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Abstract

Automated Driving (AD) is one of the most anticipated and fast developing tech-
nologies today and it will have an enormous impact on our future. To capitalize on
the various benefits of AD, a significant number of Original Equipment Manufacturers
(OEMs) and research groups are trying to bring the technologies to the market as soon
as possible. As it is nearly impossible to enable full autonomy directly, most of the
groups focus on delivering parts of the fully automated system through Automated
Driving Functions (ADFs).
As the ADFs will be incorporated into passenger vehicles, it is crucial to assure highest
levels of safety and reliability. However, testing and validation of the ADFs is a very
complex and time-consuming task. Currently, there is not a standardized way to test
and measure performance of the ADFs. Generally, the performance of the ADFs are
compared directly to human drivers, where the goal of the system is to be always
at least safe as a human driver. What makes testing and validation so difficult are
the various external and internal influences that the ADF can encounter on the road.
To test the ADFs on all possible influences, their variations and combinations is very
challenging, if not impossible.
To address some of the challenges of testing and validation, four research objectives
have been considered in this thesis. The focus of the first objective is to minimize
the testing efforts when the scenario and the corresponding parameter variations are
known. The main idea is to minimize the number of test run while maximizing the
information gained. This method is applied when testing is expensive in terms of
setup time, setup cost, calibration effort, test duration, etc. We have shown that our
proposed method is able to significantly reduce the number of test runs compared to
other methods.
The second objective deals with cases when a model of the ADF is available, which
makes it possible to simulate various influences and perform tests much faster. A ben-
efit of this approach is that we can perform much more tests and cover the parameter
space more thoroughly. This in return, makes it possible to make confident reports on
the performance of the ADF.
The first and second objective deal with use-cases when a specific scenario and para-
meter ranges are given by a domain-expert. However, this information can be auto-
matically obtained if labeled data is available. The main idea of the third objective is
to apply Deep Learning (DL) and learn how to segment the driving scenarios. There
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0 Abstract

are two main benefits of this approach. First, if the data is segmented we can test
only on the parts that are useful for the considered ADF, greatly reducing the testing
effort. The second benefit is the ability to select relevant scenarios which can then be
passed to the first two methods for further analysis. The relevant scenarios could be
selected by defining some explicit behavior or Key Performance Indicators (KPI) we
are interested in.
The main idea behind the fourth objective is to use unlabeled real data for scenario
exploration. Unsupervised DL models try to group similar scenarios together in a low-
dimensional latent space. By examining the latent space, is is possible to get insights
on the distribution, sizes and relevance of individual clusters and their corresponding
scenarios.

Keywords: Testing, Validation, Automated Driving, Automated Driving Functions,
Scenario Extraction, Scenario Exploration, Deep Learning
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Kurzfassung

Automatisiertes Fahren (Automated Driving, AD) ist heutzutage einer am meisten
erwarteten und sich am schnellsten entwickelnden Technologien, die einen enormen
Einfluss auf unsere Zukunft haben wird. Um die verschiedenen Vorteile von AD zu
nutzen, versucht eine beträchtliche Anzahl von Originalgeräteherstellern (OEMs) und
Forschungsgruppen, die Technologien so schnell wie möglich auf den Markt zu brin-
gen. Da es fast unmöglich ist, eine vollständige Autonomie direkt zu ermöglichen,
konzentrieren sich die meisten Forschungsgruppen auf die Lieferung von Teilen des
vollautomatischen Systems durch Automatisierte Fahrfunktionen (ADFs).
Da die ADFs in Personenfahrzeuge eingebaut werden, ist es entscheidend, ein Höch-
stmaß an Sicherheit und Zuverlässigkeit zu gewährleisten. Das Testen und Validieren
der ADFs ist jedoch eine sehr komplexe und zeitaufwändige Aufgabe. Derzeit gibt es
keine standardisierte Methode zur Prüfung und Messung der Leistung der ADFs. Im
Allgemeinen wird die Leistung der ADFs direkt mit menschlichen Fahrern verglichen,
wobei das Ziel des Systems darin besteht, als menschlicher Fahrer immer zumindest
sicher zu sein. Was Testen und Validierung der ADFs so schwierig macht, sind die
verschiedenen äußeren und inneren Einflüsse, die ADF auf der Straße begegnen kön-
nen. Die ADFs auf alle möglichen Einflüsse, ihre Variationen und Kombinationen zu
testen, ist sehr anspruchsvoll, wenn nicht sogar unmöglich.
Um einige der Herausforderungen des Testens und der Validierung anzugehen, wur-
den in dieser Arbeit vier Forschungsziele berücksichtigt. Der Schwerpunkt des er-
sten Ziels besteht darin, den Testaufwand zu minimieren, wenn das Szenario und die
entsprechenden Parametervariationen bekannt sind. Die Hauptidee besteht darin, die
Anzahl der Testläufe zu minimieren und gleichzeitig die gewonnenen Informationen
zu maximieren. Diese Methode wird angewendet, wenn das Testen teuer ist in Bezug
auf Einrichtungszeit, Einrichtungskosten, Kalibrierungsaufwand, Testdauer, etc. Es
wurde gezeigt, dass die von uns vorgeschlagene Methode in der Lage ist, die Anzahl
der Testläufe im Vergleich zu anderen Methoden deutlich zu reduzieren.
Das zweite Ziel befasst sich mit Fällen, in denen ein Modell der ADF zur Verfü-
gung gestellt wird, was ermöglicht, verschiedene Einflüsse zu simulieren als auch Tests
wesentlich schneller durchzuführen. Ein Vorteil dieses Ansatzes ist, dass viel mehr
Tests durchführbar waren und der Parameterraum gründlicher abzudecken war. Dies
hat wiederum ermöglicht, zuverlässige Berichte über die Leistung der ADF zu erstellen.
Das erste und zweite Ziel befassen sich mit Anwendungsfällen, bei denen ein bes-
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0 Kurzfassung

timmtes Szenario und Parameterbereiche von einem Domänenexperten vorgegeben
werden. Diese Informationen können jedoch automatisch erhalten werden, wenn
gekennzeichnete Daten verfügbar sind. Die Hauptidee des dritten Ziels besteht darin,
Deep Learning (DL) anzuwenden und zu lernen, wie man die Fahrszenarien segmen-
tiert. Es gibt zwei Hauptvorteile dieses Ansatzes. Erstens, wenn die Daten segmentiert
sind, können nur die Teile, die für die betrachtete ADF nützlich sind getestet werden,
wodurch der Testaufwand stark reduziert wird. Der zweite Vorteil ist die Möglichkeit,
relevante Szenarien auszuwählen, die dann zur weiteren Analyse an die ersten beiden
Methoden weitergegeben werden können. Die relevanten Szenarien könnten durch die
Definition einiger expliziter Verhaltens- oder Leistungsindikatoren (Key Performance
Indicators, KPI) ausgewählt werden, die von Interesse sind.
Die Hauptidee hinter dem vierten Ziel ist die Verwendung nicht unbeschriftete reale
Daten für die Szenarioexploration. Unbeaufsichtigte DL-Modelle versuchen, ähnliche
Szenarien in einem niedrigdimensionalen latenten Raum zusammenzufassen. Durch
die Untersuchung des latenten Raums ist es möglich, Erkenntnisse über die Verteilung,
Größe und Relevanz einzelner Cluster und der entsprechenden Szenarien zu gewinnen.

Schlagwörter: Testen, Validieren, Automatisiertes Fahren, Automatisierte Fahrfunk-
tionen, Szenarioextraktion, Szenarorexploration, Deep Learning
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1
Introduction

This chapter summarizes the motivation, objectives and scope of the con-
ducted research. First, it lists some of the benefits of AD explaining why
it is such an important and anticipated technology. Further, it shortly in-
troduces challenges for developing reliable ADF from which the objectives
of this thesis are drawn. Finally, it outlines the research steps, indicating
which topic will be covered in which chapter.

1.1 Motivation

With the current development rate of ADFs, fully autonomous vehicles do not seem
to be that far away. All of the major OEMs are investing a considerable amount of
resources for the development of ADF, indicating its importance. The OEMs see a
huge potential in the market that AD will bring. It is estimated that AD will bring
more than 600 billion euros of revenue by 2025 [1]. Other than sheer economical gain,
there are even more important social and environmental benefits where AD will have
a huge impact.
Maybe one of the most important social impacts of AD is that it will make driving
much safer, both for the passengers and other traffic participants. According to the
European Road Safety Observatory [2], the number of casualties in traffic accidents
is around 1 million in the European Union. Most of these accidents are caused by
human error. These types of errors occur when the human driver is either tired,
sleepy, distracted or not able to responsibly drive the car. Most, if not all, of these
errors would be eliminated by Autonomous Vehicle (AV), as machines don’t get tired,
sleepy or distracted. An AV is evaluating the current traffic situations several times
per second and it is also able to react on unexpected situations more reliably than a
human.
Another prominent benefit of AD is a significant reduction in traffic congestion. As
traffic congestions are directly linked to traffic accidents [3], AV would already decrease
the congestions by lowering the number of accidents. However, AVs will be able to
reduce the congestions even further. Being able to communicate with other vehicles,
Vehicle to Vehicle (V2V), and with different infrastructures, Vehicle to X (V2X), makes
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1 Introduction

it possible to optimize velocity, starting and stopping times, etc. [4], greatly impacting
the flow of traffic.
Under normal conditions, human drivers tend to create stop-and-go traffic. Creating
the effect called "phantom traffic jam". Basically, by accelerating more than necessary
and then breaking, human drivers create a phantom obstacle which extends to all
subsequent vehicles. It has been shown that, by using a few AVs it is possible to
totally eliminate the undesired effect [5], [6]. The AVs can recognize that a phantom
traffic jam is occurring and optimize its motion in such a way to eliminate the effect.
The reduction of traffic congestions has further beneficial impacts. The first one is
reduced emissions. Research done by Bart et al. [7] states that by using different
congestion mitigation and velocity adjusting strategies it is possible to reduce C02
emission by 20%. These strategies consists of the aforementioned "phantom traffic
jam" elimination and optimal velocity control to lower higher velocity traffic to a more
efficient state. Similarly, Lee et al. [8] have shown that by using V2X and V2V it
is possible to design smart intersection control, cutting down C02 emission and fuel
consumption by 40%.
The second benefit of reduced traffic congestion is the reduction in travel time and
transportation costs. It is estimated that AVs could achieve a 40% reduction in overall
travel time leading to recovery of a staggering 80 billion lost hours in the US alone [9].
The reduced travel time will potentially also lower the price of consumer goods as the
fuel consumption and man-hours go down.
In addition to the emission reduction through decreased traffic congestion, AVs can
also use various optimization techniques to reduce the overall fuel consumption and
consequently the CO2 emission. Some of these strategies include optimized accelera-
tion and deceleration on traffic lights or dense city driving. If V2X is used, then the
impact is even bigger as the vehicles can plan exactly how much and when to start
moving depending on the current light situation. Another strategy could include on-
line acceleration and velocity optimization depending on the road grade and current
traffic situation. It has been shown that, by using online optimization, the AV can
reduce the overall fuel consumption and emission up to 40% in city driving [10].
Using fast reacting times, fast sensing and V2V, AVs have a great potential to increase
the traffic throughput or lane capacity. By using platooning, AVs are able to decrease
the space they are occupying and also save fuel as the vehicles behind the leading
vehicle don’t have to fight air resistance [11]. Platooning is proving to be extremely
useful for transportation over long distances done by trucks.
The next benefits of AVs are related to mostly city scenarios. AVs will offer a much
cheaper taxi alternative, as there will be no man-hour costs. In addition, it is antici-
pated that these vehicles will be running on electricity where they will have dedicated
charging stations. The AV will drive itself to recharge when necessary. Another benefit
of AV driven taxis is that the waiting time can be significantly reduced as optimization
techniques could distribute the vehicles where they are most needed for a given time.
Similarly to charging, the AVs will be able to park outside the urban areas or even
outside cities making space available for more important infrastructure. An example
could be a person arriving at work and then the AV drives itself to the best parking

2



1.2 Objectives

space. Similarly, the AV would pick-up the person at the end of the day.
In the future, we anticipate that AVs will not need any input from the user. This
means that mobility will be available for more people. Most impacted groups are
people with special needs, elderly people and children.

1.2 Objectives

After mentioning some of the most important benefits AD will bring, one could ask:
What needs to be done for AV to finally arrive?
There are many challenges that the development of AVs faces, but among the most
important ones is testing and validation of not only the individual ADFs but also
the complete system. The second chapter will introduce in more detail the specific
challenges. Here, we will just briefly point-out some of them in order to introduce the
objectives of the thesis.
Currently, there are no standardized tests that an AV should complete. The perfor-
mance is measured against humans, with the goal that the AV should be at least as
safe as a human driver. In addition, it is not possible to do testing that would cover
all possible situations that an AV could encounter because of the huge amount of time
this would take, and the huge number of external and internal influences.
However, even when execution time would not be a problem, we still would not know
on which scenarios or situations should we test the AV as we don’t know beforehand
where the system is going to fail.
Driven by these challenges, we devised four objectives for the thesis.

• O1: Reduction of test runs - Research and develop methodologies that can
reduce the number of test runs or parameter space exploration for testing of
ADFs

• O2: Validation using Model-based approaches - Research and develop
methodologies that are able to leverage simulation models in order to accelerate
testing and validation.

• O3: Scenario Classification - Research and develop methodologies that can
use labeled data in order to classify and extract scenarios for testing.

• O4: Scenario Exploration - Research and develop methodologies that can
use the large amount of unlabeled data to understand distribution, groups and
relevance of scenarios for testing.

1.2.1 O1: Reduction of test runs

Objective 1. focuses on the reduction of test runs needed for testing or falsification
of ADFs. For example, let’s consider an Automatic Emergency Braking (AEB) on
a specific scenario. In the scenario, an unwanted obstacle is found on the highway.
First, we need to define the number of lanes, highway curvature and other static
parameters. Then, we define the varying parameters. For, example, vehicle velocity,

3
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obstacle height and radius, maximum allowed deceleration, etc. The objective of the
developed method is to find out if the ADF is working without errors whilst minimizing
the number of actual test runs. Minimizing test runs is important for testing where,
the pipeline setup, initial calibration and running the test is very expensive or very
time-consuming. The number of runs could also be limited by various constraints like
deadlines or budget so we need to be sure that every test run we execute provides as
much information as possible.

1.2.2 O2: Validation using Model-based approaches

Even though we tried to find faulty behavior and maximize the information gain from
every test run in Objective 1., we can not provide any guarantees on the performance
of the ADF under test. That is why in Objective 2. we explore methodologies which
can use simulation models in order to perform extensive testing and validation. This
is possible because of the benefits that simulation provides. First, we are not bound
to run test at real time. Second, setup and reproduction of test is trivial and test
execution can be done in parallel making it possible to execute significantly more test
runs. After executing a large number of test runs, it is possible to verify, with a certain
confidence, that the ADF is working without errors in a specific parameter range.

1.2.3 O3: Scenario Classification

Methods developed in Objective 1 and 2 need as input a specific scenario and parameter
ranges. The required information is typically provided by the user. However, in
Objective 3. we try to provide the necessary scenarios in a more automated way. A
trivial way would be to use recorded data and process all available scenarios; however,
this is very inefficient and time-consuming. The core idea of the proposed methods
is to use Machine Learning (ML) and learn how to segment the recorded data. The
scenario segments make it possible that only the relevant scenarios are considered for
testing. For example, let’s look at driving on a highway. Most of the driving is actually
free driving or following another vehicle in a specific lane. If we already know that
our system is behaving correctly on this type of scenario, we could omit it partially, or
completely, from our next test and focus mostly on the new scenarios or parts where
we know the ADF is not behaving optimally. A real-world example could be a last
minute cut-in scenarios before a highway exit. If we want to test our system only on
those type of scenarios then we need to be able to identify and extract them from our
data.

1.2.4 O4: Scenario Exploration

In Objective 3 we were using labeled data in order to train ML models used for
scenario classification. The limitation of this approach is that we are able to classify
only scenarios that were labeled and present in the training data.
The aim of Objective 4 is to extend this approach and make it possible to explore sce-
narios in an unsupervised way. The DL models group scenarios by similarity creating
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scenario clusters. The user can explore these clusters and get information regarding
distribution, sizes and possibly find clusters where unknown or unconsidered scenarios
are grouped. Furthermore, if the user is considering a specific scenario, he can find
out if similar scenarios exist in the data and if so, he is be able to find out which ones
they are.
In addition, this method can be used to explore the behavior of pre-trained models.
Specifically, we can search for misclassifications or false positives. After the interesting
clusters are found and labeled, we can retrain the model, improving its performance.
The developed research objectives on testing methodologies and scenario selection
create a positive feedback loop. The testing can lead the classification and extraction
to interesting scenarios by checking where the ADF is having problems. Similarly, the
scenario classification and extraction methodologies can be used to search for similar
scenarios and feed them back to the testing methodologies.

1.3 Scope of the Research and Contributions

The scope of the research and contributions can be divided into the corresponding
objectives.

• O1 - The methodology developed for the first thesis objective "Reduction of test
runs" is focusing on ADF falsification. The proposed approach is used when
we are testing on real hardware, or execute very complex and time-consuming
simulations, where the setup time, run time, cost, etc., are very high. In other
words, we are limited by the number of tests we can actually execute. The idea
is to maximize the amount of information we can gain from these test runs. The
proposed method is not only limited to ADFs but can be used on any System
Under Test (SUT). The main contribution of this research is a novel algorithm
that is able to reduce the number of executed test runs but still find faulty
behavior. In addition, by using a model of the system behavior we are able to
perform optimization task much faster than on the real system.
This research was introduced in the conference paper: "Testing of Autonomous
Vehicles using Surrogate Models and Stochastic Optimization" [12].

• O2 - The Model-based Validation approach is used when we are not limited
by the number of test runs. An example could be when we have a simulated
model of the ADF. In this case, we can execute more thorough testing to assure
that in some specific parameter bounds the system is working without errors.
The main contribution of this research is the adaptation and extension of tun-
ing methodologies in order to facilitate model-based validation. In addition, a
use case where an Adaptive Cruise Control (ACC) was firstly tuned and then
validated is shown.
This research was introduced in the book-chapter: "Model-based Safety Valida-
tion of the Automated Driving Function Highway Pilot" [13].

• O3 - For the third thesis objective "Scenario Classification", two research con-
tributions were made:
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1. Scenario classification related to the Ego vehicle
2. Scenario classification with dynamic traffic participants

The first contribution on scenario classification focuses only on the ego vehicle
states and road information. Information coming from various sensors like ac-
celeration, velocity, steering angle, road curvature etc., are given to a Neural
Network (NN) which estimates the current scenario. The main contribution of
this research is the successful usage of DL to classify scenarios related to a Lane
Keep Assist (LKA). Furthermore, several classification models were investigated,
and an offline and online classification approach was introduced.
This research is described in the article paper "Deep Learning Applied to Scenario
Classification for Lane-Keep-Assist systems" [14].
The second contribution focuses on methods which make it possible to classify
also scenarios with other traffic participants. The main contribution of the pro-
posed method is a very efficient traffic representation that can be used by NN
to distinguish between various dynamic scenarios. The scenarios can later be
segmented and testing can be done only on the desired parts.
This research was introduced in the conference paper "Polar Occupancy Map - A
Compact Traffic Representation for Deep Learning Scenario Classification" [15].

• O4 - The methodology developed for the fourth objective deals with exploring
scenarios from recorded data. The main contribution is the use of DL to create
a scenario latent space which can be used to find interesting scenario clusters,
ease labeling, explore behavior of pre-trained models, etc. This work has not
been published yet and it will be introduced in this thesis.

Additionally, the first contribution that was made for the thesis was an overview of
the current challenges for testing of AVs.
The corresponding book chapter is called "Challenges for the validation and testing of
Automated Driving Functions" [16].

1.4 Thesis Outline

The outline of the thesis in shown in Figure 1.1. At the top we see Chapter 2. which
is dedicated to the challenges of testing and validation of ADFs.
Below Chapter 2, two groups are shown. On the left side, we have the developed
testing and validation methodologies related to Objective 1. and 2. Chapter 3 intro-
duces the ADF test reduction through surrogate modeling and stochastic optimization.
Chapter 4 introduces the model-based validation approach.
On the right side, we have the methodologies which make it possible to extract relevant
scenario related to Objective 3. and 4. Chapter 5 introduces the DL classification
approaches regarding the ego vehicle and road information. Chapter 6 introduces
the classification approaches for dynamic traffic participants. Finally, Chapter 7
introduces the scenario exploration methodologies.
The arrows in the diagram indicate the synergy between the approaches. In order
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Figure 1.1: Thesis outline with objectives and research linked to the corresponding
chapters.

to efficiently use the test reduction and validation methodology, we should provide
scenarios that are significant to the ADF that is currently under test. On the other
side, information of the current behavior and test success, gained from the reduction of
test cases and validation methodology, can be used in order to find the most relevant
scenarios for further testing.
Finally, in Chapter 8 conclusion and the possible future directions are presented.
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2
Testing and Validation of Automated
Driving Functions

This chapter provides an overview of the challenges for validation and
testing of ADF. We provide an overview of current methodologies used for
validation and testing, focusing on the missing parts. Furthermore, we give
an insight into promising methodologies, frameworks, and research areas
which aim to reduce current testing and validation efforts.

Most of the content presented in this chapter is adopted from
H. Beglerovic, S. Metzner, M. Horn, Challenges for the validation and testing of au-
tomated driving functions, in: C. Zachäus, B. Müller, G. Meyer (Eds.), Advanced
Microsystems for Automotive Applications 2017, Springer International Publishing,
Cham, 2018, pp. 179–187.

2.1 Introduction

In order to satisfy the increasing demand for safety, reliability and comfort of commer-
cial vehicles, manufacturers and research groups put great effort in the development of
new and sophisticated driving functionalities throughout the decades. This develop-
ment has undergone several phases. It started with Driver Assistance Systems which
required constant driver monitoring, e.g., Cruise Control (CC), where some were active
only in certain situations, e.g., Electronic Stability Program (ESP).
With the increase in the processing power of computers, researchers and OEM were
able to include more sophisticated algorithms and sensors into the vehicle, what led
to the development of Advanced Driver Assistance System (ADAS). The new tech-
nologies allowed the development of ACC, LKA, Lane Change Assist (LCA), traffic
signs, pedestrian and vehicle detection, etc. Even though these systems are more com-
plex and sophisticated, the driver still needs to monitor them continuously in order
to compensate unforeseen conditions on the road or misbehavior of the algorithm.
Nevertheless, the safety benefits of ADAS systems have led governments to make laws
which obliges manufactures to include some of them into commercial vehicles (e.g.,
Anti-Lock Braking System (ABS) and ESP), showing that these systems have become
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an irreplaceable part of the driving experience.
In the recent years, we observe a significant rise in the set of functionalities ADF
provide. ADFs present the next technological step as they aim to provide a driving
experience where constant monitoring of the system is not needed. In its core, ADF
combine several ADAS functions in a comprehensive and complex system. For exam-
ple, a Highway Pilot is combining ACC, LKA, LCA, traffic sign and vehicle recognition,
path planning, etc., in order to successfully drive the vehicle on a highway. Many man-
ufactures like Tesla, Daimler, etc. have already demonstrated various capabilities of
Highway Pilots.
Current technology allows limited automated driving on specific scenarios and the aim
for the future, as shown in Figure 2.1, is to enable full autonomy where human inter-
vention is not needed at all. These systems should be able to perceive and understand
the environment in order to act accordingly to all possible situations encountered in
real traffic. Such systems would open the door to new types of transportation where
fleet of automated vehicles could be shared between people, effectively lowering the
overall number of used vehicles. In addition, the mobility of elderly people or people
with disabilities would increase drastically.

Figure 2.1: Levels of automation - Society of Automotive Engineers (SAE)

2.2 Challanges for Testing and Validation

The challenges for testing and validation of ADFs are encountered on both the tools
and methods side. On the tools side, there is an increasing need to develop and
test very complex ADFs consisting of many sub-systems. Furthermore, new signal
types need to be incorporated in a standardized way making it possible to resolve
the problem of transferring huge amounts of data between the control units, which is
out of scope for the classic transfer protocols used in today’s vehicles. In addition,
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development environments need to be able to incorporate these new signal types in
the development process and deal with the increasing complexity of ADFs.
On the method side, the Safety of the Intended Functionality (SOTIF) [17] needs
to be ensured while remaining economically feasible. Economic feasibility is very
important as the ADF could be tested on a theoretically infinite variety of scenarios.
Furthermore, the scenarios include a huge number of parameters that are used to
faithfully reflect the reality. In order to keep up with the high commercialization
demand, rapid developments and advancements in technology, testing and validation
procedures need to lower the current testing effort, and in addition, new innovative
methods need to be developed. Watzenig and Horn [18] state that there is an increasing
demand for methodologies and validation procedures that will enable the development
of ADF which allow greater safety, traffic flow optimization, reduced emission and
enhanced mobility.
The following sections will introduce the tools and methods challenges into more de-
tails.

2.2.1 Complexity of Automated Driving Functions

A general structure of an ADF can be seen on Figure 2.2. The task of an ADF is to
perceive and understand the environment and take adequate actions depending on the
current situation. In order to accomplish this task, ADF use an increasing number
of heterogeneous sensor systems and complex algorithms, fusing and interpreting the
data of the dynamic environment. The information coming from the sensors are com-
bined with existing knowledge from maps, V2V or V2X communication. All of these
inputs, together with the internal states of the vehicle, e.g., velocity, engine speed, etc.,
are needed by the decision-making algorithms in order to predict and plan adequate
trajectories.

Figure 2.2: Structure of an Automated Driving Function.

Each of the individual sub-systems of the ADF has to be tested and validated sep-
arately before being used in the complete system. Additionally, the testing and val-
idation procedure can vary between the building blocks which brings in additional
complexity.
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After testing each individual building block, testing of the integrated system can pro-
vide additional information and show where improvements can be made. That is why
an iterative approach is needed, where continuous improvement and integration is pos-
sible. In general, this development stage relies heavily on the use of simulations where
test and corrections can be done quickly. After satisfactory behavior is achieved in
this step, the testing and validation is continued on proving grounds or real roads.

However, some of the main challenges in the development and testing of complex ADFs
are:

• Reducing the number of test runs for specific scenarios.

• Finding the appropriate scenarios for testing and validation.

• Data interface standardization between sensors, hardware components and sim-
ulation. On the simulation side, some standardization approaches like Open
Simulation Interface (OSI) [19] are being developed and show good progress in
this regard but still some datatypes are not supported.

• Easy access and debugging of the specific datatypes in the programing environ-
ments used for development.

• With the advancement of technologies like DL, dedicated hardware is introduced
and developers need to be able to include both the models and hardware into
their development environment.

2.2.2 Variation of Scenarios and Parameters

Winner et al. [20] state that an ADF should be driven for more than 240 million
kilometers without fatalities to prove that they are, at least, not performing worse
than human drivers. Performing such an extensive validation, using classical validation
methods on public roads or proving grounds, it is not possible in a sustainable frame. If
we take into consideration the development process introduced in the previous section,
with several iterations of testing and validation, it becomes clear that such extensive
test runs are not economically feasible.

However, if we consider possible scenarios and respective parameter variations, the
ADF could theoretically be tested on around 1012 different test cases. This type of
full factorial testing is also not feasible and new advanced methods are needed for
appropriate scenario selection and parameter variation. The parameter variation and
test run reduction are the main research focus of the first thesis objective.

On the other hand, simulation has been proven to be a very promising tool for success-
ful development and testing of ADF. The most important advantage is the ability to
easily vary various scenarios and parameters, ensure reproducibility and, in the case
of pure Software in the Loop (SIL), even run test cases in parallel and faster than
real-time. This advantage is being explored in the second thesis objective.
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2.2.3 Scenario Selection and Test Generation

In order to successfully validate an ADF, an appropriate selection of scenario subsets
from all possible scenario variations is needed. Furthermore, the scenario subsets have
to provide a sufficient scenario coverage because only a small portion of all available
scenarios presents a challenge for the ADF and could potentially lead to faulty be-
havior. It is important to reduce the number of considered scenarios in order to save
time, costs and resources needed for testing and validation.
The main task is the systematic selection of scenarios and corresponding parameters
for the variation. A possible approach for the scenario selection is to group all scenarios
into different categories, e.g., highway, left turn, right turn, country road, etc. With
this type of grouping methodology, it is possible to conduct validation on certain test
runs and exclude test runs with similar characteristics from further consideration. This
idea is explored in the third thesis objective.
An opposite approach could be applied by identifying scenarios which are most rel-
evant for the ADF. These scenario could be selected either by the engineers, or by
using some predefined KPIs or looking directly at scenarios that lead to most critical
behavior. Then by knowing these relevant scenarios we could expand the testing to
similar scenarios and stop only after the desired criterion is not fulfilled anymore. This
methodology is explored in the fourth thesis objective.
Additionally, a subset of scenarios could be selected depending on specific regulations,
imposed by the laws from different countries. After appropriate scenario selection,
an automated test generation procedure is needed. This procedure should be able to
generate appropriate test cases taking into consideration the capabilities and level of
autonomy of the ADF.
It is important to mention that no unified metrics, references nor testing criteria exist
up to today. The test generation is usually carried out by domain-experts tailored to
meet their specific needs. Better objective evaluation methods are needed which can
derive, with some certainty, the overall behavior of the model from just a subset of
test cases.

2.3 Current Methodologies overview

Today’s ADF functions are developed using environment simulation systems like VTD
from Vires, PreScan from Tass, IPG CarMaker, Carla [21], AirSim [22], SUMO [23],
etc. All available environment simulation systems have strengths and weaknesses de-
pending on the origin domain (vehicle dynamics, driver simulator, etc.) and allow
manual design and simulation of a wide range of scenarios. Dependent on the com-
plexity of the respective scenario, its setup and design can take a lot of time.
As for usual control units, the functionality and the electronics are integrated and
tested on Hardware in the Loop (HIL) systems. The HIL systems are either used for
testing one single control unit or testing several units in compound on an integration
HIL. Usually, setup and maintenance need a lot of effort. Variability and the possibility
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to influence the inputs of the control unit independent from the environment of the
vehicle overcome these disadvantages.
After the integration of the functionality into the vehicle, testing and validation is
nowadays executed on test tracks and public roads. Especially on public road, the
reproducibility of scenarios is very difficult and can be very time consuming.
Recently more and more ground truth measurement systems are being developed and
used. Such systems are able to collect the data of the environment with higher pre-
cision than the mass production sensors inside the vehicle. These systems enable the
engineers to compare the sensor output of both the vehicle sensors and the ground
truth measurement system, facilitating easier debugging and development. Reproduc-
ing such measured scenarios in simulation environments, in order to debug the source
code in detail, still means a lot of manual work with limited tool support.
However, these ground truth measurements are also used to develop and train new
perception and planning algorithms using DL. Some of the most popular datasets are:
KITTI [24], Berkeley Deep Drive (BDD100K) [25], HighD [26], INTERACTION [27],
Waymo Open Dataset [28], Lyft Level 5 [29], Comma 2k19 [30], etc. Testing, validation
and improvement of the trained DL methods are very challenging tasks. As mentioned
before, continuous improvement and integration is used to incrementally increase the
performance of the algorithms. Some OEMs went even further; they use the available
fleet of vehicles and the so called "shadow mode" to test the algorithm performance
directly on the vehicle during operation. In "shadow mode", the ADFs are running
and generating decisions. However, these decisions are not executed directly. Instead,
they are compared to the behavior of the driver and if a strong deviation between
the two behaviors exist, the occurrence is reported and further analysis and testing is
done. By leveraging a large fleet with over-the-air software updates, it is possible to
expose the ADFs to a huge variety of real world scenarios and events. This leads to
very short and effective improvement cycles early on in the development.
In addition to this type of testing and validation, the OEMs also provide more mature
ADFs to the customers during the development stage. In this case, the customer is
liable and is required to monitor the system during operation. If the fleet of available
vehicles is large enough then the OEMs are able to quickly test and validate their
improvements. In addition, the OEMs record the data in order to further improve the
functions. However, this type of testing heavily depends on the number of vehicles
available in the fleet, and interesting scenarios and events still need to be extracted as
most of the driving already has satisfactory behavior.

2.3.1 Supporting tools in the validation task

The environment simulation tool is the central tool on all development and validation
levels involving simulation. Such environment simulation systems are already available
from several suppliers and usually include sensor models that can be directly connected
to the ADF controllers. Dependent on the complexity of the models, a huge amount of
processing power may be required. This includes models involving ray-tracing methods
necessary for detailed camera or radar models. However, for a lot of cases this accuracy
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is not necessary or even obstructive. If very accurate sensor models are used and the
robustness regarding special effects of the sensor shall be tested, it is also necessary to
model the environment in the same level of detail to trigger these effects. In such cases,
a phenomenological model may be a better choice as the modeling of the scenario is
made much easier. This is also valid for other parts of the model, e.g., the vehicle
dynamic model complexity may be reduced, if the test case does not imply stability
critical maneuvers. Therefore, simulation platforms need to support the exchange of
models dependent on the parametrization of the test case.
Another area where high accuracy sensor models are very important is Vehicle in the
Loop (VIL) testing. The outputs of the sensor models can be directly injected into
the Electronic Control Unit (ECU) of the vehicles if an adequate interface is present.
Similarly, the injection can also be done on the sensor itself through adequate signals.
Sensor stimulation has already been successfully applied on camera and radar sensors
[31]. The aim of VIL testing is to further reduce real world testing as the setup time
and repeatability of test is easier.
Even if methods are found to reduce the number of test case, there are still millions of
kilometers which need to be driven either virtually or on real roads. In addition, test
cases need to be handled in a structured manner and if no real hardware is involved it
is possible to execute these test cases in parallel on the cloud. This coordinated distri-
bution of the test cases and collection of the results is also an important requirement
to the simulation platform.
However, it is still not possible to execute all test cases virtually or with only par-
tial hardware. Some of the test cases or scenarios still need to be executed in real
environment or test tracks. The data collected should be as close as possible to the
data collected in simulation to enable usage of the same evaluation metrics. In order
to accomplish this metrics transfer, ground truth measurement systems which record
the environment with similar sensors as the vehicle but with higher precision, are
necessary.

2.3.2 Standardization

For development and validation of ADF, both standards for the tooling and for the
methodology need to be extended. On methodology side ISO26262 [32] is a well-
accepted and applied functional safety standard for the development and validation
of functionalities, realized with electronic control systems. In the concept phase of
development, this standard demands, among others, an item definition and a hazard
and risk analysis.
Both require the knowledge of the item (which may be available) and its environment,
as well as the dependencies of the item to the environment. However, the fact that
the number of scenarios and the variation of the environment parameters (daylight,
weather, temperature etc.) is large restricts the direct application of ISO26262 on
automated functions with automation level 3 and above. However, there needs to
be a definition of a finite testing space regardless which method and which tools will
be necessary for validation. Finding this testing space is even harder considering

15



2 Testing and Validation of Automated Driving Functions

that all implementations of the ADF functionalities will have different strengths and
weaknesses. A good example is the development of the vehicle dynamics functionality.
In all test cases defined by authorities for, e.g., brake distance or stability during a
lane change maneuver, systems from different manufacturers react in a similar manner.
But comparing those systems outside of this test space leads to significant differences
as the developers are focusing on the defined test cases.
Therefore, the test case space for autonomous driving functionalities needs to be chosen
wisely to avoid over- and under-optimized areas. In the worst case, this may lead to
a product passing all tests but still not being useful for the customers.
ISO26262 has been published at a time where electronic control units have been already
used for many years also for safety critical applications. Hence, it contains a lot of
experience gained through the development of those control units. The same is to be
expected for publication of the standard covering automated driving.
On the tools side the same problems as on control unit site occur as all bus systems,
especially the CAN-bus, are optimized for signal-based controls-communication. This
kind of communication will still play a big role in the future, but with new functions
considering the objects of the environment, also object-based communication becomes
necessary. For small objects containing few data, the CAN-bus may still be used, al-
though the CAN-drivers need to be adapted. But the CAN-communication description
and well known DBC-file format cannot be applied. Here it is necessary to establish
new formats describing the exchanged objects and bus-systems able to handle this
kind of communication properly. This adaption needs to be applied to simulation,
measurement and evaluation tools and on all related file-types.
For the simulation environment several steps for the standardization of interfaces and
file formats have been made. The OSI interface tries to bridge the description of
vehicles and attributes between the different simulators and the real world. The OSI
interface is an object oriented format where at each time-step all traffic participants
are recorded together with their attributes. The OpenDRIVE [33] file format provides
a unified way to analytically express road networks. The OpenCRG [34] file format
provides a standardized way to describe the road surfaces. OpenScenario [35] defines
a file format for the description of dynamic traffic participants.
In the end, it is still unclear how validation, homologation and certification of auto-
mated driving functions above SAE automation level 2 shall be done. However, there
are few points that seem to be accepted among research groups and OEMs:

• The solution uses simulation for a major part of scenario testing and validation.
• A clever combination of methods and validation environments (SIL, HIL, VIL,

test-track, public road etc.) is necessary.
• The number of test-cases/scenarios will still be quite big so methodologies that

can reduce them are necessary.
As it can be seen, testing and validation of ADF is a challenging problem that will
take some time to be properly solved. In the thesis, we choose four objectives that
will hopefully bring us closer to that goal. In the following chapters we will discuss
those objectives and their corresponding research in detail.

16



3
Reducing the Number of Test Runs

This chapter introduces an innovative method for the reduction of test runs
based on surrogate models and stochastic optimization. The approach
presents an iterative zooming-in algorithm aiming to minimize a given
cost function and to identify faulty behavior regions of an ADF within
a specific parameter range. The surrogate model of the ADF is updated
in each iteration and is further used for intensive evaluation tasks, such as
exploration and optimization.

Most of the content of this chapter is adopted from
H. Beglerovic, M. Stolz, M. Horn, Testing of autonomous vehicles using sur-
rogate models and stochastic optimization, in: 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC), 2017, pp. 1–6.
doi:10.1109/ITSC.2017.8317768. © IEEE 2017

3.1 Introduction

As it is not possible to test an ADF on all possible scenarios and parameter variations,
we need to find a way to reduce testing to a specific number of test runs whilst
extracting the most information out of it. The specific number of test runs is usually
determined by various deadlines, fixed budgets, etc. making it very challenging to
plan adequate test runs which maximize information gain.
In this chapter, we introduce an iterative approach that guides the testing towards
faulty behavior regions in the parameter space, as shown in Figure 3.1. This type of
testing is also known as falsification.
In order to identify the faulty behavior regions, appropriate cost functions, which can
be minimized by various optimization methods, must be defined. As we are interested
in the region around the worst behavior, and we want to avoid false positives in the
form of local minima, global optimization methods are needed. One drawback of global
optimization algorithms is that they require many function evaluations (test runs)
to find the global optimum. To overcome this limitation in the proposed approach,
we create a surrogate model with inexpensive evaluations on which the optimization
algorithms can run. With each new iteration a better model of the system is built
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Figure 3.1: Iteratively locating a faulty behavior region inside the parameter space ©
IEEE 2017

around the faulty region. The advantage of this method is that it can handle black
box systems when an appropriate feedback cost function is present.
In summary, the main contribution of this research is the development of a methodol-
ogy based on surrogate modeling and stochastic optimization, used for falsification of
ADFs.

3.2 Related Work

Several research groups have addressed the state-of-the-art topics on autonomous vehi-
cle testing using simulation or mixed virtual and real setup. Stellet et al. [36] focus on
the taxonomy and high level approach, problem statement and requirements regard-
ing the testing of autonomous vehicles. They propose a systematic methodology for
testing, elaborating on the need for properly defined metrics, references and scenarios.
Huang et al. [37] present an overview on current methodologies, tools, platforms and
proving grounds used for testing of autonomous vehicles. Zofka et al. [38], [39], [40]
and Jemma et al. [41] focus on developing new simulation frameworks and validation
methodologies for ADAS. Sieber et al. [42] conducted research on driver perception and
reactions when avoiding collisions, and discussed the implications on the development
of ADAS systems.
Tuncali et al. [43] have proposed an approach based on stochastic optimization tech-
niques to automatically generate test cases that lead to collisions. They start by
sampling the parameter and input space and generate an initial state configuration.
After selecting a proper robustness criterion and using the parameter space as an in-
put, the framework is able to iteratively find faulty behavior regions and minimize a
given cost function by applying various optimization techniques. The proposed frame-
work is called S-TaLiRO [44]. Kapinski et al. [45] have given a great overview and
comparison of other similar tools: Breach [46], RRT and S3CAM, that utilize similar
optimization methodologies for falsification of embedded control system. In the arti-
cle, they give an in depth state-of-the-art overview and problem statement for testing
and verification of ECUs, focusing on current and emerging approaches.
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Another method has been proposed by Abdessalem et al. [47]. They conducted re-
search on a visual emergency breaking ADAS system detecting pedestrians. The main
idea was to use neural networks to model the ADAS behavior and use the model
instead of the real simulation to get an evaluation and confidence level output. By
using genetic optimization methods, they were driving the system to faulty behav-
ior. In addition, by utilizing the neural network model, they were able to reduce the
total number of simulation evaluations leading to faster discovery of faulty behavior.
However, one limitation of this method is that expert knowledge in neural networks
is necessary to build a satisfactory model. Also, the network needs to be trained and
validated beforehand with a significant amount of real simulation data, which presents
a time-consuming and sometimes unfeasible task.
The main difference between the method proposed in this chapter and the research
described above is that we build a surrogate model during the simulation runs by
applying an iterative zooming-in approach. No training, nor a priori knowledge of the
system, nor data preparation is needed. In addition, since we are using the surro-
gate model as the input for the optimization algorithms, the complexity of the real
simulation will not directly impact the optimization speed.

3.3 Problem Statement

For the problem statement we are using the notation presented in Kapinski et al.
[45]. Some parts are modified to better fit the proposed algorithm. Firstly, we denote
the model we want to test with M . The model M is not necessarily a simulation
model; it can also represent a real system running on the vehicle or on a HIL/VIL
setup. Furthermore, it is also not limited in complexity as it can represent the whole
autonomous driving system or any part of it. Next, we define the parameter space P
which contains all the environmental (external) or model (internal) parameters and
it represents an infinite search space. Usually, a new set of inputs U is introduced;
however, we are going to assume that the input signals can be parameterized and the
shape can be varied by changing the adequate parameters, in which case the parameter
space P contains U , i.e., P � U . Finally, the testing criterion is denoted with ψ.
In general, each modelM exhibits certain behavior during the simulation or real world
trial. This behavior is denoted as ΦpM, pq of the model M with respect to the set of
parameters p P P . ΦpM,P q represents the behavior of M in respect to all possible
variations of parameters in the parameter space P . If some behavior ΦpM, pq satisfies
the criterion ψ, the system is working correctly, and we can write ΦpM, pq |ù ψ. In
contrast, if ψ is not satisfied, we write ΦpM, pq �|ù ψ.
As we are not able to test the whole parameter space, either because we do not know
all the parameters or because of the complexity of the problem, we need to define a
subset of the parameter space P̂ � P , on which the test is going to be carried on. To
test a system, we need to determine whether ΦpM, pq |ù ψ holds. However, this task
turns out to be very challenging. The main problems are the curse of dimensionality -
testing becomes exponentially more complex with each new introduced parameter, the
evaluation complexity and evaluation time. One possible solution, proposed by [45],
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[43], [47], is to find a set of parameters p P P̂ such that the ΦpM, pq �|ù ψ, i.e., a testing
instance where the evaluation criterion is not satisfied. By limiting our search for a
specific set of parameters p P P̂ , we can vastly improve the speed and avoid exploring
regions of the search space P̂ that are of no interest.
In order to evaluate the behavior ΦpM, pq, we need to introduce some kind of cost
function based on the evaluation criterion ψ, which is going to generate numerical
evaluations based on the behavioral performance. We can denote such a cost func-
tion with cψpΦpM, pqq. By selecting an appropriate cost function cψ, it is possible to
guide the testing towards regions where the behavior is not satisfactory and where the
evaluation criterion ψ is not satisfied.
It is also important to note that the selection of an appropriate evaluation criterion ψ,
cost function cψpΦpM, pqq, parameter space P̂ and initial state p0 P P̂ is a non-trivial
task and all of them come with their own challenges. Nevertheless, the outcome of the
testing will heavily depend on the quality of the chosen values.

3.4 Concept Overview

In the previous section, we gave an overall problem statement and mentioned that a
cost function cψpΦpM, pqq is needed in order to evaluate the behavior of the model
M . However, because of the complexity of the model or long simulation duration, it
is not always feasible to run the simulation and evaluate the cost function directly.
This limitation is a big problem if we want to find a global minimum of the cost
function, as all the methods searching for a global minimum require many function
evaluations. In this research, we propose an approach that relies on a surrogate model
which approximates the cost function cψpΦpM, pqq with a new function ĉψppq. The new
function ĉψppq takes a parameter set p as input and outputs an approximated numerical
value ĉ � cψpΦpM, pqq which is improved iteratively, giving a good representation of
the real cost function in the region of interest.
Figure 3.2 gives an overview of the proposed method. As an input to the algorithm,
we need to provide a search space P̂ and the Zoom-in sampler is going to make an
initial sampling of the space and invoke the Simulation Engine. The number of initial
samples ns, zooming factor zf , zooming iteration number zit and sample randomness
factor rf present the only input parameters for the algorithm.
The Zoom-in Sampler will make an initial ns x ns grid on the parameter borders and
scale it down using the zf for each iteration. The randomness factor rf moves the
sampling points in the vicinity of the original position, if the simulation is run for
more than one time, leading to a better overall approximation.
The parameter selection for the proposed algorithm, surrogate modeling and optimiza-
tion will be discussed later in more detail. The cost function cψpΦpM, pqq is going to
be evaluated for each parameter set rp1...pns P P̂ generated by the sampler and an
output vector of numerical values rc1...cns is going to be computed. For each iteration,
we can evaluate the numerical values mintrc1...cnsu   cthresh and decide if a faulty
region has been reached. Usually, the cost function cψpΦpM, pqq can be modeled in
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3.4 Concept Overview

Figure 3.2: Workflow of the proposed method © IEEE 2017

such a way that a negative value represents a faulty behavior, i.e., cthresh � 0; however,
that is not mandatory and any kind of value for cthresh can be used.
If the faulty behavior has not been found and if the maximum number of iterations has
not been reached, the numerical evaluations of the cost functions rc1...cns are passed
to the surrogate modeling block. The surrogate model is iteratively extended using
the values of rc1...cns and provides the approximation function ĉψppq to the stochastic
optimization block where various optimization algorithms can be used. The evalu-
ation of the approximated function ĉψppq is computationally much cheaper than the
original function and is suitable for the extensive evaluations done by the optimization
algorithms. Stochastic optimization block outputs pmin representing the most likely
location for the global minimum of the approximated function ĉψppq.
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In the next iteration, the Zoom-in Sampler reduces the size of the new sampling set
rp1...pns using the rf coefficient and moves the center to the value of pmin, effectively
zooming into the region with the lowest value of the cost function. A new evaluation
is done with the new parameters, and a better model of the approximated function
ĉψppq is built until the algorithm reaches a faulty behavior or the maximum number
of iterations. After several zooming-in iterations, the size of the sampling set ns x
ns is significantly reduced and the model accuracy does not increase. In order to
further minimize the number of function evaluations, only the most likely location
for the global minimum is considered for iterations higher than zit without using the
randomness factor rf .

3.5 Surrogate Modeling

For the surrogate modeling, we decided to use the Radial Basis Function (RBF) ap-
proximation. The main idea of RBF is to find an estimation f̂pxq of a real system
or process fpxq by sampling the function at samples xi P Xs and assigning a radial
basis symmetrical kernel function φ for each sample. By adding the influences of each
kernel, the approximation can be constructed. The equation of the estimation is given
as:

f̂pxq � W TΦ �
nş

i�1
wiφp}x� xi}q (3.1)

where wi P W represent the weights corresponding to each kernel function. The
approximated function has the following properties: f̂pxq is equal to fpxq for xi P Xs

and the approximation is worse as the distance from the sample increases. Weights wi
can be obtained by solving the system of linear equations

W � Φ�1Y (3.2)

where Y � fpxq, @x P Xs and Φ � φp}xi � xj}q , i, j � 1...ns where Φ is also called
the Gram matrix. For the introduction of RBF, we used notation consistent with
literature and the Gram matrix Φ should not be confused with the system behavior
ΦpM, pq from the problem statement.
There are many possibilities when choosing the kernel function for the RBF surrogate
modeling. However, in our use case, we tested the Gaussian pφgq and Multiquadric
pφmqq kernel.

φg � e
�}xi�x}

2

2σ2 , φmq �
a
}xi � x}2 � h (3.3)

When building a model with a Gaussian or Multiquadric kernel, the user needs to man-
ually assign the coefficients σ or h. The selection of those coefficients is a non-trivial
task, especially when new zoomed-in sampling points are added in each iteration.
In order to overcome this limitation, we decided to use Kriging models [48] as they
provide a way to use optimization tools in order to find the appropriate coefficients.
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The Kriging model also uses the Gaussian kernel function φg but a different coefficient
γ � 1

2σ2 and norm p (usually p P r1, 2sq are computed for each parameter. Even though
Kriging models are more complex and use more resources for construction, the effort
clearly pays off since no tuning is needed. Furthermore, the coefficients γ show which
parameter has the higher influence on the cost function. The higher the value of γ
for a particular parameter, the higher the influence on the cost function. This can
be useful in cases with high number of parameters where the parameters with lower
influence could be fixed and excluded from the search.
An additional benefit of using Kriging models is that, instead of searching for the
global minimum of the model, we can use a probabilistic approach in order to find the
most likely location of the global minimum [48].
Beside the most likely global minimum search, the Kriging models require another
optimization step for finding adequate parameters γ and p. The value of p was fixed
to p � 2, as proposed in [48], leading to a simpler optimization task for finding γ. It is
important to state that the limitation of all surrogate models is that the cost function
needs to be smooth in order to achieve the best modeling results and save computation
time.

3.6 Stochastic optimization

Stochastic optimization represents a family of optimization methods where some form
of randomness is present. This randomness can either stem from the objective function,
constraints or the optimization algorithm itself. In this research, we focus on the
optimization algorithms that use randomness in order to accelerate the search progress
[49]. These methods are extensively used in global optimization where they are able
to escape local minima and provide good results in a wide range of problems.
As we don’t have any knowledge of the shape of the cost function cψ and there is no
guarantee that is doesn’t contain local minima, we have to apply global optimization
algorithms in order to minimize the cost function and locate the faulty behavior.
For the optimization tasks, we will use two well known search algorithms. Differential
Evolution (DE) [50] and Particle Swarm Optimization (PSO) [51].

3.6.1 Differential Evolution

Differential Evolution is a nature inspired search algorithm that does not rely on
gradients or any related information from the cost function, which makes it suitable
for a wide variety of cost functions as they don’t have to be continuous, differentiable
or even deterministic. The only input the algorithm takes are the evaluations of the
cost function at specific points. These points are determined by the so called agents
or candidate solutions.
The algorithm starts by randomly placing n P N agents in the parameters space P̂ .
After evaluating the cost function at each agent’s initial position, the optimization
algorithm starts. For each agent ni, three random and distinct agents pk, l,mq are
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chosen. Then, a sample is taken from an uniform distribution ri � Up0, 1q. If ri ¡ c,
where c is the crossover coefficient, then the agent position is calculated as ni �
k�fpl�mq where f is the crossover coefficient. Next, the cost function cψ is evaluated
on the new position ni. If the new position is better then the previous one then the
agent is updated, else it is discarded. The number of agents N and coefficients c, f
are chosen by the user and they will impact the performance of the algorithm.

3.6.2 Particle Swarm Optimization

Similarly to DE the Particle Swarm Optimization algorithm is also based on behavior
that appears in nature. More precisely, it represents a simplified representation of
the movement of a bird flock or fish school. The main idea behind the algorithm
is that each particle will track the best position it has visited, but also take in the
consideration the best position from the whole swarm. If a particle has found a better
location then the current best, all other particles will be aware of this fact. This effect
is also called swarm intelligence. By using both the best local position and the best
position of the swarm the particle is able to balance exploration and exploitation.
Also it is common that the velocity of the particles is decreased with the number of
iterations which makes the particles group at the minimums.
The same as for DE, PSO also does not depend on any information from the cost
function and can be applied on a wide variety of problems.
The algorithm starts by randomly placing an initial population (swarm) of particles,
also known as candidate solutions. Each particle is also assigned a random initial
velocity. For each particle ni P N pick random numbers r1, r2 � Up0, 1q and update
the particle’s velocity vi � ωvi � c1r1pnib � niq � c2r2psb � niq. ω is used to lower
the velocity with the number of iterations. c1 is the cognitive coefficient, and it will
determine how much will the particle focus on it’s own best position nib. c2 is the social
coefficient and it determines the effect of the best position that the swarm has found
sb. After updating the velocity, the particle position is updated with ni � ni�vi. The
cost function is evaluated on the new position. If the new position is better than the
current best it will take it’s place. Also, if the new position is better than the current
best for the whole swarm it will take it’s place. The algorithms continues until some
termination criterion is met.
It is important to mention that neither of these two algorithms guaranties to find the
global minimum. Moreover, overall execution time of the proposed algorithm depends
strongly on the parameters, i.e., number of agents and number of iterations, as the
optimizers are used several times for each iteration.

3.7 Case Study and scenario description

In order to validate the proposed method, a simple highway scenario was used. The
testing is done for an Emergency Brake Assistant (EBA) system. The scenario consists
of a passenger car driving on the highway and encountering an obstacle in its path.
The goal of the EBA is to avoid collisions by braking, i.e., no evading maneuvers are
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used. To prove that our system is able to detect faulty behavior inside the parameter
space, we introduce an error in the sensor’s field of vision. These types of errors can
occur from external mechanical damage, internal circuit failure or occlusion.
A detailed overview of the scenario can be seen in Figure 3.3. The vehicle starts from
a still stand and accelerates with constant acceleration until it reaches a maximum
velocity of 100km

h
, moving along the x axis. Simulation duration is 10 seconds at

which the car reaches 128 m. The parameter space P̂ is represented by the obstacle’s
position pp1, p2q, leading to a 2D search space. Static obstacles are placed on the
vehicle’s path within the following boundaries: P̂min � r25, �12s, P̂max � r165, 12s.
The distance at which an obstacle is detected is fixed to dsensor � 20 m and the sensor’s
detection angle is α � 30� ranging from r�15�, 15�s. An error θ � 1, 5� is introduced
starting at 1�, and a search for the worst case crash is going to be conducted.

Figure 3.3: Scenario setup © IEEE 2017

3.7.1 Simulation setup

For the simulation setup Matlab and Simulink [52] are used. The vehicle dynamics
and ADAS model represent the modelM from the problem statement. The simulation
setup overview can be seen in Figure 3.4. In order to use the proposed approach, only
a helper function needs to be available to run the simulation model with parameters
p P P̂ and receive back the evaluated cost function c : cψpΦpM, rp1...pnsq.

3.7.2 Cost function selection

As discussed before, the selection of the cost function cψ is not a trivial task. Nicolao et
al. [53] have introduced an approach where they propose a risk assessment evaluation
based on the probability that a collision with a pedestrian will occur. Ferrara et al.
[54] have used a collision cone approach where they explore necessary and sufficient
conditions for a collision to occur. Some good practices that can be considered when
constructing a cost function are: smoothness - as it will enable a better approximation
when using surrogate modeling and convexity - this will ensure quicker convergence to
the global minimum.
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Figure 3.4: Simulation setup using MATLAB © IEEE 2017

For our case study, we are going to use a cost function based on the Time to Collision
(TTC) between the vehicle and the obstacle. The scenario duration is set to 10 seconds
an the lowest value of the cost function is taken. However, defining the cost function
only with the TTC can lead to test runs were the cost function is misleading. An
obstacle can be close to the vehicle (on the side) but as it is not on the path of the
vehicle it is not critical and a higher cost can be assigned. To avoid this behavior, the
vehicle velocity vveh is added in order to give a higher cost value to the obstacle that
is not in the vehicle path or it is out of the sensor range.
Finally, we also define that crashes that occur at higher velocity have a lower evaluation
value then crashes at lower velocities. The complete cost function is defined as:

cψ �

#
minpTTC � vvehq, TTC � d�dmin

vveh�ε
, no collision

�vveh , collision
(3.4)

where ε is a small value used to evaluate TTC when the velocity is equal to zero. By
minimizing the cost function, we aim to find the most severe crash conditions. The
complete cost function on the parameter space P̂ is shown in Figure 3.5. In the figure
we can distinguish 3 regions. The outside red shaded region represents the obstacles
that were outside the sensor range. They do not pose a threat to the vehicle so the cost
function is high in this region. The second region is in a light blue color. This region
corresponds to obstacles that were detected and the vehicle was able to decelerate and
stop. And finally, the dark blue region represents the fault in the senor. The obstacles
were not detected and a crash occurred. Furthermore, crashes with higher velocities
have lower cost values.

3.8 Results

In order to evaluate the results obtained from our algorithm, we have simulated the
same scenarios using the optimization algorithms DE and PSO directly on the sim-
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Figure 3.5: Cost function defined in equation (3.4)

ulation model, without building the surrogate. The aim of this research has been to
reduce the overall number of function calls as they can have a long execution time
or could be expensive regarding computation or other resources. Since we are deal-
ing with stochastic optimization algorithms, we can not be certain on the number of
function calls needed to find a global minimum. Therefore, we have conducted our
experiment with 100 test runs and gathered the average values for comparison. In
addition, the functions and parameter spaces are equal for all methods used.
Because the optimization algorithms do not save states between evaluations, we built
the surrogate model for every test run, i.e., the samples were not saved between the test
runs, even though that would be beneficial in a real scenario. The number of function
evaluations was limited for all algorithms and was set to 100 evaluations per test run.
The optimization algorithms were limited to use 5 agents and 19 iterations with an
additional 5 evaluations for the initialization. Coefficients in the DE algorithm were
set to c � 0.5 for the mutation and f � 0.5 for the crossover. For the PSO algorithm,
the coefficients were set to c1 � 1.05 for cognitive, c2 � 1.05 for social and w � 1 Ñ 0.1
for the particle speeds. The parameters were chosen taking in account advice given in
[55] and [51], respectively.
Our proposed method was running using ns � 3 leading to 9 samples per zooming
iteration for iterations below zit � 4 and was limited to maximum 100 function eval-
uations. The zooming-in factor was set to zf � 0.35 and the random factor was set to
rf � 0.1. In general, a higher value of ns leads to better surrogate model but it will
also lead to higher number of required real function evaluations per iteration. The
zooming-in factor zf should be chosen depending on the cost function. If the cost
function is convex then a lover value is better as it will lead to faster convergence
and a good interpolation around the faulty behavior. However, if the cost function
is unknown and may have many local minima, a higher value is recommended as the
model will have better overall approximation of the cost function. If several test runs
are possible, it is better not to sample the model at the same location and reasonable
values for the random factor are rf P r0, 0.5s.
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For the surrogate model optimization tasks, we used the PSO optimization algorithm.
However, because we are not calling the objective function and the computation is
reasonably inexpensive, we used a higher number of agents p15q and iterations p15q.
The experiment was repeated for 100 times within the parameter space P̂min �
r25, �12s, P̂max � r165, 12s. The testing criterion ψ : TTC ¤ 0 means that a
collision has occurred.

Table 3.1: Comparison of different algorithms for test run reduction © IEEE 2017
f-avrg f-best g-best found a-f-call time

Kri -5.27 -11.43 111.2, 0.24 97% 42.67 1785s
Rg -2.70 -13.78 106.7, 0.20 70% 57.70 689s

Rmq -3.29 -12.04 112.7, 0.23 84% 51.24 901s
PSO -5.08 -12.19 99.18, 0.21 86% 53.70 623s
DE -2.37 -13.03 92.20, 0.20 67% 59.90 345s

Table 3.1 presents the obtained results. The columns of the table are respectively:
average evaluated global minimum; the best global minimum; position of the best
global minimum; percentage of successfully found crashes from all test runs, i.e., Krigin
model found crashes in 97 out of 100 runs; average number of simulation evaluations
per test run; and computation time for all test runs. The rows show the results for
the Kriging, RBF with Gaussian and Multiquadric kernel, DE and PSO optimization
algorithms.
We can see that the Kriging model managed to find test runs leading to crashes with the
highest probability while using less simulation evaluations. The higher computation
time of the Kriging model is directly related to the two optimization steps needed in
each iteration; however, in our setup, one simulation run lasted on average 0.127s, and
the benefits of a reduced number of function calls could be seen on simulations with
longer execution times.

3.9 Chapter Conclusion

In this chapter we introduced an iterative falsification approach for ADF, focusing
on finding faulty behavior inside a given parameter space. Because of the simulation
duration or complexity, it is not always feasible to run global optimization algorithms
directly on the system. We proposed an approach where a computationally inexpensive
surrogate model of the system behavior is built, and optimization algorithms are then
applied on the surrogate and not the real system.
For the surrogate modeling we used the RBF approximation, and we have explored
models with different kernel functions. For the optimization tasks the DE and PSO
were implemented. The testing evaluation was conducted on a highway scenario with
an EBA. The scenario consisted of a passenger car driving in a straight line and the
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obstacle position was varied. An error in the sensor’s field of vision was introduced and
the task of the algorithms was to find the test case with the worst crash evaluation.
The aim of the research was to show that we can reduce the number of test runs
if we first build a surrogate model and then run the optimization algorithms on the
surrogate and not on the real system. In the evaluation, the maximum number of
real system evaluations was fixed to 100 for all algorithms and the average outcomes
were compared. In the end, we have shown that the Kriging model produced the best
results leading to a lower number of test runs and a good approximation inside the
faulty region.
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4
Model-based safety validation

In the previous chapter we introduced a methodology which is used to
lower the number of test runs and lead the testing towards faulty behavior
regions. However, we are not able to guarantee that the system is working
without errors if none were found. Therefore we can make use of simulated
models, where the number of test runs is not an issue, to perform more
thorough testing. This in return makes it possible to provide guarantees
that the system is behaving correctly in a given parameter range.

Most of the content of this chapter is adopted from
H. Beglerovic, A. Ravi, N. Wikström, H.-M. Koegeler, A. Leitner, J. Holzinger, Model-
based safety validation of the automated driving function highway pilot, in: 8th In-
ternational Munich Chassis Symposium 2017, Springer, 2017, pp. 309–329.

4.1 Introduction

In this chapter, we will show a validation approach applied to a specific scenario chosen
among 1000 relevant traffic scenarios for a Highway Pilot. By selectively and system-
atically varying scenario parameters, it is expected that a better coverage is achievable
compared to classical full-factorial validation. However, this approach is only feasible
if adequate virtualization tools and Model in the Loop (MIL)/SIL environments are
available.
According to accident databases like German In-Depth Accident Study (GIDAS) [56],
most highway accidents in recent years have occurred when driving in the same direc-
tion on the same lane, at sunny weather and dry road conditions.
Consequently, the first automated driving use cases focus on Highway Pilot function-
ality [57] – allowing a SAE level 4 automation [58]. In general, the Highway pilot is
a combination of several complex ADAS functions such as: ACC, LKA, and LCA.
Each of these ADAS functions individually, as well as their integration, presents a
challenge for validation and verification. In the scope of this research we will focus
on the ACC part of the Highway Pilot in order to focus on the “following behind a
car in the same lane” type of scenario, which have the highest accident probability.
To keep the confidentiality of manufacturers, we put ourselves in the position of an
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ADAS-Function supplier and develop it from the ground up all the way to the first
tuning and validation.

4.2 Adaptive Cruise Control

In this section we will go through the implementation of the ACC function. The
objective of the investigated control strategy is to allow fuel-efficient, comfortable and
safe longitudinal speed profiles for the ego vehicle on a highway road, presenting the
first and fundamental part of a Highway Pilot.
A Model Predictive Control (MPC) based strategy is employed, which adaptively con-
trols the acceleration of the vehicle based on information from the prediction models.
These models recurrently predict the motion of the ego vehicle as well as a preceding
target vehicle over a prediction horizon of 20 seconds. This information is then used
as inputs to a quadratic programming optimization problem, which takes the form

minx xTQx� qTx (4.1)

subjected to the vehicle constraints, traffic speed limits.

0 ¤ v ¤ minpvdefinedmax , vlegalmax , v
curve
max q (4.2)

amin ¤ a ¤ amax

jmin ¤ j ¤ jmin

where x denotes the state of the system, which includes: v - velocity, a - acceleration
and j - mechanical jerk. The cost matrix Q and cost vector qT describe the weightings
between the different state variables. The cost matrix Q is positive definite diagonal
matrix defined as

Q � diagpcv2, ca2, cj2q, cv2, ca2, cj2 ¡ 0 (4.3)

and qT is defined as

qT � rcv1, ca1, cj1s (4.4)

where the symbol c denotes the coefficients for the respective state variables. The
optimization problem is solved every 500ms to obtain desired vehicle accelerations.
The parameters were tuned in an initial phase for a single route with fixed traffic and
environment conditions and will be discussed in detail in the next section.
In addition to the cost given in equation (4.1), two headway costs are added to influence
the following behavior of the ego vehicle. The ego vehicle is allowed to adapt its
headway distance to the preceding vehicle within a predefined, velocity-dependent
range. This is referred to as a flexible spacing policy. The policy is defined with the
minimum and maximum headway distance.
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Figure 4.1: The minimum inter-vehicle distance is given by two headway time limits:
the first (soft) limit may be violated at a cost whereas the second (hard)
limit should never be violated.

Figure 4.1 shows how the minimum distance is defined by two headway limits: a
hard and a soft limit. The hard limit must never be violated and it is added to the
constraints, whereas the soft limit can be violated but at a given cost. This cost grows
quadratically approaching the hard limit and it is defined as

costheadway � ch2d
2
h � ch1dh (4.5)

The maximum headway distance dMAX , illustrated in Figure 4.2, is also composed of
two components. The first component, dhrMAX , is a predefined limit given either as a
fixed distance or a velocity-dependent distance. The second component, dCatchUpMAX , is
proportional to the preceding vehicle’s current velocity, scaled by a ‘catch-up’ factor
defined to be greater than one. The first component dominates when the ego vehicle
is within the desired headway range, which corresponds to a following maneuver. The
second component dominates when the vehicle is far behind and it should close the
gap to the preceding vehicle. Neither of these constraints are allowed to conflict with
the speed limit on the route, and lagging behind the limits leads to a higher travel
time cost.

costtravel � ctrt (4.6)
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Figure 4.2: The maximum inter-vehicle distance dMAX is defined by two limits: one
limit dominates when the ego vehicle is located far behind the preceding
vehicle pdCatchUpMAX q, while the other dominates after a predefined headway
range has been reached pdhrMAXq.

4.3 Model-based tuning

In order to reach a target behavior of the ACC, or in more general terms the SUT,
the relevant influencing parameters have to be determined and varied systematically.
Typically the first development environment in the development process is a MIL,
where the ACC function is simulated together with the environment.

Figure 4.3: Model-based tuning of a SUT
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In general, this tuning task is carried out by an expert operator, who, based on his
experience, varies the most relevant parameters until the target behavior is met. The
results from such a subjective tuning process depend on: start values, step size, number
of considered parameters, etc. Without a good understanding of the underlying corre-
lations between the parameters, a perceived optimum behavior could easily represent
a local optimum.
To improve that, a statistical Design of Experiments (DOE) based tuning methodology
is presented in Figure 4.3, which tries to provide a correlation of the input parameters
and the KPIs using the least possible number of test runs. Using an automated test
procedure, all the relevant input parameters are varied simultaneously to identify the
system behavior. The observed behavior of defined KPIs is used to build models,
which allow predictions in the whole space defined by the variation parameters and
some limited extrapolation depending on the model quality. The method assures
that a global optimum is found, the parameter space is optimally covered, and the
efficiency as well as traceability of the tuning decisions are ensured. This statistical
DOE approach helps to understand the parameter influence and correlations, which
is very beneficial in cases with a large number of input parameters. In such cases, the
parameters with lower influence can be kept constant or excluded, which reduces the
tuning effort. Furthermore, the behavioral models built between the inputs and KPIs
can be used for optimization tasks and tradeoff analysis, providing an additional tool
for the adequate tuning of parameters.
The development environment for the SUT consists of the dynamic vehicle simulation
program IPG CarMaker, Matlab-Simulink for the development of the ACC and AVL
Cameo for the test automation, tuning and optimization.

Figure 4.4: a) Selected scenario for tuning; b) Reference velocity of the preceding vehi-
cle

Figure 4.4 shows the scenario selected for the tuning of the ACC function. It consists
of an ego vehicle (red arrow) following a preceding vehicle (green arrow) using the
model predictive ACC. The preceding vehicle has a predefined behavior as shown in
Figure 4.4 b) and the controller is tuned to satisfy several KPIs with respect to the
preceding vehicle behavior. The tuning task represents the first effort conducted for
the new controller and it is placed early in the development cycle.
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4.3.1 Tuning Targets KPIs

For the tuning task of the ACC controller the following KPIs have been chosen:

• Safety – The controller should not violate the hard constraints regardless of the
maneuver. As shown in Section 1 the controller has a hard constraint for the
headway time. This constraint must not be validated in order to leave enough
time for the vehicle to come to a complete stop in case of an accident.

• Fuel Performance - The controller should minimize the fuel consumption mea-
sured in liters per 100km, and the influence of sudden changes in the preceding
vehicle’s velocity or maneuvers should be kept low. The fuel consumption when
the ego vehicle perfectly follows the preceding vehicle with a fixed headway time
is considered as a baseline.

• Driver Comfort – The controllers should maximize the driving comfort by re-
ducing jerk. Similarly as above, the behavior of the preceding vehicle will be
smoothed out and the controller will try to minimize braking while maintaining
a safe and smooth ride.

• Travel Time – The controllers should minimize travel time taking in consideration
all above mentioned KPIs.

4.3.2 Design Variables Sensitivity Analysis

As we are dealing with a new controller function without a priory knowledge of the
behavior, we have taken the available 10 parameters pcv2, ca2, cj2, cv1, ca1, cj1, ch2, ch1,
ctrq and conducted a sensitivity analysis. Figure 4.5 shows the Relative Significance
Indicator (RSI) for the four KPIs with respect to each of the ten investigated tuning
parameters.
To calculate the RSI, the sensitivity algorithm analyzed the contribution of each in-
dividual parameter on the overall model quality. At the beginning we start without
any parameters and calculate the Root Mean Square Error (RMSE) with respect to
the mean, which is denoted by RMSEmax. Then, we calculate the RMSE by con-
sidering all parameters denoted as RMSEmin. Afterwards, the contribution of all
individual parameters on the reduction of the RMSE is calculated and normalized
using RMSEmax and RMSEmin leading to the RSI score. The parameter with the
highest RSI score gets selected, its value gets fixed and the process starts over with
the remaining parameters. These steps are repeated iteratively until all parameters
are sorted by their RSI score for each KPI.
A Robust Neural Network (RNN) [59], which also considers nonlinear influences and
interactions correspondingly, is used as modeling base. We conclude that only the first
five parameters, pcj1, ca2, cj2, cv1, ca1q, have a considerable influence on the overall
behavior of the system. Therefore, for further tuning the rest of the parameters were
kept constant.
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Figure 4.5: Parameter sensitivity analysis

4.3.3 Tuning Results

The tuning of the controller has been conducted with an interactive DOE procedure.
The start design of 40 test runs for the 5 parameters was automatically extended to
520 test runs in order to get reliable models in regions where the KPI show interesting
behavior [60], [61]. Figure 4.6 shows the resulting tuned ACC-behavior: The upper
two signals represent the velocities of the preceding and ego vehicle respectively. The
preceding vehicle’s velocity profile was fixed for the whole tuning task and the ego
vehicle’s ACC controller was tuned in order to assure that the safety, fuel consump-
tion, comfort and travel time KPIs are met. The next two signals represent the road
elevation profile and the clearance between the ego and the preceding vehicle. We can
see that the controller settings are chosen in such a way that robustness is assured and
outside disturbances coming from the road elevation are successfully handled. Finally,
the two remaining signals represent the accelerator and brake pedal position percent-
ages, and we notice that the controller settings minimize the braking energy and jerk,
leading to more efficient and comfortable ride.

For the evaluation of the tuning, we compared the behavior and consumption of the ego
vehicle with respect to the preceding vehicle’s velocity profile. The controller was able
to achieve approximately 18% decrease in fuel consumption whilst still maintaining a
smooth and safe ride. In the next section, a validation of the tuned control function
will be performed in order to determine the robustness of the chosen parameters with
respect to different behaviors of the preceding vehicle.
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Figure 4.6: Tuning results of the reference scenario

4.4 Model-based validation

After successfully tuning the SUT, a validation procedure is needed in order to prove
that satisfactory behavior and robustness is assured in a wider range of maneuvers.
Figure 4.7 shows an overview of the validation task and we notice a considerable
similarity to the tuning task discussed previously. In this research, we aim to prove
that the same principles of model-based tuning can be transferred to the model-based
validation of ADFs. The main difference between the tuning and validation is that now
the external or environmental parameters are varied in order to validate the internal
or controller parameters. Similar to the tuning task, a parameter space coverage is
determined using DOE after which behavior models are built for all KPIs. The most
important benefits of this approach are:

• Compared to the "full factorial grid approach" the behavior of the safety-critical
KPIs can be predicted with an order of magnitude less simulation runs, giving
complete results in the investigated ranges.

• Interactions and significance of the parameter changes are fully considered when
searching for safety-critical situations.

• The highly automated process is much faster than a manual one, and the human
interaction happens on the level where decisions are made. In addition, a new
interactive DOE procedure [59]is used which fills in points automatically after
an initial sampling in order to improve the accuracy of the models in regions of
high interest.

By selecting appropriate KPIs, it is possible to locate safety-critical behavior regions
in-side the parameter space by optimizing the models built in the previous step. Faulty
behavior of an ADF in a test run can be defined as the behavior occurring when a
critical criteria is not satisfied, e.g., the minimum clearance distance was breached. For
a function developer it is of high interest to investigate the region in more detail and
to get a better understanding of the faulty behavior. This can be done automatically
using the interactive DOE procedure.
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Figure 4.7: Model-based validation of a SUT

4.4.1 Scenario Selection for Validation

The scenario selected for the validation of the Highway Pilot can be seen in Figure
4.8. In this scenario the ego vehicle is driving with the desired cruising velocity and a
heavy truck is cutting in from the right side with a much lower speed. After cutting
in, the preceding vehicle’s velocity is changing following a sinusoidal trajectory where
the mean velocity, amplitude, and period are varied as validation parameters. The
length of the test run is fixed to 3km. In addition, this type of scenario represents the
second most likely accident type defined by the GIDAS [56].

Figure 4.8: Selected scenario for validation

4.4.2 Validation parameters and KPIs

The parameters of the scenario can be split in two groups. First, the parameters set
by the driver:

• ACC target/crousing velocity – If no preceding vehicle is detected, the ACC will
accelerate to the target velocity.
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• Maximum headway time to next vehicle – If a preceding vehicle is detected the
ACC is going to keep the headway time below the maximum value, i.e., keeping
a steady but safe distance from the vehicle in front.

Second, the environment parameters shaping the test case to a defined test run:

• Distance to the preceding vehicle – Distance between the ego and preceding
vehicle at the cutting-in time instant;

• Road friction coefficient;
• Amplitude, frequency and mean velocity of preceding vehicle – In order to vali-

date the ACC under a wide range of behaviors, the preceding vehicle’s velocity
was changed following a sinusoidal trajectory where the amplitude, frequency
and mean are defined as input parameters for the validation.

Table 4.1 gives an overview of the validation parameters and their corresponding ranges
for the selected example. The scenario was simplified for a better understanding in
the following way: The cutting-in distance was fixed to a reasonable borderline value
(for shorter distances the truck driver would be responsible for an accident). We did
not consider variations in the road friction, and the road gradients turned out to have
no influence as long as the road friction is sufficient.

Table 4.1: Scenario parameters for model-based validation

min max Initial value

Start velocity of the maneuver
fixed values

150km
h

Selected by

the Driver

ACC target velocity 150km
h

Maximum time gap 2s

Maneuver

parameters

Distance to the incoming vehicle
fixed values

80m

Road friction 1

Road gradient 0%

Average traffic velocity 40km
h

140km
h

80km
h

Sine velocity amplitude -20km
h

20km
h

0km
h

Sine velocity time period 10s 40s 10s

Figure 4.9 shows one example taken from the test runs. The ACC set velocity was
150km

h
and at time instance of 40s the ego vehicle’s sensor detects a vehicle cutting

in with a velocity of 65km
h
. Finally, the velocity of the preceding vehicle is changing

following a sinusoidal trajectory with an amplitude of 20km
h

and a period of 25 seconds.
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For the validation, the following KPIs were considered:

• Minimum clearance distance between ego and preceding vehicle
• Minimum headway time
• Maximum braking energy

Figure 4.9: Example validation test run

The KPI values for the example test run are shown in Figure 4.10.

Figure 4.10: Clearance distance and time gap KPIs for the example run

4.5 Results

To validate the ACC for this specific scenario we first need to define a criterion that
denotes a critical situation. The “Safe distance between vehicles” published by the
Conference of European Directors of Roads [62] gives an overview of laws regarding
the minimum clearance distance and headway time. In the publication, we find that
the minimum headway time defined by the Austrian law is 0.4 seconds, regardless of
the scenario.
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Following the regulations as guidelines, we define that a dangerous test run ranges
between 0.4s – 0.8s headway time and clearance distance ranging from 3m to 15m.
Scenarios with a clearance distance lower that 3m are considered crashes to take in
consideration the behavior model’s standard deviation which can vary between �1m.
Furthermore, this borderline also takes into account the small simulation errors that
are introduced by the imperfect vehicle and sensor models.
In this regard, we performed a multi objective optimization on the KPI models in
the dangerous ranges defined above, in order to find the most critical environmental
parameters for the specified scenario.
Figure 4.11 shows the results of the optimization. The optimization variables are the
minimum clearance distance and the maximum breaking energy. The optimization
leads to a test run with the strongest braking effort, while the minimum clearance
distance is still considered safe. From Figure 4.11 a) we can see that the selected
pareto-optimum solution dominates all other dangerous test runs and that a more
critical solution does not exist except those with a lower predicted minimum clearance
distance of 3 m. Figure 4.11 b) shows the two behavior models for minimum headway
time and minimum clearance distance on the pareto-optimum solution from Figure
4.11 a). We can see that among the three parameters the average traffic velocity has
the most impact on both models.
The optimization results obtained in Figure 4.11 are taken from the behavioral models;
however to obtain the real values of the minimum headway and clearance distance
for this test run we have to run the simulation with the corresponding parameters.
After running the simulation, we determine that the minimum clearance distance and
minimum headway time for the worst, bus still safe, test run are 2.2 m and 0.45s
respectively.

Figure 4.11: a) Pareto front for the critical scenario; b) Parameter influence on safety
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Figure 4.12: a) Dangerous test run regarding the Sine parameters; b) Most critical test
run

In addition, Figure 4.12 a) shows all the dangerous test runs with respect to the
sine velocity amplitude and the average traffic velocity. Figure 4.12 b) shows the
most critical “near crash test run”. We can see that in these test runs there was a
combination of the sine parameters such that the velocity of the preceding vehicle was
very low. This in return resulted in very harsh braking from the controller. However,
the vehicle was able to decrease the velocity in time to avoid a crash.
Finally, we can state that for the test run considering any combination of the param-
eters in 4.1 with an ACC target velocity of 150km

h
under:

• dry conditions, on flat road, with a cutting in distance of 80m,
• a sinus time period between 10 and 40 seconds,
• with a velocity amplitude within �20km

h
,

• a base velocity of the “cutting in vehicle” of more than 41km
h
,

the system will react safely in terms of “crash avoidance” (minimum clearance distance
less than 3�1m is not reached). Furthermore, as long as the base velocity of the cutting
in vehicle is above 78km

h
(no dangerous test runs exist with higher velocity values) the

legal limit of at least 0.8 seconds headway time is kept under all conditions.
One difference to the conventional testing is that we can draw these conclusions based
on 210 simulation runs while considering three parameters. However, conventional
testing methods, carried out by an engineer, would still need around 700 simulation
runs, where the three parameters could be changed in steps of 11 average traffic velocity
values, 9 velocity amplitude values and 7 velocity time period values.
The information of these borderline test runs are useful in later testing and valida-
tion steps which can be performed on various development environments and proving
ground, where a high integration between the function and vehicle is possible.
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4.6 Chapter Conclusion

In this chapter, we presented a comprehensive introduction for the development, tuning
and validation of a simple ACC of a Highway pilot. The emphasis was put on the
validation methodologies using as an example one test scenario. We have shown how
principles of the well understood tuning task could be carried onto the validation.
An ACC function was developed from the ground up, presenting the first part of a
Highway pilot. The tuning of the controller was done on a fixed scenario and the ACC
was then validated on a defined test case. The resulting behavior models allow us to
specify:

• Areas of robust and satisfactory response of the controller
• Areas where legal limits are violated
• Borderline performance - Near crash test run
• Areas were crashes are occurring
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5
Classification of Ego Related Scenarios

This chapter focuses on methods that can be used to extract desired sce-
nario out of recorded data. The selection of specific classes can significantly
reduce development and testing effort for ADF. We apply DL methods on
data coming from the ego vehicle’s sensors to classify scenarios relevant for
a LKA system.

Most of the content of this chapter is adopted from
H. Beglerovic, T. Schloemicher, S. Metzner, M. Horn, Deep learning applied to sce-
nario classification for lane-keep-assist systems, Applied Sciences 8 (12) (2018) 2590.
doi:10.3390/app8122590.

5.1 Introduction

In order to ease and accelerate the development of an ADF, we need to be able to
continuously assess and monitor its behavior throughout the whole development cycle.
The data used for the development should, ideally, be classified by scenario type and
severity level of safety and/or comfort issues. In recent years, scenario classification
was based on heuristic algorithms [63], [64], where engineering experts spent a lot
of time and effort to create the necessary rules. For each detected driving scenario,
various KPI are calculated to reflect the driving quality.
However, some signal patterns are very challenging to be detected by heuristic algo-
rithms only. There are no distinct triggers where a threshold could be set. Instead,
the signals usually show decreasing and increasing slopes containing noise that could
lead to misclassification. Furthermore, due to sensor noise or false target detections
some information gets lost and therefore some interesting driving scenario cannot be
detected correctly by the heuristics. This is where ML is applied to increase the detec-
tion rate when the NNs, along with a well labeled data-set, have learned to deal with
false positives and false negatives. The NNs are not immune to data inaccuracy, but
they are able to learn, to some degree, when the sensor measurements are inconsistent.
In this chapter we explore end-to-end DL methods to classify driving scenarios related
to a LKA using time series data coming from various sensors. We focused on Con-
volutional Neural Networks (CNN) as they have shown better performance compared
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Figure 5.1: Concept overview. Scenario detection from sensor data using an online
and offline model.

to Recurrent Neural Network (RNN). Finally, we propose two classification models as
shown in Figure 5.1. The online model is used during driving, when a real time clas-
sification is necessary. This model uses the past values to make the class predictions.
The offline model is used in post-processing. As this model is using the recorded data,
it can look what the vehicle was doing and then trace back and make the prediction.
In other words, the model makes the prediction in the center of the considered time
window taking in consideration what the vehicle did before and after. This approach
leads to improved accuracy and can, to some degree, eliminate wrong detections.

5.2 Related Work

In recent years, natural language processing and machine translation [65], [66], [67],
had a great impact on the development of deep learning models for processing se-
quential data. The main idea behind the approach is to translate words, or phonemes
if speech is used, into a fixed length vector embeddings. These vector embeddings
can then be used as a time series sequence. The research resulting from the natural
language processing is widely adopted to other fields that deal with time series data.
Until recently, RNNs have been the de facto choice for time series modeling. RNNs
are networks that use hidden states that get propagated during time to compress valu-
able information from the past. Especially successful RNNs are the Long Short-Term
Memory (LSTM) [68] or Gated Recurrent Unit (GRU) [69]. Both use several gates to
control which information should be stored and which information should be forgotten.
Outside the natural language processing, the LSTM and GRU have been applied in
various tasks such as general time series classification [70], classification of Electrocar-
diography (ECG) data, [71], time series forecasting [72], etc.
Other researchers have also combined convolutional neural networks CNNs with RNNs
to increase model performance. The main idea is to use the CNN in the first layers
as feature extractors and later use RNNs for sequence classification. This method has
been applied to trajectory clustering [73], human activity classification [74], sentiment
classification [75], and others.
However, RNNs have several limitations that can impact model accuracy and training
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duration. The training data for RNNs need to be sequential and divided in such a
way that the hidden outputs from one batch match the inputs of the next batch. This
batching procedure could lead to deficient performance as some classes are rarely seen
by the network. Normally, shuffling of the data could greatly improve the training.
However, shuffling of the data is not possible because we need to follow the constraint
that each previous batch needs to lead to the current batch to preserve the propagation
of the hidden states. In addition, RNNs process only one set of features at a time.
After each step new hidden states and outputs are calculated which are then used in the
next step. This sequential calculation procedure leads to increased training duration.
CNNs do not suffer from these limitations. The data can be shuffled as individual
batches do not have to be sequential. Furthermore, as the CNN is a feed-forward
network the whole batch is processed directly.

The advantages of CNNs over RNNs have led researchers to apply only CNNs for time
series classification [76]; however, their performance has been inferior until recently.
Bai et al.[77] have shown that convolutional neural networks can produce even better
results than RNNs if new architectural improvements like dilatation and residual net-
works are used. Because of the recent breakthrough and their superior performance,
we will focus on the usage of CNNs for the task of time series classification and compare
their performance to RNNs.

Outside the scope of time series classification, CNNs have also been used for classifica-
tion of driving scenarios. Gruner et al.[78] proposed a spatiotemporal representation
(Grid Map) that is able to capture dynamic traffic behavior. The representation is
constructed using object information obtained by fusing data from several sensors.
The representations are then used as inputs for a CNN which classifies the data into
five classes: Validity of frame, Ego vehicle speed larger than 1m/s, Leading vehicle
ahead in lane, Other vehicle overtaking the ego vehicle on adjacent lane, Cross-traffic
in front of the ego vehicle.

Our research differs from the mentioned methods as we perform time series classifica-
tion using only sensor data. This data is used as input for a CNN augmented with
the best practices obtained from various recent studies, i.e., separable and dilated con-
volutions, residual connections and self-normalizing layers. In addition, we apply the
network on a different classification problem, classifying challenging driving scenarios
relevant for a LKA.

5.3 Time series classification using CNN

This section will give an overview of the proposed model that consists of a CNN acting
as a feature extractor which is followed by a dense multi-layer perceptron for classi-
fication. The convolutional feature extractor uses several enhancements compared to
an ordinary CNN, which will be explained in the following subsections.
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5.3.1 Depthwise Separable Convolutions

Given an input tensor Ti with shape chi�hi�wi, where chi is the input depth or number
of channels, hi and wi are the height and width respectively, an ordinary convolution
layer applies the kernel k � k over all channels of the input tensor simultaneously
and the whole kernel is applied for cho times, leading to the output tensor To with
dimensions cho � ho � wo. Thus, the dimension of the kernel K is defined as k �
k � chi � cho, leading to a computational cost of hi � wi � chi � cho � k � k. Generally,
the convolutional layer filters input features and computes new representations at the
same time.
On the contrary, the depthwise separable convolutions [79], [80] separate the feature
filtering and feature computation into two parts. For the filtering part, a separate
convolutional kernel Ki is applied for each of the input channels chi. As all the
channels have their individual kernels, an additional layer is needed to combine these
filtered features. Thus, the depthwise convolution is followed by a 1 � 1 convolution
generating the new representation. The 1�1 layer is a linear combination of the filtered
features generated in the depthwise convolution. Each kernel Ki has a dimension of
k�k�1, and combined with the 1�1 convolution leads to a computational complexity
of hi � wi � chi � pcho � k � kq. The number of parameters compared to the ordinary
convolutional layer is reduced by a factor of:

cho � k � k

k � k � cho
(5.1)

5.3.2 Dilated Convolutions

One drawback of ordinary CNNs is that in order to achieve a wide receptive field the
network needs to be very deep. For example, if we have a 1D time series input and
network with two convolutional layers, each with a 1 � 3 kernel and stride p1, 1q (the
kernel moves by 1 feature each step), the receptive field of the second layer will be 5.
In other words, a perceptron in the second layer will be able to "perceive" 5 values
from the input. In general, the receptive field grows linearly with the depth of the
network and is given as:

Ri � Ri�1 �
i¹

j�1
sj � pk � 1q (5.2)

where Ri�1 and Ri are the receptive fields of the previous and current layer, sj is the
product over all previous strides and k is the kernel size.
However, when working with time series data, it is often necessary to consider a very
wide view of the input to make adequate predictions. What if we could increase the
receptive field of the network without adding more layers and increasing the size of
the network? The solution is to use dilated convolutions [81], as shown in Figure
5.2. The main idea is that during the convolution the kernel is not considering every
adjacent input from the previous layer. Instead, there is some fixed dilation step di

48



5.3 Time series classification using CNN

between them. With this approach, it is possible to achieve an exponentially increasing
receptive field formulated as:

Ri � Ri�1 � di �
i¹

j�1
sj � pk � 1q (5.3)

Figure 5.2: Visual representation of the dilated convolutional layers with different di-
lation factors d. It can be seen that the last layer has a wide receptive
field.

It can be seen that the receptive field of the ordinary CNN (5.2) is actually a special
case of the dilated convolutional network (5.3) where the dilation factor di equals 1.
In practice, it is common to increase the dilation factor di exponentially for each layer
i, i.e., di � 2i.

5.3.3 Residual Connections

In order to produce models that generalize well on highly complex data, the number of
layers needs to increase. By creating deeper models, and by using good regularization,
we assure that the models learn the necessary features to produce appropriate outputs.
However, training deep networks presents a challenge because of the vanishing gradient
problem. The gradients from the output layers need to be propagated through the
whole network, which makes the gradients closer to the input part of the network
infinitely small, saturating and degrading the model.
He et al.[82] have proposed skip connections, as shown in the residual block in Figure
5.3. The skip connection allows the network to more easily learn a residual mapping
instead of the original underlying mapping, circumventing the gradient vanishing prob-
lem, as gradients can more easily flow through the network. However, Veit et al.[83]
have done a further study on the residual connections and argue that the skip connec-
tions allow the network to create better prediction as they effectively allow information
to pass through different pathways.
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The skip connection introduced in the residual block is basically an identity connection
added to the convolutional layers and can be expressed with the following equation:

resx � x� F pxq, (5.4)

where x is the layer’s input and F pxq presents an ensemble of operations, in our case
convolutional layers followed by an activation function.

Figure 5.3: Building blocks of the CNN network. The residual block with dilated sepa-
rable convolutions is shown on the left. The separable convolutional layers
with stride s � 2 for dimensionality reduction are shown on the right.

5.3.4 Self-normalizing Layers

It has become a widespread practice to use Batch Normalization [84] between layers
in CNNs to assure that layer outputs have zero mean and unit variance. This ap-
proach leads to faster training and serves as a regularizer for the network. However, a
drawback of batch normalization is that it increases the number of parameters of the
network as they are used after each layer.
Klambauer et al.[85] have introduced a new activation function called Scaled Expo-
nential Linear Unit (SELU) that makes the layer’s outputs converge to zero mean and
unit variance naturally. This means that the usual batch normalization layer followed
by nonlinear activation can be directly replaced by the SELU activation. The SELU
activation is defined as:

selupxq � λ

#
x, if x ¡ 0
αex � α, if x ¤ 0

, (5.5)
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where λ and α are coefficients that determine the mean and variance of the layer’s
output. Usually, their values are selected as λ � 1.6733 and α � 1.0507, which leads
to zero mean and unit variance outputs.
If dropout [86] is applied in the network than a special type of dropout called alpha
dropout is needed to preserve the zero mean and unit variance between the layers.
Together the SELU activation and alpha dropout lead to self-normalizing layers in the
model.

Table 5.1: Model architecture for scenario classification
layer kernel stride dilation activation input on. model input off. model

conv1 1 � 3 1 � 1 1 � 1 selu 10 � 60 10 � 80
conv2 1 � 3 1 � 1 1 � 2 linear 10 � 60 10 � 80
conv3 1 � 3 1 � 2 1 � 1 selu 18 � 30 18 � 40
conv4 1 � 3 1 � 2 1 � 1 linear 18 � 15 18 � 20
conv5 1 � 3 1 � 1 1 � 2 selu 18 � 15 18 � 20
conv6 1 � 3 1 � 1 1 � 4 linear 18 � 15 18 � 20
conv7 1 � 3 1 � 2 1 � 1 selu 20 � 8 20 � 10
conv8 1 � 3 1 � 2 1 � 1 selu 20 � 4 20 � 5

output size conv8 dense1 dense2 dense3 dense4

online 80 64 32 20 13
offline 100 64 32 20 13

5.3.5 Model Architecture

By applying the modifications to the ordinary convolutional network, we construct
two models. One model for online and one for offline classification of scenarios. Both
models share the same architecture but differ on how the input data is processed.
The model architecture consists of a combination of two residual and two separable
convolutional blocks, which are shown in Figure 5.3. The eight convolutional layers
are then followed by four dense layers. The parameters for each layer can be seen in
Table 5.1.
The input to the models is split into windows of equal length and move, with a fixed
stride, through the time series data, as shown in Figure 5.4. The online model is not
able to "look" into the future and its input window consists of past measurements
followed by the current stride. The model then uses this data to predict the classes
associated with the current stride. When applied to real measurements on a vehicle,
this scheme would result in a prediction for each stride duration, e.g., every half a
second. The offline model has all the data available and thus can consider behavior
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of the vehicle before and after the current stride which leads to higher prediction
accuracy.

Figure 5.4: Window partitioning for class predictions. In the online model, the inputs
are only the current stride and an aggregated past. No information of
what happened after the prediction is available. In the offline model, the
information what the vehicle did after the detection is available, enabling
the model to make a prediction based on past and future behavior of the
vehicle. To process the whole data, the windows are moved with a fixed
stride length, generating corresponding class probabilities.

5.4 Driving Data

The full dataset used to train the neural networks consists of real-world recordings
obtained in seven highway and four motorway runs in the area around Graz, Austria.
The dataset contains 183 channels and 304 thousand samples per channel, with a
sampling rate of ten samples per second. The channels are raw sensor measurements
coming from various sensors like the lane detection camera, inertial measurement unit,
encoders, etc., recorded directly from the CAN-Bus interface. As the focus is on
classifying the scenarios relevant for a LKA, 10 relevant input channels were chosen in
order to learn the distinct features.
The used channels are:

• Lane Assist Lateral Deviation
• Lane Assist Lateral Velocity
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• Lane Assist Lateral Velocity SMO20 - Smoothed with a 20 step window
• Lane Curvature
• Lane Width
• Steering Wheel Angle
• Longitudinal Acceleration
• Lateral Acceleration
• Velocity
• Yaw Rate

The model should learn to segment the data into 13 classes, as shown in Figure 5.5,
which were hand labeled using a custom labeling tool.
The labels are:

• TR: Turn Right - Low velocity sharp turn
• TL: Turn Left - Low velocity sharp turn
• LCLR: Lane Change Left to Right
• LCRL: Lane Change Right to Left
• S: Straight - Straight driving
• CL: Curve Left - Curve with fixed radius
• CR: Curve Right - Curve with fixed radius
• TOL: Turn Out Left - Curve with increasing radius
• TOR: Turn Out Right - Curve with increasing radius
• TIL: Turn In Left - Curve with decreasing radius
• TIR: Turn In Right - Curve with decreasing radius
• R: Roundabout
• SS: Still Stand.

The labeled data contain class probabilities for each sample from the training data.
When a sample could not be assigned to one of the thirteen classes, a uniform distri-
bution between the classes was introduced to represent the unknown state. In other
words, the model should not be able to tell which class the sample belongs to by
generating low probabilities for all classes.
The distribution of samples per class is shown in Figure 5.6. A strong imbalance
between the classes exists, which will limit the capacity to train the models. Classes
TR, TL and SS appear very rarely in the dataset, whereas S, CL, CR appear with
a very high frequency. There was no possibility to balance the classes more evenly
during the recording. In addition, various time series augmentation techniques were
applied but they did not show any improvements on the accuracy of the models.
Furthermore, time series data like this contain classes which repeat for a long time,
i.e., for a certain amount of time during training, the network gets as an input only one
class which hinders generalization. A remedy for this problem is to shuffle the data.
However, shuffling of the data is not possible if RNNs are used. The requirement of
these networks is that all data is introduced sequentially. CNNs on the other hand
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Figure 5.5: Example scenario classes. From left to right, top to bottom the labels are:
TR: Turn Right, TL: Turn Left, LCLR: Lane Change Left to Right, LCRL:
Lane Change Right to Left, S: Straight, CL: Curve Left, CR: Curve Right,
TOL: Turn Out Left, TOR: Turn Out Right, TIL: Turn In Left, TIR: Turn
In Right, R: Roundabout and SS: Still Stand
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Figure 5.6: Distribution and average duration of scenario classes.

are applied on segments of the data, i.e., windows. Inside the windows the data is
sequential but individual windows can be shuffled which increases the accuracy.
The average duration per class is shown in Figure 5.6. This information is used in
order to determine the size of the windows used for the CNNs. By increasing the
window size, we increase the complexity, size and accuracy of the models. However,
if we increase the window size top much the accuracy will decrease because we are
not able to distinguish classes with shorter duration. On the other hand, if we use a
small window size the network will not be able to learn the classification triggers for
the classes with longer duration.
After an experimental analysis, we decided to use a window size of 8 seconds (80
samples) for the offline, and 6 seconds (60 samples) for the online model, providing
good balance between accuracy and complexity. In addition, both models use the
same stride length of 5 seconds (5 samples) to traverse the windows over the whole
data.

5.5 Results

The models were trained and evaluated using both the highway and motorway data.
The first dataset contains only the highway records. Whereas, the second dataset
contains all recordings. In both cases, a test set including 10% of the recorded data is
left for the evaluation of the models after the training.
We compared the performance of the proposed CNN networks with two LSTM net-
works using the same window size and stride length. The first LSTM network is a
multi-layer network with 3 layers and a hidden state size of 512 neurons. The second
LSTM network is a 3 layer bi-directional network with the same hidden state size. The
bi-directional LSTM has twice as many neurons compared to the first LSTM network.
One part of the biLSTM network starts at the beginning and traverses the input until
the end, and the second part starts at the end and traverses the input to the beginning.
This approach leads to better results as the network combines both the forward and
backward pass to make a prediction.
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All models were trained for 100 epoch using a decaying learning rate, with a batch size
of 256 samples. The CNNs use the Adam optimizer, whereas the LSTM networks use
the Adagrad optimizer. To increase generalization, a dropout rate of 15% was used.
For the LSTM networks the dropout was applied on the 3 layers, and for the CNN
networks the dropout was applied on the dense layers. In addition, the CNN networks
use L2 regularization for the kernel weights with a regularization factor of 2e�3.

Figure 5.7: Training losses for the online and offline models trained on the highway
and highway-motorway data sets respectively

The training losses are shown in Figure 5.7. The offline CNN model has the lowest
training loss compared to all other networks. The LSTM network has the worst per-
formance and the network is not able to model the data well. The bi-directional LSTM
has a much better performance, and in the highway-motorway dataset the online model
performs better than the online CNN model.
However, when comparing the offline and online bi-directional LSTM we can see that
the offline model performs worse than the online one. A possible explanation could be
that the offline model is not able to memorize the "future" part of the data well when
making a prediction in the middle of the window.
The accuracy of the models on the test sets can be seen in Table 5.2. The columns
present the evaluated models and the rows present the accuracy and loss for the high-
way and highway-motorway datasets. We can see that the offline CNN has the best
accuracy on both test sets. The online bi-directional LSTM has the lowest loss in both
cases, but still a lower accuracy compared to the CNN. This is possible because the
loss is calculated as the mean cross entropy loss, meaning that the bi-direction LSTM
makes more mistakes in general, but the class probabilities are closer to the desired
ones.
The decrease in accuracy between the highway and highway-motorway data set is due
to the fact that the motorway dataset is more complex, and that the outputs from
the sensors were not always consistent. This presents a challenge as we are directly
using outputs from the LKA function even though sometimes those outputs are not
valid. In addition, because some classes are appearing less frequently than others, the
models are not able to fully generalize.
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Table 5.2: Test accuracy and loss on the Highway and Highway-Motorway dataset
High. acc. High. loss High. & Mot. acc. High. & Mot. loss

off. CNN 86.4% 0.725 81.6% 0.821
off. biLSTM 76.8% 0.775 73.3% 0.833
off. LSTM 51.5% 1.614 45.3% 1.486
on. CNN 84.4% 0.787 79.6% 0.824
on. biLSTM 77.6% 0.663 78.9% 0.640
on. LSTM 57.4% 1.469 69.0% 1.192

Figure 5.8. shows a part of the highway test set. We confirm that the model is
able to distinguish the desired classes providing satisfactory results. However, some
misclassifications are still present. The black ellipses in the figure highlight some of
them. For example, the model confuses the CL class with TIL, TOR or LCRL. These
classes are all very similar with subtle differences in the curvature radius or duration
of the maneuver. In general, the accuracy and generalization of the model could be
greatly increased if more balanced data were available.

5.6 Chapter Conclusion

In this chapter, we applied end-to-end DL architectures for classification of driving sce-
narios used for evaluation of ADFs. We focused on scenarios relevant for LKA systems
and considered both convolutional and recurrent neural networks. Through evaluation
on two datasets, we concluded that CNNs provide better accuracy. Even though the
performance of the proposed method is satisfactory, due to the imbalances of classes
in the data, similarities between classes and sensor inconsistencies the networks could
not fully generalize. However, we believe that deep neural networks represent a great
tool for scenario classification as the complex classification rules can be learned di-
rectly by the networks. In addition, the accuracy of the networks can be increased
incrementally as more data is recorded.
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Figure 5.8: Part of the highway test set with a duration of 20 minutes showing that the
model is able to learn the desired class labels. Predictions from the offline
CNN model are shown in blue and the class labels are shown in orange.
Classes TR, TL, SS were not shown as they did not occur on the highway.
The black ellipses highlight some misclassifications made by the network.
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6
Classification of Dynamic Traffic
Scenarios

In this chapter, we introduce a new methodology to represent and classify
scenarios with dynamic traffic participats. The representation is based on
the field of views that the traffic participants are occupying, leading to a
significant size reduction and increased accuracy.

Most of the content presented in this chapter is adopted from
H. Beglerovic, J. Ruebsam, S. Metzner, M. Horn, Polar occupancy map - a compact
traffic representation for deep learning scenario classification, in: 2019 IEEE 22nd
International Conference on Intelligent Transportation Systems (ITSC), 2019. © IEEE
2019

6.1 Introduction

As discussed in the previous chapter, scenario classification is mostly done manually
or using rule-based algorithms. The manual extraction is done by engineers during
the test drive or directly on the recorded data. Even though manual extraction of
relevant scenarios provides high accuracy, it requires a lot of effort and time. On the
other hand, rule-based methods use predefined triggers and patterns that are matched
against the data. Complicated scenarios require great effort to define all the necessary
rules.
As a lot of the recorded driving data is already available, it is possible to use NNs
to learn the required features and underlying scenario rules. This approach is highly
scalable as new scenarios can be added by retraining, and once the scenarios are
learned, the network can be easily deployed and used on new data.
In this chapter, we try to extend our previous research and include also information
of dynamic traffic participants in order to create more complex scenarios. The overall
idea, shown in Figure 6.1, is to first create a representation that captures the dynamic
traffic behavior from recorded data and then apply DL to extract relevant scenarios.
The task of the NN is to look at specific test runs from the recordings, and learn how to
group them in the correct scenario classes. By focusing only on the relevant scenarios
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Figure 6.1: Concept overview of the proposed scenario classification framework using
the Polar Occupancy Map (POM) representation. The example scenario
is a Target ahead switch cut out. © IEEE 2019

and eliminating the known and unimportant ones, it is possible to significantly reduce
current testing and validation times of ADFs. In addition, this method could be used
to find and add new scenarios to a catalog of relevant scenarios.
However, there is an intrinsic challenge with NNs that needs to be addressed. The
feature input size of a NN has to be constant and independent of the current scenario
and number of participants. Furthermore, to create a robust classifier the input should
be independent from the order of the participants to avoid generating different sce-
narios when the motion of the participants is the same. In this chapter, we focus on a
novel compact representation that satisfies the requirements and relies on sensor fusion
information, i.e., object lists. The proposed method creates a POM representation of
the scenario. The benefits of such an approach are a huge reduction in the input size
and an abstract representation that can be used on a variety of traffic scenarios.
As a proof of concept, we focus on detecting and classifying most common highway
scenarios. The scenarios are categorized in 9 classes: Driving in lane, Lane change,
Ego free lane cut in, Ego free lane cut out, Target Ahead (TA) free lane cut in, TA
free lane cut out, TA switch cut in, TA switch cut out.

6.2 Related Work

Scenario classification has been addressed by several research groups in the recent
years. The methodologies used for scenario classification can be divided into two
major groups: model-based classification and classification using ML. Regarding the
model-based approach, Elrofai et al. [87] have used a vehicle model to estimate the
yaw rate using a minimal number of basic sensors. The estimated yaw rate is filtered
and together with other parameters it is used to classify turn and lane change scenar-
ios. The difference of the proposed POM approach is that it considers other traffic
participants and does not rely solely on the internal measurements of the ego vehicle.
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The ML approach can be further divided into image and time-series based classifi-
cation. Image-based classification was addressed by Kastner et al. [88] and Bernini
et al. [89]. The two research groups proposed similar methods in which they use
static images to classify the current type of surrounding the vehicle is in. Both groups
divide the image into 16 equal parts, transforming each sub-part into the frequency
domain and use ML methods for the classification. Kastner et al. proposed a Hier-
archical Principal Component Classification (HPCC) that uses a 400 � 300 image to
classify whether the vehicle is currently located on a highway, country road or inner
city. Similarly, Bernini et al. used a 256 � 256 image to classify urban, highway and
rural driving. They did a comparison between Principal Component Analysis (PCA),
NN and Support Vector Machines (SVM). The limit of this approach is that it cannot
capture the dynamic behavior of the traffic and it mainly focuses on the surrounding
to make the prediction of the scenario type.
In our previous work [14], we used time-series data recorded from the ego vehicle’s
sensors and NNs in order to classify scenarios relevant for a Lane Keep Assist System.
However, other traffic participants were not taken into consideration.
Roesener et al. [90] worked also on time-series classification of scenarios and applied
it on the assessment of automated driving. They used extracted features, e.g., TTC,
Time to Next Cut In (TTNCI), TTC and TTNCI derivatives etc., to classify four
classes: Lane Change, Vehicle Following, Free driving and Cut In. They compared
the performance of the following methods: Naive Byes, ADABoost Simple Tree and
Median Tree.
Cara et al. [91] used time-series data to classify critical car-cyclist scenarios. The
input for their proposed method was the cyclist trajectory and ego vehicle velocity
and acceleration. They used 99 recordings that were filtered to ensure that a cyclist
was included.
Even though Roesener and Cara et al. consider dynamic behavior of other participants,
the proposed approaches are limited to only one participant per recording. In addition,
they use the distinct information of the participant to create the features needed for
the classification. In our approach, we explore how the information of an arbitrary
number of participants can be represented and used as input to a NN.
A representation of driving scenarios that can capture the dynamic behavior of an
arbitrary number of participants was introduced by Gruner et al. [78]. They have
used a top view Grid Map (GM) approach and proposed three types of maps: Velocity
Grid (VeG), Stacked Velocity Grid (SVeG) and History Grid (HiG). The VeG is a 3
channel map where the first channel represents a binary occupancy, i.e., whether an
object is present or not, and the other two channels capture the object’s vx and vy
velocity components. Both the SVeG and HiG are based on the VeG. The SVeG is
a stacked representation of two VeGs separated by some ∆t leading to a 6 channel
representation. The HiG representation fuses several VeGs by fading the occupancy
channel of older time-steps and uses the last VeG for the two remaining channels. All
maps use 50 � 50 pixels per channel, with a resolution of 1 pixel per meter in the
longitudinal and 2 pixels per meter in the lateral direction. In other words, to capture
a single time-step, the VeG requires 3� 50� 50 � 7500 inputs. The HiG requires the
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same amount for an arbitrary number of time-steps; however, because of the fusion
of several VeGs it is not possible to avoid information loss. For example, if a vehicle
moves right (motion-1 ) and then left again (motion-2 ) the whole motion would not
be visible as motion-2 overwrites motion-1. The SVeG requires double the amount of
inputs as VeG and introduces information loss depending on the size of ∆t.
We propose a completely different method for encoding the dynamic behavior of traf-
fic participants called Polar Occupancy Map. The POM requires only 270 inputs per
time step to capture the closest traffic participants without loss of relevant informa-
tion. This leads to a size reduction of factor 27 per time-step compared to the VeG
representation.
Our work shares some resemblance with the Vector Field Histogram (VFH) proposed
by Borenstein et al. [92]. They have used the field of view to create a polar histogram
density function for robot navigation. Even though the proposed representation also
uses the field of view approach, we do not use the histogram representation for the
horizontal axis, instead we propose a new function that is used to manipulate the
attention of the neural network. In addition, the representations are stacked to track
the traffic motion through time. The next section will give an in-depth explanation of
the proposed approach.

6.3 Polar Occupancy Map

The POM approach is based on the idea that the dynamic behavior of traffic partic-
ipants can be tracked by measuring the field of view that each vehicle is occupying.
This process is shown in Figure 6.2.
The design of the POM representation starts with the ego vehicle’s local coordinate
system px, yq as shown in Figure 6.2 a). This scenario contains two vehicles. The first
vehicle is performing a left lane change entering the lane of the ego vehicle. The second
vehicle is moving forward on a free lane left to the ego vehicle. In order to track the
movements of the vehicles, three time-steps t0, t1, t2 are shown. The field of view of
the ego vehicle starts at the x-axis, or zero radians, and changes to π in the clockwise
and �π in the counter clockwise direction. For each time-step, the slices of the field of
view ϕi that each vehicle occupies are recorded. This is denoted with light red color
in the figures.
The recorded fields of view for each vehicle can be visualized in a 2D plot as shown in
Figure 6.2 b). In this subfigure, three plots that correspond to the three time-steps t0,
t1, t2 are shown. The horizontal axis is the field of view ϕ, given in radians, and the
vertical axis is a generic function f . This function is used to manipulate the attention
of the NN and is chosen such that it aids the network in finding the extraction features.
Considering the classes we want to recognize in this research, the minimal distance to
the vehicle and the lateral velocity of the ego vehicle are used as arguments.
The focus of the network should be on vehicles that are closest to the ego vehicle
and are in the same lane. Furthermore, the NN needs to distinguish if the motion
in the representation is coming from the traffic or from the ego vehicle. In other
words, because the representation is based on the ego vehicle’s local frame, without
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Figure 6.2: Design of the Polar Occupancy Map representation. a) For each time-step
rt0, t1, t2s the field of view of all vehicles is shown. b) Each field of view
is transformed from the local ego coordinate system px, yq to a new angle-
based coordinate system pfpd, vd, gpσqq, ϕq, where the ϕ axis tracks the field
of view for all vehicles. On the vertical axis we introduce a general function
f which is used to manipulate the attention of the NN. Considering the
classes we want to recognize, we chose as an input the distance d from the
ego vehicle, together with the ego lateral velocity vd and a scaled Gaussian
function gpσq. c) This representation is a top view of time-steps from
figure b), where the values of the function fpd, vd, gpσqq are denoted by
color. Yellow corresponds to higher and green to lower values. By filling
in all intermediate time-steps we get a distinct trace through time which
can be used as an input for the NN.

the information of the lateral movement NNs would not be able to differentiate between
movements of other vehicles and the movement of the ego vehicle. By following these
design choices, the function f is defined as:
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d̂i � k � di � n (6.1)
fipdi, vd, gpσqq � d̂i � |vd| � gpσq (6.2)

where di is the minimal distance to the vehicle in rms, vd is the ego vehicle’s lateral
velocity in rm

s
s, and k and n are coefficients that create a linear transform of the

distance di. Vehicles are recorded to the POM representation if the distance is less
than 75m, which limits di to r0, 75q. The coefficients k and n are chosen such that
the value d̂i is bounded between 0 and 1, and when the distance di decreases the new
value d̂i increases, i.e., k is negative. This effectively shifts the attention of the neural
network to vehicles that are closer to the ego vehicle. The coefficients are chosen as
k � �0.011 and n � 1. The inverted distance d̂i is only applied when a vehicle is
present, whereas the lateral velocity vd is applied on the whole representation making
it possible to detect lane changes when no vehicles are visible. The last argument is
the function g which is a scaled Gaussian function centered around zero degrees, where
σ � 0.005 and maxpgpσqq � 0.9. This function is only applied if a vehicle is visible
and is located around zero degrees, giving it a higher value and turning the focus of
the network to it.
The summation of d̂i and the absolute value of vd could mean that a vehicle is either
close to the ego vehicle or that the ego vehicle itself is moving. This will not be a
problem in our representation for two reasons. First, if the vehicle is really close to
the ego we will know that by the size of the field of view, as closer vehicles have
wider fields of view and vice versa. Second, if there is lateral movement of the ego
vehicle then all fields of view are moving, which can be detected and distinguished by
the NN. Furthermore, the summation could also be interpreted as information loss.
However, the task of the network is to detect scenarios and report at which time-step
they occurred. If the exact state values of the traffic participants are needed, one could
easily go to the specific time-step and read it from the available data.
At this step we have already created a representation with a fixed feature size. The
2D plots could be stacked creating a 3D plot with a fixed number of time-steps that
can be used as an input to the network. However, in the recent years there has been a
significant breakthrough in pattern recognition using CNNs [93]. That is why we use
a top view of the 2D plots, as shown in Figure 6.2 c), and stack them in such a way
to create an image. The color of the pixels corresponds to the value of the function
fipdi, vd, gpσqq. By filling in the missing time-steps and assigning a value of zero to
non-occupied parts of the field of view, we obtain the final form of the representation
as shown in Figure 6.2 d).
Examining the final image, it can be seen that the vehicles create unique traces which
are recorded by the POM representation without loss of relevant information. Fi-
nally, the traces can be detected and distinguished by the CNN, leading to accurate
classifications.
In this approach, there are two further benefits for the extraction of relevant informa-
tion that need to be addressed. The first one is that for vehicles that are far away
from the ego vehicle the occupied angle is getting smaller. This naturally leads the
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network to not focus on them. In addition, because we are more interested on what
is happening in front and on the sides of the ego vehicle than in the back, we use
different resolutions for the POM representation. A resolution of 4 pixels per degree
is used on the front from �10� to 10�, 1 pixel per degree on the sides from �30� to
�10� and 10� to 30�. Finally, 0.5 pixels per degree on the back �180� to �30� and 30�
to 180�. This selection of resolutions leads to the final size of 270 values per time-step
for the POM representation.
The second benefit is that only the first vehicle that occupies a certain field of view
is recorded. As we are mostly interested in the closest vehicles, this further decreases
the amount of information whilst preserving the relevant parts. In addition, if the ego
vehicle is only equipped with camera sensors then this behavior occurs automatically.

6.4 Data Generation

In order to train a neural network, a lot of training examples are required. This is
generally a very time-consuming task as we first need to record the data and then
label it accordingly. However, because we are using an abstract representation of
the environment, which can be replicated in simulation easily, we decided to generate
synthetic labeled data for training and then apply the trained NN to real recordings.
This way only a subset of recorded data needs to be labeled for validation.

6.4.1 Simulation Environment and Scenario Classes

The simulation environment consists of a three lane highway with three to four par-
ticipants including the ego vehicle. The exact number of participants depends on the
chosen scenario. The behavior and dynamics of the vehicles are programed in Python
and scenarios are generated by selecting a set of desired actions. The actions are car-
ried out either by the ego vehicle or the other participants. After defining the desired
actions, it is possible to randomize the scenario by varying starting conditions, actions
times etc. For this study we chose nine common highway scenarios, as shown in Figure
6.3.
The classes are:

1. Driving in lane - The ego vehicle is driving in a lane and there are no maneuvers
from other vehicles;

2. Lane change - The ego vehicle is switching between free adjacent lanes;
3. Ego vehicle free lane cut in - The ego vehicle is cutting in from a free to an

occupied lane;
4. Ego vehicle free lane cut out - The ego vehicle is cutting out from an occupied

to a free lane;
5. Ego vehicle cut in-out - The ego vehicle is moving between two occupied lanes,

hence making a cut in-out;
6. Target ahead free lane cut in - A vehicle is cutting in from a free lane to the ego

vehicle’s lane;
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Figure 6.3: Common dynamic traffic scenarios found on highways

7. Target ahead free lane cut out - A vehicle is cutting out from ego vehicle’s lane
to a free lane;

8. Target ahead switch cut in - A vehicle is cutting in between the ego and another
vehicle, which leads to the switch of the current TA;

9. Target ahead switch cut out - A vehicle that was between the ego and another
vehicle cuts out to a free lane leading to a switch of the current TA.

All classes should be detected by the neural network irrespective of the shape of the
highway. This is achieved by using the Frenet-Serret frame instead of a global frame,
as shown in Figure 6.4. The used Frenet-Serret frame is defined by the axis s denoting
the length of the path traveled on the highway and axis, d denoting the orthogonal
distance from the middle of the highway. In other words, the transformation between
the global and Frenet-Serret frame decouples the motion of the vehicles from the shape
of the highway.

Figure 6.4: Transformation from a global to the Frenet-Serret frame

To calculate the transformation from the global to the Frenet-Serret frame, information
about the highway curvature is needed. This information is usually available from a
map in which the vehicle is localized using Global Navigation Satellite System (GNSS).
Alternatively, a camera system could be used to enhance the curvature measurement
by tracking the road or lane marking curvatures [94].
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In addition, the yaw rate of the ego vehicle relative to the Frenet-Serret frame will
influence the POM representation. However, in this use case it was regarded as noise
because the relative yaw rate is small on highways and occurs only in the ego lane
change scenarios.

6.4.2 Scenario Examples

Figure 6.5 a) and b) show three randomly generated scenarios. The scatter plot shows
the motion of the ego vehicle (blue-green) and other participants (red-yellow) during
7 seconds in the highway’s Frenet-Serret frame. The images below the scatter plots
show the corresponding POM representations. Figure 6.5 b) shows the first channel
of the HiG representations for the same scenarios as in a). The HiG’s first channel
is an aggregation of VeGs constructed for each time-step. The VeG size is fixed to
60 � 20 � 3 and the ego center point is moved back to give more focus to the front of
the vehicle. The resolution of the VeG is two meters per pixel on the x and one meter
per pixel on the y axis.
For each generated scenario, starting positions, lanes, maneuvers and velocities are
generated randomly but satisfy several conditions to assure that the specific scenario
is possible. Furthermore, uniform noise was added to the motion of the vehicles to
generate more realistic scenarios.
In the first scenario, Figure 6.5 a, b), a right cut in maneuver by the ego vehicle is
shown. There are two constraints in this case. First, the ego vehicle cannot be on
the most right lane because a right lane change would not be possible. And secondly,
there should be a vehicle in front in the desired lane. Similar constraints apply to all
scenarios.
In the second scenario, a TA free lane cut out is shown. It is important to notice the
difference between the values of the fpd, vd, gpσqq function for this and the previous
scenario. In this case, the ego vehicle’s lateral velocity vd is zero and the function
fpd, vd, gpσqq only depends on the distance and the g function. However, in the first
scenario the ego vehicle had lateral velocity and we can see in the POM representation
that a unique pattern was created. Without this pattern it would be impossible to
distinguish the first scenario from a target ahead free lane cut in scenario.
The third scenario represents a TA switch cut in. Examining the POM representation,
it can be seen that there was a vehicle in front of the ego vehicle and after some
time a new vehicle made a cut in. Furthermore, we notice how the function gpσq is
highlighting the vehicle which is near zero degrees, i.e., in the ego vehicle’s lane.
For certain scenarios, e.g., TA free lane cut in, it is enough to have one other participant
together with the ego vehicle. However, an additional vehicle which was randomly
positioned on the highway was used. This was done in order to teach the network to
ignore other vehicles if, they are not relevant to the desired classes. It is important
to note that in simulation we will never be able to cover all possible scenarios that
can occur in the real world. However, ML driven approaches give us the ability to
iteratively improve the models. With time, we will be able to find out scenario where
the models are uncertain and where more training is necessary.

67



6 Classification of Dynamic Traffic Scenarios

Figure 6.5: a) Randomly generated scenarios (3., 7. and 8.) with a duration of 7
seconds. Each column consists of a scatter plot showing the motion of the
ego vehicle (blue-green) and other participants (red-yellow) on the highway,
and the corresponding POM representation. b) First channel of the HiG
grid map for the same scenarios as in a)

In total, we created 15000 random scenarios where 10% is used for the test and 10% for
the validation set. Each scenario has a duration of 20 seconds with a sampling rate of
10Hz. The labels are generated automatically for each time-step. The generated data
includes the proposed POM representation together with the Grid Map representations
VeG, SVeG and HiG, which are going to be used for performance comparison. Please
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note that the scenario generation code, network implementations, and training data
are open-source and can be found at [95].

6.5 Scenario Classification

The proposed POM approach creates a representation which is suitable for training
CNN. These networks excel in extracting features and recognizing patterns in images.
However, to increase the performance compared to the classical CNNs [93], we used
several enhancements introduced in recent studies.
Dilated Convolutions were proposed by Yu et al. [81] and the main idea is to increase
the receptive field of the CNN without adding additional layers. The problem with
additional layers is that they increase the overall size of the network and are much
harder to train. In a normal convolutional network, the receptive field increases linearly
with each layer; however, if we introduce kernel dilation, we can achieve an exponential
increase of the receptive field.
K. He et al. [82] worked on Residual Connections to mitigate the vanishing gradient
problem. They introduced skip connections between layers allowing the gradients to
propagate more easily through the network. In addition, Veit et al. [83] argue that
the residual connections increase accuracy because they allow the information to flow
through more paths.
The final enhancements that were used are the Self Normalizing Layers and Alpha
Dropout. It is widespread practice to normalize the input data into the network. How-
ever, during the training individual layers of the network can change the distribution
slowing down the learning process. One solution would be to use Batch Normalization
after each layer, proposed by Ioffe et al. [84]. This approach, however, adds additional
complexity to the network. A different solution was proposed by Klambauer et al. [85]
where a new activation function called SELU was introduced. With the new activation
function, outputs from each layer converge to a zero mean and unit variance without
any additions. If dropout is necessary, then Alpha Dropout [85] is used to preserve the
output distribution.
The proposed neural network consists of 9 convolutional layers, combining dilation
and residual connections. The convolutional layers represent the feature extraction
and are followed by 4 dense layers producing the class probabilities. Each layer uses
the SELU activation, and Alpha Dropout, with a dropout rate of 10%, is used on the
final dense layer. For the evaluation, 50 time-steps, i.e., POM representations, were
used leading to the final input size of 50 � 270 values. The full network architecture
is given in Table 6.1.

6.6 Results

The performance of the POM based neural network is evaluated in two steps. First, we
compare its ability to extract the desired classes against the Grid Map based models
introduced by Gruner et al. [78], namely SVeG and HiG. In addition to these two rep-
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Table 6.1: Model architecture for scenario classification with dynamic traffic © IEEE
2019
layer kernel stride dilation residual input size

conv1 3 � 3 1 � 1 1 � 1 no 50 � 270 � 1
conv2 3 � 3 1 � 2 1 � 1 no 50 � 135 � 32
conv3 3 � 3 1 � 1 1 � 1 yes 50 � 135 � 32
conv4 3 � 3 1 � 2 1 � 1 no 50 � 68 � 32
conv5 3 � 3 1 � 1 2 � 1 no 50 � 68 � 32
conv6 3 � 3 2 � 2 1 � 1 no 25 � 34 � 64
conv7 3 � 3 1 � 1 4 � 1 yes 25 � 34 � 64
conv8 3 � 3 2 � 2 1 � 1 no 13 � 17 � 128
conv9 3 � 3 2 � 2 1 � 1 no 7 � 17 � 128
dense layers conv8 dense1 dense2 dense3 dense4

size 8064 1024 512 256 9

resentations, we also introduced a fully-stacked VeG model which we call Fully Stacked
Velocity Grid (FVeG) and a regular CNN network (POM-CNN) without residual con-
nections and dilation. The second step is an evaluation of the trained model on real
object data captured by the Mobileye camera [96]. The camera is placed on the front
of the vehicle and has a total field of view of around 90�. The simulation data was
adjusted to match the field of view of the camera and make the data more realistic.
The generated training data consist of 15000 scenarios with a duration of 20s and
a sampling rate of 10Hz. For each sample the POM and VeG representations are
created. To process the whole scenario, a sliding window approach is used. The
window size is fixed to 50 time-steps and the networks generate the predictions in the
middle of the window. This prediction scheme gives the networks the ability to take
into consideration past and future samples in order to produce the correct class label,
leading to higher accuracy. The sliding window is moved across the whole scenario
generating the class probabilities for each subsequent time-step.
The SVeG model uses the first and last VeG from a given window. The HiG model
aggregates all VeGs occupancy in the first channel and uses the remaining 2 channels
from the last VeG in the window. The FVeG stacks together all VeGs from a given
window leading to the largest input size of 60 � 20 � 3 � 50.

Table 6.2: Test and validation accuracy on generated data © IEEE 2019
accuracy SVeG HiG FVeG POM-CNN POM

test 87.76% 85.04% 93.82% 95.26% 96.17%
validation 88.10% 85.70% 94.80% 95.30% 96.00%
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6.6 Results

The POM, HiG, SVeG and FVeG networks share the same architecture from Table 6.1
with different input sizes. The POM-CNN uses the same number of layers but does
not include residual connections or dilation. All networks were trained for 2304 steps
using a batch size of 128 windows and a decaying learning rate. The networks were
initialized using the variance-scaling initializer [97] and optimized with the ADAM [98]
optimizer.
Table 6.2 shows the performance of the models on the test and validation set. We
can see that the SVeG and HiG models have the lowest performance. The drawback
of the SVeG model is that it only uses the first and last VeG from a window, which
leads to significant information loss. The HiG model does aggregate the occupancy
of other vehicles; however, because of the way the HiG representation is constructed
some information can still be lost as parts of previous maneuvers can be overwritten
with the more recent ones. The FVeG representation performs much better because
all time-steps of the sliding window are visible to the network. However, the draw-
back of the FVeG representation is the big input size and longer training times. The
proposed POM models have both the best test and validation accuracy. With residual
connections and dilation, the POM network shows better performance compared to
the regular POM-CNN. Moreover, the POM network uses a 27 times smaller input
than the FVeG.

Figure 6.6: Evaluation of the POM representation on real data using the Mobileye
camera. Each image pair shows a camera frame and its corresponding
POM representation. The POM representation has a window size of 50
samples. The white dashed line indicates the middle of the sliding window,
where the prediction is made. The sequence shows a Target ahead free lane
cut in. © IEEE 2019

Finally, the POM network was evaluated on real object data obtained with the Mobil-
eye camera. The test run was done on the A9 highway near Graz, Austria. A sample
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6 Classification of Dynamic Traffic Scenarios

TA free lane cut in scenario from the recorded data is shown in Figure 6.6. Each pair
shows the camera frame and the corresponding POM representation for the current
time window. We can see how the motion of the cutting-in vehicle is tracked through
the representation. The performance of the pre-trained POM model was evaluated
using 2900 sequential time windows. The recordings contained curves and they were
compensated using the camera’s lane curvature information. In order for a scenario
to be extracted, the model certainty for that scenario needed to be higher than 95%.
With this extraction method we were able to lower the misclassifications and obtain
an overall detection accuracy of 90.8%. All data and models used in this research are
open-source and available at [95].

6.7 Chapter Conclusion

In this chapter, we introduced a novel traffic representation that can be used to train
neural networks for scenario classification. As the input size to the neural network
needs to be constant, we designed a representation that is independent from the num-
ber of traffic participants in the scenario. The representation is based on the polar
occupancy map and we have shown that it is capable of creating unique patterns
which can be used for scenario classification. To evaluate the representation, a CNN
was trained on 9 highway scenarios, resulting in high classification accuracy. The pro-
posed model was compared to existing traffic representations, showing that it offers
improved performance with a more compact representation. Finally, we have shown
that the model trained on simulated data has generalized well and that it can be used
to make high accuracy predictions on real data.
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7
Scenario Exploration

In this chapter, we focus on unsupervised learning methods used for sce-
nario exploration. The unsupervised DL models try to group similar sce-
narios/signals together in a latent space. By examining this latent space,
we can get insights on the distribution, sizes and relevance of individual
clusters and their corresponding scenarios. In addition, by examining the
distance between scenarios in the latent space, we can get information
about the scenarios that are most similar to a query scenario or create
some uniqueness score.

7.1 Introduction

In the previous chapters, we have shown how DL can be used to extract relevant
scenario if the models were previously trained on labeled data. The models learn the
relationship between input data and the desired classes. However, it is not always a
straightforward task to defile the labels. If we look back at the example on the highway
classes from Chapter 6, only nine of them were defined. Those classes represent the
most frequent ones; however, there are many more possible scenarios. If we wanted to
add a new scenario, we would have to label data for that specific scenario and then
retrain the models. Depending on the type of data, labeling can be very challenging
or time consuming.
Another way to define scenarios would be to examine the recorded driving data and
see if some interesting scenarios occur. Manual examination of scenarios is also not
a trivial task. We would have to look at hours and hours of data and try to make
some rules how they should be grouped together. This would also change depending
on the types of signals we are considering. Instead of doing all this work manually, we
could try to use DL models to look at the data and group signals depending on some
similarity. Moreover, we can restrict the DL models to generate the groups on a low
dimensional space, so that visual exploration is possible. In this chapter, we propose
such a clustering approach using contrastive learning and compare it to clustering
using Autoencoders (AEs).
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7 Scenario Exploration

Figure 7.1: Clustering example with one feature and a 2D latent space.

Figure 7.2: Clustering example with two features and a 2D latent space. Subfigures a),
b) and c) show different ways how the DL models could do the clustering.
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7.2 Related Work

To better understand the task of grouping similar scenarios/signals, we will use two
intuitive examples, shown in Figure 7.1 and Figure 7.2. If we were given some objects to
cluster, we would use the latent space and try to group together instances with similar
features. Figure 7.1 shows objects with one feature (color) that is easily differentiable.
However, in real world examples the features can not be separated so easily and the
boundary between features is not always clear.
Figure 7.2 shows another example with two features: shape and color. As we can see,
in this case, the clustering is not straightforward. There are several ways how the
objects can be grouped together. In Figure 7.2 a) the objects are grouped by shape.
In Figure 7.2 b) the objects are grouped by color and in Figure 7.2 c) the objects are
grouped by shape and color. In c), the grouping is done first by color and then by
shape - the squares are facing inwards. All of the groupings in Figure 7.2 are correct,
it only depends what grouping do we actually want. If no additional information is
given to the DL methods, then any of these grouping could occur depending on the
random initialization. However, if we give some additional information, we can guide
the models to cluster the objects by our liking.
In this chapter, we will show both approaches - clustering with and without additional
information. Clustering without any information is done using AE [99], more specif-
ically Convolutional Autoencoders (CAEs) [100]. Clustering with information which
signals should be grouped together is done using "Contrastive Learning" [101],[102].
Moreover, we will show that the proposed clustering with contrastive learning shows
better results when applied on scenarios related to lane change signals.

7.2 Related Work

AE based models have been used in several applications regarding automated driving,
such as feature extraction, behavior classification and modelling. This kind of approach
was introduced by Sama et al. [103]. They used real world data, collected from a
residential area, to extract velocity driving styles. The driving styles were clustered in
an unsupervised way and nine clusters were defined. These nine clusters were used to
create models that can be applied by an autonomous vehicle to reproduce the desired
driving styles.
A similar modelling approach was introduced by Krajewski et al. [104]. They have
used a different type of AE called Variational Autoencoder (VAE)[105]. VAE is a
generative model, and Krajewsi et al. have used it for trajectory modeling used in
safety validation of automated vehicles. The VAE model was trained on lane change
trajectories, extracted from the HighD [26] dataset, to learn parameters that describe
them. In their research, they tried both unsupervised and semi-supervised training to
learn the parameters.
Our work differs from the aforementioned research as we are considering a more general
approach for scenario exploration. The unsupervised clustering is not bounded to
specific use cases and can be applied on any type of scenarios. Moreover, the latent
space we are using does not exceed three dimensions to allow visual inspection. The
research proposed in this chapter is serving as an aid for engineers to identify, label
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and inspect interesting scenarios from real data.
Another application of AE is uniqueness estimation of new scenarios. Langner et al.
[106] have used AE models to estimate uniqueness of scenarios related to a Predictive
Cruise Control ADF. They have used the reconstruction loss as a measure of the
uniqueness. If the network was trained on a specific scenario, then the reconstruction
error is low as the network knows how to reconstruct the input. However, if the
scenario is new and the network was not trained on it, then the reconstruction loss
would be high as the network did not learn how to reconstruct it properly. As many
driving scenarios are very similar and encountered repeatedly, Langner et al. used this
approach to select only parts of the recorded data that could be interesting for testing.
In this chapter, we are going to estimate the uniqueness of scenarios based on their
neighbourhood in the latent space. If the neighbourhood in the latent space is sparse,
that means that there were very few similar examples in the dataset and vice-versa.

7.3 Time series clustering using DL

In this section, we are going to explain in detail the methods that were used for
scenario exploration, model behavior exploration and uniqueness estimation. We are
going to compare two different approaches. The first approach uses AE based models
together with the t-distributed Stochastic Neighbor Embedding (t-SNE) dimension-
ality reduction. The second approach is the proposed clustering using Contrastive
Learning.

7.3.1 Autoencoders and Convolutional Autoencoders

AEs [99] are models that are used for unsupervised representation learning. They take
an input x and first transform it to a desired latent space. Then, from the latent space,
the models try to reconstruct the original signal, denoted as x̂. This can be expressed
with the following equation:

x̂ � gpfpxqq (7.1)
loss � Lpx, x̂q (7.2)

where, fp�q is the encoder part and gp�q is the decoder part of the model. L is the
reconstruction loss between x and x̂ and we are going to use the Square Error (SE)
loss. During training, the model tries to reduce the reconstruction loss by learning the
mappings fp�q and gp�q.
If the latent space dimension is smaller than the dimension of x, then the model has
to compress and decompress the information. Such an example is shown in Figure
7.3. By compressing and decompressing the information the model is forced to learn
characteristic features of the input signal x and put similar signals close to each other
in the latent space. Similarly, different signals are going to be put further apart in the
latent space.
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7.3 Time series clustering using DL

Figure 7.3: Autoencoder structure. The left part of the network is called the Encoder
and it transforms the input x into a lower dimensional latent space. The
right part of the network is called the Decoder and it reconstructs the input
signal from the latent space.

The CAE [100] is a special type of AE where the Encoder and Decoder networks
are constructed from convolutions rather than fully connected layers. These types of
models are well suited for feature extraction from input signals. Figure 7.4 shows an
example with a two dimensional input. Similarly to AE, the information is compressed
to a latent space an then decompressed again. In this chapter, we will use CAE in the
first layers for feature extraction and follow them with several fully connected layers
for the latent representation.

Figure 7.4: Convolutional Autoencoder structure. Similarly to the AE, the CAE trans-
forms the input x to a latent space and then back to the reconstructed output
x̂. However, instead of using fully connected layers it uses convolutions for
both the Encoder and Decoder.

The reconstruction accuracy of the AE models depends on the model and latent space
size. If we use a bigger model, then the latent space size can be smaller and vice-versa.
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A bigger latent space means that the model can use more information when encoding
the input. In general, the latent space size is bigger than three, which means that we
need to further reduce the dimensionality of the latent space if we want to visualize
it. In this research, we will use t-SNE which takes as an input the latent space of the
AE model and reduces it further to two dimensions. In this case, the AE model serves
as a feature extractor for t-SNE which does the final clustering.

7.3.2 t-distributed Stochastic Neighbor Embedding

t-SNE [107] is a non-linear dimensionality reduction technique used for visualization
of higher dimensional data. The main idea is to preserve the local similarity between
points in the higher dimensions and transfer it to the lower dimensions, as shown
in Figure 7.5. The local similarity is preserved by creating a probability distribution
between each pair of points. Points that are close to each other have a high probability,
whereas points that are further away have lower probability. The probability in the
higher dimensions is modeled as a Gaussian distribution. This can be expressed with
the following equations:

pj|i �
expp� }xi � xj}

2 { 2σ2
i q°

k�i expp� }xi � xk}
2 { 2σ2

i q
, for i � j (7.3)

pij �
pj|i � pi|j

2N (7.4)

pij � pji, pii � 0, and
¸
i,j

pi,j � 1 (7.5)

where pj|i is the conditional probability of points xj and xi. It denotes the probability
that the point xi will pick xj as its neighbour. σi depends on the density around xi.
Smaller values of σi correspond to higher density and vice-verse.
For the lower dimension a Student t-Distribution is used:

qij �
p1 � }yi � yj}

2q�1°
k�ip1 � }yi � yk}

2q�1
, for i � j and qii � 0 (7.6)

where yi and yj are the lower dimensional mappings for xi and xj respectively, and qij
is their similarity.
To get mappings that preserve the local similarity for the original data, a gradient
descent optimization is used on the Kullback–Leibler divergence of distribution P
from distribution Q, which reads as

KLpP |Qq �
¸
i�j

pijlog
pij
qij

(7.7)
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Figure 7.5: t-distributed Stochastic Neighbor Embedding example. Data points that are
close to each other in the higher dimensions are pulled together in the
lower dimensions. At the same time, data points that are further away in
the higher dimensions are pushed away.

7.3.3 Clustering using Contrastive Learning

Contrastive learning [101], [102] is a learning technique that tries to pull together
latent representations of similar inputs, whilst pushing away dissimilar ones. There
are several implementations of this technique where the similarity of the inputs is
defined either manually or automatically. As we want to do unsupervised clustering,
we are going to use the approach where the similarities are generated automatically
by data augmentation.
The main idea of this approach is shown in Figure 7.6. We start by randomly sampling
a batch of inputs from the data. Then, for each input, two augmentations are created.
The task of the network is to learn to pull together the latent representations of the
two augmentations that were created from the same input, while, at the same time,
pushing away latent representations from other inputs of the batch.
In Figure 7.6, the task is to group object by their color regardless of their shape. To
achieve this, the augmentations are changing only the shape of the object, and the
network is learning to pull them together. It is important to notice that we do not
need to label the data nor know the exact samples that are being processed. The only
information we need to provide are the augmentations, and depending on them the
clusters are going to be created.
To get this desired behavior, the network is trained on the following contrastive loss
function:

Li � �log
exppsimpzi, zjq{τq°2N

k�1,k�i exppsimpzi, zkq{τq
(7.8)

L �
2Ņ

i�1
Li (7.9)

where, N is the batch size, and as there are two augmentations per input, we get
2N samples. zi and zj are augmentations that come from the same input. simp�q is a
similarity measure between the two latent presentations. τ is a temperature parameter
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Figure 7.6: Contrastive Learning example. First, a batch of inputs is randomly sam-
pled from the data. Then, for all examples, two augmentations are created.
The network tries to bring together the latent representations of the aug-
mentations coming from the same input, and push away the other inputs
from the batch.

which controls how far apart are the representations in the latent space. The similarity
of the two representations coming from the same input should be maximized and it
is additionally normalized by all other augmentation pairs, except similarity between
the same augmentation pk � iq.
The intuitive explanation of the loss function is that we want to maximize the nomi-
nator while at the same time minimizing the denominator, which means that we want
to maximize the similarity between augmentation pairs coming from the same input
and minimize similarity with other augmentations. The loss is calculated for each pair
of augmentations and the final loss is the sum over all individual losses.
Both the AE and Contrastive Learning method share the same idea: Pull together
representations of similar inputs and push away dissimilar ones. However, because of
the special loss function in the contrastive learning approach, we do not need to have
a decoder network as in the AE case. Moreover, as the loss function is directly applied
on the latent space, we do not need to reconstruct the original signal as in the AE
method. The task of pulling together latent space representations is much easier than
learning to compress and decompress the data. This means that we can try to directly
use a 2D or 3D latent space, omitting the additional dimensionality reduction step.

7.3.4 Model Architectures

Table 7.1 shows the architectures used for the AE and contrastive learning based
models. The left side provides details for the encoder and the right side for the decoder
network. The contrastive learning model uses only the encoder part, whereas the AE
model uses both the encoder and decoder network. Both the encoder and decoder use
convolutional layers as feature extractors followed by dense layers for the latent space
output. All networks use the ReLU [108] function for nonlinearity. The batch size was
fixed to 250 and a constant learning rate of 0.0001 was used for all experiments. For
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optimization the ADAM [98] optimizer is used. The loss function for the AE model is
the SE. For the contrastive learning we use the inverse distance as a similarity measure
and τ � 1. Both models were trained for 12000 epochs.
We did two experiments with the AE model. In the first one, we use a latent space of
size 8 and then we apply t-SNE to lower it to two dimensions for visualization. In the
second experiment, we use a latent space of size 2 so that we can directly compare it
to the contrastive learning model.

Table 7.1: Model architectures for scenario exploration.
ENC kernel stride input size

conv1 1 � 5 1 � 2 50 � 270 � 1
conv2 1 � 5 1 � 2 50 � 270 � 1
conv3 1 � 3 1 � 2 50 � 135 � 32
conv4 1 � 3 1 � 2 50 � 135 � 32

dense1 - - 128
dense2 - - 64

latent - - 2 or 8 - (AE)

DEC kernel stride input size

latent - - 2 or 8 - (AE)

dense1 - - 64
dense2 - - 128

conv1 1 � 4 1 � 2 50 � 270 � 1
conv2 1 � 5 1 � 2 50 � 270 � 1
conv3 1 � 5 1 � 2 50 � 270 � 1
conv4 1 � 2 1 � 2 50 � 270 � 1

7.4 Use cases for Scenario Clustering

In this section, we will introduce three use cases related to scenario exploration. The
first one is general scenario exploration without any labels for the signals. In this case,
we have to manually look into the latent space and decide if there are any meaningful
clusters. In addition, we can apply some cluster assignment methods to help us with
the exploration. The second use case is model behaviour exploration. In this case, the
labels are given by some classification model and we can explore the model’s behavior
and accuracy. In the third use case, we will explore the uniqueness of synthetic signals
by looking at their position and neighbourhood in the latent space.
All use cases will be introduced using the signal called Lateral Deviation. This signal
represents a normalized offset from the center of the current lane and it is bounded
between �1 and 1. Negative values correspond to movements on the left side, and
positive to the right side of the lane. If a lane change occurs, the value gradually goes
to 1 or -1, as the vehicle moves away from the center of the lane. Then, at the lane
boundary, the value jumps to -1 or 1, depending on the direction of the lane change.
This signal is used for lane change estimation and in the second use case we will explore
the behavior of a lane change classification model. (Example lane changes are shown
in Figure 7.8 and 7.9.)
The Lateral deviation dataset consists of two hours of driving on highways and motor-
ways. The dataset was recorded using the Mobileye camera [96] with a sampling rate
of 10Hz. To precess the data, a sliding window approach was used. The window size
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Figure 7.7: Clusters of the Lateral Deviation signal. a) Clustering using AE and t-
SNE. b) Clustering using AE with a two dimensional latent space. c)
Clustering using contrastive learning. d) Example cluster assignments us-
ing DBSCAN [109].

was fixed to 50 samples, which corresponds to 5 seconds per window, and the windows
have a 50% overlap.

7.4.1 Scenario Exploration

As mentioned before, the main idea behind this use case is to explore scenarios without
any information from labels. The proposed approach uses unsupervised clustering
which groups data together based on their similarity. After the clustering, we can
explore the groups and gain an insight on the distribution of the data, number of
clusters, how the data was grouped together etc. This information can help us decide
whether to create new scenario labels out of specific groups, or for example, use them
for training and improving classification models.

82



7.4 Use cases for Scenario Clustering

The benefit of having a representation that can be visualized is that we can easily
select, inspect and label groups of data. We have developed an interactive tool which
makes is very easy to explore the latent spaces. Each point in the latent space is
clickable, and after clicking on a specific point the corresponding signal is shown. In
addition, with a selection tool the user can select many points simultaneously and
compare their signals.

Figure 7.7 shows the clustering results on the Lateral Deviation dataset using three
methods. Figure 7.7 a) shows the clusters obtained from the AE model combined with
t-SNE. In this case, the AE model uses a latent space of size 8 and t-SNE further
reduces it to two dimensions. We can see that some clusters were formed and that
manual inspection could be beneficial.

In Figure 7.7 b), we can see that the clusters are not well separated. In this case, we
used the AE model and directly applied it on a two dimensional latent space. As we
can see, it is challenging for the model to learn how to compress and decompress the
data with a latent space with only two dimensions. This example can not be used for
further analysis.

The results of applying contrastive learning on the dataset are shown in Figure 7.7 c).
We can see that the contrastive learning model has done a really good job at separating
the data into clusters. The cluster sizes differ but we can distinguish two small classes
that are well separated and other clusters where the boundary is not so well defined.
The two small clusters correspond to clearly distinguishable lane change signals and
the other clusters correspond to various driving patterns and sensor measurements.
It is interesting to notice that the distribution of the clusters correspond to what we
would expect from real driving data. There are much more scenarios of driving in the
lane with various patterns then actual lane changes.

As an additional aid in the manual inspection of the clusters, we can use some of
the well known cluster assignment algorithms. We can give these algorithms the two
dimensional latent space as input and get out cluster assignments based on various
criteria. As an example, in Figure 7.7 d), we applied Density-based spatial clustering
(DBSCAN) [109]. This clustering assignment approach makes groups depending on
the density of the points. The assigned clusters are: Green - lane change right, Orange
- lane change left, Blue - mostly signals that can not be easily assigned or sensor errors,
Red - driving on the right side of the lane with various patterns, Purple - driving on
the center or left side of the lane with various patterns. Of course the grouping is not
perfect and some overlap between the clusters exist but these are the most frequent
signals in each cluster.

To avoid figures with repeating information, the actual signals of the clusters are
going to be shown in the next section where we talk about exploring the behavior of
classification models. The classification models label the data into three classes: Lane
Change Right, Lane Change Left and driving In Lane, so examples for all these cases
will be shown.
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7.4.2 Behavior Exploration of DL Models

In this section, the latent spaces obtained from the AE and contrastive learning models
will be explored. We will highlight signals corresponding to the selected clusters and
compare them to classes that come from a lane change classification model.

Figure 7.8 shows the clusters and corresponding signals obtained from the AE and
t-SNE model. The figure is divided in three parts. In the middle - Figure 7.8 b),
the latent space is shown and the assigned colors correspond to the classes of the
classification model. The classes are: Lane Change Right, Lane Change Left and
driving In Lane. The first thing we notice, is that the clustering model was able to
group together similar signals and that there are several clusters that contain the lane
change scenarios.

Let us inspect in detail the clusters corresponding to lane changes. Figure 7.8 a) shows
one of the lane change right clusters. On the left side we see the zoomed in latent
space and on the right side we see example signals. The first two signals correspond
to the two selected points. The third plot shows the comparison of all selected points
together. We notice that the cluster indeed contains signals with very similar behavior.
The signals are lane change right signals with a small offset between each other.

The offset of the signals comes from the sliding window approach. As we do not know
anything about the location of the lane changes in the data, we slice the data into
windows sequentially. Therefore, the lane change signals can appear anywhere in the
window. We can look at this as an additional feature in the dataset. As we have
not given any additional information to the clustering model, it is expected that not
all lane changes are going to be grouped together. Some lane changes with different
offsets are grouped in other parts of the latent space. By closely inspecting the latent
space, we can see several clusters corresponding to lane change right scenarios.

The other thing we notice is that not all signals with the same shape are correctly
labeled by the classification model. This information can be used to find out why
exactly this is happening. Later, we can correctly label those signals and add them to
the training data to improve the classification model.

Similarly to Figure 7.8 a), figure c) shows one cluster corresponding to lane change
left scenarios. The conclusion we draw are the same as for figure a). The signals are
very similar and have a small offset from each other.

In addition to the two lane change scenarios, in Figure 7.8 b) we have shown some
signals from other clusters. The cluster marked with a red triangle correspond to
straight driving on the center of the lane. The two other signals show random behavior
or sensor errors.
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Figure 7.8: Clustering of the Lateral Deviation signal using AE and t-SNE
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Figure 7.9: Clustering of the Lateral Deviation signal using Contrastive Learning
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Let us now inspect the contrastive learning clustering. The benefit of the contrastive
learning method is that we can specify the augmentation functions and tell the model
which signal to pull together in the latent space. In this case, we use an offset aug-
mentation. We sample signals from the data and then create two augmented signals
with different random offsets. The model should pull these signals together and learn
that we want to have similar signals but with different offsets pulled together.
Figure 7.9 shows the results of the contrastive learning clustering together with the
labels from the classification model. The contrastive learning model has done a very
good job at creating distinguishable clusters. Similarly to the AE model, the two
clusters corresponding to the lane change scenarios are shown in Figure 7.9 a) and c).
We notice that our augmentation function has been a good choice and that the lane
change signals with different offsets are all grouped together. Again, example signals
for the clusters are shown and some misspredictions of the classification model can be
recognized.
In addition to these signals, in Figure 7.9 b) we show three random signals correspond-
ing to other clusters. From the top, these tree signals are: random driving on the right
side of the lane, driving on the center of the lane and random driving on the left side
of the lane.
We can see that the proposed contrastive learning approach has given better results
than the AE method. The contrastive learning model uses two times less computation
as only the encoder part of the network is needed and the network can map the input
data directly to a two dimensional latent space. The drawback of this approach is
that we have to manually choose the augmentation functions and their parameters.
If, for example, the offset is too small, we would not group together all the similar
signals. On the other hand, if the offset is too big, we would mix lane change classes
with normal driving. In addition, the contrastive learning approach needs more time
for training and convergence.
One way of dealing with the selection of augmentation functions is to treat them as
hyper-parameters and train the model with various augmentation functions. At the
end, we can choose the one which gives the best results.

7.4.3 Uniqueness estimation

In this section, we will show how the learned latent space can be used to estimate the
uniqueness of signals. We are going to use the contrastive learning model and provide
five synthetic signals as input. Then, we are going to look at the position in the latent
space that each of the synthetic signals has taken and look at its neighbourhood. The
results of the analysis are shown in Figure 7.10.
We have chosen the synthetic signals as: S1 - random driving on the right side of the
lane (addition of two sine signals), S2 - straight driving on the center of the lane, S3 -
moving towards the right lane and back with an unusual pattern, S4 and S5 - perfect
lane change signals generated with exponential functions.
For each signal, we look at the position and its neighbourhood with a fixed radius
r � 0.5. The clusters of signals S1 and S2 where shown in Figure 7.9. The signals
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7 Scenario Exploration

Figure 7.10: Uniqueness estimation of synthetic signals

are not unique as they have many similar neighbours. Signals S4 and S5 are close to
their respective clusters and have also many neighbours. The reason that they are
located at the edge of the cluster could be that they are, in general, similar to the lane
change signals but there are not so many examples of perfectly smooth and centered
lane changes. Finally, signal S3 is unique as the position is far away from the known
clusters and it has only one neighbour.
This method can be useful if we want to filter out well know or already covered
scenarios for testing and want to focus on less frequent or unique ones.

7.5 Chapter Conclusion

In this chapter, we have focused on unsupervised clustering of scenarios. We have
proposed a clustering approach using contrastive learning and compared it with con-
ventional AE and t-SNE clustering. The contrastive learning approach has shown very
good results and we were able to cluster the Lateral Deviation dataset into meaningful
groups and draw insightful conclusions. In addition, we have examined the behav-
ior of a lane change classification model and have shown how this approach could be
used to improve the classification performance by highlighting the instances where the
classification model has made errors. Finally, we have shown how the uniqueness of
scenarios can be analyzed using the latent space.
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8
Conclusion
The focus of this thesis has been testing and validation of ADFs. We started by
discussing some of the biggest challenges for their development and introduced four
research objectives:

• O1 - Reduction of test runs,
• O2 - Validation using model-based approaches,
• O3 - Scenario classification,
• O4 - Scenario exploration.

The goal of the research was to create a positive feedback loop that makes it possi-
ble to decrease the overall testing and validation effort. On one side, we introduced
methodologies that required a specific scenario and parameter ranges - O1 and O2. If
the scenario and parameter ranges were given, the proposed methods can be used to
reduce the number of total test runs or to validate the system on the specified scenario.
In O1, we used stochastic optimization and surrogate modeling to create a model of
the system’s behavior. Then, we tried to steer the parameter exploration to regions
where the behavior was not satisfactory. The proposed method can reduce the number
of test runs while maximizing the amount of information that can be obtained. In O2,
we looked at validation of ADFs when a model of the system is available. We have
used a highway scenario as example to tune and validate an ACC. At the end, we were
able to define regions where the model was behaving correctly, dangerous test runs
occur, as well as the borderline where crashes start.
On the other side, we have conducted research on methodologies that can extract the
required scenarios out of recorded data. It has been demonstrated that DL models can
be effectively used for scenario classification and exploration - O3 and O4. In O3, we
have developed methods to classify scenarios regarding internal sensor measurements
and models that can classify scenarios regarding dynamic traffic participants. In both
cases, we were able to obtain models that can classify the desired scenarios with high
accuracy. Finally in O4, we have shown how DL unsupervised clustering methods can
be applied to generate latent space representations that can be used to get a better
insight into the data. It has been shown how the clusters can be inspected and how
the information can be used to improve existing classification models. In addition, the
latent space has been used to estimate the uniqueness of specific scenarios.
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8 Conclusion

When all methodologies are combined in one framework, we get a feedback loop that
can help engineer to test and develop ADFs more easily. The developed testing method-
ologies can be used to lead the classification and exploration towards scenarios where
the ADF has undesired behavior, whereas the classification and exploration method-
ologies can be used to search for similar scenarios from the recorded data and provide
them for further testing.
To further improve the proposed framework, additional research on more accurate
and capable classification models is needed. More specifically, we need to extend the
classification models to include urban and rural driving as well as a much larger variety
of scenarios. Similarly, the exploration methodology needs to be extended to handle
more complex scenarios with more than one signal and other traffic participants. The
results obtained in this thesis pose a good basis for the future improvements.
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Glossary
Scenario

A generic traffic situation, i.e., crossing, roundabout, highway driving etc., in-
cluding variation points for certain environment parameters. For example: Driv-
ing on a high way within one lane.

Test Run
Test case with defined values for all parameters. For example: Driving on a
two-lane road behind a proceeding vehicle in a distance of 80 m with a defined
velocity profile of the proceeding vehicle stepping from 80 to 50 km/h, during
light rain and slippery road with defined µ of 0.5. The KPIs is the same as in
the test case.

Falsification
A testing procedure with the goal to bring the ADF into a state where it is
exhibiting unwanted behavior. Usually, optimization techniques are used in order
to lead the ADF to those behaviors.

Ego Vehicle
The vehicle we are currently considering. Either a specific ADF is running on it
or it is the reference for the measurement.

Test Case
Traffic scenario with defined discrete parameters – e.g., the number of other
traffic participants or the number of lanes + defined KPIs in order to assess the
function. Continues variables like starting velocities and positions of the traffic
participants are still given as valid ranges only. For example: Driving on a 2-
lane road behind a proceeding vehicle in a distance between 80 to 130 m with
velocities of the proceeding vehicle between 40 and 150 km/h with defined KPIs
like minimum clearance distance happening in the next 5 km of driving.

Highway Pilot
Combination of ADFs like ACC, EBA, and others for a level 4 automation on
highways.

Validation
Validation provides assurance that the performance of an ADF meets specific
requirements from external customers or stakeholders.
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Glossary

Verification
Verification provides assurance that the performance of an ADF meets regula-
tory, specification and other internal requirements.

Surrogate Modeling
A technique that is applied when desired values cannot easily be measured so a
model is built instead. Usually, this technique is used with optimization where
the estimated values of the models are used instead of real measurements.

Stochastic Optimization
A family of optimization methods where some form of randomness is present.
This randomness can either come from the objective function, constraints or the
optimization algorithm itself.

Global Optimization
A procedure that tries to find the absolute best set of conditions for a given
objective, avoiding local minima/maxima.

Model-based Tuning
A procedure where an optimal set of conditions for a given objective is derived
using a model built from the real system.

Model-based Validation
A procedure where an assurance of the system’s performance is derived using a
model

Target ahead switch cut out
A vehicle that was between the ego and another vehicle cuts out to a free lane
leading to a switch of the current TA.

Driving in lane
The ego vehicle is driving in a lane and there are no maneuvers from other
vehicles.

Lane change
The ego vehicle is switching between free adjacent lanes.

Ego vehicle free lane cut in
The ego vehicle is cutting in from a free to an occupied lane.

Ego vehicle free lane cut out
The ego vehicle is cutting out from an occupied to a free lane.

Ego vehicle cut in-out
The ego vehicle is moving between two occupied lanes, hence making a cut in-out.

Target ahead free lane cut in
A vehicle is cutting in from a free lane to the ego vehicle’s lane.

Target ahead free lane cut out
A vehicle is cutting out from ego vehicle’s lane to a free lane.
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Target ahead switch cut in
A vehicle is cutting in between the ego and another vehicle which leads to the
switch of the current TA.

ENABLE S3
European Initiative to Enable Validation for Highly Automated Safe and Secure
Systems

Latent space
An abstract representation, learned by a DL model, that encodes a meaningful
representation of the input.

Contrastive Learning
A learning approach that tries to pull together latent representations of similar
inputs while, at the same time, pushing away dissimilar ones.
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Acronyms

AD Automated Driving
OEM Original Equipment Manufacturer
ADF Automated Driving Function
DL Deep Learning
KPI Key Performance Indicators
AV Autonomous Vehicle
V2V Vehicle to Vehicle
V2X Vehicle to X
AEB Automatic Emergency Braking
ML Machine Learning
SUT System Under Test
ACC Adaptive Cruise Control
NN Neural Network
LKA Lane Keep Assist
CC Cruise Control
ESP Electronic Stability Program
ADAS Advanced Driver Assistance System
LCA Lane Change Assist
ABS Anti-Lock Braking System
SAE Society of Automotive Engineers
SOTIF Safety of the Intended Functionality
OSI Open Simulation Interface
SIL Software in the Loop
HIL Hardware in the Loop
VIL Vehicle in the Loop
ECU Electronic Control Unit
RBF Radial Basis Function
DE Differential Evolution
PSO Particle Swarm Optimization
EBA Emergency Brake Assistant
TTC Time to Collision
MIL Model in the Loop
GIDAS German In-Depth Accident Study
MPC Model Predictive Control
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Acronyms

DOE Design of Experiments
RSI Relative Significance Indicator
RMSE Root Mean Square Error
RNN Robust Neural Network
CNN Convolutional Neural Networks
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
ECG Electrocardiography
SELU Scaled Exponential Linear Unit
POM Polar Occupancy Map
TA Target Ahead
HPCC Hierarchical Principal Component Classification
PCA Principal Component Analysis
SVM Support Vector Machines
GM Grid Map
VeG Velocity Grid
SVeG Stacked Velocity Grid
HiG History Grid
VFH Vector Field Histogram
GNSS Global Navigation Satellite System
FVeG Fully Stacked Velocity Grid
AE Autoencoder
CAE Convolutional Autoencoder
VAE Variational Autoencoder
t-SNE t-distributed Stochastic Neighbor Embedding
SE Square Error
DBSCAN Density-based spatial clustering
DAS Driver Assistance System
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