
Markus Ortoff BSc

Development of a Reusable
Constrained Random Verification Environment

for Lightweight Serial Protocol Handlers

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Dipl.-Ing.Dr.techn. Peter Söser

Institute of Electronics

 Diplom-Ingenieur

Supervisor

Guillermo Conde, PhD.
Infineon Technologies Austria AG, Design Center Villach

Graz, December of 2017

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Abstract

In today's continuously increasing complexity of integrated circuit designs, functional hard-

ware veri�cation is a must-have sign-o� procedure in pre-silicon veri�cation. This thesis

focuses on the functional constrained random veri�cation of the digital part of a lightweight

serial protocol handler and also provides insight on how to set up, respectively, develop

an appropriate constrained random veri�cation environment. The work itself is divided

into seven chapters. The �rst one introduces functional hardware veri�cation in general,

the traditional approach as well as the used methodology. This is followed by the second

chapter, which contains an explanation regarding lightweight serial communication and

protocols, their di�erences as well as an example of a lightweight serial protocol. The third

chapter introduces signi�cant object-oriented SystemVerilog aspects and its very important

role in functional hardware veri�cation. The follow-up chapter covers the constrained ran-

dom environment's development, building blocks and architecture. Chapter �ve addresses

aspects of the design-under-veri�cation. The sixth chapter elaborates how to set up a re-

gression suite and furthermore, how to generate a tool-supported veri�cation report; this

�nal chapter is followed by the conclusion.

Keywords:

Constrained Random, SystemVerilog, Transaction Level, Lightweight Serial Protocols

iii

Kurzfassung

Mit der ständig wachsenden Komplexitätszunahme und der damit verbundenen Erhöhung

der Integrationsdichte ist funktionelle Hardware Veri�kation ein sogenanntes �nales Abnah-

meverfahren in der Präsilizium Veri�kation. Diese Arbeit beschäftigt sich mit funktioneller

Hardware Veri�kation, anhand der Entwicklung einer wiederverwendbaren 'Constrained

Random' Veri�kationsumgebung für leichtgewichtige, digitale, serielle Protokollschnittstellen.

Die Arbeit ist in sieben Kapitel unterteilt. In der Einleitung wird das bisherige, tradi-

tionelle Verfahren kurz erläutert und mit dem aktuellen Stand der Technik anhand der

verwendeten Methodik verglichen. Im folgenden Kapitel wird auf leichtgewichtige, serielle

Kommunikation und Protokolle eingegangen sowie ein Beispiel eines leichtgewichtigen, se-

riellen Protokolls präsentiert. Im darau�olgenden, dritten Kapitel werden die Aspekte

der Design- und Veri�kationssprache System Verilog näher beleuchtet und speziell die ver-

wendeten Features beschrieben. Im vierten Kapitel wird die Architektur der Veri�kation-

sumgebung erläutert und näher auf die Zusammensetzung der Komponenten eingangen.

Im fünften Kapitel wird das Design-unter-Veri�kation kurz vorgestellt. Das sechste Kapi-

tel erläutert das Thema Regression-Testing sowie die toolunterstützte Berichterstellung,

gefolgt von der abschliessenden Schlussfolgerung.

ii

Contents

1 Introduction 1

1.1 Functional Hardware Veri�cation . 1

1.2 Traditional Directed Test Approach . 2

1.3 The Need for Automation . 4

1.4 Constrained Random Veri�cation . 5

1.4.1 Correctness - Automatic Checkers 6

1.4.2 Completeness - Coverage . 6

1.4.3 Constraints - Increasing Coverage . 8

1.5 Abstracting Complexity with Transactions 9

2 Lightweight Serial Communication and Protocols 10

2.1 Serial Communication . 10

2.2 Communication Protocol . 11

2.3 A Lightweight Serial Protocol . 13

2.3.1 Master-to-Slave Downstream Communication 13

2.3.2 Command Frame Description . 14

2.3.3 Data Frame Description . 15

2.3.4 Slave-to-Master Upstream Communication 16

3 SystemVerilog Language Features 17

3.1 Classes and Objects . 18

3.2 Inheritance . 20

3.3 Casting (Type Conversion) . 21

iii

3.4 Virtual Methods . 22

3.5 Abstract Classes, Pure Virtual Methods and Polymorphism 24

3.5.1 Abstract class . 24

3.5.2 Pure Virtual Method . 25

3.5.3 Polymorphism . 26

3.6 Interfaces . 27

3.6.1 Clocking Blocks . 28

3.6.2 Virtual Interfaces . 29

3.7 SystemVerilog Assertions (SVA) . 31

3.7.1 Sequences and Properties . 32

3.7.2 Sampled Value Functions . 33

3.8 SystemVerilog Functional Coverage (SFC) 35

3.9 Constraints . 38

4 Veri�cation Environment 39

4.1 Virtual Transaction Class . 39

4.2 Virtual Component Class . 40

4.3 Channel Class . 41

4.4 Objection Class . 41

4.5 Recommended Test Bench Structure . 42

4.6 Veri�cation Components . 43

4.6.1 Stimuli Generator . 44

4.6.2 Driver . 45

4.6.3 Monitor . 46

4.7 Checker . 48

4.8 Test Harness . 48

4.9 Test Case . 50

5 MicroSecond Channel (MSC) Interface 52

5.1 MicroSecond Channel Interface . 53

5.2 Downstream Communication . 54

5.3 Upstream Communication . 54

iv

5.4 Clock Feedback . 54

6 Incisive Enterprise Manager - A Regression Suite 56

6.1 Veri�cation Session Input File (.vsif) . 57

6.2 A Full Regression Run . 59

6.3 Incisive Metrics Center (IMC) . 62

6.4 Generating the vReport . 62

7 Conclusion 64

Bibliography 67

v

List of Figures

1.1 Pick & Write, Verify and Repeat. 2

1.2 Coverage Re�nement Flow [Spear, 2010]. 8

2.1 Protocol Sequences as Time Sequence Diagrams [Knig, 2012]. 12

2.2 A general MSC Downstream Frame. 14

2.3 A speci�c MSC Command Frame. 14

2.4 A speci�c MSC Data Frame. 15

2.5 MSC Upstream Frame illustrates Clock Divider X set to 1. 16

4.1 Basic Block Diagram of the Veri�cation Environment. 43

5.1 Example Integrated MSC Interface. 53

5.2 Example Blockdiagram Clock Timeout Feedback. 55

6.1 Example Finished Regression Run. 59

6.2 Final Report Structure including Progress and Linked Description. 60

6.3 Initial Enterprise Planner Editor Window. 60

6.4 Mapping of Text to Plan Sections and Items. 61

6.5 Incisive Metrics Center integrated Coverage Analysis Tool. 62

6.6 Options for Report Generation. 63

vi

Chapter 1

Introduction

1.1 Functional Hardware Veri�cation

Functional Hardware Veri�cation can be described as a process of verifying if a Design-

Under-Veri�cation (DUV) conforms to its speci�cation, primarily in terms of functionality.

Therefore, various languages, techniques, methodologies, tools and �ows exist on the mar-

ket and can be used as well as utilised to complete this process. In terms of languages,

SystemVerilog (SV) with its object-oriented programming (OOP) capabilities has become

one of the major supporting technologies in Functional Hardware Veri�cation.

Nowadays, the most common veri�cation methodologies as stated in Mehta 1 are:

Universal Veri�cation Methodology (UVM), Uni�ed Power Format (UPF), Analog/ Mixed

Signal (AMS), SystemVerilog Assertions (SVA), SystemVerilog Coverage (SFC), Coverage-

Driven Veri�cation (CDV) and Constrained Random Veri�cation (CRV), Static Timing

Analysis (STA), Clock Domain Crossing (CDC), Logic Equivalence Checking (LEC), etc.

This thesis focuses on constrained random, respectively, coverage-driven veri�cation by

applying concepts of object-oriented programming in SystemVerilog, SystemVerilog Asser-

tions and SystemVerilog Functional Coverage as well as regression testing.

The following section elaborates the traditional veri�cation approach.

1 ASIC/SoC Functional Design Veri�cation [Mehta, 2017]

1

CHAPTER 1. INTRODUCTION 2

1.2 Traditional Directed Test Approach

The traditional directed test approach of verifying the correctness of a design in terms

of functionality, as simpli�ed in Figure 1.1, is to choose a requirement and write a test

to verify it. After the test is �nished, debugged and simulated, the resulting waveforms

have to be checked for correctness. This process has to be repeated until all features,

respectively, requirements are veri�ed.

Figure 1.1: Pick & Write, Verify and Repeat.

In order to stimulate the design during simulation, it is always necessary to develop a test

bench. Typically, this environment is written in the same Hardware Description Language

(HDL) as the design is implemented in and the simulation is then carried out with a

script-based and directed test �ow. Since the complexity of designs continuously enhances

and HDLs are not designed to support the veri�cation/ validation process, the traditional

directed test approach involves writing hundreds of test cases (even in a small design) to

verify all features required.

In sum, the process of veri�cation consumes approximately 60 to 70 percent of the time

CHAPTER 1. INTRODUCTION 3

during the development cycle of a module, for instance, veri�cation of a design with e.g.

three con�gurable inputs. Input A consists of 508 individual con�gurations, input B of

64 and input C of only 4. If these con�gurations and all possible combinations shall be

veri�ed, it requires the engineer to write approximately 128.000 directed tests.

In fact, this traditional approach is needed in the beginning of design implementation to

feedback results regarding the basic functionality, however, this should not be the only

methodology or technique applied. Since HDLs are actually not designed for veri�cation,

it is clear that this methodology entails various disadvantages, such as:

• Lack of metrics and regression mechanism

• Only predicted behaviour is tested

• Very limited re-usability

• Extremely time-consuming

• Requires deep knowledge of the design

• Di�cult to maintain

Consequently, this custom-�ow does not support the process of extracting any coverage

information, thus, it is di�cult to provide relevant metrics and re�ect the veri�cation's

status; this can result in mismatches between requirements and tests.

The traditional test bench is quite speci�c for a given design and mainly requires great e�ort

to be adjusted to di�erent projects. Even if one has managed to create a certain script-

based veri�cation and simulation �ow, the status cannot be re�ected without measurable

metrics.

Writing test cases or scenarios with the traditional approach further requires deep knowl-

edge of the design in terms of timing and signalling. One has to create a stimuli �le with

every individual signal transition described by simulation times when to assert or de-assert

a speci�c signal. Furthermore, waveforms have to be checked manually for correctness,

however, this process also implies that this approach is very time consuming, hard to

maintain and prone to errors.

CHAPTER 1. INTRODUCTION 4

Actually, using directed tests only, critical scenarios and corner cases can be overlooked;

especially scenarios the engineer does not explicitly think of. Undoubtedly, the directed

test approach is su�cient to verify the design-under-test (DUT) basic functionality, but to

ensure correctness, a more sophisticated and automated approach needs to be applied.

1.3 The Need for Automation

SystemVerilog, referred to as the �Uni�ed Hardware Design, Speci�cation, and Veri�cation

Language�2, was developed to combine design and veri�cation capabilities to one single

language and an important aspect concerning the DUV that it can be designed with any

of the major HDLs but can be examined with the OOP capabilities of SV.

SystemVerilog combines the capability of building a virtual hardware setup (e.g. tester in a

lab) around a given micro architectural design and furthermore, allows to control the DUV

with the capability of object-oriented software automation, as proposed by Doulos [Doulos,

2012]. This results in a �exible and reusable environment, especially when it comes to

regression and metrics extraction.

Once one is familiar with the architecture (example explained in Chapter 4) of such an

environment, it is possible to create, extend and alter tests and scenarios to speci�c needs.

Since SystemVerilog is supported by all big EDA vendors such as Cadence, Mentor & Syn-

opsys, test benches implemented in SystemVerilog can be integrated into di�erent projects.

However, the re-usability is not seamless and requires some �ne-tuning e�ort.

The usage of tools and regression-support enables the veri�cation engineer to re�ect the

status of the veri�cation process by cross-referencing di�erent forms of coverage metrics,

such as functional coverage (including formal assertion coverage) and code coverage to

their corresponding requirements. After the process of planning and cross-referencing is

done, it is possible to generate a suitable report concerning the work done, as explained in

Chapter 6.

Industry 4.0 focuses on automation since applying automation wherever and whenever

2 Language Reference Manual [IEEE, 2013]

CHAPTER 1. INTRODUCTION 5

possible safes time. Indeed, one can save a vast amount of time with automated processes,

but �rst they have to be automated. This particular issue is today's biggest challenge, it

appears to be merely impossible to verify complex designs to a degree of 100%, therefore

it is always a trade-o� between veri�cation and documentation.

The key to test bench automation is randomly generated stimuli, which then is applied to

the DUV inputs. Furthermore, the test bench has to be able to apply the stimulus to the

design on the input side automatically and obviously, to collect the information generated

by the DUV at the output in order to check the result against a reference model. In case of a

correct result, it shall be stored in a coverage database. If the resulting output information

is not correct, it shall be discarded and reported. In such an event, the engineer has to

analyse the test regarding bugs in the DUV or a failure originating from the environment.

1.4 Constrained Random Veri�cation

This methodology can be implemented in SystemVerilog in a way that the resulting environ-

ment utilises the object-oriented programming (OOP) capability o�ered by the language.

Basic important features are explained in more detail in the corresponding Chapter 3

SystemVerilog.

Constrained Random, respectively, Coverage-Driven Veri�cation is built upon the three

�Cs�3: Correctness, Completeness and Constraints. First, the output produced by the

DUV has to be checked automatically for correctness. Second, completeness is measured

and re�ected by collecting coverage information with the aid of SystemVerilog Functional

Coverage. Last, constraints have to be implemented in order to increase the coverage and

probability to detect corner cases.

3 As stated by John Aynsley in the video Introduction to UVM. The video is available at

https://www.doulos.com/knowhow/sysverilog/uvm/, (accessed 7 December 2017)

CHAPTER 1. INTRODUCTION 6

1.4.1 Correctness - Automatic Checkers

As described in Section 1.3, today everything needs to be automated and therefore, the

checkers need to be autonomous as well. In other words, a test scenario created to verify

certain features has to be developed and debugged. Debugging in this stage of the devel-

opment cycle, is also done by visual inspection of the waveforms. Once the test scenario

is up and runs properly, there is no need for manual debugging or checking and one can

concentrate on the veri�cation's completeness.

1.4.2 Completeness - Coverage

As soon as some scenarios are developed, the process of implementing coverage for mea-

suring the status of the veri�cation can be triggered. The �Coverage Cookbook�, published

by Mentor Graphics Corporation [Mentor Graphics, 2012], provides a detailed introduc-

tion of how to tackle di�erent kinds of coverage metrics, their measurement, analysis as

well as how to keep track of the overall veri�cation progress. As described in �Coverage

Cookbook�, one single metric does not enable to characterise the veri�cation su�ciently.

That is why coverage is further broken down into its main overall terms for classi�cation

of coverage metrics:

• Code coverage,

• Functional coverage

• and Assertion coverage.

Code Coverage

Code coverage, which originates from software testing in the early 1960s by Miller and

Maloney [Miller and Maloney, 1963], holds the advantage to be simply enabled via some

command line switches and is a reliable indicator to highlight how much of the design is

exercised by a certain scenario and additionally, re�ects the quality of the stimuli. The goal

is to reach 100% of code coverage, which might not always be possible, therefore, one can

CHAPTER 1. INTRODUCTION 7

exclude certain untouchable parts, leaving a comment with explanation for documentation

purpose.

To measure and analyse code coverage in more detail, it is broken down into the following

single metrics such as: toggle, line, statement, block, branch, expression and �nite state

machine coverage. Most of these metrics are self-explanatory and for further details and

explanation �Coverage Cookbook� by Mentor Graphics Corporation [Mentor Graphics,

2012] is recommended.

Code coverage only indicates parts of a design that have already been activated. It does

not provide any information regarding correct functionality of the design itself. As a

consequence, a second metric needs to be implemented, which is referred to as functional

coverage.

Functional Coverage

Functional coverage can be recorded through SystemVerilog Assertions and Covergroups,

see Sections 3.7 and 3.8. In comparison to code coverage, functional coverage involves

great e�ort and has to be planned and implemented carefully by the veri�cation team.

The veri�cation manager is in charge of creating a veri�cation plan, which shall include

all requirements that need veri�cation. This is done by thoroughly translating the speci�-

cation of a design into requirements. The initial plan with all requirements found is then

implemented by the veri�cation team. The translation of all requirements into functional

coverage points, sequences and/or properties results in the so-called coverage model. In the

process of veri�cation, the coverage model is continuously re�ned to the extend of being

satis�able. With the coverage model �nished and enough output information generated,

the veri�cation team is then able to close the veri�cation process by generating a detailed

report concerning the veri�cation.

Unquestionably, it is not su�cient to reach 100% functional coverage with, for instance,

code coverage at approximately 80%. In such a case might be functional coverage missing.

The goal is to reach 100% of satis�able functional coverage where all parts of the design have

been exercised and all planned coverage items have been veri�ed to be correct, regarding

CHAPTER 1. INTRODUCTION 8

their speci�cation.

Figure 1.2: Coverage Re�nement Flow [Spear, 2010].

1.4.3 Constraints - Increasing Coverage

Constraints provide a possibility to shape random input stimulus, thus, reaches interesting

corner cases much faster. The SystemVerilog built-in constraint solver analyses the code

of speci�c classes and is then able to solve constraints. The stimulus itself is still random,

but the statistical distribution of the solution space vector is based on the previously

solved constraints as explained by Doulos [Doulos, 2012]. Since this process is done by the

environment on-the-�y and automatically, the test bench simply has to produce numerous

input stimuli by allowing longer simulation runs. In case the coverage happens to be

saturated and does not increase signi�cantly, one option is to re-seed the random number

generator and restart the simulation. Another possible option is to alter some constraints

by either tightening or releasing them.

CHAPTER 1. INTRODUCTION 9

1.5 Abstracting Complexity with Transactions

Profound knowledge concerning the design's functional intent, which must be acquired

by reading the design speci�cations of a device carefully, enables the veri�cation team

to translate the purpose and implement corresponding transactions. The latter can be

seen as an atomic operation executed on the DUV, similar to transmitting a serial data

frame. Moreover, these transactions serve as a control structure. Information stored in a

transaction can be data, message length, error injection �ags and even functions, e.g. to

calculate parity or similar tasks needed. Furthermore, such information is used by various

parts of the test bench in order to ful�l their duty, for instance, stimulating (driver) inputs

as well as collecting (monitor) and predicting (checker) outputs.

The following chapter serves as a brief introduction concerning lightweight serial commu-

nication and protocols.

Chapter 2

Lightweight Serial Communication

and Protocols

This chapter covers the principle of serial communication, followed by a brief introduction

regarding serial protocols and ends with an explanation of a lightweight serial protocol on

the example of the MicroSecond Channel (MSC) [IPExtreme R©, 2007] protocol developed

by In�neon Technologies AG [Kelling et al., 2005] in 2005.

2.1 Serial Communication

In serial communication, data is sent sequentially over a channel or bus whereas in parallel

communication, all data bits are sent simultaneously. Therefore, in serial communication

less pins are required, which makes it very e�cient for communication inside integrated

circuits as well as to peripherals. Data transmission is controlled by a master device

and underlies the principles of Master-Slave-Communication. In general, it has to be

distinguished between two and three, respectively, four wire communication.

Two wire communication operates with only two signal lines: Serial Data (SDA) and Se-

rial Clock (SCLK) line; a slave is addressed via address bits contained inside the frame

transmitted. In comparison, three, respectively, four wire communication includes addi-

10

CHAPTER 2. LIGHTWEIGHT SERIAL COMMUNICATION AND PROTOCOLS 11

tional signal lines. Both types share the Serial Clock (SCLK) line although the data line is

separated into Serial Data In (SDI) and Serial Data Out (SDO). Such a separation has the

advantage to enable simultaneous upstream as well as downstream communication referred

to as full-duplex communication. A four wire communication can be distinguished by an

additional Chip Select (CS) line, which is used to enable communication by selecting a

certain slave device directly via an input pin.

In synchronous serial communication, data is sent with a single clock source, whereas in

asynchronous serial communication, data is sent from a di�erent clock domain. Therefore,

in asynchronous serial communication it is necessary to provide a mechanism to acknowl-

edge the reception of data or a transaction in general. Such a mechanism is called a

handshake and is de�ned in the underlying communication protocol speci�cation.

2.2 Communication Protocol

�A communication protocol is a behavior convention that de�nes the tem-

poral order of the interactions between the peer entities as well as the format

(syntax and semantics) of the messages exchanged.�1

In other words, a communication protocol is a speci�ed way of how two entities are able to

exchange information in a de�ned manner. Time sequence diagrams are created in order

to represent the protocol interactions in a graphical way such as in Figure 2.1, a successful

and a rejected connection set up.

Moreover, the complexity of a protocol is de�ned by various characteristics and is written

down in the protocol speci�cation document. If the protocol is standardised, the speci�-

cation is released, for instance, by the International Organization for Standardization or

similar entities in charge of standardisation processes.

There are numerous standard protocols and some of them are very similar when observed

from the protocol point of view whereas others are contrary and not comparable at all.

Simpler protocols such as SPI, I2C and the MSC protocol represent su�cient examples

1Protocol Engineering p.30 [Knig, 2012]

CHAPTER 2. LIGHTWEIGHT SERIAL COMMUNICATION AND PROTOCOLS 12

Figure 2.1: Protocol Sequences as Time Sequence Diagrams [Knig, 2012].

of lightweight serial protocols. Whereas, for instance, CAN, LIN and FlexRay are heavy-

weight serial protocols in terms of complexity and protocol overhead.

The following section explains the MicroSecond Channel (MSC) protocol, as an example

for a lightweight serial protocol.

CHAPTER 2. LIGHTWEIGHT SERIAL COMMUNICATION AND PROTOCOLS 13

2.3 A Lightweight Serial Protocol

The MicroSecond Channel (MSC) protocol [IPExtreme R©, 2007] is a single-master/multi-

slave asymmetric serial protocol developed by In�neon Technologies AG [Kelling et al.,

2005] and conceived for connecting a slave (e.g. peripheral device) to a master (e.g. a mi-

crocontroller) via serial link. In this protocol, the master-to-slave communication (down-

stream) is synchronous serial-to-parallel, whereas the communication from slave-to-master

(upstream) is asynchronous parallel-to-serial. In addition, full-duplex communication is

supported by the MSC standard, which is explained in the following subsections.

2.3.1 Master-to-Slave Downstream Communication

As shown in Figure 2.2 , the serial input SI is synchronised with the rising edge of the FCL

clock and sampled by the slave with the falling edge of FCL clock. The chip-select SSY is

active low and synchronised with the rising edge of an FCL clock. The active phase of a

downstream frame transmission starts with the falling edge of SSY and ends with its rising

edge. During the passive phase, SSY is high and data at SI is ignored by the slave. In

downstream communication, two types of frames can be distinguished, depending on the

start bit of the serial data in SI, the so-called selection bit (SELBIT in Figure 2.2):

• Command frame (SELBIT = �1�)

• Data frame (SELBIT = �0�)

CHAPTER 2. LIGHTWEIGHT SERIAL COMMUNICATION AND PROTOCOLS 14

Figure 2.2: A general MSC Downstream Frame.

Two di�erent clocking modes can be distinguished; the continuous clock mode's clock runs

continuously, regardless of whether in active or passive phase. In contrast, the discontinu-

ous clock mode's clock runs only during the active phase of a transmission.

2.3.2 Command Frame Description

A command frame is identi�ed with the �rst bit SELBIT = �1� (see Figure 2.3), followed

by the command frame bits, ordered with the least signi�cant bit (LSB) �rst.

Figure 2.3: A speci�c MSC Command Frame.

CHAPTER 2. LIGHTWEIGHT SERIAL COMMUNICATION AND PROTOCOLS 15

The slave considers a command frame valid if the number of received command frame bits

is equal to the con�gured length.

2.3.3 Data Frame Description

A data frame is identi�ed with the �rst bit SELBIT = �0� (see Figure 2.4), followed by

the data frame bits, ordered with the LSB �rst.

Figure 2.4: A speci�c MSC Data Frame.

The slave considers a data frame valid if the number of received data frame bits is equal

to the expected length.

CHAPTER 2. LIGHTWEIGHT SERIAL COMMUNICATION AND PROTOCOLS 16

2.3.4 Slave-to-Master Upstream Communication

The serial upstream channel's output on SDO is continuously at high level, such as ad-

ditional Stop bits when not used for communication, shown in Figure 2.5. Therefore, an

upstream frame starts with an active low bit (Start bit) before the actual upstream data

bits (UFB0 to UFBN-1) with their LSB �rst and is followed by the Parity bit and 1 up to

4 Stop bits. The baud rate of the upstream channel is a divided version of the main clock

FCL and can be FCL/2X where X is an integer from 1 to 8.

Figure 2.5: MSC Upstream Frame illustrates Clock Divider X set to 1.

In brief, there are important SystemVerilog features; the most basic OOP concepts used

to create the veri�cation environment are highlighted in the following chapter. The basics

are described based on the concepts mediated by the �SystemVerilog Language Reference

Manual� 2 and further illustrated through a combination of theoretical and practical ex-

amples taken from �SystemVerilog for Veri�cation�3 as well as �Writing Testbenches using

SystemVerilog�4 and adopted according to this thesis's purpose.

2 [IEEE, 2013]
3 [Spear, 2010]
4 [Bergeron, 2006]

Chapter 3

SystemVerilog Language Features

This chapter's purpose is to serve as an introduction of object-oriented programming con-

cepts and features as well as to provide a brief overview of possibilities of SystemVerilog

entangled in pre-silicon functional hardware veri�cation combined with object-oriented

software development applied on a microelectronic device before the process of manufac-

turing can start.

SystemVerilog is the �Uni�ed Hardware Design, Speci�cation, and Veri�cation Language.�:

�The de�nition of the language syntax and semantics for SystemVerilog,

which is a uni�ed hardware design, speci�cation, and veri�cation language, is

provided. This standard includes support for modelling hardware at the be-

havioural, register transfer level (RTL), and gate-level abstraction levels, and

for writing testbenches using coverage, assertions, object-oriented program-

ming, and constrained random veri�cation. The standard also provides appli-

cation programming interfaces (APIs) to foreign programming languages.�1

For starting, one of the �rst basic object-oriented programming principles is to combine

code and data to obtain so-called classes, which are described in the following section.

1 Language Reference Manual - Abstract from p. ii [IEEE, 2013]

17

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 18

3.1 Classes and Objects

Firstly, a class is the description of a user-de�ned data type that contains members for

data as well as subroutines (tasks and functions) to operate on these data members. The

data members a class contains are referred to as class properties and the subroutines are

called methods; both are members of a class. The class properties and methods combined

de�ne contents and capabilities of an object when instantiated.

For instance, a BaseTransaction, (at �rst a class) is a transaction that will be instantiated

to one or more objects of that type. Listing 3.1 depicts the class containing all information

needed to describe a BaseTransaction in terms of properties such as unique identi�er, an

address, data, etc. Additionally, creational or comparing methods might be embedded

into the BaseTransaction class, for example, the constructor that is needed to instanti-

ate a new object of type BaseTransaction or a task to compare member values of type

BaseTransaction with AnotherBaseTransaction.

Listing 3.1: Example BaseTransaction with compare()-function.

c l a s s BaseTransact ion ;

// BaseTransaction p r o p e r t i e s

i n t UTID;

b i t [3 1 : 0] address ;

b i t [3 1 : 0] data ;

// Constructor o f BaseTransaction

function new () ;

UID = 8 ' b0 ;

data = 32 ' b0 ;

address = 32 ' b0 ;

endfunction : new

// Method d e c l a r a t i o n s

function b i t compare (A_Base_Transaction a_trans) ;

i f (t h i s .UTID != a_trans .UTID)

// do something

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 19

else i f (t h i s . address != a_trans . address)

// do something s im i l a r

else i f (t h i s . data != a_trans . data)

// do something s im i l a r

endfunction : compare

endc l a s s : BaseTransact ion

For creating or instantiating an object of any type, �rst a variable of the class type has

to be declared as shown in Listing 3.2. This variable is then called an object handle and

can be used to hold an object of that speci�c type. The object is created with the new

constructor call and directly assigned to the handle base_tr.

Listing 3.2: Variable Declaration Object Creation and Handle Assignment.

// dec l a r e a v a r i a b l e o f type BaseTransaction

BaseTransact ion base_tr ;

// c r ea t e and as s i gn o b j e c t to handle

base_tr = new () ;

Nevertheless, there are numerous additional possibilities one can implement with classes

and objects and their properties and methods. Therefore, it is recommended to read

Chapter 5: Basic OOP in �SystemVerilog for Veri�cation� by Spear [Spear, 2010] in order to

ensure a good starting point and an excellent complementary work to the �IEEE Standard

for SystemVerilog� by the IEEE [IEEE, 2013].

A more advanced OOP concept is the principle of inheritance, which is explained in the

following section.

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 20

3.2 Inheritance

In the previous section, a class of type BaseTransaction was de�ned and illustrated to un-

derstand how to create and instantiate an object of that type. This class can be extended

(keyword extends) to become a specialised form of a BaseTransaction, e.g. an Error-

Transaction. The following code example, presented in Listing 3.3, shows how to de�ne

a new subclass of type ErrorTransaction that inherits all members of the BaseTransac-

tion class. This subclass then can further be extended with additional purpose speci�c

members, e.g. an error_�ag.

Consequently, ErrorTransaction holds all members of BaseTransaction plus the new added

member error_�ag. Since subclass objects are of the same type as their base class, they

can be overridden to alter their de�nitions.

Listing 3.3: Inheritance Example.

c l a s s ErrorTransact ion extends BaseTransact ion ;

// newly added member o f e r ror Transact ion

b i t e r r o r_ f l ag ;

// Constructor o f Sp e c i a l Transact ion

function new () ;

// Constructor cha in ing

// c a l l i n g new o f super c l a s s BaseTransaction

super . new () ;

// i n i t new member

e r r o r_ f l ag = 0 ;

endfunction : new

endc l a s s : ErrorTransact ion

SystemVerilog only supports single inheritance, in other words, each specialised class de-

rives from one single base class, as explained in the Language Reference Manual2.

As the functionality of classes grows during development and by adopting the concept of in-

2 Language Reference Manual p.144 [IEEE, 2013]

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 21

heritance, applying certain other techniques eases organising the structure. One technique,

type conversion, is introduced in the following section.

3.3 Casting (Type Conversion)

There are certain aspects concerning casting that have to be considered since some class

assignments are illegal, therefore, provoke errors.

�It is always legal to assign an expression of a subclass type to a variable

of a class type higher in the inheritence tree (a superclass or ancestor of the

expression type).�3

Listing 3.4: Proper Handle Assignment.

BaseTransact ion base_trans ;

ErrorTransact ion er ror_trans ;

// Construct ion o f error_trans

er ror_trans = new (. . .) ;

// LEGAL assignment

base_trans = error_trans ;

// p r i n t the base UTID

$display (base_trans .UTID) ;

// c a l l s f unc t i on p r i n t o f error_trans

er ror_trans . p r i n t () ;

If the assignment is implemented vice versa from the base_trans to the error_trans, this

results in a compilation error because of a static check of the handle types done by the

compiler, as mentioned by Spear [Spear, 2010]. Moreover, it is sometimes needed to assign a

base handle to a derived handle, especially when the base handle points to a derived handle.

When adopting the concept of channels (channels, see Section 4.3), using a BaseTransaction

as a carrier of specialised transaction is needed.

3 Language Reference Manual p.146 [IEEE, 2013]

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 22

However, for assigning the base transaction handle to a derived class handle, it is necessary

to introduce the �Downcast� function since otherwise the assignment is illegal. Hence, $cast

system task allows to safely assign a superclass handle to a subclass handle and therefore,

makes all derived class members accessible again. According to Spear [Spear, 2010], this

system task can be called either as task or function, see the following Listing 3.5:

Listing 3.5: Either called as Task or Function.

task $cas t (de s t ina t i on , source) ;

or

function i n t $cas t (de s t i na t i on , source) ;

It has to be noticed that if $cast is executed as a task, it results in a run-time error in case

of type incompatibility.

In contrast, when called as function, the return value is either true or false, but does not

result in an error if the types do not match. Consequently, $cast can be used to enable

or disable certain parts and paths of and through the environment, depending on the

transaction type.

The following section covers the concept of virtual methods and its connection to poly-

morphism, which is explained in more detail in Section 3.5.

3.4 Virtual Methods

Methods of a class can be declared as virtual methods by simply declaring the functions

prototype with the keyword virtual.

�Virtual methods are a basic polymorphic construct. A virtual method shall

override a method in all of its base classes, whereas a non-virtual method shall

only override a method in that class and its descendants.�4

How to properly create a deep_copy or so-called clone of an object in an optimised way

is depicted in Listing 3.6. This is handled by the deep_copy()-function, which duplicates

4 Language Reference Manual p.148 [IEEE, 2013]

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 23

each existing member and assigns it to the corresponding member of the clone. In such a

case, it is a derived class and therefore, $cast is used as explained in Section 3.3.

Listing 3.6: Optimised Way of Cloning an Object.

c l a s s ErrorTransact ion extend Transact ion ;

b i t e r r o r_ f l ag = 1 ' b0 ;

v i r t u a l function void deep_copy (BaseTransact ion _base) ;

ErrorTransact ion er ror_trans ;

// deep_copy o f BaseTransaction

super . deep_copy (_base) ;

// type convers ion

// i s the base o f type error

$cas t (error_trans , _base) ;

// copying the error f l a g

er ror_trans . e r r o r_ f l ag = e r r o r_ f l ag ;

endfunction : deep_copy

v i r t u a l function BaseTransact ion c lone () ;

ErrorTransact ion c lone ;

c l one = new () ;

deep_copy (c lone) ;

r e turn c lone ;

endfunction : c l one

endc l a s s : ErrorTransact ion

In contrast, a so-called shallow copy simply copies the references of members (e.g. memory

addresses). When creating a new object and assigning it to a variable of the same object

type, all members are linked to the new object members, thus, the new object merely

points to the old object members. However, a deep_copy, respectively, clone of that object

is needed in order to access members.

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 24

When declaring a virtual method, it is essential to prepare precise preliminary planning of

its particular purpose. Once a virtual method's signature is de�ned with all its arguments,

it is not possible to alter it in any derived class. All derived classes have to use exactly

the same signature de�ned in the base class as depicted by Spear [Spear, 2010]. Without

this restriction, polymorphism, explained in the following chapter, in its concept no longer

works.

The following section covers the concept of polymorphism based on the example regarding

abstract classes and pure virtual methods. These techniques are used to create templates

and add re-usability to the veri�cation environment.

3.5 Abstract Classes, Pure Virtual Methods and Polymor-

phism

In this work, Doulos's class-based veri�cation library template [Doulos, 2012] was used

as a starting point for the development of the veri�cation environment; it has a similar

architecture compared to the one described by Spear [Spear, 2010]. The concept of abstract

classes allows to de�ne the veri�cation environment's basic structure, which is elaborated

below.

3.5.1 Abstract class

A class is only called an abstract class if the keyword virtual is written in front of the

class prototype, similar to virtual methods. This means that the class shall serve as a

template for various classes derived from that type. In Listing 3.7, the BaseTransaction

de�ned in Section 3.1 is rede�ned to become an abstract class. By using abstract classes, a

collection of classes may be created by deriving all specialised class types from a common

base class, e.g. BaseTransaction. This abstract base class then de�nes the template and

basic functionality of e.g. a transaction. Nevertheless, the template above is not complete

and will not be created, as de�ned in the Language Reference Manual [IEEE, 2013].

Listing 3.7: De�nition of an Abstract Class.

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 25

v i r t u a l c l a s s T_BaseTransaction ;

// s t a t i c in a l l d e r i v ed c l a s s e s

s t a t i c i n t count ;

// unique t r an sac t i on ID

rand b i t [7 : 0] UTID;

// Constructor implementat ion ex t e rn

extern function new(Component owner = nu l l) ;

// Pure Vi r tua l Method d e c l a r a t i o n s

pure v i r t u a l function b i t compare (T_BaseTransaction _other) ;

pure v i r t u a l function void deep_copy (T_BaseTransaction _base) ;

pure v i r t u a l function T_BaseTransaction c lone () ;

endc l a s s : T_BaseTransaction

// Externa l Constructor o f BaseTransaction

T_BaseTransaction : : new(Component owner = nu l l) ;

// Imp l i c i t type convers ion

UTID = count++;

endfunction : new

In order to create a Specialised_Transaction, e.g. a Serial_Transaction, the BaseTransac-

tion has to be extended and �lled with additional lines of the code, according to its purpose.

This Serial_Transcation then can further be extended to e.g. an Erroneous_Serial_Transaction.

3.5.2 Pure Virtual Method

A method declared virtually inside an abstract class is called a pure virtual method and

has to be indicated with the keyword pure, as de�ned in the standard. Extensions of

this base class may provide implementations by overriding the pure virtual method. All

methods declared as pure virtual shall have implementations in order to complete the class

and to allow instantiation of an object.

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 26

Listing 3.8: Specialised Transaction including Complete Function.

c l a s s S e r i a lT ran sa c t i on extends T_BaseTransaction ;

. . .

v i r t u a l function i n t compare (T_BaseTransaction _base) ;

// func t i on body

. . .

endfunction : c ompare2 f i l e

. . .

endc l a s s : S e r i a lT ran sa c t i on

However, abstract classes and pure virtual methods are fundamental for the following

concept of dynamic method lookup, referred to as polymorphism.

3.5.3 Polymorphism

The concept of polymorphism allows using a variable of the superclass type (T_BaseTransaction)

to hold an object of any derived subclass type and to address the methods of those classes

in a direct manner. As already shown in Listing 3.7, all virtual methods de�ne the basic

functionality of a transaction. Although the T_BaseTransaction is an abstract class, as

mentioned in the Language Reference Manual, it can still be used to declare a handle,

respectively, an array of handles:

Listing 3.9: Example Polymorphism.

T_BaseTransaction Transact ions [1 0] ;

Ser ia l_Transact ion1 s t1 = new ; // ex tends BaseTransaction

Ser ia l_Transact ion2 s t2 = new ; // ex tends BaseTransaction

Err_Ser ia l_Transact ion e s t = new ; // ex tends Ser ia lTransac t i on

Transact ions [0] = st1 ;

Transact ions [1] = st2 ;

Transact ions [2] = e s t ;

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 27

Objects of various transaction classes of the same base type can be instantiated and com-

bined into the same array, as shown in Listing 3.9: If the data types do not match, it is

impossible to store all of them in a single array, however, with the concept of polymorphism,

this can be achieved easily.

Transact ion [0] . compare (Transact ion [1]) ;

For instance, Transactions[0] shall invoke the compare()-function associated with the Se-

rial_Transaction1 on Transactions[1] to examine their members for equality. The system

properly binds the function of the appropriate class at run-time, as de�ned in the standard.

In fact, this is a typical example for polymorphism - providing capabilities that are far

more powerful than what is found in a procedural programming language.

In the following section, a brief introduction on interfaces is presented since interfaces are

a common construct to connect the DUV and the test bench with a certain degree of

re-usability added.

3.6 Interfaces

Interfaces can be seen as a packed bundle of interconnection points that simpli�es the con-

nectivity. To declare an interface it is bene�cial to consider the re-usability and therefore,

one has to plan separation of inputs and outputs in advance. When using an interface,

it must be instantiated like a module is in Verilog. An interface behaves like a module

although with the slight distinction that it can be connected to ports. To access members

of this interface via the dot-operator, the module or class has to have an initialised handle

to that interface. For more detailed information on how to handle interfaces the reader is

advised to consult the �Veri�cation Methodology Manual�5.

Another construct concerning interfaces are clocking blocks. These are used for separating

inputs and outputs as well as synchronising them to a common clock source.

5 Chapter 4 Testbench Infrastructure [Bergeron et al., 2005]

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 28

3.6.1 Clocking Blocks

The clocking block construct is used to identify clocked signals and synchronises them

accordingly to a common clock signal. The most appropriate place for a clocking block

is inside an interface. The SERIAL interface, depicted in Listing 3.10, is de�ned with a

common clock signal, which is used to synchronise the inputs and outputs accordingly.

One can either declare the signals inside an interface of type wire as de�ned by �Rule 4-6

of the Veri�cation Methodology Manual�6 or of type logic as explained in �SystemVerilog

for Veri�cation�7. Subsequently, Spear focuses on the di�erence of using logic vs. wire

by discussing examples. Nonetheless, it always depends on the factor one needs. For

instance, if one recognises - in a later stage of the development - that multiple structural

drivers for a certain signal are needed, the signal of type logic has to be altered into wire.

Moreover, driving a wire requires some extra code to work properly. Inside a clocking

block, speci�c input and output signal skews are de�ned with the #-operator followed by

the time speci�ed in either s, ms, etc. The input skew set with #1step de�nes the sampling

of the signal to the last value directly before the corresponding clock edge, as de�ned in

the standard. Inside the particular interface shown in Listing 3.10, two clocking blocks are

de�ned, the �rst one for the driver and the second one for the monitor. Modports provide

a controlled way of accessing the interface from the test bench and further provide access,

for instance, on the cycles(N)-task de�ned. This task is used to mimic the behaviour of

the cycle delay ##N8, which is not allowed to be used in neither modules nor classes.

With the import of this task, it becomes accessible by the test bench and can be used for

cycle-based driving of signals inside classes.

Listing 3.10: Example Interface with Clocking Blocks embedded.

i n t e r f a c e SERIALif (input b i t c l k) ;

l o g i c SDO, SI , SSY ;

// Clock ing b l o c k s to g i v e acces s to the d r i v e r

6 Veri�cation Methodology Manual p.108 [Bergeron et al., 2005]
7 SystemVerilog for Veri�cation p.90 - 4.3.2 Logic vs. Wire in an Interface [Spear, 2010]
8 Delaying the execution by N times the clock cycle or clocking event. Language Reference Manual

p.308 [IEEE, 2013]

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 29

c l o ck i ng drv_cb @(posedge c l k) ;

output #1step SI ;

output #1step SSY ;

endc lock ing : drv_cb

// Clock ing b l o c k s to g i v e acces s to the monitor

default c l o ck i ng mon_cb @(posedge c l k) ;

input #1step SDO;

endc lock ing : mon_cb

// ta s k to g i v e t e s t b ench acces s to ##N behav iour

task automatic c y c l e s (i n t N) ;

repeat (N) @(drv_cb) ;

endtask : c y c l e s

// modports to prov ide c o n t r o l l e d acces s from t e s t b ench

modport drv_mp (c l o ck i ng drv_cb , import c y c l e s) ;

modport mon_mp (c l o ck i ng mon_cb , import c y c l e s) ;

e nd i n t e r f a c e : SERIALif

Once an interface is created it can be de�ned to be virtual, explained in the following

subsection.

3.6.2 Virtual Interfaces

A very useful construct provided by SystemVerilog are virtual interfaces that provide the

possibility to separate the environment from the actual signals of the DUV, as de�ned in

the Language Reference Manual. With the keyword typedef9, a class, or in this particular

case the interface, can be declared virtual and made visible before the de�nition of a certain

class. Now the class is able to use the virtual interface called SERIAL_drv_hook to operate

on the DUV, see Listing 3.11. The dot-operator is used to access the signals packed and

o�ered by the virtual interface handle. This mechanism allows writing a reusable code that

9 typedef provides a so-called forward declaration of the user-de�ned data type - Language Reference

Manual p.76 [IEEE, 2013]

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 30

is able to operate on di�erent interfaces and signals of the DUV.

Listing 3.11: Typedef of a Virtual Interface Hook.

typede f v i r t u a l SERIAL_if . drv_cb SERIAL_drv_hook ;

c l a s s S e r i a lD r i v e r ;

// dec l a r e the handle f o r the v i r t u a l i f hook

SERIAL_drv_hook ser ia l_hook ;

[. . .]

function new (SERIAL_drv_hook _hook)

ser ia l_hook = _hook ;

endfunction : new

[. . .]

endc l a s s : S e r i a lD r i v e r

Finalising the basic concepts of object-oriented programming, the three most important

features in terms of constrained random veri�cation - SystemVerilog Assertions (SVA),

SystemVerilog Functional Coverage (SFC) and Constraints - are explained in the following

three sections.

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 31

3.7 SystemVerilog Assertions (SVA)

The SystemVerilog Assertion language is a discipline of its own and though it is part of

the SV language, syntax and semantics are very di�erent compared to SystemVerilog. An

assertion de�ned in an understandable way by Mehta [Mehta, 2017] is a simple checker

that ensures the design not to violate the speci�cation. In case a failure occurs, one wants

to be informed about this event and further needs to analyse what exactly has happened.

In general, it has to be di�erentiated between three types of assertions:

• Immediate assertion

• Concurrent assertion

• Deferred assertion (immediate assertions with delay)

Immediate assertions are executed like a procedural statement in the code and therefore,

can be used as an input sanity check. Another example is to combine the evaluation of

$cast-task within an assertion to check for correct downcast evaluation and to report an

error if occurred.

Concurrent assertions are used to verify signal transitions behaviour when combined with

previously de�ned sequences and properties. This kind of assertion is edge sensitive and

therefore requires a posedge10 or negedge10 signal transition to be triggered such as a

clocking event or a di�erent trigger signal connected to the DUV.

The third type, the deferred assertion type, was not used throughout this work. Its inten-

tion is to delay the evaluation to a certain time stamp to be in more control of glitches, as

addressed in Mehta [Mehta, 2016].

Generally, SystemVerilog Assertions o�er four di�erent speci�er statements: cover, assert,

assume and restrict. These statements are de�ned depending on the veri�cation purpose

needed. In this thesis. cover and assert have been the only ones needed. The cover

statement can be used to track the property evaluation and collect coverage information

but does not interrupt the simulation. Whereas the statement assert is able to interrupt

10 SystemVerilog keywords for sampling event - Language Reference Manual p.181 [IEEE, 2013]

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 32

the simulation in case of a failure and report it with, e.g., a de�ned error message.

3.7.1 Sequences and Properties

The sequence feature is often used to construct properties out of sequential behaviour. A

sequence can be de�ned by simply ordering boolean expressions of the signals in linear

time increasing order.

Basic Property

The meaning of the property in Listing 3.12 translates to the following: At the rising edge

of a valid_trigger signal, if and only if (i�) the reset is not active, check if either:

�ag_one is asserted and �ag_two is not,

or �ag_two is asserted and �ag_one is not

or none of the two �ags are asserted at all.

Therefore, the property is not allowed to evaluate to true when both �ags are active at the

same time. In other words, the property is said to check mutual exclusion for these �ags.

Listing 3.12: Example Mutual Exclusive Property.

property mutex_p1 ;

(@(posedge va l i d_t r i g g e r i f f (! r e s e t))

((f lag_one && flag_two) | |

(f lag_two && ! f lag_one) | |

(! f lag_one && ! flag_two))) ;

endproperty : mutual_exclusive_p1

mutex_assert1 : a s s e r t property (mutex_p1) ;

The example above describes a method of checking two �ags for their mutual exclusive

assertion. If the outputs are registers, SystemVerilog o�ers built-in functions. According

to the Language Reference Manual, these functions are named �sampled value functions�11

and are explained in the following subsection.

11 Language Reference Manual p.360 [IEEE, 2013]

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 33

3.7.2 Sampled Value Functions

The four functions $stable, its counterpart $changed as well as $rose and $fell were

used to write part of the assertions for checking the proper DUV signal behaviour.

$stable and $changed

The meaning of the property in Listing 3.13 translates to the following:

At the rising edge of a trigger_bus1 signal, i� currently not in reset, one has to check if:

bus_out1 has $changed in its value and bus_out2 remained $stable like it was before the

trigger had activated the check.

Listing 3.13: Example $stable and $changed in a Property.

property mutex_bus1_not_bus2 ;

(@(posedge t r igger_bus1 i f f (! r e s e t))

$changed (bus_out1) && $s t ab l e (bus_out2)

) ;

endproperty : mutex_update_bus1_not_bus2

mutex_bus_update_assert1 : a s s e r t property (mutex_bus1_not_bus2) ;

$rose and $fell

The meaning of the property in Listing 3.14 translates to the following: At the rising edge

of CLK used as a trigger signal, i� not in reset and enable_toggling is active, check if:

The toggle input $rose in its transition from 0 to 1 and the toggle output followed one cycle

later or the toggle input $fell in its transition from 1 to 0 and the toggle output followed

one cycle later.

If this property does not evaluate to true, the assertion is triggered, the simulation is

interrupted and an error is displayed.

Listing 3.14: Example $rose and $fell in a Property.

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 34

property ex_toggle_p1 ;

(@(posedge CLK i f f (! r e s e t && enable_togg l ing))

(($ ro se (togg l e_i) |−>##1 $rose (toggle_o)) | |

($ f e l l (togg l e_i) |−>##1 $ f e l l (toggle_o))) ;

endproperty : wdog_toggle_p1

togg l e_as s e r t1 : a s s e r t property (ex_toggle_p1) ;

Listing 3.14 shows a very rudimentary linear sequence. For more information on assertions,

properties and sequences, especially sequence operators and repetition of sequences, it is

recommended to consult the already cited books. In fact, to gain a better understand-

ing of the entire theory, the Language Reference Manual is su�cient. Nevertheless, the

book �SystemVerilog Assertions and Functional Coverage� by Mehta [Mehta, 2016] provides

theory as well as practical examples.

The following section of this chapter highlights some SystemVerilog Functional Coverage

(SFC) language features.

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 35

3.8 SystemVerilog Functional Coverage (SFC)

Besides the capability of Assertion-Based Veri�cation (ABV), SystemVerilog o�ers the

Functional Coverage language. (SFC) provides the possibility of creating covergroup

constructs and embedding user-de�ned coverpoints, as can be seen in Listing 3.15. A

coverpoint can contain multiple cover bins that are used to de�ne and store the information

on a hit. The covergroup needs a de�ned signature, e.g. dwstr_conf_cg, and a trigger for

sampling the coverpoint automatically on the event of a certain expression evaluating to

true. Furthermore, a covergroup o�ers the possibility to specify a couple of instance-speci�c

options such as name, per_instance, comment and at_least.

Most parameters are self-explanatory in their meaning and detailed descriptions and vari-

ous examples can be found in almost any book regarding SystemVerilog, Functional Cov-

erage or Constrained Random Veri�cation.

Listing 3.15: Downstream Functional Covergroup Example.

covergroup dwnstr_conf_cg @ (posedge frame_end) ;

opt ion . per_instance = 1 ;

opt ion . name = "Downstream Covergroup" ;

opt ion . comment = "Samples the frame l eng th s t ransmit ted " ;

cmd_length_cp : coverpo int cmd_frame_len {

b ins spec_cmd_len = { 6 ' d15 } ;

b ins other_lengths = { [6 ' d2 : 6 ' d14] , [6 ' d16 : 6 ' d63] } ;

b ins o the r s = default ;

}

data_length_cp : coverpo in t data_frame_len {

b ins spec_data_len = { 6 ' d15 } ;

b ins other_lengths = { [6 ' d2 : 6 ' d14] , [6 ' d16 : 6 ' d63] } ;

b ins o the r s = default ;

}

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 36

cmd_valid_cp : coverpo int valid_cmd {

bins cmd_valid = { 1 } ;

b ins cmd_invalid = { 0 } ;

}

data_valid_cp : coverpo int val id_data {

b ins data_val id = { 1 } ;

b ins data_inval id = { 0 } ;

}

// Lenghts X v a l i d

cmd_length_X_valid : c r o s s cmd_length_cp , cmd_valid_cp ;

data_length_X_valid : c r o s s data_length_cp , data_valid_cp ;

endgroup : msc_dwnstr_conf_cg

dwnstr_conf_cg dwnstr_conf_cg_inst = new ;

With di�erent coverpoints sampled in a covergroup, SFC allows to build cross coverage,

which enables �ne grain coverage analysis. It is essential to instantiate a covergroup with

the new-operator since otherwise no coverage information is collected. A paper regarding

the proper use of all possible options was published by Smith [Smith, 2009] at the DVClub

Austin Conference 2009. The reader is advised to consult this paper before starting to

build a coverage model.

The second way of sampling coverpoints is to be sampled manually by overriding the built-

in sample()-function in order to meet speci�c needs, see Listing 3.16. Such a need may

occur, for instance, in case of logging some data for passing transactions, hence, being

able to re�ect the correct transmission of data bits. The following example represents an

embedded covergroup with a overridden sample function.

Listing 3.16: Example Embedded Covergroup with sample()-function.

covergroup updata_check_cg with function sample (Upstr_Trans mon) ;

//emebedded covergroup

opt ion . per_instance = 1 ;

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 37

opt ion . name = "MSC Upstream Data Checker" ;

msc_upstr_data_cp : coverpo int mon . data2TX {

bins upstr_eat_cable = { 63 'h3A7CAB1EDEADBEEF } ;

b ins upstr_al l_ones = { 63 'h7FFFFFFFFFFFFFFF } ;

}

endgroup : msc_up_data_check_cg

As a last mandatory feature, a coverpoint has the capability to track transitions. This

can be done by using the =>-operator in the coverpoints bin de�nition, see example in

Listing 3.17.

Listing 3.17: Mode Transition Covergroup Example.

covergroup mode_cfg_cg @(mode_trigger) ;

opt ion . per_instance = 1 ;

opt ion . name = "Mode Trans i t i on Covergroup" ;

mode_trans_cp : coverpo int mode_cfg i f f { ! r e s e t }{

b ins msc_spi_dsra = (msc_mode => spi_mode => dsra_mode) ;

b ins dsra_spi_msc = (dsra_mode => spi_mode => msc_mode) ;

b ins spi_msc_dsra = (spi_mode => msc_mode => dsra_mode) ;

b ins dsra_msc_spi = (dsra_mode => msc_mode => spi_mode) ;

}

endgroup : mode_conf_cg

mode_cfg_cg mode_cfg_cg_inst = new ;

Finalising this chapter by providing an overview of the role of constraints in this highly

sophisticated language standard, which already has become important in the �eld of veri-

�cation, as mentioned in the introduction.

CHAPTER 3. SYSTEMVERILOG LANGUAGE FEATURES 38

3.9 Constraints

SystemVerilog constraints are one of the three main interests in the subject of constrained

random veri�cation. As already described in Section 1.4.3, constraints allow the shaping

and automatic generating of the input stimuli needed to automate such a veri�cation envi-

ronment and in addition, reaching interesting corner cases one has not explicitly thought

of.

At �rst, a variable has to be indicated by the identi�er rand or randc in order to become

a random variable and and be solved by the constraint solver.

The constraint constructs in Listing 3.18 represents simple input constraints for a certain

transaction. For instance, the frame_length is de�ned to be cyclic-random (randc12)

and constrained inside the range of [1 : `REG_WIDTH 13-1], depending on the same bit

width the member data is sized and constrained with a random value according to the

frame_length. This is guaranteed if one places a third constraint that �xes the order to

solve the constraints. In this particular example the frame_length shall be solved before

the data.

Listing 3.18: Example Possible Constraints Solving.

randc i n t frame_length ;

c on s t r a i n t frame_length_range {

frame_length i n s i d e { [1 : `REG_WIDTH−1]} ;

}

rand b i t data [`REG_WIDTH: 0] ;

c on s t r a i n t data_constrained_length {

data i n s i d e { [1 : (2∗∗ frame_length)−1]} ;

}

c on s t r a i n t so lve_length_s ize {

s o l v e frame_length be f o r e data ;

}

12 cyclic-random means no value is repeated until all in a certain range have been picked once.
13 `REG_WIDTH is de�ned via a compiler declaration

Chapter 4

Veri�cation Environment

The base components of the environment, as mentioned in Chapter 1, originate from Doulos

and appear to be a compact class library to provide a basic structure for a constrained

random and coverage-driven veri�cation environment. The template is based on principles,

rules and recommendations of the `'Veri�cation Methodology Manual�1 and composed of

the following four vital class templates:

• Virtual Component class

• Virtual Transaction class

• Channel class

• Objection class

The following four sections serve as a brief introduction to illustrate the purpose of each

of these four templates as a recommended structure for the test bench.

4.1 Virtual Transaction Class

The virtual transaction class serves as the template for each specialised transaction to

spread it across the environment where needed. A transaction, by de�nition, is an atomic

1 [Bergeron et al., 2005]

39

CHAPTER 4. VERIFICATION ENVIRONMENT 40

operation on the DUV. Moreover, a transaction can be seen as a message that contains

information regarding how to stimulate the design and simultaneously predict the response

transaction for a certain input transaction.

• Virtual Class Transaction

Is used to derive and implement specialised transactions.

These are then randomised by a so-called Stimuli Generator and

� sent to the driver in order to stimulate the design properly.

� sent to the reference model in order to predict the design's response.

4.2 Virtual Component Class

Using the Doulos class-based veri�cation library, the virtual class component serves as

base class or base building block for each derived veri�cation component such as stimuli

generators, drivers, monitors, checkers and to assemble agents. The latter are complete

veri�cation components containing a driver and a monitor. The basic implementation of

this virtual class is able to build up and maintain a hierarchy of components.

• Virtual Class Component

Is used to derive and implement components such as stimuli generators, drivers,

monitors and checkers.

These are then used to compose agents, which are able to automatically:

� stimulate the DUV,

� collect and assemble response transactions,

� send the responses to the checker.

CHAPTER 4. VERIFICATION ENVIRONMENT 41

4.3 Channel Class

The veri�cation environment needs reusable veri�cation components to be �exible, there-

fore, veri�cation components must be decoupled. It is essential that components do not

know anything about the surroundings they are connected to. This state is achieved by

using channels to pass transactions between di�erent components. Channels can be seen

as a so-called �rst-in-�rst-out (FIFO) bu�er, therefore, it is not needed to synchronise the

threads for transaction distribution.

• Channel

A FIFO channel is used to decouple components, which

� increases the re-usability and independence.

� hides components details.

Once decoupling is achieved, it is possible to exchange, for instance, a basic driver compo-

nent with a more sophisticated one during the simulation execution of a test scenario.

4.4 Objection Class

The objection class is a simpli�ed automatic end-of-test mechanism. This allows compo-

nents to raise objections if they are busy with processing. Furthermore, it allows compo-

nents running in a forever()-loop, such as the monitor, to be ended (see Listing 4.3). The

objection class is implemented to automatically end �nished components bottom-up the

hierarchy. This reverse ordered ending of components maintains the veri�cation environ-

ment's hierarchy. Once all components have dropped their objections, the test bench top

holds the last objection active and by dropping it, the test bench can terminate safely.

• Objection

simpli�ed End-of-Test mechanism, allows components to

� raise objections, if they are still busy with processing.

CHAPTER 4. VERIFICATION ENVIRONMENT 42

� drop objections, if they have �nished processing.

One aspect to use this template is that the hierarchical creation and instantiation is guar-

anteed by the basic implementation of the class-based library as well as the synchronisation

of multiple concurrent threads by using the concept of channels. Consequently, once it is

developed it guarantees and maintains the hierarchy without the user's concern.

4.5 Recommended Test Bench Structure

In the course material o�ered by Doulos [Doulos, 2012] some recommendations regarding

the test bench structure are provided. For instance, it is recommended to use a module for

a test harness and interfaces to encapsulate the connectivity. Further recommendations

are to include clocking blocks, modports as well as properties and sequences inside the

interfaces. An optional advice is to create a top-level test bench module to include instances

of interfaces, designs and test programs as well as the clock generator if it has not been

inside a test harness yet.

For optional recommendations, the speci�c project has to be examined in order to consider

if they are bene�cial to utilise or not.

In the following sections the architecture and specialised veri�cation components are ex-

plained in more detail.

CHAPTER 4. VERIFICATION ENVIRONMENT 43

4.6 Veri�cation Components

The specialised components building the architecture of the environment are all derived

from the virtual component class in order to guarantee a hierarchical structure.

Figure 4.1 presents the simpli�ed block diagram of the developed constrained random

veri�cation environment with the most signi�cant parts highlighted.

The most signi�cant parts (in hierarchical order) are as follows. The test_case con-

trols parts of the environment for con�guration purpose. Inside the test_case, parts

of the environment are de�ned and the transactions are con�gured. For instance, the

MSC_component, SPI_Component and APP_Component encapsulate their speci�c im-

plementations of the corresponding veri�cation components such as a stimuli generator,

driver and monitor.

Figure 4.1: Basic Block Diagram of the Veri�cation Environment.

CHAPTER 4. VERIFICATION ENVIRONMENT 44

Furthermore, channels are used to interconnect veri�cation components and checker com-

ponents (MSC_Checker, SPI_Checker). The four interfaces (MSC, SPI, APP, CNF)

de�ned inside the test_harness are used to connect the instance of the DUV to drivers

and monitors during run-time of the simulation. This entire structure serves as the ba-

sic architecture of the constrained random environment. The latter is composed of one

test_harness, four driver classes, four monitor classes, two checker classes, three di�erent

transaction types as well as four di�erent interface declarations.

The following sections explain each veri�cation component regarding its purpose.

4.6.1 Stimuli Generator

The stimuli generator is in charge of creating, randomising and distributing transactions

across the environment. The following code snippet, presented in Listing 4.1, demonstrates

the use of Verilogs/SVs repeat() loop inside the stimuli generator to con�gure the number

of transactions generated and distributed. This can be done from the test-level. The

following line shows the randomisation procedure (simple function call inside an assertion

statement), to check if there are any problems in randomising the transaction. After the

randomisation, the transaction is put inside the two channels and sent to the driver as well

as the checker.

CHAPTER 4. VERIFICATION ENVIRONMENT 45

Listing 4.1: Example Stimuli Generator.

task body () ;

[. . .]

repeat (num_trans) begin

a s s e r t (template . randomize ()) else

$e r r o r (" randomizat ion f a i l u r e in %s : \ n %s" ,

get_hier_name () , template . p sp r in t ()) ;

template . stat ic_ID ++;

template .DWNSTR_ID = template . stat ic_ID ;

// Push the t r an sac t i on in the queue

trans_queue . push_front (template . copy ()) ;

// Sent the t rans to the d r i v e r

s ink . put (template . copy ()) ;

// Sent the t rans to the checker

ana l y s i s . put (template . copy ()) ;

end

[. . .]

endtask : body

4.6.2 Driver

The driver (see Listing 4.2) is the interface for translating transaction data into bit level

information in order to apply proper design stimulation by transmitting a correct message

or an erroneous one. This is a huge abstraction and bene�cial for the rest of the test

bench. One simply has to cope with signal transitions during the implementation of the

speci�c drive(transaction)-task, the remaining environment is only confronted with spe-

cialised transaction data structures. In order to get access to the signals needed inside

the driver, virtual interface handles are used to gather all needed signals, as explained in

Subsection 3.6.2.

CHAPTER 4. VERIFICATION ENVIRONMENT 46

Listing 4.2: Example Driver.

task body () ;

[. . .]

forever begin

[. . .]

do begin

a s s e r t ($cas t (current , t r)) else

$e r r o r ("MSC_Driver %s got bad t r an sa c t i on : \ n %s" ,

get_hier_name () , t r . p sp r in t ()) ;

d r i v e (cur rent) ;

end while (source . try_get (t r) && ! a l l_trans_dr iven) ;

a l l_trans_dr iven = 1 ' b1 ;

[. . .]

end

endtask

4.6.3 Monitor

The monitor (see Listing 4.3) assembles a response transactions at the output site of the

DUV by collecting information regarding the responses of each single input transaction

sent through the DUV. These response transactions are then sent to the checker in order

to compare the actual output transaction with the one predicted by the checker, described

in Section 4.7. Since the monitor is permanently running in a forever()-loop, a trigger

from the DUV is needed. In the example of a serial downstream frame, the frame_end

signal provided by the virtual interface of the monitor is used which indicates that the

downstream transmission has ended.

CHAPTER 4. VERIFICATION ENVIRONMENT 47

Listing 4.3: Example Monitor.

task body () ;

[. . .]

forever @(posedge hook . tlm_cb . frame_end) begin

object ion_to_stop . r a i s e () ;

// Frame end t r i g g e r f o r MSC dwnstream

i f (hook . tlm_cb . dwstr_frame_end == 1 ' b1) begin

// MSC MONITOR app_trans assembly f unc t i on c a l l

i f (cnf_hook . app_drv_cb . mode_cfg == msc_mode)

body_msc(app_trans) ;

// wa i t ing f o r the comple t ion o f the Handshake

wait4hsk () ;

[. . .]

app_trans .APP_ID ++;

end

[. . .]

end

endtask : body

CHAPTER 4. VERIFICATION ENVIRONMENT 48

4.7 Checker

The checker (see Listing 4.4) predicts reference transactions that are assembled, depending

on the information stored in the input transaction of the DUV. Whether it is a correct or

an erroneous transaction, the checker is in charge of predicting the reference transaction

and furthermore, receiving the response transaction of the monitor in order to compare

both transactions with each other for correctness.

Listing 4.4: Example Checker.

task Checker_Component : : service_msc_dwnstr () ;

Transact ion t_base ;

Dwnstr_Trans dwnstr_tr ;

forever begin

// r e c e i v e the t r an sac t i on

msc_stim_chan . get (t_base) ;

// ca s t the t r an sac t i on o b j e c t

$cas t (dwnstr_tr , t_base) ;

// p r e d i c t the outcome based on the t r an sac t i on

predict_DUV_output (dwnstr_tr . copy ()) ;

end // f o r e v e r

endtask

4.8 Test Harness

The test_harness (see Listing 4.5) is a module which contains the DUV instance and

connections to its port as well as the clock generator or other supporting structures such

as a memory interface. Doulos [Doulos, 2012] recommends to place the clock generator

inside a test_harness and never inside the environment. The test_harness should be

used in a sophisticated way to place all needed interface declarations since these are the

interfaces between the environment and the actual DUV.

CHAPTER 4. VERIFICATION ENVIRONMENT 49

By utilising a test_harness, it is possible to hide the veri�cation environment's structure

behind a collection of useful test implementation and even more important, the environ-

ment becomes separated from the design. Therefore, the purpose of the test_harness

is to instantiate the interfaces, clock generation and furthermore, to connect everything

accordingly between the DUV and the veri�cation environment.

Listing 4.5: Example Test_Harness.

module tes t_harness () ;

[. . .]

//System c l o c k genera tor f o r c l o c k synch

always #(sysc lk_per iod /6) s y s c l k = ~sy s c l k ;

//MSC Clock Generator wi th enab l e p o s s i b i l i t y

always #(sysc lk_per iod /6) i f (msc_en == 1 ' b1)

msc_sysclk = ~msc_sysclk ;

// In t e r f a c e i n s t a n t i a t i o n

SERIAL_intf SERif (s y s c l k) ;

CNF_intf CNFif (s y s c l k) ;

APP_intf APPif (s y s c l k) ;

//Clock enab l i n g / d i s a b l i n g s t r u c t u r e s

[. . .]

// S i gna l ass ignments shared by more than one i n t e r f a c e s

[. . .]

// DUV in s t a n c i a t i o n

msc_top i_msc_top

(// Port connec t ions

. . .) ;

endmodule : t e s t_harness

CHAPTER 4. VERIFICATION ENVIRONMENT 50

4.9 Test Case

A testcase class (see Listing 4.6) can be seen as a control entity that is used to con�gure

the needed parts of the environment as well as to de�ne the transaction settings, see

Listing 4.6. For example, it is possible to enable, respectively, disable certain constraints

or to �x certain transaction members to speci�c values for analysis of corner cases or

directed tests.

Listing 4.6: Example Constrained Random Test Case.

c l a s s t e s t c a s e extends base_test ;

// Downstream Transact ion Objec t

Se r i a lT ran sa c t i on Se r i a l_t r ;

// Constructor to c r ea t e t e s t o b j e c t

function new(s t r i n g _name , Component _parent , s e r i a l_env _tb) ;

super . new(_name , _parent , _tb) ;

Dwnstr_tr = tb .SERIAL_comp . ser ia l_st im_gen . template ;

endfunction

// Transact ion con f i g u r a t i on

task con f i gu r e_te s t () ;

// Assignment o f the mode

assign tes t_harness . mode_cfg = msc_mode ;

// Create and i n s t a l l a new temp la te o b j e c t

tb . set_stim_template (S e r i a l_t r) ;

// Se t t i n g number o f upstream t r an sa c t i on s

tb . set_num_trans (super . t r an s a c t i on s) ;

// enab l i n g wrong l e n g t h t ransmis s ion

Se r i a l_t r . wrong_length . rand_mode (1) ;

S e r i a l_t r . wrong_length_prob . constraint_mode (1) ;

// enab l i n g randomisat ion o f l e n g t h s

Se r i a l_t r . cmd_length . rand_mode (1) ;

S e r i a l_t r . data_length . rand_mode (1) ;

CHAPTER 4. VERIFICATION ENVIRONMENT 51

// enab l i n g f u l l −range con s t r a i n t

Se r i a l_t r . cmd_length_range_full . constraint_mode (1) ;

S e r i a l_t r . data_length_range_ful l . constraint_mode (1) ;

endtask : c on f i gu r e_te s t

// RUN TASK

task body () ;

c on f i gu r e_te s t () ;

// Component se tup needed

fork

tb . SERIAL_comp . ser ia l_st im_gen . body () ;

tb . SERIAL_comp . d r i v e r . body () ;

tb . checker_comp . service_downstream () ;

tb .APP_comp. monitor . body () ;

join_none

endtask : body

endc l a s s : test001_msc_dwnstr_cont

In the example above, the fork construct is used to launch multiple concurrent environ-

ment parts inside threads. No additional synchronisation is needed when using multiple

concurrent threads due to the concept of channels, as explained previously in Section 4.3.

In conclusion, to verify the given DUV, a total of 28 test cases have been developed. Ten

test cases served the purpose of constrained random templates that have been used to

create four more advanced scenarios. Another twelve test cases served the purpose of

constrained random-directed tests and the last two test cases have not been used since

they did not increase the coverage.

The following chapter presents a brief introduction concerning the DUV and parts of its

functionality.

Chapter 5

MicroSecond Channel (MSC)

Interface

This chapter refers to the MSC interface (highlighted in Figure 5.1), further on called DUV,

which is independent concerning the application and used for integration into a peripheral

slave device. The control logic embedded inside the MSC slave device is called Slave Control

and handles application speci�c aspects (such as DUV con�guration) and the handshake

to acknowledge the communication. However, Slave Control and all surrounding parts

referred as �Analog Parts� are not part of the DUV. Every statement concerning the Slave

Control should be considered as a recommendation.

52

CHAPTER 5. MICROSECOND CHANNEL (MSC) INTERFACE 53

Figure 5.1: Example Integrated MSC Interface.

5.1 MicroSecond Channel Interface

The DUV is designed to perform the MSC standard communication and additionally,

is able to perform SPI communication without adding any overhead in area. Since the

communication between the DUV and the Slave Control has been considered asynchronous,

any communication between the DUV and the Slave Control can be closed by handshake.

The DUV includes all main MSC features described in Section 2.3. Moreover, further

degrees of freedom in its functionality have been added in order to be more �exible and

reusable accordingly to the application's needs. Part of the additional functionality is the

DUV's compatibility with the SPI standard.

The following section explains the DUV regarding its way of receiving data.

CHAPTER 5. MICROSECOND CHANNEL (MSC) INTERFACE 54

5.2 Downstream Communication

The DUV receives a serial input on si_i and in case of a valid communication, the frame

is saved into one of two registers, accessible by the Slave Control through the outputs

cmd_frame_o and data_frame_o (see Figure 5.1). These registers are used depending on

whether a command or data frame is processed. If the DUV receives an invalid frame, the

outputs previously mentioned are not updated and thus contain the values stored from the

last valid transmission. The end of a downstream frame is always signalised by the DUV via

the end of frame output (handshake signal in Figure 5.1), which then starts the handshake

sequence. Slave Control is then able to close the handshake via the acknowledgement

input. The entire handshake is handled independently from the clocking mode during the

passive phase (see Section 2.3.2).

The following section explains the DUV regarding its way of transmitting data.

5.3 Upstream Communication

Slave Control must apply stable data to be sent to the DUV in order to initiate an upstream

transmission. The DUV indicates a frame loaded signal when data has been captured and

then starts transmitting data according to the MSC upstream standard (see Section 2.3.4).

The following section explains the clock feedback mechanism in order to enable the possi-

bility of a clock watchdog implementation inside Slave Control.

5.4 Clock Feedback

The DUV o�ers an interface to observe the clock's activity; this scenario serves as the basis

for a possible watchdog implementation inside Slave Control, refer to Figure 5.2. The DUV

is designed to work without any additional clock besides clk_fcl_i, which is independent

from the application's clock. This mechanism delays the input signal for a con�gurable

amount of clock cycles to an observation pin.

CHAPTER 5. MICROSECOND CHANNEL (MSC) INTERFACE 55

Therefore, Slave Control can con�gure the cycle delay via the input wdog_conf. The cycle

delay can be set to any value between 1 and 255. Slave Control has to set and keep wdog_i

high and observes the pin wdog_o, which must follow after the con�gured delay cycles in

case of clock activity. If the output does not change after the con�gured delay cycles, Slave

Control is able to identify a missing clock signal.

Figure 5.2: Example Blockdiagram Clock Timeout Feedback.

However, it is not possible to transmit data without an active clock signal in such a design.

The following chapter describes how to enable regression simulation and set up structured

report generation using Incisive Enterprise Manager, a regression-capable tool designed by

Cadence Design Systems.

Chapter 6

Incisive Enterprise Manager - A

Regression Suite

The primary aim, besides to develop a constrained random environment, was to establish

a sophisticated veri�cation �ow including the use of a regression mechanism and tool-

supported report generation. This complete regression suite was achieved by integrating

the environment into a regression management capable tool such as Incisive Enterprise

Manager from Cadence Design Systems.

Regression testing is a technique that has its origin in software development. In case there

is a design change, the regression suite can be utilised to quickly verify that a modi�cation

has no impact on already veri�ed parts of the DUT. One can download manuals for all

tools o�ered by Cadence Design Systems once registered on the website1. The Incisive

Enterprise Manager enables to set up a veri�cation plan and handle even big regression

runs with ease. Generally, veri�cation planning is a discipline of its own and unfortunately

there is no common solution for it. Veri�cation planning is always highly dependent on the

speci�c project details and has to be manually planned and maintained by the veri�cation

manager. An advantageous approach is to gather all relevant requirements and translate

them into corresponding metrics, respectively, coverage with the help of covergroups and

assertions.

1Cadence website as ref

56

CHAPTER 6. INCISIVE ENTERPRISE MANAGER - A REGRESSION SUITE 57

6.1 Veri�cation Session Input File (.vsif)

The Veri�cation Session Input File holds the con�guration information of the current

regression session, hence, various parameters can be speci�ed. The basic structure is

divided into session, group and test container that can hold speci�c parameters valid for

either the entire session (all test cases), a group of tests or just a single test to be executed.

Inside the session container, the parameter top_dir is used to specify the path to store

all data produced, as shown in Listing 6.1. The pre_session_script is used to create an

up-to-date snapshot of the DUT.

Listing 6.1: Example Session Container.

s e s s i o n mul t i_reg re s s i on_tes t s {

top_dir : $ENV(SIM_PATH)/ sim4vman/ r e g r e s s i o n s ;

p re_ses s i on_scr ip t : $ENV(SIM_SCRIPTS_PATH)/ pre_sess ion . sh ;

} ;

Inside the group container, as presented in Listing 6.2, the parameter run_script is in

charge of the proper simulation-tool invocation in order to start the elaboration and simu-

lation phase. In case a test consumes an in�nite amount of time because of any unforesee-

able problem, this can be counteracted by simply specifying a timeout in seconds. If the

timeout threshold is reached, the session is closed and all un�nished test cases are stopped

and marked as failed. The �lters needed to extract information from the console are spec-

i�ed with the scan_script parameter. These �lters hold criteria de�ned for scanning the

console output and searching speci�c string patterns to either indicate a passed, a failed or

�nished test case. Besides the number of runs per test de�ned via count and the seeds used

for initialisation of the random number generator, there are numerous other parameters

that can be speci�ed. Detailed explanations regarding such parameters can be found in

the corresponding tool documentation.

CHAPTER 6. INCISIVE ENTERPRISE MANAGER - A REGRESSION SUITE 58

Listing 6.2: Example Group Container.

group group1 {

run_scr ipt : $ENV(SIM_SCRIPTS_PATH)/ run_scr ipt . sh ;

t imeout : 7200 ;

scan_scr ipt : "vm_scan . p l i u s . f l t s h e l l . f l t \

 $ENV(SIM_PATH)/vman_sim/ p a s s_ f a i l_ f i l t e r . f l t " ;

sv_seed : 123456789 , 234567891 , 345678912;

count : 3 ;

t e s t t e s t 1

Inside the test container, the parameter top_�les is used to point to the location with the

environment's entry point, as shown in Listing 4.6.

Test_command is used to parse System Verilogs $plusargs arguments directly to the envi-

ronment for con�guration purpose. Here the $plusargs is used to specify the testname and

the number of transactions to send through the DUV for this test.

t e s t test001_msc_dwnstr_cont {

t op_ f i l e s : $ENV(SOURCE_PATH)/ sv_or to f f / tb/msc_tb . sv ;

test_command : +TESTNAME=tes t001 +Trans=100;

} ;

The basic setup implemented and all parameters properly con�gured, IEM can now be

launched to run a regression.

CHAPTER 6. INCISIVE ENTERPRISE MANAGER - A REGRESSION SUITE 59

6.2 A Full Regression Run

Once IEM is launched, the toolbar displays various possibilities for how to proceed.

Figure 6.1: Example Finished Regression Run.

A �nished regression run, as presented in Figure 6.1, displays an overview of the total

number of tests as well as the passed, failed, currently running or waiting tests and even

additional information, e.g. if a test has �nished in time or not. After clicking the �Start�

button, the Veri�cation Session Input File (.vsif) can be loaded and regression starts

automatically. During processing, the screen is updated every 5 minutes or can be updated

manually by clicking the �Refresh� button. In case the session data of a previous run exists,

this can be loaded by a click on the �Read� button. By clicking the �Clear� button with

a session selected, the latter can be deleted from the view for clean-up purpose.

The �vPlan� button opens the Veri�cation Plan Tree view, which by default, displays

the relevant veri�cation metrics with progress bars, including the percentage as shown in

Figure 6.2.

Clicking the �New� button, Enterprise Planner opens a new editor window and the veri-

�cation planning can begin, see Figure 6.3.

CHAPTER 6. INCISIVE ENTERPRISE MANAGER - A REGRESSION SUITE 60

Figure 6.2: Final Report Structure including Progress and Linked Description.

Figure 6.3: Initial Enterprise Planner Editor Window.

In case a plan already exists, it �rst has to be loaded in order to be edited by clicking

the �Edit� button. The graphical user interface allows to set up a basic structure by

adding sections and subsections. A speci�cation documentation can be loaded under the

tab �Specs� and is then used to annotate the items of the veri�cation plan with details by

simply highlighting the text sections and mapping them to corresponding requirements,

as can be seen in Figure 6.4. Inside the sections, planned items of type coverage, checker

CHAPTER 6. INCISIVE ENTERPRISE MANAGER - A REGRESSION SUITE 61

Figure 6.4: Mapping of Text to Plan Sections and Items.

and/or test case can be de�ned. It is possible to link the planned items against the

corresponding veri�cation metrics found under the tabs �Implementation� -> �Metrics�.

For further details, it is recommended to consult the corresponding manual of Incisive

Enterprise Planner.

After the plan is set up, it has to be loaded into the Veri�cation Plan Tree view. For the

sake of proper section numbering, a custom perspective can be created and activated.

Finally, after having all the coverage metrics collected and the plan completed, the veri-

�cation report is ready to be generated, e.g. a full or summary report as well as custom

reports. Therefore, it is recommended to open the Incisive Metrics Center, which will be

brie�y covered in the following section.

CHAPTER 6. INCISIVE ENTERPRISE MANAGER - A REGRESSION SUITE 62

6.3 Incisive Metrics Center (IMC)

Incisive Metrics Center (IMC) is the built-in coverage analysis tool; when launched, it

presents a top-down hierarchy including progress bars with percentages for all relevant

metrics, see Figure 6.5. Inside IMC, it is possible to re�ne the coverage metrics. For

instance, a case-default statement of a state machine shall never be reached, thus, it is

marked as a hole inside IMC. These parts can then be excluded and a comment for docu-

mentation can be left. All the re�nements made, they can be saved into a re�nement �le

and later on loaded again when needed.

Figure 6.5: Incisive Metrics Center integrated Coverage Analysis Tool.

6.4 Generating the vReport

The �Report� dialogue refers to Figure 6.6 and simply is con�gured by specifying a name,

a directory and the depth of detail. Furthermore, the �lter criteria and metrics type to

include has to be chosen according to the wanted result. The �OK� button starts the

report's generation. The resulting report is an objective HTML website and includes a

navigation menu.

CHAPTER 6. INCISIVE ENTERPRISE MANAGER - A REGRESSION SUITE 63

Figure 6.6: Options for Report Generation.

In conclusion, the 26 developed test cases used for the regression and metrics extraction

yielded in a total functional coverage of 98.6%. Code coverage reached 93.56%, whereas

the four advanced scenarios mentioned in Section 4.9 mostly contributed to the overall

coverage with 83.33%. Excluding certain lines of code regarding sanity checks and case-

default statements re�ned code coverage to a �nal percentage of 99.96. The missing

coverage (functional 1.6%, code 0.04%) can be explained by di�erences between the MSC

and the SPI protocol. The MSC is able to di�erentiate between command and data frames,

as explained in the corresponding DUV chapter, whereas the SPI does not include such a

feature.

Chapter 7

Conclusion

This work presents a common and modern way of developing a reusable constrained random

veri�cation environment in SystemVerilog. The resulting test bench and regression suite

enable the functional hardware veri�cation on a digital circuit, e.g. a protocol handling

device. Since this device has not been veri�ed yet this thesis cannot provide any direct

comparison to the traditional approach.

However, the architecture of such a veri�cation environment, as explained in Section 4.6, is

designed to be reusable amongst similar projects. For instance, in case an Inter-Integrated

Circuit slave device needs veri�cation, �rst, the environment has to be adjusted according

to the needs of the circuit and speci�cations. The setup of needed components does not

change, therefore, the basic structure with stimuli generators, drivers, monitors, checkers,

predictors and interfaces do not alter. The implementation will be a di�erent one as

explained in Section 3.5; so will be the coverage model.

Concerning this thesis, the acquisition of knowledge and skills has demanded great e�ort to

enable discussing this vast topic of functional veri�cation. In addition, gathering as well as

combining all the know how to accomplish the goal of a pre-silicon veri�cation �ow and a

stable regression suite have required a vast amount of time. In fact, it would be even more

delicate if one wished to develop an entirely constrained random veri�cation environment;

the e�ort compared to the result is too high with the used class-based library. Nonetheless,

the result is a �exible and reusable constrained random environment, especially when

64

CHAPTER 7. CONCLUSION 65

considering regression testing and metrics extraction as well as reporting, as mentioned at

the end of Chapter 6.

Developing an entirely random veri�cation environment requires the additional support of

a more sophisticated class library such as the Universal Veri�cation Methodology. This

methodology o�ers numerous possibilities for test bench con�guration and execution, for

instance, the use of design patterns, e.g. the factory pattern or a sophisticated console

report generation.

The class library o�ered by Doulos [Doulos, 2012], which has been used for the practical

work of this thesis, mainly holds the purpose to serve this very complex topic of functional

hardware veri�cation in a compact format, especially to young professionals and hardware

designers. However, starting with the Doulos class-based approach helped to understand

the fundamentals of functional hardware veri�cation.

Since the Doulos class-based approach is designed for trainings and courses on design and

veri�cation, for further projects a transition to the Universal Veri�cation Methodology

standard should be considered.

Bibliography

[Bergeron, 2006] Bergeron, J. (2006). Writing Testbenches using System Verilog, volume 1.

Springer.

[Bergeron et al., 2005] Bergeron, J., Cerny, E., Hunter, A., and Nightingale, A. (2005).

Veri�cation Methodology Manual for SystemVerilog. Secaucus, NJ, USA.

[Doulos, 2012] Doulos (2012). Comprehensive SystemVerilog - Course Material.

[IEEE, 2013] IEEE, C. (2013). IEEE Standard for SystemVerilog�Uni�ed Hardware De-

sign, Speci�cation, and Veri�cation Language.

[IPExtreme R©, 2007] IPExtreme R©, I. (2007). In�neon MicroSecond Channel Interface. 307

Orchard City Drive, M/S 202, Campbell, CA95008.

[Kelling et al., 2005] Kelling, N., Koenig, M., and McNair, K. M. (2005). Microsecond

Bus (µSB): The New Open-Market Peripheral Serial Communication Standard. In SAE

Technical Paper. SAE International.

[Knig, 2012] Knig, H. (2012). Protocol Engineering. Springer Publishing Company, Incor-

porated.

[Mehta, 2016] Mehta, A. B. (2016). SystemVerilog Assertions and Functional Coverage:

Guide to Language, Methodology and Applications. Springer Publishing Company, In-

corporated.

[Mehta, 2017] Mehta, A. B. (2017). ASIC/SoC Functional Design Veri�cation: A Com-

prehensive Guide to Technologies and Methodologies. Springer Publishing Company,

Incorporated, 1st edition.

66

BIBLIOGRAPHY 67

[Mentor Graphics, 2012] Mentor Graphics, V. M. T. (2012). Coverage Cookbook, volume 1.

Mentor Graphics Corporation.

[Miller and Maloney, 1963] Miller, J. C. and Maloney, C. J. (1963). Systematic Mistake

Analysis of Digital Computer Programs. Commun. ACM, pages 58�63.

[Smith, 2009] Smith, D. (2009). A Practical Look @ SystemVerilog Cover-

age - Practical Tips, Tricks, and Gottchas using Functional Coverage in

SystemVerilog. In Design and Veri�cation Club Austin, DV Club Austin.

https://www.doulos.com/knowhow/sysverilog/DVClub_Austin_09/.

[Spear, 2010] Spear, C. B. (2010). SystemVerilog for Veri�cation: A Guide to Learning the

Testbench Language Features. Springer Publishing Company, Incorporated, 2nd edition.

	Introduction
	Functional Hardware Verification
	Traditional Directed Test Approach
	The Need for Automation
	Constrained Random Verification
	Correctness - Automatic Checkers
	Completeness - Coverage
	Constraints - Increasing Coverage

	Abstracting Complexity with Transactions

	Lightweight Serial Communication and Protocols
	Serial Communication
	Communication Protocol
	A Lightweight Serial Protocol
	Master-to-Slave Downstream Communication
	Command Frame Description
	Data Frame Description
	Slave-to-Master Upstream Communication

	SystemVerilog Language Features
	Classes and Objects
	Inheritance
	Casting (Type Conversion)
	Virtual Methods
	Abstract Classes, Pure Virtual Methods and Polymorphism
	Abstract class
	Pure Virtual Method
	Polymorphism

	Interfaces
	Clocking Blocks
	Virtual Interfaces

	SystemVerilog Assertions (SVA)
	Sequences and Properties
	Sampled Value Functions

	SystemVerilog Functional Coverage (SFC)
	Constraints

	Verification Environment
	Virtual Transaction Class
	Virtual Component Class
	Channel Class
	Objection Class
	Recommended Test Bench Structure
	Verification Components
	Stimuli Generator
	Driver
	Monitor

	Checker
	Test Harness
	Test Case

	MicroSecond Channel (MSC) Interface
	MicroSecond Channel Interface
	Downstream Communication
	Upstream Communication
	Clock Feedback

	Incisive Enterprise Manager - A Regression Suite
	Verification Session Input File (.vsif)
	A Full Regression Run
	Incisive Metrics Center (IMC)
	Generating the vReport

	Conclusion
	Bibliography

