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Abstract

Quantitative magnetic resonance imaging (qMRI) attempts to determine physical and
physiological parameters intrinsic to the body. This methodical approach allows for
more objective medical analysis and diagnosis compared to the individual interpretation
of conventional MR scans with a contrast that can substantially vary depending on the
sequence and measurement parameters used. Furthermore, technical shortcomings,
such as field inhomogeneity, can impair image contrast and obfuscate relevant details.
Those limitations are alleviated using quantitative MRI but only inasmuch as the
applied measurement and analysis techniques are accurate and precise. Since the
sought physical parameters are mostly estimated from data using nonlinear models,
the accuracy of those results is strongly dependent on the validity of the underlying
model and its assumptions.
This thesis is dedicated to calculating, testing, and applying newly derived models for
multi-echo spin-echo sequences for the quantification of the transverse relaxation time
parameter T2 using the Generating Functions formalism (z-transform). To that end,
existing formulas were extended and refined to incorporate RF field inhomogeneities
and effects of non-ideal slice profiles into the parameter estimation process. Beyond
that, a closed form time domain solution for the decay of transverse magnetization in
multi-echo spin-echo sequences was derived. Furthermore, a closed form solution also
for the longitudinal magnetization was found that can be applied in the simultaneous
estimation of T1 and T2 with a modified multi-echo spin-echo sequence.
The presented models and their impact on the parameter estimation accuracy were
tested using simulations and experiments on MR phantoms. In vivo measurements
were conducted and the results were compared to gold standard and other methods, as
well as literature values.
In conclusion, the newly developed signal models could in all cases outperform the
established methods. Simulations proved a high accuracy and precision and data from
measurements showed excellent agreement with the model computations.

vii





Zusammenfassung

Die quantitative Magnetresonanztomographie (qMRI) versucht physikalische und
physiologische, dem Körper intrinsische, Parameter zu bestimmen. Im Vergleich zur
individuellen Interpretation konventioneller MR Scans, deren Konstrast aufgrund un-
terschiedlicher Sequenzen, Messparameter und technischer Unzulänglichkeiten wie
z.B. Feldinhomogenitäten stark variieren kann, erlaubt es dieser Ansatz im Prinzip
objektive Daten zu erhalten und somit verbesserte medizinsche Analysen und Diag-
nosen zu erstellen. Die Voraussetzung dafür ist jedoch, dass die verwendete Mess-
und Auswertetechnik robust und präzise ist. Die gesuchten physikalischen Parameter
werden in der Regel durch Anpassung von nichtlinearen Kurven an gemessene Daten
ermittelt, daher ist die Genauigkeit der Resultate stark vom verwendeten Signalmodell
und dessen Voraussetzungen abhängig.
Diese Dissertation beschäftigt sich mit der der Ableitung, dem Testen, und der Anwen-
dung von neuen Signalmodellen zur Bestimmung der transversalen Relaxationszeit T2

mittels multi-echo Spin-Echo Sequenzen. Hierzu wurde der sogenannte Generating
Functions Formalismus (äquivalent zur z-Transformation) verwendet und bestehende
Formeln wurden verbessert und erweitert. Dadurch wurden Einflüsse wie RF Inho-
mogenitäten und Effekte des nicht idealen Schichtprofiles in das Signalmodel integriert.
Des weiteren konnte für den Zerfall der transversalen Magnetisierung eine geschlossene
Signalformel im Zeitbereich abgeleitet werden. Zusätzlich wurde auch eine Formel
für die longitudinale Magnetisierung bei repetitiver Anregung gefunden. Mithilfe
der obengenannten Signalgleichungen und Modifikationen der multi-echo Spin-echo
Sequenz konnten T1 und T2 in einer Messung bestimmt werden.
Die entwickelten Modelle und deren Auswirkungen auf die Parameterschätzung wur-
den durch Simulationen und Experimente an MR Phantomen getestet. Resultaten aus
in vivo Scans wurden Messungen mittels "Gold-Standards", anderen Methoden, sowie
Werten aus der Literatur gegenübergestellt.
Mit den neu entwickelten Modellen konnten in allen untersuchten Fällen bessere
Ergebnisse erzielt werden als mit etablierten Methoden. Die Resultate der Simulatio-
nen ergaben eine hohe Genauigkeit und Präzision. Weiters zeigten gemessene Daten
exzellente Übereinstimmung mit den Modellrechnungen.
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1
Introduction

Magnetic Resonance Imaging (MRI) today is one of the most versatile medical imaging
modalities and is frequently used to detect and monitor disease. It provides distinct
advantages compared to other imaging techniques. MRI, for instance, outperforms
CT in terms of soft tissue contrast (whilst not involving ionizing radiation) and ultra-
sound in terms of resolution. Generally, its versatility is unbeaten including methods
like functional and molecular imaging. However, it is still mainly used as a pure
imaging method in contrast to a true measurement technique. As an image modality
it produces scans with varying contrast and quality dependent on extrinsic factors
such as scanner parameters, sequence and operator. As a measurement technique
MRI aims to reconstruct quantitative maps of the underlying physical parameters
thus rendering it independent from the aforementioned extrinsic factors. More or less,
all the known and unknown extrinsic variables often make MR images not directly
comparable to each other, especially in multi-center studies. Quantitative MRI (qMRI)
aims at turning disease markers based on image contrast to real biomarkers that can be
accurately measured and reflect a physical property, therefore allowing comparisons
across different sites making multi-institutional studies possible [1]. Quantitative MRI
means developing MRI from an imaging modality to a real measurement technique.
However, the road is rocky, many of the available quantification methods lack accuracy
and precision and there is still need for improvement.

In this thesis I want to summarize the developments I undertook during my PhD
studies to improve qMRI, in particular, so-called T2 relaxometry. In the following
chapters I will present methods to accurately model MR signals that are used for
parameter estimation. To that end, I used the so-called Generating functions approach
which yields closed-form solutions solutions, that can be efficiently implemented either
directly, or using the fast Fourier transform, in contrast to other methods (e.g. EPG),
that compute signals iteratively. Exact signal models that incorporate as many extrinsic
measurement parameters as possible are a prerequisite for accurate quantification.
Alongside with the derivation of various signal models for different MR sequences I
will also show results from actual phantom and in-vivo measurements to corroborate
the theoretical findings and to validate the methods.
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1 Introduction

Outline. This chapter is aimed at introducing the reader to the principles of nuclear
magnetic relaxation and the foundations of the so-called longitudinal and transverse
relaxtion times T1 and T2 (section 1.1). I will shortly cover the quantum physical
origins of T1 and T2 in order to understand what physical properties of molecular
dynamics are reflected in their values. In accordance with the methods developed
in this work I will primarily focus on T2 relaxation. In section 1.2 the most common
techniques to measure T2 are presented, including their pitfalls and sources of error.
Section 1.3 is devoted to inform the reader about the relevance of relaxometry in the
context of medical Magnetic Resonance Imaging and the detection, characterization
and monitoring of disease and present some examples where T2 is used as a biomarker.
These introductory sections are held as concise as possible and in order for the reader
to fully comprehend them and the following chapters a basic knowledge of MRI, it’s
variety of sequences, like spin-echo and gradient echo, and the generation of images
therewith is assumed.

Next, the reader will find general considerations that have to be kept in mind when
MRI is used as a quantitative measurement technique (sec. 1.4), namely the mapping
of the active RF transmit field B1+ in-vivo (sec. 1.4.1) and the numerical computation
of the slice profile from the RF pulse shape (sec. 1.4.2). Furthermore, in 1.4.3 some
additional considerations about T2 relaxometry are presented .

Finally, in section 1.5, I will shortly outline the topics covered in the following
chapters of this dissertation.

1.1 Relaxation theory

1.1.1 Principles of magnetic resonance

The fundamental quantum mechanical property that altogether makes nuclear magnetic
resonance (NMR) possible is the fact that atomic nuclei with spin quantum number
I greater than 0 posses a magnetic moment µ = γI which is coupled to its nuclear
angular momentum I and its gyromagnetic ratio γ. Moreover, the z-component (by
convention) of the magnetic moment evaluates to µz = γIz, or more precisely µz = γ}m,
where m is the magnetic quantum number of the nucleus (m = [−I, −I + 1, ..., I− 1, I])
[2, pp. 2]. In magnetic resonance imaging (or NMR in general) a tiny excess (millions
of times smaller than the total number of spins) of all those moments is aligned in the
direction of a strong external static magnetic field B0 (pointing in z-direction also by
convention). For spins with I = 1/2, such as protons, the quantity ∆N of moments that
are in excess aligned with B0, i.e. those with m = +1/2, can be calculated statistically
according to a Boltzmann distribution and is for N spins given by N ∆E

2kT where the

2



1.1 Relaxation theory

energy difference between the stationary energy eigenstates is ∆E = }γB0 [3]. As
∆E is much smaller than kT the Boltzmann distribution can be linearized to obtain
the above result. Despite being very small the integrated effect of these magnetic
moments manifests itself as a measurable equilibrium magnetization M0 = ∆N

V µz, V
being the volume. This is the quintessence of nuclear magnetism. For hydrogen atoms
(i.e. protons) which we are mainly concerned with in magnetic resonance imaging this
expression can be rewritten as M0 = N

V
}2γ2B0

4kT .

This tiny magnetization can be deflected from its equilibrium state. Specifically it can
be brought into resonance by an external magnetic radio frequency (RF) field B1+ at
the so-called Larmor frequency ω0 = γB0. This process is also called excitation. Once
deflected from the equilibrium z-direction, the magnetic moments start to rotate just
like a gyroscope around the static field also with the Larmor frequency giving rise to a
detectable oscillating magnetic field. According to the law of induction this magnetic
field induces a voltage U = − dΦ

dt ∝ − d sin(γB0t)
dt which is proportional to ω0 = γB0 in a

coil positioned in this very plane of precession. Putting everything together the overall
measurable signal amplitude is proportional to }2γ3B0

2ρ0
4kT , ρ0 = N/V being the spin

density of the sample. This is the basic principle of magnetic resonance.

Due to fact of the spins being driven out of their equilibrium state they of course
tend to return there, as in physics all entities somewhen find their equilibrium state,
which is the lowest energy level in their reach. Phenomenologically, the magnetization
dynamics are governed by the Bloch equations which incorporate magnetic interaction
between the magnetization ~M and external magnetic fields ~B as well as the regrowth
of magnetization to equilibrium in the direction of B0 (longitudinal relaxation) and
the vanishing of excited precessing magnetization components perpendicular to B0

(transverse relaxation). In the following paragraphs I will elucidate the basic physical
principals of relaxation theory.

1.1.2 Relaxation theory

In principle, NMR relaxation is caused by stochastic fluctuations of the effective mag-
netic field at position of the nucleus. The fluctuations are caused by the random
translational and rotational motion of the neighbouring nuclei that themselves exhibit
a magnetic moment. The fields of these neighbouring nuclei fluctuate in the direction
of the main field B0 as well as perpendicualar to it. Fluctuations perpendicular to the
main field cause transitions between energy eigenstates, are also called non-adiabatic,
and require exchange of energy [2]. Due to these processes the longitudinal magneti-
zation approaches a state of thermal equilibrium after some time. This phenomenon
is called longitudinal relaxation and is quantified by the longitudinal relaxation time

3



1 Introduction

T1. Adiabatic processes due to magnetic fluctuations parallel to the static field cause
dephasing of spins. This results in a shrinking of the measurable transverse magneti-
zation as the ensemble of coherent spins begins to fan out right after excitation until
the net transverse magnetization has decayed to zero. This process is quantified by the
transverse relaxation time T2.

Adiabatic and non-adiabatic relaxation

The difference between adiabatic and non adiabatic relaxation can best be illustrated by
having a look at the spin wave function

|ψ(t)〉 = cα(t) |α〉+ cβ(t) |β〉 (1.1)

|ψ(t)〉 =
(

cα(t)
cβ(t)

)
(1.2)

(1.3)

which is a weighted sum of the stationary basis wave function |α〉 and |β〉, usually being
represented by a column vector |ψ〉 (t) . For this wave function the Schrödinger equation
has to be solved, whereas the Hamiltonian in this case only comprises the magnetic
interaction.

d |ψ(t)〉
dt

= −iH(t) |ψ〉 (t) (1.4)

H(t) = −~µ · ~B(t) = −γ~I · ~B(t) (1.5)

|ψ(t1)〉 = e−iγ
∫ t1

t0
~I·~B(τ)dτ |ψ0〉 |ψ(t0)〉 = |ψ0〉 (1.6)

Once solved, we see that the result is an exponential operator acting on the wave function
at time t0. Here, ~I = (Ix, Iy, Iz)T is the nuclear spin angular momentum operator. In
matrix notation they are given by [4]

Ix =
1
2

(
0 1
1 0

)
Iy =

1
2i

(
0 1
−1 0

)
Iz =

1
2

(
1 0
0 −1

)
1̂ =

(
1 0
0 1

)
(1.7)

For ~B = (0, 0, B0) and using φ = γB0(t1 − t0) the matrix exponential can be expressed as
a power series. Sorting out the terms and due to the fact that every angular momentum
operator squared yields identity we find

e−iφIz = 1̂ cos
φ

2
+ 2iIz sin

φ

2

=

(
e−iφ/2 0

0 eiφ/2

)
(1.8)

= Rz(φ)

4



1.1 Relaxation theory

which is a complex rotation matrix. Applying equation 1.8 to |ψ〉 gives

|ψ1〉 = Rz(φ/2) |ψ0〉 =
(

cα0e−iφ/2

cβ0eiφ/2

)
(1.9)

which is only changing the phase of the spin wave function but causes no mixing between
the eigenstates. If the same procedure is done for Ix and Iy one ends up with

e−iφIx = 1̂ cos
φ

2
− 2iIx sin

φ

2
=

(
cos φ

2 −i sin φ
2

−i sin φ
2 cos φ

2

)
= Rx(φ) (1.10)

e−iφIy = 1̂ cos
φ

2
− 2iIy sin

φ

2
=

(
cos φ

2 − sin φ
2

sin φ
2 cos φ

2

)
= Ry(φ) (1.11)

Applying either 1.10 or 1.11 causes a mixing between |α〉 and |β〉, hence an exchange of
energy. These matrices involve the so-called Cayley-Klein parameters and are the same
as the SU(2) rotation matrices used in the Shinnar-Le Roux algorithm used to calculate
the slice profile in section 1.4.2. Note that in the above used Schrödinger equation the
definition in natural units was used so that the factor } is missing.

Relaxation mechanisms Relaxation is caused by nuclear magnetic interactions be-
tween the spins with its surrounding and Brownian motion that causes the surrounding
magnetic fields to fluctuate. The magnetic interactions can be of various forms: chem-
ical shift, dipole-dipole, J-coupling, and quadrupole coupling. For isotropic liquids
primarily dipole-dipole, chemical shift anisotropy, and spin-rotation are the mechanisms
with their relative magnitude decreasing in the order they are listed here [4].

Relaxation theories In principal, the starting point for relaxation theories is the
introduction of a time-varying fluctuating term in the nuclear spin Hamiltonian
H(t) = H0 +H1(t). A thorough treatment of relaxation, therefore, requires a quantum
mechanical approach involving the dynamics of the density operator, which is beyond
the scope of this text. For a coarse review of the general approach see the box Density
matrix and master equation. In the Bloch equations both longitudinal and transverse
relaxation are treated in a phenomenological way as exponential decay constants (see
section 2.2). The Solomon equations take into account a coupled system of two spins
and the transition probabilities between those coupled spin states. With this approach
one can derive longitudinal and transverse relaxation rates in dependence of these
transition probabilities.
For dipolar coupling these probabilities are all dependent on the square of the dipolar
coupling constant − µ0

4π
}γ2

r3 and the so-called spectral density functions J (ω). The
density functions usually have a form of J (ω) = τc

1+ω2τ2
c

where τc is the so-called

5



1 Introduction

(a) T1 (b) T2 (c) contrast agent

Figure 1.1: Temperature dependence of relaxation times T1 (a), T2 (b), and the relaxivities r1
and r2 of Gadovist (c) at 3T [5]. Interestingly, T2 of fat shows a remarkably strong dependence
on temperature.

rotational correlation time [4, pp. 556]. Already we can see which molecular properties
can be probed by measuring the relaxation time, as τc is dependent on the size of the
molecules and the viscosity, and the overall strength of the relaxation is dependent
on the inverse sixth power of the distance r (for dipolar coupling) [4]. In fact τc is
connected to the rotational diffusion coefficient and the mean squared diffusion angle
〈θ2〉 by

2Drτc = 〈θ2〉 = 1, (1.12)

Dr =
kBT

8πηr3 , (1.13)

whereas the second equation is the famous Stokes-Einstein relation. One can now see
explicitly the temperature dependence. Own data on the temperature dependence of

Figure 1.2: T1 and T2 dependence on correla-
tion time τc. T2 is long for short correlation
times (water) and short for solid samples. T1
exhibits a minimum - it is long for fast rotat-
ing molecules but also long for solid samples
(reprinted from [6]). At point A there is rapid
molecular tumbling and the fluctuating fields
average to zero. At point O the correlation
time corresponds to the Larmor frequency
and transitions between energy eigenstates is
very effective. Therefore, T1 exhibits a mini-
mum at this point.

6



1.1 Relaxation theory

relaxation times obtained in a experimental porcine model as well as contrast agent
relaxivities are shown in figure 1.1. For the theoretical dependence of T1 and T2 on
the correlation time see figure 1.2. A very useful semiclassical theory is the Bloch
Wangsness Redfield (BWR) theory. A detailed discussion on relaxation theories can be
found in [7, 8].

Density matrix and master equation

The above presented formulas are valid for isolated spins. If one wants to describe the
dynamics of a whole ensemble of spins the spin density operator comes into play. It is
defined as

ρ(t) = |ψ(t)〉 〈ψ(t)| (1.14)

and is a useful construct to calculate the expected value of a quantum mechanical operator
I .

〈I〉 = trace{ρI} (1.15)

The equation governing the dynamics of the spin density operator can be directly deduced
by applying the chain rule and plugging in the Schrödinger equation,

d |ψ(t)〉 〈ψ(t)|
dt

=
d |ψ(t)〉

dt
〈ψ(t)|+ |ψ(t)〉 d 〈ψ(t)|

dt
(1.16)

= −iH(t) |ψ(t)〉 〈ψ(t)|+ i |ψ(t)〉 〈ψ(t)| H(t). (1.17)

Since the Hamiltonian is Hermitian (eigenvalues are real)

d 〈ψ(t)|
dt

= {−iH(t) |ψ(t)〉}H = +i 〈ψ(t)| H(t) (1.18)

This yields the so-called master or Liouville-von Neumann equation for the density matrix

dρ(t)
dt

= −i(H(t)ρ(t)− ρ(t)H(t)) = −i[H(t), ρ(t)] = −iL(t)ρ(t) (1.19)

where the square brackets denote the commutator and L(t) the Liouville operator. The
next step is to transform the equation in the so-called interaction frame to remove the
explicit influence of H0 [2, pp.351].

ρ∗(t) = eiH0tρ(t)e−iH0t and H∗1(t) = eiH0tH1(t)e−iH0t (1.20)

which yields the master equation in the interaction frame

dρ∗(t)
dt

= −i[H∗1(t), ρ∗(t)] (1.21)
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1 Introduction

Solving equation 1.21 gives

ρ∗(t) = e−i
∫ t

0 L
∗(τ)dτρ∗0 (1.22)

u ρ∗0 − i
∫ t

0
L∗(τ)dρ0τ − 1

2

∫ t

0

∫ τ′

0
L∗(τ′)L∗(τ)ρ∗(τ)ρ∗0dτdτ′ (1.23)

using the second order Taylor expansion for the operator exponential [7, pp. 276]. Taking
the time derivative yields

dρ∗(t)
dt

= −iL∗(t)ρ0 −
1
2

∫ t

0
L∗(t)L∗(τ)ρ∗0dτ (1.24)

= −i[H∗1(t), ρ∗0 ]−
1
2

∫ t

0
[H∗1(t), [H∗1(τ), ρ∗0 ]]dτ (1.25)

= −i[H∗1(t), ρ∗0 ]−
1
2

∫ t

0
[H∗1(t), [H∗1(t− τ̃), ρ∗0 ]]dτ̃ (1.26)

The Hamiltonian H∗1(t) is a random variable so therefore the ensemble average has to be
computed to arrive at a solution which gives (making some assumptions regarding the
correlation between the density matrix and the Hamiltonian [2, p.352], as well as zero
mean net fluctuations of H∗1(t))

dρ∗(t)
dt

= −
∫ ∞

0
[H∗1(t), [H∗1(t− τ̃)], ρ∗(t)]dτ̃ (1.27)

The solution to this equation is challenging and beyond the scope of this text. However, I
want to point out here that inside the integral we can already see something looking like
a correlation function, and indeed, the correlation functions and spectral densities often
encountered in MR literature have their origin right there. For a detailed derivation the
reader is referred to [7].

1.2 Relaxometry methods for T2

MR relaxometry is devoted to measuring the relaxation time constants. The term
relaxometry was first introduced by Koenig 1986 for the measurement of T1 dependence
on magnetic field strength [1, 9]. Relaxation times not only are biological markers for
physiological or pathological conditions, their measurement makes findings more com-
parable. In contrast to classical MRI, where images with arbitrary contrast depending
on sequence parameters are produced, with relaxometry intrinsic physical quantities
are measured. As with every measurement technique accuracy and precision of the
measured values are important and differ by the methods used. In the following para-
graphs I will give a short overview on the different methods, specifically on spin-echo
methods as these are used mostly throughout this thesis.
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1.2 Relaxometry methods for T2

1.2.1 Spin-echo sequences

The most obvious method to measure T2 is to deflect the equilibrium magnetization
to the transverse plane (e.g. by a 90◦ pulse), let it evolve, and refocus it using for
instance a 180◦ refocusing pulse to generate an echo at echo time TE, which is then
T2-weighted as the refocusing pulse eliminates effects of static dephasing (T′2). By
repeating this experiment for different TEs one can fit the measured echo amplitudes to
a mono-exponential (perhaps also multi-exponential) signal model S = M0e−TE/T2 if the
refocusing time TR is greater than 5 times T1 [6]. In this work this method is considered
the gold standard for T2 mapping. The biggest drawback and reason why this method
cannot be applied in clinical routine is clearly the duration of data acquisition due to
the long TR requirement. This limitation can be addressed using multi-echo spin-echo
sequences where a series of refocusing pulses are used to create multiple T2-weighted
echoes after a single excitation reducing the scan time by a factor equal to the number of
acquired echoes. However, this approach introduces new difficulties. By the repetitive
application of refocusing pulses with flip angles deviating from 180◦, the signal decay
is considerably altered, compared to a mono-exponential decay.

1.2.2 Multi-echo spin-echo (MSE)

(adapted from [10])

To acquire a series of images using multiple refocusing pulses a few considerations
concerning image encoding have to be made to achieve images devoid of artifacts. Multi-
echo sequences are in general subject to perturbations from B1+ and B0 inhomogeneities,
which are exacerbated especially at high field strengths. Implementations using slice
selective RF pulses are additionally disturbed by the non-ideal slice profile that usually
tapers off at the borders producing much lower flip angles than prescribed. The
consequences of B1+ and B0 inhomogeneities on T2 quantitation were extensively
investigated by Majumdar et al [11–14] and others [15, 16]. B1+ inhomogeneities cause
inaccurate flip angles and, thus, cause an incomplete refocusing of magnetization.
Furthermore, these perturbations convert certain parts of the excited magnetization into
longitudinal magnetization and give rise to Hahn echoes and stimulated echoes. These
so-called spurious echoes, which all have a different T1 and T2-weighting, depending
on the time they spent stored in the longitudinal plane, superimpose on the desired
primary echoes, and produce a systematic error which accumulates and propagates
throughout the echo train. Additionally, each spurious echo pathway experiences
distinct imaging gradients which can cause signal cancellation and ghosting artifacts
when the echoes are superimposed. This is true for MSE for the purpose of T2 mapping

9



1 Introduction

as well as in RARE sequences [17] for fast image acquisition.

The prerequisites for successful image generation can be subsumed as the so-called
CPMG conditions [18]:

1. Refocusing pulse must be 90◦ out of phase with excitation pulse and the spacing
between refocusing pulses must be twice the time as between exciation and first
refocusing pulse.

2. The acquired phase of the spins must be equal between each refocusing pulse
(which means in practice the encoding and crusher gradients have to have the
same moment or have to be rewound within the precession interval as done with
the phase encoding gradients).

The second condition on the one hand ensures the same encoding for all primary and
spurious echoes to avoid ghosting but on the other hand increases the echo amplitudes
and therefore alters the decay as all spurious echoes are added constructively to the
signal. This is deliberately used in [19] where these principles are applied in conjunction
with refocusing angles smaller than 180◦ to obtain images with still sufficient SNR. It’s
also possible to use crusher schemes that violate the CPMG conditions to suppress the
unwanted echo pathways but at the price of substantial loss of signal to noise ratio (see
also below).

In the original Carr-Purcell (CP) sequence [20] excitation and refocusing pulse had
the same phase leading to the effect that errors due to incomplete refocusing were
accumulated throughout the echo train. The Meiboom-Gill extension to the standard
CP multiecho sequence (CPMG) enables a refocusing of magnetization previously
converted into longitudinal magnetization for every second echo even if refocusing flip
angles (FA) α 6= 180◦ [21]. However, this is only true up to FA deviations of the first
order. Additionally, this modification does not eliminate stimulated echo contribution
but rather prevents an accumulation of error throughout the echo train. In the presence
of homonuclear J-coupling, this technique cannot compensate for errors [22]. More
elaborate techniques such as composite refocusing pulses [22, 23] assure insensitivity
to FA errors up to the second order. Robust variations of the CPMG phase conditions
include the MLEV [24] and XY [25] approaches in which specific phase orders for
subsequent refocusing pulses are repeated throughout the pulse sequence, and have
shown to stabilize the echo train [26]. The approach of phase cycling proves useful in
the cancelation of spurious echoes, however, at the cost of doubling scan duration [27].
Also a combination of both phase-cycling and composite pulses was proposed [28]. A
comparison of several of these techniques by Bloch simulations is shown in fig. 1.3 and
1.4 for refocusing angles of 150◦ and 120◦.
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1.2 Relaxometry methods for T2

(a) (b)

(c) (d)

(e) (f)

Figure 1.3: Comparison of different methods to stabilize the MSE echo train for a nominal
refocusing FA of 150◦, T1 = 2000 ms, T2 = 100 ms, and echo spacing τ = 10 ms: (a) CPMG
vs. CP - the CPMG sequence compensates for flip angle errors whereas the CP sequence
accumulates the errors resulting in a severe signal loss, (b) CPMG with crushers vs. CP
with crushers - due to the eliminations of all other than the primary echo pathways both
sequences yield the same result, i.e. an artificially faster decay, (c) CPMG vs. CP with an
α/2− α− α/2 composite refocusing pulse - the CPMG signal is perfectly refocused, the CP
signal is smooth but still deviates from mono-exponential decay, (d) XY vs. YX - both schemes
can only perfectly refocus every fourth echo, and (e) and (f) the MLEV-4 and MLEV-16 phase
cycling schemes (with composite pulse) perfectly refocus all echoes.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.4: Comparison of different methods to stabilize the MSE echo train for a nominal
refocusing FA of 120◦, T1 = 2000 ms, T2 = 100 ms, and echo spacing τ = 10 ms: (a) CPMG vs.
CP - the CPMG sequence largely compensates for flip angle errors whereas the CP sequence
accumulates the errors resulting in a severe signal loss, (b) CPMG with crushers vs. CP with
crushers - due to the eliminations of all other than the primary echo pathways both sequences
yield the same result, i.e. an artificially faster decay, also compared to fig. 1.3(b), (c) CPMG
vs. CP with an α/2− α− α/2 composite refocusing pulse - both variants cannot refocus the
echoes, (d) XY vs. YX - these schemes do not seem to work for FA deviation of that size,
and (e) and (f) the MLEV-4 and MLEV-16 phase cycling schemes (with composite pulse) still
perform quite good, at least for every other echo.
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1.2 Relaxometry methods for T2

(a) (b) (c)

Figure 1.5: (a) is a mono-exponential fit to a standard CPMG sequence (b) a fit to a multi-echo
spin-echo sequence with crushers, and (c) a fit to multiple single-echo spin-echo images.
The estimated T2 values are substantially different for all approaches. In (b) also strong
T2 variations can be seen which can be attributed to B1+ inhomogeneities. By crushing all
non-essential echo pathways, a certain amount of magnetization is lost with every refocusing
pulse, depending on the flip angle. This results in strong inhomogeneity and substantially
shorter T2. In contrast, in the CPMG sequence the magnetization is not crushed but stored,
and eventually contributes to the echo train, whereas with a different weighting.

In the presence of non-ideal slice profiles and, thus, strong FA deviations across
the slice, all above-mentioned approximations fail. To overcome this restriction, other
techniques altering the pulse sequence and, thus, violating the CPMG conditions, by
applying crusher gradients that eliminate all unwanted echoes in the echo train, have
been developed [14, 15, 29, 30]. In these sequences the crusher gradient moment
changes for every inter-pulse period throughout the RF train. However, the amplitude
of the acquired echo train also has to be corrected by acquiring additional data (e.g.,
B1+ maps) to account for the signal loss caused by the crushers. Fig. 1.5 shows a
comparison of T2 maps of a CPMG, a crushed multi-echo, and a single-echo spin-echo
sequence.

Other methods for improved T2 determination include broadening the refocusing
slice profile [31], single-slice measurements (i.e. hard pulse refocusing) and multiple
SE measurements (see above). Broadening the slice profile ensures an acceptable level
of homogeneity of the profile at the position of the excited magnetization but has the
shortcoming of limiting the number and distance of slices that can be acquired. The
use of single-slice sequences and single SE measurements lead to excessively prolonged
acquisition times, making them unusable in vivo, and still, stimulated echoes from B1+

inhomogeneities can also not be prevented in single slice measurements. Generally,
single SE measurements also exhibit a stronger influence of diffusion effects and J-
coupling. Adiabatic full-passage [32] pulses guarantee correct FAs and improved slice

13



1 Introduction

profiles but require long pulse durations and, thus, are associated with longer echo
times. Additionally, the specific absorption rate is substantially increased for these
pulses.

1.2.3 CPMG with stimulated echo correction

(adapted from [10])

Typically, in CPMG MSE sequences the mono-exponential decay is altered and accurate
T2 quantification is impeded. Discarding the first echo in the calculation of T2 seems
to be an established procedure in the processing of such data [33]. This approach will
yield accurate T2 estimates if the ratio T1/T2 is close to one [29]. However, for most
biological tissues this is not the case. Generally, the usability of published T2 values is
limited as the actual sequence design and fitting procedure are often not specified in
sufficient detail. In general, there is a need for post-processing and fitting algorithms
that accurately extract the T2 from the measured MSE decay. The approach presented
in [34] demonstrated substantial improvements by using the extended phase graph
(EPG) algorithm for the implementation of a more realistic model incorporating the
slice profile based on the repeated multiplication of appropriate rotation matrices. The
EPG was also used in [35, 36] whereas the slice profile was not explicitly incorporated
but instead an optimized SLR refocusing pulse was used and an average FA was fitted
from the data.

The Generating functions approach upon which this work is based on was introduced
by Lukzen [37, 38] for MSE (and other repetitive) sequences, whereas only the signal
equations were presented. A thorough investigation on the applicability to T2 mapping
was missing to date and can be found in the remaining chapters of this thesis.

Bloch simulations in combination with a dictionary based approach has also been
investigated [39].

However, if the right model is at hand and the equations are known one can make a
feature out of the previous limitation, such as lowering the flip angle for SAR reduction
whilst still computing accurate and comparable T2 values.

1.2.4 Steady state free precession - SSFP

A rapid method for simultaeous T1 and T2 mapping employs spoiled (SPGR, T1) and
fully balanced (bSSFP, T2) gradient echo sequences. The SPGR signal is used to quantify
T1 first as the bSFFP signal is dependent on both T1 and T2. Relaxation parameters are
then determined by fitting this signal equations to a series of images acquiring with
varying FAs [40–42].
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Another possibility using a bSSFP approach is the so-called inversion recovery (IR)
bSSFP sequence where a bSSFP readout is preceded by an inversion pulse [43–45]. The
acquired images can be fitted to a mono-exponential signal equation whereas the actual
relaxation parameters can be calculated from the fitted values if the flip angle is known.

A further SSFP method is the triple echo steady-state (TESS) sequence [46] where
a SSFP sequence is modified to acquire three differently weighted echoes in a single
TR. T1 and T2 can then be estimated by a fitting dedicated equations to ratios of the
acquired images.

In [47] a bSSFP sequence is used with a preceding T2 preparation module which
leads to T2 prepared sequences described further in the next section.

1.2.5 T2-prepared methods

T2 -prepared methods are constructed from a T2 preparation module followed by an
imaging sequence. In [48] a CPMG preparation module is used followed by a FLASH
readout, whereas an EPI readout after a spin echo preparation module is used in [49].
A saturation recovery module followed by a spin echo module and an EPI readout was
used in [50] for simultaneous T1 and T2 quantification. The GESSE sequence [51] uses
a gradient echo readout to sample a previously generated T2-weighted spin echo.

1.2.6 Fast methods

As in every subarea of MR people have tried to make it faster. To give a few ex-
amples, e.g. compressed sensing was used to construct parameters maps in [52–55].
The approach of a model based reconstruction of MR images by iterative non-linear
inversion [56, 57] directly reconstruct the parameter maps from the raw data [58, 59].
Just recently a model based approach including simultaneous multi-slice reconstruction
was presented [60].

Further, [61] exploited the temporal correlation of the MR-signal in k-space for
reconstruction. Another approach based on balanced SSFP employed a radial view
sharing technique to quantify T1 and T2 [44]. Last but no least, MR fingerprinting
is yet another approach were pseudo randomized sequences are used to generate a
relaxometric fingerprint of the underlying spins [62]. Quantitation is then performed
using a dictionary based approach.

Unlikely to be a complete list of available methods, the above section is aimed at
giving the reader a coarse overview on the variety of methods that can be used for MR
relaxometry.
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1.3 Why is mapping of MR relaxation times important?

I’ve already mentioned in the very beginning of this thesis that the main advantage of
qMRI is its ability to create reliable biomarkers that are only related to intrinsic tissue
properties and not to external factors such as sequence, field homogeneity, or scanner.
Hence, they are biomarkers that allow a direct comparison of results, for instance in
multi-center or longitudinal studies.
A vast amount of literature exists investigating different parameters with respect to
their suitability to reliably detect, grade, or monitor disease and to asses their predictive
or discriminatory value. In this section I briefly present a few exemplary medical
conditions in which qMRI was successfully applied.

Brain. Both T1 and T2 values, as well as proton density (PD), have been used in
the characterization of multiple sclerosis [63] and a change of relaxation times can be
observed in both white and gray matter [1]. An increase of T1 and PD where found in
the cerebral cortex for MS patients in [64]. A multi-exponential T2 fit can be deployed to
calculate the myelin water fraction which is a useful biomarker related to demyelination
[65] also in the spinal chord [66]. In [67] a multi-parametric approach was used and a
correlation between the evolution of lesions and T1 increase in normal appearing white
matter over time was found. For more information on MR relaxometry in multiple
sclerosis see reviews [68] and [69].
In brain tumors it was shown that T1 values are elevated with glioblastomas having
the longest T1 values. Peritumoral edema in malignant gliomas was investigated with
relaxometry in [70] and revealed tissue changes not visible on conventional MRI. [71]
found promising results in glioblastoma monitoring in patients with anti-angiogenic
therapy. Regarding vascularization, tumor perfusion and breakdown of the blood brain
barrier relaxometry methods are indispensable for dynamic contranst enhanced (DCE)
and dynamic suceptibility contrast (DSC) perfusion measurements.
Furthermore, in stroke one can observe an increase in T1 and T2 times [72] and also in
diseases like autism, dementia and Parkinson’s disease relaxation times are elevated
[1].

Body. In osteoarthritis relaxation times are related to the biophysical and biochemical
aspects of the disease. For instance, are changes in collagen content associated with
changes in T2 and T∗2 , whereas T2 also reflects changes in collagen organization [1].
Furthermore, it was found that T2 map signal variation can predict symptomatic os-
teoarthritis progression and is possibly an early osteoarthritis imaging biomarker [73].
Relaxation time mapping proved useful in the differentiation of colon cancer metastases
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in the liver [74] or the distinction between benign and malignant hepatic lesion based
on T2 times [75]. T2 has shown to have predictive value in prostate cancers (Gleason >=
7) [76]. Quantitative T2 maps obtained in [77] allowed for high precision discrimination
between the healthy and cancerous peripheral zone in the prostate. A significant
difference between benign and malignant breast lesions could be established in [78].
Other applications include fatty liver disease, muscle inflammation and edema distinc-
tion [1]. Finally, T1 based MR thermometry can be used to monitor temperature in
thermal ablation procedures [79].

Blood (adapted from [80]) The idea of characterizing blood and its constituents
using MRI is not new as show various studies of blood in vitro [81–89] and two case
studies which investigated the changes of blood over time at 0.15 T and 0.47 T [90, 91].
It was shown that the oxygenation state of hemoglobin (Hb), the amount of different Hb
metabolites such as methemoglobin (metHb), and the intactness of the cell membrane
of the red blood cells (RBCs) play a key role in understanding hemorrhage behavior in
MRI, as they affect both transversal and longitudinal relaxation times. According to the
alteration of the relaxation times also the MRI signal is changed. These changes allow
for a rough estimation of the age of intracranial hematomas. The literature largely
agrees on the stages hyperacute, acute, early and late subacute, as well as chronic [92,
93]. While these stages might be sufficiently determined for a use in neuroradiology,
they may not be transferable to subcutaneous hemorrhage which is of interest in
forensic imaging due to the influencing factors of the surrounding tissue [94, 95]. Fig.
1.6 shows the time course of relaxation times changes of whole blood obtained in our
in vitro study [80]. One can observe the initially high T1 values that start to decrease as
soon as metHb is forming. For T2 a decrease is observed upon deoxygenation followed
by a subsequent increase due to the homogenization of the sample as cells lysis occurs.

Iron. The condition of iron overload, whether in the brain or other organs, poses a
severe problem to the affected person as it e.g. linked to cognitive dysfunction [96]
or can even cause death after injuring body organs [1]. T2 and T∗2 mapping methods
produced very promising results for the purpose of iron content quantification as iron
depositions directly affect these relaxation times. MR results were validated using
biopsy or post-mortem analysis and calibration curves could be established [32, 96–99].

Other. Quantification of brain perfusion using methods as DCE or DSC MRI requires
the measurement of relaxation times as they are altered by the administered contrast
agent. Also in arterial spin labeling (ASL) both correction for T1 and T2 effects is
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Figure 1.6: T1 and T2 changes during the aging of stationary blood. In this in-vitro study we
investigated the systematic changes of the relaxation times during the degradation of whole
blood samples at 3T (time axis stretched due to experimental design) [80].

necessary for an accurate quantification of cerebral blood flow [100]. Further, for
quantiative BOLD (blood oxygenation level dependent) imaging and measurement of
tissue oxygenation knowledge of T2 and T∗2 is necessary [101].
Synthetic MRI utilizes the knowledge of the relaxation parameters and proton density
to be able to synthetically generate images with any desired contrast weighting any
time after the scan [102].

All these results demonstrate the value accurate quantitative mapping techniques
can provide in diagnosing and assessing disease. The alterations of relaxation times
in diseased tissue are consequences of changes in physiology which in turn alter the
physical properties in the affected tissues, such as viscosity and molecular mobility.

1.4 General considerations

1.4.1 B1+ mapping

"RF nonuniformity is the largest cause of error in qMRI"1

Excact knowledge of the spatial distribution of the effective B1+ field is a key prerequi-
site for most quantitative MR techniques, namely those where either the excitation or
refocusing flip angle enters the calculation of the final parameters or alters the signal
such that it deviates from the applied signal model. This is for instance the case for

1Paul Tofts, Quantitative MRI of the brain, John Wiley and Sons Ltd., 2004 (chapter 2).

18



1.4 General considerations

T2 mapping with MSE sequences or T1 mapping with a variable flip angle method
(VFA). However, T2 quantification using multiple single spin echo sequences (which is
clinically infeasible) is not impeded because the flip angle enters the equation for every
echo in the same way and is incorporated into M0 during data fitting.

The strength of the B1+ field in-vivo directly determines the flip angle that is achieved
at this position given a certain transmit coil voltage. The reasons for B1+ inhomo-
geneities are manifold: (1) the transmit inhomogeneity of the coil itself which is
strongly exacerbated for e.g. multi-array transmit coils compared to the body coil, (2)
coil loading which requires the transmit voltage to be adjusted but varies from patient
to patient, (3) dielectric resonance effects at higher field strengths (e.g. 3T) and (4)
transmitter nonlinearity [103].

If accurate quantification with MRI is desired it’s of paramount importance to know
the exact value of the flip angle for each pixel. However, due to the very smooth and
spatially slowly varying character of B1+, a coarser resolution map is usually adequate
which is then interpolated onto the image matrix [104]. The next paragraph shortly
introduces some of the common methods for B1+ mapping.

B1+ mapping methods. One of the most common methods is the so-called double
angle method (DAM) [105] where two spin echo images I1(~x) and I2(~x) are acquired
and the excitation flip angle is doubled for the second acquisition (α2 = 2α1) or a variant
thereof [106]. The B1+ spatial scaling factor λ(~x) can be obtained using equation 1.28.

α1(~x) = arccos
I2(~x)

2I1(~x)
λ(~x) =

α1(~x)
αnom

1
(1.28)

Another common method is B1+ mapping by Bloch-Siegert (BS) shift [107] of which
very fast implementations exist [108]. It consists of a standard spin-echo or SPGR
sequence augmented by far off-resonant high flip angle pulses during the free precession
times, once with a positive and once with a negative frequency offset ±ωRF. Far off-
resonant pulses exhibit a major component of their effective field in z-direction giving
rise to accumulation of phase proportional to the B1+ field. The B1+ magnitude can be
estimated from equation 1.29

ϕBS = B̂2
1+ ·

∫ T

0

(γB1+(t))2

2ωRF
dt B1+(t) = B̂1+ · B1+(t) (1.29)

where B̂1+ is the peak amplitude, B1+(t) the normalized RF pulse shape, and T the
pulse length. Another phase sensitive method uses a non-selective 180◦x followed by
a 90◦y pulse. Flip angle deviations will produce transverse magnetization for the 180◦x
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Figure 1.7: Severe B1+ inhomogeneities measured on a 3T scanner (Tim Trio, Siemens) in a
homogeneous water phantom with regions of nominal flip angles confined to a thin ring. A
comparison between the DA and BS methods demonstrates good agreement.

Figure 1.8: Strong B1+ inhomogeneities in the upper thigh. Left: GRE Bloch-Siegert map (8kHz
off-resonant, 700◦ angle). Right: Spin echo double angle map (excitation angles 60◦ and 120◦).
In areas of two times the nominal angle the spin echo sequence fails, as the refocusing angle
is doubled to 360◦.

pulse which is measured using the 90◦y. B1+ is then reflected in the phase of the acquired
signal [109]. Actual flip angle imaging (AFI) operates in the pulsed steady state and
employs a 3D SPGR sequence where TR is alternated between TR1 and TR2 for every
other echo and the flip angle is computed from the two acquired images [110]. Yet
another type of methods utilizes the fact that the signal is zero for a 180◦ excitation
[111] [112]. Acquiring a set of images with angles around 180◦ and making a linear
approximation of the signal equation permit to estimate the actual angle by linear
regression.

Figure 1.7 shows B1+ maps of a large water phantom with quite severe radial
inhomogeneities. The agreement between the DA and BS methods is quite good for
large regions. In figure 1.8 an example of severe B1+ inhomogeneity in the human
thigh is shown. In the left part of the thigh the FA is at some points twice as high as
prescribed (Bloch-Siegert map, left side). In these regions the DA method fails, due to
refocusing issues, i.e. the actual refocusing FA is 360◦ and no echo is produced. This
issue is also nicely illustrated in figure 1.9 where an MSE and a GRE image of the same
thigh are shown next to each other. The GRE images exhibits a rather homogeneous
signal intensity whereas the MSE exhibits a complete signal void in the lower left
area. This is due to the nature of the MSE sequence and the effects of severe B1+
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Figure 1.9: Strong B1+ inhomogeneities in the upper thigh. On the left a MSE and a GRE image
of the same thigh are shown. On the right the cross sections are qualitatively compared.

inhomogeneities. In this area the MSE excites with 180◦, i.e. it inverts, and refocuses
by turning the magnetization one full time around. Hence, no signal can originate
from these areas. For the GRE sequence the FA is much lower and even if doubled
still produces acceptable images. In this thesis the DAM was used for B1+ mapping in
phantom experiments and BS for in vivo measurements, respectively.

1.4.2 Computation of the slice pro�le

Slice selective excitation and refocusing are the main sources of error for T2 quantifi-
cation with MSE sequences, or generally for all quantification methods where the flip
angle enters the calculation and must be known correctly. For instance, VFA methods
are therefore mainly applied as 3D sequences. This problem becomes especially appar-
ent for large flip angles as refocusing pulses are in MSE sequences. The reason for this
is that in this regime the small flip angle approximation breaks down.

In principle, the slice profile can be computed by applying the Fourier transform
on the pulse shape for small flip angles. For larger flip angles this approximation
breaks down and the slice profile deteriorates, losing it’s sharp edges. That means
that at the edge of a refocusing slice profile the nominal flip angle is not achieved,
which is fundamentally equal to a severe B1+ inhomogeneity. For that reason accurate
knowledge of the slice profiles of the applied pulses is essential.

In this work all slice profiles that were used were computed with the so-called forward
Shinnar Le-Roux transform [113]. The SLR transform utilizes the so-called hard pulse
approximation where the shaped RF pulse is subdivided in short but constant hard
pules each followed by a short period of precession due to the slice selection gradient.
The rotations are computed using so-called spinors and 2×2 complex rotation matrices
(SU(2)) employing the Cayley-Klein parameters [114]. This method is closely related to
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the theory of quaternions and the Pauli spin matrices used in quantum mechanics. A
SU(2) rotation is defined in matrix form as

Q =

[
α −β∗

β α∗

]
(1.30)

with

α = ei(χ+ψ)/2 cos
η

2
, (1.31)

β = iei(χ−ψ)/2 sin
η

2
(1.32)

χ, ψ and η being the Euler angles of rotation.

The forward SLR transform

In terms of RF rotations the nutation and precession matrices can be written as [115]

N =

[
cos θ

2 ie−iφ sin θ
2

ieiφ sin θ
2 cos θ

2

]
P =

[
eiψ/2 0

0 e−iψ/2

]
(1.33)

θ and φ being the nutation angle and phase, and ψ the precession angle γ∆B∆t = γ~G~r∆t.
The matrix P can be rewritten as

P =

[
z1/2 0

0 z−1/2

]
= z1/2

[
1 0
0 z−1

]
(1.34)

In the SLR algorithm the initial spinor state is s0 = [1 0]T. That yields after the
first precession Ps0 = z1/2[1 0]T and after the first nutation N the spinor s1 =

[cos θ
2 ieiφ sin θ

2 ]
T. This procedure is carried out for the whole pulse with Q = NP

sn = z1/2Qnsn−1 (1.35)

The final spinor elements sN = [a b]T can afterwards be transformed to either a
magnetization profile like for an inversion pulse Mz = M0(1− 2|b|2) or to the RF
pulses’ axis and angle parameters α (rotation angle) and θ and φ (defining the rotation
axis ~n) using the parameter relations given by Pauly [113].

a = cos
α

2
− inz sin

α

2
b = −i(nx + iny) sin

α

2
(1.36)

The whole procedure might not seem very intuitive at first sight but the SU(2) rotations
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1.4 General considerations

Figure 1.10: Qualitative comparison of slice profiles computed using the forward SLR algorithm
for 90◦ excitation and subsequent refocusing with angles from 45◦ up to 180◦. On the top
row the actual pulse shapes are shown. (Pulse shapes were taken from vendor supplied
multi-echo spin-echo sequence.)

reduce the effective number of mathematical operation, although it is not possible to
account for relaxation effects during the RF pulse. Figure 4.5 gives an overview on how
the slice profiles are shaped for given pulses and substantially degraded edges become
apparent after refocusing.

1.4.3 Additional considerations

Di�usion, J-coupling J-coupling and diffusion pose a definite problem on T2 quan-
tification with multi-echo spin-echo sequences that can not easily be remedied. Both
effects are "hiding" in T2 and are dependent on the echo spacing whereby shorter echo
spacing tendentially suppress the effects [116, 117]. Both influences cannot be totally
refocused by RF pulses.

Di�usion Transverse magnetization (i.e. coherent spins) exposed to a magnetic field
in z-direction will eventually accumulate phase φ(t) according to

M+(t) = M(0)eiφ(t) = M(0)eiγ
∫ t

τ=0 B(τ)dτ (1.37)

Usually B(τ) is deliberately altered for the purpose of image acquisition but there are
also numerous reasons where field inhomogeneities will produce unwanted phase, es-
pecially in gradient echo sequences. For example, an unwanted constant field gradient
in a voxel will produce phase dispersion that cannot be refocused in a gradient echo
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sequence and lets the magnetization decay faster with a sinc like behavior
When the signal of a voxel is measured a whole ensemble of spins has to be considered
and the signal amounts to the integral over the whole spin ensemble. Furthermore,
when it comes to diffusion or relaxation like processes the field B(t) is usually consid-
ered a stochastic variable, due to field fluctuations or diffusion of the spins through
different field strengths. Generally, the expected value of the phase and magnetization
can be expressed as:

〈M(t)〉 =
∫
~x

M(0)eiγ
∫ t

0 B(~x,τ)dτ · f (B(~x, t),~x)d~x (1.38)

〈φ(t)〉 =
∫
~x

iγ
∫ t

0
B(~x, τ)dτ · f (B(~x, t),~x)d~x (1.39)

where f (B(~x, τ),~x) denotes the probability density function that could be a function of
the field or the spin position ~x. Note that here we consider the spatial integral.

Let us now assume a linearly varying field in z-direction, i.e. a constant gradi-
ent, B(~x) = ~G · ~x in the volume of interest which is not changing with time. The
magnetization at time t then becomes

M+(t) = M(0)eiγ~G·~xt. (1.40)

In the case of diffusion the random variable now is the position ~x of each individual
spin. For the sake of simplicity only one spatial coordinate is considered hereafter. The
stochastic process at hand can now be modeled by a discrete random walk and the
position of each spin at time τj = jτd (τd being the diffusion time) will be expressed as

xj = x0 + ∆1 + ∆2 + · · ·+ ∆j = x0 +
j

∑
i=1

∆i (1.41)

where each ∆j is a distinct diffusion step width. All ∆js are uncorrelated and normally
distributed with N (0, σ∆). The accumulation of phase can then be written as

φk = φk−1 + γGxjτd = γGτd

k

∑
j=1

xj (1.42)

= γGτd

k

∑
j=1

(
x0 +

j

∑
i=1

∆i

)
. (1.43)

Considering yk = ∑k
j=1

(
x0 + ∑

j
i=1 ∆i

)
a new random variable the magnetization after
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Figure 1.11: Phase accumulation scheme for free diffusion: ∆i correspond to individual random
jumps, whereas xi denotes the position. The accumulated phase is indicated by the blue
squares.

k diffusion steps becomes

M+(k · τd) = M(0)eiγGykτd . (1.44)

As yk is a sum of normally distributed random variables and a constant x0 it will
again be normally distributed with mean µy and standard deviation σy. Computing the
expectation value yields the general result

〈M(k · τd)〉 = M(0)eiγGτdµy− 1
2 γ2G2τ2

d σ2
y (1.45)

where the first part of the exponent accounts for free precession of the whole spin
ensemble if the mean position is not zero and the second part for signal decay due to
diffusion in a constant gradient field. The exact values of µy and σy depend on the MR
sequence and still have to be calculated. I will now have a closer look at two distinct
situations: Free diffusion through a constant gradient field and free diffusion through
that field with refocusing.

Free di�usion. In fig. 1.11 the phase that accumulated after 8 time steps is marked
in blue, whereas horizontally the individual uncorrelated jumps ∆i are indicated and
vertically the actual positions, being the sum of the jumps marked in blue. The random
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phase accumulated after 8 jumps is just the some of all marked jumps. As we know
from probability theory, the sum of normally distributed random variables is also
normally distributed but with different mean and standard deviation. If the variables
are uncorrelated, the individual variances sum up, if they are correlated an additional
covariance term has to be included. Var(X, Y) = Var(X) + Var(Y) + 2Cov(X, Y).
Specifically if we have j times the same variable we get Var(jX) = j2Var(X) As we see
from the columns in fig. 1.11 we have 8 times ∆1, 7 times ∆2, and so on. Furthermore,
as every ∆i has the same standard deviation we can write the expected variance if σ2

y

after k jumps as

σ2
y = σ2

∆

k

∑
j=1

j2 = σ2
∆

(
k3

3
+

k2

2
+

k
6

)
(1.46)

and the mean µy = kx0. For large k the term k3/3 dominates and we get

〈M(k · τd)〉 = M(0)eiγGτdkx0− 1
2 γ2G2τ2

d
k3
3 σ2

∆ (1.47)

or

〈M(t)〉 = M(0)eiγGx0t− γ2G2σ2
∆

6τd
t3

(1.48)

= M(0)eiγGx0t− γ2G2D
3 t3

(1.49)

by considering t = kτd and the diffusion constant being D = σ2
∆/(2τd). The expected

magnetization value therefore decays with the third power of t.

Free di�usion with refocusing. From fig. 1.12 one can see that the situation is quite
different when refocusing comes into play because after refocusing the accumulated
phase needs to be subtracted and parts of the diffusion jumps cancel (marked with
color). For each refocusing cycle with k steps (8 in the figure), the variance of ŷk is

σ̂y
2 = σ2

∆

((
k
2

)2

+ 2
k/2−1

∑
j

j2
)

= σ2
∆

(
k3

12
+

k
6

)
(1.50)

which linearly increases with echo number n (light red areas in figure 1.12).

σ2
y = nσ2

∆

(
k3

12
+

k
6

)
(1.51)
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Introducing the echo spacing τ with τ = kτd and t = nτ one gets the following result
(µy = 0):

〈M(n)〉 = M(0)e−
1
2 γ2G2τ2

d
nk3
12 σ2

∆ (1.52)

= M(0)e−
γ2G2σ2

∆
24τd

τ3n (1.53)

= M(0)e−
γ2G2D

12 τ3n (1.54)

The expected value of the magnetization now only decays linearly with echo number,
but with the third power of echo spacing. This fact is reflected in the apparent T2

measured with multi-echo sequences and it’s obvious that shorter echo spacing yields
a slower decay.

J-coupling The effect of J-coupling, i.e. the electron mediated spin-spin coupling of
neighbouring nuclei, manifests itself as a frequency difference resulting in a continuous
phase accrual that cannot be reversed by 180◦ refocusing pulses. Principally, this results
in a cyclic modulation of the spin echo signal. For complex spectra the summation of
many of these oscillating signals yields a signal decay with apparently lower T2 which
is also dependent on the echo spacing in multi-echo sequences. The shorter the echo
time the higher the apparent T2 as the CPMG echo train decouples the spin system
[118, 119]. Furthermore, if the echo spacing τ is sufficiently small, i.e.

|J|τ � 1 and |∆δ|τ � 1 (1.55)

(where J is the coupling constant and ∆δ the chemical shift difference) the echo decay
is unmodulated even when there is strong homonuclear coupling [117]. The effect of
J-coupling is most prominent in oil or fatty tissue (see sec. 3.3) and is also the reason
why fat appears brighter in TSE (RARE) sequences compared to SE sequences [119].
In [120] density matrix simulations were computed using the equations of Allerhand
[117] to study the dependence of the CPMG echo amplitudes on J-coupling. The
result was that the effect of J-coupling disappears when τ is small. If τ becomes too
big a modulation of the echo train becomes visible. Furthermore, the relative signal
amplitude at a specific echo time becomes unpredictable for larger τ depending on the
strength of the coupling. In fig. 1.13 these two findings are illustrated (reprinted from
[120]).

A measurement of the J-coupling evolution and T2 values in oil phantoms and in
vivo fatty tissue was performed in [121] once using broadband (565 Hz) and once
narrow-band refocusing pulses (50 Hz, in the order of magnitude of the chemical
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Figure 1.12: Phase accumulation scheme for a multi-echo spin-echo sequence: ∆i correspond
to individual random jumps, whereas xi denotes the position. The accumulated phase is
indicated by the colored squares. The + and − signs in the leftmost column indicate the sign
reversal due to refocusing pulses. This sign reversal yields to complete cancellation of parts
of the accumulated phase (marked with colored boxes) leaving only the parts shaded in light
red for each echo.
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1.4 General considerations

(a) Effect of J-coupling on signal evolution. (b) Effect of echo spacing on relative signal ampli-
tude.

Figure 1.13: Illustration of the effect of J-coupling on a CPMG echo train. (a) Signal vs. echo
number for different echo spacing (∆δ = 40 Hz and J = 6 Hz), (b) relative echo amplitude vs.
echo spacing for different J-couplings and ∆δ = 40 Hz (reprinted from [120]).

shift difference of CH2 and CH3 protons) and a PRESS sequence. Only with narrow
bandwidth pulses a meaningful T2 could be obtained as the J-coupling modulations
disappear.
Considering the above results, one certainly has to pay attention when measuring and
interpreting T2 values of J-coupled protons.

Magnetization transfer and chemical exchange. Off-resonant irradiation of macro-
molecular protons in adjacent slices poses a problem in slice selective MSE echo
sequences. Additionally direct saturation effects due to overlapping slice profiles are
present which can be minimized by introducing a larger slice gap between adjacent
slices. Both mechanisms result in a loss of signal intensity. A slice gap of 100% was
shown to be sufficient to mitigate these perturbations [118]. Allerhand et al. [116]
investigated the behavior of the CPMG echo decay in relation to exchange processes
between sites of different chemical shifts or T2 times. If the echo spacing is small
enough exchange effects due to different chemical shift are eliminated, for large echo
spacing the relaxation rate becomes a function of τ. The general impact on the echo
decay will also depend on the rate of exchange. The Luz-Meiboom equation is an
example of a limiting case for a fast exchange process (detailed assumptions see [116]):

1
T2

=
1

T0
2
+ τex

[
1− 2τex

τ
tanh

τ

2τex

]
∑

j
pj(∆ωj)

2 (1.56)
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One can readily see how the apparent transverse relaxation times is dependent on the
exchange rate 1/τex and the echo spacing τ (pj being the relative intensities and ∆ω

the chemical shift for j different sites).
Furthermore, the signal in bSSFP sequences is also dependent on magnetization

transfer [122] which has to be taken into account when used for MR relaxometry.

Multi-compartment parameter estimation. Several tissues in the human body exhibit
a multi-compartment T2 characteristics with a short and a long T2 component, e.g. white
brain matter where the short T2 component belongs to the myelin bound water. Clearly,
the rules that are valid for multi-exponential fitting, which is inherently ill-posed
[123, pp. 252], have also be regarded with more complicated models. Stimulated echo
correction using the extended phase graph (EPG) was applied for multi-component T2

fitting and lead to an improved consistency and accuracy of the myelin water fraction
[36]. In chapter 4 multi-compartment fitting was investigated too.

Data �tting. Most of the estimation techniques involve a non-linear parameter fit of
which the goodness certainly has to be assessed as to confirm or disprove the applied
model. Unfortunately, most measures of quality are derived for the linear case and
are not or only partly applicable. However, measures like the residual, the coefficient
of determination, the covariance matrix of the parameters, to name a few should be
assessed (see [124, pp. 170]).

Validation. Validation is of paramount importance when new models are developed.
First, simulations should be made, where the model is inspected and used in various test
cases. Second, for T2-reliable and stable phantoms are essential, preferably characterized
with a "gold standard" sequence, if there is one. Third, in vivo measurements have
to be conducted, and what is most often forgotten, repeated. No method should be
compared to another unless it wasn’t successfully compared to itself in a repeatability
and reproducibility study.

I tried to adhere to these principles throughout the presented studies.

1.5 Dissertation outline

Throughout this thesis the following topics will be covered:

Chapter 1 you’ve just read...

Chapter 2 covers the z-transform, Bloch equations, the Generating functions
formalism to calculate MR signals and a few illustrative examples
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1.5 Dissertation outline

Chapter 3 investigates the impact of the slice-profile on T2 -mapping with slice
selective multi-echo spin-echo sequences

Chapter 4 derives the Generating function for MSE sequences and a time domain
version thereof

Chapter 5 derives a signal equation for the longitudinal MSE magnetization and
uses it to simultaneously estimate T1 and T2

Chapter 6 shortly discusses the presented work
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2
The Generating Functions approach

The so-called Generating Functions approach (GF) as it was used by Lukzen et al. [37,
38] is an alternative name for the z-transform [125], specifically when ordinary GF are
meant, and was originally introduced already 1730 by DeMoivre [126]. It can be used
to compute solutions to linear constant coefficient difference equations and is often applied
in signal processing for the analysis of linear time-invariant systems [127]. I will use
the terms Generating functions and z-transform interchangeably throughout this text.

In multi-echo sequences in MRI the solution to the Bloch equation can be formulated
by a recurrence relation, i.e. a system of linear constant coefficient difference equations
provided the refocusing flip angle stays the same throughout the echo train. In this
context, Lukzen et al. first developed a closed form solution for non-slice-selective
CPMG sequences [37]. In their 2007 paper they describe an analytical formula for the
echo amplitudes for spin-echo sequences with repetitive application of RF pulses.

In this chapter I will briefly outline some key properties of the z-transform and it’s
application to difference equations and, specifically, to the Bloch equation reccurence
relation.

2.1 The z-transform

The z-transform is a transformation or series expansion that assigns in a certain domain
a holomorphic function to a sequence of numbers [128]. It is formally equivalent to
ordinary Generating Functions or the Laurent series [125]. It can be seen as Laplace
transform for time discrete systems, and can be derived from applying the Laplace
transform to signals passed through a sample and hold circuit [128]. Just as the Laplace
transform can be used to solve differential equations, the z-transform can be used to
solve difference equations, analogously.

There exist two different definitions for the z-transform Z(x[n]) of some time discrete
function x[n]; the version usually used in signal processing

Z(x[n]) = X(z) =
∞

∑
n=−∞

x[n]z−n, (2.1)
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2 The Generating Functions approach

and the so called geophysical definition [129]

X(z) =
∞

∑
n=−∞

x[n]zn (2.2)

which will be used throughout this text, mainly to be in accordance with the calculations
done by Lukzen. For causal systems, i.e. x[n] = 0 for n < 0, usually, the unilateral
version of the z-transform is used which is defined by

X(z) =
∞

∑
n=0

x[n]zn (2.3)

2.1.1 Properties of the z-transform

Here, some properties of the z-transform and some essential correspondences x[n] c sZ X(z)
that will be needed later in the text are given. The detailed description and proof of the
stated properties is out of scope of this work and is to be found elsewhere [125, 127,
128].

Time shifting property. The time shifting property establishes a simple relation for
the z-transform of x[n] and a time shifted version x[n + k]. This property will be used
to solve the difference equations.

X(z) =
∞

∑
n=0

x[n]zn = x[0] + x[1]z + x[2]z2 + · · · (2.4)

X̂(z) =
∞

∑
n=0

x[n + 1]zn = x[1] + x[2]z + x[3]z2 + · · · (2.5)

= z−1X(z)− x0z−1 (2.6)

or more generally Y(z) =
∞

∑
n=0

x[n + k]zn = z−k{X(z)−
k−1

∑
n=0

x[n]zn} (2.7)

Final value theorem. The final value of the sequence x[∞] can be easily computed by
eq. 2.8 and is very useful to calculate the steady state signal equation for certain MR
sequences.

lim
z→1

(z−1 − 1)X(z) = lim
n→∞

x[n] = x[∞] (2.8)
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2.1 The z-transform

Initial value theorem. The inital value x[0] can be readily computed from X(z) using
the limit

lim
z→0

X(z) = lim
z→0

∞

∑
n=0

x[n]zn = lim
z→0

x[0] + x[1]z + x[2]z2 + · · ·+ x[∞]z∞ = x[0]. (2.9)

Damping rule. Multiplication of the original sequence x[n] with an exponential func-
tion an leads to the so called damping rule and can be used for apodization of signals
so as to force them to zero for large n. This property is very useful when the original
sequence is reconstructed from X(z) using the discrete Fourier transform (DFT) (see
sec. 2.1.2).

X(az) =
∞

∑
n=0

x[n](az)n = Z(x[n]an) (2.10)

Region of convergence. For sequences encountered throughout this text, i.e. causal
or right-handed sequences that are zero for all n < 0 the region of convergence (ROC)
extends inwards from the innermost pole (for the geophysical definition). The ROC
cannot contain any poles. If the unit circle lies within the ROC the relation of the
z-transform to the DFT can be used to evaluate X(z) and successively compute x[n]
numerically (sec. 2.1.2)

Some correspondences. In tab. 2.1 some correspondences are given, which will be
used later on in this text, specifically to calculate limiting cases for the CPMG pulse
sequence to validate the corresponding z-transform.

Function Time domain z-domain

Unit step u[n] =
{

1 n ≥ 0
0 n < 0

U(z) =
1

1− z

Exponential x[n] = anu[n] X(z) =
1

1− az

Alternating exponential x[n] = (−1)nu[n] X(z) =
1

1 + z

Table 2.1: Time domain – z-domain correspondences
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2 The Generating Functions approach

2.1.2 Relation to discrete time Fourier transform and DFT

One can easily see that, if z is confined to the unit circle, i.e. z = eiψ, the z-transform
equation 2.2 reduces to the discrete time Fourier transform (DTFT).

X(z) =
∞

∑
n=−∞

x[n]zn

∣∣∣∣∣
z=eiψ

=
∞

∑
n=−∞

x[n]eiψn = X(eiψ) (2.11)

If a signal has a finite number of samples N, the angle ψ can also be sampled at N
discrete values, ψk =

2πk
N , where k = 0 . . . N − 1, and we get the well known DFT and

inverse DFT (iDFT) formulas:

X[k] =
N−1

∑
n=0

x[n]e
2πi
N kn (2.12)

x[n] =
1
N

N−1

∑
k=0

X[k]e
−2πi

N nk (2.13)

Note, that here again the minus sign in the exponent is switched between the two
formulas compared to the classical definition of the DFT. If X(eiψ) exists on the unit
circle, i.e. the unit circle lies within the region of convergence, one can easily evalu-
ate it and calculate x[n] numerically using the iDFT. However, care has to be taken
when the sequence x[n] is truncated because so called truncation artifacts will arise.
Sampling X[k] at a higher rate, e.g. 4N points, can remedy the problem but increases
computational cost. If one wishes to compute X[k] from x[n] for further processing the
apodization property described previously comes in quite handy as multiplication with
an (|a| < 1) tapers off x[n] and reduces these artifacts.

2.1.3 Solving a simple di�erence equation

As mentioned at the beginning of this chapter the z-transform is often used to solve
linear difference equations with constant coefficients. I will present here two simple
examples to show the reader how this can be accomplished. The same principle is later
used for a system of difference equations, namely the Bloch equations.

Example 1 - homogeneous equation. Given the simple difference equation x[n+ 1] =
bx[n] with initial condition x[0] = const. one can easily obtain a transformed equation

z−1X(z)− x[0]z−1 = bX(z) (2.14)

X(z) =
x[0]

1− bz
(2.15)
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From tab. 2.1 one can see by inspection that Eq. 2.15 corresponds to the time domain
equation

x[n] = x[0]bn (2.16)

which equals the T2 decay if x = M+, and b = e−τ/T2 .

Example 2 - inhomogeneous equation. Consider the inhomogeneous difference equa-
tion x[n + 1] = ax[n] + (1 − a)k with initial condition x[0] = const. Furthermore,
assume our system is causal and recall that the z-transform of the unit step function
equals 1/(1− z). Then the transformed equation is:

z−1X(z)− x[0]z−1 = aX(z) +
(1− a)k

1− z
(2.17)

X(z) =
x[0]

1− az
+

(1− a)kz
(1− z)(1− az)

(2.18)

With partial fraction decomposition and inspection, the solution in the time domain
can be obtained:

X(z) =
x[0]

1− az
+ k

(
1

(1− z)
− 1

1− az

)
(2.19)

x[n] = x[0]anu[n] + k(1− an)u[n] (2.20)

Equation 2.20 actually resembles the formula for the longitudinal relaxation when
a = e−τ/T1 , x = Mz, and k = M0.

Relation to differential equations.

In this excursion, the relation between continuous time differential and discrete time
difference equations shall be demonstrated. Given the differential equation for longitudinal
relaxation

dMz(t)
dt

=
1
T1

(M0 −Mz(t)) (2.21)

one can approximate the differential quotient by the discrete time difference:

Mz(t + τ)−Mz(t)
τ

=
1
T1

(M0 −Mz(t)) (2.22)

Mz(t + τ) =
τ

T1
M0 −

τ

T1
Mz(t) + Mz(t) (2.23)
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Substituting for τ/T1 a new expression (1− ã) yields

Mz(t + τ) = ãMz(t)−M0(1− ã) (2.24)

which closely resembles the previously solved difference equation. One can easily see
that this substitution is related to the first order Taylor expansion of a = e−τ/T1 which is
ã = 1− τ

T1 .

2.2 The Bloch equations

In the most general form, the dynamics of the macroscopic magnetization vector
~M = (Mx, My, Mz)T is governed by the Bloch equations 2.25 [130, p. 27]

d ~M
dt

= γ ~M× ~B− 1
T2

 Mx

My

0

+
1
T1

 0
0

M0 −Mz

 , (2.25)

where ~B = (Bx, By, Bz)T is the total magnetic flux density (static, gradient, and RF fields)
and T1 and T2 are the relaxation times. Note, that magnetization and field vectors,
~M = ~M(t) and ~B = ~B(t), are generally functions of time, and, that the explicit notation
of their time dependence is omitted here for the sake of legibility. Usually, these
equations are transformed to the so-called rotating reference frame. In this reference
frame which is rotating at the Larmor frequency around the z-axis, the magnetization
vector is standing still if no additional magnetic field is applied. If an RF field at the
Larmor frequency is applied, also this RF field vector is standing still. Let us first
neglect relaxation and compute the spin dynamics under the influence of such a field.
For the sake of convenience, the field vector, ~B, is given in spherical coordinates as
outlined in fig. 2.1.

The equation to be solved then is

d ~M
dt

= γ

 Mx

My

Mz

× |B|
 sin θ cos φ

sin θ sin φ

cos θ

 (2.27)

Fig. 2.2 (a) illustrates the rotational effect of the magnetic field on the magnetization
vector. The mathematical solution to the problem is given in eq. 2.29 where α is
the effective rotation angle and is given by α = γ|B|τ, and τ is the time period the
external field is switched on. This matrix and equivalent to a rotation matrix for a
counter-clock-wise rotation around a normalized vector ~u = −~B/|B| about an angle α
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x

y

z

~B

~Bxy

~Bz

θ

φ

Figure 2.1: Definition of the spherical coor-
dinates used in the calculations. Vector
~B is given in terms of its length |B| and
the polar and azimuthal angles θ and φ,
respectively.

~B = |B|

 sin θ cos φ
sin θ sin φ

cos θ

 (2.26)

in the axis-angle-representation (see fig. 2.2 (b)). The solution after the application of a
pulsed magnetic field of length τ is then given by

~M(n+1) = R− ~B
|~B|

(
γ|~B|τ

)
~M(n) = R~u(α) ~M(n) (2.28)

where ~M(n) denotes the magnetization vector before the pulse and ~M(n+1) the magneti-
zation after the nth pulse.

R− ~B
|~B|

(
γ|~B|τ

)
=( (

(cos(α)− 1) cos2(θ) + 1
)

cos2(φ) + cos(α) sin2(φ) sin2 ( α
2
)

sin(2φ) sin2(θ) + cos(θ) sin(α) sin(θ)
(

2 cos(θ) cos(φ) sin2 ( α
2
)
− sin(α) sin(φ)

)
sin2 ( α

2
)

sin2(θ) sin(2φ)− cos(θ) sin(α) sin2(θ) sin2(φ) + cos(α)
(

cos2(φ) + cos2(θ) sin2(φ)
)

sin(θ)(cos(φ) sin(α)− (cos(α)− 1) cos(θ) sin(φ))

cos(φ) sin(2θ) sin2 ( α
2
)
+ sin(α) sin(θ) sin(φ) sin(θ)(− cos(φ) sin(α)− (cos(α)− 1) cos(θ) sin(φ)) cos2(θ) + cos(α) sin2(θ)

)
(2.29)

R~u(α) =

 (1− cos(α))u2
x + cos(α) uxuy(1− cos(α))− uz sin(α) uxuz(1− cos(α)) + uy sin(α)

uxuy(1− cos(α)) + uz sin(α) (1− cos(α))u2
y + cos(α) uyuz(1− cos(α))− ux sin(α)

uxuz(1− cos(α))− uy sin(α) uyuz(1− cos(α)) + ux sin(α) (1− cos(α))u2
z + cos(α)


(2.30)

Generally, the RF field (also called B1+ field) is applied on-resonant in the x-y plane
and thus given by ~B1+ = (B1+ cos φ, B1+ sin φ, 0)T. An off-resonance B1+ field, how-
ever, produces an additional field component and, thus, rotation around the z-axis,
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=

x
y

z

~B

~Md ~M
dt

x
y

z

R~u(α) α
~M

−~B

~u

Figure 2.2: Equivalent description of the spin dynamics under an arbitrary magnetic
field ~B, (a) description by the Bloch equations and (b) equivalent description with
a rotation matrix R~u(α) around an arbitrary axis ~u = −~B/|~B| by an angle of α. α is
equivalent to γ|~B|τ in the Bloch picture, τ being the pulse duration.

and is denoted by ∆B such that the effective field ~B can also be written as ~B =

(B1+ cos φ, B1+ sin φ, ∆B)T. Equating this expression with eq. 2.26, one can compute
the following relations:

α =γ|~B|τ = γτ
√
|B1+|2 + ∆B2 (2.31)

|B1+|
∆B

=
sin θ

cos θ
= tan θ (2.32)

θ = arctan
|B1+|
∆B

(2.33)
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2.2 The Bloch equations

2.2.1 Solutions to Bloch equations

For special cases, eq. 2.29 reduces to the well-known rotation matrices around x, y, and
z-axis:

x-axis: Rx(α) y-axis: Ry(α) z-axis: Rz(α)

φ = 0, θ = π
2 φ = π

2 , θ = π
2 θ = 0

 1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)


 cos(α) 0 − sin(α)

0 1 0
sin(α) 0 cos(α)


 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1


(2.34)

Relaxation

The Bloch equations during periods of sole relaxation are written as

d ~M
dt

= −

 (1/T2)Mx

(1/T2)My

(1/T1)(M0 −Mz)

 (2.35)

with the solution being

~M(t) =

 Mxe−t/T2

Mye−t/T2

Mze−t/T1 + (1− e−t/T1)M0

 (2.36)

=

 e−t/T2 0 0
0 e−t/T2 0
0 0 e−t/T1


 Mx

My

Mz

+

 0
0

(1− e−t/T1)M0

 (2.37)

.

Free precession and relaxation

If only free precession around the z-axis and relaxation are considered the Bloch
equations can be written as

d ~M
dt

= γ

 Mx

My

Mz

×
 0

0
Bz

−
 (1/T2)Mx

(1/T2)My

(1/T1)(M0 −Mz)

 (2.38)
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to which the solution is

~M(t) =

 (Mx cos(Bzγt) + My sin(Bzγt))e−t/T2

(My cos(Bzγt)−Mx sin(Bzγt))e−t/T2

Mze−t/T1 + (1− e−t/T1)M0

 (2.39)

=

 cos(Bzγt)e−t/T2 sin(Bzγt)e−t/T2 0
− sin(Bzγt)e−t/T2 cos(Bzγt)e−t/T2 0

0 0 e−t/T1


 Mx

My

Mz

+

 0
0

(1− e−t/T1)M0


(2.40)

2.2.2 From Mx, My, and Mz to transverse and longitudinal magnetization

M+ and Mz

Often, the magnetization vector is given by defining the complex transverse magnetiza-
tion M+ = Mx + iMy as

~M =

 M+

M∗+
Mz

 (2.41)

where M∗+ is the complex conjugate of M+. Mz stays as it is and denotes the longitudinal
magnetization. As the new magnetization vector can be computed simply by applying
the appropriate transformation matrix T M+

M∗+
Mz

 = T

 Mx

My

Mz

 =

 1 i 0
1 −i 0
0 0 1


 Mx

My

Mz

 (2.42)

the results obtained in the previous section can as easily be transformed, e.g. for a
original rotation matrix R: M+

M∗+
Mz

 = TR~u(α)T−1

 M+

M∗+
Mz

 = P

 M+

M∗+
Mz

 (2.43)

whereas

T−1 =

 1/2 1/2 0
−i/2 −i/2 0

0 0 1

 (2.44)
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2.2 The Bloch equations

When the formula for a rotation about an arbitrary axis, R~u(α), is transformed, one
arrives at the following expression:

P~u(α) =

( (
cos

( α
2
)
− i cos(θ) sin

( α
2
))2 e2iφ sin2 ( α

2
)

sin2(θ) eiφ(− cos(α) cos(θ) + cos(θ) + i sin(α)) sin(θ)
e−2iφ sin2 ( α

2
)

sin2(θ)
(
cos

( α
2
)
+ i cos(θ) sin

( α
2
))2 e−iφ(− cos(α) cos(θ) + cos(θ)− i sin(α)) sin(θ)

1
2 e−iφ(− cos(α) cos(θ) + cos(θ) + i sin(α)) sin(θ) − 1

2 eiφ((cos(α)− 1) cos(θ) + i sin(α)) sin(θ) cos2(θ) + cos(α) sin2(θ)

)
(2.45)

or in short notation

P~u(α) =

 λ χ νeiφ

χ∗ λ∗ ν∗e−iφ

ν
2 e−iφ ν∗

2 eiφ ζ

 (2.46)

λ =
(
cos α

2 − i sin α
2 cos θ

)2 , χ = e2iφ sin2 α
2 sin2 θ,

ν = 2 sin α
2 sin θ

(
sin α

2 cos θ + i cos α
2

)
, ζ = cos α sin2 θ + cos2 θ.

(2.47)

For an off-resonant pulse around the x-axis one gets

Pxz(α) =

 λ µ ν

µ λ∗ ν∗

ν
2

ν∗

2 ζ

 (2.48)

as well as for an off-resonant pulse around y axis

Pyz(α) =

 λ −µ iν
−µ λ∗ −iν∗

iν
2

−iν∗
2 ζ

 . (2.49)

Pxz(α) is exactly the same expression as derived by Lukzen [38] except for the fact that
in the coordinate system used by Lukzen the z-component of the field vector is defined
by the angle the vector has with the xy-plane (not like the polar angle θ is defined).
Therefore, in Lukzens work all θs are replaced by 90− θ (Note that 90− θ is denoted
by ϕ in [38]).

Relaxation

For pure relaxation, the solution of the Bloch equations in the complex domain is the
same as in equation 2.37.
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2 The Generating Functions approach

Free precession and relaxation

For free precession and relaxation the solution in eq. 2.40 transforms to

~M(t) =

 M+e−t/T2+iγBzt

M∗+e−t/T2−iγBzt

Mze−t/T1 + (1− e−t/T1)M0

 (2.50)

=

 Ue−t/T2 0 0
0 U−1e−t/T2 0
0 0 e−t/T1


 M+

M∗+
Mz

+

 0
0

(1− e−t/T1)M0

 (2.51)

with U = eiγBzt.

2.3 Generating functions for repetitive pulse sequences

As we have seen in section 2.2, the Bloch equations can be solved for distinct events
in a MR pulse sequence, such as RF pulses (nutation of magnetization), gradients or
off-resonances (precession), and relaxation periods. Many MR sequences are repetititve
in nature, i.e. certain parts of the sequence are repeated throughout the whole pulse
sequence (with minor alterations between the distinct parts, e.g. different phase
encoding gradients). Examples are spoiled, refocused or balanced GRE sequences, or
multi-echo spin-echo sequences. If the Bloch equations are solved for one of these
repetitive blocks, one can generally relate the magnetization vector (of one isochromat)
before and after the block by a simple recurrence relation:

~M(n+1) = A ~M(n) + ~B (2.52)

where A and ~B account for the relaxation, precession, and nutation processes. If the
changing elements of these blocks (e.g. phase encoding) do not have a net effect on the
magnetization, which is the case for phase-encoding gradients that are often balanced
and do not posses a net gradient moment, this relation is valid for each block within the
whole sequence. In other words, the difference equation in eq. 4.2 accurately describes
the whole sequence. If this is the case, one can use the methods from section 2.1.3 to
derive a closed-form expression for the evolution of the magnetization vector, either in
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2.3 Generating functions for repetitive pulse sequences

the z-domain or even in the time domain.

~M(n+1) = A ~M(n) + ~B ⇒ ~f (z) = (I− zA)−1
(
~M(0) +

z
1− z

~B
)

~f (z) s c ~M[n] (2.53)

where ~M(0) is the initial magnetization before the repetitive part of the sequence
starts. This could be the magnetization after the excitation pulse in multi-echo spin-
echo sequences, or the equilibrium magnetization, or the magnetization after some
preparation pulse for GRE sequences.

Methods of signal computation If it is possible to inverse-transform ~f (z) to the time
domain, one can simply evalute the resulting expression, ~M[n], for n = 0..N to obtain
the desired echo amplitudes. In some cases the inverse transformation may not be
straightforward and no explicit time domain solution can be calculated. However,
in this case, one can still obtain the echo amplitudes by using the property that the
z-transform corresponds to the discrete time Fourier transform for z = eiψ (see sec.
2.1.2). In that way, one can compute the DFT of the signal evolution by evaluation of
~f (z) for z on the unit circle. Furthermore, by applying the inverse DFT to the values
computed in such a way, one again obtains the echo amplitudes in the time domain.

This method generally works well if the magnetization tends towards zero throughout
the echo train. There are two cases where exactly this prerequisite is not fullfilled: (1)
the signal generally tends towards zero, but within the time of acquisition this is not the
case and a finite amount of magnetization is still remaining (e.g. long T2-components in
multi-echo spin-echo sequences, and (2) the sequence produces a steady-state different
from zero (e.g. GRE sequences). In the first case, one deals with so called leakage or
truncation effects of the DFT. In the second, case the discrete time Fourier series just
does not exist (i.e. does not converge as the time domain sequence is not absolutely
summable). In other words, the resultant z-transform has poles on the unit circle
and therefore cannot be evaluated everywhere around the unit circle. However, in
that case one can use the apodization property and obtain a time domain signal. The
effects of apodization are the following: (1) in the time-domain, multiplication with an
apodization function makes the signal taper off to zero for large n, and, thus, eliminates
leakage effects. (2) in the z-domain, multiplication of z by an apodization factor results
in a stretching or squeezing of the unit circle, such that, no poles are encountered when
computing the DFT. Following the second approach, the apodization clearly has to
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be undone in the time-domain after signal evaluation by dividing by an apodization
function.

Averaging over isochromats The difference equation 4.2 only describes the signal
evolution for a single isochromate. However, in unbalanced sequences different isochro-
mats experience different magnetic fields and hence acquire different phase during a
sequence block. With the GF formalism one can easily arrive at the overall signal ampli-
tudes by averaging over all isochromats, i.e. by integrating over the phase angle ψ from
0...2π. In the formulation with complex magnetization M+, each isochromat’s phase
appears in a phase factor U = eiψ. That means that averaging over all isochromates
involves a contour integral where U is integrated around the unit circle. As known
from complex analysis, this problem can readily be solved by employing the residue
theorem. A detailed example outlining this procedure is presented in chapter 4.

2.3.1 Alternative methods of signal computation

The method outlined in previous paragraphs is not the only method to compute
echo amplitudes for MR sequences. Iterative solution of the Bloch equations or the
extended phase graph (EPG) algorithm constitute two other methods with their distinct
advantages and disadvantages and will be shortly reviewed in the following paragraphs.

Bloch equations Simulations using the Bloch equations are directly utilizing the above
presented relaxation and rotation matrices (real or complex). The MRI sequence is
simulated by consecutively applying the relaxation and precession matrices, followed
by an instantaneous RF pulse (although also relaxation effects during the pulse can be
implemented), and again followed by relaxation and precession. The exact values of the
matrices are of course dependent on the sequence at hand, e.g. for a SPGR sequence an
additional spoiling matrix that nulls the transverse components would be applied. For a
balanced sequence the described procedure already yields the desired echo amplitudes.
For a multi-echo spin-echo sequence, on the other hand, an additional fact has to be
taken in to account. Since the the gradient moment between two consecutive pulses
is not zero, one actually does not rotate a single magnetization vector, but a disc of
vectors with each vector having a distinct phase (due to the read out gradient). So, the
simulation of the entire sequence has to be carried out for each single isochromat and
finally the magnetization vectors can be added together. The procedure is outlined in
algorithm 1.
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Algorithm 1: Bloch simulation algorithm: m(n,k) denotes the magnetization
vector at the time of echo number n; m−

(n,k) and m+
(n,k) correspond to the mag-

netization vector right before and after the RF pulse, respectively. E1 is the
longitudinal relaxation term, ez the unit vector in z-direction, m0 the equilibrium
magnetization, and Pk the precession matrix, depending on isochromate index k.

initialize relaxation matrix E
initialize rotation matrix R
initialize m0,k = m0[1 1 0]T // exciting rotation around negative y-axis

Result: mn

for n=1:Echoes do
for k=1:Isochromates do

m−
(n−1,k) ← PkEm(n−1,k) + ez(1− E1)m0

m+
(n−1,k) ← Rm−

(n−1,k)

m(n,k) ← PkEm+
(n−1,k) + ez(1− E1)m0

end
end
m(n) = ∑k m(n,k)

ζν∗
2 eiφν

2 e−iφ

ν∗e−iφλ∗χ∗

ν∗eiφχλ

Z0

F−0

F0

Z1

F−1

F1

Z2

F−2

F2

Z3

F−3

F3

Z4

F−4

F4

F∗0

Figure 2.3: Effect of an RF pulse in the EPG algorithm
demonstrated on the first configuration.

Extended phase graph In the
extended phase graph formalism
the spins are decomposed into
so-called configurations which
actually correspond to the var-
ious echo pathways that are cre-
ated by successive application of
RF pulses and encoding gradi-
ents. RF pulses are represented
by rotation matrices whereas pre-
cession is implemented by a shift operator. If we recall the complex precession matrix
and look at its effect on ~M we find e−iφ 0 0

0 eiφ 0
0 0 1


 M+

M∗+
Mz

 =

 M+e−iφ

M∗+eiφ

Mz

 =

 M+z
M∗z−1

Mz

 . (2.54)

Rotation matrices on the other hand mix these configurations. Repeated application
of the shift and rotation operators thus creates a power series in z. However, the only
configuration that creates a measurable signal is the 0th power F0 state. One can think
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Algorithm 2: EPG algorithm
Result: mn

initialize relaxation matrix E
initialize rotation matrix R
initialize m0 = m0[1 1 0]T // exciting rotation around negative y-axis

initialize configurations matrix F0 = m0
for n=1:Echoes do

extend Fn with zeros
right/left shift top/bottom row
set F0 ← F∗0
multiply Fn = EREFn−1
do shift procdure again
save mn ← F0

end
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Figure 2.4: Schematics of the EPG shift operation. (a) The state of the EPG matrix after 4
shift operations. (b) A column of zeros is appended to the end of the EPG matrix. (c) Free
precession: The top row is shifted to the right, the middle row to the left (with one more zero
inserted at the end). The bottom row is left unchanged by free precession.

of precession as a right shift, i.e. multiplication by z (this is the only operation the
first element of ~M experiences during precession). Multiplication by z corresponds
to a dephasing and by z−1 to a rephasing gradient. Algorithm 2 lists the procedure
and figures 2.4 and 2.3 illustrate the effects of the gradient and the RF operator on the
individual configurations, respectively.

2.3.2 The spoiled gradient echo sequence (SPGR)

The standard spoiled gradient echo sequence provides a nice and easy example to show
the derivation of a quite tractable generating function which also offers the possibility
to simply inversely z-transform and therewith compute a closed form solution in the
time domain. In SPGR sequences the transverse magnetization is spoiled for each
repetition, and, hence, transverse magnetization can essentially be neglected in the
signal computation. It is, therefore, quite easy to derive signal equations solely in the
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relaxation
precession

TR− TE

spoiling RF pulse α◦

relaxation
precession

TE

Figure 2.5: Elementary building block for a SPGR sequence.

time domain as well. However, to give the reader an idea of how to use the GF method,
the strict application of the z-transform will be used to arrive at equations for both the
longitudinal and transverse magnetization.

Recursive signal model and generating function First, the sequence diagram in fig.
2.5 is analyzed to arrange the appropriate nutation, precession, and relaxation matrices.
A sequence subunit for the SPGR sequence consists of a time TR− TE for precession
(off-resonance ∆ω) and relaxation, then an instantaneous excitation, and subsequently
another precession and relaxation period of length TE until the echo is acquired. The
combined relaxation and precession matrices before (pre) and after (post) the pulse are
given by:

Qpre =


e
−(TR−TE)

T∗2
+i(TR−TE)∆ω

0 0

0 e
−(TR−TE)

T∗2
−i(TR−TE)∆ω

0

0 0 e
−(TR−TE)

T∗1

 (2.55)

Qpost =


e
−TE
T∗2

+iTE∆ω
0 0

0 e
−TE
T∗2
−iTE∆ω

0

0 0 e
−TE

T1

 (2.56)

The nutation matrix can be directly taken from [38]:

P =

 λ µ ν

µ λ∗ ν∗

ν
2

ν∗

2 ζ

 (2.57)

(2.58)
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Assuming perfect spoiling, the transverse magnetization is totally dephased by the
spoiler gradients before each excitation pulse. This can be accounted for in this deriva-
tion by the introduction of a spoiler matrix, S, that only preserves the z-component of
the magnetization.

S =

 0 0 0
0 0 0
0 0 1

 (2.59)

(2.60)

The recursion formula for the magnetization is then given by:

~M[n + 1] = QpostPSQpre ~M[n] + QpostP~Seq,pre + ~Seq,post (2.61)

whereas ~Seq,pre = [0, 0, (1 − e
−(TR−TE)

T1 )M0]T and ~Seq,pre = [0, 0, (1 − e
−TE

T1 )M0]T. The
Generating function for the SPGR sequence can now be obtained by solving the
difference equation 2.61 in the z-domain, i.e. by evaluating the following formula. For
initial magnetization ~M[0] = [0, 0, K]T, ~F(z) becomes

~F(z) = (I− zQpostPSQpre)
−1

M0

 0
0
K

+
z

1− z

(
QpostP~Seq,pre + ~Seq,post

) (2.62)

~F(z) =



M0νze
− TE

T∗2
+i∆ωTE(

(1−K)(1−z)e
TE
T1 −e

TR
T1 +z

)
(1−z)

(
ζz−e

TR
T1

)
M0ν∗ze

− TE
T∗2
−i∆ω

(
(1−K)(1−z)e

TE
T1 −e

TR
T1 +z

)
(1−z)

(
ζz−e

TR
T1

)
e
− TE

T1

(
M0e

TR
T1

(
(ζ−1)z+(−Kz+K+z)e

TE
T1

)
−ζM0ze

TE
T1

)
(z−1)

(
ζz−e

TR
T1

)


(2.63)

Steady state SPGR signals To obtain a steady state solution for the SPGR signal one
can use the final value theorem of the z transform by computing the limit lim

z→1
F(z)(z−1−

1). This gives the following expressions for transversal magnetization M+ and M∗+ and
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longitudinal magnetization Mz

~MSS =


M0ν 1−e−TR/T1

1−ζe−TR/T1
e
−TE
T∗2

+iTE∆ω

M0ν∗ 1−e−TR/T1

1−ζe−TR/T1
e
−TE
T∗2
−iTE∆ω

(1− e−TE/T1)M0 + e−TE/T1 ζ 1−e−TR/T1

1−ζe−TR/T1
M0

 (2.64)

Note that the steady state expression is independent of the initial magnetization
preparation value K. If an on-resonant excitation around the x-axis is considered
parameters ν and ζ reduce to ν = i sin α and ζ = cos α with α being the flip angle. The
third component of the steady state vector is the longitudinal component at the time of
the echo. The longitudinal component right after and right before the RF pulse can be
extracted from this formula by setting the echo time TE = 0 as ζ 1−e−TR/T1

1−ζe−TR/T1
(where ζ is

just the amount of magnetization that is left in the z-direction directly after applying
the RF pulse) or setting TE = TR giving 1−e−TR/T1

1−ζe−TR/T1
, which is the well known steady

state expression of the longitudinal magnetization for SPGR sequences.

Signal equation for SPGR with off-resonances

Plugging in the most general values for ν and ζ, one arrives at the time domain signal
equation for SPGR sequences with off-resonance effects:

S =2M0 sin
α

2
sin θ

(
cos

α

2
− i sin

α

2
cos θ

)2
·

· 1− e−TR/T1

1−
(
cos α sin2 θ + cos2 θ

)
e−TR/T1

e
−TE
T∗2

+iTE∆ω+iφ
(2.65)

θ = arctan
|B1+|
∆B

(2.66)

φ = arctan
B1y

B1x
(2.67)

∆ω =γ∆B (2.68)

Transient SPGR signals The SPGR transient can be obtained by transformation of
equation 2.63 to the time domain. For arbitrary initial Mz preparation, e.g. K = −1
for inversion or K = 0 for saturation, flip angle α, cos αe = cos α sin2 θ + cos2 θ and
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κ1 = e−TR/T1, this yields:

M+[n] =− 2M0e−
TE
T2

+i(TE∆ω+φ)
(cos θ + i cos

α

2
) sin

α

2
sin θ·

1− κ1 − κ1
−n cos αe − κ1 cosn−1 αe (κ1(K− 1) [κ1 − cos αe] + κ1 cos αe)

cos αe − κ1

(2.69)

Curves in figure 2.6 are computed with this formula and show SPGR transients for
different angles θ and α. For K = 1 and θ = π/2, i.e. completely on-resonant, it
simplifies to

M+[n] = iM0e−
TE
T2

+i(TE∆ω+φ) 1− κ1 + κ1
−n cosn α

1− κ1 cos α
sin α (2.70)

The interesting part of this equation is that there are additional imaginary parts in
addition to eiφ when the rotation axis is tilted away from the x-y-plane. This makes
sense since rotation around an axis, e.g. somewhere in the x-z-plane will produce
magnetization that lies outside of the y-z-plane (as we would expect after pure rotation
around the x-axis). Some examples of the steady state limit, derived with this method,
underpin the validity of equation 2.69. For α = 90◦ and θ = 45◦, the magnetization is
split equally between real and imaginary part.

MSS
+ = M0e−

TE
T2

+i(TE∆ω+φ)

√
2(1 + i)(1− κ1)

1− 2κ1
(2.71)

For α = 180◦ and θ = 45◦, the magnetization is in fact rotated 90◦ down to the x-axis

MSS
+ = M0e−

TE
T2

+i(TE∆ω+φ)
(1− κ1) (2.72)

and for θ = 0◦ which corresponds to a rotation around the z-axis the result is

MSS
+ = 0 (2.73)

for all times.

Transient SPGR signals - Look-Locker In the Look-Locker approach for T1, several
SPGR acquisitions are made after an inital 180◦ inversion pulse, such that the recovery
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K = −1 (inversion) K = 1 (no preparation)

Figure 2.6: Transient of SPGR signals computed with the GF approach for different off-
resonance angles θ = arctan (|B1+|/∆B) (10◦ to 70◦) and Mz preparation (left K = −1, right
K = 1). Solid lines are with flip angle α = 20◦, dashed lines with α = 10◦, dotted are steady
state solutions.

RF pulse α◦

relaxation
precession

TR

spoiling

Figure 2.7: Elementary building block for a Look-Locker sequence.

of the longitudinal magnetization is sampled at multiple points along the relaxation
curve. As with every SPGR excitation, a small fraction of the longitudinal magnetization
is lost, the signal recovery is different from pure T1-relaxation. To accurately model
the signal amplitudes, one is interested in the longitudinal magnetization prior to each
α◦ excitation pulse. The actual sequence unit to be used within the GF framework is
shown in fig. 2.7.

Q =


e
−TR
T∗2

+iTE∆ω
0 0

0 e
−TR
T∗2
−iTE∆ω

0

0 0 e
−TE

T1

 (2.74)

P and S are the same as in the previous section. The recurrence relation for this
sequence unit is then ~M(n+1) = SQP ~M(n) + S[0, 0, M0(1− e−TR/T1)]T. With the inital
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magnetization being ~M(0) = M0[0, 0, K]T the GF is

~F(z) =


0
0

M0
K+z(1−K−e−TR/T1)
(1−z)(1−zζe−TR/T1)

 (2.75)

With this setup of the sequence building block, the magnetization right after the spoiling
gradients is computed. Therefore, the transverse components of the GF are zero. The
longitudinal component can be back-transformed to the time domain yielding the
following formula for the magnetization transient (for ζ = cos α):

Mz[n] =M0
1− e−TR/T1

1− cos αe−TR/T1
+ M0e−nTR/T1 cosn α

−1 + K + e−TR/T1 − K cos αe−TR/T1

1− cos αe−TR/T1
(2.76)

=M0
1− e−TR/T1

1− cos αe−TR/T1
−M0e−nTR/T1 cosn α

1− e−TR/T1

1− cos αe−TR/T1
+ (2.77)

M0e−nTR/T1 cosn α
K(1− cos αe−TR/T1)

1− cos αe−TR/T1
(2.78)

Mz[n] =M0
1− e−TR/T1

1− cos αe−TR/T1

(
1− e−nTR/T1 cosn α

)
+ M0Ke−nTR/T1 cosn α

(2.79)

2.3.3 The CPMG and the CP sequence

A CPMG sequence consists of an excitation pulse (usually 90◦), a time τ/2 of free
precession, and a train of refocusing pulses (usually 180◦), spaced by τ, and which are
90◦ out of phase with the excitation pulse. As already pointed out in the introduction,
the 90◦ phase difference between excitation and refocusing is very beneficial when
refocusing pulses are not exactly 180◦. The imperfections of the pulses are then
inherently compensated for every second echo. Unfortunately, this is only true for
small FA deviations. However, compared to the CP sequence where both excitation
and refocusing are around the same axis, a lot more signal can be retained throughout
the echo train with this approach. Principally, when slice-selective pulses are used,
each CPMG sequence has some CP characteristics, and vice versa. Figures 2.8 to 2.11
illustrate the differences between CPMG and CP refocusing.
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x

y

M+

Mx

My
For My the se-
quence is a CPMG
sequence

For Mx the sequence
is a CP sequence

φ

α

Figure 2.8: The transversal magnetization can be split in two perpendicular parts of which
one experiences a CPMG sequence (here My as the rotation is performed around the y-axis),
and one part that experiences a CP sequence. Basically, this scenario can be found when
slice-selective pulses are used, since they always produce some magnetization perpendicular
to the intended direction.

Generating functions for CP and CPMG In principle, the GF for the transverse
magnetization, as derived in [37] takes the following form,

F(z) =
M0

2

(
1 +

√
(1 + zκ2)(1− z cos α(κ1 + κ2) + z2κ1κ2)

(1− zκ2)(1− z cos α(κ1 − κ2)− z2κ1κ2)

)
, (2.80)

for an on-resonant CPMG sequence with excitation of 90◦ around the y, and refocusing
with α◦ around the x-axis, respectively. Here, κ1 and κ2 denote the relaxation terms.
A detailed derivation of the GF F(z) for CP and CPMG sequences and combinations
thereof can be found in chapter 4. For the evolution of the longitudinal magnetization
L(z) the reader is referred to chapter 5.

Initial value and steady-state for CPMG sequence

By applying the initial and final value theorem of the z-transform, the inital and steady
state value of the CPMG sequence can be computed (Tab. 2.2). Obviously, the initial
values are equal to the initial value that was given prior to computing the Generating
function ~F(z), i.e. ~M(0) = [M0sin β, M0sin β, M0cos β]T, where β is the excitation flip
angle. The steady state expression for the transverse magnetization reduces to zero,
which is not surprising, as we know it is decaying to zero. The longitudinal component,
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x

y

M+

Mx

My

φ

α

(a)

x

y

M+

Mx

My

φ

α

(b)

Figure 2.9: Effect of refocusing pulse for Mx and My components. (a) before, and (b) after
refocusing: lets suppose the magnetization vectors rotate counter-clockwise. For Mx the
yellow shaded part is rotating faster than the blue part, and after refocusing the phase state
of the yellow and blue spins is inverted, and the yellow part will eventually "catch up" with
the blue for all isochromates to refocus at time τ. Note that after refocusing, the sign of Mx is
reversed. For My, the orange part is rotating faster, then set behind the pink shaded spins by
the refocusing pulse, so that they will finally refocus along the y-axis without changing sign.

however, approaches a defined steady state value Mss
z which is independent of the

initial excitation pulse angle β. For complete refocusing with α = 180◦, a simple-steady
state signal expression can be obtained from L(z) and is given below (Eq. 2.83) with
E1 = e−τ/T1 and τ being the echo spacing:

Transverse magnetization Longitudinal magnetization

Initial value lim
z→0

F(z) = M0sin β lim
z→0

L(z) = M0cos β

Steady state lim
z→1

(z−1 − 1)F(z) = 0 lim
z→1

(z−1 − 1)L(z) = Mss
z

Table 2.2: Inital and steady state values for the transverse and longitudinal magnetiza-
tion of a CPMG sequence computed via the z-transform.
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(a)

x

z
(b)

x

z
(c)

x

z

(d)

x

z
(e)

x

z

Figure 2.10: Imperfect refocusing in a CPMG sequence seen from the x-z-plane: (a) all spins
are coherent, (b) the spins dephase with time (blue), (c) the imperfect refocusing pulse is
unable to rotate the "spin-fan" back to the x-y-plane (red), (d) with time the spins refocus and
dephase in the other direction since fast and slow spins have changed position (orange), (e)
the second refocusing pulse, although imperfect, puts the spins back in the x-y-plane (blue)
and thereby compensates it’s own imperfection.

(a)

x

z
(b)

x

z
(c)

x

z

Figure 2.11: Imperfect refocusing in a CP sequence seen from the x-y-plane: (a) all spins are
aligned with the x-axis and start to dephase (not seen), (b) the imperfect refocusing pulse
is unable to put the "spin-fan" in the direction of the −x-axis, then the spins refocus und
dephase again, (c) the second refocusing pulse is again not rotating enough and since there
was a small gap to the y-axis before, there’s now twice the gap to the x-axis. The error due to
the imperfect pulse is thus accumulating.
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90◦

180◦ 180◦ 180◦

MSS
z

M(+)
z

M(−)
z

MSS
z

Figure 2.12: Calculation of the steady state for the longitudinal magnetization.

lim
z→1

(z−1 − 1)L(z) = M0

(
1 +

2
√

E1
√
(1 + E1)2

(1 + E1)2

)
(2.81)

= M0

(
1± 2

√
E1(1 + E1)

(1 + E1)2

)
(2.82)

= M0

(
1− 2

√
E1

(1 + E1)

)
(2.83)

For this special case the same expression can be computed from equations derived
from the diagram in fig. 2.12 and the solution to the Bloch equations:

M(−)
z = MSS

z

√
E1 + M0(1−

√
E1) (2.84)

M(+)
z = M(−)

z cos π = −M(−)
z (2.85)

MSS
z = M(+)

z
√

E1 + M0(1−
√

E1) = −M(−)
z
√

E1 + M0(1−
√

E1) (2.86)

MSS
z = M0

(1−
√

E1)
2

(1 + E1)
= M0

1− 2
√

E1 + E1

1 + E1
= M0

(
1− 2

√
E1

(1 + E1)

)
(2.87)

Limiting cases

In table 2.3 some more limiting cases regarding the excitation and refocusing angles are
given, whereas for rows 1. and 2. the well-known expressions for a saturation and an
inversion recovery experiment are obtained, respectively. In row 6., the transverse mag-
netization evolution becomes a simple mono-exponential decay as would be expected
for optimal pulse parameters.
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Table 2.3: Limiting cases for F(Z) and L(z).

Limiting case F(z) M+[n] L(z) Mz[n]

1. β = π/2, α = 0 0 0 M0
1− z

− M0
1− E1z

M0(1− E1
n)u[n]

2. β = π, α = 0 0 0 M0
1− z

− 2M0
1− E1z

M0(1− 2E1
n)u[n]

3. β = 0, α = 0 0 0 M0
1− z

M0u[n]

4. β = 0, α = π, T1 → ∞ 0 0 M0
1 + z

M0(−1)nu[n]

5. β = π, α = π, T1 → ∞ 0 0 − M0
1 + z

−M0(−1)nu[n]

6. β = π/2, α = π M0
1− E2z

M0E2
n (0 for E1 = 1) (0 for E1 = 1)

2.3.4 The bSSFP and IR-bSSFP sequence

The elementary sequence block for a balanced gradient-echo sequence is shown in
figure 2.13. It consists of a precession period, TR/2, an RF pulse, and another precession
period, TR/2, such that the echo is always appearing just in the middle between two
RF pulses. Further, the net gradient area between two RF pulses is zero, i.e. all phase-
encoding and readout-gradients are rewound prior to the next RF pulse (in contrast to
SSFP-FID and SSFP-Echo). Right before every RF pulse, the spins are totally refocused,
such that a single magnetization vector is rotated by the pulse, in contrast to the "spin
pancake" that is flipped in the MSE sequence. Unfortunately, if the spins experience
some off-resonance, the refocusing is not effective any more, the extreme being an
off-resonance angle of 90◦ which prevents refocusing by the RF pulse at all. This is the
reason for the so-called banding artifacts that are often seen with bSSFP sequences.

In the publication by Lukzen [38] a GF formula for bSSFP is provided that can readily
be used to compute the echo amplitudes (eq. 2.88).

F(z) =
M0
√

κ2(1− zκ1)
(

U1/2
0 ν + zκ2U−1/2

0 ν∗
)

(1− z)[1− z3κ1κ2
2 + z cos αe · (zκ2

2 − κ1)− zκ2(1− zκ1)(λ
∗U−1 + λU)]

(2.88)

Care must be taken because of the factor (1− z) in the denominator. In the aforemen-
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relaxation
precession

TR/2

RF pulse α◦

relaxation
precession

TR/2

Figure 2.13: Elementary bSSFP building block.

tioned publication also formulas for SSFP-FID and SSFP-Echo can be found.

In figure 2.14, the evolution of an IR-bSSFP slice profile computed with this approach
is shown. The formula is not given here due to its resistance to simplification and
therefore unhandiness, but it can easily be derived and used by symbolic mathematics
programs such as Mathematica. Figure 2.15 shows some data acquired with 3 variants

Figure 2.14: Evolution of the slice profile for an inversion recovery bSSFP sequence with
alternating (left) and non-alternating phase of the RF pulse. In the alternating sequence the
phase of the RF pulse is changed between π and −π for every second echo, whereas in the
non-alternating version the RF phase stays the same throughout the echo train.

of the bSSFP sequence: on the left is the non-alternating bSSFP sequence which is
flipping always in the same direction, in the middle the variant where the phase of
the RF pulse is alternated between 0◦ and 180◦, and to the right an IR recovery bSSFP
with alternating phase of the flip angle. The alternating nature of the latter two is
also reflected in the corresponding phases. For each sequence, signal evolution for flip
angles between 10◦ and 90◦ are displayed. It still has to be shown to what extent eq.
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m

ag
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(a) bSSFP (b) ± bSSFP (c) IR-bSSFP

ph
as

e

(d) bSSFP (e) ± bSSFP (f) IR-bSSFP

Figure 2.15: Transient MR signals acquired with balanced SSFP sequences (top: magnitude,
bottom: phase).

2.88 can be used to describe or fit these data.
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3
Accurate T2-mapping for slice-selective

MSE sequences

This chapter is adopted from "Closed-Form Solution for T2-Mapping with Nonideal Refocusing
of Slice-Selective CPMG Sequences" [10].

3.1 Introduction

In clinical practice, T2-quantification, is usually performed using slice-selective MSE
sequences (sec. 1.2.2). For this reason, the GF formalism was extended by incorporating
the slice profile to improve the accuracy of the computed T2-maps. The goal of the study
was to investigate the behavior and validity of different models for T2-fitting under
various experimental conditions. To demonstrate the applicability of the proposed
approach, Monte Carlo simulations and validation by measurements in phantoms
and in-vivo were performed. Additionally, the fitting algorithm was evaluated with
regard to the estimation of additional parameters, e.g., B1+. These experiments shall
demonstrate how an advanced signal model can improve T2-mapping results obtained
with the widely used standard CPMG multi-echo sequences.

As we have seen in the previous chapter (eq. 2.80) the transverse magnetization for a
CPMG sequence can be expressed using a Generating function,

F(z, M0, T1, T2, α, τ) =
M0

2

(
1 +

√
(1 + zκ2)(1− z cos α(κ1 + κ2) + z2κ1κ2)

(1− zκ2)(1− z cos α(κ1 − κ2)− z2κ1κ2)

)
, (3.1)

with κ1 = e−τ/T1 , κ2 = e−τ/T2 , and α is the effective flip angle. This expression can now
be used to calculate the entire evolution of a whole slice profile, given the RF pulse
shapes are known. One way to do this is to discretize the slice profile q in j = 1 . . . Q
parts corresponding to flip angles qjα. The sum of all contributions is considered the
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averaged generating function Fq(z)

Fq(z, M0, T1, T2, α, q, τ) =
1
Q

Q

∑
j=1

F(z, M0, T1, T2, α · qj, τ) (3.2)

For convenience, we further refer to the GF as Fq(z, p), introducing the various known
and unknown parameters in the parameter vector p = [M0, T1, T2, τ, α, q] = [pk, pu] (size
1× (5+ Q))). pk denotes the parameters that are known a priori, and pu the parameters
that need to be estimated by fitting, respectively. The slice profile is considered as a row
vector q (1×Q). The size of these vectors varies according to how many parameters
are fitted. The data fitting is then performed by minimizing expression

min ‖y−Wabs(DFTK{Fq(z, p)})‖2
2 (3.3)

where y (length N) is the acquired data vector, DFTK denotes the K-point discrete
Fourier transform, z = eiψ with ψ = 2πk/K and k = −K/2 . . . K/2− 1, and W =

(ZN×1, IN×N , ZN×K−N−1) is a rectangular matrix selecting only the data points 2 to
N + 1 (Z zero matrix, I identity matrix). This is necessary because K is usually much
larger than the number of measured samples, N, to avoid leakage effects (and the
first computed sample corresponds to the equilibrium magnetization). Eq. 3.3 poses a
nonlinear optimization problem that cannot be linearized and solved by computation of
the pseudoinverse. Hence, minimization by means of nonlinear least squares algorithms
has to be used to obtain optimal estimates for the parameters pu.

The second possibility to fit the data to the GF model is by first transforming the data
to the z-domain and then fitting to the original GF formula Fq(z). However, usually
the decay is not entirely sampled to the point where the signal reaches the noise level.
Therefore, transforming the data introduces truncation errors, as the decay is cut off at
the last sample point. Suitable apodization of the acquired decay, i.e., multiplication by
a decaying exponential a−nτ (a>1), is necessary. The apodization is easily incorporated
into the GF formula by applying the damping rule of the z-transform and fitting to
F(za−1).

3.2 Methods

3.2.1 Simulations

Ground truth signals for simulation purposes were generated using Eq. 3.2 (256 data
points) and subsequent application of the DFT. After transformation, only 32 data
samples, as in standard clinical imaging protocols, were considered. For all simulations
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M0 was set to 1. Refocusing slice profiles were calculated from sinc and Gaussian
shaped pulses using the forward Shinnar-Le- Roux transform [113]. Slice profiles were
sampled at 90 points.

Several forward simulations were computed for different combinations of parameters
to qualitatively visualize their influence on the effective signal: (i) Signals for various
tissue types (T1 and T2 from the literature [85, 87, 131, 132]) at refocusing FA α = 144◦

(at the center of the slice profile), inter-echo spacing τ = 10 ms, and with a Gaussian
slice profile, were generated. (ii) The flip angle a was varied from 18◦ to 180◦ to assess
its influence on the signal (T1 = 1000 ms, T2 = 100 ms, τ = 10 ms, ideal slice profile).
(iii) The influence of different slice profiles was visualized by simulating signals for
ideal, Gaussian, and sinc-pulse profiles (T1 = 1000 ms, T2 = 100 ms, τ = 10 ms,
α = 144). (iv) Signal dependence on the relaxation times was investigated by varying
T1 from 100 to 3400 ms with a fixed T2 = 100 ms and by varying T2 from 40 to 200 ms
with a fixed T1 = 1000 ms (τ = 10 ms, α = 90 for both).

The performance of the fitting algorithm was evaluated using simulated signals with
additionally added Rician noise according to a predefined SNR. The SNR was defined
as the equilibrium signal (M0) divided by the standard deviation (σ) of the noise. For
fitting purposes, the slice profile was sampled at 5 sample points to assure adequate
fitting speed. Two fitting approaches were compared, i.e., fitting to a mono-exponential
decay function, discarding the first echo of the generated signal, and fitting to the GF
formalism 3.3. The comparison was performed using Monte-Carlo methods with 10,000
trials per experiment and assessment of the fitted parameters. Median values, and
upper and lower quartiles of all trials were plotted and judged concerning accuracy
and precision of the T2 estimates.

The Monte-Carlo simulations consisted of the following experiments: (i) the refocus-
ing FA α was varied between 90◦ and 270◦ (τ = 10 ms, T1 = 1000 ms, T2 = 100 ms,
SNR = 80, ideal profile), (ii) α was varied between 90◦ and 180◦ assuming Gaussian
slice profile (τ = 10 ms, T1 = 1000 ms, T2 = 100 ms, SNR = 80). In this case, B1+

and T1 were further estimated from the data (pu = [M0, T2, α, T1]). (iii) T1 was varied
between 100 and 3000 ms (τ = 10 ms, T2 = 100 ms, α = 144◦, SNR = 80, Gaussian
profile), (iv) T2 was varied between 20 and 300 ms (τ = 10 ms, T1 = 1000 ms, α = 144◦,
SNR = 80, Gaussian profile), and (v) SNR was varied between 20 and 160 (τ = 10 ms,
T1 = 1000 ms, T2 = 100 ms, α = 144◦ Gaussian profile).

Fitting was always performed for the unknowns pu = [M0, T2] unless otherwise
stated; M0, T1 and T2 were required to be positive; α was restricted to 0 ≤ α ≤ 180. All
simulations were performed using Matlab (Natick, MA). Curve fitting was achieved
using least squares minimization with the constrained nonlinear optimization function,
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fmincon.

To illustrate that fitting can also be accomplished in the z-domain, an additional
experiment was performed. Simulated relaxometry data (τ = 10 ms, T1 = 1000 ms,
α = 144◦, Gaussian profile) with added noise (SNR = 80, 1000 realizations) was fitted
in the z-domain for a varying range of T2 values (50− 300 ms). The apodization factor
a was 1.13.

3.2.2 MR measurements

All measurements were performed on a 3 Tesla (T) Magnetom Tim Trio System (Siemens,
Erlangen, Germany). All sequences, except the Bloch-Siegert B1+ mapping sequence,
were vendor supplied.

3.2.3 Phantom measurements

As phantoms, 50 mL tubes with MnCl2 · 4H2O and tap water in various concentrations
were used to simulate T1 , and T2-values in a physiological range (Table 3.2, column
1). Additionally, one phantom consisted of water doped with Gadobutrol (Bayer
Healthcare, Berlin, Germany) (4.04 mM) to achieve T1 , and T2-values of a comparable
scale. A corn oil phantom was included to assess the influence of J-coupling. T2 was
measured using an MSE sequence with a repetition time repetition time TR = 7000
ms, echo spacing τ = 12 ms, 32 echoes, field of view (FOV) 210× 110 mm2, resolution
1.1× 1.1× 7 mm3 and a bandwidth of 200Hz/ pixel. Nominal excitation and refocusing
angles were β = 90◦ and α = 180◦, respectively. T1-measurements were obtained using
a turbo inversion-recovery sequence (TIR, TR=7000 ms, echo time TE = 7.8 ms, inversion
times TI = 25, 50, 100, 200, 400, 800, 1600, 3200 ms). The turbo inversion-recovery
sequence consisted of an inversion module, followed after time TI by a RARE sequence
for image acquisition. B1+ was measured using a double angle (DA) method (36) with
flip angles αnom = 60◦ and 120◦, and TR = 10 s.

Reference T2-values (“gold standard”) of the different samples were determined
by single-voxel spectroscopy (voxel 12× 12× 28 mm3, excitation angle 90◦ , sample
points 1024, and bandwidth 1200 Hz). Echo times were equally spaced but calculated
separately for each sample ranging from the lowest possible (30 ms) up to a value where
the signal had decayed to approximately 10% of its supposed equilibrium magnitude.
In this way, sampling of the decay in a wide range for each sample, despite their
different T2 times, was ensured. Additionally, data from SE experiments with varying
TEs (12, 24, 36, 48, 72, 144, 288 ms) were collected for comparison (other parameters
were the same as for MSE sequence). All measurements were performed with a single
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channel circularly polarized head coil.

A second experiment was carried out on a bottle filled with Manganese doped water
to check the influence of in-plane B1+ inhomogeneities (0.11 mM). An MSE (TR =
7000 ms, τ = 10 ms, 32 echoes, FOV 300× 134 mm2, resolution 1.6× 1.6× 7 mm3,
bandwidth = 200 Hz/pixel, β = 90◦ and α = 180◦ ), a SE (equal parameters as above,
TE = 12, 24, 48, 72, 144, and 288 ms), a TIR (TR = 7000 ms, TE = 7.4 ms, TI = 100, 200,
400, 800, 1600, and 3200 ms, other parameters as above), and a DA sequence for B1+

mapping were used (TR=10 s, TE=12 ms, αnom = 60◦ ). Unknown parameter values
pu = [M0, T2] were calculated for the MSE sequence using the slice selective GF fitting
including measured B1+, and T2-values, and by fitting to a mono-exponential decay
model while excluding the first echo. The SE data were fitted to a mono-exponential
decay model. For the acquired spectra, monoexponential fitting was performed to the
maximum values of the water peaks.

For visual comparison, T2-maps were calculated for the large phantom using the
same fitting procedures as described above. Additionally, fitting was also performed
for the extended unknown parameter set pu = [M0, T2, T1, α]. T2-maps were median
filtered (kernel 2× 2) to remove outliers.

3.2.4 In-vivo validation

In vivo validation and comparison of single-voxel spin-echo spectroscopy and MSE
sequences was carried out for brain tissue of six healthy male volunteers (age 26–
38; median, 30 years) using a 12-channel head coil. T2-decay was sampled using an
MSE sequence (TR=4000 ms, τ = 10 ms, 25 echoes, FOV = 300× 213 mm2, resolution
1.6× 1.6× 4 mm3, bandwith 200 Hz/pixel) and a single-voxel spectroscopy SE sequence.
The voxels for the spectroscopy sequence (voxel 8× 8× 8 mm3 or 8× 5× 14 mm3, 5
echoes) were each placed in frontal white matter (WM), caudate nucleus, putamen, and
globus pallidus. Additionally, images with a spin-echo variant, where short TRs are
permissible by holding TR-TE constant [133], were acquired (TR=400 + TE ms, TE=[10,
58, 107, 155, 204, 253] ms, other parameters as above).

The DA method for B1+ mapping is not applicable in vivo due to its inherently
long scan times. Therefore, the FA distribution was measured using the B1+ mapping
method by Bloch- Siegert shift [107] (GRE, TR=73 ms, TE=12 ms, α = 15◦, FOV 300× 206
mm2, resolution 4.7× 4.7× 4 mm3, Gaussian off-resonance pulse with B1,peak = 0.11G,
KBS = 21.3 rad/G2/ms, duration 8000 ms and fOR = 8 kHz). Two parameter fits for
pu = [M0, T2] were calculated using the GF approach and mono-exponential fitting
for MSE as well as SE data. Resulting T2-maps were median filtered (kernel 2× 2) to
remove outliers.
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Figure 3.1: Forward simulations of the signal decay starting at the equilibrium magnetization
M0 as a function of different parameters. a,b: Signal decay according to two different signal
models, i.e., mono-exponential decay (continuously decreasing curve) and GF model (curve
characterized by an initial sharp bend, α = 144◦, Gaussian slice profile) for different tissues.
The influence of the refocusing flip angle (from 18◦ to 180◦, ideal slice profile, T1 = 1000
ms, T2 = 100 ms) on the signal decay (c), influence of slice profiles versus mono-exponential
decay (dotted curve) and ideal slice profile (T1 = 1000 ms, T2 = 100 ms, α = 144◦) (d). In (e)
and (f), the effects of varying T1 , and T2-values on the decay are illustrated (α = 90◦, ideal
slice profile) and compared with the mono-exponential decay (dotted curves).

3.3 Results

3.3.1 Simulations

Figure 3.1a and b show simulated decay curves for different tissue types and signal
models. Compared with the mono-exponential decay, a large decrease in signal intensity
of the first echo can be observed for the GF model in all tissues. The deviation from
pure exponential decay is obvious as the second echo is higher than the first, resulting
in a spike of the curve. The strong dependence of the signal on the actual refocusing
FA is shown in Figure 3.1c. For FAs between 180◦ and approximately 135◦ the signal
can still be fitted to a mono-exponential model when using only the even echoes. For
smaller angles, the signal decay is not exponential. While for these simulations the slice
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Figure 3.2: Results of the Monte Carlo simulation. Estimated T2-times are shown for the GF
formalism (dark curves) and a mono-exponential model (bright curves), and are compared
with true T2-values (cross symbols). Shaded areas represent the range from lower to upper
quartile. All results are from the two-parameter fit unless otherwise stated. Influence of
varying flip angles assuming ideal slice profile (a), and Gaussian slice profile (b) using a
two-parameter (with prior knowledge of B1+ and T1 ) and a four-parameter fit (B1+ and T1
both included in the fitting procedure). (c) Fitting results of B1+ (four-parameter fit). Influence
of varying T1 (d), T2-values (e), and SNR (f).

profile was considered ideal, the influence of two different slice profiles is illustrated
in Figure 3.1d. It demonstrates the large effect of the slice profile compared with
sole FA deviations. Figure 3.1e displays the effect of varying T1-times on the signal
decay. The GF model curves for the different T1s show a very similar decay, indicating
that there is hardly any influence of T1 on the signal. Only for T1 = T2 = 100 ms a
slightly faster decay can be observed. The influence of T2 on the decay is shown in
Figure 3.1f, comparing the GF formalism to the mono-exponential model. For short
T2-times, and starting at the second echo, the decay using the GF formalism deviates
only slightly from the pure exponential decay. However, for longer T2-times, the decay
is considerably slower.
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3 Accurate T2-mapping for slice-selective MSE sequences

Figure 3.3: Data fitting in the
z-domain. Real and imagi-
nary part of transformed data
(and) and corresponding fits
(solid and dashed lines) in the
z-domain. Simulation parame-
ters were T1 = 1000 ms, T2 =
150 ms, α = 144◦, τ = 10 ms,
SNR = 80, Gaussian profile,
apodization factor 1.13.

Table 3.1: Comparison of original and estimated
T2-values via z-domain fitting (mean ± SD)

T2(ms) T2(ms) [fit] Rel. Error %

50 50.1± 1.5 0.16± 2.89

70 70.0± 2.0 0.10± 2.81

90 90.2± 0.12 0.12± 2.92

120 119.9± 3.4 0.15± 2.85

150 150.4± 4.8 0.13± 3.20

200 200.3± 7.2 0.00± 3.58

300 299.9± 13.5 0.24± 4.52

The results of the Monte Carlo
simulations are presented in Fig-
ure 3.2a–f. The simulations for
flip angles varying from 80◦ to
280◦ using an ideal slice profile
(Fig. 3.2a) show a marked in-
crease of estimated T2-times for
the mono-exponential model if
the flip angle deviates more than
±30◦ from the ideal value of

180◦. The GF approach is robust for flip angle variations, with the mean of the
fitting results close to the true values of T2 over the entire range of flip angles. When
a Gaussian slice profile is used (Fig. 3.2b), the error for mono-exponential fitting is
still greater with deviations of 25% to 80% for flip angles from 180◦ to 80◦. For both
fits, the GF formalism, i.e., a two-parameter (with prior knowledge of B1+ and T1 )
and a four-parameter fit (B1+ and T1 included in the fitting procedure), yields accu-
rate and precise results with a negligible error compared with the mono-exponential
approach. B1+ was reliably estimated using the GF formalism (Fig. 3.2c), however,
with a tendency of underestimation for nominal flip angles close to 180◦. T1 could
not be reliably estimated in any of the cases that were investigated (data not shown).
Figure 3.2d shows that the influence of T1 on mono-exponentially estimated T2-values
results in a constant overestimation of approximately 32% for T1 /T2 ratios higher
than 5. Below that ratio, the error is smaller with a minimum for T1 /T2 = 1. Using
the GF approach, T2-values are slightly overestimated (error <4%). For increasing
T2-values, mono-exponentially estimated T2-values deviate progressively, whereas the
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Table 3.2: Measured relaxation times for doped water phantoms and corn oil.

Conc (mM) T1 T2 SPa T2 SEb dev. T2 MSEc dev. T2 GFd dev.

MnCl2

1 0.02 2331.1± 32.0 407.7 443.6± 48.5 8.8 459.5± 17.6 12.7 368.3± 6.3 −9.7

2 0.08 1213.0± 10.2 119.2 114.1± 1.8 -4.3 137.9± 0.9 15.7 113.7± 13.6 -4.6

3 0.10 1066.3± 9.1 96.0 93.8± 1.4 -2.3 114.4± 0.8 19.2 91.3± 0.4 -4.9

4 0.15 767.0± 5.2 61.8 60.8± 0.7 -1.6 75.6± 0.4 22.3 59.9± 0.2 -3.1

5 0.21 616.8± 3.6 46.9 46.1± 0.5 -1.7 58.8± 0.4 25.4 47.1± 2.5 0.4

6 0.38 366.8± 3.1 25.5 24.8± 0.4 -2.7 33.1± 0.3 29.8 26.3± 0.2 3.1

Gadovist

7 4.04 40.9± 0.7 35.3 34.0± 0.5 −3.7 36.2± 0.3 2.5 37.4± 12.6 6.0

Corn Oil

8 291.1± 2.0 64.4 43.4± 0.6 32.6 96.9± 9.7 −50.4 78.2± 9.8 −21.4

aSpectroscopy sequence, mono-exponential fit.
bSingle-echo spin-echo sequence, mono-exponential fit.
cMultiple-echo spin-echo sequence, mono-exponential fit.
dMultiple-echo spin-echo sequence, generating functions fit.

GF approach yields values close to the true value (Fig. 3.2e). The effect of the SNR on
T2-estimation (Fig. 3.2f) shows that the GF approach is less influenced by noise than
the mono-exponential model. In the worst case of SNR= 20, the interquartile range was
7.8 ms (GF) compared with 18.3 ms (mono-exponential) for a true T2 of 100 ms. For the
monoexponential fit, the systematic bias was approximately 30% compared with less
than 4% for the GF approach. Figure 3.3 illustrates a fit to real and imaginary parts
of transformed data obtained in the GF domain. Detailed results on the performed
simulations are given in Table 3.1. The mean relative error is less than 0.3% in all
simulated cases with standard deviations varying between 2.81 and 4.52%.

3.3.2 Phantom measurements

In table 3.2, measured T1 , and T2-values for different sequences and fitting models in
various phantoms are presented. The T1-values of the MnCl2 solutions (phantoms 1–6)
were considerably longer than the corresponding T2 values. The deviations of T2 using
the SE approach, compared with the spectroscopic measurements, were very small (<
5%) except for phantom 1 with a relative error of 8.8%. Higher errors of 15.7 to 29.8%
were observed using MSE data with a mono-exponential fit with a slightly lower error
for phantom 1. Using the GF model for T2-estimation resulted in deviations between
0.4 and 9.7%, i.e. similar to the SE approach. In the Gadolinium phantom, T1 and T2
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Table 3.3: Measured T2-values for brain tissue compared to values from the literature (in ms).
Additional data of the knee from one volunteer is also shown.

Region T2 SPa
T2 MSEb T2 GFc T2 SE Literature

Samples n = 6 n = 6 n = 6 n = 1

Frontal WM 68± 6 71± 2 53± 8 50 79.6± 0.6d, 53± 3e, 69± 3 f , 50± 2g, 100h, 53± 2i

Caudate nucleus 69± 10 81± 2 63± 5 60 60± 3e, 82± 3g, 77h, 56± 3i

Putamen 56± 5 72± 1 57± 3 55 55± 3e, 69± 3g, 66h, 50± 3i

Globus pallidus 48± 4 56± 2 45± 1 37 38± 2e, 63h, 38± 3i

Samples n = 1 n = 1 n = 1

Muscle 37± 1 30± 1 28± 2

Subcutaneous fat 101± 2 84± 2 44± 1

Bone marrow 116± 1 95± 2 44± 1

aSpectroscopy sequence, mono-exponential fit; bMultiple-echo spin-echo sequence, mono-exponential fit; ;cMultiple-
echo spin-echo sequence, generating functions fit; dMultiple-echo spin-echo [131]; eExtended phase graph,
compensating stimulated echoes [34]; f Multiple-echo spin-echo [134]; gDESPOT2 [42]; hMulti-echo spin-echo
(post-mortem) [96]; iAdiabatic pulses at 4.7T (MASE) [135].

were similar, and T2 could be estimated with a good accuracy with all methods. For
the corn oil phantom large T2-discrepancies between the investigated methods were
observed. Refocusing flip angles were close to 180◦ in all cases.

T2-maps computed with different models (Fig. 3.4a–c) illustrate the combined
influence of the actual FA and the slice profile in a homogenous manganese doped
water phantom. Compared with the “gold standard” mono-exponential fit to SE data
(Fig. 3.4b), the GF approach (Fig. 3.4a) results in a homogenous and unbiased map
with minimal residual modulation. In contrast, a large modulation of T2 resulting from
B1+-inhomogeneity and a substantial bias due to slice profile effects were observed
for a mono-exponential fit to MSE data (Fig. 3.4c). A flip angle map of the phantom
(Fig. 3.4d) indicates deviations of 50% to 130% of the nominal flip angle. A horizontal
cross-section of the different approaches is presented in Figure 3.4e showing that the
error becomes minimal for flip angles of 180◦. Median estimated T2-values across the
entire slice were 84.6 ms for the SE measurement, 83.7 ms and 82.1 ms for the GF
approach (two-parameter fit and four-parameter fit, respectively), and 104.1 ms for
mono-exponential fitting to MSE data corresponding to relative errors of 1.1, 2.9, and
23.0%, respectively (relative to the SE measurement). The possibility to estimate the
FA distribution directly from MSE data (four-parameter fit) is demonstrated in Figure
3.5a and is compared with the DA method for B1+ mapping (Fig. 3.5b). Due to the
symmetry of the MSE signal intensities around 180◦, only deviations from the nominal
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Figure 3.4: T2-maps scaled in ms of manganese-doped water phantom. a: T2-map calculated
using the GF approach (a), "gold standard" mono-exponential fit to SE data (b), mono-
exponential fit to MSE data (without first echo) (c), and B1+-map scaled in % (d), 100%
correspond to a flip angle of 180◦ e: Cross-sectional T2 and FA distributions, respectively, for
the maps a–d. Note that in (e), two different quantities are plotted and thus two different
scales are used. The solid lines correspond to T2-values in ms, the dotted lines to nominal
and actual FA in % (of the nominal angle).

Figure 3.5: Absolute deviations from a nominal flip angle of 180◦, scaled in degrees. a:
Estimation by the GF fitting approach using a four-parameter fit, after filtering with a 15× 15
kernel median filter, In areas of 180◦ (zero deviation) the GF approach cannot accurately
determine the flip angle. b: Estimation by B1+ mapping (DA method). c: Difference image
between the GF approach (a) and B1+ mapping (b).
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Figure 3.6: Maps of estimated T2 (a,b,c, scaled in ms) and B1+ (d) of a human brain in vivo.
T2-map calculated using the GF formalism (a), calculated by mono-exponential fitting to
single echo data using the method in [133] (b), and using mono-exponential fitting to MSE
data (c). B1+ map acquired with the Bloch-Siegert method, scaled in % of nominal FA. All
images are median filtered with a 2× 2 kernel.

angle could be calculated. Refocusing FAs that substantially deviate from the nominal
angle could accurately be estimated by GF fitting. However, in areas close to 180◦ this
process fails because there, the MSE decay is insensitive to FA deviations. Additionally,
in these regions the density of outliers produced by the fitting routine was higher.

3.3.3 In-vivo results

In figure 3.6, maps of estimated T2 of an in vivo human brain are presented. While
the monoexponential fitting to MSE data tended to overestimate T2 (Fig. 3.6c), the GF
approach (Fig. 3.6a) and spectroscopic measurements provided similar results. The
method of [133] generally produced quite noisy results. Results of the ROI analysis in
comparison with spectroscopic T2-data are given in Table 3.3. Additionally, reported
values from the literature are listed for comparison. For subcutaneous fatty tissue
and bone marrow in the knee (case study) major differences are found comparing the
different techniques (see table 3.3 and figure 3.7 for details).

3.4 Discusssion

Accurate measurement of transverse relaxation times is a difficult task if FA deviations
of the refocusing pulses from 180◦ cannot be excluded. Generally, this is the case for
slice-selective pulses and in most in-vivo situations at high field strength. In this study,
a method to circumvent these major limitations is presented. The proposed method
identifies the underlying T2 of the signal-decay of a CPMG MSE sequence by fitting a
new signal equation that includes the contribution of the stimulated echoes generated
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Figure 3.7: T2-maps (a-c) and B1+-map (d) of a human knee joint in-vivo. (a) is the T2-map
calculated with the GF formalism, (b) calculated by mono-exponential fitting to single echo
data [133], and (c) by mono-exponential fitting to multi-echo data, all scaled in ms. (d) is
a B1+ acquired with the Bloch-Siegert method (scaled in % of nominal FA). All images are
median filtered with a 2×2 kernel.

from non-ideal refocusing pulses. The presented approach was assessed and validated
by computer simulations, phantom experiments, and in vivo investigations.

The simulations performed underpin that the signal acquired with a standard CPMG
MSE sequence cannot be described by an exponential decay model, due to its substantial
error in T2-estimation. The MSE signal is a complex function depending on various
factors, i.e.

S = f (M0, T1, T2, FA, slice profiles, J, B0, MT, diffusion,

TE, TR, chemical exchange, sensitivity), (3.4)

some of which influence the signal as multiplicative coefficients while others confound
signal generation in a more complicated way. Thus, two strategies can be pursued
to deal with this problem, i.e. to account for the effects with an appropriate model
or to avoid them to measure the pure T2 . In accordance with previous studies [11,
13], two major influences were identified that alter the signal decay substantially and
introduce "T1-mixing" into the signal. The simulations performed suggest that typical
deviations from an ideally rectangular slice-profile, resulting in substantially reduced
FAs at the borders, dominate over global B1+-inhomogeneities with deviations in the
range ±30% from the nominal value. However, there will most likely be a combination
of both effects in virtually all cases at high field strength (Figs. 3.2a, b). To account
for B1+-inhomogeneities, it is either necessary to use the actual FA distribution from
additional measurements or to fit the refocusing pulse angle as additional parameter
in the GF approach. Simulations and phantom measurements showed that near 180◦,
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α cannot be reliably fitted with the GF approach, as the influence of the FA on the
MSE signal disappears. However, for substantial FA deviations from 180, the angle
can be determined directly from the MSE data (Figs. 3.2c, 3.5a). The variation of T1

(Fig. 3.2d) did not show a considerable influence on the estimated T2-values for a large
range of T1 , particularly for relaxation times with a high ratio of T1 /T2 . However,
for a small T1 /T2 ratio, the knowledge of the T1 has a critical influence on accuracy.
If T1 equals T2 , the resulting signal decay ensures accurate estimates even for the
mono-exponential fit [136]. This phenomenon has been described as purely accidental
[29], and was validated here for the gadolinium-doped phantom and in the simulations.
Also, from the four-parameter fit it can be seen that the signal is not very sensitive
to T1 . For future applications, we therefore suggest two- or three-parameter fits. An
analysis of the influence of T2 on the signal decay (Fig. 3.2e) showed that the deviation
for mono-exponential fitting is proportional to the actual T2 . Beyond 200 ms the error
increased, most likely because the inter-echo spacing was too small for large T2-values
and, thus, the decay was inefficiently sampled. This effect was also observed for the
first Manganese phantom, where the error was higher in contrast to the error for the
phantoms with T2-values <120 ms. However, the GF approach produced accurate
values throughout the investigated T2-range in the simulations.
To avoid any influence of TR, the TR was chosen long enough for the longitudinal
magnetization to fully recover. Influences of diffusion, homonuclear J-coupling and
chemical exchange are judged to be minimal, because the MSE approach with short
echo times is inherently robust against these influences compared with the SE technique
(6–8) [20, 116, 117]. The signal of fatty tissue or the oil phantom, where J-coupling seems
to have a stark effect, is an exception to these observations. Additionally, diffusion
effects from imaging gradients were prevented by keeping readout bandwidth low,
and were confirmed by calculation of the sequences’ b-values. For our phantom
data, T2-estimations based on SE and GF measurements agreed much better with the
spectroscopic measurements than with MSE data as they did not suffer from stimulated,
and higher order echoes. Overall, this was also true for the in-vivo data, however, larger
deviations were observed for frontal WM. T2 measured by spectroscopy tended to be
slightly higher than when using a SE sequence, probably because two refocusing pulses
have to be applied. Magnetization transfer and direct saturation via slice cross talk
can also alter the signal intensity in multi-echo sequences [118]. However, when slice
gaps of at least 2 mm are used, as in our experiments, the cross talk is negligible [136].
Magnetization transfer effects can be excluded in our experiments on water phantoms
but might play a role in our in-vivo experiments, especially in white matter.

Rather different T2-values were obtained for the corn oil phantom. In the spec-
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troscopic measurement of T2 , only the decay of the largest peak in the spectrum
was considered. However, in MRI imaging, a mean T2-value of all separate peaks is
measured. For SE measurements, estimated T2-values are a lot smaller than for MSE,
due to stronger J-coupling influence. The GF approach yields values between these
two by correcting for stimulated echoes while being inherently robust to J-coupling.
These findings were also confirmed by the in-vivo results for subcutaneous fat and
bone marrow.

The presented method has similarities to the recently published approach by Lebel
and Wilman [34]. However, this method follows an iterative scheme of the extended
phase graph algorithm whereas the GF approach uses a closed form solution. This
solution is obtained by using the z-transform for solving the recurrence relation for
the magnetization vector of a whole inter-echo period. This strategy is often used to
solve difference equation describing linear time-invariant systems in signal processing
[137] and can theoretically be applied for any echo train sequence in MRI. The solution
can be given as a simple formula and can be very efficiently implemented using the
fast Fourier transform compared with the EPG where iterative application of rotation
matrices is necessary. Furthermore, non-ideal slice profiles are readily incorporated
by a summation that can be performed in the z-domain due to the linearity of the
underlying transform, making necessary only one final Fourier transform.

For the EPG, the total number of real multiplications is N/2(N + 1)36Q were N is
the number of echoes, and Q is the number of sample points for the slice profile. In
contrast, the number of multiplications for the GF approach is P(8 + 25Q) for function
evaluation and (K2K)4 for the FFT (K = log 2(P)). Here, P is the number of sample
points in the z-domain. One can readily observe that the computational cost of the
EPG is quadratically dependent on the number of echoes, whereas for the GF there is
a linear (function evaluation) and linearithmic (FFT) dependence. Therefore, the GF
approach is more efficient especially,for longer echo trains.

Finally, it is also possible to Fourier transform the measured data and fit to the GF in
the z-domain (Fig. 3.3) which speeds up the computation considerably by requiring
only N(8+ 25Q) multiplications (N is number of echoes). However, proper apodization
of the data will then be necessary to avoid leakage effects. The simulation results also
indicate excellent accuracy with this approach. Our results are in excellent agreement
with the brain T2-values by Lebel, and also with T2-values acquired using adiabatic
pulses [135]. Clearly, T2-values acquired with other sequences differ from our values,
as presented in Table 3.3 [42, 96, 131, 134].

Limitations of this study are that we assume that the excitation FA is 90◦ and the
excitation slice profile is homogeneous. Additionally, the influence of off-resonance
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effects was not included in the signal model. As the phantom measurements were all
carried out in the isocenter of the magnet, B0 inhomogeneities played a minor role. The
additive noise bias in the mono-exponential model is not the most accurate way to
model the influence of noise in magnitude MR data. However, because we were using
images with a high SNR (> 3) we do not expect a large effect [138]. Furthermore, the
slice-profile was only calculated for a single FA and, subsequently, was only scaled by
the actual FA scaling factor to save computation time. Recomputing the profile for each
FA would have been more exact and, thus, probably would have removed the residual
modulation in the T2-maps.

3.4.1 Application to model-based reconstruction

In a cooperative effort it was possible to improve model-based T2-estimation [59] by
incorporating the presented model in the reconstruction framework of [58].

Theory Following the approach described in [58, 139] the parameter maps for M0 and
T2 (here represented as vectors M0 and T2 since estimation is performed not pixel-wise
but for the whole image at once) were estimated by minimizing the following cost
function Φ(pu) that measures the squared distance between the acquired k-space data
kc and the simulated data calculated from the forward modelM(pu) and the current
parameter estimates pu, i.e. the data fidelity term.

Φ(pu) =
1
2 ∑

c
‖M(pu)− kc‖2

2 (3.5)

The subscript c accounts for the different coil channels. In the order applied, the
forward model consists of the CPMG signal model Fq(pu), a 1-dimensional DFT to get
from the z domain to the time domain, multiplication by the individual coil sensitivities,
subsequent 2D DFT to produce k-space data, and finally an undersampling operator P
to blank out the k-space lines, not acquired by the sequence.

M(pu) = PFxyCcFωF(p) (3.6)

pu = [M0, T2]
T (3.7)

Φ(p) =
1
2 ∑

c
‖PFxyCcFωW(p)− kc‖2

2 (3.8)

Regularization was necessary due to the fact that high values for T2 lead to large
outliers and was done by adding L2-regularization terms penalizing the distance from
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3.4 Discusssion

Figure 3.8: Summary of the result of an MR phantom measured with different undersampling
factors. The GF approach agrees very well with the spin-echo gold standard (reprinted from
[59]).

the initial guesses M0
0 and T0

2.

Φ(p) =
1
2 ∑

c
‖PFxyCcFωW(p)− kc‖2

2 + λM0‖M0 −M0
0‖+ λT2‖κ2 − κ0

2‖ (3.9)

where κ2 = e−τ/T2

Methods. Cartesian undersampling was performed in phase-encoding direction,
which facilitates the reconstruction process. Φ(pu) was minimized using a conju-
gate gradient descent algorithm [140]. Data were acquired with the same parameters
as in section 3.2. Undersampling was done retrospectively using a block-pattern with
undersampling factors up to R = 12.

Results. The findings were quite similar to and in good agreement with the ones
presented above as shorter T2-times were observed with using the GF model.
Phantom experiments yielded accurate values for undersampling factors up to R = 6,
in vivo, even factors up R = 12 produced reasonableT2-maps. Figure 3.8 shows
the table from the publication, summarizing the phantom experiments for different
fitting methods and undersampling factors. In-vivo results of a human brain for a
standard mono-exponential fit and the GF approach are shown in figure 3.9. The
good performance of the method presented, even for large undersampling factors, is
remarkable.
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3 Accurate T2-mapping for slice-selective MSE sequences

Figure 3.9: In vivo results of a human brain for different undersampling factors (reprinted
from [59]).
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4
A-time domain signal equation for

multi-echo spin-echo sequences with

arbitrary excitation and refocusing angle

and phase

This chapter is adopted from "A time domain signal equation for multi-echo spin-echo sequences
with arbitrary excitation and refocusing angle and phase" [141].

4.1 Theory

The derivation of the time-domain formula consists of three main parts: (1) solution
of the Bloch equations for the elementary sequence building blocks (fig. 4.1, shaded
area) with arbitrary refocusing and excitation pulse parameters, (2) derivation of the
z-transform/GF of the signal evolution, and (3) the inversion of the z-transform in
order to arrive at an analytical solution in the time domain. In this chapter, a detailed
derivation of the time-domain formula will be presented.

4.1.1 Solution of Bloch equation

In a MESE sequence the elementary sequence block that is repeating throughout
the sequence, after the initial excitation, constists of a free precession period, τ/2,
including relaxation and a dephasing (readout) gradient followed by the refocusing
pulse (hard pulse approximation) and another free precession period including the
rephasing (readout) gradient (see Fig. 4.1). The spin dynamics during these periods
is governed by the Bloch equation in the case of uncoupled spins with spin quantum
number 1/2. It can be solved piecewise for these relaxation, precession, and rotation
periods. The evolution of the complex magnetization vector ~M = [M+, M∗+, Mz]T

(where M+ = Mx + iMy) during such a block is then given by the difference equation
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4 A time-domain MSE equation

Gx

relaxation

precession

τ/2

relaxation

precession

τ/2

RF

Exc. pulse

RF pulse α◦ RF pulse α◦

M[0] M[1] M[2]

Figure 4.1: Sequence diagramm for a MESE sequence: The shaded area corresponds to the
repeating sequence building blocks that stay the same from one echo to another. Phase-
encoding and slice-selection gradients are omitted as they are balanced throughout the
sequence.

[38]

~M[n + 1] = QPQ ~M[n] + (QP + I) ~Seq (4.1)

~M[0] = [M+[0], M∗+[0], Mz[0]]T (4.2)

where Q is a complex matrix accounting for relaxation (κ1 and κ2) and free precession
U = eiψ about the z-axis where ψ denotes the phase acquired during precession due to
the readout gradient (and other off-resonance effects).

Q =

 U√κ2 0 0
0 U−1√κ2 0
0 0 √

κ1

 ,
κ1 = e−τ/T1 ,
κ2 = e−τ/T2 ,
U = eiψ,

(4.3)

I is the unit matrix, the vector Seq accounts for longitudinal relaxation towards
equilibrium and is given by ~Seq = [0, 0, M0(1−

√
κ1)]

T, and τ is the inter-echo pe-
riod. P = P~u(α) is a complex rotation matrix around an arbitrary rotation axis
~u = [cos φ sin θ, sin φ sin θ, cos θ]T (φ azimuthal angle, θ polar angle, see Fig.4.2) about
an effective flip angle α and is given by

P~u(α) =

 λ χ νeiφ

χ∗ λ∗ ν∗e−iφ

ν
2 e−iφ ν∗

2 eiφ ζ

 (4.4)
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x

y

z

~B

~Bxy

~Bz

θ

φ

Figure 4.2: Definition of coordinate system and angles for the ~B field used in the derivation.
The same angles are used for the initial magnetization ~M[0] (θe and φe).

with

λ =
(
cos α

2 − i sin α
2 cos θ

)2 , χ = e2iφ sin2 α
2 sin2 θ,

ν = 2 sin α
2 sin θ

(
sin α

2 cos θ + i cos α
2

)
, ζ = cos α sin2 θ + cos2 θ.

(4.5)

In general, for repetitive MR sequences, the recurrence relation can be written as

~M[n + 1] = A ~M[n] + ~B (4.6)

whereas in this special case A = QPQ and ~B = (QP + I)~Seq [38].

4.1.2 z-transform of the di�erence equation

Introducing the z-transform ~f (z) = Z( ~M[n]) = ∑∞
n=0

~M[n]zn and using the shifting
property [142], one obtains an expression for the z-transformed difference equation,
~M[n + 1] = A ~M[n] + ~B as follows: The z-transform of ~M[n + 1] can be easily obtained
as

Z( ~M[n + 1]) =
∞

∑
n=0

~M[n + 1]zn = ~M[1] + ~M[2]z + . . . + ~M[∞]z∞ = (4.7)

= z−1

(
∞

∑
n=0

~M[n]zn − ~M[0]

)
= z−1

(
Z( ~M[n])− ~M[0]

)
(4.8)

As the sequence is causal and all values for negative n are zero, the additive factor
~B can be thought of as a function ~B[n] = ~Bu[n], where u[n] is the unit step function.
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4 A time-domain MSE equation

Transforming this expression yields the sum of the geometric series (requiring |z| < 1
for convergence)

∞

∑
n=0

~Bu[n]zn =
1

1− z
~B =

z−1

z−1 − 1
~B (4.9)

Putting all this together, one arrives at the z-transformed difference equation:

z−1(Z( ~M[n])− ~M[0]) = AZ( ~M[n]) +
z−1

z−1 − 1
~B. (4.10)

~M[0] is the initial magnetization (i.e. after excitation)

~M[0] = M0[cos φe sin θe, sin φe sin θe, cos θe]
T (4.11)

and M0 the equilibrium magnetization. Solving for ~f (z) gives a closed form solution
for the z-transform of the magnetization evolution

~f (z) = Z( ~M[n]) = [F(z), F∗(z), L(z)]T = (I− zA)−1
(
~M[0] +

z
1− z

~B
)

(4.12)

Evaluating this expression gives a vector of three rational functions, of which only the
first F(z) is of interest concerning the transverse magnetization. F(z) accounts for the
magnetization evolution for every single isochromate. Next, it is useful to group the
terms in numerator and denominator in F(z), according to the powers of U, as we now
have to average over all individual isochromates to obtain an expression that accurately
models the evolution of the signal in a MESE sequence. After collecting the terms, we
end up with the following expression:

F(z) =
c0 + c1U + c2U2 + c3U3

d0 + d1U2 + d2U4 (4.13)
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with coefficients

c0 = −M+zκ2(1− z)(1− zκ1)
(

cos θ sin
α

2
− i cos

α

2

)2
,

c1 = −2eiφz2κ3/2
2

(
Mz
√

κ1(1− z) + M0(1−
√

κ1)(1 + z
√

κ1)
)

sin
α

2
sin θ

(
cos θ sin

α

2
− i cos

α

2

)
,

c2 = −(1− z)
(

M+ −M+zκ1 cos2 θ + z sin2 θ
(

M∗+e2iφκ2(1 + zκ1) sin2 α

2
−M+κ1 cos α

))
,

c3 = −2zeiφ√κ2

(
Mz
√

κ1(1− z) + M0(1−
√

κ1)(1 + z
√

κ1)
)

sin
α

2
sin θ

(
cos θ sin

α

2
+ i cos

α

2

)
,

d0 = −zκ2(1− z)(1− zκ1)
(

cos θ sin
α

2
− i cos

α

2

)2
,

d1 = −(1− z)
(

1 +
(
κ2

2z2 − κ1z
) (

cos2 α

2
+ cos(2θ) sin2 α

2

)
− κ1κ2

2z3
)

,

d2 = −zκ2(1− z)(1− zκ1)
(

cos θ sin
α

2
+ i cos

α

2

)2
.

(4.14)

The coefficients ci and di are equivalent to those published by Lukzen [38] for the
special case of a 90◦ excitation around the y-axis and arbitrary refocusing around the
x-axis. In this case, φ = 0, M+ = M0, and Mz = 0. Furthermore, to be consistent with
[38], the polar angle θ has to be replaced with π/2− θ. Expression 4.13 now is the
z-transform of the magnetization evolution for a single isochromate and needs to be
averaged to model the signal in a MESE sequence.

Averaging over isochromates can be achieved utilizing the residue theorem of com-
plex analysis [38] yielding an averaged function ~f0(z) = [F0, F∗0 , L0]T with the relevant
component F0 accounting for the transverse magnetization (L0 models the evolution of
the longitudinal magnetization). First, it is best to consider the approach of decompos-
ing the total magnetization into the configurations [37, 143]

S(n, U) =
∞

∑
n=−∞

Fk(n)eikψ =
∞

∑
n=−∞

Fk(n)Uk (4.15)

I.e. the total magnetization, S(n, U), is nothing else but a Laurent series with the
configurations as coefficients whereas for every n only the zeroth configuration gives
rise to an echo. However, the total magnetization is also modelled by F(z) and so
S(n, U) can be expressed as the inverse z-transform thereof:

S(n, U) = Z−1{F(z)} (4.16)

Equating eqns. (4.15) and (4.16), subsequent z-transform and exploiting linearity of the
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4 A time-domain MSE equation

z-transform,

Z{S(n, U)} = F(z) =Z{
∞

∑
k=−∞

Fk(n)Uk} =
∞

∑
k=−∞

Z{Fk(n)}Uk, (4.17)

shows that F(z) is simply the Laurent series of the z-transformed configurations. One
now needs to extract the z-transform of the zeroth configuration, i.e. the zeroth
coefficient of the Laurent series. As known from complex analysis, the closed line
integral of a function around a pole gives the coefficient F−1 of the corresponding
Laurent series: F−1 = 1/(2πi)

∮
F(U)dU [144]. Thus, dividing F(z, U) by U yields the

zeroth coefficient of the Laurent series.

F0(z) = Z{F0(n)} =
1

2πi

∮
|U|=1

F(z, U)

U
dU (4.18)

The evaluation of the integral can be elegantly accomplished using the residue theorem,
[144]

F0(z) =
M

∑
m=1

Res
(

F(z, U)

U
, Um

)
, (4.19)

where Um are the poles of F(z, U)/U that lie inside the unit circle. If Um is a single pole
and F(z, U)/U is of the form h(z, U)/g(z, U), then the residue at Um can be calculated
as

Res
(

F(z, U)

U
, Um

)
=

g(z, Um)

h′(z, Um)
. (4.20)

By calculating the roots of the denominator in (4.13), the poles are given as

U0 =0, (4.21)

U1,2,3,4 =
−
+−
+

√
− d1

d2

−−
+
+

√
d1−4d0d2

d2
√

2
. (4.22)

Following the method of Lukzen [37] only the poles inside of the unit circle (U0, U3,
U4) are used to yield the averaged GF:

F0(z) =
g(z, 0)

U1U2U3U4
+

g(z, U3)

U3(U3 −U1)(U3 −U2)(U3 −U4)
+

g(z, U4)

U4(U4 −U1)(U4 −U2)(U4 −U3)

(4.23)
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Carrying out these steps gives

F0(z) =
−2c2d0

√
d2

1 − 4d0d2 + c0

(
4d0d2 + d1

(
−d1 +

√
d2

1 − 4d0d2

))
2d0

(
−d2

1 + 4d0d2
) (4.24)

and finally

F0(z) = eiφ

[
Mx cos φ + My sin φ

2

(
1 +

√
X+(z)
X−(z)

)
+ i

My cos φ−Mx sin φ

2

(
1 +

√
X−(z)
X+(z)

)]
(4.25)

X+(z) = (1 + zκ2)(1− z(cos α cos2 θ + sin2 θ)(κ1 + κ2) + z2κ1κ2) (4.26)

X−(z) = (1− zκ2)(1− z(cos α cos2 θ + sin2 θ)(κ1 − κ2)− z2κ1κ2) (4.27)

If furthermore the inital magnetization is given in spherical coordinates ~M[0] =

M0[cos φe sin θe, sin φe sin θe, cos θe]T, one arrives at the final result given in eq. 4.28.

F0(z) =
M0eiφ sin θe

2

[
cos(φe − φ)

(
1 +

√
X+(z)
X−(z)

)
+ i sin(φe − φ)

(
1 +

√
X−(z)
X+(z)

)]
(4.28)

The first term in the square brackets describes the signal for a CPMG sequence and the
second one for a CP sequence, respectively (see also ref. [38]). The factor cos(φe − φ)

is the amount of initial magnetization that is projected onto the orientation of the
refocusing B1+ field in the xy-plane, and sin(φe − φ) the amount that is projected
onto the perpendicular orientation. This is not surprising since the magnetization
that is aligned with the refocusing rotation axis experiences a CPMG sequence and
perpendicular magnetization experiences a CP sequence. The polar angle of the
refocusing axis, θ, enters the equation through the effective flip angle which is defined
by cos αe = cos α sin2 θ + cos2 θ [38]. After computation of the signal evolution, the
previous projection has to be undone by rotating the resulting transverse magnetization
back to its original orientation by multiplying by eiφ. M0 sin θe is exactly the amount
of magnetization converted to transversal magnetization by the excitation pulse (for
previously fully relaxed equilibrium magnetization). The reader should not confuse the
specific angles for excitation and refocusing pulse, namely the excitation pulse profile
expressed in polar coordinates θe and φe, and the rotation axis θ and the phase φ of
the refocusing pulse, respectively. The former describe the excited magnetization in
spheric coordinates, whereas the latter define the rotation axis of the refocusing pulse.
The expression incorporating the excited magnetization in Cartesian coordinates can be
found in the appendix.

Principally, equation 4.28 can already be used to calculate the echo amplitudes
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4 A time-domain MSE equation

Figure 4.3: Roots and poles of Y⊥(z) in the complex plane. Poles are indicated in red, roots in
orange color, respectively. The inner dashed circle corresponds to the unit circle. The outer
circle was drawn at the position of the innermost pole.

for a MESE sequence. Bearing in mind that the z-transform reduces to the discrete
time Fourier transform (if it exists) for z = eiϕ, and moreover to the discrete Fourier
transform (DFT) for equidistantly sampled values of ϕ, i.e. ϕk =

2πk
K and k = 0, ..., K− 1,

the echo amplitudes are obtained using the inverse DFT of F0(eiϕk) evaluated around
the unit circle. However, the DFT can cause problems through truncation/leakage
effects which results in flawed echo amplitudes [10]. Therefore, a method to analytically
transform F0(z) to the time domain is desireable.

4.1.3 Derivation of time domain formula

For inverse z-transform of (4.28) first the arguments of the square roots are treated.
Here we obtain rational functions Y⊥(z) = X+(z)/X−(z), indicating the CPMG part,
and Y‖(z) = X−(z)/X+(z), indicating the CP part, that can be inversely transformed
using e.g. Mathematica. Doing that, one arrives at a time domain expression η[n],
which is a convolution of the inverse z-transform of the root itself according to the
convolution property (x[n] ∗ x[n] c sZ X(z)2). Thus,

Y⊥(z) s cZ−1
η⊥[n] = g⊥[n] ∗ g⊥[n] and Y‖(z) s cZ−1

η‖[n] = g‖[n] ∗ g‖[n]. (4.29)

The actual time domain contribution of both magnetization components g⊥[n] and g‖[n]
experiencing a CPMG and a CP sequence, respectively, can subsequently be obtained
by deconvolution of the corresponding functions η⊥[n] and η‖[n].
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4.1 Theory

Check poles of Y⊥(z) and Y‖(z). To do that one has to first have a look at the
roots z+k and poles z−k of Y⊥(z) (the roots of Y⊥(z) are the poles of Y‖(z)). From the
definition of the z-transform used in this work, the positioning of all poles outside the
unit circle corresponds to a stable and causal system. The poles of Y⊥(z) all lie on the
real axis and are given by the following equations:

z−1 =

(
(κ2 − κ1) cos αe −

√
4κ1κ2 + (κ1 − κ2)

2 cos2 αe

)
2κ1κ2

, (4.30)

z−2 =

(
(κ2 − κ1) cos αe +

√
4κ1κ2 + (κ1 − κ2)

2 cos2 αe

)
2κ1κ2

, (4.31)

z−3 =
1
κ2

, (4.32)

where the abbreviation cos αe = cos α sin2 θ + cos2 θ is used. Given the fact that 0 <

κ2 < κ1 < 1, one can calculate the minimum values for the poles of Y⊥(z), which are
given for all possible values of α by

min z−1 =− 1/κ2 (4.33)

min z−2 =1/κ1 (4.34)

min z−3 =1/κ2 (4.35)

We can see that all poles lie outside the unit circle and, hence, conclude the system
Y⊥(z) is both causal and stable for the region of convergence (ROC) being the disk
inside the innermost pole [137] (causality being a logical prerequisite for every MR
sequence, as no magnetization can be measured before the first RF pulse).

Considering the poles of Y‖(z), the result is similar (whereas the poles can be complex
in this case)

z+1 =
(κ1 + κ2) cos αe −

√
−4κ1κ2 + (−κ1 − κ2)

2 cos2 αe

2κ1κ2
(4.36)

z+2 =
(κ1 + κ2) cos αe +

√
−4κ1κ2 + (−κ1 − κ2)

2 cos2 αe

2κ1κ2
(4.37)

z+3 =− 1
κ2

(4.38)
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4 A time-domain MSE equation

with the minimum values also being all outside the unit circle.

min z+1 =− 1
κ2

(4.39)

min z+2 =−
√

1
κ1κ2

(4.40)

min z+3 =− 1
κ2

(4.41)

Inverse transform of Y⊥(z). Upon calculating the inverse transform of Y⊥(z) we see
that the resulting function η⊥[n] is a sum of weighted and shifted versions of another
function ζ⊥[n].

η⊥[n] =ζ⊥[n] + (κ2 − κp cos αe)ζ⊥[n− 1]+ (4.42)

κ2(κ1 − κp cos αe)ζ⊥[n− 2] + κ1κ2
2ζ⊥[n− 3]

ζ⊥[n] in turn is a weighted sum of three exponential functions.

κ1 =e−τ/T1 (4.43)

κ2 =e−τ/T2 (4.44)

κm =κ1 − κ2 (4.45)

cos αe = cos α sin2 θ + cos2 θ (4.46)

Sm =
√

4κ1κ2 + κ2
m cos2 αe (4.47)

W(m,p) =(κm cos αe + Sm)/2 (4.48)

W(m,m) =(κm cos αe − Sm)/2 (4.49)

wm,m =κ1(−2κ2 + Sm)− κm cos α(κ1 − Sm + κm cos αe) (4.50)

wm,p =κ1(2κ2 + Sm) + κm cos α(κ1 + Sm + κm cos αe) (4.51)

ζ⊥[n] =
sec2(αe/2)

4κmSm
·
[
− 2κ2Smκn

2 + wm,mWn
(m,m) + wm,pWn

(m,p)
]

(4.52)

g⊥[n] =
η⊥[n]−

n−1
∑

k=1
g⊥[k]g⊥[n− k]

2
√

η⊥[0]
n ≥ 1 (4.53)
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Since the system is causal (η⊥,‖ = 0 for all n < 0), the deconvolution is given recursively
as

g⊥[n] =


√

η⊥[0] n = 0

η⊥[n]−
n−1
∑

k=1
g⊥[k]g⊥[n−k]

2
√

η⊥[0]
n ≥ 1

(4.54)

with η⊥[0] = 1.

Inverse transform of Y‖(z). The results of η‖[n] s cZ−1
Y‖(z) are structurally very

similar and given by

η‖[n] =ζ‖[n]− (κ2 + κm cos α)ζ‖[n− 1]− (4.55)

κ2(κ1 − κm cos α)ζ‖[n− 2] + κ1κ2
2ζ‖[n− 3]

The formulas for ζ‖[n] are as follows:

κp =κ1 + κ2 (4.56)

Sp =
√
−4κ1κ2 + κ2

p cos2 αe (4.57)

W(p,p) =(κp cos αe + Sp)/2 (4.58)

W(p,m) =(κp cos αe − Sp)/2 (4.59)

wp,p =κ1(−2κ2 + Sp) + κp cos αe(κ1 + Sp + κp cos αe) (4.60)

wp,m =κ1(2κ2 + Sp)− κp cos αe(κ1 − Sp + κp cos αe) (4.61)

ζ‖[n] =
sec2(αe/2)

4κpSp
·
[
2κ2Sp(−κ2)

n + wp,pWn
(p,p) + wp,mWn

(p,m)

]
(4.62)

In contrast to Sm, for CPMG part, the terms of Sp under the square root can get
negative, resulting in a complex value for Sp. Since g‖[n] models the magnitude for the
CP part of the magnetization, it has to be a real number. In order to assure that, this
special case was examined closer.

Case −4κ1κ2 + κ2
p cos2 α < 0 In this case, Sp is purely imaginary, and it turns out

that wp,p = −wp,m = wp. Furthermore, W(p,p) = W
(p,m)

= W(p). Then, ζ‖[n] is equal to
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ζ‖[n] =
sec2(α/2)

4κpSp
·
[
2κ2Sp(−κ2)

n + wpWn
(p) − wpWn

(p)

]
(4.63)

=
sec2(α/2)

4κpSp
·
[
2κ2Sp(−κ2)

n + wpWn
(p) − wpWn

(p)

]
(4.64)

=
sec2(α/2)
4κpi
√
−·
·
[
2κ2i
√
−·(−κ2)

n + i2=(wpWn
(p))
]

(4.65)

(4.66)

As the i’s in this expression cancel, the resulting function is always a real function.
Finally, the deconvolution formula for g‖[n] is essentially the same as for g⊥[n]

g‖[n] =


√

η‖[0] n = 0

η‖[n]−
n−1
∑

k=1
g‖[k]g‖[n−k]

2
√

η‖[0]
n ≥ 1

(4.67)

with η‖[0] = 1.

Complete formula. To arrive at the complete time domain formula, one must not
forget the constant terms 1 in (4.28), which inversely transform to a Dirac delta function
δ[n]. In summary, the combined and actually measured signal, i.e. the nth echo at echo
time n · τ, can be computed as

M+[n] =
M0eiφ sin θe

2
[
cos(φe − φ)(g⊥[n] + δ[n]) + i sin(φe − φ)(g‖[n] + δ[n])

]
n ≥ 0.

(4.68)

For n = 0, this reduces to the magnetization directly after the excitation pulse, M+[0] =
M0eiφe sin θe.

Special case for αe = π. In case the refocusing angle αe = π the sec(αe/2) becomes
infinity. Computing the limit for both η⊥ and η‖ yields

lim
αe→π

η⊥[n] = 4nκ2
n (4.69)

lim
αe→π

η‖[n] = 4n(−κ2)
n, (4.70)
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which are the convolution of an exponential decay and an alternating-sign exponential
decay function, respectively:

g⊥[n] = 2κ2
n (4.71)

g‖[n] = 2(−κ2)
n (4.72)

This is exactly what would be expected for a 180◦ pulse for a CPMG and CP sequence.
Putting it all together, the evolution of the magnetization for this limiting case is given
by

M+[n] = M0eiφ sin θe [cos(φe − φ)κ2
n + i sin(φe − φ)(−κ2)

n] n ≥ 0. (4.73)

For the purpose of data fitting, it’s necessary to check the value of αe and branch
to a code using the simple exponential decay if αe ≈ π. Experiments have shown,
that a branching condition of 0.999π < α < 1.001π is sufficient, when working with
double-precision numbers.

4.2 Methods

4.2.1 Simulations

Signal evolution for CPMG, CP, and mixed type MESE sequences. Six signal evo-
lutions for various parameter combinations where simulated and plotted. Parameters
where chosen as (a) excitation around x-axis, refocusing around y-axis (CPMG se-
quence), (b) excitation around y-axis, refocusing around x-axis (CPMG sequence), (c)
excitation and refocusing around y-axis (CP sequence), (d) excitation around an axis of
45◦, refocusing around −45◦ (CPMG sequence with additional phase), (e) excitation
around an axis of 135◦, refocusing around x-axis (mixed CP and CPMG sequence), (f)
excitation around y-axis and refocusing around an axis of 45◦ (mixed CP and CPMG
sequence). The other parameters were fixed for all simulations M0 = 1 a.u., T1 = 1000
ms, T2 = 100 ms, echo-spacing τ = 10 ms, excitation angle θe = 90◦, refocusing angle
α = 180◦, and polar angle of the refocusing axis θ = 90◦.

Simulation of the evolution of the slice pro�le. In this experiment the evolution of
a whole slice profile was computed. The numerical waveforms of RF amplitude and
phase and the slice-selection gradient where fed into the forward Shinnar-Le Roux
(SLR) algorithm [113] to compute the corresponding final Cayley-Klein parameters a

and b for the accumulated effect of the RF pulse.
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For the excitation pulse, the excitation magnetization profile was computed using
M+ = 2ab∗ (assuming initially fully relaxed magnetization ~M = [0, 0, M0]T). This
profile was then converted to spherical coordinates, and parameters θe(z) and φe(z)
were extracted (z denoting the spatial coordinate in slice direction).

For the refocusing pulse, the computation of the actual refocusing profile is not
necessary. Instead the relations between the parameters a and b and the parameters α,
θ, and φ given in the publication by Pauly [113] were inverted.

α =2 arccos<(a) (4.74)

φ = arctan−<(b)=(b) (4.75)

θ = arctan
−be−iφ/i
−=(a) (4.76)

This yields the spatially dependent parameters α(z), φ(z), and θ(z) that can be directly
inserted in the previously derived formula (z again denoting the spatial coordinate).
Care must be taken implementing the arctan functions, e.g. for the simulations in this
publication the Matlab (Mathworks Inc., Natick, MA) function atan2 was used. The
remaining parameters used in the simulations were M0 = 1 a.u., T1 = 137 ms T2 = 111
ms (in accordance with the phantoms used), and τ = 12 ms. The results were plotted
in a 3D plot to illustrate the alterations of the signal decay when moving through the
slice profile.

4.2.2 Comparison with measurements

To compare the signals computed with the derived formula, the simulated and mea-
sured evolution of the slice profile were compared. Therefore, data for a CPMG
(excitation y-axis, refocusing x-axis) and a CP sequence (both excitation and refocusing
y-axis) were measured in a Gadolinium doped water phantom (T2 = 111 ms and
T1 = 137 ms) on a 3T scanner (Skyra, Siemens). Pulse sequence parameters were: echo
spacing τ = 12 ms, TR=1000 ms, nominal excitation flip angle β = 90◦ and nominal
refocusing flip angle α = 180◦. The standard Siemens MESE sequence was modified
such that the read out gradients were applied in the slice-direction to obtain the slice
signal evolution across the slice profile.

4.2.3 Fitting

The superior performance of models including B1+-inhomogeneities and slice profiles
for T2-mapping using the GF approach [38] was already demonstrated in [10]. To
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asses the accuracy and precision of the algorithm applied to least squares fitting of
"bi-exponential" relaxation data with two T2 components T2s (short) and T2l (long), the
following experiments were performed.

1. Fitting of simulated data to assess accuracy and precision of the model: T2-values
were chosen to mimic normal white brain matter [145]. Complex MSE data were
simulated with parameters τ = 10 ms for T2l = 100 ms (M0l = 40 a.u.) and
T2s = 15 ms (M0s = 10 a.u.), and T1 = 1000 ms. Both decay curves were added
together and Gaussian noise was added to the real and imaginary part of the data.
Noise standard deviation was computed to achieve 3 different SNRs (SNR=80, 60,
40). For each SNR level, the fitting was repeated N = 200 times, with individually
generated noise for each fitting. Median values, and the 25% and 75% quantiles
of the fitted parameters were evaluated.

2. Fitting of acquired white matter data to asses feasibility in brain T2-mapping:
For 183 white matter pixels T2-values were estimated using our method, bi-
exponential and mono-exponential least-squares fitting. Mean values and stan-
dard deviations were compared between the methods. The CPMG sequence
parameters were TR=4000 ms, τ = 10 ms, 25 echoes, matrix 192, voxel size
1.3× 1.3× 4 mm3. The B1+ map was acquired with a sequence employing the
Bloch-Siegert shift [107].

4.3 Results

4.3.1 Simulations

Signal evolution for CPMG, CP, and mixed type MESE sequences. In Fig. 4.4 the
results of the simulations for CPMG, CP, and mixed type MESE sequences are shown.
(a) corresponds to a standard CPMG sequence. As the excitation is carried out around
the x-axis, only My (i.e. negative imaginary part) is present. This magnetization is
refocused around the y-axis and therefore doesn’t oscillate but stays negative while
decaying. (b) is basically the same scenario as in (a) with the only difference that
excitation and refocusing axis are switched. This results in a decaying positive real
component Mx without oscillations. Fig. 4.4 (c) corresponds to a classic CP sequence
with excitation and refocusing around the y-axis. The resulting decay has only a
real component Mx but oscillates between positive and negative values after every
refocusing pulse. In (d) the phase between excitation and refocusing pulse is 90◦ (i.e.
CPMG) but both rotation axes are turned −45◦. This results in a CPMG like decay
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Simulation of signal evolution for (a) excitation around x-axis, refocusing around
y-axis (CPMG sequence), (b) excitation around y-axis, refocusing around x-axis (CPMG
sequence), (c) excitation and refocusing around y-axis (CP sequence), (d) excitation around
an axis of 45◦, refocusing around −45◦ (CPMG sequence with additional phase), (e) exci-
tation around an axis of 135◦, refocusing around x-axis (mixed CP and CPMG sequence),
(f) excitation around y-axis and refocusing around an axis of 45◦ (mixed CP and CPMG
sequence).
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(no oscillations) with the overall magnetization split into a positive real and negative
imaginary part with initial magnitude of 1/

√
2. Fig. 4.4 (e) shows the magnetization

decay after an excitation around an axis of 135◦ (resulting in magnetization aligned
φe = 45◦ between x and y-axis). Refocusing is performed around the x-axis, so that the
magnetization amount along the x-axis (real part) experiences a CPMG sequence (no
oscillations), and the amount along the y-axis a CP sequence (oscillations). Finally, in
(f) also a mixed-type sequence is shown with excitation around the y-axis (resulting
in φe = 0◦) and refocusing around a φ = 45◦ axis. The difference compared to (e) is
that here the different magnetization amounts experiencing a CP or CPMG sequence
are mixed together when they are read out, giving rise to oscillations in both the real
and imaginary part. These intuitive test cases all support the validity of the presented
formula.

Simulation of the evolution of the slice pro�le. In Fig. 4.5 the RF pulses used and their
corresponding slice profiles or pulse parameters α, θ, and φ are shown. In (a) and (b),
the excitation and refocusing pulses are displayed. Fig. 4.5 (c) illustrates the magnitude
as well as x and y components of the transverse magnetization after a 90◦ excitation
using the pulse in (a) computed with the forward SLR algorithm. Excitation was
obviously carried out around the y-axis as the main component of the magnetization is
aligned with the x-axis thereafter. However, some residual magnetization is left along
the + and −y axes. The parameters α, φ, and θ for the refocusing pulse were extracted
from the SLR parameters a and b and are displayed in Fig. 4.5 (d)-(f).

In Fig. 4.6 the simulated evolution of the magnetization for a CPMG (exc. y-axis,
refoc. x-axis) are plotted. In (a) and (b) the whole slice profile and selected decay curves
(1 = middle . . . 4 = edge) are given for Mx, and in (c) and (d) for My, respectively. In (b)
it can be seen that most decay curves exhibit a large magnetization drop already after
the first refocusing pulse when the flip angle is not 180◦ (curves 2-4). The subsequent
decay is also slower, as described previously [10]. In (d), the signal curve 1 is zero at
all times because the excitation pulse did not produce magnetization in the middle of
the slice profile along the y-axis. The other curves (3-4) alternate between positive and
negative values.

4.3.2 Comparison with measurements

In Fig. 4.7, simulated (top row) and measured (bottom row) signals for a CP (left) and
CPMG (right) sequence are plotted. For each plot, the horizontal position corresponds
to a position across the slice profile and the vertical position to the time evolution of
the signal, respectively. First of all, by comparing simulation and measurement (top
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: (a) RF waveform of excitation pulse, (b) RF waveform of refocusing pulse, (c)
excitation pulse profile, (d) refocusing angle profile, (e) refocusing azimuthal angle (i.e.
refocusing phase) profile, and (f) refocusing polar angle (i.e. refocusing axis) profile, all
computed using forward SLR algorithm.
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(a) (b)

(c) (d)

Figure 4.6: (a) Evolution of the slice profile for Mx, (b) selected Mx decay curves, (c) evolution
of the slice profile for My, (d) selected My decay curves. For (b) and (d) numbers 1 correspond
to the middle of the slice profile going to 4 at the edge of the profile.
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Figure 4.7: Comparison between simulation and measurements: The top row are simulations,
the bottom row the corresponding measurements. On the left hand side the signals for a CP
sequence are compared, on the right hand side signals for a CPMG sequence, respectively.
For each sequence type both real and imaginary part show excellent agreement between
simulation and measurement.

and bottom row), one can observe excellent agreement between those two. For the
CP sequence with excitation around the x-axis the major part of the magnetization is
flipped to the −y-axis (imaginary part) and a smaller portion with negative parts on
the left and positive parts on the right of the slice profile is flipped to the −x/x-axis
(real part). The real part then experiences a CPMG sequence and therefore keeps its
sign throughout the echo evolution, whereas the imaginary part has alternating sign.
Both have in common that the magnetization is decaying. The imaginary part decays
with T2 in the center, where the flip angle is close to 180◦, but faster than T2 at the
border of the slice due to imperfect refocusing. The pure T2-decay cannot be seen in the
real part, as there is no initial magnetization at the center of the slice. For the CPMG
sequence, the main part of the magnetization is aligned along the x-axis after excitation.
It is refocused around this axis and therefore keeps its sign and again decays with T2

in the middle of the slice and faster at the edges. The part of the magnetization that is
initially aligned along the −y/y-axis experiences a CP sequence and therefore changes
sign after a couple of pulses.
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4.3.3 Fitting

The results for the fitting simulation are summarized in table 4.1 where median values
and upper and lower quantiles are compared to the simulation ground truth values.
For the long T2-species both M0 and T2 were fitted with good accuracy and precision.
For the short T2-species deviations were bigger, but still acceptable, especially for the
T2s-value. The estimations generally tend to get worse with decreasing SNR level.

For the fitting to acquired MR data of normal white matter the following results
were obtained for the proposed model compared to conventional bi-exponential fitting
(subscript bi) and mono-exponential fitting (subscript T2,mo): T2s = 27.8 ± 5.4 ms
vs. T2s,bi = 43.1± 6.4 ms and T2l = 87.2± 5.8 ms vs. T2l,bi = 121.5± 8.5 ms, and
T2 = 96.6± 3.0 (all values are mean ± standard deviation). This observation that T2·,bi

is longer than T2· coincides with the results for mono-exponential fitting [10] where
T2-values are usually overestimated using the standard mono-exponential approach.
Mono-exponential fitting yields a result located in-between T2s,bi and T2l,bi. Standard
deviations are in a reasonable range for all methods.

Values for M0 are not given here as they are influenced by the slice profile incorpora-
tion as well as the local sensitivity of the receive coils.

4.4 Discussion and Conclusion

In this work, we present a time-domain formula for the evolution of the transverse
magnetization in multi-echo spin-echo sequences. The formula derived is a continuation
and generalization of the Generating functions method first published by Lukzen [37,
38]. For a repetitive sequence building block, a solution of the Bloch equation is
computed and, subsequently, the established recurrence relation is solved by using the

Table 4.1: Results of the bi-exponential fitting simulations. In comparison to the ground truth
median values and 25% and 75% quantiles are given for 3 different SNR values (N=200).

SNR = 80 SNR = 60 SNR = 40

ground truth 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

M0s(a.u.) 10 9.7 10.6 11.9 9.4 10.8 12.1 10.3 12.7 16.1

M0 l(a.u.) 40 39.3 39.9 40.7 38.4 39.9 40.7 38.2 39.9 41.1

T2s(ms) 15 11.9 15.2 18.1 12.2 16.1 20.1 9.1 14.0 21.2

T2 l(ms) 100 98.5 100.0 101.7 98.8 100.4 103.0 97.8 100.6 103.5
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(a) (b)

Figure 4.8: Illustration of leakage effect using the DFT approach compared to the presented
method for (a) blood (T2 ≈ 250 ms) and (b) CSF (T2 ≈ 2000 ms) for different DFT lengths.
Other simulation parameters where M0 = 1 a.u., T1 = 3000 ms, τ = 8 ms, 16 echoes. The
shorter the computed DFT, the more the deviation from the actual signal decay becomes
apparent.

z-transform. This method works for all sequences that consist of repeating building
blocks. Theoretically, the method can be extended also to coupled or exchanging
spins using, e.g. the Bloch-McConnell equation. For spins > 1/2, one could also use
the master equation of the density matrix, although the equations might quickly get
intractable.

Simulations for test cases are all in agreement with the expected signal decay. Further-
more, when compared to measurements, also excellent congruence between simulation
and measurement could be observed. The formula provided contains all relevant
excitation and refocusing parameters that are used in the MESE sequence. First, the
initial excitation profile is incorporated with the flip angle θe and the phase angle φe,
and, second, the refocusing axis and angle by the parameters θ, φ, and α. Using θe,
and φe, an arbitrary magnetization preparation preceding the refocusing train can be
used. Naturally, also the equilibrium magnetization, M0, relaxation paramters, T1, and
T2, as well as sequence timing, τ, are included. Compared to the generating functions
approach, where the z-transform is evaluated at points around the unit circle, z = eiφk ,
and subsequently the inverse DFT is applied, no leakage effects from the transformation
are possible, which is especially relevant for long T2 such as observed in blood [134],
peritumoral edema [70] or CSF [146] (see fig. 4.8). The derived formula is an exact
solution without any approximations. In the limiting case of a 180◦ refocusing pulse, the
formula degenerates to a simple and an alternating sign exponential decay, for CPMG
and CP type sequences, respectively. It is readily implemented and evaluated by the
computation of the sum of 3 exponential functions, and a discrete deconvolution step
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which can also be exactly calculated due to the causal nature of the signals. Compared
to other methods, such as Bloch matrices or EPG, no consecutive multiplication of
nutation and precession matrices is necessary, and additionally the formula inherently
keeps track of all relevant isochromats, as the averaging over all ischromates has already
been performed analytically in the derivation of the formula.

In the case of 2D T2-mapping, the knowledge of the actual angle and phase of the
pulses across the slice is crucial. All pulse parameters are discretized along the slice
direction giving a vector αj, and equivalently for θj and φj, where subscript j accounts
for discretization across the slice profile. This gives the following expression for the
measured signal pixelwise integrated across the slice profile:

MSP
+ [n] =

1
Q

Q

∑
j=1

M0eiφj sin θe,j

2

[
cos(φe,j − φj)(g⊥[n, j] + δ[n]) + i sin(φe,j − φj)(g‖[n, j] + δ[n])

]
n ≥ 0,

(4.77)

where SP denotes integration across the slice and Q is the number of discretization
points. Basically, αj, θj, and φj are computed from the refocusing pulse shape (θe and φe

for the excitation pulse, respectively) using the SLR algorithm, which takes the actual
B1+ and B0 values as input values for every pixel. Therefore, B1+-mapping, e.g. by
[105] is necessary beforehand. However, it was also shown in [10] that the B1+-map can
be fitted itself under certain conditions. B0-inhomogeneities slightly alter the flip angle
and deform the slice. It is our experience, that this effect is negligible and, therefore, no
additional B0-mapping is required.

T2-fitting is then for example accomplished by least-squares minimization of the
following functional when magnitude image data d[n] are used:

[M̂0, T̂2] = arg min
M0,T2

‖d[n]− |MSP
+ [n]|‖2

2 (4.78)

In the case of a long and short T2-species, such as free and myelin-bound water,
usually bi-exponential fits are computed. Bi-exponential fitting itself is an ill-posed
problem [123] and a sufficiently high SNR, in combination with a substantial difference
between T2s and T2l , is required to obtain reliably results. In a simulation experiment,
we demonstrated the feasibility of the proposed model for multi-parameter estimation
and presented values on the accuracy and precision of the method for different SNRs.
For the fitting of acquired brain data, the incorporation of the slice-profile yielded
lower values for T2 as was already demonstrated for the case of a single T2-species
[10]. Mono-exponential fitting yielded results between the bi-exponential T2-values and,
although this is certainly the wrong model, a reasonably good fit was achieved. The
values obtained by our method tend to approach the values Whittall et al. presented in
[145]. This is good evidence for the effectiveness of our method as these authors employ
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a single-slice CPMG sequence with rectangular (hard) refocusing pulses to eliminate
slice profile effects. Furthermore, they report a generally larger standard deviation for
T2s in simulation experiments, which is also reflected in our observations.

We believe this approach is a valuable and ready-to-use method that can be used
for more accurate and comparable T2-quantification and will be of great value for
model-based MRI reconstruction techniques in the future. Therefore, we also decided
to make a C/C++ version of the core algorithm available to the scientific community.
The source files will be for download under http://www.t2mapping.rocks.

4.A Code

1 /∗
2 ∗ Computes a multi−echo spin−echo t r a i n with the deconvolution algorithm
3 ∗ ( c ) Andreas Petrovic , 2020
4 ∗/
5 # include " math . h"
6 # include " cpmg_decon . h"
7
8 # def ine PI 3.141592653589793238463
9

10 namespace my {
11 template <typename T>
12 s t r u c t complex { T re ; T im ; } ;
13 }
14
15 template <typename T>
16 i n l i n e my : : complex<T> complexMult ( my : : complex<T> u , my : : complex<T> v ) ;
17
18 template <typename T>
19 i n l i n e my : : complex<T> complexAdd ( my : : complex<T> u , my : : complex<T> v ) ;
20
21
22 template <typename T>
23 void getEchoTrain ( T M0 , T T1 , T T2 , T tau , T alpha , T theta , T phi , T phie , T thetae ,←↩

const i n t Nechoes , T ∗outr , T∗ outi )
24 {
25 // convert to radians
26 alpha = alpha/180∗PI ;
27 theta = theta/180∗PI ;
28 phi = phi/180∗PI ;
29 phie = phie/180∗PI ;
30 thetae = thetae/180∗PI ;
31
32 // compute e f f e c t i v e f l i p angle
33 double alphae = acos ( cos ( alpha ) ∗pow ( sin ( theta ) , 2 . 0 ) +pow ( cos ( theta ) , 2 . 0 ) ) ;
34
35 // make sure f l i p angle i s not to c l o s e to PI ( r e s u l t s in a d i v i s i o n by 0)

104



4.A Code

36 i f ( alphae > 0.999∗ PI && alphae <= PI ) alphae = 0.999∗ PI ;
37 i f ( alphae < 1.001∗ PI && alphae > PI ) alphae = 1.001∗ PI ;
38
39 // s e t up f r e q u e n t l y used parameters
40 double k1 = exp(−tau/T1 ) ;
41 double k2 = exp(−tau/T2 ) , k22 = k2∗k2 , k2acc = 1 . 0 , k2macc = 1 . 0 ;
42 double twoacc = 1 . 0 , twom2acc= 1 . 0 / 4 ;
43 double cosa = cos ( alphae ) , cosa2 = cosa∗cosa ;
44 double secah = 1/cos ( alphae/2) ;
45 double secah2 = secah∗secah ;
46 double km = k1 − k2 , km2 = km∗km ;
47 double kp = k1 + k2 , kp2 = kp∗kp ;
48 double Sm ;
49 double Wmp , Wmpacc = 1 . 0 ;
50 double Wmm , Wmmacc = 1 . 0 ;
51
52 Sm = sqrt (4∗k1∗k2+km2∗cosa2 ) ;
53 Wmp = ( km∗cosa+Sm ) /2 ;
54 Wmm = ( km∗cosa−Sm ) /2 ;
55
56 my : : complex<double > Wpp , Wppacc , Wpm , Wpmacc , Sp ;
57 Wppacc . re = 1 . 0 ;
58 Wppacc . im = 0 . 0 ;
59 Wpmacc . re = 1 . 0 ;
60 Wpmacc . im = 0 . 0 ;
61
62 // handle complex numbers i f term under square root i s < 0 ! !
63 double Sp2 = −4∗k1∗k2+kp2∗cosa2 ;
64
65 i f ( Sp2 >= 0)
66 {
67 Sp . re = sqrt ( Sp2 ) ;
68 Sp . im = 0 . 0 ;
69 }
70 e l s e
71 {
72 Sp . re = 0 . 0 ;
73 Sp . im = sqrt(−Sp2 ) ;
74 }
75
76 Wpp . re = ( kp∗cosa+Sp . re ) /2 ;
77 Wpp . im = ( Sp . im ) /2 ;
78
79 Wpm . re = ( kp∗cosa−Sp . re ) /2 ;
80 Wpm . im = (−Sp . im ) /2 ;
81
82
83 i n t length = Nechoes + 3 ;
84 double ∗zetacpmg , ∗gammacpmg , ∗fcpmg ;
85 double ∗zetacp , ∗gammacp , ∗fcp ;
86
87 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 // CPMG sequence
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89 zetacpmg = ( double ∗ ) malloc ( s i z e o f ( double ) ∗length ) ;
90 zetacpmg [ 0 ] = 0 ;
91 zetacpmg [ 1 ] = 0 ;
92 zetacpmg [ 2 ] = 0 ;
93
94 gammacpmg = ( double ∗ ) malloc ( s i z e o f ( double ) ∗Nechoes ) ;
95 fcpmg = ( double ∗ ) malloc ( s i z e o f ( double ) ∗Nechoes ) ;
96 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
97
98 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
99 // CP sequence

100 zetacp = ( double ∗ ) malloc ( s i z e o f ( double ) ∗length ) ;
101 zetacp [ 0 ] = 0 ;
102 zetacp [ 1 ] = 0 ;
103 zetacp [ 2 ] = 0 ;
104
105 gammacp = ( double ∗ ) malloc ( s i z e o f ( double ) ∗Nechoes ) ;
106 fcp = ( double ∗ ) malloc ( s i z e o f ( double ) ∗Nechoes ) ;
107 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
108
109 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
110 my : : complex<double > dummy1 , dummy2 , dummy3 , dummy4 , dummy5 ;
111 my : : complex<double > oneOverSp ;
112
113 oneOverSp . re = Sp . re /(Sp . re∗Sp . re + Sp . im∗Sp . im ) ;
114 oneOverSp . im = −1∗Sp . im /(Sp . re∗Sp . re + Sp . im∗Sp . im ) ;
115
116 dummy3 . re = secah2/kp ∗ oneOverSp . re ∗ 0 . 2 5 ;
117 dummy3 . im = secah2/kp ∗ oneOverSp . im ∗ 0 . 2 5 ;
118 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
119
120 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
121 // W f a c t o r s
122 double Wmmfac = k1∗(−2∗k2+Sm ) − km∗cosa ∗ (k1−Sm+km∗cosa ) ;
123 double Wmpfac = k1∗ (2∗k2+Sm ) + km∗cosa ∗ (k1+Sm+km∗cosa ) ;
124
125 my : : complex<double > Wppfac , Wpmfac ;
126 Wppfac . re = k1∗(−2∗k2+Sp . re ) +kp∗cosa ∗ (k1+Sp . re+kp∗cosa ) ;
127 Wppfac . im = k1∗ (Sp . im ) +kp∗cosa ∗ (Sp . im ) ;
128
129 Wpmfac . re = k1∗ (2∗k2+Sp . re ) − kp∗cosa ∗ (k1−Sp . re+kp∗cosa ) ;
130 Wpmfac . im = k1∗ (Sp . im ) − kp∗cosa∗(−Sp . im ) ;
131 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
132
133 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
134 // COMPUTE ZETA CP/CPMG
135 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
136 i n t i ;
137 f o r ( i=0; i<Nechoes ; i++)
138 {
139 // CPMG sequence , j u s t one l i n e because everything i s r e a l
140 zetacpmg [ i+3] = secah2/km/Sm ∗0 .25 ∗ (−2∗k2∗k2acc∗Sm + Wmmfac∗Wmmacc + Wmpfac∗Wmpacc ) ;
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141 // zetacpmg [ i +3] = secah2/km∗0 .25 ∗ (−2∗k2∗k2acc∗Sm + Wmmfac∗Wmmacc + Wmpfac∗←↩
Wmpacc) ;

142
143 // CP sequence , here we deal with complex values
144 dummy4 = complexAdd ( complexMult<double >(Wppfac , Wppacc ) , complexMult<double >(Wpmfac ,←↩

Wpmacc ) ) ;
145 dummy4 . re += 2∗k2∗k2macc∗Sp . re ;
146 dummy4 . im += 2∗k2∗k2macc∗Sp . im ;
147
148 dummy5 = complexMult<double >(dummy3 , dummy4 ) ;
149
150 zetacp [ i+3] = dummy5 . re ;
151
152 // Accumulators
153 twom2acc ∗= 0 . 5 ;
154 twoacc ∗= 2 . 0 ;
155
156 Wmmacc∗=Wmm ;
157 Wmpacc∗=Wmp ;
158 Wpmacc = complexMult<double >(Wpmacc , Wpm ) ;
159 Wppacc = complexMult<double >(Wppacc , Wpp ) ;
160
161 k2acc∗=k2 ;
162 k2macc∗=−k2 ;
163 }
164
165 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
166 // COMPUTE GAMMA CP/CPMG
167 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
168 f o r ( i=0; i < Nechoes ; i++)
169 {
170 gammacpmg [ i ] = ( zetacpmg [ i+3] + ( k2−kp∗cosa ) ∗zetacpmg [ i+2] + k2∗ (k1−kp∗cosa ) ∗zetacpmg [ i←↩

+1] + k1∗k22∗zetacpmg [ i ] ) ;
171
172 gammacp [ i ] = ( zetacp [ i+3] − ( k2+km∗cosa ) ∗zetacp [ i+2] − k2∗ (k1−km∗cosa ) ∗zetacp [ i+1] + k1←↩

∗k22∗zetacp [ i ] ) ;
173 }
174
175 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
176 // COMPUTE F CP/CPMG
177 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
178 i n t j ;
179 double sf=0;
180
181 fcpmg [ 0 ] = sqrt ( gammacpmg [ 0 ] ) ;
182 fcpmg [ 1 ] = gammacpmg [ 1 ] / ( 2∗ fcpmg [ 0 ] ) ;
183
184 fcp [ 0 ] = sqrt ( gammacp [ 0 ] ) ;
185 fcp [ 1 ] = gammacp [ 1 ] / ( 2∗ fcp [ 0 ] ) ;
186
187 f o r ( i=2; i < Nechoes ; i++)
188 {
189 sf = 0 ;
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190 f o r ( j=1;j<=(i−1) ; j++)
191 {
192 sf+=fcpmg [ j ]∗ fcpmg [i−j ] ;
193 }
194 fcpmg [ i ] = ( gammacpmg [ i ] − sf ) /(2∗fcpmg [ 0 ] ) ;
195
196 sf = 0 ;
197 f o r ( j=1;j<=(i−1) ; j++)
198 {
199 sf+=fcp [ j ]∗ fcp [i−j ] ;
200 }
201 fcp [ i ] = ( gammacp [ i ] − sf ) /(2∗fcp [ 0 ] ) ;
202 }
203 fcpmg [ 0 ]∗= 2 ;
204 fcp [ 0 ]∗= 2 ;
205
206 double cphi = cos ( phi ) ∗sin ( thetae ) ;
207 double sphi = sin ( phi ) ∗sin ( thetae ) ;
208
209 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
210 // f i l l output arrays
211 f o r ( i=0; i < Nechoes ; i++)
212 {
213 fcpmg [ i ]∗= 0 .5∗ M0∗cos ( phie−phi ) ;
214 fcp [ i ]∗= 0 .5∗ M0∗sin ( phie−phi ) ;
215
216 outr [ i ] += ( cphi∗fcpmg [ i]−sphi∗fcp [ i ] ) ;
217 outi [ i ] += ( cphi∗fcp [ i ]+sphi∗fcpmg [ i ] ) ; ;
218 }
219
220 // f r e e dynamic memory
221 free ( zetacpmg ) ;
222 free ( gammacpmg ) ;
223 free ( fcpmg ) ;
224
225 free ( zetacp ) ;
226 free ( gammacp ) ;
227 free ( fcp ) ;
228
229 }
230
231 template <typename T>
232 i n l i n e my : : complex<T> complexMult ( my : : complex<T> u , my : : complex<T> v )
233 {
234 my : : complex<T> dummy ;
235 dummy . re = u . re∗v . re − u . im∗v . im ;
236 dummy . im = u . re∗v . im + u . im∗v . re ;
237 return dummy ;
238 }
239
240 template <typename T>
241 i n l i n e my : : complex<T> complexAdd ( my : : complex<T> u , my : : complex<T> v )
242 {
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243 my : : complex<T> dummy ;
244 dummy . re = u . re + v . re ;
245 dummy . im = u . im + v . im ;
246 return dummy ;
247 }
248
249 // e x p l i c i t template i n s t a n t i a t i o n
250 template void getEchoTrain< f l o a t >( f l o a t M0 , f l o a t T1 , f l o a t T2 , f l o a t tau , f l o a t ←↩

alpha , f l o a t theta , f l o a t phi , f l o a t phie , f l o a t thetae , i n t Nechoes , f l o a t ∗←↩
outr , f l o a t ∗ outi ) ;

251 template void getEchoTrain<double >( double M0 , double T1 , double T2 , double tau , ←↩
double alpha , double theta , double phi , double phie , double thetae , i n t Nechoes ,←↩

double ∗outr , double∗ outi ) ;
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5
Combined T1 and T2-�tting using a

modi�ed MSE sequence (MOMSE)

This chapter is adapted from "Simultaneous T1 and T2 mapping using a modified multi-echo
spin-echo sequence (MOMSE)" [147].

5.1 Introduction

Quantitative MRI techniques are usually very time-consuming, e.g. CPMG for T2 or
turbo inversion recovery (TIR) for T1-measurements. Therefore, the development of
multi-parametric qMRI techniques (e.g. MR fingerprinting and model-based recon-
struction) has gained more and more interest. Simultaneous quantification of proton
density and both relaxation times already offers great advantage. As shown in chapters
3 and 4 imperfect B1+-fields and slice-selective refocusing pulses lead to longitudinal
magnetization components and stimulated echoes that alter the mono-exponential
signal decay. On the one hand, this poses a problem for accurate T2-quantification, on
the other hand, one can think of utilizing this artifact and make it a feature. During
the CPMG echo-train with refocusing pulses < 180◦, longitudinal magnetization is
building up again by T1-relaxation and can be used for T1-estimation.

The CPMG decay itself is already dependent on T1 ("T1 -mixing") but the effect is

Figure 5.1: RF sequence diagram for the MOMSE sequence.

111



5 Combined T1 and T2-fitting using a modified MSE sequence (MOMSE)

Figure 5.2: Examples of a round phantom with T1 = 103 ms T2 = 81 ms, and a square phantom
T1 = 3000 ms T2 = 2500 ms, images not scaled to a fixed scale. Echo 32 is the T1-weighted
echo.

small (T1 >> τ) and the sensitivity is not large enough to directly fit T1 from MSE data
(see section 3.3). However, the basic idea of this method is to deliberately lower the
refocusing angle and acquire a long echo train such that a substantial amount of Mz

is recovering during the CPMG train. That very magnetization can be used to create
an additional T1-weighted echo at the end. After the last CPMG echo the transverse
magnetization is spoiled, whereas Mz stays untouched by the spoilers and is read out
by a 90◦-180◦ spin-echo block. The sequence diagram for the RF pulses is shown in
figure 5.1.

The evolution of Mz is not a purely mono-exponential function as in an IR experiment
but can be described by a Generating Function, analogously to F0(z). Section 5.2 is
devoted to outlining the derivation of the longitudinal GF L0(z). The following sections
show the applicability of the developed method by comparing measured and simulated
data, and multi-parametric fitting results. In appendix 5.A, a time-domain solution to
L0(z) is derived.

Fig 5.2 shows images measured with the proposed sequence (excitation angle 90◦,
refocusing angle 45◦, 90◦, 180◦). From left to right, different echo times are shown,
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Figure 5.3: Bottom row: round tap water phantom T1 = 103 ms T2 = 81 ms. Top row: square
Gd-doped phantom T1 = 3000 ms T2 = 2500 ms. Sequence parameters: excitation angle
θe = 90◦, refocusing angle α = [45◦, 90◦, 180◦], τ = 13.2 ms, TR=3000 ms, 32 echoes. On the
right side a close-up view of the last echo is displayed.

whereas on the far right the "T1-echo" is displayed which has a fundamentally different
contrast, namely T1-weighting. The square phantom is filled with tap water and has
therefore long T1, and T2-times and exhibits bright signal in the T2-weighted MSE
echoes, whereas rather low signal intensity in the T1-weighted image, as expected.
Looking at the last column from bottom to top, it is obvious that the signal intensity
increases. This is due to the lower refocusing flip angle, which allows more magne-
tization to recover, or, put differently, more excited magnetization is brought back
to the longitudinal direction during the sequence because of incomplete refocusing.
The round phantom is doped with gadolinium and one can observe a quite opposite
behavior. The signal is quickly decaying during the MSE part, but the last echo exhibits
a clearly perceptible signal, especially for the lower refocusing angles.

In fig 5.3, all acquired echoes are shown, in the top row for the water phantom, in
the bottom row for the Gd-doped phantom. One can easily observe the fundamentally
different evolution curves caused by the different relaxation times. The close up view
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of the last echo shall visualize the difference in signal intensity that is achievable (right
side). However, one must not overlook that the lower the refocusing angle, the lower
the overall signal intensity one can observe.

Combining both Generating functions for T1 and T2 and non-linear parameter esti-
mation enables simultaneous quantification of T1 and T2.

5.2 Theory

The formula for the time evolution of the longitudinal magnetization can be computed
analogously as in section 4.1.2 for the transverse magnetization. To this end, one has to
analyze the rational function L(z) contained in ~f (z) = Z( ~M[n]) = [F(z), F∗(z), L(z)]T.
L(z) has quite a similar form as F(z) and can be expressed as polynomials in U in the
numerator and in the denominator, respectively.

L(z) =
m0 + m1U + m2U2 + m3U3 + m4U4

n0 + n1U2 + n2U4 (5.1)

with coefficients

m0 =
1
4

eiφκ2z(Mz(1− z) + M0z(1− κ1))
(

cos θ sin
α

2
− i cos

α

2

)2
, (5.2)

m1 =
1
4
√

κ1
√

κ2(1− z)z
(

e2iφ M∗+ + κ2M+z
)

sin
α

2
sin θ

(
cos θ sin

α

2
− i cos

α

2

)
, (5.3)

m2 =
1
4

eiφ ((Mz(1− z) + M0z(1− κ1)) (1 + κ2
2z2)

− 4z
(
−κ1M0 + k22z(Mz(1− z) + M0z) +

√
κ1M0(1− κ2

2z2)
)

sin2 α

2
sin2 θ, (5.4)

m3 =
1
4
√

κ1
√

κ2(1− z)z
(

M+ + e2iφκ2M∗+z
)

sin
α

2
sin θ

(
cos θ sin

α

2
+ i cos

α

2

)
, (5.5)

m4 =
1
4

eiφκ2z (Mz(1− z) + M0z(1− κ1))
(

cos θ sin
α

2
+ i cos

α

2

)2
(5.6)

n0 =
1
4

eiφzκ2(1− z)(1− κ1z)
(

cos θ sin
α

2
− i cos

α

2

)2
, (5.7)

n1 =
1
4

eiφ(1− z)
(
(1− κ1z)(1 + κ2

2z2) + 2z(κ1 − κ2
2z) sin2 α

2
sin2 θ

)
, (5.8)

n2 =
1
4

eiφzκ2(1− z)(1− κ1z)
(

cos θ sin
α

2
+ i cos

α

2

)2
. (5.9)

Again, the poles of L(z) have to be computed and the residue theorem is used to
integrate L(z)/U around the unit circle to average over the individual isochromates.
The poles have the exact same form as for F(z) except that they are functions of ni
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instead of di:

U0 =0, (5.10)

U1,2,3,4 =
−
+−
+

√
− n1

n2

−−
+
+

√
n2

1−4n0n2
n2√

2
. (5.11)

Computing the sum of the residues of L(z, U)/U yields the desired GF L0(z):

L0(z) = Res
(

L(z, U)

U
, 0
)
+ Res

(
L(z, U)

U
, U3

)
+ Res

(
L(z, U)

U
, U4

)
(5.12)

Upon plugging in the coefficients and simplification (best done with programs like
Mathematica), one arrives at the following expression for L0(z).

L0(z) =
M0

1− z
− M0 −Mz

1− κ1z
+

C(z)
(1− z)(1− κ1z)

1√
X+(z)X−(z)

(5.13)

C(z) =
√

κ1z(1− κ2
2z2)[Mz

√
κ1(1− z) + M0

(
1−√κ1

) (
1 +
√

κ1z
)
(1− cos αe)]

(5.14)

X+(z) = (1 + zκ2)(1− z cos αe(κ1 + κ2) + z2κ1κ2) (5.15)

X−(z) = (1− zκ2)(1− z cos αe(κ1 − κ2)− z2κ1κ2) (5.16)

cos αe = cos α sin2 θ + cos2 θ (5.17)

What becomes apparent first is the appearance of the functions X+(z) and X−(z), and
the effective flip angle cos αe that are already contained in F0(z). Next, we find the
first two terms modeling solely longitudinal relaxation and a factor C(z) containing
relaxation and refocusing parameters. At a closer look, one also notices that all phase
parameters have vanished, which makes sense as there is no phase for longitudinal mag-
netization. Explicitly, φ and all occurrences of the transverse magnetization component
M+ = M0eiφe sin θe (containing φe in polar coordinates) are now missing. Expressing
the initially excited magnetization in polar coordinates, Mz = M0 cos θe, yields:

L0(z) =
M0

(1− z)(1− κ1z)

(
z− κ1z + (1− z) cos θe +

C̃(z)√
X+X−

)
(5.18)

C̃(z) =
√

κ1z(1− κ2
2z2)(1− cos αe)[(1−

√
κ1)(1 +

√
κ1z) +

√
κ1(1− z) cos θe] (5.19)

Just like for F0(z), also for L0(z), a time-domain expression can be derived. In appendix
5.A, the detailed calculations starting from equation 5.18 are presented. The resulting
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signal equation, Mz[n], takes the form of

Mz[n] = l[n] = M0
{
(1− (1− cos θe)κ1

n) + w[n] ∗ ζ‖[n] ∗ g⊥[n]
}

. (5.20)

One can readily see, the two main components of l[n], namely a pure longitudinal
relaxation part plus a second more complicated part accounting for flipping of the
magnetization due to the refocusing pulses. For αe = 0◦, i.e. no refocusing at all, the
equation reduces to M0(1− (1− cos θe)κ1) and specifically for an "excitation" of 90◦ or
180◦, it yields the well-known saturation and inversion recovery curves M0(1− κ1

n)

and M0(1− 2κ1
n), respectively.

The part w[n] ∗ ζ⊥[n] ∗ g⊥[n] is not that easy to interpret. It is a convolution sum
of a new function w[n] with two functions ζ‖[n] and g⊥[n] found previously in the
computation of the CPMG signal. More precisely, g⊥[n] is (almost) the CPMG signal
itself (the only difference is lacking a Dirac delta function, δ[n]). This is rather advanta-
geous numerically when Mz[n] is implemented in conjunction with M+[n] as it saves
computational cost.

Complete formula for the longitudinal magnetization in the time domain The com-
putation of the convolution sum can be expressed by a double sum:

l[n] = M0(1− (1− cos β)κ1
n) +

Q

∑
q=0

w[q]
M

∑
m=0

ζ‖[m]g⊥[n− q−m]

(5.21)

5.2.1 Numerical computation

The longitudinal signal evolution can be calculated using the Generating function L0(z),
which provides a closed form solution in the z-domain. The signal in the time domain
can then be computed thereof by evaluating the L0(z) for z = eiϕk around the unit circle
in the complex plane and subsequent inverse DFT. A clear difference to the evaluation
of F0(z) is that for L0(z), appropriate apodization, i.e. computing L0(az), is necessary in
any case. This is due to the fact, that it contains the factor 1/(1− z) in two of its terms
creating a pole at z = 1. This is not surprising since the longitudinal magnetization
is approaching a non-zero steady state. The Fourier sum therefore does not converge
and the DFT does not exist. Evaluating L0(az) creates a time-domain signal that is
multiplied by a decaying exponential an that certainly has to be undone by multiplying
the result with a−n. The magnitude of a depends on the number of evaluated points.
It can usually be found by trying out a range of values close to one were L0(z) stays
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stable, and picking one value in this stable range. If |a| is too small and an approaches
0 to quickly, it kills the signal and apodization cannot be undone as it would mean a
division by zero.

If, like in the proposed method, Mz[n] is only desired at the very last position in
the echo train, not all of the inverse DFT has to be computed. Mz[N] can be found by
computing the scalar product [L0, L1, . . . , LK] · [1, e

2πiN
K , . . . , e2πiN ]T. Another alternative,

lacking the apodization problem, is using the time-domain formula l[n]. However, the
computational effort for the double convolution is for the Nth echo N2/2.

The so obtained value Mz[n] is not yet the magnetization that is measured in the
proposed sequence since another spin-echo has to be produced using 2 RF pulses.
During the spoiling period τs prior to the spin-echo sequence, Mz is experiencing
further longitudinal relaxation,

M̂z[N] = Mz[N]e
−τs
T1 + M0

(
1− e

−τs
T1

)
. (5.22)

M̂z[N] is the magnetization right before the first spin-echo pulse. The transverse
magnetization that is ultimately being measurable [3] is

M+[NSE] =
[

Mz[N]e
−τs
T1 + M0

(
1− e

−τs
T1

)]
sin βe sin2 βr

2
e

TE
T2 , (5.23)

where TE is the echo time and βe and βr are the excitation and refocusing pulse angle,
respectively. In slice-selective sequences, clearly, also the slice-profiles of these two
pulses have to be considered in the calculations.

5.3 Methods

5.3.1 MR data acquisition

For data acquisition, the vendor-provided MSE (CPMG) sequence was extended to
collect an additional "T1-echo" after the CPMG echo train (fig. 5.1). Basically, the
modification consists of a strong spoiling block followed by a traditional spin-echo.
Data were acquired on a 3T Skyra (Siemens) using an echo-spacing of τ = 13 ms,
TR=5000 ms, 32 echos, 2× 2× 4 mm3 voxel size. Excitation flip angles θe and βe where
both 90◦, whereas the refocusing angle was either 90◦ or 45◦ for different experiments.
Refocusing angle for the last spin echo was βr = 180◦.

Reference values were obtained using a MSE sequence with a GF fit with TR=4000 ms,
τ = 15 ms, 32 echoes, and, for T1-mapping, a turbo inversion recovery (TIR) sequence
with TR=12 s, TE=9.6 ms, and 6 different inversion times TI=[50, 200, 600, 1000, 2000,
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4000] ms.

5.3.2 Phantom measurements

First, a large gadolinium-doped water phantom was measured to asses the performance
of the method with respect to the slice profile of the pulses used. For this purpose, the
direction of the sequence’s phase-encoding gradients were changed to the z-direction
(slice direction) to resolve the slice profile. Measured data was then compared to
simulated data.

Multi-parametric �tting. M0, T1 , and T2 were fitted for 6 phantoms (Water, Agarose,
Gadolinium doped) and compared to reference values acquired with a MSE and a TIR
sequence.

5.4 Results

Figure 5.4 displays a comparison of measured and simulated data of the time evolution
of a slice profile in a 90◦ (left side) and a 45◦ (right side) MOMSE acquisition. The
simulations were in excellent agreement with the measured data, especially for the
“regular” echoes. One can see that initially the 90◦ acquisition has more signal and
decays until the 32st echo. For the 45◦ acquisition signal is quite low already in the
beginning, slightly increases for echo 5 and then decays. However, this acquisition
exhibits a much larger signal for the T1-echo compared to the 90◦ acquisition (left),
although with a worse slice profile. In general, the measured T1-echo profiles showed
slight deviations from the measured data, probably due to a timing error. The excellent

T1 T1 err T1 err T2 T2 err T2 err

(TIR) (45◦) % (90◦) % (MSE) (45◦) % (90◦) %

1938 1677 −13.4 1780 −8.1 138 125 −9.4 127 −7.9

617 589 −4.5 572 −7.2 110 104 −5.4 110 0

285 233 −18.2 226 −20.7 88 84 −4.5 85 −3.4

603 687 12.0 709 15.6 39 39 0 40 2.5

975 834 −14.4 792 −18.7 373 413 10.7 413 10.7

380 391 2.8 376 −1.0 98 86 12.2 92 −6.1

1890 1550 −17.9 3195 69.0 34 39 14.7 31 −8.8

Table 5.1: Comparison of "gold standard" sequences and MOMSE. All values are in ms.
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(a) 90◦ refocusing (b) 45◦ refocusing

Figure 5.4: Time evolution of the slice profile using a MOMSE sequence for selected echoes.
Echoes 1-31 are classical CPMG echos, echo 32 is the additional T1-echo. Solid lines are
measurements, dotted lines simulations.

data fits achieved with this method, even for the T1-echo, are shown in figure 5.5 for
3 selected phantoms in a α = 45◦ acquisition. Table 5.1 lists the reference values and
MOMSE estimates for T1 and T2 of 6 phantoms. Good agreement was found for T2

values, whereas for T1 a higher uncertainty was observed. For T2, the 90◦ acquisitions
seem to be more accurate; for T1, the 45◦ acquisition.

5.5 Discussion

In this work we presented a modified MSE sequence and derived the corresponding
signal model using the GF formalism. The agreement of simulated and measured data
is excellent; however, from the estimated T1-values it seems that the T1-sensitivity is
still not entirely sufficient. This suggests imaging at even lower flip angle to intensify
the influence of longitudinal relaxation, given the SNR is high enough. However, a
systematic investigation of the sensitivity is desired. Further, we think the presented
model is very suitable for under-sampled acquisition schemes with varying TR and a
model-based reconstruction. Possibly a combination of different TRs and flip angles in
combination with a direct parameter map reconstruction, using an iterative optimization
algorithm, could improve this method. Because of the spin-echo character of the
sequence, it is robust against B0-inhomogeneities. Furthermore, due to the lower flip
angles used, the SAR is substantially reduced. This, however, comes at the price of
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Figure 5.5: Measured signal evolution and corresponding multi-parametric fit for 3 selected
phantoms acquired with refocusing angle α = 45◦

somewhat lower SNR. These features render this sequence absolutely applicable at high
field scanners.

5.A Time domain signal equation

In order to transform L0(z) to the time-domain it is beneficial to split the expression in
additive and multiplicative parts. The first two parts that can be easily separated are

L0,1(z) = M0
(z− κ1z + (1− z) cos θe)

(1− z)(1− κ1z)
, (5.24)

L0,2(z) = M0
C̃(z)

(1− z)(1− κ1z)
1√

X+X−
, (5.25)

(5.26)

whereas the first part L0,1(z) again governs the pure longitudinal relaxation and the
second part is sequence dependent. Inverse z-transform of L0,1(z) yields

l1[n] = M0 · (1− (1− cos θe)κ1
n) n ≥ 0 (5.27)

(5.28)

L0,2(z) is a little bit more cumbersome because of the square root term. However,
the square roots contains the same polynomials X+(z) and X−(z), but now in a
multiplicative form. Simple rearrangement of 1/

√
X+X− as 1/X+ ·

√
X+/X− yields a
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very tractable form consisting of 3 factors.

L0,2(z) = M0W(z)
1

X+

√
X+

X−
(5.29)

W(z) incorporates C̃(z) and some polynomial in the denominator,
√

X+(z)/X−(z)
is the same expression as in the CPMG sequence, and 1/X+(z) transforms back to
function ζ‖[n], which we already encountered in the derivation of the CP sequence.
Multiplicative factors in the z-domain transform to convolutions in the time domain, so
that l2[n] is given by

l2[n] = M0 · w[n] ∗ ζ⊥[n] ∗ g⊥[n] (5.30)

As mentioned before, the expressions for ζ‖[n] and g⊥[n] can be found in chapter 4.
W(z) corresponds to the following function in the time domain:

w[n] =



0 n < 0

(1− cos αe)(
√

κ1 − κ1(1− cos θe)) n = 0

(1− cos αe)(
√

κ1 − κ1
2(1− cos θe)) n = 1

(1− cos αe)(
√

κ1(1− κ2
2)− κ1

n−2κmκp(1− cos θe)) n > 2

(5.31)

It certainly does not make sense to try to analytically calculate this convolution. In
fact, it is better to compute the convolution sum numerically, especially since for most
applications the transverse magnetization is desired as well and already pre-computed.
Finally, Mz[n] is given by

Mz[n] = l[n] = l1[n] + l2[n]

= M0 · (1− (1− cos θe)κ1
n) + M0 · w[n] ∗ ζ⊥[n] ∗ g⊥[n] (5.32)
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Summary and Outlook

This thesis provides an extensive treatment of the application of the Generating func-
tions formalism (z-transform), in order to compute accurate signal formulas for quanti-
tative MRI. To that end, the GF formalism was thoroughly analyzed and tested for a
variety of sequences, with particular focus on multi-echo spin-echo (CPMG) sequences.
In the very beginning of my PhD program I was conducting my first relaxometry study,
which was aimed at measuring the relaxation times T1, T2, and T∗2 of human whole
blood samples [80]. Not soon after acquiring the first data, I recognized the discrepancy
between signal decay and the mono-exponential signal model, that is commonly used
to generate T2-maps. This problem soon caught my interest, and I started looking for
solutions. Furthermore, it was the beginning of my intensive studies of relaxometry
methods, the corresponding signal models, as well as their limitations, which lay the
foundation of this thesis.
The aim of this thesis was to accurately model the multi-echo spin-echo signal decay,
and to estimate T2-values in vivo as accurate and precise as possible. Additionally, to
enable muli-parameteric qMRI, a formula for the T1-recovery in multi-echo sequences
was sought. Furthermore, another goal was the application of the GF formalism on
other pulse sequences.
To that end, I hypothesized, that is possible to use the Generating functions formalism
to (1) incorporate as many relevant sequence parameters in signal modeling as pos-
sible, (2) to compute realistic signals and accurate T1 and T2-estimates, (3) provide a
ready-to-use solution that is easy to implement and not computationally costly, and (4)
extend it to for multi-parametric mapping.
Relaxometry methods should be able to generate comparable measurements, used
as biomarkers, and further improve MR as a diagnostic tool. These methods should
be free of bias introduced by sequence or scanner, and images should acquired in a
reasonable amount of time. Relaxometry methods lose their value, if they generate
inaccurate parameter values, or if data acquisition is not clinically feasible due to time
constraints. Therefore, the above posed questions are of high relevance.
To test the hypothesis, different methods have been used and various experiments
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have been conducted. First, formulas for the signal evolution were analytically derived
by using the GF formalism and step-by-step expanded by complexity. Second, the
obtained formulas were checked for plausibility by looking at limiting cases (regarding
certain parameters) for which closed-form solutions are already known. Further, these
formulas were used to numerically generate signal decays, which then were compared
to Bloch equations, to verify their validity. To assess their applicability for parameter
estimation, usually Monte Carlo simulations of the fitting process for a multitude of
parameter settings were performed. Those results were analyzed regarding accuracy
and precision. Next, to test the estimation performance with acquired data, experiments
with various kinds of well defined homogenous MR phantoms were conducted and
compared to "gold-standard" techniques (which are usually not feasible in vivo due
to long scan times). Finally, the methods were also tested in vivo, and results were
compared to values acquired with other techniques, as well as literature values.
The results obtained could all corroborate the hypothesis. It was possible to compute a
solution for multi-echo spin-echo sequences incorporating all relevant measurement
parameters. A closed-form solution could even be found in the time domain, alleviating
the shortcoming of leakage effects, sometimes encountered, when the z-domain model
is used directly. A significantly improved accuracy could be found in simulations,
phantom, and in vivo experiments.
The formulas derived are easy to implement numerically, especially the z-domain
versions. Alternative algorithms, such as Bloch simulations or the EPG algorithm, first
need some effort to fully understand them, to be implemented thereafter. Time-domain
solutions are bit more cumbersome, but still straight-forward to implement in scientific
computing languages. A C/C++ version of the time-domain formula for T2-fitting
can be found under www.t2mapping.rocks. Regarding the computational cost, the GF
approach in the z-domain outperforms Bloch simulations, and performs better than
the EPG for long echo trains. The computational performance for the time-domain
solutions has yet to be investigated.
In the direction of multi-parametric mapping first steps could be made by deriving a
closed-form solution for the longitudinal magnetization in multi-echo spin-echo experi-
ments. This formula was successfully applied in simultaneous T1 and T2-mapping by
using a modified multi-echo sequence, and yielded T1 values with reasonable accuracy.
Most of the results obtained indicate that the presented solutions incorporate all essen-
tial sequence parameters necessary to achieve good measurement accuracy. Certainly,
one could try to extend these methods by considering more intrinsic processes in-
fluencing the MR signal, such as diffusion and magnetization transfer. Errors due
to B1+-inhomogeneities could be corrected, and, especially, effects of non-ideal slice
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profiles, which exhibit by far the greatest influence on the signal, could be accounted
for. The presented methods are the next step for improving qMRI by making it more
robust and accurate, and allow for direct comparison of MR data.
The publications produced during my PhD studies are also dedicated to exploring the
above formulated question. In [10] I investigated the applicability of the GF approach
for in vivo T2-mapping. After that, to improve fitting accuracy, I extended the equa-
tions for the excitation profile and derived a time domain solution [141]. To address
multi-parametric mapping, I extended the method by formulas for the longitudinal
magnetization [147]. Finally, to reduce scan time, I tried to apply my methods in
model-based reconstruction [59].
There are also several limitations regarding this work. The GF formalism can only
be used for repetitive pulse sequences, rendering it inapplicable for sequences with
varying parameters. The more parameters included in the derivation, the more complex,
and at some point intractable, the signal equations get. In this case simplifications of the
model have likely to be made. Though, incorporation of diffusion and J-coupling effects,
as well as magnetization transfer (by using the Bloch-McConnel equations) would be
interesting. Further, the number of in vivo experiments is limited, or even missing for
the modified spin-echo method. For the modified spin-echo method a systematic inves-
tigation of different parameter combinations, or even slice profiles, could be beneficial
in improving T1 accuracy. Generally, more in vivo experiments throughout the whole
body are needed to determine confounding factors, such as J-coupling and magneti-
zation transfer, for different tissues. Finally, also the computational performance in
relation to the EPG should be investigated further.

6.1 Outlook

The exact knowledge of the evolution of the magnetization due to instrinsic as well as
extrinsic factors might be useful for other purposes than sole relaxation mapping. With
little experimental background to date, I dare to envision a scenario where deliberately
imperfect pulse sequences are used as a tool to manipulate, i.e. encode, magnetization.
To put it differently, knowing how to exactly calculate the signal evolution for a given
sequence parameter set, one could use RF pulses as a means of encoding, in addition
to gradient encoding. For instance, in simultaneous multislice imaging the individual
slices can be refocused with different flip angle and phase so as to leave a footprint
that helps to separate the individual signals during reconstruction. Another possibility
would be to excite a 3D slab with a systematically varying flip angle and phase. Spins
at a certain position will experience a certain RF pulse, which manifests itself in an
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individually shaped signal evolution. By application of several encoding cycles these
systematic signal variations could be used for reconstruction.
In order not to prolong the scan time, this might be especially useful for model-based
reconstruction, where only a subset of k-space is measured. As, with this method,
spatial, as well, as T1 and T2 information would be encoded in the echo train in a
specific manner, direct reconstruction of parameter maps from raw k-space data might
be feasible by using model-based reconstruction.
Furthermore, I think that multi-parametric imaging will benefit from exact models,
especially to save acquisition time, to provide reliable and comparable physical infor-
mation of the tissue, and, if at all necessary, to synthetically create all desired contrast
weightings from a single scan. Chapter 5 is already a step in this direction, whereas
the accuracy must be significantly improved. A possible further development in this
direction could also be for model-based reconstruction. For example, if another scan
using a modified spin-echo sequence with a different TR is acquired, T1 accuracy could
be substantially increased. Also, an interleaved approach with different TRs for every
other excitation could be envisioned. Again, not to prolong scan time, an iterative
model-based approach, employing the appropriate models and an elaborate variational
regularization technique, could be very beneficial.
The above mentioned ideas could also easily be applied on other imaging sequences,
such as steady-state free precession methods. Finally, it would be interesting to in-
vestigate if the presented methods can be extended by other intrinsic parameters, to
measure them all simultaneously in one measurement.

6.2 Additional work

Here, I would like to give a short insight into the projects that happened besides
quantitative MRI and T2-mapping during my PhD studies. As I already pointed
out, my interest in accurate and detailed modeling of relaxation curves emerged
from the need to actually apply T2-mapping in another project. This project, which
was funded by the Ludwig Boltzmann Institute for Clinical Forensic Imaging (LBI-
CFI), was dedicated to explore if MR relaxometry was an option to improve the
unsolved problem of staging of bruises. In a forensic context, the knowledge of
the age of subcutaneous bleedings is of utmost importance as it provides evidence
in court. This is especially important if the victim cannot give information, like
small children, or probably deliberately falsely testifies to protect him or herself.
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Figure 6.1: Time course of the resorption of an artificially created hematoma in-vivo. PDw
with fat suppression clearly gives the best contrast [148].

Figure 6.2: Four stages of root chan-
nel development of the third molars
used in a forensic context for age
estimation [149]

The results of my first study concerned with blood
in MRI was an investigation of the alteration of T1

and T2 of stationary blood samples over a period
of time in-vitro. The results are published in [80].
The dissatisfaction about the MSE data not really
fitting to the exponential model triggered my in-
terest in MR signal modeling.
Further, I would like to mention some other
projects I carried out with my colleagues from
the LBI, of which many are somehow connected
to quantification using MRI. The logical continu-
ation of the in-vitro blood study was an in-vivo
study investigating the degradation of experimen-
tally created subcutaneous hematomas published
in [148, 150]. Located in the same area of forensic
imaging was a study investigating the accuracy
and reliability of volume estimation of bruises in
the subcutaneous fatty tissue in an experimental
pork-belly setup [151]. Another quite exotic topic
I worked on was the depiction of the dental pulpa
by MRI [149, 152]. In a forensic context, this is of
relevance as the development of the root canals
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Figure 6.3: Comparison of MR images of the pulpa with an orthopanthomogram ("gold
standard", left column). The dental pulpa appears bright in PD-weighted TSE (middle
column) and CISS (right column) sequences.

is an indicator related to the age of the subject and is used to assess asylum seekers.
Another quite contrary topic, but still somehow connected to relaxation, was the devel-
opment of a new class of MR contrast agents based on quadrupolar cross relaxation.
The idea was submitted as an "Future and Emerging Technologies" project and funded
by the EU (FET-Open, Horizon 2020). I was involved in several publications connected
to the project [153–156].

Figure 6.4: Mode of operation of the envisioned Bismuth based quadrupolar contrast agent on
the left opposed to that of conventional paramagnetic contrast agents.
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schemes (with composite pulse) still perform quite good, at least for every other

echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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