2.1.4) is mainly based on Haacke et al. “Magnetic

Resonance Imaging” [104, Ch.3].
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2.1.5 Relaxation and Bloch-Equations

To fully describe the magnetization behavior, the term relaxation must also be introduced.

After tilting the magnetization
# –

M out of its equilibrium direction by an RF field,
# –

M

precesses around the main field direction in the transverse plane, leading to a measurable

signal. Of course, this signal is not present forever,
# –

M tends to reach thermal equilibrium

again which is called relaxation. There are two independent relaxation phenomena, the

longitudinal (T1) relaxation and the transversal (T2) relaxation, where both phenomena

are induced by an interaction of the nuclear spin with its surrounding.

2.1.5.1 Longitudinal Relaxation T1

The longitudinal relaxation is induced by random thermal fluctuations in the surrounding

lattice (Brown’s molecular movement), leading to an energy exchange between the nuclear

spin and the lattice. Coincidentally, the frequency of the thermal fluctuations match the

Larmor frequency of the nuclear spin, leading to a photon exchange and a state change

from mj = −1/2 to mj = 1/2 or vice versa. In thermal equilibrium, the probability for

both quantum state changes are equal, so macroscopically no change can be observed.

After an RF excitation, of course, the transition from mj = −1/2 to mj = 1/2 is more

likely until the thermal equilibrium is reached again. The quantum mechanical descrip-

tion of relaxation is very complicated and not necessary to describe the macroscopic signal

evolution in MRI , so a phenomenological description is preferred. The longitudinal relax-

ation is described by a constant growth rate of the longitudinal magnetization Mz with

an empirically determined time constant T1, leading to

dMz

dt
=

1

T1
(M0 −Mz). (2.36)

The solution of Eq. (2.36) leads to the well known monoexponential T1 relaxation relation

with the time course shown in Figure 2.6(a)

Mz(t) = Mz(t0)e
− t−t0

T1 +M0

(
1− e−

t−t0
T1

)
. (2.37)

2.1.5.2 Transverse Relaxation T2

The transverse relaxation is induced by spin - spin interactions without an energy ex-

change. The magnetic field produced by each nuclear spin overlays with the external

static magnetic field
#–

B0, influencing the precession frequency of other spins near by, so

that the precession frequency of each spin is slightly different. This difference leads to

a constant dephasing of the coherent precession in the transverse plane. Due to thermal

fluctuations, the spin-spin interaction is an irreversible random process and ones the signal

is lost due to dephasing, it cannot be recovered again. The transverse relaxation is also
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Figure 2.6: Magnetization time course for longitudinal (a) and transverse relaxation (b) with
initial slope, simulated for T1 = 1000 ms and T2 = 80 ms.

described by a constant decay rate and the empirically determined time constant T2

dMxy

dt
= − 1

T2
Mxy. (2.38)

The solution of Eq. (2.38) leads to the well known exponential T2 decay with the time

course shown in Figure 2.6(b)

Mxy(t) = Mxy(0)e
− t
T2 . (2.39)

Besides the dephasing introduced by the spin-spin interaction, there is an additional de-

phasing phenomenon induced by an inhomogeneous B0 field distribution in a certain voxel,

which is constant in time. This additional signal loss is described by an additional time

constant T ′2. In combination, the total signal loss can be described by replacing T2 in

Eqs. (2.38) and (2.39) with

T ∗2 =
1

1

T2
+

1

T ′2

. (2.40)

In contrast to pure T2 relaxation, this additional dephasing can be recovered with a refocus-

ing pulse in a spin echo sequence, because the causing inhomogeneities are time constant.

For more details see Section 2.2.3.3. By combining Eqs. (2.20), (2.36) and (2.38), we get

a differential equation for the full description of the magnetization behavior

d
# –

M(t)

dt
= γ

# –

M(t)× #–

B(t) +

 − 1
T2
Mx

− 1
T2
My

1
T1

(M0 −Mz)

 , (2.41)
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the famous Bloch equations [26]. The solution for the Bloch equation in the laboratory

frame where only the static magnetic field
#–

B0 along the z-direction is applied is given by

Mx(t) = e
− t
T2 (Mx(0) cosω0t+My(0) sinω0t) ,

My(t) = e
− t
T2 (My(0) cosω0t−Mx(0) sinω0t) ,

Mz(t) = Mz(0)e
− t
T1 +M0

(
1− e−

t
T1

)
.

(2.42)

The information in this section is mainly based on Haacke et al. “Magnetic Resonance

Imaging” [104, Ch.4].

2.1.6 Receiving Signal and SNR

After applying a 90◦ excitation pulse, the whole magnetization M0 is flipped to the trans-

verse plane, starting a coherent precession according to Eq. (2.42). This precessing move-

ment induces a voltage uc(t) in a receive coil oriented perpendicular to the transverse

plane, which is proportional to the flux through it, given as

uc(t) ∝ −
d

dt

∫
V

# –

M( #–r , t)
#–

B−1 ( #–r )d3r. (2.43)

Here,
#–

B−1 ( #–r ) is the sensitivity profile of the receive coil (receive field), which is given as

the field which would be produced at spatial point #–r for a unit current flowing through

the coil. Further description is given in Section 2.3. If all quantities inside the integral are

assumed to be constant in space, the signal can be rewritten with the sample volume Vs
and an arbitrary flip angle α as

uc(t) ∝ ω0M0 sin(α)B−1 Vs sin(ω0t+ φ0). (2.44)

The received signal is further quadratur demodulated with angular frequency ω of the in-

cident RF field during excitation. For the demodulation, two orthogonal reference signals

are used, sin(ωt) and − cos(ωt), leading to a complex signal s(t) describing the magneti-

zation behavior in the rotating frame. The double frequency component arising from the

demodulation is filtered out, such that the signals after demodulation for both channels

s1(t) and s2(t) are given by

s1(t) ∝ sin(ω0t+ φ0) · sin(ωt) ⇒ 1

2
cos (∆ωt+ φ0) = <(s(t)),

s2(t) ∝ sin(ω0t+ φ0) · (− cos(ωt)) ⇒ 1

2
sin (∆ωt+ φ0) = =(s(t)),

(2.45)

with ∆ω = ω0 − ω. Furthermore, s1 and s2 can be seen as real and imaginary part of the

complex signal s(t)

s(t) = s1(t) + is2(t). (2.46)
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After spacial encoding (see Section 2.1.7) and assuming that all quantities under the

integral in Eq. (2.43) are at least constant over the voxel dimensions, Vs in Eq. (2.44) can

be replaced with the voxel volume Vvox and uc(t) by the voxel signal Svox( #–r , t).

Svox( #–r , t) ∝ ω0( #–r )M0( #–r ) sin(α( #–r ))B−1 ( #–r )Vvox sin(ω0( #–r )t+ φ0( #–r )). (2.47)

According to Eqs. (2.13), (2.17) and (2.44), the signal s(t) is proportional to the squared

main field strength (s(t) ∝ B2
0), because ω0 and M0 in Eq. (2.44) is proportional to B0.

Furthermore, according to Eq. (2.47), the signal is also proportional to the voxel volume.

This means, by reducing the dimension ∆x of an isotropic voxel with a constant factor a,

the voxel signal Svox reduces with 1/a3.

As any other signal, the MRI signal is also corrupted with noise, where 3 main sources

can be identified: the thermal noise in the receiving coil and the following electronic circuits

arising from charge fluctuations due to thermal motion, as well as the thermal fluctuations

in the tissue of the subject contribute to the total noise. In general, the standard deviation

of the noise in the measured signal σmeas is given by

σmeas =
√

4kT∆fBWReff , (2.48)

where ∆fBW is the measurement bandwidth according to Eq. (2.67) and Reff is the effective

resistance. Because all contributions are Gaussian distributed and statistically indepen-

dent, the variances of each can be summed up and therefore also the corresponding noise

resistances

Reff(ω) = Rcoil(ω) +Relectronics(ω) +Rbody(ω). (2.49)

Typically, the noise resistance contributions depend on the operation frequency ω and

therefore they are also field strength dependent. The contribution from the coil and the

electronics depend marginally on the frequency; and at very low frequencies, these sources

dominate the total noise. At clinically relevant field strength, the noise is highly dominated

by the contribution of the body, the coil load. Rbody highly depends on the frequency

(Rbody ∝ ω2), so that the noise is proportional to ω (Eq. (2.48)). The consequence of this

is that the Signal-to-Noise Ratio (SNR) only increases linearly with the field strength and

not quadratically as it might be assumed at the first glance

SNR ∝ B0. (2.50)

Generally, when using multiple receive coils, the noise standard deviations σmeas,n of each

receive coil n ∈ [1, Nc] are different and can be correlated due to inductive coupling. To

account for this, the noise correlation matrix Ψ is introduced, which can be determined

out of noise samples ηn for each channel by

Ψk,l =
1

Nnoise
〈ηk, ηl〉, (2.51)
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where 〈·〉 defines the scalar product. Eq. (2.51) is only valid if a sufficient number of noise

samples Nnoise is available, and as a rule of thumb Nnoise ≥ 105. The noise samples for

each channel ηi can be acquired, by data sampling without previous excitation. The noise

variances σ2
meas,n of each channel are the diagonal elements of Ψ. This section is mainly

based on Haacke et al. “Magnetic Resonance Imaging” [104, Ch.7 and 15].

2.1.7 Spatial Encoding

According to Eq. (2.17), the precesssion frequency and with that the signal frequency

depends on the static magnetic field strength B0. To encode the signal according to its

spatial origin, typically an additional linearly varying field along either the x, y or z axis is

applied, which is called gradient field Gx, Gy or Gz respectively. It is important to mention

that only the z-component of the field varies linearly along the specified direction, leading

to the following relation for the z-component of the local magnetic field strength

Bz = B0 +Gxx+Gyy +Gzz. (2.52)

The coordinates x, y and z are referred to the laboratory frame. Typical maximum gra-

dient field strengths in human imaging are < 100 mT m−1. In MRI , we can basically

distinguish between two types of spatial encoding with gradients, the slice selective exci-

tation and the Fourier encoding in k-space.

2.1.7.1 Slice Selective Excitation

In 2D-imaging, the excitation of a well delimited slice is very important. For that purpose,

a gradient field Gz along the z-axis is applied. According to Eq. (2.52), this leads to a

variation of the resonance frequency ω(z) in the laboratory frame given by

ω(z) = ω0 + γGzz. (2.53)

Transferring Eq. (2.53) to the rotating frame the effective frequency variation ω′(z) reduces

to

ω′(z) = γGzz. (2.54)

By applying an RF pulse with a time varying envelope B+
1 (t), modulated to the center

frequency ω = ω0 and with a duration Tp, the magnetization behavior in every point

along the z-direction can be described by Eqs. (2.30) to (2.32). The envelop function

B+
1 (t) defines the bandwidth of the RF pulse and with that the shape of the excited

slice, the slice profile. The slice thickness is determined by the bandwidth of the pulse in

combination with the magnitude of gradient Gz and is usually defined as the Full Width

Half Maximum (FWHM) of the slice profile. This is visualized in Figure 2.7. According
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to Eq. (2.23), the effective field
#–

Beff (t) in the rotating frame is given as

#–

Beff (t) =

 B1(t)

0

γGzz

 . (2.55)

By introducing the complex transverse magnetization M⊥,

M⊥ = Mx + iMy, (2.56)

and using Eq. (2.20), the transverse magnetization in the rotating frame along the slice

direction (z-axis) can be described by

M⊥(t, z) = iγe−iγGzzt
∫ t

0
Mz(τ)B1(τ)eiγGzzτdτ. (2.57)

Under the assumption that Mz is time independent (Mz(t) = M0), M⊥ along the slice

direction at the end of the pulse (at time point Tp) can be described by

M⊥(Tp, z) ≈ iγM0e
−iγGzz

Tp
2

Tp
2∫

−Tp
2

B1(τ)eiγGzzτdτ = F−1{B1(t)}. (2.58)

Using γGzz = ∆ω, it can be seen that this is the inverse Fourier transform of the applied

RF envelope, which is known as the small flip angle approximation valid for flip angles

α ≤ 30◦. For higher flip angles, the magnetization profile must be calculated numerically

for every spatial point in z-direction and for every time point of the RF envelop B+
1 (t) by

using Eqs. (2.31) and (2.32). Furthermore, an additional gradient pulse has to be applied

after the excitation, typically with half the gradient moment and opposite polarity as the

slice selective gradient for symmetric RF pulses. This is necessary to compensate the

accumulated phase in Eqs. (2.57) and (2.58), in order to prevent a dephasing along the

slice. This section is mainly based on [18, Ch.3] and [104, Ch.10].

2.1.7.2 Fourier Encoding and k-space

After the excitation of a single slice, the gained signal must be spatially encoded as well.

Thus, gradient fields perpendicular to the slice selection direction are used. According to

Eq. (2.18), the magnetization vector
# –

M is rotating in the transverse plane with the angular

frequency ω0 in the laboratory frame. If ω = ω0, the magnetization vector
# –

M stands still

in the rotating frame, with a certain orientation φ0 gained from the RF excitation. For

the moment, let us assume φ0 = 0 by rotating the coordinate system such that
# –

M is

aligned with the x-axis. By applying a time constant gradient field along the x-axis, the
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Figure 2.7: Influence of the slice selective gradient strength Gz and pulse bandwidth ∆f on the
slice thickness ∆z. (a) Slice thickness for different gradient strengths and constant bandwidth. (b)
Simulated slice profile for a 6 ms Hanning filtered sinc shaped RF pulse for a gradient strength of
Gz = 20 mT m−1 using the small flip angle approximation.

frequency distribution is given as

ω(x) = γGxx. (2.59)

Again, by using the complex transverse magnetization M⊥(x, y) depending on the spatial

location (x, y) in the transverse plane, the signal s(t) can be written by using kx = γGxt

s(t) =

∫
M⊥(x, y)e−iγGxxtdxdy =

∫
M⊥(x, y)e−ikxxdxdy. (2.60)

This is called frequency encoding, because the resonance frequency is varying linearly

along the x-direction. The relation in Eq. (2.60) shows that the measured signal is the one

dimensional Fourier transform of the magnetization along the x-direction with the spatial

frequency kx. With that the spatial contributions to the signal can be resolved at least in

one direction. To reach a spatial encoding in the second direction (here, y-direction) as

well, an additional linear gradient field along the y-direction is applied for a certain time

TGy between excitation and readout, leading to an additional spatial dependent phase

term, which is called phase encoding. After one excitation, only one phase encoding step

can be measured, so that this experiment has to be repeated until the whole k-space is

acquired. With that the signal formula can be extended by

s(t) =

∫
M⊥(x, y)e−iγGxxte−iγGyyTGy dxdy. (2.61)

By using the more general form of the spatial frequencies kx and ky for time varying

gradient fields Gx(t) and Gy(t), which reduce to a simple multiplication if the gradients
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are constant in time

kx = γ

∫ t

0
Gx(τ)dτ = γGxt,

ky = γ

∫ TGy

0
Gy(τ)dτ = γGyTGy ,

(2.62)

the signal can be written in terms of kx and ky

s(kx, ky) =

∫
M⊥(x, y)e−ikxxe−ikyydxdy. (2.63)

This is the origin of the famous name k-space, the MRI data space. The measured signal

is given by the 2D-Fourier transform of the complex transverse magnetization M⊥, which

is proportional to the actual image of interest. Because the Magnetic Resonance (MR)

signal is sampled at discrete points in k-space, where a number of Nx and Ny samples are

acquired in kx and ky direction respectively, Eq. (2.63) has to be discretized leading to the

2-dimensional Discrete Fourier Transform (DFT)

s(lx∆kx, ly∆ky) = F {M⊥(mx∆x,my∆y)} =

Nx
2
−1∑

mx=−Nx
2

Ny
2
−1∑

my=−Ny
2

M⊥(mx∆x,my∆y)e−ilx∆kxmx∆xe−ily∆kymy∆y∆x∆y.
(2.64)

This can be described as linear time invariant operator, the discrete 2D-Fourier operator

F . Based on Eq. (2.64), the image can be reconstructed by applying the inverse linear

discrete 2D-Fourier operator F−1 to the acquired k-space. The resolution in k-space ∆kx
and ∆ky is given by the dwell time of the sampling system ∆t in the the frequency encoding

direction and the difference in the gradient strength ∆Gy from one phase encoding step

to the other in the phase encoding direction

∆kx = γGx∆t,

∆ky = γ∆GyTGy .
(2.65)

The image resolution ∆x and ∆y and the Field of View (FOV) in both spatial directions

x and y are related to the k-space resolution ∆kx and ∆ky; and the maximum acquired

k-space frequency kx,max and ky,max by

∆x =
1

Nx∆kx
=

1

2kx,max
, ∆y =

1

Ny∆ky
=

1

2ky,max
,

FOVx = Nx∆x =
1

∆kx
, FOVy = Ny∆y =

1

∆ky
.

(2.66)

This concept is schematically visualized for a Spin Echo (SE) sequence in Figure 2.9 and

for a Gradient Recalled Echo (GRE) sequence in Figure 2.8. The readout bandwidth ∆f
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is determined by the magnitude of the readout gradient Gx by

∆fBW = γGx∆x =
1

∆t
. (2.67)

In Section 2.1.8 three basic sequences to cover the k-space are described. This concept can

be easily extended by a second phase encoding direction for 3D acquisition. This section

is mainly based on Haacke et al. “Magnetic Resonance Imaging” [104, Ch.9 and 10] and

Bernstein et al. “Handbook of MRI pulse sequences” [18, Ch.8].

2.1.8 Imaging Sequences

In this section, three basic sequences to cover the k-space are described: the GRE , the

SE and the Echo Planar Imaging (EPI) sequence. The description includes the applied

RF and gradient objects and the corresponding k-space trajectory.

2.1.8.1 Gradient Echo Sequence (GRE)

The simplest sequence to acquire MR data in k-space is the GRE sequence, with its se-

quence diagram and the corresponding k-space trajectory shown in Figure 2.8. It consists

of an excitation RF pulse with arbitrary flip angle α and a corresponding slice selec-

tive gradient, according to Sections 2.1.4 and 2.1.7.1. To acquire a symmetric echo, a

prephasing gradient in read direction is necessary with half the gradient moment (area)

and opposite polarity of the actual read out gradient. After the excitation, all spins

perform a coherent precession, which corresponds to the central k-space position ((1) in

Figure 2.8). The prephasing corresponds to a movement to the left margin of the k-space

((2) in Figure 2.8). The phase encoding gradient is necessary to perform a phase encoding

according to Eq. (2.62), leading to a movement in vertical direction in k-space ((2)-(3)

in Figure 2.8). Magnitude and timing of the readout gradient determine the echo time,

where a Free Induction Decay (FID) echo is recalled at the center of the readout gradient,

when the prephasing gradient moment is compensated ((4) in Figure 2.8). The magnitude

of the readout gradient determines the velocity traveling in kx direction and with that

the readout bandwidth according to Eq. (2.67) in Hz/pix. The signal for GRE sequences

decays with T ∗2 .

2.1.8.2 Spin Echo Sequence (SE)

The SE sequence also starts with a slice selective excitation pulse with a typical flip angle

of α = 90◦. Compared to GRE , in the SE sequence an additional RF pulse is applied

after TE/2, the so called refocusing pulse, with a typical flip angle of β = 180◦. Due to

this 180◦ flip, all dephasing induced by time constant field inhomogeneities inside a voxel,

can be recovered at echo time TE, so that the signal at TE decays with T2 rather than

T ∗2 . To reach the maximum signal, the center of the readout gradient has to be exactly at
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Figure 2.8: (Left): Sample sequence diagram for a GRE sequence showing RF, and the gradients
in slice selection, phase and frequency encoding (read) direction. (Right): Corresponding k-space
trajectory. Numbers from 1 to 4 indicate prominent points in the sequence diagram and the corre-
sponding position in k-space. The sample trajectory for one TR and the corresponding gradients
are highlighted in red.
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Figure 2.9: (Left): Sample sequence diagram for a SE sequence showing RF, and the gradients
in slice selection, phase and frequency encoding (read) direction. (Right): Corresponding k-space
trajectory. Numbers from 1 to 5 indicate prominent points in the sequence diagram and the corre-
sponding position in k-space. The sample trajectory for one TR and the corresponding gradients
are highlighted in red.

TE, otherwise additional T ∗2 decay is present. The prephasing gradient is usually applied

before the refocusing pulse, so that it has the same polarity as the readout gradient,

because the acquired phase is reversed by the refocusing pulse ((2)-(3) in Figure 2.9). The



28 Chapter 2. Physical Principles of Magnetic Resonance Imaging and Field Mapping

t

t

t

t

RF

Slice

Phase

Read

Figure 2.10: (Left): Sample sequence diagram for a EPI sequence showing RF, and the gradients
in slice selection, phase and frequency encoding (read) direction. (Right): Corresponding k-space
trajectory. The sample trajectory for the first four echos and the corresponding gradients are
highlighted in red.

phase encoding gradient can be applied before or after the refocusing pulse. In general,

the SE sequence has a higher signal depending on the T2 to T ∗2 , but a longer minimum TE

and an increased SAR due to the additional RF pulse. The sequence diagram is shown in

Figure 2.9.

2.1.8.3 Echo Planar Imaging (EPI)

The EPI sequence is one of the fastest acquisition strategies in MRI , where the whole

k-space data is acquired after a single excitation pulse. This is achieved by periodically

inverting the polarity of the readout gradient, so that the signal gets refocused multiple

times. The phase encoding is changed from line to line by a small gradient blip during the

readout gradient slope. To reach the edges of k-space, a prephasing gradient is applied

in phase and readout direction directly before the readout train begins. Due to the long

readout train, this sequence is very prone to artifacts due to offresonances, timing errors,

relaxation, and other hardware imperfections which can be corrected to a certain degree.

The sequence diagram is shown in Figure 2.10.



2.2. Homogeneity Limitations of the B0 Field 29

2.2 Homogeneity Limitations of the B0 Field

In this section, all aspects concerning static magnetic field homogeneity/inhomogeneity

are considered. This includes the generation of the magnetic field with the involved coils

and the the technical limitations. Furthermore, the influence of matter on the magnetic

field is considered, which is described by the material dependent magnetic susceptibility χ.

The shape of an object inside a magnetic field has a strong influence on the field inside and

outside the object as well, described by the concept of a demagnetization factor, which is

also considered on the example of ellipsoids of revolution. The influence of inhomogeneities

in the B0 field strength on the signal is described, as well as its spatial behavior. This

section ends by a description of active shimming, a method to dynamically improve the

field homogeneity in a certain volume.

2.2.1 Field Generation – Technical Limits of Homogeneity

In the early days of MRI , the static magnetic field was generated with permanent magnets

or resistive coils at room temperature. With these settings, only a low degree of spatial

homogeneity can be reached, and the thermal and temporal field stabilities are quite low.

Furthermore, these systems are restricted to quite low field strength < 500 mT. Except

some few applications such as Fast Field Cycling (FFC), where the B0 field strength is

changed during the acquisition [30, 43], today, the
#–

B0 field is generated by a supercon-

ducting magnet lying at temperature of liquid helium (≈ 4 K) in nearly every clinically

relevant case. It is already a huge technical effort, to generate a magnetic field of 1.5 T in

air in dimensions that a human can be investigated. The necessary effort increases with

field strength, so that only one company exists world wide producing commercial systems

at 7 T, which can be used clinically. The effort producing a magnet with this field strength

fulfilling the homogeneity requirements to perform magnetic resonance imaging increases

further. Even though, the magnets are quite big and heavy, there only exist a very small

spherical volume in the center of the bore of about 45 cm in diameter with a peak to

peak homogeneity < 5 ppm, the so called iso-center. The temporal field stability of such a

magnet is about < 0.05 ppm/h [120, Part I., Ch.1]. For a 3 T magnet, this means that the

static field inside this region does not deviate more than ≈ ±7.5 µT, this range is about

one third of the earth magnetic field of about 48 µT. However, outside this investigation

region, the homogeneity decreases rapidly. To reach such values, a careful coil design

with several superconducting coils in perfect geometrical orientation is required. This also

includes the active shield coils reducing the magnetic field outside the bore. The field gen-

erated by each coil has to fulfill the Maxwell’s equations (Eq. (2.89)) for the magnetostatic

case, in particular the Biot-Savart’s law, described later (Eq. (2.87)). The simplest config-

uration to produce a homogeneous field is between two parallel oriented coils, placed in a

distance equal to their diameter (Helmholtz configuration). Beside that, also the magnetic

properties of the whole housing, including the cyrostat, and all mounting devices, which
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mostly consist of stainless steal, must be considered in magnet design in order to produce

such a homogeneous field. However, manufacturing tolerances occur during the produc-

tion process, leading to a certain deviation of the expected main field homogeneity. These

deviations have to be corrected individually after the system setup, which is called passive

or active shimming. Passive shimming is performed by placing ferromagnetic objects (e.g.

iron plates) at a certain position, which influences the main field in a way to improve its

homogeneity. Active shimming is done by additional shim coils, which are usually able to

correct inhomogeneities up to 2nd order spherical harmonics, where their default currents

are determined during set up, which is called ”Tune-Up”. Furthermore, the shim currents

are adapted before each measurement to compensate patient induced field distortions (for

more details, see Section 2.2.5). Also, the dimensions of the magnet itself influence the

homogeneity inside. In recent years, manufactures tried to reduce the magnet dimensions,

to reduce the required space in clinics, and to increase the size of the bore diameter (e.g.

70 cm) to increase patient comfort. In both cases, in general, the homogeneity suffers and

also shimming gets more difficult.

Even though, these methods allow to build magnets with already impressive homo-

geneity, but for many applications in MRI this is still not sufficient. For the separation

of fat and water signals [67], which lie 3.5 ppm apart, the deviation of ≈ 5 ppm is already

to much. Therefore, an additional field mapping is required to correct its influence. This

section is based mainly on Hennig et al. “High-Field MR Imaging” [120, Part I., Ch.1].

2.2.2 Influence of Matter on the Magnetic Field Homogeneity

Beside the technical influences on the field homogeneity caused by hardware imperfections

(see Section 2.2.1), the human body itself leads to a distortion of the magnetic field.

These “body”-induced distortions are usually much more local and dominate the overall

inhomogeneity for in-vivo applications. Of course, the patient induced distortions vary

from subject to subject, and hence, the currents in the shim coils have to be adjusted before

each scan, to maximize the homogeneity in the specific volume of interest. As already

mentioned, global shim coils are usually able to produce spherical harmonic correction

fields of up to 2nd order, nevertheless, the shim capability for local distortions is limited.

Today huge improvements are achieved by using local shim coils integrated, e.g., in the

head coil, which are much better suited to correct these local variations.

The influence of matter on the magnetic field homogeneity can be separated into two

different contributions: the first contribution arises form the magnetization behavior which

is specific for a certain material and can be described by the magnetic susceptibility χ. The

second contribution arises from the object’s shape, leading to a so called demagnetization

field inside the object counteracting the externally applied field, if the susceptibility inside

differs from that outside the object. This can be described by the demagnetization factor

ξ for specific object shapes.
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Figure 2.11: The general magnetic material behavior is described by the magnetic susceptibility
χ. In paramagnetic materials χ > 0 the field strength inside increases, so that the field lines
are “pulled” into the material. In diamagnetic materials the field lines are “pushed” out of the
material, leading to a reduced field strength inside.

2.2.2.1 Material dependent Influence – Magnetic Susceptibility χ

The main reason for patient induced field distortions is a variation in the magnetic suscep-

tibility between different kind of tissues. The most severe distortions occur at air/tissue

interfaces, where air chambers inside the body (e.g. nasal sinuses or the lung) are most

problematic. The magnetic susceptibility χ describes the interaction of matter with the

external magnetic field (see Figure 2.11), where χ theoretically can have values in the range

of χ = [−1,+∞). In MRI , the magnetic field strength is referred to the
#–

B field, which

is actually called magnetic flux density or magnetic induction in electrodynamics. To

account for the material behavior, an additional field (the
#–

H field) is introduced, which

is referred to as magnetic field strength in electrodynamics. In vacuum both fields are

proportional to each other by the permeability constant µ0 = 1.256637 · 10−6V s A−1 m−1

#–

B = µ0
#–

H. (2.68)

If matter is placed in the field, it gets magnetized, where the gained magnetization
# –

M acts

back onto the external field. The dimensionless susceptibility χ describes the magnetiz-

ability of the matter according to the
#–

H field

# –

M = χ
#–

H. (2.69)

Using Eqs. (2.68) and (2.69), the
#–

B-field can be written as

#–

B = µ0(
#–

H +
# –

M) = µ0(1 + χ)
#–

H = µ0µr
#–

H, (2.70)
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with the relative permeability µr given as µr = (1 +χ). χ is not necessarily a scalar value,

in non-isotropic media it can also have the form of a tensor, meaning that
#–

B and
#–

H are

pointing in different directions. It was shown by Li et al. [182] that human brain tissue

shows slight anisotropic behavior, but in general, χ is assumed to be scalar in MRI . In

general, we can distinguish between three kinds of behavior:

• Diamagnetic materials (χ < 0): The orbiting electrons in diamagnetic atoms can

be seen as circular currents in the classical description. This circular currents are

influenced by induction according to Lenz’s law, so that they counteract the external

field. This means, the magnetic field is reduced inside diamagnetic materials, which

can be visualized by “pushing” the field lines out of the material. The perfect

diamagnetic material is a superconductor (χ = −1), where the field inside is perfectly

canceled. Diamagnetism is present in every material.

• Paramagnetic materials (χ > 0): Similar to the nuclear spin (see Section 2.1.1),

the electron has also a magnetic moment due to its quantum mechanic angular mo-

mentum which is responsible for the paramagnetic behavior. If the atom has an

uncompensated magnetic moment, it is partially aligned with the direction of the

external field, leading to an amplification of the field inside. The magnetic moment

of the nucleus can be neglected in this consideration, since the magnitude is lower by

three orders and hence the contribution to paramagnetism can be neglected. Para-

magnetism usually dominates over the diamagnetic effect, which is always present.

• Ferromagnetic materials (χ � 0): In ferromagnetic materials, a strong orien-

tational alignment of the atomic magnetic moments occur, leading to a massive

amplification of the external field and magnetization can be present even without

an external field. The susceptibility values are in a range of χ ≈ 103 . . . 106, showing

strong saturation at higher field strength. Due to the high level of magnetization,

the force acting on objects containing ferromagnetic materials is very high. Thus,

due to safety, objects containing such materials should never be inside the magnet

room. Besides safety, the only relevance of ferromagnetic materials in MRI is passive

shimming.

Magnetic susceptibility spans a range over more than 6 orders of magnitude, but

most biological tissues are slightly diamagnetic with susceptibility values in the range

of χtissue = −11 . . .−7 ppm. This is approximately in a range of ±20 % around the

susceptibility of water (χH2O = −9.053 ppm at 37 ◦C) [253]. There are only a few

exceptions in biological tissue which are paramagnetic, mostly molecules containing iron,

such as hemoglobin for the oxygen transport in red blood cells, and ferritin which is

mostly stored in brain and liver tissue. For example, hemoglobin is only paramagnetic

in the deoxygenated form, however, even in venous blood the diamagnetic behavior of

water and proteins is dominant. Air is also slightly paramagnetic χAir = 0.36 ppm,

which is responsible for comparable strong field distortions at air/tissue interfaces.
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Material Mass Density ρ Susceptibility χ
kg m−3 ppm

Stearic Acid (Lipid) – -10.0
Iron free Hemoglobin – -9.91
Water (37 ◦C) 993.35 -9.053
Blood Plasma 1027 -9.05
Water (20 ◦C) 998.23 -9.032
Human Tissues ≈ 1000 . . . 1050 ≈ −11.0 . . .− 7.0
Cortical Bone – -8.86
Whole Blood (deoxygenated) 1057 -7.9
Red Blood Cell (deoxygenated) 1093 -6.52
Liver (severe iron overload) – ≈ 0.0
Vacuum 0 0
Hemoglobin Molecule (deoxygenated) 1335 +0.15
Air 1.29 +0.36
Ferritin 1494 520

Table 2.2: Magnetic susceptibility χ and the corresponding density ρ for some biological tissues
and biological relevant materials in MRI according to Schenck [252] and Schenck [253].

Typical values for biological relevant materials are given in Table 2.2. In daily life and

also in most common technical applications, the susceptibility of non-ferromagnetic

materials (including biological tissue) is so low (a few ppm), that it normally cannot be

distinguished from vacuum; and hence, such materials are referred to as non-magnetic.

Also when considering the RF field (see Section 2.3), the susceptibility is usually

neglected by using µr ≈ 1 or χ ≈ 0. However, for the consideration of the static magnetic

field homogeneity, the susceptibility of the involved materials plays a central role, because

of the very high homogeneity requirements in MRI . If an object consists of a material

with a certain susceptibility χ, is brought into a magnetic field
#–

B0, the field inside the

object changes and also the field around it, is influenced. This influence depends on

χ, the shape of the object and the orientation of it with respect to the external field

direction. The previous considerations are partially based on Preis K. Lecture notes

“Elektrodynamik TE” [232, Ch.3 and 4] and Schenck [253].

2.2.2.2 Shape dependent Influence – Demagnetization Factor ξ

In general, Eqs. (2.69) and (2.70) are only valid when the whole volume is filled with the

given material. If an object with homogeneous and isotropic susceptibility is placed in a

magnetic field, the material is magnetized according to Eq. (2.69) and the field generated

by this magnetization
# –

M overlays with the external causing field in such a way that the

Maxwell equations Eq. (2.89) are fulfilled. For an arbitrary shape, the calculation of

these field distortions can be very troublesome and some methods to tackle this problem
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Figure 2.12: Demagnetization factor ξ for ellipsoids of revolution along its rotational axis and
the axis perpendicular to it depending on their aspect ratio r, according to Eq. (2.74). For aspect
ratio ir = 1 the rotational ellipsoid is a sphere, for r � 1 it has the shape of a sharp needle
approximating a long cylinder and for r ≈ 0 it is a thin disk approximating a plate.

are described later. For one class of geometrical objects, the ellipsoid, the field distortion

calculation can be achieved with algebraic equations instead of differential equations. This

is considered here, since many objects can be approximated with an ellipsoid such as a

thin disk, a long cylinder or a sphere (exactly), and the general behavior of certain shapes

can be estimated. For an ellipsoidal object with homogeneous susceptibility placed in

a homogeneous external field, the field inside is constant over the whole object. If the

ellipsoid is placed in such a way that one of its principle axes is aligned along the external

field
#  –

H0, the internal induced field
#–

H i can be described by the demagnetization factor ξ

and the magnetization
# –

M of the material

#–

H i = −ξ # –

M. (2.71)

Using
#–

H =
#–

H0 +
#–

H i, Eqs. (2.68), (2.69) and (2.71), and plugging into Eq. (2.70), this

leads to an expression for the resulting total internal magnetic field
#–

B depending on the

shape, susceptibility, and the external field
#–

B0

#–

B =
#–

B0
1 + χ

1 + ξχ
. (2.72)

If the applied external field is not parallel to one of the principle axes, the resulting field

can be calculated by a superposition of the projected components onto the principle axes

of the ellipsoid. In this case, the internal field is not parallel to the applied external

field any more, not even with isotropic susceptibility χ. A general ellipsoid has three

principle axes with a length of each semi-axis of a, b, and c, respectively. In this case, also

three independent demagnetization factors, one for each axes ξa, ξb, and ξc exist with the
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condition

ξa + ξb + ξc = 1. (2.73)

In the next step, the current consideration is further restricted to ellipsoids of revolution,

which are rotational symmetric. In this case, the length of two principle semi-axes are

equal (a = b) leading to ξa = ξb, with an axis of rotational symmetry along the third

principle semi-axis c. The demagnetization factors can be expressed in terms of the ratio

between the two independent semi-axes ra = c/a. In the special case of ra = 1, the object

becomes a sphere, where all three semi-axes are equal to the radius R of the sphere, leading

to ξa = ξb = ξc = 1/3 under the condition of Eq. (2.73). For ra � 1, the ellipsoid is shaped

as a needle approximating a long thin cylinder leading to ξa = ξb = 1/2 and ξc = 0 as

limit of Eqs. (2.74) and (2.75). This special case also holds for a real cylinder at least in

its center, whereas the field distributions around the top and bottom of the cylinder are

completely different. For ra � 1, the ellipsoid is shaped as a disk approximating a flat

circular plate leading to ξc = 1 and ξa = ξb = 0. For the general case, the demagnetization

factors are given by the following relations, which is further depicted in Figure 2.12,

ξc =
1

r2
a − 1

(
ra√
r2
a − 1

log
(
ra +

√
r2
a − 1

)
− 1

)
. . . ra > 1,

ξc = 1−

(
ra√

1− r2
a

)2
sin−1

(√
1− r2

a

)
ra
√

1− r2
a

− 1

 . . . ra < 1,

ξc = 1
3 . . . ra = 1.

(2.74)

The demagnetization factor for the two perpendicular principle axis is given by Eq. (2.73)

and ξa = ξb as

ξa =
1− ξc

2
. (2.75)

The demagnetization factor can vary in the range ξ = [0, 1], where a value of ξ = 0 means

that the field inside the object does not depend on the shape, but only on the susceptibility

of the object, so that Eq. (2.72) reduces to
#–

B =
#–

B0(1 + χ). A value of ξ = 1 denotes that

the shape dependency compensates the influence of the susceptibility on the field inside

the object. The field inside is the same as the externally applied field and Eq. (2.72)

reduces to
#–

B =
#–

B0. The field outside the ellipsoid, which leads to a field distortion in the

surrounding, is given as a simple dipole field with a magnetic moment of #–µ = V
# –

M , where
# –

M is the magnetization inside the volume V of the object. In the general case, this stray

field cannot be described in terms of simple functions, but only by the use of ellipsoidal

harmonics. However, for two geometries, the sphere and the cylinder, the external field

can be expressed with very simple relations. Under the assumption ‖χ‖ � 1, expressions

for the z-component of the
#–

B field distributions ∆Bz are given for the following three

cases below, where ∆χ = χinside − χoutside. This is further visualized as contour plot with

the corresponding field lines in Figure 2.14 and as 3D surface plot in Figure 2.13.
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1. Sphere with radius a centered at origin:

∆Bzin =
2∆χB0

3

∆Bzout =
∆χB0

3

a3
(
2z2 − x2 − y2

)
(x2 + y2 + z2)5/2

(2.76)

2. Cross-section in the center of a cylinder with radius a and its long axis parallel to
#–

B0:
∆Bzin = ∆χB0

∆Bzout = 0
(2.77)

3. Cross-section in the center of a cylinder with radius a and its long axis perpendicular

to
#–

B0:

∆Bzin =
∆χB0

2

∆Bzout =
∆χB0

c

a2
(
z2 − x2

)
(x2 + z2)2

(2.78)
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Figure 2.13: Surface plot for the field distortion ∆Bz introduced by a spherical object (a) and
a cylindrical object (b) and (c) around it according to Eqs. (2.76) to (2.78). For the cylindrical
object it is shown for two field orientations, one perpendicular to the long axis (b) and one parallel
to it (c). The simulation was performed for a susceptibility difference between in- and outside
of ∆χ = 9.36 ppm which is approximately the same as between air and tissue. Furthermore, the
continuity condition for the

#–

B field component normal to the interface can be seen in (a) and (b).
The field inside and outside the object is equal at the boarder surface, when only the perpendicular
component to the surface is present.

The consideration of the demagnetization factor is based on a very detailed description

by Schenck [253] for ellipsoids of revolution. A much more detailed mathematical descrip-

tion for general ellipsoids is given by Stoner [287] and Osborn [225]. However, the concept

of the demagnetization factor can be extended to other shapes as well, e.g. for several

rotational symmetric objects [272]. This concept is further extended to non-ellipsoidal

objects by Joseph and Schlöemann [145], leading to a kind of demagnetization factor field

with varying values over the object. Of course, no closed form solution exist for arbitrary

shaped objects; hence, the calculation of the field distortion can only be done numerically.
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Figure 2.14: 1st row: Contour plots for the field distortion ∆Bz introduced by a spherical (left)
/ cylindrical object (right) around it according to Eqs. (2.76) and (2.78). Inside the object the
field is constant. For the cylindrical shape this is only valid in the center of a long cylinder. The
simulation was performed for a susceptibility difference between in- and outside of ∆χ = 9.36 ppm
which is approximately the same as between air and tissue. 2nd row: Corresponding field lines
gained by the magnetization of the material, sphere (left) and cylinder (right).

For this purpose, many methods were proposed, i.e., a method for arbitrary suscepti-

bility distributions in 2D [20] and an extension for 3D geometries [19] evaluated on a

two-compartment model, so that their results can be compared to the well known analytic

solutions described above. Results for numerical field calculations in a two-compartment

human head wire-grid model were presented by Li et al. [181]. Although, only air and

normal tissue are modeled, the results are already in good accordance to measured data.

Another numerical solution is presented in [295] based on the algorithm of [19], where a

four-compartment tissue model is derived from a Computer Tomography (CT) scan.

Despite the negative effects occurring due to the susceptibility induced field pertur-

bations, this can also be used as a feature as it is done in Quantitative Susceptibility

Mapping (QSM) and Susceptibility Weighted Imaging (SWI). These techniques use the

susceptibility distribution in tissue as a biomarker for several diseases [316, 330] or for

the quantification of iron in white matter brain tissue [103, 167]. Furthermore, the sus-
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ceptibility difference of deoxygenated blood is used to image the venous vascular system

[54].

2.2.3 Influence on the MR-Signal

The influence of inhomogeneous static magnetic field on the MR signal is very versatile and

depends on the spatial distribution of the field distortion, the field strength, and the also

the imaging sequence. In general, one can distinguish between macroscopic, mesoscopic,

and microscopic field variations. The influence of macroscopic field variations (larger

than the voxel size) basically consists of a spatially varying signal phase and geometric

distortions in Fourier encoding and slice selective excitation. Mesoscopic field variations

are smaller than the voxel size and lead to a signal loss due to dephasing and microscopic

field variations have a range smaller than the diffusion length of water, so that they cannot

be treated as time independent. This section is mainly based on Hennig et al. “High-Field

MR Imaging” [120, Part III.] and Haacke et al. “Magnetic Resonance Imaging” [104,

Ch.20], where a very detailed description of this topic is given. Furthermore, a good

overview over the influence of the combination of static and RF field inhomogeneities on

the signal of SE and GRE sequences and the corresponding image artifacts is described

by Truong et al. [294].

2.2.3.1 Spatially varying Signal Phase

Macroscopic field variations mainly arise as a consequence of tissue interfaces, especially

between air and tissue, according to the principles described above and can be expressed

as a distortion field ∆B0( #–r ). Due to this, field distortion the local Larmor frequency

changes according to

∆ω0( #–r ) = γ∆B0( #–r ), (2.79)

leading to phase variations of the complex signal over the entire object

φ( #–r ) = ∆ω0( #–r )TE + φ0( #–r ). (2.80)

This phase effect is used to map the field distribution (see Section 2.4). Field distortions

are considered to be macroscopic if their spatial range is larger than the spatial resolution.

Only if this is the case, a coherent signal inside a voxel can be gained, with varying phase

over the FOV . This phase effect can only be seen in a GRE sequence, in a SE sequence

the effect compensates due to the refocusing pulse in the second half of the echo time

period, if the field variations are constant in time.

2.2.3.2 Geometric Distortions and Echo Shifting

Another very important effect caused by static magnetic field variations, ∆B0(x, y, z),

are geometrical distortions. According to Section 2.1.7, the spatial encoding is based
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Figure 2.15: Geometric distortions measured on a cubic phantom with different readout band-
widths for a TSE and a GRE sequence. The slice is placed parallel to the surface of the cube. For
600 Hz/pix the distortions is smaller than the voxel size, whereas for 40 Hz/pix severe distortions
can be seen, which are the same for both sequences. Distortions introduced by non-linear gradients
are corrected by the scanner software.

on linearly varying gradient fields along the tree spatial axes, which leads to a linear

frequency variation along the corresponding axis, see Eqs. (2.52) and (2.59). If additional

field distortions occur, Eq. (2.52) changes to

Bz(x, y, z) = B0 +Gxx+Gyy +Gzz + ∆B0(x, y, z). (2.81)

Because the underlying Fourier transform inherently assumes Eq. (2.52) to be valid, this

leads to a misregistration of the spin’s spatial location. A certain frequency component is

mapped to the wrong position in space. The shape and degree of the distortion depend

on the relation between the gradient of the underlying field variation, ∇(∆B0(x, y, z)),

and the strength of the actual imaging gradient. A constant field offset would simply

shift an arbitrary object proportional to the field offset, because the spin’s frequency is

shifted. If the gradient of the distortion field points along the readout direction, then the

investigated object is stretched / compressed if the field distortion increases / decreases the

actual imaging gradient, because the frequencies in the object vary over a larger / smaller

range. If in the extreme case, the field distortion compensates the imaging gradient the

object will collapse to a Dirac delta, because no spatial encoding is present any more. If the

gradient of the distortion field points along the phase encoding direction, the reconstructed

image suffers from shearing distortion, because the axis of frequency encoding is rotated

by a certain angle depending on the ratio between field distortion gradient and frequency

encoding gradient. If a certain field distortion is present, the effect can be reduced by

increasing the readout gradient, which on the other hand leads to a decrease in SNR

because the receiving bandwidth has to be increased as well (see Eq. (2.48)). If the

frequency variation is below the bandwidth per voxel, no image distortion can be seen

in the reconstructed image. GRE and SE based sequences are effected equally by these

kind of distortions, because the readout gradient is effected. However, the EPI sequence
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Figure 2.16: Influence of the phase encoding direction on geometrical distortions measured on
a cylindrical phantom for a TSE and an EPI sequence. Top-left: Reference image with readout
bandwidth of 1149 Hz/pix to be distortion insensitive. Left: Distortions are shown for the TSE
sequence with a readout bandwidth of 200 Hz/pix, 100 Hz/pix and 50 Hz/pix with phase encoding
direction (anterior-posterior) (1st row) and (left-right) (2nd row). To introduce distortions, a field
gradient of 300 µT m−1 is applied for the TSE and of 40 µT m−1 for the EPI measurement on the
right side. EPI data is measured with a readout bandwidth of 1860 Hz/pix and 752 Hz/pix.

is very prone to this kind of artifacts, because of the long readout duration and especially

the low bandwidth in phase encoding direction. Even very low field variations can lead to

severe distortion artifacts. Some examples for field distortions are shown in Figure 2.15

for the influence of different readout bandwidths on a GRE and a Turbo Spin Echo (TSE)

sequence, measured on a cubic phantom, and in Figure 2.16 for different phase encoding

directions for an EPI and a TSE sequence. Haacke et al. “Magnetic Resonance Imaging”

[104, Ch.20]

Also, the slice selection is influenced by field distortions. According to the same ideas

described for frequency encoding, the excited slice can be shifted, stretched or compressed

if the field distortions is a constant offset, increases or decreases the slice selection gradient,

respectively, because the bandwidth of the excitation pulse is constant. If the gradient

of the distortion field is perpendicular to the slice selection gradient, the slice changes its

orientation or gets bent according to the spatial variation of the field distortion. Also, the

slice selection refocusing gradient can be affected, leading to incomplete phase refocusing

along the slice after the excitation with the consequence of signal loss. Haacke et al.

“Magnetic Resonance Imaging” [104, Ch.20]

However, the susceptibility of biological tissue is so low, that it will be far away from

getting saturated (even at very high field strength), and hence, the susceptibility is inde-

pendent of B0. Therefore, the relative field change introduced by susceptibility variations

is constant with field strength, nevertheless; the absolute value in Hz or µT varies linearly
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with B0. Using the same readout bandwidth, the distortion artifacts increase with field

strength. Hennig et al. “High-Field MR Imaging” [120, Part III., Ch.1]

Another effect occurring only in GRE sequences is the echo shifting. According to

Section 2.1.8.1, the GRE sequence consists of a prephasing gradient with half the area of

the following readout gradient with opposite polarity, so that the maximum echo amplitude

occurs at the center of the readout gradient. An additional gradient arising from variations

in the field distribution increasing / decreasing the prephasing gradient, leads to a decrease

/ increase of the readout gradient. This leads to the situation that the prephasing gradient

is compensated after / before the center of the readout, so that the time point of the

maximal echo amplitude is shifted. Furthermore, this offset is not constant over space

leading to a spatial dependent echo time and a blurred k-space center. The consequence of

this effect is an additional phase term and signal loss. Haacke et al. “Magnetic Resonance

Imaging” [104, Ch.20]

2.2.3.3 Signal Loss due to Dephasing

Compared to macroscopic field variations, mesoscopic field variations which are below the

voxel size lead to phase variations over the entire voxel resulting in a signal loss due to

dephasing. Mesoscopic field variations can have different sources, e.g., the gradient of

macroscopic field variations, as described above, also leads to a field variation over the

voxel size. Furthermore, biological tissue is very inhomogeneous containing many different

kind of microstructure, which is a potential source of mesoscopic field variations. One

example would be, a red blood cell containing deoxygenated hemoglobin with different

susceptibility compared to the surrounding tissue (see Table 2.2). As already described in

Section 2.1.5.2, besides the transverse relaxation time T2 arising from spin-spin interaction,

this additional dephasing due to field inhomogeneity can be described by an additional time

constant T ′2. This leads to an apparent transverse relaxation time T ∗2 given in Eq. (2.40),

under the assumption that this additional signal loss also behaves monoexponentially.

However, this is only true for a very special hypothetical case, where a Lorentzian spin

density distribution with a FWHM of 2∆x is assumed, where ∆x is the voxel size and N0

a normalization constant

ρ0(x) = N0
4π∆x

4π2 (∆x2 + x2)
. (2.82)

Using Eq. (2.82), and assuming a linear gradient of the background field distortion over

the whole space, the integration over x leads to an ideal monoexponential decay with the

time constant T ′2 given as
1

T ′2
= γ‖∆B0‖. (2.83)

Here, ∆B0 is the field variation over the voxel size ∆x. In practice, this is never fulfilled,

which leads in the best case to a deviation of the time constant given in Eq. (2.83).

Normally, the dephasing behavior differs from the monoexponential decay, where also
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damped oscillations similar to a “sinc” function can occur. The actual dephasing function

depends on the subject, the hardware, the current shim state, and the patient positioning.

Nevertheless, in most cases, the monoexponential decay with the appearing time constant

T ∗2 is used as a sufficient approximation. Very important for this consideration is that the

field variations leading to T ′2 are constant over time, so that they can be recovered after

the refocusing in a SE sequence, whereas GRE sequences are affected by this additional

decay.

The spatial extension of microscopic field variations is in the order of the diffusion

length of the water molecules, so that the field variation can not be treated as constant

over time. These field variations are introduced by spin-spin interaction on a microscopic

level, leading to the irreversible T2 decay described in Section 2.1.5.2. This section is

mainly based on Haacke et al. “Magnetic Resonance Imaging” [104, Ch.20].

2.2.4 Spatial Behavior of the B0 Field

The spatial behavior of the B0 field can be derived from interface conditions of the different

field quantities in electrodynamics. In the static or at least stationary case, which is

fulfilled for B0, there exist exact conditions for the behavior of the described field quantities

at certain material interfaces. For that purpose, each field quantity
#–

X is separated into a

component perpendicular to the surface X⊥ and a component parallel to it X‖. The rules

are as follows, where the index a and b indicate medium a and medium b:

• #–

B field: The component perpendicular to the surface B⊥ behaves continuously,

B⊥a = B⊥b at the surface, whereas the parallel component B‖ has to fulfill

B‖a/B‖b = µa/µb at the surface.

• #–

H field: The component parallel to the surface H‖ behaves continuously, H‖a = H‖b
at the surface, whereas the normal component H⊥ has to fulfill H⊥a/H⊥b = µb/µa
at the surface.

All effects in MRI depend on the magnetic flux density
#–

B (in MRI denoted as magnetic

field strength), so that only this quantity is of interest. Inside an object with homogeneous

media, all field variations are continuous in space, only at interfaces between different

media the parallel component of the magnetic field shows a discontinuity. The behavior of

the magnetic field at material interfaces for both components can be seen in Figures 2.13

and 2.14. However, because the susceptibility variations in biological tissue are very low,

also the discontinuities are very low, so that the spatial behavior is approximated in many

cases as a continuous and smoothly varying function. This consideration is important for

the development of proper regularization functionals, describing this characteristics. This

section is mainly based on Preis K. Lecture notes “Elektrodynamik TE” [232, Ch.4].
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2.2.5 Active Shimming

Besides the passive shim, where iron plates are placed at dedicated positions to compen-

sate field inhomogeneities arising from hardware imperfections, the active shim is adjusted

before each examination. As described in Section 2.2.2, the patient induced field distor-

tions dominate over the hardware induced ones, and therefore a subject dependent local

field distortion occurs. With active shimming, it is tried to compensate these local distor-

tions to a certain degree in the desired measurement volume by using resistive shim coils,

which are usually located around the bore.

According to Maxwell’s equations Eq. (2.89), the magnetic field in any region with-

out current sources has to satisfy the Laplace equation ∇2 #–

B = 0. Compared to the

z-component of the static magnetic field, the x and y-components are negligible and

therefore, the Laplace equation can be written in terms of the z-component ∇2Bz = 0.

A complete basis of the solution space for the Laplace equation is given by the set of

spherical harmonic functions with order of l = [0,∞) and degree of m = [−l, l]. Spherical

harmonic functions are usually defined in spherical polar coordinates with radius r, polar

angle ϑ = [0, π] and azimuthal angle ϕ = [0, 2π]. A short description and some examples

up to 3rd order are given in Appendix A.1. Due to the cylindrical symmetry, every field

configuration inside the magnet’s bore can be described by a weighted sum of spherical

harmonics Xm
l with the weighting coefficient Alm

Bz(r, ϑ, ϕ) =

∞∑
l=0

l∑
m=−l

Almr
lXm

l (ϑ, ϕ). (2.84)

A very detailed description of the underlying math for the generation of axially symmetric

magnetic fields is given by Garrett [88], including an error analysis for the achievable

homogeneity up to 8th order. Therefore, shim coils are designed to produce a spherical

harmonic field distribution, so that distortions until nth order can be compensated, where

n is the highest implemented order. Some exemplary coil geometries are described in

Romeo and Hoult [245], and Figure 2.17 shows field distribution for 1st and 2nd order

spherical harmonics measured on a spherical phantom. Commercially available scanners

used in clinical practice normally use shim coils up to 2nd order, whereas the linear first

order is implemented as offset in the gradient coils. However, there also exist experimental

systems with higher order shim coils up to 4th [127] and 5th order [148], but 4th and 5th

order are not complete. In Spielmann et al. [282], the effect of higher order shimming is

investigated compared to solely linear correction; hence, showing massive improvements in

field homogeneity, B0 shifts, and line broadening in dedicated Region Of Interests (ROIs).

To adjust the current in the shim coils, so that the field gets maximal homogeneous,

two thing are necessary: First the B0 field distribution has to be measured and second

the measured field distribution must be transformed into a current for each shim channel.

For that purpose, several methods were proposed. In the early stage, shimming was
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Figure 2.17: Influence of 1st (first row) and 2nd order (second row) shim coils measured on a
spherical phantom. For each channel the field distribution is given as frequency shift in Hz.

mainly applied for spectroscopic applications, such that the B0 field distribution was

simply measured by the area under the FID [127]. This is equivalent to the line width of

water, by using a Stimulated Echo Acquisition Mode (STEAM) sequence. The adaption

of the shim currents was performed by doing a line search for every channel to reach the

maximum FID area or the minimum line width. In [205], the B0 field distribution is

measured spectroscopically as the shift of the water peak gained by a STEAM sequence

on a 31 dedicated positions. The values gained are used to fit the weighting factors of

the spherical harmonics, which are proportional to the current in the corresponding shim

coil. Also, a STEAM sequence is used in [101] to measure the field distribution along a

few linear projections to decrease the acquisition time, under the assumption the shim coil

behave perfectly spherical harmonic. Under this assumption, the measurement of such

projections is enough to characterize the field in terms of spherical harmonics, which was

shown by Gruetter and Boesch [102]. Modern shimming methods usually acquire a 3D

low resolution field map ∆B0 by acquiring GRE images with different TE, which is done

in [148, 158, 258, 317] considering different aspects regarding to field mapping, where

more details are described in Section 2.4. To determine the current in each shim coil

Ishim, a reference measurement is necessary for each channel on a homogeneous phantom,

while applying a unit current. This can be done once during system setup. The resulting

field map for each channel at unit current is represented by the matrix Bshim
0 ( #–r ) with

size NxNyNz ×N shim
c , where Nx, Ny, and Nz represent the size of the field map in each

direction and N shim
c is the available number of shim coils. The optimal currents Îshim for

each channel are determined by the least square solution between the measured field map

∆B0( #–r ) and the applied correction field for Ishim

Îshim = arg min
Ishim
‖Bshim

0 ( #–r )Ishim −∆B0( #–r )‖22. (2.85)
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This approach has the advantage that no assumption regarding the shim coil (perfect

spherical harmonic behavior) is necessary; the current is determined based on the true

influence of each coil on the resulting correction field. This so far is the standard on

today’s available commercial scanners, with up to second order spherical harmonic shim.

However, many improvements were proposed over the last two decades, especially for the

application on 7 T, where the most important are shortly summarized here.

The optimization problem to determine the shim coil currents (Eq. (2.85)) can get ill-

posed when using higher order shim coils in combination with a small shimming volume

and a low SNR. A regularized solution for this problem is proposed by Kim et al. [155],

by using truncated Singular Value Decomposition (SVD). An investigation of the effect

and necessity of higher order shimming was done by Pan et al. [226], where a 4th order

spherical harmonics shim coil was used. Additionally, a head shim insert with up to 5th

order is presented. It was shown by measurements that massive improvements could be

reached by applying 4th order shimming over the whole head. Furthermore, it was shown

by simulations up to 15th order that an improvement in field homogeneity can be gained

up to 8th order spherical harmonic shim. For higher orders, no further improvement

is possible. This indicates that the intrinsic limit for global shimming, given by local

susceptibility variations between brain tissues, is reached. Further improvements could be

reached with the introduction of dynamic shimming, where the shim currents are adjusted

during the measurement to optimize the field homogeneity for every slice instead of the

whole imaging volume in a multi-slice acquisition, using first order [25, 217] and second

order [64, 163] spherical harmonics. Furthermore, dynamic shimming was also applied to

compensate dynamic field fluctuations due to the change in air volume during breathing.

According to reference scans to capture the chest motion, the shim currents are adjusted in

real time during the breathing cycle with up to 2nd order [308] and up to 5th order spherical

harmonics [21]. Shim coils are usually not equipped with an active shield winding, so that

eddy currents produced by dynamic shimming can lead to a problem, which are usually

compensated by a proper preemphasis.

Besides that, also other shimming methods were developed with small local shim ar-

ray coils, producing non-spherical harmonic field distributions. Of course these fields are

non-orthogonal, requiring a much higher number of channels to achieve the same perfor-

mance. The adjustment procedure is the same as for spherical harmonic shimming (see

Equation (2.85)), but the solution can be ill-posed, because of the linearly dependent con-

tribution of the individual coils. However, there are many advantages which can overcome

the loss of orthogonality. First, the constructions is much easier, because they usually con-

sist of simple loop coils, which can be placed much closer to the shimming volume. The

smaller coverage volume leads to a lower inductance and a lower power consumption. Due

to the larger distance to the cryo-shield, no significant eddy currents are created, which

leads in combination with the lower inductance to faster response times and much better

behavior in dynamic shimming applications. A 48-channel multi-coil shimming system

for dynamic shimming in the human brain was introduced by Juchem et al. [146] and a
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comparison to standard spherical harmonic shimming is given by Juchem et al. [147]. It

was shown that the 48-channel multi-coils shim can reduce the average standard devia-

tion of the global off-resonance over 5 subjects from 32.3 Hz to 13.3 Hz compared to 3rd

order spherical harmonics. It was further shown that this system outperforms up to 5th

order static and up to 4th order dynamic spherical harmonic global shim. Because space

is limited and local shim coils compete with RF receive arrays, the latest improvement

is to combine both functionalities into one coil winding. This is usually done by bridging

the tuning capacitor with an additional inductance for the DC shim current. In [111], a

proof of concept with a two coil array was presented, which was extended to 32 channels

in [284, 296]. This technique was further improved, such that each RF element is sub-

divided into multiple shim elements to increase shimming capability [62]. However, local

shimming is still not standard in clinical practice, most systems are custom made and

only for research purposes. In the latest generation of commercially available scanners,

local shim is already implemented, but only for dedicated regions with a low number of

channels. For more details on the current state of the art in B0 shimming, the reader is

referred to a review given by Stockmann and Wald [283]. This section is partly based on

Hennig et al. [119].

2.3 Homogeneity Limitations of the B1 field

In this section, all necessary aspects concerning the homogeneity of the RF field are

described. First, the difference between receive B−1 and transmit field B+
1 is discussed,

including the influence of the corresponding coils. Furthermore, a method to calculate the

field distribution of a certain coil, the Biot-Savart’s law, is described and the influence

of matter on the RF field is considered. When talking about the B1 field, the energy

deposition in the tissue under investigation is also a very important topic, as well as

the influence of inhomogeneous RF field distributions on the MR signal. This section

ends with a consideration of B1 shimming, a method to increase the RF homogeneity in

a certain volume by multiple transmit coils, and how to combine signals from multiple

receive coils.

2.3.1 Technical Limitations – Transmit/Receive Coils

When talking about B1 inhomogeneities, we have to distinguish between inhomogeneities

of the transmit (B+
1 ) and receive sensitivity (B−1 field). As described in Section 2.1.4,

the B+
1 field is the magnitude of the RF field, which is proportional to the achieved flip

angle in the object of interest (see Eqs. (2.27) and (2.28)). If the B+
1 field varies over

the measurement volume, also the flip angle does, leading to spatially varying signal and

contrast. The absolute value of the B+
1 field magnitude has to be determined to correct for

such influences, many methods were proposed for that purpose and the most important

are described in Section 2.5. The maximum magnitude for human full body imaging is
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Figure 2.18: The magnetic field
#–

B( #–r ) at position #–r is given by the current Ic in the loop coil
placed in the y − z plane according to Eq. (2.87).

usually in the range of ≈ 20 µT, with dedicated small volume extremity coils values of

about ≈ 45 µT can be achieved. According the principle of reciprocity, B+
1 and B−1 are

identical for a specific coil. The principle of reciprocity says that the receive field B−1
(receive sensitivity) for detecting a magnetization at a point #–r in space is equal to the

necessary current in the coil to produce the same magnetization at point #–r . In MRI

usually different coils are used for transmit and receive, so that in general B+
1 and B−1 are

completely different. On systems with a field strength of maximum 3 T, usually birdcage

coils are used for transmit because of their better homogeneity. For receive, usually phased

arrays of surface coils are used because of the better SNR independent on the field strength.

The receive field B−1 is a measure for the sensitivity of a certain coil to a signal arising from

a specific point #–r in the measurement volume. To ideally combine the signals from such

an array coil with a certain number of receive channels, the B−1 from every channel should

be known [246] (for more details see Section 2.3.7). Furthermore, B−1 is also necessary for

most reconstruction algorithms, when using undersampled multichannel data. In contrast

toB+
1 , B−1 usually can only be determined relatively, which is sufficient for coil combination

and reconstruction purposes. A short description of methods to determine the B−1 filed

is given in Section 3.2.7. Due to the principle of reciprocity, the sources of inhomogeneity

are the same for both B+
1 and B−1 .

There are several sources that lead to spatial inhomogeneous B1 field distributions.

First, of course, there is the coil geometry leading to an inhomogeneous field distribution.

The field distribution
#–

B( #–r ) at point #–r in space for any current density distribution
#–
j ( #–r ′)

at point #–r ′ is given by the Biot-Savart’s law, as integral over the contributing volume V .

The Biot-Savart’s law is derived from the Maxwell’s equations and is given as

#–

B( #–r ) =
µ0

4π

∫
V

#–
j ( #–r ′)×

#–r − #–r ′

‖ #–r − #–r ′‖3
dV. (2.86)



48 Chapter 2. Physical Principles of Magnetic Resonance Imaging and Field Mapping
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Figure 2.19: (a) A perfectly homogeneous B1 field would be gained inside a cylinder for a
sinusoidal current distribution on its surface. (b) The birdcage coil is an approximation for that,
realized with a certain number of rods, connected by a ring on each side. The ring is cut up
between each rod and connected with capacitor to induce a phase shift between the rods. Two
sinusoidal signals are feed into port 1 and 2 in order to produce the desired current distribution.
This figure is inspired by Hennig et al. “High-Field MR Imaging” [120, p.43].

This means for any point in space, the magnetic field strength depends on the current

density in the whole volume. For a circular loop coil, which is a usual geometry for one

element of an MRI receive array coil, the current density is restricted by the leads of the

coil carrying the current Ic with the number of Nw windings. With that, Eq. (2.86) can

be rewritten to an integral along the coil direction

#–

B( #–r ) =
NwIcµ0

4π

∮
C
d #–s ( #–r ′)×

#–r − #–r ′

‖ #–r − #–r ′‖3
, (2.87)

where d #–s is pointing along the current direction (see Figure 2.18). Solving Eq. (2.87) for

the central axis of the loop coil (with a normal vector along the x-direction), a closed form

solution for the field component along that direction Bx(x) is given as

Bx(x) =
NwIcµ0

2

R2

(R2 + x2)3/2
, (2.88)

where R is the coil radius [90]. The field strength for the loop coil decrease with ≈ 1/r3,

leading to a quite inhomogeneous field distribution. This is shown as a simulation in

Figure 2.20(b).

The birdcage coil, on the other hand, provides a much more homogeneous field dis-

tribution than the surface coil. The birdcage coil arises from a discrete approximation

of a sinusoidal current distribution on the surface of a cylinder, which would lead to a

perfectly homogeneous B1 field, at least in air. In the birdcage coil, this is reached with

discrete rods connected by a ring on each side. To reach the desired current distribution

at Larmor frequency, the rings on each side of the coil are interrupted and connected with

capacitors of equal value between each rod, as shown in Figure 2.19. Furthermore, two

RF signals at ω0 with 90◦ phase shift to each other are fed into the coil at connections

perpendicular to each other to achieve a circular polarization (see Eq. (2.35)). This is a

very good approximation, where the homogeneous field distribution is only disturbed close
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Figure 2.20: Simulated B+
1 distribution for a birdcage coil in transverse and coronal orientation

(a) and for a surface coil (b) in air. The field distribution inside the birdcage coil is very homoge-
neous especially in the center. Only near the rods a slight increase and near the upper and lower
end a slight decrease can be observed. The birdcage coil has a diameter of 240 mm and a length of
250 mm. The surface coil shows a very rapid decay according the 1/r3 relation out of Biot-Savart’s
law. The surface coil is place 100 mm to the right of the image center, indicated by the two circles,
and has a diameter of 64 mm. The birdcage simulation was performed with an FDTD solver [185]
described by Liebig et al. [186] for 3 T, and the surface coil simulation was performed with a
modified version of the Biot-Savart’s law described by Gebhart et al. [89].

to the rods, which are usually far away of the tissue under investigation. A simulation

for the field distribution in the birdcage coil is shown in Figure 2.20(a). This section is

partly based on Hennig et al. “High-Field MR Imaging” [120, Part I., Ch.3] and Preis K.

Lecture notes “Elektrodynamik TE” [232, Ch.3].

2.3.2 Influence of Matter on the RF Field

Beside the coil itself, also the coil load, the investigated subject, introduces inhomogeneities

in the field distribution, which are usually much more severe and change from patient to

patient. The law of Biot-Savart is valid for static fields, but yields a very good approxi-

mation in the stationary case, when the dimensions of the imaged object are smaller than

the wavelength. This can be seen as fulfilled for field strength up to 3 T. Nevertheless,

even in the stationary case, the time varying current in the coil does not only generate a

time varying magnetic field
#–

B, it also generates a vortex electric field
#–

E and displacement

currents according to the 3rd and 4th Maxwell’s equation [232, Ch.5]

∇ · #–

E =
ρc
ε0εr

∇ · #–

B = 0

∇× #–

E = −∂
#–

B

∂t

∇× #–

B = µ0µr
#–
j + µ0µrε0εr

∂
#–

E

∂t
.

(2.89)
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Figure 2.21: Simulated B+
1 distribution for a cylindrical phantom with different electrical prop-

erties. First row: Permittivity variation in the range of εr = [20, 200] with no conductivity
(σ = 0 S m−1). Second row: Conductivity variation in the range of σ = [0.3, 1.5]S m−1 with
constant permittivity (εr = 80). Increasing permittivity leads to a localized maximum in the cen-
ter of the cylinder with increasing height and stronger variations, whereas increasing sensitivity
damps the B+

1 field. Simulation was performed with an FDTD solver [185] described by Liebig et
al. [186] for 3 T.

If an object is placed inside the transmit coil (e.g. birdcage coil), the field distribution

is heavily influenced by the electrical parameter distribution (conductivity σ( #–r ) and per-

mittivity εr(
#–r )) of the tissue under investigation. ε0 is the permittivity in vacuum with

a value of ε0 ≈ 8.8542 · 10−12A s V−1 m−1. Beside the displacement currents arising from

ε0εr∂
#–

E/∂t, also conducting currents
#–
j occur according to

#–
j ( #–r ) = σ( #–r ) · #–

E( #–r ). (2.90)

All three occurring fields, the magnetic field
#–

B, the electric field
#–

E, and the current

density
#–
j influence each other in a way so that the Maxwell’s equations with the material

properties σ and εr are fulfilled. This can lead to quite inhomogeneous distributions. As

described in Section 2.2.2.1, biological tissue behaves diamagnetic with a susceptibility

of χ≈ 10 ppm, so that the relative permeability µr is very close to 1 (with an accuracy

≈ 10−5). Compared to the influence of the permittivity (εrtissue ≈ 60 . . . 80), the influence

of µr can be neglected in RF field calculations, although it is the main influence for static

magnetic field perturbations (see Section 2.2.2.1). Typically, the tissue parameters σ and

εr show also a strong frequency dependence, where in general σ(ω) increases and εr(ω)

decreases with increasing frequency ω. Typical values for σ and εr and their frequency
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Figure 2.22: Simulated B+
1 magnitude (left) and phase distribution (right) for 3 T and 7 T on

a numerical in-vivo phantom with 116 classified tissues with values of density, permittivity and
conductivity for each. The model is out of [132] with values from [190]. The field at 7 T suffers
from heavy distortions compared to 3 T in magnitude and phase. Simulation was performed with
an FDTD solver [185] described by Liebig et al. [186] for 3 T.

dependence in healthy biological tissue can be found in [85, 86] and [87, 214], and for some

cancerous tissues in [143, 289]. The influence of εr and σ are shown by simulations on a

cylindrical phantom in Figure 2.21. As a side note, this behavior is also used to map σ and

εr called Electrical Property Tomography (EPT) [150, 335] out of measuring magnitude

and phase of the current B+
1 field distribution.

A very important parameter for the B1 field homogeneity is the wavelength λmat in

the investigated matter, which is given by

λmat =
2πc0

ω
√
εrµr

≈ 2πc0

ω
√
εr
, (2.91)

where c0 is the speed of light in vacuum (c0 ≈ 3 · 108 m s−1) and ω the angular frequency

of the RF field. With µr ≈ 1, λmat is proportional to 1/
√
εr . In water and also in

tissue, the value for the relative permittivity is approximately εrtissue ≈ 60 . . . 80, as stated

above, meaning that the vacuum wavelength λvac is reduced by a factor of ≈ 7 . . . 9.

For main field strengths up to 3 T, with λvac ≈ 2.3 m and λmat ≈ 30 cm, the situation

can be considered as stationary, leading to quite homogeneous B1 field distributions with

deviations of ≈ ±20 . . . 30% inside the human head. By increasing the field strength to

7 T or 12 T, the wavelength reduces to λmat = 13 cm and λmat = 7.6 cm, which is much

shorter than the typical extensions of human body parts to be imaged. In this high

frequency range, the stationary assumption is not valid any more leading to much more

severe B1 field distortions. At 7 T, B1 field variations of around ≈ ±60 . . . 70% in a human

head are common, even complete cancellations due to zero crossings of the standing wave

have to be expected inside the FOV . At such high field strengths, the excitation with

a transmit birdcage body coil does not work any more, because of the inhomogeneous

field distribution, such that typically multiple stripe line elements in Circular Polarized

(CP) mode are used. More on that is given in the B1 shimming section (Section 2.3.6).
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Figure 2.23: Simulated B+
1 distribution for a cylindrical phantom, divided into 2 compartments

along the long axis of the cylinder (perpendicular to the shown plane) to simulate a discontinuity
in the electric properties. First row: Discontinuous variation in εr with constant conductivity in
both compartments. Second row: Discontinuous variation in σ with constant permittivity in both
compartments. Simulation was performed with an FDTD solver [185] described by Liebig et al.
[186] for 3 T.

However, also at high frequencies the
#–

B1,
#–

E, and
#–
j field distributions always have to

fulfill the Maxwell equations (Eq. (2.89)). The simulated RF field distribution inside the

human head is shown in Figure 2.22 for 3 T and 7 T in magnitude and phase. The field

distribution is calculated by a numerical method, the Finite Differences Time Domain

(FDTD) method, described by Liebig et al. [185, 186]. For the simulation, a volume

based human head neck model containing 116 different classified tissues with an isotropic

resolution of 0.5 mm was used. The model is described by Iacono et al. [132] and the

corresponding values for each tissue are out of [190]. This section is partly based on

Hennig et al. “High-Field MR Imaging” [120, Part II. and Part III].

2.3.3 Spatial behavior of the B1 Field

The spatial behavior of the B1 field has to be considered in order to develop a suitable

regularization functional for the reconstruction from undersampled data. In general, the

solutions of the Maxwell equations in vacuum or in a homogeneous medium are continuous

and smooth in space. However, the conductivity σ( #–r ) and permittivity distribution εr(
#–r )

in biological tissue are very inhomogeneous, with discontinuities at tissue boundaries and

a quite large range of values if we consider e.g. the interface between air (nasal sinuses)

and the surrounding tissue with following values: air εair = 1 and σair = 0 and tissue

εtissue ≈ 30 . . . 60 and σtissue ≈ 0.1 . . . 1 S m−1 at 3 T. As already described in Section 2.2.4,
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the spatial behavior in the static or at least stationary case can be derived from interface

conditions of the involved field quantities. For that purpose every field
#–

X is separated into

a component perpendicular to the surface X⊥ and a component parallel to it X‖. These

rules are as follows, where the index a and b indicate medium a and medium b (derived

form Preis K. Lecture notes “Elektrodynamik TE” [232, Ch.1, 2 and 4]):

• #–

E field: The component parallel to the surface E‖ behaves continuous, E‖a = E‖b
at the surface, whereas the normal component E⊥ has to fulfill E⊥a/E⊥b = εb/εa at

the surface.

• #–
j field: The component perpendicular to the surface j⊥ behaves continuous, j⊥a =

j⊥b at the surface, whereas the parallel component j‖ has to fulfill j‖a/j‖b = σa/σb
at the surface.

• #–

B field: The component perpendicular to the surface B⊥ behaves continuous, B⊥a =

B⊥b at the surface, whereas the parallel component B‖ has to fulfill B‖a/B‖b = µa/µb
at the surface.

In the case of the RF field, things are much more complicated. For inhomogeneous

electrical property distributions, the field distributions can only be calculated numerically.

All three fields influence each other according to Maxwell’s equations, and due to several

continuity conditions the macroscopical observable B1 field is smooth and continuous

over space. This is experimentally confirmed with measurements and simulations, e.g.

simulations for the spatial behavior of the B+
1 field for discontinuous variation in both σ

and εr are shown in Figure 2.23.

2.3.4 Energy Deposition – Specific Absorption Rate (SAR)

Another important issue, which has to be considered when talking about RF fields is the

energy deposition inside the body. A measure for that is the so called SAR in W kg−1,

which gives the energy deposition per kg body weight. The B+
1 field does not directly

contribute to the SAR, but indirectly over the
#–

E field which depends on
#–

B+
1 . The

#–

E field

is responsible for displacing free electrical charges, and the corresponding eddy currents

are responsible for tissue heating. The local SAR can be calculated with the conductivity

σ, charge density ρc and the magnitude of the
#–

E field

SAR =
σ‖ #–

E‖2

ρc
. (2.92)

Because of the 3rd Maxwell equation (Eq. (2.89)), the magnitude of the
#–

E field is pro-

portional to the frequency, so that the SAR increases with the square of the frequency or

field strength B0 (SAR ∝ ω2 ∝ B2
0). Because the

#–

E field cannot be measured in MRI ,

the SAR prediction is very complicated. Usually, for field strengths up to 3 T, a global
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SAR estimation is performed to keep the exposure below the limits of regulatory author-

ities. This is done to keep the temperature increase inside the body below 1 ◦C. The

current maximum SAR value is 2 W kg−1 in normal mode and 4 W kg−1 in the so called

first level mode for whole body exposure. The limit for head exposure is 3.2 W kg−1 [120,

p.84]. Unfortunately, at higher field strengths, also the
#–

E field and with that the SAR

distribution get more and more inhomogeneous, which can lead to local SAR hot-spots far

beyond the limits. This can lead to a local temperature increase of more than the allowed

value of 1 ◦C, even if the global SAR constraint is fulfilled. The situation gets more severe,

if more than one transmit channel is used to homogenize the B1 field distribution (B1

shimming Section 2.3.6). This can lead to more severe SAR hot-spots, because the
#–

E field

distribution can suffer from severe constructive interference. Unfortunately, the local SAR

estimation is very complicated and is usually done by numerical FDTD simulations using

a standard human model for a course prediction for a certain coil configuration. Each

patient of course deviates from the standard model, which means the local SAR distribu-

tion can be completely different. The local SAR issue is still an open research topic and

in practice to consider patient safety, the global SAR limit is usually reduced drastically

to avoid local hot-spots exceeding the limit. The actual quantity to be controlled is the

temperature increase in the investigated tissue, which does not only depend on the SAR,

but also on physiological parameters such as the thermal conductivity, the perfusion and

the thermal regulatory system. A whole bunch of literature concerning field and SAR

calculation exists, where a few are mentioned here [53, 56, 130, 140, 141, 189, 268]. The

information in this section is mainly based on Hennig et al. “High-Field MR Imaging”

[120, Part II. and III].

2.3.5 Influence on the MR Signal

The influence of an inhomogeneous B1 field distribution on the MR signal can be quite

complicated and depends on the flip angle, the sequence, and the used coils for receive

and transmit. These complex interactions are described in the following section, which

is mainly based on Hennig et al. “High-Field MR Imaging” [120, Part III]. According to

Eqs. (2.27) and (2.28), the flip angle α is direct proportional to the transmit RF amplitude.

This means, an inhomogeneous B+
1 field distribution leads to an inhomogeneous flip angle

distribution within the excited volume. The dependency of the signal on the flip angle

highly depends on the sequence and is in general highly nonlinear. If the magnetization is

in thermal equilibrium TR > T1 and a GRE sequence is used, the signal is proportional

to sin(α) (see Eq. (2.44)). This means for low flip angles < 60◦, the signal increases

monotonically (approximately linearly) with α. If the flip angle approaches 90◦, an increase

in α leads to a decrease in signal due to overflipping. To decrease acquisition time, GRE

sequences are normally applied with a TR� T1 leading to a much more nonlinear relation

between signal and α. For a given TR − T1 combination, there exists a flip angle where

the signal reaches a maximum, the so called Ernst angle [76], so that the signal decreases
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if this angle is exceeded. In this case, the signal behavior also depends on the type of

tissue. For SE sequences, the signal does not only depend on the excitation angle α, but

also on the refocusing angle β, whose distributions suffers from the same inhomogeneity.

In this case, the signal is proportional to sin(α) · sin2(β). If sequences in the steady state

are used, such as balanced Steady State Free Precession (bSSFP), the relations get much

more nonlinear.

The signal also depends on the receive field distribution B−1 ( #–r ), which describes the

sensitivity of a certain coil to a spin at a certain position in space #–r . Due to the principle

of reciprocity, transmit B+
1 and receive field B−1 are the same. According to Eq. (2.44),

the signal depends linearly on the receive sensitivity, which leads to a quadratic relation

between signal and B1 for low flip angles in GRE sequences (TR > T1), if the same coil

is used for receive and transmit, because of the linear approximation of sin(α). For all

other cases described above, transmit and receive inhomogeneity overlay each other. As

already described, birdcage coils are usually used for transmit and surface coils for receive,

so that their inhomogeneity profiles compensate each other to a certain degree. This is,

because birdcage coils usually have a maximum in the middle of the object and surface

coils have their maximum close to the surface. One aspect should not be forgotten in the

consideration of B1 inhomogeneity, the B1 phase. Both the transmit and receive lead to

an additional phase term in the resulting signal φTx( #–r ) and φRx( #–r ). At moderate field

strength (up to 3 T), the B1 phase mainly depends on the geometrical orientation of the

coil and the phase variation over the FOV is quite low. At higher field strength (≥ 7 T),

when wave effect start to play a role, also the B1 phase distribution gets severely affected,

which has to be considered in B1 shimming. Furthermore, the contrast usually depends

on the flip angle, so that an inhomogeneous B1 field also leads to a varying contrast over

the FOV .

2.3.6 B1 Shimming

Compared to B0 shimming, B1 shimming is a quite new technique and arises due to the

highly inhomogeneous RF field distributions at ultra high field strength (> 3 T). For that

purpose, the applicability of the commonly used whole body birdcage coil for transmit

is limited, because the number of independent control variables is very low, restricted

to magnitude and phase of the two channels. To overcome this problem, array coils are

used also for transmit at higher field strength, similar to the receive array coils which are

already used for more than two decades, however, the coil design is different. Compared

to receive array coils which are usually built as loop coils, the transmit arrays are built

up of stripe line elements in Transverse Electro-Magnetic (TEM) mode, where a number

of NTx elements are placed around the body part under investigation. Each stripe line

element consists of a stripe conductor separated by a dielectric material from a ground

plate with larger geometrical extensions. The thickness of the dielectric media (e.g. Teflon)

determines the penetration depth. Although, this coil is constructed as a capacitor, the
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inductive properties dominate at the frequency of operation. Typical dimensions of such

a stripe element for a typical head coil are: stripe conductor 12 mm× 15 cm, ground plate

20 mm × 15 cm separated by a 5 mm thick Teflon plate. The advantage of this coil type

is that it is very easy to construct and it is widely used in communication devices [120,

Part I]. Compared to conventional systems, the hardware effort increases linearly with

the number of transmit channels. The whole RF chain, including waveform generator,

amplifier, and Tx/Rx switch, has to be built up separately for each channel, such that the

current in each element can be controlled independently. The term B1 shimming usually

refers to an independent control of magnitude and phase of each channel, where the same

waveform is used. This leads to 2NTx degrees of freedom. By allowing different waveforms

for each channel, the degree of freedom is massively increased, which is usually referred to

as full parallel transmit (pTX), which is not covered in this thesis.

According to Boernert et al. [31], the idea behind B1 shimming is to control magnitude

An and phase φn of the current in each transmit channel, such that the inhomogeneous RF

field distributions are compensated up to a certain degree to reach a maximal homogeneous

excitation. Because of superposition, the resulting active component of the B1 field B+
1res

is given as

B+
1res

(t, #–r ) =

NTx∑
n=1

An ·B+
1n

(t, #–r )eiφn , (2.93)

where B+
1n

is the active component of the B1 field generated by each element. To determine

An and φn, the contribution of each channel B+
1n

has to be known over the whole volume,

which can be determined using one of the B1 mapping methods described in Section 2.5. In

general, B+
1n

is complex and in order to get a coherent overlay not only the magnitude but

also the spatially varying phase distribution φB1n( #–r ) of B+
1n

has to be determined, which

is described in Section 2.5.2. The controls An and φn are determined as the solution of an

optimization problem, such that the standard deviation of B+
1res

gets minimized. The cost

function can also incorporate an additional constraint to reduce the global SAR, where

λ is a regularization parameter balancing between field homogeneity and SAR reduction.

The cost function writes as

(Ã,Φ) = arg min
Ã,Φ

∥∥B+
1res

( #–r )− 〈B+
1res

( #–r )〉
∥∥2

2
+

λ

〈B+
1res

( #–r )〉2

NTx∑
n=1

An
∥∥B+

1n
( #–r )

∥∥2

2
, (2.94)

where 〈B+
1res
〉 is the mean value of B+

1res
( #–r ) over the FOV and Ã = [A1, . . . , ANTx ]T

and Φ = [φ1, . . . , φNTx ]T are the vectors containing An and φn, respectively. The SAR

constraint is necessary, because at least partially destructive interference can occur in some

regions, so that the magnitude of B+
1res

decreases, but the SAR contribution increases

dramatically. Even though, the global SAR is under control, local SAR hot spots can not

be excluded due to
#–

E field interferences. According to Section 2.3.4, SAR is proportional

to ‖ #–

E‖2 and the measurement does not provide any information about the
#–

E field. The
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local SAR can only be determined with a detailed tissue model of the current subject,

including conductivity and permittivity distributions and a numerical simulation. Of

course, in clinical practice this is usually not available and the calculation effort would

be to high, so that B1 shimming is still an experimental technique, which is only applied

for research purposes under special conditions. However, such TEM transmit coil arrays

can be switched to CP mode with equal amplification factors A1 = A2 = . . . = ANTx
and a phase relation φn = 2π(n− 1)/NTx, such that the current distribution and the B1

behavior is similar to a birdcage coil. This operation mode can be used in clinical practice

and it is the standard excitation mode for field strengths ≥ 7 T.

Many studies were proposed showing the potential benefits of RF shimming. In [134],

a massive improvement in field homogeneity could be proven by simulations with a 24-

channel transmit array on a 18-tissue human head model. Furthermore, it was shown

that the contribution of the phase is more important than of the magnitude. The same

findings were confirmed by simulations on a torso model [151]. It was shown in [133], also

by numerical simulations, that the same transmit array can be calibrated to perform either

a homogeneous excitation over different slices, or a very localized excitation pattern in a

defined ROI with nearly no excitation outside. This can be used for example to suppress

surrounding tissue instead of saturation pulses. In [149] and [337], transmit arrays were

used to produce very sharp 2D excitation profiles. In [213], B1 shimming was used to

maximize the available signal in a 7 T prostate examination instead of homogenizing the

excitation pattern. In [211], the limits of RF shimming were examined and it was found

that a 16-channel transmit array is sufficient to shim a single slice up to 600 MHz and the

whole brain up to 300 MHz. For whole brain shimming up to 600 MHz, a 80-channel array

is necessary. Also the local SAR problem was considered, but only in simulations for 3 T

in [306] and 7 T in [307].

2.3.7 Combination of Signals from Phased Array Coils

One very important aspect concerning the B−1 field (receive field) is the combination of

signals received by a phased array coil to a single image. This can be done by directly

combining the analog signals and sampling the combined one. This has the advantage

that only one Analog to Digital Converter (ADC) is required and the amount of acquired

data is massively reduced. However, this approach does not allow any spatial phase

correction (see later) and the additional spatial information required for undersampled

image reconstruction is lost (see Chapter 3). Today, every commercially available system

samples the signal from each channel separately, such that the combination has to be done

in image space. The simple complex addition, as it would be the first idea, does not work,

because the spatially varying phase of the receive field B−1n in each receive channel may

lead to destructive interference of the channel signals. In the worst case, this can lead to

a complete signal dropout. The summation of the magnitudes of each channel also leads

to an unnatural appearance of the image. One often used approach is the Sum of Squares
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(SOS) method, where the squared magnitudes of each channel are summed up, so that

the combined voxel signal Scomb is given by

Scomb( #–r ) =

√√√√ Nc∑
n=1

Sn( #–r )Sn( #–r ) . (2.95)

Here, Sn is the voxel signal of each channel with its complex conjugate Sn, and Nc is

the number of receive channels. This already leads to suitable images, but the phase

information is completely lost. In the seminal work of Römer et al. [246], it was shown

how to optimally combine the different coil signals on the basis of their individual spatial

varying receive fields B−1n( #–r ) to maximize the SNR in the combined image. The combined

image is given by

Scomb( #–r ) =

Nc∑
n=1

B
−
1n( #–r )Sn( #–r ), (2.96)

where B
−
1n is the complex conjugate of the receive field. The basic idea is to remove the

phase introduced by the receive field and to sum up the individual coil signals coherently.

The magnitude weighting is used to suppress noise and artifacts appearing in non-sensitive

regions of one coil. This can be written in vector matrix form

Scomb( #–r ) = ST ( #–r )Ψ−1B
−
1 ( #–r ), (2.97)

such that the influence of the noise correlation matrix Ψ, defined in Eq. (2.51), can be

considered. The column vector S = [S1, . . . , SNc ]
T contains the voxel signal and the

column vector B−1 = [B−11 , . . . , B
−
1Nc

]T contains the the receive field of each receive coil in

this voxel. The inverse of the noise correlation matrix leads to a weighting of the individual

signals inverse to their average noise level. However, this kind of combination can lead

to a very inhomogeneous intensity distribution over the image, according to the overall

sensitivity. It is typically higher in regions close to the surface, which are closer to the

receive coils than the center regions. To remove this inhomogeneities, also a pixel scaling

factor was introduced, such that the combined image has uniform intensity which is given

by

Scomb( #–r ) =
ST ( #–r )Ψ−1B

−
1 ( #–r )

B−1
T

( #–r )Ψ−1B
−
1 ( #–r )

. (2.98)

Because the pixel value itself depends on the receive field, the normalization factor (de-

nominator in Eq. (2.98)) is selected to make the voxel signal independent of the receive

field. In practice, the receive fields B−1n can be determined by a reference scan with the

birdcage body coil Sref having a quite homogeneous receive profile by

B−1n( #–r ) =
Sn( #–r )

Sref(
#–r )
. (2.99)
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Figure 2.24: Results for different coil signal combinations applied to the same measurement ac-
quired on a healthy volunteer at 3 T using a 64-channel head coil: (1) The direct complex addition
of the individual coil signals leads to destructive interference in some regions. (2) Phase correct ad-
dition using the individual receive profiles B−

1n
according to Eq. (2.96) gives a very inhomogeneous

signal distribution. (3) With the sum of squares combination according to Eq. (2.95), the phase
information is lost. (4) Best results are gained with the uniform intensity combination according
to Eq. (2.98). Residual signal inhomogeneities are due to transmit. The sensitivity profiles are
gained through a reference measurement with the body coil.

Figure 2.24 shows the result for different coil signal combinations and their influence on

the final image. Other approaches for phase coherent coil combination without reference

scan are described by Robinson et al. [244], where the receive field determination is often

based on the spatially smoothing constraints on the B−1 field. The knowledge of receive

profiles is also very important for image reconstruction from undersampled data, gaining

additional spatial information and to set up the forward and backward operators (see

Chapter 3). For that purpose, special methods were proposed to determine low resolution

B−1 distributions out of a fully sampled region in k-space center Auto Calibration Lines

(ACLs) [301, 311].

2.4 Mapping the Static Magnetic Field – B0 Mapping

The idea behind B0 field mapping is quite simple. According to Eqs. (2.79) and (2.80)

in Section 2.2.3.1, a map of macroscopic B0 field variations can be gained as the phase

difference between two GRE acquisitions STE1 and STE2 with different echo times

∆B0( #–r ) =
∠STE2( #–r )− ∠STE1( #–r )

γ(TE2 − TE1)
=

∆φ( #–r )

γ∆TE
. (2.100)

The phase difference is necessary to get rid of the background phase

φ0( #–r ) = φTx( #–r ) + φRx( #–r ), which consists of the RF phase during transmit φTx and
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receive φRx, which is usually referred to as transceive phase (see Section 2.3.5). Moreover,

a spin echo sequence can be used for that purpose if excitation and echo are placed

asymmetrically around the refocusing pulse. In particular, the refocusing pulse is applied

at time τ after the excitation and the readout gradient is applied such that, the echo

forms at time 2τ + ∆t after the excitation. The phase gained in the time interval ∆t is

proportional to the field shift according to Eq. (2.80), described in [259]. Alternatively, a

linear fit of the unwrapped phase of a multi-echo GRE acquisition with a number of NTE

echos can be performed [84], making the result more stable against noise. This leads to

following minimization problem in every voxel

∆ω0, φ0 = arg min
∆ω0,φ0

∥∥∥∥∥∥∥
 TE1 1

...
...

TENTE
1

 · [ ∆ω0

φ0

]
−

 φTE1

...

φTENTE


∥∥∥∥∥∥∥

2

2

, (2.101)

which can be solved by using the pseudo-inverse. However, even though the math is quite

simple, there are many influences and pitfalls which can lead to errors in the final map.

Some examples might be phase wraps, infinite many solutions due to periodicity, chemical

shift effects, and sequence specific influences such as eddy currents or timing errors. In

the next few subsections, these topics are discussed in more detail.

2.4.1 Phase Unwrapping

As already mentioned, field mapping is based on phase information and therefore phase

unwrapping has to be applied as a preprocessing step such that Eqs. (2.100) and (2.101)

can be applied properly. The signal phase can only be determined on an open interval

φ = [0, 2π) or φ = [−π, π), depending on the definition. The absolute phase value φabs is

given by

φabs(
#–r ) = φ( #–r ) + 2πn( #–r ), (2.102)

where n is an integer value, which has to be determined during phase unwrapping. For 1D

signals, phase unwrapping is a quite simple task by simply adding or subtracting 2π for

all following phase samples whenever a phase wrap is detected, under the condition that

the phase difference between adjacent samples ∆φ < π, which is called the unwrapping

condition. Even though, the principle is the same, phase unwrapping for 2D and 3D

images can be quite challenging. In particular, regions with low SNR can lead to large

errors which can propagate over the whole image. Another problem which can arise are

open ended phase wraps, also known as fringe lines or residues which can occur due to

a violation of the unwrapping condition. This can be the case because of low local SNR

or improper combination of the different receiver coil signals. An important condition to

prove the validity of the phase in a certain point in space is that the sum along any closed

line around it has to be zero. If this is the case, the phase can be considered as valid.

A detailed description of fringe lines and how to tackle this problem is given by Chavez
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et al. [49]. Furthermore, many algorithms were proposed in order to phase unwrap 2D

and 3D images. Some approaches perform local phase unwrapping which are based on

path following schemes [115] or quality guided region growing [81, 322, 326], where most

of them require user interaction e.g. for selecting a proper seed point. Other algorithms

based on cost function minimization [138], graph-cut methods [23], and Markov random

field modeling [329] were also introduced. Beside that, there also exist global methods,

where the unwrapping procedure is written as a global optimization problem with the

advantage of no required user interaction and a solution independent of the processing

path. Such an approach was presented by Song et al. [278] as a solution of the Poisson

equation ∇2φabs = ∇ · W (∇φ) with W (x) being the phase wrapping operator, where

a solution is also described in Fourier space [6]. Other globally defined methods are

based on polynomial fitting [184], Chebyshev polynomials [168] or the minimum Lp-norm

[93]. This short summary, shows the huge variety of different phase unwrapping methods

available, where all have their specific advantages and disadvantages, so that it is hard

to determine the “best” one. However, one algorithm, which was also used throughout

this thesis, should be highlighted because of its robust behavior and delivery of reliable

results. This algorithm performs fully automatic unwrapping on the basis of a sorted list,

multi-clustering approach [206]. Furthermore, an open source Matlab implementation is

available.

2.4.2 Influence of Echo Time and Chemical Shift

The next important aspect to be considered is the selection of suitable values for TE,

where first the echo time difference ∆TE is considered. On the one hand, ∆TE directly

determines the sensitivity of the measurement, the higher the better, but on the other

hand a longer ∆TE restricts the range of ∆B0 which can be unambiguously resolved,

because of the periodicity of ∆φ with respect to ∆B0. Derived from Eqs. (2.79) and (2.80),

the maximum field deviation ∆B0max which can be mapped so that the resulting phase

difference lies in the range ∆φ = [−π, π) is given by

∆B0max =
2π

γ∆TE
. (2.103)

This means that there exists an infinite number of solutions for ∆B0 for the measured

phase difference ∆φ

∆B0 = ∆B0calc + nB0max , (2.104)

where B0calc refers to the solution gained with Eq. (2.100). This problem can be tackled

by the application of an accurate phase unwrapping method as described above, whereas

other approaches were presented using polynomial fitting [258] or a minimization approach

where the gradient of the field distribution is minimized [148]. Even though, assuming

perfect phase unwrapping over a wide range to get rid of the periodicity, ∆TE cannot be

increased arbitrarily to increase the sensitivity of the field mapping. This is because of the
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T ∗2 decay in GRE based sequences (see Section 2.2.3.3), leading to a reduction in SNR of

the phase signal with increasing TE. If only one chemical species is present, the absolute

value of TE1 and TE2 from Eq. (2.100) can be adjusted such that TE1 is as short as

possible (maximum signal) and TE2 should be chosen to be a good compromise between

sensitivity versus periodicity and signal loss. However, in in-vivo measurements usually two

dominant chemical species are present, water and fat, where their protons show a distinct

frequency shift due to differences in the chemical environment which is about 3.5 ppm.

This additional frequency shift overlays with that caused by macroscopic field variations

and leads to errors especially if both are present in a voxel. To overcome this problem, the

echo times can be restricted to values where both components are in phase [258], which

approximately occurs every 2.2 ms (2π/∆ωF ) at 3 T. However, this restricts TE and ∆TE

to integer multiples of this field strength dependent value, leading to an intentional aliasing

between those two signals. Another possibility is to apply spectral selective excitation

pulses, such that only the water component is measured [317]. However, the efficiency of

such pulses suffers under the presence of field inhomogeneities.

A special challenge is field mapping for the application of fat/water separation. To

simultaneously obtain information about the different chemical species, the in-phase con-

dition obviously cannot be fulfilled, which leads to ambiguous solutions requiring special

treatment. Section 4.1 elaborates further on this topic.

2.4.3 Influence due to Eddy-Currents and Hardware Imperfections

Also, sequence specific parameters as the readout trajectory, FOV , and resolution com-

bined with imperfections such as eddy currents, sequence timing errors, gradient waveform

imperfections, and unequal areas for positive and negative gradient lobes can lead to er-

rors in the final field map. All these errors lead to an echo-shift, and because of the

Fourier shift theorem, the signal is corrupted by an additional phase term. According to

Section 2.2.3.2, geometric distortions occur in the presence of field variations, whereas the

distortion direction depends on the polarity of the readout gradient. By using a multi-

echo GRE sequence with bipolar readout gradients, the occurring geometric distortions

are different for odd and even echoes leading to a mismatch between those acquisitions.

To compensate this influence, it is recommended to use a monopolar GRE readout [148].

Nevertheless, the resulting distortions are equal in all images used for calculating the field

map, such that the field map is influenced by the same distortion. However, if a proper

readout bandwidth is used, these distortions are usually smaller than the voxel size in a

GRE sequence and therefore usually negligible.

Eddy currents are electric currents induced in the cryoshield of the magnet and other

electric conducting materials of the hardware by switched gradient fields. These eddy

currents produce time varying field distortions, additionally to the static field distortions,

which also influence the field map. According to Section 2.1.7.2, every change in FOV ,

resolution or acquisition bandwidth changes the timing and strength of the applied gra-
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dients and with that the corresponding eddy currents. Eddy currents can be subdivided

into short and long time constant eddy currents, where short time constants are on the

order of gradient rise times and long time constants in the order of repetition times. Short

time constant eddy currents basically distort the gradient shape, similar to a low-pass

filter and have the same influence as timing errors. Long term eddy currents are very hard

to consider, they build up a certain steady state depending on the gradient history, and

their effect can hardly be distinguished from static field distortions. Another important

influence are gradient amplifier asymmetries leading to different areas for positive and neg-

ative gradient lobes, which causes a phase error increasing with the echo number. Klassen

and Menon [158] proposed a method, where all these influences were considered with a

dedicated sequence design to separate all phase contributions from the effect of pure static

field perturbations. For that purpose, the acquisition of two multi-echo GRE echo trains

with bipolar readout and increasing echo spacing is proposed. The second echo train has

the reversed read out gradient polarity of the first one and at least three echos have to

be acquired, whereas more echos increase the noise robustness. The phase effects of short

time constant eddy currents and timing errors depend on the gradient polarity and there-

fore they can be removed as a phase average between the two echo trains with identical

timing. The effect of gradient amplifier asymmetries cannot be removed by averaging,

because of the same phase sign in both echo trains. To separate this effect, the increasing

echo spacing is applied, because its phase contribution depends on the number of refo-

cused echos, whereas the phase contribution of the static field perturbation depends on

the evolution time. Both effects can be separated by solving a linear system of equations.

For equal echo spacing, these two effects are not separable. The last effect arising from

long time constant eddy currents is corrected by navigator echos without phase encoding,

acquired before and after the volume acquisitions. The phase contribution from long time

constant eddy currents can be calculated out of the difference between both navigator

echoes, because when the first one is acquired no steady state has established yet and

the long time constant eddy currents effect is minimal. After the volume acquisition, the

steady state has established and the long time constant eddy current effect is maximal.

Additionally, before the volume acquisition starts, a certain number of gradient pulses is

applied without acquiring data, until the steady state is reached. With that, the long time

constant eddy current influence does not change over the acquisition time, so that it can

be corrected with the navigator echos.

2.5 Mapping the RF Field – B+
1 Mapping

Mapping the B1 field is not that straight forward than mapping the B0 field, because the

relation between the MRI signal and the B1 field is not trivial and depends on several

factors, as the used sequence, the slice profile, and the resonance offset ∆B0. For that

purpose, the magnetization has to be prepared in a certain way so that all other influences

except B1 are compensated, or at least reduced to a negligible degree. Many methods were
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proposed, where most of them do not map the the magnitude of the RF field directly, but

the achieved flip angle α instead. At least in the onresonant case, there is no difference

because α is proportional to the B1 magnitude according to Eqs. (2.27) and (2.28) in

Section 2.1.4. If additional B0 field inhomogeneities are present, hence, flip angle map-

ping and direct B1 field mapping deliver different results. At least, the most important

methods are reviewed here. However, most of these methods are only able to determine

the magnitude of the B1 field, which is sufficient for most applications, especially for field

strength ≤ 3 T, but for some applications also the spatial varying phase of the B1 field is

of interest e.g. B1 shimming (see Section 2.3.6). A good review of state of the art methods

for B1 mapping, especially for the requirements at very high fields, is given by Pohmann

and Scheffler [231], including an error and scan time efficiency analysis.

2.5.1 Mapping the Magnitude of the B+
1 Field

In this section, the most important methods to measure the spatial flip angle distribution

are discussed. At the end, two methods to directly measure the magnitude of the B1 field

is described. Due to the proportionality, all are referred to as B1 mapping.

2.5.1.1 Double Angle Method (DAM)

Fist attempts to map the spatial distribution of the RF field were already done by Hornak

et al. [129], but the first reliable and quantitative method was presented by Stollberger et

al. [285], the so called Double Angle Method (DAM). The main idea of this method is to

get rid of signal influences from spatial varying spin density ρ, relaxation times T1 and T2,

receiver sensitivity profiles B−1 , and the refocusing flip angle β in a SE sequence. Under

the condition that TR > 5T1max , the SE signal can be described with

S( #–r ) = ρ( #–r )B−1 ( #–r ) · sin(α( #–r )) · sin2

(
β( #–r )

2

)
e
− TE
T2(

#–r ) , (2.105)

such that the ratio between two acquisitions with exactly the same sequence parameters,

except the flip angle α, gets independent of all these disturbing influences. Under the

condition of α2 = 2α1 for the second acquisition, the flip angle distribution α( #–r ) can be

calculated out of the ratio between the two acquired signals using

α1( #–r ) = arccos

(
S2( #–r )

2S1( #–r )

)
. (2.106)

Due to the proportionality between B+
1 and α, the magnitude of the RF field can be

calculated using Eqs. (2.27) and (2.28).

In [135], two further methods were presented, one with the only difference of using a

GRE sequence, compared to [285], leading to the same relation described in Eq. (2.106).

The second one is based on a slightly different SE acquisition scheme, where not only the
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excitation flip angle α is varied between both acquisitions, but also the refocusing angle

β, with the conditions β1 = 2α1, β2 = 2α2, and α2 = 2α1. With that, the signal depends

on sin3(α) instead of sin(α) leading to a much higher sensitivity for small changes. The

resulting relation is given by

α1( #–r ) = arccos

(
3

√
S2( #–r )

8S1( #–r )

)
. (2.107)

With that, the second scheme is better suited for volume coils, because of the higher

sensitivity for the less severe flip angle variations. For surface coils, the method from

[285] is better suited, because the flip angle rapidly decreases to values close to zero with

increasing distance from the coils, where the second variant has a low sensitivity because of

the sin3(α) relation. The suggested flip angle combination for the first method is α1 = 60◦

and α2 = 120◦. For the second method, the following flip angles are suggested: α1 = 60◦,

β1 = 120◦, α2 = 120◦, and β2 = 240◦.

With these methods two problems arise. First, the assumed linearity between B1 and

α is not fulfilled for slice selective excitation and second, the very long acquisition time

because of the restriction TR > 5T1max to get rid of T1 influence. In the human brain the

T1 time constants are in the order of 1 s (if Cerebrospinal Fluid (CSF) is neglected), so

that the minimum repetition time is in the order of 5 s, leading to an acquisition time of

5 min for a single slice with a matrix size of 64 × 64. These two problems were tackled

in Stollberger and Wach [286], where a compensated version of DAM was introduced as

well as a correction for slice profile effects. For the compensated DAM , the sequence

was modified using an additional RF pulse with a flip angle δ, applied directly after the

readout gradient. The following condition must be met for the first and second acquisition,

δ1 = α2 and δ2 = α1. With that, the total flip angle over one TR interval is the same

and if the time between excitation and compensation pulse is small compared to TR, the

z-component Mz of the magnetization shortly before the excitation is approximately the

same for both acquisitions and can therefore be neglected. The TR can be reduced into

the range of T1max . The nonlinearity effect between B1 and α gets more severe, the higher

α gets. This problem is solved with an acquired correction curve for the specific used RF

pulse. For the sinc shaped pulse used in [286], the linearity condition was fulfilled for flip

angles up to 140◦.

Some further improvements should be mentioned concerning this method. In [61], the

DAM method was improved by the application of a B1 insensitive saturation pulse at the

end of the sequence combined with a spiral readout, where acquisition times in the order

of seconds were reached. A similar approach was presented by Wang et al. [312], where an

RF pulse train was applied to maintain the same z-magnetization for both acquisitions.

For readout, a more robust multi-echo GRE sequence was used. The DAM was combined

with a TSE readout and a non-selective excitation pulse in [270] to decrease acquisition

time and reduce slice profile effects, and in [314] it was combined with an EPI readout.
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Figure 2.25: Sequence diagram of the stimulated echo – spin echo imaging method.

2.5.1.2 Stimulated Echo – Spin Echo Imaging (STESE)

In Akoka et al. [2], aB1 mapping method based on the acquisition of a SE and a Stimulated

Echo (STE) is proposed. For this purpose a three pulse experiment is carried out, and

the SE after the second pulse and the STE after the third pulse is acquired with a flip

angle scheme α–2α–α (see sequence diagram in Figure 2.25). An improved version of this

method for 3D acquisition is described by Jiru and Klose [142], where the acquisition of

both echos is performed by an EPI readout. The signals of the SE and the STE are given

by

SSE = M0e
−TE
T2 sin3(α), (2.108)

SSTE =
M0

2
e
−TE
T2 e
−TM
T1 sin2(α) sin(2α), (2.109)

where TM is the mixing time between second and third RF pulse. The flip angle in each

voxel is calculated out of the relation between both echos, where the following relation is

derived

α = arccos

(
SSTE · e

TM
T1

SSE

)
. (2.110)

If TM� T1, the exponential term in Eq. (2.110) can be neglected as proposed in [2], due to

the longer EPI readout in [142], it is suggest not to neglect it. For the correction, a T1 map

or simply an average T1 value of the tissue under investigation can be used. Furthermore,

an error estimate of the T1 influence is given, which increases with increasing α and TM.

However, the relation is independent of TR, such that it does not limit the acquisition time.

With the EPI readout, a 3D volume can be acquired in 1.5 min. To reduce the influence

of the slice profile, only the first pulse in the sequence is played out slice selective, the

second and the third are applied non-selective. For the application of this method to 7 T,

an improvement in dynamic range and a reduction to offresonances in combination with

parallel imaging for faster acquisition was proposed by Lutti et al. [197].
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Figure 2.26: Sequence diagram of the AFI method.

2.5.1.3 Actual Flip-Angle Imaging (AFI)

A first variant of Actual Flip Angle Imaging (AFI) was introduced by Pan et al. [227],

where two excitation pulses were applied with equal flip angle α, and a subsequent acqui-

sition of a gradient echo after each excitation pulse. If the time between both excitations

TR1 is short enough that the longitudinal relaxation can be neglected during that time

(TR1 � T1), the ratio between first and second echo signal is proportional to cos(α), so

that α( #–r ) is given by

α( #–r ) = arccos

(
S2( #–r )

S1( #–r )

)
. (2.111)

This is, because both signals are proportional to M0 and sin(α), and the remaining longi-

tudinal magnetization after the first excitation depends on cos(α), all other contributions

cancel out. However, full spoiling must be established between both excitations and full

relaxation is required after the second echo acquisition. Compared to standard DAM , the

acquisition time is at least halved.

A more general version of this approach is described by Yarnykh [327], where the

imaging is performed in a certain steady state. The idea of applying two excitation

pulses with equal flip angle α is the same as before, also a gradient echo is acquired

after each excitation. With that, the sequence has two Repetition Times (TRs), TR1

between first an second excitation pulse and TR2 between the second excitation pulse

and the start of the next repetition (see sequence diagram in Figure 2.26). Under the

assumption of TR1 < TR2 < T1 and perfect spoiling at the end of the TR1 and TR2

interval, the longitudinal magnetization reaches a steady state before first Mz1 and second

Mz2 excitation pulse given as

Mz1 = M0
1− ETR2 + (1− ETR1)ETR2 cos(α)

1− ETR1ETR2 cos2(α)
, (2.112)

Mz2 = M0
1− ETR1 + (1− ETR2)ETR1 cos(α)

1− ETR1ETR2 cos2(α)
, (2.113)

with

ETR1,2 = e
−

TR1,2
T1 . (2.114)

Because of equal TE and flip angle, the signal of first S1 and second acquisition S2 are
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proportional to the corresponding longitudinal steady state magnetization Mz1 and Mz1,

respectively, such that the ratio between both signals can be expressed as

r =
S2

S1
=

1− ETR1 + (1− ETR2)ETR1 cos(α)

1− ETR2 + (1− ETR1)ETR2 cos(α)
. (2.115)

If TR1 and TR2 are small compared to T1, Eq. (2.115) can be simplified by first-order

Taylor series approximation of the exponential terms

r ≈ 1 + n cos(α)

n+ cos(α)
, (2.116)

with

n =
TR2

TR1
, (2.117)

such that the ratio r gets independent of T1. By rearranging Eq. (2.116), the flip angle in

each voxel can be expressed as

α ≈ arccos

(
rn− 1

n− r

)
. (2.118)

With that, the overall repetition time (TR = TR1 + TR2) comes into the order of

TR < 100 ms such that a 3D acquisition gets feasible. With a non-selective or slab se-

lective excitation pulse, the influence of the slice profile is eliminated. The limitations

of this method are, due to high degree of approximation, low values of T1 and high flip

angles. The sensitivity of this method is determined by the ratio n between TR1 and TR2,

where a higher n leads to an increase in sensitivity. It is recommended to keep TR1 as

low as possible due to sequence timing (practically TR1 ≈ 10 ms) and the ratio n should

be in the range of 4-6 to provide a good compromise between sensitivity and acquisition

time. It is further recommended to keep α in the range of 40◦ to 80◦, because lower flip

angles lead to a decreased sensitivity and higher ones to an increased error.

2.5.1.4 Saturated Turob FLASH (satTFL)

The Saturated Turbo FLASH (satTFL) method was first described by Chung et al. [55]

and is based on the acquisition of a turbo Fast Low Angle Shot (FLASH) readout, im-

mediately after a slice selective preconditioning RF pulse with a certain flip angle αPre.

The preconditioning pulse is played out slice selective, because it reduces the sensitivity

to off-resonances. The turbo FLASH readout is performed with centric k-space ordering,

the central k-space lines are acquired at the beginning, such that the main contrast in

the image is determined by the preconditioning pulse. A spoiler gradient has to be ap-

plied between preconditioning pulse and turbo FLASH readout in order to dephase any

transverse magnetization from the preconditioning. A second acquisition with the same

sequence parameters has to be acquired, but without preconditioning, leading to proton
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density contrast. The flip angle distribution is again derived from the relation between

both acquisitions. The signal intensities are proportional to the z-magnetization before

the first FLASH readout pulse. Without preconditioning, the signal SPD is proportional

to M0 and with preconditioning the signal SPre is proportional to cos(αPre), so that the

relation is given by
SPre(

#–r )

SPD( #–r )
=
Mz(

#–r )

M0( #–r )
= cos(αPre(

#–r )). (2.119)

With that, the flip angle distribution can be obtained with

αPre(
#–r ) = arccos

(
SPre(

#–r )

SPD( #–r )

)
. (2.120)

It is suggested to select the preconditioning flip angle αPre to be around 60◦, such that the

effective flip angle for expected inhomogeneity variations in volume coils at 3 T does not

exceed 90◦. For αPre > 90◦, the solution in Eq. (2.120) is not unambiguous any more. The

flip angle of the FLASH readout was set to αEx = 10◦. One very important assumption for

the validity of Eq. (2.119) is that the appearing transient in the longitudinal magnetization

during the turbo FLASH readout can be neglected. Because of that, the central k-space

lines are acquired at the beginning, such that the influence of the overall contrast is quite

low. It was proven to be < 0.5 % Root Mean Squared Error (RMSE) for T1 ≥ 500 ms.

The influence of off-resonances was also shown to be < 1.6 % RMSE for ∆ω ≤ 2π ·500 Hz.

However, slice profile effects might influence the accuracy of this method.

2.5.1.5 180◦ Signal Null

Compared to the previously described methods, the 180◦ signal null method, described

by Dowell and Tofts [70], utilizes a completely different effect. Normally, the signal of

a spoiled GRE sequence highly depends on the flip angle α, T1, and TR in a highly

nonlinear manner, but the point where the signal gets zero when α approaches 180◦ does

not depend on T1 and TR. If the effective flip angle is αeff = 180◦, the signal gets identical

zero, because this corresponds to a perfect inversion, so that no transverse magnetization

is excited. Around the zero crossing, the signal varies approximately linear with flip

angle which is also independent of T1 and TR, such that a linear fit can be applied

to determine the zero crossing out of three acquisitions around the nominal flip angle

αnom = 180◦. Simulations indicate that the variation of αnom should be ±35◦, such that

three acquisitions are performed with nominal flip angles αnom1 = 145◦, αnom2 = 180◦

and αnom3 = 215◦. In principle, two angles would be enough, but the robustness against

noise increases with the proposed three acquisitions. The effective flip angle αeff ( #–r ) in

each voxel can be expressed by a scaling factor %( #–r ) in each voxel as

αeff ( #–r ) = %( #–r )αnom. (2.121)
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Figure 2.27: Sequence diagram of the DREAM method

Out of the linear fit in each voxel, the zero crossing αzero(
#–r ) can be determined and with

that the scaling factor map %( #–r ) is given as

%( #–r ) =
180◦

αzero(
#–r )
. (2.122)

As already mentioned, the zero crossing is in principle independent of TR, but the slope

of the function in that point is not independent. It can be shown that the slope and

therefore the sensitivity of the method increases with increasing TR. Thus, the selection

of TR is a compromise between sensitivity and acquisition time. In [70], a TR of 33 ms

is suggested, leading to an acquisition time of ≈ 4 min for a 3D volume covering the

entire brain. Another restriction of this method is that it is only suited for low flip angle

variations, because the linear region around the zero crossing is limited. Due to that and

the increase in SAR due to the high flip angle, this method is limited for volume coils at

field strength ≤ 3 T.

2.5.1.6 Dual Refocusing Echo Acquisition Mode (DREAM)

The latest method based an the signal magnitude was described by Nehrke and Börnert

[220], called Dual Refocusing Echo Acquisition Mode (DREAM) and is able to reach very

low acquisition times in the order of < 1 s for a single slice, but with the drawback of a

very low resolution. The method is based on a STEAM preparation module, followed by

a rapid low-angle GRE single shot acquisition with flip angle β, where two echos, an STE

and an FID echo, are acquired quasi simultaneously. The STEAM preparation consists of

two RF pulses with equal flip angle α separated by the time interval TS and a modulation

gradient with strength Gm2 inbetween. The transverse magnetization after the STEAM

preparation is dephased utilizing a spoiler gradient. The longitudinal magnetization is

prepared, such that a STE component Mz,STE and an unprepared component Mz,FID are

present. The time between the center of the first preparation pulse and the first GRE
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readout pulse is denoted as delay time Td (see sequence diagram in Figure 2.27). The

phase introduced by Gm2 is responsible that both echos are refocused at different echo

times in the following GRE acquisition, at TESTE and TEFID, which are acquired in a

single readout period. The signal for the first GRE readout is given by

SSTE = sin(β)Mz,STE =
1

2
sin2(α)M0 sin(β), (2.123)

SFID = sin(β)Mz,FID = cos2(α)M0 sin(β). (2.124)

The preparation flip angle α can be calculated out of the relation between the magnitude

of the two signals as

α = arctan

(√
2|SSTE|
|SFID|

)
. (2.125)

The echo time difference is determined by the modulation gradient Gm2, its pulse length

Tm2, and the readout gradient Gm, which is given by

TESTE − TEFID =

∫ Tm2

0 Gm2(t)dt

Gm
. (2.126)

Different timing schemes were proposed in [220], however, only the most effective is con-

sidered, where TS is selected to be

TS = TESTE + TEFID. (2.127)

This timing scheme was shown to be independent to T ∗2 decay, ∆B0 and chemical shift.

It has to be noted that T ∗2 and ∆B0 effects are completely refocused in the STE only for

TS = TESTE, for TS 6= TESTE they are at least partially refocused, such that Eqs. (2.123)

and (2.124) can be rewritten as

SSTE = ei(φTx+φRx) · e
− |TESTE−TS |

T∗2 · eiγ∆B0(TESTE−TS) · sin(β)Mz,STE, (2.128)

SFID = ei(φTx+φRx) · e
− |TEFID|

T∗2 · eiγ∆B0TEFID · sin(β)Mz,FID. (2.129)

By using Eq. (2.127), the relation in Eq. (2.125) gets independent of T ∗2 and ∆B0. If

a fat-water in-phase echo time is used, also chemical shift effects cancel out. Moreover,

additional information can be gained out of these two signals for free, a ∆B0 dependent

phase map and the transceive phase of the RF system by

∆B0 =
∠(SFID · SSTE)

2γTEFID
, (2.130)

φTx + φRx =
∠(SFID · SSTE)

2
. (2.131)
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The influence of T1 is determined by the delay time Td, which should be kept as short

as possible. For the timing chosen according to Eq. (2.127), the T2 influence is deter-

mined by the echo time of the STE , which also should be kept as short as possible. For

the experiments described by Nehrke and Börnert [220], reasonable values are given for

TESTE = 1.7 ms, TEFID = 2.3 ms, TR = 3.2 ms, and Td = 9 ms, such that the relaxation

influence can be neglected for typical tissue relaxation times. Because the acquisition has

to be done in 2D, the slice profile influence has to be considered. For single slice acquisi-

tions, the STEAM preparation pulses are carried out non-selective, with a slice selective

GRE excitation pulse. This is, because β has no influence on the flip angle map. For

multi-slice acquisitions, the STEAM preparation pulses are carried out with double the

slice thickness of the GRE excitation pulse. To avoid influencing neighboring slices, an

even–odd slice acquisition scheme has to be applied, such that the time between adjacent

slices is at least > T1. Also an error analysis is provided. According to that, the optimal

preparation flip angle should be α ≈ 55◦ and a GRE flip angle of β = 15◦ is suggested.

Furthermore, an error estimate is given by

∆α ≈ 220◦

SNR
. (2.132)

The main advantages of this method are its very high motion robustness, because of the

short acquisition time in the order of TA ≈ 130 ms per slice and its insensitivity against

∆B0 and relaxation. Furthermore, since it is not based on low bandwidth acquisition

(e.g. EPI or spirals), this method is not prone to geometrical distortions. However, care

has to be taken on signal variations during the readout pulse train, where the prepared

longitudinal magnetization Mz,STE and Mz,FID changes due to influences of T1 and β,

such that only the first acquired echo fulfills Eq. (2.125). This effect is considered by

Nehrke et al. [221], and it can be shown that this influence is negligible for the proposed

center-out k-space ordering scheme with typically used flip angles, readout train lengths,

and tissue T1 times. Small influences were reported around edges. However, this effect

limits the DREAM method to a very low resolution in the presented way. A segmented

acquisition with several preparation modules would be possible in general, but this would

require much longer acquisition times, because full relaxation is required between each

shot. Furthermore, in [221], an additional timing scheme was proposed to compensate

both, the influences of T ∗2 and T2. A further improvement of this method is described

by Ehses [75], where the DREAM approach is extended to a single shot 3D acquisition.

For that purpose, a 2D center-out spiral readout trajectory was combined with undersam-

pling in both phase encoding directions and the application of a Controlled Aliasing in

Parallel Imaging (CAIPI) [41] pattern and Generalized Auto-calibrating Partial Parallel

Acquisition (GRAPPA) [99] reconstruction. Because of the strong blurring introduced by

the long readouts, an iterative blurring compensation has to be applied, utilizing a global

T1 estimate and the gained flip angle values. With that a 3D volume with 5 mm isotropic

resolution can be acquired in approximately 4 s.
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Figure 2.28: Theoretical position of the magnetization vector in the transverse plane after per-
forming both excitation pulses for different α and different resonance offsets. (a) For first and (b)
for second acquisition.

2.5.1.7 Phase Imaging

All previously described B1 mapping methods are based on the signal’s magnitude. A new

method was proposed by Morrell [218] relying on the signals phase, with the advantage

of an inherent T1 independency and allowing a larger range of flip angle variations. The

basic idea of this method is to apply two non-selective excitation pulses with a nominal flip

angle of α1 = 180◦ for the first RF pulse which is applied around the x-axis, and α2 = 90◦

for the second pulse that is applied around the y-axis. Because of the unknown B1 field

variation, the effective flip angles are α1 = 2α and α2 = α. Without off-resonances, the

situation is quite simple, the first RF pulse flips the magnetization vector into the y − z
plane. The subsequent second pulse flips the magnetization into the transverse x−y plane,

where the phase is influenced by the first 2α pulse. The magnetization can be described

by

# –

M = M0

 sin(α) cos(2α)

sin(2α)

cos(α) cos(2α)

 . (2.133)

Because the signal phase not only depends on the first 2α pulse, a second acquisition

is necessary to get rid of other phase effects. The second acquisition is performed with

the same sequence parameters except the first RF pulse is applied with opposite sign,

such that the flip direction is reversed, and hence, the sign of the signal phase. The

phase difference ∆φ of both acquisitions is related through a lookup table to the value

of interest, the flip angle α. If offresonances are present, the flip axis changes according

to Eq. (2.29) in Section 2.1.4 and the expression for the magnetization vector becomes

much more complicated. The lookup table is extended to a second dimension to account

for offresonances, which have to be determined by acquiring an additional ∆B0 map (see
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Section 2.4). In Figure 2.28, the theoretical position of the magnetization vector after the

two pulse excitation is depicted. This method is restricted to non-selective excitation, to

minimize the influence of B0 field variations and to allow B1 mapping over a wide range

of ∆B0.

If the flip angle α is far away from the desired 90◦, e.g. in the range of 0◦ or 180◦, the

transverse magnetization generated by the second RF pulse is very low. This further leads

to a very low SNR in these regions. To overcome this, an improved version of this method

is described in [118] and [117], where the second α pulse is replaced by an adiabatic B1

insensitive excitation pulse to increase the excitation efficiency.

2.5.1.8 Orthogonal Alpha

A very similar method to the previously describe “phase imaging” is proposed by Chang

[48], where also two non-selective excitation pulses, but with equal flip angle α are applied,

followed by a GRE readout. The first RF pulse is applied around the −x-axis and the

second around the y-axis, such that the phase of the resulting signal depends on the flip

angle α. To get rid of other effects influencing the signal phase, a second acquisition is

required with reversed order of the RF pulses. Using the concept of rotation matrices

from Eqs. (A.10) to (A.12) in the Appendix, and considering the T ∗2 relaxation with

the corresponding exponential E∗2 term at the first two diagonal elements of E∗2, the

resulting magnetization
# –

M1,2 at the end of the second RF pulse for both acquisitions can

be described as

# –

M1(α) = Ry(α)E∗2Rz(φ)R−x(α)
# –

M0 =

 (1− E∗2 sin(φ)) sin(α) cos(α)

E∗2 cos(φ) sin(α)

E∗2 sin(φ) sin2(α) + cos2(α)

 , (2.134)

# –

M2(α) = R−x(α)E∗2Rz(φ)Ry(α)
# –

M0 =

 E∗2 cos(φ) sin(α)

(1 + E∗2 sin(φ)) sin(α) cos(α)

−E∗2 sin(φ) sin2(α) + cos2(α)

 . (2.135)

Here, φ is the offresonance precession angle during the time interval τ , between the center

of the two RF pulses. E∗2 and φ are given as

E∗2 = e
−−τ
T∗2 , φ = γ∆B0τ. (2.136)

The phase of both signals θ1 and θ2 is related by

tan(θ1) =
E∗2 cos(φ)

(1− E∗2 sin(φ)) cos(α)
, (2.137)

tan(θ2) =
(1 + E∗2 sin(φ)) cos(α)

E∗2 cos(φ)
, (2.138)
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such that their ratio gets proportional to cos2(α)

tan(θ2)

tan(θ1)
=
e

2τ
T∗2 − sin2(φ)

cos2(φ)
cos2(α). (2.139)

If τ � T ∗2 , the exponential term in Eq. (2.139) becomes ≈ 1, such that the influence of φ

cancels out and the flip angle can be calculated with

α ≈ arccos

(√
tan(θ2)

tan(θ1)

)
. (2.140)

The phase accumulation between the second excitation and the echo formation also has to

be considered. The basic assumption is that θ1 and θ2 are spread symmetrically around

π/4, such that the following correction is applied

θ1 =
π

4
+
θ′1 − θ′2

2
, θ2 =

π

4
+
θ′2 − θ′1

2
, (2.141)

for θ′1 and θ′2 being the original phase of first and second acquisition, respectively. To

minimize the influence of the T ∗2 decay, the time interval τ is tried to keep as short as

possible, such that the two RF pulses only can be applied non-selective. This restricts this

method to pure 3D acquisition over a large volume, as it is the case for “phase imaging”

(see Section 2.5.1.7). Furthermore, this sequence is restricted to flip angles α ≤ 60◦, to

ensure that the effective flip angle αeff < 90◦. The advantages of this method are the

insensitivity to T1 and a much lower sensitivity to background field variations as “phase

imaging” (see Section 2.5.1.7), so that no B0 field map is necessary. However, there are

two main sources of error: First, there is the influence of T ∗2 in Eq. (2.139) leading to

an overestimation of α, and second, the assumption that θ1 and θ2 are symmetrically

around π/4 in Eq. (2.141). It can be shown for values of φ ≤ π/6, that this is a quite

good approximation with about 5 % error, which corresponds to a resonance offset of

∆ω ≈ 2π · 85 Hz. A solution for this problem would be a third acquisition with only one

RF pule to accurately determine θ1 and θ2.

2.5.1.9 Hyperbolic Secant

A phase based method to directly determine the B+
1 magnitude instead of the flip angle α is

presented by Lee et al. [172], making use of the phase introduced by two Hyperbolic Secant

(HS) pulses. For that purpose, two full-passage HS pulses are applied as 90◦ excitation

pulse and a 180◦ refocusing pulse to form a spin echo. The HS pulse is an adiabatic pulse

with varying frequency and is defined by its amplitude B1(t) and frequency variation
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Figure 2.29: Sequence diagram for the hyperbolic secant method, with frequency modulation
∆ω1 and ∆ω2 for first and second acquisition, respectively.

ωRF(t) given as

B1(t) = B1,peaksech(βt), (2.142)

ωRF(t) = ωmax tanh(βt). (2.143)

Here, B1,peak is the the maximum B+
1 magnitude of the pulse and ωmax is the maximum

resonance offset of the frequency modulation, which is equal to half the bandwidth of the

pulse. The constant β is a dimensionless truncation factor. There is one condition that

has to be fulfilled, the duration of the HS excitation pulse has to be twice as long as the

duration of the HS refocusing pulse, but with the same bandwidth for both (see sequence

diagram in Figure 2.29).

This method is based on the B1 dependent phase created by the HS pulse, which is

given as the integral over the effective magnetic field (ωeff (t) = γBeff (t)) according to

Eq. (2.30) in Section 2.1.4

φHS = ±
∫ Tp

2

−Tp
2

√
(γB1,peak)2 sech2(βt) + (∆ω0 − ωmax tanh(βt))2 dt. (2.144)

The sign in Eq. (2.144) is positive if the frequency sweep is performed from negative to

positive values (−ωmax → ωmax) and it is negative if the frequency is swept in the opposite

direction (ωmax → −ωmax). It can be shown that the phase contribution from the frequency

sweep can be compensated by the application of both the 90◦ and the 180◦ HS pulse, such

that φHS gets independent of ∆ω0 and only depends on B1,peak. As for all other described

methods, to remove undesirable phase contributions, two acquisitions are performed with

opposite frequency sweep to gain a B1,peak dependent phase difference ∆φHS(B1,peak),

which monotonically increases with B1,peak. Because the relation between B1,peak and ∆φ

is quite complicated, an empirically determined relation was used to determine B1,peak.

The relation is gained by acquiring a set of image pairs with different pulse amplitudes

and observing the phase difference ∆φ. This method was shown to be independent of
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Figure 2.30: Sequence diagram of the BS shift method in two variants, (a) with GRE and (b) with
SE readout. In the SE version, the BS pulse is split into one part before and one after refocusing,
with opposite sign of the resonance offset ωRF. (c) Visualization of the field configuration during
the BS pulse in the rotating frame. The spins rotate with ωRF, whereas the B1 field stands sill.
The frequency shift ωBS is a constant field in the direction of the effective field Beff .

T1, TR, and insensitive to B0 variations. Furthermore, it can be applied to a wide range

of B1 amplitudes, such that an application at higher field strength > 3 T and different

types of coils, volume or surface coils, is possible. Compared to the Bloch-Siegert shift

method, it was shown that the sensitivity is better especially for low B1 magnitudes and

the reduced SAR. The acquisition time is reported to be around 1 min. This method was

further improved by Jordanova et al. [144], performing an optimization of the HS pulse

parameters in order to increase the sensitivity.

2.5.1.10 Bloch–Siegert Shift Imaging (BS)

The first method which directly measures the B+
1 field instead of the flip angle α, was

proposed by Sacolick et al. [249]. This method, called Bloch-Siegert (BS) shift imaging,

utilizes an effect described by Bloch and Siegert [26], where the resonance frequency of

a spin ensemble slightly shifts under the presence of an offresonant RF field (see Fig-

ure 2.30(c)). In the rotating frame, this can be visualized according to the concept of

the effective field described in Section 2.1.4 (Eqs. (2.29) and (2.30)). The length of the

effective field vector is given by

γBeff =
√
ω2

RF + (γB1)2 = ωRF + ωBS, (2.145)

where ωRF is the resonance offset of the RF field. The change in length of the effective

field ωBS (BS shift) is described by

(ωBS + ωRF)2 = ω2
RF + (γB1)2. (2.146)
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For large offresonances (ωRF � γB1), ωBS can be approximated by (neglecting the ω2
BS

term)

ωBS =
(γB1)2

2ωRF
. (2.147)

If such an offresonant RF pulse (BS pulse) is applied in an MRI sequence between exci-

tation and readout, an additional phase shift φBS occurs in each voxel depending on the

B1 magnitude

φBS =

∫ Tp

0
ωBS(t)dt =

∫ Tp

0

(γB1(t))2

2ωRF(t)
dt. (2.148)

Two sequence versions (SE and GRE ) are given in Figure 2.30(a) and (b). By using a

normalized function for the RF pulse, the phase shift φBS only depends on the squared

B1 peak magnitude and a pulse dependent constant KBS

φBS = B2
1,peak

∫ Tp

0

(γB1,norm (t))2

2ωRF (t)
dt = B2

1,peak ·KBS, (2.149)

where KBS depends on the pulse shape B1,norm, the pulse duration Tp, and the resonance

offset, which are all known in advance. To separate φBS from other effects influencing the

signal’s phase, a second acquisition is necessary with negative resonance offset −ωRF and

identical imaging parameters, leading to a negative phase contribution, such that the BS

phase can be obtained by

φBS =
∠S+ − ∠S−

2
, (2.150)

where S+ and S− are the signals with positive and negative resonance offset ωRF, respec-

tively. The peak B1 magnitude is given by

B1,peak =

√
φBS

KBS
, (2.151)

using Eq. (2.149). Even though, the BS shift depends on ∆B0, it can be shown that the

phase difference between both acquisitions is independent on ∆B0 up to first-order in a

Taylor series expansion. The Taylor series expansion for the BS shift is given as

ωBS =
(γB1)2

2(ωRF + ∆ω0)
≈ (γB1)2

2ωRF
− (γB1)2∆ω0

2ω2
RF

+O(∆ω2
0), (2.152)

where the second term cancels by taking the difference, because of the same sign for both

resonance offsets. If ∆ω0 � ωRF, the higher order terms can be neglected. The most

important condition for the accuracy of this method is ωRF � γB1 because of several

reasons: first, the approximation in Eqs. (2.146) and (2.147) stays valid, second, the

BS pulse does not lead to an additional excitation, and third, the influence of ∆B0 is

minimized. On the other hand, according to Eq. (2.148), an increase in ωRF leads to a

decreased B1 sensitivity, such that a compromise between accuracy and sensitivity has to
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be found. In Sacolick et al. [249], a resonance offset of ωRF = 4 kHz is suggested using a

8 ms Fermi-shaped BS pulse. This resonance offset is shown to be enough that no direct

excitation occurs and the error is below ≈ 2.5 % for ∆ω0< 600 Hz. In general, this method

is shown to be robust against TR, T1 relaxation, chemical shift, magnetization transfer,

and as already discussed ∆B0. However, Corbin et al. [58] found out that substantial

deviations can occur for low values of TR (< 40 ms), long T1 and T2, combined with

interleaved resonance offset acquisition and a lower resonance offset of the BS pulse (see

later).

The main limitation of the BS method in-vivo is the SAR constraint, limiting the

minimum possible TR. To reach a sufficient B1 sensitivity, a high magnitude and a long

duration is required for the BS pulse, leading to an onresonant equivalent flip angle of

several hundred degree, leading to quite high SAR values. In the initial publication [249],

a GRE and a SE readout were proposed, such that the application of a BS pulse is

necessary for every k-space line, making the SAR problem most severe. To overcome

the SAR limitation and to decrease the acquisition time, several combinations of the BS

shift with faster read out trajectories were proposed, e.g. the combination with a TSE

readout [8, 248], EPI [71, 250] and spiral trajectories [152, 250]. Another approach was

presented in [9], where many excitation pulses for different slices were placed before a

refocusing pulse and the BS encoding, to subsequently acquire a separate echo for each

excited slice to reduce the SAR. It was further shown that the BS shift can be encoded

by a STEAM preparation, similar to the DREAM sequence (see Section 2.5.1.6), followed

by a fast low-angle GRE readout [219]. Further improvements were proposed concerning

the optimization of the BS pulse to increase the B1 sensitivity and to decrease SAR

[137, 153, 154], and also the simultaneous acquisition of a ∆B0 map, by acquiring a

second gradient echo after the BS encoding [72]. The field map is calculated according to

the equations given in Section 2.4.

It is shown in this thesis that in general interleaved resonance offset acquisition is

more robust against phase instabilities during the acquisition (see Section 5.1), so that

it is recommended as the method of choice. However, the findings in a recent work

presented by Corbin et al. [58] indicate that under certain conditions the steady-state can

be disturbed by this interleaved acquisition, leading to an unequal phase offset in both

acquisitions, which does not cancel when taking the phase difference. To account for this

effect, also a correction strategy is proposed in [58] based on a multi-echo GRE sequence

and a General Linear Model (GLM). For this purpose, the sequence is modified, such that

2 echos are acquired before and 6 echos after the BS encoding pulse, which leads to 16

acquired echos in total for both resonance offsets. The GLM is used to model several

individual effects which influence the signal phase at each of the 16 acquisitions and to

separate them from the quantity of interest, the B+
1 dependent BS phase φBS. These are:

main field variations ∆B0, differences in the influence of eddy currents for odd and even

echos during the bipolar readouts φeddy, different phase offsets in the positive and negative

BS encodings (φoffset+ and φoffset− , respectively), and phase effects of same sign arising



80 Chapter 2. Physical Principles of Magnetic Resonance Imaging and Field Mapping

by the BS encoding pulse and the crusher gradients around it φsameSign. With that the

GLM is written as

Sφ( #–r ) = G · a( #–r ), (2.153)

where Sφ describes the phase of the 16 individual acquisitions and a is a vector containing

the different phase contributions. The system matrix G describes the contribution of

each of the modeled phase effects on the acquired signal and can be separated in positive

(left) and negative resonance offset acquisition (right) (see Eq. (2.155)). The dashed

line separates the matrix for echos acquired before and after the BS encoding pulse and

tn = TEn is the echo time at the nth acquisition. Sφ, a and G are given as

Sφ( #–r ) =



φTE1,pos(
#–r )

...

φTE8,pos(
#–r )

φTE1,neg(
#–r )

...

φTE8,neg(
#–r )


, a( #–r ) =



φBS( #–r )

γ∆B0( #–r )

φeddy(
#–r )

φoffset+( #–r )

φoffset−( #–r )

φsameSign( #–r )


, (2.154)

GT =



0 0 1 1 1 1 1 1

t1 t2 t3 t4 t5 t6 t7 t8
1 −1 1 −1 1 −1 1 −1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
positive

0 0 −1 −1 −1 −1 −1 −1

t1 t2 t3 t4 t5 t6 t7 t8
1 −1 1 −1 1 −1 1 −1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1


︸ ︷︷ ︸

negative

resonance offset

.

(2.155)

The unknown quantities in a are solved voxel wise by inverting Eq. (2.153) using weighted

least squares given as

a( #–r ) =
(
GTWG

)−1
GTWSφ( #–r ), (2.156)

where W is a diagonal weighting matrix, with the signal magnitudes on its diagonal.

A further more fundamental improvement was presented by Duan et al. [73], where

it was shown that BS based B+
1 mapping can also be performed under the condition

γB1 > ωRF. This leads to a highly increase of the sensitivity to B+
1 and with that to a

substantial reduction in SAR. For that purpose, a more general relation between B1,peak

and the resulting BS phase difference 2φBS between both acquisitions with positive and
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negative resonance offsets was derived as

2φBS =

∫ Tp

0
(∆ω0 + ωRF(t))

√1 +

(
γB1(t)

∆ω0 + ωRF(t)

)2

− 1


− (∆ω0 − ωRF(t))

√1 +

(
γB1(t)

∆ω0 − ωRF(t)

)2

− 1

 dt.

(2.157)

Under the condition |ωRF| > |∆ω0| Eq. (2.157) can be further simplified to

2φBS =

∫ Tp

0
ωRF(t)

√(1 +
∆ω0

ωRF(t)

)2

+

(
γB1(t)

ωRF(t)

)2

+

√(
1− ∆ω0

ωRF(t)

)2

+

(
γB1(t)

ωRF(t)

)2

− 2

 dt,

(2.158)

which is solved numerically. The B0 dependence is compensated by the simultaneous

acquisition of a B0 map [72], which is plugged into Eq. (2.158). Furthermore, the sequence

is modified such that an additional crusher gradient is applied around the BS pulse to

dephase any direct excitation. This modifications allow the acquisition of a BS based B+
1

map with a resonance offset of ωRF = 2π · 500 Hz with a RMSE of 0.57 % compared to a

reference acquisition with a resonance offset of ωRF = 2π · 8 kHz.

Another improvement of this method was presented by Weingärtner et al. [318], where

it is utilized for cardiac B+
1 mapping. The acquisition is performed in the diastolic phase

using a segmented GRE readout. The acquisition of the positive and negative resonance

offset was performed in an interleaved fashion to increase robustness against breathing

motion. The interleaved acquisition was further shown to be robust against phase drifts

during the acquisition time [176].

2.5.2 Mapping the Phase of the B+
1 Field

It is necessary to know the spatial distribution of the B+
1 phase, to determine the phase

offset of each channel in B1 shimming (see Section 2.3.6). Furthermore, the B+
1 phase

distribution carries information about the conductivity distribution σ( #–r ) in the tissue

under investigation, which is utilized in EPT [309] to determine σ( #–r ).

2.5.2.1 Absolute Phase of the B+
1 Field

For the reconstruction of σ( #–r ) in EPT , the absolute B+
1 phase has to be determined,

whereas for B1 shimming the relative phase difference between all transmit channels is

sufficient. The determination of the absolute B+
1 phase is very challenging and is only

possible under certain assumptions. The phase of the MRI signal φs can be separated
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into a B1 dependent component, the transceive phase φTx/Rx, and a B1 independent

component, which depends on ∆B0 and time dependent eddy current effects Beddy(t) as

φs(
#–r ) = φTx/Rx( #–r ) + γ

(
∆B0( #–r )TE +

∫ TE

0
Beddy( #–r , t)dt

)
. (2.159)

The transceive phase φTx/Rx consists of a component from the transmit field φTx and one

of the receive field φRx (see Section 2.3.5), where φTx should be determined. In [309], a

method was proposed assuming

φTx = φRx, (2.160)

such that they can be separated. This assumption is valid under certain conditions, e.g.

for “a dielectrically homogeneous lossy cylinder using quadrature excitation and reception

with the same coil” [309]. Furthermore, it could be shown by van Lier et al. [309] that

Eq. (2.160) is also a very good approximation in the human head for quadrature excitation

and reception with the same coil. The acquisition can be simply performed with a GRE

sequence, where the influence of ∆B0 can be determined by acquiring two echos at different

TE, as described in Section 2.4. The phase contribution from eddy current effects φeddy

can be determined by an additional acquisition with different gradient polarity. With that

φTx is given by

φTx( #–r ) =
φs((

#–r )− γ∆B0( #–r )TE− φeddy

2
. (2.161)

2.5.2.2 Relative Phase of the B+
1 Field between Transmit Channels

Mapping the relative phase between several transmit channels is based on the simple idea

to perform a GRE acquisition Sn, where only one of them is used for excitation. This

acquisition has to be repeated for each of the NTx transmit channels. For receive, the

same coil combination has to be used for all acquisitions. This can be a separate receive

coil array or all of the transmit channels if they are used in receive/transmit mode. If all

other acquisition parameters stay unchanged, the relative phase φn of channel n is simply

given as the phase difference to an arbitrary chosen reference channel nref

φn( #–r ) = ∠SNref
− ∠Sn ∀n 6= nref. (2.162)

The problem of this approach is that local transmit coils usually have also a very local

excitation profiles (B+
1 magnitude), such that the applied flip angle decays rapidly with

the distance to the coil. This leads to a quite inhomogeneous SNR, with very low signal

in a very large area of the image. To overcome this problem, usually a different strategy is

applied, where all except one transmit channels are used for excitation. For this purpose, a

method for simultaneous mapping of magnitude and phase of the B+
1 field, in combination

with the BS approach (see Section 2.5.1.10), was proposed by Zhao et al. [336]. The

combined complex B1 field B
+
1m of all active channels with combined phase φm can be
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written as a linear combination of the individual B1 fields generated by each channel B+
1n

with individual phase φn

B
+
1m( #–r )eiφm( #–r ) =

NTx∑
n=1

αm,nB
+
1n

( #–r )eiφn( #–r ). (2.163)

The weighting factor αm,n is one, if channel n contributes to measurement m and zero

otherwise (αm,n = 1 ∀ n 6= m and αn,n = 0), called the “all-but-one” scheme. The

B1 magnitude of each channel combination B
+
1m is determined through a BS measure-

ment with positive S+,m and negative S−,m resonance offset acquisition, as described in

Section 2.5.1.10. The resulting BS phase φBSm is of course different for each channel com-

bination, so that φ
∗
m can be determined from the positive (or negative) resonance offset

acquisition corrected by the channel combination dependent φBSm

φ
∗
m( #–r ) =

∠S±,m( #–r )

e±iφBSm ( #–r )
= φm( #–r ) + φ∗b(

#–r ). (2.164)

φ
∗
m consists of the combined B1 phase φm and an unknown channel independent back-

ground phase φ∗b . B1 magnitude B+
1n

and phase φn of each individual channel can be

determined by solving the following linear set of equations
B+

11
( #–r )eiφ

∗
1( #–r )

...

B+
1NTx

( #–r )e
iφ∗NTx

( #–r )

 = A−1
α


B

+
11( #–r )eiφ

∗
1( #–r )

...

B
+
1NTx

( #–r )eiφ
∗
NTx

( #–r )

 , (2.165)

where the system matrix Aα is determined by the weighting factors α

Aα =

 α1,1 · · · α1,NTx
...

. . .
...

αNTx,1 · · · αNTx,NTx

 . (2.166)

The resulting phase φ∗n again has a contribution of an unknown background phase φb given

as

φ∗n( #–r ) = φn( #–r ) + φb(
#–r ). (2.167)

By utilizing Eq. (2.162), the B1 phase of each transmit channel φn can be determined

relatively, up to an additional rotation by φb. A very detailed description of how to

determine the phase of the transmit field B+
1 and the receive field B−1 and how to separate

into several phase contributions is given by van de Moortele et al. [305].
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The major drawback of Magnetic Resonance Imaging (MRI) is the long acquisition time,

because of the time consuming sequential data acquisition in k-space (see Section 2.1.7).

In this section, some methods are shown to accelerate the data acquisition, and how to

reconstruct artifact free images from data sampled beyond the Nyquist rate, called un-

dersampling. These methods are based on Parallel Imaging (PI), which can be applied

in image space, i.e., Sensitivity Encoding (SENSE) [234], or in k-space Generalized Auto-

calibrating Partial Parallel Acquisition (GRAPPA) [99]. Moreover, the formulation of

the Magnetic Resonance (MR) image reconstruction problem as minimization problem

is introduced, and how the application of regularization functionals can be beneficial to

stabilize the solution or to include prior knowledge about the image structure to enforce

a certain behavior in the final solution. These kind of methods are summarized under

the term variational methods. For this purpose, the MR forward and backward operators

are introduced, mapping from image to data space and back from data to image space,

respectively. For these kind of methods, the knowledge of the coil sensitivity profiles is

necessary, so that some method are introduced to estimate them out of the undersampled

85
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data. Furthermore, a suitable similarity measure and a simple regularization functional is

derived from a statistical point of view, and more complex regularization functionals are

described based on their specific behavior. Also, some strategies to solve these minimiza-

tion problems are introduced based on a specific example.

3.1 Accelerated MR Data Acquisition and Parallel Imaging

In this section, the general aspects of accelerated MR data acquisition are described, as

well as the concepts of classical PI in image space and k-space. At the end of this section,

the voxel wise unfolding on the basis of the corresponding receive coil sensitivity profiles

is described, known as SENSE .

3.1.1 General

The discrete acquisition in k-space and the relations between the Field of View (FOV),

the image resolution ∆x and ∆y, k-space resolution ∆kx and ∆ky, and the maximum

acquired frequency in k-space kx,max and ky,max are describe in detail in Section 2.1.7.2.

According to Shannon’s and Nyquist’s sampling theorem [223, 263, 264], for a given FOV

and resolution, a minimum amount of sampling points have to be acquired to guarantee

an artifact free solution. In the frequency encoding direction (here kx), it is technically no

problem to fulfill this condition, because the necessary sampling interval ∆t (see Eq. (2.65))

of the Analog to Digital Converter (ADC) is reached easily with today’s available hardware.

To acquire the necessary amount of data points in the phase encoding direction (here ky),

the imaging experiment has to be repeated by the number of phase encoding lines Nky

with a contrast specific waiting time in between, the Repetition Time (TR). To establish a

certain contrast, the TR can be in the order of seconds, which is the reason for the major

limitation of MRI . For 3D acquisition the situation gets even more severe, because of the

additional phase encoding direction (here kz), so that the acquisition time increases by a

factor of Nkz , which is the number of data points in the second phase encoding direction.

Especially for field mapping, the acquisition time is very crucial, because it is usually

applied as preparation scan without any diagnostic information.

To reduce the acquisition time, one tries to keep the number of data points in both

phase encoding directions as low as possible. Classically, this can be achieved by placing

the phase encoding into the direction of the smaller geometric extension of the object and to

reduce the FOV accordingly, which is called rectangular FOV . According to Eq. (2.66), if

FOVy is reduced, ∆ky increases by the same factor and the resolution ∆y as well as ky,max
stay unchanged. Another possibility is to reduce the resolution in phase encoding direction,

which is equivalent to increase ∆y. In k-space ∆ky stays unchanged, but the maximum

acquired spatial frequency ky,max is reduced (see Eq. (2.66)). The last classical acceleration

possibility is to acquire only a part of the k-space (at least half of it), which is called

“Partial Fourier”, and to recover the remaining part by utilizing symmetry properties of
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image space k-space

original reduced resolution rectangular FOV

A

B
Figure 3.1: (A) Visualization of the connection between k-space and image space in terms of
FOV, image resolution ∆x and ∆y, k-space resolution ∆kx and ∆ky, and the maximum acquired
spatial frequency kx,max and ky,max. (B) Visualization of the relation if one of the quantities
is changes compared to the original acquisition (left column). A reduction of ky,max, leads to a
reduction of the resolution in y direction (middle column). An increase ∆ky leads to a reduction
of the FOV in y direction, known as rectangular FOV (right column).

the Discrete Fourier Transform (DFT) or by using more sophisticated algorithms, such as

the Projection Onto Convex Set (POCS) algorithm [51], to compensate for imperfections.

In this case neither resolution, nor FOV are reduced. These methods still do not violate

the Nyquist criterion, so that the image can be reconstructed using the inverse discrete

Fourier operator F−1. However, the acceleration potential of these kind of methods is very
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Figure 3.2: Image gained from fully sampled k-space (left) as well as for acceleration in ky
direction with acceleration factors Racc = 2, Racc = 3, and Racc = 4 (2nd to 4th image). The right
images shows the effect of acceleration in both directions kx and ky, each by the factor of two.

low and except “Partial Fourier” either resolution or FOV is reduced. Figure 3.1 shows the

general relation between k-space and image space in terms of FOV , image resolution ∆x

and ∆y, k-space resolution ∆kx and ∆ky, and the maximum acquired spatial frequency

kx,max and ky,max as well as the concepts of reduced resolution and rectangular FOV .

3.1.2 Parallel Imaging

To further accelerate the MR data acquisition, the only possibility is to reduce the number

of sampling points in phase encoding direction below the Nyquist limit. In the Cartesian

case, this can be done by acquiring only every mth k-space line in phase encoding direction,

so that the acceleration factor Racc is equal to m. According to Eq. (2.66), the k-space

resolution ∆ky is increased by the factor m, leading to a reduction of the FOV in phase

encoding direction by the same factor. This reduced FOV is not sufficient to represent the

entire object and due to the periodicity of the DFT , the periodic repetitions of the image

start to overlap. This effect is called back-folding or aliasing, which is visualized for differ-

ent Racc in Figure 3.2. Such aliased images can be unfolded without reduction in neither

resolution nor FOV by methods of PI , but additional information is necessary. With the

transition from using volume coils to nowadays used local phased array surface coils for

receive, PI became possible. The term “parallel” in PI originates from the parallel signal

reception in several receive coils. As already described in Section 2.3 (especially refer-

ring to Figure 2.20), such surface coils exhibit a very localized B1 field distributions and,

according to the principle of reciprocity, also very localized receive sensitivities B−1 ( #–r ).

According to Eq. (2.44), the signal sn in each receive coil is not only proportional to the

transverse magnetization M⊥, but also to the receive field B−1,n( #–r ) of each coil. If these

coil sensitivity distributions are known, this information can be used in PI methods to

unfold the image. Unfortunately, B−1,n( #–r ) does not only depend on the coil geometry,

but also on the coil load, so that it changes from patient to patient (see Section 2.3).

To determine B−1,n( #–r ), two different methods are possible: First, it can be determined

by a low resolution reference scan before the actual acquisition, or second, by acquiring

additional lines in the center of k-space according to the Nyquist rate during the actual
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Figure 3.3: Coil images (1st row), normalized receive coil sensitivities Cn( #–r ) (2nd row), and
k-space data of each receive coil (3rd row). Data was acquired on a healthy volunteer using a
64-channel head coil at 3 T, where 5 exemplary channels are shown. The receive coil sensitivity
maps are estimated using the algorithm proposed by Walsh et al. [311]. The k-space data is shown
in logarithmic scale.

image acquisition, to estimate the sensitivity profiles. These additional lines are usually

called Auto Calibration Lines (ACLs). The reference scan method has the advantage that

the determined sensitivity profiles can be used for several following scans, but any motion

inbetween leads to a mismatch between image and B−1 distribution. The ACL estimation

is more robust against motion, so that it is commonly used for coil sensitivity estimation,

where some estimation methods are described in Section 3.2.7. Most of these commonly

used methods are only able to determine a normalized sensitivity profile instead of the

absolute B−1 , which is sufficient for image reconstruction purposes, so that the normalized

sensitivity profiles of each coil are denoted as Cn in the following part of this thesis. In

Figure 3.3, the coil images, the receive coil sensitivity profiles Cn, and the acquired k-space

data of 5 exemplary receive coils are shown from a data set acquired with a 64-channel

head coil at 3 T. In theory, the maximum achievable acceleration factor Racc,max is deter-

mined by the number of available receive coils Nc. In practice, the achievable acceleration

factor is much lower, because the information gained from the different receive coils is

not linearly independent and the underlying reconstruction problem becomes ill-posed. In

clinical practice, reasonable values for the acceleration factor in 2D imaging are Racc = 2

or Racc = 3. In 3D applications, Racc can be chosen slightly higher if the undersampling
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is split up into both phase encoding directions. The highest efficiency can be reached, if

the undersampling in ky is shifted in each kz step according to Breuer et al. [41], known

as Controlled aliasing in volumetric parallel imaging (CAIPIRINHA). If the acceleration

factor is set too high, this can lead to either residual artifacts or a spatially varying mas-

sive noise amplification, especially in central regions of the image where most receive coils

contribute approximately equal to the total signal in the aliased voxel. To describe this

effect, a noise amplification measure g( #–r ) ≥ 1 was introduced in [234], derived from the

coil geometry, so that it is called “geometry factor” or simply “g-factor”. The resulting

Signal-to-Noise Ratio (SNR) in PI reconstruction is given as

SNRPI(
#–r ) =

SNRfull(
#–r )√

Racc g( #–r )
. (3.1)

Noise in PI is a very extensive topic, especially g-factor map calculation, so that the

interested reader is referred to [1, 42] for further information.

Over the years, many PI methods were proposed, which can be split up into image

space based and k-space based methods. The first k-space based method was presented

by Sodickson and Manning [273], called Simultaneous Acquisition of Spatial Harmonics

(SMASH), which is the basis for all other following k-space methods. The most prominent

and widely used one is the GRAPPA method proposed by Griswold et al. [99]. K-

space methods do not require an explicit knowledge of the receive sensitivity profiles.

These methods are based on shift invariant convolution kernels, where the missing data

points in k-space for one coil are generated as a linear combination of the acquired data

points around the missing one from all receive coils. The weighting factors (values of

the convolution kernel) are estimated from the fully sampled ACLs in the center of k-

space, assuming the shift invariance of the convolution kernel. This method was further

extended by Lustig and Pauli [196], so that the weighting factors are estimated from the

whole acquired k-space data by a least squares fit called iterative Self-consistent Parallel

Imaging Reconstruction (SPIRiT). Once, each k-space point is calculated, the image can

be reconstructed by applying the discrete inverse Fourier operator F−1. In contrast to

that, in image space based methods, the aliased image is calculated by the application of

F−1 to the undersampled k-space and the unfolding is performed in image space, requiring

the explicit knowledge of the receive sensitivity profiles. The most prominent and widely

used image space method is SENSE proposed by Pruessmann et al. [234], based on the

idea from Ra and Rim [235]. In general, k-space based methods are more robust, because

no receive sensitivity profiles have to be estimated, but in image space based methods,

the incorporation of image priors is much easier (see Section 3.2). However, there is a

strong connection between image and k-space based methods, indicated by the fact that

the convolution kernel approach in k-space (GRAPPA) has an equivalent counterpart by a

multiplication in image space. Similarly, the multiplication of receive sensitivity profiles in

image space (SENSE ), see Section 3.2.3, has an equivalent counterpart in a convolution in



3.1. Accelerated MR Data Acquisition and Parallel Imaging 91

Channel 1 Channel 2 Channel 3

Figure 3.4: The principle of SENSE is visualized for 3 receive channels and an accelearation
factor of Racc = 2. The aliased voxel value yn is composed as the weighted sum of the unaliased
voxel values x1 and x2 (FOV

Racc
apart), weighted with the corresponding receive sensitivity cn,1 and

cn,2, respectively.

k-space. Indeed, it was shown mathematically by Uecker et al. [301] that both approaches

are equivalent and the receive profiles can be calculated as dominant eigenvectors of the

calibration kernel in k-space. Furthermore, this method can be used for the estimation

of receive coil sensitivity profiles (see 3.2.7). A more detailed description of PI is out of

scope of this thesis, so that the interested reader is referred to [24, 299], where a detailed

comparison of the different methods is given. The reconstruction methods described in

this thesis are based on the idea of SENSE , so that the voxel wise unfolding approach is

exemplarily described in the following section (Section 3.1.2.1).

3.1.2.1 Sensitivity Encoding (SENSE)

SENSE is based on the idea that the signal in each voxel yn( #–r ) of the aliased image

of coil n ∈ [1, Nc] can be represented as the sum of the unaliased image voxel signals

xi(
#–r i), which are separated by FOV/Racc in image space (i ∈ [1, Racc]), weighted with the

corresponding receive sensitivity profile Cn( #–r i). This principle is visualized in Figure 3.4

and can be described as y1

...

yNc

 =

 C1,1 · · · C1,Racc

...
. . .

...

CNc,1 · · · CNc,Racc

 ·
 x1

...

xRacc

 , (3.2)

or

y = Cx. (3.3)
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Because of Nc ≥ Racc, the unaliased voxel values xi can be determined out of Eqs. (3.2)

and (3.3) using the weighted least squares solution in every voxel

x =
(
CHΨ−1C

)−1
CHΨ−1y, (3.4)

where as weighting matrix the inverse of the noise correlation matrix Ψ from Eq. (2.51) is

used. Furthermore, a regularized version of Eq. (3.4) is possible, to stabilize the solution

of the in general ill-posed inverse problem. The solution is then given as

x =
(
CHΨ−1C + λI

)−1
CHΨ−1y, (3.5)

where λ is a regularization parameter and I the identity matrix. This is equivalent to the

well known Tikhonov regularization initially proposed in [293] (see Section 3.2.4.1).

3.2 Image Reconstruction as an Optimization Problem –

Variational Methods

The solution for the voxel wise image unfolding problem given in Section 3.1.2.1, based

on [234], has two main drawbacks: first, this voxel by voxel inversion is tailored to the

special case of regular Cartesian undersampling. Irregular Cartesian undersampling or

non Cartesian trajectories cannot be tackled, because the point spread function and with

that the aliasing artifacts become also irregular. Second, the more important restriction

for this thesis, the application of image priors to incorporate prior knowledge of the image

structure cannot be incorporated. For that purpose, the image reconstruction problem

is written as an inverse problem, where the unknown parameters are the values of the

image’s voxels which has to be reconstructed, so that the whole image is reconstructed by

the solution of a global optimization problem. In this section, all necessary ingredients

to perform such a reconstruction are described. These are, the formulation of the MR

reconstruction problem as minimization problem and the derivation of a suitable similarity

measure for the data fidelity term from a probabilistic point of view. For the iterative

solution of these kind of problems, a proper forward and backward operator has to be

constructed, mapping from image to data space and vice versa. To stabilize the solution

and to incorporate prior knowledge of spatial structure of the image, proper regularization

functionals are introduced with their mathematical description and spatial properties.

Different algorithms to solve the inverse problem of reconstruction are considered for

differentiable and non-differentiable functionals, as well as the ability to reach a global

optimal solution (the convexity of the problem) are discussed. This section ends with

a description of different methods to determine the receive coil sensitivity profiles and a

short overview over some existing methods and their underlying ideas.
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3.2.1 The inverse Problem in MRI

Mathematically, the MR data acquisition can be written in its general form as

d = A(u) + ν, (3.6)

where the generated data d ∈ CNkx×Nky×Nkz×Nc is given by applying a certain opera-

tor A : CNx×Ny×Nz 7→ CNkx×Nky×Nkz×Nc to the unknown parameters u ∈ CNx×Ny×Nz .
Here, the operator A describes the measurement procedure and the parameters u de-

scribe the unknown image. Furthermore, the data d is corrupted by some additional

random noise ν ∈ CNkx×Nky×Nkz×Nc . Here, Nkx , Nky , and Nkz are the sampled data

points in readout (kx) and both phase encoding directions (ky and kz), respectively,

which are not necessarily equal to the number of voxels in image space Nx, Ny, and

Nz. Nc is the number of receive channels. The goal is now to find an inverse operator

A−1 : CNkx×Nky×Nkz×Nc 7→ CNx×Ny×Nz , to gain the reconstructed image from the mea-

sured data. In the fully sampled Cartesian case (Nx = Nkx , Ny = Nky , and Nz = Nkz),

the problem is fully determined, hence, the number of unknowns and the number of mea-

surements are equal, so that the inverse operator is simply the discrete inverse Fourier

operator (A−1 = F−1). In case of undersampling, the inverse problem of recovering u

from d, in Eq. (3.6), gets ill-posed in many practical cases, because of measurement errors

due to hardware imperfections, the incomplete data and low SNR. According to Hadamard

[106], the solution of an ill-posed inverse problem might not exist, it might not be unique,

and it might change drastically for small variations in the data (low stability). Because

of that, the inverse operator A−1 cannot be calculated explicitly, so that the problem is

usually written as the minimization of a cost function J(u) given as

û = arg min
u
J(u) = arg min

u
D {A(u), d}+ λR{u} . (3.7)

This cost function consists of two terms, a data fidelity term and a regularization term.

The data fidelity term measures the similarity between the reconstructed image and the

measured data by a certain distance measure D, and the regularization term R is respon-

sible for stabilizing the solution or the incorporation of prior knowledge to enforce certain

image properties as smoothness or edges. At the end, the reconstruction result û is the

image minimizing the distance between acquired and calculated data under the applied

constraint R. This kind of reconstruction problems are referred to as variational calculus

or variational methods. The regularization parameter λ balances between data fidelity and

regularization. Wrong selection of λ can lead to overregularization (e.g. oversmoothing)

if λ is chosen too high, or insufficient noise suppression or residual artifacts if λ is chosen

too low. Usually, the regularization parameter is multiplied to the regularization term.

However, the location of the minimum does not change if the cost function is multiplied by

a constant (i.e., 1
λ), so that it is equivalent to utilize a new regularization parameter λ̃ = 1

λ

which is multiplied to the data fidelity term. The following derivations in this thesis are
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performed for this case. The data fidelity term depends on the noise statistics in the data

(see Section 3.2.2) and the regularization describes the image properties, where different

kind of functionals are possible, some important are described in Section 3.2.4.

3.2.2 Probabilistic Point of View

From a probabilistic point of view, image reconstruction is searching for the image u,

having the highest probability to describe the given data d. For that purpose, u is treated

as a random variable and its conditional probability p(u|d) depending on the observation,

the measured data d, can be expressed using the Bayes rule

p(u|d) =
p(d|u)p(u)

p(d)
. (3.8)

Here p(d) can be seen as constant scaling factor, p(d|u) is the probability that the given

data describes the possible solution u, the so called likelihood, and p(u) is the prior

probability of u being a valid solution. According to Section 2.1.6, the noise in MR

data originates from a Gaussian distribution, so that the likelihood can be written as a

multivariate Gaussian distribution of the difference between acquired data and calculated

data using the forward model. This distribution has a mean of zero and is given as

p(d|u) = e−[A(u)−d]HΨ−1[A(u)−d], (3.9)

where Ψ is the noise correlation matrix defined in Eq. (2.51). The optimal data fidelity

term D in Eq. (3.7) for the given noise statistic comes out of the maximum likelihood for

u, such that the probability in Eq. (3.9) is maximized. Maximizing p(d|u) is equivalent to

minimizing the negative exponent in Eq. (3.9), stated as

ûML =
1

2
arg max

u
p(d|u) =

1

2
arg min

u
[A(u)− d]H Ψ−1 [A(u)− d] . (3.10)

The inverse noise correlation matrix Ψ−1 can be set to identity, or incorporated in the

forward operator A by using the Cholesky decomposition, as described by Pruessmann

et al. [233], so that the data fidelity term D reduces to the L2-norm of A(u) − d. The

optimization problem for the maximum likelihood solution ûML can then be written as

ûML = arg min
u

1

2
‖A(u)− d‖22. (3.11)

If A can be represented as linear operator A, which is the case for the MR operator (see

Section 3.2.3), the solution is given by the so called pseudo inverse

ûML = (AHA)−1AHd. (3.12)
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By maximizing the a posterior probability from Eq. (3.8), a prior probability p(u) has to

be defined. In [293], a function of the form

p(u) = e−λ‖u‖
2
2 (3.13)

is proposed to stabilize the solution of ill-posed inverse problems, in particular giving a

higher probability to lower solution values, because outliers are penalized. With that, the

solution for the a posterior probability is given by combining Eqs. (3.9) and (3.13) and

the maximum a posterior solution ûMAP can be written as

ûMAP = arg max
u

p(u|d) = arg min
u

1

2
‖A(u)− d‖22 +

λ

2
‖u‖22, (3.14)

giving one possible regularization functional R for Eq. (3.7). If A can be represented as

linear operator the solution is given as

ûMAP = (AHA + λI)−1AHd, (3.15)

which is the solution for the well known Tikhonov regularization. Furthermore, the L2

norm ‖ · ‖2 in the previous equations and in the more general the Lp norm is defined in

Appendix A.2.2.

3.2.3 The MR Forward/Backward Operator

According to Eqs. (2.43) and (2.63), the MRI signal in each receive coil sn is given as

the Fourier integral over the transverse magnetization M⊥(x, y, z) during sampling. Each

receive coil has its dedicated receive field B−1,n(x, y, z), describing the sensitivity of coil n

to a spin precessing at spatial location (x, y, z) (see Section 2.3.1). With that and the

extension to 3D encoding, the signal equation is given as

sn(kx, ky, kz) =

∫ ∫ ∫
V
B−1,n(x, y, z)M⊥(x, y, z)e−ikxxe−ikyye−ikzzdxdydz, (3.16)

where V is the measurement volume. After discretization the signal equation writes as

sn(lx∆kx, ly∆ky, lz∆kz) = F
{
B−1,n(mx∆x,my∆y,mz∆z)M⊥(mx∆x,my∆y,mz∆z)

}
=

Nx∑
mx=1

Ny∑
my=1

Nz∑
mz=1

B−1,n(mx∆x,my∆y,mz∆z)M⊥(mx∆x,my∆y,mz∆z)

e−ilx∆kxmx∆xe−ily∆kymy∆ye−ilz∆kzmz∆z∆x∆y∆z,

(3.17)

where B−1,n(x, y, z) is approximated by the normalized sensitivity profiles Cn(x, y, z) (see

Section 3.2.7). The triple sum in Eq. (3.17) reduces to the discrete Fourier operator F ,
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and the MR image u is proportional to the spatially sampled transverse magnetization

M⊥(x, y, z) during sampling, according to Eq. (2.66). With that, the MR forward operator

A : CNx×Ny×Nz 7→ CNkx×Nky×Nkz×Nc in Eq. (3.6) can be written as

A(u) =

 P �F {C1 � u}
...

P �F {CNc � u}

 , (3.18)

where P is the applied undersampling pattern in k-space and the operator � is the point

wise multiplication. This concept can be easily extended to arbitrary k-space trajectories

by replacing F with the Non-Uniform Fast Fourier Transform (NUFFT) operator described

by Fessler and Sutton [79]. The NUFFT operator basically extends F by a gridding of the

non-uniform trajectory to a Cartesian grid and accounting for varying sampling densities

in k-space by a density compensation function. However, further consideration of non

Cartesian trajectories is out of scope of this thesis.

To numerically solve the reconstruction problem, usually iterative methods are

applied (see Section 3.2.5), which require the definition of a backward operator

AH : CNkx×Nky×Nkz×Nc 7→ CNx×Ny×Nz , mapping from k-space to image space. The

adjoint backward operator AH to A in Eq. (3.18) can be expressed as

AH(d) =

Nc∑
n=1

Cn �F−1 {P � dn} , (3.19)

where Cn is the complex conjugate of the receive sensitivity profile and dn is the data of

coil n. To achieve convergence in the iterative solution, forward and backward operators

have to be adjoint to each other. Two operators are adjoint if〈
A(ũ), d̃

〉
=
〈
ũ, AH(d̃)

〉
(3.20)

is satisfied, where ũ ∈ CNx×Ny×Nz is a randomly chosen element in image space and

d̃ ∈ CNkx×Nky×Nkz×Nc is a randomly chosen element in data space.

Furthermore, it is important to note that the forward and backward operators A and

AH defined in Eqs. (3.18) and (3.19) are linear operators, because the Fourier transform

is a linear operation and the rest are point wise multiplications. The Fourier operator F
can be represented as a transformation matrix, so that A and AH can be as well. For that

purpose, u and d have to be written as vectors so that u ∈ CNxNyNz and d ∈ CNkxNkyNkzNc .
However, the size of these matrices get very large, so that they are never built up explicitly;

in practice only the definitions in Eqs. (3.18) and (3.19) are used. The MR forward and

backward operators defined here are based on their initial definition given by Pruessmann

et al. [233].
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3.2.4 Incorporation of Prior Knowledge – Regularization

As described in Section 3.2.1, the MR reconstruction problem is an ill-posed inverse prob-

lem, but the solution can be stabilized by incorporating a regularization functional into

the minimization (R(u) in Eq. (3.7)). Furthermore, a proper selection of R(u) can also

incorporate prior knowledge about the underlying image structure by enforcing certain

properties. Regularization can also be seen as restricting the solution space to valid or

preferred solutions. In this section, a selection of some important regularization functionals

is given.

3.2.4.1 Tikhonov Regularization

As already introduced in Section 3.2.2, the method proposed by Tikhonov [293] is widely

used to stabilize ill-posed inverse problems. The functional is defined as the squared L2

norm of the inverse problem’s parameters, the value of each voxel in the image u. The

regularization functional R(u) is defined as

R(u) =
1

2
‖u‖22 =

1

2

Nx∑
mx=1

Ny∑
my=1

Nz∑
mz=1

|umx,my ,mz |2, (3.21)

where mx, my, and mz are the spatial indices in x, y, and z direction, respectively. This

functional leads to a penalization of outliers, so that low magnitude solutions are preferred.

This leads to a stabilization of the solution as already indicated for the matrix inversion for

the voxel wise solution of the SENSE problem (see Eq. (3.5) in Section 3.1.2.1). However,

with this functional, no additional prior information about the spatial structure of the

underlying image can be incorporated. For this purpose, the functional can be extended

by a gradient operator, leading to the H1 regularization.

3.2.4.2 H1 – Regularization

To introduce some spatial regularity, a spatial operator has to be included into the regu-

larization functional. For this purpose, the discrete gradient operator ∇+
xyz can be used,

which is defined using forward differences, see Eq. (A.29) in the Appendix. For the nu-

merical solution, the corresponding transpose operator ∇T−xyz is needed, which is defined by

finite backward differences (see Eq. (A.30)). By taking the L2 norm of the image gradient,

the regularization functional R(u) can be written as

R(u) =
1

2
‖∇+

xyzu‖22 =
1

2

Nx∑
mx=1

Ny∑
my=1

Nz∑
mz=1

3∑
j=1

∣∣∣(∇+
xyzu

)
mx,my ,mz ,j

∣∣∣2 , (3.22)

where the inner sum, with index j = [1, 3], goes over the three gradient directions in each

voxel. According to Savage and Chen [251], this regularization functional is known as
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H1 regularization. With the H1 regularization strong gradients in the image are penal-

ized, which leads to noise suppression and a blurring of sharp edges, so that continuous

and smoothly varying image structures are enforced. According to Section 2.3.3, this

corresponds exactly to the spatial behavior of the B1 field distribution. Therefore, this

regularization functional is perfectly suited as image prior for the B1 field reconstruction

out of undersampled data.

3.2.4.3 Total Variation (TV)

The Total Variation (TV) functional was first introduced by Rudin et al. [247] as image

prior for the purpose of image denoising. The TV functional is defined as the L1 norm of

the magnitude of the spatial gradient in each voxel of the image. The magnitude of the

gradient is given as its Euclidean length (L2 norm). This combination of L1 and L2 norm

is indicated by ‖ · ‖2,1. In the 3D case, the TV functional is given as

R(u) = TV(u) = ‖∇+
xyzu‖2,1 =

Nx∑
mx=1

Ny∑
my=1

Nz∑
mz=1

√√√√ 3∑
j=1

∣∣∣(∇+
xyzu

)
mx,my ,mz ,j

∣∣∣2 , (3.23)

where ∇+
xyz is the discrete gradient operator from Eq. (A.29). The reason for the name is

that the TV functional measures the “total variation” or the “total gradient” in the image.

Because of that, a sharp transition from a certain image value a to another value b causes

the same cost as a smooth transition from a to b, so that data driven edges are preserved.

In practice, the comparable large costs of noise in smoothly varying regions in the image

leads to an enhancement of piecewise constant structures. For the reconstruction of MR

images, the TV functional leads to an unnatural (comic like) appearance of the image and

blocky artifacts (staircasing effect) in smoothly varying regions of the image.

3.2.4.4 Total Generalized Variation (TGV)

To improve the properties of the TV functional, the Total Generalized Variation (TGV)

functional was proposed by Bredies et al. [38] in its most general form. It was shown

in [33, 35] that the second order formulation TGV2
α of the TGV functional is a suitable

image prior for the solution of ill-posed inverse problems in image processing. The second

order TGV2
α functional is given as a minimization problem as follows

R(u) = TGV2
α(u) = min

v
α1‖∇+

xyzu− v‖2,1 + α0‖Ev‖2,1, (3.24)

with the symmetrized derivative E defined as

Ev =
1

2

(
∇−xyzvT +

(
∇−xyzvT

)T)
. (3.25)
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∇−xyz is the discrete gradient operator using backward differences, defined in Eq. (A.31) in

the Appendix, where also a more detailed definition of E is given in Eq. (A.32). Because

of the incorporation of higher order derivatives, in this case the second order, the spatial

property of piecewise smoothness is enforced by the TGV regularization functional. The

formulation as minimization problem is an elegant way, allowing to balance between first

and second order derivative over the parameter α = (α0, α1). TGV was first utilized for

the purpose of MR image reconstruction by Knoll et al. [159]. Furthermore, it was shown

that the application of TGV regularization leads to a massive gain in reconstruction qual-

ity, especially the reconstructed images appear much more naturally without staircasing

artifacts. According to Knoll et al. [159], the behavior of the TGV regularization can

be explained intuitively as follows: If v is locally selected to be approximately the im-

age gradient v ≈ ∇+
xyzu, the first term in Eq. (3.24) is approximately zero, so that the

second order derivative is penalized. This is usually the case in smooth regions. If v is

locally selected to be v ≈ 0, the second term in Eq. (3.24) is approximately zero, so that

the L1 norm of the image gradient gets penalized, similar to the TV behavior. This is

usually the case around edges. With that, the behavior of the regularization functional

is adapted locally depending on the image content. The parameter α = (α0, α1) can be

seen as constant which does not have to be tuned. According to Bredies and Holler [37],

the ratio α0/α1 is fixed to α0/α1 =
√

2 in the 2D and α0/α1 =
√

3 in the 3D case,

which was found to be a robust choice for MR image reconstruction. It is further worth

to mention, the first order TGV functional (TGV1
α) is equivalent to the TV formulation,

so that TGV can be seen as extension of TV . Furthermore, the applicability of TGV

regularization in other MRI applications was demonstrated for diffusion-tensor imaging

[304], quantitative-susceptibility mapping [166], joint MR-Positron Emission Tomography

(PET) reconstruction [162], and in Arterial Spin Labeling (ASL) [279, 280].

3.2.5 Numerical Solution

Even though, the MR forward and backward operators defined in Section 3.2.3 are linear

and can be expressed as simple transformation matrices, a direct inversion is in general not

feasible, because of the huge size of the matrix. Considering the example of a Cartesian 3D

acquisition with a matrix size of Nx×Ny ×Nz = 256× 256× 64 and a 32-channel receive

coil (Nc = 32), the matrix size of A would be NxNyNzNc×NxNyNz ≈ 1.34·108×4.19·106.

Using a 64 bit double representation, the required memory only for storing the forward

operator would be ≈ 4500 TB, so that a direct solution is not possible.

Therefore, iterative solutions are required to solve the reconstruction problem. If the

cost function to be minimized is differentiable, as it is the case for Tikhonov and H1

regularization functionals (see Sections 3.2.4.1 and 3.2.4.2), the problem can be solved

by gradient based methods such as “steepest descent” and Conjugate Gradient (CG) (see

Section 3.2.5.1). The L2 data fidelity term is always differentiable. Because of the L1 norm

in the definition of TV and TGV regularization (see Sections 3.2.4.3 and 3.2.4.4), these
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functionals are non-differentiable around zero. Therefore, gradient based methods cannot

be applied. To solve these kind of problems, a special kind of minimization algorithm was

developed, which is called the primal dual algorithm, proposed by Chambolle and Pock

[46]. The basic idea of this algorithm is outlined in Section 3.2.5.2.

3.2.5.1 Gradient based Minimization – Steepest Descend and Conjugate Gra-

dient

Gradient based optimization algorithms try to find the minimum of a cost function J(u),

defined as a point where the optimality condition ∇uJ(u) = 0 is fulfilled, by iteratively

converging to the solution from a randomly chosen starting point u0. For this purpose,

a search direction pk and a step size κk have to be calculated in each iteration step k to

update the solution uk as

uk+1 = uk + κkpk. (3.26)

Steepest Descend: The most natural approach is to define the search direction pk as

the steepest descend, which is given as the negative gradient of the cost function J(uk) in

iteration step k as

pk = −∇uJ(uk), (3.27)

where ∇u is the analytic gradient operator with respect to the model parameters, i.e., the

intensity value in each voxel of the image u, which is defined in Eq. (A.35) in the Appendix.

If J(u) is convex (see Section 3.2.6), the initialization u0 can be chosen arbitrarily, a

suitable choice would be to initialize u with zeros (u0 = 0). The choice of the step size

is very crucial in this algorithm. Choosing κ too small will result in a poor convergence

in the beginning and choosing κ too large will lead to jumping back and forth around

the actual solution at the end of the optimization. Therefore, the step size κ should be

updated in every iteration step as

κk = arg min
κk

J(uk + κkpk). (3.28)

The update step is exemplarily shown for the MR image reconstruction problem with

H1-regularization given as

uk+1 = uk + κk
(
AH (A(uk)− d) + λ∇+T

xyz∇+
xyzuk

)︸ ︷︷ ︸
pk

. (3.29)

The optimized step size κk is given as

κk =
pHk pk

pHk A
H(A(pk)) + λpHk ∇

+T
xyz∇+

xyzpk
. (3.30)
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Conjugate GradientSteepest Descend

Figure 3.5: Comparison of the convergence rate of steepest descent (left) and CG (right) on an
arbitrary 2D problem. After 20 iterations, the steepest descent is still far away from the solution
indicated with the green circle, whereas the CG converges to the optimal solution after the second
iteration. The red line denotes the progress of the solution in both cases.

Nevertheless, to use the negative gradient of J(uk) as search direction turns out to be a

bad choice, because of the poor convergence rate in the general case.

Conjugate Gradient (CG): To overcome this problem, a much better strategy to

determine the search direction pk was proposed by Hestenes and Stiefel [125], known as

the CG-method. The CG algorithm can be applied to problems of the form

Dx = z or Dx− z = 0, (3.31)

where D is a symmetric and positive semi-definite matrix. The MR forward operator

(in matrix form) does not fulfill this condition, so that the optimization problem from

Eq. (3.11) has to be rewritten as

min
u

1

2
‖A(u)− d‖22 =⇒ AHAu−AHd = ∇uJ(u)

!
= −g, (3.32)

where

D = AHA, and z = AHd. (3.33)

To determine the search direction pk in each iteration step k, the system matrix A and

all previous search directions pi ∀i < k are taken into account, so that

〈pi,Dpj〉
!

= 0 for i 6= j (3.34)
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is fulfilled (D-orthogonality). Under this condition, the search direction pk is given as

pk = gk +
gHk gk

gHk−1gk−1
pk−1, with p0 = g0 (3.35)

where gk is the negative gradient in iteration k (see Eq. (3.32)). The update step is equal

to the steepest descend method, as shown in Eq. (3.26). The step size optimization yields

κk =
pHk gk

pHk AHApk
=

pHk gk

pHk Dpk
. (3.36)

It can be shown that the CG algorithm converges to the exact solution after N iterations

for linear problems, where N is the number of unknowns in the problem. The difference in

convergence rate is shown in Figure 3.6, where the convergence rate of both algorithms is

evaluated on an arbitrary 2D problem. For the MR reconstruction problem, the number

of unknowns is still too large (4.19 · 106), so that a convergence to the exact solution is

not possible in an acceptable amount of time. In practice, a sufficient convergence can

be usually reached after ≈ 1000 iterations. The CG solution for the MR reconstruction

problem with H1 regularization is exemplarily shown, which is given as

û = arg min
u
J(u) = arg min

u

λ

2
‖A(u)− d‖22 +

1

2
‖∇+

xyzu‖22. (3.37)

The gradient can be calculated as

∇uJ(u) = λAH (Au− d) +∇+T
xyz∇+

xyzu = 0 = −g, (3.38)

so that the problem can be written in terms of D and z, given as(
λAHA +∇+T

xyz∇+
xyz

)︸ ︷︷ ︸
D

u = λAHd︸ ︷︷ ︸
z

. (3.39)

3.2.5.2 Primal Dual

As described in Sections 3.2.4.3 and 3.2.4.4, the regularization functionals TV and TGV

are based on the L1 norm. Because of the non-differentiability of the L1 norm, gradient

based method cannot be used to solve the optimization problem. For that purpose, sev-

eral solution strategies were proposed, as the Fast Iterative Shrinkage and Thresholding

Algorithm (FISTA) [12] based on a proximal gradient method. However, the most ac-

curate and efficient one was proposed by the seminal work of Chambolle and Pock [46],

known as “Primal-Dual” algorithm. With this algorithm, a solution of the following class

of optimization problems can be calculated

min
x
F (Kx) +G(x). (3.40)
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This problem can be rewritten into a saddle-point problem in terms of the primal variable

x and the dual variable y by using the convex conjugate or Fenchel duality as

min
x

max
y
〈Kx, y〉 − F ∗(y) +G(x), (3.41)

where K is an arbitrary linear operator and G : CN 7→ R+ and F : CN 7→ R+ are convex

functionals and F ∗ is the convex conjugate of F . According to [46], the problem can be

solved using the following algorithm:

τ, σ > 0; τσ‖K‖2 < 1; θ ∈ [0, 1]; initialize: x0 ∈ X, y0 ∈ Y, x̄0 = x0

update xn, yn, x̄n; n ≥ 0
yn+1 = (I + σ∂F ∗)−1 (yn + σKx̄n)

xn+1 = (I + τ∂G)−1 (xn + τKHyn+1

)
x̄n+1 = xn+1 + θ (xn+1 + xn)

(3.42)

Here, (I + σ∂F ∗)−1 and (I + τ∂G)−1 are the proximal mapping operators (or simply prox

operator) for F ∗ and G, respectively, σ and τ are the step sizes for the primal and dual

update, respectively, and KH is the Hermitian adjoint operator to K. The definition of

convex conjugate and proximal mapping is given in the Appendix (Eqs. (A.37) and (A.49)).

Exemplarily, the primal dual solution for the MR reconstruction problem with second

order TGV regularization is shown in the following paragraph. In the primal form, the

optimization problem with the two primal variables u and v is written as

û = arg min
u
J(u) = arg min

u

λ

2
‖A(u)− d‖22 + TGV2

α(u) =

arg min
u,v

λ

2
‖A(u)− d‖22 + α1‖∇+

xyzu− v‖1 + α0‖Ev‖1.
(3.43)

First, the minimization problem from Eq. (3.43), with the primal variables u and v, has

to be dualized according to Eq. (A.37), so that the saddle point problem in the primal

dual formulation writes as

min
u,v

max
p,q,r

〈
∇+
xyzu− v, p

〉
− Iα1‖·‖∞≤1(p) + 〈Ev, q〉 − Iα0‖·‖∞≤1(q)+

〈A(u)− d, r〉 − 1

2λ
‖r‖22,

(3.44)

where p and q are the dual variables to u and v, respectively and IC is the convex indicator

function defined as

IC(x) =

{
0, if x ∈ C
∞, if x /∈ C

(3.45)

The variable r is the dual variable to the data fidelity term ‖A(u)−d‖22. The dualization of

the data fidelity term is not absolutely necessary, the proximal operator could be applied

directly, but this would require the solution of a linear set of equations, leading to a
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high computational effort in each primal dual iteration. The dualization circumvents

this step and leads to a more efficient solution. The convex conjugate for the L1 and

the L2 norm as well as all necessary relation to derive Eq. (3.44) from Eq. (3.43) are

defined in Appendix A.2.6. Based on the solution strategy from Eq. (3.42), a solution

algorithm for the optimization problem defined in Eq. (3.44) can be developed, as denoted

in Algorithm 1, with the proximal mapping operators proxp,q,r for the dual variables p, q, r

given as

proxp(p̃)mx,my ,mz =
p̃mx,my ,mz

max

(
1,
|p̃mx,my ,mz |

α1

) , (3.46)

proxq(q̃)mx,my ,mz =
q̃mx,my ,mz

max

(
1,
|q̃mx,my ,mz |

α0

) , (3.47)

proxr(r̃) =
r̃

1 + σ
λ

. (3.48)

To measure the degree of convergence, a modified primal-dual gap (introduced by Bredies

and Holler [36]) is used, which is written for the given reconstruction problem with the

primal variables x = (u, v) and the dual variables y = (p, q, r) as

G(xk, yk) =
λ

2
‖A(uk)− d‖22 + α1‖∇+

xyzuk − vk‖2,1 + α0‖Evk‖2,1 +
1

2λ
‖rk‖22+

Nx∑
mx=1

Ny∑
my=1

Nz∑
mz=1

∣∣∣(∇+T
xyzpk +AH(rk)

)
mx,my ,mz

∣∣∣+
∣∣∣(pk + ET qk

)
mx,my ,mz

∣∣∣ . (3.49)



3.2. Image Reconstruction as an Optimization Problem – Variational Methods 105

Algorithm 1 Primal–Dual algorithm for the MR image reconstruction with second order
TGV regularization (TGV2

α) based on Knoll et al. [159].

Require: Measurement data: d, Operators: A, ∇+
xyz, ∇+T

xyz, E , ET
Initialize: u0 ← 0, ū0 ← 0, v0 ← 0, v̄0 ← 0, p0 ← 0, q0 ← 0, r0 ← 0
Choose: σ > 0, τ > 0
repeat

Dual update:
pk ← proxp

(
pk−1 + σ

(
∇+
xyzūk−1 − v̄k−1

))
qk ← proxq (qk−1 + σE v̄k−1)
rk ← proxr (rk−1 + σ (A(ūk−1)− d))

Primal update:
uk ← uk−1 − τ

(
∇+T
xyzpk +AH(rk)

)
ūk ← 2uk − uk−1

vk ← vk−1 + τ
(
pk + ET qk

)
v̄k ← 2vk − vk−1

until convergence of u: G < threshold or k = kmax

return uk

3.2.6 Convexity

The convexity of the cost function J(u), which has to be minimized, is a very important

property to guarantee that a global optimal solution can be found. A function J(u) is

convex if the condition

J (λu+ (1− λ) v) ≤ λJ(u) + (1− λ)J(v) ∀u, v ∈ C λ ∈ [0, 1] (3.50)

is fulfilled [11]. The convexity condition ensures that a found optimal solution, fulfilling

the optimality condition ∇uJ(u) = 0, is the only one so that it is the global optimum.

If the condition in Eq. (3.50) is not fulfilled, there can be an infinite number of points

fulfilling ∇uJ(u) = 0, so that nothing is known about the global optimality. In practice,

the Hessian matrix defined in Eq. (A.36), can be used as indicator for convexity. If

the Hessian is positive semi-definite, the cost function is convex. For the MR image

reconstruction problem, the Hessian for the data fidelity term can be calculated as

∇2
u

(
‖Au− d‖22

)
= AHA, (3.51)

which is a positive semi-definite matrix. Also, for the regularization functionals defined in

Sections 3.2.4.1 to 3.2.4.4 it can be shown that they are all convex. For the primal dual

algorithm, convexity is also very important, because it is only defined for convex problems.
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Figure 3.6: The property of convexity is shown on a 1D example. (Left) Example of a non-convex
function, where the condition of Eq. (3.50) is not fulfilled. (Right) Example of a convex function,
where the condition of Eq. (3.50) is fulfilled for all values of u, v and λ.

3.2.7 Determination of Receive Coil Sensitivity Profiles

For SENSE based reconstruction algorithms, the explicit knowledge of the receive coil

sensitivity maps Cn( #–r ) is required, to generate the forward and backward operators (see

Section 3.2.3). In general, there exist two different strategies to determine the receive

coil sensitivity profiles: first, this can be done by a low resolution reference scan acquired

with both, the actual phased array receive coil and the whole body birdcage volume coil.

The birdcage coil is assumed to have a very homogeneous receive sensitivity, so that the

morphological structure of the investigated object cancels out by applying a point wise

division between the image of each receive coil Sn( #–r ) and the birdcage reference image

Sref ( #–r ). With that the sensitivity profile Cn( #–r ) of each coil can be expressed as

Cn( #–r ) =
Sn( #–r )

Sref ( #–r )
. (3.52)

In general, the sensitivity profiles determined with this method are very accurate, but

the additional reference scan prolongs the acquisition time. Much more important, this

methods is very sensitive to motion occurring between the reference scan and the actual

image acquisition, which leads to a mismatch between the sensitivity profiles and the

actual image acquisition and with that to wrong forward and backward operators. These

coil sensitivity errors propagate to the reconstructed image and can lead to severe artifacts.

Therefore, in image reconstruction, the receive coil sensitivities are usually determined out

of the measurement data itself, which is the second strategy. Therefore, a certain number

of k-space lines are acquired at Nyquist rate around the k-space center (typically 16-24),

which are called ACLs. Because the B1 field is smooth and continuously varying in space,

it only consists of low spatial frequencies (see Section 2.3.3), so that this low resolution

approach is justified.
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To determine the receive coil sensitivity profiles out of the ACLs, several algorithms

were proposed. A complete review would be out of scope of this thesis, but the most

important methods should be briefly introduced. One of the first methods to determine

receive sensitivity profiles out of ACLs was proposed by Walsh et al. [311], for the adaptive

combination of multiple phased array coil images. The receive sensitivity profiles are

determined by a matched filter approach to maximize the local SNR. For this purpose,

both the signal and the noise are treated as stochastic processes, the signal as desired and

the noise as undesired one. It can be shown that the weighting factors in each voxel are

given as the eigenvector of Ψ−1
n Ψs with the corresponding maximum eigenvalue. Here,

Ψn is the noise correlation matrix defined in Section 2.1.6 and Ψs is the voxel wise signal

correlation matrix determined out of a patch around each voxel. If the patch size is

large enough to remove the influence of spin density variations, the determined weighting

factors are a good approximation of the corresponding coil sensitivity map. The phase of

the coil sensitivity map in each channel is normalized by using the one with the maximum

intensity, so that only the relative phase can be determined. This method delivers robust

coil sensitivity estimates even at low SNR. For a low number of ACLs, blocky artifacts

can occur because of the patch based approach. Another important method, already

mentioned in Section 3.1.2, is known as ESPIRiT and was presented by Uecker et al.

[301]. Here, the whole sensitivity map for each channel is determined as the dominant

eigenvector (corresponding to the greatest eigenvalue) of the calibration kernel in k-space,

showing the strong connection of k-space and image space based PI methods. This method

delivers much more smooth and natural appearing coil sensitivity profiles, but sometimes

lead to errors in low SNR regions.

Also, some methods based on variational modeling were proposed. Uecker et al. [300]

proposed a non-linear inversion by jointly reconstructing receive coil sensitivities Cn and

the underlying image u out of undersampled data. Because of the high number of un-

knowns, this under-determined problem gets highly ill-posed. The solution of this method

is based on Iteratively Regularized Gauss Newton (IRGN) framework, where in each it-

eration the linearized subproblem is solved to calculate an update step. To stabilize the

solution, a Tikhonov regularization is applied to the update step, and a smoothness con-

straint is applied to the sensitivity maps Cn. With this method, the coil sensitivity profiles

are rather a side product. The IRGN method was further improved in Knoll et al. [160],

by the application of L1 based regularization functionals as TV and TGV to reach a

better noise and artifact suppression. A further method based on variational modeling

was proposed by Schlögl et al. [254], especially for the coil sensitivity estimation from

dynamic data. Here again, a TGV prior is used as regularization for the magnetization

and a H1 regularization for the receive sensitivity in magnitude and phase.

As described by Griswold et al. [100], the coil sensitivity maps have to be normalized,
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which is inherently done in available implementations of the above described methods as

Cn,norm( #–r ) =
Cn( #–r )√√√√ Nc∑

i=1

|Ci( #–r )|2
, (3.53)

so that the reconstructed image has a nearly homogeneous sensitivity distribution and to

ensure the operator adjointness.

3.2.8 Iterative Image Reconstruction and Compressed Sensing

Based on the ideas described previously, several methods were proposed to reconstruct MR

images from undersampled data. The first reconstruction approach introducing these ba-

sic ideas was presented by Pruessmann et al. [233], known as CG-SENSE , as an extension

of the SENSE technique to arbitrary k-space trajectories. In this work, the CG algorithm

was used to iteratively solve the reconstruction problem, combined with a Tikhonov regu-

larization to stabilize the solution. Furthermore, the concept of MR forward and backward

operators was introduced in this work. The next step in image reconstruction was intro-

duced by the seminal work of Lustig et al. [194], known as Compressed Sensing (CS). The

concept of CS comes from the signal theoretic point of view [69], dealing with the question

how to describe a given signal in a sparse representation to reduce the necessary amount

of sampling points. From image compression it is known that natural images exhibit a

huge amount of redundancy, so that the necessary amount of information to represent

the image can be massively reduced by applying a sparsity transform. It was shown by

Lustig et al. [194] that the same concept can be used to drastically reduce the neces-

sary data points in k-space to reconstruct a diagnostic useful image. Three ingredients

are necessary to achieve this: first, incoherent undersampling, second, a sparsity trans-

form, and third, an iterative solution to balance between data fidelity and the sparsity

requirement. For incoherent undersampling, non-Cartesian trajectories [28] or incoherent

Cartesian undersampling, which is most efficient for 3D acquisitions, can be applied. Inco-

herent undersampling ensures that the occurring undersampling artifacts appear like noise

and that they are evenly spread over the whole image in the sparsity domain. As sparsity

transform, the Discrete Cosinus Transforms (DCT), the wavelet transform [63] and the

TV functional (see Section 3.2.4.3) were proposed by Lustig et al. [194]. Because the TV

functional only delivers high values at image edges, it can be seen as sparsity transform as

well. The reconstruction problem in [194] was written as an optimization problem which

can be solved using the CG algorithm. For a detailed overview over CS based methods in

MR image reconstruction, the interested reader is referred to the following review articles

[126, 195].

The application of L1 based image priors started with the work from Block et al.[28],

where a TV functional was applied to stabilize the image reconstruction from undersam-
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pled radial data. A similar regularization approach using Bregman iterations was proposed

by Liu et al. [187]. As already mentioned in Section 3.2.7, the nonlinear inversion of the

MR image reconstruction problem was proposed by Uecker et al. [300], where both the re-

ceive coil sensitivity profiles and the image are jointly reconstructed by solving a non-linear

optimization problem. This was introduced, to incorporate the whole available informa-

tion for image and coil sensitivities, yielding more accurate sensitivity maps and therefore

a better reconstruction results. This method was improved by incorporating L1 image

priors, in particular TV and TGV by Knoll et al. [160]. The TGV functional was intro-

duced for MR image reconstruction by Knoll et al. [159] and a variant for dynamic image

reconstruction was presented by Schlögl et al. [255], known as Infimal Convolution Total

Generalized Variation (ICTGV), leading to a further improvement of the reconstruction

quality.

3.3 Variational Methods in Field Mapping

For field mapping, variational methods are often used to apply a smoothness constraint

on the field map, to enforce its physical behavior and to suppress outliers. For example, a

regularized approach to estimate magnitude and phase of the B+
1 field in a parallel transmit

(pTX) setting was introduced by Funai et al. [83], based on the idea of the Double Angle

Method (DAM) but extended to an arbitrary number of acquired flip angles Nα. The

cost function is formulated in terms of the three unknown quantities: the underlying

magnetization image M, the normalized magnitude B+,norm
1n

and the phase Φn of the B+
1

field, given as

J(M,B+,norm
1 ,Φ) =

1

2

NTx∑
n=1

Nα∑
j=1

NxNyNz∑
q=1

∣∣∣Sn,j,q −Mqe
iφn,q sin

(
αjB

+,norm
1n,q

)∣∣∣2
+
λ1

2

∥∥∥∇+T
xyz∇+

xyzB
+,norm
1n

∥∥∥2

2
+
λ2

2

∥∥∇+T
xyz∇+

xyzΦn

∥∥2

2
,

(3.54)

where NTx is the number of transmit channels and Sn,j,q is the acquired signal of voxel

q, for flip angle j, and using transmit channel n. Magnitude and phase for each transmit

channel are separately regularized by the L2 norm of its second order spatial derivative

and λ1 and λ2 are their regularization parameters, respectively. This problem is solved by

performing a gradient based update step for B+,norm
1n

and Φn in each iteration, whereas

a solution for M can be obtained analytically with assumed constant B+,norm
1n

and Φn

in each iteration. The non-convexity of this optimization problem is tackled by a proper

initialization by using the solution of the standard DAM . Zhao et al. [336] presented a

quite similar approach for B+
1 magnitude and phase mapping based on the Bloch-Siegert

(BS) method. As a regularization functional, the H1 functional was used applied to

the complex B+
1 field estimate instead of separately to magnitude and phase. Another

formulation of this problem was proposed by Sun et al. [288]. The approach from Funai
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et al. [83] was also applied to B0 mapping in [84] and [80], where the data fidelity term

in the cost function was adapted properly to take the B0 model into account, leading

to an optimization problem similar to Eq. (2.101). As regularization functional, also the

second order spatial derivative was used. In these methods, variational modeling is used

to stabilized the solution in low SNR regions, but without acceleration.

Undersampling was also investigated for B+
1 mapping, i.e., an accelerated version for

BS based B+
1 mapping was introduced by Sharma et al. [265], but without using an image

prior. For the reconstruction of the undersampled data, a modified SPIRiT approach

(presented by Lustig et al. [196]) was used. SPIRiT is more or less an extended version of

GRAPPA, where the missing data points in k-space for each receive coil are obtained as

weighted sum of its neighbors of all available receive coils. The basic idea of the method of

Sharma et al. is to incorporate the information of both BS acquisitions obtained with each

of the NTx transmit channels into the SPIRiT framework. These additional acquisitions

(both BS encodings for each transmit channel) are treated as “additional receive coils”

for the reconstruction. Moreover, the BS acquisitions for each transmit channel have to

be performed sequentially, so that different k-space positions can be acquired for each.

With that, the determination of the convolution kernel is improved, referred to as “joint

staggered” approach in [265]. This method already performs very well, acceleration factors

of about 30 can be achieved without sacrificing accuracy, but further improvement can be

expected by directly applying a smoothness constraint to the reconstructed B+
1 field.
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In the end, it’s not the years

in your life that count. It’s

the life in your years.

Abraham Lincoln
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Several applications in Magnetic Resonance Imaging (MRI) have very high requirements

on the field homogeneity, or require a certain correction on the basis of field mapping.

According to Section 2.2.3.2, strong geometric distortions can occur due to a deviation

of the expected k-space trajectory caused by B0 field variations. This is most severe for

sequences with long readout trajectories, as it is the case for Echo Planar Imaging (EPI)

based sequences or spiral readouts. If the field distribution is known, this effect can be

corrected, i.e., in image space as proposed by Jezzard and Balaban [139]. In Quantitative

Susceptibility Mapping (QSM), it is tried to map the tissue specific susceptibility varia-

tion, where field mapping techniques are used. Here, the main challenge is to separate the

field variations caused by the susceptibility distribution of the tissue, from the macroscopic

background filed variations. In a subsequent step, the underlying susceptibility distribu-

tion is obtained by a deconvolution operation on the field map. A possible solution for this

problem, based on variational modeling, was proposed by Langkammer et al. [166]. Also,

for a method called Chemical Exchange Saturation Transfer (CEST), where metabolic

information is obtained from the saturation of the magnetization at certain frequency

bands, field mapping is essential. First, a deviation in B0 leads to a shift of the saturation

band to a wrong position, and second, the degree of saturation depends on the actual

111
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B+
1 magnitude at a certain location, which has to be taken into account for quantitative

evaluations. A more detailed analysis is given by Kim et al. [156]. Also, for spectroscopy,

a high degree of B0 homogeneity in the voxel of interest is necessary, because the line

width is directly proportional to ∆B0 inside the voxel, leading to a decrease in spectral

resolution. Here, a retrospective correction is not possible, so that the requirement on

accurate B0 shimming is very high. According to Sections 2.2.5 and 2.3.6, B0 as well as

B1 shimming require the exact knowledge of the underlying field distribution, so that field

mapping is an essential part of these procedures. Two selected applications are covered

in more detail in this section, these are chemical shift imaging, in particular water/fat

separation, and the correction for B+
1 field induced modeling errors in quantitative MRI

models.

4.1 Chemical Shift Imaging (Water/Fat Separation)

In this section several aspects concerning fat/water separation are considered. First, the

physical background is described, especially the origin of the chemical shift and its effect

on the Magnetic Resonance (MR) signal. Second, some mathematical models to describe

the signal behavior are introduced, and at the end, several methods to separate the fat

and water signal are described.

4.1.1 Physical Principles of Water/Fat Separation

According to Section 2.1.1, the MRI signal originates from the 1H nucleus in the hydrogen

atom, which occurs in different chemical environments in typical biological tissue. Chemi-

cally, the hydrogen atom can be bound to macro-molecules, lipids (fat-molecules) or water

molecules. Hydrogen nuclei that are bound to macro-molecules cannot be measured di-

rectly with classical MRI techniques, because of the instantaneous dephasing with a T2

time in the order of a few µs. They can only be measured indirectly by an offresonant sat-

uration and measuring the subsequent decrease in the directly measurable signal, which is

known as Magnetization Transfer (MT). The direct contribution to the measurable MRI

signal is therefore restricted to hydrogen atoms from two different chemical species, fat

and water. In fat, hydrogen is mainly bound to carbon atoms, which exhibit a much lower

electronegativity than oxygen, which is the binding counterpart in the water molecule.

The orbiting electrons shield the external magnetic field, “seen” by the nucleus, to a cer-

tain degree. The higher electronegativity of the oxygen shifts the center of the “electron

cloud” away from the hydrogen slightly closer to the oxygen. Hence, the shielding effect

decreases for 1H nuclei in water. In fat, the 1H nuclei experiences a higher shielding effect,

because the “electron cloud” is more evenly shared between the hydrogen and the carbon

atom. Because of the higher shielding, the hydrogen atoms in fat exhibit a slightly lower

resonance frequency than those bound in water molecules. This difference in resonance

frequency ∆ωF is known as chemical shift and can be used to separate the fat from the
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Figure 4.1: FID signal in a voxel containing fat and water, with the system frequency synchronized
to water. The signal is simulated for a fat fraction of 30 % and a common T ∗

2 relaxation time
constant of T ∗

2 = 20 ms at a field strength of 1 T.

water signal. The relative shift in resonance frequency between fat and water depends on

the specific dominant fat molecule in a certain tissue, but is in average ≈ 3.5 ppm [199].

The absolute value depends on the field strength, resulting in ∆ωF ≈ 2π · 220 Hz at 1.5 T

or ∆ωF ≈ 2π · 440 Hz at 3 T. This frequency difference has two effects on the voxel signal:

first, it leads to a periodical signal variation with the frequency ∆ωF in the demodulated

signal additionally to the signal decay due to dephasing. This is because the fat and water

signal add up constructively if they are in-phase and destructively if they have opposed

phase. The time interval ∆TF between signal maximum and minimum is given by

∆TF =
π

∆ωF
. (4.1)

This effect is visualized by a simulation in Figure 4.1. The second effect is a spatial

misalignment of the fat signal in frequency encoding direction, because the chemical shift

overlays with the frequency encoding gradient during readout, similar to the effect causing

geometric distortions due to ∆B0 field variations, described in Section 2.2.3.2. According

to Eq. (2.67), the shift distance ∆xF between fat and water is determined by the readout

bandwidth ∆fBW and is given as

∆xF =
Nx∆ωF
2π∆fBW

∆x, (4.2)

where ∆x is the voxel size and Nx is the number of voxels in readout direction. Therefore,

a higher readout bandwidth reduces the fat/water shift, but leads to a decrease in Signal-

to-Noise Ratio (SNR). If the readout bandwidth per voxel is larger than the chemical shift

(2π∆fBW/Nx > ∆ωF ), the misalignment is below the voxel size and can be neglected in

this case.

In many clinically relevant applications, the fat signal dominates, whereas the water

signal is of primary interest. Especially, structures around fatty tissue are often difficult to
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Figure 4.2: MR sequences used to encode the fat water shift as spin echo based (A) and gradient
echo based version (B).

diagnose, because of a chemical shift artifact, resulting in an overlay of fat and water signal.

Therefore, it is tried to suppress the fat signal, either by the application of spectral selective

Radio Frequency (RF) pulses or an inversion preparation pulse. The spectral selective RF

pulses can be either used to selectively excite the water compartment or to selectively

saturate the fat compartment with a 90◦ pulse followed by a spoiler gradient. However,

this approach is highly sensitive to B0 field variations, especially if γ|∆B0| > ∆ωF /2 and

also B1 field variations can lead to incomplete fat saturation, due to a deviation of the

desired 90◦ flip angle. The inversion preparation makes use of the much lower T1 in fat

(T1,F ≈ 300 ms) compared to most water dominant tissues, so that the excitation takes

place during the zero crossing of the fat signal. This approach is insensitive to variations in

B0 and also to B1 for an adiabatic inversion. However, this approach also saturates other

tissues having similar T1 and partially saturates the water signal, leading to a decrease

in SNR. Instead of suppressing the fat signal, it might be more beneficial to separate

both signals to get individual fat and water images, which also adds diagnostic relevant

information, i.e., for the diagnosis of bone marrow or liver diseases. Furthermore, also the

quantitative analysis of the fat content in a specific tissue gets possible, which can be used

as a biomarker to quantify the state or the progress of a certain disease. For this purpose,

several methods to separate fat and water signal were developed over the years, where a

brief overview is given in Section 4.1.3, based on the signal model derived in Section 4.1.2.

4.1.2 Signal Model and Fat Quantification

In the simplest case, the MR signal in the presence of water and fat can be modeled as

two spectral lines, with a spectral distance of ∆ωF (chemical shift), where the system

frequency ω is synchronized to the frequency of water ωW (ω = ωW ) and the frequency

of fat is given as ωF = ωW − ∆ωF . With that the signal S(t) at time t after excitation

writes as

S(t) = SW e
−j(ωW−ω)t + SF e

−j(ωF−ω)t = SW + SF e
j∆ωF t, (4.3)
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Peak Nr. Chemical Group Spectral Spectral Position Chemical Shift
(m) Position of Combined Peak ∆ωF,m at 3 T

ppm ppm Hz

1 -CH=CH- 5.29 5.3 -77
-CH-O-CO- 5.19

Water H2O 4.70 4.7 0

2 -CH2-O-CO- 4.20 4.2 64

3 -CH=CH-CH2-CH=CH- 2.75 2.75 249

4
-CO-CH2-CH2- 2.24

2.1 332
-CH2-CH=CH-CH2- 2.02

5
-CO-CH2-CH2- 1.60

1.3 434
-(CH2)n- 1.30

6 -(CH2)n-CH3 0.90 0.9 485

Table 4.1: Here, the spectral position of the signal from a 1H nucleus bound to a specific chemical
group in the fat molecule (shown in bold). For those peaks lying too close together, the spectral
position of the combined peak is given, as well as the resonance offset in Hz for each of the 6 main
peaks relative to water at 3 T. The peaks are numerated by the peak number m. The values are
out of Hamilton et al. [108].

where SW and SF are the signal components from the water and fat compartment, re-

spectively, proportional to their individual spin densities ρW and ρF . Even assuming

perfect shimming, the signal is further influenced by static field variations ∆B0 induced

by susceptibility variations between different tissues especially between air and tissue (see

Section 2.2.2). This effect has also to be considered, as well as the influence of T ∗2 decay,

where usually the relaxation rate R∗2 = 1
T ∗2

is used. After spatial encoding, the signal of a

voxel located at point #–r in space after the evolution time τ is given as

S ( #–r , τ) =
(
SW ( #–r ) + SF ( #–r )ej∆ωF τ

)
ej(γ∆B0( #–r )τ+φ0( #–r ))e−R

∗
2( #–r )τ , (4.4)

with φ0 is the initial time independent phase shift known as trancieve phase (see Sec-

tion 2.5.2.1). The T ∗2 decay is often neglected by setting R∗2 = 0. The definition of the

evolving time τ depends on the sequence and is defined as the time difference between

the time point where fat and water are in-phase and the center of the acquired echo. In a

Spin Echo (SE) sequence, τ is defined as the time difference between the SE , determined

by the 90◦ and 180◦ RF pulses, and the center of the readout gradient. This can be done,

because the chemical shift induced phase difference between fat and water is refocused at

the time of the SE . In Gradient Recalled Echo (GRE) sequences, τ is simply the echo

time. The timing for fat/water sensitive sequences is depicted in Figure 4.2. The phase

shift between the water and the fat signal at time τ is given as Θ = ∆ωF τ .
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Peak Nr. Spectral Chemical Shift Fitted Area T1 T2

(m) Position ∆ωF,m at 3 T αm
ppm Hz % ms ms

L
iv

er

1 5.3 -77 4.7 – –
2 4.2 64 3.9 – –
3 2.75 249 0.6 – 51
4 2.1 332 12 – 52
5 1.3 434 70 – 62
6 0.9 485 8.8 – 83

B
on

e
M

ar
ro

w 1 5.3 -77 4.16 – –
2 4.2 64 – – –
3 2.75 249 1.64 600± 30 59± 3
4 2.1 332 16.13 430± 20 51± 3
5 1.3 434 69.38 550± 30 69± 4
6 0.9 485 8.69 1160± 40 74± 6

S
u

b
cu

ta
n

eo
u

s
F

at 1 5.3 -77 4.19 – –
2 4.2 64 – – –
3 2.75 249 1.53 580± 30 58± 3
4 2.1 332 16.14 400± 25 47± 3
5 1.3 434 69.89 530± 40 63± 5
6 0.9 485 8.25 1080± 50 67± 8

Table 4.2: Spectral position and the resonance offset in Hz relative to water at 3 T as well as
the relative contribution αm in % for the 6 main contributing fat components in three types of
tissue: Liver, bone marrow and subcutaneous fat. For some peaks also their T1 and T2 relaxation
time constants are given. The liver values are out of Hamilton et al. [108] and the values for bone
marrow and subcutaneous fat are from Ren et al. [243], where the relaxation time constants are
determined at 7 T.

The single peak model fits very well for the signal from the simple water molecule,

whereas the fat molecule is much more complex. Moreover, the resonance frequency

depends on the position in the molecule and its direct neighbors. In Figure 4.3 (A), a

typical fat molecule is shown, where 9 different chemical groups with different resonance

frequencies are identified. Figure 4.3 (B) and (C) shows a simulated and a measured fat

spectrum, respectively. The main contribution originates from the CH2 elements in the

fatty acid chains (≈ 70 %) exhibiting the commonly used chemical shift of 3.5 ppm. Even

though this effect is known for a long time, it was first introduced to fat water separation

in [334], with a modified signal model given as

S ( #–r , τ) =

(
SW ( #–r ) + SF ( #–r )

NF∑
m=1

αme
j∆ωF,mτ

)
ej(γ∆B0( #–r )τ+φ0( #–r ))e−R

∗
2( #–r )τ , (4.5)
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with
NF∑
m=1

αm = 1, (4.6)

where αm is the relative contribution of one of the different spectral components of the

fat signal. NF is the number of modeled fat peaks. If each αm is known, the calculation

effort does not increase, because the complex phasor ej∆ωF τ in Eq. (4.4) is replaced by a

precalculated sum of complex phasors. According to Yu et al. [334], the spectral position

of each individual fat peak can be seen as constant, but their contribution αm can vary for

different types of fatty tissue. For the determination of αm two variant are possible: the

first method is a spectroscopic measurement with water suppression, where a Lorentzian

function is fitted centered around the position of the maximum of each fat peak. αm is

then determined as the area under the fitted curve. The second possibility is a calibration

measure, as proposed by Yu et al. [334], where 16 echos were acquired. The separation of

the 7 different components (one water and 6 fat peaks) was performed by using an extended

version of the Iterative Decomposition of water and fat with Echo Asymmetry and Least

squares estimation (IDEAL) algorithm. The contributions αm are then determined as the

average over a region with fat dominant voxels. It was shown that this recalibration of the

fat model leads to an increase in accuracy over predetermined values for αm. However,

the improvement is so low that most studies use predefined values from literature.

Referring to 4.3, some values for the different fat peaks are given in Tables 4.1 and 4.2.

9 different signal components can be identified in total, but some of them are so close

together or their contribution is so low that a discrimination is not purposeful. Usually,

6 different signal components are distinguished. In Table 4.1, the spectral position of

the 9 identified chemical groups in the fat molecule are given as well as the position of

the usually used combined peak for components lying closely together. Moreover, the

resonance offset in Hz for 3 T is given as well. In Table 4.2, the relative contributions αm
for these 6 main peaks in liver, bone marrow and subcutaneous fat are given as well as T1

and T2 relaxation time constants for some of the peaks, if available. The values are out of

[108, 241, 243], where also more details are given according this topic.

This signal model is sufficient for the separation of both signal contributions, but it is

not sufficient for the quantification of fat. The fat signal fraction ηs is usually defined as

ηs =
ρF

ρF + ρW
. (4.7)

However, after separation, only the water and fat signal components SW and SF can

be obtained, which are proportional to their individual spin densities ρW and ρF , but

also depend on other influences. For example, it is well known that water and fat have

completely different T1 time constants, so that the magnetization of both components has

different relaxation states at the following excitation. If a GRE sequence is used, the signal

components SW and SF follow the steady state equation (see Eq. (4.41)) with their specific
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Figure 4.3: (A) Typical structure of a fat molecule with 9 different identified chemical groups,
where the hydrogen atom can be bound to. In each configuration, the 1H nucleus experiences a
different shielding, resulting in slightly different Larmor frequencies. In (B), a simulated spectrum
is shown for each of the 9 identified chemical groups in (A), where the color of the group corresponds
to the color of the peak. In practice not all of this peaks can be resolved in-vivo, so that some are
grouped together, leading to 6 resolvable peaks. The simulation is based on a Lorentzian line shape
for each peak, using the values reported for liver tissue in Table 4.2. (C) A measured fat spectrum
in vegetable oil at 3 T is shown. The 6 dominant peaks in (B) are marked with the corresponding
number and the position of the water peak is also indicated. The measured spectrum is a modified
version from Reeder and Sirlin [241].

T1 relaxation time constants, T1,W and T1,F , respectively. This influence is considered by

Liu et al. [188], where also a compensation approach is proposed, based on a dual flip

angle acquisition, similar to the ideas of the Variable Flip Angle (VFA) approach for T1

mapping [65]. Also the R∗2 effect has to be considered. It was shown by Yu et al. [331]

that the additional estimation of R∗2 leads to an improved separation accuracy, but this

is still not sufficient for quantification. It was shown by Chebrolu et al. [50] and Bydder

et al. [45] that the estimation of separate relaxation rates for both components, R∗2,W
and R∗2,F , leads to a massive improvement in fat quantification accuracy. In general, also

different relaxation rates are possible for each fat peak, as reported in Table 4.2, so that

the complete signal model can be written as

S (τ) =

(
SW (T1,W )e−R

∗
2,W τ + SF (T1,F )

NF∑
m=1

αme
j∆ωF,mτe−R

∗
2,F,mτ

)
ej(γ∆B0τ+φ0). (4.8)

For the reason of simplicity, the #–r dependency is skipped. The individual relaxation rates

of the different fat peaks, R∗2,F,m, are usually not determined, because of the ill-posedness

of the problem. Noise and the low contribution of some of the peaks will not allow a

reliable quantification. A detailed comparison between different fat/water signal models
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was given by Hernando et al. [124]. Even when everything is corrected perfectly, the fat

fraction is given in terms of spin densities, whereas usually the fat volume or the fat mass

fraction is of interest. It was described by Reeder et al. [236], how to obtain these these

quantities out of the fat signal fraction.

4.1.3 Methods for Water/Fat Signal Separation

The separation of the fat and water signal can be done spectroscopically, where a very long

acquisition time is necessary to reach a reasonable spatial resolution, or by a semi spectro-

scopic approach as proposed by Sepponen et al. [260]. In this method, a certain number

of 2D k-space data sets with different, but equally spaced evolution times τ (Eq. (4.4))

are acquired, which are fed into a 3D Fourier transform, where the spectral component

is resolved in the third dimension, with a resolution reciprocal to the echo spacing ∆τ .

For the separation of fat and water, there are only two components with known spectrum

which have to be resolved, image space methods are preferable, because of the much higher

spatial resolution and the shorter acquisition time. Most of the currently available state

of the art methods are based on the simple idea proposed in the seminal work of Dixon

[67], therefore, they are referred to as Dixon methods. In the following, the initially pro-

posed two-point Dixon method is described as well as several improvements which were

developed over the years making this technique practically applicable.

4.1.3.1 Initially proposed Two-Point Dixon

The basic idea of the initially proposed two-point Dixon method [67] in its simplest form

is to choose τ in Eq. (4.4) according to Eq. (4.1), so that one image is acquired at the

maximum and one in the minimum of the oscillating decay, as shown in Figure 4.1. At the

maximum, the fat and water signal components are in-phase (Θ = 0◦) and at the minimum

they are maximal out of phase (Θ = 180◦). According to 4.4, the in-phase signal Sin and

the opposed phase signal Sout are given as

Sin( #–r ) = SW ( #–r ) + SF ( #–r ), (4.9)

Sout(
#–r ) = SW ( #–r )− SF ( #–r ), (4.10)

where ∆B0 effects and R∗2 decay are neglected (∆B0 = 0, φ0 = 0 and R∗2 = 0). The signal

components of water and fat SW and SF can be resolved as

SW ( #–r ) =
1

2
|Sin( #–r ) + Sout(

#–r )| , (4.11)

SF ( #–r ) =
1

2
|Sin( #–r )− Sout( #–r )| . (4.12)

In this form, the Dixon method suffers from the same problem as the spectral selective fat

saturation, because the influence of ∆B0 is neglected. Referring to Section 2.2, even under
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perfect conditions having a well shimmed main field, the remaining field inhomogeneity

over the Field of View (FOV) can be easily in the range of the chemical shift or above,

due to susceptibility variations especially between air and tissue. This leads to incomplete

fat/water separation, leading to additional intensity variations in fat and water image

according to the underlying field variation. If γ|∆B0| > ∆ωF /2, fat is assumed to be

water and vice versa, which is called fat/water swap. Even though, a SE sequence was

used in [67], which is less sensitive to variations in ∆B0 than a GRE sequence, severe

artifacts can be observed. In this form, fat/water separation cannot be applied in clinical

practice, nevertheless, today’s available state of the art methods are still based on this

simple idea. The main challenge in Dixon based fat/water separation is to gain a valid

estimate for ∆B0. If this is established, the separation of the signal components is a simple

task.

Over more than three decades, many methods were proposed to solve this ill-posed

inverse problem, by either modifications in data acquisition, post-processing or both, to get

more robust results. In Chapter 6, an approach based on variational modeling, by applying

a Total Generalized Variation (TGV) prior is presented. Although, huge improvements

could be reached, a global optimal solutions still does not exist, so that it is still an open

research topic. Some of these improvements are reviewed briefly in the following.

4.1.3.2 Three-Point / Multi-Point Dixon Methods

The first improvements were done by acquiring more data points to get additional in-

formation about the main field variations. In Yeung and Kormos [328] for example, the

initially proposed acquisition of two separate SEs [67] was extended by adding a second

refocusing pulse each, so that four echos are acquired in total. In the first Multiple Spin

Echo (MSE) acquisition, the evolution time in Figure 4.2 (A) is set to zero (τ = 0) and in

the second MSE acquisition, both echos are shifted, so that the evolution times τ1 and τ2

in Figure 4.2(A) fulfills the condition τ2 = 2τ1. Out of this, ∆B0 can be estimated, but

also the current orientation of the transverse
# –

M⊥ in the second acquisition, to determine

if unwrapping is necessary. With that, the maximum resolvable ∆B0 can be increased

by a factor of two. To further extend the applicability of this method, an improvement

was presented in Szumowski et al. [291] by the application of a 2D region growing phase

unwrapping algorithm dedicated to Dixon based fat/water separation [292]. A similar

approach was presented by Szumowsiu and Plewes [290], where phase cycling of the exci-

tation pulse (0◦ and 180◦) in combination with a dedicated timing scheme was applied to

gain more information about the underlying field inhomogeneity. First and second echo of

a single SE sequence are shifted by ∆TF with respect to each other, but in both cases fat

and water magnetization have an arbitrary orientation in the transverse plane. By using

four acquisitions with the same scheme, also T ∗2 compensation in the fat component can

be reached. A further improvement was presented by Williams et al. [321], where a four

echo MSE sequence was utilized to acquire the necessary data for ∆B0 field estimation
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and the correction of B1 introduced phase errors, because of multiple refocusing.

Another method, known as the three-point Dixon method, was first introduced by Kim

et al. [157] and Lodes et al. [191]. The basic idea of three-point Dixon is to extend the

initially proposed in-phase S0 and opposed phase S180 acquisition [67] by and additional

opposed phase acquisition, S−180, where the echo is shifted in the opposite direction.

According to Eq. (4.4), the signals are given as

S0 = (SW + SF ) ejφ0 , (4.13)

S180 = (SW − SF ) ej(γ∆B0τ+φ0), (4.14)

S−180 = (SW − SF ) ej(−γ∆B0τ+φ0), (4.15)

so that the phase shift caused by the field inhomogeneity φB0 = γ∆B0τ can be estimated

from S180 and S−180 as

φB0 =
1

2
∠
(
S180 · S−180

)
, (4.16)

and φ0 is given as the phase of S0

φ0 = ∠S0. (4.17)

The estimates for φB0 and φ0 can be used as a correction, so that SW and SF can be

estimated according to Dixon [67]. To increase the SNR in the fat and water images, the

following scheme was proposed by Glover and Schneider [95]

SW =
1

2

(
S0e
−jφ0 + cos

(
∠S−180 · ej(φB0

−φ0)
)√

S180 · S−180

)
, (4.18)

SF =
1

2

(
S0e
−jφ0 − cos

(
∠S−180 · ej(φB0

−φ0)
)√

S180 · S−180

)
. (4.19)

Phase wrapping in φB0 is a serious problem for this method, making phase unwrapping

unavoidable. Without phase unwrapping, the resonance offset would be restricted to

γ∆B0 ≤ ∆ωF /2. For this purpose, the three-point Dixon method was extended by a phase

unwrapping algorithm [95], which is similar to an approach presented by Schneider and

Glover [258] for B0 shimming. More details on phase unwrapping are given in Section 2.4.1

and in a review given by Ma [199].

Glover further extended the three-point Dixon method to arbitrary phase shifts

between fat and water and it was shown that an equal spread over the unit circle

Θ = (0◦, 120◦,−120◦) leads to the best SNR behavior and also overcomes the problem of

signal dropout in voxels with equal fat and water contribution [94]. Furthermore, this

method was extended by an additional T ∗2 estimate determined out of the Dixon data. It

was further shown by Coombs et al. [57] and Skinner and Glover [269] that the three

point Dixon acquisitions are redundant and the necessary information for the correction

of the ∆B0 influence can be determined directly out of the two-point Dixon acquisition,

as long as SW 6= SF . However, in this case the solution is given by SW = SF = |S0|/2.
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The three-point Dixon method was implemented within a Turbo Spin Echo (TSE)

sequence [114], and an improved version with more efficient echo spacing was proposed

by Ma et al. [200].

Another three-point Dixon algorithm was proposed by Wang et al. [315], where

three GRE acquisitions are performed with a phase shift between fat and water of

Θ = (0◦, 180◦, 360◦). In GRE sequences, the echo at Θ = 0◦ cannot be sampled, hence,

the first in-phase acquisition already has a phase difference of Θ = 360◦, but it can

be treated as the Θ = 0◦ acquisition, because the necessary information is encoded

in the phase difference. Here, a local phase unwrapping approach is proposed, where

several phase consistency conditions between the Θ = 0◦ and the Θ = 360◦ acquisition

were proposed, to determine if a phase unwrap is necessary or not. This extends the

applicability to field inhomogeneities of γ∆B0 = 3∆ωF /2. Furthermore, the applicability

to 2D and 3D GRE sequences was shown.

Another two-point Dixon approach was presented by Xiang [324], where an in-phase

and a partially opposed phase echo is acquired. The partially opposed phase condition

(Θ < 180◦) enables the possibility to identify the fat and water signals after separation by

utilizing a leading or lagging condition similar to the ideas described in Xiang and An [325].

After an initial phase correction and separation of the two signal components, two possible

phasor candidates are estimated in each voxel, where phasor refers to the complex phase

term associated to the ∆B0 field variations (ejγ∆B0τ ). The phasor selection is iteratively

updated voxel by voxel on the basis of a local smoothing condition until no further changes

occur.

Based on the ideas of Glover [94], an approach to jointly estimate fat and water images

SF and SW , the main field inhomogeneity ∆B0 and the relaxation rates R∗2 and R2 from

one single measurement was proposed by Ma et al. [204]. For this purpose, two monopolar

GRE trains with an echo spacing of ∆TF (see Eq. (4.1)) are acquired before and after an

180◦ refocusing pulse. The echo spacing is adjusted so that fat and water magnetization

are alternating between in-phase and opposed phase orientation. It was further shown

that this technique is able to determine the specific relaxation rates of both chemical

compartment, fat and water, however, the SNR is quite poor.

4.1.3.3 Region Growing based Methods

Most of the methods described so far require a phase shift between fat and water of

Θ = 180◦. In Xiang and An [325], the solution of the three-point Dixon acquisition

was generalized to phase shifts Θ 6= 180◦. For that purpose, the separation result can be

obtained as the solution of a quadratic equation, where only one of the two mathematically

possible solutions is physically valid. The solution consists of two unambiguously resolved

complex magnetization vectors M⊥1 and M⊥2, corresponding to those of fat and water, but

it cannot be unambiguously resolved which one corresponds to which of the two chemical

species. It was further shown that this problem can be solved without requiring phase
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unwrapping, if the phase shift between fat and water is restricted to Θ 6= 180◦, using

the prior knowledge that fat has to be the leading vector because of its lower precession

frequency. Because this approach only works if both components, fat and water, are

present in each voxel, additionally a proper post procession was proposed on the basis

of the smoothness assumption on the background field. A quantity proportional to the

background field can be estimated out of M⊥1 and M⊥2 and the smoothness is enforced

by a region growing algorithm, where fat and water are exchanged in the solution so that

the voxel under investigation is most similar to its neighborhood. The region growing is

performed several times with arbitrary chosen initial seed points and the final solution is

that which occurs more often in each voxel. This approach only works if more than 50 %

of the initially assigned voxels are correct. This is reached by assigning all “problematic”

voxels to be water, because it is more likely in biological tissue to appear. Two acquisition

schemes were proposed, the first one is optimal in terms of solution stability and phase

error tolerance with Θ = (−90◦, 90◦, 270◦), and the second one in terms of SNR with

Θ = (0◦, 120◦, 240◦).

Another region growing approach using a two-point Dixon GRE acquisition was pre-

sented by Ma [198], which is based on the spatial gradient of the phase image. After an

initial phase correction, the problem is reduced to determining the correct sign of in the

opposed phase acquisition, which is done on the basis of the average value in a region

around the current seed point from voxels which have been already corrected. To avoid

error propagation, most reliable voxels with a low spatial gradient in the signal phase are

processed first. The most problematic point is the selection of the initial seed point, which

could lead to an error propagation, but no further details were reported. This approach

was further applied to a TSE acquisition by Ma et al. [201], where both echos (in-phase

and opposed phase) are acquired inbetween each 180◦ refocusing pulse, similar to Gradient

and Spin Echo (GRASE). This method was further combined with a Sensitivity Encoding

(SENSE) based accelerated acquisition (see Section 3.1.2.1). In Ma et al. [203], this TSE

approach was further extended to a three-point Dixon acquisition. In Berglund et al. [15],

the region growing method from Ma [198] was extended to be applicable to 3D volumes,

and an initial seed point selection based on a combination of magnitude weight and a pha-

sor reliability measure was reported. Furthermore, a general solution for three-point Dixon

acquisitions with equal echo spacing was presented and applied to whole-body fat/water

imaging. The method of Ma [198] was further improved by a multi-resolution approach

by Schmidt and Fraser [256], to increase its robustness against noise.

4.1.3.4 Iterative Decomposition and Variants of IDEAL

An alternative approach to solve the fat/water separation problem was presented by

Reeder et al. [242], for an arbitrary number of acquisitions with arbitrary fat/water

phase shifts Θn. An iterative solution of Eq. (4.4) was proposed, which is obtained inde-

pendently in each voxel. Knowing ∆B0, Eq. (4.4) gets linear and a voxel wise solution
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can be obtained in a least squares sense. Therefore, an initial guess for ∆B0 has to be

obtained, here ∆B0 = 0, to calculate an initial estimate for SW and SF . After linearizing

Eq. (4.4) using a Taylor series expansion, the error term for all unknowns ∆SW , ∆SF ,

and ∆(∆B0) can be obtained again by a least squares solution, leading to a new estimate

for ∆B0. This is repeated until a convergence occurs, i.e., the update falls under a certain

threshold. As already mentioned, the inversion of Eq. (4.4) is ill-posed, even without noise.

This is because of the joint estimation of SW , SF , and ∆B0 and the consequent periodicity,

i.e., exchanging SF and SW and setting γ∆B0τ = γ∆B0τ + 2π leads to exactly the same

measurement data. According to Yu et al. [332], if an arbitrary number of echos NS with

non-equidistant echo spacing is acquired, the cost function gets aperiodic, but still showing

an infinite number of local minima, as shown in Figure 4.4. Therefore, the solution of the

iterative algorithm strongly depends on its initialization. If it is initialized too far from

the true solution, the algorithm will get stuck in such a local minimum. To improve this

behavior, a region growing approach in combination with the iterative solution of Reeder

et al. [242] was proposed by Yu et al. [332], where the initial guess for every voxel is

calculated by a 2D linear fit, estimated from the already processed surrounding. Here, the

crucial point is again the selection of a proper starting point. The selection is performed

on a down-sampled low resolution image out of those voxels which have a field map value

close to the median of all voxels, which are above a certain magnitude threshold. Out of

these voxels, that one closest to the center of the image is selected. It was shown that this

combination of iterative solution [242], region growing [332], and a noise optimal selection

of the fat/water phase shifts Θn, described by Reeder et al. [240] (see Section 4.1.3.5)

leads to a substantially improvement to unambiguously resolve the fat and water signal.

Usually, this technique is referred to as IDEAL.

Several improvements or extension to IDEAL were proposed. IDEAL was successfully

applied to GRE acquisitions by Reeder et al. [239], where the influence of ∆B0 is usually

more severe. IDEAL was further extended by Yu et al. [331] for the additional estimation

of an R∗2 map, out of the multiecho GRE acquisition. For this purpose, a “complex” field

map ψ̂ = γ∆B0 + jR∗2 was introduced, so that the same iterative solution of Reeder et

al. [240] can be applied. The IDEAL method was further combined with a homodyne

reconstruction by Reeder et al. [237], to be able to reconstruct partial Fourier data from

asymmetric echos, to increase the flexibility of selection different echo spacings. Further-

more, IDEAL was also combined with a GRASE sequence in Li et al. [183], to decrease

acquisition time with integrated eddy current compensation. IDEAL was also successfully

applied to cardiac imaging also by Reeder et al. [238], using a steady state free precession

sequence. To further increase the separation accuracy, the multipeak fat model, from

Eq. (4.5), was also included into the IDEAL algorithm by Yu et al. [334].
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4.1.3.5 General Aspects

Noise Behavior: To describe the noise behavior of the individual fat and water images,

the quantity Number of Signal Averages (NSA) was introduced by Glover and Schneider

[95] defined as

NSA =
σ2
W,F

σ2
0

, (4.20)

where σ2
W,F and σ2

0 are the noise variances of the individual fat/water images and the in-

dividual acquisitions, respectively. It was shown that NSA = 2.67 can be achieved for the

initially proposed three point Dixon scheme with fat/water shifts of Θ = (0◦, 180◦,−180◦),

which is slightly lower than the theoretical maximum of NSA = 3. In [94], the NSA

was increased to the theoretical maximum by equally spreading the acquisitions around

the unit circle with phase shifts of Θ = (0◦, 120◦,−120◦). However, it was shown by

Pineda et al. [230] that the NSA also strongly depends on the fat/water ratio, so that

these considerations are only true for voxels only containing either fat or water. For

SF ≈ SW , the NSA even drops to NSA ≈ 0 for acquisition schemes symmetrically around

zero. Therefore, an acquisition scheme was introduced by Reeder et al. [240], to max-

imize the NSA independent of the fat/water content, which is given for phase shifts of

Θ = −30◦ + k · 180◦, 90◦ + k · 180◦, 210◦ + k · 180◦, where k is an arbitrary integer value.

This is also a beneficial result for GRE acquisitions, where the Θ = 0◦ data point cannot

be sampled.

Sequences and Acquisition: The early Dixon based approaches are all based on SE

sequences because of their higher robustness against background field variations. At the

time of the SE , a complete refocusing of background field and chemical shift induced

dephasing occurs. At this point, a real in-phase acquisition can be performed and the effect

of ∆B0 deviation is restricted to the echo shift time or evolution time τ (see Figure 4.2(A)).

However, the use of GRE sequences is beneficial, because of the potential of multiecho

acquisition and the, in general, lower acquisition times. Most of today’s available state of

the art methods are based on GRE sequences, where its applicability was initially shown by

[239, 315]. Furthermore, the applicability to TSE was shown in [114, 200, 203, 242] and to

steady state free precession in [131, 242]. Also non Cartesian trajectories were investigated

and the applicability of spiral [215, 216] and radial trajectories [13] was shown.

4.1.3.6 Recent Developments

Most of the previously described methods are restricted to a specific number of echos with

a specific timing (phase shifts Θn), giving an analytic solution for this specific configura-

tion. The introduction of IDEAL and its variants enabled the possibility to use arbitrary

echo times [239, 242], because of the formulation of the signal separation as optimization

problem. As for all previously described methods, the solution is still obtained voxel by
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Figure 4.4: (Left) Residuum R(∆B0,q) = Dq(∆B0,q) in a single voxel for constant echo spac-
ing ∆τ . Values are simulated at 3 T with a resonance offset γ∆B0 = 2π · 50 Hz with 3 sim-
ulated echos (blue line) with τ = [0 ms, 3 ms, 6 ms] and with 4 simulated echos (red line) with
τ = [0 ms, 2.8 ms, 5.6 ms, 8.4 ms]. The cost function is periodic with 1

∆τ and the number of lo-
cal minima in one period depends on the number of acquired echos NS . (Right) Residuum
R(∆B0,q) = Dq(∆B0,q) in a single voxel for non-equidistant echo spacing. Values are simulated at
3 T with a resonance offset γ∆B0 = 2π · 50 Hz with τ = [0.2 ms, 3 ms, 6.3 ms] (blue line) and with
τ = [1.6 ms, 3.1 ms, 5.7 ms] (red line)

voxel, so that the incorporation of global image priors is not possible. However, it is tried

to apply some smoothness constraints on the ∆B0 field distribution, mostly by either a

smoothing operation, i.e., a convolution kernel, and subsequent recalculation of fat and

water content [242], or by region growing approaches [198, 332]. These region growing

approaches are heuristic and depend highly on the initial seed voxel and on the voxel pro-

cessing order. Iterative methods, as IDEAL, suffer from getting stuck in a local minimum

and depend highly on the initialization. However, the initialization with a smooth field

map, as proposed by Yu et al. [332], does not guarantee neither the convergence to the

optimal solution nor the achievement of a smooth field map.

With the introduction of a new method by Hernando et al. [122] in 2008, a change

in paradigm takes place, where methods started to develop trying to minimize a global

cost function in terms of the whole field map ∆B0( #–r ) and the whole water and fat

images SW ( #–r ) and SF ( #–r ), respectively, as it is done in variational modeling. Using

this formulation, the incorporation of global image priors to enforce certain properties,

especially on the field map, gets possible. In the following, the bold notation is used when

referring to the whole image or field map (∆B0( #–r ), SW ( #–r ) and SF ( #–r )) and the normal

notation (∆B0,q, SF,q and SWq) when referring to one value at a certain voxel q. Similar

to image reconstruction, the cost function J(∆B0( #–r ),SW ( #–r ),SF ( #–r )) consists of a data

fidelity term D(∆B0( #–r ),SW ( #–r ),SF ( #–r )) and regularization terms for all three unknown

quantities R1(∆B0( #–r )), R2(SW ( #–r )) and R3(SF ( #–r )) in general. Skipping the explicit

notation of spatial dependency ( #–r ), the cost function in its most general form can be
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written as

J (∆B0,SW ,SF ) = D(∆B0,SW ,SF ) + λ1R1(∆B0) + λ2R2(SW ) + λ3R3(SF ), (4.21)

where λ1, λ2 and λ3 are regularization parameters balancing between data fidelity and

each regularization term. The solution is given as(
∆B̂0, ŜW , ŜF

)
= arg min

∆B0,SW ,SF
J (∆B0,SW ,SF ) . (4.22)

This optimization problem is highly non-convex and non-linear, making it very hard to

solve. Therefore, it has to be simplified to make it mathematically solvable. First of all,

it can be shown that the optimization can be decoupled between the estimation of the

water/fat images and the field map. The same local minima are obtained in the data

fidelity term independent of the actual fat and water concentration. This is known as

Variable Projection (VARPRO) and was first introduced by Hernando et al. [122] based

on the mathematical foundation in [29, 96]. Furthermore, the regularization of SW and

SF is usually removed, so that the optimization problem can be reduced to one only

depending on ∆B0, leading to a reduction in dimensions by a factor of three. With that,

the optimization problem writes as

∆B̂0 = arg min
∆B0

D(∆B0,SW ,SF ) + λR(∆B0), (4.23)

where SW and SF in the data fidelity term are treated as constants, as explained later.

Having a closer look at the data fidelity term in each voxel, by using the signal model

from Eq. (4.4), the signal Sn,q = Sq(τn) in each voxel for NS acquired echos at different

evolution times τn can be written as S1,q

...

SNS ,q


︸ ︷︷ ︸

S

=

 ejγ∆B0,qτ1 0 0

0
. . . 0

0 0 ejγ∆B0,qτNS


︸ ︷︷ ︸

T(∆B0,q)

 1 ej∆ωF τ1

...
...

1 ej∆ωF τNS


︸ ︷︷ ︸

K(∆ωF )

(
SW,q
SF,q

)
︸ ︷︷ ︸

SW,F,q

. (4.24)

In any state of the optimization, an estimate for SW,q and SF,q can be obtained as the

least squares solution of Eq. (4.24), where Sq is a vector containing the measured signals

values at echo times τ1 . . . τNS in voxel q and the known chemical shift ∆ωF . The solution

writes as

SW,F,q(∆B0,q) =
(
KHK

)−1
KH (T(∆B0,q))

−1 S = K†T(−∆B0,q)Sq, (4.25)

where K† is the pseudo-inverse of K. Because of its form as diagonal matrix having

complex exponentials in its diagonal, the inverse of the matrix T can be simply calculated

by using the negative value of ∆B0,q in each voxel. Using this formalism, SW,q and SF,q can
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be complex, because φ0,q is not considered explicitly. According to Section 3.2.2, the L2

norm is a suitable distance measure for the data fidelity term in the presence of Gaussian

noise, which is the case for complex MR data, so that the global data fidelity term can be

written as

D(∆B0) =

NxNyNz∑
q=1

∥∥∥(I−KK†
)

T(−∆B0,q)Sq

∥∥∥2

2
=

NxNyNz∑
q=1

Rq (∆B0,q)
2 , (4.26)

where Rq(∆B0,q) is the residuum for the current instance of ∆B0,q in voxel q. The deviation

here, based on Eq. (4.24), is done for the most simple signal model, the single peak fat

model with neglected R∗2. However, R∗2 and the multipeak model from Eq. (4.5) can be

easily incorporated by simple modifications of the matrices T and K

T =


e(jγ∆B0,q−R∗2,q)τ1 0 0

0
. . . 0

0 0 e(jγ∆B0,q−R∗2,q)τNS

 , (4.27)

K =


1

NF∑
m=1

αme
j∆ωF,mτ1

...
...

1

NF∑
m=1

αme
j∆ωF,mτNS


. (4.28)

Allowing arbitrary, non-equidistant echo spacing, the data fidelity term of the cost function

gets non-periodic, so that a global optimum exist. However, this global optimum is still

hard to find because of the infinite number of local minima. By restricting the echo spacing

to be equally spaced, the data fidelity term of the cost function gets periodic, so that no

global optimum exists. This behavior is shown in Figure 4.4. Despite this behavior, most

methods are restricted to equidistant echo spacing, because it leads to a mathematically

favorable structure, which can be easily solved so that the advantages of equal echo spacing

are predominant. Furthermore, it is not restricted to, but usually only three echos are

acquired (NS = 3), because it is sufficient to resolve the three unknowns and the noise

optimal phase angles between water and fat from Reeder et al. [240] can be applied. With

this, Eq. (4.24) can be rewritten as S1,q

S2,q

S3,q

 e−j∠S1,q

︸ ︷︷ ︸
S′q

=

 1 0 0

0 ejγ∆B0,q∆τ 0

0 0 ejγ∆B0,q2∆τ


︸ ︷︷ ︸

T′(∆B0,q)

 1 ej∆ωF τ1

1 ej∆ωF τ2

1 ej∆ωF τ3


︸ ︷︷ ︸

K(∆ωF )

(
SW,q
SF,q

)
︸ ︷︷ ︸

SW,F,q

,

(4.29)
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where the signals in S′q are corrected by the phase of the first echo. With that, the data

fidelity term can be rewritten as

D(∆B0) =

NxNyNz∑
q=1

∥∥∥∥∥∥∥
(
I−KK†

) 1 0 0

0 e−jγ∆B0,q∆τ 0

0 0 e−jγ∆B0,q2∆τ

S′q

∥∥∥∥∥∥∥
2

2

. (4.30)

Rearranging everything with

Mq =
(
I−KK†

) S′1,q 0 0

0 S′2,q 0

0 0 S′3,q

 , zq = ejγ∆B0,q∆τ , (4.31)

the data fidelity term can be written in its most condensed form, which is the basis for

the polynomial approach, written as

D(∆B0) =

NxNyNz∑
q=1

∥∥∥∥∥∥∥∥∥∥∥∥
Mq

 z0
q

z−1
q

z−2
q


︸ ︷︷ ︸

zq

∥∥∥∥∥∥∥∥∥∥∥∥

2

2

. (4.32)

The data fidelity term of the cost function is non-convex and periodic in ∆ω0 = γ∆B0

with a periodicity of 2π
∆τ and has (NS − 1) local minima in each period (see Figure 4.4),

so that gradient based methods would fail solving this problem. One period is

often referred to as spectral FOV . To solve this kind of problem, all local minima

of Dq in each voxel are determined and periodically extended over an expected

range of ∆B0 variation (−∆ω0,max ≤ γ∆B0

2π ≤ ∆ω0,max), with typical values for

∆ω0,max = 2π · (1000 Hz to 2000 Hz). The determination of the local minima of Dq can

be done by a brute force search, which is feasible because of the 1D search direction, but

a more elegant and efficient way can be achieved with the formulation in Eq. (4.31).

With that, the data fidelity term of each voxel Dq can be written as a polynomial of

degree 2(NS − 1), given as

Dq(∆B0,q) = zHq MH
q Mqzq =

0∑
n=−2(NS−1)

κn,qz
n
q =

=

0∑
n=−2(NS−1)

κn,q
(
ejγ∆B0,q∆τ

)n
,

(4.33)

with the polynomial coefficients κn,q, which can be determined from the diagonals of

MH
q Mq. The minima are obtained by setting the first derivative with respect to ∆B0,q to
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zero, given as

dDq(∆B0,q)

d∆B0,q
= jγ∆τ

0∑
n=−2(NS−1)

κn,q
(
ejγ∆B0,q∆τ

)n
= 0, (4.34)

which is equivalent of finding the 2(NS − 1) complex roots of the polynomial. Each com-

plex root corresponds to one of the 2(NS−1) extreme points in each period. The (NS−1)

minima can by found by applying the second derivative or by checking the local neighbor-

hood, with the corresponding field values ∆B0,q,k with k ∈ [0, (NS − 1)]. This polynomial

formalism was first introduced by Doneva et al. [68]. With that the optimization problem

reduces to selecting the right local minimum in the range [−∆ω0,max,∆ω0,max] and can be

written as

∆B̂0 = arg min
∆B0,q∈Ωq

NxNyNz∑
q=1

∥∥∥(I−KK†
)

T′(−∆B0,q)S
′
q

∥∥∥2

2
+ λR(∆B0), (4.35)

where Ωq is defined as the solution space of all local minima of Dq in each voxel, given as

Ωq =

{∣∣∣∣γ∆B0,q,k + l
2π

∆τ

∣∣∣∣ ≤ ∆ω0,max ∀ k ∈ [0, (NS − 1)], l ∈ (−∞,∞)

}
. (4.36)

Even though the solution space can be reduced drastically, the combinatorial complexity is

far too high for a brute force search. Therefore, many methods were proposed to solve this

problem, which mostly differ in the explicit formulation of R and the solution strategy.

One of the first methods based on this idea was presented by Hernando et al. [122],

where the voxel wise global minimum of the data fidelity term in Eq. (4.26) is obtained

by an exhaustive search over one period. This is used as initialization for the subsequent

optimization, which is calculated for each voxel q by using an iterated conditional modes

algorithm and is given as

∆Bnew
0,q = arg min

∆B0,q

D(∆Bold
0,q ) + λ

∑
j∈δq

wq,j(∆B
old
0,q −∆Bold

0,j )2, (4.37)

where ∆Bold
0,j is the current field estimate in the neighborhood δq of voxel q, which is set to a

5×5 kernel centered at voxel q. wq,j is a weighting factor set to the inverse distance between

voxel q and j. This image prior penalizes high differences between the field estimates in

the local neighborhood. This step is repeated for each voxel until the L1 norm of the

change in the field map is smaller than a predefined threshold. An improved version

of this was presented by Hernando et al. [121, 123] by utilizing the same image prior,

but using a global cost function (extending Eq. (4.37) by a sum over all voxels), so that

all voxels can be updated simultaneously in each iteration. For this purpose, an update

step is calculated on the basis of the local minima in each voxel ∆Bold
0 → ∆Bnew

0 . The
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optimization in each voxel is reduced to a binary decision problem, where the algorithm

has to decide for each voxel if the update is accepted or not, to minimize the total cost

function. This problem has 2NxNyNz possible solutions, which can be efficiently solved

by a graph cut based algorithm. The local minima in each voxel are determined by an

exhaustive search over one period, which is periodically extended to cover a wider range

of inhomogeneity. With that a much higher degree of field inhomogeneity can be captured

than with the voxel wise solution. In Berglund et al. (2011) [14], an approach based on

the same image prior was proposed for a two-point Dixon acquisition and the approach

from Hernado et al. [123] was extended to 3D data with joint R∗2 estimation by Berglund

et al. (2012) [16].

A completely different approach, based on the ideas described above, was presented

by Lu and Hargreaves [192], where the local minima in each voxel are obtained by a

golden section search over one period, which is more efficient than the exhaustive search

approach. After selecting a suitable starting point, which has to fulfill some criterions,

the final field map is calculated by a region growing approach, where the starting voxel

serves as initial contour. A voxel value in contour n + 1 is given by its local minimum

(including periodic extensions) closest to the value of the nearest voxel of contour n. For

efficient calculation a multi-resolution approach is applied. This is a kind of intermediate

method, utilizing the cost function approach, but spatial regularity is incorporated by

region growing. Compared to the region growing approach from Yu et al. [332], this

method is able to capture a wider range of field inhomogeneity.

Another approach was presented by Jacob and Sutton [136], where the local minima are

determined by a polynomial approach similar to that presented here. The total field map

is obtained by applying H1 regularization (see Section 3.2.4.2), meaning selecting those

local minima in each voxel, minimizing the H1 functional. Because of the computational

complexity, the solution is obtained by a region merging approach. For that purpose,

the field map is subdivided into a certain number of connected regions depending on the

current phase. Afterwards, region pairs are merged sequentially, so that the overall cost

function is reduced. This is based on the assumption that the same local minimum has to

be selected in the connected initial regions. A similar approach was presented by Lu et al.

[193], where the image prior introduced in Eq. (4.37) is used to determine locally connected

smooth regions as initial estimate. Compared to the method of Jacob and Sutton [136],

where only smooth regions falling into the same spectral FOV can be determined, this

approach is able to determine connected smooth regions over more than one period, so

that the number of initial regions can be decreased. Furthermore, a consistency measure

was introduced, where two neighboring voxels p and q are considered as consistent if the

condition

|∆B0,p −∆B0,q| ≤ max

(
min

∆B0,j∈Ωq
|∆B0,p −∆B0,j |, min

∆B0,j∈Ωp
|∆B0,j −∆B0,q|

)
(4.38)

is fulfilled. Here, Ωp and Ωq are the sets of feasible field map values (local minima) in
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voxel p and q, respectively. The regions are merged by selecting that local minimum over

the whole region, so that the number of inconsistent voxels is minimized along the region

boundaries. The advantage of this method is that no explicit smoothness constraint is

applied to the field map, only inconsistent voxels along the boundary are penalized.

Fat/water separation was also combined with undersampling by Doneva et al. [68],

using the Compressed Sensing (CS) approach described in Section 3.2.8. Here, in addition

to the sparsifying transform in SW and SF , also a smoothness constrained is applied to

the field map in form of the second order spatial derivative. This leads to an optimization

problem with data fidelity term and three regularization terms as stated in Eq. (4.21).

The data fidelity term has to be extended by the discrete Fourier operator F . This

minimization problem is solved by iterative linearization around the current estimate for

SW , SF and ∆B0 using a Taylor series expansion. It is solved for the update step utilizing

a modified Conjugate Gradient (CG) algorithm. Because this gradient based optimization

is prone to stuck in local minima, it relies on a stable initialization for the field map. This

initialization can be derived as a low resolution estimate from the Auto Calibration Lines

(ACLs) in k-space center or by applying CS separately to each of the acquired images. The

solution space is further restricted to the local minima of the cost function in each voxel

and the initial estimate is obtained by a region growing similar to Lu and Hargreaves [192].

As a final step, the obtained solution is back projected to the acquired k-space samples,

such that final solution is given after an additional last iteration step. This approach was

further extended by a more sophisticated field map estimation described by Sharma et

al. (2012) [266]. For that purpose, the field map estimate is restricted to be in a certain

subspace avoiding getting stuck in local minima. During the iteration, this restriction is

step-wise relaxed to allow a better solution. This method was further improved by Sharma

et al. (2013) [267], with an extension to Parallel Imaging (PI) and the use of B-splines to

stabilize the field map estimate. Wiens et al. [320] further extended the CS framework by

an additional R∗2 estimation. Also a direct k-space formulation was proposed by Honorato

et al. [128] to account for phase accumulation during readout.

Tsao and Jiang proposed a hierarchical approach, without an explicit image prior [297].

The global cost function Eq. (4.26) is solved for ∆B0 for different regions of the image.

In the first iteration, the region contains the whole image, so that only one field offset

value is calculated. In the subsequent iteration, the image is continuously subdivided into

overlapping regions where again one field offset value is calculated for each region. The

calculation is initialized with the value obtained in the previous larger region and solved

with a gradient free Nelder-Mead algorithm. If the finest level is reached, the field map is

smoothed by a convolution kernel and SW and SF are calculated according to Eq. (4.25).

The main advantage of this method is its computational efficiency.

A completely different approach was presented by Yu et al. (2012) [333]. Here, the

separation process is based on the assumption that the multipeak model from Eq. (4.5) fits

better in fat dominant voxels than the single peak model from Eq. (4.4), whereas the single

peak model leads to a lower residuum Eq. (4.26) (better fit) in water dominant voxels.
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Based on these residuals, a normalized fat likelihood map is calculated in the range of

[−1,+1], where −1 is the maximum water and +1 the maximum fat likelihood. Likelihood

values around zero indicate no clear distinction due to noise or partial volume effects. With

this distinction, a good first estimate for SW , SF and ∆B0 can be calculated. Starting at

the voxel with the maximum likelihood value, a field smoothness map is calculated by a

region growing approach, so that the value decreases at every discontinuity. The average

field map value in the neighborhood of each voxel weighted by fat likelihood, smoothness

map and signal magnitude is calculated. If the actual field map deviation is greater than

a certain threshold it has to be recalculated. After a few iterations a valid field map can

be obtained. The main advantage of this method is the availability of two independent

reliability measures, fat likelihood and field smoothness.

Another promising algorithm was presented by Soliman et al. [276, 277], where the field

map estimation is performed by a labeling approach, using the multi-label Potts model

known as Max-IDEAL. For this purpose, the whole range of expected field variations is

discretized using M points ∆B0,m, where ∆B0,1 = −∆B0,max and ∆B0,M = ∆B0,max,

with i.e., M = 50. The labeling procedure assigns every voxel a label m ∈ [1,M ], so that

the image is subdivided into M non-overlapping regions Cm. The Potts model is a labeling

approach which minimizes the total perimeter of all single-label regions. This constraint

implicitly enforces the required smoothness of the field map. The optimal labeling is given

as

min
{Cm}Mm=1

M∑
m=1

∫
Cm
D(∆B0,m,

#–r )d #–r + λ

M∑
m=1

|∂Cm|, (4.39)

where |∂Cm| is the perimeter of Cm. This problem is approximated with its convex re-

laxation, so that a global convergence can be reached. Furthermore, it can be solved

efficiently by using the continuous “max flow” approach, which is the dual formulation to

the convex relaxation of the model. With that, a very rough initial field estimate can be

obtained, which is further refined by applying the gradient based IDEAL algorithm, which

converges to the closest local minimum of the data fidelity term D(∆B0). This approach is

capable of detecting regions with high change rates in ∆B0, which is important in regions

around air-tissue interfaces.

An improvement of the graph-cut algorithm from Hernando et al. [123] was presented

by Cui et al. (2015) [60], known as Globally Optimal Surface Estimation (GOOSE),

where the explicit smoothness prior in the initial unconstrained formulation is replaced by

constraints on the field map. The constraint in each voxel is defined as

max
{∣∣∇+

xyz (∆B0( #–r ))
∣∣} ≤ b. (4.40)

This formulation leads to a much more efficient graph representation, leading to a graph

optimization, which can be solved efficiently using an optimal surface segmentation algo-

rithm. The main advantage of this method is that no iterative approximation is necessary

and the convergence to the global optimum of the constraint optimization problem can be
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guaranteed. This algorithm was further improved by Cui et al. (2018) [59], to decrease

the calculation time and to enable the ability to handle non-equidistant voxel sizes. A dif-

ferent improvement of the graph-cut approach is described by Berglund and Skorpil [17],

where the graph-cut algorithm is combined with a multi-resolution approach to improve

robustness.

In recent years, also classical region growing approaches gained renewed interest. An

improved version of the quality guided region growing approach from Ma (2004) [198]

was presented by Ma (2016) [202], including an additional segmentation for handling

of spatially isolated objects. Cheng et al. proposed a multi-seed approach [52] with

self-feeding phasor estimation combined with a multi-resolution region merging approach.

The approach presented by Peng et al. [229] relies on the detection of fat/water transition

regions by detecting sudden changes in the phasor map. The voxels in transition region

are solved by choosing the smoothest phasor combination.

4.2 Quantitative MRI

Besides B1 shimming (see Section 2.3.6) and Electrical Property Tomography (EPT), a

very important application for B1 mapping is the correction for flip angle variations in

signal models used in quantitative MRI (qMRI), especially for the determination of T1

and T2 maps. The gold standard methods are the direct sampling of the T1 recovery

by an inversion recovery SE with different inversion times or the direct sapling of the

T2 decay by a MSE or a single SE sequence with different echo times. These methods

require full relaxation between subsequent excitations TR ≥ 5T1, so that the resulting

acquisition times are not clinically acceptable. Commonly used state of the art methods

use GRE or balanced Steady State Free Precession (bSSFP) based sequences in the steady

state [65], known as VFA, or during the transient after an inversion pulse [257]. These

methods allow repetition times three orders of magnitude less than those necessary for

using gold standard methods, bringing the acquisition times into a clinically acceptable

range. Combined with acceleration strategies based on model based reconstruction for

transient bSSFP [177] or for steady state GRE approaches [207–209], acquisition times in

the order of 1 min for a 3D dataset with full brain coverage and 1 mm isotropic resolution

are possible. However, these methods are based on signal models, which depend on the

flip angle in a highly nonlinear manner. Even slight B1 induced flip angle variations can

lead to strong deviations in the resulting T1 or T2 maps due to error propagation. These

errors are modeling errors and therefore they can be corrected if the actual flip angle in a

certain voxel is known. Therefore, B1 mapping is an essential prerequisite for these kind

of methods. As an example, a T1 map gained with the accelerated VFA approach from

[209] is shown in Figure 4.5 with and without B1 correction. An over- or underestimation

of T1 values can be observed in regions with high or low B1 field values in the uncorrected

map, whereas homogeneous T1 values are achieved for a specific tissue with the correction

of variations in the B1 field. Exemplarily, the signal models used by Deoni et al. [65]
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Figure 4.5: (A) T1 map acquired with the accelerated VFA approach with regularized reconstruc-
tion from Maier et al. [209] with (left) and without (right) B1 correction. A clear overestimation
of T1 in the white matter in the center of the brain and an underestimation in the gray matter
of the frontal and prefrontal cortex can be seen (white arrows) in the uncorrected T1 map. This
corresponds well with the areas with high and low B1 values in (B).

and Schmitt et al. [257] are shown. In [65], the steady-state signal equations for the GRE

and bSSFP are used, where the signals SGRE and SbSSFP are given as

SGRE = M0
(1− E1) sin(α)

1− E1 cos(α)
, (4.41)

SbSSFP = M0
(1− E1) sin(α)

1− E1E2 − (E1 − E2) cos(α)
, (4.42)

with

E1,2 = e
− TR
T1,2 . (4.43)

The values for T1 and T2 are determined from different acquisitions with different flip angles

α. The model used in Schmitt et al. [257] for the inversion recovery bSSFP transient is

given by

T1 = T ∗1

[
cos2

(α
2

)
+ (A · INV +B) sin2

(α
2

)]
, (4.44)

T2 = T ∗1

[
sin2

(α
2

)
+ (A · INV +B)−1 cos2

(α
2

)]
, (4.45)

with

A =
2 cos

(
α
2

)
1− cos(α)

, (4.46)

B =
1 + 2 cos

(
α
2

)
+ cos(α)

cos(α)− 1
, (4.47)

where T ∗1 is the fitted time constant of the acquired transient and INV is the fitted inversion

factor. In both cases the signal depends on the flip angle α in a highly non-linear manner.

In general, R∗2 mapping is performed by fitting a mono-exponential decay to a multi-
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echo GRE acquisition, which is usually independent of α and B1. However, it was shown

in Söllradl et al. (2019) [274] that the gradient of the local ∆B0 map highly influences

the resulting R∗2 values. In 2D imaging, the effect is most severe in z-direction, because

of the in general larger voxel dimensions. The model for correction, which is presented

in this work, requires an accurate ∆B0 map, which can be obtained directly from the

acquired data for R∗2 mapping. Moreover, it was shown that also the influence of B+
1

field variation leads to non-negligible errors for flip angles of α > 60◦. This is due to

the non-linear relation between slice profile and α, influencing the decay rate, so that

accurate B1-mapping is required. In Söllradl et al. (2020) [275], a strategy is presented

to compensate these effects to a certain degree, nevertheless B1-mapping is still required.



5
Bloch–Siegert based B+

1 Mapping

A life spent making mistakes

is not only more honorable,

but more useful than a life

spent doing nothing.

George Bernard Shaw

This chapter is based on the following publication and proceedings:

• A. Lesch, A. Petrovic, and R. Stollberger. Robust implementation of 3D

Bloch Siegert B1 mapping. In Proceedings of the 23rd Annual Meeting of

ISMRM, Toronto, Ontario, Canada, page 2381, 2015
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As already mentioned in this thesis, highly accurate B+
1 mapping is very important at

high and ultra high field strength (B0 ≥ 3 T) for several applications, as B1 shimming (see

Section 2.3.6), the correction of flip angle dependent models in quantitative MRI (qMRI)

(see Section 4.2), Electrical Property Tomography (EPT), or Chemical Exchange Satu-

ration Transfer (CEST). For this purpose, many methods were proposed over the years,

where the most important are reviewed in Section 2.5, with their own disadvantages and

limitations. Some widespread limitations are: their T1 dependency (Double Angle Method

(DAM), “Stimulated Echo – Spin Echo Imaging”, Saturated Turbo FLASH (satTFL)) and

to a lower degree for Actual Flip Angle Imaging (AFI) and Dual Refocusing Echo Acqui-

sition Mode (DREAM), leading to either long acquisition times or inaccurate B1 maps;

the influence of non-ideal slice profiles (DAM , “Stimulated Echo – Spin Echo Imaging”,

satTFL, AFI and DREAM ); the validity of the model equation is restricted to the first

echo (central k-space line) (satTFL and DREAM ); the restriction to a certain flip angle

range limits their potential application to a certain degree of inhomogeneity (DAM , “Stim-

ulated Echo – Spin Echo Imaging”, satTFL, AFI , DREAM , “180◦ Signal Null”, “Phase

Imaging”, and “Orthogonal Alpha”); their sensitivity to main field variations ∆B0 (“Phase

imaging”, “Orthogonal Alpha” and to a lower degree “Bloch-Siegert (BS) Shift Imaging”);

a high Specific Absorption Rate (SAR) deposition (Hyperbolic Secant (HS), “180◦ Signal

Null”, and “BS Shift Imaging”). Furthermore, nearly all discussed methods suffer from

quite long acquisition times. The only exception is DREAM , where acquisition times in

the order of < 20 s for whole brain coverage are possible. However, the main limitations of

DREAM are the restriction to flip angles α < 90◦, because of the ambiguity of the arctan

function; slice profile effects and resulting modeling errors for flip angles α > 60◦; and the

invalidity of the model for all echos after the first one, limiting the resolution of the field

map to very low values, typical matrix sizes of 38× 64 are reported.

Moreover, only two of the methods described in Section 2.5 are able to directly measure

the B+
1 field instead of the flip angle α, which is advantageous for some applications such as

CEST or B1 shimming. These are the HS method and the method of “BS Shift Imaging”.

Even though, the HS method exhibits lower SAR values, the BS method is preferable,

because there exists a clear physical relationship between the B+
1 magnitude and the mea-

sured phase shift φBS; whereas for the HS method only an empirical relation exists, which

has to be calibrated to the transmit chain of the Radio Frequency (RF) system. This is

the reason, why the “BS Shift Imaging” method was chosen to be used as the basis for B+
1
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mapping throughout this thesis. The BS method is already quite fast, because it is widely

independent of T1 so that low Repetition Times (TRs) are possible. However, in practice,

the minimum possible TR is restricted by the SAR constraint, because of the high energy

deposition of the BS encoding pulse. Here, a compromise between Signal-to-Noise Ratio

(SNR) and acquisition time has to be made. Practically, acquisition times in the order of

20 s for a 2D single slice acquisition are possible. Nevertheless, for 3D volume acquisitions,

the acquisition time easily rises into the order of many minutes, which is unacceptable for

a preparation scan without any diagnostic information so that acceleration is needed. In

general, there are two possibilities to accelerate the data acquisition.

First, imaging strategies were proposed to acquire more data after one BS encoding

pulse using faster readout strategies such as Turbo Spin Echo (TSE) [248], an Echo Planar

Imaging (EPI) based readout [71, 250] or spiral trajectories [152, 250]. These approaches

have, however, its own challenges at high and ultra high field strength. The second accel-

eration strategy is to acquire less Cartesian encodings, usually termed undersampling, and

recover the missing information within the reconstruction using concepts of Parallel Imag-

ing (PI) and Compressed Sensing (CS). Such an approach was proposed by Sharma et al.

[265] using a modified iterative Self-consistent Parallel Imaging Reconstruction (SPIRiT)

reconstruction [196], that yields acceleration factors of about 30 without sacrificing accu-

racy. This method already performs very well, but further improvement can be expected

by directly applying a smoothness constraint to the reconstructed B+
1 field. In Zhao et al.

[336] a H1 regularization was applied to improve the B+
1 field estimation especially in low

signal regions in a parallel transmit (pTX) setting out of fully sampled BS data. In the

case of undersampling this has not been done so far.

The main contribution of this thesis is to apply variational methods, to obtain highly

accurate B+
1 maps out of highly undersampled data. For this purpose, a preliminary

work is described in Section 5.1, where a robust data acquisition scheme for BS based

B+
1 mapping is investigated, to reduce the sensitivity against phase variations during the

data acquisition. In Section 5.2, the reconstruction algorithm to obtain accurate B+
1 field

maps from highly undersampled data is described. Specific sampling patterns typically

play an important role for the reconstruction of morphological images from subsampled

data [161]. Therefore, the influence of different undersampling patterns on the accuracy

of the reconstructed B+
1 maps is investigated as well. In Section 5.3, the combination of

undersampling and EPI readout is considered, and in Section 5.4, the application of the

proposed reconstruction is investigated under the conditions of a main field strength of

7 T with respect to accuracy and acceleration potential.



140 Chapter 5. Bloch–Siegert based B+
1 Mapping

Figure 5.1: (a) Sequential sampling scheme: all k-space lines of the positive resonance offset
acquisition +ωBS are acquired before the negative resonance offset acquisition −ωBS starts. (b)
Interleaved sampling scheme: After a certain acquired k-space line in the +ωBS data set, the same
line is acquired in the −ωBS data set, leading to an increased robustness against phase errors.

5.1 Robust Implementation of 3D Bloch-Siegert B+
1 Map-

ping

To suppress influences on the signal phase arising from ∆B0, chemical shift or excitation,

the data has to be acquired with positive and negative resonance offset ±ωBS of the BS

pulse. The difference of those two phase images is proportional to B2
1,peak (see Eq. (2.149)).

In the conventional implementation, these acquisitions are performed sequentially, whereas

in this work the advantage of an interleaved acquisition pattern is exploited. The different

acquisition schemes are visualized in Figure 5.1.

5.1.1 Methods

All measurements were performed on a clinical Siemens Magnetom Skyra 3 T system

(Siemens, Erlangen, Germany). The BS method was implemented by adding an offreso-

nant Gaussian shaped BS pulse with a duration of 10 ms, a calibration constant KBS of

53.4 rad G−2 and scaled to an onresonant equivalent flip angle of 1000◦ into a Gradient

Recalled Echo (GRE) sequence. The offresonance frequency to encode the BS shift was

set to 4 kHz and −4 kHz, respectively. The phase drift was measured over 6 h at the end of

three regular measurement days with different preloads of the scanner using the sequence

described above. The B+
1 maps were acquired with a Field of View (FOV) of 250 mm, a

matrix size of 128× 76, a TE of 13.4 ms and a TR of 150 ms which is near the lower limit

due to SAR restrictions. The 3D B+
1 maps were acquired in a slab with 16 phase encoded

slices with a thickness of 5 mm, using both sequential and interleaved acquisition. The
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Figure 5.2: Unwrapped phase drift measured at the end of 3 regular measurement days over a
time period of 6 h.

Figure 5.3: Comparison between BS based B+
1 maps obtained with sequential (left) and in-

terleaved (right) acquisition as central slice of a 3D data set containing 16 slices measured on a
cylindrical water phantom. The error maps ε( #–r ) are given in % with respect to the DAM reference.

reference was measured using the DAM [286], with a TR > 5T1,max. To enable a direct

comparison to the reference measurement, the B+
1 maps were normalized such that the

nominal applied flip angle appears at one. The error maps ε( #–r ) show the deviation of a

specific B+
1 map compared to the reference measurement in %.

5.1.2 Results

In Figure 5.2, the phase variation is shown over 6 h for three different scanner preloads.

The changing rate is different but the phase stabilizes and reaches a steady state after

about 3 to 4 h independent of the initial slope. Figure 5.3 shows a comparison between

the calculated B+
1 maps (center slice) of two 3D scans acquired with sequential (left) and
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Figure 5.4: DAM reference scan and 2D BS B+
1 maps acquired with different delays (∆t =

0, 100 and 200 s) between positive and negative offresonance BS encoding using sequential acqui-
sition and the deviation with respect to the reference scan ε( #–r ) in %.

interleaved acquisition (right) and the corresponding error maps ε( #–r ), in comparison to

the reference scan shown in Figure 5.4 (top left). Figure 5.4 further shows several 2D BS

acquisitions with increasing delay between both BS encodings using sequential acquisition

with the corresponding error maps.

5.1.3 Discussion

The resonance frequency is not stable within the scanner and behaves like an exponential

decay. We assume that thermal effects within the hardware are the reason for that.

Extending the sequential BS acquisition to 3D for, i.e. 16 slices, there is a time difference

of more than 3 minutes between both BS encoding steps. If the resonance frequency

drifts within that time with a decay rate of the most severe measured case, indicated

by the red line in Figure 5.2, the additional phase accumulation leads to a substantial

error in the acquired B+
1 map, as shown in Figure 5.3. Even if the drift lies within the

hardware specifications (0.1 ppm/h) an error of about 15 to 20 % occurs. We found that

an interleaved acquisition scheme is capable to suppress those phase effects. A comparison

between DAM reference and the achieved results shows that the error is lower than 2 % over

the whole FOV for the interleaved acquisition, whereas the error for the sequential case

varies from 17 % to more than 50 %, depending on the absolute value of B+
1 (Figure 5.3).

Because of the square root dependency between phase and RF-field, the error increases in

low B+
1 field regions. To show that only the phase drift is responsible for the quantification

error, some sequential 2D acquisitions with different delays between both BS encodings

are shown in Figure 5.4. The error increases substantially with increasing delay. The delay

of 200 s is about the time required for the acquisition of the 16 slices in the 3D case and

the errors are in the same range. In an actual 2D scan, this effect is negligible due to the

comparable low acquisition time.
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5.1.4 Conclusion

We showed that the phase drift within the scanner is responsible for substantial errors

occurring in the BS based B+
1 mapping in 3D. Furthermore, an interleaved acquisition

scheme is effective to suppress this influence on BS based B+
1 mapping and makes the

measurement robust and independent from the thermal preload of the system.

5.2 Highly accelerated 3D Bloch-Siegert B+
1 Mapping

With the goal to allow single breath hold 3D B+
1 mapping, a highly accelerated method is

proposed, based on the efficient reconstruction of subsampled BS data, using a variational

two-step regularization strategy. This tailored regularization reflects the prior knowledge

of piecewise smoothness on the underlying morphological image and the prior knowledge

of spatial smoothness on the B+
1 field. This allows us to exploit shared information

present in the measured data. The evaluation of the resulting algorithm is carried out with

retrospectively and prospectively accelerated in-vivo measurements against fully sampled

BS data. Furthermore, an abdominal in-vivo acquisition with full liver coverage during a

single breath hold is demonstrated.

5.2.1 Theory

5.2.1.1 Bloch-Siegert Approach for B+
1 Mapping

By applying an RF -field with arbitrary resonance-offset ωRF, a slight shift in resonance

frequency can be observed in any Nuclear Magnetic Resonance (NMR) experiment [26].

This effect depends on the RF -magnitude and was exploited by Sacolick et al. [249] to

map the spatial varying B+
1 field, by applying an offresonant RF -pulse (BS -pulse) between

excitation and readout in an arbitrary Magnetic Resonance Imaging (MRI) sequence,

causing a B+
1 dependent phase shift φBS in each voxel. Under the assumption ωRF � γB1

[249], this additional phase shift only depends on the spatially varying squared B+
1 peak-

magnitude B2
1,peak and a pulse shape dependent constant KBS. The factor KBS can be

computed as a function of the normalized BS pulse shape B1,norm (t) with duration Tp,

the resonance-offset ωRF and the gyro-magnetic ratio γ, leading to the following equation

for the phase shift φBS

φBS = B2
1,peak

∫ Tp

0

(γB1,norm (t))2

2ωRF (t)
dt = B2

1,peak ·KBS. (5.1)

To separate the phase shift φBS from other effects influencing the signal phase, such as

∆B0 field inhomogeneities, receiver coils or excitation, a reference measurement is required,

which is typically performed as an acquisition with the negative resonance-offset −ωRF

to increase the SNR in the final B+
1 map. The signals of these two acquisitions, S+ for

positive and S− for the negative resonance offset, are proportional to the magnitude of the
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transverse magnetization M⊥, the background phase φ0 and the desired BS phase φBS,

given as

S+ ∝ |M⊥|ej(φ0+φBS), (5.2)

S− ∝ |M⊥|ej(φ0−φBS). (5.3)

The B+
1 map is given as the peak value of the applied BS pulse B1,peak. It can be calculated

easily out of these two measurements in the fully sampled case by a complex division of

the independently reconstructed images, S+ and S−, by reformulation of Eq. (5.1) under

the assumption of temporally constant φ0 as

B1,peak =

√
∠ (I+/I−)

2KBS
=

√
φBS

KBS
. (5.4)

5.2.1.2 Variational BS Reconstruction from highly subsampled Data

The proposed approach to accelerate the B+
1 mapping is to employ a tailored undersam-

pling of Fourier data combined with variational image reconstruction. The two measure-

ments with positive and negative resonance offset, as described above, yield undersam-

pled Fourier data d+ and d−, corresponding to the two images S+ ' |M⊥|ej(φ0+φBS) and

S− ' |M⊥|ej(φ0−φBS), respectively. Our goal is to obtain the phase shift φBS from these

measurements. Due to undersampling, however, it is not possible to separate this phase

shift from the magnetization |M⊥| and the background phase φ0 directly in the measured

k-space data. To overcome this, we use a variational approach to recover the three un-

konwn quantities from the undersampled Fourier data. To this aim, a direct approach

would be to seek for morphological data p ' |M⊥|ejφ0 and phase shift data q ' ejφBS ,

with |q| = 1 given as solutions of the minimization problem

min
p,q
|q|=1

λ1

2
‖A+ (p� q)− d+‖22 +

λ2

2
‖A− (p� q)− d−‖22 +R1(p) +R2(q). (5.5)

Here, the first two terms match the pointwise products p � q ' |M⊥|ej(φ0+φBS) and

p � q ' |M⊥|ej(φ0−φBS), with q being the complex conjugate of q, to the correspond-

ing acquired data d+ and d−, respectively. The last two terms employ a regularization of

the morphological data p and the phase shift data q. The regularization parameters λ1

and λ2 control the influence of the data fidelity terms on the whole cost function in com-

parison to the regularization terms weighted identically with one. Their choice depends

on the noise-level and image resolution. The data fidelity terms are defined as squared

L2-norm of the difference between the Magnetic Resonance (MR) forward calculation and

the acquired data, due to the Gaussian distributed noise with zero mean in the measured

data (see Section 3.2.2). The MR forward operators A+(u) and A−(u) are given accord-

ing to Section 3.2.3, as the point wise multiplication with the precalculated receiver coil
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sensitivity maps Cn, the discrete Fourier operator F , and the undersampling patterns P+

and P− for each of the two acquisitions as

A+(u) =

 P+ �F {C1 � u}
...

P+ �F {CNc � u}

 , A−(u) =

 P− �F {C1 � u}
...

P− �F {CNc � u}

 . (5.6)

The different operators account for the in general different undersampling patterns for

positive and negative resonance offset acquisition. Although, Eq. (5.5) is a rather natural

approach for the problem under consideration, it comprises the solution of a non-convex

optimization problem, also when using convex regularization terms R1 and R2. In par-

ticular, even if we would drop the non-convex constraint |q| = 1, due to the mappings

(p, q) 7→ p� q and (p, q) 7→ p� q, the data fidelity terms are still non-convex. As a result,

one can generally not expect to obtain a globally optimal solution of Eq. (5.5).

To overcome the non-convexity, we reformulate Eq. (5.5) using a change of variables,

where we define u = p� q and v = q2. With these new variables, the data fidelity term in

Eq. (5.5) reads as

(u, v) 7→ λ1

2
‖A+ (u)− d+‖22 +

λ2

2
‖A− (u� v)− d−‖22. (5.7)

We see that the variable v only appears in the second term. Now adding two regularization

terms for u and v, instead of the ones on p and q as in Eq. (5.5), would still yield a non-

convex problem which in particular comprises two data fidelities for u. However, if we

drop the second data fidelity for u (which corresponds to using less measurements), the

minimization problem for u decouples from the terms involving the variable v. This allows

to separately first solve a convex variational problem for u = p� q ' |M⊥|ej(φ0+φBS) and

afterwards, having u fixed, a second convex variational problem for v = q2 ' e−j2φBS ,

where we drop the non-convex constraint |q| = 1 to obtain convexity. The phase shift φBS

can be obtained directly from the optimizer v̂. The first step is realized by solving the

convex minimization problem

û = arg min
u

λ1

2
‖A+ (u)− d+‖22 + TGV2

α(u), (5.8)

where we employ the second order Total Generalized Variation (TGV) functional [38] for

the regularization of the unknown u, which contains morphological information that is

modulated by a smooth phase shift. The functional TGV2
α is known to be a suitable

image prior for morphological MR images since it enforces piecewise smooth solutions,

which is exactly the behavior of MR images with edges at tissue boundaries and modu-

lated excitation and receiver inhomogeneities. For more details according definition and

properties, the reader is referred to Section 3.2.4.4. The second step of obtaining the phase
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information is realized via the solution of the convex optimization problem

v̂ = arg min
v

λ2

2
‖A− (û� v)− d−‖22 +

1

2
‖∇+

xyzv‖22. (5.9)

Here, the unknown v corresponds to the B+
1 field, which is known to be spatially smooth,

and hence the squared L2 norm of the image gradient is used for regularization (H1 regular-

ization, for more details see Section 3.2.4.2). Overall, this yields to a variational two-step

reconstruction method that comprises the sequential solution of two convex optimization

problems, such that the optimizer v̂ ≈ e−j2φBS of the second optimization problem exhibits

a phase equal to the doubled BS phase φBS without morphological structure. With that,

the B+
1 magnitude is given as

B1,peak =

√
−∠v̂
2KBS

. (5.10)

5.2.2 Methods

5.2.2.1 Implementation

Numerical Solution:

The optimization problem in Eq. (5.8) of the proposed variational two-step algorithm

belongs to the class of non-smooth convex optimization problems that can be solved effi-

ciently with the primal-dual splitting algorithm [46], where an explicit solution strategy is

described in Section 3.2.5.2 based on the considerations given by Knoll et al.[159]. The op-

timization problem in the second step (Eq. (5.9)) is a smooth and convex problem that can

be solved using the well known Conjugate Gradient (CG) algorithm [125] on the normal

equations, where a solution is described in Section 3.2.5.1.

Reconstruction framework:

The overall reconstruction framework was implemented in MATLAB (MathWorks, Inc.,

Natick, MA). To reduce the calculation time, the iterative optimization for Eqs. (5.8)

and (5.9) were implemented in C++/CUDA (NVIDIA Corporation, Santa Clara, CA)

using a modified version of an open-source Graphics Processing Unit (GPU) library

(AGILE)1 [82] and a reconstruction library (AVIONIC)2 [255]. The source code of the

reference implementation of this method is available on GitHub3. Receiver coil sensitiv-

ities were estimated from the fully sampled k-space data using the method proposed by

Walsh et al. [311], that was also used for coil combination to calculate the fully sampled

reference and the zero padded low resolution estimates from the multi-coil measurements.

We further note that data normalization was carried out with respect to the maximum of

a Hamming-filtered low resolution estimate from the positive BS dataset similar to [302].

1https://github.com/IMTtugraz/AGILE
2https://github.com/IMTtugraz/AVIONIC
3https://github.com/IMTtugraz/BSReconFramework

https://github.com/IMTtugraz/AGILE
https://github.com/IMTtugraz/AVIONIC
https://github.com/IMTtugraz/BSReconFramework
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5.2.2.2 Validation and parameter optimization

To assess the practical applicability of the developed algorithm, different in-vivo investi-

gations from healthy volunteers with retrospective and prospective undersampling have

been performed.

In-vivo Measurements:

All in-vivo measurements were gained from 5 male healthy volunteers in the age between

28 and 33 with the approval of the responsible ethics committee on a Skyra 3T system

(Siemens, Erlangen, Germany). To measure the BS shift, a GRE sequence was modified by

adding an offresonant Gaussian shaped RF pulse between excitation and readout as stated

in [249] with a duration Tp = 10 ms, an offresonance frequency ωRF = 2π ·4 kHz, and an on-

resonant equivalent flip angle αBS = 1000◦, leading to a pulse constant KBS = 53.4 rad/G2.

Measurement data was acquired using a 20-channel head/neck receive coil (Siemens, Er-

langen, Germany) and the birdcage body coil for transmit. The acquired in-vivo 3D brain

datasets have a matrix size of 128 × 128 × 32 as in [265], a squared FOV with 230 mm,

a resolution of 2 mm in slice direction and a slice oversampling of 25 %. Echo Time (TE)

and TR were set to minimal values of TE = 13.5 ms TR = 95 ms, respectively, and an

excitation flip angle of α = 25◦ was used which corresponds to the mean Ernst-angle in

gray and white matter. The minimal TE is restricted by the length of the BS pulse and

the TR by the SAR constraint. The acquisition parameters for the liver and the knee

dataset were adjusted to a matrix size of 128 × 128 × 44 and 128 × 128 × 52, a FOV of

220 mm and 150 mm and a resolution in slice direction of 3.2 mm and 2.5 mm, respectively.

Error evaluation:

The reconstructed B+
1 maps, B1,rec, were validated against a reference map B1,ref, which

is a fully sampled dataset. The error maps ε are defined as

ε( #–r ) =
|B1,ref(

#–r )−B1,rec(
#–r )|

B1,nom
, (5.11)

with a normalization to the desired B+
1 magnitude B1,nom necessary to achieve the nominal

flip angle αBS. This error measure is proportional to the correction error in many quan-

titative MRI models. Each result is further evaluated as Mean Absolute Error (MAE),

the median Absolute Error (medAE) and the 99 % quantile q99% over a certain Region Of

Interest (ROI) covering the whole brain inside the cranial bone structure. For the eval-

uation of random undersampling patterns, all three error measures are given as average

over 10 independent trials. The reconstruction results are compared to the fully sampled

reference and a low resolution estimate, which is obtained as zero padded inverse Fast

Fourier Transform (FFT), with subsequent coil combination for both measurements using

[311] and Eq. (5.4). Furthermore, results are evaluated by an error histogram.
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Figure 5.5: Schematic representation of the block pattern and the irregular pattern with Gaussian
density function. For the block pattern a rectangular region in k-space center with a predefined
number of n×m Cartesian encodings in ky and kz, respectively is used. The irregular pattern with
Gaussian density function is defined by the standard deviation σy and σz in both phase encoding
directions. Here the ±2σy,z area is shown in red. The sampling pattern is gained by selecting a
random number of Cartesian encodings according to the probability density function. The readout
direction is kx in all cases.

Tuning of the Regularization Parameters:

In the proposed approach, two regularization parameters λ1 and λ2 need to be tuned,

in order to achieve optimal results. For that purpose, first, a grid search was performed

for one particular measured dataset and undersampling pattern. Those led to the mini-

mum MAE were fixed for all further experiments. The found values are λ1,opt = 64 and

λ2,opt = 5.0 · 10−4.

Undersampling Patterns:

The in-vivo data was retrospectively subsampled from the fully sampled reference k-space

data. Initially, we used a rectangular region in k-space center (block pattern) as under-

sampling pattern which is defined by a fixed number of n×m Cartesian encodings in ky
and kz phase encoding direction. Results with this type of pattern were already shown in

[178]. The block sampling strategy was used, because the B+
1 dependent information is

mostly encoded with low spatial frequency information. However, in compressed sensing

image reconstruction, it is common to use irregular undersampling patterns, to fulfill the

incoherence condition. Therefore, randomized sampling schemes as proposed in the semi-

nal work of Lustig et al. [194] were investigated. Therein, random samples are generated

according to polynomial density kernels around the k-space center. In order to generate

more densely sampled patterns, we also substituted the polynomial kernels with Gaussian

density kernels. Block and Gaussian patters are schematically visualized in Figure 5.5.

The benefit of random sampling was explored firstly, for only the positive and secondly for
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both, positive and negative, BS pulse encoding as described in [179]. The random pattern

described in [194] is defined by the parameter p, which is the polynomial degree used in

the density function. A higher p-value means that the sampling points are spread more

uniformly over the whole k-space. The Gaussian density pattern is described by its stan-

dard deviation σy and σz in both phase encoding directions. The effect of such patterns

with different distribution parameters and a fixed acceleration factor Racc were evaluated

against the fully sampled reference. For the acquisition of prospectively subsampled data

the sequence was modified, such that only an adjustable number of Cartesian encodings

are acquired in k-space center in both phase encoding directions.

5.2.3 Results

Figure 5.6 shows results of the proposed variational reconstruction method on retrospec-

tively subsampled measurement data in the brain for different block sizes. The results

are compared to the fully sampled reference and a low resolution estimate with the same

amount of data. The B+
1 maps gained by zero padding (low resolution) are highly cor-

rupted with artifacts, especially in low signal regions where dominant phase jumps are

likely to occur. In contrast to that the variational reconstruction method yields artifact

free results in very good accordance to the fully sampled reference for block sizes with

10 × 6 and 12 × 4 encodings and even for a block size of 4 × 4 the error is bounded to

comparable low values. In Table 5.1, MAE , medAE and q99% values for different block

sizes are summarized for both methods. All three error measures show a substantial im-

provement for our variational reconstruction approach compared to results gained from

low resolution data for all cases.

Figure 5.7 displays error histograms for the low resolution estimate and the proposed

variational reconstruction method to visualize the error distribution inside the described

ROI . The histograms are shown for a retrospectively subsampled dataset with block sizes

of 4× 4, 10× 6, and 12× 4 encodings in the k-space center. The error histograms for the

proposed variational reconstruction are much narrower for all block sizes as compared to

zero padded results. Using the proposed variational reconstruction method about 1.4 %,

1.7 % and 11 % of all voxels exceed a defined error limit of 2.5 % for pattern sizes of 12×4,

10× 6, and 4× 4 compared to 16 %, 23 % and 55 % using zero padding.

Figure 5.8 shows the MAE value for different block sizes as a function of the regu-

larization parameters λ1 and λ2. The error stays stable over a wide range, reflecting the

algorithm’s robustness to non-optimally tuned regularization parameters. Furthermore,

for those sampling patterns where the block size has a similar ratio of both phase encoding

directions as the imaging matrix (i.e., 12 × 4 and 10 × 4 encodings in k-space center) a

lower sensibility with respect to changes in λ1 and λ2 can be observed.
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Figure 5.9 shows results for the variational reconstruction method for different irregular

undersampling patterns. Pattern combinations that irregularly sample higher frequency

information in the TGV part, P+, while only densely sampling the k-space center in the

H1 part, P−, (patterns 1 and 2) did not improve the reconstruction quality but lead to an

increase in error, especially if the distribution favors sampling higher spatial frequencies.

Using two different irregular sampling patterns with the same distribution parameters

in both parts of the reconstruction also introduces artifacts. Increased reconstruction

quality is achievable, when the same irregular pattern is used in both reconstruction steps

as it is done in cases 4 to 7, where the error decreases the more sampling is concentrated

around the k-space center. The highest concentration is achieved using a Gaussian density

function (pattern 6) which yielded the highest B+
1 accuracy. Furthermore, the Gaussian

density function allows even higher acceleration with only slight increase in error (pattern

7). Compared to the best block-sampling pattern (12× 4 encodings in Figure 5.6) a slight

improvement in error with equal acceleration rate Racc can be observed, nevertheless,

for the acquisition of prospectively subsampled data block-sampling was used to keep

the acquisition protocol simple. Figure 5.10 and 5.12 show results obtained with the

proposed variational reconstruction approach from prospectively subsampled brain, knee

and liver datasets from different healthy volunteers. For the brain and knee dataset we

further provide an additional fully sampled dataset as reference. For the liver dataset,

it is not feasible to obtain a fully sampled reference due to breath hold limitations such

that an overlay of the B+
1 field on a morphological scan is provided. To further show the

improvement of the proposed method over zero padding, Figure 5.12 also provides zero

padded results of the liver dataset for comparison. Zero padded results for brain and knee

dataset are further shown in Figure 5.11. For brain and knee dataset the results of our

variational reconstruction are in high agreement with the fully sampled reference, whereas

the knee dataset shows a slight corruption due to high blood flow in the leg artery that

leads to phase errors. The effect is much more prominent in the reference than in the final

results of the proposed method. For the abdominal dataset in Figure 5.12 some minor

heart-motion related artifacts outside the liver tissue are visible.

In contrast to the results shown in Figures 5.6 and 5.9, where the receive coil sensi-

tivity maps Cn are estimated out of fully sampled data, Figure 5.13 shows reconstruction

results obtained with sensitivity maps estimated from the undersampled dataset. For

medium pattern sizes, only a slight decrease in accuracy can be observed, due to error

propagation from imperfect coil sensitivity estimation. The corresponding error values for

MAE , medAE , and q99% are given in Table 5.2 in the right column group. For example,

the average error for a pattern size of 12 × 4 increased from 0.665 %, with perfect coil

sensitivities, to 1.059 % with realistic estimates. However, for the very small pattern size

of 4×4, the reconstruction breaks down completely, because the coil sensitivity estimation

fail with such a low amount of data, whereas by using perfect coils sensitivity maps the

error is bound to very low values for the available amount of data.

Moreover, Table 5.2 shows a comparison of the error values obtained with globally opti-
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Zero Padded Variational Reconstruction
pattern Racc MAE medAE q99% MAE medAE q99%

in % in % in % in % in % in %

4× 4 256.0 5.768 3.124 46.726 1.433 1.062 6.518
6× 4 170.7 3.834 2.529 21.843 0.938 0.700 4.220
6× 6 113.8 3.534 2.452 18.810 0.846 0.637 3.748
8× 4 128.0 2.956 1.973 17.881 0.812 0.622 3.350
8× 6 85.3 2.699 1.824 16.811 0.747 0.564 3.216
8× 8 64.0 2.681 1.799 17.651 0.728 0.549 3.121

10× 4 102.4 2.049 1.482 9.154 0.731 0.558 3.084
10× 6 68.3 1.857 1.366 8.187 0.669 0.505 2.891
12× 4 85.3 1.521 1.139 6.779 0.665 0.512 2.799
12× 6 56.9 1.416 1.039 6.511 0.609 0.463 2.593

12× 12 28.4 1.321 0.968 5.672 0.573 0.437 2.417

Table 5.1: Retrospectively subsampled: MAE, medAE and q99% inside the described ROI for dif-
ferent block sizes in percent of the desired B+

1 peak-magnitude and the corresponding acceleration
factor R. The values are given for the low resolution estimate and the result of the proposed
variational reconstruction method.
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Figure 5.7: Retrospectively subsampled: Error histogram for the retrospectively subsampled
dataset compared to the fully sampled reference in percent of the desired B+

1 peak-magnitude
for block sizes of 4 × 4, 10 × 6 and 12 × 4 encodings in the k-space center. The error histograms
are shown for zero padded low resolution estimate and the result of our proposed variational
reconstruction method.
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Figure 5.8: MAE inside the described ROI as a function of both regularization parameters λ1

and λ2 for different block sizes (8 × 8, 10 × 4, 12 × 4 and 12 × 12 encodings in k-space center) in
percent of the desired B+

1 peak-magnitude. For this evaluation the retrospective subsampled brain
dataset shown in Figure 5.6 was used.

mized and fixed regularization parameters for all pattern sizes, compared to regularization

parameters which are optimized individually for each pattern. This result again shows the

robustness against mistuned regularization parameters. The improvements achieved by

individual readjustments are very low (< 0.1 %) for all error measures.

To give a better insight of how the algorithm works, the intermediate results after the

TGV reconstruction as well as the magnitude of the H1 part are shown in Figure 5.14 for

4 different slices of a 3D dataset for an undersampling patter of size 12× 4. The phase of

the H1 result is proportional to the square of the B+
1 peak magnitude. The results of the

TGV reconstruction are of poor quality, which is obvious for this low amount of available

data, it leads to a stabilization of the phase, so that stable B+
1 maps can be obtained in

the second step. The magnitude of the H1 result is shown in a range between 0.9 and

1.1, indicating that its deviation from the desired value of 1 is very low, even without an

explicit requirement during the optimization.
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Figure 5.14: Intermediate reconstruction results given as magnitude and phase after the first
step, the TGV part (û in Eq. (5.8)), and after the second step, the H1 part of the reconstruciton
(v̂ ind Eq. (5.9)) for a block pattern size of 12 × 4. The results of the TGV reconstruction are
of poor quality, which is obvious for this very low amount of data. However, the phase can be
stabilized by the TGV regularization, so that high quality B+

1 maps can be obtained. The phase
of the H1 part is basically the final result, except a square root and a scaling operation, whereas
the magnitude is more interesting here. The magnitude of v̂ is scaled between 0.9 and 1.1, hence,
it deviates only slightly from the desired value of 1 (see Eq. (5.5)), even though the optimization
was not explicitly restricted to that.

5.2.4 Discussion

In this work we presented a variational two-step approach to reconstruct the B+
1 field

from highly subsampled BS data. Different undersampling strategies were investigated

on the basis that the spatially smooth B+
1 field information mostly relies on low spatial

frequencies in the k-space center. In the initial hypothesis, we assumed that it might be
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advantageous to sample a broader distribution of spatial frequencies for the reconstruction

of the TGV regularized part, S+, to better characterize the morphological basis. The

performed undersampling experiments, however, showed that it is more important to

sample a dense k-space center region for both BS acquisitions and to encode in both

measurements the identical k-space lines. This behavior can be probably explained that

undersampling artifacts depend on the specific encoding pattern and their suppression

is more effective for similar occurrence in both parts of the reconstruction. It could

be shown that two different instances of a random pattern with the same distribution

parameters exhibit substantially more artifacts in the final B+
1 map compared to the

reconstruction results using the identical encoding pattern. The investigation of the error

for different distributed sampling patterns showed a flat minimum for a compact sampling

in the k-space center. The retrospective undersampling study (see Figure 5.6) suggest

that a compact sampling with a block-pattern of similar ratio as the imaging matrix

yields nearly as good results as with Gaussian distributed dense sampling (see Figure 5.9)

in terms of accuracy and achievable acceleration. Thus, the block sampling approach was

implemented for in-vivo measurements to simplify the acquisition protocol.

In contrast to this work, the authors in [265] used the SPIRiT method [196] to per-

form a joint reconstruction with staggered pattern, the acceleration potential was only

investigated on top of a fixed number (20 × 20, 32 × 32) of auto calibration lines in a

multi-transmit system, which reduces the effective acceleration. Since the proposed algo-

rithm also includes the principles of parallel imaging, it relies on the precomputation of

receiver coil sensitivities. For high acceleration factors this translates to an increased error

when the highly subsampled BS data is used for estimation (see Figure 5.13). It is then

recommended to either use prescan calibration data or a concurrently measured dataset

after the BS calibration scan for sensitivity profile estimation. However, it could be also

shown that for moderate pattern sizes (e.g.. 12 × 4), the introduced error is lower than

0.3 % in average (see Table 5.2). This is usually lower than other errors introduced by the

measurement or modeling assumptions, influencing the final B+
1 map. All other presented

results are reconstructed using coil sensitivity maps estimated out of fully sampled data

(assuming “perfect” sensitivity profiles), so that the performance of the reconstruction

algorithm can be investigated without the influence of imperfection in the coil sensitivity

estimation. The application of the proposed method to pTX data and different k-space

trajectories is straight forward and will be subject to future research. A question which

may arises is the ability to capture very localized B+
1 field variations occurring for parallel

transmit coils or at higher field strength. To give an idea of the behavior, the experiment

in Figure 5.15 shows the B+
1 map in a phantom placed very close to the elements of a

small-animal birdcage coil. Near these elements very localized B+
1 field inhomogeneities

occur which can be captured quite well with the proposed method. Nevertheless, depend-

ing on a specific coil configuration, a detailed examination of the undersampling pattern

would be necessary, which might lead to larger block sizes.

The investigation concerning the dependency of the reconstruction quality on the model
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Figure 5.15: Prospectively subsampled: B+
1 map in µT for fully sampled reference and the

proposed variational reconstruction method measured with a block size of 12×4. The measurement
was performed with a TX/RX small-animal birdcage coil with an inner diameter of 4 cm. The
cylindrical agar phantom was placed very close to the elements of the birdcage, leading to localized
B+

1 field variations similar as in a parallel transmit setting. The measurement was performed using
a FOV of 40 mm and a flip angle α = 12◦. To achieve optimal reconstruction results for this special
case the regularization parameters have to be retuned, leading to the following values: λ1 = 5,
λ2 = 16 · 10−4

parameters λ1 and λ2 showed that these are fairly stable over a wide range and across

different pattern sizes for a given SNR scenario. Since the SNR is usually only altered

slightly, it is possible to achieve robust reconstruction results without additional tuning.

Even though, if the regularization parameters are tuned for each pattern size individually,

the achieved improvement is < 0.1 % for every error measure (see Table 5.2), indicating

the robustness of the algorithm against slightly mistuned regularization parameters and

their independence of different pattern sizes. GPU powered reconstruction on a NVIDIA

Geforce Titan Xp GPU takes about 30 s for the complete 3D measurement.

General limitations of the BS method are phase drifts or phases fluctuations between

positive and negative BS encoding. Although the used interleaved acquisition scheme

[176] makes the method more robust against phase drifts, phase fluctuations may still be

an issue within regions with fast and pulsatile phase changes such as large arteries. In

Figure 5.12 this becomes visible, e.g. in the right part of the liver dataset due to heart

motion or in Figure 5.10 within the knee dataset due to blood flow in the leg artery.

Since the proposed method enforces smoothness on the B+
1 field, the error due to local

disturbances is effectively suppressed and interpolated based on the local neighborhood

in the resulting B+
1 map (see knee dataset in Figure 5.10). In Figures 5.6 and 5.10,

the described interpolation effect leads to an alleged increased error in the cranial bone

structure where the fully sampled reference exhibits low signal leading to an uncertainty

in the reference map. Therefore, this region was excluded from the error analysis.

In this work, we also performed an investigation about the feasible acceleration poten-

tial for 3D acquisitions and the expectable error in the B+
1 field with respect to the fully

sampled reference. For all investigated regions, receiving array coils with 20 to 32 active

coils were used. For these applications acceleration factors from 80 to 100 were achieved

that reduces the acquisition time into the range of 10 s to 12 s for the whole 3D dataset.
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From retrospective undersampling experiments mean errors below 1 % and maximal er-

rors below 4 % were observed for the investigated setting and used acceleration factors.

Further acceleration is achievable for a higher number of independent receiver coils or by

sacrificing accuracy.

Similar acquisition times for whole brain coverage are still possible by a combination

of BS based B+
1 mapping with spiral readouts and optimized BS pulses (12 s) [152, 250]

or below 40 s combined with an EPI readout [71]. However, these methods are prone to

artifacts in particular at high and ultrahigh field strength. Nevertheless, the combination of

the proposed method with such trajectories is straight forward and further acceleration can

be expected. For regions that allow a long readout train 3D single shot acquisition might

be feasible. However, in this work we focused on the robust implementation of accelerated

BS mapping for widely available Cartesian imaging. In a recent work [318], a method

is described, where interleaved acquisition and Electrocardiography (ECG) triggering are

combined in a proper way to acquire cardiac B+
1 maps. By a combination of this approach

and the proposed method a 3D cardiac B+
1 map in a few heart beats seems possible.

5.2.5 Conclusions

A new highly accelerated 3D B+
1 mapping method based on the BS shift and reconstruc-

tion by variational modeling was introduced. The method is able to reconstruct 3D B+
1

maps from parallel acquired Cartesian encodings within a typical breath-hold period of a

patient by using acceleration factors of up to 100. With Cartesian encoding, the method

is stable even at very high field strength. The reconstruction errors were estimated from

retrospective undersampling experiments and were found to be below 1 % in mean and

4 % in maximum.

5.3 3D Bloch-Siegert EPI B+
1 Mapping

The results achieved with the reconstruction algorithm presented in the previous section

(Section 5.2) are already impressive in terms of accuracy and acceleration. There, the data

acquisition was performed on the basis of a quite robust GRE sequence. In this section,

the combination of the reconstruction algorithm with a faster acquisition trajectories, i.e.

the EPI sequence (see Section 2.1.8.3), and the feasibility of a two shot acquisition for a

3D volume is exploited.

5.3.1 Methods

A 3D EPI Spin Echo (SE) sequence with segmented acquisition in slice encoding direc-

tion with an echo train length of 128 was implemented using the open source sequence

development tool known as Pulseq [170]. Figure 5.16 depicts the main sequence ele-

ments and their timing. We used a slab selective excitation pulse with an flip angle

of α = 25◦ and a non-selective rectangular refocusing pulse together with symmetric
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Figure 5.16: Sequence Diagram for the BS EPI SE sequence. Three reference lines are acquired
after excitation for N/2 EPI ghost correction followed by the offresonant BS pulse. After the 2nd

crusher gradient of the non-selective refocusing the EPI readout starts.

crusher gradients. An offresonant BS pulse with a duration Tp = 8 ms, a resonance offset

∆ωRF = 4 kHz, and an onresonant equivalent flip angle αBS = 1000◦ leading to a pulse

constant KBS = 35.7 rad G−2 was inserted between the excitation and refocusing pulse.

With this sequence we acquired a 3D dataset of a cylindrical water phantom on a 3 T MR

system (Skyra, Siemens, Erlangen, Germany). The following imaging parameters were

used, leading to a total acquisition time of Taq = 22 s: FOV = 250 mm, a matrix size of

128×128×32, 37.5 % slice oversampling, readout bandwidth of 2041 Hz/pix, TR = 250 ms,

TE = 105 ms and a resolution of 5 mm in slice direction.

The variational reconstruction algorithm for undersampled BS measurements and con-

sists of a two-step procedure. Both steps are defined by solving an optimization problem.

In the first step a TGV regularization term [38, 159], which enforces piece wise smooth

solutions, is applied to reconstruct the magnitude and phase of the underlying image. In

the second step a smoothness constraint is applied to stabilize the spatial smoothness of
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Figure 5.17: One representative B+
1 map in µT from fully sampled data acquired with GRE and

EPI. The normalized difference map between the GRE and EPI acquisition on the right side shows
the good accordance between this two approaches.

the underlying B1+ field defined as follows (for further details we refer to Section 5.2):

û = arg min
u

λ1

2
‖d+ −A+ (u) ‖22 + TGV2

α (u) (5.12)

v̂ = arg min
v

λ2

2
‖d− −A− (û� v) ‖22 + ‖∇+

xyzv‖22 = e−j2φBS (5.13)

Here, d+ and d− are the acquired undersampled k-space data for positive and negative

resonance offset acquisition, respectively, andA+(u) andA−(u) are the are the MR forward

operators according to Eq. (5.6). The regularization parameters λ1 and λ2 where chosen

as follows: λ1 = 64 and λ2 = 15 · 10−4. To investigate the potential of the proposed

method for a two shot acquisition, the fully sampled data set was retrospectively under-

sampled using block sampling patterns of different sizes, summarized in Table 5.3. For

the evaluation the MAE compared to the fully sampled reference, its median medAE and

its 99 % quantile q99% were used. Additionally, a fully sampled BS 3D dataset with the

GRE based acquisition was used as reference (Taq = 15 min).

5.3.2 Results

In Figure 5.17, a comparison between EPI and GRE acquisition is shown, where only very

small deviations can be observed. Figure 5.17 shows the results gained with our variational

reconstruction method from under-sampled 3D EPI SE data compared to a zero padded

low resolution estimate. The dedicated reconstruction method lead generally to lower

errors in comparison to the full sampled reference measurement. Even for the very small

kernel size of 6 × 4 encodings, good results could be achieved with the EPI acquisition

for the phantom. The lager k-space block with 10 × 4 and 12 × 6 should certainly work

in-vivo and can be typically implemented as a single shot. A summary of all investigated

under-sampling patterns is given in Table 5.3 showing a reduction of all error measures.
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Figure 5.18: B+
1 map in µT for fully sampled reference, zero padded low resolution estimate and

the result of the variational reconstruction algorithm for a retrospectively subsampled dataset in
a cylindrical water phantom for block sizes of 6× 4, 10× 4 and 12× 6 encoding in k-space center.
One representative slice of a 3D-dataset is shown. The right part of each column shows the error
map ε( #–r ) for the corresponding result as normalized error in percent of the desired B+

1 magnitude.
The MAE is given as the mean of the error map over a certain ROI inside the cylinder.

5.3.3 Discussion and Conclusion

With the proposed strategy we could show that similar acceleration factors are achievable

with EPI as stated in Section 5.2, where a much more robust GRE readout was used. In

the performed measurement, we used an echo train length for the EPI readout of 128,

which means that even for the large block pattern size of 14×8 encodings in k-space center

the echo train length would be shorter, showing the feasibility that the goal of a two shot

acquisition (two different BS pulses) of the whole 3D volume is more than feasible. The

challenge for the EPI based measurement consists in the influence of B0 inhomgenities

and chemical shift effects. But in all situation where other EPI based measurements are

possible (diffusion, perfusion) the 3D EPI based B+
1 mapping should also be applicable.

With only two BS pulses the SAR is reduced to a minimal fraction.
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ZeroPadded Variational Reconstruction
pattern Racc MAE medAE q99% MAE medAE q99%

in % in % in % in % in % in %

6× 4 170.7 2.462 2.007 8.570 1.441 0.898 7.181
8× 4 128.0 2.070 1.565 8.672 1.364 0.840 6.963

10× 4 102.4 2.019 1.426 9.262 1.318 0.770 6.985
10× 6 68.3 1.437 0.922 7.063 0.925 0.625 4.429
12× 4 85.3 1.970 1.347 9.475 1.314 0.782 6.930
12× 6 56.9 1.379 0.854 7.045 0.895 0.596 4.342
14× 8 36.6 1.110 0.885 4.480 0.844 0.636 3.283

16× 10 25.6 0.916 0.670 4.423 0.838 0.636 3.822

Table 5.3: MAE, medAE and q99% inside a certain ROI for different block sizes in percent of the
desired B+

1 magnitude and the corresponding acceleration factor Racc. The values are given for the
zero padded low resolution estimate and the results of the variational reconstruction algorithm.

5.4 Highly accelerated 3D Bloch Siegert B+
1 Mapping at 7T

Fast and accurate B+
1 mapping is a very important prerequisite at high and Ultrahigh

Field (UHF) for various applications. However, at UHF 3D BS B+
1 mapping is in par-

ticular limited by high energy deposition of multiple offresonant RF pulses resulting in

unacceptable long acquisition times. To overcome this problem, the reconstruction al-

gorithm presented in Section 5.2 was applied to 7 T data, acquired with a GRE based

sequence. The much more pronounced spatial RF field variations and energy deposition

at 7 T makes an investigation according the performance and accuracy of the reconstruc-

tion algorithm necessary. In this section, the performance of the proposed BS based B+
1

mapping technique is investigated for phantom and in-vivo data at 7 T.

5.4.1 Theory and Methods

The variational reconstruction algorithm consists of a two-step procedure, defined by solv-

ing two optimization problems. In the first step a TGV regularization term [38, 159] (see

Section 3.2.4.4), enforcing piece wise smooth solutions, is applied to reconstruct the mag-

nitude and phase of the underlying image. In the second step a smoothness constraint is

applied to enforce the spatial smoothness of the underlying B+
1 field defined as follows:

û = arg min
u

λ1

2
‖d+ −A+ (u) ‖22 + TGV2

α (u) (5.14)

v̂ = arg min
v

λ2

2
‖d− −A− (û� v) ‖22 + ‖∇+

xyzv‖22 = e−j2φBS (5.15)

A spherical phantom and three healthy subjects were scanned on a 7 T system (Magne-

tom, Siemens, Erlangen, Germany) with a 1Tx32Rx head coil (Nova Medical, Wilmington,
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Figure 5.19: B+
1 map in µT for fully sampled reference, low resolution estimate and the result

of the proposed variational reconstruction algorithm for a retrospectively subsampled dataset in a
spherical phantom for a block pattern with size of 12× 4, 12× 6, 12× 8, and 8× 8. The results are
shown as a transversal and a sagittal slice through the 3D dataset. The right part of each column
shows the error map ε( #–r ) for the corresponding result as normalized error in percent of the desired
B+

1 peak magnitude. The MAE is given as the mean of the error map over the whole phantom.
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Figure 5.20: B+
1 map in µT for fully sampled reference, low resolution estimate and the result

of the proposed variational reconstruction algorithm for a retrospectively subsampled dataset in
the brain of a healthy volunteer for different block patterns with a size of 8 × 4, 10 × 6, 12 × 6,
and 14 × 10. The results are shown as the central slice of a 3D dataset. The right part of each
column shows the error map ε( #–r ) for the corresponding result as normalized error in percent of
the desired B+

1 peak magnitude. The MAE is given as the mean of the error map over the whole
brain inside the cranial bone structure for each case.

USA) according to a local IRB approved protocol. The following scan parameters were

used to acquire the phantom data: FOV = 200× 200 mm, a slab thickness of 150 mm, an

acquisition matrix of 128 × 128 × 30, Tp = 10 ms, αBS = 1000◦, ωRF = 2π · 5 kHz. The
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Figure 5.21: Error histogram for the retrospectively subsampled in-vivo dataset acquired at 7 T
compared to the fully sampled reference in percent of the desired B+

1 peak magnitude for different
block patterns with size of 8 × 4, 12 × 6 and 14 × 10 encodings in the k-space center. The error
histograms are shown for zero padded low resolution estimate and the result of our proposed
variational reconstruction algorithm.

in-vivo dataset was acquired using: FOV = 256× 192 mm, a slab thickness of 80 mm, an

acquisition matrix of 128×96×16, TR = 160 ms, TE = 15 ms and 25 % slice oversampling.

A Fermi shaped BS pulse with duration of Tp = 7 ms, an on-resonant equivalent flip angle

of αBS = 600◦, and a resonance offset of ωRF = 2π · 4 kHz leading to a pulse constant

KBS = 70.93 rad G−2 was used. The regularization parameters λ1 and λ2 were adjusted

doing a parameter sweep to λ1 = 10 and λ2 = 1.2 · 10−2.

Data were retrospectively subsampled using a block pattern with different sizes, where

only n ×m lines in k-space center were acquired as described in Section 5.2. The recon-

struction results were compared to a fully sampled reference and for each result an error

map ε( #–r ) with respect to the fully sampled reference is shown. Each result was further

evaluated by MAE , median value medAE and the 90 % quantile q90% over a ROI inside

the subject’s brain.

5.4.2 Results and Discussion

Figure 5.19 (phantom) and Figure 5.20 (in-vivo) show the reconstructed 3D B+
1 maps after

zero filling and the proposed variational reconstruction approach for 4 different pattern

sizes together with a fully sampled reference. The difference map and the MAE indicate

substantial improvement of the proposed method compared to zero filling in both cases.

The limitation of this method can be seen in the sagittal plane of Figure 5.19 (12 × 4



5.4. Highly accelerated 3D Bloch Siegert B+
1 Mapping at 7T 171

Zero Padding Variational Reconstruction
pattern Racc MAE medAE q90% MAE medAE q90%

in % in % in % in % in % in %

16× 12 10.0 3.03 1.97 6.37 1.13 0.81 2.41
14× 10 13.7 3.18 2.08 6.75 1.30 0.93 2.78
12× 8 20.0 3.46 2.29 7.32 1.54 1.09 3.34
12× 6 26.7 3.90 2.68 8.27 1.73 1.22 3.75
12× 4 40.0 4.91 3.44 10.82 2.06 1.40 4.59
10× 6 32.0 5.13 3.58 11.19 1.92 1.37 4.15
10× 4 48.0 5.13 3.58 11.19 2.22 1.54 4.93
8× 8 30.0 5.69 3.77 12.04 1.97 1.42 4.28
8× 6 40.0 5.69 3.77 12.04 2.16 1.55 4.74
8× 4 60.0 5.69 3.77 12.04 2.45 1.72 5.47
6× 6 53.3 6.85 4.35 14.41 2.51 1.80 5.49
6× 4 80.0 6.85 4.35 14.41 2.89 2.02 6.44
4× 4 120.0 8.35 5.78 16.54 3.38 2.52 7.32

Table 5.4: MAE, medAE and q90% inside the cranial bone structure of the in-vivo dataset acquired
at 7 T using different block sizes in percent of the desired B+

1 peak magnitude. The values are given
for the zero padded low resolution estimate and the result of the proposed variational reconstruction
algorithm.

pattern) where the B1 hotspot in the center of the phantom is blurred out in z-direction

as a result of insufficient k-space data. Interestingly, for a block size of 12× 6 we observe

slight blurring only in the phantom data. Even though, for the pattern size of 8× 8 only

1.7 % of the k-space data was used, the average error stays below 5 %. Table 5.4 lists the

MAE , medAE and the 90 % quantile for a range of under-sampling pattern sizes and the

resulting acceleration factor Racc for the in-vivo measurements. With the pattern size of

10 × 6 (about 2 % of the fully-sampled data) we can reach an average error below 2 %

over the whole FOV in a scan time of about 45 s with the given TR at 7 T. Figure 5.21

shows the error histograms over the whole brain region inside the cortical bone structure

for three pattern sizes for zero padding and the variational reconstruction results. The

narrowing in the histograms for the results obtained with the variational reconstruction

clearly demonstrates the increased accuracy. Compared to the results at 3 T, reported in

Section 5.2, the mean error increased for all pattern sizes from below 1 % at 3 T to about

2 % for medium pattern sizes. For smaller pattern sizes the error increases drastically,

indicating that the more pronounced field variations at 7 T cannot be resolved any more.

This is further supported by an increase of the optimal regularization parameter λ2 by

more than an order of magnitude from 5 · 10−4 to 1.1 · 10−2, indicating that more data

weighting is necessary to resolve the field variations.

Figure 5.22 shows reconstruction results for the block pattern sizes of 12 × 6 and

14× 10 on three different subjects as three slices of the 3D dataset each. The error maps
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indicate that the previously reported accuracy can be achieved over wide areas through all

investigated subjects, however, especially in subject 3, an increased error around the nasal

cavities and the ear channel can be observed, indicated by the red arrows. However, a

slight non-naturally appearing artifact (white arrow) can be observed in the fully sampled

reference as well (first row of each subject). Due to the higher influence of ∆B0 variations

at 7 T, resulting in a faster signal decay, the reference is can be prone to artifacts in these

areas. It can be expected that the influence of such errors is reduced in the regularized

reconstruction results, even though in the case of undersampling. The corresponding error

values (MAE , medAE , and q90%) are given in Table 5.5.

Compared to 3 T, as expected, these very low acquisition times are not possible at

7 T. Here, a certain compromise between accuracy and acquisition time has to be made,

depending on the requirements of the application. Even though, the RF energy deposition

increases heavily, a minimum acquisition time in the order of 45 s to 1 min is possible.

5.4.3 Conclusion

In this study we successfully applied the proposed algorithm on 7 T phantom and in-vivo

data. The mean error was reduced for both in-vivo and phantom measurements compared

to zero padding which allows the acquisition of accurate 3D B+
1 -maps in about 45 s.
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6
Chemical Shift based Fat-Water Separation using a

Variational Approach for B0 Correction

If at first you don’t succeed,

try, try again.

W. E. Hickson

This chapter is based on the proceeding presented on the ISMRM 2016:

• A. Lesch, K. Bredies, C. Diwoky, and R. Stollberger. Chemical shift based

fat-water separation using a variational approach for B0-field correction.

In Proceedings of the 24th Annual Meeting of ISMRM, Singapore, vol-

ume 24, page 1875, 2016
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In many clinical applications, it is tried to suppress the in general hyperintense fat signal

to enable the diagnosis in some regions. The efficiency of fat suppression suffers from

∆B0 variations and small T1 values of water dominant tissue (in the range of fat), so

that partial saturation effects in the surrounding tissue may occur. An alternative is the

separation of both signal components with the additional benefit that a fat fraction map

can be calculated out of both signal, which can serve as biomarker for several diseases.

Most of the today available state of the art methods are based on the seminal work from

Dixon [67], where the main challenge is to provide an accurate ∆B0 field map. Over the

years, many methods were proposed based on this idea, trying to reduce the influence of
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∆B0 on the separation result. Most of them use heuristic approaches as region growing

based on quality measures, in combination with phase unwrapping and a smoothness

constraint. Good solutions are available with their specific advantages and disadvantages,

but a fundamental solution still does not exist, because of the strong non-convexity and

non-linearity of the problem. The basics of fat water separation, different signal models,

and a review over existing Dixon based methods is given in Section 4.1.

In this section, a new approach for the fat/water signal separation problem is pre-

sented, by using variational methods. This approach uses a Total Generalized Variation

(TGV) based regularization functional to stabilize the solution of the field map. Referring

to Sections 2.2.2.2 and 2.2.4, the B0 field is only smooth inside a homogeneous tissue,

discontinuities can occur along tissue boundaries oriented parallel to the main field direc-

tion. This fact is often neglected, which could lead to errors around tissue boundaries.

This drawback can be overcome by the use of the TGV functional (see 3.2.4.4). Further-

more, ∆B0 is obtained as the global optimal solution of a convex optimization problem,

with respect to the TGV constraint, enforcing piecewise smooth solutions, which does

not depend on the initial seed voxel or the processing order. Nevertheless, it cannot be

guaranteed that the obtained global optimal solution is the correct one.

6.1 Theory and Methods

The fat signal is modeled by utilizing the multi-peak fat model according to Eq. (4.5).

With that, the signal Sq (τn) at echo time τn in a voxel q can be described as

Sq (τn) =

(
SW,q + SF,q

NF∑
m=1

αme
j∆ωF,mτn

)
ejγ∆B0,qτne−R

∗
2,qτn , (6.1)

where SW,q is the water signal contribution, SF,q is the fat signal contribution, and ∆B0,q

is the main field inhomogeneity in voxel q. γ is the gyromagnetic ratio and R∗2,q is the

reciprocal of the transverse relaxation time constant T ∗2 in voxel q. The parameters of

the multi-peak fat signal model are ∆ωF,m, which is the chemical shift of peak m and

αm is its normalized signal contribution
(∑NF

m=1 αm = 1
)

. The values are taken from the

ISMRM fat water challenge 20121(see Table 6.1), where NF = 6 fat peaks are modeled.

More details according the fat signal model are given in Section 4.1.2.

To solve the fat/water separation problem, we propose a 3-step procedure: First, a

rough estimate for R∗2,q is calculated by a linear fit on

log |Sq (τn) | = −R∗2,qτn + cq (6.2)

in each voxel, where cq is an arbitrary constant. According to Soliman et al. [276], a rough

estimate for T ∗2 is usually sufficient to obtain accurate fat/water separation results. In the

1http://challenge.ismrm.org/node/8

http://challenge.ismrm.org/node/8
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Peak Nr. Chemical Relative Signal
(m) Shift ∆ωF,m Contribution αm

in ppm in %

1 0.8996 8.7
2 1.2996 69.3
3 2.0997 12.8
4 2.7598 0.4
5 4.3100 3.9
6 5.3001 4.8

Table 6.1: Used values for the parameters in the fat signal model from Eq. (6.1). The values are
from the ISMRM fat water challenge 2012.

Figure 6.1: (A) The solution space is restricted to local minima of Rq (z) in each voxel. (B) Convex
relaxation: Solution space is extended to all possible solutions inside the unit circle connecting the
local minima, leading to the convex relaxation of the problem with the relaxed residual Rrelax.

second step, a piecewise smooth solution for ∆B0,q is calculated. A constant echo spacing

∆τ is required, so that the echo times τn are given as

τn = τ1 + (n− 1)∆τ, (6.3)

where τ1 can be selected arbitrary, and R∗2,q is taken out of the linear fit in the first step,

the squares residual R2
q(∆B0,q) in each voxel q can be defined as

R2
q(∆B0,q) = min

SW,q ,SF,q

NS∑
n=1

(
Sn,q −

(
SW,q + SF,q

NF∑
m=1

αme
j∆ωF,mτn

)
ejγ∆B0,qτne−R

∗
2,qτn

)2

.

(6.4)

Here, Sn,q = Sq (τn) is the voxel signal acquired at τn and NS is the number of acquired
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echos. The minimization problem with respect to SW,q and SF,q is linear and can be solved

in the least squares sense, using the pseudo-inverse of the system matrix and treating ∆B0,q

as constant. Using the definitions in Eqs. (4.24) to (4.26), the residuum can be rewritten

as

R2
q(∆B0,q) =

∥∥∥(I−KK†
)

T(−∆B0,q,−R∗2,q)Sq
∥∥∥2

2
. (6.5)

Here, Sq is a vector containing the acquired complex signals in each voxel for all echo

times, K is the matrix considering the fat model (see Eq. (4.27)), K† is the pseudo-inverse

of K, T(−∆B0,q,−R∗2,q) is the diagonal matrix considering the field offset ∆B0 and R∗2
decay (see Eq. (4.28)) and I is the identity matrix. Using the definitions in Eqs. (4.29)

to (4.31) and

zq = ejγ∆B0,q∆τ , (6.6)

the residuum in each voxel can be written as a trigonometric polynomial in z or z−1.

According to Eqs. (4.32) and (4.33), the residuum for an arbitrary number of echos writes

as

R2
q (∆B0,q)→ R2

q (zq) =

∥∥∥∥∥∥∥∥∥∥∥∥∥
Mq



z0
q
...

z−nq
...

zNS−1
q



∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

, (6.7)

leading to a polynomial of order 2(NS−1) in z−1, where the matrix Mq combines all ∆B0

independent terms of the residuum. All local minima of this polynomial in each voxel can

be determined efficiently by polynomial root finding, and because of their finite number,

also the global one which serves as initial estimate for the ∆B0( #–r ) map. Furthermore, the

residual is periodic with 2π
∆τ and has (NS−1) local minim in this period. This formulation

was first described in [68] for the case of three echoes, while our proposed solution is able

to deal with an arbitrary number of echoes. A detailed derivation of this formalism is

given in Section 4.1.3.6.

Due to artifacts and noise, the global minimizer is not always the correct solution,

which can lead to fat water swaps. The given problem is now reformulated into a varia-

tional problem extended by a regularization term R(∆B0). Here, a second order TGV

functional is applied (R(∆B0) = TGV2
α (z)), which was introduced by Bredies et al. [38],

enforcing piecewise smoothness (for more details see Section 3.2.4.4). With that, in the

continuous case, the optimization problem can be written as

ẑ( #–r ) = arg min
z

∫
Ω
R2 ( #–r , z ( #–r )) d #–r + λTGV2

α (z( #–r )) ,

s.t. z( #–r ) is local minimum of R( #–r ),

(6.8)

where Ω is the measurement domain (sensitive volume of the receive coils). For discrete
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Nr. Anatomy NTE TEmin TEmax Matrix Size Sli. B0 Scale ∆B0 map
in ms in ms in T in Hz

1 Knee 6 1.4 9.2 192× 192 4 3 −303 to 303 Hz
2 Head/Neck 8 1.2 10.6 225× 227 2 3 −500 to 500 Hz
3 Foot 5 1.4 10.6 256× 256 2 3 −647 to 647 Hz
4 Knee 6 1.4 9.7 192× 192 4 3 −303 to 303 Hz
5 Calves 4 1.6 18.8 122× 242 5 1.5 −500 to 500 Hz
6 Thigh 5 1.6 13.1 122× 244 5 1.5 −175 to 175 Hz
7 Foot 6 1.9 17.4 250× 175 5 1.5 −500 to 500 Hz
8 Liver 5 1.4 12.6 224× 248 3 1.5 −700 to 700 Hz
9 Brain 6 1.7 15.4 251× 201 3 3 −700 to 700 Hz

10 Wrist 5 1.3 7.2 192× 192 4 3 −340 to 340 Hz
11 Liver 6 1.2 11.2 256× 256 5 1.5 −250 to 250 Hz
12 Liver 4 1.7 11.0 157× 257 3 1.5 −163 to 163 Hz
13 Thigh 4 1.2 4.2 256× 131 4 3 −510 to 510 Hz
14 Head/Neck 4 1.4 8.3 256× 256 4 1.5 −500 to 500 Hz
15 Breast 4 2.9 12.5 256× 55 5 1.5 −700 to 700 Hz
16 Spine 5 2.9 15.7 160× 208 3 1.5 −156 to 156 Hz
17 Shoulder 3 2.9 9.3 101× 101 4 1.5 −500 to 500 Hz

Table 6.2: Parameters for of the datasets served as test cases for the ISMRM fat water challenge
2012 and the used scaling of the ∆B0 map in terms of frequency to show the achieved results in
Figures 6.5, 6.6 and 6.9.

voxels, the optimization problem writes as

ẑ = arg min
z

NxNyNz∑
q=1

R2
q (zq) + λTGV2

α (z) ,

s.t. zq is local minimum of Rq,

(6.9)

where z is a vector containing all zq for all voxels. Interpreting Eq. (6.9) means that

the sum over all residuals is minimized, which are restricted to the local minima of each

polynomial on the unit circle, under the condition of the TGV constraint. The overall

goal is to select the local minimum in each voxel, which gives the globally best estimate,

as illustrated in Figure 6.1 A. Because of the combinatorial complexity, a direct solution is

not feasible. Therefore, the convex relaxation of the problem is solved, where the solution

space of each residuum Rq is extended to its convex hull, i.e., all solutions inbetween (inside

the unit circle), which is visualized in Figure 6.1 B, according to Bredies et al. [39]. With

that, the optimization problem writes as

ẑ = arg min
z

NxNyNz∑
q=1

R2
q,relax (zq) + λTGV2

α (z) . (6.10)
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This problem can be easily solved using the primal dual algorithm described by Chambolle

and Pock [46]. The obtained solution is then back-projected to the nearest local minimum

on the unit circle. To improve the final result, the solution of Eq. (6.10) is repeated

several times, called outer iterations. At the beginning a solution with a high value of λ

is calculated, leading to a strong regularization. This is repeated several times, where the

regularization parameter λ is reduced in each step by a certain factor. The solution of

the previous step serves as initial estimate for the next one. Usually four repetitions are

performed. Finally, in the third and last step the signal equation is solved using a least

square fit to determine SW,q and SF,q in each voxel, according to Eq. (4.25). Without

considering individual T1 or R∗2 values for the fat and water components, the fat signal

fraction ηs writes as

ηs =
SF

SF + SW
. (6.11)

This method was evaluated on all 17 available datasets of the ISMRM fat/water challenge

20121, containing different acquisitions with different echo times, echo spacings, and field

strength, as well as a variety of different anatomies throughout the human body. The

most important parameters for each of the 17 datasets are given in Table 6.2. The results

for the fat fraction obtained with the proposed algorithm ηs are compared to 11 different

state of the art algorithms using the ISMRM fat/water challenge datasets, where their

score values are taken from several publications, see Tables 6.3 and 6.4. For each dataset,

a score value S is calculated on the basis of the provided fat fraction reference ηs,ref and a

provided maskM to avoid the influence of background voxels. The sore value is calculated

by

S =

NxNyNz∑
q=1

|ηs,q − ηs,q,ref| · Mq < 0.1

NxNyNz∑
q=1

Mq

· 10000, (6.12)

counting the voxels in which the absolute difference between the calculated fat fraction ηs,q
and the reference fat fraction ηs,q,ref is less than 10 % withinM, normalized to the number

of voxels inside the maskM. With that, the maximum score value is 10000, meaning that

all voxels withinM deviate less than 10 % to the reference. Additionally, a noise analysis is

performed, where complex valued Gaussian noise with a standard deviation σ of 2 %, 5 %,

10 % and 20 % of the mean magnitude within the mask M is added to the measurement

data.

Moreover, the algorithm was also applied to a measured dataset, acquired on a 3 T

Skyra system (Siemens, Erlangen Germany) with 4 equally spaced echos using a 2D Gra-

dient Recalled Echo (GRE) sequence. The acquisition was performed with the following

sequence parameters: FOV = 300 mm, a slice thickness of 3 mm, TR = 100 ms, α = 25◦,

1http://challenge.ismrm.org/node/8

http://challenge.ismrm.org/node/8
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Figure 6.2: Fat fraction, frequency offset due to ∆B0 inhomogeneity (∆fB0
), fat and water image

are shown for the acquired dataset with ∆TE = 3.32 ms obtained using the proposed method and
the IDEAL implementation.

a matrix size of 256 × 256, τ1 = TE1 = 1.86 ms, and ∆τ = ∆TE = 3.32 ms. The results

are compared to an Iterative Decomposition of water and fat with Echo Asymmetry and

Least squares estimation (IDEAL) implementation according to [331].

6.2 Results

Figure 6.2 shows fat fraction, field map, fat and water image of the acquired dataset, using

the proposed method in comparison to that achieved with the IDEAL implementation.

Figures 6.3 and 6.4 show the same quantities for dataset 7 and 8 of the ISMRM fat-

water-challenge 20121, respectively. Compared to the results obtained with IDEAL, the

proposed algorithm lead to massively improved results.

Tables 6.3 and 6.4 show the achieved scoring values obtained with the proposed method

for all datasets of the ISMRM fat water challenge 20121 without additional noise and with

additional noise levels of 2 %, 5 %, 10 % and 20 % of the mean magnitude within M. The

score for the proposed TGV regularized results (without noise) and the maximum score

achieved with the 11 state of the art reference methods are given in bold for comparison. In

Table 6.4 also a mean score value over all 17 datasets is given for each method. Figures 6.5

and 6.6 show the provided fat fraction maps ηs,ref(
#–r ) for all challenge datasets (first row)

compared to those obtained with the proposed TGV regularized method (second row).

Results obtained with the proposed TGV algorithm are in very good accordance to the

reference, visual differences are only observable in datasets 12 (left and right shoulder) and

14 (back part of the stomach). In the third row, the achieved field maps are illustrated for

1http://challenge.ismrm.org/node/8

http://challenge.ismrm.org/node/8
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each dataset, where their scalings are given in Table 6.2. For some datasets, the field map

had to be unwrapped for visualization, which was performed by a seed point algorithm

proposed by Ghiglia and Pritt [92]. The last two rows show the corresponding fat and

water images.

In Figures 6.7 and 6.8, the obtained results for the noise analysis are shown for each

challenge dataset with noise levels of 2 %, 5 %, 10 % and 20 % compared to the provided

reference. Until a noise level of 5 %, nearly no changes can be observed in all datasets.

For a noise level of 10 %, a few single voxels are swapped, but still a good separation

accuracy can be achieved, whereas for a noise level 20 %, strong artefacts occur effecting

larger regions especially with lower signal magnitude. Obviously, a similar behavior can

be observed for the obtained field maps depicted, in Figure 6.9, where until 10 % noise

level stable field maps can be obtained, whereas the noise influence becomes dominant in

some regions at a noise level of 20 %.

Figure 6.10 shows a boxplot evaluation for the noise analysis, giving the median, 25 %

and 75 % quantile of the deviation between achieved fat fraction with the proposed TGV

algorithm at different noise levels and the provided reference for all voxels withinM over

all datasets. The whisker is parametrized, so that approximately 99 % of all considered

voxels lie within. The ≈ 1 % outliers are not shown. Up to a noise level of 5 %, the median

is very close to zero and the whisker is below 10 % up to a noise level of 2 %. The increasing

influence of noise for a noise level of 20 %, can be seen here as well with a median of about

8 % and the whisker ranging to nearly 70 % deviation.

Figure 6.3: Fat fraction, frequency offset due to ∆B0 inhomogeneity (∆fB0
), fat and water

image are shown for dataset 7 of the ISMRM fat/water challenge 2012 obtained using the proposed
method and the IDEAL implementation.
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Figure 6.4: Fat fraction, frequency offset due to B0 inhomogeneity (∆fB0
), fat and water image

are shown for tdataset 8 of the ISMRM fat/water challenge 2012 obtained using the proposed
method and the IDEAL implementation.

6.3 Discussion

The separation accuracy is considerably improved compared to IDEAL, where the results

are corrupted by wide fat/water swaps, rendering the result as unusable. The same can be

seen on the challenge results, especially dataset 8, see Figure 6.4, where IDEAL produces

fat/water swaps nearly periodically over the whole Field of View (FOV), which is com-

pletely removed with the proposed method. Also the ∆B0 field is estimated incorrectly

in wide areas in all shown datasets using IDEAL, which is the reason for the described

fat/water swaps.

Although, a few algorithms perform slightly better, the values in Tables 6.3 and 6.4

indicate that the proposed TGV regularized algorithm can compete with all current stat

of the art algorithms based on the scoring results using the ISMRM fat water challenge

datasets1. In total, 5 method performed better than the proposed one, but with only

marginal improvements. mR-GOOSE and R-GOOSE are counted as one, because these

are two variants of the same algorithm presented in the same publication [59], also the

achieved scores are nearly identical. Furthermore, it has to be mentioned that a variant of

this algorithm was developed for the ISMRM fat water challenge in 2012 (and presented

at the annual meeting of 2016 [175]), where the 3rd rank could be achieved in the final

ranking, only beaten by GOOSE [60] and the winner approach presented by Smith et al.

[271]. Meanwhile, of course, more recent methods were proposed which slightly outperform

the proposed TGV approach. However, an average score of 9905 was reached, meaning

that 99.05 % of all voxels over all datasets were classified correctly. Compared to that, the

method performing best reaches a score of 9959 which is only an improvement of 0.5 %.

Furthermore, it has to be mentioned that for most datasets, our result comes very close to

1http://challenge.ismrm.org/node/8

http://challenge.ismrm.org/node/8
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the best achieved score: 9982 vs. 9984 for dataset 1 or 9991 vs. 9992 for dataset 7, only

to mention two examples. For dataset 6 the maximum score can be reached as well as for

dataset 8 and 9 where the maximum score of 10000 was reached. A better score was only

prevented by two datasets (12 and 14), where fat water swaps can be detected visually (see

Figure 6.6). Also under the presence of noise, the good performance can be maintained.

For a noise level of up to 5 % the achieved score is still above the lower 5 methods in the

ranking of Table 6.4 and for a noise level of to 10 %, still more than 85 % of all voxels can

be classified correctly. The scoring results can be also confirmed by visual inspection of

the obtained results in Figures 6.5 to 6.9 and the boxplot given in Figure 6.10.

To sum up, we could show the capability of this method to deal with huge ∆B0

inhomogeneities and its ability to avoid fat/water swaps. Also the robustness of this

method against noise could be shown, leading to still accurate fat fraction and ∆B0 maps

up to a noise level of 10 %. Furthermore, this method is able to consider small susceptibility

changes and the corresponding discontinuity in the ∆B0 field along tissue boundaries

oriented parallel to the main field orientation.
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13 14 15 16 17 Mean

TGV

no noise 9990 9478 9984 9957 9872 9905
2 % noise 9986 9444 9944 9888 9788 9852
5 % noise 9824 9355 9731 9618 9462 9624

10 % noise 8776 8040 9038 8917 8556 8540
20 % noise 6407 4875 7148 7320 6588 6094

Multi-scale graph-cut3) [17] 9999 9989 9984 9961 9887 9959

mR-GOOSE2) [59] 10000 9972 9969 9967 9893 9946

R-GOOSE2) [59] 10000 9971 9952 9957 9875 9939

Winner of the ISMRM fat
9998 9989 9985 9957 9840 9931

water challenge 20124) [271]

Self-feeding phasor
9985 9985 9985 9959 9884 9928

estimation4) [52]

GOOSE1) [60] 9991 9987 9915 9913 9880 9927

Graph-cut1) [123] 9418 8771 8179 9884 9464 9183

Safest-first
9923 9988 9873 9602 9643 8311

region growing1) [15]

Hierarchical IDEAL1) [297] 9041 1786 5867 8544 6252 6972

IDEAL with
9972 2145 3960 9337 7190 6430

Region growing4) [332]

Golden section search4) [192] 8994 6164 4341 8098 5410 6665

Table 6.4: Scoring values S according to Eq. (6.12) for the datasets 13–17 of the ISMRM fat
water challenge of 2012 and a mean value over all datasets (see Table 6.3) for the results obtained
with the proposed TGV regularized algorithm, without and with an additional noise level of 2 %,
5 %, 10 % and 20 % of the mean magnitude value within the provided maskM( #–r ). The maximum
score is 10000 indicating that every voxel of the obtained fat fraction map lies within an error
bound of < 10 % of the provided reference. The scoring values are compared to those of 11 state of
the art algorithms, where reference implementations are available in the ISMRM fat water toolbox.
The maximum scoring value for each dataset as well as that for the TGV result are printed in bold
for easier comparison. The values for the comparison methods are from: 1)[60]; 2)[59]; 3)[17]; 4)[52]
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Figure 6.10: Noise Analysis: Box-plot of the fat fraction deviation within the provided mask
M( #–r ) of the results obtained with the proposed TGV regularized algorithm compared to the
provided reference, without noise and with 5 different levels of additive Gaussian noise using all
datasets provided by the ISMRM fat water challenge of 2012. The noise is generated with a
standard deviation of 2 %, 5 %, 10 % and 20 % of the mean image magnitude within the provided
maskM( #–r ). The boxplot shows the median deviation (red line), the 25 % and 75 % quantile (blue
box), and the whiskers are parameterized so that about 1 % of the pixel values lie outside, classified
as outliers. The outliers are not shown.
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Summary, Conclusion and Outlook

If at first you don’t succeed,

try, try again.

W. E. Hickson
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The goal of this thesis was to develop certain regularization strategies applied to field

mapping applications in Magnetic Resonance Imaging (MRI). The main focus of this thesis

lies on the reconstruction of highly accurate B+
1 maps from highly undersampled data.

The second aspect in this thesis is the determination of highly accurate B0 maps to solve

the ill-posed inverse problem of the separation from fat and water signal contributions

(chemical shift imaging).

7.1 Highly accelerated B+
1 Mapping

All considerations for B+
1 mapping are based on the Bloch-Siegert (BS) shift imaging

approach. The fundamental advantage of this method is its ability to directly determine

the B+
1 field instead of the flip angle α in most of the other commonly used methods.

The B+
1 magnitude information is encoded in the signal phase, making this approach

insensitive to T1 relaxation effects, and it was further shown to be quite insensitive to

∆B0 variations. Furthermore, also a ∆B0 compensated approach was presented. The

main disadvantage of this method is the high energy deposition, restricting the minimum

possible Repetition Time (TR) due to patient safety Specific Absorption Rate (SAR)

193
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constraints. This aspect is less severe, if only a low number of data points need to be

acquired. Time independent phase effects can be easily removed by the acquisition of two

images with opposite resonance offsets and considering the phase difference. However, in

a prework it could be shown that the background phase is not necessarily stable, due to

hardware drifts. These phase drift during the acquisition time of a 3D dataset can lead

to substantial deviations in the final B+
1 map. Deviations in the range between 17 % to

50 % are reported. It was shown that an interleaved acquisition of positive and negative

resonance offset is much more stable against these effect and the deviations could be

compensated completely.

For the reconstruction of B+
1 maps from highly undersampled data, a two-step regular-

ization approach was presented. For this purpose, the reconstruction problem was written

as an optimization problem so that the contribution from the underlying image and the

B+
1 dependent BS phase can be separated. Depending on their known spatial behavior,

a dedicated regularization can be applied. With a change of variables, the optimization

for both unknown quantities can be decoupled so that they can be solved independently.

For the underlying image, a second order Total Generalized Variation (TGV) and for the

BS phase a H1 regularization functional was applied. The second order TGV functional

is known to enforce piecewise smooth solutions, representing the behavior of Magnetic

Resonance (MR) images, and the H1 functional which consists of the squared L2 norm

of the image gradients leads to spatial smooth solutions, which is exactly the behavior of

the B+
1 field. With that, highly accurate 3D B+

1 maps covering the whole brain with an

average deviation of < 1 % to the fully sampled reference can be acquired within 15 s to

20 s, so that a single breath hold acquisition is possible. This can be established without

using any low bandwidth acquisitions as Echo Planar Imaging (EPI) or spirals, making

the acquisition very sensitive to ∆B0 variations and gradient imperfections. Nominally,

on the basis of a matrix size of 128× 128× 32, this corresponds to an acceleration factor

Racc in the range of 85 to 100.

Because of its spatial structure, the B+
1 field relies on very low spatial frequencies.

However, no fundamental investigation was available, exploring the practical limits of how

much data is necessary to reconstruct an accurate B+
1 map. In this thesis it was shown that

only a few phase encoding steps are necessary in k-space center, i.e., 12×4, to reconstruct

B+
1 maps with an average deviation of < 1 % to the fully sampled reference. It could be

argued that this kind of undersampling is equivalent to a low resolution estimate obtained

by zero padding. Under perfect condition, indeed, zero padding leads to similar results,

which was confirmed by simulations (results are not shown). However, under practical

conditions, the zero padding results suffer from severe artifacts, due to phase instabilities

arising from coil combination, phase singularities, and undefined phase values in regions

with low magnitude, making regularization necessary. Furthermore, it was shown that

random undersampling pattern with Gaussian density functions concentrated around the

k-space center lead to similar (slightly better) results, if the same instance of a certain

undersampling patter is used for both acquisitions. To keep the acquisition protocol simple,
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all further considerations focus on the described dense block pattern with a certain number

of acquisitions in k-space center. For both cases, it was shown that additionally sampling

higher spatial frequencies in k-space does not improve the final reconstructed B+
1 map.

Calculation time is usually an issue for the application of variational methods, because

of the iterative solution of the optimization problems. However, in this case, efficient

Graphics Processing Unit (GPU) implementations of the primal dual algorithm to solve

the TGV part, the Conjugate Gradient (CG) algorithm to solve the H1 part and for the

finite difference operations are used, so that a solution for the whole 3D volume can be

obtained in ≈ 30 s on a NVIDIA Geforce Titan Xp GPU . With that, the reconstructed

B+
1 map is available during the time necessary for a subsequent MR acquisition, which is

sufficient for clinical applicability.

When going to 7 T, a slight increase in the average error can be observed compared to

the results obtained at 3 T, i.e., the Mean Absolute Error (MAE) increases from ≈ 0.7 %

to ≈ 2 % for a pattern size of 12 × 4 in-vivo. For the results of the phantom dataset, a

strong smearing out effect of the B+
1 hot-spot in the center of the phantom can be observed

for this small pattern size. This behavior can be expected, due to the much more rapid

transitions in the B+
1 field at 7 T. In general, at 7 T, a compromise between low acquisition

time and high accuracy has to be made. At 3 T, very accurate results are possible with a

pattern size of 12×4, whereas at 7 T an increase to 12×8 or 14×8 is suggested. Here, the

application of irregular undersampling patterns might be beneficial. However, the more

severe limitation regarding acquisition time is the nearly 4-times increase in TR, so that a

single breath-hold acquisition is still not possible at 7 T. However, 3D B+
1 maps with an

average error of < 2 % with respect to the fully sampled reference are possible in about

45 s to 60 s for full brain coverage.

For very special applications, a combination of the proposed reconstruction algorithm

with an EPI readout was investigated, with the goal of a two shot acquisition. The

general feasibility could be shown, but it was only possible to apply an EPI readout along

one phase encoding direction. As soon as the EPI readout was combined in both phase

encoding directions, no stable signals could be obtained. It is assumed that unsufficient

eddy current compensation is responsible for that.

7.2 Chemical Shift based Fat-Water Separation

The application of variational methods could also be shown to be beneficial to obtain

accurate B0 estimates for the purpose fat/water signal separation. Based on the evaluation

on the datasets provided for the ISMRM fat water challenge in 2012, an average score of

9905 could be reached. This means that 99.05 % of all voxels over 17 datasets with a

magnitude above a certain threshold where classified correctly. Most of the uncorrectly

assigned voxels are single voxels inside noisy regions. Only in the results of two datasets

visually detectable fat/water swaps could be observed. The good performance also holds

under the presence of noise. For an additional noise level of 5 % in the data, the correct
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classification rate is still 96.24 % and 85.4 % for 10 %. What is very important to note,

the reduction in classification rate is cause by single voxels. The noise does not introduce

additional fat/water swaps over wide areas, so that the resulting visual image quality is

still very high. In total, 5 algorithms performed better than the proposed one. However,

the best achieved score is 9959, meaning that the correct classification rate could only

slightly be increased by 0.5 %. Also the calculation time is in an acceptable range with

< 6 min for all evaluated datasets using a partial GPU implementation. The proposed

TGV regularized algorithm was shown to be able to substantially reduce the appearance

of fat/water swaps compared to the reference Iterative Decomposition of water and fat

with Echo Asymmetry and Least squares estimation (IDEAL) implementation and that

it is able to compete with other more recent state of the art algorithms.

7.3 Conclusion and Outlook

With the application of variational methods, the acquisition time for 3D BS based B+
1

maps can be reduced from the order of minutes in the fully sampled case into 15 s to 20 s

at 3 T with an average deviation of < 1 % to the fully sampled reference, allowing single

breath hold acquisitions. At 7 T, the acceleration potential is slightly reduced, due to the

steeper spatial variations in the B+
1 field. The increase in acquisition time mostly results

from the nearly 4 times increased TR. However, the application of variational methods is

also beneficial to obtain highly accurate B+
1 maps at 7 T, with acquisition times in the

order of 45 s to 60 s. To further improve this method, the model can be extended for the

estimation of an additional B0 map without increasing the acquisition time, similar to [72].

In the case of Gradient Recalled Echo (GRE) acquisition, this can be easily achieved by

the acquisition of one or more additional echos. For the reconstruction, the regularization

has to be extended to be able to deal with phase wraps, a simple H1 regularization is not

sufficient. In a next step the General Linear Model (GLM) proposed by Corbin et al. [58]

should be incorporated into the reconstruction as a future goal, to be able to obtain also

information about the eddy current influence and phase offsets besides B+
1 and ∆B0. This

would require to properly adapt the optimization problems and to add new regularization

terms for the additional quantities. Moreover, a kind of joint regularization might be

necessary to solve this problem.

The application of variational methods is also shown to be beneficial for the application

of fat/water separation to obtain a highly accurate ∆B0 estimate. The proposed TGV

regularized algorithm is able to obtain robust fat/water separation results over a wide

range of anatomies, in case of strong ∆B0 variations and with moderate to high values of

noise. On the basis of the score of the ISMRM fat water challenge in 2012, the proposed

algorithm performed as one of the best at the time of its development and is still able

to compete with other more recently proposed state of the art algorithms. To further

improve this method, a combination with undersampling might be possible as it is done

in Doneva et al. [68], however, making the ill-posedness of this problem more severe. The
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rough T ∗2 map estimate obtained in the first step (not shown) is highly affected by noise.

To reduce this effect, the application of a second regularization term for T ∗2 might be

beneficial. However, a joint solution of ∆B0 and T ∗2 is mathematical not trivial because

of the special form of this problem (periodicity in ∆B0). A much easier way would be

to alternately optimize ∆B0 and T ∗2 , by setting the other one constant. However, the

calculation time for this iterative approximation might increase.

At the moment, methods based on machine learning lead to very promising results in

various fields, including MR image reconstruction [109, 110]. The application of these kind

of methods may also lead to further improvements to achieve highly accurate field maps

in MRI . However, fundamental stability problems were recently reported for machine

learning based methods to solve inverse problems, which is not the case for solutions

obtained with variational methods [4, 97].
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Appendix I

A.1 Spherical Harmonics

Spherical harmonics are a set of functions, typically described in spherical polar coordi-

nates, which are defined on the surface of a sphere. These functions form a complete

orthonormal solution basis for the Laplace differential equation ∇2X = 0 such that any

field fulfilling the Laplace equation can be described as a sum of spherical harmonic func-

tions with order l = [0,∞) and degree m = [−l, l]. The spherical polar coordinates are

defined by the radius r, the polar angle ϑ = [0, π] and the azimuthal angle ϕ = [0, 2π].

Alm is a weighting factor describing the contribution of each basis function Xm
l (ϑ, ϕ) to

the total field distribution X(r, ϑ, ϕ) as

X(r, ϑ, ϕ) =

∞∑
l=0

l∑
m=−l

Almr
lXm

l (ϑ, ϕ). (A.1)

They are further a set of Eigen-functions of the angular part of the Laplace operator,

which can be seen if the Laplace operator is written in spherical polar coordinates, where

the Eigenvalue equation is written as(
∂2

∂ϑ2
+

cosϑ

sinϑ

∂

∂ϑ
+

1

sin2 ϑ

∂2

∂ϕ2

)
Xm
l (ϑ, ϕ) = −l(l + 1)Xm

l (ϑ, ϕ). (A.2)

A solution for this problem is given by

Xm
l (ϑ, ϕ) =

1√
2π

√
2l + 1

2

(l −m)!

(l +m)!
Pml (cos(ϑ)) ejmϕ, (A.3)

with the corresponding Legendre polynomials Pml (z) defined by

Pml (z) =
(−1)m

2ll!

(
1− z2

)m
2
∂l+m

∂zl+m
(
z2 − 1

)l
. (A.4)
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A more easy way to calculate the Legendre polynomials in most cases is given by

Pl(z) =
1

2l

bl/2c∑
k=0

(−1)k
(2l − 2k)!

k!(l − k)!(l − 2k)!
zl−2k (A.5)

and

Pml (z) = (1− z2)
|m|
2

(
∂

∂z

)|m|
Pl(z). (A.6)

The description here is based on [116]. Expressions for the spherical harmonic functions

up to 3rd order are given in Table A.1 in spherical and Cartesian coordinates. The relation

between spherical and Cartesian coordinates is given as

x = r sin(ϑ) cos(ϕ) = r sin(ϑ)<(eiϕ),

y = r sin(ϑ) sin(ϕ) = r sin(ϑ)=(eiϕ),

z = r cos(ϑ).

(A.7)

In spherical coordinates the basis function Xm
l (r, ϑ, ϕ) is always the complex conjugate of

X−ml (r, ϑ, ϕ) (Xm
l (r, ϑ, ϕ) = X̄−ml (r, ϑ, ϕ)). The Cartesian basis functions Xm

l (x, y, z) are

given as

X−ml (x, y, z) =
1

2
<(Xm

l (r, ϑ, ϕ)) + <(X−ml (r, ϑ, ϕ)), (A.8)

Xm
l (x, y, z) =

1

2
=(Xm

l (r, ϑ, ϕ))−=(X−ml (r, ϑ, ϕ)). (A.9)

A graphical representation of the spherical harmonic basis functions in spherical polar

coordinates for up to 3rd order is given in Figure A.1, where the function value is plotted

on the surface of a sphere with r = 1. Figure A.2 shows the function value for the

spherical harmonic basis functions as a cross section in Cartesian coordinates with their

corresponding common name for up to 3rd order.



A.1. Spherical Harmonics 201

X
m l

(r
,ϑ
,ϕ

)
l

=
0

l
=

1
l

=
2

l
=

3

m
=
−

3
S

p
h
.

√
3
5

2
√

1
6
π
r3

si
n

3
ϑ
e−

j3
ϕ

C
a
rt

.
√

3
5

2
√

1
6
π

( x3 −
3x
y

2
)

m
=
−

2
S

p
h
.

√ 1
5

3
2
π
r2

si
n

2
ϑ
e−

j2
ϕ

√ 1
0
5

3
2
π
r3

si
n

2
ϑ

co
s
ϑ
e−

j2
ϕ

C
a
rt

.
√ 1

5
3
2
π

( x2 −
y

2
)

√ 1
0
5

3
2
π
z
( x2 −

y
2
)

m
=
−

1
S

p
h
.

√
3

2
√

2
π
r

si
n
ϑ
e−

jϕ
√ 1

5
8
π
r2

si
n
ϑ

co
s
ϑ
e−

jϕ
√

7
8
√
π
r3

si
n
ϑ
( 5

co
s2
ϑ
−

1
) e−j

ϕ

C
a
rt

.
√

3
2
√

2
π
x

√ 1
5

8
π
z
x

√
7

8
√
π
x
( 5
z

2
−
r2
)

m
=

0
S

p
h
.

1
2
√
π

√
3

2
√
π
r

co
s
ϑ

√
5

4
√
π
r2
( 3

co
s2
ϑ
−

1
)

√
7

4
√
π
r3
( 5

co
s3
ϑ
−

3
co

s
ϑ
)

C
a
rt

.
1

2
√
π

√
3

2
√
π
z

√
5

4
√
π

( 3z
2
−
r2
)

√
7

4
√
π
r3
( 5
z

3
−

3
z
r2
)

m
=

1
S

p
h
.

√
3

2
√

2
π
r

si
n
ϑ
ej
ϕ

√ 1
5

8
π
r2

si
n
ϑ

co
s
ϑ
ej
ϕ

√
7

8
√
π
r3

si
n
ϑ
( 5

co
s2
ϑ
−

1
) ejϕ

C
a
rt

.
√

3
2
√

2
π
y

√ 1
5

8
π
z
y

√
7

8
√
π
y
( 5
z

2
−
r2
)

m
=

2
S

p
h
.

√ 1
5

3
2
π
r2

si
n

2
ϑ
ej

2
ϕ

√ 1
0
5

3
2
π
r3

si
n

2
ϑ

co
s
ϑ
ej

2
ϕ

C
a
rt

.
√ 1

5
3
2
π

2x
y

√ 1
0
5

3
2
π

2
x
y
z

m
=

3
S

p
h
.

√
3
5

2
√

1
6
π
r3

si
n

3
ϑ
ej

3
ϕ

C
a
rt

.
√

3
5

2
√

1
6
π

( 3
x

2
y
−
y

3
)

T
a
b

le
A

.1
:

E
x
p

re
ss

io
n

s
fo

r
sp

h
er

ic
al

h
ar

m
on

ic
s

fu
n

ct
io

n
s

g
iv

en
in

C
a
rt

es
ia

n
a
n

d
sp

h
er

ic
a
l

p
o
la

r
co

o
rd

in
a
te

s
u

p
to

3
rd

o
rd

er
a
cc

o
rd

in
g

to
[1

16
]

an
d

[3
23

,
C

h
.4

].



202 Chapter A. Appendix I

1 2 3

-3

order l

-2
-1

0
1

2
3

d
e
g
re

e
 m

F
ig

u
re

A
.1

:
S

p
h

er
ic

a
l

h
a
rm

o
n

ic
s

sh
ow

n
o
n

th
e

su
rf

a
ce

o
f

a
sp

h
er

e
fo

r
o
rd

er
l
≤

3
.



A.1. Spherical Harmonics 203

1 2 3

-3

order l

-2
-1

0
1

2
3

d
e
g
re

e
 m

y

x
z

y

x
z

y

x
z

y

x
z

y

x
z

x

y
y

y
y

y

x
z

y
y

y

x
z

y
y

x
z

y

y

x
z

y
y

x
z

y
y

x
z

y
y

x
z

y
y

x
z

y
y

x
z

y
y

x
z

y

X
Z

Y

X
2
Y
2

Z
X

Z
2

Z
Y

X
Y

X
3

Z
X
2
Y
2

Z
2
X

Z
3

Z
2
Y

Z
Y
X

Y
3

F
ig

u
re

A
.2

:
S

p
h

er
ic

al
h

ar
m

o
n

ic
s

sh
ow

n
a
s

cr
o
ss

se
ct

io
n

in
C

a
rt

es
ia

n
co

o
rd

in
a
te

s
fo

r
o
rd

er
l
≤

3
.



204 Chapter A. Appendix I

A.2 Definitions

A.2.1 Rotation Matrices

Definition 1: Rotation matrices along the three axes of the Cartesian coordinate system

for an arbitrary angle ζ:

Rx(ζ) =

 1 0 0

0 cos ζ sin ζ

0 − sin ζ cos ζ

 (A.10)

Ry(ζ) =

 cos ζ 0 − sin ζ

0 1 0

sin ζ 0 cos ζ

 (A.11)

Rz(ζ) =

 cos ζ sin ζ 0

− sin ζ cos ζ 0

0 0 1

 (A.12)

A.2.2 Norms

Definition 2: L2 norm of vector u with a number of N elements:

‖u‖2 =

√√√√ N∑
i=1

|ui|2 (A.13)

Definition 3: L1 norm of vector u with a number of N elements:

‖u‖1 =

N∑
i=1

|ui| (A.14)

Definition 4: Lp norm of vector u with a number of N elements:

‖u‖p = p

√√√√ N∑
i=1

|ui|p , (A.15)

Definition 5: Combination of L1 and L2 norm to treat gradients in an image in all three

spatial directions, for an image u with a number of N elements (voxels):

‖∇+
xyzu‖2,1 =

N∑
i=1

√√√√ 3∑
l=1

∣∣∣(∇+
xyzu

)
i,l

∣∣∣2 =

N∑
i=1

√∣∣(δ+
x u
)
i

∣∣2 +
∣∣(δ+

y u
)
i

∣∣2 +
∣∣(δ+

z u
)
i

∣∣2 (A.16)
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A.2.3 Finite Differences Operators

Definition 6: Finite difference operators along all three spatial directions using forward

differences with Dirchlet boundary conditions and the image resolution ∆x, ∆y, and ∆z

in each spatial direction, respectively. Nx, Ny, and Nz are the number of elements in x,

y, and z direction:

δ+
x umx,my ,mz =

{
1

∆x

(
umx+1,my ,mz − umx,my ,mz

)
if 1 ≤ mx < Nx

0 if mx = Nx
(A.17)

δ+
y umx,my ,mz =

{
1

∆y

(
umx,my+1,mz − umx,my ,mz

)
if 1 ≤ my < Ny

0 if my = Ny
(A.18)

δ+
z umx,my ,mz =

{
1

∆z

(
umx,my ,mz+1 − umx,my ,mz

)
if 1 ≤ mz < Nz

0 if mz = Nz
(A.19)

Definition 7: Finite difference operators along all three spatial directions using back-

ward differences with Dirchlet boundary conditions and the image resolution ∆x, ∆y, and

∆z in each spatial direction, respectively. Nx, Ny, and Nz are the number of elements in

x, y, and z direction:

δ−x umx,my ,mz =

{
1

∆x

(
umx,my ,mz − umx−1,my ,mz

)
if 1 < mx ≤ Nx

0 if mx = 1
(A.20)

δ−y umx,my ,mz =

{
1

∆y

(
umx,my ,mz − umx,my−1,mz

)
if 1 < my ≤ Ny

0 if my = 1
(A.21)

δ−z umx,my ,mz =

{
1

∆z

(
umx,my ,mz − umx,my ,mz−1

)
if 1 < mz ≤ Nz

0 if mz = 1
(A.22)

Definition 8: Adjoint operator to finite difference operator with forward differences.

Operator is defined along all three spatial directions backward differences with Dirchlet

boundary conditions and the image resolution ∆x, ∆y, and ∆z in each spatial direction,
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respectively. Nx, Ny, and Nz are the number of elements in x, y, and z direction:

δ∗+x umx,my ,mz =
1

∆x


−u1,my ,mz if mx = 1

umx−1,my ,mz − umx,my ,mz if 1 < mx < Nx

uNx−1,my ,mz if mx = Nx

(A.23)

δ∗+y umx,my ,mz =
1

∆y


−umx,1,mz if my = 1

umx,my−1,mz − umx,my ,mz if 1 < my < Ny

umx,Ny−1,mz if my = Ny

(A.24)

δ∗+z umx,my ,mz =
1

∆z


−umx,my ,1 if mz = 1

umx,my ,mz−1 − umx,my ,mz if 1 < mz < Nz

umx,my ,Nz−1 if mz = Nz

(A.25)

Definition 9: Adjoint operator to finite difference operator with backward differences.

Operator is defined along all three spatial directions backward differences with Dirchlet

boundary conditions and the image resolution ∆x, ∆y, and ∆z in each spatial direction,

respectively. Nx, Ny, and Nz are the number of elements in x, y, and z direction:

δ∗−x umx,my ,mz =
1

∆x


−u2,my ,mz if mx = 1

umx,my ,mz − umx+1,my ,mz if 1 < mx < Nx

uNx,my ,mz if mx = Nx

(A.26)

δ∗−y umx,my ,mz =
1

∆y


−umx,2,mz if my = 1

umx,my ,mz − umx,my+1,mz if 1 < my < Ny

umx,Ny ,mz if my = Ny

(A.27)

δ∗−z umx,my ,mz =
1

∆z


−umx,my ,2 if mz = 1

umx,my ,mz − umx,my ,mz+1 if 1 < mz < Nz

umx,my ,Nz if mz = Nz

(A.28)

A.2.4 Discrete Gradient Operators

Definition 10: The 3D discrete gradient operator with forward differences ∇+
xyz:

∇+
xyz : CNx×Ny×Nz 7→ CNx×Ny×Nz×3

(
∇+
xyzu

)
mx,my ,mz

=

 (δ+
x u)mx,my ,mz(
δ+
y u
)
mx,my ,mz

(δ+
z u)mx,my ,mz

 =

 vx
vy
vz

 = v
(A.29)

Definition 11: The 3D discrete divergence operator div is defined as the negative trans-

pose of the gradient operator ∇+
xyz using the adjoint operator to the finite difference op-
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erator with forward differences:

div = −∇+T
xyz : CNx×Ny×Nz×3 7→ CNx×Ny×Nz(

∇+T
xyzv

)
mx,my ,mz

= (δ∗+x vx)mx,my ,mz +
(
δ∗+y vy

)
mx,my ,mz

+ (δ∗+z vz)mx,my ,mz
(A.30)

Definition 12: The 3D discrete gradient operator with backward differences ∇−xyz:

∇−xyz : CNx×Ny×Nz 7→ CNx×Ny×Nz×3

(
∇−xyzu

)
mx,my ,mz

=

 (δ−x u)mx,my ,mz(
δ−y u

)
mx,my ,mz

(δ−z u)mx,my ,mz

 =

 vx
vy
vz

 = v
(A.31)

Definition 13: Symmetrized gradient E for the 3D case using backward differences:

E : v = (vx, vy, vz) ∈ CNx×Ny×Nz×3 7→ CNx×Ny×Nz×9

(Ev)mx,my ,mz = 1
2

(
∇−xyz (v)T +

(
∇−xyz (v−)

T
)T)

mx,my ,mz

=
(δ−x vx)mx,my ,mz

1
2

(
(δ−x vy)mx,my ,mz +

(
δ−y vx

)
mx,my ,mz

)
1
2

((
δ−y vx

)
mx,my ,mz

+ (δ−x vy)mx,my ,mz

) (
δ−y vy

)
mx,my ,mz

· · ·
1
2

(
(δ−z vx)mx,my ,mz + (δ−x vz)mx,my ,mz

)
1
2

(
(δ−z vy)mx,my ,mz +

(
δ−y vz

)
mx,my ,mz

)
1
2

(
(δ−x vz)mx,my ,mz + (δ−z vx)mx,my ,mz

)
1
2

((
δ−y vz

)
mx,my ,mz

+ (δ−z vy)mx,my ,mz

)
(δ−z vz)mx,my ,mz


(A.32)

Definition 14: Alternative definition of the symmetrized gradient E because of symme-

try using backward differences:

E : v = (vx, vy, vz) ∈ CNx×Ny×Nz×3 7→ CNx×Ny×Nz×6

(Ev)mx,my ,mz =



(δ−x vx)mx,my ,mz(
δ−y vy

)
mx,my ,mz

(δ−z vz)mx,my ,mz
1
2

(
(δ−x vy)mx,my ,mz +

(
δ−y vx

)
mx,my ,mz

)
1
2

(
(δ−x vz)mx,my ,mz + (δ−z vx)mx,my ,mz

)
1
2

((
δ−y vz

)
mx,my ,mz

+ (δ−z vy)mx,my ,mz

)


=



w1

w2

w3

w4

w5

w6


= w

(A.33)

Definition 15: Symmetrized divergence:

The symmetrized divergence ET is defined as the adjoint operator to the symmetrized
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gradient E using forward differences:

ET : w = (w1, w2, w3, w4, w5, w6) ∈ CNx×Ny×Nz×6 7→ CNx×Ny×Nz×3

(
ETw

)
mx,my ,mz

=


(δ∗−x w1)mx,my ,mz +

(
δ∗−y w4

)
mx,my ,mz

+ (δ∗−z w5)mx,my ,mz
(δ∗−x w4)mx,my ,mz +

(
δ∗−y w2

)
mx,my ,mz

+ (δ∗−z w6)mx,my ,mz
(δ∗−x w5)mx,my ,mz +

(
δ∗−y w6

)
mx,my ,mz

+ (δ∗−z w3)mx,my ,mz


(A.34)

A.2.5 Analytic Gradient Operators

Definition 16: Analytic gradient operator with respect to the model parameters, the

intensity value in each voxel in the image u:

∇uJ(u) =


∂J(u)

∂u1
...

∂J(u)

∂uN

 (A.35)

Definition 17: Second order analytic gradient operator with respect to the model pa-

rameters, the intensity value in each voxel in the image u, the Hessian matrix:

∇2
uJ(u) =


∂2J(u)

∂u2
1

· · · ∂2J(u)

∂u1∂uN
...

. . .
...

∂2J(u)

∂uN∂u1
· · · ∂2J(u)

∂u2
N

 (A.36)

A.2.6 Convex Optimization

Definition 18: Convex Conjugate: The convex Conjugate F ∗(y) (or Fenchel duality) of

a function F (x), F : CN 7→ R is defined as:

F ∗(y) = sup
x
〈x, y〉 − F (x) (A.37)

Definition 19: Convex Conjugate of the squared Lp norm from [11]:

F (x) =
1

2
‖x‖2p

F ∗(y) = max
x
〈x, y〉 − 1

2
‖x‖2p =

1

2
‖y‖2∗

(A.38)

Here, ‖ · ‖∗ denotes the dual norm.
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Definition 20: Convex Conjugate of the Lp norm from [11]:

F (x) = ‖x‖p

F ∗(y) = I‖·‖∗≤1(y) =

{
0, if ‖y‖∗ ≤ 1

∞, if else

(A.39)

Here, ‖ · ‖∗ denotes the dual norm and I‖·‖∗≤1 is the convex indicator function.

Definition 21: Dual norm from [32]:

The dual norm ‖ · ‖∗ to an Lp norm ‖ · ‖p is an Lq norm ‖ · ‖q defined as follows:

1

p
+

1

q
= 1→ q =

p

p− 1
(A.40)

This means the dual norm to an L2 norm is again an L2 norm and the dual norm to an

L1 norm is an L∞ norm:

‖x‖2
dual norm

======⇒ ‖y‖2 (A.41)

‖x‖1
dual norm

======⇒ ‖y‖∞ (A.42)

‖x‖∞
dual norm

======⇒ ‖y‖1 (A.43)

Definition 22: The convex indicator function:

IC(x) =

{
0, if x ∈ C
∞, if x /∈ C

(A.44)

Definition 23: Convex Conjugate of the squared L2 norm:

F (x) =
1

2
‖x‖22 ⇒ F ∗(y) =

1

2
‖y‖22 (A.45)

Definition 24: Convex Conjugate of the L1 norm:

F (x) = ‖x‖1

F ∗(y) = I‖·‖∞≤1(y) =

{
0, if ‖y‖∞ ≤ 1

∞, if else

(A.46)

Definition 25: Special version of the convex indicator function:

Iη‖·‖∞≤1(y) =

 0, if
1

η
‖y‖∞ ≤ 1

∞, if else
(A.47)
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Definition 26: Convex Conjugate: Multiplication with a constant coefficient α, accord-

ing to [11]:

G(x) = αF (x) α > 0

G∗(y) = αF ∗
( y
α

) (A.48)

Definition 27: Proximal mapping, proximal operator or prox operator, definition ac-

cording to [46]:

x̂ = (I + τ∂F )−1(y) = proxF (y) = arg min
x

‖x− y‖22
2

+ τF (x) (A.49)

Definition 28: The proximal mapping for the convex indicator function IC :

F ∗(y) = IC(y)

proxF ∗(ξ) = arg min
y
‖y − ξ‖22 + IC(y) = arg min

y∈C
‖y − ξ‖22 = PC(ξ) (A.50)

Here, PC is the projection operator, projecting ξ onto the convex set C.

Definition 29: The proximal mapping for the convex indicator function Iη‖·‖∞≤1:

F ∗(y) = Iη‖·‖∞≤1(y)

proxF ∗(ξ)mx,my ,mz =
ξmx,my ,mz

max

(
1,
|ξmx,my ,mz |

η

) (A.51)

This means the proximal operator to the convex indicator function is the voxel wise pro-

jection onto the L∞ ball.

Definition 30: The proximal mapping the L2 norm:

F ∗(y) =
1

2λ
‖y‖22

proxF ∗(ξ) =
ξ

1 +
τ

λ

(A.52)
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List of Acronyms

Glossary

ACL Auto Calibration Line

ADC Analog to Digital Converter

AFI Actual Flip Angle Imaging

AI Artificial Intelligence

ASL Arterial Spin Labeling

BS Bloch-Siegert

bSSFP balanced Steady State Free Precession

CAIPI Controlled Aliasing in Parallel Imaging

CAIPIRINHA Controlled aliasing in volumetric parallel imaging

CEST Chemical Exchange Saturation Transfer

CG Conjugate Gradient

CP Circular Polarized

CS Compressed Sensing

CSF Cerebrospinal Fluid

CT Computer Tomography

DAM Double Angle Method

DCT Discrete Cosinus Transforms
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DFT Discrete Fourier Transform

DREAM Dual Refocusing Echo Acquisition Mode

DTI Diffusion Tensor Imaging

DWI Diffusion Weighted Imaging

ECG Electrocardiography

EPI Echo Planar Imaging

EPT Electrical Property Tomography

EPTI Echo Planar Time-resolved Imaging

ESR Electron Spin Resonance

FDTD Finite Differences Time Domain

FFC Fast Field Cycling

FFT Fast Fourier Transform

FID Free Induction Decay

FISTA Fast Iterative Shrinkage and Thresholding Algorithm

FLASH Fast Low Angle Shot

fMRI functional MRI

FOV Field of View

FWHM Full Width Half Maximum

GLM General Linear Model

GOOSE Globally Optimal Surface Estimation

GPU Graphics Processing Unit

GRAPPA Generalized Auto-calibrating Partial Parallel Acquisition

GRASE Gradient and Spin Echo

GRE Gradient Recalled Echo

HS Hyperbolic Secant

ICTGV Infimal Convolution Total Generalized Variation
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IDEAL Iterative Decomposition of water and fat with Echo Asymmetry and Least

squares estimation

IRGN Iteratively Regularized Gauss Newton

MAE Mean Absolute Error

medAE median Absolute Error

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MSE Multiple Spin Echo

MT Magnetization Transfer

NMR Nuclear Magnetic Resonance

NSA Number of Signal Averages

NUFFT Non-Uniform Fast Fourier Transform

PCA Phase Contrast Angiography

PET Positron Emission Tomography

PI Parallel Imaging

POCS Projection Onto Convex Set

pTX parallel transmit

qMRI quantitative MRI

QSM Quantitative Susceptibility Mapping

RF Radio Frequency

RMSE Root Mean Squared Error

ROI Region Of Interest

SAR Specific Absorption Rate

satTFL Saturated Turbo FLASH

SE Spin Echo

SENSE Sensitivity Encoding
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SMASH Simultaneous Acquisition of Spatial Harmonics

SMS Simultaneous Multi-Slice

SNR Signal-to-Noise Ratio

SOS Sum of Squares

SPIRiT iterative Self-consistent Parallel Imaging Reconstruction

STE Stimulated Echo

STEAM Stimulated Echo Acquisition Mode

SVD Singular Value Decomposition

SWI Susceptibility Weighted Imaging

TE Echo Time

TEM Transverse Electro-Magnetic

TGV Total Generalized Variation

TR Repetition Time

TSE Turbo Spin Echo

TV Total Variation

UHF Ultrahigh Field

VARPRO Variable Projection

VFA Variable Flip Angle
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List of Symbols

Symbol Unit Description

a,b,c mm principle semi-axes of an ellipsoid

a – different modeled phase contributions in the GLM

Ac mm2 cross sectional area of a loop coil

Alm – weighting coefficient of spherical harmonic functions

An – pTx amplitude amplification factor for transmit channel n

Ã – vector of pTx amplitude amplification factors

A(u) – MR forward operator

AH(u) – MR backward operator

A+, A− – MR forward operators for +ωRF and −ωRF acquisition

A – MR forward operator in matrix form
#–

B T general magnetic field vector

Bx,By,Bz T x, y and z component of the magnetic field vector

B⊥,B‖ T magnetic field component perpendicular/parallel to a surface
#–

B0 T static magnetic field vector

B0 T magnitude of static magnetic field

Bshim
0 mT field offset generated by the all shim coils

B1 µT general magnitude of the RF field

B+
1 µT magnitude of the transmit RF field

#–

B+
1 µT RF transmit field vector

#–

B−1 µT RF receive field vector

B−1 µT vector with RF receive fields in a voxel for all Nc receive coils
#–

Beff µT effective magnetic field vector in the rotating frame

Beff µT magnitude of the effective magnetic field in the rotating frame

Beddy µT transient field offset due to eddy currents
#–

Blin
1 µT linear polarized RF field
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Symbol Unit Description

#–

Bcw
1 (t) µT circular polarized RF field rotating direction clockwise

#–

Bccw
1 (t) µT circular polarized RF field rotating direction counterclockwise

B+
1n

µT B+
1 field of transmit channel n

B+
1res

µT resulting complex B+
1 field from multiple transmit coils

B1,peak µT peak magnitude of B1 encoding pulse for the Bloch-Siegert method

B1,norm – normalized B+
1 envelope

B+,norm
1n

– normalized B+
1 map of transmit channel n

c0 m s−1 speed of light in vacuum c0 ≈ 3 · 108

Cn – normalized coil sensitivity profile of receive coil n

C – matrix containing the coil sensitivity values of one voxel
#–

D N m torque

D – modified system matrix for CG

d a.u. measured data d ∈ CNkx×Nky×Nkz×Nc

d+,d− a.u. measured data for +ωRF and −ωRF acquisition

dn a.u. measured data of receive coil n, dn ∈ CNkx×Nky×Nkz
E J energy
#–

E V m−1 electric field vector

E⊥,E‖ V m−1 electric field component perpendicular/parallel to a surface

F (x),G(x) – arbitrary linear operator F : CN 7→ R+ and G : CN 7→ R+

F (y)∗ – convex conjugate to F (x)

FOV mm Field of View

FOVx,FOVy,

FOVz mm Field of View in x, y and z direction

Gx,Gy,Gz mT m−1 gradient field strength in x, y and z direction

Gm1,Gm2 ms DREAM preparation gradient

G – system matrix in the GLM

g – geometry factor for spatial dependent noise amplification

h J s Planks constant h = 6.626 · 10−34

~ J s Planks constant divided by 2π.
#–

H A m−1 magnetic field strength

H0 A m−1 magnitude of externally applied magnetic field strength

H⊥,H‖ A m−1 magnetic field strength perpendicular/parallel to a surface

Hi A m−1 induced demagnetization field

Ic A electric current in the coil

Ishim A electric current of the shim coil

i – imaginary unit

I – identity matrix

J(u) a.u. cost function to be minimized
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Symbol Unit Description

#–

J J s angular momentum of subatomic particle

J J s magnitude of angular momentum of subatomic particle

Jz J s z-component of subatomic particle’s angular momentum

j – spin quantum number
#–
j A m−2 electric current density

j⊥,j‖ A m−2 electric current density perpendicular/parallel to a surface

k J K−1 Boltzmann constant k = 1.38 · 10−2

kx,ky,kz mm−1 spatial frequency in x, y and z direction

kx,max,ky,max,mm−1 maximum acquired spatial frequency

kz,max mm−1 in x, y and z direction

KBS
rad
G2 /
rad
µT2

pulse dependent Bloch-Siegert constant

K – arbitrary operator

K – matrix considering the chemical shift between fat and water, for

single or multi-peak model
#–

L J s angular momentum contribution from orbital motion

lx,ly,lz – discrete k-space index in x, y and z direction

l,m – order and degree of spherical harmonic functions
# –

M A m−1 general magnetization vector

M A m−1 magnitude of general magnetization
# –

M0 A m−1 thermal equilibrium magnetization vector

M0 A m−1 magnitude of thermal equilibrium general magnetization

Mx,My,Mz A m−1 x, y and z component of the magnetization

Mxy A m−1 transverse magnetization

M⊥ A m−1 complex transverse magnetization

mj – magnetic quantum number

mx,my,mz – discrete voxel index in image space in x, y and z direction

N±1/2 – number of parallel (+1/2) and antiparallel (−1/2) aligned spins

Nc – number of receive coils

Nkx ,Nky ,Nkz – number of acquired k-space samples in kx, ky and kz direction

Nx,Ny,Nz – number of image voxels in x, y and z direction

Nnoise – number of noise samples

NTE – number of acquired echo times

Nw – number of coils windings

NRx,NTx – number of receive and transmit channels

NF – number of modeled fat peaks

NS – number of acquired signals
#–n – normal vector to loop coil cross section
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Symbol Unit Description

p – general probability

p(u|d) – posterior probability or conditional probability

p(u) – prior probability

p(d|u) – likelihood

p± – probability for a spin being in +1/2 or −1/2 state

pk – search direction in steepest descent and CG in iteration k

p,q,r a.u. dual variables for TGV in primal dual

P – undersampling pattern

q – voxel index
#–r mm vector to a certain point in space

R mm diameter of the coil

Rx,Ry,Rz – rotational matrix around the x, y and z axis

Reff Ω effective noise resistance

Rcoil Ω noise resistance arising from the receive coil

Relectronics Ω noise resistance arising form the electronics

Rbody Ω noise resistance from the body under investigation

Racc – acceleration factor

R∗2 s−1 reduced transverse relaxation rate

R∗2,F s−1 reduced transverse relaxation rate of the fat compartment

R∗2,W s−1 reduced transverse relaxation rate of the water compartment

R – residuum

ra – ratio between independent principle axes of a rotational ellipsoid

r mm radius of polar coordinates

s a.u. measured and quadrature demodulated signal

s1 a.u. real part of quadrature demodulated signal

s2 a.u. imaginary part of quadrature demodulated signal

S a.u. complex MR signal in image space

Sn a.u. complex MR signal in image space from receive coil n

Scomb a.u. combined MR signal from different receive coils in image space

SF a.u. fat signal

SW a.u. water signal

Sin a.u. in-phase signal

Sout a.u. opposed-phase signal

S a.u. vector containing the signal in a certain voxel for all Nc receive coils

or vector containing the signal in a certain voxel for different TE

SW,F a.u. vector containing the water and fat signal in a certain voxel

Svox a.u. signal from one voxel

Sφ rad phase of the multiecho acquisitions for the GLM
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Symbol Unit Description

#–

S J s angular momentum contribution from the intrinsic spin

SAR W kg−1 specific absorption rate, power deposition in tissue

SNR dB signal to noise ratio

t ms time

t0 ms starting time point

T K absolute temperature

Tp ms duration of the RF pulse

TGy ms duration of the phase encoding gradient

T1 ms longitudinal relaxation time

T1,F ms longitudinal relaxation time of the fat compartment

T1,W ms longitudinal relaxation time of the water compartment

T2 ms transverse relaxation time

T ∗2 ms reduced transverse relaxation time

T ′2 ms reverseable dephasing time constant

TS ms DREAM preparation time

Td ms DREAM delay time

Tm1,Tm2 ms DREAM preparation gradient duration

T – matrix considering ∆B0 and R∗2 in each voxel

TE ms echo time

TM ms mixing time

TR ms repetition time

TV(u) – total variation functional

TGV2
α(u) – second order total generalized variation functional

uc V induced voltage in receive coil

u a.u. voxel values of the image to be reconstructed u ∈ CNx×Ny×Nz
v a.u. vector field to be minimized in TGV functional v ∈ CNx×Ny×Nz×3

u,v a.u. primal variables for TGV in primal dual

V mm3 volume

Vs mm3 sample volume

Vvox mm3 voxel volume

Xm
l – spherical harmonic function of order l and degree m

#–

X a.u. general vector field

X⊥,X‖ a.u. general field component perpendicular/parallel to a surface

x, y, z mm coordinates of the Cartesian coordinate system

x a.u. vector containing the unaliased voxel values of the final image

x – primal variable in general primal dual formulation

y a.u. vector containing the aliased voxel values of each receive coil

y – dual variable in general primal dual formulation
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Symbol Unit Description

z – modified data for CG

α rad / ◦ flip angle

αm % relative signal contribution of fat peak m, multi peak model

β rad / ◦ refocusing or second flip angle in a sequence

γ rad
T s /
MHz

T

gyromagnetic ratio

∆fBW Hz receive bandwidth

∆kx,∆ky,∆kz mm−1 k-space resolution

∆t µs dwell time of receiver ADC

∆x,∆y,∆z mm voxel dimensions in x, y and z direction

∆B0 µT static magnetic field distortion

∆B0max µT maximum unambiguously resolveable field deviation for ∆TE

∆Bzin µT field distortion inside the object

∆Bzout µT field distortion outside the object

∆TF ms time interval between in-phase and opposed phase fat signal

∆φ rad phase difference

∆χ – difference in magnetic susceptibility between two objects

∆ω rad s−1 general resonance offset

∆ω0 rad s−1 resonance offset due to static magnetic field variations

∆ωF rad s−1 chemical shift between fat and water using the single peak model

∆ωF,m rad s−1 chemical shift between fat and water of fat peak m in the multi-peak

model

δ+
x ,δ+

y ,δ+
z – Finite difference operator using forward differences along the x, y

and z direction

δ−x ,δ−y ,δ−z – Finite difference operator using backward differences along the x, y

and z direction

δ∗+x ,δ∗+y ,δ∗+z – Adjoint operator to finite difference operator using forward differ-

ences along the x, y and z direction

δ∗−x ,δ∗−y ,δ∗−z – Adjoint operator to finite difference operator using backward differ-

ences along the x, y and z direction

ε0
A s
V m absolute permittivity in vacuum ε0 ≈ 8.8542 · 10−12

εr – relative permittivity

ε % error map

ηk a.u. noise samples of receive coil k

ηs % fat signal fraction

θ rad angle between effective magnetic field and the x-axis

Θ rad/◦ angle between fat and water magnetization vector

ϑ,ϕ rad polar and azimuthal angle of polar coordinates
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Symbol Unit Description

κk – step size in steepest descent and CG in iteration k

λvac m wavelength in vacuum

λmat m wavelength in matter

λ – regularization parameter
#–µ A m2 magnetic moment

µx,µy,µz A m2 x, y and z component of magnetic moment respectively

µ0
V s
A m magnetic permeability in vacuum µ0 = 1.256637 · 10−6

µr – relative magnetic permeability

ν a.u. noise contribution

ξ – demagnetization factor

ξa,ξb,ξc – demagnetization factor of an ellipsoid along the principle axis

ρ0 mm−3 spin density

ρF mm−3 spin density of the fat compartment

ρW mm−3 spin density of the water compartment

ρ kg m−3 mass density

ρc A s m−3 charge density

% – flip angle scaling factor

σmeas V noise standard deviation in the measured signal

σW,F a.u. noise standard deviation in the water and fat signal, respectively

σ S m−1 conductivity

σ,τ – step size in primal dual for primal and dual update, respectively

τ s evolution time between fat/water in-phase and readout

φ rad acquired phase angle due to a resonance offset

φ0 rad initial phase angle or transceive phase

φB1n rad phase of the B+
1 field generated by transmit channel n

φn rad pTx phase shift for transmit channel n

Φ rad vector of pTx phase shifts

φTEn rad phase at echo time n

φHS rad B1 dependent phase shift for the hyperbolic secant method

φBS rad B1 dependent phase shift for the Bloch-Siegert method

φeddy rad resulting phase shift due to eddy currents

Φn rad B+
1 phase map of transmit channel n

χ – magnetic susceptibility

Ψk,l a.u. noise covariance between channel k and l

Ψ,Ψn a.u. noise covariance matrix

Ψs a.u. signal covariance matrix

ω rad s−1 reference angular frequency → frequency of the RF field

ω0 rad s−1 Larmor frequency at a certain field strength
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Symbol Unit Description

ω1 rad s−1 angular frequency due to the RF field in the rotating frame

ωeff rad s−1 angular frequency around the effective magnetic field

ωRF rad s−1 resonance offset of the Bloch-Siegert pulse

ωBS rad s−1 effective Bloch-Siegert resonance offset
#–ω rad s−1 direction and angular frequency of the coordinate system’s rotation

ω′ rad s−1 off-resonance frequency in the rotating coordinate system

ωF rad s−1 fat resonance frequency

ωW rad s−1 water resonance frequency

Ωq rad s−1 solution domain for γB0,q in each voxel, containing all local minima

Cm – labeled region in image

D – data fidelity term

E – symmetrized derivative

F – Fourier operator

F−1 – inverse Fourier operator

G – primal dual gap

IC – convex indicator function

M – mask for score calculation of fat/water separation results

R – regularization term

S – Score for fat/water separation results

< – Real part operator

= – Imaginary part operator

∇X – continuous spatial gradient operator
(
∂X
∂x ,

∂X
∂y ,

∂X
∂z

)T
∇ · #–

X – continuous spatial divergence operator ∂Xx
∂x +

∂Xy
∂y + ∂Xz

∂z

∇× #–

X – continuous spatial rotor operator(
∂Xz
∂y −

∂Xy
∂z ,

∂Xx
∂z −

∂Xz
∂x ,

∂Xy
∂x −

∂Xx
∂y

)T
∇2X – continuous spatial Laplace operator ∂2X

∂x2
+ ∂2X

∂y2
+ ∂2X

∂z2

∇+
xyz – discrete spatial gradient operator using forward differences

∇−xyz – discrete spatial gradient operator using backward differences

∇T−xyz – discrete spatial divergence operator using backward differences

∇u – analytic gradient operator with respect to the model parameters u

∇2
u – Hessian matrix operator with respect to the model parameters u

|∂Cm| – perimeter of Cm
‖ · ‖p – Lp norm

〈·〉 – scalar product

� – point wise multiplication

∠ – angle of a complex number
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M. Schlögl, M. Holler, K. Bredies, and R. Stollberger. Ultrafast 3D Bloch–Siegert

B+
1 -mapping using variational modeling. Magnetic Resonance in Medicine,

81(2):881–892, 2019. doi:10.1002/mrm.27434

3. ISMRM educational stipend in 2015, 2016 and 2017.

http://dx.doi.org/10.1002/mrm.27434
doi:10.1002/mrm.27434
http://dx.doi.org/10.1002/mrm.27434
doi:10.1002/mrm.27434


BIBLIOGRAPHY 227

Bibliography

[1] S. Aja-Fernández, G. Vegas-Sánchez-Ferrero, and A. Tristán-Vega. Noise estimation

in parallel MRI: GRAPPA and SENSE. Magnetic Resonance Imaging, 32(3):281–

290, 2014. doi:10.1016/j.mri.2013.12.001. (page 90)

[2] S. Akoka, F. Franconi, F. Seguin, and A. Le Pape. Radiofrequency map of an

NMR coil by imaging. Magnetic Resonance Imaging, 11(3):437–441, 1993. doi:

10.1016/0730-725x(93)90078-r. (page 66)

[3] D. C. Alsop, J. A. Detre, X. Golay, M. Günther, J. Hendrikse, L. Hernandez-Garcia,

H. Lu, B. J. MacIntosh, L. M. Parkes, M. Smits, M. J. P. van Osch, D. J. J.

Wang, E. C. Wong, and G. Zaharchuk. Recommended implementation of arterial

spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM

perfusion study group and the European consortium for ASL in dementia. Magnetic

Resonance in Medicine, 73(1):102–116, 2015. doi:10.1002/mrm.25607. (page 1)

[4] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen. On instabilities of

deep learning in image reconstruction – Does AI come at a cost? arXiv preprint

arXiv:1902.05300, 2019. (page 197)

[5] Y. Assaf and O. Pasternak. Diffusion tensor imaging (DTI)-based white matter

mapping in brain research: a review. Journal of Molecular Neuroscience, 34(1):51–

61, 2008. doi:10.1007/s12031-007-0029-0. (page 1)

[6] H. Bagher-Ebadian, Q. Jiang, and J. R. Ewing. A modified Fourier-based phase

unwrapping algorithm with an application to MRI venography. Journal of Magnetic

Resonance Imaging, 27(3):649–652, 2008. doi:10.1002/jmri.21230. (page 61)

[7] M. Barth, F. Breuer, P. J. Koopmans, D. G. Norris, and B. A. Poser. Simultaneous

multislice (SMS) imaging techniques. Magnetic Resonance in Medicine, 75(1):63–81,

2016. doi:10.1002/mrm.25897. (page 4)
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