
Dipl.-Ing. Jakob Ludwiger

Discrete Time Sliding Mode Controller Design for
Networked Control Systems

Doctoral Thesis

to achieve the university degree of
Doktor der technischen Wissenschaften

submitted to
Graz University of Technology

Supervisor
Univ.-Prof. Dipl-Ing. Dr.techn. Martin Horn

Co-Supervisor
Ass.Prof. Dipl.-Ing. Dr.techn. Martin Steinberger

Institute of Automation and Control

Faculty of Electrical and Information Engineering

Graz, June 2020

Institute of Automation and Control
Graz University of Technology
Inffeldgasse 21/B
8010 Graz, Austria
https://www.tugraz.at/institute/irt

https://www.tugraz.at/institute/irt

To Vanessa, my parents and my brother.

"Ich weiß wohl, daß man dem das Mögliche nicht dankt,
von dem man das Unmögliche gefordert hat."

Johann Wolfgang von Goethe

Affidavit

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded to
tugrazonline is identical to the present master‘s thesis.

Date Signature

v

Abstract

Due to increased flexibility and adaptability, the feedback channel of modern control systems
is often closed through a communication network. In general, this communication channel
is affected by network imperfections such as variable transmission delays which negatively
influence the performance of the closed loop system and can even lead to instability. Hence,
these time delays have to be considered in the controller design. In addition, real world
control systems are always affected by disturbances which trigger the demand for robust
control algorithms such as sliding mode based control algorithms. This dissertation aims to
combine sliding mode control and networked control for multi-input linear time-invariant
plants, specifically focusing on variable time delays.

For multi-input systems it is possible to either implement the control law in a centralized
fashion, i.e. one controller provides the control signals for all input channels, or spatially
distributed, i.e. separate controllers provide the control signal for the respective input
channel.

Using the centralized topology, a specific structure of the sliding variable is required, which
makes classical reaching laws not applicable. Therefore, three sliding mode based reaching
laws are proposed for centralized networked control systems. Simulation results demonstrate
the effectiveness of the proposed approaches.

The design for the spatially distributed topology is handled by using integral sliding mode
control with a specific structure of the sliding variable. This method makes it possible to cast
the problem in a form where classical sliding mode based control algorithms are applicable. A
nominal controller design based on linear matrix inequalities offers the possibility to achieve
the structure required for this part of the control law. Simulation results and experiments
using a mechanical real-world system show the effectiveness of the proposed approaches.

vi

Kurzfassung

Aufgrund der höheren Flexibilität und Anpassungsfähigkeit wird in modernen Regelungssys-
temen der Rückkoppelzweig oft über ein Kommunikationsnetzwerk geschlossen. Im All-
gemeinen sind diese Kommunikationskanäle nicht ideal, wodurch es etwa zu variablen
Totzeiten bei der Übertragung kommt. Diese Totzeiten verschlechtern das Betriebsverhalten
und können bis zur Instabilität des Regelkreises führen, falls die Totzeiten nicht während des
Reglerentwurfs berücksichtigt werden. Darüber hinaus treten bei realen Anwendungen immer
Störeinflüsse auf, weshalb robuste Regelalgorithmen wie sliding-mode basierte Algorithmen
entwickelt wurden. Diese Dissertation verfolgt das Ziel, die sliding-mode Regelung mit der
Netzwerkregelung für zeitinvariante Mehrgrößensysteme zu kombinieren. Spezieller Fokus
wird dabei auf die Berücksichtigung variabler Totzeiten gelegt.

Für Mehrgrößensysteme ist es möglich, das Regelgesetz entweder zentral, d.h. ein zentraler
Regler liefert die Stellsignale für alle Eingangskanäle, oder örtlich verteilt, d.h. separate
Regler liefern das Stellsignal zum jeweiligen Eingangskanal, zu implementieren.

Die zentrale Topologie erfordert eine spezielle Struktur der sliding Variable, wodurch klassis-
che reaching laws nicht anwendbar sind. Daher werden in dieser Dissertation drei sliding-mode
basierte reaching laws für zentrale Netzwerkregelungen vorgestellt. Die Wirksamkeit der
vorgestellten Algorithmen wird auf Basis von Simulationsergebnissen gezeigt.

Für die örtlich verteilten Topologien wird ein Entwurf vorgestellt, der auf integral sliding-
mode basiert, wobei eine spezielle Struktur für die sliding Variable notwendig ist. Diese
Methode ermöglicht es, das Problem in eine Form zu bringen, in der klassische sliding-mode-
Regler anwendbar sind. Da auch für den nominellen Teil des Regelgesetzes eine spezielle
Struktur notwendig ist, wird ein Entwurf auf Basis linearer Matrixungleichungen vorgestellt.
Die Funktionsweise der vorgestellten Algorithmen wird mittels Simulationsergebnissen und
Experimenten mit einem mechanischen Labormodell gezeigt.

vii

Notation

The natural numbers excluding zero are represented by N, the natural numbers including
zero by N0 = N ∪ {0} and the integers by Z. The real numbers are denoted as R and the
positive real numbers including zero as R+. A complex number c ∈ C is either represented
by its real part a and imaginary part b, i.e. c = a+ bi, or by its magnitude |c| and phase
∠c, i.e. c = |c| ei∠c.

The operator b = dae yields the smallest integer value b ∈ Z larger than or equal to a ∈ R.

A matrix

A =


a1,1 a1,2 · · · a1,β

a2,1 a2,2 · · · a2,β
...

...
. . .

...
aα,1 aα,2 · · · aα,β


with the entries ai,j ∈ R, i = 1, 2, · · · , α and j = 1, 2, · · · , β is defined by A ∈ Rα×β. The
unity matrix of dimension α is represented by Iα. If the absolute operator is applied to a
matrix A ∈ Rα×β, the absolute operator is applied to each element of A, i.e.

|A| =


|a1,1| |a1,2| · · · |a1,β|
|a2,1| |a2,2| · · · |a2,β|

...
...

. . .
...

|aα,1| |aα,2| · · · |aα,β|

 .

A symmetric square matrix A ∈ Rα×α is said to be positive definite, i.e. A � 0 if, and only
if, xTAx > 0 is satisfied ∀x ∈ Rα with x 6= 0.

ix

Contents

Affidavit . v

Abstract . vi

Kurzfassung . vii

Notation . ix

Chapter 1 Introduction 1
1.1 Why consider Time Delays in the Controller Design? 4

1.2 Considered Architecture . 6

1.3 Aims and Contributions of this Work . 8

Chapter 2 Modeling Networked Control Systems 11
2.1 Modeling of Single-Input Networked Control Systems 12

2.1.1 Combining the Time Delays in the Networked Control System to the
Round Trip Time . 12

2.1.2 The Network Timing . 14

2.1.3 The Discrete Time Model of the Networked Control System 16

2.2 Modeling of multi-input Networked Control Systems 19

2.3 Numerical Simulation . 22

Chapter 3 Buffered Networked Control System 29
3.1 Challenges with Time-Varying Delays . 30

3.2 The Buffered Network Control System . 35

Chapter 4 Discrete Time Sliding Mode Control 41
4.1 Sliding Modes – Continuous vs. Discrete Time 42

4.2 Sliding Variable Design . 47

4.2.1 Ackermann’s Formula for Sliding Surface Design 47

4.2.2 Transformation for Sliding Surface Design 49

4.3 Matching Condition . 50

4.4 The Reaching Law Approach . 52

4.4.1 The Switching Reaching Law . 53

4.4.2 The Nonswitching Reaching Law . 54

4.5 Discretized Super Twisting Algorithms . 55

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems 59
5.1 Design of the Sliding Variable for Buffered Networked Systems 62

x

Contents

5.2 Reaching Law Based Networked Sliding Mode Control 68
5.2.1 The Switching Reaching Law . 70
5.2.2 The Nonswitching Reaching Law . 77
5.2.3 The Predictive Switching Reaching Law 83

5.3 Comparison of the Reaching Laws . 91
5.3.1 Comparison of the Simulation Results 91
5.3.2 Robustness with respect to First Order Actuator Dynamics 93

5.4 Conclusions . 99

Chapter 6 Spatially Distributed Sliding Mode Control for Buffered Networked
Systems 103

6.1 Integral Sliding Mode Control for Single-Input Networked Systems 104
6.2 Spatially Distributed Super Twisting Control for Multi-Input Networked

Control Systems . 110
6.2.1 Nominal Control Law . 112
6.2.2 Sliding Mode Control Law . 114

6.3 Laboratory Experiment . 118
6.4 Conclusions . 124

Chapter 7 The Simulation Toolbox 127
7.1 User Guide . 128

7.1.1 Centralized Networked Control Systems 129
7.1.2 Spatially Distributed Networked Control Systems 133

7.2 Integrate Custom Control Strategies . 135
7.2.1 Centralized Networked Control Systems 135
7.2.2 Spatially Distributed Networked Control Systems 136

7.3 The Classes and their Interaction . 137

Chapter 8 Summary, Conclusions and Outlook 141

Bibliography 145

xi

Chapter 1
Introduction

Contents

1.1 Why consider Time Delays in the Controller Design? 4

1.2 Considered Architecture . 6

1.3 Aims and Contributions of this Work 8

1

Chapter 1 Introduction

Modern control systems are often characterized by a close interaction between numerous
sensors, actuators and controllers. Today’s cars, for instance, use more than 100 control
devices and several thousand sensors and actuators. One can imagine that enabling these
devices to share information with one another is a challenging task. A point-to-point
connection would not be feasible even though not every device has to communicate with all
other devices.

This increased complexity triggers the need to develop a new control system architecture
where communication links are provided by wired or wireless network technologies. These
architectures are called networked control systems (NCS) in literature. Figure 1.1 shows
a very general block diagram of a networked control system. The p sensors transmit their
data through a network to the q controllers. These controllers evaluate their control law
and transmit the result to the m actuators.

Actuator 1

Actuator 2

...

Actuator m

Continuous
time
plant

Sensor 1

Sensor 2
...

Sensor p

Network

Controller
1

Controller
2

. . . Controller
q

Figure 1.1: Architecture of a networked control system.

This networked architecture has several advantages compared to conventional control
systems. The wiring effort is significantly reduced not only for large scale systems with
numerous sensors and actuators but also for applications where large spatial distances have
to be overcome. In addition, this architecture is characterized by a very high flexibility and
adaptability since it offers the possibility to replace components or even add additional ones
without changing the architecture.

Nevertheless, this networked architecture poses additional challenges in the design of the
control algorithms due to imperfections of the network. One network imperfection is data
loss. This means that a transmitted packet might be lost while being transmitted to the

2

11.0 Introduction

receiver. Some network protocols like the Transmission Control Protocol (TCP) [1] ensure a
reliable transmission. Using this protocol, data losses are detected and retransmissions are
triggered until the data is received. However, protocols like the User Datagram Protocol
(UDP) [2] might be chosen for networked control systems due to the reduced overhead. This
protocol does not ensure a reliable transmission and therefore packets might be lost. There
are several scientific publications regarding this type of imperfection (see e.g. [3, 4, 5]).

Another network imperfection is the time delay induced by the limited transmission speed of
the network. Depending on the network structure and used protocol, this time delays may be
time-varying. There are some approaches allowing the design of control laws that guarantee
stability of networked control systems affected by time-varying delay using Lyapunov-
Krasovskii analysis (see e.g. [6, 7]). Other approaches are based on the prediction of future
state variables and achieve the compensation of communication delays and data losses (see
e.g. [8, 9]). Some approaches make use of event-triggered control to reduce the network
load, which should indirectly lead to smaller time delays and fewer packet losses (see e.g.
[10, 11]). Overviews of existing techniques for networked control are given in [12, 13].

In addition to the network imperfections, every control system implemented in the real
world is affected by perturbations. Therefore, it is necessary to consider known properties
of these perturbations (e.g. the highest absolute value or the highest change rate) in the
controller design to achieve robust control systems. This robustness can be achieved by
applying so-called sliding mode techniques. Depending on the algorithm used, they are
characterized by the advantages of finite time convergence, theoretically exact compensation
for a wide class of perturbations and simple parameter tuning.

Although research in networked control became very popular in the last couple of years,
there are few publications targeting the application of sliding mode control for networked
control systems. In the past, the idea of using event-triggered control in combination with
sliding mode control was already studied and can be found e.g. in [14, 15]. The main
drawback of these methods is that the network imperfections are not explicitly modeled.
They only focus on the control design to reduce the communication load, which should
indirectly lead to smaller delays and fewer packet losses. Since the network effects are not
considered directly, no guarantees on stability and performance can be given.

This dissertation aims to develop a powerful networked control system by bringing together
the fields of networked control and sliding mode control. This is done by deriving a
mathematical model of the networked control system which is suitable for the design of
discrete time sliding mode controllers. As the applicability of the different sliding mode
control algorithms highly depends on the specific problem statement, different sliding mode
control algorithms are presented in order to cover a large variety of applications. The
effectiveness of the presented approaches is validated by means of laboratory experiments
and numerical simulations.

In this dissertation the influence of the network-induced time delays are investigated. The
influence of data loss is neglected. It is assumed that a protocol is used which ensures
reliable transmissions. However, the question arises why it even is necessary to consider
time delays in the controller design. This is motivated in the following section.

3

Chapter 1 Introduction

1.1 Why consider Time Delays in the Controller Design?

Consider a classical unity feedback loop as depicted in figure 1.2 where R(s) denotes the
transfer function of the controller and P (s) the transfer function of the plant.

R(s) P(s)
e(t) u(t) y(t)

-
r(t)

L1(s)

Figure 1.2: Classical unity feedback loop.

Assume that the open loop transfer function L1(s) = R(s)P (s) fulfills the following proper-
ties:

• the DC gain is positive
• all poles of L1(s) have negative real parts except for one possible pole on the imaginary

axis of the complex s-plane
• the magnitude of the frequency response intersects the 0 dB line exactly one time and

remains below it for increasing frequencies.

If all these properties are fulfilled, the simplified Nyquist criterion [16] can be applied. This
means, bounded input bounded output (BIBO) stability of the closed loop system is ensured
if, and only if, the phase margin

Φr = ∠L1(jωc) + 180◦ with |L1(jωc)| = 1 (1.1)

is positive, i.e.

Φr > 0. (1.2)

Assume that the controller transfer function R(s) is designed in such a way that L1(s)
satisfies (1.2). Hence, BIBO stability of the closed loop system is ensured.

e−τs R(s) P(s)
e(t− τ) u(t) y(t)

-
r(t)

L1(s)
L2(s)

Figure 1.3: Unity feedback loop with time delay.

Now consider the same unity feedback loop but with a constant time delay τ at the input
of the controller as depicted in figure 1.3. This results in the open loop transfer function
L2(s) = e−τsL1(s). The magnitude and phase is then given by

|L2(jω)| =
∣∣e−τjω∣∣ |L1(jω)| = |L1(jω)| , ∠L2(jω) = ∠L1(jω)− τ. (1.3)

4

11.1 Why consider Time Delays in the Controller Design?

The magnitude of the frequency response is unaffected by the time delay. Thus, the frequency
ωc is the same as for L1(s). As the argument of the frequency response is negatively influenced,
it is clear from (1.2) and (1.3) that an upper limit τ̄ exists at which BIBO stability of the
closed loop system is lost if τ exceeds τ̄ .

Example 1.1. Consider the open loop transfer function

L1(s) =
s+ 1

s2 + 2s+ 2
(1.4)

which fulfills the properties listed above. Therefore, the simplified Nyquist criterion can
be applied. The blue lines in figure 1.4 verify that the transfer function L1(s) satisfies the
simplified Nyquist criterion and thus ensures BIBO stability of the closed loop system.
Figure 1.4 additionally depicts the arguments of the frequency response L2(jω) with the
time delays τ = 1 in red, τ = 7 in brown and τ = 10 in black. This figure illustrates that
the simplified Nyquist criterion is violated for τ ≥ 7. Hence, BIBO-stability of the closed
loop system is lost for τ ≥ 7.

−40

−20

0

20

M
a
g
n
it
u
d
e
[d
B
]

L1(jω)

L1(jω)e
−jω

L1(jω)e
−7jω

L1(jω)e
−10jω

10−2 10−1 100 101 102

0

−45

−90

−135

−180
ωc

ω[rad s−1]

P
h
a
se

[◦
]

Figure 1.4: Bode plots of L1(jω) and L2(jω) with increasing time delay τ .

Even these simple considerations clearly show that it is necessary to consider time delays
in the controller design. Otherwise, even stability of the closed loop system can not be
guaranteed for larger time delays.

5

Chapter 1 Introduction

1.2 Considered Architecture

The architecture considered in this dissertation is shown in the form of a block diagram in
figure 1.5. Consider the linear time-invariant plant

dx

dt
= Acx(t) +Bc(u

∗(t) + f(t)) (1.5)

with state vector x ∈ Rn, inputs u∗ =
[
u∗1 u∗2 · · · u∗m

]T
and matched perturbations

f =
[
f1 f2 · · · fm

]T
. The dynamic matrix Ac and input matrix Bc have appropriate

dimensions.

τ c1,k

τ c2,k

τ cm,k

Controller Nodes

τa1,k

τa2,k

...

τam,k

Network

Zero-order
hold

Zero-order
hold

...

Zero-order
hold

u∗
1(t)

u∗
2(t)

u∗
m(t)

f1(t)

f2(t)

fm(t)

Continuous
time
plant Sensor

x(t)

T

τs1,k

τs2,k

...

τsm,k

Network

xk

Controller
1

Controller
2

...

Controller
m

Figure 1.5: Architecture of the considered networked control systems.

The sensor block represents the measurement devices which are attached to the continuous
time plant. These measurement devices measure the continuous states x(t) periodically with
the constant sampling time T . This results in the sampled state vector xk = x(kT), k ∈ N0.
For each of the m input channels, a controller node is implemented which receives this
measurement data xk through a communication network. Due to network imperfections,
the ith controller node receives the sensor data delayed by the variable time delay τ si,k ∈ R+.
As the controller nodes may be implemented on different devices, these delays are in general
different for each channel. Each controller node evaluates the control law based on the
received data, which introduces an additional variable time delay τ ci,k ∈ R+ that accounts
for limited computational power of the controller nodes computing platform. The controller

6

11.2 Considered Architecture

node transmits the computed output to its corresponding actuator which receives the data
delayed by τai,k ∈ R+. Throughout this dissertation, the following assumptions hold.

Assumption 1.2. System (1.5) is controllable, the input matrix Bc has full column
rank and the constant sampling time T is non-pathological.

Remark 1.3. Controllability and/or observability can be lost by sample and hold
discretization of a controllable and observable continuous time system. The specific
sampling times, where controllability and/or observability is lost, are called pathological
sampling times. One can show (see [17]) that the discrete time system is controllable and
observable if distinct eigenvalues of the continuous time dynamic matrix are mapped to
distinct eigenvalues of the continuous time dynamic matrix, i.e.

esiT 6= eskT for si 6= sk (1.6)

where

si = σi + jωi and sk = σk + jωk (1.7)

denote eigenvalues of the continuous time dynamic matrix. Applying (1.7) to (1.6) results
in

eTσiejTωi 6= eTσkejTωk . (1.8)

It is clearly visible that (1.8) can only be violated if

σi = σk and Tωk = Tωi ± 2νπ with ν ∈ N. (1.9)

Therefore, the condition

T 6= ±2νπ

ωk − ωi
with ν ∈ N (1.10)

has to be fulfilled for all complex eigenvalues of the continuous time dynamic matrix
with equal real parts. Otherwise, the sampling time is pathological. More details are
shown in [17].

Assumption 1.4. The communication networks ensure loss-free communication, i.e. no
packet dropouts occur, and the sum of all time delays for each input channel is bounded
by an integer multiple of the sampling time T i.e.,

τi,k = τ si,k + τ ci,k + τai,k ≤ δiT, ∀k, i = 1, 2, . . . ,m (1.11)

with δi ∈ N.

The aims and contributions of this dissertation in the field of robust networked control are
summarized in the following section.

7

Chapter 1 Introduction

1.3 Aims and Contributions of this Work

The main aim of this dissertation is to develop control algorithms for networked control
systems which are robust with respect to a certain class of perturbation. Network induced
variable time delays are explicitly considered in the controller design. Robustness with
respect to the perturbation is achieved by developing control algorithms based on sliding
mode techniques.

To satisfy this aim, a discrete time mathematical model of the networked control system is
developed which contains the networked induced variable time delays. Due to the variable
time delays, this mathematical model is time-variant. Introducing a buffering mechanism
at the receiving end of the feedback channels makes it possible to reduce the time-variant
mathematical model to a time-invariant one. Using this model, novel control strategies for
the centralized and spatially distributed network topologies are proposed in this work.

Networked control systems in which one single controller node evaluates the control law
for all plant input channels are called centralized networked control systems. Due to this
specific topology, each feedback channel is affected by the same time delay since there is
only one feedback path in the network. In addition, the centralized controller is capable
of using global information, i.e. the history of control samples of all input channels. In
this work it will be shown that sliding variables with a specific structure are necessary for
these centralized networked control systems. As a result, classical reaching law based sliding
mode control algorithms are not directly applicable in this setting. Therefore, three reaching
laws for centralized networked control systems are developed. The parameter choices and
achieved accuracies are discussed and compared. The results for single-input systems are
published in

J. Ludwiger, M. Steinberger, M. Rotulo, M. Horn, A. Luppi, G. Kubin,
and A. Ferrara, “Towards networked sliding mode control,” in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), Dec. 2017, pp. 6021–6026

J. Ludwiger, M. Steinberger, M. Horn, G. Kubin, and A. Ferrara,
“Discrete time sliding mode control strategies for buffered networked systems,”
in 2018 IEEE Conference on Decision and Control (CDC), Dec. 2018, pp.
6735–6740.

Networked control systems in which the control law for each input channel is implemented
in separate controller nodes are called spatially distributed networked control systems.
This increased flexibility comes with the additional challenge that the time delays for each
feedback channel can be different since these feedback channels are implemented by different
network paths. Moreover, only local information, i.e. the history of only the own control
samples, is available. These challenges are tackled by developing an integral sliding mode
based control algorithm with a specific choice of the sliding variables and by designing the
nominal control laws by solving linear matrix inequalities. The effectiveness of the integral
sliding mode based approach is verified for single-input systems by means of a laboratory

8

11.3 Aims and Contributions of this Work

experiment and for multi-input systems by means of numerical simulations. This approach
is published for single-input systems in

J. Ludwiger, M. Reichhartinger, M. Steinberger, and M. Horn, “Discrete-
time super twisting controller for networked control systems,” IFAC-PapersOnLine,
vol. 52, no. 16, pp. 789–794, Sep. 2019, 11th IFAC Symposium on Nonlinear
Control Systems NOLCOS 2019

and the extension to multi-input spatially distributed systems in

J. Ludwiger, M. Steinberger, and M. Horn, “Spatially distributed net-
worked sliding mode control,” IEEE Control Systems Letters, vol. 3, no. 4, pp.
972–977, Oct. 2019.

A simulation toolbox is developed to conveniently perform simulations of centralized and
spatially distributed networked control systems. This toolbox is designed with a special
focus on the ability to integrate custom sliding mode control algorithms with very little
effort. The interface to include custom sliding mode control algorithms adds a layer of
abstraction to standardize the implementation process for newly developed algorithms.

The contributions of this work are summarized as follows:

• Development of a discrete time mathematical model for networked control systems
with different variable time delays for each feedback channel.
• Introduction of a buffering mechanism at the receiving end of the feedback channels

to ensure constant round trip times. This results in a time-invariant mathematical
model.
• Sliding mode based controller design for centralized networked control systems.

– Three different algorithms for centralized networked control systems.
– Robustness of the resulting algorithms with respect to first order actuator

dynamics is shown for a mechanical system.

• Sliding mode based controller design for spatially distributed control systems.

– Design of an integral sliding mode based control algorithm which makes it possible
to cast the problem in a form where recently developed sliding mode controllers
are applicable.

– The nominal and the sliding mode part of the control law are designed in such a
way that different time delays in the feedback channels and the availability of
only local information are considered.

– Development of a design procedure for the nominal control law which is based
on solving linear matrix inequalities.

• Development of a highly flexible simulation toolbox to conveniently design and simulate
centralized and spatially distributed networked control systems.

9

Chapter 2
Modeling Networked Control Systems

Contents

2.1 Modeling of Single-Input Networked Control Systems 12

2.1.1 Combining the Time Delays in the Networked Control
System to the Round Trip Time 12

2.1.2 The Network Timing . 14

2.1.3 The Discrete Time Model of the Networked Control System 16

2.2 Modeling of multi-input Networked Control Systems 19

2.3 Numerical Simulation . 22

11

Chapter 2 Modeling Networked Control Systems

In this chapter, the modeling of the considered networked control system will be presented.
To improve readability, modeling is carried out for the single-input case first and the results
are then extended to the multi-input case.

2.1 Modeling of Single-Input Networked Control Systems

Consider the system
dx

dt
= Acx(t) + bc(u

∗(t) + f(t)) (2.1)

which results from (1.5) with m = 1. The architecture in figure 1.5 is also adapted to the
single-input case as shown in figure 2.1.

τ ck

u∗(t) x(t) xk

Tf(t)

Network

Zero-order
hold

Continuous
time
plant

τskτak

Controller

Sensor

Figure 2.1: Architecture of the considered single-input networked control systems.

In order to simplify the modeling of the networked control system, the three individual time
delays should be considered as one single time delay

τk = τ sk + τ ck + τak , (2.2)

the so-called round trip time. The next section focuses on the circumstances under which
this simplification is valid.

2.1.1 Combining the Time Delays in the Networked Control System to the
Round Trip Time

In order to study the conditions under which the three individual delays τ sk , τ ck and τak can
be combined to the round trip time τk, a notation is introduced that links each discrete
time sample to the time instant when it is received. Consider the single delay from the

sensor to the controller as depicted in figure 2.2. The notation x
τsk
k signifies that the sample

xk leaves the delay block at time instant t = kT + τ sk . This notation can now be used to

12

2

2.1 Modeling of Single-Input Networked Control Systems

τsk
xk x

τsk
k

Figure 2.2: Illustration of the delayed discrete time signal.

study the feedback path of the networked control system depicted in figure 2.1. The discrete
time control law is assumed as the general function

uk = g(xk,xk−1,xk−2, . . .). (2.3)

Since this function uses previous samples of xk, the controller is dynamic. The feedback
channel of the networked control system with the applied notation is depicted in figure 2.3.
As already shown in figure 2.2, the controller receives the sample xk at time instant kT + τ sk .

τsk Controller τ ck τak
xk x

τsk
k u

τ̃k
k u

τ̃k+τ
c
k

k u
τ̃k+τ

c
k+τak

k

Figure 2.3: Feedback channel of the networked control system with the applied notation.

It is evident that the control law (2.3) can only be evaluated after all arguments are available.
In general, the controller must therefore wait until the necessary sensor measurements are
received. Evaluating the control law results in

uτ̃kk = g(x
τsk
k ,x

τsk−1

k−1 ,x
τsk−2

k−2 , . . .) (2.4)

where the delay induced by waiting for the required sensor measurements is considered in
τ̃k. The additional restriction

τ sk−1 − τ sk ≤ T ∀k (2.5)

on the sensor to the controller time delay is necessary to ensure that all previous samples
are already available whenever xk is received. This ensures that the control law can be
evaluated whenever a packet is received since no additional time delay is introduced by
waiting for necessary samples, i.e.

u
τ̃k+τck+τak
k = u

τsk+τck+τak
k = uτkk . (2.6)

If (2.5) is satisfied, the output of the feedback system depicted in figure 2.3, which represents

the input to the zero-order hold at the plant, is given by u
τsk+τck+τak
k .

The two possibilities to consider the three delays as one single round trip time are depicted
in figures 2.4 and 2.5. In figure 2.4 the round trip time is considered at the sensor side of
the feedback channel. This means that the controller receives the samples delayed by the
round trip time τk. In order to be able to evaluate the control law whenever a sample is
received, all necessary previous samples must have previously been received in this case also.
As a consequence, the additional condition

τk−1 − τk ≤ T ∀k (2.7)

13

Chapter 2 Modeling Networked Control Systems

τk Controller
xk x

τk
k u

τ̂k
k

Figure 2.4: Single time delay considered at the sensor side.

has to be satisfied. Otherwise, the controller must wait for previous samples to arrive. This
induces an additional time delay which is considered in τ̂k. Conclusively, the configurations
depicted in figures 2.3 and 2.4 are only equivalent for dynamic controllers if the conditions
(2.5) and (2.7) are satisfied.

Controller τk
xk uk u

τk
k

Figure 2.5: Single time delay considered at the actuator side.

The round trip time can also be considered at the actuator side of the feedback channel,
which is illustrated in figure 2.5. This representation has the appealing property that
whenever (2.5) is satisfied, the architectures in figures 2.3 and 2.5 are equivalent. Therefore,
this configuration is used in the remainder of this dissertation.

Remark 2.1. Note that the three architectures shown in figures 2.3–2.5 are always
equivalent (no constraint on the time delays) if the control law is static, i.e.

uk = g(xk). (2.8)

2.1.2 The Network Timing

The results from section 2.1.1 offer the possibility to simplify the networked control system
by introducing the round trip time τk. The simplified architecture shown in figure 2.6 is
equivalent to the architecture in figure 2.1 under assumption 2.2.

Assumption 2.2. One of the following conditions holds.

1. A static control law is used, i.e. uk = g(xk).
2. A dynamic control law is used, i.e. uk = g(xk,xk−1, . . .), and the time delay from

the sensor to the controller satisfies τ sk−1 − τ sk ≤ T .

In order to derive a mathematical model of the networked control system, the timing within
the network has to be investigated in more detail. As figure 2.6 shows, the control law is
immediately evaluated in each sampling step resulting in the control signal uk. This control
signal is then delayed by the round trip time τk. Depending on the limit of the time delay,
one can distinguish two cases, the small delay case where τk < T, ∀k and the large delay
case where ∃k : τk ≥ T .

A typical timing diagram for the small delay case is shown in figure 2.7. The control samples
are generated at the time instants t ∈ {kT, (k + 1)T, (k + 2)T, . . . }. The vertical arrows

14

2

2.1 Modeling of Single-Input Networked Control Systems

u∗(t) x(t) xk

xk

Tf(t)

uk

Zero-order
hold

Continuous
time
plant

τk

Controller

Sensor

Figure 2.6: Architecture considering the round trip time as a single delay at the actuator side of
the plant.

uk−1

uk

uk+1
uk+2

uk uk+1 uk+2

τk τk+1 τk+2

t

kT (k + 1)T (k + 2)T (k + 3)T

Figure 2.7: Timing diagram for the small delay case (i.e. τk < T, ∀k).

represent the time instants at which the corresponding sample is available at the zero-order
hold. The output of the zero-order hold u∗(t) is represented by the colored trace. The
corresponding samples are also labeled on this trace. Note that all elements with the same
color correspond to the same sample. Figure 2.7 additionally shows the property of the
small delay case that exactly one new control sample is received between two sampling
instances.

uk−1

uk

uk+1
uk+2

uk uk+1 uk+2

τk τk+1

τk+2

t

kT (k + 1)T (k + 2)T (k + 3)T

Figure 2.8: Timing diagram for the large delay case (i.e. ∃k, τk ≥ T).

In the large delay case, it is possible that zero, one or up to δ samples are received within
one sampling period for the delay being bounded by τk < δT where δ ∈ N+. In figure 2.8,

15

Chapter 2 Modeling Networked Control Systems

the delay is bounded by τk < 2T, ∀k. Additionally, data can be received out-of-order in the

uk−1

uk

uk+2

uk uk+1uk+2

τk

τk+1

τk+2

t

kT (k + 1)T (k + 2)T (k + 3)T

Figure 2.9: Timing diagram showing the message rejection mechanism.

large delay case as depicted in figure 2.9. A message rejection mechanism is implemented at
the zero-order hold which drops a packet whenever newer information is already available
to deal with this out-of-order arrivals. This message rejection is illustrated by the colored
trace in figure 2.9 which represents the output of the zero-order hold u∗(t).

These observations lead to the mathematical representation of u∗(t) summarized in lemma 2.3.

Lemma 2.3. Consider a networked control system as depicted in figure 2.6. The output
u∗(t) of the zero-order hold can be mathematically formulated by

u∗(t) = uk+j−δ for kT + tjk ≤ t < kT + tj+1
k , j = 0, 1, . . . , δ (2.9)

where the arrival times tjk ∈ [0, T] are given by

tjk = min{max [0, τk+j−δ − (δ − j)T] ,

max [0, τk+j−δ+1 − (δ − j − 1)T] ,

. . . ,max [0, τk] , T}.
(2.10)

Note that the arrival times fulfill the property

0 = t0k ≤ t1k ≤ · · · ≤ tδk ≤ tδ+1
k = T. (2.11)

Proof. The proof follows directly from the proof of lemma 1 in [22] with d̄ = δ, δ̄ = 0, d = 0,
hk = T, ∀k and mk = 0, ∀k.

2.1.3 The Discrete Time Model of the Networked Control System

The full state space model (lifted model) of the single-input networked control system is
summarized in theorem 2.5.

Assumption 2.4. The sampling time T is chosen small enough to ensure that the
inter-sample behavior of the perturbation f(t) is negligible. Therefore, the perturbation

16

2

2.1 Modeling of Single-Input Networked Control Systems

f(t) can be assumed as piece-wise constant, i.e.

f(t) = f(kT) = fk, kT ≤ t < (k + 1)T, k ∈ N0. (2.12)

Further assumptions on the boundedness of the perturbation’s magnitude or change rates
will be made later.

Theorem 2.5. Consider the networked control system depicted in figure 2.1 with plant
(2.1) and assume that assumptions 1.4, 2.2 and 2.4 hold. The networked control system
can then be represented by the discrete time model

ξk+1 = Â(θk)ξk + b̂(θk)uk + b̂ffk (2.13)

with the vector of arrival times

θk =
[
θ0
k θ1

k · · · θδk
]

and θjk =
[
tjk tj+1

k

]T
where j = 0, 1, . . . , δ, (2.14)

the lifted state vector

ξk =
[
xT
k uk−1 uk−2 · · · uk−δ

]T
, (2.15)

the system matrix

Â(θk) =


A b(θδ−1

k) b(θδ−2
k) · · · b(θ1

k) b(θ0
k)

0 0 0 · · · 0 0
0 1 0 · · · 0 0
...

. . .
...

...
0 0 0 · · · 1 0

 (2.16)

and the input vectors

b̂(θk) =


b(θδk)

1
0
...
0

 b̂f =


bf
0
0
...
0

 (2.17)

where

A = eAcT , b(θjk) = eAcT
∫ tj+1

k

tjk

e−Acsbcds, bf =

∫ T

0
eAcsbcds. (2.18)

Proof. The trajectories of plant (2.1) are given by

x(t) = eActx0 +

∫ t

0
eAc(t−σ)bc [u∗(σ) + f(σ)] dσ. (2.19)

17

Chapter 2 Modeling Networked Control Systems

Applying the discretization with sampling time T results in

xk+1 = x((k + 1)T) = eAcT
(
eAckTx0 +

∫ kT

0
eAc(kT−σ)bc [u∗(σ) + f(σ)] dσ

)
︸ ︷︷ ︸

xk=x(kT)

(2.20)

+

∫ (k+1)T

kT
eAc((k+1)T−σ)bc [u∗(σ) + f(σ)] dσ (2.21)

= eAcTxk +

∫ (k+1)T

kT
eAc((k+1)T−σ)bc [u∗(σ) + f(σ)] dσ. (2.22)

Substituting σ = kT + s and exploiting assumption 2.4 gives

xk+1 = eAcTxk + eAcT
∫ T

0
e−Acsbc[u

∗(kT + s) + f(kT + s)︸ ︷︷ ︸
fk

]ds. (2.23)

Considering the arrival times, as described in lemma 2.3 and illustrated in figure 2.10,

uk−δ

uk−δ+1

uk−δ+2

uk

j = 0 j = 1 j = 2 j = δ t

kT kT + t1k kT + t2k kT + tδk (k + 1)T

Figure 2.10: Control signal u∗(t) in the interval of two sampling instances.

results in

xk+1 = eAcT︸ ︷︷ ︸
A

xk + eAcT
∫ t1k

0=t0k

e−Acsbcds︸ ︷︷ ︸
b(θ0k)

uk−δ + eAcT
∫ t2k

t1k

e−Acsbcds︸ ︷︷ ︸
b(θ1k)

uk−δ+1+

+ · · ·+ eAcT
∫ T

tδk

e−Acsbcds︸ ︷︷ ︸
b(θδk)

uk +

∫ T

0
eAcsbcds︸ ︷︷ ︸
bf

fk

= Axk +
δ∑
j=0

b(θjk)uk+j−δ + bffk.

(2.24)

Finally, the lifted model (2.13) follows from (2.24) by introducing the lifted state vector
(2.15).

18

2

2.2 Modeling of multi-input Networked Control Systems

2.2 Modeling of multi-input Networked Control Systems

As previously indicated, the results from section 2.1 will now be extended to the multi-input
case. Using assumption 2.2 for each feedback channel of the multi-input networked control
system individually results in assumption 2.6.

Assumption 2.6. One of the following conditions holds for i = 1, 2, . . . ,m.

1. A static control law is used in the ith controller node, i.e. ui,k = gi(xk).
2. A dynamic control law is used in the ith controller node, i.e. ui,k = gi(xk,xk−1, . . .),

and the time delay from the sensor to the controller fulfills τ si,k−1 − τ si,k ≤ T .

If assumption 2.6 holds, the three individual time delays of the ith channel (τ si,k, τ
c
i,k and

τai,k) can be considered as a single time delay

τi,k = τ si,k + τ ci,k + τai,k (2.25)

for analysis purposes. This time delay is called the ith round trip time and is considered at
the actuator side of the ith channel. As a result, the block diagram of the networked control
system in figure 1.5 can be simplified to the one in figure 2.11.

Zero-order
hold

Zero-order
hold

...

Zero-order
hold

u∗
1(t)

u∗
2(t)

u∗
m(t)

f1(t)

f2(t)

fm(t)

Continuous
time
plant Sensor

x(t)

T

Controller
1

Controller
2

...

Controller
m

xk

xk

xk

τ1,k

τ2,k

...

τm,k

u1,k

u2,k

um,k

Figure 2.11: Architecture in which the round trip times are considered as single delays at the
actuator side of the plant.

Reformulating the multi-input plant given in (1.5) by splitting the input vector for each

19

Chapter 2 Modeling Networked Control Systems

channel results in

dx

dt
= Acx(t) +

m∑
i=1

bc,i(u
∗
i + fi) (2.26)

where Bc =
[
bc,1 bc,2 · · · bc,m

]
.

The discrete time lifted model of the multi-input networked control system is presented in
theorem 2.7.

Theorem 2.7. Consider the networked control system depicted in figure 1.5 with plant
(1.5) and assume that assumptions 1.4, 2.4 and 2.6 hold. The networked control system
can then be represented by the discrete time model

ξk+1 = Â(θ1,k,θ2,k, . . . ,θm,k)ξk + B̂(θ1,k,θ2,k, . . . ,θm,k)uk + B̂ffk (2.27)

with the vectors of arrival times

θi,k =
[
θ0
i,k θ1

i,k · · · θδii,k
]T

,

θji,k =
[
tji,k tj+1

i,k

]T
,

tji,k = min{max [0, τi,k+j−δi − (δi − j)T] ,

max [0, τi,k+j−δi+1 − (δi − j − 1)T] ,

. . . ,max [0, τi,k] , T}.
j = 0, 1, . . . , δi, i = 1, 2, . . . ,m,

(2.28)

the lifted state vector

ξk =
[
xT
k u1,k−1 u1,k−2 · · · u1,k−δ1 · · · um,k−1 · · · um,k−δm

]T
, (2.29)

the system matrix

Â(θ1,k,θ2,k, . . . ,θm,k) =


A B1(θ1,k) B2(θ2,k) · · · Bm(θm,k)

0 Eδ1×δ1 0 · · · 0
0 0 Eδ2×δ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Eδm×δm

 (2.30)

and the input vectors

B̂(θ1,k,θ2,k, . . . ,θm,k) =


b1(θδ11,k) b2(θδ22,k) · · · bm(θδmm,k)

eδ1×1 0 · · · 0
0 eδ2×1 · · · 0
...

...
. . .

...
0 0 · · · eδm×1

 B̂f =


Bf

0
0
...
0

 (2.31)

20

2

2.2 Modeling of multi-input Networked Control Systems

where

Bi(θi,k) =
[
bi(θ

δi−1
i,k) bi(θ

δi−2
i,k) · · · bi(θ0

i,k)
]

(2.32a)

bi(θ
j
i,k) = eAcT

∫ tj+1
i,k

tji,k

e−Acsbc,ids (2.32b)

Eδi×δi =

[
01×(δi−1) 0

I(δi−1) 0(δi−1)×1

]
(2.32c)

eδi×1 =

[
1

0δi−1×1

]
(2.32d)

Bf =

∫ T

0
eAcsBcds (2.32e)

A = eAcT (2.32f)

Proof. The trajectories of the multi-input plant (2.26) are given by

x(t) = eActx0 +
m∑
i=1

∫ t

0
eAc(t−σ)bc,i [u∗i (σ) + fi(σ)] dσ. (2.33)

Applying the discretization with sampling time T results in

xk+1 = eAcTxk +
m∑
i=1

∫ (k+1)T

kT
eAc((k+1)T−σ)bc,i [u∗i (σ) + fi(σ)] dσ. (2.34)

Substituting σ = kT + s gives

xk+1 = eAcTxk +
m∑
i=1

eAcT
∫ T

0
e−Acsbc,i[u

∗
i (kT + s) + fi(kT + s)︸ ︷︷ ︸

fi,k

]ds. (2.35)

Applying lemma 2.3 to each input channel individually results in the arrival times given in
(2.28). Considering these arrival times, (2.35) can be represented by

xk+1 = eAcTxk +
m∑
i=1

δi∑
j=0

eAcT
∫ tj+1

i,k

tji,k

eAcsbc,ids︸ ︷︷ ︸
bi(θ

j
i,k)

ui,k+j−δi +

∫ T

0
eAcsBcds︸ ︷︷ ︸
Bf

fk. (2.36)

The lifted model (2.27) follows directly from (2.36) using the lifted state vector (2.29).

21

Chapter 2 Modeling Networked Control Systems

2.3 Numerical Simulation

The lifted model (2.27) is verified by comparing the results of two numerical simulations.
In the first simulation, the TrueTime toolbox introduced in [23] was used to implement
a continuous time simulation. More details on the simulation environment are given in
chapter 7. In the second simulation, the same networked control system is simulated by
using the lifted model (2.27) which provides discrete time signals. The results of the two
simulations should exactly match at the sampling instances.

Example 2.8. The plant for this simulation is chosen as the third order system

dx

dt
=

 0 1 0
0 0 1
−6 −11 −6

x+

0 0
0 1
1 0

 (u+ f) (2.37)

and the sampling time as
T = 0.65 s. (2.38)

It is assumed that the time delays τ sk =
[
τ s1,k τ s2,k

]T
, τ ck =

[
τ c1,k τ c2,k

]T
τ ak =

[
τa1,k τa2,k

]T
are respectively bounded by[

0
0

]
≤ τ sk ≤

[
0.5
0.1

]
,

[
0
0

]
≤ τ ck ≤

[
0.5
1.7

]
,

[
0
0

]
≤ τ ak ≤

[
0.3
0.8

]
. (2.39)

The delay values are generated as uniformly distributed random numbers within the specified
boundaries. Due to the fact that the used control law

uk =

[
−0.01 0.027 0.087 0 0 0 0 0 0
0.473 1.163 0.027 0 0 0 0 0 0

]
ξk (2.40)

is static, assumption 2.6 is fulfilled. Hence, the three individual delays in each channel can
be treated as one single delay and the lifted model in theorem 2.7 is valid. Note that this
controller is tuned based on the plant only (without considering the delays). Consequently,
stability is not guaranteed for all possible delay configurations. However, it is used for
validation purposes.

Considering the given delay bounds (2.39) and the sampling time (2.38), the round trip
times are bounded by [

0
0

]
≤ τk = τ sk + τ ck + τ ak ≤

[
2
4

]
T, ∀k. (2.41)

For simulation purposes, the perturbation is assumed to be known as

fk =

[
10 sin(0.3kT)
20 sin(0.2kT)

]
. (2.42)

The continuous time simulation provides data for all signals at every point in time whereas
the discrete time simulation only provides data for the distinct sampling time instances.

22

2

2.3 Numerical Simulation

Additionally, the three delays τ sk , τ ck and τ ak are considered separately in the continuous
time simulation while these delays are lumped together to the round trip time τk for the
discrete time simulation. However, the discrete time representation offers a basis for the
controller design.

The simulation results provided by the continuous time simulation for the first and the
second feedback channel are shown in figures 2.12 and 2.13, respectively. In these figures,
the first three subplots show the three components of the sampled state vector xk in blue.
The dashed red lines in these subplots refer to the data received by the ith controller node,
which is affected by the network-induced delay τ si,k. The fourth subplots show the controller
outputs without considering the computational time in blue and the controller outputs
affected by the computational time τ ci,k in red. Finally, the last subplots depict the control
signals additionally affected by the networked induced delays τai,k in blue. These are the
signals received at the zero-order hold elements. The red lines in these last subplots refer
to the outputs of the zero-order hold elements. Comparing the red and the blue traces in
these subplots clearly shows the effect of the message rejection as older samples are dropped
whenever newer information is already available.

The first few steps of this simulation will be shown explicitly to demonstrate the procedure
for evaluating the discrete time simulation. Assume that the first round trip times are given
by

τ0 =

[
0.538
2.349

]
, τ1 =

[
0.461
1.073

]
, τ2 =

[
0.789
1.367

]
, τ3 =

[
0.796
1.688

]
, τ4 =

[
0.213
1.065

]
.

The vectors of arrival times are computed according to (2.28), which leads to

θ1,0 =

 0 0
0 0.538

0.538 0.65

 , θ1,1 =

 0 0
0 0.461

0.461 0.65

 , θ1,2 =

 0 0
0 0.65

0.65 0.65

 ,
θ1,3 =

 0 0.139
0.139 0.65
0.65 0.65

 , θ1,4 =

 0 0.146
0.146 0.213
0.213 0.65


for the first input channel and

θ2,0 =


0 0
0 0
0 0
0 0.65

0.65 0.65

 , θ2,1 =


0 0
0 0
0 0.65

0.65 0.65
0.65 0.65

 , θ2,2 =


0 0
0 0.423

0.423 0.423
0.423 0.65
0.65 0.65

 ,

θ2,3 =


0 0
0 0
0 0.65

0.65 0.65
0.65 0.65

 , θ2,4 =


0 0
0 0.067

0.067 0.65
0.65 0.65
0.65 0.65



23

Chapter 2 Modeling Networked Control Systems

0

100

200 x1,k

x
τs1,k
1,k

−100

0

100

200 x2,k

x
τs1,k
2,k

−200

0

200

x3,k

x
τs1,k
3,k

−20

0

20
u
τs1,k
1,k

u
τs1,k+τ

c
1,k

1,k

0 1.3 2.6 3.9 5.2 6.5 7.8 9.1 10.4 11.7 13 14.3 15.6 16.9 18.2 19.5

−20

0

20

Time/s

u
τs1,k+τ

c
1,k+τ

a
1,k

1,k

u∗
1(t)

Figure 2.12: Example 2.8: The signals in the first feedback channel obtained with the continuous
time simulation.

24

2

2.3 Numerical Simulation

0

100

200 x1,k

x
τs2,k
1,k

−100

0

100

200 x2,k

x
τs2,k
2,k

−200

0

200

x3,k

x
τs2,k
3,k

−200

0

u
τs2,k
2,k

u
τs2,k+τ

c
2,k

2,k

0 1.3 2.6 3.9 5.2 6.5 7.8 9.1 10.4 11.7 13 14.3 15.6 16.9 18.2 19.5

−200

0

Time/s

u
τs2,k+τ

c
2,k+τ

a
2,k

1,k

u∗
2(t)

Figure 2.13: Example 2.8: The signals in the second feedback channel obtained with the continuous
time simulation.

25

Chapter 2 Modeling Networked Control Systems

for the second input channel. With these vectors of arrival times, the system matrix and input
vector of the lifted model (2.27) can be computed using (2.30), (2.31) and (2.32a)–(2.32e)
for every time step, e.g. in the fourth step, the lifted model is given by

ξ5 = Â(θ1,4,θ2,4)ξ4 + B̂(θ1,4,θ2,4)u4 + B̂ff4 (2.43)

with

Â(θ1,4,θ2,4) =



0.891 0.428 0.06 0.003 0.008 0 0.141 0.028 0
−0.358 0.235 0.071 0.007 0.012 0 0.41 0.018 0
−0.424 −1.135 −0.189 −0.01 −0.027 0 −0.685 −0.08 0

0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


B̂(θ1,4,θ2,4) =

[
0.007 0.041 0.107 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

]T

B̂f =

[
0.018 0.06 0.071 0 0 0 0 0 0
0.169 0.428 −0.765 0 0 0 0 0 0

]T

.

The lifted state vector in the fourth step

ξ4 =
[
35.51 −105.609 148.274 −1.043 8.665 68.94 21.254 −119.754 −288.021

]T
(2.44)

results from the previous iterations with initial condition

ξ0 =
[
100 200 300 0 0 0 0 0 0

]T
. (2.45)

Applying control law (2.40) and perturbation (2.42) in (2.43) with ξ4 given in (2.44) yields

ξ5 =
[
−3.355 −16.148 63.409 −9.714 −1.043 102.098 68.94 21.254 −119.754

]T
.

Using this iterative approach up to k = 30, the discrete time simulation data for the lifted
states ξk is obtained up to t = 19.5 s. Figure 2.14 shows the simulation results of the three
plant states for the discrete time simulation in blue and for the continuous time simulation
in dashed red. Although the discrete time model does not provide any information on the
inter-sample behavior, the discrete time data matches the continuous time data at the
sampling instances which verifies the effectiveness of the lifted model exactly. To achieve a
higher resolution of the discrete time simulation, the sampling time T can be decreased.

26

2

2.3 Numerical Simulation

0

100

200 x1,k

x1(t)

−100

0

100

200 x2,k

x2(t)

0 1.3 2.6 3.9 5.2 6.5 7.8 9.1 10.4 11.7 13 14.3 15.6 16.9 18.2 19.5

−400

−200

0

200

Time/s

x3,k

x3(t)

Figure 2.14: Example 2.8: Comparison of the states obtained with the discrete time simulation in
blue and the continuous time simulation in dashed red.

27

Chapter 3
Buffered Networked Control System

Contents

3.1 Challenges with Time-Varying Delays 30

3.2 The Buffered Network Control System 35

29

Chapter 3 Buffered Networked Control System

In this chapter, challenges arising from the effects of time-varying delays on the networked
control system are discussed and a method to achieve constant round trip times is de-
scribed.

3.1 Challenges with Time-Varying Delays

A big challenge of the time-varying case is to prove stability of the closed loop system. The
first intention could be to show stability of the networked control system with the control
law

uk = K̂ξk (3.1)

by showing that the closed-loop system matrix

Âcl(θ1,k,θ2,k, . . . ,θm,k) = Â(θ1,k,θ2,k, . . . ,θm,k)− B̂(θ1,k,θ2,k, . . . ,θm,k)K̂ (3.2)

is schur (i.e. has eigenvalues within the unit circle exclusively) for all possible θi,k. It turns
out that this is not a sufficient condition as illustrated by means of numerical simulations
in the following two subsections.

Scenario 1

In this subsection a simulation example for a system is shown that behaves unstable even
though the closed loop system matrix (3.2) is schur for all possible delay configurations.

Example 3.1. Consider the continuous time plant

dx

dt
=

[
−2 8
2 1

]
x+

[
3

0.7

]
u∗ (3.3)

with sampling time T = 0.08s. Furthermore, assume that the round trip time τk can
exclusively equal the two distinct values

τk ∈ {τ̄1, τ̄2} , with τ̄1 = 0.01 and τ̄2 = 0.04. (3.4)

As both possible time delays are smaller than the sampling time T , a lifted model for each
of the two cases can be derived using theorem 2.5 and is given by

ξk+1 =

 0.9 0.627 0.031
0.157 1.135 0.012

0 0 0


︸ ︷︷ ︸

Â1

ξk +

0.212
0.066

1


︸ ︷︷ ︸

b̂1

uk for τk = τ̄1 = 0.01 (3.5)

30

3

3.1 Challenges with Time-Varying Delays

and

ξk+1 =

 0.9 0.627 0.123
0.157 1.135 0.045

0 0 0


︸ ︷︷ ︸

Â2

ξk +

 0.12
0.033

1


︸ ︷︷ ︸

b̂2

uk for τk = τ̄2 = 0.04. (3.6)

Applying the static control law

uk = k̂Tξk =
[
8 1 0

]
ξk

results in the closed loop dynamic matrices

Âcl,1 = Â1 − b̂1k̂
T =

−0.797 0.415 0.031
−0.37 1.069 0.012
−8 −1 0

 (3.7)

Âcl,2 = Â2 − b̂2k̂
T =

−0.062 0.507 0.123
−0.111 1.102 0.045
−8 −1 0

 (3.8)

with the corresponding absolute values of its eigenvalues

∣∣∣eig
(
Âcl,1

)∣∣∣ =

0.485
0.485
0.967

 (3.9)

∣∣∣eig
(
Âcl,2

)∣∣∣ =

0.973
0.973
0.966

 . (3.10)

As (3.9) and (3.10) indicate, both system matrices are schur. This means that the networked
control system is asymptotically stable for τk = τ̄1, ∀k or τk = τ̄2, ∀k. This is also depicted
in figure 3.1 which shows the simulation results of the two plant states with initial condition

ξ0 =
[
1 1 0

]T
and the two constant delay cases. The blue lines correspond to the case

in which the time delay equals τk = τ̄1, ∀k and the red lines to the case in which the time
delay equals τk = τ̄2,∀k.

The next question is what happens if the time delay can jump arbitrarily between the two
values τ̄1 and τ̄2. Take, for instance, the pattern where the time delay alternates between
the two possible values in every sampling step, i.e.

τ2k = τ̄1 = 0.01, τ2k+1 = τ̄2 = 0.04. (3.11)

In this case, the difference equation of the closed loop system is given by

ξk+1 =

{
Âcl,1ξk if k ∈ {2h|h ∈ N}
Âcl,2ξk if k ∈ {2h+ 1|h ∈ N} . (3.12)

Considering every second sampling step only, simplifies (3.12) to

ξ2h+2 = Âcl,2Âcl,1ξ2h with h ∈ N. (3.13)

31

Chapter 3 Buffered Networked Control System

−0.5

0

0.5

1

x
1
,k

τk = 0.01s, ∀k
τk = 0.04s, ∀k

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

Time/s

x
2
,k

τk = 0.01s, ∀k
τk = 0.04s, ∀k

Figure 3.1: Example 3.1: State variables with constant time delays τ̄1 and τ̄2.

From (3.13) it is clear that the networked control system is asymptotically stable for the
specific delay configuration (3.11) if the system matrix Âcl,2Âcl,1 is schur. In the present
simulation example, this system matrix and the absolute values of its eigenvalues are given
by

Âcl,2Âcl,1 =

−1.122 0.393 0.004
−0.677 1.087 0.01
6.744 −4.388 −0.262

 , ∣∣∣eig
(
Âcl,2Âcl,1

)∣∣∣ =

0.935
0.22
1.012

 . (3.14)

As (3.14) indicates, not all eigenvalues of Âcl,2Âcl,1 are within the unit circle. Hence, the
networked control system is unstable for the delay pattern given in (3.11). This is also
illustrated in figure 3.2 which shows the simulation results of the plant states.

This simulation example shows that the networked control system might be asymptotically
stable for a set of constant time delays but this does not imply stability for time-varying
delays.

Scenario 2

In this section, a simulation example is given where the networked control system is unstable
for a set of constant time delays but is asymptotically stable for a specific sequence of time
varying delays.

32

3

3.1 Challenges with Time-Varying Delays

−5

0

5

x
1
,k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

−2

0

2

Time/s

x
2
,k

Figure 3.2: Example 3.1: State variables with time delays alternating between τ̄1 and τ̄2 in every
sampling step.

Example 3.2. Consider the continuous time plant

dx

dt
=

[
7 −23
28 −9

]
x+

[
4
−1

]
u∗ (3.15)

with sampling time T = 1.1s. Furthermore, assume that the round trip time τk can exclusively
equal the two distinct values, i.e.

τk ∈ {τ̄1, τ̄2} with τ̄1 = 0.62 and τ̄2 = 1.05. (3.16)

Applying the static control law

uk =
[
3 8 0

]
ξk (3.17)

results in the closed loop system matrices and the corresponding magnitudes of its eigenvalues

Âcl,1 =

 0.228 −0.177 0.164
−0.111 −1.344 0.011
−3 −8 0

 , ∣∣∣eig
(
Âcl,1

)∣∣∣ =

 0.63
0.63
1.232

 (3.18)

Âcl,2 =

 0.228 −0.177 0.164
−0.111 −1.344 0.011
−3 −8 0

 , ∣∣∣eig
(
Âcl,2

)∣∣∣ =

0.274
1.203
1.203

 . (3.19)

The networked control system is unstable for both constant delay cases since neither Âcl,1

nor Âcl,2 are schur. This unstable behavior is also reflected by a numerical simulation.

33

Chapter 3 Buffered Networked Control System

−500

0

500

x
1
,k

τk = 0.62s, ∀k
τk = 1.05s, ∀k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

−500

0

500

Time/s

x
2
,k

τk = 0.62s, ∀k
τk = 1.05s, ∀k

Figure 3.3: Example 3.2: State variables with constant time delays τ̄1 and τ̄2.

The simulation results in figure 3.3 show the plant states for the two constant delay cases
τk = τ̄1, ∀k in red and τk = τ̄2, ∀k in blue.

The case in which the time delay alternates between the two possible time delays in every
sampling step, i.e.

τ2k = τ̄1 = 0.62, τ2k+1 = τ̄2 = 1.05, (3.20)

can again be analyzed by considering system (3.13). The system matrix Âcl,2Âcl,1 and the
magnitudes of its eigenvalues are given by

Âcl,2Âcl,1 =

 0.309 3.271 −0.096
−0.142 0.336 0.009
0.205 11.28 −0.579

 , ∣∣∣eig
(
Âcl,2Âcl,1

)∣∣∣ =

0.497
0.625
0.625

 . (3.21)

Although the network control system is unstable for the two constant delay cases, it turns
out that the network control system is asymptotically stable if the time delay alternates
between the two delays in every sampling step since the system matrix in (3.21) is schur.
This stabilizing behavior is also evident in the simulation results for the plant states as
depicted in figure 3.2.

34

3

3.2 The Buffered Network Control System

0

2

4

x
1
,k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

−1

0

1

Time/s

x
2
,k

Figure 3.4: Example 3.2: State variables with time delays alternating between τ̄1 and τ̄2 in every
sampling step.

3.2 The Buffered Network Control System

As motivated in section 3.1, the stability proof for network control systems affected by time-
varying delays is quite challenging. There are some methods in literature (e.g. [22, 6]) which
deal with this time-varying case. However, these methods are mathematically demanding,
difficult to implement and can lead to conservative control laws. Consequently, a buffering
mechanism is used in this thesis which ensures constant round trip times. This is achieved
by implementing buffers directly at the receiving end of each feedback channel as indicated
in the block diagram shown in figure 3.5.

The sensor attaches a timestamp to each sent message which is not altered by the controller
and therefore received by the ith buffer delayed by τi,k. Due to a time synchronization
mechanism (e.g. one of the methods proposed in [24, 25]) between the buffers and the sensor,
the ith buffer is capable of computing the time delay of the current packet τi,k. As an upper
bound of this time delay δiT is known, the ith buffer can introduce the additional time
delay

τ bi,k = δiT − τi,k (3.22)

before forwarding the data to the zero-order hold. This mechanism ensures that the round
trip time (the delay from the sensor to the zero-order hold) is constantly the maximum time
delay δiT . Using these constant round trip times in (2.28) results in the arrival times

tji,k = min{max [0, jT] ,max [0, (j + 1)T] , . . . ,max [0, δiT] , T} j = 0, 1, . . . , δi + 1

35

Chapter 3 Buffered Networked Control System

τ c1,k

τ c2,k

τ cm,k

Controller Nodes

τa1,k

τa2,k

...

τam,k

Network

τ b1,k

τ b2,k

...

τ bm,k

Zero-order
hold

Zero-order
hold

...

Zero-order
hold

Buffers f1(t)

f2(t)

fm(t)

Continuous
time
plant

T

Sensor

x(t)

τs1,k

τs2,k

...

τsm,k

Network

xk

Controller
1

Controller
2

...

Controller
m

Figure 3.5: Buffered network control system.

36

3

3.2 The Buffered Network Control System

which evaluates to

t0i,k = 0, t1i,k = T, t2i,k = T, · · · , tδi+1
i,k = T.

Applying these arrival times to (2.36) results in the discrete time model of the networked
control system

xk+1 = Axk +

m∑
i=1

biui,k−δi +Bfk (3.23)

with

A = eAcT , B =
[
b1 b2 · · · bm

]
=

∫ T

0
eAcsBcds. (3.24)

Defining the lifted state vector

ξk =
[
xT
k u1,k−1 u1,k−2 · · · u1,k−δ1 · · · um,k−1 · · · um,k−δm

]T
(3.25)

results in the lifted model

ξk+1 = Âξk + B̂uk + B̂ffk (3.26)

with

Â =



A 0n×δ1−1 b1 0n×δ2−1 b2 · · · 0n×δm−1 bm
01×n 0 0 0 0 · · · 0 0
0δ1−1×n Iδ1−1 0 0 0 · · · 0 0
01×n 0 0 0 0 · · · 0 0
0δ2−1×n 0 0 Iδ2−1 0 · · · 0 0
...

...
...

...
...

. . .
...

...
01×n 0 0 0 0 · · · 0 0
0δm−1×n 0 0 0 0 · · · Iδm−1 0


(3.27)

B̂ =



0n×1 0n×1 · · · 0n×1

1 0 · · · 0
0δ1−1×1 0 · · · 0
0 1 · · · 0
0δ2−1×1 0 · · · 0
...

...
. . .

...
0 0 · · · 1
0δm−1×1 0 · · · 0


=
[
b̂1 b̂2 · · · b̂m

]
(3.28)

B̂f =



B
0
0
0
0
...
0
0


=
[
b̂f,1 b̂f,2 · · · b̂f,m

]
. (3.29)

37

Chapter 3 Buffered Networked Control System

For cases in which a non-integer upper bound of the time delay δ̃i is known, i.e.

τi,k ≤ δ̃iT < δiT ∀k (3.30)

with δ̃i ∈ R+ and δi =
⌈
δ̃i

⌉
, the delay introduced by the buffer can be chosen as

τ bi,k = δ̃iT − τi,k, (3.31)

which results in a constant round trip time of δ̃iT that is not an integer multiple of the
sampling time. This constant time delay ensures that exactly one new sample arrives at the
plant in every sampling step (see figure 3.6 for a timing diagram with constant time delay
τi,k + τ bi,k = 2.3T). The constant time period from the actual sampling instant to the time
instant at which the new control signal is applied is symbolized by τ∗i .

uk−3

ui,k−2

ui,k−1
ui,k

ui,k+1

ui,k−2 ui,k−1 ui,k ui,k+1

τi,k + τ bi,k = δ̃iT

τ∗iτ∗iτ∗i τ∗i

t

kT (k + 1)T (k + 2)T (k + 3)T

Figure 3.6: Timing diagram for the ith channel with constant time delay τi,k + τ bi,k = 2.3T achieved
by the buffering mechanism.

In this case, the constant time delay is given by

δ̃iT = (δi − 1)T + τ∗i . (3.32)

Using these constant round trip times in (2.28) results in the arrival times

tji,k = min{max [0, (j − 1)T + τ∗i] ,max [0, jT + τ∗i] , . . . ,max [0, (δi − 1)T + τ∗i] , T}
j = 0, 1, . . . , δi + 1

which evaluates to

t0i,k = 0, t1i,k = τ∗i , t2i,k = T, · · · , tδi+1
i,k = T.

Applying these arrival times to (2.36) results in the discrete time model of the networked
control system

xk+1 = Axk +

m∑
i=1

(
b̄iui,k−δi + b̃iui,k−δi+1

)
+Bfk (3.33)

38

3

3.2 The Buffered Network Control System

with A, B as in (3.24) and

B̄ =
[
b̄1 b̄2 · · · b̄m

]
= eAcT

∫ τ∗i

0
eAcsBcds (3.34)

B̃ =
[
b̃1 b̃2 · · · b̃m

]
= B − B̄ = eAcT

∫ T

τ∗i

eAcsBcds (3.35)

τ∗i = (δ̃i − δi + 1)T. (3.36)

Again, using the lifted state vector (3.25) results in the lifted model

ξk+1 = Âξk + B̂uk + B̂ffk (3.37)

with B̂, B̂f as in (3.28) and (3.29) and

Â =



A 0n×δ1−2 B̃1 0n×δ2−2 B̃2 · · · 0n×δm−2 B̃m

01×n 0 0 0 0 · · · 0 0
0δ1−1×n Iδ1−1 0 0 0 · · · 0 0
01×n 0 0 0 0 · · · 0 0
0δ2−1×n 0 0 Iδ2−1 0 · · · 0 0
...

...
...

...
...

. . .
...

...
01×n 0 0 0 0 · · · 0 0
0δm−1×n 0 0 0 0 · · · Iδm−1 0


(3.38)

B̃i =
[
b̄i b̃i

]
.

As the time delays induced by the networked feedback and the buffer are explicitly considered
in the discrete time models given in (3.26) and (3.37), stabilizing control laws for buffered
networked control systems can be designed based on these models.

39

Chapter 4
Discrete Time Sliding Mode Control

Contents

4.1 Sliding Modes – Continuous vs. Discrete Time 42

4.2 Sliding Variable Design . 47

4.2.1 Ackermann’s Formula for Sliding Surface Design 47

4.2.2 Transformation for Sliding Surface Design 49

4.3 Matching Condition . 50

4.4 The Reaching Law Approach . 52

4.4.1 The Switching Reaching Law 53

4.4.2 The Nonswitching Reaching Law 54

4.5 Discretized Super Twisting Algorithms 55

41

Chapter 4 Discrete Time Sliding Mode Control

This chapter gives a short introduction to the concepts of sliding mode control with special
focus on the differences between continuous time and discrete time methods.

The theory of sliding modes originates from the theory of variable structure systems, which
are systems whose structure can change depending on the system’s current state values. A
simple example of a variable structure system (see [26]) is a unity feedback loop with the
control law

u(t) =

{
K1e(t) for |e(t)| > ε

K2

∫ t
tε
e(t)dt else

(4.1)

with the error e(t), ε ∈ R+ and |e(t)| < ε for t ≥ tε. This control law combines the
advantages of fast convergence for large initial values of the proportional controller with
the advantage of the zero steady state error of the integrating controller. Additionally,
the disadvantage of high overshoot with the integrating controller is suppressed as the
integrating control law is active only if the error e(t) is small. One can imagine that there
are numerous possible combinations and switching rules, which results in many methods
and algorithms. One specific class of algorithms, however, received special attention in the
last decades, the so called sliding mode control. The most significant advantage of this class
of algorithms is the possibility to enforce motions that are insensitive to a wide class of
disturbances.

4.1 Sliding Modes – Continuous vs. Discrete Time

To understand the concept of continuous time sliding modes, consider the second order
system

dx1

dt
= x2

dx2

dt
= u+ f

(4.2)

with state variables x1, x2, input u(t) and bounded perturbation |f(t)| < 1. Furthermore,
consider the control law [26]

u = −cx2 − sign (σ) (4.3)

with the so-called sliding variable
σ = cx1 + x2 (4.4)

and c > 0. Note that

sign (σ) =


1 for σ > 0[
−1 1

]
for σ = 0

−1 for σ < 0
. (4.5)

There are some mathematical tools in literature to formally analyze controllers using this
set-valued function. The interested reader is referred to [27, 28, 29, 30]. To gain insight in
the properties of this system, numerical simulations with the three perturbations

f(t) = 0, f(t) = −0.6, f(t) = 0.8 sin(5t) (4.6)

42

4

4.1 Sliding Modes – Continuous vs. Discrete Time

are performed. The resulting trajectories, starting from the initial conditions x
(1)
0 =[

−5 −5
]T

and x
(2)
0 =

[
5 5

]T
with c = 0.5, are depicted in figure 4.1. For the ini-

tial condition x
(2)
0 and the different perturbations, the time evolution of the states x1, x2

and the sliding variable σ are shown in figure 4.2.

These figures show the most important property of sliding mode approaches, i.e. that the
sliding variable σ approaches σ = 0 in finite time and stays at zero independently of the
perturbation (see figure 4.2). Figure 4.1 illustrates this property even more clearly because
the trajectories are only influenced by the disturbance from the initial condition until
the sliding surface (i.e. σ = 0) is reached in finite time (reaching phase). After reaching
the sliding surface, the states “slide” along the sliding surface to the origin unaffected
by the disturbance (sliding phase). This property can also be illustrated mathematically.
Considering the derivative of the sliding variable σ and the plant dynamics (4.2) results
in

dσ

dt
= − sign (σ) + f. (4.7)

Since |f | < 1, the perturbation is always dominated by the sign (σ) part. Therefore, σ = 0
is achieved in finite time and maintained for the remaining time (see [26]). Thus,

σ = 0 =
dx1

dt
+ cx1 ⇒

dx1

dt
= −cx1 (4.8)

are the remaining dynamics in sliding mode. From (4.8) it can be concluded that the motion
enforced in sliding mode is insensitive to the disturbance f(t) as it does not appear in
(4.8).

In real world applications, the control law has to be implemented in a discrete time setting.
Hence, the properties of discrete time sliding modes and the differences to its continuous
time counterpart have to be discussed. For a discrete time setting, consider the second order
system

x1,k+1 = x1,k + Tx2,k

x2,k+1 = x2,k + T (uk + fk)
(4.9)

which is the Euler discretized version of (4.2) with sampling time T .
Performing the exact discretization of (4.8) gives

x1,k+1 = ecTx1,k. (4.10)

The discrete time sliding variable

σk =
1− ecT
T

x1,k + x2,k (4.11)

is then defined as the deviation between (4.10) and the first state in (4.9). The forward
increment of (4.11) using (4.9) is given by

σk+1 =
1− ecT
T

x1,k + (2− ecT)x2,k + T (uk + fk). (4.12)

43

Chapter 4 Discrete Time Sliding Mode Control

−10 −5 5 10

−4

−2

2

4

σ = 0

x1

x2

x
(1)
0 x

(2)
0

f(t) = 0

f(t) = −0.6

f(t) = 0.8 sin(5t)

Figure 4.1: Trajectories of system (4.2) affected by different perturbations with controller (4.3)

and (4.4) where c = 0.5 and initial conditions x
(1)
0 and x

(2)
0 are used.

0

5

10

x
1

f(t) = 0

f(t) = −0.6

f(t) = 0.8 sin(5t)

−2

0

2

4

x
2

f(t) = 0

f(t) = −0.6

f(t) = 0.8 sin(5t)

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

Time/s

σ

f(t) = 0

f(t) = −0.6

f(t) = 0.8 sin(5t)

Figure 4.2: State variables x1, x2 and sliding variable σ of system (4.2) affected by different

perturbations with controller (4.3) and (4.4) where c = 0.5 and initial condition x
(2)
0 is

used.

44

4

4.1 Sliding Modes – Continuous vs. Discrete Time

Performing Euler discretization of (4.7) yields

σk+1 = σk − T sign (σk) + Tfk. (4.13)

Applying (4.12) to (4.13) results in the control law

uk = − 1

T

(
1− ecT
T

x1,k +
(
2− ecT

)
x2,k − σk

)
− sign (σk) . (4.14)

Simulation results of the closed loop system with c = −0.05, fk = 0.8 sin(kT) and initial

conditions x
(1)
0 =

[
−5 −5

]T
and x

(2)
0 =

[
5 5

]T
are shown in figures 4.3 and 4.4 for

different sampling times T . As these figures illustrate, it is not possible to achieve an ideal
sliding mode in discrete time setting as in the continuous time case in which the motion is
completely insensitive to the disturbance. Therefore, the concept of quasi-sliding mode is
introduced for discrete time systems.

Definition 4.1. A system performs a quasi-sliding mode if the sliding variable σk
approaches a band around zero in a finite number of steps k∗ and remains inside this
band for k ≥ k∗, i.e.

|σk| ≤ ∆ for k ≥ k∗. (4.15)

The band ∆ is denoted as quasi-sliding mode band.
In the multi-input case, the quasi-sliding mode band is defined for each component of the
sliding variable individually, i.e.

|σi,k| ≤ ∆i for k ≥ k∗i , i = 1, 2, . . .m. (4.16)

Definition 4.2. A system performs an ideal quasi-sliding mode if the sliding variable
σk approaches zero in a finite number of steps k∗ and remains at zero for all subsequent
steps, i.e.

σk = 0 for k ≥ k∗. (4.17)

The remaining disturbance-insensitive dynamics are denoted as ideal quasi-sliding mode
dynamics.

Remark 4.3. In literature, however, a different definition of the quasi-sliding mode [31]
exists. According to this definition, the sliding variable should cross and re-cross the
zero line in every successive sampling step inside the quasi-sliding mode band. From
a practical point of view, such a motion is not desired since it leads to high-frequency
oscillations. Thus, definition 4.1 is used in this dissertation.

The simulation results depicted in figures 4.3 and 4.4 show that the accuracy significantly
increases with decreasing sampling time T . With decreasing sampling time, the switching
frequency around the sliding variable increases. As a result, an infinitesimally small sampling
time leads to an infinite switching frequency with an infinitesimally small quasi-sliding
mode band. As the continuous sliding mode can be considered to be switching around the
sliding surface with infinite frequency and infinitesimal amplitude, this corresponds to the
continuous sliding mode.

45

Chapter 4 Discrete Time Sliding Mode Control

−15 −10 −5 5 10 15 20

−4

−2

2

4

σk = 0

x1

x2

x
(1)
0 x

(2)
0

T = 0.2 s
T = 0.1 s
T = 0.01 s

Figure 4.3: Trajectories of system (4.9) with controller (4.11) and (4.14) for different sampling

times T and initial conditions x
(1)
0 and x

(2)
0 .

0

10

20

x
1
,k

T = 0.2 s

T = 0.1 s

T = 0.01 s

0

2

4

x
2
,k

T = 0.2 s

T = 0.1 s

T = 0.01 s

0 10 20 30 40 50 60 70 80 90 100

0

2

4

Time/s

σ
k

T = 0.2 s

T = 0.1 s

T = 0.01 s

Figure 4.4: State variables and sliding variable σk of system (4.9) with controller (4.11) and (4.14)

for different sampling times T and initial condition x
(2)
0 .

46

4

4.2 Sliding Variable Design

4.2 Sliding Variable Design

Consider the discrete time system

xk+1 = Axk +Buk (4.18)

with state vector xk ∈ Rn and vector of inputs uk ∈ Rm. The classical choice of the sliding
variable for such systems is a linear combination of the states, i.e.

σk = Mxk (4.19)

to ensure that the ideal quasi-sliding mode dynamics are asymptotically stable. In this
section, two approaches to design sliding variables are presented. The first approach is
based on the Ackermann formula and can be used to design sliding surfaces for single-input
systems. The second approach is based on a state transformation and is also applicable in
the multi-input case. Note that both methods result in sliding variables of relative degree
γ = 1, i.e. σk+1 directly depends on uk.

4.2.1 Ackermann’s Formula for Sliding Surface Design

Consider the discrete time single-input system

xk+1 = Axk + buk (4.20)

with xk ∈ Rn and uk ∈ R. Matrix A and vector b are of appropriate dimensions.

Ackermann’s formula [32] is adapted in such a way that the sliding variable

σk = mTxk (4.21)

can be designed by specifying the n−1 eigenvalues of the ideal quasi-sliding mode dynamics.
The result is summarized in theorem 4.4.

Theorem 4.4. Consider plant (4.20) and sliding variable (4.21). If

mT = tT1 P1(A) (4.22)

with

P1(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn−1) = p0 + p1λ+ · · ·+ pn−2λ
n−2 + λn−1

tT1 =
[
0 0 · · · 0 1

] [
b Ab · · · An−1b

]−1 (4.23)

then λ1, λ2, . . . , λn−1 are the eigenvalues of the ideal quasi-sliding mode dynamics (see
[33]).

47

Chapter 4 Discrete Time Sliding Mode Control

Proof. In ideal quasi-sliding mode, the sliding variable is zero for all subsequent steps, i.e.

σk = mTxk = 0 (4.24)

σk+1 = mTAxk +mTbuk = 0 (4.25)

Applying (4.22) and (4.23) gives

mTb = tT1 P1(A)b

= tT1
(
p0b+ p1Ab+ · · · pn−2A

n−2b+An−1b
)︸ ︷︷ ︸

P1(A)b

= tT1
[
b Ab · · · An−1

] [
p0 p1 · · · pn−2 1

]T
=
[
0 · · · 0 1

] [
b Ab · · · An−1

]−1︸ ︷︷ ︸
tT1

[
b Ab · · · An−1

] [
p0 · · · 1

]T
= 1.

(4.26)

Solving (4.25) for uk and exploiting (4.26) results in

uk = −mTAxk. (4.27)

Using (4.22) in (4.27) gives

uk = −tT1 P1(A)A︸ ︷︷ ︸
P (A)

xk = −kTxk (4.28)

with

P (λ) = P1(λ)λ = (λ− λ1)(λ− λ2) · · · (λ− λn−1)λ (4.29)

kT = tT1 P (A). (4.30)

Consequently, the control law given in (4.28) can be seen as a classical state feedback
controller, designed with Ackermann’s formula where the eigenvalues of A− bkT are placed
at λ1, λ2, . . . , λn−1, 0. Note that there is an eigenvalue at zero in addition to the ones
specified by P1(λ). Applying (4.27) to (4.20) yields

xk+1 = (A− bmTA)xk. (4.31)

Applying the transformation [
x∗k
σk

]
=

[
In−1 0
mT

]
xk = Txk (4.32)

to (4.31) and considering (4.25) results in[
x∗k+1

σk+1

]
=

[
A1 as
0 0

] [
x∗k
σk

]
(4.33)

48

4

4.2 Sliding Variable Design

with A1 ∈ Rn−1×n−1 and as ∈ Rn−1. The transformation matrix T is invertible if the last
element of mT is not zero. As mT is a nonzero vector, this property can always be enforced
by reordering the states. The transformed system matrix in (4.33) has the eigenvalues
λ1, λ2, . . . , λn−1, 0. Due to the specific structure of the transformed system matrix in (4.33),
matrix A1 has the eigenvalues λ1, λ2, . . . , λn−1.
For σk = 0 ∀k, the difference equation

x∗k+1 = A1x
∗
k (4.34)

results from (4.33). Consequently, the eigenvalues of the ideal quasi-sliding mode dynamics
are given by λ1, λ2, . . . , λn−1.

Further insights and examples are given in [28].

4.2.2 Transformation for Sliding Surface Design

As mentioned before, the Ackermann formula is applicable only in the single-input case.
Hence, an alternative approach is shown for the multi-input case. Consider the controllable
discrete time multi-input system

xk+1 = Axk +Buk (4.35)

with xk ∈ Rn and uk ∈ Rm. Matrices A and B are of appropriate dimension. Furthermore,
consider the LQ-factorization of the input matrix

B = QL (4.36)

with an orthogonal matrix Q (i.e. Q−1 = QT) and a lower triangular matrix L such that

QTB = L =

[
0
B1

]
(4.37)

with B1 ∈ Rm×m (see [34]).

Theorem 4.5. Consider the controllable plant (4.35) and the sliding variable

σk = Mxk =
[
B−1

1 M̃ B−1
1

]
QTxk (4.38)

with M̃ ∈ Rm×(n−m). The eigenvalues of the corresponding ideal quasi-sliding mode
dynamics are specified by placing the n−m eigenvalues of

A11 −A12M̃ (4.39)

with

QTAQ =

[
A11 A12

A21 A22

]
A11 ∈ R(n−m)×(n−m)

A22 ∈ Rm×m QTB =

[
0
B1

]
(4.40)

to the desired eigenvalues. The eigenvalues of (4.39) can be placed, for instance, by
applying one of the methods proposed in [35].

49

Chapter 4 Discrete Time Sliding Mode Control

Proof. Transforming system (4.35) with the transformation[
z1,k

z2,k

]
= QTxk, (4.41)

where z1,k ∈ Rn−m and z2,k = Rm, results in[
z1,k+1

z2,k+1

]
=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

QTAQ

[
z1,k

z2,k

]
+

[
0
B1

]
︸ ︷︷ ︸
QTB

uk. (4.42)

Considering sliding variable (4.38) during ideal quasi-sliding mode (i.e. σk = 0), the relations

σk =
[
B−1

1 M̃ B−1
1

]
QTxk = 0⇔ z2,k = −M̃z1,k (4.43)

hold. Applying (4.43) to (4.42) results in

z1,k+1 = (A11 −A12M̃)z1,k, (4.44)

which gives the difference equation of the remaining dynamics during ideal quasi-sliding
mode. Thus, placing eigenvalues of (4.44) by means of varying M̃ places the eigenvalues of
the remaining dynamic matrix during ideal quasi-sliding mode.

Remark 4.6. Note that
MB = Im (4.45)

holds for M if it is designed according to theorem 4.5. This can be verified by applying
(4.38) and (4.40), which results in

MB =
[
B−1

1 M̃ B−1
1

]
QTB︸ ︷︷ ︸ 0
B1


= Im. (4.46)

For mT as designed in theorem 4.4, the relation mTb = 1 holds too. This has already
been shown in (4.26).

4.3 Matching Condition

Motions during sliding mode are only insensitive to disturbances which fulfill a certain
condition, the so-called matching condition. Consider the continuous time system

dx

dt
= Acx+Bcu+Dcgc (4.47)

with state vector x ∈ Rn, vector of inputs u ∈ Rm and vector of disturbances gc ∈ Rp. The
matrices Bc and Dc are of appropriate dimension. In [36] it was shown that the motion
during sliding mode is invariant to the disturbance gc if the condition

rank[Bc,Dc] = rankBc, (4.48)

50

4

4.3 Matching Condition

the so-called matching condition, is satisfied. Equivalently, the disturbance can be expressed
as

Dcgc = Bcf̃ . (4.49)

Hence, (4.47) can be simplified to

dx

dt
= Acx+Bc(u+ f̃). (4.50)

In the remainder of this section, it will be examined under which conditions the matched
character of perturbation f̃ is maintained for a discrete time implementation of the controller,
i.e. u(t) = uk for kT ≤ t < (k + 1)T .

Discretizing (4.47) while exploiting (4.49) with sampling time T results in

xk+1 = Axk +Buk + gk (4.51)

with

A = eAcT , B =

∫ T

0
eAcτBcdτ, gk = eAcT

∫ T

0
e−AcsBcf̃(kT + s)ds. (4.52)

For the discrete time system to be insensitive to the disturbance gk during ideal quasi-sliding
mode, the same condition as in the continuous time case has to be satisfied, i.e.

gk = Bfk. (4.53)

From (4.52) one can see that even if the matching condition is satisfied for the continuous
time system, it is not guaranteed that the matching condition is satisfied for the discretized
system for an arbitrary perturbation f̃ . However, in [37] it was proposed that the relation

gk = Bf̃(kT) +
1

2
Bv(kT)T +O

(
T 3
)

(4.54)

with v(t) = df̃
dt holds for a bounded and smooth perturbation f̃ . This means that the

magnitude of the unmatched part in gk is of order O
(
T 3
)
. Therefore, the unmatched part

is negligible for suitably small chosen sampling times T . Moreover, the perturbation in the
discrete time model is given by

gk = Bfk (4.55)

for piecewise constant perturbations, i.e.

f̃(t) = f̃(kT) = fk, kT ≤ t < (k + 1)T. (4.56)

Hence, it does not contain unmatched components.

As previously analyzed, no ideal sliding mode is possible for discrete time systems. As a
result, the design of discrete time sliding mode controllers is dedicated to ensuring a small
quasi-sliding mode band and thus reducing the influence of disturbances on the motions
during quasi-sliding mode.

51

Chapter 4 Discrete Time Sliding Mode Control

The existing literature on the design of discrete time sliding mode controllers can be
divided into two categories. One category focuses on applying the reaching law approach to
design sliding mode controllers purely in discrete time to meet certain specifications. These
control approaches are not necessarily inspired by continuous time sliding mode controllers.
Research in the second category uses a continuous time sliding mode controller and applies
discretization techniques in order to keep desirable properties of the original controller. In
this dissertation, control laws derived from both categories will be introduced and adapted
for the networked control setup.

4.4 The Reaching Law Approach

Consider a discrete time multi-input system

xk+1 = Axk +B(uk + fk) (4.57)

with state vector xk ∈ Rn, vector of inputs uk ∈ Rm and vector of bounded matched
perturbations fk ∈ Rm with the perturbation being bounded by

f ≤ fk ≤ f̄ , ∀k. (4.58)

The system matrix A and input matrix B are of appropriate dimension. The sliding variable
is designed as a linear combination of the states, i.e.

σk = Mxk (4.59)

with
MB = Im. (4.60)

Remark 4.7. Note that (4.60) can always be achieved by choosing

M = (M̃B)−1M̃ (4.61)

for a given M̃ . The matrix M̃B is always invertible if the sliding variable σ̃k = M̃xk
is of uniform relative degree one. Additionally, the dynamical properties of the motion
during ideal quasi-sliding mode are not altered by applying (4.61).

Using (4.57) and (4.59), the forward increment of the sliding variable is given by

σk+1 = MAxk + uk + fk. (4.62)

The idea of the reaching law approach is to explicitly specify the difference equation for the
sliding variable. In general, this might be a function of the previous values of the sliding
variable, the current time index k and a vector of initial conditions ν0 for dynamical reaching
laws. To obtain a perturbation with symmetrical bounds, the mean value of the bounds

f̂ =
1

2

(
f̄ + f

)
(4.63)

52

4

4.4 The Reaching Law Approach

is considered in the reaching law. Consequently, the general reaching law is given by

σk+1 = F (σk,σk−1, . . . ,σ0, k,ν0)− f̂ + fk. (4.64)

The resulting perturbation acting on σk+1 is then symmetrically bounded by∣∣∣fk − f̂ ∣∣∣ ≤ 1

2

(
f̄ − f

)
= f̃ . (4.65)

Applying the reaching law (4.64) to (4.62) and solving for uk results in the control law

uk = −MAxk +F (σk,σk−1, . . . ,σ0, k,ν0)− f̂ . (4.66)

From (4.62) one can conclude that each channel of the sliding variable is only influenced by
one single-input channel. As a result, each channel of the sliding variable can be treated
independently. This simplifies the multi-input problem to m single-input problems, i.e.

σi,k+1 = Fi (σi,k, σi,k−1, . . . , σi,0, k, νi,0)− f̂i + fi,k, i = 1, 2, . . . ,m (4.67)

with σk =
[
σ1,k σ2,k · · · σm,k

]T
and F (·) =

[
F1 (·) F2 (·) · · · Fm (·)

]T
.

Several reaching laws are proposed in literature. In this dissertation, different reaching laws
will be presented and subsequently integrated into the networked control architecture.

4.4.1 The Switching Reaching Law

One of the first published reaching laws, the switching reaching law which is summarized
as

σi,k+1 = Fi (σi,k)− f̂i + fi,k = αiσi,k − ρi sign (σi,k)− f̂i + fi,k, i = 1, 2, . . . ,m (4.68)

with parameters

0 ≤ αi < 1, ρi > 0, (4.69)

was proposed in [31] and some remarks are given in [38]. This reaching law is inspired by
the continuous time “constant plus proportional” control law. Representing this reaching
law in vector form

σk+1 = Γσk − S sign (σk)− f̂ + fk

Γ =


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αm

 , S =


ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
. . .

...
0 0 · · · ρm

 (4.70)

and inserting it in (4.66) results in the control law

uk = (ΓM −MA)xk − S sign (σk)− f̂ . (4.71)

53

Chapter 4 Discrete Time Sliding Mode Control

According to the definition of quasi-sliding mode in [31], the sliding variable should cross
and re-cross zero in every successive sampling step after the sliding variable crossed the
zero line for the first time. To ensure this property, the gains have to be chosen such that

ρi >
1 + αi
1− αi

f̃i, (4.72)

see [38]. However, definition 4.1 does not require the sliding variable to cross and re-cross
the zero line in every successive sampling step during quasi-sliding mode. Therefore, the
gains can be chosen as

ρi > f̃i, (4.73)

which is generally significantly smaller. As the quasi-sliding mode band is given by

∆i = ρi + f̃i (4.74)

as shown in [31], it is clear that smaller values of ρi lead to a smaller quasi-sliding mode
band ∆i. Hence, (4.73) is used in the remainder of this dissertation.

4.4.2 The Nonswitching Reaching Law

In [39], the very general reaching law

σi,k+1 = Fi (k + 1, σi,0)− f̂i + fi,k (4.75)

was proposed where Fi (k, σi,0) is an a priori constructed function which fulfills the following
properties:

• If |σi,0| > 2f̃i, then

Fi (0, σi,0) = σi,0

Fi (k, σi,0) Fi (0, σi,0) ≥ 0 ∀k ≥ 0

Fi (k, σi,0) = 0 ∀k ≥ k∗i
|Fi (k + 1, σi,0)| < |Fi (k, σi,0)| − 2f̃i ∀k < k∗i

(4.76)

• Otherwise, i.e. if |σi,0| ≤ 2f̃i, then

Fi (k, σi,0) = 0 ∀k ≥ 0. (4.77)

The case |σi,0| > 2f̃i defines a function which starts at σi,0 and converges to zero in k∗i
number of steps. The last line in (4.76) ensures that the sliding variable σi,k converges
strictly monotonicly even in the worst case scenario, i.e.

|σi,k+1| < |σi,k| . (4.78)

If |σi,0| ≤ 2f̃i, no reaching phase is needed and the reaching law has to evaluate to zero.

54

4

4.5 Discretized Super Twisting Algorithms

This reaching law ensures the strict monotonic convergence from any initial condition σi,0
to the quasi-sliding mode band

∆i = f̃i (4.79)

in the a priori chosen number of steps k∗i as shown in [39].
Using this reaching law, the control law is given by

uk = −MAxk +F (k + 1,σ0)− f̂ . (4.80)

One possible choice of Fi (k, σi,0) was given in [39] as

Fi (k, σi,0) =

{
k∗i−k
k∗i

σi,0 for k < k∗i
0 else

(4.81)

with

k∗i <
|σi,0|
2f̃i

. (4.82)

It is easy to verify that this linearly decreasing/increasing function satisfies the required
properties (4.76) and (4.77).
Comparing the quasi-sliding mode band (4.74) ensured by the switching reaching law with
the quasi-sliding mode band (4.79) ensured by the nonswitching reaching law confirms that
the magnitude of the quasi-sliding mode band is reduced to approximately half its value.

4.5 Discretized Super Twisting Algorithms

Apart from the reaching law approach, two discretized versions of the super twisting
algorithm will be adapted to apply them in the networked control system case. These
algorithms are not directly designed for a discrete time system. In fact, they are designed
by discretization of continuous time algorithms. Consider a continuous time perturbed
integrator

dσ

dt
= u+ ϕ

dϕ

dt
= v

(4.83)

with sup(v) = Lϕ <∞. Note that in (4.83) instead of the amplitude of perturbation ϕ, its
derivative is bounded. Applying the super twisting algorithm

u = −α
√
|σ| sign (σ) + ν

dν

dt
= −β sign (σ)

(4.84)

proposed in [40] results in the closed loop system

dσ

dt
= −α

√
|σ| sign (σ) + ν̃

dν̃

dt
= −β sign (σ) + v

(4.85)

55

Chapter 4 Discrete Time Sliding Mode Control

where ν̃ = ϕ+ ν. The parameters α and β can be chosen by the well-established setting

α = 1.5
√
Lϕ, β = 1.1Lϕ, (4.86)

which was initially proposed in [41]. The stability of (4.85) using (4.86) was recently proven
in [42]. As proposed in [43], these closed loop dynamics can be written in the pseudo-linear
form

d

dt

[
σ
ν̃

]
= P (σ)

[
σ
ν̃

]
+

[
0
v

]
(4.87)

with

P (σ) =

[
−α |σ|− 1

2 1

−β |σ|−1 0

]
. (4.88)

Its characteristic polynomial is (almost everywhere) given by

w(s) = s2 + α |σ|− 1
2 s+ β |σ|−1 (4.89)

and the resulting state dependent eigenvalues are given by

s(1)(σ) = p(1) |σ|− 1
2 , s(2)(σ) = p(2) |σ|− 1

2 (4.90)

with parameters p(1), p(2) ∈ C such that

α = −(p(1) + p(2)), β = p(1)p(2). (4.91)

Performing Euler forward discretization of (4.83) with sampling time T yields

σk+1 = σk + Tuk + Tϕk

ϕk+1 = ϕk + Tvk.
(4.92)

In [44], a framework was proposed in which a control law

uk =
1

T
(˜̀
kσk − σk) + νk

νk+1 = νk + `kσk

(4.93)

with ˜̀
k and `k is designed to ensure that the state dependent eigenvalues of the discrete

time closed loop system match the state dependent eigenvalues q
(1)
k and q

(2)
k which are

determined by applying discretization methods on (4.90). Combining (4.93) and (4.92)
results in the discrete time closed loop system[

σk+1

ν̃k+1

]
= Pd

[
σk
ν̃k

]
+

[
0
Tvk

]
(4.94)

with ν̃k = νk + ϕk and

Pd =

[
˜̀
k T
`k 1

]
. (4.95)

56

4

4.5 Discretized Super Twisting Algorithms

Computing det(zI2 − Pd) results in the characteristic polynomial of Pd as

w(z) = z2 − (˜̀
k + 1)z + ˜̀

k − T`k. (4.96)

Specifying the desired characteristic polynomial

(z − q(1)
k)(z − q(2)

k) = z2 −
(
q

(1)
k + q

(2)
k

)
z + q

(1)
k q

(2)
k

!
= w(z) (4.97)

gives

˜̀
k = q

(1)
k + q

(2)
k − 1

`k =
1

T

(
˜̀
k − q(1)

k q
(2)
k

)
.

(4.98)

In this dissertation, the explicit Euler discretized version of the super twisting algorithm
where

q
(1)
k = 1 + Ts(1)(σk), q

(2)
k = 1 + Ts(2)(σk) (4.99)

(see [45]) and the discrete time super twisting algorithm using the matching approach
where

q
(1)
k =

{
es

(1)(σk)T σk 6= 0
0 σk = 0

, q
(2)
k =

{
es

(2)(σk)T σk 6= 0
0 σk = 0

(4.100)

(see [44]) are considered. The discrete version of the super twisting using the matching
approach has two main advantages. First, no discretization chattering appears using this
algorithm and if ϕk = 0, the origin of the closed loop system is asymptotically stable.
Second, overestimating the required controller gains has very little negative impact on the
accuracy in terms of the magnitude of the sliding variable σk compared to the explicit Euler
discretized version of the super twisting algorithm. These properties and some additional
ones are extensively researched in [46].

57

Chapter 5
Centralized Sliding Mode Control for

Buffered Networked Systems

Contents

5.1 Design of the Sliding Variable for Buffered Networked Systems . 62

5.2 Reaching Law Based Networked Sliding Mode Control 68

5.2.1 The Switching Reaching Law 70

5.2.2 The Nonswitching Reaching Law 77

5.2.3 The Predictive Switching Reaching Law 83

5.3 Comparison of the Reaching Laws . 91

5.3.1 Comparison of the Simulation Results 91

5.3.2 Robustness with respect to First Order Actuator Dynamics 93

5.4 Conclusions . 99

59

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

This chapter is dedicated to combining networked control and discrete time sliding mode
control by using the design of the sliding variable to specify the dynamics of the sliding
motion. It is also shown that these types of sliding mode controllers are implementable
in a centralized fashion only, i.e. that the control law is evaluated by one single controller
node that provides the actuating signals for all m input channels. The results presented
in this chapter are based on the results published in [18, 19]. The considered architecture
is depicted in figure 5.1. As one single controller node computing all actuating signals is

τ ck

τ bk

τak

Zero-order
hold

Zero-order
hold

...

Zero-order
hold

f1(t)

f2(t)

fm(t)

Continuous
time
plant

T

Sensor

x(t)

Centralized
SMC

τsk

xk

Figure 5.1: Block diagram of a centralized buffered networked control system.

implemented, only one buffer is necessary to ensure the constant round-trip time δT for all
input channels simultaneously. Before applying any sliding mode control algorithms, the
matching condition for this special networked control system has to be analyzed. Since the
time delay is uniform over all input channels, the discrete time model of the centralized
buffered network system results from (3.23) with δ1 = δ2 = · · · = δm = δ and is given by

xk+1 = Axk +B(uk−δ + fk) (5.1)

with A and B given in (3.24). Using the lifted state vector

ξk =
[
xT
k u1,k−1 u1,k−2 · · · u1,k−δ · · · um,k−1 · · · um,k−δ

]T
(5.2)

results in the lifted model

ξk+1 = Âξk + B̂uk + B̂ffk (5.3)

60

5

5.0 Centralized Sliding Mode Control for Buffered Networked Systems

with

Â =



A 0n×δ−1 b1 0n×δ−1 b2 · · · 0n×δ−1 bm
01×n 0 0 0 0 · · · 0 0
0δ−1×n Iδ−1 0 0 0 · · · 0 0
01×n 0 0 0 0 · · · 0 0
0δ−1×n 0 0 Iδ−1 0 · · · 0 0
...

...
...

...
...

. . .
...

...
01×n 0 0 0 0 · · · 0 0
0δ−1×n 0 0 0 0 · · · Iδ−1 0


(5.4)

B̂ =



0n×1 0n×1 · · · 0n×1

1 0 · · · 0
0δ−1×1 0 · · · 0
0 1 · · · 0
0δ−1×1 0 · · · 0
...

...
. . .

...
0 0 · · · 1
0δ−1×1 0 · · · 0


=
[
b̂1 b̂2 · · · b̂m

]
(5.5)

B̂f =



B
0
0
0
0
...
0
0


=
[
b̂f,1 b̂f,2 · · · b̂f,m

]
. (5.6)

Note that the lifted model for centralized buffered networked systems results directly from
the lifted model (3.26) for the uniform time delay δiT = δT , ∀i.

Comparing (5.5) and (5.6) shows that the matching condition

rank[B̂, B̂f] = rank B̂ (5.7)

is never satisfied. For (5.1), however, it is satisfied. As a result, a sliding motion which
is independent of the perturbation fk is possible in the subspace xk of ξk. This is quite
intuitive since, apart from xk, ξk also contains the delayed control signals, which in the
ideal case compensates for future values of the perturbation. Thus, a motion of ξk which is
independent of the perturbation fk is neither possible nor desired.

61

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

5.1 Design of the Sliding Variable for Buffered Networked
Systems

As mentioned before, the first step in a sliding mode based control design very often is the
design of the sliding variable. The first intention could be to design a sliding variable, based
on the methods given in section 4.2, as a linear combination of the lifted state vector, i.e.

σk = Mξk. (5.8)

As the matching condition is not satisfied and this definition specifies a sliding motion in
the lifted states ξk, this contradicts the previous consideration that a sliding motion is only
possible in the subspace xk.
This can be mathematically verified by considering the forward increment of (5.8) and
applying the lifted model (5.3), which results in

σk+1 = MÂξk +MB̂uk +MB̂ffk. (5.9)

Setting σk+1 = 0, using MB̂ = Im and solving for uk gives the so-called equivalent
control

uk = −MÂξk −MB̂ffk (5.10)

which enforces the sliding motion for the next sampling step. Using this control signal in
the lifted model (5.3) results in a motion during sliding given by

ξk+1 = (Â− B̂MÂ)ξk − (B̂MB̂f − B̂f)fk. (5.11)

In order for this motion to be independent of the disturbance fk, the relation

B̂MB̂f − B̂f = 0 (5.12)

has to be satisfied. The matrices B̂ and B̂f given in (5.5) and (5.6) can be written as

B̂ =

[
0n×m
B2

]
B̂f =

[
B
0

]
(5.13)

with

B2 =


1 · · · 0
0δ−1×1 · · · 0
...

. . .
...

0 · · · 1
0δ−1×1 · · · 0

 . (5.14)

Using M =
[
M1 M2

]
with M1 ∈ Rm×n and M2 ∈ Rm×δm together with (5.13) in (5.12)

yields

B̂MB̂f − B̂f =

[
−B

B2M1B

]
. (5.15)

From (5.15) it is clear that (5.12) can never be satisfied. Hence, the resulting movement for
σk = 0 is not independent of the perturbation fk. This result is illustrated by means of a
numerical simulation in example 5.1.

62

5

5.1 Design of the Sliding Variable for Buffered Networked Systems

Example 5.1. Consider the continuous time plant

dx

dt
=

[
0 1
3 −2

]
x+

[
0
1

]
(u∗ + f) (5.16)

with state vector x ∈ R2, scalar input u∗ and perturbation f . Constructing the lifted model
for sampling time T = 0.1s and constant round trip time τk = T ensured by the buffer
results in

ξk+1 =

1.014 0.091 0.005
0.273 0.832 0.091

0 0 0

 ξk +

0
0
1

uk +

0.005
0.091

0

 fk. (5.17)

Using one of the methods in section 4.2 and specifying the two eigenvalues to λ1 = λ2 = e−T

to design the sliding variable results in

σk =
[
3.997 0.193 1

]
ξk. (5.18)

Applying the control law (5.10), which equals

uk =
[
−4.106 −0.524 −0.036

]
ξk + (−0.036)fk, (5.19)

ensures that σk = 0 for k > 0. Figure 5.2 shows simulated trajectories which start from

ξ0 =
[
1 2 0

]T
and are affected by different disturbances fk. As this figure shows, all

trajectories immediately approach the σk = 0 plane after the first step and remain on
this plane. If the system is in sliding mode, the trajectories would, independently of the
perturbation, slide along the σk = 0 plane towards the origin. In the shown picture, the
trajectories move along this plane but the movements on this plane are affected by the
perturbation and therefore the convergence to the origin is not ensured. Consequently, no
sliding motion occurs although the sliding variable σk is zero.

Theorem 5.2. Consider the lifted model of a centralized buffered networked system
(5.3)–(5.6). Using a sliding variable

σk = M̂ξk =
[
M 0

]
ξk =


mT

1

mT
2

...
mT

m


︸ ︷︷ ︸
M

xk, (5.20)

which is a linear combination of the plant states, only ensures a perturbation independent
motion for σk = 0.

Proof. To verify that σk = 0 ensures a disturbance insensitive motion, consider the forward
increment of (5.20) together with (5.1), which results in

σk+1 = MAxk +MB︸ ︷︷ ︸
Im

(uk−δ + fk). (5.21)

63

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 −2

0

2−10

−5

0

5

10

x1,k

x2,k

u
k
−
1

σk = 0

fk = −2.5

fk = cos(kT)

fk = 2 sin(1
2
kT)

ξ0
Origin

−2.5 −2 −1.5 −1 −0.5 0.5 1 1.5 2 2.5

−2

−1

1

2

3

x1,k

x2,k

Figure 5.2: Example 5.1: Trajectories of system (5.17) with controller (5.19) affected by different
perturbations fk. In the lower section, the projection on the x1,k/x2,k plane is illustrated.

64

5

5.1 Design of the Sliding Variable for Buffered Networked Systems

Setting σk+1 = 0 and solving for the control signals results in

uk−δ = −MAxk − fk (5.22)

which enforces σk = 0 for k > 0. Using this control signal in (5.1) yields

xk+1 = (A−BMA)xk +B(fk − fk) (5.23)

which obviously is independent of the perturbation fk.

As the control signal (5.22) is not causal in the present form, it cannot be implemented. In
order to circumvent this issue, consider the forward increments of the plant states

xk+2 = A2xk +AB(uk−δ + fk) +B(uk−δ+1 + fk+1) (5.24)

xk+3 = A3xk +A2B(uk−δ + fk) +AB(uk−δ+1 + fk+1) +B(uk−δ+2 + fk+2) (5.25)

...

xk+δ = Aδxk +
δ−1∑
i=0

AiB(uk−i−1 + fk+δ−1−i). (5.26)

Using (5.26), the control signal in (5.22) can be rewritten in the form

uk = −MA

(
Aδxk +

δ−1∑
i=0

AiB(uk−i−1 + fk+δ−1−i)

)
︸ ︷︷ ︸

xk+δ

−fk+δ, (5.27)

which can be implemented if the perturbation fk and its future values are known.

Example 5.3. Reconsider example 5.1 which results in the lifted model (5.17). Designing
the sliding variable (5.20) according to section 4.2 and specifying one eigenvalue to λ1 = e−T

results in
σk =

[
10.473 10.439 0

]
ξk. (5.28)

According to (5.27), the control signal is given by

uk =
[
−16.297 −9.245 −0.941

]
ξk − 0.941fk − fk+1. (5.29)

Simulated trajectories of system (5.17), which is affected by different perturbations fk, start

from ξ0 =
[
1 2 0

]T
and are shown in figure 5.3. These trajectories show that at least

two steps are required for the states to reach the sliding surface, which is intuitively clear
as the sliding variable depends on the plant states only. Therefore, the first control signal
u0 reaches the plant in the second iteration, which then leads to σk = 0 for k ≥ 2. These
trajectories also show that the motion in the lifted states ξk is affected by the perturbation
since uk−1 has to compensate for the perturbation fk. However, the motion of the plant
states xk is insensitive to the perturbation once the sliding variable has approached zero.
This is illustrated by the projection of the trajectories to the x1,k/x2,k plane, which is also
depicted in figure 5.3.

65

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

−0.4−0.2
0

0.2
0.4

0.6
0.8

1
1.2

1.4 −2

−1

0

1

2
−40

−30

−20

−10

0

10

x1,k
x2,k

u
k
−
1

σk = 0

fk = −2.5

fk = cos(kT)

fk = 2 sin(1
2
kT)

ξ0
Origin

−0.4 −0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

−2

−1

1

2

x1,k

x2,k

Figure 5.3: Example 5.3: Trajectories of system (5.17) with controller (5.29) affected by different
perturbations fk. In the lower section, the projection on the x1,k/x2,k plane is illustrated.

66

5

5.1 Design of the Sliding Variable for Buffered Networked Systems

Remark 5.4. Note that (5.27) is always evaluable in the centralized setup as all control
signals are delayed by the same time delay δ. Why this approach is not suitable for a
spatially distributed setup, in which the control law is distributed over several controller
nodes, is investigated in this remark.
Applying (3.23) and exploiting MB = Im to compute the forward increments of the ith

component of (5.20) results in

σi,k+1 = mT
i Axk +

m∑
j=1

mT
i bj(uj,k−δj + fj,k)︸ ︷︷ ︸
ui,k−δi+fi,k

= mT
i Axk + ui,k−δi + fi,k

σi,k+2 = mT
i A

2
xk +

m∑
j=1

mT
i Abj(uj,k−δj + fj,k) + ui,k−δi+1 + fi,k+1

...

σi,k+δi+1 = mT
i A

δi+1xk +

δi−1∑
r=0

m∑
j=1

mT
i A

+δi−rbj(uj,k−δj+r + fj,k+r) + ui,k + fi,k+δi .

(5.30)
To force the ith component of the sliding variable to zero using the ith input, σi,k+δi+1 = 0
has to be solved for ui,k, which results in

ui,k = −mT
i A

δi+1xk −
δi−1∑
r=0

m∑
j=1

mT
i A

δi−rbj(uj,k−δj+r + fj,k+r)− fi,k+δi . (5.31)

From (5.31) one can conclude that the most recent control signals necessary to compute
ui,k are uj,k−δj+δi−1 as, in general, mT

i Abj 6= 0. As a result, δi = δj , ∀i, j has to be

satisfied. The ith control signal (5.31) would otherwise depend on the current or even
future values of the control signal of other channels. This property could also be satisfied
in a spatially distributed setup by choosing the same round-trip time for all buffers in a
worst case sense. However, in the next section it will be shown that control laws based
on sliding variables as in (5.20) are not suitable for a spatially distributed setup.

67

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

5.2 Reaching Law Based Networked Sliding Mode Control

As discussed in section 5.1, the sliding variable has to have the form (5.20), which means
that the sliding variable is a linear combination of the plant states xk only, as opposed to
the full lifted states ξk. In order to apply a reaching law, the forward increments of the
sliding variable up to its relative degree are required. These elements are calculated using
(5.20) and the lifted model of the buffered networked system (5.3), which results in

σk+1 = M̂Âξk + M̂B̂︸ ︷︷ ︸
=0

uk + M̂B̂ffk (5.32)

σk+2 = M̂Â2ξk + M̂ÂB̂︸ ︷︷ ︸
=0

uk + M̂ÂB̂ffk + M̂B̂ffk+1 (5.33)

...

σk+δ = M̂Âδξk + M̂Âδ−1B̂︸ ︷︷ ︸
=0

uk +
δ−1∑
i=0

M̂Âδ−i−1B̂ffk+i (5.34)

σk+δ+1 = M̂Âδ+1ξk + M̂ÂδB̂︸ ︷︷ ︸
=Im

uk + pk (5.35)

with

pk =
[
p1,k p2,k · · · pm,k

]T
=

δ∑
i=0

M̂Âδ−iB̂ffk+i. (5.36)

Since M̂ÂiB̂ = 0 for i = 0, 1, . . . , δ − 1 in (5.32)–(5.35), the vector relative degree of the
sliding variable is δ + 1. The perturbation which acts on σk+δ+1 is denoted as pk. For the
sliding mode control design used in this chapter, the lower and upper bounds

f ≤ f ≤ f̄ (5.37)

of the perturbation fk are considered to be known. Using the known mean

f̂ =
1

2

(
f̄ + f

)
(5.38)

and amplitude

f̃ =
1

2

(
f̄ − f

)
(5.39)

of perturbation fk, the bounds of perturbation pk are given by

p ≤ pk ≤ p̄ (5.40)

with

p = p̂− p̃ and p̄ = p̂+ p̃, (5.41)

where the mean p̂ is given by

p̂ =
[
p̂1 p̂2 · · · p̂m

]T
=

δ∑
i=0

M̂Âδ−iB̂f f̂ (5.42)

68

5

5.2 Reaching Law Based Networked Sliding Mode Control

and the amplitude p̃ is given by

p̃ =
[
p̃1 p̃2 · · · p̃m

]T
=

δ∑
i=0

∣∣∣M̂Âδ−iB̂f

∣∣∣ f̃ . (5.43)

The absolute operator applied to a matrix is defined as the absolute operator applied to
each element of the matrix as defined in the chapter Notation at the beginning of this
dissertation. In order to use the reaching law approach for deriving a control law, a reaching
law for relative degree δ + 1 is needed.

Remark 5.5. In [47] as well as in [48], the switching and the nonswitching reaching laws
are adapted for systems with higher relative degree. These methods require the knowledge
of σk+1,σk+2, . . . ,σk+δ which can be computed for discrete time systems in which the
matching condition is satisfied as they depend solely on the current state and not on
the perturbation. This is because the sliding variable has the same relative degree with
respect to the input and with respect to the perturbation if the matching condition is
satisfied, i.e. B̂f = B̂. For centralized buffered networked systems, the relative degree of
the sliding variable with respect to the input is δ and with respect to the perturbation is
one. Hence, future values of the sliding variable depend on the unknown perturbation, see
(5.32)–(5.35). Consequently, these approaches are not applicable to buffered networked
control systems.

As discussed in remark 5.5, the applied reaching law must not depend on future samples of
the sliding variable σk. The resulting control law otherwise depends on fk+i. Therefore, the
general reaching law for relative degree δ + 1 can be formulated as

σk+δ+1 = F (σk,σk−1, . . . ,σ0, k,ν0)− p̂+ pk. (5.44)

Applying this general reaching law to (5.35) and solving for uk results in the control law

uk = −M̂Âδ+1ξk +F (σk,σk−1, . . . ,σ0, k,ν0)− p̂. (5.45)

Note that the reaching law has to be designed in such a way that it deals with the
perturbation pk − p̂ with magnitude p̃.

Remark 5.6. Sliding mode controllers based on sliding variables as in (5.20) are not
suitable for a spatially distributed setup even though a uniform time delay can be
achieved by the buffers. Consider the ith component of (5.45) using (3.27) and (5.20),
which results in

ui,k = −mT
i A

δ+1xk +

δ∑
j=0

mT
i A

δ−jBuk−δ+j + Fi (σi,k, σi,k−1, . . . , σi,0, k, νi,0)− p̂i.

(5.46)
For a control law to be implemented in a spatially distributed setup, the control law for
the ith input is required to solely rely on the measured state vector xk and the history of

the ith control samples
[
ui,k−1 ui,k−2 · · · ui,0

]T
and not on control samples of other

input channels. Otherwise, the ith controller node has to receive the results from all
other controller nodes from the previous step. This communication link would also be

69

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

affected by network-induced delays. For delays larger than one sampling step, this data
cannot be provided in time. To ensure that each controller node uses only local available
information, the ith line of M has to fulfill

mT
i A

lbj = 0 with
j 6= i
l = 0, 1, . . . , δ.

(5.47)

It is clear that (5.47) cannot be satisfied in general, especially for n > δ. In addition,
asymptotic stability of the ideal quasi-sliding motion has to be ensured. Since all these
requirements are too restrictive to be of any practical relevance, the controllers developed
in this chapter are designed for the centralized setup only.

5.2.1 The Switching Reaching Law

Applying the switching reaching law (4.70) to σk+δ+1 as stated in (4.70) results in

σk+δ+1 = Γσk − S sign (σk)− p̂+ pk

Γ =


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αm

 , S =


ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
. . .

...
0 0 · · · ρm

 , 0 ≤ αi < 1
ρi > p̃i

.
(5.48)

This reaching law can be analyzed by defining a down-sampled version of the sliding
variable

sl = σ(δ+1)l+o (5.49)

with l ∈ Z and an offset o ∈ [0, 1, . . . , δ]. Using (5.49) and (5.48) to compute sl+1 with
k = (δ + 1)l + o results in

sl+1 = σ(δ+1)l+o+δ+1 = Γσ(δ+1)l+o − S sign
(
σ(δ+1)l+o

)
− p̂+ p(δ+1)l+o (5.50)

= Γsl − S sign (sl)− p̂+ p(δ+1)l+o. (5.51)

From (5.51), one can conclude that using (5.48) has the same effect as independently
applying the reaching law in (4.70) to δ + 1 consecutive elements of σk as (5.51) holds
independently of the offset o. Using reaching law (5.48) in (5.45) results in the control law

uk =
(
ΓM̂ − M̂Âδ+1

)
ξk − S sign

(
M̂ξk

)
− p̂. (5.52)

Applying (5.52) to the lifted model of the buffered networked system (5.3) in the perturbation-
free case, i.e. fk = 0 and S = 0, yields the nominal closed loop system

ξk+1 =
[
Â− B̂(M̂Âδ+1 − ΓM̂)

]
ξk. (5.53)

Theorem 5.7. Consider the centralized buffered networked control system depicted in
figure 5.1 with plant (1.5) and sampling time T . Also, assume that assumptions 1.2,
1.4, 2.4 and 2.6 are satisfied and perturbation fk is bounded by the known bounds

70

5

5.2 Reaching Law Based Networked Sliding Mode Control

f ≤ fk ≤ f̄ ∀k. Let the controller be given by (5.52) with

ρi > p̃i
0 ≤ αi < 1

, i = 1, 2, . . . ,m (5.54)

and M̂ in (5.20) designed such that the ideal quasi-sliding mode is asymptotically stable.
The states x of (1.5) are then ultimately bounded as defined in [29]. In addition, the
quasi-sliding mode band of the ith sliding variable is given by

∆i = 2(ρi + p̃i). (5.55)

Moreover, m(δ + 1) eigenvalues of the nominal closed loop system (5.53) are given by

zjm+i = δ+1
√
αie

2jπ
δ+1 ,

i = 1, 2, . . . ,m
j = 0, 1, . . . , δ

(5.56)

and the remaining n−m eigenvalues are specified during the design process of M̂ .

Proof. Applying control law (5.52) ensures that the sliding variable follows the reaching
law (5.48). Large enough values have to be chosen for the parameters ρi to dominate the
amplitude p̃i of perturbation pi,k. This is ensured by the first relation in (5.54). To calculate
the width of the ith quasi-sliding mode band, set σi,k = −ε with ε > 0 and compute σi,k+δ+1

using reaching law (5.48), which results in

σi,k+δ+1 = −αiε+ ρi + pi,k − p̂i. (5.57)

The upper bound σ̄i of (5.57) is then given by

σi,k+δ+1 ≤ ρi + p̃i = σ̄i. (5.58)

As in (5.58), the lower bound is calculated by setting σi,k = ε with ε > 0 and finding the
lower bound of σi,k+δ+1, which results in

σi,k+δ+1 ≥ −ρi − p̃i = σi. (5.59)

As a consequence, the width of the quasi-sliding mode band is given by (5.55). In (5.51), it
was shown that the reaching law is independently applied to δ consecutive samples. Hence,
∆i is the overall quasi-sliding mode band for the ith sliding variable.
To analyze the eigenvalues of the nominal closed loop system matrix, consider the state
transformation using (5.34)


x1,k

σk
σk+1

...
σk+δ

 =



[
N (M)T 0

]
M̂

M̂Â
...

M̂Âδ

 ξk (5.60)

71

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

where the columns of N (M) span the nullspace of M . Since the reaching law (5.48) in the
nominal case is given by

σk+δ+1 = Γσk, (5.61)

applying transformation (5.60) to the nominal closed loop system (5.53) results in
x1,k+1

σk+1

σk+2
...

σk+δ+1

 =


Ã11 Ã12

0 0 Im 0 · · · 0
0 0 0 Im · · · 0
...

...
...

...
. . .

...
0 Γ 0 0 · · · 0




x1,k

σk
σk+1

...
σk+δ

 .
Ã22

(5.62)

The transformed dynamics matrix in (5.62) is in block triangular form, therefore its
eigenvalues are given by the eigenvalues of Ã11 together with the eigenvalues of Ã22. The
n−m eigenvalues of Ã11 are specified in the design process of M (see section 4.2). The
remaining m(δ + 1) eigenvalues of (5.62) are the eigenvalues of Ã22.
As the ith component of (5.48) in the nominal case equals

σi,k+δ+1 = αiσi,k, (5.63)

the subsystem with system matrix Ã22 in (5.62) can be formulated using the state vector

ξ̃k =
[
σ1,k σ1,k+1 · · · σ1,k+δ · · · σm,k σm,k+1 · · · σm,k+δ

]T
(5.64)

such that

ξ̃k+1 = Ā22ξ̃k (5.65)

with

Ā22 =


Ā1 0 · · · 0
0 Ā2 · · · 0
...

...
. . .

...
0 0 · · · Ām

 , Āi =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

αi 0 0 · · · 0

 , i = 1, 2, . . . ,m. (5.66)

Consequently, the eigenvalues of Ã22 are the eigenvalues of all Āi blocks. As these blocks
are given in controllability canonical form, the characteristic polynomial is given by

z(δ+1) − αi. (5.67)

Hence, the eigenvalues are given by (5.56).

Remark 5.8. Note that only the magnitude of the m(δ + 1) eigenvalues is influenced
by Γ. The phases of these eigenvalues solely depend on the time delay and can therefore
not be changed by the elements of Γ.

72

5

5.2 Reaching Law Based Networked Sliding Mode Control

Example 5.9. The switching reaching law proposed in this section is now applied to the
unstable second order system

dx

dt
=

[
0.2 0.3
0 0.1

]
x+

[
0.1
0.1

]
(u∗ + f). (5.68)

The constant sampling time is defined as T = 0.1s and the bounds of the summed network-
induced delay are known to be 0 ≤ τk ≤ 5T . Considering these bounds, the buffer can
be designed in a way to ensure a constant overall time delay of 5T , which yields δ = 5.
Discretizing plant (5.68) and considering δ results in the discrete time representation

xk+1 =

[
1.02 0.03

0 1.01

]
xk +

[
0.01
0.01

]
(uk−5 + fk). (5.69)

Introducing the lifted state vector

ξk =
[
xT
k uk−1 uk−2 uk−3 uk−4 uk−5

]T
(5.70)

results in the lifted model as in (5.3). Vector

mT =
[
97.535 0.005

]
(5.71)

was designed by placing the pole of the remaining dynamics in ideal quasi-sliding mode to
λ1 = e−0.2T using Ackermann’s formula described in section 4.2. The perturbation fk was
chosen as

fk = sin
(√

2kT
)

+ sin

(
3kT

5

)
+ 1 (5.72)

which is bounded by

f = −1, f̄ = 3. (5.73)

The mean f̂ = 1 and magnitude f̃ = 2 of this perturbation lead to the mean p̂, amplitude p̃,
lower bound p and upper bound p̄ of perturbation pk using (5.41)–(5.43) with the values

p̂ = 6.777, p̃ = 13.555, p = −6.777, p̄ = 20.332. (5.74)

To apply the switching reaching law (5.48), the linear parameter α1 was chosen as α1 = e−3T

and the gain ρ1 = 13.7 > p̃. Using these settings, the quasi-sliding mode band given by
(5.55) equals

∆ = 54.51. (5.75)

The simulation results of the sliding variable σk for the initial condition

x0 =
[
10 20

]T
(5.76)

are shown in figure 5.4. As this figure shows, it is not possible to influence the sliding
variable in the first five sampling steps as the first control sample u0 is received after a five
steps delay. Starting with the sixth step, the control samples are applied and the sliding

73

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

variable moves towards the quasi-sliding mode band depicted in gray. After k∗ = 66, i.e.
6.6s, the sliding variable σk remains in the quasi-sliding mode band. To illustrate that
reaching law (5.48) has the same effect as applying the classical switching reaching law to
δ+ 1 consecutive elements of σk, the down-sampled sliding variables sl with different offsets
are shown in figure 5.5. This figure clearly shows the convergence typical of the switching
reaching law of each of the down-sampled sliding variables. Simulation results of the plant
states xk as well as the actuating signal uk are shown in figure 5.6. The actuating signal in
particular reveals a disadvantage of this approach since the actuating signal is very large
for u6k and small for the remaining elements. This introduces high-frequency oscillations
which usually are undesired in practical applications.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

200

400

600

800

1000

1200

1400

t

σ
k

QSMB ∆
σk

5 10 15 20 25 30

−40

−20

0

20

40

Figure 5.4: Example 5.9: Sliding variable σk using the switching reaching law (5.48).

74

5

5.2 Reaching Law Based Networked Sliding Mode Control

0 1 2 3 4 5 6 7 8 9 10

0

200

400

600

800

1000

1200

1400

t

s l

σ6l+0

σ6l+1

σ6l+2

σ6l+3

σ6l+4

σ6l+5

Figure 5.5: Example 5.9: Down-sampled sliding variables sl with different offsets using the switching
reaching law (5.48).

75

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

0

5

10

15

x
1
,k

0

10

20

x
2
,k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−800

−600

−400

−200

0

t

u
k

5 10 15 20 25 30

−0.4

−0.2

0

0.2

0.4

5 10 15 20 25 30
−3

−2

−1

0

1

5 10 15 20 25 30

−20

0

20

Figure 5.6: Example 5.9: Plant states xk and the input signal uk using the switching reaching law
(5.48).

76

5

5.2 Reaching Law Based Networked Sliding Mode Control

5.2.2 The Nonswitching Reaching Law

The nonswitching reaching law (4.81) and even the nonswitching reaching law for higher
relative degrees as stated in [47] are not directly applicable in the networked case. In fact,
they need to be adapted for the case of non-symmetrical perturbations and the initialization
has to be adapted to ensure strict monotonic convergence of the sliding variable. Applying
the nonswitching reaching law (4.75) and (4.81) to the ith component of the sliding variable
results in

σi,k+δ+1 = σ̂i,k − p̂i + pi,k (5.77)

with

σ̂i,k =

{
k∗i−k
k∗i

σ̂i,0 k < k∗i
0 else

(5.78)

where k∗i and σ̂i,0 have to be chosen in a way that

|σi,k+1| < |σi,k| and (5.79a)

sign (σi,k+1) = sign (σi,k) (5.79b)

are satisfied for δ ≤ k < k∗i as given in (4.76) and (4.78). It is evident that (5.79) cannot
be satisfied for 0 ≤ k < δ in the networked control case as the first control signal is still
propagating through the network and therefore the plant is operated in open loop in this
period. In order to satisfy (5.79) for δ ≤ k ≤ k∗i , the future value of the sliding variable σi,δ
with the smallest possible magnitude σest has to be predicted. This estimate is then used to
set σ̂i,0 such that the magnitude of σi,δ+1 is smaller than the magnitude of σi,δ.

Using (5.4) and (5.34) and assuming that u−δ = u−δ+1 = · · · = u−1 = 0, the prediction of
the sliding variable σδ can be written as

σδ = MAδx0 +
δ−1∑
i=0

MAiBfδ−1−i. (5.80)

Using the mean f̂ and magnitude f̃ of perturbation fk, the mean

σ̂est =
[
σ̂1,est σ̂2,est · · · σ̂m,est

]T
= MAδx0 +

δ−1∑
i=0

MAiBf̂ (5.81)

and the magnitude

σ̃est =
[
σ̃1,est σ̃2,est · · · σ̃m,est

]T
=

δ−1∑
i=0

∣∣MAiB
∣∣ f̃ (5.82)

of this estimation can be computed. Using these values, the estimation of σδ with the
smallest possible amplitude is given by

σest =
[
σ1,est σ2,est · · · σm,est

]T
(5.83)

77

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

with

σi,est =

{
σ̂i,est − σ̃i,est sign (σ̂i,est) if |σ̂i,est| > σ̃i,est

0 else
. (5.84)

Applying (5.77) to (5.45) results in the control law

uk = −M̂Âδ+1ξk + σ̂k − p̂ (5.85)

with σ̂k =
[
σ̂1,k σ̂2,k · · · σ̂m,k

]T
.

Theorem 5.10. Consider the centralized buffered networked control system depicted
in figure 5.1 with plant (1.5) and sampling time T . Also, assume that assumptions 1.2,
1.4, 2.4 and 2.6 are satisfied and perturbation fk is bounded by the known bounds
f ≤ fk ≤ f̄ ∀k. Let the controller be given by (5.77), (5.78) and (5.85) with σ̂i,0 such
that 

p̃i < σ̂i,0 < σi,est − p̃i if σi,est − p̃i > p̃i
−p̃i > σ̂i,0 > σi,est + p̃i if σi,est + p̃i < −p̃i
σ̂i,0 = 0 else

, (5.86)

k∗i <
|σ̂i,0|
r̃i

(5.87)

with σi,est given by (5.84) and the exact limit

r̃ =
[
r̃1 r̃2 · · · r̃m

]T
=

[∣∣∣M̂B̂f

∣∣∣+
∣∣∣M̂ÂδB̂f

∣∣∣+

δ∑
i=1

∣∣∣M̂ (
Âi − Âi−1

)
B̂f

∣∣∣] f̃ .
(5.88)

Then, the states of the plant are ultimately bounded if M̂ is defined as proposed in
theorem 5.2. The quasi-sliding mode band of the ith sliding variable is then given by

∆i = 2p̃i. (5.89)

Proof. The initial value of the ith desired sliding variable σ̂i,0 has to be chosen in a way to
satisfy (5.79a) for k = δ, i.e.

|σi,δ+1| = |σ̂i,0 − p̂i + pi,δ| < |σi,δ| . (5.90)

Using the estimation of σi,δ with the smallest possible amplitude σi,est gives

|σ̂i,0 − p̂i + pi,δ| < |σi,est| . (5.91)

Assume that σi,est > 0. It therefore follows that σi,δ+1 > 0 due to (5.79b). Thus, the two
inequalities

σi,δ+1 = σ̂i,0 − p̂i + pi,δ > 0 and (5.92a)

σ̂i,0 − p̂i + pi,δ < σi,est (5.92b)

78

5

5.2 Reaching Law Based Networked Sliding Mode Control

must be satisfied. Considering the worst case bound |pi,k − p̂i| < p̃i and combining the two
inequalities yields

p̃i < σ̂i,0 < σi,est − p̃i. (5.93)

This inequality corresponds to the first line in (5.86) and can only be satisfied if

σi,est − p̃i > p̃i. (5.94)

The second line follows by analyzing (5.91) for the case in which σi,est < 0. The third line
ensures that σi,δ+1 is within the quasi-sliding mode band if σi,est is close enough to that
band.

The gradient of the ith desired sliding variable defined by k∗i has to be chosen such that
(5.79a) is satisfied. Using (5.77) and (5.78) to compute σi,k+δ+2 results in

σi,k+δ+2 =
k∗i − k
k∗i

σ̂i,0 − p̂i︸ ︷︷ ︸
σi,k+δ+1−pi,k

− 1

k∗i
σ̂i,0 + pi,k+1 (5.95)

for k < k∗i . Inserting the perturbations

pk =
δ∑
i=0

M̂Âδ−iB̂ffk+i = M̂ÂδB̂ffk +
δ∑
i=1

M̂Âδ−iB̂ffk+i (5.96)

and

pk+1 =
δ∑
i=0

M̂Âδ−iB̂ffk+i+1 = M̂B̂ffk+δ+1 +
δ∑
i=1

M̂Âδ−i+1B̂ffk+i (5.97)

from (5.36) into (5.95) gives

σi,k+δ+2 = σi,k+δ+1 −
1

k∗i
σ̂i,0 + ri,k (5.98)

with

rk =
[
r1,k r2,k · · · rm,k

]T
= M̂B̂ffk+δ+1 − M̂ÂδB̂ffk +

δ∑
i=1

M̂
(
Âδ−i+1 − Âδ−i

)
B̂ffk+i.

(5.99)

Using the mean f̂ of perturbation fk in (5.99) results in the mean

r̂ =

[
M̂B̂f − M̂ÂδB̂f +

δ∑
i=1

M̂
(
Âδ−i+1 − Âδ−i

)
B̂f

]
f̂ = 0 (5.100)

and using the amplitude f̃ of perturbation fk in (5.99) results in the amplitude r̃ as given
in (5.88). From (5.98), (5.100) and (5.88) one can conclude that (5.79a) is always satisfied if
k∗i is chosen as proposed in (5.87).

79

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

To derive the quasi-sliding mode band, consider the reaching law (5.77) for k > k∗i which is
given by

σi,k+δ+1 = −p̂i + pi,k. (5.101)

Computing the difference of the upper and the lower bound of σi,k+δ+1 in (5.101) results in
the quasi-sliding mode band as given in (5.89).

Example 5.11. The nonswitching reaching law based controller is now applied to the
networked control system described in example 5.9. Using the initial condition (5.76) to
evaluate (5.81) and (5.82) gives

σ̂est = 1398.979, σ̃est = 11.028. (5.102)

Applying these values to (5.83) leads to

σest = 1387.951. (5.103)

Therefore, a valid choice with respect to (5.86) is

σ̂0 = 1374. (5.104)

Note that σest cannot be computed in advance. However, it is computed directly after the
measurement x0 is available at the controller. Evaluating (5.88) results in

r̃ = 5.055. (5.105)

Consequently, relation (5.87) evaluates to

k∗ < 271.827 (5.106)

and is satisfied by
k∗ = 50 (5.107)

which was chosen to achieve a similar dynamical behavior as with the switching reaching
law in example 5.9. Evaluating (5.89) results in the width of the quasi-sliding mode band

∆ = 27.11. (5.108)

Simulation results of the sliding variable σk with initial condition (5.76) are shown in
figure 5.7. The green line in this figure shows the desired sliding variable σ̂k which starts at
σ̂0 and decreases monotonically until it reaches zero at t = Tk∗. The actual sliding variable
σk increases in the first δ samples as the first control sample has not yet arrived at the
plant. Next, the sliding variable σk follows σ̂k, as expected, with δ + 1 delays and finally
reaches the quasi-sliding mode band ∆ and stays in it.

The simulation results for the plant states xk and the actuating signal uk are shown in
figure 5.8. A comparison of the switching and the nonswitching reaching law for centralized
buffered networked systems is shown in section 5.3.

80

5

5.2 Reaching Law Based Networked Sliding Mode Control

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

200

400

600

800

1000

1200

1400

t

σ
k

QSMB ∆
σk
σ̂k

5 10 15 20 25 30

−40

−20

0

20

40

Figure 5.7: Example 5.11: Sliding variable σk and the desired sliding variable σ̂k using the non-
switching reaching law (5.77).

81

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

0

5

10

15

x
1
,k

0

10

20

x
2
,k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−100

−50

0

t

u
k

5 10 15 20 25 30

−0.4

−0.2

0

0.2

0.4

5 10 15 20 25 30
−3

−2

−1

0

1

5 10 15 20 25 30

−20

0

20

Figure 5.8: Example 5.11: Plant states xk and the input signal uk using the nonswitching reaching
law (5.77).

82

5

5.2 Reaching Law Based Networked Sliding Mode Control

5.2.3 The Predictive Switching Reaching Law

The switching reaching law given in section 5.2.1 has the drawback that δ + 1 consecutive
elements converge independently of one another which could lead to high-frequency oscilla-
tions during the reaching phase (see simulation results in figure 5.4). As a consequence, the
resulting control signal can switch between very high and very low values (see figure 5.6),
which is typically undesired in practical applications. The reaching law proposed in this
chapter is based on the switching reaching law but ensures exponential convergence of the
sliding variable.

Considering the forward increment of the sliding variable derived from (5.34) and using the
mean f̂ of perturbation fk gives

σk+δ = σ̄k+δ +

δ−1∑
j=0

M̂Âδ−j−1B̂f f̃k+j (5.109)

with

σ̄k+δ = M̂Âδξk +
δ−1∑
j=0

M̂Âδ−j−1B̂f f̂ (5.110)

fk = f̃k + f̂ . (5.111)

Since σ̄k+δ contains all known quantities of σk+δ, it can be considered a prediction
of σk+δ with the mean perturbation f̂ . The error made in this prediction is given by∑δ−1

j=0 M̂Âδ−j−1B̂f f̃k+j . Using the predicted sliding variable σ̄k+δ in the reaching law
introduces significant advantages as shown in this section.

Using the predicted sliding variable σ̄k+δ, the predictive switching reaching law is formulated
as follows

σk+δ+1 = Γσ̄k+δ − S sign (σ̄k+δ)− p̂+ pk

Γ =


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αm

 , S =


ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
. . .

...
0 0 · · · ρm

 (5.112)

where αi ∈ R, 0 ≤ αi < 1, i = 1, 2, . . . ,m and ρi > 0. In contrast to the switching reaching
law proposed in section 5.2.1, the predictive switching reaching law does not use the current
value of the sliding variable σk but its predicted future value σ̄k+δ. The perturbation acting
on σk+δ+1 is obtained by inserting (5.36), (5.42), (5.109) and (5.111) into (5.112), which
results in

σk+δ+1 = Γσk+δ − S sign (σ̄k+δ) + pk − p̂−
δ−1∑
j=0

ΓM̂Âδ−j−1B̂f f̃k+j

= Γσk+δ − S sign (σ̄k+δ) + qk

(5.113)

83

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

with

p̃k =
[
p̃1,k p̃2,k · · · p̃m,k

]T
= pk − p̂ =

δ∑
j=0

M̂Âδ−jB̂f f̃k+j (5.114)

qk =
[
q1,k q2,k · · · qm,k

]T
= p̃k −

δ−1∑
j=0

ΓM̂Âδ−j−1B̂f f̃k+j

=
δ−1∑
j=0

(
M̂Âδ−jB̂f − ΓM̂Âδ−j−1B̂f

)
f̃k+j + M̂B̂f f̃k+δ.

(5.115)

The elements ρi of S have to be chosen in a way that they always dominate the ith element
of perturbation qk. The worst case magnitude of this perturbation is given by

q̃ =
δ−1∑
j=0

∣∣∣M̂Âδ−jB̂f − ΓM̂Âδ−j−1B̂f

∣∣∣ f̃ +
∣∣∣M̂B̂f

∣∣∣ f̃ . (5.116)

Inserting (5.110) and (5.112) into (5.45) yields the control law

uk = −M̂Âδ+1ξk + Γσ̄k+δ − S sign (σ̄k+δ)− p̂ (5.117)

=
(
ΓM̂Âδ − M̂Âδ+1

)
ξk − S sign

M̂Âδξk +
δ−1∑
j=0

M̂Âδ−j−1B̂f f̂


− p̂+

δ−1∑
j=0

ΓM̂Âδ−j−1B̂f f̂ .

(5.118)

Applying (5.118) to (5.3) in the perturbation free case, i.e. fk = 0 and S = 0, results in the
nominal closed loop system

ξk+1 =
[
Â− B̂

(
M̂Âδ+1 − ΓM̂Âδ

)]
ξk. (5.119)

Theorem 5.12. Consider the centralized buffered networked control system depicted
in figure 5.1 with plant (1.5) and sampling time T . Also, assume that assumptions 1.2,
1.4, 2.4 and 2.6 are satisfied and perturbation fk is bounded by the known bounds
f ≤ fk ≤ f̄ ∀k. Let the controller be given by (5.118) with the elements of Γ given by
the solution of the optimization problem

αi = arg min
αi≤α∗

i≤ᾱi

δ−1∑
j=0

∣∣∣m̂T
i Â

δ−jB̂f − α∗i m̂T
i Â

δ−j−1B̂f

∣∣∣ f̃
s.t. αi, ᾱi ∈ R, 0 ≤ αi ≤ ᾱi < 1

(5.120)

84

5

5.2 Reaching Law Based Networked Sliding Mode Control

and the elements of S satisfying

ρi >
δ−1∑
j=0

∣∣∣m̂T
i Â

δ−jB̂f − αim̂T
i Â

δ−j−1B̂f

∣∣∣ f̃ +
∣∣∣m̂T

i B̂f

∣∣∣ f̃ . (5.121)

Then, the states of the plant are ultimately bounded if M̂ is designed as proposed in
theorem 5.2. The quasi-sliding mode band for the ith sliding variable is then given by

∆i = 2(ρi + p̃i) (5.122)

which is minimized by the specific choice of αi. Moreover, the eigenvalues of the nominal
closed loop system (5.119) are given by

• m eigenvalues at αi,
• m · δ eigenvalues at zero and
• the remaining n−m eigenvalues are specified during the design process of M̂ .

Proof. Applying control law (5.118) to (5.3) ensures that the dynamics of the sliding variable
are given by the reaching law (5.112). Using (5.109), the reaching law can be reformulated
to (5.113) with the worst case perturbation magnitude (5.116). Large enough values have to
be chosen for the parameters ρi to dominate the amplitude of perturbation qi,k, which is
ensured by the inequality in (5.121).

To analyze the width of the ith quasi-sliding mode band ∆i, consider the ith element of the
reaching law in the form

σi,k+δ+1 = αiσi,k+δ − ρi sign (σ̄i,k+δ) + qi,k. (5.123)

Furthermore, assuming σ̄i,k+δ = −ε with ε > 0 and using (5.109) yields

σi,k+δ = −ε+
δ−1∑
j=0

m̂T
i Â

δ−j−1B̂f f̃k+j with ε > 0. (5.124)

Applying (5.115) and (5.124) to (5.123) results in

σi,k+δ+1 =

δ−1∑
j=0

αim̂
T
i Â

δ−j−1B̂f f̃k+j − αiε+ ρi + p̃i,k −
δ−1∑
j=0

αim̂
T
i Â

δ−j−1B̂f f̃k+j︸ ︷︷ ︸
qi,k

= −αiε+ ρi + p̃i,k (5.125)

The upper bound of (5.123) is then given by

σi,k+δ+1 ≤ ρi + p̃i. (5.126)

85

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

Analog to (5.126), the lower bound is calculated by assuming σ̄i,k+δ = ε with ε > 0 and
using (5.109), which yields

σi,k+δ = ε+

δ−1∑
j=0

m̂T
i Â

δ−j−1B̂f f̃k+j with ε > 0. (5.127)

The lower bound of σi,k+δ+1 is then given by

σi,k+δ+1 ≥ −ρi − p̃i. (5.128)

As a consequence, the width of the quasi-sliding mode band is given by (5.122). Since ρi has
to dominate the ith element of (5.116), the smallest possible magnitude of the quasi-sliding
mode band is achieved by minimizing the ith element of (5.116) using αi. This leads to the
optimization problem given in (5.120).

To analyze the eigenvalues of the nominal closed loop system matrix, consider transformation
(5.60). Since the reaching law (5.112) in the nominal case is given by

σk+δ+1 = Γσk+δ, (5.129)

applying transformation (5.60) to the nominal closed loop system (5.119) yields
x1,k+1

σk+1

σk+2
...

σk+δ+1

 =


Ã11 Ã12

0 0 Im 0 · · · 0
0 0 0 Im · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · Γ




x1,k

σk
σk+1

...
σk+δ

 .
Ã22

(5.130)

In this case also, the eigenvalues of the nominal closed loop system are the conjunction of
the eigenvalues of Ã11, which are fixed by the design of M̂ (see section 4.2), and those of
Ã22. As the ith component of (5.112) in the nominal case equals

σi,k+δ+1 = αiσi,k+δ, (5.131)

the subsystem with system matrix Ã22 in (5.130) can be represented using the state vector

ξ̃k =
[
σ1,k σ1,k+1 · · · σ1,k+δ · · · σm,k σm,k+1 · · · σm,k+δ

]T
(5.132)

in the form

ξ̃k+1 = Ā22ξ̃k (5.133)

with

Ā22 =


Ā1 0 · · · 0
0 Ā2 · · · 0
...

...
. . .

...
0 0 · · · Ām

 Āi =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · αi

 i = 1, 2, . . . ,m. (5.134)

86

5

5.2 Reaching Law Based Networked Sliding Mode Control

Consequently, the eigenvalues of Ã22 are the eigenvalues of all Āi blocks. As these blocks
are given in controllability canonical form, the characteristic polynomial is given by

z(δ+1) − αizδ. (5.135)

Hence mδ eigenvalues are zero and the remaining ones are given by αi.

Remark 5.13. The optimization problem (5.120) can efficiently be solved by reformu-
lating the optimization problem to end up in a linear program. To describe the necessary
steps comprehensibly, the reformulation process is done for a simple example first and
then extended to the optimization problem (5.120). Consider the optimization problem

min
ω

∑
i

|ei|

with e = h+Hω

(5.136)

with ω ∈ Ra, H ∈ Rb×a and where h, e are of appropriate dimensions. Introducing
additional optimization variables γi ∈ R, the absolute value terms in (5.136) can be
represented by the linear program

|ei| = min
γi

γi

s.t.

[
−1
−1

]
γi ≤

[
ei
−ei

]
.

(5.137)

Using (5.137) and the extended vector of optimization variables

ω̂ =
[
ωT γ1 γ2 · · · γb

]T
, (5.138)

the optimization problem (5.136) can be represented by the linear program

min
ω̂

[
01×a 1 1 · · · 1

]
ω̂

s.t.

[
H −Ib
−H −Ib

]
ω̂ ≤

[
−h
h

]
.

(5.139)

Using the extended vector of optimization variables

ω̂i =
[
αi γT

1,i γT
2,i · · · γT

m,i

]T
with γj,i ∈ Rδ (5.140)

and performing the same steps for optimization problem (5.120) results in the linear
program

min
ω̂i
cTω̂i

s.t. Diω̂i ≤ di
(5.141)

87

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

with

cT =
[
0 1 1 · · · 1

]
(5.142)

Di =



1 0 0 · · · 0
−1 0 0 · · · 0

−hib̂f,1f̃1 −Iδ 0 · · · 0

hib̂f,1f̃1 −Iδ 0 · · · 0

−hib̂f,2f̃2 0 −Iδ · · · 0

hib̂f,2f̃2 0 −Iδ · · · 0
...

...
...

. . .
...

−hib̂f,mf̃m 0 0 · · · −Iδ
hib̂f,mf̃m 0 0 · · · −Iδ


(5.143)

di = [ᾱi −αi −(h̄ib̂f,1f̃1)T (h̄ib̂f,1f̃1)T −(h̄ib̂f,2f̃2)T (h̄ib̂f,2f̃2)T

· · · −(h̄ib̂f,mf̃m)T (h̄ib̂f,mf̃m)T]T
(5.144)

hi =


m̂T

i Â
δ−1

m̂T
i Â

δ−2

...
m̂T

i

 h̄i =


m̂T

i Â
δ

m̂T
i Â

δ−1

...

m̂T
i Â

 (5.145)

Remark 5.14. It would be possible to extend (5.112) even further by including the
estimates σ̄k+δ−1, · · · , σ̄k+1 of σk+δ−1, · · · ,σk+1. A general reaching law of this class is

σk+δ+1 = Γδσ̄k+δ + Γδ−1σ̄k+δ−1 + · · ·+ Γ0σk − S sign (σ̄k+δ)− p̂+ pk (5.146)

with appropriately chosen diagonal matrices Γδ, · · · ,Γ0,S. The increased number of
optimization variables will lead to an even smaller perturbation acting on σk+δ+1. This
method, however, is not reasonable for two reasons. First, simulation studies have shown
that, in some scenarios, the quasi-sliding mode band is not smaller even if the perturbation
acting on σk+δ+1 was reduced and the elements in S therefore chosen smaller. Second,
in the nominal case, i.e. fk = 0 and S = 0, a reaching law should ensure that once the
ith element of the sliding variable approaches zero, all future values of this element are
also zero. This can only be achieved by (5.146) with Γδ−1 = Γδ−2 = · · · = Γ0 = 0, which
results in (5.112).
The switching reaching law proposed in section 5.2.1 does not satisfy the second property,
which is an additional drawback of the switching reaching law.

Example 5.15. The predictive switching based controller is now applied to the networked
control system described in example 5.9.
Using (5.110) gives

σ̄k+δ =
[
107.793 15.777 1 1.05 1.101 1.154 1.208

]
ξk + 5.514. (5.147)

Solving the optimization problem (5.120) with α = 0 and ᾱ = 0.95 and evaluating (5.121)

88

5

5.2 Reaching Law Based Networked Sliding Mode Control

results in

α = 0.95 and ρ > 3.079. (5.148)

Consequently, a valid setting is
ρ = 3.082 (5.149)

which yields the quasi-sliding mode band given by (5.122) as

∆ = 33.273 (5.150)

which is significantly smaller than the one ensured by the switching reaching law (see (5.75))
and just slightly larger than for the nonswitching reaching law (see (5.108)).

The simulation results of the sliding variable σk with initial condition (5.76) are shown in
figure 5.9. As this figure illustrates, the sliding variable starts to converge monotonically
after δ steps until it enters the quasi-sliding mode band ∆ which it never leaves. Comparing
the results in figure 5.9 and the ones obtained using the switching reaching law in figure 5.4
clearly shows the enhanced behavior in the reaching phase.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

200

400

600

800

1000

1200

1400

t

σ
k

QSMB ∆
σk

5 10 15 20 25 30

−40

−20

0

20

40

Figure 5.9: Example 5.15: Sliding variable σk using the nonswitching reaching law (5.112).

The simulation results for the plant states xk and the actuating signal uk are shown in
figure 5.10. These results also show the enhanced behavior in the reaching phase. The control
signal in particular does not show these extremely high values as visible in the simulation
results of the control signal in figure 5.6.

89

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

0

5

10

15

x
1
,k

0

10

20

x
2
,k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−150

−100

−50

0

t

u
k

5 10 15 20 25 30

−0.4

−0.2

0

0.2

0.4

5 10 15 20 25 30
−3

−2

−1

0

1

5 10 15 20 25 30

−20

0

20

Figure 5.10: Example 5.15: Plant states xk and input signal uk using the nonswitching reaching
law (5.112).

90

5

5.3 Comparison of the Reaching Laws

5.3 Comparison of the Reaching Laws

In sections 5.2.1–5.2.3 three reaching laws for buffered networked systems were proposed,
their properties investigated and the parameter choices discussed. This section is dedicated
to comparing the presented algorithms.

5.3.1 Comparison of the Simulation Results

For comparison reasons, the simulation results shown in examples 5.9, 5.11 and 5.15 are
summarized in this section. Figure 5.11 shows the simulation results of the sliding variable
for the networked control system described in example 5.9 with the three different reaching
laws applied. To compare the achieved accuracy, a zoomed plot showing the behavior within
the quasi-sliding mode band is included. The widths of the quasi-sliding mode bands are
shown by the background in the same color as the reaching law ensuring the respective
band. This figure shows that the highest accuracy is achieved by the nonswitching reaching
law. However, the accuracy achieved with the predictive switching reaching law is just
slightly worse. The largest quasi-sliding mode band and therefore the poorest accuracy are
reached when the switching reaching law is applied. The simulation results for the states

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

200

400

600

800

1000

1200

1400

t

σ
k

Switching reaching law

Nonswitching reaching law

Predictive switching reaching law

5 10 15 20 25 30

−40

−20

0

20

40

Figure 5.11: Comparison of sliding variables σk obtained with the three proposed reaching laws.

xk and the control signal uk obtained with the three proposed reaching laws are shown
in figure 5.12. This figure also reflects the different achieved accuracies obtained with the
proposed reaching laws.

In order to quantify the effectiveness of the proposed reaching laws for real world applica-
tions, the robustness of the reaching laws with respect to first order actuator dynamics is
investigated by means of numerical simulations.

91

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

0

5

10

15

x
1
,k

Switching reaching law

Nonswitching reaching law

Predictive switching reaching law

0

10

20

x
2
,k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−800

−600

−400

−200

0

t

u
k

5 10 15 20 25 30

−0.4

−0.2

0

0.2

0.4

5 10 15 20 25 30
−3

−2

−1

0

1

5 10 15 20 25 30

−20

0

20

Figure 5.12: Comparison of the plant states xk and the control signal uk obtained with the three
proposed reaching laws.

92

5

5.3 Comparison of the Reaching Laws

5.3.2 Robustness with respect to First Order Actuator Dynamics

In this section, a physically motivated simulation example is shown and the robustness of
the presented algorithms with respect to first order actuator dynamics is analyzed. Consider
the mechanical system depicted in figure 5.13. The setup consists of a mass m attached to
a spring (with linear spring characteristics) through a pulley using a nylon cord. Friction
in the pulley is assumed to be viscous (proportional to the velocity). The other side of
the spring is connected to a wheel which can be actuated using a speed controlled electric
motor. Defining the state vector

x =
[
y dy

dt z
]T

=
[
x1 x2 x3

]T
(5.151)

results in the mathematical model

dx

dt
=

 0 1 0
− c
m

−v
m

c
m

0 0 0

x+

0
0
b

 (u∗ + f) = Acx+ bc(u
∗ + f) (5.152)

with the known parameters mass m = 0.18 kg, spring constant c = 3.840 N m−1, friction
coefficient v = 0.042 kg s−1 and input gain b = 0.086 m s−1 V−1. The sampling time is chosen

m

r

u(t)

c

v

z(t)

y(t)

Figure 5.13: Mechanical scheme of the mass spring system.

as T = 0.02s and the round trip time is bounded by

τk < 0.2s = 10T. (5.153)

The buffer is implemented in such a way that a constant round trip time of 10T is achieved,
which leads to δ = 10. Discretizing plant (5.152) gives

xk+1 =

 0.996 0.02 0.004
−0.425 0.991 0.425

0 0 1

xk +

 0
0

0.002

 (uk−10 + fk). (5.154)

93

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

Using the lifted state vector

ξk =
[
xT
k uk−1 uk−2 · · · uk−10

]T
(5.155)

results in the lifted model as in (3.26). Applying the methods described in section 4.2 and
theorem 5.2, the sliding variable is designed by placing the two poles at λ1 = λ2 = e−10T =
0.819, which results in

m̂T =
[
1763.556 445.886 484.664 0 0 0 0 0 0 0 0 0 0

]
. (5.156)

The perturbation fk was defined as

fk = f̂ +
f̃

2
sin(kT + 5) +

f̃

2
sin

(
1

π
(kT + 5)

)
(5.157)

with

f̂ =
1

30
, f̃ =

2

30
. (5.158)

Applying these bounds to (5.42) and (5.43), the mean p̂ and magnitude p̃ of perturbation
pk are given by

p̂ = 1.079, p̃ = 2.158. (5.159)

The initial conditions of the plant states are set to

x0 =
[
0.1 0 0.1

]T
. (5.160)

These initial conditions are also used in the estimation process for the nonswitching reaching
law. Remember that this estimation will be evaluated in the implementation of the simulation
once the first measurement sample is received at the controller. Three control laws are
designed based on the reaching laws proposed in sections 5.2.1–5.2.3. The boundaries of α
for the predictive switching reaching law were set to

α = 0, ᾱ = 0.98. (5.161)

In table 5.1, the chosen parameter values for the different reaching laws are summarized.
Simulation results for the sliding variable σk obtained with the three reaching laws are
shown in figure 5.14. These results show the already discussed properties of these reaching
laws. The simulation results for the three states xk and the control signal uk are shown in
figure 5.15.

In order to investigate the sensitivity of the resulting control algorithms with respect to
first order actuator dynamics, consider the first order actuator dynamics

dζ

dt
= −ωζ + ωu (5.162)

94

5

5.3 Comparison of the Reaching Laws

Table 5.1: Parameter settings for the three reaching laws.

Switching α = 0.95 ρ = 2.16 ∆ = 8.636

Nonswitching σ̂0 = 221.751 k∗ = 150 ∆ = 4.316

Predictive switching α = 0.98 ρ = 0.369 ∆ = 5.053

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

50

100

150

200

t

σ
k

Switching reaching law

Nonswitching reaching law

Predictive switching reaching law

5 10 15 20 25 30

−5

0

5

Figure 5.14: Sliding variable σk obtained with the three proposed reaching laws.

95

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

0

5 · 10−2

0.1

x
1
,k

Switching reaching law

Nonswitching reaching law

Predictive switching reaching law

−8 · 10−2

−6 · 10−2

−4 · 10−2

−2 · 10−2

0

x
2
,k

0

5 · 10−2

0.1

x
3
,k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−10

0

t

u
k

10 15 20 25 30
−2

−1

0

1

2
·10−3

10 15 20 25 30

−4

−2

0

2

4

·10−3

10 15 20 25 30
−1

−0.5

0

0.5

1
·10−2

Figure 5.15: Plant states xk and the control signal uk obtained with the three proposed reaching
laws.

96

5

5.3 Comparison of the Reaching Laws

with ω > 0. Combining this actuator dynamics with the nominal plant, i.e. (5.152) with
f = 0, gives

d

dt

[
x
ζ

]
=

[
Ac bc
0 −ω

] [
x
ζ

]
+

[
0
ω

]
u∗ = Ãc

[
x
ζ

]
+ b̃cu

∗. (5.163)

Using this extended system to construct the lifted model with the extended lifted states

ξ̃k =
[
xT
k ζk uk−1 uk−2 · · · uk−10

]T
(5.164)

results in the extended lifted model

ξ̃k+1 = Ãξ̃k + b̃uk (5.165)

with

Ã =

 Ā 04×9 b̄
01×4 0 0
09×4 I9 0

 , b̃ =

04×1

1
09×1

 , Ā = eÃcT , b̄ =

∫ T

0
eÃcsb̃cds. (5.166)

Using the singular transformation
ξk = Rξ̃k (5.167)

with

R =

[
I3 03×1 03×10

010×3 010×1 I10

]
, (5.168)

the control law in the nominal case (i.e. fk = 0, ∀k) for the switching reaching law is given
by

uk = (αm̂T − m̂TÂδ+1)ξk = (αm̂T − m̂TÂδ+1)Rξ̃k, (5.169)

for the nonswitching reaching law

uk = −m̂TÂδ+1ξk = −m̂TÂδ+1Rξ̃k (5.170)

and for the predictive switching law

uk = (αm̂TÂδ − m̂TÂδ+1)ξk = (αm̂TÂδ − m̂TÂδ+1)Rξ̃k. (5.171)

Applying (5.169)–(5.171) to (5.165) results in the following closed loop systems:

ξ̃k+1 =
[
Ã+ b̃(αm̂T − m̂TÂδ+1)R

]
ξ̃k switching reaching law, (5.172)

ξ̃k+1 =
[
Ã− b̃m̂TÂδ+1R

]
ξ̃k nonswitching reaching law, (5.173)

ξ̃k+1 =
[
Ã+ b̃(αm̂TÂδ − m̂TÂδ+1)R

]
ξ̃k predictive switching reaching law. (5.174)

The robustness with respect to first order actuator dynamics is now investigated by finding
the lowest value of ω for each of these closed loop systems while ensuring that all eigenvalues
of the closed loop system matrix have a magnitude smaller than one.
This gives the minimum admissible ω for each reaching law which guarantees asymptotic

97

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

Table 5.2: Minimum admissible ω for the proposed reaching laws.

Switching reaching law 10402.883

Nonswitching reaching law 637.104

Predictive switching reaching law 3.868

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.2

0.4

0.6

0.8

1

1.2

t

ζ
(t
)

Switching reaching law

Nonswitching reaching law

Predictive switching reaching law

0.00 0.01 0.02 0.03 0.04 0.05
0

0.5

1

Figure 5.16: Step response of the actuator dynamics with the minimum admissible ω for each of
the proposed reaching laws.

98

5

5.4 Conclusions

stability of the nominal closed loop system. The minimum admissible ω for the scenario
and reaching laws considered in this section are summarized in table 5.2. Additionally, the
step responses of the actuators with this minimum admissible ω are given in figure 5.16.

As this figure and the values in table 5.2 point out, the minimum admissible ω is extremely
high for the switching reaching law and for the nonswitching reaching law. Comparing
the step responses of these two actuators with the sampling time T = 0.02 clarifies that
assuming this fast actuator response for real world scenarios is not realistic. The minimum
admissible ω for the predictive switching reaching law is much lower and comparing the
step response with the sampling time T shows that the actuator dynamics in a practical
application will be faster. Otherwise, the actuator dynamics have to be considered in the
controller design.

To show the effect of the first order actuator dynamics, the simulation was extended by a
model of the actuator which saturates the input to

−10 V ≤ uk ≤ 10 V (5.175)

and feeds this saturated signal to the first order actuator dynamics (5.162) with ω = 300.
The value ω was chosen in such a way that three times the time constant equals half the
sampling time. Therefore, the step response of the actuator reaches 95% of its final value in
half the sampling time.

The saturation is also considered in the controller implementation to saturate the output
signal and the corresponding elements in the lifted state vector ξk. Simulation results for
the sliding variable obtained with the three proposed reaching laws are shown in figure 5.17.
This figure shows no unstable behavior of the switching and the nonswitching reaching
law. This is achieved by the saturation of the actuator. As the plant is asymptotically
stable and the input is bounded, it is clear that the states and therefore the sliding variable
remain bounded. However, the plots for the switching and nonswitching reaching law show a
significant loss of accuracy. This is caused by the nominal closed loop system being unstable
without saturation. Only the plot of the predictive switching reaching law shows just a
slight negative influence by the actuator dynamics.

The simulation results of the states xk and uk depicted in figure 5.18 demonstrate the loss of
accuracy for the switching and the nonswitching reaching law more profoundly. The control
signal in particular shows high-frequency switching between the limits of the control signal.
However, the results obtained with the predictive switching reaching law show a desirable
behavior. The state variables as well as the control signal are just slightly influenced by the
actuator dynamics.

5.4 Conclusions

In this chapter, the matching condition for buffered networked systems was analyzed with
the result that it is satisfied for the discrete time model but not for the lifted model.
Therefore, a disturbance insensitive motion is only possible in the subspace xk of the lifted

99

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

50

100

150

200

250

t

σ
k

Switching reaching law

Nonswitching reaching law

Predictive switching reaching law

6 8 10 12 14 16 18 20 22 24 26 28 30
−10

−5

0

5

10

Figure 5.17: Sliding variables σk obtained with the three proposed reaching laws and the plant
extended by a model of the actuator.

states ξk.
As a result, the sliding variable has to be designed as a linear combination of the plant
states xk only and not the full lifted states ξk. Due to this specific structure, the sliding
variable is of relative degree δ. Since reaching laws for higher relative degree in literature
typically depend on future values of the sliding variable, which are not available for buffered
networked systems, it is necessary to design reaching laws specifically for this case.
In this chapter, three reaching laws (switching reaching law, nonswitching reaching law and
predictive switching reaching law) are proposed. The switching reaching law is characterized
by an independent convergence of δ+ 1 consecutive elements of the sliding variable, possibly
leading to high-frequency oscillations in the reaching phase, which is typically undesired in
practical applications. The nonswitching reaching law makes use of a desired trajectory for
the sliding variable in such a way that the actual sliding variable converges monotonically to
the quasi-sliding mode band. With the predictive switching reaching law, the disadvantage of
high-frequency oscillations in the reaching phase of the switching reaching law is eliminated.
Additionally, the parameters of the predictive switching reaching law are chosen by optimizing
the width of the quasi-sliding mode band.
Nevertheless, the smallest quasi-sliding mode band is achieved by the nonswitching reaching
law followed by the predictive switching law and the poorest accuracy is achieved by the
switching reaching law. However, a physically motivated simulation shows that the switching
and the nonswitching reaching laws can only be applied if the parasitic actuator dynamics
are extremely fast. In the shown physically motivated simulation example, the required
actuator dynamics are considered to be unachievable in real world applications. In contrast
to that, the predictive switching reaching law can be applied even if the parasitic actuator

100

5

5.4 Conclusions

0

5 · 10−2

0.1

x
1
,k

Switching reaching law

Nonswitching reaching law

Predictive switching reaching law

−5 · 10−2

0

x
2
,k

−5 · 10−2

0

5 · 10−2

0.1

x
3
,k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−10

0

10

t

u
k

Figure 5.18: Plant states xk and the control signal uk obtained with the three proposed reaching
laws and the plant extended by a model of the actuator.

101

Chapter 5 Centralized Sliding Mode Control for Buffered Networked Systems

dynamics are very slow. This property is especially important for real world applications as
parasitic dynamics can never be avoided in such scenarios.

It was also shown that sliding mode control laws based on sliding variables with the proposed
structure are suitable for a centralized network topology but not for the spatially distributed
network topology. Control laws for spatially distributed networked systems are proposed in
the next chapter.

102

Chapter 6
Spatially Distributed Sliding Mode

Control for Buffered Networked

Systems

Contents

6.1 Integral Sliding Mode Control for Single-Input Networked Systems104

6.2 Spatially Distributed Super Twisting Control for Multi-Input
Networked Control Systems . 110

6.2.1 Nominal Control Law . 112

6.2.2 Sliding Mode Control Law . 114

6.3 Laboratory Experiment . 118

6.4 Conclusions . 124

103

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

In chapter 5, three control algorithms for centralized buffered networked systems based on
the reaching law approach are proposed. However, some applications trigger the need to
develop spatially distributed control algorithms. In these algorithms, the control law for
each input channel is implemented in a distinct controller node. This architecture introduces
the additional difficulties that the upper limit of the round trip times could be different for
each feedback channel and that the controller nodes do not communicate with each other.

In this chapter, a control architecture based on the results published in [20, 21] is proposed
which can be implemented in a spatially distributed setup. The proposed approach is shown
for single-input systems first and then extended to the multi-input case.

6.1 Integral Sliding Mode Control for Single-Input Networked
Systems

In this section, a control scheme for single-input buffered networked control systems as
depicted in figure 6.1 with continuous time plant

dx

dt
= Acx+ bc(u

∗ + f) (6.1)

based on integral sliding mode control is presented. The proposed approach makes it possible
to cast the problem into a form in which discrete time sliding mode control algorithms
designed for systems with relative degree one can be applied. For the single-input case,

τ ck

τ bk

τak

Zero-order
hold

u∗(t) Continuous
time
plant

Tf(t)

Sensor

x(t)

Controller τsk

xk

Figure 6.1: Single-input buffered networked control system.

consider the lifted model given in (3.26) with m = 1, which results in

ξk+1 = Âξk + b̂uk + b̂ffk (6.2)

where

Â =

A 0n×δ−1 b
01×n 0 0
0δ−1×n Iδ−1 0

 , b̂ =

0n×1

1
0δ−1×1

 , b̂f =

b0
0

 . (6.3)

104

6

6.1 Integral Sliding Mode Control for Single-Input Networked Systems

The basic concept of integral sliding mode control is to robustify a control loop designed for
the nominal case, i.e. fk = 0, ∀k. This is achieved by defining the control signal as

uk = uNk + uSk (6.4)

where uNk denotes a nominal control signal designed for the nominal case and uSk represents
the sliding mode part of the control law. The control component uSk is designed to compensate
for the matched perturbation in order to keep the desired properties achieved by the nominal
control law also in the perturbed case.

The nominal control law uNk is designed for the nominal lifted model

ξ̂k+1 = Âξ̂k + b̂uNk (6.5)

with the nominal lifted state vector

ξ̂k =
[
xT
k uNk−1 uNk−2 · · · uNk−δ

]T
(6.6)

which results from the lifted model (6.2) with (6.4) for fk = uSk = 0, ∀k. In the single-input
case, no specific structure of the nominal control law has to be considered. Hence, classical
approaches such as assigning n+ δ eigenvalues of the closed loop system matrix Â− b̂k̂T

using a linear state control law

uNk = −k̂Tξ̂k with k̂ ∈ Rn+δ (6.7)

can be applied. The eigenvalues have to be chosen in a way to achieve stability and desired
performance of the unperturbed networked control system.

To design the sliding mode part of the control law, the discrete time integral sliding variable

σk = m̂Tξk + wk (6.8)

is defined. Considering the forward increment of (6.8) using (6.2) and (6.4) results in

σk+1 = m̂Tξk+1 + wk+1 (6.9)

= m̂TÂξk + m̂Tb̂uk + m̂Tb̂fk + wk+1 (6.10)

= m̂T(Âξk + b̂uNk) + m̂Tb̂uSk + m̂Tb̂ffk + wk+1. (6.11)

Defining

wk+1 = −m̂T(Âξk + b̂uNk) (6.12)

with

w0 = −m̂T

[
x0

0

]
, (6.13)

which contains known quantities only, and applying it to (6.11) yields

σk+1 = m̂Tb̂uSk + m̂Tb̂ffk. (6.14)

105

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

In addition, the initial condition (6.13) ensures σ0 = 0 since the past input samples are
assumed to be zero, i.e.

u−1 = u−2 = · · · = u−δ = 0. (6.15)

The vector m̂T can be freely chosen and a reasonable choice is

m̂T =
[
mT 1 0

]
with mTb = 1 m ∈ Rn (6.16)

which applied to (6.14) yields
σk+1 = uSk + fk. (6.17)

Remark 6.1. Assume a sliding mode based control law uSk for system (6.17) which is
capable of forcing σk+1 to zero, i.e.

σk+1 = 0 ⇔ uSk = −fk. (6.18)

Considering (6.2) in state coordinates, i.e.

xk+1 = Axk + b(uk−δ + fk), (6.19)

together with (6.18) shows that even if σk+1 = 0, ∀k were achieved, the perturbation

fk − fk−δ (6.20)

would act on (6.19). As a consequence, it is reasonable to not consider perturbations
with bounded amplitude but with bounded change rate, i.e.

sup

∣∣∣∣fk+1 − fk
T

∣∣∣∣ = Lf . (6.21)

In this case, (6.20) is bounded by

sup |fk − fk−δ| = δTLf . (6.22)

Theorem 6.2. Consider the buffered networked control system depicted in figure 6.1
with plant (6.1) and sampling time T . Also, assume that assumptions 1.2, 1.4, 2.2 and 2.4
are satisfied and the change rate of perturbation fk is bounded by (6.21). The sliding
variable is given by (6.8) with wk+1 given by (6.12) and m̂T given by (6.16). Let the
discrete time sliding mode control law be designed as

uSk = σk + T ũSk (6.23)

with

ũSk =
1

T
(˜̀
k − 1)σk + νk

νk+1 = νk + `kσk

(6.24)

˜̀
k = q

(1)
k + q

(2)
k − 1

`k =
1

T

(
˜̀
k − q(1)

k q
(2)
k

)
.

(6.25)

106

6

6.1 Integral Sliding Mode Control for Single-Input Networked Systems

The elements q
(1)
k and q

(2)
k depend on the desired discretization method of the super

twisting algorithm and are defined as

q
(1)
k = 1 + Ts(1)(σk)

q
(2)
k = 1 + Ts(2)(σk)

explicit Euler, (6.26)

q
(1)
k =

{
es

(1)(σk)T σk 6= 0
0 σk = 0

q
(2)
k =

{
es

(2)(σk)T σk 6= 0
σk = 0

matching approach (6.27)

where

s(1)(σk) = p(1) |σk|−
1
2 s(2)(σk) = p(2) |σk|−

1
2 . (6.28)

If

p(1) =

(
−0.75−

√
2.15

2
i

)√
Lf
T

p(2) =

(
−0.75 +

√
2.15

2
i

)√
Lf
T
, (6.29)

then the states of the plant are ultimately bounded.

Proof. The forward increment of the sliding variable (6.8) with (6.12) and (6.16) yields
(6.17). This is equivalent to the discretized perturbed integrator

σk+1 = σk + T ũSk + Tϕk (6.30)

ϕk+1 = ϕk + Tvk (6.31)

for ϕk = 1
T fk and using (6.23). The two discrete time super twisting algorithms can then

be applied as described in section 4.5. The parameters α and β are chosen using the
well-established parameter setting

α = 1.5
√
Lϕ, β = 1.1Lϕ (6.32)

with

sup

∣∣∣∣ϕk+1 − ϕk
T

∣∣∣∣ = Lϕ. (6.33)

The change rate (6.33) can easily be computed from (6.21) using

sup

∣∣∣∣ϕk+1 − ϕk
T

∣∣∣∣ = sup

∣∣∣∣fk+1 − fk
T 2

∣∣∣∣ = Lϕ =
Lf
T
. (6.34)

Applying (6.34) to (6.32) and using relations (4.91) yields

α = −
(
p(1) + p(2)

)
= 1.5

√
Lf
T
, β = p(1)p(2) = 1.1

Lf
T
. (6.35)

Solving this set of equations for p(1) and p(2) yields the parameter setting (6.29).

107

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

Example 6.3. This integral sliding mode based controller for single-input networked control
systems is now applied to the networked control system described in example 5.9. Choosing
the eigenvalues of the nominal lifted closed loop dynamic matrix as

p =
[
0.905 0.905 0 0 0 0 0

]T
(6.36)

leads to the nominal control law (6.7) with

k̂T =
[
35.863 −6.479 0.221 0.236 0.252 0.268 0.285

]
. (6.37)

One possible choice for m̂T satisfying (6.16) is

m̂T =
[
49.741 48.76 1 0 0 0 0

]
(6.38)

where mT = (bTb)−1bT was chosen by computing the Moore-Penrose pseudoinverse of b.
In a first simulation, only the nominal control law is implemented and the sliding mode
part of the control law is set to zero, i.e. uk = uNk .
The simulation results of the sliding variable σk and the applied perturbation fk are shown
in figure 6.2. Since σk+1 equals fk for uSk = 0, the sliding variable σk equals the perturbation
delayed by one step, i.e. fk−1.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−1

0

1

2

3

t

σ
k
,
f k

σk
fk

Figure 6.2: Example 6.3: Sliding variable σk and perturbation fk for uSk = 0.

The design of the sliding mode part of the control law relies on the change rate of the
perturbation. As the perturbation is given by

fk = sin
(√

2kT
)

+ sin

(
3kT

5

)
+ 1, (6.39)

108

6

6.1 Integral Sliding Mode Control for Single-Input Networked Systems

in this simulation, the exact limit of the change rate is given by

Lf = 2.014. (6.40)

In practical applications, this value is typically not known exactly. However, an upper bound
Λ >

Lf
T can usually be estimated. This upper bound is then used in (6.29) to obtain the

parameters

p(1) =

(
−0.75−

√
2.15

2
i

)
√

Λ, p(2) =

(
−0.75 +

√
2.15

2
i

)
√

Λ. (6.41)

In order to compare the accuracies with respect to the sliding variable achieved with the two
sliding mode controllers, the value of Λ which leads to the highest asymptotic accuracy of
the sliding variable was used for each controller. In order to determine these values, control
laws are designed using

Lf
10T ≤ Λ ≤ 10Lf

T which is obtained by applying this procedure in

simulation. Therefore, simulations using Λ in the range of
Lf
10T and

10Lf
T are performed and

the achieved asymptotic accuracy on the sliding variable σk is evaluated. Figure 6.3 shows
the asymptotic accuracies of the sliding variable σk achieved using the two algorithms for
increasing values of Λ. Each of the two zoomed plots show the values of Λ leading to the
highest accuracy obtained with the corresponding algorithm. The resulting parameters are
given in table 6.1.

0 1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

ΛT
Lf

li
m

su
p
|σ

k
|

Explicit Euler

Matching

0.92 1.12 1.32 1.52 1.72
0

0.5

1

4.52 6.52 8.52
0.17

0.18

0.19

Figure 6.3: Example 6.3: Asymptotic accuracies of the sliding variable using the explicit Euler and
the matching discretization method for increasing values of Λ obtained in simulation.
The zoomed plots show the values of Λ which lead to the highest accuracy for each of
the two algorithms.

109

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

Table 6.1: Parameter values used for the comparison of the control laws.

Explicit Euler Matching

Λ 26.588 171.611

p(1) −3.867− 3.780i −9.825− 9.604i

p(2) −3.867 + 3.780i −9.825 + 9.604i

The simulation results for the sliding variable σk using the two sliding mode controllers
with the settings as given in table 6.1 are shown in figure 6.4. As expected, the results
obtained with the matching algorithm do not show discretization chattering. In addition,
the accuracy achieved with the matching algorithm is slightly better than achieved using
the explicit Euler discretization. However, the increase of accuracy is almost not visible in
the plant states xk, which are depicted in figure 6.5, but the increase in accuracy achieved
by adding the sliding mode part of the control law is clearly visible.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−0.5

0

0.5

1

1.5

t

σ
k

Explicit Euler

Matching

Figure 6.4: Example 6.3: Sliding variable σk using the integral sliding mode approach with two
different sliding mode controllers.

6.2 Spatially Distributed Super Twisting Control for Multi-Input
Networked Control Systems

The previously developed method for single-input systems is extended to the multi-input
case in this section. In order to be applicable in a wide range of networked control systems,
the method proposed in this section not only aims to robustly stabilize the origin of the plant

110

6

6.2 Spatially Distributed Super Twisting Control for Multi-Input NCS

0

5

10

15

x
1
,k

uS
k = 0

Explicit Euler

Matching

0

10

20

x
2
,k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−200

−100

0

t

u
k

5 10 15 20 25 30
−0.2

0

0.2

5 10 15 20 25 30

−0.2

0

0.2

5 10 15 20 25 30

−4

−2

0

2

Figure 6.5: Example 6.3: Plant states xk and the input signal uk using the integral sliding mode
approach with two different sliding mode controllers.

111

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

but also to allow the control laws for each input channel to be implemented without the need
to share information among the controller nodes. Consider the buffered networked control
system for multi-input systems described in chapter 3. The lifted model for multi-input
systems is given by

ξk+1 = Âξk + B̂uk + B̂ffk (6.42)

with Â, B̂ and B̂f respectively given by (3.27)–(3.29). The control law for the multi-input
case again consists of the nominal part uNk and the sliding mode part uSk , i.e.

uk = uNk + uSk . (6.43)

In order to comply with the problem statement, the ith controller node cannot use the whole
state vector ξk since this vector includes the controller outputs of all other controller nodes
and their history which is not available.

6.2.1 Nominal Control Law

The nominal lifted model

ξ̂k+1 = Âξ̂k + B̂uNk (6.44)

with nominal lifted state vector

ξ̂k =
[
xT
k uN1,k−1 · · · uN1,k−δ1 · · · uNm,k−1 uNm,k−2 · · · uNm,k−δm

]T
(6.45)

results from (6.42) and (6.43) for fk = uSk = 0 ∀k. In the following theorem, the nominal
control law is designed based on theorem 5 in [22] in such a way that the global asymptotic
stability of the nominal closed loop system is ensured. In addition, the control law for each
controller node relies on the measurements xk and locally available information only.

Theorem 6.4. Consider the buffered networked control system depicted in figure 3.5
with plant (1.5) and sampling time T . Also, assume that assumptions 1.2, 1.4 and 2.6
are satisfied. Let the controller be given by (6.43) with the nominal control law

uNk = −K̂ξ̂k = −
[
Kx Ku

]
ξ̂k (6.46)

with

Kx ∈ Rm×n, Ku =


kT

1 0 · · · 0
0 kT

2 · · · 0
...

...
. . .

...
0 0 · · · kT

m

 , kT
i ∈ R1×δi

i = 1, . . . ,m.
(6.47)

If a symmetric positive definite matrix Y ∈ Rn+µ×n+µ with

µ =
m∑
i=1

δi, (6.48)

112

6

6.2 Spatially Distributed Super Twisting Control for Multi-Input NCS

matrices

Z =
[
Zx Zu

]
, (6.49)

Zx ∈ Rm×n, Zu =


zT

1 0 · · · 0
0 zT

2 · · · 0
...

...
. . .

...
0 0 · · · zT

m

 , zT
i ∈ R1×δi

i = 1, . . . ,m
(6.50)

X =

[
X1 0
X2 X3

]
, (6.51)

X1 ∈ Rn×n
X2 ∈ Rµ×n , X3 =


X̄3,1 0 · · · 0

0 X̄3,2 · · · 0
...

...
. . .

...
0 0 · · · X̄3,m

 , X̄3,i ∈ Rδi×δi
i = 1, . . . ,m.

(6.52)

and a scalar
0 ≤ γ < 1 (6.53)

that satisfy [
X +XT − Y XTÂT −ZTB̂T

ÂX − B̂Z (1− γ)Y

]
� 0, (6.54)

exist then the nominal lifted closed loop system is globally asymptotically stable with

Ku = ZuX
−1
3 and Kx = (Zx −KuX2)X−1

1 . (6.55)

In addition, only measurements xk and local information, i.e. the history of the own
control signals ui,k, are used in the ith controller node.

Proof. Consider the product

K̂X =
[
KxX1 +KuX2 KuX3

]
(6.56)

which results from (6.46) and (6.52). Applying (6.55) gives

K̂X = Z. (6.57)

Using (6.57) in (6.54) results in[
X +XT − Y XT(Â− B̂K̂)T

(Â− B̂K̂)X (1− γ)Y

]
� 0. (6.58)

Applying theorem 3 from [49] to (6.58) with N = 1, G1 = X, S1 = Y and A1 = (Â− B̂K̂)
proofs the global asymptotic stability of the nominal closed loop system. Furthermore, the
specific structure of Ku ensures that the ith controller node uses locally available information
only.

113

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

Remark 6.5. Some applications trigger the need to design the nominal control law
in such a way that it depends exclusively on the measurements xk and not on the
history of the actuating signals. The solution to this problem represents a special case of
theorem 6.4. Setting Zu = 0 and using a dense matrix X3 ∈ Rµ×µ results in a nominal
control law (6.46) with Ku = 0.

6.2.2 Sliding Mode Control Law

In the following theorem, the sliding mode part of the control law is designed such that
the input channels are decoupled and no communication between the controller nodes is
necessary.

Theorem 6.6. Consider the buffered networked control system depicted in figure 3.5
with plant (1.5) and sampling time T . Also, assume that assumptions 1.2, 1.4, 2.4 and 2.6
are satisfied and the change rate of the ith perturbation fi,k is bounded by

sup

∣∣∣∣fi,k+1 − fi,k
T

∣∣∣∣ = Lfi <∞, i = 1, 2, . . . ,m. (6.59)

The discrete time integral sliding variables are defined as

σk =
[
σ1,k · · · σm,k

]T
= M̂ξk +wk (6.60)

with

M̂ =


mT

1 1 01×δ1−1 0 01×δ2−1 · · · 0 01×δm−1

mT
2 0 01×δ1−1 1 01×δ2−1 · · · 0 01×δm−1

...
...

...
...

. . . · · · ...
...

mT
m 0 01×δ1−1 0 01×δ2−1 · · · 1 01×δm−1

 (6.61)

M =


mT

1

mT
2

...
mT

m

 = B+ (6.62)

where B+ = (BTB)−1B denotes the left inverse of B. Let the nominal control law in
(6.43) be given by (6.46) and

wk+1 =
[
w1,k+1 w2,k+1 · · · wm,k+1

]T
= −M̂(Âξk + B̂uNk) (6.63)

with
w0 = −Mx0. (6.64)

The ith element of the sliding mode part uSi,k in (6.43) is given by

uSi,k = σi,k + T ũSi,k (6.65)

114

6

6.2 Spatially Distributed Super Twisting Control for Multi-Input NCS

with

ũSi,k =
1

T
(˜̀
i,k − 1)σi,k + νi,k

νi,k+1 = νi,k + `i,kσi,k

˜̀
i,k = q

(1)
i,k + q

(2)
i,k − 1

`i,k =
1

T

(
˜̀
i,k − q(1)

i,k q
(2)
i,k

)
.

(6.66)

For the explicit Euler discretized super twisting algorithm use

q
(1)
i,k = 1 + Ts

(1)
i (σi,k), q

(2)
i,k = 1 + Ts

(2)
i (σi,k) (6.67)

and for the matching approach use

q
(1)
i,k =

{
es

(1)
i (σi,k)T σi,k 6= 0

0 σi,k = 0
, q

(2)
i,k =

{
es

(2)
i (σi,k)T σi,k 6= 0

0 σi,k = 0
(6.68)

where

s
(1)
i (σi,k) = p

(1)
i |σi,k|−

1
2 , s

(2)
i (σi,k) = p

(2)
i |σi,k|−

1
2 . (6.69)

If the parameter settings

p
(1)
i =

(
−0.75−

√
2.15

2
i

)√
Lfi
T
, p

(2)
i =

(
−0.75 +

√
2.15

2
i

)√
Lfi
T

(6.70)

are used, then

1. the states xk of the plant are ultimately bounded,
2. only measurements xk and local information, i.e. the history of the own control

signals ui,k, are used in each controller node.

Proof. The proof consists of two parts. In the first part, it will be shown that a sliding
mode controller based on theorem 6.6 results in the ultimate boundedness of the states xk.
In the second part, it will be shown that the resulting control law uses the locally available
information only. The initial condition (6.64) ensures that the initial value of the sliding
variable σ0 = 0 since the previous values of the actuating signals are assumed to be zero,
i.e.

u1,−1 = u1,−2 = · · · = u1,−δ1 = · · · = um,−1 = · · · = um,−δm = 0. (6.71)

Using (6.42) and (6.43) to compute the forward increment of (6.60) results in

σk+1 = M̂Âξk + M̂B̂(uNk + uSk) + M̂B̂ffk +wk+1. (6.72)

Applying (6.63) yields

σk+1 = M̂B̂uSk + M̂B̂ffk. (6.73)

115

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

Due to assumption 1.2, Bc has full column rank and the sampling time is not equal to a
pathological sampling time. Thus, the left inverse M = B+ exists. As a consequence,

M̂B̂ = M̂B̂f = Im (6.74)

is satisfied using (6.61) and (6.62). This simplifies (6.73) even further to

σk+1 = uSk + fk. (6.75)

From (6.75) it is clear that the ith sliding variable σi,k is only affected by the corresponding
control signal uSi,k and perturbation fi,k. Due to this property, m discrete time sliding
mode controllers can independently be designed using the same methods as proposed in
theorem 6.2. This results in the sliding mode part of the control law as given in (6.66)–(6.69).
The parameter settings are given in (6.70).

To show that the ith controller node only uses xk and the history of ui,k, variables σk
and wk+1 have to be analyzed because they depend on the entire lifted state vector in
theorem 6.6. Using (2.29) and (6.61) to evaluate the ith component of (6.60) results in

σi,k = mT
i xk + ui,k−1 + wi,k. (6.76)

Using (3.25) and (3.27) to compute M̂Âξk results in

M̂Âξk = MAxk +M
[
b1 b2 · · · bm

]︸ ︷︷ ︸
Im


u1,k−δ1
u2,k−δ2

...
um,k−δm

 (6.77)

which simplifies the ith component of (6.63) to

wi,k+1 = −mT
i Axk − uNi,k − ui,k−δi (6.78)

using (6.43) and (6.61). From (6.76) and (6.78), it is clear that only local information is
used in each controller node in addition to the measurements xk.

Example 6.7. The effectiveness of the approach proposed in this section is shown by means
of a numerical simulation. The plant is given by the unstable continuous time system

dx

dt
=


−3 −3 −2 1
2 −3 −2 2
1 2 −3 1
−3 −3 3 0

x+


−1 −3 0
1 3 1
−3 3 −1
−2 −3 2

 (u∗ + f) (6.79)

and the sampling time was chosen as T = 0.1s. The constant round trip times ensured by
the buffers are known to be

δT =
[
3 7 6

]
T. (6.80)

116

6

6.2 Spatially Distributed Super Twisting Control for Multi-Input NCS

Constructing the lifted model (2.13) and solving the LMI given in theorem 6.4 for γ = 0.02
results in the nominal control law (6.46) with

Kx =

 0.248 −0.021 −0.484 −0.505
−0.002 0.001 0.003 0.004
−0.005 0.002 0.006 0.007


kT

1 =
[
0.453 0.357 0.21

]
kT

2 =
[
79.634 57.195 31.486 16.267 9.209 4.907 2.22

]
· 10−3

kT
3 =

[
46.736 32.501 20.702 12.428 6.643 2.932

]
· 10−3.

The perturbation is chosen as

fk = κ1 sin (ω1kT) + κ2 sin (ω2kT) + κ3 (6.81)

with

κ1 = κ3 =

1
2
3

 , ω1 =

0.1
0.2
0.3

 , κ2 =

3
2
1

 , ω2 = ω1π. (6.82)

Computing the exact change rates (6.59) of (6.81) results in

Lf =
[
Lf1 Lf2 Lf3

]T
=
[
1.042 1.657 1.842

]T
. (6.83)

Based on theorem 6.6, the sliding variable σk is given by (6.60) with

M =

mT
1

mT
2

mT
3

 =

−0.384 0.661 −2.244 −1.314
−1.383 1.143 1.066 −0.302
−1.285 3.551 −1.261 3.048

 (6.84)

M̂ =

mT
1 1 01×2 0 01×6 0 01×5

mT
2 0 01×2 1 01×6 0 01×5

mT
3 0 01×2 0 01×6 1 01×5

 (6.85)

and

wk+1 =

wT
1 0 −1 0 0 0 0

wT
2 0 0 0 −1 0 0

wT
3 0 0 0 0 0 −1

 ξk − uNk (6.86)

wT
1

wT
2

wT
3

 =

0.012 −0.522 2.09 1.43
0.684 −1.301 −0.697 0.063
1.395 −1.997 0.33 −3.38

 . (6.87)

One possible choice of parameters (6.70) considering (6.83) is given in table 6.2 where Λi is

an upper bound of
Lfi
T .

Simulation results with initial condition x0 =
[
−7 7 3 −3

]T
for the sliding variables

σk using the proposed approach are depicted in figure 6.6. This figure shows that the

117

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

Table 6.2: Example 6.7: Parameter settings for sliding mode controllers.

Explicit Euler Matching

Λ1 11.467 87.568

p
(1)
1 −2.540− 2.483i −7.018− 6.861i

p
(2)
1 −2.540 + 2.483i −7.018 + 6.861i

Λ2 18.223 139.158

p
(1)
2 −3.202− 3.130i −8.847− 8.649i

p
(2)
2 −3.202 + 3.130i −8.847 + 8.649i

Λ3 20.267 154.768

p
(1)
3 −3.376− 3.301i −9.330− 9.121i

p
(2)
3 −3.376 + 3.301i −9.330 + 9.121i

sliding variable is ultimately bounded and that the sliding variables start at σ0 = 0, as
was expected. The red and blue lines in figure 6.7 show the plant states xk obtained with
the proposed approach and the corresponding discrete time sliding mode controller. To
demonstrate the massively increased accuracy achieved by using the sliding mode control
technique, a simulation was performed without using the sliding mode part of the control
law, i.e. uSk = 0, and the results are shown by the green lines in figure 6.7. Comparing the
green curves with the red and blue ones reveals the significant difference in accuracy. The
simulation results for the control signals are depicted in figure 6.8.

6.3 Laboratory Experiment

In this section, the effectiveness of the previously proposed algorithm is shown by means
of a laboratory experiment. Reconsider the mechanical system introduced in section 5.3.2.
A photo of the laboratory setup and the mechanical scheme of this system are shown in
figure 6.9. Again, the sampling time

T = 0.02s (6.88)

is chosen. To show the performance of the perturbed networked control system, the pertur-
bation

fk =
1

3

[
sin(kT + 5) + sin

(
1

π
(kT + 5)

)
+ 1

]
(6.89)

is applied which consists of two sinusoidal functions with different frequencies and a constant.
The exact change rate can be derived as

Lf = 0.439. (6.90)

118

6

6.3 Laboratory Experiment

0

1

2

3

σ
1
,k

Explicit Euler

Matching

0

2

4

6

σ
2
,k

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

5

10

t

σ
3
,k

20 40 60 80 100 120 140

−0.2

0

0.2

20 40 60 80 100 120 140

−0.5

0

0.5

20 40 60 80 100 120 140

−0.5

0

0.5

Figure 6.6: Example 6.7: Sliding variable σk using the spatially distributed control law with two
different sliding mode controllers.

119

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

−10

0

10

x
1
,k

uS
k = 0

Explicit Euler

Matching

−10

0

10

x
2
,k

−10

−5

0

5

x
3
,k

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
−40

−20

0

20

40

t

x
4
,k

Figure 6.7: Example 6.7: Plant states xk using the spatially distributed control law with two
different sliding mode controllers.

120

6

6.3 Laboratory Experiment

−10

0

10

u
1
,k

uS
k = 0

Explicit Euler

Matching

−5

0

u
1
,k

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

−5

0

5

t

u
1
,k

Figure 6.8: Example 6.7: Control signals uk using the spatially distributed control law with two
different sliding mode controllers.

121

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

m

r

u(t)

c

v

z(t)

y(t)

Figure 6.9: Spring mass laboratory experiment (left) and mechanical scheme (right).

In the given setup, encoders are attached to the pulley and the wheel at the motor.
Thus, the states x1,k = y and x3,k = z are measurable. The state x2,k is obtained using a
differentiating filter. Imperfections of sensors and the differentiating filter are neglected in
the present investigations. The networked induced delay is implemented using two Simulink
delay blocks, one to delay the sensor measurements and the other one to delay the control
signal. These blocks are configured such that the worst case round trip time

τk ≤ 10T (6.91)

is achieved, which results in δ = 10. The nominal control law (6.7) was designed by placing
the n+ δ = 13 poles at zi = e−10T , i = 1, 2, . . . , 13 using Ackermann’s formula. Vector m̂T

is designed according to (6.16). One possible choice for m̂T is

m̂T =
[
1.143 −9.157 584.02 1 0 0 0 0 0 0 0 0 0

]
. (6.92)

In theory, the choice of mT is only restricted by (6.16) but due to measurement noise and
unmodeled dynamics in real world applications, it is necessary to find suitable values of
those parameters. To estimate the quality of the current setting, choose uSk = 0 ∀k and
evaluate the sliding variable σk. According to (6.17) the sliding variable in this case should
equal the perturbation delayed by one step.

The result after this tuning process is depicted in figure 6.10. This figure illustrates the
sliding variable σk derived from the measurements in red and the applied perturbation

122

6

6.3 Laboratory Experiment

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

σ
k
,
f k

σk
fk

Figure 6.10: Laboratory experiment: Sliding variable σk for uSk = 0 and perturbation fk.

in blue. Comparing the signals reveals that using the vector m̂T as given in (6.92) is a
reasonable choice since the sliding variable follows the perturbation very well.

To design the parameters p(1) and p(2) of the super twisting algorithm to ensure (6.29) is
satisfied, the change rate Lf of the perturbation has to be known or estimated. In real
world applications, this change rate is usually not exactly known and must therefore be
estimated. As a too small choice could lead to instabilities, the value typically is significantly
overestimated. In this laboratory experiment it is assumed that the estimated change rate
Λ = 132.615 is about six times larger than the actual value

Lf
T = 21.972. This choice leads

to

p(1) = −8.637− 8.443i, p(2) = −8.637 + 8.443i. (6.93)

Figure 6.11 shows the evolution of the plant states xk during the experiment using the
proposed approach with the explicit Euler algorithm in blue and using the matching
algorithm in red. In order to point out the effectiveness of the sliding mode based part
of the control law, the results obtained with the nominal control law only are shown as
green lines. Comparing the signals shows a significant increase of accuracy. This increased
accuracy is also represented in the sliding variable since this variable acts as an accuracy
measure. Figure 6.12 shows the values of the sliding variable σk obtained with the matching
algorithm in red and with the explicit Euler algorithm in blue. Comparing figures 6.10
and 6.12 exemplifies that the magnitude of the sliding variable using the proposed approach
is about ten times smaller compared to only using the nominal control law. In addition,

123

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

figure 6.12 illustrates that the magnitude of σk is about three times smaller using the
matching algorithm compared to using the explicit Euler variant. This is due to the rapidly
increasing amplitude of discretization chattering for increasing values of the estimated
change rate Λ.

This phenomenon is also depicted in figure 6.13 in which the magnitude of the sliding
variable σk is shown for both algorithms and increasing values of the estimated change rate
Λ. One can clearly see that the curve representing the explicit Euler discretized scheme
ascents much faster than the one representing the matching algorithm. Hence, the negative
influence of a high value of Λ on accuracy is small using the matching algorithm. This is a
significant advantage for practical applications as the exact value Lf might be unknown.

6.4 Conclusions

In this chapter, an integral sliding mode approach based control strategy for spatially
distributed networked control systems is proposed. In the first section of this chapter, the
design procedure is described for single-input systems. No specific structure of the nominal
control law has to be considered in the single-input case. However, a specific structure of
the sliding variable is needed. It is shown that even in ideal quasi-sliding mode, i.e. the
sliding variable equals zero, no exact compensation of the perturbation is ensured. In fact,
past elements of the perturbation are compensated. Hence, a limited change rate of the
perturbation was assumed and therefore the resulting problem allows the super twisting
algorithm to be applied. Specifically, two discrete time versions of the super twisting al-
gorithm are applied, namely the Euler discretized super twisting algorithm and the super
twisting algorithm resulting from discretization using the matching approach. A numerical
simulation shows the significant increase of accuracy achieved by using the sliding mode part
of the control law. In addition, the properties of the discrete time super twisting algorithms
are verified in simulation.

In the second section, the approach for single-input systems is extended to multi-input
systems. Since no communication channel between the controller nodes is available, the
nominal control law has to have a specific structure. A LMI based design procedure was de-
veloped to design linear state controllers with the desired structure that ensures asymptotic
stability of the nominal closed loop system. Using a specific structure of the sliding variable,
a decoupled design of the sliding mode part is possible. Thus, the sliding mode controller
for each channel is designed individually. The design process and the achieved increase of
accuracy is again shown by a numerical simulation.

The applicability of the proposed approach to real world scenarios is demonstrated by a
single-input mass spring laboratory experiment. The results of this experiment reflect the
expected properties of the proposed algorithms.

124

6

6.4 Conclusions

−5 · 10−2

0

5 · 10−2

0.1

x
1
,k

uS
k = 0

Explicit Euler

Matching

−5 · 10−2

0

5 · 10−2

x
2
,k

−5 · 10−2

0

5 · 10−2

0.1

x
3
,k

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−1

−0.5

0

0.5

t

u
k

Figure 6.11: Laboratory experiment: States xk and control signal uk for uSk = 0 in green, using the
proposed approach with the explicit Euler algorithm in blue and using the matching
algorithm in red.

125

Chapter 6 Spatially Distributed SMC for Buffered Networked Systems

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

−0.2

−0.1

0

0.1

0.2

t

σ
k

Explicit Euler

Matching

Figure 6.12: Laboratory experiment: Comparison of the sliding variable σk obtained with the
matching algorithm in red and explicit Euler algorithm in blue.

0 5 10 15 20 25 30 35 40 45

0

0.5

1

1.5

2

ΛT
Lf

li
m

su
p
|σ

k
|

Explicit Euler

Matching

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

Figure 6.13: Laboratory experiment: Magnitude of sliding variable σk with increasing values of
the estimated change rate Λ.

126

Chapter 7
The Simulation Toolbox

Contents

7.1 User Guide . 128

7.1.1 Centralized Networked Control Systems 129

7.1.2 Spatially Distributed Networked Control Systems 133

7.2 Integrate Custom Control Strategies 135

7.2.1 Centralized Networked Control Systems 135

7.2.2 Spatially Distributed Networked Control Systems 136

7.3 The Classes and their Interaction . 137

127

Chapter 7 The Simulation Toolbox

In the previous chapters numerous simulation results are shown. In this chapter, the
developed simulation environment for sliding mode based networked control systems is
described. The simulation environment is based on Matlab and Simulink in combination
with the TrueTime simulation software described in [23]. The simulation environment was
designed such that it can be easily customized, e.g. new control strategies can be integrated
with very little effort.

7.1 User Guide

Before the controllers can be designed or a simulation can be started, all relevant information
on the considered networked control system has to be specified. All this information is
collected in an “NcsProblem” object. The output of the help command in Matlab results
in the lines shown in figure 7.1. The constructor of the “NcsProblem” class is called with a

help NcsProblem

 NcsProblem Specification of the networked control systems properties.

 obj = NcsProblem(sys, delay_steps, Td, pert_limits, Name, Value)
 sys: Continuous state space model of the plant
 delay_steps: Number of delay steps for each input channel if the networked control system is spatially
 distributed, or one single number of delay steps for centralized implementation
 Td: Sampling time
 pert_limits: Matrix of symmetric bounds of the perturbation and its discret time derivatives, i.e.
 [1/2(max(fk)-min(fk)) max(abs(fk+1-fk)/Td)) ...]

 obj = NcsProblem(sys, delay_steps, Td, pert_limits, pert_mean, Name, Value)
 'pert_mean': Mean value of the perturbation limits, i.e.
 1/2(max(fk)+min(fk)) (default: zeros(m,1)

 Optional name/value pairs:
 'u_sat_limits': Saturation limits of the control signal (default: [-inf inf; ...])

 See also: ss

 Reference page for NcsProblem

1

Figure 7.1: Help output for the “NcsProblem” class.

state space model of the continuous time plant (1.5) followed by the vector of maximum
delay steps δ for a spatially distributed networked system or one single number of delay
steps δ for a centralized networked control system. These integer values are used in the
implementation of the buffers to ensure constant round trip times. As a consequence, these
values have to satisfy (1.11). The variable “Td” represents the sampling time T and has
to be non-pathological. The last required variable, “pert limits”, represents the limits of
the perturbation and its discrete time derivatives. For the control laws considered in this
dissertation, information on the amplitude f̃ of the perturbation fk or its change rate Lf
is necessary, i.e.

pert limits =
[
f̃ Lf

]
. (7.1)

The mean value f̂ of perturbation fk and the saturation limits of the control signal
can optionally be provided, see figure 7.1. The next two subsections describe how to use

128

7

7.1 User Guide

the simulation toolbox to design and simulate centralized as well as spatially distributed
networked control systems.

7.1.1 Centralized Networked Control Systems

A minimal working example to design and simulate a centralized networked control system
is given in listing 7.1. The corresponding Simulink block diagram is given in figure 7.2.

1 sys = s s (1 , 1 , 1 , 0) ; %Continuous p lant
2 Td = 0 . 1 ; %Samplingtime
3 amppert = 1 ; %Perturbat ion amplitude
4 meanpert = 1 ; %Perturbat ion mean
5 maxdelstep = 3 ; %Maximum delay s t ep s
6 fk = @(k) 0 .4∗ s i n (0 . 8∗ k∗Td) +0.6∗ s i n (p i /2∗k∗Td) +1; %Perturbat ion
7 ncs prob = NcsProblem (sys , maxdelstep , Td, amppert , meanpert) ;
8 reach ing law = {PredSW Reachinglaw (1 . 0 1 , [0 0 . 9]) } ; %S e l e c t reach ing law
9 NCS = NCS Central ized (ncs prob , reachinglaw , [] , ’ ts im ’ ,50) ;

10 x0 = 1 ; %I n i t i a l c ond i t i on
11 sim (’ Cent ra l i z ed s im ’) %Perform s imu la t i on
12

13 r e s u l t s = NCS. Resu l t s ; %Get s imu la t i on r e s u l t s
14 p lo t (r e s u l t s . sigmak) %Plot s l i d i n g v a r i a b l e

Listing 7.1: Minimal working example to simulate a centralized networked control system.

In this example, the plant is given by the first order system

dx

dt
= x+ u∗ + f, (7.2)

the sampling time by T = 0.1 s, the round trip time is bounded by

τk ≤ 3T (7.3)

and the applied perturbation is

fk = 0.4 sin(0.8kT) + 0.6 sin
(π

2
kT
)

+ 1. (7.4)

In line 7 of listing 7.1, a “NcsProblem” object is instantiated as previously described. In
line 8, a reaching law object which implements the predictive switching reaching law is
created and placed in a cell array. For multi-input systems, this cell array has to include
a reaching law object for each input channel. It is not necessary to choose the same type
of reaching law for each input channel. The three reaching laws proposed in chapter 5 are
available and can be constructed as explained in the output of the help command (see
figures 7.3–7.5).

In line 9, an “NCS Centralized” object is instantiated. Creating this object automatically
creates all objects necessary for the simulation, i.e. sensor node, controller node, time delays
and buffer. Figure 7.6 shows the output of the help command for this “NCS Centralized”
class. The first argument passed to the constructor of this class is the “NcsProblem” object.

129

Chapter 7 The Simulation Toolbox

Pl
an

t
Se

ns
or
	N
od

e

C
en

tra
liz
ed

	C
on

tro
l	C

ha
nn

el

uk
-d

si
gm

ak
Pe

rtu
rb
at
io
n	
G
en

er
at
or

A/
D

D
/A

Sc
he

du
le

Se
ns

or
N
C
S	
Pl
an

t

N
et
w
or
k	
fo
r	6

	n
od

es

xk
uk

-d

fk

si
gm

ak
_s
co
pe

1
uk
-d

2
si
gm

ak

D
/A

Sc
he
du
le

1:
	2

Se
ns
or
	to
	C
on
tro

lle
r	D

el
ay

D
/A

Sc
he
du
le

1:
	3

O
rd
er
er

D
/A

Sc
he
du
le

1:
	4

C
on
tro

lle
r	N

od
e

D
/A

Sc
he
du
le

1:
	5

C
on
tro

lle
r	t
o	
Ac

tu
at
or
	D
el
ay

D
/A

Sc
he
du
le

1:
	6

Bu
ffe
r

Figure 7.2: Simulink block diagram to simulate centralized networked control systems.

130

7

7.1 User Guide

help SW_Reachinglaw

 SW_Reachinglaw: Implementation of the switching reaching law

 obj = SW_Reachinglaw(rho_factor, alpha)
 rho_factor: The value of rho is given by rho_factor times the minimal possible value (rho_factor > 1)
 alpha: Value of the linear part of the reaching law (0 <= alpha < 1)

 See also: ReachingLaw

 Reference page for SW_Reachinglaw

1

Figure 7.3: Help output for the “SW Reachinglaw” class.

help NonSW_Reachinglaw

 NonSW_Reachinglaw: Implementation of the nonswitching reaching law

 obj = NonSW_Reachinglaw(kstar_factor, s0_factor)
 kstar_factor: The value of kstar is given by kstar_factor times the maximal possible value
 (kstar_factor < 1)
 s0_factor: The value of s0 is given by s0_factor times the maximal possible value (s0_factor < 1)

 See also: ReachingLaw

 Reference page for NonSW_Reachinglaw

1

Figure 7.4: Help output for the “NonSW Reachinglaw” class.

help PredSW_Reachinglaw

 PredSW_Reachinglaw: Implementation of the predictive switching reaching law

 obj = PredSW_Reachinglaw(rho_factor, Name, Value)
 rho_factor: The value of rho is given by rho_factor times the minimal possible value (rho_factor > 1)

 Optional name/value pairs:
 alpha_limits: Lower and upper bound of the linear part of the reaching law (default: [0 0.98])

 See also: ReachingLaw

 Reference page for PredSW_Reachinglaw

1

Figure 7.5: Help output for the “PredSW Reachinglaw” class.

131

Chapter 7 The Simulation Toolbox

The second argument, “reachinglaws”, is the cell array containing a reaching law object for
each input channel. Eigenvalues of the remaining dynamics during ideal quasi-sliding mode
are specified through the third argument. In the present example, the plant is of order one.
Hence, no dynamics remain during ideal quasi-sliding mode. Therefore, no eigenvalues have
to be specified. Using the optional parameter “tsim”, the maximum simulation time of 50
seconds is set.

help NCS_Centralized

 NCS_Centralized: Builder class for centralized networked control systems. It designs all necessary
 components for a centralized buffered networked control system.

 obj = NCS_Centralized(ncsProblem_obj, reachinglaws, eigs, Name, Value)
 ncsProblem_obj: NcsProblem object
 reachinglaws: Cell array of reaching law objects for each input channel
 eigs: Eigenvalues of the remaining dynamics during ideal quasi-sliding mode

 Optional name/value pairs:
 'tsim': Specify the largest simulation time (default: 5000*Td)

 See also: NetworkDelay, NetworkOrderer, SM_ControllerNodeCentralized, SensorNode, NetworkBuffer, NcsProblem

 Reference page for NCS_Centralized

1

Figure 7.6: Help output for the “NCS Centralized” class.

The command in line 11 starts the simulation of the block diagram shown in figure 7.2.
All blocks are included in a Simulink block library and are configured by passing a
“NCS Centralized” object. The “Sensor” block samples the states of the plant periodically
with sampling time T and sends the results to the “Sensor to Controller Delay” block.
This block forwards the packets delayed by a random delay to the “Orderer” block which
sequences the packets to ensure that the “Controller Node” receives the packets in the
correct order. This is necessary since the dynamic control law can only be evaluated after all
previous measurement samples have been received. The controller node evaluates the control
law and transmits the results to the “Controller to Actuator Delay” block that forwards the
packets delayed by a random delay to the “Buffer” block. This block implements the buffer
to guarantee the constant round trip time. The random delays are generated in a way that
the worst case round trip time δT defined in the “NcsProblem” object is never exceeded.
However, the buffer checks in each step weather the current round trip time is smaller and
prints an error message if this is violated. The matched perturbation fk is generated in
the “Perturbation Generator”. This block is configured by passing a function handle that
defines the perturbation fk. The passed function is evaluated in each sampling step with
the integer time index k. The input to the plant is then given by the sum of the delayed
controller output uk−δ and the perturbation fk.

While the simulation is running, a progress bar indicates the remaining simulation time.
After the simulation has finished, the member variable “Results” of the “NCS Centralized”
object contains a structure with the simulation results (see line 14).

132

7

7.1 User Guide

7.1.2 Spatially Distributed Networked Control Systems

A minimal working example to design and simulate a spatially distributed networked control
system is given in listing 7.2. The corresponding Simulink block diagram is shown in
figure 7.7.

1 sys = s s (diag ([−1 −2]) , eye (2) , eye (2) , z e r o s (2)) ;%Continuous p lant
2 Td = 0 . 1 ; %Sampling time
3 amppert = [1 1 . 3 ; 2 2 . 3] ; %Perturbat ion amplitude
4 %and change ra t e
5 meanpert = [1 ; 2] ; %Perturbat ion mean
6 maxdelstep = [3 4] ; %Maximum delay s t ep s
7 %f o r each channel
8 fk = @(k) [0 . 4 ∗ s i n (0 . 8∗ k∗Td) +0.6∗ s i n (p i /2∗k∗Td) +1; . . .
9 1 .2∗ cos (0 . 8∗ k∗Td) +0.8∗ cos (p i /2∗k∗Td) +2] ; %Perturbat ion

10 ncs prob = NcsProblem (sys , maxdelstep , Td, amppert , meanpert) ;
11 NCS = NCS ISMC(ncs prob , ’ ExplicitSTA ’ , ’ ts im ’ , 30) ;
12 x0 = [1 2] ; %I n i t i a l c ond i t i on
13 sim (’ Spat Dis t s im ’) %Perform s imu la t i on
14

15 r e s u l t s = NCS. Resu l t s ; %Get s imu la t i on r e s u l t s
16 p lo t (r e s u l t s . sigmak (1)) %Plot f i r s t s l i d i n g v a r i b l e

Listing 7.2: Minimal working example to simulate a spatially distributed networked control system.

In this example, the plant is given by the second order system

dx

dt
=

[
−1 0
0 −2

]
x+

[
1 0
0 1

]
(u∗ + f), (7.5)

the sampling time by T = 0.1 s, the round trip times are bounded by[
0
0

]
≤ τk ≤

[
3
4

]
T (7.6)

and the applied perturbations are

fk =

[
0.4 sin(0.8kT) + 0.6 sin

(
π
2kT

)
+ 1

1.2 cos(0.8kT) + 0.8 cos
(
π
2kT

)
+ 2

]
. (7.7)

The “NcsProblem” object is again created as previously described. In line 11 of listing 7.2,
an “NCS ISMC” object is created by passing the “NcsProblem” object, the name of the
desired sliding mode control law and the maximum simulation time. The output of the
help command for this class is shown in figure 7.8. As this output indicates, both discrete
time versions of the super twisting algorithm used in this dissertation are available. The
eigenvalues of the nominal closed loop system matrix can only be provided for single-input
systems since multi-input systems require a specific structure of the nominal control law.
Therefore, the LMI approach is used for multi-input systems which can be tuned with the
parameter γ. The matrix M̂ can explicitly be provided with the keyword “Mlift”. However,
it has to satisfy

M̂B̂f = M̂B̂ = Im. (7.8)

133

Chapter 7 The Simulation Toolbox

Pl
an

t
Se

ns
or

Sp
at

ia
lly

	D
is

tri
bu

te
d	

C
on

tro
l	C

ha
nn

el
	1

ui
k-

d

si
gm

ai
k

Sp
at

ia
lly

	D
is

tri
bu

te
d	

C
on

tro
l	C

ha
nn

el
	2

ui
k-

d

si
gm

ai
k

Pe
rtu

rb
at

io
n	

G
en

er
at

or

N
et

w
or

k	
fo

r	1
1	

no
de

s

N
C

S	
Pl

an
t

A/
D

D
/A

Sc
he

du
le

Se
ns

or

1
ui
k-
d

2
si
gm
ai
k

D
/A

Sc
he
du
le

1:
	7

Se
ns
or
	to
	C
on
tro
lle
r	D
el
ay

D
/A

Sc
he
du
le

1:
	8

O
rd
er
er

D
/A

Sc
he
du
le

1:
	9

C
on
tro
lle
r	N
od
e

D
/A

Sc
he
du
le

1:
	1
0

C
on
tro
lle
r	t
o	
Ac
tu
at
or
	D
el
ay

D
/A

Sc
he
du
le

1:
	1
1

Bu
ffe
r

Figure 7.7: Simulink block diagram to simulate a spatially distributed networked control systems
with two feedback channels.

134

7

7.2 Integrate Custom Control Strategies

help NCS_ISMC

 NCS_ISMC: Builder class for spatially distributed networked control systems. It designs all necessary
 components for a spatially distribued networked control system.

 obj = NCS_ISMC(ncsProblem_obj, smc_controller_classname, Name, Value)
 ncsProblem_obj: NcsProblem object
 smc_controller_classname: Enter the name of the SMC algorithm class (e.g. 'MatchingSTA', 'ExplicitSTA')

 Optional name/value pairs:
 'Mlift': Specify the sliding variable matrix explicitly
 'tsim': Specify the largest simulation time (default: 5000*Td)
 'eigs': Eigenvalues of the nominal closed loop system matrix (only for SISO sytems)
 'gamma': Scalar value used in the LMI design of the nominal control law (default:0.98)

 See also: NetworkDelay, NetworkOrderer, ISM_ControllerNode, SensorNode, NetworkBuffer, NcsProblem

 Reference page for NCS_ISMC

1

Figure 7.8: Help output for the “NCS ISMC” class.

Similar to the example shown in section 7.1.1, the simulation is performed by calling the
command in line 13 and the results are obtained in line 15. Finally, in line 16, the simulation
results of the first sliding varible are shown in a Matlab plot.

7.2 Integrate Custom Control Strategies

As previously mentioned, the simulation toolbox was designed to allow for easy integration
of custom control strategies. The provided interfaces to implement custom control strategies
are described in this section.

7.2.1 Centralized Networked Control Systems

The controller design for centralized networked systems proposed in chapter 5 uses sliding
mode control laws based on the reaching law approach. As a consequence, a reaching law
interface is provided by the abstract class “ReachingLaw”. A custom reaching law has to be
derived from this abstract class and must therefore implement the abstract methods and
properties. A minimal working example which implements the reaching law

σi,k+δ = 0 (7.9)

is given in listing 7.3.

The abstract method “reachinglaw(·)” implemented in line 9 of listing 7.3 is called for
every received measurement packet. The reaching law is evaluated in line 12 and the width
of the quasi-sliding mode band is set in line 11. If the reaching law implementation uses
internal states, the abstract method “init reachinglaw()” is used to initialize them. Reaching
law specific simulation results, which should be available after the simulation has finished,
can be returned in the abstract method “getSimResults()”. This method is called when

135

Chapter 7 The Simulation Toolbox

1 c l a s s d e f Dummy Reachinglaw < ReachingLaw %Derive from ReachingLaw
2 p r o p e r t i e s
3 qsmb %Property that prov ide s the width o f the quasi−s l i d i n g mode band
4 end
5 methods
6 f unc t i on obj = Dummy Reachinglaw () %Empty cons t ruc to r
7 end
8

9 f unc t i on r e s u l t = reach ing law (obj , s i gma h i s t , k , x ik)
10 %Reaching law method i s c a l l e d f o r every r e c e i v e d measurement packet
11 obj . qsmb = 2∗ obj . amplpert ; %Set the quasi−s l i d i n g mode band
12 r e s u l t = 0 ; %Evaluate the reach ing law
13 end
14

15 f unc t i on i n i t r e a c h i n g l a w (obj)
16 %This method i s c a l l e d be f o r e the s imu la t i on s t a r t s
17 end
18

19 f unc t i on r e s u l t s = getSimResults (obj)
20 %Method to get reach ing law s p e c i f i c s imu la t i on r e s u l t s
21 %This method i s c a l l e d when the s imu la t i on r e s u l t s are r e t r i e v e d
22 r e s u l t s = [] ;
23 end
24 end
25 end

Listing 7.3: Minimal working example to implement a custom reaching law for centralized networked
control systems.

the simulation results are retrieved from the “NCS Centralized” object which holds this
reaching law object. To simulate a centralized networked control system using this custom
reaching law, line 8 in listing 7.1 has to be replaced by

1 reach ing law = {Dummy Reachinglaw () } ;

The custom reaching law will then automatically be used in the simulation.

7.2.2 Spatially Distributed Networked Control Systems

The controller design for spatially distributed networked systems proposed in chapter 6 is
based on integral sliding mode control. The control law consists of a nominal part, which is
designed by solving linear matrix inequalities, and a sliding mode part. In order to create
a flexible simulation environment, an interface to implement custom sliding mode based
control laws is available. This interface is given by the abstract class “SmcControlLaw”. A
minimal working example which defines the custom sliding mode part of the control law

uSi,k = 0 (7.10)

is given in listing 7.4. The abstract method “evaluate(·)” which is implemented in line 6 of
listing 7.4 is called for every received measurement packet and returns uSi,k. To initialize
internal states at the beginning of the simulation, the “init()” method is implemented. In
this case, the control law does not have any internal states and therefore this method is

136

7

7.3 The Classes and their Interaction

1 c l a s s d e f ZeroSMC < SmcControlLaw %Derive from SmcControlLaw
2 methods
3 f unc t i on obj = ZeroSMC () %Empty cons t ruc to r
4 end
5

6 f unc t i on uSk = eva luate (obj , sigmak)
7 %S l i d i n g mode part o f the c o n t r o l law
8 uSk = 0 ;
9 end

10

11 f unc t i on i n i t (obj)
12 %This func t i on i s c a l l e d be f o r e the s imu la t i on s t a r t s
13 end
14 end
15 end

Listing 7.4: Minimal working example to implement a custom sliding mode control law for spatially
distributed networked control systems.

empty. In order to simulate a spatially distributed networked control system using this
custom control law, line 11 in listing 7.2 has to be replaced by

1 NCS = NCS ISMC(ncs prob , ’ZeroSMC ’ , ’ ts im ’ ,30) ;

The custom control law will then automatically be used in the simulation.

7.3 The Classes and their Interaction

A central part of the simulation toolbox is the abstract class “NetworkNode”. This class
is used to define a standard interface for implementing nodes that are connected to the
network and used in Simulink “TrueTime Kernels”. In the abstract method “init()”,
TrueTime tasks can be created and scheduled. Using a wrapper function which takes a
function handle, it is possible to create and schedule TrueTime tasks that call methods
from the calling class instance. Figure 7.9 shows a class diagram that contains all classes
derived from “NetworkNode” and their dependencies.

The class “SensorNode” creates a periodic task which calls the method “sample states()”
in every sampling step. In this method, a “NetworkMsg” object is created and sent to the
receiver nodes. The “NetworkMsg” holds measurement samples of all states, the correspond-
ing time stamp and a sequence number. In the simulations used in this dissertation, the
sensor node sends the data to a “NetworkDelay” block (see figures 7.2 and 7.7).

The “NetworkDelay” and “NetworkBuffer” classes share the parent “VariableDelay” since
both blocks introduce variable time delays until they forward the input packets to their
receivers. The two classes differ in how they set the time delay. In the “NetworkDelay” class,
the time delay is set randomly. In the “NetworkBuffer” class it is computed from the time
stamp of the current packet to achieve the constant round trip time.

137

Chapter 7 The Simulation Toolbox

<<abstract>>
VariableDelay

+calculate_transmit_time(rx_msg)
+delay_code()
+send_code()

<<abstract>>
NetworkNode

+init()

SensorNode

+sample_states()

NetworkOrderer

+orderertask()

SM_ControllerNodeCentralized

+evaluate()

NetworkBuffer NetworkDelay

Simple_ControllerNode

+evaluate()

ISM_ControllerNode

+evaluate()

MsgBuffer

NetworkMsg

0..*

<<abstract>>
ReachingLaw

+init()
+reachinglaw()
+getSimResults()
+init_reachinglaw()

1..*
SW_Reachinglaw

NonSW_Reachinglaw

PredSW_Reachinglaw

BufferElement

Dummy_Reachinglaw

linearNominalControl
1

<<abstract>>
SmcControllaw

+evaluate()

1

MatchingSTA

ExplicitSTA

ZeroSMC

Figure 7.9: Class diagram for the node classes.

138

7

7.3 The Classes and their Interaction

The class “NetworkOrderer” receives “NetworkMsg” objects from a “NetworkDelay” node
and forwards these messages in the correct sequence. In detail, a message is only forwarded
if all preceding messages have already been received.

The “Simple ControllerNode” class implements a control law for spatially distributed
networked systems that consists of the nominal part only, i.e. the sliding mode part is set
to zero.

Sliding mode control laws for centralized networked systems based on the approaches
proposed in chapter 5 are implemented in the “SM ControllerNodeCentralized” class. An
instance of this class holds an implementation of the abstract class “ReachingLaw” for each
element of the sliding variable.

Integral sliding mode based control laws for spatially distributed networked systems based
on the approaches proposed in chapter 6 are implemented in the “ISM ControllerNode”
class. Since the architecture is spatially distributed, an instance of this class holds only one
implementation of the abstract class “SmcControllaw”.

Depending on the network structure (i.e. centralized or spatially distributed), different
quantities of “NetworkNode” objects are necessary. The class diagram shown in figure 7.10
illustrates the dependency of the node classes on the network classes “NCS Centralized” for
centralized networked control systems and “NCS ISMC” for spatially distributed networked
control systems.

The centralized networked control systems need exactly one sensor node, two network delay
nodes (one from the sensor node to the orderer node and one from the controller node to
the buffer node), one orderer node, one controller node and one buffer node. These node
quantities do not depend on the number of feedback channels.

For spatially distributed networked control systems, the required number of nodes depends
on the number of feedback channels m. To be specific, m orderer and controller nodes, 2m
delay nodes and one sensor node are necessary.

In the constructor of the classes “NCS Centralized” and “NCS ISMC”, these nodes are
instantiated and configured accordingly. The Simulink blocks are configured by simply
passing one of these objects.

139

Chapter 7 The Simulation Toolbox

SensorNode

+sample_states()

NetworkOrderer

+orderertask()

SM_ControllerNodeCentralized

+evaluate()

NetworkBuffer

ISM_ControllerNode

+evaluate()

<<abstract>>
ReachingLaw

+init()
+reachinglaw()
+getSimResults()
+init_reachinglaw()

1..*
SW_Reachinglaw

NonSW_Reachinglaw

PredSW_Reachinglaw

Dummy_Reachinglaw

linearNominalControl
1

<<abstract>>
SmcControllaw

+evaluate()

1

MatchingSTA

ExplicitSTA

ZeroSMC

NcsProblem

NCS_Centralized NCS_ISMC

1

NetworkDelay
2

1

1

1

1

1

2..*

1..*

1

1..*

1..*

Figure 7.10: Class diagram for the network classes.

140

Chapter 8
Summary, Conclusions and Outlook

141

Chapter 8 Summary, Conclusions and Outlook

In the first part of this dissertation, a discrete time mathematical model for networked
control systems is proposed. This model explicitly takes into account the time varying
delays induced by the networked feedback. In order to cover spatially distributed networked
control systems, different time delays for each feedback channel are considered. A spatially
distributed network control system describes a system in which a dedicated controller
node evolutes the control law for each feedback channel. Thus, the controller outputs are
transmitted through several network channels. In contrast to that, centralized networked
control systems are systems in which the control law is evaluated in one single controller
node. As a consequence, the time delays for each feedback channel are the same since only
one network channel is involved. In terms of modeling networked control systems, centralized
networked control systems form a special case of spatially distributed networked control
systems. Therefore, the proposed model covers both networked control system topologies.

Introducing a buffering mechanism which ensures constant round trip times from the sensor
to the actuators results in the buffered networked control system. Due to the constant round
trip times, a time-invariant mathematical model of the buffered networked control system
can be used.

Using this time-invariant mathematical model, sliding mode based control laws for centralized
buffered networked control systems are proposed. Due to the networked control setting,
the sliding variable has to be designed following a specific structure. Due to this structure,
classical sliding mode based reaching laws are not directly applicable. Hence, three reaching
laws for centralized networked control systems are proposed. The parameter choices and
achieved accuracies are discussed. The highest accuracy is achievable with the nonswitching
reaching law followed by the predictive switching reaching law. The switching reaching
law results in the poorest accuracy. Evaluations using a mechanical plant and considering
first order parasitic actuator dynamics show that the predictive switching reaching law
outperforms the nonswitching reaching law for practical applications even though the
theoretically achievable accuracy is better with the nonswitching reaching law.

The sliding mode based control laws for spatially distributed networked control systems
proposed in this dissertation also refer to the time-invariant mathematical model of the
buffered networked control system. To design a control law for spatially distributed networked
control systems, additional challenges have to be overcome. These are the different time
delays for each feedback channel and the limited information as only local information is
accessible (apart from the measurement data) in each controller node. Local information
in this context means that each controller node only has access to the history of the own
control signal since no communication between the controller nodes is available. These
challenges are overcome using integral sliding mode control with a specific choice of the
sliding variable and the nominal control law. The design process for the nominal control law
involves solving linear matrix inequalities to fulfill the requirements. In addition, the specific
choice of the sliding variable makes it possible to cast the problem in a form where classical
sliding mode approaches are applicable. In this dissertation, two discrete time versions of
the super twisting algorithm are considered, namely the explicit Euler discretized super
twisting algorithm and the super twisting algorithm resulting from applying the matching
approach. Also, the matching approach leads to better results in the networked setting

142

8

8.0 Summary, Conclusions and Outlook

since no discretization chattering appears when using this algorithm. Furthermore, the low
sensitivity of this algorithm when choosing too large parameter values is verified for the
networked control scenario in simulation and using a laboratory experiment.

In the last part of this dissertation, the developed simulation environment for buffered
networked systems using the proposed algorithms is described. This simulation environment
is developed with special focus on flexibility in terms of the ability to integrate custom
control strategies with very little effort. Therefore, an interface for each of the two topologies,
centralized and spatially distributed, are provided. As a result, this simulation environment
is a good option to integrate and show the effectiveness of newly developed reaching laws or
sliding mode based control laws in the networked control environment.

Since this work exclusively focuses on the networked induced time delays and neglects
the influence of data loss, the perfect focus for further research would be to extend the
proposed approaches to also deal with this type of network imperfection. In addition, time
synchronization jitters between sensor and buffers or sampling time jitters are not considered
in this work. Hence, these topics would be interesting to study in future research.

143

Bibliography

[1] J. Postel, “Transmission control protocol,” Internet Engineering Task Force, Request
for Comments 793, Sep. 1981.

[2] J. Postel, “User datagram protocol,” Internet Engineering Task Force, Request for
Comments 768, Aug. 1980.

[3] B. Azimi-Sadjadi, “Stability of networked control systems in the presence of packet
losses,” in 42nd IEEE International Conference on Decision and Control, Dec. 2003, pp.
676–681.

[4] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry,
“Foundations of control and estimation over lossy networks,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 163–187, Jan. 2007.

[5] J. Xiong and J. Lam, “Stabilization of linear systems over networks with bounded
packet loss,” Automatica, vol. 43, no. 1, pp. 80–87, Jan. 2007.

[6] K. Liu and E. Fridman, “Networked-based stabilization via discontinuous lyapunov
functionals,” International Journal of Robust and Nonlinear Control, vol. 22, no. 4, pp.
420–436, Mar. 2012.

[7] K. Liu, E. Fridman, and L. Hetel, “Network-based control via a novel analysis of
hybrid systems with time-varying delays,” in 51st IEEE Conference on Decision and
Control, Dec. 2012, pp. 3886–3891.

[8] G. P. Liu, “Predictive controller design of networked systems with communication
delays and data loss,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 57, no. 6, pp. 481–485, Jun. 2010.

[9] W. Hu, G. Liu, and D. Rees, “Event-driven networked predictive control,” IEEE
Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1603–1613, Jun. 2007.

[10] M. C. F. Donkers and W. P. M. H. Heemels, “Output-based event-triggered
control with guaranteed L∞-gain and improved and decentralized event-triggering,”
IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1362–1376, Jun. 2012.

[11] J. Lunze and D. Lehmann, “A state-feedback approach to event-based control,”
Automatica, vol. 46, no. 1, pp. 211–215, Jan. 2010.

145

Bibliography

[12] X. Zhang, Q. Han, and X. Yu, “Survey on recent advances in networked control
systems,” IEEE Transactions on Industrial Informatics, vol. 12, no. 5, pp. 1740–1752,
Oct. 2016.

[13] W. P. M. H. Heemels and N. van de Wouw, Stability and Stabilization of Networked
Control Systems. Springer London, 2010, ch. 7, pp. 203–253.

[14] A. K. Behera and B. Bandyopadhyay, “Event-triggered sliding mode control
for a class of nonlinear systems,” International Journal of Control, vol. 89, no. 9, pp.
1916–1931, Jan. 2016.

[15] G. P. Incremona, A. Ferrara, and L. Magni, “Asynchronous networked MPC
with ISM for uncertain nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 62, no. 9, pp. 4305–4317, Sep. 2017.

[16] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of Dynamic
Systems, 3rd ed. USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

[17] R. Kalman, B. L. Ho, and N. Narendra, “Controllability of linear dynamical
systems,” Contributions to Differential Equations, vol. 1, pp. 198–213, Feb. 1963.

[18] J. Ludwiger, M. Steinberger, M. Rotulo, M. Horn, A. Luppi, G. Kubin, and
A. Ferrara, “Towards networked sliding mode control,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), Dec. 2017, pp. 6021–6026.

[19] J. Ludwiger, M. Steinberger, M. Horn, G. Kubin, and A. Ferrara, “Discrete
time sliding mode control strategies for buffered networked systems,” in 2018 IEEE
Conference on Decision and Control (CDC), Dec. 2018, pp. 6735–6740.

[20] J. Ludwiger, M. Reichhartinger, M. Steinberger, and M. Horn, “Discrete-time
super twisting controller for networked control systems,” IFAC-PapersOnLine, vol. 52,
no. 16, pp. 789–794, Sep. 2019, 11th IFAC Symposium on Nonlinear Control Systems
NOLCOS 2019.

[21] J. Ludwiger, M. Steinberger, and M. Horn, “Spatially distributed networked
sliding mode control,” IEEE Control Systems Letters, vol. 3, no. 4, pp. 972–977, Oct.
2019.

[22] M. B. G. Cloosterman, L. Hetel, N. van de Wouw, W. P. M. H. Heemels,
J. Daafouz, and H. Nijmeijer, “Controller synthesis for networked control systems,”
Automatica, vol. 46, no. 10, pp. 1584–1594, Oct. 2010.

[23] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. Arzen, “How does
control timing affect performance? Analysis and simulation of timing using Jitterbug
and TrueTime,” IEEE Control Systems Magazine, vol. 23, no. 3, pp. 16–30, Jun. 2003.

[24] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time synchronization
protocol,” in Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems, ser. SenSys ’04. ACM, 2004, pp. 39–49.

146

8

Bibliography

[25] J. van Greunen and J. Rabaey, “Lightweight time synchronization for sensor
networks,” in Proceedings of the 2nd ACM International Conference on Wireless Sensor
Networks and Applications, ser. WSNA ’03. ACM, 2003, pp. 11–19.

[26] U. Itkis, Control systems of variable structure, ser. A Halsted Press book. John
Wiley & Sons, Incorporated, 1976.

[27] V. I. Utkin, Sliding Modes in Control and Optimization. Springer Berlin Heidelberg,
1992.

[28] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electro-Mechanical
Systems, Second Edition. CRC Press, May 2009.

[29] C. Edwards and S. Spurgeon, Sliding mode control: theory and applications. CRC
Press, Aug. 1998.

[30] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control and
Observation. Springer New York, 2014.

[31] W. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure control
systems,” IEEE Transactions on Industrial Electronics, vol. 42, no. 2, pp. 117–122, Apr.
1995.

[32] J. Ackermann, “Der Entwurf linearer Regelungssysteme im Zustandsraum,” Regelung-
stechnik, vol. 20, pp. 297–300, 1972.

[33] J. Ackermann and V. Utkin, “Sliding mode control design based on Ackermann’s
formula,” IEEE Transactions on Automatic Control, vol. 43, no. 2, pp. 234–237, Feb.
1998.

[34] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge University
Press, 2012.

[35] J. Kautsky, N. K. Nichols, and P. van Dooren, “Robust pole assignment in
linear state feedback,” International Journal of Control, vol. 41, no. 5, pp. 1129–1155,
1985.

[36] B. Drazenović, “The invariance conditions in variable structure systems,” Automatica,
vol. 5, no. 3, pp. 287–295, May 1969.

[37] K. Abidi, J.-X. Xu, and Y. Xinghuo, “On the discrete-time integral sliding-mode
control,” IEEE Transactions on Automatic Control, vol. 52, no. 4, pp. 709–715, Apr.
2007.

[38] A. Bartoszewicz, “Remarks on discrete-time variable structure control systems,”
IEEE Transactions on Industrial Electronics, vol. 43, no. 1, pp. 235–238, Feb. 1996.

[39] A. Bartoszewicz, “Discrete-time quasi-sliding-mode control strategies,” IEEE Trans-
actions on Industrial Electronics, vol. 45, no. 4, pp. 633–637, Aug. 1998.

[40] A. Levant, “Sliding order and sliding accuracy in sliding mode control,” International
Journal of Control, vol. 58, no. 6, pp. 1247–1263, Dec. 1993.

147

Bibliography

[41] A. Levant, “Robust exact differentiation via sliding mode technique,” Automatica,
vol. 34, no. 3, pp. 379–384, Mar. 1998.

[42] R. Seeber and M. Horn, “Stability proof for a well-established super-twisting
parameter setting,” Automatica, vol. 84, pp. 241–243, Oct. 2017.

[43] M. Reichhartinger and S. Spurgeon, “An arbitrary-order differentiator design
paradigm with adaptive gains,” International Journal of Control, vol. 91, no. 9, pp.
2028–2042, Feb. 2018.

[44] S. Koch and M. Reichhartinger, “Discrete-time equivalents of the super-twisting
algorithm,” Automatica, vol. 107, pp. 190–199, Sep. 2019.

[45] M. Livne and A. Levant, “Proper discretization of homogeneous differentiators,”
Automatica, vol. 50, no. 8, pp. 2007–2014, Aug. 2014.

[46] S. Koch, “Analysis and synthesis of discrete-time sliding mode controllers and ob-
servers,” Ph.D. dissertation, Graz University of Technology, 2019.

[47] S. Chakrabarty and A. Bartoszewicz, “Improved robustness and performance
of discrete time sliding mode control systems,” ISA Transactions, vol. 65, pp. 143–149,
Nov. 2016.

[48] A. Bartoszewicz and P. Latosinski, “Generalization of Gao’s reaching law for
higher relative degree sliding variables,” IEEE Transactions on Automatic Control,
vol. 63, no. 9, pp. 3173–3179, Sep. 2018.

[49] J. Daafouz and J. Bernussou, “Parameter dependent lyapunov functions for discrete
time systems with time varying parametric uncertainties,” Systems & Control Letters,
vol. 43, no. 5, pp. 355–359, Aug. 2001.

148

	Affidavit
	Abstract
	Kurzfassung
	Notation
	Contents
	Introduction
	Why consider Time Delays in the Controller Design?
	Considered Architecture
	Aims and Contributions of this Work

	Modeling Networked Control Systems
	Modeling of Single-Input Networked Control Systems
	Combining the Time Delays in the Networked Control System to the Round Trip Time
	The Network Timing
	The Discrete Time Model of the Networked Control System

	Modeling of multi-input Networked Control Systems
	Numerical Simulation

	Buffered Networked Control System
	Challenges with Time-Varying Delays
	The Buffered Network Control System

	Discrete Time Sliding Mode Control
	Sliding Modes – Continuous vs. Discrete Time
	Sliding Variable Design
	Ackermann's Formula for Sliding Surface Design
	Transformation for Sliding Surface Design

	Matching Condition
	The Reaching Law Approach
	The Switching Reaching Law
	The Nonswitching Reaching Law

	Discretized Super Twisting Algorithms

	Centralized Sliding Mode Control for Buffered Networked Systems
	Design of the Sliding Variable for Buffered Networked Systems
	Reaching Law Based Networked Sliding Mode Control
	The Switching Reaching Law
	The Nonswitching Reaching Law
	The Predictive Switching Reaching Law

	Comparison of the Reaching Laws
	Comparison of the Simulation Results
	Robustness with respect to First Order Actuator Dynamics

	Conclusions

	Spatially Distributed Sliding Mode Control for Buffered Networked Systems
	Integral Sliding Mode Control for Single-Input Networked Systems
	Spatially Distributed Super Twisting Control for Multi-Input Networked Control Systems
	Nominal Control Law
	Sliding Mode Control Law

	Laboratory Experiment
	Conclusions

	The Simulation Toolbox
	User Guide
	Centralized Networked Control Systems
	Spatially Distributed Networked Control Systems

	Integrate Custom Control Strategies
	Centralized Networked Control Systems
	Spatially Distributed Networked Control Systems

	The Classes and their Interaction

	Summary, Conclusions and Outlook
	Bibliography

