
PhD Thesis

Sum-Product Networks for Complex
Modelling Scenarios

Dipl.-Ing. Martin Trapp

Submitted for the degree of Doktor der technischen Wissenschaften
at the Graz University of Technology.

Supervisors:
Prof. Dr. Franz Pernkopf

Graz University of Technology, Austria

Asst. Prof. Dr. Robert Reharz
Eindhoven University of Technology, Netherlands

Examiners:
Prof. Dr. Franz Pernkopf

Graz University of Technology, Austria

Prof. Dr. Kristian Kersting
Darmstadt University of Technology, Germany

Graz, 12th July 2020

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources.

date (signature)

This thesis is dedicated to Elias.

Sum-Product Networks for Complex Modelling Scenarios

Contents

1 Introduction 15
1.1 Probabilistic Machine Learning . 15

1.1.1 Modern Probabilistic Machine Learning 16
1.2 Research Questions . 17
1.3 Contributions & Organisation . 19

2 Background 21
2.1 Primer on Measure Theory . 21
2.2 Probability Theory . 26

2.2.1 Random Variables . 27
2.3 Primer on Graph Theory . 32

3 Sum-Product Networks 35
3.1 Generalized Sum-Product Networks . 35

3.1.1 Induced Trees . 38
3.1.2 Probability Measure of Sum-Product-Networks 40

3.2 Representations of Sum-Product Networks . 41
3.2.1 Computational Graphs & Scope Functions 41
3.2.2 Region Graphs . 43

3.3 Generative & Discriminative Learning . 45
3.3.1 Generative Learning . 45
3.3.2 Discriminative Learning . 48

3.4 Implicit Acceleration Effects . 49
3.4.1 Preliminaries . 49
3.4.2 Overparameterisation in Sum-Product Networks 50
3.4.3 Empirical Results . 54
3.4.4 Conclusion . 55

3.5 Structure Learning . 56

4 Semi-Supervised Learning of Sum-Product Networks 59
4.1 Motivation . 59
4.2 Preliminaries . 60

4.2.1 Contrastive Pessimistic Likelihood Estimation 60
4.3 Learning Safe Semi-Supervised Sum-Product Networks 62

4.3.1 Generative Learning . 62
4.3.2 Discriminative Learning . 64
4.3.3 Learning Maximum Contrastive Pessimistic Sum-Product Networks . . 66

4.4 Experiments . 66
4.4.1 Qualitative Experiments . 67
4.4.2 Quantitative Experiments . 68

5 Bayesian Learning of Sum-Product Networks 73
5.1 Motivation . 73
5.2 Preliminaries . 74
5.3 Bayesian Sum-Product Networks . 75
5.4 Sampling-based Inference . 78

5.4.1 Updating the Parameters . 78
5.4.2 Updating the Structure . 79
5.4.3 Performing Predictions . 80

12th July 2020 – v –

5.5 Nonparametric Sum-Product Networks . 80
5.5.1 Infinite Sum-Product Trees . 81
5.5.2 Infinite Mixture of Bayesian Sum-Product Networks 84

5.6 Experiments . 85

6 Sum-Product Networks over Gaussian Processes 91
6.1 Motivation . 91
6.2 Preliminaries . 92

6.2.1 Gaussian Process Regression . 93
6.3 Deep Structured Mixture of Gaussian Processes 94

6.3.1 Exact Posterior Inference . 96
6.3.2 Predictions . 97
6.3.3 Hyperparameter Optimisation . 97
6.3.4 Shared Cholesky Decomposition . 100

6.4 Experiments . 101
6.4.1 Approximation Error . 102
6.4.2 Quantitative Evaluation . 103

6.5 Related Work . 106

7 Discussion & Future Work 109

A Appendix: Sum-Product Networks 113
A.1 Compiling Region Graphs to Sum-Product Networks 113

B Appendix: Safe Semi-Supervised Learning 114

C Appendix: Bayesian Learning of Sum-Product Networks 115
C.1 Heterogeneous Experiments . 115
C.2 Statistical Significance Tests . 116
C.3 Reported Configurations and Respective Runtime 117
C.4 Extended Results Table . 118

D Appendix: Deep Structured Mixture of Gaussian Processes 119
D.1 Datasets . 119
D.2 Algorithms . 120

D.2.1 Structure Construction . 120
D.2.2 Exact Posterior Inference . 121

Bibliography 122

List of Publications 136

Index 137

Sum-Product Networks for Complex Modelling Scenarios

Abstract

Sum-Product Networks (SPNs) are flexible general-purpose probabilistic models that have re-
ceived increasing attention due to their attractive inference properties. Even though there exists
a large body of work on parameter and structure learning in SPNs, many of the existing ap-
proaches focus on rather simple modelling scenarios. For example, in the case of discriminative
parameter learning, the labelled training examples are assumed to be abundant, and we gen-
erally consider SPNs to be defined only over a finite set of random variables. Moreover, most
approaches to construct SPNs in a data-agnostic way rely on heuristic and ad-hoc strategies
rather than proposing a principled solution.

In this thesis, we examine SPNs for complex modelling scenarios. We are particularly in-
terested in: i) principled semi-supervised parameter learning in SPNs, which guarantees that
the learner cannot deteriorate in performance when adding additional unlabelled data, ii) prin-
cipled structure learning in SPNs that is mathematically sound, protects us from overfitting
and enables learning under missing data, and iii) extending the framework of SPNs to model
possibly infinitely many random variables, and thus, establishing SPNs as a stochastic process
model.

As a first main contribution, we introduce an extension of the contrastive pessimistic like-
lihood for safe semi-supervised parameter learning in SPNs. Our approach is the first semi-
supervised learning technique for SPNs, and often obtains a performance that is similar to an
SPN trained on a fully labelled datasets. We first derive an objective for generative learning and
later extend the approach to discriminative parameter learning. Lastly, we show empirical evid-
ence that safe semi-supervised SPNs perform favourably compared to existing semi-supervised
techniques on various classification tasks.

The second main contribution of this thesis is the introduction of principled structure learning
in SPNs. While there exists a large body of work on structure learning, none of the approaches
asks either of the two essential questions: “What is a good structure?” or “What is a principle
to derive a good structure?”. We aim to change this practice and introduce a sound, Bayesian
formulation for joint parameter and structure learning in SPNs. Our experiments show that
this principled approach competes well with the prior art and that we gain several benefits,
such as automatic protection against overfitting, robustness under missing data and a natural
extension to nonparametric formulations.

As a third main contribution, we introduce deep structured mixtures of Gaussian processes,
which combine tractable inference in SPNs with exact posterior inference in Gaussian processes.
Our approach directly extends SPNs to the stochastic process case by equipping SPNs with
Gaussian measures, which correspond to Gaussian processes, as leaves. We show that the
resulting model allows a natural interpretation as exact Bayesian model averaging over a rich
collection of naive-local expert models. In a series of experiments, we show that the proposed
technique outperforms existing expert-based approaches and provides low approximation errors
when used as an approximation to a Gaussian process.

In addition to the main contributions, we show that gradient-based optimisation in overpara-
meterised SPNs results in intrinsic acceleration effects, which depend directly on the depth of
the network. Furthermore, we introduce two formulations for nonparametric SPNs and discuss
their advantages and limitations.

12th July 2020 – vii –

Sum-Product Networks for Complex Modelling Scenarios

Acknowledgements

First of all, I would like to thank my advisors Franz Pernkopf and Robert Peharz. Without the
advice and support of both of you, this thesis would probably have never been possible. I’m
incredibly grateful to you for believing in me and supporting me in pursuing my research ideas
even during difficult times. I also want to thank Robert and Zoubin Ghahramani for giving me
the opportunity to visit the machine learning group at the University of Cambridge.

Further, I want to thank everyone in the probabilistic circuits community for making it what
it is, an amazing area to work in. Some special thanks go to Antonio, for organising t-prime
together with me, and to Guy Van den Broeck and Kristian Kersting for putting collaboration
before competition.

I want to thank Tamas Madl for introducing me to sum-product networks and supporting me
in developing research ideas on tractable models. Further, I want to thank all my colleagues
from OFAI, especially Robert, Brigitte, Fri, Steffi, Anna, Paolo, and Marcin, for their support
and the inspiring talks about research, life and beyond. Special thanks go to Dietmar for
spending hours at the whiteboard together with me and always believing in me.

I also want to thank all my colleagues from SPSC. Even though I haven’t spent much time
in Graz, I have always enjoyed the friendly environment and the inspiring discussions. I want
to especially thank Wolfgang and Christian for making me feel at home at SPSC and always
having an open mind.

Besides my academic colleagues, I’m extremely grateful for all my friends who have supported
me all these years. Special thanks go to Helmut, Matthias, Flo and Andreas for helping me
through some difficult times.

Last but not least, I want to thank my family and my partner for always being there for me,
supporting me and listening whenever I needed to talk to someone.

12th July 2020 – ix –

Sum-Product Networks for Complex Modelling Scenarios

Nomenclature

Abbreviations

a.e. almost everywhere

iff if and only if

w.l.o.g. without loss of generality

w.r.t. with respect to

General Notation

B binary numbers

D dataset

D(L) dataset associated with the
domain of node L

detM determinant of M

1{x>y} indicator function

M−1 inverse of M

L
K
Σ
j=1

E log-sum-exp operation

N natural numbers

K number of classes

D data dimensionality

N number of observations

‖M‖i ith norm of M

R real numbers

R>0 positive real numbers

⇒ implication{
n
k

}
Stirling partition number

q soft labels

X inputs / covariates

y outputs / labels

I arbitrary index set

Measure/Set Theory

#A cardinality

B(·) Borel σ-algebra

λ(·) Lebesgue measure

G,F system of sets

Ω measurable set

µ× ν product measure

µ(·), ν(·) measure

O system of open sets

P(·) power set

σ(·) σ-operator

A⊗B product σ-algebra

A,B σ algebra

A ∩B set intersection

A ∪B set union

A \ b set difference

A tB union of disjoint sets

Ac complement

Probability Theory

Beta (α, β) Beta distribution

B (p) Bernoulli distribution

Cat(w) Categorical distribution

CRP(α) Chinese restaurant process

Dir(α1, . . . , αK) Dirichlet distribution

DP(αH) Dirichlet process

E[X] expectation of X

Exp (λ) Exponential distribution

Γ(α, β) Gamma distribution

κ kernel function

µ mean, mean function

N (µ, σ2) Gaussian distribution

Poisson (λ) Poisson distribution

P probability measure

(Ω,A,P) probability space

12th July 2020 – xi –

val(X) range of a random variable

σ2 variance

Var[X] variance of X

K kernel matrix

m mean vector

X,F random vector

x,f realisation of X,F

F (X) cumulative density function

p(X |Y) conditional probability

p(X,Y) joint probability

X,Y, Z random / latent variable

x, y, z realisation of X,Y, Z

Sum-Product Networks

ch(N) children of node N

G computational graph

L leaf node

K number of children

N generic node

par(N) parents of node N

P product node

P product nodes

ψ scope function

R region node

R region graph

S sum-product network

T induced tree

S sum node

S sum nodes

θ leaf parameters

w weights

E(S) edge set of S

V (S) vertex set of S

Sum-Product Networks for Complex Modelling Scenarios

1
Introduction

This thesis investigates sum-product networks for complex probabilistic
modelling scenarios. Sum-product networks are flexible probabilistic
general-purpose models that have received increasing attention due to
their attractive inference properties. In this section, we will first mo-
tivate the use of probabilistic machine learning and describe why sum-
product networks are an attractive tool for complex modelling tasks.
Subsequently, we will present open questions, and objectives of this
thesis in Section 1.2 and finally introduce the organisation and the con-
tributions of this thesis in Section 1.3.

1.1 Probabilistic Machine Learning

Modern technology increasingly leverages techniques from artificial intel-
ligence, e.g. to automate pattern-recognition tasks or support decision-
making. Machine learning is one of the fundamental sub-areas of arti-
ficial intelligence research and has gained increasing attention outside
of the academic field due to its success stories in pattern recognition,
e.g. detection of road signs for autonomous driving or automatic trans-
lation of text from one language to another, and probabilistic modelling,
e.g. forecasting of the COVID-19 spread under various hypothetical scen-
arios. The goal of machine learning is to answer the fundamental ques-
tion: How can a machine learn from experience? Common strategies to
approach this question consist in defining a set of assumptions about the
task, forming the basis of a so-called model, and developing methods to
improve the performance of the model for the task based on observed
data (experience).

In the context of this thesis, we are particularly interested in prob-
abilistic models, i.e. models that allow us to express and manipulate
uncertainties through tools of probability theory. Let us assume, for
example, that our task is to perform some form of prediction, such as
the prediction of election outcomes. Of course, we expect any reason-
able model for such a task to be uncertain about its predictions for
unseen data. It should be noted that uncertainties can indeed occur
in many different facets, from uncertainties introduced by measurement
errors to uncertainties about the model itself, e.g. how flexible should
the model be and what should the structure look like? Therefore, prob-
abilistic machine learning, i.e. machine learning for probabilistic models,
is inherently concerned with the representation and manipulation of all
forms of uncertainties [1].

The probabilistic approach is particularly attractive as it not only
allows us to consider all types of uncertainties but is also generally ap-

12th July 2020 – 15 –

1 Introduction

plicable and conceptually simple. In probabilistic machine learning, we
obtain complex probabilistic models by composition of simpler models,
with common probability distributions forming the basis of any prob-
abilistic model. Moreover, interesting tasks can often be formulated as
a form of inference about missing or latent variables, making probab-
ilistic models a general-purpose approach. Although the probabilistic
approach is conceptually attractive, we often encounter computational
difficulties as many interesting inference tasks involve the computation
of complex and high-dimensional sums or integrals. As a result, exact
calculations are often infeasible or limited to simple models.

1.1.1 Modern Probabilistic Machine Learning
Recent techniques for probabilistic machine learning include Generative
Adversarial Networks (GANs) [2], Variational Autoencoders (VAE) [3],
Normalizing flows (NFlows) [4], [5] and Neural Autoregressive Distribu-
tion Estimation (NADE) [6]. However, most of these advances focus only
on the expressivity of the model, often at the expense of efficient probab-
ilistic inference. Probabilistic circuits1, such as Sum-Product Networks
(SPNs) [8] and Probabilistic Sentential Decision Diagrams (PSDDs) [9],
on the other hand, promise to remedy this dilemma by guaranteeing
exact and efficient computation of many inferential tasks, while being
able to model complex relationships in the data. Table 1.1 shows a
comparison of the inference capabilities of modern deep probabilistic
architectures for a number of common inference scenarios.

In particular, although VAEs and GANs are excellent in representing
complex high-dimensional data dependencies and have shown impress-
ive results in image generation tasks, they fall short of expectations
even in the simplest inference tasks, e.g. calculating the probability
of an event. Therefore, it is necessary to rely on approximations for
almost all inference scenarios, often without any guarantees on the ap-
proximation quality. Normalising flows, on the other hand, have been
explicitly designed to allow efficient evaluation of their density function,
i.e. we can calculate the probability of an event efficiently and exactly.
However, more complex tasks, such as marginalisation, are generally
intractable. Note that the capacities of flow-based models depend on
the bijection used in the model.2 NADEs are an interesting method,
as they enable several inference scenarios to be solved exactly. For ex-
ample, calculating conditionals and marginals can be done efficiently in
certain settings, i.e. in case the conditioned variables appear first and
the marginalised variables at the end of the order used in the model.
However, the calculation of these inference tasks in general NADEs is
intractable. SPNs, on the other hand, take advantage of the exact in-
tegration in compositional tractable distributions and allow a variety of
exact inference scenarios, while at the same time being able to capture

1 The term probabilistic circuits is an umbrella term for a certain class of probabil-
istic models and was introduced by Vergari, Choi, Peharz et al. [7] to emphasise
the relationship between these models.

2 Affine flows with a Gaussian base distribution using a diagonal covariance structure
allow for tractable integration and calculation of moments. However, it is currently
not well understood which subclasses of normalising flows allow more advanced
inference scenarios.

– 16 – 12th July 2020

1.2 Research Questions

complex dependencies by using hierarchically structured mixture distri-
butions. The result is an attractive model that has proven to be compet-
itive with neural networks and additionally guarantees exact inference
[10]. Although most inference scenarios can be calculated exactly, the
calculation of the Maximum-A-Posteriori (MAP) estimate can only be
approximated. PSDDs, which are a more restrictive model class than
SPNs, enforce even stronger structural assumptions and can additionally
guarantee the exact computation of any maximum-a-posteriori estimate.
However, to obtain competing results, it is often necessary to use large
ensembles of PSDDs [11].

Inference Task GAN VAE NFlow NADE SPN PSDD

Sampling Y Y Y Y Y Y
Density N N/Y Y Y Y Y
Marginals N N ? N/Y Y Y
Conditionals N N ? N/Y Y Y
Moments N N ? N Y Y
Max-a-posteriori N N ? N N/Y Y

Table 1.1: Comparison of probabilistic inference capabilities for recent deep ar-
chitectures, adapted from [12]. Y indicates that the inference task can
be solved exactly, N/Y indicates the task can be solved approximately,
and N indicates that the inference task is intractable.

1.2 Research Questions
In recent years, there has been a rise of novel techniques for parameter
and structure learning in SPNs, as well as various flexible extensions of
SPNs for complex modelling domains. State-of-the-art SPN parameter
learning covers a wide range of well-developed techniques, with various
approaches for generative learning.3 Many approaches maximise the
log-likelihood using either gradient-based optimisation [10], [13], [14]
or expectation-maximisation (and related schemes) [8], [13], [15], [16].
In addition, there are a variety of Bayesian approaches, each of which
utilises approximate posterior inference, e.g. [17]–[19]. Although many
techniques have been introduced over the years, little work has been done
to analyse the intrinsic behaviour of parameter learning in SPNs. While
there is a pearl of conventional wisdom that parameter learning in deep
SPNs is faster than in shallow models, the effects of overparametrisation
(increased depth) in SPNs is only little understood. This calls for a
theoretic analysis of the acceleration effects in overparameterised SPNs.

Safe Semi-Supervised Learning
In addition to generative parameter learning, there have been some ad-
vances in the realm of discriminative learning4. Most notably, Gens and
3 In the context of this thesis, generative learning refers to learning the paramet-

risation of a probability distribution used for density estimation or probabilistic
reasoning.

4 Discriminative learning is concerned with learning the parameters of a model that
can discriminate well between different pre-specified classes, e.g. distinguishing

12th July 2020 – 17 –

1 Introduction

Domingos [20] introduced the first parameter learning technique for dis-
criminative learning by optimising the conditional log-likelihood using
backpropagation. Recently, Peharz, Vergari, Stelzner et al. [10] pro-
posed to learn a hybrid objective by combining the cross-entropy term
and the log-likelihood to trade-off between generative and discriminat-
ive learning. However, all of these approaches assume that labelled data
is abundant, hindering their application in domains in which obtaining
class labels is expensive and sometimes infeasible for large amounts of
data, e.g. text domain [21], image domain [22], [23] and the domain
of biological data (genomics, proteomics, gene expression) [24]–[26]. In
contrast to methods developed for SPNs, there exists a large body of
work on semi-supervised5 techniques for traditional machine learning
models, e.g. [27], [28], and deep learning, e.g. [23], [29], [30]. The most
natural approach to achieve semi-supervised learning for SPNs is self-
training, i.e. imputation using the MAP estimate and re-training the
model parameters using the imputed labels. However, such an approach
can reinforce poor predictions, resulting in a potential degeneration of
the model with increasing amounts of unlabelled data [30]. More soph-
isticated approaches, which could be adopted for SPNs, often exploit
low-density regions, e.g. [31], [32], or the geometry of the data, e.g. [33],
[34]. However, these approaches can yield sub-optimal accuracy if the
induced assumptions are not met, possibly leading to a decrease in ac-
curacy when adding unlabelled data [35]. Therefore, calling for para-
meter learning techniques which guarantee that increasing amounts of
unlabelled data can increase but not degenerate the performance of the
semi-supervised learner.

Bayesian Structure Learning
A key challenge in learning and applying SPNs is to define a suitable
structure. To overcome this issue, a large number of mostly heuristic
algorithms for structure learning in SPNs have been introduced. For ex-
ample, the most prominent structure learning scheme, LearnSPN [36],
derives an SPN structure by recursively clustering the data instances
(yielding sum nodes) and partitioning data dimensions (yielding product
nodes). Each of these steps can be understood as some local structure
improvement, and as an attempt to optimise a local criterion. While
LearnSPN is an intuitive scheme and elegantly maps the structural SPN
semantics onto an algorithmic procedure, the fact that the global object-
ive of structure learning is not declared is unsatisfying. This shortcoming
is shared by its many variants such as online LearnSPN [37], ID-SPN
[38], LearnSPN-b [39], and mixed SPNs [40]. Note that other approaches
also lack a sound learning principle, such as [41], [42], which derive SPN
structures from k-means and SVD clustering, respectively. Further, Pe-
harz, Geiger and Pernkopf [43] grow SPNs bottom up using a heuristic
based on the information bottleneck, Dennis and Ventura [44] use a
heuristic structure exploration, and Kalra, Rashwan, Hsu et al. [45] use
a variant of hard EM to decide when to enlarge or shrink an SPN struc-
ture. All of the mentioned approaches fall short in asking either of the

between x-ray images of healthy and sick patients.
5 Semi-supervised learning aims to utilise additional unlabelled data to learn the

parameters of a model more effectively.

– 18 – 12th July 2020

1.3 Contributions & Organisation

following fundamental questions: What is a good SPN structure? or
What is a good principle to derive an SPN structure?

Deep Structured Mixtures of Gaussian Processes
Orthogonal to work on parameter and structure learning, there has been
a rise of flexible extensions of SPNs for complex modelling domains,
e.g. SPNs over VAE experts [46], SPNs as automated statistician [17],
and SPNs extended to imprecise probabilities [47]. However, all of these
extensions are usually restricted to finite data domains, with the excep-
tion of [48], and cannot directly be applied in case of time-series data
or in situations in which data is observed incrementally. Furthermore,
the standard definition of SPNs is based on the assumption that the set
of random variables is finite, limiting their applicability as stochastic
process models to settings with a finite index set, i.e. random vectors
[49]. Probabilistic regression models, such as Gaussian processes [50], on
the other hand, are well understood and present a promising avenue for
flexible extensions of SPNs. This raises the question how can we extend
SPNs to stochastic process models and integrate Gaussian processes?

1.3 Contributions & Organisation

This thesis is organised into a chapter introducing the necessary back-
ground materials (Chapter 2) followed by a chapter reviewing SPNs
(Chapter 3). The subsequent chapters reflect the main contributions of
this thesis, i.e. semi-supervised learning in SPNs (Chapter 4), Bayesian
structure and parameter learning (Chapter 5) and finally an extension
of SPNs as stochastic process model by integrating Gaussian processes
(Chapter 6). We conclude the thesis in Chapter 7 by discussing open
challenges and potential future directions. The individual contributions
of this thesis can be summarised as follows:

Implicit Acceleration Effects in Parameter Learning
In Section 3.4, we show that parameter optimisation in overparamet-
erised SPNs has similar dynamics as observed in linear neural networks
[51]. Gradient-based optimisation with small, fixed learning rate and
near-zero initialisation of the SPN’s weights results in an implicitly ad-
aptive and time-varying learning rate with additional momentum term.
Thus, leading to inherent acceleration effects, which depend on the depth
of the network. Further, we show that an overparameterised SPN can
represent any naturally deep tree-structured SPN.

Generative & Discriminative Safe Semi-Supervised Learning
In Chapter 4, we introduce the first semi-supervised learning technique
for SPNs by extending the work on contrastive pessimistic likelihood
estimation [35] to SPNs. We show that our approach can be applied
to generative and discriminative parameter learning, both guaranteeing
that in expectation adding unlabelled data can increase, but not de-
grade, the performance of the learner on the training set. Furthermore,
our approach exploits the tractability of SPNs and has computational

12th July 2020 – 19 –

1 Introduction

cost linear in the number of data points and model parameters, while
inducing little assumptions on the data distribution.

Bayesian Learning of Sum-Product Networks
In Chapter 5, we introduce the first principled approach to structure
(and joint parameter) learning by posing the problem as Bayesian infer-
ence in a latent variable model. A critical insight for our approach is
to decompose structure learning into two steps, namely constructing a
computational graph and separately learning the SPN’s scope-function
– determining the “effective” structure of the SPN as discussed in Sec-
tion 3.2.1. This decomposition has some interesting implications, as it: i)
enables the derivation of principled structure learning, ii) expresses the
connection between various types of probabilistic circuits through the
scope-function, and iii) unifies the view on structure learning in SPNs.
Our experiments show that principled learning competes well with the
prior art and that we gain several benefits, such as implicit protection
against overfitting, robustness under missing data and a natural exten-
sion to nonparametric formulations.

Nonparametric Formulations of Sum-Product Networks
In Section 5.5, we introduce two different nonparametric extensions of
SPNs. The first approach augments tree-structured SPNs with so-called
group nodes, nodes that represent a uniform prior over all possible par-
titions of the scope of the parent node. The latter utilises the Bayesian
framework presented in Chapter 5 to perform efficient approximate pos-
terior inference using distributed slice sampling [52] in an infinite mix-
ture of Bayesian SPNs.

Sum-Product Networks as Stochastic Process Model
In Chapter 6, we introduce deep structured mixtures of Gaussian pro-
cesses, which combine SPNs with Gaussian processes as sub-modules,
i.e. leaf distributions. For this, we first introduce a measure-theoretic
perspective on SPNs in Section 3.1.2, which allows the extension of
SPNs to infinitely many random variables by utilising Gaussian pro-
cesses as leaves. Furthermore, we show that our model, which is a sound
stochastic process model, enables efficient and exact posterior inference
and has attractive computation costs for hyperparameter optimisation.
We discuss that deep structure mixtures of Gaussian processes can be
understood to perform exact Bayesian model averaging over a large set
of naive-local-experts models and show how to exploit the structure to
speed-up computations and model non-stationary data.

– 20 – 12th July 2020

Sum-Product Networks for Complex Modelling Scenarios

2
Background

A central concept in modern mathematics is the notion of a measure,
which is foundational for many fields of mathematics such as probability
and integration theory. Therefore, we will review the main concepts
of measure theory and subsequently introduce probability theory using
probability measures and lastly discuss fundamental concepts of graph
theory, which are relevant in the context of sum-product networks. Note
that the primer on measure theory and probability theory provided in
this thesis is admittedly a somewhat steep introduction into the field.
We refer the interested reader to the excellent book by Schilling [53]
for a thorough and more detailed introduction into measure theory and
refer to the book by Kolmogoroff [54] for details on probability theory.

2.1 Primer on Measure Theory
Measure theory naturally deals with the question of how one can assign
measurement values, e.g. size or length, to a set (of objects). Some
of the most natural measures are the counting measure6, the Lebesgue
measure7, and the probability measure8. This section will review the
most relevant concepts and introduce the necessary notation.

Before we define measurable spaces and measures, let us briefly review
some notation on set theory and countability. In addition to the common
notation of a set union A ∪ B, intersection A ∩ B and complement Ac,
we write AtB for a union of pairwise disjoint sets. Further, we use A\b
for the exclusion of b from the set A. We say that a set is countable,
if the cardinality, denoted as #A, of a set A is #A ≤ #N. A set with
#A > #N is said to be uncountable. Note that sets with #A = #N
are sometimes called countably infinite, while we will not make this
distinction.

Say we are given the countable set Ω = {©,4,�,@A} and we aim to
define a measure µ over a subset of Ω, e.g. we might want to measure
the similarity of objects in Ω. We would expect that any faithful meas-
ure µ(·) for our purposes returns non-negative values and is countable

6 The counting measure counts the number of elements in a set. If the set in question
is finite, the value of a counting measure is the cardinality of the set and positive
infinity otherwise.

7 The Lebesgue measure is a generalising measure of length or area forD-dimensional
metric spaces.

8 As the name suggests, a probability measure assigns probabilities to sets of events.

12th July 2020 – 21 –

2 Background

additive, i.e.

µ(A) ≥ 0 ∀A ∈ P((©,4,�,@A))︸ ︷︷ ︸
power set of Ω

, µ(∅) = 0 , (2.1)

µ({©,4}) + µ({�,@A}) = µ({©,4,�,@A}) . (2.2)

Note that the power set, denoted as P(Ω), is the set of all subsets (in-
cluding the empty set ∅ and the set Ω itself), i.e. P(Ω) = {A |A ⊆ Ω}.power set In
the following we will formally define the notion of a (positive) measure
µ, fulfilling the mentioned requirements, as a function mapping from a
so-called σ-algebra A to values in the interval [0,∞], i.e. µ : A→ [0,∞].

Definition 2.1 (σ-algebra).σ-algebra Given a set Ω, a σ-algebra A is a family
of subsets with the following properties:

Ω ∈ A , (2.3)
A ∈ A⇒ Ac ∈ A , (2.4)

(An)n∈N ⊂ A⇒
⋃
n∈N

An ∈ A . (2.5)

We can see from Equations (2.3)–(2.4) that ∅ ∈ A, because Ωc = ∅.
Further, we see that if A and B are elements of A, then A ∪ B ∈ A,
c.f. Equation (2.5). Finally, any σ-algebra is closed under countable
intersections, i.e.

(An)n∈N ⊂ A⇒
⋂
n∈N

An ∈ A . (2.6)

Theorem 2.1. For any given Ω, the intersection ∩iAi of arbitrarily
many σ-algebras on Ω is again a σ-algebra on Ω.

Proof. Equation (2.3) Since Ω ∈ Ai for all i, we have Ω ∈ ∩iAi.

Equation (2.4) If A ∈ ∩iAi, then Ac ∈ Ai by Equation (2.4) for all i
and, therefore, Ac ∈ ∩iAi.

Equation (2.5) If (An)n∈N ⊂ ∩iAi, then for all i we have An ∈ Ai and,
therefore, ∪n∈NAn ∈ ∩iAi.

We will now review a few relevant examples of σ-algebras.

Example 2.1 (maximal σ-algebra). For any Ω, the power set P(Ω) is
the maximal (largest) σ-algebra on Ω.

Example 2.2 (minimal σ-algebra). For any non-empty Ω, the set {∅,Ω}
is the minimal (smallest) σ-algebra on Ω.

Example 2.3 (Borel σ-algebra). The σ-algebra generated by Borel sets
on Ω = R, i.e. open sets in Ω, is called a Borel σ-algebra, see Defini-
tion 2.5.

Given a set Ω and a σ-algebra A on Ω, the tuple (Ω,A) is said to be
a measurable space.measurable space

– 22 – 12th July 2020

2.1 Primer on Measure Theory

Definition 2.2 (measure). measureGiven a measurable space (Ω,A), a (positive)
measure µ on Ω is a function µ : A→ [0,∞], which satisfies:

µ(∅) = 0 , (2.7)

µ

(⊔
n∈N

An

)
︸ ︷︷ ︸
disjoint union

=
∑
n=N

µ(An) . (2.8)

The triple (Ω,A, µ) is called a measure space. measure space

Note that a measure with µ(Ω) < ∞ is called a finite measure finite measureand a
positive measure P with P(Ω) = 1 is said to be a probability measure probability measure.

Definition 2.3 (probability space). probability spaceGiven a sample space Ω, a σ-algebra
A on Ω and a probability measure P, a probability space is the triple
(Ω,A,P) and P(A) ≥ 0, for any A ∈ A, is called the probability of the
event A.

Let P1, . . . ,PL be probability measures on (Ω,A), then the convex
combination

P(A) =
L∑
i=1

βiPi(A) , β ≥ 0 ,

L∑
i=1

βi = 1 , (2.9)

is a probability measure on (Ω,A). Note that from Equation (2.8), it
follows that the if events A and B are disjoint, then

P(A tB) = P(A) + P(B) . (2.10)

A measure µ on (Ω,A) is said to be σ-finite if there exist countably
many A1, A2, · · · ∈ A with µ(An) < ∞ for all n ∈ N such that either i)
∩n∈NAn = Ω or ii) ∪n∈NAn = Ω. Note that the Lebesgue measure and
any probability measure are σ-finite.

Given a set Ω, a convenient way to define a σ-algebra on Ω seems to
be to simply use the power set P(Ω). However, such an approach will
often be problematic as A = P(Ω) can often be too large to define an
interesting measure on A.

Example 2.4. In case of a probability measure for possibly unfair coin
flips we have Ω = {H,T} but we can only assign a measure (probability)
to the following events: {∅,Ω} as we do not know the probability of heads
(H) or tails (T). Thus, defining a reasonable µ over P(Ω) is not possible,
and we have to refrain to a smaller σ-algebra, i.e. A = {∅,Ω}

Example 2.5. In case we aim to define a uniform probability measure
for Ω = [0, 1], the resulting power set will contain non-measurable sets
(non-measurable in the sense of Lebesgue measurability), i.e. it will con-
tain Vitali sets [55]. Therefore, we can only define the trivial measure
of µ(A) = 0 for all A ∈ P(Ω) in such case or have to exclude those sets
that are non-measurable from our σ-algebra [56, pp. 401–402].

We refer to Schilling [53, pp. 429–436] and Oxtoby [57, pp. 22-3] for a
detailed discussion on the construction of non Borel measurable spaces
using the axiom of choice. To construct one of the most important

12th July 2020 – 23 –

2 Background

measures, i.e. the Lebesgue measure, we need to define an appropriate
σ-algebra on the system of open sets O such that µ has desired properties
and is not a trivial measure. For this purpose, let us first introduce the
notion of the σ operator.

Definition 2.4 (generated σ-algebra).σ-operator For every system of sets G ⊂
P(Ω) there exists a minimal σ-algebra, which contains G. Therefore, we
denote the σ-operator as

σ(G) :=
⋂
G⊆F

F σ-alg.

F (2.11)

and say that A := σ(G) is generated by G. Note that A is indeed a valid
σ-algebra as the intersection of arbitrary many σ-algebras is a σ-algebra.
Further, A is in fact the minimal σ-algebra containing G [53].

We can now use the σ-operator to generate a σ-algebra on the system
of open sets, which is called Borel σ-algebra.

Definition 2.5 (Borel σ-algebra).Borel σ-algebra The σ-algebra generated by a system
of open sets O ⊂ P(RD) is called Borel σ-algebra and denoted by B(RD),
i.e.

B(RD) := σ(O) . (2.12)

The elements of B(RD) are called Borel sets and (RD,B(RD)) is a Borel
space.

In case of Ω = RD, we can find several generators for Borel σ-algebras,
such as using open rectangles

B(RD) = {(a1, b1)× · · · × (aD, bD) | ai < bi , ai, bi ∈ R} , (2.13)

or half-open rectangles

B(RD) = {[a1, b1)× · · · × [aD, bD) | ai ≤ bi , ai, bi ∈ R} . (2.14)

After having introduced the notion of a Borel σ-algebra, we can now
define one of the most important measures, the Lebesgue measure.

Definition 2.6 (Lebesgue measure).Lebesgue measure The Lebesgue measure λ is a meas-
ure on the Borel sets B(RD) and has the following properties for B ∈
B(RD)

• λ(x+B) = λ(B) , x ∈ RD (translation invariance)

• λ(T−1(B)) = λ(B), where T is a congruence transformation9 (con-
gruence invariance)

• λ(M−1(B)) = | det(M)|−1λ(B) for any invertible M ∈ RD×D

Note that even though the Lebesgue measure is not finite, it is a σ-
finite measure. In the course of this thesis we will further encounter
product measures, measurable functions and push-forward measures. We
will, therefore, briefly review these concepts.
9 Congruence transformations are transformations, which do not change the geo-

metry of an object. These transformations include: translation, rotation, reflec-
tion, and transflection.

– 24 – 12th July 2020

2.1 Primer on Measure Theory

Definition 2.7 (measurable function). measurable functionGiven two measurable spaces,
(Ω1,A) and (Ω2,B), the map f : Ω1 → Ω2 is called A-measurable or
A/B-measurable if for every B ∈ B the pre-image is in A, i.e.

f−1(B) ∈ A , ∀B ∈ B . (2.15)

We denote a measurable function using f : (Ω1,A) → (Ω2,B) to em-
phasise that measurability of a function is with respect to A and B.

Theorem 2.2. Given two measurable spaces, (Ω1,A) and (Ω2,B) and
f : (Ω1,A)→ (Ω2,B), then for every measure µ on (Ω1,A),

µ′(B) = µ(f−1(B)) := {ω1 ∈ Ω1 | f(ω1) ∈ B} ∈ A , ∀B ∈ B (2.16)

defines a so-called push-forward measure on (Ω2,B) push-forward measureand is denoted by
µ ◦ f−1(·).

We refer to Schilling [53, p. 55] for a proof that a push-forward meas-
ure is a proper measure.

Definition 2.8 (product σ-algebra). product σ-algebraGiven two measure spaces, denoted
as (Ω1,A, µ) and (Ω2,B, ν), the σ-algebra on the Cartesian product Ω1×
Ω2 generated by the subsets of A and B, i.e.

A⊗B︸ ︷︷ ︸
product σ-algebra

:= σ(A×B) , (2.17)

is called a product σ-algebra. The product measure space is denoted as
(Ω1 × Ω2,A⊗B, µ× ν).

The measure µ̃ = (µ× ν) on a product measure space (Ω1 × Ω2,A⊗
B, µ̃) is said to be a product measure product measureand has the property

µ̃(A×B) = µ(A) ν(B) , (2.18)

for all A ∈ A and B ∈ B. Note that product measures are only uniquely
defined for σ-finite measures, e.g. probability or Lebesgue measures. As
we will see later on, a product measure can, in some cases, be understood
as a joint distribution of independent random variables.

Theorem 2.3 (Fubini-Tonelli). Fubini-Tonelli theoremGiven two σ-finite measure spaces de-
noted as (Ω1,A, µ) and (Ω2,B, ν) and let f : Ω1 × Ω2 7→ R be a positive
A⊗B-measurable function w.r.t. the product measure space (Ω1×Ω2,A⊗
B, µ× ν). Then∫

Ω1×Ω2

f d(µ× ν) =
∫
Ω1

[∫
Ω2

f(ω1, ω2)µ(dω1)

]
ν(dω2) (2.19)

=

∫
Ω2

[∫
Ω1

f(ω1, ω2)ν(ω2)

]
µ(dω1) . (2.20)

Further, if at least one of the three integrals is finite, all three are finite.

The Fubini-Tonelli theorem states that we can integrate a measurable
function w.r.t. a product measure in arbitrary order.

12th July 2020 – 25 –

2 Background

2.2 Probability Theory
After having revised the concepts of measure theory we will now briefly
review relevant aspects of probability theory based on the foundational
work of Kolmogoroff [54]. We refer to any of the following works for a
more rigorous and detailed introduction [54], [58], [59]. One of the cent-
ral concepts of probability theory are independence, conditional probab-
ilities and random variables. In the course of this section, we will review
theses concepts and discuss the common rules of probability.

First recall that a measure space (Ω,A,P) is said to be a probability
space if the measure P is a probability measure, i.e. P(Ω) = 1 and
P(A) ≥ 0 for any A ∈ A.

Definition 2.9 (conditional probability).conditional probability Given two events A and B
in a probability space (Ω,A,P) with P(B) > 0, the conditional probability
of A given B is defined as the quotient of the joint probability of A and
B, and the probability of B, i.e.

P(A |B) :=
P(A,B)

P(B)
, (2.21)

where P(A,B) = P(A ∩B).

Note that the notion of conditional probabilities can be extended to
the case of P(B) = 0. We refer to Kolmogoroff [54] for details.

From Definition 2.9 directly follows that

P(A,B) = P(B)P(A |B) , (2.22)

which by induction results in the so-called chain or product rule,product rule

P(A1, A2, . . . , An) = P(A1)P(A2 |A1) . . .P(An |A1, . . . , An−1) . (2.23)

Note that Equation (2.22) is symmetric and can be equally written as

P(A,B) = P(A)P(B |A) , (2.24)

allowing us to arrive at the famous Bayes’ ruleBayes’ rule using some simple al-
gebra,

P(A |B)P(B) = P(A,B) = P(B |A)P(A) , (2.25)

P(A |B) =
P(B |A)P(A)

P(B)
. (2.26)

Let
⊔n
i=1Ai = Ω and X be arbitrary, then we can write X in the fol-

lowing form

X =
n⊔
i=1

X ∩Ai (2.27)

and consequently through application of Equation (2.10) and Equa-
tion (2.23) we obtain the so-called sum rulesum rule

P(X) =
n∑
i=1

P(Ai)P(X |Ai) . (2.28)

– 26 – 12th July 2020

2.2 Probability Theory

By applying the sum-rule, we can rewrite the Bayes’ rule in terms of a
so-called prior probability of Ai, i.e. P(Ai), and the likelihood P(X |Ai)
of X provided the hypothesis Ai. The resulting conditional probability

P(Ai |X) =
P(Ai)P(X |Ai)∑n

j=1 P(X,Aj)
, (2.29)

is said to be the posterior probability posterior probabilityof Ai. Posterior probabilities
play an important role in probabilistic machine learning and, depending
on the parametric form of the prior and the likelihood, might have an
analytic form.

Note that all of the above derivations are also true for conditional
probabilities, i.e. the conditional probability measure P(A |B) for a fixed
B is again a probability measure.

Definition 2.10 (independence). independenceGiven a probability space (Ω,A,P),
two events A ∈ A and B ∈ A are said to be independent if

P(A,B) = P(A)P(B) , (2.30)

which we denote as A ⊥⊥ B.

This notion of independence can be generalised to some family of
events {Ai}i∈I , for which we say that the events Ai ∈ A are independent
if

P

(⋂
i

Ai

)
=
∏
i

P(Ai) . (2.31)

Example 2.6. A simple example of independence is to consider any
A ∈ A and the whole sample space Ω. Clearly, for any A we have
P(A,Ω) = P(A) = P(A) P(Ω)︸ ︷︷ ︸

=1

, thus any couple A,Ω is independent.

Last but not least, we will review the notion of conditional independ-
ence, which is central in mixture models and sum-product network.

Definition 2.11 (conditional independence). conditional independenceGiven events A,B,C in
a probability space (Ω,A,P), the events A and B are said to be condi-
tionally independent given C if

P(A,B |C) = P(A |C)P(B |C) , (2.32)

which we denote as (A ⊥⊥ B) |C.

2.2.1 Random Variables
A random variable can be understood as a measurable function from
a probability space to a measurable space. More formally, we define a
random variable as follows.

Definition 2.12 (random variable). random variableLet (Ω,A,P) be a probability space
then the measurable function X : (Ω,A)→ (E,E) is said to be a random
variable (RV). The push-forward measure

PX(B) := P(X−1(B)) = P(X ∈ B) , (2.33)

12th July 2020 – 27 –

2 Background

with B ∈ E is its distributiondistribution .

Note that PX(B) fulfils all of our required properties of a probability
measure. In many cases X is assumed to be real-valued, thus, the defin-
ition above often simplifies to the case in which E = R and E = B(R).
We will, therefore, refer to a real-valued RV simply as RV.

Lemma 2.1. For any RV X, PX is a probability measure on B(R).
Moreover, for any probability measure µ on B(R), there exists a probab-
ility space and a RV on it s.t. PX = µ.

We refer to Kolmogoroff [54] for a proof of Lemma 2.1. Depending on
the set of possible numerical values a RV can take, we call a RV discrete
or continuous. For this purpose, we denote val(X) := {x ∈ R |x =
X(ω), ω ∈ Ω} to be the range of X, i.e. the image of X under Ω. Note
that RVs can also be a mixed type, i.e. consisting of a continuous and a
discrete part, or singular [59].

Definition 2.13 (discrete random variable). If val(Ω) is countable, an
RV X is said to be discrete and we use pX(x) := PX({x}) = P (X = x)
for all x ∈ val(X) to denote its probability mass functionprobability mass function (PMF).

Definition 2.14 (cumulative distribution function).cumulative distribution
function

The cumulative
distribution function (CDF) of an RV X on (Ω,A,P) is defined as

FX(x) = PX(X ≤ x) := PX({ω |X(ω) ≤ x}) , ∀x ∈ val(X) . (2.34)

In case of a discrete RV, the CDF is piece-wise constant and can be
written as a finite sum, i.e.

FX(x) =
∑

x′∈val(X)

pX(x
′)1{x′≤x} , (2.35)

where 1{x′≤x} is an indicator functionindicator function , which is one if x′ ≤ x and zero
otherwise.

Definition 2.15 (continuous random variable). Suppose P is absolute
continuous10 w.r.t. µ on (Ω,A). Then, if val(X) is uncountable, and if
by the Radon-Nikodym theorem11 there exists a function p : R → [0,∞)
s.t.,

PX(B) =

∫
B
pX(x) dx , B ∈ B(R) , (2.36)

then we say that X is a continuous RV and pX(x) is its probability
density functionprobability density

function
(PDF) or Radon–Nikodym derivative. Note that we

can also define the PDF of a continuous RV over its CDF, i.e.

FX(x) =

∫ x

−∞
pX(x

′) dx′ , (2.37)

assuming that FX is continuous everywhere.
10 We call µ absolute continuous w.r.t. a second measure ν, both defined on the same

measurable space (Ω,A), if µ(A) = 0 ⇒ ν(A) = 0 for A ∈ A. [53, p. 230]
11 Given two measures µ and ν on (Ω,A) and let µ be σ-finite, then if µ is absolute

continuous w.r.t. ν we can write ν as ν(A) =
∫
A
f(x)µ(dx) with some a.e. unique

measurable function f with f(x) ≥ 0. [53, p. 230]

– 28 – 12th July 2020

2.2 Probability Theory

Throughout the rest of this thesis, we will drop the subscript X when
using the PDF or PMF or CDF of a RV X if the dependence is clear
from the context.

Introducing random variables as a measurable function has certain
benefits, e.g. moments can be defined in terms of functionals from the
space of RVs to R+ ∪ {∞} and can, therefore, be analysed using tools
from functional analysis.

Definition 2.16 (expected value). expected valueThe expected value or expectation of
a random variable X on (Ω,A,P) is its integral over Ω, i.e.

E[X] :=

∫
ω∈Ω

X(ω) dP(ω) =
∫
x∈R

x p(x) dx . (2.38)

If X is discrete, then the integral simplifies to a finite sum, i.e.

E[X] :=
∑

x∈val(X)

x p(x) . (2.39)

Definition 2.17 (variance). varianceThe variance of an RV X on (Ω,A,P) is
the second moment of the centered RV (X − E[X]), i.e.

Var[X] := E[(X − E[X])2] =

∫
ω∈Ω

(X(ω)− E[X])2 dP(ω) , (2.40)

which again simplifies to a finite sum in case X is discrete.

Note that moments exist only for discrete or integrable RVs, Cauchy
distributed RVs are a well-known example for a non-integrable case. We
will now extend the previously introduced rules of probability as well as
the concepts of conditional probabilities, independence, and conditional
independence to RVs. In particular, we can obtain the conditional distri-
bution pX|Y for continuous RVs X and Y by use of Lebesgue’s dominated
convergence theorem12, i.e.

pX|Y (x | y) =
pX,Y (x, y)

pY (y)
, (2.41)

with pY (y) > 0. A similar formulation can be found for discrete RVs.
Consequently, we can denote the Bayes’ rule of probability distribu-

tions as

pX|Y (x | y) =
pX(x) pY |X(y |x)

pY (y)
, (2.42)

where pY (y) > 0. Note that we can obtain the product-rule of probab-
ility from Equation (2.41) and Equation (2.23).

Definition 2.18 (independent random variables). independent random
variables

Given a probabil-
ity space (Ω,A,P) and let X1, . . . , XD be RVs on A. Then the RVs

12 Lebesgue’s dominated convergence theorem provides sufficient conditions for the
convergence of the expected value of a RV and can be used to show that the
conditional probability distribution of continuous RVs converges to Equation (2.41)

12th July 2020 – 29 –

2 Background

X1, . . . , XD are said to be independent if,

P(Xi ∈ Bi | i ≤ D) =
D∏
i=1

P(Xi ∈ Bi) , (2.43)

with Bi ∈ B(R).

Corollary 1. Following from Definition 2.18, RVs X1, . . . , XD are in-
dependent iff

FX1,...,XD(x1, . . . , xD) =
D∏
i=1

FXi(xi) . (2.44)

Note that there is a close relationship between independence of RVs
and product measures. In fact, if X = X1, . . . , XD and if all RVs
X1, . . . , XD are independent, then the distribution of X, i.e. its push-
forward measure is a product measure

P ◦X−1 = P ◦X1
−1× . . .× P ◦XD

−1 , (2.45)

where the product measure is over the push-forward measures of the in-
dependent RVs. This has some interesting implications, e.g. if X1, . . . XD

are independent then the computation of moments such as the expec-
ted value simplifies due to application of the Fubini-Tonelli theorem.
In particular, if X1, . . . , XD are independent we can obtain for some
non-negative measurable functions fi the following equality,

E

[
D∏
i=1

fi(Xi)

]
=

∫
Ω

D∏
i=1

fi(Xi) dP (2.46)

=

∫
(×iEi)

D∏
i=1

fi(xi)p(x1, . . . , xD) dx1 . . . dxD (2.47)

=

∫
(×iEi)

D∏
i=1

fi(xi)
D

×
i=1

λ(xi)︸ ︷︷ ︸
product measure

dx1 . . . dxD

(2.48)

=
D∏
i=1

∫
Ei

fi(xi)λ(xi) dxi (2.49)

=

D∏
i=1

∫
Ei

fi(xi)p(xi) dxi =

D∏
i=1

E[Xi] , (2.50)

and

E

[
D∑
i=1

fi(Xi)

]
=

D∑
i=1

E[fi(Xi)] , (2.51)

which can be shown similarly. The same result is true for higher order
moments. We say that two RVs X and Y are conditional independent

– 30 – 12th July 2020

2.2 Probability Theory

conditionally independent
random variables

of RV Z if

FX,Y |Z=z(x, y) = FX |Z=z(x)FY |Z=z(y) , (2.52)

where FX |Z is the conditional CDF, which is given as

FX |Z=z(x) =
1

pZ(z)

∑
x′≤x

p(x′, z) , (2.53)

in the discrete case and as

FX |Z=z(x) =
1

pZ(z)

∫ x′

−∞
p(x′, z) dx , (2.54)

in the continuous case.
Last but not least, we will extend the notion of RVs to random vectors,

i.e. multivariate distributions.

Definition 2.19 (random vector). random vectorGiven a measurable space (Ω,A), we
call the function X : (Ω,A)→ (RD,B(RD)) a random vector or a vector-
valued random variable if it is measurable w.r.t. A, c.f. Equation (2.16).
Note that X is only a random vector, if all its components X ∈ X are
measurable. Thus, a random vector is a D-tuple of RVs.

Similar to the one-dimensional case, i.e. in case of a single RV, the
distribution of a D dimensional random vector X is defined by its push-
forward measure PX(B) := P(X−1(B)) for B ∈ B(RD). We call this
distribution to be a joint probability distribution joint probability

distribution
. As established in

Definition 2.18, if all RVs of X are independent then the joint prob-
ability distribution of X is a product measure.

The distribution of a random vector may be discrete, in the sense
that val(X) =×D

i=1 val(Xi) is countable. If the distribution X is ab-
solutely continuous with respect to a D-dimensional Lebesgue measure,
and consequently all X ∈X have a density, the random vector is said to
be continuous. As for single RVs, if a random vector is neither continu-
ous nor discrete we say it is of mixed type. We denote an instantiation
of a random vector as x ∈ val(X).

In many scenarios we are interested in only a subset X̃ ⊂X of RVs in
X. Examples for such cases include situations in which we only have an
instantiation of X̃, i.e. x̃, and want to marginalise out (integrate over)
the remaining RVs, which we did not observe, i.e. Z = X \ X̃. In such
a cases we are interested in the marginal distribution of X̃.

Definition 2.20 (marginal distribution). marginal distributionGiven a random vector X on
(Ω,A,P), the marginal distribution of X̃ ⊂ X where Z = X \ X̃ is
defined for continuous RVs Z as,

pX̃(x̃) :=

∫
z1

· · ·
∫
zK

pX(x̃, z1, . . . , zK) dz1 . . . dzK , (2.55)

and simplifies to finite sums in case all RVs in Z are discrete.

12th July 2020 – 31 –

2 Background

2.3 Primer on Graph Theory
In this section we will briefly review the main concepts of graph theory,
relevant for the course of this thesis. We refer to Diestel [60] for further
details on graph theory.

Definition 2.21 (graph).graph A graph is a tuple G = (V,E) of sets, with V
being a set of vertices (or nodes) and the elements of E, with E ⊆ V ×V ,
being the edges in G. We denote the vertex set of G as V (G) and the
edge set as E(G).

Given a graph G, we call two vertices vi, vj adjacent if the edge
(vi, vj) ∈ E(G). If all vertices in G are pairwise adjacent, then G is
said to be completecomplete graph . Consequently, we call two vi, vj separate if they are
not adjacent.

Definition 2.22 (sub-graph).sub-graph If V ′ ⊆ V and E′ ⊆ E,E′ ⊆ V ′ × V ′ for
G = (V,E) and G′ = (V ′, E′), then we call G′ a sub-graph of G and G is
called the super-graph of G′, denoted as G′ ⊆ G.

If the sub-graph G′ ⊆ G contains all edges (vi, vj) ∈ E(G) connecting
pairs of vertices in vi, vj ∈ V (G′), then G′ is said to be an induced sub-
graph or simply induced graph.induced graph

Definition 2.23 (path).path A path or walk W = (V,E) is a non-empty
graph with V = {v0, . . . , vk} and E = {(v0, v1), . . . , (vk−1, vk)} and the
cardinality of E is called the length ofW. For ease of notation, we denote
a path as W = v0, . . . , vk.

Definition 2.24 (cycle).cycle Given a path W = v0, . . . , vk−1 with k ≥ 3,
then the graph W ∪ {(vk−1, v0)} is called a cycle.

We call a graph connectedconnected graph if the graph is non-empty and if any two
of its vertices are linked by a path.

Definition 2.25 (tree).tree If G is an (undirected) acyclic connected graph,
then G is said to be a tree.

So far, we have only considered undirected graphs for which edges do
not have a direction. Note that we can represent a graph G using an
adjacency matrixadjacency matrix , that is a matrix A ∈ B|V |×|V | with Ai,j = 1 if (vi, vj)
is an edge in E(G) and Ai,j = 0 otherwise. We say G is undirected iff
Ai,j = 1 ⇒ Aj,i = 1, i.e. A is symmetric, and otherwise say that G is a
directeddirected graph graph. Further, we say that a path W is a directed cycle if W
is a cycle and all edges in W have the same direction.

Definition 2.26 (directed acyclic graph). A graph G is said to be a
directed acyclic graph (DAG), if G is directed and does not contain any
directed cycles.

For a directed graph, we denote the parents of a node vi, i.e. the set
of nodes that feed into vi, as par(vi) := {vj |Aj,i = 1} and the children
of vi as ch(vi) := {vj |Ai,j = 1}. Further, we say a node is a rootroot node if it has
no parents and a node is said to be a leafleaf node if it has no children. If there
exists a directed path from vi to vj , then vi is said to be an ancestor of
vj and vj is its descendant. Figure 2.1 illustrates an undirected, directed
and a directed acyclic graph side-by-side. Note that the arrow direction
shows the edge direction in the directed graphs.

– 32 – 12th July 2020

2.3 Primer on Graph Theory

v1

v2 v3

v4

(a) undirected graph

v1

v2 v3

v4

(b) directed graph

v1

v2 v3

v4

(c) directed acyclic graph

Figure 2.1: Illustration of an undirected, directed and directed acyclic graph. Dir-
ected cycles in 2.1(b) are shown in red.

12th July 2020 – 33 –

Sum-Product Networks for Complex Modelling Scenarios

3
Sum-Product Networks

This chapter provides an introduction to sum-product networks and dis-
cusses some recent developments in the field. In particular, we will re-
view generalized sum-product networks, discuss various representations
and introduce the foundations of generative and discriminative para-
meter learning in sum-product networks. Last but not least, we ex-
amine implicit acceleration effects of parameter learning in tree-shaped
sum-product networks and conclude the chapter with a brief review of
existing structure learning techniques.

3.1 Generalized Sum-Product Networks
Sum-product networks (SPN) [8] are a class of probabilistic models that
allow exact and efficient computation of many inference task, e.g. mar-
ginalisation, conditioning and computation of moments. Besides enjoy-
ing preferable inference properties, SPNs can efficiently represent com-
plex high-dimensional probability distributions. Thus, SPNs enjoy in-
creasing attention in the machine learning community and have been
successfully applied to various modelling tasks, e.g. [61]–[66].

SPNs arose from the foundational work on efficient inference in Bayesian
networks [67]. In particular, Darwiche [67] showed that the network
polynomial of a Bayesian network over a discrete random vector can be
efficiently represented using an arithmetic circuit.

We will now briefly review the notion of a network polynomial and an
arithmetic circuit.

Definition 3.1 (network polynomial). network polynomialLet φ(x) ≥ 0 be an unnormalised
distribution over a discrete random vector X. Further, let x ∈ val(X)
denotes an instantiation of X and x[X] be the projection13 of x onto
X ∈X and let λX=x[X] denote an indicator that is one if x[X] = x and
zero otherwise. Then the function fφ is called a network polynomial of
φ if it is defined as

fφ(λ) =
∑

x∈val(X)

φ(x)
∏
X∈X

λX=x[X] . (3.1)

The definition of a network polynomial can be generalized to arbitrary
unnormalised distributions, i.e. unnormalised distributions over finitely
many arbitrary random vectors [8], [68]. We can compute the probability
of any instantiation of X by setting all indicators consistent with the

13 The projection of x onto Xi ⊂ {X1, . . . , XD} with 1 ≤ i ≤ D is defined as the
value of Xi given x, i.e. x[Xi] = {xj : j = i}.

12th July 2020 – 35 –

3 Sum-Product Networks

instantiation to one and all others to zero. Further, the normalisation
constant or potential function can be computed by setting all indicators
to one. Note that the number of terms in the network polynomial grows
exponential with the number of RVs, making a direct use difficult in
practice [69], [70]. However, we can compactly represent a network
polynomial using a so-called arithmetic circuit.

Definition 3.2 (arithmetic circuit).arithmetic circuit An arithmetic circuit (AC) [67],
[70] is a rooted directed acyclic graph, whose internal nodes are equipped
with arithmetic operations, e.g. addition or multiplication, and whose
leaf nodes are numeric inputs.

Representing a network polynomial using an AC avoids representing
redundancies and can be exponentially more compact [69]. We refer to
[67], [68], [70] for an in-depth discussion on network polynomials and
arithmetic circuits.

We will now introduce SPNs in terms of a generalized SPN, as we will
utilise the fact that generalised SPNs can have arbitrary input distribu-
tions throughout this thesis.

Definition 3.3 (sum-product network).sum-product network A sum-product network (SPN),
denoted as S, over RVs X is a connected rooted directed acyclic graph
with arbitrary (tractable) distributions as leaves (L ∈ V (S)) and whose
internal nodes are sum nodes (S ∈ V (S)) and product nodes (P ∈
V (S)). Sum nodes compute a weighted sum of their children, i.e. S(x) =∑

N∈ch(S)wS,NN(x), where each edge emanating from a sum node has
non-negative weight, i.e. wS,N ≥ 0, and we say that S is normalised
if
∑

N∈ch(N)wS,N = 1 [71]. We denote the set of weights for a sum
node S as wS and use w to denote all weights in an SPN. The value
of a product node is calculated by taking the product of its children,
i.e. P(x) =

∏
N∈ch(P)N(x). Finally, the value of a leaf node is calcu-

lated by evaluating its respective probability distribution on a subset of
XL ⊆ X, i.e. its scope, denoted as L(x) = p(xL | θL).scope We use θL to
denote the parameters of the distribution at leaf L and refer to the set of
all leaf node parameters using θ.

Throughout this thesis, we denote the scope of a node in an SPN over
X using ψ(N) ⊆ X. Note that this notation is different to prior work,
which commonly uses scope(N) to denote the scope. Further, we use N
to denote all nodes, S to denote all sum nodes, P to denote all product
nodes, and L to denote all leaf nodes in an SPN. Figure 3.1 illustrates
an SPN over a three-dimensional random vector.

An SPN is said to be normalised if all sum nodes are normalised.
normalised Note that w.l.o.g. we will assume every SPN to be normalised [71]. The

scope of internal nodes, i.e. sums and products, is defined by the union
of the scopes of their children. Consequently, the scope and the value
of the SPN is determined by the root node of the SPN. Note that any
sub-graph of an SPN is itself an SPN. In some cases it is sufficient to
consider only tree-structured SPNs, which we denote as a sum-product
trees (SPTs). Even though SPTs are frequently used, e.g. [36], [39], [72],
they are a less compact representation as they scale exponentially in the
tree depth.

Definition 3.4 (sum-product tree).sum-product tree A sum-product tree (SPT) is an
SPN whose nodes have at most one parent.

– 36 – 12th July 2020

3.1 Generalized Sum-Product Networks

To ensure that an SPN is a sound probability distribution and guar-
antees efficient probabilistic inference, we require that an SPN is com-
plete14 and consistent or decomposable [8], [71]. Completeness and con-
sistency or decomposability are essential to render many inference scen-
arios tractable in SPNs.

Definition 3.5 (complete). completeAn SPN is said to be complete iff all children
under each sum node have the same scope.

Definition 3.6 (consistent). consistentAn SPN is said to be consistent iff each two
distinct children under each product node do not have different indicators
for the same RV in their ancestors.

Alternative to consistency, SPNs are often assumed to be decompos-
able [67]. This notion originates from the work on arithmetic circuits
and has later been adopted to SPNs by Peharz, Tschiatschek, Pernkopf
et al. [71].

Definition 3.7 (decomposable). decomposableAn SPN is said to be decomposable iff
all children under each product node have mutually disjoint scopes.

Decomposability is a stronger condition than consistency and implies
consistency but not vice-versa. Further, Peharz, Tschiatschek, Pernkopf
et al. [71] showed that complete and consistent SPNs can only be moder-
ately more compact than complete and decomposable SPNs. Intuitively,
we can understand a decomposable product node to represent an inde-
pendence assumption, i.e. the probability distributions of the children
of the product are independent from each other. Sum nodes in SPNs,
on the other hand, replace the enforced independence assumptions with
conditional independence, c.f. Definition 2.11. Because decomposable
SPNs are often easier to construct and have an intuitive interpretation,
recent approaches often deal with complete and decomposable SPNs in-
stead of complete and consistent SPNs. Therefore, in the context of this
thesis, we always assume that SPNs are complete and decomposable
and merely refer to them as SPNs. Note that any complete and decom-
posable SPN computes the network polynomial of some (unnormalised)
distribution [68] and can be understood as a special instantiation of an
AC. Further note, that an SPN can also be selective or deterministic,
we refer to Peharz [68] for details.

In SPNs, arbitrary marginalisation tasks reduce to marginalisation at
the leaves, i.e. they simplify to tractable marginalisation over a (small)
subset of X [71]. In fact, we can compute arbitrary marginals exactly
(provided that the leaf nodes allow exact computations) in linear time
in size of the SPN. For this let us consider the following marginalisation
task ∫

x1∈X1

· · ·
∫
xD∈XD

S(x1, . . . , xD) dx1· · · dxD (3.2)

in which integrals simplify to finite sums in case of discrete RVs. Because
of completeness, we can swap the integrals (or finite sums in case of

14 In the context of arithmetic circuits, completeness is often called smoothness.

12th July 2020 – 37 –

3 Sum-Product Networks

discrete RVs) and the summation at sum nodes, i.e.∫
x∈X

S(x) dx =
∑

N∈ch(S)

wS,N

∫
x∈X

N(x) dx , (3.3)

and at decomposable product nodes, the integrals distribute to the chil-
dren due independence of their probability distributions, i.e.∫

x∈X
P(x) dx =

∏
N∈ch(P)

∫
x̂∈ψ(N)

N(x̂) dx̂ . (3.4)

Therefore, we only have to perform marginalisation at the leaves followed
by a bottom-up evaluation of the SPN. Computation of moments and
conditionals can be tackled in the same way.

+

× ×

+ +

× × ×

+ + +

{X1} {X2}

{X2} {X2} {X3} {X3} {X1} {X1}

Figure 3.1: Illustration of a complete and decomposable SPN over X =
{X1, X2, X3} with colors indicating the scope of a node, i.e. gray
indicates a full scope.

3.1.1 Induced Trees

As shown in multiple works [19], [73] an SPN can be interpreted as a
deep structured mixture model with exponentially many components.
For this purpose, Zhao, Adel, Gordon et al. [19] introduced the notion
of so-called induced trees, which are directed sub-trees in an SPN.

Definition 3.8 (Induced Tree [19]). Given an SPN S, an SPT T ⊆ S
is called an induced tree if:

• The root of S is in T ,

• For each sum node S ∈ V (T) exactly one child of S in S is in T ,
and the corresponding edge is in E(T), and

• For each product node P ∈ V (T) all children of P in S are in T ,
and the corresponding edges are in E(T).

– 38 – 12th July 2020

3.1 Generalized Sum-Product Networks

Figure 3.2 illustrates an induced tree of the SPN shown in Figure 3.1.
The distribution of any SPN, denoted as S(x), can be written as a
mixture whose components correspond to induced trees, i.e.

S(x) =
∑
T

∏
(S,N)∈E(T)

wS,N︸ ︷︷ ︸
=p(T)

∏
L∈V (T)

p(xL | θL) . (3.5)

To see this, let us introduce a latent variable for each observation
xi and each S ∈ S denoted as ZS,i. Each latent variable has as many
states as S has children and is distributed according to a categorical
distribution given by the weights at S, i.e. zS,i ∼ wS. Now let us define
a function T (z), which assigns to each value z of Z = {ZS,i}S∈S the
induced tree determined by z. Note that the function T (z) is surjective,
but not injective, and thus, T (z) is not invertible. However, it is possible
to partially recover z. In fact, any T splits the set of all sum nodes S into
two disjoint sets, with the first being the set of sum nodes ST contained
in T , and the second being the set of sum nodes S̄T that are not in T .
For any T , we can clearly identify the state zS for any S ∈ ST , as it
corresponds to the unique child of S in T . However, the state of any
S ∈ S̄T is arbitrary.

Let use now define the conditional probability distribution given a lat-
ent assignment z, i.e. p(x | z) =

∏
L∈T (z) p(xL | θL). Further, we denote

the prior probability of a latent assignment as p(z) =
∏

S∈V (S)wS,zS ,
where wS,zS denotes the sum-weight indicated by zS. By marginalising
out Z from the joint p(x, z) = p(x | z) p(z) we obtain∑

z

∏
S∈S

wS,zS

∏
L∈V (T (z))

p(xL | θL) (3.6)

=
∑
T

∑
z∈T−1

(T)

∏
S∈S

wS,zS

∏
L∈V (T (z))

p(xL | θL) (3.7)

=
∑
T

∏
(S,N)∈E(T)

wS,N

∏
L∈V (T)

p(xL | θL)

∑
z̄

∏
S∈S̄T

wS,z̄S


︸ ︷︷ ︸

=1

(3.8)

=
∑
T

∏
(S,N)∈E(T)

wS,N

∏
L∈V (T)

p(xL | θL) = S(x) . (3.9)

We have split the sum over all z into a double sum in Equation (3.7).
The first one sums over all induced trees T and the latter sums over all
z ∈ T−1(T), i.e. the set of all z for which T (z) = T . As mentioned,
the set z ∈ T−1(T) is the union of all unique z-assignments that can be
exactly identified, i.e. the assignment for all S ∈ ST , and the set of all
possible assignments at each S ∈ S̄T . Note that, under the assumption
that the SPN is normalised, the summation over the second set of as-
signments evaluates to one, c.f. Equation (3.8). If the network is not
normalised, we can re-normalise the SPN without changing its distribu-
tion as shown in Peharz, Gens, Pernkopf et al. [16]. Therefore, we can
obtain the mixture formulation shown in Equation (3.5) for any SPN.

12th July 2020 – 39 –

3 Sum-Product Networks

+

× ×

+ +

× × ×

+ + +

{X1} {X2}

{X2} {X2} {X3} {X3} {X1} {X1}

Figure 3.2: Illustration of an induced tree of an SPN over X = {X1, X2, X3}
with colors indicating the scope of a node.

3.1.2 Probability Measure of Sum-Product-Networks

In addition to the introduced concepts, we can take a step back and
consider the probability measure induced by an SPN. For this, consider
an SPN with fixed structure and parameters over X and let us define
the probability measure of S bottom up.

Leaf node Let (Ω,A,P) be a probability space and let N be a leaf
node. Further, let (E,E) be a measurable space and XN := ψ(N) ⊆ X
be the scope of N, i.e. the measurable function XN : Ω 7→ E. Then the
induced push-forward measure PXN

(B) with B ∈ E is its distribution.
Note that with some misuse of notation, XN denotes both: a single RV
and a random vector; depending on the distribution allocated at N.

Product node Let (Ω,A,P) be a probability space and let N be a de-
composable product node with scope XN =

⋃
N′∈ch(N)XN′ . Further, let

(EN′ ,EN′) with N′ ∈ ch(N) be the measurable spaces of the children of N.
Then the measurable space of N is a product-space and the distribution
of XN : Ω 7→ E is a product measure, i.e.

PXN

(
×N′∈ch(N)PXN′

)
(B) =

∏
N′∈ch(N)

PXN′ (BN′) , (3.10)

with B ∈ ⊗N′∈ch(N)EN′ and BN′ ∈ EN′ iff the distributions of its children
are independent. Because decomposability ensures that the probability
distributions of the children under a product node are mutually inde-
pendent, the probability measure under a product node is a product
measure, c.f. Definition 2.18.

Sum node Let (Ω,A,P) be a probability space and let N be a complete
and normalised sum node with scope XN =

⋃
N′∈ch(N)XN′ and weights

wN = {wN,N′}N′∈chN. Then the probability measure of N is a convex
combination of the probability measures of its children and so is the

– 40 – 12th July 2020

3.2 Representations of Sum-Product Networks

distribution of XN : Ω 7→ E, i.e.

PXN
(B) =

∑
N′∈ch(N)

wN,N′PXN′ (B) , (3.11)

with B ∈ E and E being a σ-algebra on E.

By recursively applying the arguments presented above, we see that
the probability measure of an SPN is a recursive representation of a
convex combination of product measures. Note that SPNs and other
probabilistic circuits can also be described in terms of an algebraic com-
mutative semiring, i.e. a semiring in which multiplication is commutative
[74], [75]. We refer to Friesen and Domingos [75] for further details.

3.2 Representations of Sum-Product Networks

3.2.1 Computational Graphs & Scope Functions

An SPN can be defined in terms of a computational graph (G) and a
so-called scope-function (ψ). Note that we are deliberately overload
the symbol ψ to emphasise the connection to the scope of a node. In
particular, we can say that an SPN over RVs X is defined as a 4-tuple
S = (G, ψ,w,θ), where w = {wS}S∈S with w ≥ 0 , ∀w ∈ wS denotes
the set of all weights in the SPN and θ = {θL}L∈L are the parameters at
the leaves.

Definition 3.9 (computational graph). computational graphA computational graph is a
rooted directed acyclic graph G = (V,E) whose internal nodes are sum
and product nodes and whose leaves are equipped with arbitrary probab-
ility distributions.

It is evident from Definition 3.9 that a computational graph is simply
an arithmetic circuit with arbitrary probability distributions as leaves.
Note that such a graph does not have to fulfill any of the previously
mentioned conditions, i.e. completeness, consistency and decomposab-
ility. Thus, computational graphs can be easily constructed and can
potentially be reused for different SPNs. Figure 3.3 illustrates a simple
computational graph.

+ + + + +

× ×

+

Figure 3.3: Illustration of a computational graph containing sum, product and
leaf nodes.

12th July 2020 – 41 –

3 Sum-Product Networks

To obtain a complete and decomposable SPN, we define a so-called
scope-function, which maps the set of nodes in a computational graph
to the set of possible sub-scopes of a random vector X.

Definition 3.10 (scope-function).scope-function Given a computational graph G and
a set of RVs X, a scope-function is a function mapping from the set of
nodes N = V (G) in the graph to the power-set P(X), i.e. ψ : N 7→ P(X).
It has the following properties:

1. If N is the root node, then ψ(N) = X.

2. If N is a sum or product node, then ψ(N) =
⋃

N′∈ch(N) ψ(N
′).

3. For each P ∈ P we have ∀N,N′ ∈ ch(P) : ψ(N) ∩ ψ(N′) = ∅ (de-
composability).

4. For each S ∈ S we have ∀N,N′ ∈ ch(S) : ψ(N) = ψ(N′) (complete-
ness).

Lemma 3.1. For any computational graph G and any set of RVs X,
there exists a scope-function.

Proof. We can see that this is true by considering a scope-function ψ,
which indexes a subgraph in G that is a (hierarchical) mixture. For this
purpose, we construct a scope-function that ensures that each product
node has at most one child with ψ(N) 6= ∅. We can find such as scope-
function by traversing G top-down. If the node N is a sum node, we
traverse to all children of N. If the node N is a product node, we can
have the following scenarios: i) all children of N have only one parent, ii)
all children of N have multiple parents or iii) some children have multiple
parents. In scenario i), we can freely chose any child to traverse to. In
scenario ii-iii), we chose the child to traverse to such that our choice
is consistent with the choice of all parents of the child and traverse
down to the child. Finally, we set ψ(N) = ∅ for each node we did not
traverse down to and ψ(N) = X for each node that we have visited. This
construction clearly ensures that ψ fulfils all the required properties of
a proper scope-function and indexes a subgraph in G, which is a proper
SPN that can be reduced to a (hierarchical) mixture model.

Given a computational graph G, a D-dimensional random vector X
and a scope-function from V (G) to P(X), each node N in G represents a
distribution over the random variables ψ(N). In particular, each leaf L
computes a pre-specified distribution over its scope ψ(L). If ψ(N) = ∅,
we set N ≡ 1. In general, we assume that each leaf L is parametrised by
θL, and that θL represents a distribution for any possible choice of ψ(L).
Sum and product nodes respectively compute a weighted mixture distri-
bution and a product distribution as previously described. Note that the
definition using a computational graph and a scope-function is quite dif-
ferent from prior art: previously, leaves were defined to be distributions
over a fixed predefined scope, while now each leaf defines a distribu-
tion over all possible scopes at all times. In practice, the scope-function
will either be defined once, simplifying to the notion in Definition 3.3,
or can be learned, which we will discuss in detail in Chapter 5. Fig-
ure 3.4 illustrates an SPN obtained by applying a scope-function on the
computational graph illustrated in Figure 3.3.

– 42 – 12th July 2020

3.2 Representations of Sum-Product Networks

ψ = {X1} {X1} ∅ {X2} {X3} ∅
{X1, X2}

∅ ∅

+ + + + +

× ×

+

Figure 3.4: Illustration of an SPN defined using a computational graph and a
scope-function ψ on a random vector X = {X1, X2, X3}. Nodes with
empty scope are shown in dotted lines.

In contrast to Definition 3.3, structural conditions, e.g. completeness
and decomposability, are now expressed only through the scope-function.
Note that we can interpret applying a scope-function as masking nodes
in the computational graph and selecting a sub-graph that fulfils the
mentioned structural conditions. Therefore, we can express various ef-
fective structures of SPNs by simply applying different scope-functions
on the same computational graph.

3.2.2 Region Graphs
Instead of defining the structure of an SPN directly, either by means of
an entangled representation or by using a computational graph and a
scope-function, we can define an SPN through a so-called region graph
[76]. Region graphs are a natural representation of vectorised SPNs and
allow more efficient computation through hardware-accelerated dense
linear algebra. Therefore, this representation has gained increasing at-
tention and has been successfully used in various real-world applications,
e.g. [10], [13], [46], [66], [77].

Definition 3.11 (region graph). region graphGiven a set of RVs X, a region graph
(R, ψ) is a rooted directed acyclic graph consisting of region nodes (R)
and partition nodes (P). The root and the leaves of a region graph are
regions. The root is said to be the root region, while the leaves are called
atomic regions. R is bipartite w.r.t. regions and partitions, i.e. children
of region nodes are only of type P and vice versa. We use R and P to
denote the set of all region nodes and all partition nodes, respectively.

The scope-function of a region graph, i.e. ψ : R ∪P 7→ P(X), has the
following properties:

1. If R ∈ R is the root, then ψ(R) = X.

2. If R ∈ R is a region with children, then ψ(R) =
⋃
P∈ch(R) ψ(P)

and ψ(R) = ψ(P) ∀P ∈ ch(R).

3. For each P ∈ P we have ψ(P) =
⋃
R∈ch(P) ψ(R) and ∀R,R′ ∈

ch(P) : ψ(R) ∩ ψ(R′) = ∅.

Note that we generalised the previous notion of a region graph [10],
[43], [76] by decoupling its computational graph R from the scope-
function ψ. Given a region graph R, we can easily construct an SPN

12th July 2020 – 43 –

3 Sum-Product Networks

structure as follows. First, we introduce a single sum node for the root
region in R; this sum node will be the output of the SPN. Then, for
each atomic region we introduce I > 0 SPN leaves and for each other
region R, which is neither root nor atomic, we introduce J > 0 sum
nodes. Both I and J are hyperparameters and may vary depending on
the region or depth of the network, if necessary.

For each partition P , we introduce all possible cross-products (Cartesian
product) of nodes from P ’s child regions. More precisely, let ch(P) =
{R1, . . . , Rk} and let Ni be the sets of nodes assigned to regions Ri ∈
ch(P). Then, we construct the set of all cross-products, i.e. P = N1 ×
· · · × Nk where Ni ∈ Ni for all i = 1 . . . k. After having constructed all
cross-products, we connect each cross-product to each sum node in each
parent region of P .

{X1} {X2} {X3}

atomic region

× . . . ×

× × × × × × × × × × × × × ×partition

+ + + + +region

× . . . × × . . . ×partition

+root region

Figure 3.5: Illustration of a region graph over RVs X = {X1, X2, X3}. Regions
contain a collection of sum nodes, while partitions contain all pos-
sible cross-products (Cartesian product). Atomic regions contain a
collection of leaf nodes with different parameters.

Figure 3.5 illustrates a region graph, and an SPN structure construc-
ted based on the region graph, over X = {X1, X2, X3} with varying
numbers of sum or leaf nodes per region. In this example, each atomic
region holds a different number of leaf nodes, each representing a uni-
variate distribution over the respective scope of the atomic region. Con-
sequently, the number of cross-products in the parent partitions of the
atomic regions varies from 4 × 2 = 8 products in case of the partition
with ψ = {X1, X2}, 2 × 3 = 6 products in case of the partition with
ψ = {X2, X3} and 4×2×3 = 24 products in case of the partition shown
in the upper middle of the figure. An algorithm to convert a region
graph into an SPN is illustrated in Section A.1.

– 44 – 12th July 2020

3.3 Generative & Discriminative Learning

3.3 Generative & Discriminative Learning
After having discussed the basics and various representations of SPNs,
we will now provide an introduction into generative and discriminative
parameter learning in SPNs. We want to emphasise that this is not
an exhaustive discussion but instead aims to introduce the core con-
cepts, which we will extend to the semi-supervised learning scenario in
Chapter 4.

3.3.1 Generative Learning
In this section, we will review a few common approaches for generative
learning of SPNs, i.e. learning SPNs for density estimation. Note that
there exists a plethora of work on generative parameter learning, includ-
ing various maximum likelihood approaches using either gradient-based
optimisation [10], [77], [78] or expectation-maximisation (and related
schemes) [8], [15], [16]. In addition, several Bayesian approaches to
parameter learning, e.g. [18], [19], [79], have been developed over the
years. This section will review the main concepts for maximum likeli-
hood approaches and we refer to the respective publications on advanced
techniques for the interested reader.

First, let S = (G, ψ,w,θ) be the SPN of interest with fixed compu-
tational graph and scope-function. Moreover, let D = {xi}Ni=1 denote a
training set containing N observations. Our goal is now to find a plaus-
ible model, specified by the weights w ∈ W and leaf node parameters
θ ∈ Θ, for the data we have observed. A common approach is to employ
Bayes’ rule for this purpose and to consider the conditional probability
distribution given as

p(w,θ |D) =
p(D |w,θ)p(w,θ)∫

w′

∫
θ′
p(D,w′,θ′) dw′ dθ︸ ︷︷ ︸

=p(D)

∝ p(D |w,θ)︸ ︷︷ ︸
likelihood

p(w,θ)︸ ︷︷ ︸
prior

, (3.12)

which is said to be the posterior distribution. posterior distributionIntuitively, we can in-
terpret the posterior distribution as an updated prior distribution in
which we have transformed our prior knowledge about w and θ into
posterior knowledge through the data D. One possible approach to use
Equation (3.12) for our purpose is to consider a single point estimate,
e.g. the maximum of Equation (3.12). This approach is referred to as
the maximum a-posteriori (MAP) maximum a-posterioriestimate, i.e.

{wMAP,θMAP} = argmax
w∈W,θ∈Θ

p(w,θ |D) . (3.13)

Under the usual i.i.d. assumption, the likelihood term of an SPN is
written as

p(D |w,θ) =
N∏
i=1

p(xi |w,θ) =
N∏
i=1

Sw,θ(xi) = Sw,θ(D) , (3.14)

where we use the notation Sw,θ to make the dependence of the value of
the SPN on the parameters explicit. Note that under certain conditions

12th July 2020 – 45 –

3 Sum-Product Networks

(Bernshteǐn-von-Mises theorem15) with increasing number of observa-
tions, the MAP estimate will converge towards the Maximum Likelihood
Estimate (MLE)maximum likelihood , i.e.

{wMLE,θMLE} = argmax
w∈W,θ∈Θ

Sw,θ(D) . (3.15)

Note that we often assume that the required assumptions16 are met
and that we have “enough” data such that the MAP estimate converges
towards the MLE.

The two most prominent approaches to maximise Equation (3.15) are
based on: i) gradient-based optimisation and ii) expectation maximisa-
tion. In case of gradient-based optimisation, we exploit the fact that we
can easily compute the partial derivatives of any SPN w.r.t. the para-
meters of interest [67], [68]. This approach is particularly interesting
as we can employ a large body of work on gradient-based black-box
optimisers [81], while the gradients can be computed using automatic
differentiation [82].

To avoid numerical instabilities, it is common to maximise the log-
likelihood instead of directly maximising the likelihood term in Equa-
tion (3.15). Maximising the log-likelihood, i.e.

log-likelihood L(w,θ |D) =

N∑
i=1

logSw,θ(xi) . (3.16)

is equivalent to maximising the likelihood as the natural logarithm is a
monotonically increasing transformation of the likelihood. For any sum
node S in S, the derivative of the log-likelihood given an observation x
with respect to its weights is given as

∂L(w,θ |x)
∂wS,N

=
1

S(x)
∂S(x)
∂S

N(x) . (3.17)

The gradient of data log-likelihood w.r.t. the weight wS,N is therefore
given as

∇wS,N
= Ex∼D

[
∂L(w,θ |x)

∂wS,N

]
. (3.18)

The gradients for the leaf node parameters can be obtained in a similar
fashion. Note that only sum and leaf nodes are parametrised in an SPN.
Given the respective gradients we can iteratively update the parameters
of our model using vanilla gradient ascent, i.e. the weight will be updated
at iteration (t+ 1) using

w
(t+1)
S,N 7→w(t)

S,N + η∇
w

(t)
S,N

, (3.19)

15 The Bernshteǐn-von-Mises theorem essentially states that the posterior distribution
is asymptotically normal distributed around the maximum likelihood estimate with
variance equal to the inverse of the Fisher information. See Vaart [80] for details.

16 The Bernshteǐn-von-Mises theorem requires the following assumptions: the para-
meters of the true model have to lie in the interior of the parameter space, the
true parameters have non-zero prior probability, the likelihood is smooth, and the
number of parameters of the true model is finite. We refer to Vaart [80] for a
detailed discussion.

– 46 – 12th July 2020

3.3 Generative & Discriminative Learning

or by utilising a more advanced optimiser. Note that the resulting
weights will generally not be normalised, making it necessary to pro-
ject them back onto the k-simplex, where k = | ch(S)| is the number of
children of S. This projection can be done efficiently using the algorithm
in Duchi, Shalev-Shwartz, Singer et al. [83].

Expectation Maximisation As an alternative to gradient-based para-
meter learning, latent variable models can also be learned using expect-
ation maximisation (EM) [8], [16]. expectation maximisationThe EM algorithm iteratively max-
imises the data log-likelihood by alternating between an expectation
(E) step, which computes the expected sufficient statistics according to
the expected data log-likelihood, and a maximisation (M) step, which
maximises the expected data log-likelihood w.r.t. the parameters. In
contrast to a gradient-based approach, which requires us to project the
updated weights back onto the simplex, EM results in closed-form up-
dates at each step and automatically enforces the required constraints.
This makes the application of EM for SPNs an attractive choice. Pe-
harz, Gens, Pernkopf et al. [16] showed that the EM algorithm can be
derived for SPNs by considering an augmentation of an SPN with so-
called twin nodes. We refer to Peharz, Gens, Pernkopf et al. [16] for a
comprehensive introduction of the latent variable model interpretation
of SPNs and a derivation of the EM algorithm for SPNs.

In the E-step we compute the expected sufficient statistics, which are
given for sum node S as

r
(t)
S,N(xi) =

1

Sw,θ(xi)
∂S(xi)
∂S

w
(t)
S,NN(xi) , (3.20)

and the respective M-step in which we maximise the expected data log-
likelihood w.r.t. wS,N is given as

w
(t+1)
S,N 7→

∑N
i=1 r

(t)
S,N(xi)∑

N′∈ch(S)
∑N

i=1 r
(t)
S,N′(xi)

. (3.21)

In a similar fashion, we can update the parameters of each leaf node,
if its distribution is in the exponential family17, using the expected suffi-
cient statistics. Let the natural parameter of L be denoted as θL, then
the E and the M-step are given as

g
(t)
L (xi) =

1

S(xi)
∂S(xi)
∂L

p(xL,i | θ
(t)
L) , (3.22)

θ
(t+1)
L 7→

∑N
i=1 g

(t)
L (xi)t(xi)∑n

i=1 g
(t)
L (xi)

, (3.23)

where t(·) denotes the sufficient statistics.

17 The exponential family is a class of probability distributions, which can be repres-
ented by means of a specific parametrisation, i.e. the density function is written
as p(x | θ) = h(x) exp(θ t(x)−A(θ)) where A(θ) is the log-partition function, t(x)
the sufficient statistic of the distribution and θ the natural parameter, and admits
a sufficient statistic [84], [85].

12th July 2020 – 47 –

3 Sum-Product Networks

3.3.2 Discriminative Learning

After having revised generative learning in SPNs, we will briefly in-
troduce discriminative learning. The goal in discriminative learning
is to train an SPN such that it is able to discriminate between pre-
defined classes based on a set of features. A natural approach to meas-
ure the performance of a discriminative model is the use of the condi-
tional log-likelihood. Gens and Domingos [20] introduced discriminative
training for SPNs, which utilises gradient-based optimisation to max-
imise the conditional log-likelihood. More recently, Rashwan, Poupart
and Chen [86] proposed an extended Baum-Welch algorithm to maxim-
ise the conditional log-likelihood, while Peharz, Vergari, Stelzner et al.
[10] proposed to train SPNs by maximising the cross-entropy. In this
thesis we will focus on gradient-based optimisation of the conditional
log-likelihood and refer to the respective works for further reading.

For a given classification problem with 1, . . . ,K classes, let D =
{(xi,yi)}Ni=1 be a set of tuples, each consisting of a feature or covariate
xi and a label or target yi ∈ BK with ‖yi‖0 ≡ 1, i.e. one-hot encoding.

Then, the conditional log-likelihoodconditional log-likelihood of an SPN is given as

C(w,θ |D) =
N∑
i=1

log

(
K∑
k=1

yi,k wk Sk(xi)

)
︸ ︷︷ ︸

=S(xi,yi)

− log

(
K∑
k=1

wk Sk(xi)

)
︸ ︷︷ ︸

=S(xi)

.

(3.24)

Note that the last term marginalises over all classes.
To optimise Equation (3.24), Gens and Domingos [20] proposed to

either perform gradient ascent based on the partial derivatives of an SPN
(“soft” inference) or to use gradients computed for “hard” inference,
i.e. replacing sum nodes with max-operations. In the first case, the
partial derivatives of the weights and the leaf node parameters are given
as

∂C(w,θ |x,y)
∂wS,N

=
1

S(x,y)
∂S(x,y)
∂wS,N

− 1

S(x)
∂S(x)
∂wS,N

, (3.25)

and

∂C(w,θ |x,y)
∂θL

=
1

S(xi,yi)
∂S(xi,yi)

∂θL
− 1

S(xi)
∂S(xi)
∂θL

. (3.26)

The derivatives of S w.r.t. the weights or leaf node parameters are cal-
culated as follows

∂S(x)
∂wS,N

=
∂S(x)
∂S

N(x) , (3.27)

∂S(x)
∂θL

=
∂S(x)
∂L

∂p(xL | θL)
∂θL

. (3.28)

To calculate the respective partial derivatives of S w.r.t. a node in
the SPN, we apply the chain-rule. By setting the gradient at the root
node to one, the gradients of the subsequent nodes can be computed
in a single top-down pass. Table 3.1 lists the respective update-rules

– 48 – 12th July 2020

3.4 Implicit Acceleration Effects

for nodes within an SPN. Note that we will focus on “soft” inference in
this thesis and refer to Gens and Domingos [20] for details on “hard”
inference and the respective update rules.

Table 3.1: Gradient propagation rules for node N in an SPN.

Parent Node Propagation Rule

Sum S ∂S
∂N 7→∂S∂N + wS,N

∂S
∂S

Product P ∂S
∂N 7→∂SN + ∂S

∂P

∏
N′∈ch(P)\{N}N

′

3.4 Implicit Acceleration Effects

So far, we have discussed various ways to perform parameter learning
in SPNs. Even though many approaches utilise gradient-based optim-
isation, it is not clear if and to which extent the depth of an SPNs has
an effect on the optimisation. However, analysing the dynamics of the
optimisation for linear neural networks – see Baldi and Hornik [87] for a
survey on linear neural networks – has gained increasing attention [88]–
[90]. In particular, Arora, Cohen and Hazan [90] showed that increasing
the depth in linear neural networks results in implicit acceleration ef-
fects and can speed up the optimisation. In this section, we will discuss
the implicit acceleration effects of overparameterisation in tree-shaped
SPNs, i.e. SPTs.

3.4.1 Preliminaries

As shown by Arora, Cohen and Hazan [90], gradient-based optimisation
of linear regression models benefits from moving from a convex objective
function to a non-convex objective. In particular, let D = {(xi, yi)}Ni=1

with xi ∈ RD and yi ∈ R denote a training set. Our goal is to find
model parameters w ∈ RD for a linear regression function ŷ = x>w by
minimizing the `p loss function, i.e.

`p(w) = E(xi,yi)∼D

[
1

p
(x>

i w − yi)p
]
. (3.29)

Suppose that we now artificially overparameterise this linear model us-
ing w = w1 w2, for which w1 ∈ RD and w2 ∈ R. Note that this
overparameterisation results in a non-convex loss function, i.e.

`p(w1, w2) = E(xi,yi)∼D

[
1

p
(x>w1w2 − yi)p

]
, (3.30)

while our original loss function was convex. Let us now consider the
respective gradients, i.e.

∇w1 = E(xi,yi)∼D

[
(x>

i w1w2 − yi)p−1w2 xi

]
= ∇w w2 , (3.31)

∇w2 = E(xi,yi)∼D

[
(x>

i w1w2 − yi)p−1w>
1 xi

]
. (3.32)

12th July 2020 – 49 –

3 Sum-Product Networks

To optimise the loss function we will update the parameters at time t+1
as follows,

w
(t+1)
1 7→w(t)

1 − η∇w
(t)
1

, (3.33)

w
(t+1)
2 7→w(t)

2 − η∇w
(t)
2

, (3.34)

where η ≥ 0 is a fixed (usually small) learning rate. To understand the
dynamics of the underlying parameter w = w1w2, Arora, Cohen and
Hazan [90] showed that

w(t+1) = w
(t+1)
1 w

(t+1)
2

=
(
w

(t)
1 − η∇w

(t)
1

)(
w

(t)
2 − η∇w(t)

2

)
= w(t) − η w(t)

2 ∇w
(t)
1

− ηw(t)
1 ∇w(t)

2

+ η2∇
w

(t)
1

∇
w

(t)
2︸ ︷︷ ︸

≈0

≈ w(t) − η(w(t)
2)2︸ ︷︷ ︸

=ρ(t)

∇w(t) − η/w(t)
2 ∇w(t)

2︸ ︷︷ ︸
=γ(t)

w(t)

= w(t) − ρ(t)∇w(t) − γ(t)w(t) .

(3.35)

Arora, Cohen and Hazan [90] further show that overparameterising
fully connected linear neural networks, i.e. increasing the number of
layers, leads to an adaptive learning rate and gradient projection ampli-
fication that can be thought of as momentum optimisation [91]. Later,
Arora, Cohen, Hu et al. [88] showed that an increased depth in linear
neural networks also enhances an implicit tendency towards low-rank
solutions of the matrix factorisation represented by the network.

3.4.2 Overparameterisation in Sum-Product Networks

Following the approach by Arora, Cohen and Hazan [90] we will now
discuss the implicit dynamics of gradient-based optimisation in SPTs.
To simplify the discussion, consider the network structure illustrated in
Figure 3.6(a), i.e. an SPN with a root node that computes a weighted
sum over sub-networks S1, . . . ,SK .

+

S1 S2 S3 S4

w1 w2 w3 w4

(a) Initial SPN

+

+ +

S1 S2 S3 S4

w
[0]
1 w

[0]
2

w
[1]
1 w

[1]
2 w

[1]
3 w

[1]
4

(b) Overparameterised SPN

Figure 3.6: Illustration of an overparameterised SPN. Triangles denote sub-SPNs
or distributions.

– 50 – 12th July 2020

3.4 Implicit Acceleration Effects

Let D = {xi}Ni=1 denote a training set, then the data log-likelihood of
the SPN illustrated in Figure 3.6(a) is given as

L(w,θ |D) =

N∑
i=1

log

(K∑
j=1

wjSj(xi)︸ ︷︷ ︸
=S(xi)

)
− logS(∗) , (3.36)

where S(∗) denotes an evaluation of the SPN with all indicator set to
one, i.e. the normalisation constant or partition function. Note that the
normalisation is only necessary if the network is not (locally) normalised,
i.e. S(∗) 6= 1. To derive the gradient updates in case of overparamet-
erisation, we will assume that all weights wj ∈ R>0 are initialised close
to zero, i.e. wj ' 0, and thus the SPN is unnormalised.

To maximise Equation (3.36) we assume vanilla gradient ascend using

∇wj = Ex∼D

[
1

S(x)
Sj(x)−

1

S(∗)
Sj(∗)

]
, (3.37)

w
(t+1)
j = w

(t)
j + η∇wj , (3.38)

where Sj(∗) denotes the partition function of the jth sub-network and
η ≥ 0 is assumed to be small.

Let us now consider an overparameterised version by introducing ad-
ditional sum nodes into the model. For this purpose, let each weight
wj be decomposed into multiple independent weights, akin to the linear
regression example. Figure 3.6(b) illustrates the overparameterised ver-
sion of our initial network. This SPN is in its expressiveness equivalent
to our initial model and only introduces additional parameters. Note
that both models are assumed to be tree-structured.

Let w[l]
i denote the ith weight of layer l. We can define the decompos-

ition of wj by L sum node layers as

wj =
L∏
l=0

w
[l]
φ(j,l) , (3.39)

where φ(j, l) maps the index j onto the respective index at layer l. For
example, in the case of our model in Figure 3.6 the mapping φ(j, l) is
defined as

φ(j, l) :=


⌈
j
2

⌉
, if l = 0

j, otherwise
, (3.40)

where d e denotes the ceiling operator. The definition of φ(j, l) generally
depends on the network structure of the SPN.

Similar to Equation (3.36), we can denote the log-likelihood function
of the overparameterised network as

L(w,θ |D) =

N∑
i=1

log

(
K∑
j=1

L∏
l=0

w
[l]
φ(j,l)︸ ︷︷ ︸

=wj

Sj(xi)

)
− logS(∗) . (3.41)

12th July 2020 – 51 –

3 Sum-Product Networks

Let γj :=
⌈
j
2

⌉
and let us assume that wj = w

[0]
γj w

[1]
j for each weight.

Therefore, the gradient of weight w[1]
j is given as

∇
w

[1]
j

= Ex∼D

[
w

[0]
γj

S(xi)
Sj(xi)−

w
[0]
γj

S(∗)
Sj(∗)

]

= w[0]
γj Ex∼D

[
1

S(xi)
Sj(xi)−

1

S(∗)
Sj(∗)

]
︸ ︷︷ ︸

=∇wj

.
(3.42)

The gradient for weight w[0]
γj , on the other hand, depends on the value

of each child under sum node S[1]
φ(j,0) the edge, which is associated with

the weight w[0]
γj , terminates in, i.e.

∇
w

[0]
γj

= Ex∼D

 ∑
N∈ch

(
S
[1]
φ(j,0)

)
w

[1]
N

S(xi)
SN(xi)−

w
[1]
N

S(∗)
SN(∗)


=

∑
N∈ch

(
S
[1]
φ(j,0)

)w[1]
N Ex∼D

[
1

S(xi)
SN(xi)−

1

S(∗)
SN(∗)

]
︸ ︷︷ ︸

=∇wN

.

(3.43)

In more general terms we can say that the gradient of w[l]
φ(j,l) at layer

l is given as

∇w[l]
φ(j,l) =

∑
w

[l]
φ(j,l)

 N

wN

w
[l]
φ(j,l)

∇wN , (3.44)

where we use w[l]
φ(j,l) N to denote the set of all weights wN =

∏L
l=0w

[l]
φ(N,l),

which are part of the decomposition of wN. In other words, this set con-
tains the weights of all edges on the unique path from the root to the
node N.

Similar to Arora, Cohen and Hazan [90], we can examine the dynamics
of wj by assuming a small learning rate η ≥ 0 and an initialisation of
all weights close to zero. For this let w(t+1)

j denote wj at time t+1. We
can now perform a derivation similar to the one used in case of a linear
regression model, i.e.

w
(t+1)
j =w[0](t+1)

γj w
[1](t+1)
j (3.45)

=

(
w[0](t)
γj + η∇

w
[0](t)
γj

)(
w

[1](t)
j + η∇

w
[1](t)
j

)
(3.46)

=w
(t)
j + η(w[0](t)

γj)2∇
w

(t)
j

+ η/w[0](t)
γj
∇
w

[0](t)
γj

w
(t)
j (3.47)

+ η2∇
w

[0](t)
γj

∇
w

[1](t)
j︸ ︷︷ ︸

≈0

. (3.48)

Consequently, we can reformulate Equation (3.48) to results in an
gradient update consisting of an adaptive learning rate and an adaptive

– 52 – 12th July 2020

3.4 Implicit Acceleration Effects

momentum term, i.e.

w
(t+1)
j ≈ w(t)

j + η(w[0](t)
γj)2︸ ︷︷ ︸

=ρ(t)

∇
w

(t)
j

+ η/w[0](t)
γj
∇
w

[0](t)
γj︸ ︷︷ ︸

=γ(t)

w
(t)
j . (3.49)

We can find the solution for an arbitrary decompositions represented
in an overparameterised SPN, c.f. Equation (3.39), using the gradients
in Equation (3.44). The resulting update rule for the weights of any
overparameterised SPNs can be written as

w
(t+1)
j 7→w(t)

j + η(w
[0]
φ(j,0))

2∇
w

(t)
j

+

[
L−1∑
l=0

η∇
w

[l]
φ(j,l)

(w
[l]
φ(j,l))

−1

]
w

(t)
j ,

(3.50)

where we dropped terms that are approximately zero, provided that η is
small. We can now define the adaptive and time-varying learning rate

ρ(t) := η(w
[0]
φ(j,0))

2 , (3.51)

and let

γ(t) :=
L−1∑
l=0

η∇
w

[l]
φ(j,l)

(w
[l]
φ(j,l))

−1 . (3.52)

Note that we pulled out l = 0 to obtain wj , c.f. last term in Equa-
tion (3.50), resulting in the factor γ(t) to be a summation over L − 1
terms. Therefore, the gradient updates of weight wj are directly influ-
enced by the depth of the network.

If all weights are initialisation near zero, then we can understand the
updated weight w(t)

j as a weighted combination of past gradients and,
thus, there exists a µ(t,τ) ∈ R such that the dynamics of w(t)

j correspond
to gradient optimisation with an additional momentum term, i.e.

w
(t)
j ≈ w

(t)
j + ρ(t)∇

w
(t)
j

+

t−1∑
τ=1

µ(t,τ)∇
w

(τ)
K

. (3.53)

Corollary 2. Gradient-based optimisation of an overparameterised sum-
product network with small (fixed) learning rate and near zero initial-
isation of the weights is equivalent to gradient-based optimisation with
adaptive and time-varying learning rate and momentum term.

So far we have only considered the case in which we artificially in-
troduce additional sum nodes to the network. However, an important
question is if the depth of an SPN also implicitly accelerates parameter
learning. To answer this question we will examine the sub-class of SPTs.
As discussed in Section 3.1.1, the value of any SPN (and any SPT) can
be written as a mixture over induced trees. Using the representation
of an SPT by a mixture of K many induced trees, the weight of every
component 1 ≤ j ≤ K is given by the weights of the respective induced

12th July 2020 – 53 –

3 Sum-Product Networks

tree, i.e.

wj =
∏

wS,N∈E(Tj)

wS,N . (3.54)

Let φ denote an index function φ : Z×Z 7→ S×N, where S is the set of
sum nodes in S and N the set of nodes. Further, let there exist a φ such
that the decompositions of the component weights can be represented
by an overparameterised SPN without changing the decompositions, the
order of the weights or the weights itself, i.e.

wj =

LTj∏
l=0

w
[l]
φ(j,l) =

∏
wS,N∈E(Tj)

wS,N , (3.55)

where LTj is the depth of the induced tree. Note that there always exists
such an index function if the SPN is a tree, as there exist a unique path to
each node in the SPN. Thus, we can say that gradient-based optimisation
using a mixture representation of the SPN, i.e. wj =

∏
wS,N∈Tj wS,N, is

equivalent to the optimisation on its overparameterised representation
and entails similar acceleration effects.

Claim 1. Gradient-based optimisation of any deep tree-structured sum-
product network, using its mixture representation, with small (fixed)
learning rate and near zero initialisation of the weights is equivalent to
gradient-based optimisation with adaptive and time-varying learning rate
and momentum terms.

Note that this claim indicates that the depth of a network can help
to accelerate learning the weight of a tree-shaped SPN even if the leaf
nodes contain non-linearities. Thus, learning deep tree-shaped SPNs is
potentially more efficient, in terms of the number of iterations required,
than gradient-based learning of shallow models.

3.4.3 Empirical Results
To empirically assess the effects of overparameterisation in SPNs, we
trained SPNs with different number of additional layers on three binary
datasets. Note that each deep model18 has the same expressive power as
the shallow equivalent. We used SPNs with 8 components (leaves) and
initialised all weights randomly close to zero. To ensure all weights will
be positive, we used a bijective transformation of the weights into an
unconstrained space and performed the optimisation w.r.t. the uncon-
strained weights, i.e. the constrained weights wS,N ∈ R>0 are obtained
from the unconstrained parameters vS,N ∈ R using wS,N = exp(vS,N).
Further, we used vanilla gradient ascend for 1000 iterations with a learn-
ing rate of η = 0.1. The results on the data extracted from the National
Long Term Care Survey (NLTCS), the USDA plants dataset (Plants)
[92] and the Audio dataset [20] are shown in Figure 3.7. We see from
the empirical experiment that increasing the number of sum node lay-
ers, which is equivalent to increasing the depth of the network, can lead
to faster parameter optimisation. We want to emphasise that all mod-
els, no matter what depth, are equally expressive and have the same
18 We consider a model to be deep if it has more than one sum layer.

– 54 – 12th July 2020

3.4 Implicit Acceleration Effects

0 100 200 300 400 500 600 700 800 900 1,000

−40

−30

−20

−10

iteration

av
g.

te
st

llh

NLTCS dataset

depth = 1
depth = 2
depth = 3

0 100 200 300 400 500 600 700 800 900 1,000

−200

−150

−100

−50

iteration

av
g.

te
st

llh

Plants dataset

depth = 1
depth = 2
depth = 3

0 100 200 300 400 500 600 700 800 900 1,000

−300

−200

−100

iteration

av
g.

te
st

llh

Audio dataset

depth = 1
depth = 2
depth = 3

Figure 3.7: Evaluation of overparameterisation in SPNs on three discrete data-
sets. We can observe a general trend towards acceleration in learning
for deeper models.

number of leaves, i.e. the models differ only in the number of sum node
parameters.

3.4.4 Conclusion

We have seen that overparameterised SPNs exhibit similar dynamics as
observed in linear neural networks. In fact, gradient-based optimisation
in SPNs corresponds to optimisation with adaptive and time-varying
learning rate and momentum term, naturally leading to an implicit ac-
celeration of the optimisation. Further, deep SPTs entail the same ac-
celeration effects as overparameterised SPNs. The acceleration effects in

12th July 2020 – 55 –

3 Sum-Product Networks

SPNs are not completely surprising as SPNs are multi-linear functions
in their weights, which can be represented by sparsely connected linear-
neural networks with potentially non-linear inputs. However, given that
SPTs have been successfully applied in non-linear estimation and classi-
fication task, e.g. [20], [93]–[95], these results indicate that the depth of
the network can help to learn suitable parameters for complex modelling
tasks more efficiently.

3.5 Structure Learning

So far we have assumed that the structure, i.e. the computational graph
and the scope-function, of an SPN is known. Even though this can be
the case, e.g. SPN structures can be obtain through compilation from a
Bayesian network [67], it is often desirable to construct a structure that
is tailored to the data or task at hand.

Therefore, a large variety of techniques for structure learning in SPNs
were proposed over the years. The majority of structure learning ap-
proaches for SPNs, such as LearnSPN [36] and its variants, e.g. [38]–
[40], [96], or other approaches, such as [41], [43]–[45], [76], heuristically
generate a structure by optimising some local criterion. LearnSPN [36],
which is one of the most prominent techniques, recursively constructs
the SPN structure by: i) adding product nodes if the algorithm is able
to identify mutually independent subsets of RVs (using a G-test), or ii)
adding sum nodes obtained using hard clustering. The recursion ter-
minates if the number of RVs reduces to a single RV or the number
of observations reaches a lower threshold, in both cases resulting in a
full factorisation of the scope. Therefore, the procedure potentially con-
structs highly complex SPTs with univariate leaves. Later, Rooshenas
and Lowd [38] extended the LearnSPN algorithm to overcome its various
limitations, e.g. full factorisation and potentially very deep networks,
which are prune to overfitting, and proposed a complex technique by
combining SPN structure learning with learning tractable Markov net-
works as leaves. The resulting algorithm, called ID-SPN [38], is one of
the best performing structure learning approaches on discrete data as
of today. Other approach construct random structures [10] or exploit
rank-1 submatrices [41] to construct the structure. We refer to Paris,
Sanchez-Cauce and Diez [97] for an overview on existing approaches.

In addition to the plethora of heuristic structure learners, there ex-
ists a few approaches for principled structure learning in SPNs. Most
notably, Vergari, Molina, Peharz et al. [17] proposed ABDA, which uses
posterior inference over parameters of latent variable models located at
the leaves of the SPN. Even though this approach relies on a pre-defined
SPN structure, the approximate Bayesian inference applied in ABDA
can be understood as some kind of local Bayesian structure learning.
Moreover, there has been some work on Bayesian nonparametric for-
mulations of SPNs [98], [99], promising structure learning through the
use of flexible nonparametric priors for both structure and parameters.
However, both approaches had only limited success. In Chapter 5 we
will introduce a fully Bayesian approach, which leverages the notion of
a computational graph and a scope-function to efficiently perform ap-

– 56 – 12th July 2020

3.5 Structure Learning

proximate posterior inference over SPN structures and parameters. In
further consequence, we will highlight how this framework can also be
used to learn nonparametric formulations efficiently.

Besides structure learning in SPNs, there exist various approaches for
other probabilistic circuits, such as Probabilistic Sentential Decision Dia-
grams (PSDDs) [9] and Cutset Networks (CNets) [100]. Most notably,
the work by Liang, Bekker and Broeck [11] introduces a greedy approach
that optimises a global objective for structure learning in PSDDs, sim-
ilar to structure learning of selective SPNs [101], which are a restricted
sub-type of SPNs. Existing approaches for CNets often use heuristics to
define the structure, e.g. Mauro, Vergari, Basile et al. [102] constructs
random structures and Rahman, Jin and Gogate [103] compile a learned
latent variable model, such as an SPNs, into a CNet.

12th July 2020 – 57 –

Sum-Product Networks for Complex Modelling Scenarios

4
Semi-Supervised Learning of

Sum-Product Networks

4.1 Motivation

In several domains, unlabelled data is abundant and cheap to acquire,
while obtaining class labels is expensive and sometimes infeasible at large
scale. In such cases, semi-supervised learning can be used to exploit
large amounts of unlabelled data in addition to the few labelled obser-
vations. Applications that utilise semi-supervised learning range from
natural language processing, e.g. [34], and image processing, e.g. [22],
[23], [30], to processing of biological data, e.g. in genomics [25]. We refer
to Chapelle, Schölkopf and Zien [27] for a detailed overview.

Motivated by the abundance of real-world applications for semi-super-
vised learning, a large number of approaches have been proposed over
the years, including self-learning [27], Transductive Support-Vector Ma-
chines (TSVM) [32], and graph-based methods [104]. Many semi -super-
vised learning approaches exploit the intrinsic geometry of the data,
e.g. TSVMs and its recent extensions [31], exploit low-density regions
along the decision boundary. However, such approaches can yield sub-
optimal performance if the enforced assumptions are not met. We refer
to Zhu and Goldberg [28] and Engelen and Hoos [105] for a comprehens-
ive survey on semi-supervised learning.

For probabilistic models, such as SPNs, a natural approach is to in-
corporate the missing missing labels into the probabilistic model. In
such a setting, for a classification problem with K classes, the unknown
labels v = {vj}Mj=1 of the M unlabelled observations {uj}Mj=1 are then
treated as additional parameters of the probabilistic model, i.e.

argmax
θ∈Θ

L(θ |D) + max
v∈VM

M∑
j=1

log p(uj , vj | θ)

 , (4.1)

where V = {1, . . . ,K}, θ compromises the parameters of the model,
and D contains only the labelled data. Clearly, the number of possible
labellings grows exponentially with the number of unlabelled examples
in this formulation. Approaches, such as self-learning or EM, aim to
circumvent this difficulty by instead: i) training the model only on the
labelled data, ii) obtaining the “best” labels for the unlabelled data from
the trained model and iii) retraining the model using a fully labelled
dataset. EM effectively optimises the same objective as self-learning,
but uses the posterior probabilities instead of hard labels [106].

The primary concern with these approaches is that they can suffer

12th July 2020 – 59 –

4 Semi-Supervised Learning of Sum-Product Networks

from degrading performance with an increasing number of unlabelled
data [30], [107]. To overcome this issue, Loog [35] proposed a formulation
for safe19 semi-supervised learning of generative linear models, which
provides guarantees that the semi-supervised learner cannot deteriorate
in performance when trained with additional unlabelled data.

In this chapter, we will first review the work on contrastive pess-
imistic likelihood estimation [35] for linear models in Section 4.2, and
subsequently introduce extensions to safe semi-supervised learning in
SPNs, c.f. Section 4.3. We discuss the generative case in Section 4.3.1
and extend the framework to discriminative safe semi-supervised SPNs
in Section 4.3.2. Finally, we discuss an algorithm to learn safe semi-
supervised SPNs and show empirical evidence that this approach is a
promising strategy for semi-supervised learning, c.f. Section 4.4.

4.2 Preliminaries

4.2.1 Contrastive Pessimistic Likelihood Estimation
Most semi-supervised learning approaches require strong assumptions
on the data, e.g. low density assumptions, and can lead to decreased
performance with an increasing number of unlabelled data if these as-
sumptions are violated [30], [105], [107]. Loog [35] proposed a prin-
cipled objective for semi-supervised learning, which facilitates perform-
ance guarantees, while only relying on the assumptions of the underlying
generative model. We will briefly review this approach for linear gen-
erative models, as introduced in [35], and extend this approach in the
subsequent sections.

Let D = {(xi, yi)}Ni=1 denote the set of labelled data and let U =
{uj}Mj=1 be the set of unlabelled data. Further, let qj,k ≥ 0 denote soft la-
bels (or hypothetical posterior probabilities) for each unlabelled example
and let them be defined on the K − 1 simplex, i.e. qj ∈ ∆K−1. We will
denote the model parameters obtained by maximising the log-likelihood
of the model on D using θsup, i.e. the supervised model parameters, and
use θ for the semi-supervised model parameters.

The general idea of Loog [35] is to implicitly constrain the parameter
space Θ of the semi-supervised learner through the relative improvement
of the semi-supervised learner compared to a supervised one. In more
practical terms, let L(µ,Σ |D) denote the log-likelihood function of a
Linear Discriminant Analysis (LDA) for labelled data, i.e.

L(µ,Σ |D) =
N∑
i=1

K∑
k=1

1{yi=k} log (πkN (xi |µk,Σ)) , (4.2)

where πk with
∑

k πk = 1 denotes the kth class prior and µ = {µk}Kk=1

and Σ denote the model parameters we aim to learn. To incorporate
the unlabelled data, Loog [35] suggests a natural extension of the log-
likelihood function for the joint dataset (labelled and unlabelled data)

19 Safe refers to the property that adding unlabelled data can increase, but not de-
grade, the performance of the semi-supervised learner.

– 60 – 12th July 2020

4.2 Preliminaries

by additionally accounting for the unlabelled data given fixed soft labels,
i.e.

L(µ,Σ |D,U , q) = L(µ,Σ |D) +

M∑
j=1

K∑
k=1

qj,k log p(uj , k |µ,Σ)

(4.3)

= L(µ,Σ |D) +

M∑
j=1

K∑
k=1

qj,k log (πkN (uj |µk,Σ)) .

(4.4)

Consequently, for any given q we can measure the relative improvement
of a semi-supervised learner θ, where θ constitutes µ and Σ in our ex-
ample, compared to a purely supervised learner θsup in terms of their
ratio, which can be expressed as the difference of their respective log-
likelihood values, i.e.

L(θ |D,U , q)− L(θsup |D,U , q) . (4.5)

However, in semi-supervised learning, q is of course unknown, raising
the question of how to choose q in the first place. Loog [35] suggests to
consider the most pessimistic setting of q, i.e. choosing the soft labels
such that the relative improvement is minimised. The resulting objective
is called the Contrastive Pessimistic Likelihood contrastive pessimistic

likelihood
(CPL) and is given as

CPL = min
q∈∆MK−1

L(θ |D,U , q)− L(θsup |D,U , q) . (4.6)

Maximising the CPL objective, i.e.

θCPL = argmax
θ∈Θ

min
q∈∆MK−1

L(θ |D,U , q)− L(θsup |D,U , q) , (4.7)

results in an estimate of the semi-supervised learner such that the per-
formance of the model, provided the true labelling q∗ of U , is at least as
good as in the supervised case, i.e.

L(θCPL |D,U , q∗) ≥ L(θsup |D,U , q∗) . (4.8)

In the case of LDA, Loog [35] could show that this inequality is strict
if the data is continuous. One desirable property of the CPL objective
is its computational simplicity, i.e. the CPL scales linear in the number
of classes, allowing us to learn the semi-supervised solution efficiently.

12th July 2020 – 61 –

4 Semi-Supervised Learning of Sum-Product Networks

+

× . . . ×

◦
y1

S1 ◦
yK

SK

w1 wK

(a) Supervised SPN

+

× . . . ×
q1

◦
y1

S1

qK

◦
yK

SK

w1 wK

(b) Semi-supervised SPN

Figure 4.1: Illustration of a supervised and a semi-supervised SPN over K classes.
The supervised SPN uses hard class labels, while the semi-supervised
SPN uses soft labels (q) and hard labels (y) as inputs. In case hard
labels are accessible, we marginalise out the soft labels and vice versa.

4.3 Learning Safe Semi-Supervised Sum-Product
Networks

4.3.1 Generative Learning

After having revised the basics on CPL estimation, we will first extend
the approach to semi-supervised learning of generative SPNs using EM.
Subsequently, we will discuss how to utilise the approach for discrimin-
ative SPNs in which we will maximise the relative improvement of the
conditional log-likelihood instead.

Similar to Loog [35], we can arrive at a CPL formulation by first
considering the log-likelihood of the full dataset. For this, let us con-
sider the SPN illustrated in Figure 4.1 (a), which we will call the super-
vised SPN. Further, let D = {xi,yi}Ni=1 denote the labelled training
set, with ‖yi‖0 ≡ 1 being one-hot encoded class labels. Then the data
log-likelihood of the supervised model is given as

L(w,θ |D) =

N∑
i=1

log

(
K∑
k=1

wk yi,k Sk(xi)

)
, (4.9)

where wk can be understood as the class prior for the kth class and Sk is
the kth sub-network, illustrated using a triangle in Figure 4.1.

Now, let U = {uj}Mj=1 denote the set of unlabelled observations and
let q = {qj ∈ ∆K−1}Mj=1 be the set of soft labels, as defined before.
To incorporate unlabelled data with its associated soft labels, we will
extend the model architecture in Figure 4.1 (a) to have additional nu-
merical inputs representing the soft label assignments. By using the
extended SPN architecture, illustrated in Figure 4.1 (b), we can obtain
the data log-likelihood, jointly for labelled and unlabelled data, through
marginalisation of either the hard labels (y) or the soft labels (q). The

– 62 – 12th July 2020

4.3 Learning Safe Semi-Supervised Sum-Product Networks

resulting data log-likelihood can be written as

L(w,θ |D,U , q) =
N∑
i=1

log

(=S(xi,yi)︷ ︸︸ ︷
K∑
k=1

wk yi,k Sk(xi)
)

+

M∑
j=1

log

(K∑
k=1

wk qj,k Sk(uj)︸ ︷︷ ︸
=S(uj ,qj)

)
.

(4.10)

Given the data log-likelihood term, the CPL objective for generative
SPNs is defined as

CPL = min
q∈∆MK−1

L(w,θ |D,U , q)− L(wsup,θsup |D,U , q) . (4.11)

Again, we can obtain the optimal parameters of the semi-supervised
learner by maximising the CPL objective, i.e.

wCPL,θCPL = argmax
w,θ

min
q∈∆MK−1

L(w,θ |D,U , q)−L(wsup,θsup |D,U , q) .

(4.12)

To learn both, parameters and soft labels, we incrementally update both
by alternating between maximisation and minimisation. In particular,
to find suitable network parameters we keep the soft labels fixed and
maximise

max
w,θ

L(w,θ |D,U , q)− L(wsup,θsup |D,U , q)︸ ︷︷ ︸
constant

, (4.13)

in which the last term is a constant and can be ignored in the optimisa-
tion. Therefore, we can readily obtain the updates of the semi-supervised
parameters and the respective expected sufficient statistics, when using
EM for parameter learning. In particular, we compute the expected
sufficient statistics for the weights using

r
(t)
S,N =

N∑
i=1

1

S(xi,yi)
∂S(xi,yi)

∂S
w

(t)
S,NN(xi)

+

M∑
j=1

1

S(uj , qj)
∂S(uj , qj)

∂S
w

(t)
S,NN(uj) ,

(4.14)

and update the networks weights based on the computed sufficient stat-
istics, i.e.

w
(t+1)
S,N 7→

r
(t)
S,N∑

N′∈ch(S) r
(t)
S,N′

. (4.15)

The sufficient statistic and the updates of the leaf node parameters (as-
suming distributions in the exponential family) can be found in a similar

12th July 2020 – 63 –

4 Semi-Supervised Learning of Sum-Product Networks

fashion, i.e.

g
(t)
L (xi,yi) =

1

S(xi,yi)
∂S(xi,yi)

∂L
L(xi | θ(t)L) , (4.16)

g
(t)
L (uj , qj) =

1

S(uj , qj)
∂S(uj , qj)

∂L
L(uj | θ(t)L) , (4.17)

and

θ
(t+1)
L 7→

∑N
i=1 g

(t)
L (xi,yi)t(xi) +

∑m
j=1 g

(t)
L (uj , qj)t(uj)∑N

i=1 g
(t)
L (xi,yi) +

∑M
j=1 g

(t)
L (uj , qj)

. (4.18)

To learn the soft labels, we fix the parameters of both networks and
perform a single gradient descent step, as proposed by Loog [35], using
the partial derivatives of Equation (4.11) w.r.t. the soft labels, i.e.

q
(t+1)
j,k 7→q(t)j,k − η∇q(t)j,k

, (4.19)

with

∂L(w,θ |uj , qj)
∂qj,k

=
wk Sk(uj)∑K

k′=1wk′ qj,k′ Sk′(uj)
, (4.20)

and

∇qj,k =
∂L(w,θ |uj , qj)

∂qj,k
− ∂L(wsup,θsup |uj , qj)

∂qj,k
. (4.21)

Note that after each gradient update it is necessary to ensure that
the soft labels are still on the K − 1 simplex. Therefore, we project the
soft labels back to the simplex using the approach by Duchi, Shalev-
Shwartz, Singer et al. [83] after each iteration. Alternatively, one can
use a bijection from an unconstrained space to the K − 1 simple and
learn the unconstrained parameters using gradients descent [108].

4.3.2 Discriminative Learning

As described in Section 3.3.2, it is more natural to learn the paramet-
ers of a model for classification tasks by maximising the conditional
log-likelihood. Therefore, we extend the approach by Loog [35] and
maximise the relative improvement of the conditional log-likelihood in-
stead of the (generative) log-likelihood, when training a discriminative
semi-supervised SPN. The conditional log-likelihood function of the SPN
shown in Figure 4.1 (b) is given as

C(w,θ |D,U , q) =
N∑
i=1

log

(
K∑
k=1

yi,k wk Sk(xi)

)
− log

(
K∑
k=1

wk Sk(xi)

)

+
M∑
j=1

log

(
K∑
k=1

qj,k wk Sk(uj)

)
− log

(
K∑
k=1

wk Sk(uj)

)
,

(4.22)

– 64 – 12th July 2020

4.3 Learning Safe Semi-Supervised Sum-Product Networks

which is equivalent to writing the conditional log-likelihood in the fol-
lowing more amenable form

C(w,θ |D,U , q) =
N∑
i=1

log

(
S(xi,yi)
S(xi)

)
︸ ︷︷ ︸

=S(yi |xj)

+
m∑
j=1

log

(
S(uj , qj)
S(uj)

)
︸ ︷︷ ︸

=S(qj |uj)

. (4.23)

Then the safe semi-supervised model parameters for discriminative SPNs
are estimated by maximising the CPL objective w.r.t. the difference of
the conditional log-likelihood functions of both models, i.e.

wCPL,θCPL = argmax
w,θ

min
q∈∆MK−1

C(w,θ |D,U , q)−C(wsup,θsup |D,U , q) .

(4.24)

Similar to Gens and Domingos [20], we can approach the maximisation
problem by employing gradient ascent. For this purpose, let the partial
derivatives of the discriminative semi-supervised SPN w.r.t. the weight
be given as

∂C(w,θ |xi,yi)
∂wS,N

=
1

S(xi,yi)
∂S(xi,yi)
∂wS,N

− 1

S(xi)
∂S(xi)
∂wS,N

, (4.25)

and

∂C(w,θ |uj , qj)
∂wS,N

=
1

S(uj , qj)
∂S(uj , qj)
∂wS,N

− 1

S(uj)
∂S(uj)
∂wS,N

. (4.26)

Likewise, we can derive the partial derivatives w.r.t. the leaf node para-
meters, which are given as

∂C(w,θ |xi,yi)
∂θL

=
1

S(xi,yi)
∂S(xi,yi)

∂θL
− 1

S(xi)
∂S(xi)
∂θL

, (4.27)

and

∂C(w,θ |uj , qj)
∂θL

=
1

S(uj , qj)
∂S(uj , qj)

∂θL
− 1

S(uj)
∂S(uj)
∂θL

. (4.28)

After calculating the respective gradients based on the labelled and
unlabelled data, i.e.

∇wS,N
=E(xi,yi)∼D

[
∂C(w,θ |xi,yi)

∂wS,N

]
+E(uj ,qj)∼(U ,q)

[
∂C(w,θ |uj , qj)

∂wS,N

] , (4.29)

and

∇θL =E(xi,yi)∼D

[
∂C(w,θ |xi,yi)

∂θL

]
+E(uj ,qj)∼(U ,q)

[
∂C(w,θ |uj , qj)

∂θL

] , (4.30)

we can applying gradient ascent to update the network parameters

12th July 2020 – 65 –

4 Semi-Supervised Learning of Sum-Product Networks

(θ,w) of the semi-supervised learner. Given a (small) learning rate
η, the gradient updates take the form of

w
(t+1)
S,N 7→w(t)

S,N + η∇
w

(t)
S,N

, (4.31)

and

θ
(t+1)
L 7→θ(t)L + η∇

θ
(t)
L

. (4.32)

To pessimistically update the soft labels, we perform a single gradient
descent step as described in Section 4.3.1 and project the updated soft
labels back to the K−1 simplex. We will now discuss a concrete realisa-
tion of the proposed technique and examine the implications of learning
semi-supervised SPNs by maximising the CPL objective.

4.3.3 Learning Maximum Contrastive Pessimistic
Sum-Product Networks

To learn safe semi-supervised SPNs, we employ Algorithm 2 in Ap-
pendix B, which returns a Maximum Contrastive Pessimistic SPN (MCP-
SPN). The key steps of learning MCP-SPNs are i) maximising the re-
spective CPL objective w.r.t. the parameters of the safe semi-supervised
SPN, i.e. Equation (4.11) or Equation (4.23), and ii) minimising the ob-
jective w.r.t. the soft labels. Those two steps are optimised in an altern-
ating fashion, resulting in an approximate solution to Equation (4.12)
and Equation (4.24), respectively.

In case the dataset is discrete, i.e. the leaf nodes are indicator func-
tions, or only the weights of the safe-semi supervised SPN are learned,
the objective is a multi-linear function in the parameters we want to
optimise, i.e. the weights of the SPN. Therefore, the min-max object-
ive in Equation (4.12) and Equation (4.24) is guaranteed to result in a
saddle point solution [109]. In these cases, the semi-supervised SPN will
improve upon the supervised SPN (if the SPN contains sum nodes with
multiple children and U 6= ∅) in expectation, i.e.

E[L(wCPL |D,U , q∗)] > E[L(wsup |D,U , q∗)] , (4.33)

where the expectation is over the unlabelled data and q∗ denotes the
true labelling of the unlabelled data. Note that we can only guarantee
a strict improvement over the supervised solution in the expectation, as
the probability that wCPL is different from wsup is non-zero. This may
imply that it is preferable to learn SPN parameters by maximising the
CPL objective instead of purely supervised parameter learning.

4.4 Experiments

To assess the performance of safe semi-supervised SPNs, we will first
examine the results obtained using safe semi-supervision qualitatively
and later provide quantitative results on benchmark datasets. For the
quantitative experiments, we pre-processed the data by removing zero-

– 66 – 12th July 2020

4.4 Experiments

variance features and applying z-score normalisation. To learn SPN
structures for each experiment, we use the learnSPN [36] algorithm with
k-Means clustering for sum nodes and the Hilbert-Schmidt Independ-
ence Criterion (HSIC) with Gamma approximation [110] to construct
product nodes. Finally, we added a layer to model the class condition-
als, as illustrated in Figure 4.1. Note that learnSPN produces deep
SPT structures, which might be prone to overfitting. Therefore, we use
a maximum depth to restrict the model complexity selected using the
Akaike Information Criterion (AIC) [111] for generative learning and
based on the performance on the validation set in case of discriminative
learning.

4.4.1 Qualitative Experiments
To assess the implications of the additional flexibility induced by (non-
linear) SPNs on the performance of the semi-supervised learner ob-
tained through maximisation of the CPL objective, we first performed
a qualitative experiment on the synthetic two moons dataset [112]. Fig-
ure 4.2 compares the classification boundary obtained using safe semi-
supervised learning of SPN to the classification boundary of the super-
vised model trained on the fully labelled dataset (Oracle SPN).

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

(d) Final SSL SPN (e) Oracle SPN

Figure 4.2: Qualitative results on the two moons dataset. Class labels are indic-
ated in red and green, respectively, as well as the estimated density
regions of the classes. The labelled training examples are shown us-
ing large red and greed dots, respectively, and unlabelled examples are
shown in grey. The decision boundary of each model is illustrated
using a contour plot coloured in grey.

Figure 4.2 indicates that safe semi-supervised SPNs learn a more con-
servative decision boundary than supervised SPNs, i.e. the transition
from one class to another is less steep than in the case of the oracle
SPN. Further, we can see that despite the additional flexibility and

12th July 2020 – 67 –

4 Semi-Supervised Learning of Sum-Product Networks

degrees of freedom, we obtain a remarkably effective semi-supervised
learner in only a few iterations, c.f. upper row of Figure 4.2. Note that
the soft labels have been initialised using random draws from a Dirichlet
distribution, explaining the random behaviour at the first iteration.

4.4.2 Quantitative Experiments

In addition to the qualitative assessment of safe semi-supervised SPNs,
we compared their performance quantitatively against common semi-
supervised techniques on a collection of UCI datasets [113]. Details on
the selected datasets are shown in Table 4.1, where the last column indic-
ates the number of labelled examples used in the experiments; calculated
as proposed by Loog [35]. For each experiment, we split each dataset
into training (80%) and test set (20%) and randomly draw 2D+K many
labelled observations stratified from the training set. Further, we used
an additional labelled validation set of 2D + K observations for early
stopping, and treated all remaining observations as unlabelled data.

Dataset Obs. (N) Dims. (D) Classes (K) 2D +K

BUPA 345 6 2 14
Fertility 100 9 2 20
Haberman 306 3 2 8
ILPD 583 10 2 22
Ionosphere 351 34 2 70
Iris 150 4 3 11
Parkinsons 197 23 2 48
WDBC 569 32 2 66
Wine 178 13 3 29

Table 4.1: Datasets used for qualitative experiments: number of observations (N),
dimensionality (D), number of classes (K) and number of labelled
examples (2D +K).

Generative Learning

We first examined the performance of safe semi-supervised learning in
the generative setting. For this purpose, we constructed SPN struc-
tures with Gaussian leaves as described before, and initialised all soft
labels using random draws from a Dirichlet distribution with uniform
concentration parameter. To prevent degeneration of the leaves, we
lower bounded the variance of each Gaussian distribution. The lower
bound was chosen according to the first percentile with a value above
zero computed for the pairwise distances between all observations. This
approach ensures that the lower bound has minimal influence on the
model expressiveness for the given dataset.

Table 4.2 lists the average test log-likelihood for supervised SPNs,
safe semi-supervised SPNs (MCP-SPN), maximum contrastive pessim-
istic LDA (MCP-LDA) [35], and the performance of an SPN trained on
the fully labelled training set (Oracle SPN). To reduce the influence of
the randomly chosen labelled dataset on the comparison, we estimated

– 68 – 12th July 2020

4.4 Experiments

the average log-likelihood scores over 100 independent runs. We observe
that generative semi-supervised parameter learning improves the test
log-likelihood in most cases. In the case of Parkinsons, WDBC, and
Wine, the purely supervised learner finds a solution close to the oracle
solution, while the semi-supervised approach struggles to improve upon
the supervised solution. However, on datasets such as Fertility, and
Haberman, the MCP-SPN excels in performance and reaches near or-
acle performance. Furthermore, we see that safe semi-supervised SPNs
generally outperform MCP-LDA, which is not too surprising given that
the MCP-LDA is a linear classification model while MSP-SPNs can learn
complex non-linear decision boundaries. Last but not least, we want to
emphasise that MCP-SPNs generally obtain standard errors comparable
to those of the oracle network, indicating that the approach is sufficiently
robust against the choice of the labelled subset.

Dataset Supervised SPN MCP-SPN MCP-LDA Oracle SPN

BUPA −438.75± 7.00 −7.31± 0.06 −9.07± 0.03 −8.80± 0.18
Fertility −3.31± 0.03 −3.06± 0.01 −12.68± 0.05 −3.00± 0.01
Haberman −138.63± 4.00 −5.05± 0.07 −7.83± 0.10 −5.14± 0.06
ILPD −5.62± 3.00 −1.15± 0.02 −37.54± 0.10 −1.00± 0.01
Ionosphere −2.84± 0.05 −1.61± 0.01 −46.12± 0.05 −1.52± 0.01
Iris −20.65± 0.85 −3.78± 0.03 −2.65± 0.05 −2.17± 0.01
Parkinsons −1.32± 0.01 −1.34± 0.00 −2.27± 0.05 −1.30± 0.00

WDBC −1.90± 0.00 −1.93± 0.00 −10.75± 0.01 −1.88± 0.00
Wine −2.47± 0.00 −2.47± 0.00 −15.28± 0.02 −2.44± 0.00

Table 4.2: Average test log-likelihood and standard errors estimated over 100 in-
dependent trials. The best results for each dataset obtained by a super-
vised or semi-supervised model are shown in bold. The oracle solution
(trained on the fully labelled dataset) is shown for comparison.

MNIST Experiments

In addition to the comparison with MCP-LDA, we performed an ex-
periment comparing purely supervised SPNs and self-learning in SPNs
against MCP-SPNs on the well-known MNIST [114] dataset. For reasons
of efficiency, we used the recent SPN architecture proposed by Peharz,
Lang, Vergari et al. [13] and constructed a region graph structure based
on the approach of Poon and Domingos [8] with binomial distributions
as leaves for each class. Each model was trained using generative learn-
ing by leveraging stochastic EM, as described in [13], using the first N
examples as labelled data and the remaining as unlabelled data. The
test log-likelihood scores for a varying amount of label information is
shown in Figure 4.3.

We see that MCP-SPNs consistently outperform supervised learning
and self-learning in case only a few observations are labelled. With
an increase of labelled data, self-learning tends to obtain competitive
results. This behaviour is to be expected, as the decision boundary of
the supervised learner will become more accurate with an increasing
amount of labelled data. Therefore, resulting in better predictions for
the unlabelled examples in self-learning.

12th July 2020 – 69 –

4 Semi-Supervised Learning of Sum-Product Networks

0 10 20 30 40 50 60 70 80

−2.4

−2.2

−2

−1.8

·104

% of labelled training examples

te
st

lo
g-

lik
el

ih
oo

d
supervised SPN

self-learning SPN
MCP-SPN

Figure 4.3: Test log-likelihood scores on MNIST for varying number of labelled
observations.

Discriminative Learning

As previously discussed, discriminative SPNs are a more natural ap-
proach to learn an SPN in case of a classification problem. Therefore,
we compared the performance of our discriminative approach against
supervised discriminative SPNs, and the following discriminative semi-
supervised learning techniques: Transductive SVM (TSVM) [32], Min-
imum Entropy Regularisation (MER) [115] and the Implicitly Constrained
Least Squares (ICLS) [116]. To assess the performance of each method,
we computed the F1 score for binary classification tasks. In cases of
multi-class datasets, we used the macro average20 F1 scoreF1 score on the test
set, i.e.

F1(yk, ŷk) = 2
fp fr
fp + fr

fp :=
‖yk � ŷk‖0
‖ŷk‖0︸ ︷︷ ︸

=
∑
i 1{ŷi,k 6=0}

(4.34)

fr :=
‖yk � ŷk‖0∑

i yi,k 1{yi,k=ŷi,k} + (1− yi,k)1{yi,k 6=ŷi,k}
, (4.35)

where � denotes an element-wise multiplication, and the one-hot en-
coded vectors yk ∈ BNtest and ŷk ∈ BNtest denote the true and the pre-
dicted labels for the kth class, respectively. To compute multi-class pre-
dictions for approaches designed only for binary classification, we used
the one-vs-rest approach [117]. Similar to the quantitative evaluation of
the generative approach, we estimated the performance of each method
over 100 independent trails. Table 4.3 lists the average F1 scores for each
approach and additionally shows the oracle performance for comparison.

We see that safe semi-supervised learning in SPNs achieves competit-
ive results for most datasets, and in some cases MCP-SPNs obtain a test
F1 score comparable to the performance of the oracle solution, e.g. Wine.
The F1 scores on Fertility, Haberman and ILPD are generally very low,
likely as a result of imbalanced classes. In general, the experiments
indicate that safe semi-supervised learning of discriminative SPNs can
achieve competitive results, even without imposing strong assumptions
20 The macro average is computed as the arithmetic mean of the class-wise F1 scores.

– 70 – 12th July 2020

4.4 Experiments

on the data geometry. We want to note that, even though the CPL ob-
jective provides guarantees on the training set, those guarantees do not
apply to the test set if used in an inductive setting. In all experiments
we have treated MCP-SPNs as an inductive classifier, i.e. the learned
semi-supervised classifier predicts the labels of the unseen test examples
solely based on the learned CPL model parameters. However, MCP-
SPN can also be learned in a transductive setting by jointly learning
soft labels for the test and the unlabelled data. Therefore, allowing us
to express guarantees on the whole dataset in exchange of higher com-
putational costs, i.e. the CPL objective has to be maximised each time
we observe new test examples.

12th July 2020 – 71 –

4 Semi-Supervised Learning of Sum-Product Networks

D
ata

Set
Supervised

SPN
M

C
P-SPN

T
SV

M
IC

LSC
M

ER
O

racle
SPN

B
U

PA
0
.41
±
0
.01

0
.40
±
0.01

0
.36
±
0
.02

0
.4
7
±
0
.01

0
.42
±

0.01
0
.48
±
0
.01

Fertility
0
.07
±
0
.02

0
.03
±
0.01

0
.07
±
0
.02

0
.07
±
0
.02

0
.1
2
±

0.02
0
.06
±
0
.02

H
aberm

an
0
.24
±
0
.02

0
.28
±
0.02

0
.20
±
0
.02

0
.3
3
±
0
.01

0
.27
±

0.02
0
.25
±
0
.00

ILPD
0
.17
±
0
.02

0
.20
±
0.02

0
.23
±
0
.02

0
.29
±
0
.01

0
.3
3
±

0.02
0
.25
±
0
.00

Ionosphere
0
.79
±
0
.00

0
.8
2
±
0.00

0
.66
±
0
.01

0
.61
±
0
.01

0
.70
±

0.01
0
.87
±
0
.00

Iris
0
.73
±
0
.01

0
.8
8
±
0.01

0
.72
±
0
.01

0
.74
±
0
.02

0
.81
±

0.01
0
.93
±
0
.00

Parkinsons
0
.72
±
0
.01

0
.7
7
±
0.00

0
.74
±
0
.01

0
.67
±
0
.02

0
.68
±

0.01
0
.82
±
0
.00

PID
0
.38
±
0
.01

0
.45
±
0.01

0
.46
±
0
.01

0
.54
±
0
.01

0
.5
7
±

0.01
0
.64
±
0
.00

W
D

B
C

0
.85
±
0
.00

0
.90
±
0.00

0
.91
±
0
.00

0
.88
±
0
.00

0
.9
2
±

0.00
0
.92
±
0
.00

W
ine

0
.82
±
0
.01

0
.9
7
±
0.00

0
.9
7
±
0
.00

0
.95
±
0
.01

0
.95
±

0.01
0
.97
±
0
.00

Table
4.3:

M
acro-average

test
F
1

scores,estim
ated

over
100

independent
trials.

T
he

best
results

are
indicated

in
bold.

– 72 – 12th July 2020

Sum-Product Networks for Complex Modelling Scenarios

5
Bayesian Learning of

Sum-Product Networks

5.1 Motivation

As discussed in Chapter 3, learning SPNs can naturally be organised
into structure and parameter learning. We have seen that state-of-
the-art SPN parameter learning covers a wide range of well-developed
techniques, including approaches for unsupervised, supervised and semi-
supervised tasks. Concerning structure learning, however, the situation
is remarkably different. Although there exist a plethora of approaches,
we have seen in Section 3.5 that most approaches can be described as
heuristic. The existing techniques often represent intuitive schemes for
structure learning, but fall short on declaring the global goal of struc-
ture learning in SPNs. This is surprising as it should be of uttermost
importance to first ask either of the following fundamental questions:
What is a good SPN structure? or What is a good principle to de-
rive an SPN structure? The literature on probabilistic graphical mod-
els, on the other hand, offers a rich set of learning principles, with the
main strategy being the optimisation of a structure score such as the
Minimum-Description-Length (MDL) [118], the Bayesian Information
Criterion (BIC) [119] or the Bayes-Dirichlet (BD) score [120], [121].
Moreover, Friedman and Koller [122] introduced an approximate, but
asymptotically correct, MCMC sampler for Bayesian structure learning
of Bayesian networks.

In this chapter, we will introduce a well-principled Bayesian approach
to learn SPNs by simultaneously performing inference over both struc-
ture and parameters. We will leverage the decomposition of SPNs
into a computational graph and a scope-function, as introduced in Sec-
tion 3.2.1, and introduce a natural parameterisation for scope-functions
applicable to tree-structured computational graphs. In particular, we
will focus on so-called tree-shaped region graphs, which have been widely
used in prior art, e.g. [10], [76]. This restriction allows an elegant encod-
ing of the scope-function via categorical variables. As a consequence,
Bayesian learning in SPNs becomes conceptually simple. In particular,
we equip all parameters and latent variables, including the additional
categorical variables for the scope-function, with appropriate priors and
perform approximate Bayesian inference to estimate the posterior distri-
bution of Bayesian SPNs. We will incrementally build up our Bayesian
framework for principled learning in SPN by, first revising Bayesian
parameter learning with a fixed scope-function, as introduced in [17]–
[19], and subsequently introducing our fully Bayesian approach.

12th July 2020 – 73 –

5 Bayesian Learning of Sum-Product Networks

5.2 Preliminaries
Recall from Section 3.1.1, that sum nodes in an SPN can be interpreted
as latent variables. Thus, we can understand an SPN as a compact
representation of an exponentially large mixture over induced trees,
c.f. Equation (3.5). Further recall that in this context T (zi) = T de-
notes a surjective map, which returns the induced tree determined by zi
for any value of zi.

By equipping the sum weights and the leaf parameters with suitable
prior distributions, we can easily derive the generative model of an SPN
for Bayesian parameter learning.Bayesian parameter

learning
In this work, we will assume sum

weights to be Dirichlet distributed and use, out of convenience, conjugate
priors21 for the parameters of the leaves. For ease of notation, we denote
the appropriate prior for θL using p(θL | γ), where γ compromises the
parameters of the prior distribution. The resulting generative model for
Bayesian parameter learning is written as

wS ∼ Dir(wS |α1, . . . , αKS
) ∀S

zS ∼ Cat(zS |wS) ∀S
θL ∼ p(θL | γ) ∀L

x ∼
∏

L∈T (z)

p(xL | θL) .

(5.1)

To learn an SPN using this generative model, we will employ Bayes’
rule, c.f. Equation (3.12). In our previous approaches, c.f. Section 3.3,
we have used a single estimate of our model parameters to perform fu-
ture predictions. However, the correct parameters are usually unknown,
and we should, therefore, account for the uncertainty about the model
parameters. The conventional approach to account for our uncertainty
is to integrate over all model parameters in the conditional distribu-
tion p(x∗,w,θ : D), where x∗ denotes an unseen datum, and perform
predictions using the resulting marginal distribution. The resulting dis-
tribution is called the posterior predictive distributionposterior predictive

distribution
and is given as

p(x∗ |D) =

∫
w

∫
θ
p(x∗ |w,θ,D) p(w,θ |D) dw dθ (5.2)

=

∫
w

∫
θ
p(x∗ |w,θ) p(w,θ |D) dw dθ (5.3)

= Ew,θ |D [p(x∗ |w,θ)] , (5.4)

where we assume that x∗ is independent of D. Note that the last line
follows from the law of the unconscious statistician [123]. However,
computing these integrals is often intractable, and we have to rely on
approximations through either: variational inference, as done in [19], or
Monte Carlo integration, as shown in [17]. In the course of this thesis, we
will focus on the latter and leverage Markov chain Monte Carlo (MCMC)

Markov chain Monte
Carlo

sampling to approximate the posterior predictive distribution. We refer
to Murphy [124] for details on variational inference. In MCMC, the

21 A prior p(·) is conjugate for a likelihood if the posterior of p(·) is in the same family
of distributions as p(·). Note that conjugate prior distributions are often used out
of convenience as posterior inference simplifies in case of conjugacy.

– 74 – 12th July 2020

5.3 Bayesian Sum-Product Networks

integration problem is approximated using Monte Carlo integration, us-
ing samples drawn from the unnormalised posterior distribution. Monte
Carlo integration Monte Carlo integrationaims to numerically integrate a function f(X) of RV
X, in order to compute moments of interest, e.g. the expected value

E[X] =

∫
x
f(x)p(x) dx ≈ 1

S

S∑
s=1

f(xs) , (5.5)

where we sample xs ∼ p(X) accordingly. Note that Monte Carlo integ-
ration follows as a consequence of the law of large numbers, i.e. with
S → ∞ it is ensured that the sample mean 1

S

∑S
s=1 f(xs) will converge

to the expected value. However, as the posterior distribution is often
not accessible in closed-form, we need to employ an algorithm to gener-
ate samples of our target distribution. A prominent class of algorithms,
which construct (correlated) samples from the unnormalised posterior
distribution in the form of a Markov chain, is called MCMC algorithms.
Note that the constructed Markov chain has p(X) as its stationary dis-
tribution. We will discuss a concrete example of an MCMC algorithm
in Section 5.4.

5.3 Bayesian Sum-Product Networks

.

× . . . × × . . . × × . . . × . . .

+ . . . + + . . . +

× . . . × . . .

+

Figure 5.1: Illustration of a computational graph in form of a tree-shaped region
graph of depth two. Regions contain a collection of sum nodes, while
partitions contain all possible cross-products (Cartesian product) over
the nodes in the respective child regions. Atomic regions contain
a collection of leaf nodes with different parameters. Dotted lines
illustrate edges in the induced SPN.

Given a computational graph G, we wish to learn the scope-function
ψ, in addition to the SPN’s parameters w and θ. In general graphs,

12th July 2020 – 75 –

5 Bayesian Learning of Sum-Product Networks

representing ψ in an amenable form is somewhat involved as it requires
ψ to ensure consistency of the scope assignments among nodes that
share some of their children. Therefore, we will restrict our analysis to
the class of SPNs whose computational G follows a tree-shaped region
graph, i.e. each node in the region graph has at most one parent, as
illustrated in Figure 5.1. Assuming a tree-shaped region graph leads to
a natural encoding of ψ through additional latent variables. Recall, that
a region graph is a tuple (R, ψ) where R is a connected DAG containing
regions R and partitions P , c.f. Definition 3.11.

For a given region graph, the resulting SPN will inherit its scope-
function ψ from the scope-function of the region graph. In particular,
any SPN node introduced for a region (partition) gets the same scope
as the region (partition) itself. It is easy to check that if the SPN’s
G follows R, any proper scope-function corresponds to a proper scope-
function of the SPN. Note that G is in general not tree-shaped, even if
R is tree-shaped, with the exception that every region contains only a
single node.

When the SPN follows a tree-shaped region graph, the scope-function
can be encoded as follows: Let P be any partition and R1, . . . , RKP be
its KP children. For each data dimension d ∈ {1, . . . , D}, we introduce a
discrete latent variable YP,d with 1, . . . ,KP states. Intuitively, the latent
variable YP,d represents a decision to assign dimension d to a particular
child, given that all partitions “above” have decided to assign d onto the
path leading to P . Note that this path is unique for tree-shaped region
graphs.

More formally, we define the scope-function of a tree-shaped region
graph induced by a configuration y of Y as follows:

Definition 5.1 (Induced scope-function).induced scope-function Let R be a tree-shaped region
graph structure, and let YP,d be defined as above. Further, let Y =
{YP,d}P∈R,d∈{1...D}, and let y be any assignment for Y . Let Q be a node
in R, then there exists a unique path Π from the root to Q (excluding
Q). Therefore, the scope-function induced by y is defined as:

ψ(Q)y :=

{
Xd

∣∣∣∣ ∏
P∈Π

1{RyP,d∈Π}

}
, (5.6)

where
∏
P∈Π ≡ 1 if Π = ∅. From Equation (5.6) we can see that ψ(Q)y

contains Xd if for each partition in Π the child indicated by yP,d is also
in Π.

Lemma 5.1. For any tree-shaped region graph R and any assignments
y, the induced scope-function ψ(·)y is a scope-function according to
Definition 3.11. Conversely, for any proper scope-function, there ex-
ists a y such that ψ(·)y ≡ ψ(·).

Proof. To proof the lemma, we will examine the individual requirements
(c.f. Definition 3.11) one after another.

(1.) By Definition 5.1, each node Q that does not have any partition
node in its unique path from the root has full scope, i.e. ψ(Q)y =
X. Since the root node is such a node, it has full scope.

– 76 – 12th July 2020

5.3 Bayesian Sum-Product Networks

(2.) For each child Q of partition P , the scope of Q is solely determined
by the latent variables on the path Π from the root to Q. As R is a
tree, the scope of P is determined trough the same latent variables,
excluding the latent variable at P . Thus, we have ψ(Q)y ⊆ ψ(P)y,⋃
Q∈chP ψ(Q)y = ψ(P)y and

⋂
Q∈chP ψ(Q)y = ∅.

(3.) For each child Q of region R, the scope of Q is solely determined
by all latent variables on the path Π from the root to Q. As R is a
tree, the scope of R is determined trough the same latent variables
and thus their scopes have to be the same, i.e. ψ(Q)y = ψ(R)y and⋃
Q∈chR ψ(Q)y = ψ(R)y.

Note that the relationship between y and ψ(·)y is similar to the re-
lationship between z and T , i.e. each ψ(·)y corresponds in general to
many y’s. Also note, that the encoding of the scope-function for general
region graphs is more involved, since the path to each Q is not unique,
and we need to ensure that consistency of the scope assignment, for all
nodes that are shared throughout the network, is guaranteed. Assum-
ing Dirichlet priors for each YP,d, we can define the extended generative
model as:

wS ∼ Dir(wS |α1, . . . , αKS
) ∀S

zS ∼ Cat(zS |wS) ∀S
vP ∼ Dir(vP |β1, . . . , αKP

) ∀P
yP,d ∼ Cat(yP,d |vP) ∀d = 1, . . . , D ∀P
θL,d ∼ p(θL,d | γ) ∀d = 1, . . . , D ∀L

x ∼
∏

L∈T (z)

p(xy | θL,y) .

(5.7)

The notation xy denotes the evaluation of L on the scope induced by
y. Figure 5.2 illustrates our generative model in plate notation in which
directed edges indicate dependencies between variables.

d=1 . . . Di=1 . . . Ni=1 . . . N

xi,dzS,i yP,d

γd θL,d
wSα

vP

β

∀S ∈ S ∀P ∈ P

∀L ∈ L

Figure 5.2: Plate notation of the generative model of Bayesian sum-product net-
works. Network parameters are highlighted in purple and latent vari-
ables encoding the scope-function are shown in blue.

12th July 2020 – 77 –

5 Bayesian Learning of Sum-Product Networks

5.4 Sampling-based Inference

Let D = {xi}Ni=1 be a set of observations, given our generative process
in Equation (5.7), the posterior distribution of Bayesian SPNs can be
written as

p(w, z,v,y,θ |D) =
p(D |w, z,v,y,θ) p(w, z,v,y,θ)

p(D)

∝ p(D |w, z,v,y,θ) p(w, z,v,y,θ) .
(5.8)

To obtain samples from Equation (5.8) we will perform Gibbs samplingGibbs sampling ,
which is one of the most popular MCMC algorithms and similar to
coordinate ascent. The central idea behind Gibbs sampling is to update
one parameter at a time, while conditioning on the state of all other
parameters. Thus, Gibbs sampling constructs a Markov chain using
axis-aligned moves and cannot exploit correlations between parameters
well. However, by exploiting conjugacy relationships we can marginalise
out model parameters. Such an approach reduces the variance of the
sampler, thus increasing the effectiveness of the sampling, and is referred
to as collapsed Gibbs samplingcollapsed Gibbs sampling .

We will now discuss our Gibbs sampling scheme, which alternates
between i) updating the model parameters w,θ for a fixed encoding of
the scope-function y, and ii) updating the scope-function encoding y
for a fixed set of parameters w,θ. Note that the model parameters and
the scope-function encoding may be initialised using random draws from
their respective prior distribution or using a heuristic method such as
k-means clustering.

5.4.1 Updating the Parameters

To update the model parameters, we follow the same procedure as intro-
duced by Vergari, Molina, Peharz et al. [17], i.e. we first sample all latent
assignments zi, which can be done in parallel; and subsequently updated
all model parameters given the latent assignments. In particular, for a
given set of parameters (w and θ), we draw each zi independently us-
ing ancestral sampling in SPN, i.e. we sample zS,i ∼

∑
N∈chSwS,NN(xi).

Latent variables that are not visited during ancestral sampling will be
drawn from the prior, i.e. zS,i ∼ Cat(zS,i |wS). Once all zi have been
drawn, we can sample the weights and leaf node parameters from their
posterior distribution. As we have chosen prior distributions for the leaf
and sum node parameters from a conjugate family, we can obtain an
analytic expression for their posterior distribution. Doing so allows us
to generate all model parameters by sampling from the analytic form
of their posterior distribution. In particular, we sample the weights for
each sum node from the following posterior,

wS ∼ Dir(wS |α+ cS,1, . . . , α+ cS,KS
) , (5.9)

where cS,k represents the number of observations that have chosen the
kth child under S during ancestral sampling. In the case of leaf nodes,
we use the respective posterior distribution as listed in Appendix C.1.

– 78 – 12th July 2020

5.4 Sampling-based Inference

5.4.2 Updating the Structure

After having updated the model parameters, we sample the latent vari-
ables YP,d using collapsed Gibbs sampling. For this, we marginalise out
the v parameters in Equation (5.8) and draw each yP,d from the respect-
ive conditional.

Let DP,d = {xi,d |P ∈ V (T (zi))}Ni=1 denote the dth dimension of each
datum in the training set that reached partition P , and let yP be the
set of all dimension assignments at the partition. Further, let yP,−d =
{yP,d′ | d′ 6= d}Dd=1 denote the exclusion of the dth assignment from yP and
let y−P,d = {yP′,d |P ′ 6= P}P ′∈R denote the assignments at all partitions
but partition P . Then the probability of assigning the dth dimension to
the kth child of partition P is,

p(yP,d = k |yP,−d,y−P,d,DP,d, z,θ, β)

∝ p(yP,d = k |yP,−d, β) p(DP,d | yP,d = k,y−P,d, z,θ) .

(5.10)

The conditional prior in Equation (5.10) follows standard derivations,
i.e.

p(yP,d = k |yP,−d, β) =
p(yP |β)
p(yP,−d |β)

, (5.11)

which we obtain by first finding the marginal likelihood of the Dirichlet-
multinomial distribution. For this let mP,k =

∑
d∈ψ(P) 1{yP,d=k} and

mP =
∑K

k=1mP,k. Then we can obtain the marginal likelihood by in-
tegrating over the weights v, i.e.

p(yP |β) =
∫
vP

p(yP |vP) p(vP |β) dvP (5.12)

=

∫
vP

K∏
k=1

v
mP,k
P,k︸ ︷︷ ︸

=p(yP |vP)

1

B(β)

K∏
k=1

vβk−1
P,k︸ ︷︷ ︸

=p(vP |β)

dvP (5.13)

=
1

B(β)︸ ︷︷ ︸
=

∏
k Γ(βk)

Γ(
∑
k βk)

∫
vP

K∏
k=1

v
mP,k
P,k

K∏
k=1

vβk−1
P,k dvP (5.14)

=
1

B(β)

∫
vP

K∏
k=1

v
mP,k+βk−1
P,k dvP (5.15)

=
Γ(
∑

k βk)

Γ(mP +
∑

k βk)

K∏
k=1

Γ(mP,k + βk)

Γ(βk)
. (5.16)

After having obtained the respective marginals, we can use the standard
derivation of Gibbs conditionals for collapsed Gibbs sampling in mixture
models [124, p. 845], i.e.

p(yP,d = k |yP,−d, β) =
mP,k,−d + βk

mP − 1 +
∑

k βk
, (5.17)

12th July 2020 – 79 –

5 Bayesian Learning of Sum-Product Networks

where mP,k,−d =
∑

d′∈ψ(P)\d 1{yP,d′=k}, to update the scope function en-
coding. Note that the likelihood term in Equation (5.10) is computed
by taking a product over the likelihood functions of each cross-product
in partition P for dimension d, c.f. Section 3.2.2, as each term is inde-
pendent.

5.4.3 Performing Predictions
Given a set of S posterior samples, we can now compute predictions for
an unseen datum x∗ using Monte Carlo integration, i.e.

p(x∗ |D) ≈ 1

S

S∑
s=1

S(x∗ |y(s),w(s),θ(s)) , (5.18)

where S(x∗ |y(s),w(s),θ(s)) denotes the SPN of the sth posterior sample.
We can interpret the resulting distribution as an SPN with S children,
each one being a sub-SPNs with different parameters and different struc-
ture.

The central object, when performing predictions this way is arguably
the posterior distribution. Recall that the posterior distribution reflects
our posterior beliefs, after having observed data, and is directly derived
from our prior assumption. To guarantee consistency of the Bayesian
approach22, i.e. when performing posterior inference the posterior dis-
tribution will concentrate on the true model, we require that the true
model is in the interior of the hypothesis space and has a positive prior
probability. However, often we have situations in which the model com-
plexity should increase with the increase of observed data, e.g. streaming
data or topic modelling. Bayesian nonparametric models promise a solu-
tion to this problem by using infinite-dimensional priors. We will review
extensions of SPNs to nonparametric formulations in the next section.

5.5 Nonparametric Sum-Product Networks
In Bayesian nonparametrics, we “expand” the prior distributions to
infinite-dimensional spaces, facilitated in the form of a random meas-
ure23. One such prior is the Dirichlet process (DP)Dirichlet process , which can be un-
derstood as the infinite-dimensional generalisation of a Dirichlet distri-
bution that has Dirichlet distributed finite-dimensional marginals. The
DP is often also described as a distribution over distributions. An es-
sential property of the DP, is that draws from a DP are almost surely
discrete, i.e. we obtain a discrete distribution when we draw from a DP.
We refer to Hjort, Holmes, Müller et al. [125] for details on the DP and
other nonparametric priors. In this section, we will make use of the

22 Bayesian consistency under the true model is an implication of the Bernshteǐn-
von-Mises theorem. See Vaart [80] for details.

23 We will not require knowledge about random measures throughout this thesis. In
short, a random measure is a random variable on a probability space (Ω,A,P),
which takes values in a measurable space (M,M) for which M is the set of all
finitely bounded measures on a metric space (RD,B(RD)) and M is the minimal
σ-algebra on M . See Hjort, Holmes, Müller et al. [125] for details.

– 80 – 12th July 2020

5.5 Nonparametric Sum-Product Networks

DP to i) formulate infinite SPTs and ii) introduce a more efficient non-
parametric formulation in the form of an infinite mixture over Bayesian
SPNs.

5.5.1 Infinite Sum-Product Trees
In order to define the generative process for infinite Sum-Product Trees
(iSPTs) [99], the following simplifying but not very restrictive assump-
tions are made:

1. all leaf distributions are univariate,

2. all product nodes have exactly two children,

3. sums and products occur in an alternating fashion and,

4. the root node is a sum.

V0

V11 ⊂ V0 V12 ⊂ V0 V21 ⊂ V0 V22 ⊂ V0

+

+ . . . +

× × . . . × × . . .

+ + + + + + + +

Figure 5.3: Schematic illustration of an iSTP with additional group nodes, indic-
ated in green. Gray boxes indicate the scope of nodes within a box,
denoted as V0, V11, V12, V21, V22 respectively. Note that the generative
process of iSPTs guarantees that V11 ∪ V12 = V0, V21 ∪ V22 = V0,
V11 ∩V12 = ∅, V21 ∩V22 = ∅, and Vi 6= ∅ for all i ∈ {0, 11, 12, 21, 22}.

Additional to those assumptions, we augment an SPN structure with
so-called group nodes. Each group node, which is essentially an addi-
tional sum node, groups product nodes that share the same partition of
their scope together. Figure 5.3 illustrates the basic structure of iSPTs
with additional group nodes, indicated in green. Note that the number
of group nodes, i.e. the children of sum S with scope ψ(S), is equal to the
Stirling number of the second kind24, i.e.

{|ψ(S)|
2

}
. In order to construct

product nodes and their respective partition of the scope, we add
{|ψ(S)|

2

}
many group nodes under each sum nodes, each of which representing a
different partition of the current scope, and draw weights to the group
nodes from a Dirichlet distribution. Once we obtained the weights, we
can sample cluster assignments of the observations at each group node

24 The Stirling number of the second kind
{
n
k

}
= 1

k!

∑k
i=0(−1)i

(
k
i

)
(k− i)n counts the

number of possible partitions of a set of n objects into k non-empty subsets.

12th July 2020 – 81 –

5 Bayesian Learning of Sum-Product Networks

and subsequently construct product nodes with the now deterministic-
ally defined partition of the scope. To represent group nodes we use
the so-called Chinese Restaurant Process (CRP)Chinese Restaurant

process
, which represents the

marginal probabilities of a DP in the form of a random assignment of
the observations to groups (clusters). Let α > 0 be the concentration
parameter of the DP and H its base distribution, i.e. draws from the
DP concentrate on H once α→∞. Further, let H be defined on Θ and
let θ1, θ2, · · · ∈ Θ be an i.i.d. infinitely exchangeable sequence25 drawn
according to

xi ∼ p(xi | θi) θ1, θ2, . . . ∼ G G ∼ DP(α,H) . (5.19)

Since G is almost surely discrete, values θi will be repeated. We will,
therefore, use θ∗1, θ∗2, . . . to denote the unique values among those. By
integrating over G, we obtain the marginal distribution in form of con-
secutive conditional distributions known as the Blackwell-MacQueen’s
urn scheme [126] or the CRP, i.e.

θi ∼
1

α+ i− 1

(
αH +

K∑
k=1

nkδθ∗k

)
, (5.20)

where δθ∗k is a Dirac delta on θ∗k and nk is the number of observations
that are assigned to cluster k. We see from Equation (5.20) that the
probability that θi is equal to θ∗k is proportional to the number of ob-
servations assigned to cluster k, i.e. nk. In other words, the larger nk is,
the more likely it is that nk will grow with increasing i, i.e. a DP has a
rich-get-richer property. Note that in the following, we will directly use
the conditional probability of assigning observation i onto cluster k, i.e.

p(zi = k | z1, . . . , zi−1) =

{
nk

i−1+α if nk > 0
α

i−1+α otherwise
, (5.21)

as done in the nested CRP [127].
The generative process of iSPTs can be outlined as follows:

1. If the scope of the current node S is multivariate, then:

cS ∼ Cat(cS |wS) wS ∼ Dir(wS |α1, . . . , α{|ψ(S)|
2
}) (5.22)

zcS ∼ CRP(zcS |β) , (5.23)

for the selected product node zcS : split the scope into partition cS
and apply the process recursively for all children.

2. otherwise d = ψ(S) and:

xd ∼ p(xd | θcS) θi ∼ p(θi | γ) cS ∼ CRP(cS |β) . (5.24)

25 A sequence is exchangeable if the probability of drawing the sequence does not
change under arbitrary permutations, i.e. p(θ1, θ2, . . .) = p(θσ(1), θσ(2), . . .) where
σ is an arbitrary permutation.

– 82 – 12th July 2020

5.5 Nonparametric Sum-Product Networks

Experiments

To assess the performance of iSPTs we compare the log posterior predict-
ive probability of iSPTs with Gaussian leaves to infinite Gaussian mix-
tures models (iGMMs) [128] on the Old Faithful geyser dataset [129], the
Chemical Diabetes dataset26 [130] and the Iris dataset [131]. In each ex-
periment, we initialise iSPTs and iGMMs using a sequential construction
and performed posterior inference using the Gibbs sampler proposed by
Neal [132]. To account for different choices of the CRPs hyperparamet-
ers, we sampled the concentration parameter from independent Gamma
priors, as proposed by Escobar and West [133].

Figure 5.4 shows the resulting density function for the iSPT and the
iGMM on the Old Faithful dataset. We see that the iSPT is capable
of recovering the correlations between input dimensions and models the
data distribution (visually) more accurately. Note that, even though
both approaches are effectively infinite mixtures over Gaussians with
diagonal covariance matrix, the iSPT has additional flexibility through
its hierarchical structure.

Table 5.1 shows the average 10-fold cross-validation log posterior pre-
dictive probabilities [134] and Mann-Whitney U test values27 for iGMMs
and iSPTs on all three datasets. We estimated the posterior distribution
of each model using 1k MCMC samples obtained as described before.
We see that iSPTs obtain significantly (p < 0.01) better results on all
datasets. However, note that posterior inference in iSPTs comes with a
higher cost than in iGMMs. Thus, making it infeasible to apply iSPTs
on high-dimensional data. In fact, due to the explicit construction of all
possible two-partitions, i.e. the group nodes, iSPTs scale poorly with the
data dimensionality and are limited to low-dimensional data domains.

(a) iSPT (b) iGMM

Figure 5.4: Density function of an iSPT and an iGMM on the Old Faithful geyser
dataset after 1k iterations. Both models use the same hyperparameters
and base distribution.

26 We used the features: glucose area, insulin area and insulin resistance.
27 The Mann-Whitney U test is a nonparametric significance test for numerical data

with a natural order, such as ordinal data, which does not require that the com-
pared populations follow a normal distribution, as assumed by the t-test.

12th July 2020 – 83 –

5 Bayesian Learning of Sum-Product Networks

Dataset iGMM iSPT p-value

Old Faithful −1.737 −1.700 < 0.01

Chemical Diabetes −3.022 −2.879 < 0.01
Iris −3.943 −3.744 < 0.01

Table 5.1: Average 10-fold cross-validation log posterior predictive probability and
Mann-Whitney U test p-values.

5.5.2 Infinite Mixture of Bayesian Sum-Product Networks

To overcome the limitations of the generative process for iSPTs, we will
use a natural extension of our formulation for Bayesian SPNs. In par-
ticular, we will use the stick-breaking construction [135] for DPs and
define an infinite mixture of Bayesian SPNs. Note that it is also pos-
sible to replace each Dirichlet prior in Equation (5.7) with a DP prior.
By using a nonparametric prior for at each sum and product node, we
can obtain a fully specified generative process for nonparametric tree-
shaped region graphs with potentially infinitely many regions and par-
titions. However, due to the difficulty of efficient posterior inference in
nonparametric trees, e.g. [136], [137], we will restrict our approach to a
nonparametric mixture over finite SPNs.

The stick-breaking constructionstick-breaking
construction

defines a random draw from a DP
with base measure H as:

θk ∼ H vk ∼ Beta (vk | 1, α)

G =

∞∑
k=1

πkδθk πk = vk

k−1∏
j=1

(1− vj) π1 = v1 .
(5.25)

In order to perform inference when using a stick-breaking construc-
tion we need to evaluate conditionals for potentially infinitely many
components. One way to approach this, is to introduce slice variables
ui ∼ U(0, π), such that

∑∞
k=1 1{ui≤πk}p(xi | θk) has

∑∞
k=1 πkp(xi | θk)

as its marginal distribution. The resulting inference algorithm, intro-
duced by Walker [138], can be understood to dynamically truncate
the infinite mixture and allowing us to sample from a finite number
of conditionals. To apply the slice sampling approach for DP mix-
tures to large-scale data, Ge, Chen, Wan et al. [52] suggested an ex-
tension of the original slice sampler that allows the computations to
be distributed. In the distributed slice sampler, latent assignments
p(zi = k |xi, ui) = 1{ui≤πk}f(xi | θk) can be drawn independently [52].
Subsequently, the truncated infinite collection of weights will be drawn
from a finite Dirichlet distribution, i.e.

mk =

{∑N
i=1 1{zi=k} if ∃i1{zi=k}

α/M otherwise
(5.26)

π ∼ Dir(m1, . . . ,mK , α/M) , (5.27)

where M denotes the total number of empty clusters plus one. Using
the generative model in Equation (5.7) as base distribution H allows us

– 84 – 12th July 2020

5.6 Experiments

to formulate infinite mixtures of Bayesian SPNs, which can readily be
inferred using the distributed slice sampler.

5.6 Experiments

We assessed the performance of Bayesian SPNs and infinite mixtures
of Bayesian SPNs on discrete [36] and heterogeneous data [17] as well
as on three datasets with missing values. We constructed the com-
putational graph G using the algorithm described in Section A.1 and
used a grid search over the parameters of the graph to select the best
performing computational graph. Since the Bayesian framework is pro-
tected against overfitting, we combined training and validation sets and
followed classical Bayesian model selection [139], i.e. using the Bayesian
model evidence, to select the best performing computational graph. The
grid search was defined over: the number of nodes per region I ∈ [5, 10],
the number of nodes per atomic region I ≤ J ∈ [5, 10], the number of
partitions under a region M ∈ [2, 4, 8], and the number of consecutive
region-partition layers L ∈ [1, 2]. Further, we used 5× 103 burn-in steps
and estimated the predictive distribution using 104 samples from the
posterior. Note that we used α = 1.0 as concentration parameter for
all sum nodes and β = 10.0 as concentration parameter for all product
nodes. Details on the selected parameters and the runtime for each
dataset are listed in Appendix C.3.

Table 5.4 lists the test log-likelihood scores of state-of-the-art (SOTA)
structure learners, i.e. LearnSPN [36], LearnSPN with parameter optim-
isation (CCCP) [15], ID-SPN [38], random region graphs (RAT-SPN)
[10] and the results obtained using Bayesian SPNs (BSPN) and infinite
mixtures of Bayesian SPN (BSPNs∞) on discrete datasets. In addition
we list the best-to-date (BTD) results, collected based on the most re-
cent works on structure learning for SPNs [140], PSDDs [11] and CNets
[102], [103]. In many cases, we observe an improvement over LearnSPN
with additional parameter learning and often obtain results compar-
able to ID-SPN or sometimes outperform BTD results. Note that ID-
SPN uses a more expressive formulation by utilizing Markov networks as
leaves and that the BTD results are often obtained by large ensembles
of structures. Significant differences to the best SOTA approach under
the Mann-Whitney-U-Test [141] with p < 0.01 are underlined. An ex-
tended results table, including the test result for each pair, is shown in
Appendix C.2.

Additionally, we conducted experiments on heterogeneous data, we
refer to Vergari, Molina, Peharz et al. [17] and Molina, Vergari, Di Mauro
et al. [40] for details on the datasets. We compared Bayesian SPNs and
infinite mixtures of Bayesian SPNs against mixed SPNs (MSPN) [40]
and ABDA [17]. Similar to the approach in ABDA, we used mixtures
over parametric families at the leaves, see Table 5.2 for a listing of the
likelihood and prior constructions used in the experiments. The ana-
lytic expressions of the respective posterior distributions are listed in
Appendix C.1. A critical difference between Bayesian SPNs and ABDA
is that ABDA performs inference on a pre-defined SPN structure, while
Bayesian SPNs perform inference over the structure, parameters and the

12th July 2020 – 85 –

5 Bayesian Learning of Sum-Product Networks

parametric families jointly.

Datatype Likelihood Prior

Continuous N (µ, σ2) σ2 ∼ Γ−1(2.0, 3.0)

µ ∼ N (µ̃, σ2)

Continuous Exp (λ) λ ∼ Γ(1.0, 1.0)

Discrete Poisson (λ) λ ∼ Γ(1.0, 1.0)

Discrete Cat(w) w ∼ Dir(0.1, . . . , 0.1)

Discrete B (p) p ∼ Beta (0.5, 0.5)

Table 5.2: Likelihood and prior distributions used for heterogeneous data experi-
ments.

Note that we further assume that the distribution of each leaf factor-
ises, i.e.

L(x) =
∏

Xd∈ψ(L)

K∑
k=1

wk pXd(xd | θL,d,k) , (5.28)

where k = 1, . . . ,K indexes the kth parametric form. We used a sym-
metric Dirichlet prior w ∼ Dir(α1, . . . , αK) with αk = 0.1

K at each leaf,
to enforces that few components are selected.

Table 5.3 lists the test log-likelihood scores of all approaches, indic-
ating that our approaches perform comparable to structure learners
tailored to heterogeneous datasets and sometimes outperform MSPNs
and ABDA28. Surprisingly, we obtain, with a large margin, better test
scores for Autism, which might indicate that existing approaches over-
fit the training data, while our formulation naturally penalises complex
models.

Dataset MSPN ABDA BSPN BSPN∞

Abalone 9.73 2.22 3.92 3.99

Adult −44.07 −5.91 −4.62 −4.68
Australian −36.14 −16.44 −21.51 −21.99
Autism −39.20 −27.93 −0.47 −1.16
Breast −28.01 −25.48 −25.02 −25.76
Chess −13.01 −12.30 −11.54 −11.76
Crx −36.26 −12.82 −19.38 −19.62
Dermatology −27.71 −24.98 −23.95 −24.33
Diabetes −31.22 −17.48 −21.21 −21.06
German −26.05 −25.83 −26.76 −26.63
Student −30.18 −28.73 −29.51 −29.9
Wine −0.13 −10.12 −8.62 −8.65

Table 5.3: Average test log-likelihoods on heterogeneous datasets using MSPNs,
ABDA, Bayesian SPN (BSPN) and infinite mixtures of SPNs
(BSPN∞). Overall best result is indicated in bold.

28 We did not apply a significance test as the results of the prior art is not openly
available.

– 86 – 12th July 2020

5.6 Experiments

We further evaluated LearnSPN, ID-SPN and Bayesian SPNs on three
discrete datasets with artificially introduced missing values in the train-
ing and validation set. In particular, we incrementally increased the
number of observations having 50% of their features missing completely
at random [142]. We evaluated LearnSPN and ID-SPN by: i) removing
all observations with missing values or ii) using k-Nearest Neighbour
(k-NN) imputation [143] (denoted with an asterisk). Note that we se-
lected k-NN imputation as it arguably provides a stronger baseline than
simple mean imputation, while being computationally more demanding.
All methods have been trained using the full training set, i.e. training
and validation set combined, and were evaluated using default paramet-
ers to ensure a fair comparison across methods and levels of missing
values. In particular, we evaluate their performance in the cases of 20%,
40%, 60% or 80% of all observations having 50% missing values. We
used the following default parameters for each approach: (LearnSPN):
cluster penalty = 0.6, significance threshold = 10 as described in [36],
(ID-SPN): the default settings described in [38], and for (Bayesian SPN):
I = 5 nodes per region, J = 10 nodes per atomic region, R = 8 partitions
under a region, and a depth of L = 1.

Figure 5.5 shows that our approach is consistently more robust against
missing values than learnSPN and ID-SPN, which both quickly degen-
erate in performance with an increasing amount of missing values (even
with additional k-NN imputation).

12th July 2020 – 87 –

5 Bayesian Learning of Sum-Product Networks

D
ataset

LearnSPN
R

AT
-SPN

C
C

C
P

ID
-SPN

B
SPN

B
SPN

∞
B

T
D

N
LT

C
S

−
6.11

−
6.01

−
6.03

−
6.02

−
6
.0
0

−
6.02

−
5
.97

M
SN

B
C

−
6.11

−
6.04

−
6.05

−
6.04

−
6.06

−
6
.0
3

−
6
.03

K
D

D
−
2.18

−
2.13

−
2.13

−
2.13

−
2
.1
2

−
2.13

−
2
.11

Plants
−
12.98

−
13.44

−
12.87

−
1
2
.5
4

−
12.68

−
12.94

−
11.84

A
udio

−
40.50

−
39.96

−
40.02

−
39.79

−
3
9
.7
7

−
39.79

−
39.39

Jester
−
53.48

−
52.97

−
52.88

−
52.86

−
5
2
.4
2

−
52.86

−
51.29

N
etflix

−
57.33

−
56.85

−
56.78

−
56.36

−
5
6
.3
1

−
56.80

−
55.71

A
ccidents

−
30.04

−
35.49

−
27.70

−
2
6
.9
8

−
34.10

−
33.89

−
26.98

R
etail

−
11.04

−
10.91

−
10.92

−
10.85

−
10.83

−
1
0
.8
3

−
10.72

Pum
sb-star

−
24.78

−
32.53

−
24.23

−
2
2
.4
1

−
31.34

−
31.96

−
22.41

D
N

A
−
82.52

−
97.23

−
84.92

−
8
1
.2
1

−
92.95

−
92.84

−
81.07

K
osarak

−
10.99

−
10.89

−
10.88

−
1
0
.6
0

−
10.74

−
10.77

−
10.52

M
SW

eb
−
10.25

−
10.12

−
9.97

−
9
.7
3

−
9.88

−
9.89

−
9
.62

B
ook

−
35.89

−
34.68

−
35.01

−
34.14

−
3
4
.1
3

−
34.34

−
34.14

EachM
ovie

−
52.49

−
53.63

−
52.56

−
51.51

−
51.66

−
5
0
.9
4

−
50.34

W
ebK

B
−
158.20

−
157.53

−
157.49

−
1
5
1
.8
4
−
156.02

−
157.33

−
149

.20
R

euters-52
−
85.07

−
87.37

−
84.63

−
8
3
.3
5

−
84.31

−
84.44

−
81.87

20
N

ew
sgroup

−
155.93

−
152.06

−
153.21

−
1
5
1
.4
7
−
151.99

−
151.95

−
151

.02

B
B

C
−
250.69

−
252.14

−
2
4
8
.6
0

−
248.93

−
249.70

−
254.69

−
229

.21

A
D

−
19.73

−
48.47

−
27.20

−
1
9
.0
5

−
63.80

−
63.80

−
14.00

Table
5.4:

A
verage

test
log-likelihoods

on
discrete

datasets
using

SO
TA

,
B

ayesian
SP

N
s

(B
SP

N
)

and
infinite

m
ixtures

of
SP

N
s

(B
SP

N
∞

).
Significant

differences
are

underlined.
O

verallbest
result

is
in

bold.
In

addition
we

list
the

best-to-date
(B

T
D

)
results

obtained
using

SP
N

s,P
SD

D
s

or
C

N
ets.

– 88 – 12th July 2020

5.6 Experiments

20 30 40 50 60 70 80

−56

−54

−52

te
st

lo
g-

lik
el

ih
oo

d
EachMovie (N = 5526, D = 500)

LearnSPN LearnSPN?

ID-SPN ID-SPN?

Bayesian SPN

20 30 40 50 60 70 80

−165

−160

−155

te
st

lo
g-

lik
el

ih
oo

d

WebKB (N = 3361, D = 839)

20 30 40 50 60 70 80

−300

−280

−260

% of observations with missing values

te
st

lo
g-

lik
el

ih
oo

d

BBC (N = 1895, D = 1058)

Figure 5.5: Performance under missing values for discrete datasets with increas-
ing dimensionality (D). Results for LearnSPN are shown in dashed
lines, results for ID-SPN in dotted lines and our approach is indicated
using solid lines. Filled symbols indicate that the method does not use
any additional imputation method.

12th July 2020 – 89 –

Sum-Product Networks for Complex Modelling Scenarios

6
Sum-Product Networks over

Gaussian Processes

6.1 Motivation
So far, we have only considered modelling tasks in which the number of
RVs is finite. However, many practical applications deal with situations
in which the number of RVs is potentially infinite, e.g. daily forecasting of
the number of expected COVID-19 infections. In such cases, stochastic
process models that can capture uncertainties and model complex rela-
tionships in time series data are indispensable. A Gaussian Process (GP)
is an example of such a stochastic process model, allowing for probabil-
istic non-linear regression analysis. One remarkable property of GPs is
that they allow exact posterior inference, i.e. we can obtain the posterior
mean and variance of a GP in analytical form. However, computing the
posterior distribution comes with high computational and memory costs.
In fact, the computation scales cubic in the number of observations N ,
i.e. O(N3), and has memory requirement of O(N2 +N D), where D is
the dimensionality of the input [50]. Therefore, GPs are often limited
to small data domains or require approximation schemes if used in large
scale applications. The most common strategies to reduce the computa-
tional and memory costs are based on either variational approximations
to the GP posterior or based on local GP experts [144].

The first approach is undoubtedly the more dominant one as it al-
lows for straightforward implementation using differential programming
[145]. In this case, the posterior of a GP is represented by Q indu-
cing points, which are treated as variational parameters, and learned by
minimising the Kullback-Leibler divergence29 KL divergenceof the approximate pos-
terior from the full posterior. Variational approximations reduce the
computational burden to O(N Q2) [146]. As shown by Burt, Rasmussen
and Wilk [147], asymptotically the number of inducing points has to
increase with a polylogarithmic rate, i.e. O(log(N)D), in order to guar-
antee convergence with high probability. In the non-asymptotic regime,
however, variational approximation may struggle in producing a good
sparse approximation.

Approximations based on local experts, on the other hand, use a
divide-and-conquer strategy and partition the input space (or the data-
set) into subsets, each modelled with an individual GP expert. For K ex-
perts, each with M << N observations, the computational and memory

29 The Kullback-Leibler (KL) divergence of distribution q(x) from distribution p(x),
often denoted as DKL(p(x), q(x)), measures the information lost when using q(x)
to approximate p(x).

12th July 2020 – 91 –

6 Sum-Product Networks over Gaussian Processes

costs are typically reduced to O(KM3) and O(K(M2 + M D)), re-
spectively. Prominent examples include the Naive-Local-Experts model
(NLE)Naive-Local-Experts [148], [149], which naively models each partition of the input
space with an independent GP, Products-of-Experts (PoE)Product-of-Experts [150], [151],
which aggregate predictive distributions from experts using a product
operation, and the Mixture-of-Experts (MoE)Mixture-of-Experts [151], [152], which dynam-
ically distribute observations to experts.

All these local-expert approaches have different advantages and dis-
advantages. The NLE model allows exact posterior inference, which
reduces to independent GP inference at each expert, but introduces
hard discontinuities in the input space. In case the partition is not
well-supported by the data, NLE models can, therefore, result in high
generalisation errors [144]. PoE approaches result in a natural strategy
to distribute the data, but have been shown to result in sub-optimal
rates of the posterior contraction [153]. Further, the combination of
local experts using a product aggregation is known to be Kolmogoroff
inconsistent30 [154]. Even in the case of the Bayesian committee machine
(BCM)Bayesian committee

machine
[151], where the PoE approach is justified as an approximation

to Bayesian posterior inference, the introduced approximation error is
hard to analyse. Finally, MoE models specify a sound stochastic pro-
cess model, but do not permit tractable posterior inference and rely on
approximate inference techniques for posterior inference.

In this chapter, we will introduce a natural combination of SPNs and
GPs, called Deep Structured Mixtures of GPs (DSMGPs), as an at-
tractive alternative to previous local-expert approaches. DSMGPs can
be understood as an extension of SPNs to the stochastic process case
by equipping SPNs with Gaussian measures, which correspond to GPs
[155], as leaves. Equivalently, we can interpret DSMGPs as a hierarch-
ical structured mixture over a large number of NLEs. In particular, the
posterior of DSMGPs can be naturally understood as Bayesian model
averaging over an exponentially large mixture of NLEs, i.e. combinator-
ial in the states of the latent variables of the SPN [16], [19]. The crucial
key advantage of DSMGPs is that posterior inference can be performed
exact and efficiently, i.e. DSMPGs inherit tractable inference from SPNs
and exact computations from GPs.

6.2 Preliminaries
Before introducing DSMGPs, we will first review the relevant concepts
related to stochastic processes and provide a brief introduction to Gaus-
sian process regression.

A common approach to define a stochastic process is via its marginal
distribution. For this, consider a probability space (Ω,A,P) and a meas-
urable space (E,E). A stochastic processstochastic process is a family of RVs {Ft}t∈I , with
Ft : (Ω,A) 7→ (E,E) for all t ∈ I, indexed by an arbitrary index set I. In
many applications the index set I is interpreted as time and xt repres-
ents the value observed at time t. However, in the context of this thesis,

30 We refer to approaches as Kolmogoroff inconsistent if there does not exist a prob-
ability measure and, therefore, the stochastic process is not well-defined. See
Daniell-Kolmogoroff theorem in Section 6.2.

– 92 – 12th July 2020

6.2 Preliminaries

we will assume I to generally not represent time.
In case I is finite, we can see that the stochastic process can be un-

derstood as a random vector. In this case, we can readily define the
stochastic process as a map

F : Ω× I 7→ E , (ω, t) 7→ Ft(ω) , (6.1)

and see that the resulting probability measure is in fact a product meas-
ure on a product measurable space. However, often cases, I is uncount-
able, e.g. I = R, and it is sometimes not obvious how to even construct
such a process. Fortunately, as pointed out by Kolomgoroff, a stochastic
process with infinitely many RVs is an idealistic construction and it is
sufficient to show that such a process exists.

Theorem 6.1 (Daniell-Kolmogoroff). Daniell-Kolmogoroff
theorem

Let i ∈ I be an uncountable index
set, and let (Ωi,B(Ωi)) be some Borel measurable spaces. Further, let
E(I) be the set of all non-empty, finite subsets of I. If there exist a
consistent family31 of probability measures {Pj}j∈E(I), then there exists
an unique probability measure P on the product measurable space defined
as

(Ω,B(Ω)) :=

(
×
i∈I

Ωi,
⊗
i∈I

B(Ωi)

)
, (6.2)

such that every probability measure Pj is a push-forward measure for the
projection πj : Ω 7→ Ωj, i.e. Pj = P ◦ πj−1.

The Daniell-Kolmogoroff theorem guarantees that a consistent collec-
tion of finite distributions defines a stochastic process and that there
exist a unique probability measure on an uncountable product measur-
able space. We refer to the original work by Kolmogoroff [54] for details.

6.2.1 Gaussian Process Regression
A Gaussian Process Gaussian process(GP) is defined as a collection of RVs F 32 indexed
by an arbitrary (uncountable) input space X , where any finite subset
of F has a joint Gaussian distribution [50]. Further, by the Daniell-
Kolmogoroff theorem we also require that any two overlapping finite
marginal distributions are consistent, i.e. if we have (x1, x2) ∼ N (µ,Σ)
then we also have x1 ∼ N (µ1,Σ1,1) with Σ1,1 being a sub-matrix of
Σ. Note that GPs can naturally be interpreted as distributions over
functions f : X 7→ R. Therefore, GPs are a natural choice as prior
distribution in probabilistic regression analysis.

A GP is uniquely specified by: i) a mean-function mean-functionµ : X 7→ R, which
is often assumed to be µ(x) = 0 for all x ∈ X , and denoted as a zero
mean-function or a centred process in this case; and ii) a kernel-function
κ : X × X → R. kernel-functionGiven a training set D = {(xi, yi)}Ni=1 with x ∈ X ,
X = {xi}Ni=1 and y = {yi}Ni=1. Note that we intensionally overload
the symbol X to indicate the set of observed covariates, while we use y

31 A family of probability measures on the space (ΩJ ,AJ) with J ⊂ I is called
projective or consistent if PL = PJ ◦ (πJL)

−1 for all L ⊂ J ⊂ I where πJL : ΩJ 7→ ΩL
is the projection of the components of the index set J onto L.

32 We use the notation F to indicate the connection to random functions.

12th July 2020 – 93 –

6 Sum-Product Networks over Gaussian Processes

to indicate the set of observed response values or outputs. Further, let
KX,X denote the N×N kernel matrix defined by [KX,X]i,j = κ(xi,xj)
and let mX be the respective mean values, i.e., [mX]i = µ(xi).

In the context of this work, we will assume the observed outputs yi ∈ R
at a given input location xi ∈ X to be noisy. Therefore, we obtain a
generative process that can be outlined as follows

y |X,f , ∼ N (f , Iσ2ns) f ∼ GP(mX ,KX,X) , (6.3)

where I denotes an identity matrix and σ2ns is the noise variance – as-
suming a Gaussian likelihood. Consequently, the posterior predictive
distribution for an unseen location x∗ has a posterior mean of

µD(x
∗) = kx∗,X

(
KX,X + Iσ2ns

) −1y , (6.4)

and a posterior variance given as

σ2D(x
∗) = kx∗,x∗ − kx∗,X

(
KX,X + Iσ2ns︸ ︷︷ ︸

=CX,X

)
−1kX,x∗ . (6.5)

However, computing Equation (6.5) requires the inversion of the N ×N
matrix CX,X , which scales cubic in N when solved via the Cholesky
decomposition [156].

Note that there is an intimidate relationship between GPs, whose
function draws are almost surely from a particular function space, and
Gaussian measures defined on the same function space. In fact, this
relationship is one-to-one for the space of continuously differentiable
functions on any real interval, and for L2-spaces defined on arbitrary
measurable spaces [155].Gaussian measure We will make use of this equivalence to describe
DSMGPs as a hierarchical mixture, realised as an SPN, over Gaussian
measures.

6.3 Deep Structured Mixture of Gaussian Processes
Intuitively, a Deep Structured Mixture of GPs (DSMGPs) can be thought
of as an “SPN over GPs”. Formally, this is most naturally defined via
the correspondence of Gaussian measures on a function space of interest
and GPs, which almost surely realise in this function space [155].

Definition 6.1 (Deep Structured Mixture of Gaussian Processes).Deep Structured Mixture
of Gaussian Processes

Given
a measurable input space (X ,Σ), let (F ,ΣF) be a measurable function
space of real-value functions defined on the (uncountable) set X , i.e.
F ⊂ RX , and equipped with a suitable sigma algebra ΣF . Then a Deep
Structured Mixture of GPs (DSMGP) is defined as an SPN (G, ψ,w, θ),
where G is a computational graph (as in Section 3.2.1), ψ is a scope-
function ψ : N 7→ Σ, w is a set of sum weights, and θ is a set of GP
parameters. When N is the root of G, then ψ(N) = X ; additionally, ψ
satisfies the conditions 2-4) in Definition 3.10.

Furthermore, a DSMGP is recursively defined as follows:

1. A leaf node L computes a Gaussian measure, corresponding to the
GP on ψ(L), parametrised by θL.

– 94 – 12th July 2020

6.3 Deep Structured Mixture of Gaussian Processes

2. A product node P computes a product measure of its children.

3. A sum node S computes a convex combination (determined by its
sum-weights) of the measures computed by its children.

Definition 6.1 is mathematically elegant as it directly extends the
probability measure of SPNs over finitely many RVs, c.f. Section 3.1.2,
to infinitely many RVs using Gaussian measures and, by the Daniell-
Kolmogoroff theorem, establishes SPNs as a stochastic process model.
On the other hand, this definition might obscure how to work with DS-
MGPs in practice. Recall that any marginal distribution of a Gaussian
process is joint Gaussian distributed. In case of an NLE model, the
kernel matrix of the posterior distribution is naturally a block-diagonal
matrix. Similarly, each component of a DSMGP yields a Gaussian dis-
tribution with block-diagonal covariance-structure. Consequently, the
marginal distribution of a DSMGP yields a finite – albeit large – mix-
ture of Gaussians with block-diagonal covariance-structure determined
by the scope-function.

+

×

. . .

+

×

GP GP GP GP

+

. . .× ×

wS,P1 wS,Pk wS,PK

Figure 6.1: Illustration of a deep structured mixture of Gaussian processes. Ver-
tical lines (in red) illustrate the independence assumptions in the input
domain (NLE model hypotheses) of each product node. Children of
product nodes are either Gaussian process experts or sum nodes.

The structure (G, ψ) of a DSMGP is either pre-defined or learned
using posterior inference [157]. For simplicity, we assume that G is tree-
shaped, i.e. each node has at most one parent, and pre-specify ψ by fixing
a random partition of the input space at each product node. When using
DSMGPs as a prior over functions, we assume all sum node weights to
be uniform, i.e. wS,N = 1/KS where KS is the number of children under
S. Intuitively, each sum node represents a prior over partitions of the
input domain, where split-positions of each partition mark statistical

12th July 2020 – 95 –

6 Sum-Product Networks over Gaussian Processes

independence in the input domain. In a DSMGP, split-positions are
selected hierarchically, following the same hierarchy as sum nodes in the
computational graph. This mechanism is illustrated in Figure 6.1.

Note that DSMGPs are particularly well suited if some areas of the
input domain can be expected to be approximately independent. Per-
forming posterior inference in DSMGPs, which can be done exactly, up-
dates our belief about the respective split-positions. Thus, in DSMGPs,
we automatically infer, from a rich set of choices, those independence
assumptions that are well supported by the data. Intuitively, we can
understand DSMGPs to implicitly perform exact Bayesian model aver-
aging over a rich set of NLE models.

6.3.1 Exact Posterior Inference
Posterior inference in DSMGPs combines exact posterior inference in
GP experts, defined over a subspace of X , with tractable computations
in SPNs. This is a crucial advantage over PoE approaches, which do not
define a sound probabilistic model, and over MoE approaches, which are
often inherently intractable.

Theorem 6.2. Let S = (G, ψ,w, θ) be a DSMGP on the measurable
space (X ,Σ), with X being an input space and Σ a σ-algebra over X .
Then, computing the unnormalised posterior distribution of S simplifies
to tractable posterior inference at the leaves.

Proof. Let D denote a training set. Then, under the usual i.i.d. assump-
tion, the unnormalised posterior is given as

p(f | D) ∝
∏

(xi,yi)∈D

p(yi | fi)︸ ︷︷ ︸
likelihood

p(fi |xi)︸ ︷︷ ︸
prior

. (6.6)

If the DSMGP is a leaf L, i.e. it is a Gaussian measure induced by the
GP at L, then the computation of the posterior follows the standard
computation in GPs [50, Eq. 2.7] and can be performed exactly.

In case the DSMGP is a sum node S, the likelihood terms can be
“pulled” over the summation at the sum node, i.e.

pS(f |D) ∝
∏

(xi,yi)∈D

p(yi | fi)
∑

N∈ch(S)

wS,N pN(fi |xi)

=
∑

N∈ch(S)

wS,N

∏
(xi,yi)∈D

p(yi | fi) pN(fi |xi) ,
(6.7)

and posterior inference simplifies to inference at the children of S.
Finally, in case the DSMGP is a product node P, we can swap the

product over observations with the product over children and “pull” the
likelihood terms down to the respective children, i.e.

pP(f |D) ∝
∏

(xi,yi)∈D

p(yi | fi)
∏

N∈ch(P)

pN(fi |xi)

=
∏

N∈ch(P)

(∏
(xi,yi)∈D(N)︸ ︷︷ ︸⋃

N∈ch(P)

D(N)=D

p(yi | fi) pN(fi |xi)

)
, (6.8)

– 96 – 12th July 2020

6.3 Deep Structured Mixture of Gaussian Processes

where D(N) denotes the subset of observations that are within the do-
main of node N and ∩N∈ch(P)D(N) = ∅. Therefore, posterior inference
simplifies to inference at the children of the product node P using sub-
sets of D.

Inductively repeating this argument for all internal nodes, we see that
we obtain the unnormalised posterior by multiplying each leaf with its
local likelihood. Therefore, the unnormalised posterior of a DSMGP
is obtained by performing inference on the leaves, which can be done
exactly [50, Eq. 2.7].

We can obtain the normalised posterior, i.e. p(f | D) = p(y |f) p(f |X)
p(y |X) ,

by re-normalising the unnormalised posterior of the DSMGP using a
bottom-up propagation of the marginal likelihood of each expert. An
efficient approach to renormalise any SPN without changing its distri-
bution has been introduced by Peharz, Tschiatschek, Pernkopf et al.
[71]. An adaptation of [71, Alg. 1] for DSMGPs is illustrated in Ap-
pendix D.2.2.

6.3.2 Predictions

The predictive posterior distribution of a DSMGP for an unseen datum
x∗ is naturally a mixture distribution and, therefore, can be multimodal.
For practical reasons, it is often useful to project the posterior of a DS-
MGP to the closest GP, i.e. the GP with minimal KL divergence from
the DSMGP. This can be done by computing the first and second mo-
ments of the resulting mixture distribution, see Rasmussen and Williams
[50, Eq. A.24]. Let L be the set of all GP leaves in a DSMGP and let
τj : X → {L ∈ V (Tj)} be a bijective map from the input domain to the
set of leaves in the jth induced tree Tj , similar to a gating function. Then
we can write the mean (first moment) as

µD(x
∗) =

K∑
j=1

∏
(S,N)∈E(Tj)

wS,N µτj (x
∗) , (6.9)

and the variance (second moment) as

σ2D(x
∗) =

K∑
j=1

∏
(S,N)∈E(Tj)

wS,N

(
µ2τj (x

∗) + σ2τj (x
∗)− µ2D(x∗)

)
, (6.10)

where we use µτj (x∗) and σ2τj (x
∗) as short-hand notation for the mean

and variance of the predictive distribution of the GP allocated at leaf
τj(x

∗). Both moments can be computed efficiently in DSMGPs using
a two step procedure, i.e. first we select the respective leaves using a
downward path, and then use an upward path to compute the respective
moments.

6.3.3 Hyperparameter Optimisation

We can optimise the hyperparameters, i.e. noise variance and the kernel
parameters, of a DSMGP by maximising the log marginal likelihood given

12th July 2020 – 97 –

6 Sum-Product Networks over Gaussian Processes

−15 −10 −5 0 5 10 15

0.5

1

1.5

x

no
ise

va
ria

nc
e

true noise
global

fine-tuning

(a) Noise parameter after global hyperparameter optimisation or fine-tuning.

global

fine-tune

(b) Posterior mean and variance after global hyperparameter optimisation or fine-
tuning.

Figure 6.2: Noise parameter (a) and posterior mean and variance (b) of an DS-
MGP after global hyperparameter optimisation and fine-tuning on a
synthetic dataset generated from a stochastic process with heteros-
cedastic noise following the “true noise” function illustrated in (a).

the data D. Let us assume a zero mean-function, then the log marginal
likelihood of a GP at leaf L is computed for the observations that fall into
the subspace XL of the input domain. Let D(L) = {(xi, yi) ∈ D |xi ∈ XL}
denote the respectiveNL observations and let X(L) and y(L) be the inputs
and the observed outputs contained in D(L).

Then the log marginal likelihood is given as

log p(y(L) |X(L)) = −
1

2

(
(yT(L)C

−1y(L)) + log |C|+NL log 2π
)
, (6.11)

where log |C| denotes the log determinant of C. Consequently, because
the DSMGP is a mixture of Gaussian measures, the log marginal likeli-
hood of a DSMGP is written as

log p(y |X) = L
K
Σ
j=1

E

log p(Tj) +
∑

L∈V (Tj)

log p(y(L) |X(L))︸ ︷︷ ︸
=Equation (6.11)

 , (6.12)

where p(Tj) =
∏

(S,N)∈E(Tj)wS,N is the probability of the jth induced

– 98 – 12th July 2020

6.3 Deep Structured Mixture of Gaussian Processes

tree and L
K
Σ
j=1

E denotes the log-sum-exp operation. Note that Equa-

tion (6.12) can be computed efficiently using a single upward evalu-
ation through the model. To optimise the hyperparameters we perform
gradient-based optimisation according to the partial derivatives of Equa-
tion (6.12) w.r.t. the parameters, c.f. Section 3.3. Let p(L) denote the
probability of leaf L, i.e. in case of tree-shaped DSMGPs p(L) is the
product of the weights on the unique path to L, then the partial deriv-
ative for the parameters θ, which are shared across all leaves, can be
written as

∂ log p(y |X)

∂θ
=
∑
L∈S

1

p(y |X)

∂p(L) p(y(L) |X(L))

∂θ
. (6.13)

After applying the log transformation, i.e. ∂f(x)
∂x = f(x)∂ log f(x)∂x , we

obtain the following partial derivatives,

∂ log p(y |X)

∂θ
=
∑
L∈S

p(L) p(y(L) |X(L))

p(y |X)︸ ︷︷ ︸
=
∂ log p(y |X)

∂L

∂ log p(y(L) |X(L))

∂θ
, (6.14)

which admit a numerically stable optimisation of the hyperparameters.
In the case of non-stationary data, we can optionally fine-tune the

hyperparameters of each expert after the optimisation. For this purpose,
let #L denote the cardinality of L and let S ∈ R#L×#L be a similarity
matrix. Further, let S contain similarity values, i.e. 0 ≤ (sL,L′) ≤ 1 and
sL,L′ = 1 if L = L′, between all pairs of leaves (L, L′) with L, L′ ∈ L.

A natural choice for S is a matrix of normalised overlap values, i.e.

sL,L′ =
1

#D(L)

∑
xi∈D(L)

1{xi∈D(L′)} , (6.15)

where #D(L) is the cardinality of D(L). Given such a similarity matrix
and provided that each leaf has it’s own parameters, denoted as θL, we
can compute the gradients for θL as

∂ log p(y |X)

∂θL
=
∑
L′∈S

sL,L′
∂ log p(y |X)

∂L

∂ log p(y(L′) |X(L′), θL′ = θL)

∂θL′
,

(6.16)

where p(y(L′) |X(L′), θL′ = θL) denotes the probability distribution con-
ditioned on θL′ taking the value θL. Therefore, S constraints hyper-
parameters of “similar” leaves to take similar values. Note that Equa-
tion (6.16) reduces to Equation (6.14) if S is a matrix of ones and reduces
to independent hyperparameter optimisation if S is the identity matrix.

Figure 6.2 illustrates the effects of fine-tuning on a synthetic dataset
with heteroscedastic noise [158]. In contrast to global hyperparameter
optimisation (Equation (6.14)), fine-tuning allows DSMGPS to capture
heteroscedasticity by obtaining an individual noise parameter for each
leaf. Therefore, DSMGPs with fine-tuned hyperparameters are more
flexible than traditional GPs.

12th July 2020 – 99 –

6 Sum-Product Networks over Gaussian Processes

6.3.4 Shared Cholesky Decomposition
Recall that the posterior variance of a GP is calculated according to
Equation (6.5), requiring us to invert the matrix C. The standard ap-
proach to compute the inverse of a Hermitian positive-definite matrix
is to first decompose the matrix into a product of an upper triangular
matrix U and its conjugate transpose U∗, i.e. A = U∗U33. In case
of a kernel matrix (real-valued symmetric positive-definite), the decom-
position has a unique solution and the decomposition can be written as
K = UT U . This decomposition is called the Cholesky decomposition
and can be written as

K =

u1,1u2,1 u2,2
u3,1 u3,2 u3,3

u1,1 u1,2 u1,3
u2,2 u2,3

u3,3

 (6.17)

=

u
2
1,1 u1,1u1,2 u1,1u1,3

. . . u22,1 + u22,2 u1,3u1,2 + u2,3u2,2

.
∑3

i=1 u
2
3,i

 , (6.18)

which resembles the Cholesky–Banachiewicz algorithm [159]. Note that
we can decompose C to compute its inverse using the same approach,
i.e. C−1 = U−1(UT)−1.

DSMGPs with multiple children under a sum node naturally have
overlapping local GPs, i.e. GPs share parts of their input domain. This
property can be utilised to share solutions of the Cholesky decomposi-
tions, which can speed up computations.

Let us consider the case in which two leaves, denoted as L and L′, are
such that XL′ ⊂ XL and #X(L′) < #X(L). We will discuss two scenarios
in which the kernel matrix of L′ can be obtained in an efficient and nu-
merically stable way. In the first scenario the kernel matrix KX(L′),X(L′) is
a sub-matrix of the kernel matrix of L and [KX(L′),X(L′)]1,1 = [KX(L),X(L)

]1,1.
The upper triangular matrix of the Cholesky decomposition for the ker-
nel matrix of L′ is a sub-matrix of the decomposition for the kernel
matrix of L in this case.

Let UL and UL′ denote the upper triangular matrices of the Cholesky
decomposition for the respective kernel matrices. Then,

UL =

[
UL′ vT

v Ũ

]
, (6.19)

where the vector v ∈ RP and Ũ ∈ RP×P with P being the additional
dimensions contained in UL. Thus, we can copy the respective sub-
matrix to obtain UL′ .

In the second scenario both kernel matrices share the last column and
row and we have

KX(L),X(L)
=


k1,1 k1,2 k1,3 . . . k1,NL

k2,1 k2,2 k2,3 . . . k2,NL

...
...

...
kNL,1 kNL,2 kNL,3 . . . kNL,NL

 , (6.20)

33 The Cholesky decomposition can equivalently be defined as a factorisation into a
lower triangular matrix and its conjugate transpose.

– 100 – 12th July 2020

6.4 Experiments

and in case of L′ we have

KX(L′),X(L′) =


k1,1 0 k1,3 . . . k1,NL

0 0 0 . . . 0
...

...
...

kNL,1 0 kNL,3 . . . kNL,NL

 . (6.21)

In such a scenario, we can formulate the solution of the Cholesky de-
composition UTU for the sub-matrix [KXL′ ,XL′]3:NL,3:NL

in terms of a
system of linear equations. The solution can efficiently be obtained by
performing rank-1 updates, which scales quadratic with the size P of
U , i.e. O(P 2). We refer to Seeger [160] for details on a numerical stable
algorithm to perform rank-1 updates or downdates.

Note that other scenarios are either a combination of the two discussed
scenarios or can be solved by continuing the Cholesky decomposition
after applying rank-1 updates. Scenarios that are not covered by those
combinations do not result in numerically stable solutions, when solved
using rank-1 updates or downdates, and should be solved explicitly. We
refer to Seeger [160] for a detailed discussion. The outlined approach
can readily be applied in case of noisy observations, i.e. to compute the
inverse of C.

10 20 30 40 50 60
0

1

2

Number of partitions

T
im

e
(s

ec
on

ds
) direct

shared

Figure 6.3: Time required to solve the Cholesky decomposition of a DSMGP on
a synthetic dataset. The runtime for a direct approach without shar-
ing solutions is denoted as (direct) and the shared approach using
(shared). We see that sharing Cholesky decompositions improves the
runtime by a factor of two.

We empirically evaluated the performance gains through sharing solu-
tions of the Cholesky decompositions, shown in Figure 6.3. The plot
compares the runtime, measured on an i7-6900k CPU @ 3.2 GHz, for
a synthetic dataset consisting of 1k observations against an increasing
number of partitions. We see that sharing Cholesky decompositions re-
duces the runtime by a factor of two, allowing us to explore twice as
many partitions of the input space without additional computational
costs.

6.4 Experiments

To assess the performance of DSMGPs, we first compared the approxim-
ation error against existing PoE approaches. Subsequently, we evaluated

12th July 2020 – 101 –

6 Sum-Product Networks over Gaussian Processes

the predictive performance of DSMGPs compared against state-of-the-
art on various benchmark datasets.

To construct the DSMGP structure for each experiment, we used the
algorithm outlined in Appendix D.2.1. In short, we construct a hier-
archical structure consisting of sum nodes with KS children and uni-
form weights, i.e. wS,N = 1

KS
, and product nodes with KP children by

alternating between sum and product nodes. This process terminates
and constructs a leaf node once we reached R many repetitions – con-
secutive sum and product nodes – or the number of observations in the
subspace of the input domain is smaller than a pre-defined minimum
M . Finally, we equip each GP leaf with a Squared Exponential (SE)
kernel-function with Automatic Relevance Detection (ARD) and a zero
mean-function. Note that we used the same kernel and mean-function for
all other methods. To obtain suitable hyperparameters, we performed
global hyperparameter optimisation for each model using RMSprop run
for 1k iterations. We intensionally refrained from performing local fine-
tuning of DSMGPs in all experiments, to allow for a fair comparison.

6.4.1 Approximation Error
In the first experiment, we compared the approximation error of DS-
MGPs against popular expert-based approaches on the motorcycle data-
set [161]. Figure 6.6 shows the posterior distribution of a generalize PoE
(gPoE) [150], a robust Bayesian Committee Machine (rBCM) [162] and
our DSMGP superimposed with the posterior of an exact GP. All models
use the same kernel-function as the exact GP and distribute the input
domain or the dataset onto local experts with M = 7 observations. Note
that the gPoE and the rBCM algorithms result in over-conservative pre-
dictions or wrong estimates of the mean, specifically, in transition areas.
DSMGP, on the other hand, provide an accurate representation of the
uncertainties and mean in all regions of the input domain, when used as
an approximation to a GP. Note that DSMGPs do not suffer from severe
discontinuities and can exploit discontinuities in data when appropriate.

Figure 6.4 quantitatively compares the approximation error on the
Kin40k dataset [163], in terms of the Root Mean Squared Error (RMSE),
i.e.

RMSE =

√√√√ 1

Ntest

Ntest∑
j=1

(ŷj − yj)2 , (6.22)

where ŷj is the prediction for the jth test datum and yj denotes the cor-
rect outcome. The DSMGP was constructed using KS = 4, R = 2 and
KP = R

√
N
M . We see that DSMGPs consistently obtain a lower approx-

imation error than existing approaches, independent of the number of
observations per expert.

– 102 – 12th July 2020

6.4 Experiments

10 100 1,000 10,000
0

0.2

0.4

0.6

0.8

1

Number of observations per local GP

R
M

SE

GP
gPoE
rBCM

DSMGP

Figure 6.4: Approximation error on the Kin40k dataset.

6.4.2 Quantitative Evaluation
To compare the performance of DSMGPs, we assessed their the predict-
ive performance against an exact GP, linear regression (LR), constant
regression (Conts), gPoE, rBCM34, sparse variational GPs (SVGPs)35

[164] and structured kernel interpolation (KISS) [165] on the benchmark
datasets listed in Table 6.1. Where available, we used the existing train-
ing and test set split, and otherwise randomly split the dataset into 70%
for training and 30% for testing. We pre-processed each dataset to have
zero mean and unit variance – in the inputs and outputs – and used a
zero mean-function for each approach.

Table 6.1: Statistics of benchmark datasets. For each dataset we list size of the
training set N , the test set Ntest, the input dimensionality D, and
output dimensionality P .

Dataset N Ntest D P

Airfoil 1,052 451 5 1
Parkinsons 4,112 1,763 16 2
Kin40k 10,000 30,000 8 1
House 15,949 6,835 16 1
Protein 32,011 13,719 9 1
Year 360,742 154,603 90 1
Flight 500,000 200,000 8 2

In the experiments we used Q = 100 inducing points and consistently
used M = 100 observations per expert for each expert-based approach.
DSMGPs additionally use KS = 4, while the hyperparameters are es-
timated on an DSMGP with KS = 1. In case of KISS GPs, we chose
the grid size according to the number of data points and used an ad-
ditive kernel decomposition, as KISS GPs scale exponentially with the
dimensionality of the input domain.

To assess the performance of each technique, we followed the approach

34 We used the implementation in https://github.com/jopago/GPyBCM.
35 We used the implementation in GPyTorch: https://gpytorch.ai.

12th July 2020 – 103 –

https://github.com/jopago/GPyBCM
https://gpytorch.ai

6 Sum-Product Networks over Gaussian Processes

by prior art and computed the Mean Absolute Error (MAE) and the
Negative Log Predictive Density (NLPD), i.e.

MAE =
1

Ntest

Ntest∑
j=1

|ŷj − yj | (6.23)

NLPD =
1

Ntest

Ntest∑
j=1

− log p(yj |xj ,D) , (6.24)

where D is the training set. Table 6.2 reports the MAE and the NLPD
on each dataset. Note that the NLPD for LR and Const are computed
using the inferred noise as the variance of the predictive distribution.
We see that DSMGPs consistently outperform other expert-based ap-
proaches and often perform competitively or outperform SVGPs. Fur-
ther, our model consistently captures predictive uncertainties better
than previous expert-based approaches resulting in low NLPDs. Note
that DSMGPs often have a lower approximation error than SVGPs,
when compared to the NLPD and the MAE of an exact GPs.

Dataset Const LR GP SVGP KISS gPoE rBCM DSMGP

Airfoil MAE 0.82 0.53 0.50 0.32 0.51 0.35 0.34 0.32
NLPD 1.43 1.05 0.99 0.59 1.00 0.72 3.21 0.57

Parkin. MAE 0.85 0.82 0.78 0.68 0.78 0.84 0.80 0.74
NLPD 2.88 2.79 2.73 2.52 2.73 4.49 3.80 2.66

Kin40K MAE 0.81 0.81 0.79 0.25 0.79 0.80 0.43 0.78
NLPD 1.42 1.42 1.39 0.37 1.39 2.68 4.14 1.38

House MAE 0.62 0.49 NA 0.39 0.43 0.50 0.40 0.39

NLPD 1.45 1.30 NA 1.06 1.10 4.61 4.58 1.11

Protein MAE 0.89 0.71 NA 0.57 0.64 0.82 0.70 0.55

NLPD 1.41 1.25 NA 1.11 1.19 2.38 4.57 1.11

Year MAE 0.74 0.73 NA 0.57 NA 0.74 0.74 0.72

NLPD 1.41 1.39 NA 1.21 NA 3.78 1.49 1.38

Flight MAE 0.56 0.54 NA 0.54 NA 0.56 0.56 0.54

NLPD 2.87 2.85 NA 2.80 NA 8.05 11.51 2.84

Table 6.2: Mean Absolute Error (MAE) and Negative Log Predictive Density
(NLPD) of state-of-the-art approaches and DSMGPs on benchmark
datasets with 1.5K to 500K observations. The overall best perform-
ance is indicated in bold font and the best NLPD obtained by an expert-
based approach is underlined. Smaller values are better.

To assess the effect of the number of children under each sum node
(KS) and the minimum number of observations per expert (M) on the
performance of DSMGPs, we trained DSMGPs using different settings
and computed the average NLPD for each setting on the test set for
three datasets. Figure 6.5 shows the respective results in the form of
contour plots. We can see that low performance, due to small M , can
often be compensated by an increased number of children per sum node.

Additionally, we assessed the runtime for hyperparameter optimisa-
tion and compared the timings against existing PoE approaches. Table 6.3

– 104 – 12th July 2020

6.4 Experiments

1 0.95
0.95

0.9

0.85

0.8

0.8

0.75

0.7

0.
7

0.
65

100 150 200 250 300 350 400
1

2

3

4

M

K
S

(a) Airfoil
2.75

2.74

2.
73

2.72

2.
72

2.71

2.
71

2.7

2.
7

2.
69

2.
68

2.
67

100 150 200 250 300 350 400
1

2

3

4

M

K
S

(b) Parkinsons

1.22

1.24

1.26

1.28

1.3

1.32
1.3

5
1.351.51.651.8

100 150 200 250 300 350 400
1

2

3

4

M

K
S

(c) Kin40k

Figure 6.5: Average test NLPD scores for DSMGPs trained using different num-
ber of children under each sum node KS and different number of
observations per expert M . Each test NLPD score has been computed
based on 10 independent reruns.

lists the resulting timings, indicating that optimising DSMGPs is com-
petitive to prior work when trained as described above. These timings
can be improved by implementing the mentioned algorithms using a
distributed framework or by utilising the GPU.

Dataset GP gPoE rBCM Ours

Airfoil 0.28s 0.05s 0.05s 0.06s
Parkin. 42.61s 1.21s 1.30s 1.27s
Kin40k 107.65s 0.86s 0.87s 0.89s
House NA 2.55s 2.55s 2.59s
Protein NA 2.69s 2.70s 2.53s
Year NA 28.82s 28.90s 22.17s

Table 6.3: Average runtime (seconds) of an iteration of hyperparameter optim-
isation on an i7-6900k CPU @ 3.2 GHz.

12th July 2020 – 105 –

6 Sum-Product Networks over Gaussian Processes

6.5 Related Work
While DSMGPs are a process model in its own right, the primary motiv-
ation for this work is to utilise the divide-and-conquer approach applied
by SPNs for efficient approximation of a full GP. In this sense, the most
related approaches are expert-based approaches, which we review in this
section.

The probably simplest approach is based on so-called Naive-Local-
Experts (NLE) [148], [149], [166]. NLEs use a pre-defined, sometimes
nested, partition of the input space and model each subspace using an
independent GP expert. Due to the independence assumptions, NLEs
introduce hard discontinuities. Recent approaches, such as [167], try to
ameliorate this effect by imposing continuity constraints onto the local
experts using patched GPs. However, this approach suffers from incon-
sistent variances and does not scale well with the number of boundaries
and, consequently, the dimensionality of the input space. In contrast
to NLEs and patched GPs, DSMGPs do not rely on a single partition,
but instead, perform posterior inference over a large set of partitions,
and thus effectively selects the partitions that are well supported by the
data.

PoE approaches, such as gPoE, BCM and rBCM, distribute subsets
of the data to local experts and aggregate their predictive distributions
using a product operation – weighted by some adaptive or non-adaptive
scale factors. The key motivation in these approaches is that a product
of Gaussians is still Gaussian. However, predictions using PoE base ap-
proaches typically do not correspond to inference in some well-defined
statistical model. BCMs, on the other hand, justify their formulation
as an approximation to posterior inference in GPs, but the introduced
approximation error is hard to analyse. Moreover, the product aggreg-
ation of expert predictions is Kolmogoroff inconsistent [154], and PoEs
are known to have sub-optimal rates of the posterior contraction, and,
therefore, can result in uncalibrated predictive uncertainties [153]. In
contrast to PoE approaches, our model is a well-defined stochastic pro-
cess and adequately captures predictive uncertainties.

The MoE model [168] is a sound probabilistic model, defined as a mix-
ture of GP experts and a so-called gating network, which dynamically
assigns data to GPs. One of the most prominent variants is the infin-
ite MoE model [152], which removes the i.i.d. assumption of the MoE
and uses a Dirichlet process as gating network. Alternative formulations
and improvements of the infinite MoE model can be found in [169], [170].
However, while MoE models are designed to capture multi-modality and
non-stationarity, they usually lack tractable inference. Consequently,
they inherently rely on approximate posterior inference, which hampers
their application to large data domains. In contrast to MoE models, our
approach does not use a gating network but performs inference over a
large set of pre-determined partitions of the input space. Crucially, and
unlike in MoE models, posterior inference in our model can be performed
exactly and efficiently. Note that the approach by Zhang and William-
son [171], which was published around the time of this thesis, is similar
in spirit to DSMGPs, but does not utilise exact posterior inference.

– 106 – 12th July 2020

6.5 Related Work

(a) generalized PoE

(b) robust BCM

(c) DSMGP

Figure 6.6: Comparison of generalized PoE, robust BCM and DSMGP (orange)
against an exact GP (blue).

12th July 2020 – 107 –

Sum-Product Networks for Complex Modelling Scenarios

7
Discussion & Future Work

In this thesis, we have developed various novel techniques for learn-
ing Sum-Product Networks (SPNs) in complex modelling scenarios. At
the core of this thesis are principled approaches, often leveraging the
Bayesian approach, to i) learn SPNs in case of semi-supervision, ii)
obtain SPNs structures in a principled way, and iii) extend SPNs for
non-linear nonparametric regression analysis. We will first summarise
the main findings of this thesis and then discuss future directions and
open questions.

In many domains, it is cheap to acquire unlabelled data while obtain-
ing class labels for supervised learning is expensive. Often these domains
not only lack in labelled training data but also come with strong require-
ments on the learner. We have shown that the Contrastive Pessimistic
Likelihood (CPL), which has originally been proposed for linear discrim-
inant analysis [35], is a viable objective for safe semi-supervised learning
in SPNs [95]. In Chapter 4, we have extended the CPL objective for gen-
erative and discriminative learning of semi-supervised SPNs. By maxim-
ising the CPL as a semi-supervised objective, we can guarantee that the
semi-supervised SPN cannot degenerate with an increase in unlabelled
data, making semi-supervised SPNs an attractive approach in safety-
critical domains. In various experiments, we have shown that semi-
supervised SPNs perform favourably compared to other semi-supervised
methods and are sometimes on par with an SPN trained on the fully
labelled dataset. In addition to semi-supervised parameter learning, we
have examined the inherent acceleration effects of gradient-based op-
timisation in SPNs [72]. In particular, we have shown that overpara-
meterised SPNs exhibit similar dynamics as observed in linear neural
networks [90] and that gradient-based optimisation corresponds to op-
timisation with an adaptive and time-varying learning rate and mo-
mentum term. Therefore, gradient-based optimisation of overparamet-
erised SPNs results in implicit acceleration effects, resulting in faster
convergence. We have shown that this effect can indeed be observed
across different datasets.

Besides our contributions on parameter learning, we have introduced
the first principled structure learning approach for SPNs [157]. For this,
we have developed a novel representation of SPNs, by decomposing the
problem of finding a suitable SPN structure into i) laying out a computa-
tional graph, and ii) learning the so-called scope-function over the graph.
The first is rather unproblematic and akin to neural network architecture
validation. The second part, i.e. learning a scope-function, is arguably
the more difficult task, as the scope-function has to respect the usual
structural constraints in SPNs, i.e. completeness and decomposability.
Even though representing and learning the scope-function is somewhat

12th July 2020 – 109 –

7 Discussion & Future Work

involved in general, we have shown that we can find a natural paramet-
risation for an important and widely used case of SPNs, i.e. those defined
over a tree-structured region graph, using discrete latent variables. Fur-
ther, we have shown how to incorporate these structural parameters into
a Bayesian model, allowing simultaneous structure and parameter learn-
ing using joint Bayesian posterior inference. For this, we have introduced
a Gibbs sampling scheme that exploits conjugacy in the model formal-
ism and leverages efficient ancestral sampling in SPNs. We observed in
various experiments that Bayesian SPNs often improve test likelihoods
over greedy SPN learners. Further, since the Bayesian framework pro-
tects against overfitting, we can evaluate hyperparameters directly on
the Bayesian model evidence, waiving the need for a separate validation
set, which is especially beneficial in low data regimes. Moreover, we have
shown that Bayesian SPNs can be directly applied to heterogeneous do-
mains and can learn structures robustly in the context of missing data.
In addition, we introduced two formulations for nonparametric SPNs,
enabling SPN structure and parameter learning in domains where the
model complexity is expected to increase with growing amounts of data.

In the last part of this thesis, we have developed SPNs as a stochastic
process model called Deep Structured Mixtures of Gaussian Processes
(DSMGPs). For this, we first discussed the probability measure induced
by an SPN, and subsequently introduced DSMGPs by equipping SPNs
with Gaussian measures at the leaves. Because of the one-to-one re-
lationship between Gaussian measures and Gaussian processes for the
space of continuously differentiable functions on any real interval, our
approach directly extends SPNs to infinitely many random variables and
establishes SPNs as a well-defined stochastic process model. The res-
ulting model inherits tractable inference from SPNs and exact posterior
inference in Gaussian processes and has an interesting interpretation
as exact Bayesian model averaging over a rich set of naive-local expert
models. We have shown that DSMGPs not only allow exact and efficient
posterior inference but also outperform existing expert-based approaches
and obtain low approximation errors when used as an approximation to
a Gaussian process. Furthermore, DSMGPs have attractive computa-
tion costs for hyperparameter optimisation and allow fine-tuning of local
hyperparameters to account for nonstationarities in the dataset. Last
but not least, we have shown that the structure of the DSMGP can be
exploited to speed up computations by sharing solutions of the Cholesky
decompositions of the experts.

Even though this thesis introduces many important advances in SPNs,
various questions remain to be addressed in future work. We will high-
light the most important open questions and provide pointers to possible
future directions of research.

• Optimising the CPL objective has certain shortcomings. Most im-
portantly, the pessimistic strategy of the CPL often results in a
very conservative learner and prevents the learner from improving
upon the supervised SPN in certain scenarios. An important dir-
ection of research is, therefore, to examine strategies that trade-off
between optimism and pessimism in the CPL objective.

• Another shortcoming of the current semi-supervised approach for
SPNs is that the CPL does not account for uncertainties about the

– 110 – 12th July 2020

model parameters. However, in safety-critical data domains, it is
particularly relevant to incorporate these uncertainties instead of
relying on a single point estimate for the model parameters.

• An important future direction for structure learning in SPNs is
to derive fast approximation schemes for Bayesian SPNs. Even
though our Markov chain Monte Carlo approach scales well with
moderately sized datasets, it does not allow efficient inference in
large scale applications. Moreover, it is often more desirable to ob-
tain a variational approximation to the true posterior, thus allow-
ing for a more compact description of the posterior distribution.
However, obtaining a variational inference scheme for Bayesian
SPNs is non-trivial. We believe that exploiting recent advances
in Bayesian neural networks, such as continuous relaxations using
the Gumble-softmax trick, could be a promising future direction.

• Even though we have introduced techniques to obtain nonpara-
metric formulations for SPN, efficient inference in more flexible
formulations is still an open question.

• Last but not least, we have shown that SPNs can result in an
effective stochastic process model. However, the interpretability
of the posterior distribution of DSMGPs and the capability to
infer kernel-functions has yet to be explored more extensively.

The results of this thesis have shown that SPNs are an incredibly
flexible and versatile model formalism. Therefore, we want to conclude
this thesis with some futuristic ideas on how to advance probabilistic
machine learning.

• We have shown that SPNs can be an effective approach for non-
parametric regression analysis. However, can we also utilise SPNs
as a surrogate model for other nonparametric models, e.g. to per-
form efficient inference in models with a nonparametric prior on
partitions?

• Can we exploit SPNs for agent-based systems and reinforcement
learning? In particular, can we utilise exact integration in nested
settings?

• In SPNs we utilise decomposability to guarantee that global in-
tegration simplifies to local integration. Can we utilise a sim-
ilar strategy to automatically accelerate probabilistic inference in
general-purpose probabilistic programming systems?

12th July 2020 – 111 –

Sum-Product Networks for Complex Modelling Scenarios

A
Appendix: Sum-Product Networks

A.1 Compiling Region Graphs to
Sum-Product Networks

The following pseudocode outlines how to obtain an SPN from a region
graph. Note that the algorithm assumes all parameters θ and w to
exists, but can also be written in form of a generative process if used
in the context of Bayesian learning. Further note that we assume each
partition node to have exactly two children. This assumption can of
course be relaxed if necessary.

Algorithm 1: Convert Region-Graph To SPN
Input: I > 0, J > 0, θ, w
Output: S
Function getNodes(R: Atomic region)

L← ∅ ;
for i = 1, . . . , I do

L← L ∪ p(x | θi)
return L

Function getNodes(P : Partition)
P← ∅ ;
R1, R2 ← ch(P) ;
N1 ← getNodes(R1) ;
N2 ← getNodes(R2) ;
foreach N ∈ N1 do

foreach N′ ∈ N2 do
P← P ∪ N× N′

return P
Function getNodes(R: Region)

S← ∅ ;
for j = 1, . . . , J do

N← ∅ foreach P ∈ ch(R) do
N← N ∪ getNodes(P)

S← S ∪
∑N∈NwNN

return S

12th July 2020 – 113 –

Sum-Product Networks for Complex Modelling Scenarios

B
Appendix: Safe Semi-Supervised

Learning

The following pseudocode illustrates an implementation of the learnMCP-
SPN algorithm for safe-semi-supervised learning of SPNs.

Algorithm 2: Learn MCP-SPN Parameters
Input: SPN structure S, labelled data D, unlabelled data U
Output: Learned parameters and soft labels
// learn supervised SPN
if generative then

θsup ← argmaxθ∈ΘL(θ |D)
else

θsup ← argmaxθ∈Θ C(θ |D)

// initialize soft labels
if optimistic then

qk,m ← Sk(um)
S(um) ∀k∀m

else
qm ∼ Dir(1

K , . . . ,
1
K) ∀m

// learn safe semi-supervised SPN
repeat

// optimistic parameter learning
if generative then

θCPL ← argmaxθ∈ΘL(θ |D,U , q)
else

θCPL ← argmaxθ∈Θ C(θ |D,U , q)
// pessimistic soft label adjustment
q ← q − α∇q ;
Project each qm back onto the ∆K−1 Simplex

until convergence or early stopping;
return θCPL, q

– 114 – 12th July 2020

Sum-Product Networks for Complex Modelling Scenarios

C
Appendix: Bayesian Learning of

Sum-Product Networks

C.1 Heterogeneous Experiments

To conduct the heterogeneous data experiments, we introduce mixtures
over likelihood model for each leaf node used the following likelihood
and prior constructions in the experiment. Note that all of the used
priors distributions are conjugate to their respective observation model
and we can therefore obtain their posterior in closed-form.

Continuous: Gaussian likelihood N (µ, σ2)

• Prior on σ2 ∼ Γ−1(α0, β0) with α0 = 2, β0 = 3 and with posterior
parameters αN = α + N/2 and βN = β0 +

1
2(µ

2
0ν0

−1 +
∑N

i=1 x
2
i −

µ2NνN
−1).

• Prior on µ ∼ N (µ0, σ
2ν0) with posterior parameters µN = νN (µ0ν0

−1+
Nx̄) and νN

−1 = ν0
−1 +N where x̄ is the sample mean.

Continuous (positive): Exponential likelihood Exp (λ)

• Prior on λ ∼ Γ(α0, β0) with α0 = β0 = 1 and with posterior
parameters αN = α0 +N and βN = β0 +

∑N
i=1 xi.

Discrete: Poisson likelihood Poisson (λ)

• Prior on λ ∼ Γ(α0, β0) with α0 = β0 = 1 and with posterior
parameters αN = α0 +

∑N
i=1 xi and βN = β0 +N .

Discrete: Categorical likelihood Cat(w)

• Prior on w ∼ Dir(α1/K, . . . , αK/K) with αk = 0.1 and with pos-
terior parameters α̃k/K = αk/K +

∑N
i=1 1{zi=k}.

Discrete: Bernoulli likelihood B (p)

• Prior on p ∼ Beta (α0, β0) with α0 = β0 = 0.5 and with posterior
αN = α0 +

∑N
i=1 xi and βN = β0 +N −

∑N
i=1 xi.

12th July 2020 – 115 –

C Appendix: Bayesian Learning of Sum-Product Networks

C.2 Statistical Significance Tests
To assess the statistical significance of the reported results we computed
the p-value of the Mann-Whitney-U-Test [141]. The Mann-Whitney-U-
Test is a nonparametric equivalent of the two sample t-test which does
not require the assumption of normal distributions. The respective p-
values obtained from the Mann-Whitney-U-Test for Bayesian SPNs and
infinite mixtures of Bayesian SPNs are listed in Table C.1.

Dataset LearnSPN RAT-SPN ID-SPN

NLTCS 0.726 0.573 0.291

MSNBC 0.634 0.420 0.474
KDD 0.792 0.044 0.505
Plants < 0.001 < 0.001 < 0.001

Audio < 0.001 < 0.001 < 0.001
Jester < 0.001 < 0.001 0.908

Netflix 0.100 0.924 0.455

Accidents < 0.001 < 0.001 < 0.001
Retail < 0.001 0.002 0.023
Pumsb-star < 0.001 < 0.001 < 0.001

DNA < 0.001 0.001 0.084
Kosarak < 0.001 < 0.001 < 0.001

MSWeb 0.721 0.005 0.030
Book < 0.001 0.035 0.124
EachMovie 0.270 0.228 0.390
WebKB < 0.001 0.001 < 0.001
Reuters-52 0.089 0.703 0.998
20 Newsgrp 0.846 0.508 0.969

BBC 0.002 0.288 0.866

AD 0.004 0.635 0.774

LearnSPN RAT-SPN ID-SPN

0.887 0.950 0.123
0.911 0.173 0.842
0.755 0.050 0.472

< 0.001 < 0.001 < 0.001
< 0.001 < 0.001 < 0.001

0.004 0.885 0.001
0.107 0.944 0.442

< 0.001 < 0.001 < 0.001
< 0.001 0.008 0.020
< 0.001 0.025 < 0.001
< 0.001 < 0.001 0.023
< 0.001 < 0.001 < 0.001

0.354 0.047 0.002
0.034 0.845 0.442
0.275 0.242 0.411

< 0.001 < 0.001 0.645
0.079 0.638 0.904
0.326 0.636 0.214
0.002 0.335 0.795
0.004 0.097 0.769

Table C.1: Mann-Whitney-U test p-values of Bayesian SPNs (left) and infinite
mixtures of Bayesian SPNs (right), compared to LearnSPN, RAT-
SPNs and ID-SPN. Values below 0.01 are underlined

– 116 – 12th July 2020

C.3 Reported Configurations and Respective Runtime

C.3 Reported Configurations and Respective
Runtime

We computed the average runtime for a single MCMC iteration measures
for an i7-6900k CPU @ 3.2 GHz. The respective runtime for each data-
set, measures for the computational graph used to report the results in
the paper, are listed in Table C.2. Note that these timings vary depend-
ing on the dataset size, the number of dimensions and the complexity of
the computational graph.

Dataset runtime (sec.) I J M L

NLTCS 4.03 5 10 8 2

MSNBC 33.87 5 5 4 4
KDD 43.05 5 10 8 2
Plants 24.39 5 10 8 4

Audio 3.50 5 5 4 4
Jester 5.12 5 10 4 4

Netflix 7.53 5 10 4 4

Accidents 27.55 10 10 8 4
Retail 3.46 10 10 4 2
Pumsb-star 4.15 10 10 8 2

DNA 7.92 5 10 8 4
Kosarak 10.43 10 10 8 2

MSWeb 4.91 5 5 8 2
Book 5.23 10 10 8 2
EachMovie 30.23 5 10 8 4
WebKB 3.61 10 10 8 2
Reuters-52 6.37 10 10 8 2
20 Newsgrp 11.02 5 10 8 2

BBC 3.56 5 10 8 2

AD 1.05 5 5 2 2

Table C.2: Number of sum nodes per region (I), number of leaves per atomic re-
gion (J), number of partitions (M), number of layers (L) and runtime
(in seconds) for and iteration of MCMC sampling.

12th July 2020 – 117 –

C Appendix: Bayesian Learning of Sum-Product Networks

C.4 Extended Results Table

Table C.3: Average test log-likelihoods on discrete datasets using SOTA, Bayesian
SPNs (ours) and infinite mixtures of SPNs (ours∞). Overall best
result is in bold.

D
at

as
et

Le
ar

nS
PN

R
AT

-S
PN

C
C

C
P

ID
-S

PN
bt

d-
PS

D
D

bt
d-

C
N

et
bt

d-
SP

N
ou

rs
ou

rs
∞

N
LT

C
S

−
6
.1
1

−
6
.0
1

−
6
.0
3

−
6
.0
2

−
5.
99

−
5
.9
7

−
6
.0
1

−
6
.0
0

−
6
.0
2

M
SN

B
C

−
6
.1
1

−
6
.0
4

−
6
.0
5

−
6
.0
4

−
6.
04

−
6
.0
3

−
6
.0
4

−
6
.0
6

−
6
.0
3

K
D

D
−
2
.1
8

−
2
.1
3

−
2
.1
3

−
2
.1
3

−
2
.1
1

−
2
.1
3

−
2
.1
2

−
2
.1
2

−
2
.1
3

Pl
an

ts
−
1
2.
98

−
13
.4
4

−
12
.8
7

−
12
.5
4

−
13
.0
2

−
1
1
.8
4

−
12
.5
4

−
12
.6
8

−
12
.9
4

A
ud

io
−
4
0.
50

−
39
.9
6

−
40
.0
2

−
39
.7
9

−
39
.9
4

−
3
9
.3
9

−
39
.7
9

−
39
.7
7

−
39
.7
9

Je
st

er
−
5
3.
48

−
52
.9
7

−
52
.8
8

−
52
.8
6

−
5
1
.2
9

−
52
.2
1

−
52
.8
0

−
52
.4
2

−
52
.8
6

N
et

fli
x

−
5
7.
33

−
56
.8
5

−
56
.7
8

−
56
.3
6

−
5
5
.7
1

−
55
.9
3

−
56
.3
6

−
56
.3
1

−
56
.8
0

A
cc

id
en

ts
−
3
0.
04

−
35
.4
9

−
27
.7
0

−
2
6
.9
8

−
30
.1
6

−
29
.2
7

−
27
.7
0

−
34
.1
0

−
33
.8
9

R
et

ai
l

−
1
1.
04

−
10
.9
1

−
10
.9
2

−
10
.8
5

−
1
0
.7
2

−
10
.8
1

−
10
.8
5

−
10
.8
3

−
10
.8
3

Pu
m

sb
-s

ta
r

−
2
4.
78

−
32
.5
3

−
24
.2
3

−
2
2
.4
1

−
26
.1
2

−
23
.4
4

−
2
2
.4
1

−
31
.3
4

−
31
.9
6

D
N

A
−
8
2.
52

−
97
.2
3

−
84
.9
2

−
81
.2
1

−
88
.0
1

−
8
1
.0
7

−
81
.2
1

−
92
.9
5

−
92
.8
4

K
os

ar
ak

−
1
0.
99

−
10
.8
9

−
10
.8
8

−
10
.6
0

−
1
0
.5
2

−
10
.6
0

−
10
.6
0

−
10
.7
4

−
10
.7
7

M
SW

eb
−
1
0.
25

−
10
.1
2

−
9
.9
7

−
9
.7
3

−
9.
89

−
9
.6
2

−
9
.7
3

−
9
.8
8

−
9
.8
9

B
oo

k
−
3
5.
89

−
34
.6
8

−
35
.0
1

−
34
.1
4

−
34
.9
7

−
34
.4
6

−
34
.1
4

−
3
4
.1
3

−
34
.3
4

Ea
ch

M
ov

ie
−
5
2.
49

−
53
.6
3

−
52
.5
6

−
51
.5
1

−
56
.4
3

−
5
0
.3
4

−
51
.4
9

−
51
.6
6

−
50
.9
4

W
eb

K
B

−
15

8
.2
0

−
15

7
.5
3
−
15

7
.4
9
−
15

1
.8
4

−
16

1
.0
9

−
1
4
9
.2
0
−
15

1
.8
4
−
15

6
.0
2
−
15

7
.3
3

R
eu

te
rs

-5
2

−
8
5.
07

−
87
.3
7

−
84
.6
3

−
83
.3
5

−
89
.6
1

−
8
1
.8
7

−
83
.3
5

−
84
.3
1

−
84
.4
4

20
N

ew
sg

rp
−
15

5
.9
3

−
15

2
.0
6
−
15

3
.2
1
−
15

1
.4
7

−
15

5
.9
7

−
1
5
1
.0
2
−
15

1
.4
7
−
15

1
.9
9
−
15

1
.9
5

B
B

C
−
25

0
.6
9

−
25

2
.1
4
−
24

8
.6
0
−
24

8
.9
3

−
25

3
.1
9

−
2
2
9
.2
1
−
24

8
.5
0
−
24

9
.0
7
−
25

4
.6
9

A
D

−
1
9.
73

−
48
.4
7

−
27
.2
0

−
19
.0
5

−
30
.4
9

−
1
4
.0
0

−
19
.0
5

−
63
.8
0

−
63
.8
0

– 118 – 12th July 2020

Sum-Product Networks for Complex Modelling Scenarios

D
Appendix: Deep Structured

Mixture of Gaussian Processes

D.1 Datasets
If available we used the existing training set / testing set splits and
otherwise randomly split the dataset into 70% for training and 30% for
testing. We pre-processed each dataset to have zero mean and unit
variance – in the inputs and outputs – and used a zero mean function
for each approach.

Table D.1: Statistics of benchmark datasets. For each dataset we list the num-
ber of training examples N (train), the number of test examples N
(test), the number of input dimensions (D) and the number of output
dimensions (P).

Dataset N (train) N (test) D P

Airfoil 1,052 451 5 1
Parkin. 4,112 1,763 16 2
Kin40k 10,000 30,000 8 1
House 15,949 6,835 16 1
Protein 32,011 13,719 9 1
Year 360,742 154,603 90 1
Flight 500,000 200,000 8 2

12th July 2020 – 119 –

D Appendix: Deep Structured Mixture of Gaussian Processes

D.2 Algorithms
In the following text, we will provide pseudocode implementations of the
algorithms for structure construction and posterior inference.

D.2.1 Structure Construction
The following pseudocode illustrates the recursively construction of a
deep structured mixture of Gaussian processes containing sum nodes
with KS many children and product nodes with KP many children. The
argument M controls the minimum number of observations per GP ex-
pert.

Algorithm 3: Construction of a Deep Structured Mixture of
Gaussian Processes

Input: KS,KP,M
Output: S
Function buildGP(X)

Equip L with a Gaussian process expert on the domain X
return L

Function buildSumNode(X)
wS ← { 1

KS
}KS
k=1 ;

Let u1, . . . , uD represent the sample variance in X for each
data dimension;

for k = 1, . . . ,KS do
d ∼ with probability proportional to ud;
S← S+ wk buildProductNode(X , d)

return S
Function buildProductNode(X , d)

m← sample mean or median of observations in X for
dimension d;
l← lower bound of X for dimension d;
u← upper bound of X for dimension d;
v ← u− l ;
for k = 1, . . .KP − 1 do

sk ∼ λ(vBeta (2, 2) + l) + (1− λ)m
Sort s1, . . . , sKP

such that l ≤ r1 ≤ r2 ≤ . . . ,≤ rKS
≤ u;

l̃← l ;
for k = 1, . . . ,KP − 1 do

ũ← rk ;
X̃ ← sub-domain of X such that upper and lower
bounds for d are equal to ũ, l̃, respectively ;

if Number of observations in X > M then
P← P× buildSumNode(X̃)

else
P← P× buildGP(X̃)

return P

– 120 – 12th July 2020

D.2 Algorithms

D.2.2 Exact Posterior Inference
The following pseudocode illustrates exact posterior inference in deep
structured mixture of Gaussian processes. The procedure recursively
performs exact posterior updates and starts at the root node of the
network. Note that for reasons of numerical stability, an actual im-
plementation of the algorithm will need to perform the operations in
log-space.

Algorithm 4: Exact posterior inference
Input: S
Output: posterior probability
Function infer(N)

z ← 0;
if N is a sum node then

for C ∈ ch(N) do
wN,C ← wN,C infer(C);
z ← z + wN,C

wN ← wN/z
else if N is a product node then

z ←
∏

C∈ch(N) infer(N)
else

z ← pN(y(N) |X(N))
return z

12th July 2020 – 121 –

Sum-Product Networks for Complex Modelling Scenarios

Bibliography

[1] Z. Ghahramani, ‘Probabilistic machine learning and artificial in-
telligence’, Nature, vol. 521, no. 7553, pp. 452–459, 2015.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville and Y. Bengio, ‘Generative ad-
versarial nets’, in Proceedings of Advances in Neural Information
Processing Systems (NeurIPS), 2014, pp. 2672–2680.

[3] D. P. Kingma and M. Welling, ‘Auto-encoding variational bayes’,
in Proceedings of the International Conference on Learning Rep-
resentations (ICLR), 2014.

[4] D. J. Rezende and S. Mohamed, ‘Variational inference with nor-
malizing flows’, in Proceedings of the International Conference on
Machine Learning (ICML), vol. 37, 2015, pp. 1530–1538.

[5] E. G. Tabak, E. Vanden-Eijnden et al., ‘Density estimation by
dual ascent of the log-likelihood’, Communications in Mathem-
atical Sciences, vol. 8, no. 1, pp. 217–233, 2010.

[6] B. Uria, M. Côté, K. Gregor, I. Murray and H. Larochelle, ‘Neural
autoregressive distribution estimation’, Journal of Machine Learn-
ing Research (JMLR), vol. 17, 205:1–205:37, 2016.

[7] A. Vergari, Y. Choi, R. Peharz and G. V. den Broeck, ‘Probab-
ilistic circuits: Representations, inference, learning and applica-
tions’, Tutorial at the Conference on Artificial Intelligence, 2020.

[8] H. Poon and P. M. Domingos, ‘Sum-product networks: A new
deep architecture’, in Proceedings of the Conference on Uncer-
tainty in Artificial Intelligence (UAI), 2011, pp. 337–346.

[9] D. Kisa, G. V. den Broeck, A. Choi and A. Darwiche, ‘Probab-
ilistic sentential decision diagrams’, in Proceedings of the Inter-
national Conference on Principles of Knowledge Representation
and Reasoning KR, 2014.

[10] R. Peharz, A. Vergari, K. Stelzner, A. Molina, M. Trapp, X.
Shao, K. Kersting and Z. Ghahramani, ‘Random sum-product
networks: A simple and effective approach to probabilistic deep
learning’, in Proceedings of the Conference on Uncertainty in Ar-
tificial Intelligence (UAI), 2019.

[11] Y. Liang, J. Bekker and G. V. den Broeck, ‘Learning the structure
of probabilistic sentential decision diagrams’, in Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), 2017.

[12] R. Peharz. (14th Jun. 2019). Sum-product networks and deep
learning: A love marriage, [Online]. Available: https://slideslive.
com/38917679/sumproduct-networks-and-deep-learning-a-
love-marriage (visited on 17/02/2020).

[13] R. Peharz, S. Lang, A. Vergari, K. Stelzner, A. Molina, M. Trapp,
G. V. den Broeck, K. Kersting and Z. Ghahramani, ‘Einsum net-
works: Fast and scalable learning of tractable probabilistic cir-
cuits’, in Proceedings of the International Conference on Machine
Learning (ICML), 2020.

– 122 – 12th July 2020

https://slideslive.com/38917679/sumproduct-networks-and-deep-learning-a-love-marriage
https://slideslive.com/38917679/sumproduct-networks-and-deep-learning-a-love-marriage
https://slideslive.com/38917679/sumproduct-networks-and-deep-learning-a-love-marriage

[14] C. J. Butz, J. de S. Oliveira, A. E. dos Santos and A. L. Teixeira,
‘Deep convolutional sum-product networks’, in Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), 2019,
pp. 3248–3255.

[15] H. Zhao, P. Poupart and G. J. Gordon, ‘A unified approach for
learning the parameters of sum-product networks’, in Proceedings
of Advances in Neural Information Processing Systems (Neur-
IPS), 2016, pp. 433–441.

[16] R. Peharz, R. Gens, F. Pernkopf and P. Domingos, ‘On the latent
variable interpretation in sum-product networks’, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 10, pp. 2030–2044, 2017.

[17] A. Vergari, A. Molina, R. Peharz, Z. Ghahramani, K. Kersting
and I. Valera, ‘Automatic Bayesian density analysis’, in Proceed-
ings of the AAAI Conference on Artificial Intelligence (AAAI),
2019.

[18] A. Rashwan, H. Zhao and P. Poupart, ‘Online and distributed
Bayesian moment matching for parameter learning in sum-product
networks’, in Proceedings of the International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), 2016, pp. 1469–
1477.

[19] H. Zhao, T. Adel, G. J. Gordon and B. Amos, ‘Collapsed vari-
ational inference for sum-product networks’, in Proceedings of the
International Conference on Machine Learning (ICML), 2016,
pp. 1310–1318.

[20] R. Gens and P. M. Domingos, ‘Discriminative learning of sum-
product networks’, in Proceedings of Advances in Neural Inform-
ation Processing Systems (NeurIPS), 2012, pp. 3248–3256.

[21] Z. Yang, W. Cohen and R. Salakhutdinov, ‘Revisiting semi-supervised
learning with graph embeddings’, in Proceedings of the Interna-
tional Conference on Machine Learning (ICML), 2016, pp. 40–
48.

[22] L. Maaloe, C. K. Sonderby, S. K. Sonderby and O. Winther, ‘Aux-
iliary deep generative models’, in Proceedings of the International
Conference on Machine Learning (ICML), 2016, pp. 1445–1453.

[23] A. Rasmus, M. Berglund, M. Honkala, H. Valpola and T. Raiko,
‘Semi-supervised learning with ladder networks’, in Proceedings of
Advances in Neural Information Processing Systems (NeurIPS),
2015, pp. 3546–3554.

[24] L. Käll, J. D. Canterbury, J. Weston, W. S. Noble and M. J. Mac-
Coss, ‘Semi-supervised learning for peptide identification from
shotgun proteomics datasets’, Nature methods, vol. 4, no. 11,
pp. 923–925, 2007.

[25] M.-A. Krogel and T. Scheffer, ‘Multi-relational learning, text
mining, and semi-supervised learning for functional genomics’,
Machine Learning, vol. 57, no. 1-2, pp. 61–81, 2004.

12th July 2020 – 123 –

Bibliography

[26] X. Zhang, N. Guan, Z. Jia, X. Qiu and Z. Luo, ‘Semi-supervised
projective non-negative matrix factorization for cancer classifica-
tion’, PloS one, vol. 10, no. 9, e0138814, 2015.

[27] O. Chapelle, B. Schölkopf and A. Zien, ‘Semi-supervised learn-
ing’, IEEE Transactions on Neural Networks, vol. 20, no. 3, pp. 542–
542, 2009.

[28] X. Zhu and A. Goldberg, ‘Introduction to semi-supervised learn-
ing’, Synthesis lectures on artificial intelligence and machine learn-
ing, vol. 3, no. 1, pp. 1–130, 2009.

[29] A. Tarvainen and H. Valpola, ‘Mean teachers are better role mod-
els: Weight-averaged consistency targets improve semi-supervised
deep learning results’, in Proceedings of Advances in Neural In-
formation Processing Systems (NeurIPS), 2017, pp. 1195–1204.

[30] D. P. Kingma, S. Mohamed, D. J. Rezende and M. Welling, ‘Semi-
supervised learning with deep generative models’, in Proceedings
of Advances in Neural Information Processing Systems (Neur-
IPS), 2014, pp. 3581–3589.

[31] Y. Li and Z. Zhou, ‘Towards making unlabeled data never hurt’,
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 37, no. 1, pp. 175–188, 2015.

[32] R. Collobert, F. Sinz, J. Weston and L. Bottou, ‘Large scale
transductive svms’, Journal of Machine Learning Research, vol. 7,
pp. 1687–1712, 2006.

[33] T. Miyato, S.-i. Maeda, M. Koyama and S. Ishii, ‘Virtual ad-
versarial training: A regularization method for supervised and
semi-supervised learning’, IEEE Transactions on Pattern Ana-
lysis and Machine Intelligence, vol. 41, no. 8, pp. 1979–1993,
2018.

[34] Z. Yang, W. W. Cohen and R. Salakhutdinov, ‘Revisiting semi-
supervised learning with graph embeddings’, in Proceedings of the
International Conference on Machine Learning (ICML), 2016,
pp. 40–48.

[35] M. Loog, ‘Contrastive pessimistic likelihood estimation for semi-
supervised classification’, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 38, no. 3, pp. 462–475, 2016.

[36] R. Gens and P. Domingos, ‘Learning the structure of sum-product
networks’, in Proceedings of the International Conference on Ma-
chine Learning (ICML), 2013, pp. 873–880.

[37] S.-W. Lee, M.-O. Heo and B.-T. Zhang, ‘Online incremental struc-
ture learning of sum-product networks’, in Proceedings of Ad-
vances in Neural Information Processing Systems (NeurIPS),
2013, pp. 220–227.

[38] A. Rooshenas and D. Lowd, ‘Learning sum-product networks
with direct and indirect variable interactions’, in Proceedings of
the International Conference on Machine Learning (ICML), 2014,
pp. 710–718.

– 124 – 12th July 2020

[39] A. Vergari, N. Di Mauro and F. Esposito, ‘Simplifying, regulariz-
ing and strengthening sum-product network structure learning’,
in Proceedings of the European Conference on Machine Learning
(ECML), 2015, pp. 343–358.

[40] A. Molina, A. Vergari, N. Di Mauro, S. Natarajan, F. Esposito
and K. Kersting, ‘Mixed sum-product networks: A deep architec-
ture for hybrid domains’, in Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 2018.

[41] T. Adel, D. Balduzzi and A. Ghodsi, ‘Learning the structure of
sum-product networks via an SVD-based algorithm’, in Proceed-
ings of the Conference on Uncertainty in Artificial Intelligence
(UAI), 2015.

[42] A. W. Dennis and D. Ventura, ‘Learning the architecture of sum-
product networks using clustering on variables’, in Proceedings of
Advances in Neural Information Processing Systems (NeurIPS),
2012, pp. 2042–2050.

[43] R. Peharz, B. C. Geiger and F. Pernkopf, ‘Greedy part-wise learn-
ing of sum-product networks’, in Proceedings of the European
Conference on Machine Learning (ECML), vol. 8189, 2013, pp. 612–
627.

[44] A. W. Dennis and D. Ventura, ‘Greedy structure search for sum-
product networks’, in Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), 2015, pp. 932–938.

[45] A. Kalra, A. Rashwan, W.-S. Hsu, P. Poupart, P. Doshi and G.
Trimponias, ‘Online structure learning for feed-forward and re-
current sum-product networks’, in Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2018, pp. 6944–
6954.

[46] P. L. Tan and R. Peharz, ‘Hierarchical decompositional mix-
tures of variational autoencoders’, in Proceedings of the Inter-
national Conference on Machine Learning (ICML), vol. 97, 2019,
pp. 6115–6124.

[47] D. D. Mauá, F. G. Cozman, D. Conaty and C. P. de Campos,
‘Credal sum-product networks’, in Proceedings of the Interna-
tional Symposium on Imprecise Probability: Theories and Applic-
ations, vol. 62, 2017, pp. 205–216.

[48] M. Melibari, P. Poupart, P. Doshi and G. Trimponias, ‘Dynamic
sum product networks for tractable inference on sequence data’,
in Proceedings of the International Conference on Probabilistic
Graphical Models (PGM), vol. 52, 2016, pp. 345–355.

[49] E. Spodarev, Lecture notes in stochastics ii, 2017.
[50] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for

machine learning, ser. Adaptive computation and machine learn-
ing. MIT Press, 2006, isbn: 026218253X.

[51] S. Arora, N. Cohen and E. Hazan, ‘On the optimization of deep
networks: Implicit acceleration by overparameterization’, in Pro-
ceedings of the International Conference on Machine Learning
(ICML), 2018, pp. 244–253.

12th July 2020 – 125 –

Bibliography

[52] H. Ge, Y. Chen, M. Wan and Z. Ghahramani, ‘Distributed infer-
ence for Dirichlet process mixture models’, in Proceedings of the
International Conference on Machine Learning (ICML), 2015,
pp. 2276–2284.

[53] R. L. Schilling, Measures, integrals and martingales, 2nd ed. Cam-
bridge University Press, 2017.

[54] A. N. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrech-
nung. Springer, 1933.

[55] G. Vitali, Sul problema della misura dei Gruppi di punti di una
retta: Nota. Tip. Gamberini e Parmeggiani, 1905.

[56] F. Hausdrogg, Grundzüge der Mengenlehre. Veit & Comp., 1914.
[57] J. Oxtoby, Measure and Category. Springer, 1980.
[58] P. Billingsley, Probability and Measure, 3rd ed. John Wiley &

Sons, 1995.
[59] J. S. Rosenthal, A first look at rigorous probability theory, 2nd ed.

World Scientific Publishing Company, 2006.
[60] R. Diestel, Graph Theory, 5th ed. Springer, 2017.
[61] W. Cheng, S. Kok, H. V. Pham, H. L. Chieu and K. M. A. Chai,

‘Language modeling with sum-product networks’, in Proceedings
of the Annual Conference of the International Speech Communic-
ation Association (INTERSPEECH), 2014, pp. 2098–2102.

[62] R. Peharz, G. Kapeller, P. Mowlaee and F. Pernkopf, ‘Modeling
speech with sum-product networks: Application to bandwidth ex-
tension’, in Proceedings of the International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2014, pp. 3699–
3703.

[63] F. Rathke, M. Desana and C. Schnörr, ‘Locally adaptive probabil-
istic models for global segmentation of pathological OCT scans’,
in Proceedings of the International Conference on Medical Im-
age Computing and Computer Assisted Intervention (MICCAI),
2017, pp. 177–184.

[64] K. Zheng, A. Pronobis and R. P. N. Rao, ‘Learning graph-structured
sum-product networks for probabilistic semantic maps’, in Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI),
2018, pp. 4547–4555.

[65] C. J. Butz, A. E. dos Santos, J. de S. Oliveira and J. Stavrinides,
‘Efficient examination of soil bacteria using probabilistic graph-
ical models’, in Proceedings of the International Conference on
Industrial Engineering and Other Applications of Applied Intelli-
gent Systems (IEA/AIE), 2018, pp. 315–326.

[66] K. Stelzner, R. Peharz and K. Kersting, ‘Faster attend-infer-
repeat with tractable probabilistic models’, in Proceedings of the
International Conference on Machine Learning (ICML), vol. 97,
2019, pp. 5966–5975.

[67] A. Darwiche, ‘A differential approach to inference in Bayesian
networks’, Journal of the ACM (JACM), vol. 50, no. 3, pp. 280–
305, 2003.

– 126 – 12th July 2020

[68] R. Peharz, ‘Foundations of sum-product networks for probabil-
istic modeling’, PhD thesis, Graz University of Technology, 2015.

[69] D. Lowd and P. M. Domingos, ‘Learning arithmetic circuits’, in
Proceedings of the Conference on Uncertainty in Artificial Intel-
ligence (UAI), 2008, pp. 383–392.

[70] A. Darwiche, Modeling and Reasoning with Bayesian Networks.
Cambridge University Press, 2009.

[71] R. Peharz, S. Tschiatschek, F. Pernkopf and P. M. Domingos,
‘On theoretical properties of sum-product networks’, in Proceed-
ings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), vol. 38, 2015.

[72] M. Trapp, R. Peharz and F. Pernkopf, ‘Optimisation of overpara-
metrized sum-product networks’, in proceedings of TPM workshop
at ICML, 2019.

[73] H. Zhao, M. Melibari and P. Poupart, ‘On the relationship between
sum-product networks and bayesian networks’, in Proceedings of
the International Conference on Machine Learning (ICML), 2015,
pp. 116–124.

[74] A. Kimmig, G. V. den Broeck and L. D. Raedt, ‘Algebraic model
counting’, Journal of Applied Logic, vol. 22, pp. 46–62, 2017.

[75] A. L. Friesen and P. M. Domingos, ‘The sum-product theorem:
A foundation for learning tractable models’, in Proceedings of the
International Conference on Machine Learning (ICML), vol. 48,
2016, pp. 1909–1918.

[76] A. W. Dennis and D. Ventura, ‘Learning the architecture of sum-
product networks using clustering on variables’, in Proceedings of
Advances in Neural Information Processing Systems (NeurIPS),
2012, pp. 2042–2050.

[77] C. J. Butz, J. de S. Oliveira, A. E. dos Santos and A. L. Teixeira,
‘Deep convolutional sum-product networks’, in Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), 2019,
pp. 3248–3255.

[78] O. Sharir, R. Tamari, N. Cohen and A. Shashua, ‘Tensorial mix-
ture models’, CoRR, vol. abs/1610.04167, 2016.

[79] H. Zhao and G. J. Gordon, ‘Linear time computation of moments
in sum-product networks’, in Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2017, pp. 6894–6903.

[80] A. W. V. d. Vaart, Asymptotic Statistics, ser. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University
Press, 1998.

[81] S. Ruder, ‘An overview of gradient descent optimization algorithms’,
CoRR, vol. abs/1609.04747, 2016.

[82] A. G. Baydin, B. A. Pearlmutter, A. A. Radul and J. M. Sis-
kind, ‘Automatic differentiation in machine learning: A survey’,
Journal of Machine Learning Research, vol. 18, 153:1–153:43,
2017.

12th July 2020 – 127 –

Bibliography

[83] J. Duchi, S. Shalev-Shwartz, Y. Singer and T. Chandra, ‘Efficient
projections onto the l1-ball for learning in high dimensions’, in
Proceedings of the International Conference on Machine Learning
(ICML), 2008, pp. 272–279.

[84] B. O. Koopman, ‘On distributions admitting a sufficient statistic’,
Transactions of the American Mathematical Society, vol. 39, no. 3,
pp. 399–409, 1936.

[85] S. Kullback, Information Theory and Statistics. Dover Publica-
tions Inc., 1959.

[86] A. Rashwan, P. Poupart and Z. Chen, ‘Discriminative training of
sum-product networks by extended baum-welch’, in Proceedings
of the International Conference on Probabilistic Graphical Models
(PGM), 2018, pp. 356–367.

[87] P. Baldi and K. Hornik, ‘Learning in linear neural networks: A
survey’, IEEE Transactions in Neural Networks, vol. 6, no. 4,
pp. 837–858, 1995.

[88] S. Arora, N. Cohen, W. Hu and Y. Luo, ‘Implicit regularization in
deep matrix factorization’, in Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2019, pp. 7411–7422.

[89] A. M. Saxe, J. L. McClelland and S. Ganguli, ‘Exact solutions
to the nonlinear dynamics of learning in deep linear neural net-
works’, in Proceedings of the International Conference on Learn-
ing Representations (ICLR), 2014.

[90] S. Arora, N. Cohen and E. Hazan, ‘On the optimization of deep
networks: Implicit acceleration by overparameterization’, in Pro-
ceedings of the International Conference on Machine Learning
(ICML), 2018, pp. 244–253.

[91] Y. E. Nesterov, ‘A method for solving the convex programming
problem with convergence rate O(1/k2̂)’, Soviet Mathematics Dok-
lady, vol. 269, pp. 543–547, 1983.

[92] N. USDA, The plantss database (http://plants.usda.gov, may 2011).
national plant data team, greensboro, 2015.

[93] Z. Sun, C. Liu, J. Niu and W. Zhang, ‘Discriminative structure
learning of sum-product networks for data stream classification’,
Neural Networks, vol. 123, pp. 163–175, 2020.

[94] A. Nicolson and K. K. Paliwal, ‘Sum-product networks for ro-
bust automatic speaker recognition’, CoRR, vol. abs/1910.11969,
2019.

[95] M. Trapp, T. Madl, R. Peharz, F. Pernkopf and R. Trappl, ‘Safe
semi-supervised learning of sum-product networks’, in Proceed-
ings of the Conference on Uncertainty in Artificial Intelligence
(UAI), 2017.

[96] S.-W. Lee, M.-O. Heo and B.-T. Zhang, ‘Online incremental struc-
ture learning of sum-product networks’, in Proceedings of Ad-
vances in Neural Information Processing Systems (NeurIPS),
2013, pp. 220–227.

[97] I. Paris, R. Sanchez-Cauce and F. J. Diez, ‘Sum-product net-
works: A survey’, CoRR, vol. abs/2004.01167, 2020.

– 128 – 12th July 2020

[98] S.-W. Lee, C. Watkins and B.-T. Zhang, ‘Non-parametric bayesian
sum-product networks’, in ICML Workshop on Learning Tract-
able Probabilistic Models, vol. 32, 2014.

[99] M. Trapp, R. Peharz, M. Skowron, T. Madl, F. Pernkopf and
R. Trappl, ‘Structure inference in sum-product networks using
infinite sum-product trees’, in Proceedings of BNP workshop at
NeurIPS, 2016.

[100] T. Rahman, P. Kothalkar and V. Gogate, ‘Cutset networks: A
simple, tractable, and scalable approach for improving the accur-
acy of Chow-Liu trees’, in Proceedings of the European Conference
on Machine Learning (ECML), 2014, pp. 630–645.

[101] R. Peharz, R. Gens and P. Domingos, ‘Learning selective sum-
product networks’, in Proceedings of the LTPM workshop at ICML,
2014.

[102] N. D. Mauro, A. Vergari, T. M. A. Basile and F. Esposito, ‘Fast
and accurate density estimation with extremely randomized cut-
set networks’, in Proceedings of the European Conference on Ma-
chine Learning (ECML), 2017, pp. 203–219.

[103] T. Rahman, S. Jin and V. Gogate, ‘Look ma, no latent variables:
Accurate cutset networks via compilation’, in Proceedings of the
International Conference on Machine Learning (ICML), 2019,
pp. 5311–5320.

[104] X. Zhu, ‘Semi-supervised learning with graphs’, PhD thesis, Carne-
gie Mellon University, 2005.

[105] J. E. van Engelen and H. H. Hoos, ‘A survey on semi-supervised
learning’, Machine Learning, vol. 109, no. 2, pp. 373–440, 2020.

[106] S. Basu, A. Banerjee and R. J. Mooney, ‘Semi-supervised clus-
tering by seeding’, in Proceedings of the International Conference
on Machine Learning (ICML), 2002, pp. 27–34.

[107] F. G. Cozman, I. Cohen and M. Cirelo, ‘Unlabeled data can de-
grade classification performance of generative classifiers.’, in Pro-
ceedings of the International Florida Artificial Intelligence Society
Conference, 2002, pp. 327–331.

[108] M. Betancourt, ‘Cruising the simplex: Hamiltonian monte carlo
and the dirichlet distribution’, in proceedings of the American
Institute of Physics Conference, vol. 1443, 2012, pp. 157–164.

[109] B. Kalantari, ‘Approximating nash equilibrium via multilinear
minimax’, 2019.

[110] A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf and
A. J. Smola, ‘A kernel statistical test of independence’, in Pro-
ceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2007, pp. 585–592.

[111] H. Akaike, ‘A new look at the statistical model identification’,
IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716–
723, 1974.

[112] A. K. Jain and M. Law, ‘Data clustering: A user’s dilemma’, in
Proceedings of the International Conference on Pattern Recogni-
tion and Machine Intelligence (PReMI), 2005, pp. 1–10.

12th July 2020 – 129 –

Bibliography

[113] D. Dua and C. Graff, UCI machine learning repository, 2017.
[Online]. Available: http://archive.ics.uci.edu/ml.

[114] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, ‘Gradient-based
learning applied to document recognition’, Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[115] Y. Grandvalet and Y. Bengio, ‘Semi-supervised learning by en-
tropy minimization’, in Proceedings of Advances in Neural In-
formation Processing Systems (NeurIPS), 2004, pp. 529–536.

[116] J. H. Krijthe and M. Loog, ‘Implicitly constrained semi-supervised
least squares classification’, in Proceedings of International Sym-
posium on Intelligent Data Analysis, 2015, pp. 158–169.

[117] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[118] J. Suzuki, ‘A construction of Bayesian networks from databases
based on an MDL principle’, in Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI), 1993, pp. 266–273.

[119] D. Koller and N. Friedman, Probabilistic Graphical Models: Prin-
ciples and Techniques. MIT Press, 2009.

[120] D. Heckerman, D. Geiger and D. M. Chickering, ‘Learning Bayesian
networks: The combination of knowledge and statistical data’,
Machine learning, vol. 20, no. 3, pp. 197–243, 1995.

[121] G. F. Cooper and E. Herskovits, ‘A Bayesian method for the
induction of probabilistic networks from data’, Machine learning,
vol. 9, no. 4, pp. 309–347, 1992.

[122] N. Friedman and D. Koller, ‘Being Bayesian about network struc-
ture. a Bayesian approach to structure discovery in Bayesian net-
works’, Machine learning, vol. 50, no. 1-2, pp. 95–125, 2003.

[123] S. M. Ross, Introduction to probability models. Academic press,
2014.

[124] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
MIT Press, 2012.

[125] N. L. Hjort, C. Holmes, P. Müller and S. G. Walker, Bayesian
Nonparametrics. Cambridge University Press, 2010.

[126] D. Blackwell and J. B. MacQueen, ‘Ferguson distributions via
polya urn schemes’, The Annals of Statistics, vol. 1, no. 2, pp. 353–
355, 1973.

[127] D. M. Blei, T. L. Griffiths and M. I. Jordan, ‘The nested Chinese
restaurant process and Bayesian nonparametric inference of topic
hierarchies’, J. ACM, vol. 57, no. 2, 7:1–7:30, 2010.

[128] C. E. Rasmussen, ‘The infinite gaussian mixture model’, in Pro-
ceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2000, pp. 554–560.

[129] D. W. Scott, ‘Multivariate density estimation and visualization’,
in Handbook of Computational Statistics, Springer, 2012, pp. 549–
569.

– 130 – 12th July 2020

http://archive.ics.uci.edu/ml

[130] G. M. Reaven and R. G. Miller, ‘An attempt to define the nature
of chemical diabetes using a multidimensional analysis’, Diabet-
ologia, vol. 16, no. 1, pp. 17–24, 1979.

[131] R. A. Fisher, ‘The use of multiple measurements in taxonomic
problems’, Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[132] R. M. Neal, ‘Markov chain sampling methods for dirichlet process
mixture models’, Journal of computational and graphical statist-
ics, vol. 9, no. 2, pp. 249–265, 2000.

[133] M. D. Escobar and M. West, ‘Bayesian density estimation and
inference using mixtures’, Journal of the american statistical as-
sociation, vol. 90, no. 430, pp. 577–588, 1995.

[134] A. Vehtari and J. Lampinen, ‘Bayesian model assessment and
comparison using cross-validation predictive densities’, Neural
Computation, vol. 14, no. 10, pp. 2439–2468, 2002.

[135] J. Sethuraman, ‘A constructive definition of Dirichlet priors’,
Statistica sinica, pp. 639–650, 1994.

[136] J. W. Paisley, C. Wang, D. M. Blei and M. I. Jordan, ‘Nested
hierarchical dirichlet processes’, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 37, no. 2, pp. 256–270,
2015.

[137] R. P. Adams, Z. Ghahramani and M. I. Jordan, ‘Tree-structured
stick breaking for hierarchical data’, in Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2010, pp. 19–
27.

[138] S. G. Walker, ‘Sampling the dirichlet mixture model with slices’,
Communications in Statistics—Simulation and Computation®,
vol. 36, no. 1, pp. 45–54, 2007.

[139] C. E. Rasmussen and Z. Ghahramani, ‘Occam’s Razor’, in Pro-
ceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2001, pp. 294–300.

[140] P. Jaini, A. Ghose and P. Poupart, ‘Prometheus: Directly learn-
ing acyclic directed graph structures for sum-product networks’,
in Proceedings of the International Conference on Probabilistic
Graphical Models (PGM), 2018, pp. 181–192.

[141] H. B. Mann and D. R. Whitney, ‘On a test of whether one of
two random variables is stochastically larger than the other’, The
Annals of Mathematical Statistics, pp. 50–60, 1947.

[142] B. Marlin, ‘Missing data problems in machine learning’, PhD
thesis, University of Toronto, 2008.

[143] L. Beretta and A. Santaniello, ‘Nearest neighbor imputation al-
gorithms: A critical evaluation’, BMC medical informatics and
decision making, vol. 16, no. 3, p. 74, 2016.

[144] H. Liu, Y. Ong, X. Shen and J. Cai, ‘When gaussian process meets
big data: A review of scalable gps’, CoRR, vol. abs/1807.01065,
2018.

12th July 2020 – 131 –

Bibliography

[145] F. Wang, J. M. Decker, X. Wu, G. M. Essertel and T. Rompf,
‘Backpropagation with callbacks: Foundations for efficient and
expressive differentiable programming’, in Proceedings of Advances
in Neural Information Processing Systems (NeurIPS), 2018, pp. 10 201–
10 212.

[146] M. K. Titsias, ‘Variational learning of inducing variables in sparse
gaussian processes’, in Proceedings of the International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2009,
pp. 567–574.

[147] D. R. Burt, C. E. Rasmussen and M. van der Wilk, ‘Rates of
convergence for sparse variational gaussian process regression’, in
Proceedings of the International Conference on Machine Learning
(ICML), 2019, pp. 862–871.

[148] S. Vasudevan, F. T. Ramos, E. Nettleton, H. F. Durrant-Whyte
and A. Blair, ‘Gaussian process modeling of large scale terrain’,
in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2009, pp. 1047–1053.

[149] H.-M. Kim, B. K. Mallick and C. C. Holmes, ‘Analyzing non-
stationary spatial data using piecewise gaussian processes’, Journal
of the American Statistical Association, vol. 100, no. 470, pp. 653–
668, 2005.

[150] Y. Cao and D. J. Fleet, ‘Generalized product of experts for auto-
matic and principled fusion of gaussian process predictions’, CoRR,
vol. abs/1410.7827, 2014.

[151] V. Tresp, ‘A bayesian committee machine’, Neural Computation,
vol. 12, no. 11, pp. 2719–2741, 2000.

[152] C. E. Rasmussen and Z. Ghahramani, ‘Infinite mixtures of gaus-
sian process experts’, in Proceedings of Advances in Neural In-
formation Processing Systems (NeurIPS), 2001, pp. 881–888.

[153] B. Szabó and H. van Zanten, ‘An asymptotic analysis of dis-
tributed nonparametric methods’, Journal of Machine Learning
Research, vol. 20, 87:1–87:30, 2019.

[154] Y. K. Samo and S. J. Roberts, ‘String and membrane gaus-
sian processes’, Journal of Machine Learning Research (JMLR),
vol. 17, 131:1–131:87, 2016.

[155] B. S. Rajput and S. Cambanis, ‘Gaussian processes and gaussian
measures’, The Annals of Mathematical Statistics, pp. 1944–1952,
1972.

[156] W. H. Press, Numerical recipes in C++: the art of scientific
computing (second ed.) Cambridge University Press, 2002.

[157] M. Trapp, R. Peharz, H. Ge, F. Pernkopf and Z. Ghahramani,
‘Bayesian learning of sum-product networks’, in Proceedings of
Advances in Neural Information Processing Systems (NeurIPS),
2019, pp. 6344–6355.

[158] V. Tolvanen, P. Jylänki and A. Vehtari, ‘Expectation propaga-
tion for nonstationary heteroscedastic gaussian process regres-
sion’, in proceedings of the IEEE International Workshop on Ma-
chine Learning for Signal Processing, 2014, pp. 1–6.

– 132 – 12th July 2020

[159] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flan-
nery, Numerical recipes in c, 1988.

[160] M. Seeger, ‘Low rank updates for the cholesky decomposition’,
University of California at Berkeley, Tech. Rep., 2008.

[161] B. W. Silverman, ‘Some aspects of the spline smoothing approach
to non-parametric regression curve fitting’, Journal of the Royal
Statistical Society, vol. 47, no. 1, pp. 1–52, 1985.

[162] M. P. Deisenroth and J. W. Ng, ‘Distributed gaussian processes’,
in Proceedings of the International Conference on Machine Learn-
ing (ICML), 2015, pp. 1481–1490.

[163] M. W. Seeger, C. K. I. Williams and N. D. Lawrence, ‘Fast for-
ward selection to speed up sparse gaussian process regression’, in
Proceedings of the International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2003.

[164] Y. Gal, M. van der Wilk and C. E. Rasmussen, ‘Distributed vari-
ational inference in sparse gaussian process regression and latent
variable models’, in Proceedings of Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2014, pp. 3257–3265.

[165] A. G. Wilson and H. Nickisch, ‘Kernel interpolation for scalable
structured gaussian processes (KISS-GP)’, in Proceedings of the
International Conference on Machine Learning (ICML), vol. 37,
2015, pp. 1775–1784.

[166] R. B. Gramacy and H. K. H. Lee, ‘Bayesian treed gaussian pro-
cess models with an application to computer modeling’, Journal
of the American Statistical Association, vol. 103, no. 483, pp. 1119–
1130, 2008.

[167] C. Park and J. Z. Huang, ‘Efficient computation of gaussian pro-
cess regression for large spatial data sets by patching local gaus-
sian processes’, Journal of Machine Learning Research (JMLR),
vol. 17, 174:1–174:29, 2016.

[168] V. Tresp, ‘Mixtures of gaussian processes’, in Proceedings of Ad-
vances in Neural Information Processing Systems (NeurIPS),
2000, pp. 654–660.

[169] C. W. L. Gadd, S. Wade and A. Boukouvalas, ‘Enriched mixtures
of gaussian process experts’, CoRR, vol. abs/1905.12969, 2019.

[170] E. Meeds and S. Osindero, ‘An alternative infinite mixture of
gaussian process experts’, in Proceedings of Advances in Neural
Information Processing Systems (NeurIPS), 2005, pp. 883–890.

[171] M. M. Zhang and S. A. Williamson, ‘Embarrassingly parallel in-
ference for gaussian processes’, Journal of Machine Learning Re-
search, vol. 20, M. Opper, Ed., pp. 1–26, 2019.

[172] M. Park, G. Horwitz and J. W. Pillow, ‘Active learning of neural
response functions with gaussian processes’, in Proceedings of
Advances in Neural Information Processing Systems (NeurIPS),
2011, pp. 2043–2051.

[173] J. W. Ng and M. P. Deisenroth, ‘Hierarchical mixture-of-experts
model for large-scale gaussian process regression’, CoRR, vol. abs/1412.3078,
2014.

12th July 2020 – 133 –

Bibliography

[174] B. Zoph and Q. V. Le, ‘Neural architecture search with reinforce-
ment learning’, in Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

[175] Y. Bengio, N. Léonard and A. C. Courville, ‘Estimating or propagat-
ing gradients through stochastic neurons for conditional compu-
tation’, CoRR, vol. abs/1308.3432, 2013.

[176] J. A. Hoeting, D. Madigan, A. E. Raftery and C. T. Volin-
sky, ‘Bayesian model averaging: A tutorial’, Statistical science,
pp. 382–401, 1999.

[177] T. Jaakkola, D. Sontag, A. Globerson and M. Meila, ‘Learning
Bayesian network structure using LP relaxations’, in Proceed-
ings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), 2010, pp. 358–365.

[178] H. Kang, C. D. Yoo and Y. Na, ‘Maximum margin learning of
t-SPNs for cell classification with filtered input’, IEEE Journal of
Selected Topics in Signal Processing, vol. 10, no. 1, pp. 130–139,
2016.

[179] M. Koivisto and K. Sood, ‘Exact Bayesian structure discovery
in Bayesian networks’, Journal of Machine Learning Research,
vol. 5, pp. 549–573, 2004.

[180] V. Mansinghka, P. Shafto, E. Jonas, C. Petschulat, M. Gasner
and J. B. Tenenbaum, ‘Crosscat: A fully Bayesian nonparametric
method for analyzing heterogeneous, high dimensional data’, The
Journal of Machine Learning Research, vol. 17, no. 1, pp. 4760–
4808, 2016.

[181] D. K. Duvenaud, J. R. Lloyd, R. B. Grosse, J. B. Tenenbaum
and Z. Ghahramani, ‘Structure discovery in nonparametric re-
gression through compositional kernel search’, in Proceedings of
the International Conference on Machine Learning (ICML), 2013,
pp. 1166–1174.

[182] N. Friedman, D. Geiger and M. Goldszmidt, ‘Bayesian network
classifiers’, Machine learning, vol. 29, no. 2-3, pp. 131–163, 1997.

[183] D. Schabus, M. Skowron and M. Trapp, ‘One million posts: A
data set of german online discussions’, in Proceedings of the Inter-
national ACM SIGIR Conference on Research and Development
in Information Retrieval SIGIR, 2017, pp. 1241–1244.

[184] M. Trapp, M. Skowron and D. Schabus, ‘Retrieving composi-
tional documents using position-sensitive word mover’s distance’,
in Proceedings of the ACM SIGIR International Conference on
Theory of Information Retrieval ICTIR, 2017, pp. 233–236.

[185] M. Skowron, M. Trapp, S. Payr and R. Trappl, ‘Automatic iden-
tification of character types from film dialogs’, Applied Artificial
Intelligence, vol. 30, no. 10, pp. 942–973, 2016.

[186] M. Trapp, R. Peharz, F. Pernkopf and C. E. Rasmussen, ‘Deep
structured mixtures of gaussian processes’, in Proceedings of the
International Conference on Artificial Intelligence and Statistics
(AISTATS), 2020.

– 134 – 12th July 2020

[187] M. Trapp, ‘BNP.jl: Bayesian nonparametrics in Julia’, in pro-
ceedings of BNP workshop at NeurIPS, 2015.

12th July 2020 – 135 –

Sum-Product Networks for Complex Modelling Scenarios

List of Publications

[10] R. Peharz, A. Vergari, K. Stelzner, A. Molina, M. Trapp, X.
Shao, K. Kersting and Z. Ghahramani, ‘Random sum-product
networks: A simple and effective approach to probabilistic deep
learning’, in Proceedings of the Conference on Uncertainty in Ar-
tificial Intelligence (UAI), 2019.

[13] R. Peharz, S. Lang, A. Vergari, K. Stelzner, A. Molina, M. Trapp,
G. V. den Broeck, K. Kersting and Z. Ghahramani, ‘Einsum net-
works: Fast and scalable learning of tractable probabilistic cir-
cuits’, in Proceedings of the International Conference on Machine
Learning (ICML), 2020.

[72] M. Trapp, R. Peharz and F. Pernkopf, ‘Optimisation of overpara-
metrized sum-product networks’, in proceedings of TPM workshop
at ICML, 2019.

[95] M. Trapp, T. Madl, R. Peharz, F. Pernkopf and R. Trappl, ‘Safe
semi-supervised learning of sum-product networks’, in Proceed-
ings of the Conference on Uncertainty in Artificial Intelligence
(UAI), 2017.

[99] M. Trapp, R. Peharz, M. Skowron, T. Madl, F. Pernkopf and
R. Trappl, ‘Structure inference in sum-product networks using
infinite sum-product trees’, in Proceedings of BNP workshop at
NeurIPS, 2016.

[157] M. Trapp, R. Peharz, H. Ge, F. Pernkopf and Z. Ghahramani,
‘Bayesian learning of sum-product networks’, in Proceedings of
Advances in Neural Information Processing Systems (NeurIPS),
2019, pp. 6344–6355.

[183] D. Schabus, M. Skowron and M. Trapp, ‘One million posts: A
data set of german online discussions’, in Proceedings of the Inter-
national ACM SIGIR Conference on Research and Development
in Information Retrieval SIGIR, 2017, pp. 1241–1244.

[184] M. Trapp, M. Skowron and D. Schabus, ‘Retrieving composi-
tional documents using position-sensitive word mover’s distance’,
in Proceedings of the ACM SIGIR International Conference on
Theory of Information Retrieval ICTIR, 2017, pp. 233–236.

[185] M. Skowron, M. Trapp, S. Payr and R. Trappl, ‘Automatic iden-
tification of character types from film dialogs’, Applied Artificial
Intelligence, vol. 30, no. 10, pp. 942–973, 2016.

[186] M. Trapp, R. Peharz, F. Pernkopf and C. E. Rasmussen, ‘Deep
structured mixtures of gaussian processes’, in Proceedings of the
International Conference on Artificial Intelligence and Statistics
(AISTATS), 2020.

[187] M. Trapp, ‘BNP.jl: Bayesian nonparametrics in Julia’, in pro-
ceedings of BNP workshop at NeurIPS, 2015.

– 136 – 12th July 2020

Sum-Product Networks for Complex Modelling Scenarios

Index

F1 score, 70
σ-algebra, 22
σ-operator, 24

adjacency matrix, 32
arithmetic circuit, 36

Bayes’ rule, 26
Bayesian committee machine, 92
Bayesian parameter learning, 74
Borel σ-algebra, 24

Chinese Restaurant process, 82
collapsed Gibbs sampling, 78
complete, 37
complete graph, 32
computational graph, 41
conditional independence, 27
conditional log-likelihood, 48
conditional probability, 26
conditionally independent random

variables, 31
connected graph, 32
consistent, 37
contrastive pessimistic likelihood, 61
cumulative distribution function, 28
cycle, 32

Daniell-Kolmogoroff theorem, 93
decomposable, 37
Deep Structured Mixture of Gaus-

sian Processes, 94
directed acyclic graph, 32
directed graph, 32
Dirichlet process, 80
distribution, 28

expectation maximisation, 47
expected value, 29

finite measure, 23
Fubini-Tonelli theorem, 25

Gaussian measure, 94
Gaussian process, 93
Gibbs sampling, 78
graph, 32

independence, 27

independent random variables, 29
indicator function, 28
induced graph, 32
induced scope-function, 76

joint probability distribution, 31

kernel-function, 93
KL divergence, 91

leaf node, 32
Lebesgue measure, 24
log-likelihood, 46

marginal distribution, 31
Markov chain Monte Carlo, 74
maximum a-posteriori, 45
maximum likelihood, 46
mean-function, 93
measurable function, 25
measurable space, 22
measure, 23
measure space, 23
Mixture-of-Experts, 92
Monte Carlo integration, 75

Naive-Local-Experts, 92
network polynomial, 35
normalised, 36

path, 32
posterior distribution, 45
posterior predictive distribution, 74
posterior probability, 27
power set, 22
probability density function, 28
probability mass function, 28
probability measure, 23
probability space, 23
product σ-algebra, 25
product measure, 25
product rule, 26
Product-of-Experts, 92
push-forward measure, 25

random variable, 27
random vector, 31
region graph, 43
root node, 32

12th July 2020 – 137 –

INDEX

scope, 36
scope-function, 42
stick-breaking construction, 84
stochastic process, 92
sub-graph, 32
sum rule, 26
sum-product network, 36
sum-product tree, 36

tree, 32

variance, 29

– 138 – 12th July 2020

	Introduction
	Probabilistic Machine Learning
	Modern Probabilistic Machine Learning

	Research Questions
	Contributions & Organisation

	Background
	Primer on Measure Theory
	Probability Theory
	Random Variables

	Primer on Graph Theory

	Sum-Product Networks
	Generalized Sum-Product Networks
	Induced Trees
	Probability Measure of Sum-Product-Networks

	Representations of Sum-Product Networks
	Computational Graphs & Scope Functions
	Region Graphs

	Generative & Discriminative Learning
	Generative Learning
	Discriminative Learning

	Implicit Acceleration Effects
	Preliminaries
	Overparameterisation in Sum-Product Networks
	Empirical Results
	Conclusion

	Structure Learning

	Semi-Supervised Learning of Sum-Product Networks
	Motivation
	Preliminaries
	Contrastive Pessimistic Likelihood Estimation

	Learning Safe Semi-Supervised Sum-Product Networks
	Generative Learning
	Discriminative Learning
	Learning Maximum Contrastive Pessimistic Sum-Product Networks

	Experiments
	Qualitative Experiments
	Quantitative Experiments

	Bayesian Learning of Sum-Product Networks
	Motivation
	Preliminaries
	Bayesian Sum-Product Networks
	Sampling-based Inference
	Updating the Parameters
	Updating the Structure
	Performing Predictions

	Nonparametric Sum-Product Networks
	Infinite Sum-Product Trees
	Infinite Mixture of Bayesian Sum-Product Networks

	Experiments

	Sum-Product Networks over Gaussian Processes
	Motivation
	Preliminaries
	Gaussian Process Regression

	Deep Structured Mixture of Gaussian Processes
	Exact Posterior Inference
	Predictions
	Hyperparameter Optimisation
	Shared Cholesky Decomposition

	Experiments
	Approximation Error
	Quantitative Evaluation

	Related Work

	Discussion & Future Work
	Appendix: Sum-Product Networks
	Compiling Region Graphs to Sum-Product Networks

	Appendix: Safe Semi-Supervised Learning
	Appendix: Bayesian Learning of Sum-Product Networks
	Heterogeneous Experiments
	Statistical Significance Tests
	Reported Configurations and Respective Runtime
	Extended Results Table

	Appendix: Deep Structured Mixture of Gaussian Processes
	Datasets
	Algorithms
	Structure Construction
	Exact Posterior Inference

	Bibliography
	List of Publications
	Index

