
Dissertation

Group Decision Technologies

for Complex Products and Services

Dipl.-Ing. Muesluem Atas, BSc

Graz, June 2020

Institute for Software Technology
Graz University of Technology

Supervisor/First reviewer: Univ.-Prof. Dipl.-Ing. Dr. techn. Alexander Felfernig
Second reviewer: D.Sc. (Tech.) Tomi Männistö

Abstract (English)

Decision technologies such as Recommender Systems and Configuration Systems support users in
identifying a set of useful products and services matching their wishes and needs. Although most existing
decision technologies are designed for single users, many scenarios exist in which it is assumed that items
are consumed by groups. Examples of these are visiting a restaurant with colleagues, deciding on a travel
destination to visit with friends, or software release planning with stakeholders in a software project.

Traditionally, group recommendation approaches are developed based on the well-known recommendation
paradigms for individuals, specifically collaborative filtering, content-based filtering, and knowledge-
based recommendation. For instance, in order to generate group recommendations on the basis of a
knowledge-based recommendation paradigm, the profile of individual group members can be integrated
into a group profile. In this strategy, individual group members first articulate their preferences, and then
discuss conflicting preferences in order to achieve a consensus within the group. Thereafter, individual
preferences are aggregated for generating a group recommendation. The discussion of the articulated
preferences of group members plays a vital role, since it helps to increase the probability of discovering the
decision-relevant knowledge. After preference articulation and conflict resolution, aggregation heuristics
are used to merge the preferences of individuals. It is still to some extent unclear, however, which
heuristic should be applied in which decision scenario. Besides this issue, (group) recommender systems
have suffered from negative influences triggered by decision biases, for example, GroupThink or group
polarization effects. Detecting and counteracting decision biases of this kind has become important as a
means of improving the quality of decisions.

As a means of tackling the above listed challenges, we provide the following contributions. We show how
constraint-based recommendation as a specific type of knowledge-based recommendation for individuals
can be tailored to group scenarios. In addition to this, we introduce an approach for increasing the
knowledge exchange among group members for the purpose of discovering the relevant knowledge that
will be needed for the making of a high-quality group decision. Moreover, we analyze the prediction
quality of different heuristics based on the underlying item domain. Finally, we investigate the influence of
decision biases such as group polarization effects in different domains (risk analysis and cost estimation)
and propose a solution to counteract such biases.

This work also contributes to the area of constraint-based recommendation, which is a type of knowledge-
based recommendation. Knowledge-based recommenders are often applied in complex domains such as

i

cars, travel destinations, and financial services. These systems are able to generate recommendations
based on knowledge about items, their features, and user requirements. Current research, however, shows
that these recommenders face several problems concerning the identification of a suitable diagnosis (i.e.,
finding a way to escape the “no recommendation could be found” dilemma) for the whole group when
group members’ preferences become inconsistent. Moreover, another challenge is the identification of a
suitable group recommendation from a long list of recommendations. To bridge these gaps, this thesis
introduces approaches which can identify diagnoses and recommendations by considering fairness among
group members.

Another limitation lies in the knowledge representation of decision problems for complex domains. This
thesis introduces an efficient and component-oriented knowledge representation for configuration systems
in the Internet of Things (IoT) domain. In this context, we show how to apply Answer Set Programming
techniques to efficiently represent and solve configuration problems.

ii

Abstract (German)

Entscheidungstechnologien zu denen unter anderem Empfehlungsdienste und Konfigurationssysteme
zählen, unterstützen Anwender bei der Identifizierung nützlicher Produkte und Dienstleistungen, die ihren
persönlichen Wünschen und Bedürfnissen entsprechen. Obwohl die meisten bestehenden Entscheidung-
stechnologien für Einzelbenutzer konzipiert wurden, gibt es viele Szenarien, in denen Entscheidungen
von Gruppen getroffen werden. Beispiele hierfür sind der Besuch eines Restaurants mit Kollegen und
Kolleginnen oder die Planung von Software-Releases mit Stakeholdern in einem Softwareprojekt.

Gruppenempfehlungsansätze basieren traditionell auf den bekannten Empfehlungsparadigmen für
Einzelpersonen, wie bspw. Collaborative Filtering, Content-based Filtering und Knowledge-based
Recommendation. Um Gruppenempfehlungen bspw. auf der Grundlage von Knowledge-based Rec-
ommendation zu generieren, kann das Profil einzelner Gruppenmitglieder zu einem Gruppenprofil
aggregiert werden. Diese Strategie beginnt mit der Artikulation der Präferenzen aller Mitglieder und geht
anschließend in eine gemeinsame Diskussion über. In dieser Diskussion werden dann widersprüchliche
Präferenzen besprochen, um einen gemeinsamen Konsens zu finden. Anschließend werden die individu-
ellen Präferenzen der Mitglieder mit Hilfe von Heuristiken aggregiert, um daraus eine Gruppenempfehlung
zu generieren. Wesentlich für eine gelungene Gruppenentscheidung ist die Diskussion zwischen den ver-
schiedenen Mitgliedern. Es ist jedoch noch unklar, welche Heuristik in welchem Entscheidungsszenario
angewendet werden soll. Außerdem leiden Empfehlungssysteme unter negativen Einflüssen, die durch
Entscheidungsverzerrungen ausgelöst werden. Das Erkennen solcher Verzerrungen und Gegensteuern
sind wichtig, um die Qualität von Entscheidungen zu verbessern.

Um die oben genannten Probleme zu lösen, werden folgende Beiträge im Rahmen dieser Arbeit vorgestellt.
Zu Beginn stellen wir Ansätze zur Minimierung von Entscheidungsverzerrungen vor. Darüber hinaus
präsentieren wir einen weiteren Ansatz, um den Wissensaustausch zwischen Gruppenmitgliedern zu
verbessern, um optimale Entscheidungen zu ermöglichen. Des Weiteren analysieren wir die Vorhersage-
qualität von verschiedenen Heuristiken basierend auf der zugrunde liegenden Objektdomäne. Schließlich
untersuchen wir den Einfluss von Entscheidungsverzerrungen wie Gruppenpolarisierungseffekte in zwei
Bereichen (Risikoanalyse und Kostenschätzung) und stellen eine Lösung vor, um solchen Verzerrungen
entgegenzuwirken.

Diese Arbeit leistet auch einen Beitrag zum Thema Constraint-basierte Empfehlungen. Constraint-basierte
Empfehlungen zählen zu den Knowledge-based Empfehlungsmethoden und werden häufig in komplexen

iii

Bereichen (z.B. Reiseziele) angewendet. Die generierten Empfehlungen basieren auf Informationen
über Benutzeranforderungen, Artikel und deren Eigenschaften. Aktuelle Forschungsergebnisse zeigen
allerdings, dass solche Empfehlungssysteme mit mehreren Problemen konfrontiert sind: z.B. wie geht
man mit dem “keine Empfehlung gefunden” Dilemma um? D.h. wie findet man eine geeignete Diagnose
für eine Gruppe, wenn die Präferenzen der Mitglieder sich widersprechen. Eine weitere Herausforderung
ist die Identifizierung einer geeigneten Empfehlung aus einer großen Anzahl von Alternativen. Um diese
Lücken zu schließen, stellen wir geeignete Ansätze vor mit denen Diagnosen und Empfehlungen ermittelt
werden können, welche Fairness unter Gruppenmitgliedern garantiert.

Eine weitere Einschränkung von Entscheidungstechnologien ist die ineffiziente Repräsentation von
Entscheidungsproblemen. Um dies zu vermeiden, stellen wir in unserem letzten Beitrag eine effiziente
und komponentenorientierte Wissensrepräsentation für Konfigurationssysteme im Bereich des Internet
of Things vor. In diesem Zusammenhang zeigen wir, wie man Answer Set Programming anwendet, um
Konfigurationsprobleme intuitiv darstellen und lösen zu können.

iv

Acknowledgement

First of all, I would like to thank my supervisor, Univ.-Prof. Dipl.-Ing. Dr.techn. Alexander Felfernig
who offered me this position, has been motivated me during my study and enriched me with his broad
knowledge.

Additionally, I am very grateful to my colleagues M.Sc.Thi Ngoc Trang Tran, Dipl.-Ing. Dr.techn. Martin
Stettinger, Dipl.-Ing. Ralph Samer, M.Sc. Seda Polat-Erdeniz, Stefan Sgouridis, Michael Jeran, Dipl.-Ing.
Dr.techn. Stefan Reiterer, Dipl.-Ing. Thorsten Ruprechter, and Dipl.-Ing. Christoph Uran who have
contributed to my study.

Lastly, I want to deeply thank my family and my best friends Melanie Merve Seker, Dipl.-Ing. Firat Kilic,
and Dipl.-Ing. Labinot Xhafa who have never stopped to support me during the last years.

Muesluem Atas
Graz, 2019

v

vi

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either literally or
by content from the used sources. The text document uploaded to TUGRAZonline is identical to the present
doctoral thesis.

Graz,
Place, Date Signature

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebe-
nen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommene
Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der
vorliegenden Dissertation identisch.

Graz, am
Ort, Datum Unterschrift

vii

viii

Contents

1. Introduction 1

1.1. Background and Motivation . 1
1.2. Research Objectives . 6
1.3. Contributions . 11
1.4. Thesis Outline . 17

2. Algorithms for Group Recommendation 19

2.1. Introduction . 19
2.2. Preference Aggregation Strategies . 21
2.3. Social Choice based Preference Aggregation Functions 22
2.4. Collaborative Filtering for Groups . 25
2.5. Content-based Filtering for Groups . 29
2.6. Constraint-based Recommendation for Groups . 32
2.7. Handling Inconsistencies . 36
2.8. Critiquing-based Recommendation for Groups . 39
2.9. Hybrid Recommendation for Groups . 43
2.10. Matrix Factorization for Groups . 45
2.11. Conclusions and Research Issues . 47

3. An Analysis of Group Recommendation Heuristics for High- and Low-Involvement Items 49

3.1. Abstract . 49
3.2. Introduction . 49
3.3. Group Recommendation Heuristics . 51
3.4. User Study . 52
3.5. Conclusions and Future Work . 56

4. Beyond Item Recommendation:

Using Recommendations to Stimulate Knowledge Sharing in Group Decisions 57

4.1. Abstract . 57
4.2. Introduction . 57
4.3. Preference Aggregation Mechanisms . 59
4.4. Empirical Analysis . 60
4.5. Future Work . 63

ix

Contents

4.6. Conclusions . 64

5. Polarization Effects in Group Decisions 65

5.1. Abstract . 65
5.2. Introduction . 65
5.3. User Study . 67

5.3.1. Risk Analysis domain . 67
5.3.2. Cost Estimation domain . 68

5.4. Evaluation and Discussion . 68
5.4.1. Group Polarization Effects in Risk Analysis Domain 69
5.4.2. Group Polarization Effects in Cost Estimation Domain 70
5.4.3. Discussion . 71

5.5. Conclusion and Future Work . 72

6. Socially-Aware Recommendation for Over-Constrained Problems 73

6.1. Abstract . 73
6.2. Introduction . 73
6.3. Working Example . 74
6.4. Building Synthetic Homogeneous Groups . 75
6.5. Applying Group Aggregation Functions and Recommending Products to Groups 77
6.6. Evaluation . 79
6.7. Conclusion and Future Work . 82

7. Socially-Aware Diagnosis for Constraint-Based Recommendation 83

7.1. Abstract . 83
7.2. Introduction . 83
7.3. Working Example . 85
7.4. Calculating Socially-Aware Diagnoses . 86
7.5. Building Synthetic Homogeneous Groups using Similarity Metrics 90
7.6. Determining Diagnoses by Applying Group Preference Aggregation Functions 92
7.7. Evaluation . 93
7.8. Conclusion and Future Work . 96

8. Towards Similarity-Aware Constraint-Based Recommendation 97

8.1. Abstract . 97
8.2. Introduction . 97
8.3. Working Example . 99
8.4. Identification of Personalized Diagnoses . 100
8.5. Determination of Similarity Degree Using Similarity Metrics 101
8.6. Approaches for the Identification of Similar Recommendations 102
8.7. Evaluation . 104

8.7.1. Personal Computer Dataset . 104
8.7.2. Bike Dataset . 105

8.8. Conclusion and Future Work . 107

x

Contents

9. Automated Identification of Type-Specific Dependencies Between Requirements 109

9.1. Abstract . 109
9.2. Introduction . 109
9.3. User Study . 111
9.4. Approach to Automated Dependency Detection . 112

9.4.1. Dataset . 113
9.4.2. Feature Definition . 114
9.4.3. Classification . 115
9.4.4. Feature Extraction and Feature Selection with Grid Search 116

9.5. Evaluation . 117
9.6. Threats to Validity . 120

9.6.1. Internal Validity . 120
9.6.2. External Validity . 120

9.7. Conclusion and Future Work . 120

10. ASP-based Knowledge Representations for IoT Configuration Scenarios 123

10.1. Abstract . 123
10.2. Introduction . 123
10.3. IoT Domains and Configuration Models . 125
10.4. Configuration Knowledge Representation in ASP . 127
10.5. ASP Solving and Limitations . 131
10.6. AGILE Configuration Technologies . 135
10.7. Research Issues . 136
10.8. Conclusions . 136

11. Conclusions and Future Work 137

11.1. Conclusions . 137
11.2. Future Work . 141

List of Figures 145

List of Tables 149

Bibliography 155

xi

xii

Chapter 1
Introduction

1.1. Background and Motivation

Users frequently tend to opt for a range of different strategies when deciding what to consume, due to the
difficulties they encounter in identifying useful items or services. Decision-making strategies traditionally
use information from different sources, such as friends, colleagues, popular items chosen by the crowd, or
the advice of an expert. Empirical observations show, however, that the application of these strategies does
not always guarantee affordable, personal, and high-quality recommendations. Therefore, for the sake
of optimal recommendations which meet the user requirements, the application of intelligent techniques
is essential (Jannach et al., 2010). In brief, the identification of an optimal decision appears to be an
altogether challenging and time-consuming task, since users must first analyze a large set of available
products or services, then apply different decision strategies, and finally try to identify the most suitable
item. Identifying optimal recommendations efficiently has thus become a matter of some urgency in recent
years (Jannach et al., 2010).

In order to automate these decision strategies and to provide high-quality recommendations efficiently,
“recommender systems” have been applied in many fields (Burke, 2000; Jannach et al., 2010; Burke et al.,
2011; Ricci et al., 2011). These systems support users in identifying products and services that meet their
desires and needs. Recommender systems are applied today in several domains such as tourism (Loh
et al., 2003; Borràs et al., 2014), financial products (Felfernig et al., 2007; Dávid, 2016), real estate (Yuan
et al., 2013), movies (Christakou et al., 2007; Azaria et al., 2013), news (Liu et al., 2010), web sites (Wang
et al., 2008), and in many other domains. The goal of these systems is to understand the human logic
and decision psychology of users (i.e., consumers), which is the premise to generate recommendations
satisfying users’ preferences. On the technical level, several different concepts are already available
for exploring the information and knowledge that are necessary for making a good decision (Jannach
et al., 2010). On the psychological level, these systems must be capable of understanding the decision
psychology of users. Without an understanding of human psychology, a recommender system cannot
generate accurate explanations as to why and how a specific item is recommended to the active user. In
the event of a misunderstanding/misinterpretation of human psychology, recommender systems are thus
unable to generate personal and high-quality recommendations and as a result the trust of users in such
systems decreases. In order to understand human decision making (Ricci et al., 2010), the following key

1

Chapter 1. Introduction

questions must be answered: “Which factors influence the decision of a user?”, “How are decisions
made?”, and “How do decisions get biased by other sources?” It would appear that making decisions to
satisfy user preferences has remained an extremely challenging task (Ricci et al., 2010).

Recommender systems can be categorized into collaborative filtering, content-based filtering, knowledge-
based recommendation, hybrid recommendation, and group recommendation (Goldberg et al., 1992;
Burke, 2000; Meteren and Someren, 2000; Burke, 2002; Jannach et al., 2010; Masthoff, 2011; Felfernig
et al., 2017a, 2018d) (for more details, see Chapter 2).

Collaborative filtering recommends items to individual users on the basis of users with similar tastes (Gold-
berg et al., 1992; Konstan et al., 1997). Some well-known companies such as Amazon∗, Netflix†, and
Apple‡ have used this technology for many years to recommend items to their customers. Collaborative
filtering is based on the following idea: “If users shared the same preferences and tastes in the past, they
will also have similar preferences and tastes in the future.” Usually, this approach does not require any
information or knowledge about the products or services themselves. Only the information about users
and their consumed items is needed for making recommendations. This approach is implemented on the
basis of the following two steps: First, the similarities between user behavioral patterns are defined (i.e.,
similarity of users based on their consumed items), and then these behavioral patterns are used to make
predictions for the active user.

Content-based filtering compares the active user’s profile with the description of available items (Pazzani
and Billsus, 1997; Mooney and Roy, 2000; Jannach et al., 2010). The profile of the active user and the
description of items are usually represented as tags or keywords/categories. A learning algorithm then
generates the active user’s profile based on his/her consumed items, and finally personal recommendations
are identified based on the active user’s profile. In contrast to collaborative filtering, this approach does
not require large user groups to generate high-quality recommendations, since it compares only the active
user’s profile with the description of new items.

Knowledge-based approaches can be effectively used in domains where collaborative- and content-based
filtering cannot be applied. Knowledge-based recommenders are especially helpful for complex domains
in which items are not consumed very often. Examples of such domains are computers, financial services,
real estate, travel destinations, and cars (Torrens et al., 2003; Peischl et al., 2009; Leitner et al., 2012; Reit-
erer, 2015; Reiterer et al., 2015; Win and Srisura, 2019). Knowledge-based recommenders follow the idea
of making recommendations based on the knowledge about items, their features (i.e., knowledge base), and
user requirements (i.e., user constraints). There are two different types of knowledge-based recommender
systems: critiquing-based which are also considered as specific type of case-based recommenders (Burke,
2000; Bridge et al., 2005) and constraint-based recommender systems (Felfernig and Burke, 2008; Jannach
et al., 2010; Felfernig et al., 2011a). Both types of recommenders are very similar and differ only in
the way in which they determine recommendations (i.e., solution). Case-based recommender systems in
particular determine solutions by using similarity metrics whereas constraint-based recommender systems
apply constraint search or conjunctive query-based approaches. In such recommenders, the recommended
item must fulfill all the criteria defined by the user and the knowledge base. If user constraints are

∗Amazon https://www.amazon.com/
†Netflix https://www.netflix.com/
‡iTunes https://www.apple.com/itunes/

2

https://www.amazon.com/
https://www.netflix.com/
https://www.apple.com/itunes/

1.1. Background and Motivation

consistent with the underlying constraint set (i.e., knowledge base), several recommendations can be
generated. However, it is still unclear how to effectively identify the most suitable solution from a long list
of recommendations (Atas et al., 2018c).

If user preferences are inconsistent with the underlying constraint set, users will need to be supported
in finding a way to escape the “no recommendation could be found” dilemma (Reiterer et al., 2015).
In such cases, some of the preferences have to be deleted or adapted such that a recommendation can
be determined (i.e., a diagnosis has to be identified). In this context, an adequate diagnosis based on
the constraints articulated by a user must be identified. In group recommendation scenarios, diagnosis
finding is even more challenging since a suitable recommendation for the group has to be identified. If the
preferences of group members are inconsistent with the underlying constraint set, a diagnosis should be
identified, which takes into account the preferences of all group members (as far as this is possible). If the
recommended solution only considers the preferences of some of the group members, group satisfaction
will decrease which can negatively influence the mood of the group (Lind et al., 2001). Therefore, an
optimal group recommendation can only be acquired if the fairness within a group and the satisfaction of
all group members are sufficiently taken into account (Atas et al., 2019a,b).

As briefly mentioned above, each recommendation approach (collaborative filtering, content-based
filtering, and knowledge-based recommendation) has its strengths and weaknesses. In order to exploit
synergy effects, hybrid recommendation approaches have been proposed (Burke, 2002; Jannach et al.,
2010; Ricci et al., 2010). The idea of these approaches is to achieve high-quality recommendations on
the basis of combining basic recommendation approaches. For example, collaborative filtering shows
a cold-start problem when new products or services are available, whereas content-based filtering can
overcome this problem because it recommends items based on their description.

Although different variants of recommender systems have been proposed for individuals, many scenarios
exist in which items are consumed by a group of users (Masthoff, 2011; Felfernig et al., 2018d). Some
examples of this are choosing a restaurant to have dinner at with colleagues, selecting a movie to watch
with the family, deciding on a travel destination to visit with friends, or software release planning with
stakeholders in a software project. One of the key aspects of a good group decision is the knowledge
exchange among group members, because the intensive analysis of all alternatives (i.e., the discussion of
all alternatives) will disclose hidden profiles and increase the decision quality (Stasser and Titus, 1985).
The higher the frequency of the exchanged information among group members, the better the quality
of the corresponding decision (Wittenbaum et al., 2004). Moreover, through the increased frequency of
information exchange among group members, the probability of discovering the relevant knowledge (the
knowledge of some group members, which is not known by the other group members) also increases,
which is essential for a high-quality group decision (Wittenbaum et al., 2004). Group diversity (such as
demographic and educational background) or recommendation diversity are, for example, possibilities to
increase the knowledge exchange among group members. However, it is still not completely clear how
recommendation diversity influences the information exchange among group members (Atas et al., 2017).

After exchanging the relevant knowledge among group members, a strategy (aggregated predictions or
aggregated models) is used to aggregate preferences of individual group members (for more details, see
Section 2). Different approaches exist for the determination of group recommendations (Jameson and
Smyth, 2007) in which the preferences of individual group members are aggregated based on aggregation

3

Chapter 1. Introduction

functions (also termed aggregation heuristics or aggregation strategies). There are a number of different
aggregation heuristics available (e.g., most pleasure, least misery, and average voting) that are applied
in group recommendation scenarios (Masthoff, 2011). It is still unclear to some extent, however, which
heuristics should be applied and in what context, or to what extent the item domain influences how
appropriate the group aggregation heuristics are (Felfernig et al., 2017a).

Apart from open issues in preference aggregation, group recommender systems have also suffered from
the negative influences of decisions biases (Jameson, 2004; Jameson and Smyth, 2007; Berkovsky and
Freyne, 2010; Masthoff, 2011; Felfernig et al., 2017a, 2018d). For instance, compared to individual
recommendations, recommender systems designed for groups must tackle additional decision biases such
as anchoring effects, GroupThink, or group polarization effects (Janis, 1972; Myers and Lamm, 1976;
Stettinger et al., 2015a).

Anchoring effects (Jacowith and Kahneman, 1995; Adomavicius et al., 2011; Stettinger et al., 2015a)
occur during the decision making process where user decisions can be influenced by an initially available
information. This information is often denoted as the “anchor”. In group decision scenarios, the
preference of the first articulating group member can influence the preferences of the others. In order to
counteract anchoring effects in such scenarios, the preferences of group members should not be disclosed
in the early stages of the group decision making process (Stettinger et al., 2015a).

GroupThink is a psychological phenomenon which was initially analyzed by Irving Janis (Janis, 1972).
In group decisions, group members often have diverse opinions concerning the given alternatives (i.e.,
items). However, group members often do not articulate their preferences to avoid conflicts or reaching
a consensus within the group. The desire for group conformity leads instead to a suboptimal decision
outcome, because “individual creativity” and “independent thinking” are lost. This phenomenon, which
is termed GroupThink, deteriorates nearly every group decision (Esser, 1998). For example, meetings
in companies typically involve the whole team, but decisions are only made by some team members
(leaders, project managers, etc.). In order to avoid the GroupThink phenomenon, leaders should not
immediately articulate their opinions and analyze alternative solutions of other team members in de-
tail. Moreover, the opinion of experts outside the group can be integrated to achieve a high-quality decision.

Group polarization is the tendency of a group to make decisions that are more extreme than the average
of the individual group members’ preferences (Stoner, 1961; Myers and Lamm, 1976; Sunstein, 2002;
Adomavicius et al., 2011). This phenomenon indicates that if individual group members tend to make
risky decisions, then the group decision will be even riskier. Also, if they tend to make cautious decisions,
then the group decision will be more cautious. This phenomenon was discovered by James Stoner in
1961 when he tried to compare the risk-taking of individuals and groups (Stoner, 1961). These effects are
usually triggered by the “GroupThink” bias in which some of the group members don’t want to articulate
their own opinions that other group members may disagree with (Whyte, 1989). This bias can influence
decisions in many fields such as politics, sports, financial services, and business (Sunstein, 2002). Some
of the studies made in this area have investigated the influence of polarization effects on a specific domain
(e.g., risk analysis) and the insight into these effects has been not discovered in some other domains (e.g.,
cost estimation). Moreover, no results have been published on how to avoid these effects on the group
decision quality (Atas et al., 2018a).

4

1.1. Background and Motivation

Apart from the open issues in decision biases, group members might also face situations in which they must
make a decision in complex domains such as Requirements Engineering. In this domain, the application
of recommendation techniques is not sufficient to support users in making decisions on all Requirements
Engineering activities. The core activities of Requirements Engineering are the definition and elicitation
of requirements, the identification of stakeholders, the negotiation of requirements, the identification of
dependencies, and release planning. Requirements Engineering plays a crucial role in the success of soft-
ware projects, especially for scenarios in which the size and complexity of software projects is rapidly
increasing. In this context there is great demand for applying automated and intelligent techniques in each
Requirements Engineering core activity (Hofmann and Lehner, 2001; Mobasher and Cleland-Huang, 2011;
Felfernig et al., 2017c). For instance, recommender systems can be applied in the following core activities
of Requirements Engineering:

• Definition and elicitation of requirements: In this activity, group members (also referred to as stake-
holders) must define software requirements. In this context, a recommender system can identify
reusable requirements that have already been defined in previous projects and may be relevant to the
current project (Dumitru et al., 2011).

• Stakeholder identification: The main focus of this activity is to identify a group of persons who are
capable of providing a complete and accurate description of software requirements. In this con-
text, a recommender system can support stakeholders’ identification on the basis of social network
analysis (Lim et al., 2010). For instance, based on the description of requirements, a content-based
recommender system can identify stakeholders who completed similar tasks in previous projects.

• Negotiation of requirements: In this step, a group of stakeholders must jointly evaluate the quality
of requirements and also try to figure out in which way the requirements should be taken into ac-
count in release planning. Group recommendation techniques can be applied in this activity to assist
stakeholders with the requirement evaluation and prioritization process (Ninaus et al., 2014a).

• Identification of dependencies: Dependency identification is a crucial activity in Requirements En-
gineering. During this phase, stakeholders must find and define correct dependencies as early as
possible (Li et al., 2012). In the case of incomplete or incorrect dependencies, additional efforts are
triggered in terms of redesign and reprogramming. An example for a dependency is “R1 requires
R2” (R1→ R2) which indicates that for the realization of requirement R1, requirement R2 must first
be implemented. Many projects today involve a large number of requirements and the identification
of dependencies can be challenging for stakeholders. Due to this fact, there is an urgent need for
automated technologies to assist stakeholders in finding dependencies between requirements (Atas
et al., 2018b).

Another core activity of Requirements Engineering is Release Planning. After having completed the
requirements elicitation, all the requirements need to be evaluated according to different requirement
properties and assigned to different releases by the stakeholders. The most important requirements should
be part of the first release which can be delivered to end-users as a “minimal viable product”. By contrast,
requirements which are evaluated as less important will be developed in later releases. Unfortunately,
recommender systems do not support scheduling activities such as release planning. In this context,
configuration systems were developed to support users in configuring complex products or services, which
enable individual customization of products (Stumptner, 1997; Aldanondo and Vareilles, 2008; Felfernig
et al., 2014a,b).

5

Chapter 1. Introduction

Furthermore, configuration systems are applied to complex domains, such as cars (Macher et al., 2015),
personal computers (Felfernig et al., 2014a), financial services (Stolze et al., 2000; Felfernig et al., 2007),
and in many other domains. These systems allow individual customization of complex products and ser-
vices (i.e., designed for highly variant consumer items). Configuration technologies are becoming increas-
ingly popular today in many different Internet of Things (IoT) scenarios (Atzori et al., 2010). In the IoT
context, configurators can be applied in many scenarios. For example, for the identification of ramp-up
configurations, these systems need to figure out the components that will be needed in a specific IoT set-
ting. The knowledge base for configurations of this type, however, are often represented as a constraint
satisfaction problem, which is neither intuitive nor easy to maintain for complex decision problems. As a
result, there is a need for efficient knowledge representation concepts (Felfernig et al., 2017b).

1.2. Research Objectives

We discussed the challenges of recommender and configuration systems in the previous section. On the
basis of these challenges, our research objectives are introduced in the following:

1. Group recommendations on the basis of recommendation paradigms for individuals
Recommender systems are effective tools to support users in identifying a set of useful items
matching their wishes and needs. Many recommendation technologies and concepts are now
available, since these systems have already been applied for a couple of years (Resnick and Varian,
1997). Although most existing systems are designed for recommending products and services to
single users, there are many scenarios in which recommendations need to be determined for groups.
Examples of these are deciding on a restaurant to have dinner at with your friends, deciding on a
digital camera to use together with your partner, or deciding on release planning with stakeholders
in a software project. Unfortunately, until now, some recommendation concepts and technologies
such as constraint-based recommenders have not been well-designed for groups. In order to
facilitate the development of such recommenders, group recommendation strategies have to be
implemented. The application of recommendation concepts and technologies in group scenarios,
however, triggers additional challenges. For instance, in some decision scenarios (e.g., deciding on
a restaurant), social aspects such as fairness and consensus among group members should be taken
into account (i.e., the preferences of all members should be taken into account as far as possible
when generating a group recommendation). The open issues mentioned above raise the first research
question:

(Q1) How can constraint-based recommendation for individual users be implemented for
group scenarios?

2. Group recommendation strategy on the basis of item domain
As already stated, group recommender systems generate recommendations by aggregating the prefer-
ences of all individual group members. There are two basic strategies for this: aggregated predictions
and aggregated models. In the first of these, the recommender system suggests recommendations
(ratings or items) for individual group members and these recommendations are then aggregated
in order to generate group recommendations. The application of such strategies, however, cannot
guarantee the satisfaction of all group members, especially in situations where the recommendations
generated for individuals are diverse (i.e., do not overlap). In such cases, the recommendation only

6

1.2. Research Objectives

satisfies some group members and this decreases the overall satisfaction of the group. The follow-up
discussion of the group members thus takes on an important role in the decision making process,
since no ranking of the individual candidate items is provided. Another type of aggregated predic-
tion strategy is to aggregate group-member-specific predictions for candidate items (e.g., aggregation
of rankings). The outcome of this approach is a ranking of candidate items.

In the second strategy, the profiles of individual group members are aggregated into a group
profile, and the recommendations are then generated based on the group profile. This approach
is usually applied in scenarios where all the group members attempt to define a group profile
based on the negotiation and adaptation process for their preferences that has the target of a
consistent group profile. As with the first strategy, this strategy also has some disadvantages,
for instance, biases such as GroupThink and Anchoring Effects are triggered by the disclosing
of individual preferences in the early stages of the group decision making process (Janis, 1972;
Felfernig, 2014). After deciding on a strategy, group aggregation heuristics (also often referred
to as group aggregation functions or group aggregation strategies) are used to merge individual
group member profiles or the individual recommendations of group members. On an abstract level,
these aggregation functions can be grouped in three different categories: majority-based (e.g.,
Approval Voting, Copeland Rule), consensus-based (e.g., Average Voting, Fairness), and borderline
(e.g., Least Misery, Most Pleasure). Although a few studies have been made on group aggregation
heuristics, it is still to some extent unclear which aggregation heuristic can be used for what
scenario. In other words, “which aggregation heuristic or recommendation strategy can be applied
on the basis of item domain” is still an open issue. This gap brings us to the second research question:

(Q2) Which recommendation strategy should be applied in which item domain?

3. Recommendations to stimulate information exchange in group decisions
Group decisions are often made after a detailed discussion of alternatives among group members. As
already mentioned in Section 1.1, the more information that is exchanged among group members,
the higher the quality of the decision will be. Group decisions are frequently not optimal, because
information relevant for making them that is, possessed by individual group members, is not shared
with the others (i.e., hidden profiles) (Stasser and Titus, 1985; Greitemeyer and Schulz-Hardt, 2003).
Hidden profiles are usually shared by some of the group members and each member individually
has only a subset of information. Hence, the degree of knowledge exchange within a group can
have a major impact on the decision quality. In this context, intelligent techniques are needed that
help to increase the knowledge exchange among group members. Before answering the question
of “how to increase the knowledge exchange among group members?”, however, we must first
answer the following question: “What are the factors that trigger a group discussion and increase
knowledge-exchange among group members?”. One alternative is to form a diverse group or to
provide diverse recommendations (Yaniv, 2011). For instance, if suggestions to a group are too
diverse, this diversity can trigger additional group discussions about decision alternatives. These
open issues lead to the third research question:

(Q3) How does recommendation diversity influence the information exchange among group
members?

7

Chapter 1. Introduction

4. Polarization effects in group decisions
As discussed above, group decisions are affected by some decision biases in a manner similar to
single user decisions. Some of these decision biases such as anchoring effects and GroupThink are
well-known and have also been well analyzed in different domains (Janis, 1972; Stettinger et al.,
2015a). This said, there are, however, many other group decision biases such as group polarization
effects, which have not been adequately analyzed (Roy and Yan, 2009; Li and Luo, 2011). As stated
above, group decisions are often made after a detailed discussion of the decision alternatives. Indeed,
group members have different opinions regarding decision alternatives, and a discussion might
therefore be initiated in order to let group members express their opinions. However, GroupThink
can cause a situation in which some group members do not want to articulate their opinions. This
bias can minimize conflicts among group members and accelerate the consensus making process.
At the same time, it can lead to group decisions that are more extreme than the initial opinions of
its members (Stoner, 1961). An example of this can be observed in the politics domain when the
members of a political party make decisions (e.g., right-wing or left-wing political parties). Since
all members of a political party share the same (or similar) opinions regarding a decision, the group
decision becomes more extreme than the initial opinions of the individual group members. Existing
studies have investigated the influence of polarization effects in some specific domains (e.g., risk
analysis) and the resulting insights could not be discovered in other domains (e.g., cost estimation).
Furthermore, approaches to counteract polarization effects do not exist. These open issues motivated
the fourth research question:

(Q4) How do “Group Polarization Effects” influence the outcome of group decisions and
how can these effects be counteracted?

5. Socially-aware recommendation for over-constrained problems
Knowledge-based recommender systems are recognized as helpful tools for recommending complex
items such as cars, real estate, or travel destinations to users (Torrens et al., 2003; Reiterer, 2015).
There are two different types of these systems: case-based and constraint-based recommender
systems (Bridge et al., 2005; Felfernig and Burke, 2008). Constraint-based recommender systems
can apply constraint solving to generate recommendations. In this approach, the recommended
item must fulfill all the constraints defined by the active user and the recommendation knowledge
base. For cases in which items are to be recommended for a group of users in particular, the
recommendation process becomes more complex because of the conflicting preferences of the users.
In a group scenario, there can be conflicts between the group members’ preferences (i.e., individual
constraints) or between the preferences of the group members and the recommendation knowledge
base. If the preferences of the group members are inconsistent with the underlying knowledge base,
then support is needed for finding a way out of the “no recommendation could be found” dilemma
(i.e., identifying a diagnosis) (Felfernig et al., 2009a). A diagnosis suggests a solution to adapt or
remove some of the constraints, which helps to find at least one recommendation. The identification
of a suitable diagnosis for the group is a cumbersome process because the identified diagnosis must
be fair to all group members and should not require only the adaption or removal of the constraints
of some group members. Fairness among the group members together with satisfaction for them
all in a commonly consumed item is vital for an optimal group decision. Recommending items to
a group with constraint-based recommender systems appears to be a complex process. In order to
streamline this process, group aggregation functions (also called group aggregation heuristics) can

8

1.2. Research Objectives

be applied to recommend items for groups in scenarios where the constraints of group members
become inconsistent (i.e., over-constrained). In our approach, we first calculate the similarities
between group members’ preferences and the available items, and then apply a suitable aggregation
function to these similarities in order to recommend an item to the group. It is still to some extent
unclear, however, which aggregation function is the most suitable for predicting items to a group.
This open issue raises the following research question:

(Q5) Which aggregation functions are suitable for predicting items to groups in situations where the
preferences of group members become inconsistent?

6. Socially-aware diagnosis for constraint-based recommendation
As described in the previous research question, inconsistencies between group member preferences
in constraint-based recommendation scenarios have to be resolved by taking into account the
preferences of all the group members. In order to tackle this challenge, a diagnosis must be
identified, which does not decrease the group satisfaction, while simultaneously taking fairness
among the group members into consideration. In the previous research question, the challenge
lay in the generation of a group recommendation without the identification of diagnoses by using
group aggregation functions. Scenarios also exist in which the diagnosis identification is desired
(i.e., first, a group of users wishes to analyze all possible diagnoses, and then selects a suitable
diagnosis for the group). A diagnosis is a minimal set of group member preferences, which must be
adapted or deleted in order to find a recommendation (Reiter, 1987). Traditionally, diagnoses are
determined based on Breadth-First Search and focus on the identification of a diagnosis of minimal
cardinality (Reiter, 1987; Felfernig et al., 2004). However, a diagnosis with minimal cardinality
is not necessarily the most suitable diagnosis for a group. For example, should a diagnosis with
minimal cardinality include only the preferences of a single group member, this group member
alone must adapt or delete his/her preferences, whereas the preferences of other group members can
remain unchanged (i.e., unfair strategy; the satisfaction of all group members is not guaranteed).
To counteract this problem, socially-aware diagnosis techniques, which help to identify diagnoses
that best match the preferences of all group members, are required. This leads to the sixth research
question:

(Q6) How to identify a socially-aware diagnosis when group members’ preferences are inconsistent?

7. Similarity-aware recommendations for constraint-based recommender systems
Constraint-based recommender systems allow the individual customization of complex industrial
products and services in order to satisfy individual user needs. In some cases, user preferences can be
inconsistent with the underlying constraint set and users need to be supported in finding a diagnosis.
In addition, after identifying and applying a diagnosis, the proposed recommendation should meet
the defined user requirements in order to increase the user satisfaction. Furthermore, recommender
systems in complex-product domains (e.g., personal computers or cars) are usually capable of
calculating millions of suggestions. It is also often the case that these systems must deal with
difficult problems such as system maintainability, consistency maintenance, and efficient response
times. One of the major challenges faced by these recommenders is to identify the most suitable rec-
ommendation from a long list of candidates to increase user satisfaction. This means the identified
recommendation should be similar to the constraints articulated by a user and must be computed
with an acceptable performance. A simple solution is the comparison of user constraints with each

9

Chapter 1. Introduction

possible recommendation in order to identify the most similar recommendation. Due to unaccept-
able runtimes, such naive solutions are not applicable. The related research question is the following:

(Q7) How can a constraint-based recommender system identify a recommendation which is
similar to the preferences articulated by a user?

8. Automated identification of dependencies between requirements
The size and complexity of software projects has increased rapidly in the past decade. As a result,
an increasingly strong demand has emerged for applying automated and intelligent techniques to
support core activities for Requirements Engineering processes. The core activities of a Require-
ments Engineering process are the definition and elicitation of requirements, the negotiation of
requirements, the identification of dependencies, the identification of stakeholders, and release
planning (Hofmann and Lehner, 2001). As already stated in Section 1.1, recommender systems and
configuration systems can be applied in many core activities of “Requirements Engineering” in order
to achieve high-quality decisions. For instance, dependency identification is a crucial activity in
Requirements Engineering and the defined dependencies between requirements have to be accurate,
complete, and consistent. Many projects today are characterized by a large number of requirements.
As a result, the identification of dependencies among the requirements becomes a major challenge
for the people involved. Due to this limitation, there is an urgent need for automated techniques,
which can assist stakeholders in finding the dependencies among the requirements. These open
issues raise the following research question:

(Q8) How can requirement dependencies be identified automatically using supervised classifi-
cation techniques?

9. Knowledge representations for IoT configuration scenarios
As has been pointed out, configuration systems support users in scenarios where the individual
customization of products or services is needed. These systems configure an item based on a
set of predefined component types and corresponding constraints that restrict the way in which
component instances can be combined. In addition, requirements (i.e., constraints) articulated by
users restrict the set of possible solutions. Configuration technologies are popular and applied
in many domains such as the Internet of Things (IoT), operating systems, and software product
lines (Stumptner, 1997). In the context of IoT, configurators can be applied to many scenarios, for
example, in the identification of ramp-up configurations, which is the process of figuring out the
components that will be needed for a specific IoT setting. Such IoT settings are complex and usually
involve hundreds of constraints and components. Such complex configuration scenarios, however,
are mostly implemented on the basis of constraint-based approaches (Hotz et al., 2014; Felfernig
et al., 2014a). Unfortunately, knowledge representations of this kind are relatively hard to maintain
and this gap triggers an urgent need for alternative knowledge representations. This leads to the
following research question:

(Q9) How can configuration knowledge be efficiently represented in the IoT domain?

10

1.3. Contributions

1.3. Contributions

The relevant research questions of this thesis were presented in the previous section (see Section 1.2). In
this section, we present the main contributions of this thesis which are briefly introduced in Table 1.1.

Research questions Contributions

(Q1) How can constraint-based recom-
mendation for individual users be imple-
mented for group scenarios?

In this context, basic group recommendation techniques
are introduced (Felfernig et al., 2018a). We present real-
world scenarios for group recommendation and show
how basic recommendation concepts such as collabo-
rative filtering, content-based filtering, constraint-based
recommendation, critiquing-based, and hybrid recom-
mendation can be applied to support group recommen-
dation. In addition, we classify these recommendation
concepts into the following aggregation strategies:
Aggregated predictions: There are two basic ap-
proaches to aggregate predictions. (1) Recommenda-
tions for individual group members are generated and
then merged together for the recommendation of items to
groups. (2) Group-member-specific predictions for can-
didate items are aggregated. The outcome of this ap-
proach is a ranking of candidate items.
Aggregated models: First, individual group member
profiles are merged together to generate a group profile.
Then, recommendations on the basis of the group profile
are generated for the group.
In this context, our contribution is to provide an overview
of group recommendation techniques and algorithms to
researchers in the field of recommender systems. In
particular, we show how constraint-based recommenders
can be designed for groups of users.

11

Chapter 1. Introduction

(Q2) Which recommendation strategy
should be applied in which item domain?

We analyze the prediction quality of group recommen-
dation strategies (Most Pleasure, Least Misery, Average
Voting, Minimal Group Distance, Ensemble Voting, Mul-
tiplicative) depending on the item type. We separate item
types based on their decision effort as follows: high-
involvement items (i.e., items with high related decision
effort such as deciding on an apartment to share with
friends for many years) and low-involvement items (i.e.,
items with low related decision effort such as deciding on
a restaurant to have dinner at with your friends). More-
over, we conduct a user study and collect a dataset from
420 participants in order to analyze the appropriateness of
various aggregation strategies. For the two item domains
of restaurants and shared apartments, we show that ag-
gregation strategies in group recommendations should be
tailored based on the underlying item domain (i.e., differ-
ent aggregation strategies have to be applied based on the
item domain) (Felfernig et al., 2017a).

(Q3) How does recommendation diversity
influence the information exchange among
group members?

Due to the fact that knowledge exchange among group
members discloses hidden profiles (Stasser and Titus,
1985; Greitemeyer and Schulz-Hardt, 2003) and in-
creases the decision quality, we investigate the possibil-
ities of exploiting recommendation technologies to fos-
ter intended behavior, which can also be interpreted as
a kind of persuasive technology. These possibilities are
used to form diverse groups (e.g., group members with
different educational backgrounds) or to provide diverse
recommendations. We analyze different recommendation
strategies with a varying degree of recommendation di-
versity and investigate the impact of recommendation di-
versity on the knowledge interchange between users. The
outcome shows that recommendation diversity has an im-
pact on the frequency of information exchange between
group members. The higher the diversity of recommen-
dations, the more information is exchanged among group
members (Atas et al., 2017).

12

1.3. Contributions

(Q4) How do “Group Polarization Effects”
influence the outcome of group decisions
and how can these effects be counteracted?

In the context of group recommendations, we analyze the
existence of Group Polarization Effects in the following
two dimensions: “Risk” and “Cost estimation”. In the
risk dimension, we show that if individual group mem-
bers tend to make cautious decisions, then the group de-
cision will be more cautious (i.e., Group Polarization Ef-
fects exist). However, if individual group members tend
to make risky decisions, then the group decision is not
riskier (i.e., Group Polarization Effects do not exist). In
the cost estimation dimension, we find out that group po-
larization effects only exist at the lower boundaries of the
cost range (i.e., if individual group members tend to es-
timate lower costs, then the cost estimation of the group
is much lower). Furthermore, we present a way to coun-
teract the group polarization bias in order to prevent the
deterioration of decision quality. To counteract group po-
larization effects, counterarguments regarding a decision
can be provided to prevent an extreme group decision out-
come. These arguments can be automatically generated
by a system or by a new group member who has a differ-
ent opinion from others (Atas et al., 2018a).

(Q5) Which aggregation functions are suit-
able for predicting items to groups in situa-
tions where the preferences of group mem-
bers become inconsistent?

We present a constraint-based socially-aware recom-
mender system and analyze the prediction quality of
some preference aggregation functions applied to gen-
erate group recommendations, such as consensus-based
(Average Voting, Minimal Group Distance, Multiplica-
tive, and Ensemble Voting) and borderline (Least Mis-
ery and Most Pleasure). Furthermore, we analyze their
capability to predict relevant items in situations where
no solutions could be found for a given set of prefer-
ences (i.e., over-constrained items). The result indicates
that consensus-based aggregation functions which con-
sider all group members’ preferences lead to a higher pre-
diction quality compared to borderline aggregation func-
tions, which focus solely on the preferences of some in-
dividual group members (Atas et al., 2018c).

13

Chapter 1. Introduction

(Q6) How to identify a socially-aware di-
agnosis when group members’ preferences
are inconsistent?

Knowledge-based group recommender systems are usu-
ally used for recommending complex items (i.e., items
with a high related decision effort which is also termed
high-involvement items) to a group of users. These sys-
tems can generate recommendations only if constraints
given by group members and knowledge base are consis-
tent. Otherwise, in case of an inconsistency, the identi-
fication of a suitable diagnosis is required to find a rec-
ommendation. However, in order to identify a suitable
diagnosis for a group (i.e., for all group members), both
fairness among group members and also the satisfaction
of all group members must be taken into account. We
propose an approach that takes into account all the as-
pects mentioned. In particular, our approach determines
socially-aware diagnoses guided by aggregation func-
tions in situations where the preferences of group mem-
bers are inconsistent with the underlying constraint set.
We show that the aspect of fairness (i.e., Least Misery
aggregation function) plays a major role in the selection
of high-involvement items. Furthermore, the prediction
quality of our approach outperforms basic approaches
such as Breadth-First Search and Direct Diagnosis (Atas
et al., 2019a).

14

1.3. Contributions

(Q7) How can a constraint-based recom-
mender system identify a recommendation
which is similar to the preferences articu-
lated by a user?

We introduce two approaches to constraint-based recom-
mendation that suggest suitable recommendations from a
long list of recommendations to users. Our approaches
can generate recommendations without identifying a di-
agnosis in cases where user requirements are inconsis-
tent with the underlying constraint set. The first ap-
proach (referred to as the soft relaxation-based approach)
identifies a similar recommendation by relaxing require-
ments which are in conflict with the underlying knowl-
edge base. In the second approach (referred to as the hard
relaxation-based approach), recommendations similar to
the users requirements are identified by deleting the diag-
nosed user requirements. We test both approaches (soft
and hard relaxation-based approach) with two different
datasets and evaluate them with regard to their runtime
performance and the degree of the similarity between
the original requirements and the identified recommen-
dations. The results show that both approaches are able
to identify similar recommendations in an efficient way,
even if the user requirements are inconsistent with the un-
derlying knowledge base (Atas et al., 2019b).

(Q8) How can requirement dependencies
be identified automatically using super-
vised classification techniques?

We introduce an intelligent approach for automatically
identifying dependencies between software requirements
of the type “requires” by using supervised classification
techniques (Atas et al., 2018b). With the application of
Natural Language Processing (NLP) techniques, our ap-
proach aims to identify requirement dependencies of the
type “requires” by using the “title” and “description” of
each requirement. First, the NLP techniques are applied
to filter out irrelevant information (e.g., removing stop
words). Subsequently, different classifiers such as Naive
Bayes, Linear SVM, k-Nearest Neighbors, and Random
Forest are trained and tested to identify the correct de-
pendencies of type “requires”. The results indicate that
Random Forest classifiers correctly predict dependencies
with an F1 score of 0.82.

15

Chapter 1. Introduction

(Q9) How can configuration knowledge be
efficiently represented in the IoT domain?

In this context, we investigate how to represent config-
uration knowledge easily and efficiently in the domain
of smart homes. Usually, configuration problems in
the Internet of Things (IoT) domain consist of hundreds
of different components and constraints and represent-
ing this knowledge in a traditional way (e.g., constraint-
based representation) is not easily manageable. As a re-
sult, there is an urgent need for a component-oriented
knowledge representation that is easy to use and main-
tain. In order to tackle these open issues, we propose a
knowledge representation described in Answer Set Pro-
gramming (ASP) language which is an alternative to
constraint-based knowledge representations and useful
for large and complex configuration domains. In ad-
dition, we show that this logic-based approach is well-
suited for a component-oriented representation of config-
uration tasks in the IoT domain (Felfernig et al., 2017b).

Table 1.1.: Overview of the contributions with regard to the research questions of this thesis.

16

1.4. Thesis Outline

1.4. Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 gives an introduction to recommendation approaches for individual users and shows how to
integrate these in group recommendation scenarios. These scenarios are designed on the basis of the
following recommendation techniques: collaborative filtering, content-based filtering, constraint-based
including utility-based recommendation, critiquing-based, and hybrid recommendation. In addition, basic
strategies such as aggregated predictions and aggregated models are applied to aggregate the preferences
of individual group members.

In Chapter 3, the selection of preference aggregation functions in dependence on the item domain is
analyzed based on a dataset collected in a user study. In particular, item domains are separated based
on their decision effort (high/low-involvement item). The following group aggregation functions are
analyzed: Average Voting, Least Misery, Most Pleasure, Minimal Group Distance, Ensemble Voting, and
Multiplicative.

Chapter 4 presents possibilities for increasing the amount of exchanged knowledge in group decision sce-
narios. The idea is to increase the frequency of information exchange, which will lead to an improvement
of the corresponding decision quality. In addition, the impact of recommendation diversity on knowledge
sharing among group members is analyzed and evaluated based on an empirical study conducted with
groups of computer science students.

Chapter 5 provides an overview of “Group Polarization Effects” and shows the impact of these effects
on the decision making behaviour of group members. The influence of these effects on decisions is
analyzed in the following two dimensions: risk analysis and cost estimation. These effects are investigated
particularly in situations where individual group members tend to make either risky or cautious decisions.
Apart from analyzing scenarios in which group polarization effects occur, we also sketch how to avoid
such effects.

Chapter 6 describes the application of constraint-based recommender systems for groups and how to
apply consensus-based (Average Voting, Minimal Group Distance, Multiplicative, and Ensemble Voting)
and borderline (Least Misery and Most Pleasure) preference aggregation functions to predict items for
a group of users. This chapter analyzes the prediction capability of different aggregation functions in
situations where no solution can be found for a given set of preferences (i.e., over-constrained). The
prediction quality of aggregation functions is evaluated based on a dataset collected in a user study.

Chapter 7 presents a guided approach that determines socially-aware diagnoses (i.e., diagnoses suitable
for the whole group of users) based on preference aggregation functions. For this purpose, we designed a
user study, collected a dataset in a domain of high-involvement items (digital cameras) and synthesized
the dataset from individual participants to generate groups of users. Finally, the prediction quality of these
preference aggregation functions has been measured by analyzing the synthesized dataset.

Chapter 8 introduces two different approaches for providing recommendations which are similar to
requirements articulated by users. In particular, we show how these similarity-aware constraint-based

17

Chapter 1. Introduction

approaches (i.e., recommender systems) can identify similar recommendations, even if the user require-
ments are inconsistent with the underlying knowledge base. Furthermore, we test our approaches with
two real-world datasets and evaluate them with respect to runtime performance and degree of similarity
between the original requirements and the identified recommendation.

Chapter 9 presents an intelligent approach for the automated identification of requirement dependencies.
This approach analyzes the title and the description of each requirement and detects dependencies by using
supervised classification techniques. Afterwards, we analyze our approach based on a dataset collected
in a user study with different classifiers. Finally, Naive Bayes, Linear SVM, k-Nearest Neighbors, and
Random Forest classifiers are evaluated according to their precision, recall, and F1 scores.

In Chapter 10, configuration scenarios in the Internet of Things product domain are introduced. Since the
size and complexity of configuration problems in the Internet of Things domain are rapidly increasing, we
introduce a component-oriented knowledge representation, which is easier to maintain than the traditional
knowledge representations (e.g., constraint-based representation). We show how the configuration
knowledge in the domain of smart homes can be represented on the basis of “Answer Set Programming“.
Moreover, we show that our logic-based approach is well-suited for a component-oriented representation
of configuration tasks.

In Chapter 11, we conclude the thesis and give an outlook on future research issues.

18

Chapter 2
Algorithms for Group Recommendation

Parts of the contents of this chapter have been published in (Felfernig et al., 2018a). The author of this
thesis provided parts of this chapter in terms of writing and literature research.

Abstract In this chapter, our aim is to show how group recommendation can be implemented on the
basis of recommendation paradigms for individual users. Specifically, we focus on collaborative filtering,
content-based filtering, constraint-based, critiquing-based, and hybrid recommendation. Throughout this
chapter, we differentiate between (1) aggregated predictions and (2) aggregated models as basic strategies
for aggregating the preferences of individual group members.

2.1. Introduction

There are many real-world scenarios where recommendations have to be made to groups. The main task
in these scenarios is to generate relevant recommendations from the preferences (evaluations) of individual
group members. As illustrated in Table 2.1, group recommendation approaches can be differentiated with
regard to the following characteristics (Masthoff, 2011, 2015).
Preference Aggregation Strategy. In group recommender systems, there are two basic aggregation
strategies (Jameson and Smyth, 2007). First, recommendations are determined for individual group
members and then aggregated into a group recommendation.∗ Second, the preferences of individual users
are aggregated into a group profile which is then used to determine a group recommendation. In this
chapter, we show how both strategies can be applied with different recommendation algorithms.

Recommendation Algorithm. The recommendation logic of group recommenders is in many cases based
on single user recommenders (collaborative filtering, content-based filtering, constraint-based, critiquing-
based, and hybrid recommendation) (Felfernig et al., 2013a) combined with selected aggregation functions
from social choice theory (Masthoff, 2011; Pennock et al., 2000). These functions will be discussed on the
basis of examples from the travel domain.

Preferences Known Beforehand. Consider the example of single-shot recommendations determined on the
basis of collaborative filtering. Some user preferences are already known from previous recommendation
sessions, and so do not need to be determined in an iterative process. In contrast, conversational recom-

∗One can also distinguish between the aggregation of items and the aggregation of evaluations (e.g., ratings in collaborative
filtering) (Jameson and Smyth, 2007; Boratto et al., 2017) – in this chapter we will provide examples of both.

19

Chapter 2. Algorithms for Group Recommendation

characteristic description

Preference
Aggregation

Strategy

(1) determination of items/ratings for individual group members, thereafter
aggregation of these items/ratings to a group recommendation, or (2) aggregation
of the preferences of group members into a group profile, thereafter determination

of a recommendation for the group.
Recommendation

Algorithm
One of the recommendation algorithms (i.e., collaborative, content-based,

constraint-based, critiquing-based, and hybrid).
Preferences

Known
Beforehand?

For example, in collaborative filtering, ratings are known beforehand (Baltrunas
et al., 2010). In conversational approaches, preferences are constructed over time

(Jameson et al., 2015).

Immediate Item
Consumption?

Group recommenders can recommend (1) items that will be consumed in the
future (e.g., holiday destinations as a basis for a final decision taken by (a) a

responsible person or (b) a group on the basis of a discussion (Jameson et al.,
2004)), or (2) items consumed immediately (e.g., songs (Masthoff, 2011)).

Active or Passive
Group?

A group is passive if it does not actively influence the construction of a group
profile (Baltrunas et al., 2010). Active groups negotiate the group profile

(Jameson, 2004; Nguyen and Ricci, 2017).
Number of

Recommended
Items

A group recommender can focus on the recommendation of (1) a single item as is
the case with travel destinations (Jameson, 2004) or (2) multiple items

represented, for example, as a sequence (e.g., television items (Masthoff, 2011)).
Type of

Preference
Acquisition

Preferences can be acquired by interpreting, for example, the ratings of items or
by engaging users in a preference construction process (Jameson et al., 2004).

Table 2.1.: Characteristics to classify group recommenders (Masthoff, 2011, 2015).

mender systems (McCarthy et al., 2006; Felfernig and Burke, 2008; Mahmood and Ricci, 2009; Chen
et al., 2015; Christakopoulou et al., 2016; Nguyen, 2017) engage users in a dialog to elicit user preferences.

Immediate Item Consumption. On the one hand, a pragmatics of a recommendation can be that a group
directly experiences the recommended items. For example, consider songs consumed by members of a
fitness studio or commercials shown on public screens. On the other hand, recommendations are often
interpreted as proposals without the items being experienced immediately.

Active or Passive Group. On the one hand, group profiles can be generated automatically if the preferences
of the group members are known. On the other hand, especially when using constraint-based or critiquing-
based recommenders, preferences are constructed (i.e., not known beforehand) and thus are adapted and
extended within the scope of negotiation processes. The more intensively group models are discussed and
negotiated, the higher the degree of group activity.

Number of Recommended Items. The output of a group recommender can be a single item (e.g., restaurant
for a dinner or a movie), but also packages (e.g., travel packages), sequences (e.g., songs or travel plans),
and even configurations (e.g., software release plans and cars).

20

2.2. Preference Aggregation Strategies

Type of Preference Acquisition. Preferences can be collected implicitly (through observation, for example,
of user’s item consumption patterns) or explicitly by engaging users in a preference construction process.
The latter is the case especially in conversational recommendation (McCarthy et al., 2006; Felfernig and
Burke, 2008; Mahmood and Ricci, 2009; Chen et al., 2015; Christakopoulou et al., 2016).

2.2. Preference Aggregation Strategies

Independent of the way preferences are acquired from individual group members (see Chapter 5), a group
recommendation is determined by aggregating these preferences in one way or another (Jameson and
Smyth, 2007). In group recommender systems, the determination of recommendations depends on the
chosen preference aggregation strategy (Yu et al., 2006; Jameson and Smyth, 2007; Baltrunas et al., 2010;
Garcia-Molina et al., 2011; Kompan and Bielikova, 2014; Marquez and Ziegler, 2015; Boratto et al., 2017).

There are two aggregation strategies (see Figure 2.1): (1) aggregating recommended items (or evaluations)
that were generated separately for each user profile up(ui) and (2) aggregating individual user profiles
up(ui) into a group profile gp. In the first case, the recommendation step precedes the aggregation step –
item evaluations or items recommended to individual group members are aggregated into a corresponding
group recommendation. In the second case, the aggregation step precedes the recommendation step –
group profiles aggregated from individual user profiles are the basis for determining a group recommen-
dation. Following the discussions in (Jameson and Smyth, 2007; Berkovsky and Freyne, 2010), we denote
the first aggregation strategy as aggregated predictions and the second one as aggregated models (see
Figure 2.1).

Aggregated Predictions. There are two basic approaches to aggregate predictions. First, recommendations
(items) determined for individual group members can be merged. This approach can be used if a a set of
candidate solutions should be presented and the group members are in charge of selecting one out of the
candidate items. In this context, specific items which are not very appealing for some group members are
not filtered out. Group members play an important role in the decision making process, since no ranking
of the individual candidate items is provided. Second, group-member-specific predictions for candidate
items are aggregated. The outcome of this approach is a ranking of candidate items.

Aggregated Models. Instead of aggregating recommendations for individual users, this approach constructs
a group preference model (group profile) that is then used for determining recommendations. This is
especially useful in scenarios where group members should have the opportunity to analyze, negotiate,
and adapt the preferences of the group (Jameson and Smyth, 2007). Another advantage of applying group
preference models is that the privacy concerns of users can be alleviated, since there is no specific need to
record and maintain individual user profiles.

Although studies exist that compare the predictive quality of the two basic aggregation approaches
(aggregated predictions and aggregated models) (Baltrunas et al., 2010; Berkovsky and Freyne, 2010;
DePessemier et al., 2013; Boratto and Carta, 2015), more in-depth comparisons are needed that also focus
on specific group properties such as size, homogeneity (e.g., similarity between group members can have

21

Chapter 2. Algorithms for Group Recommendation

Figure 2.1.: Two basic aggregation strategies in group recommendation: (1) recommendation based on
single user profiles with a downstream aggregation of items (or evaluations/ratings) recom-
mended to group members/users (aggregated predictions) and (2) recommendation based on
aggregated models (group profiles).

a negative impact on the decision quality), the item domain (e.g., high-involvement vs. low-involvement
items (Felfernig et al., 2017a)), and also the ways in which individual and group rating behavior differs
(Sacharidis, 2017). After introducing a couple of social choice based preference aggregation functions that
help to implement aggregated predictions and aggregated models, we show how preference aggregation
can be implemented in the context of collaborative- and content-based filtering as well as constraint-based,
critiquing-based, and hybrid recommendation.

2.3. Social Choice based Preference Aggregation Functions

A major issue in all of the mentioned group recommendation scenarios is how to adapt to the group as
a whole, given information about the individual preferences of group members (Arrow, 1950; Masthoff,
2011). As there is no optimal way to aggregate recommendation lists (Arrow, 1950), corresponding
approximations (in the following denoted as aggregation functions) have to be used to come up with a
recommendation that takes into account ’as far as possible’ the individual preferences of group members.
As mentioned in (Senot et al., 2010; Masthoff, 2015), the aggregation functions can be categorized into
majority-based (M), consensus-based (C), and borderline (B). Table 2.2 provides an overview of different
kinds of aggregation functions taken from social choice theory† (Masthoff, 2004; Chevaleyre et al., 2007;
Masthoff, 2011; Senot et al., 2011) and their categorization into one of the three mentioned categories (M,
C, and B).

†Also denoted as group decision making.

22

2.3. Social Choice based Preference Aggregation Functions

Majority-based aggregation functions (M) represent aggregation mechanisms that focus on those items
which are the most popular (Masthoff, 2004; Senot et al., 2011). Examples of majority-based functions
are Plurality Voting (PLU) (winner is the item with the highest number of votes), Borda Count (BRC)
(winner is the item with the best total ranking score where each item rank‡ is associated with a score 0
.. #items− 1), and Copeland Rule (COP) (winner is the item that outperforms other items in terms of
pairwise evaluation§ comparison) (see Table 2.3). Equal evaluations in BRC are handled as follows: in the
example of Table 2.3, user u2 provided the rating 2.5 for t2 and t3; both items receive the same score which
is 0+1

2 = 0.5.

aggregation
strategy

description recommendation

Additive Utilitarian
(ADD) [C]

sum of item-specific evaluations argmax
(t∈I)

(Σu∈Geval(u, t))

Approval Voting
(APP) [M]

number of item-specific
evaluations above an approval

threshold

argmax
(t∈I)

(|{u∈G : eval(u, t)≥ threshold}|)

Average (AVG) [C]
average of item-specific

evaluations
argmax
(t∈I)

(Σu∈Geval(u,t)
|G|)

Average without
Misery (AVM) [C]

average of item-specific
evaluations (if all evaluations
are above a defined threshold)

argmax
(t∈I: 6∃u∈G|eval(u,t)≤threshold)

(Σu∈Grating(u,t)
|G|)

Borda Count
(BRC) [M]

sum of item-specific scores
derived from item ranking

argmax
(t∈I)

(Σu∈Gscore(u, t))

Copeland Rule
(COP) [M]

number wins (w) - number
losses (l) in pair-wise evaluation

comparison

argmax
(t∈I)

(|w(t, I−{t})|− |l(t, I−{t})|)

Fairness (FAI) [C]
item ranking as if individuals
(u ∈ G) choose them one after

the other

argmax
(t∈I)

(eval(u, t)) [in each iteration]

Least Misery
(LMS) [B]

minimum item-specific
evaluation

argmax
(t∈I)

(mineval(t))

Majority Voting
(MAJ) [B]

majority of evaluation values
per item

argmax
(t∈I)

(ma jorityeval(t))

Most Pleasure
(MPL) [B]

maximum item-specific
evaluation

argmax
(t∈I)

(maxeval(t))

Most Respected
Person (MRP) [B]

item-evaluations of most
respected user

argmax
(t∈I)

(eval(umrp, t))

Multiplicative
(MUL) [C]

multiplication of item-specific
evaluations

argmax
(t∈I)

(Πu∈Geval(u, t))

Plurality Voting
(PLU) [M]

item with the highest #votes
from u ∈ G

argmax
(t∈I)

(votings(t)) [in each iteration]

‡The highest rank is assumed to be 1. For example, in collaborative filtering it is associated with the highest rating. The highest
rank is associated with the score #items-1.

§For example, when using collaborative filtering, evaluations are denoted as ratings.

23

Chapter 2. Algorithms for Group Recommendation

item votes PLU evaluations (scores) BRC evaluations COP index COP
u1 u2 u3 u1 u2 u3 u1 u2 u3 t1 t2 t3

t1 1 1 0 2
√

5.0(2) 4.5(2) 3.5(1) 5
√

5.0 4.5 3.5 0 + + 2
√

t2 0 0 1 1 3.0(0) 2.5(0.5) 4.0(2) 2.5 3.0 2.5 4.0 - 0 0 -1
t3 0 0 0 0 3.5(1) 2.5(0.5) 1.5(0) 1.5 3.5 2.5 1.5 - 0 0 -1

Table 2.3.: Examples of majority-based aggregation: Plurality Voting (PLU), Borda Count (BRC), and
Copeland Rule (COP, “+” indicates a win, “-” a loss, and “0” a tie).

√
denotes the item ti with

the best evaluation, i.e., the recommendation.

Table 2.2.: Basic aggregation functions for group recommender systems (Chevaleyre et al., 2007; Levin
and Nalebuff, 1995; Masthoff, 2011, 2015; Senot et al., 2010) where argmax is assumed to
return a recommended item. Tie breaking rules such as random selection can be applied. M,
C, and B denote the aggregation categories majority-based, consensus-based, and borderline; u
represents a user (group member), G a group, t an item, and I a set of items.

When comparing the items t1 and t2 in Table 2.3, t1 outperforms t2 two times and looses once in terms
of user evaluations (u1 : 5.0 vs. u2 : 3.0, u1 : 4.5 vs. u2 : 2.5, and u1 : 3.5 vs. u2 : 4.0) which results in
a win (“+”) 2:1. Comparing items t2 and t3 results in a tie 1:1 which is indicated by “0” in Table 2.3.
Such an evaluation has to be performed for each item in order to determine a winner on the basis of COP
(see the rhs of Table 2.3). A further majority-based aggregation function is Approval Voting (APP) that
recommends items with the highest number of supporting users. In this context, support is measured in
terms of the number of item evaluations above a defined threshold.

Consensus-based functions (C)¶ represent aggregation mechanisms that take into account the preferences of
all group members (Senot et al., 2011). Examples are Additive Utilitarian (ADD) (winner is the item with
the maximum sum of user-individual evaluations), Average (AVG) (winner is the item with the maximum
average of the user-individual evaluations – in the line of ADD‖, the function causes problems in the
context of larger groups since the opinions of individuals count less), and Multiplicative (MUL) (winner is
the item with the maximum product of the user-individual evaluations) (see Table 2.4). Further majority-
based aggregation functions are Average without Misery (AVM) that recommends the average evaluation
for items that do not have individual ratings below a defined threshold and Fairness (FAI) which ranks
items as if individuals are choosing them in turn (Masthoff, 2011).
Borderline functions (B) represent aggregation mechanisms that take into account only a subset of the user
preferences (Senot et al., 2011). Examples of borderline functions are Least Misery (LMS) (winner is the
item with the highest of all lowest evaluations given to items – when using this function, items may be
selected that nobody hates but also nobody really likes; furthermore, there is the danger that a minority
dictates the group (especially in settings involving larger groups) (Masthoff, 2004)), Most Pleasure (MPL)
(winner is the item with the highest of all individual evaluations – items may be selected that only a few per-
sons really like)∗∗, and Majority Voting (MAJ) (item with the highest number of all evaluations representing

¶Also denoted as democratic functions.
‖ADD and AVG result in the same rankings.
∗∗Variants thereof can be considered (Masthoff, 2004), for example, most pleasure without misery where only items are considered

that do not have evaluations below a predefined threshold.

24

2.4. Collaborative Filtering for Groups

item evaluations ADD AV G MUL
u1 u2 u3

t1 5 2 2 9 3 20
t2 3 3 4 10

√
3.3
√

36
√

t3 2 3 2 7 2.3 12

Table 2.4.: Examples of consensus-based aggregation: Additive Utilitarian (ADD), Average (AVG), and
Multiplicative (MUL).

item evaluations LMS MPL MAJ
u1 u2 u3

t1 5 2 2 2 5
√

2
t2 3 3 4 3

√
4 3

√

t3 2 3 2 2 3 2

Table 2.5.: Examples of Borderline aggregation: Least Misery (LMS), Most Pleasure (MPL), and Majority
Voting (MAJ).

the majority of item-specific evaluations) (see Table 2.5). A further borderline aggregation function is Most
Respected Person (MRP) that recommends a rating (evaluation) proposed by the most respected individual.

The following discussions of group recommendation approaches will be based on a set of example items
from the travel domain. Using these items, we will show how different recommendation approaches can
determine group recommendations with aggregated models and aggregated predictions.

2.4. Collaborative Filtering for Groups

Collaborative filtering (CF) (Konstan et al., 1997; Linden et al., 2003) is based on the idea of recommend-
ing items that are derived from the preferences of nearest neighbors, i.e., users with preferences similar to
those of the current user. In the following, we show how aggregated predictions and aggregated models
can be applied to CF for groups.

Aggregated Predictions. When applying the aggregated predictions strategy in combination with collabo-
rative filtering, ratings are determined for individual users and then aggregated into a recommendation for
the group (see Figure 2.2).
Following this approach, for each group member (and corresponding recommender) i and each item j not
rated by this group member, a rating prediction r̂i j is determined (Berkovsky et al., 2010). For simplicity,
we assume that the items {t1, .., t10} in Table 2.6 have not been previously consumed by the group
members, i.e., the rating has been proposed by a collaborative filtering algorithm.†† Thereafter, these
predictions are aggregated on the basis of different aggregation functions (see Table 2.2). In the following
example, we assume that some variant of collaborative filtering (Ekstrand et al., 2011; Quijano-Sánchez
et al., 2013; Ghazarian and Nematbakhsh, 2015) has already been applied to predict ratings (e.g., a matrix
factorization approach (Ortega et al., 2016; Sacharidis, 2017) can be applied to infer user× item rating

††Item predictions for individual users can be based on collaborative recommendation approaches.

25

Chapter 2. Algorithms for Group Recommendation

Figure 2.2.: Collaborative filtering for groups based on aggregated predictions (ratings). r̂i j is the rating
prediction for item j proposed by recommender i (i = 1..n).

tables as shown in Table 2.6).

item
name rating predictions r̂i j (scores) aggregation

u1 u2 u3 u4 u5 AVG BRC LMS

t1 Vienna 5.0(9) 3.5(2) 1.0(0) 4.5(7) 5.0(9) 3.8 27 1.0

t2 Yellowstone 2.5(0) 4.0(4) 3.0(3) 2.0(0) 1.1(0) 2.5 7 1.1

t3 New York 4.9(8) 3.8(3) 4.0(7) 3.3(4) 4.0(5) 4.0 27 3.3
√

t4
Blue

Mountains
3.1(2) 5.0(9) 4.2(8) 2.4(1) 4.4(8) 3.8 28 2.4

t5 London 4.0(4) 4.3(7) 3.3(5) 4.1(6) 2.9(3) 3.7 25 2.9

t6 Beijing 4.5(6) 4.1(5) 5.0(9) 3.2(3) 4.2(6) 4.2
√

29
√

3.2

t7 Cape Town 4.2(5) 4.2(6) 3.4(6) 3.1(2) 3.8(4) 3.7 23 3.1

t8 Yosemity 3.4(3) 2.6(0) 1.6(1) 5.0(9) 2.4(2) 3.0 15 1.6

t9 Paris 4.7(7) 3.1(1) 2.7(2) 3.6(5) 2.2(1) 3.3 16 2.2

t10 Pittsburgh 2.6(1) 4.5(8) 3.1(4) 4.6(8) 4.3(7) 3.8 28 2.6

Table 2.6.: Rating predictions and corresponding scores (scores are used by BRC). Recommendations are
derived on the basis of aggregation functions (AV G, BRC, LMS). The

√
symbol indicates the

item with the best evaluation.

26

2.4. Collaborative Filtering for Groups

The result of the aggregation step is a ranking of candidate items. In our example, the majority of
aggregation functions recommends the item t6. An alternative to the aggregation of ratings is to aggregate
predicted items where items determined by individual recommenders are aggregated into a group recom-
mendation (see Figure 2.3).

Figure 2.3.: Collaborative filtering for groups based on aggregated predictions (items).

Following this approach, items with the highest predicted rating for a specific user are considered as part
of the recommendation. If we want to generate a recommendation consisting of, for example, at most
10 items, the two top-rated items (upper bound) in each group member specific recommendation can be
included in the group recommendation. In the example shown in Table 2.6, {t1, t3} are the two top-rated
items of user u1, {t4, t10} are chosen for user u2, {t4, t6} for user u3, {t8, t10} for user u4, and {t1, t4} for user
u5. The union of these group member individual recommendations is {t1, t3, t4, t6, t8, t10} which represents
the group recommendation – in this context, group members are in charge of item ranking. This way of
constructing a group recommendation is similar to the idea of the Fairness (FAI) aggregation function (see
Table 2.2).

Aggregated Models. When using this aggregation approach, ratings of individual users are aggregated into
a group profile gp (see Figure 2.4). Based on the group profile (gp), collaborative filtering determines a
ranking for each candidate item.

Figure 2.4.: Collaborative filtering for groups based on aggregated models.

27

Chapter 2. Algorithms for Group Recommendation

In the aggregated models approach, the group is represented by a group profile (gp) that includes item-
specific evaluations (ratings) derived through aggregation functions applied to the item ratings of individual
group members. Often, the aggregation is based on a weighted average function (see, e.g., (Berkovsky
et al., 2010)), however, the aggregation functions mentioned in Table 2.2 can be considered alternatives.
Following the aggregated models strategy, collaborative filtering is applied to individual group profiles,
i.e., for a given group profile (gp), similar group profiles (k nearest neighbors k-NN)‡‡ are retrieved and
used for determining a recommendation. In our example, the item t2 (Yellowstone) is not known to the
current group gp but received the highest ratings from the nearest neighbor groups gx and gy (see Table
2.7) which makes it a recommendation candidate for gp.

item name gp gx ∈ NN gy ∈ NN recommended ratings

t1 Vienna 5.0 5.0 4 -
t2 Yellowstone - 4.0 4.5 4.49

√

t3 New York 4.0 3.0 3.5 -
t4 Blue Mountains - 4.5 4 4.44
t5 London 4.0 3.9 3.5 -
t6 Beijing - 3.5 3 3.44
t7 Cape Town - 4.7 3 3.99
t8 Yosemity 3.0 3.8 3.2 -
t9 Paris 4.0 3.9 2.9 -
t10 Pittsburgh - 5.0 3.3 4.28
average 4.0 4.13 3.5 -

Table 2.7.: Applying collaborative filtering (CF) to a group profile gp (gp-ratings have no relationships to
earlier examples). The

√
symbol indicates the item with the best CF-based evaluation.

The similarity between the group profile gp and another group profile gx (the nearest neighbor) can be
determined, for example, using the Pearson correlation coefficient. Formula 2.1 is an adapted version that
determines the similarity between a group profile and the profiles of other groups. In this context, T Dc

represents the set of items that have been rated by both groups (gp and gx), rgx,ti is the rating of group gx
for item ti, and rgx is the average rating of group gx.

similarity(gp,gx) =
∑ti∈T Dc(rgp,ti − rgp)× (rgx,ti − rgx)√

∑ti∈T Dc(rgp,ti − rgp)2×
√

∑ti∈T Dc(rgx,ti − rgx)2
(2.1)

The information about groups with a similar rating behavior (i.e., nearest neighbors NN) compared to the
current group gp is the basis for predicting the rating of gp for an item t that has not been rated by members
of gp (see Formula 2.2).

prediction(gp, t) = r̂(gp, t) = rgp +
∑g j∈NN similarity(gp,g j)× (rg j,t − rg j)

∑g j∈NN similarity(gp,g j)
(2.2)

‡‡In our example, we assume k = 2.

28

2.5. Content-based Filtering for Groups

Recommendations can also be determined on the basis of ensemble voting (Stettinger and Felfernig, 2014):
each aggregation function can represent a vote. The more such votes an item receives, the higher is it’s
relevance for the group. In our running example, item t6 is regarded as favorite item since it received the
best evaluation by the majority of the used aggregation functions (see the aggregated predictions example
in Table 2.6).

2.5. Content-based Filtering for Groups

Content-based filtering (CBF) is based on the idea of recommending new items with categories§§ similar
to those preferred by the current user. Categories preferred by a user (group member) are stored in a user
profile; these categories are derived from descriptions of items already consumed by the user.
Aggregated Predictions. When using this aggregation strategy, group member individual content-based
recommenders determine the similarity between (a) items not consumed by him/her and (b) his/her user
profile.¶¶ The identified item similarities (or items) are then aggregated and thus form the basis of a group
recommendation (see Figure 2.5).

Figure 2.5.: Content-based filtering for groups based on aggregated predictions. Similarity si j denotes the
similarity between user i and item j determined by recommender i (i = 1..n).

Table 2.9 depicts example profiles of group members u1..u5. For each of these profiles, the similarity to the
items included in Table 2.8 is determined (we assume that these items have not been consumed/evaluated
by the group members). These similarity values are the basis for a group recommendation (see Table 2.10).

The user-item similarities of Table 2.10 are calculated by a content-based recommender (see similarity
metrics in (McSherry, 2004)). The calculation is based on the item categories included in Table 2.9, i.e.,
beach, city tours, nature, and entertainment. For example, similarity(u1, t2) =

2∗|categories(u1)∩categories(t2)|
|categories(u1)|+|categories(t2)|

= 2
3 = 0.66.

On the basis of a user× item similarity matrix, aggregation functions can determine a group recommenda-
tion. An alternative to the aggregation of similarities is to aggregate items proposed by individual content-
based recommenders. If we want to generate a recommendation consisting of, for example, at most 5 items
(upper bound), the highest rated item of each group member can be included in the group recommendation.

§§Alternatively, keywords extracted from item descriptions.
¶¶The determination of user × item similarities can be based on content-based recommendation approaches.

29

Chapter 2. Algorithms for Group Recommendation

item name season topics eval

t1 Vienna 1110 city tours, entertainment 4.5
t2 Yellowstone 1110 nature 4.0
t3 New York 1011 city tours, entertainment 3.3
t4 Blue Mountains 1001 nature 5.0
t5 London 1010 city tours, entertainment 3.0
t6 Beijing 1010 city tours, entertainment 4.7
t7 Cape Town 1111 beach, city tours, nature, entertainment 4.0
t8 Yosemity 1110 nature 2.0
t9 Paris 1011 city tours, entertainment 3.0
t10 Pittsburgh 1010 city tours 5.0

Table 2.8.: Travel destinations described based on season (digit 1 indicates a recommended season and 0
indicates a non-recommended one; seasons start with spring), associated topics, and average
user rating (eval).

category individual item categories

u1 u2 u3 u4 u5

beach x x x x x

city tours - x - x -

nature x - x - x

entertainment - - - - -

Table 2.9.: Example profiles of group members (preferences regarding travel destinations). If a group mem-
ber ui likes a category, this is denoted with ’x’.

In our example depicted in Table 2.10, {t2} is among the highest rated items of user u1 (the other three are
excluded due to the user-specific limit of one item), t7 can be selected for user u2, t4 for user u3, t10 for user
u4, and t2 for user u5. The group recommendation includes all of these items: {t2, t4, t7, t10}.
Aggregated Models. When using this strategy, preferred categories of individual users are integrated into
a group profile gp. Thereafter, content-based filtering determines recommendations by calculating the
similarities between gp and candidate items (items not consumed by the group – see Figure 2.6).

Figure 2.6.: Content-based filtering for groups based on aggregated models.

30

2.5. Content-based Filtering for Groups

item
name user-item similarities (scores) aggregation

u1 u2 u3 u4 u5 AVG BRC LMS

t1 Vienna 0(2.5) 0.5(5) 0(2.5) 0.5(5) 0(2.5) 0.2 17.5 0

t2 Yellowstone
0.66(7.5)

0(1)
0.66(7.5)

0(1)
0.66(7.5)

0.4 24.5 0

t3 New York 0(2.5) 0.5(5) 0(2.5) 0.5(5) 0(2.5) 0.2 17.5 0

t4
Blue

Mountains 0.66(7.5)
0(1)

0.66(7.5)
0(1)

0.66(7.5)
0.4 24.5 0

t5 London 0(2.5) 0.5(5) 0(2.5) 0.5(5) 0(2.5) 0.2 17.5 0

t6 Beijing 0(2.5) 0.5(5) 0(2.5) 0.5(5) 0(2.5) 0.2 17.5 0

t7 Cape Town
0.66(7.5) 0.66(8.5) 0.66(7.5) 0.66(8.5) 0.66(7.5) 0.66

√
39.5
√

0.66
√

t8 Yosemity
0.66(7.5)

0(1)
0.66(7.5)

0(1)
0.66(7.5)

0.4 24.5 0

t9 Paris 0(2.5) 0.5(5) 0(2.5) 0.5(5) 0(2.5) 0.2 17.5 0

t10 Pittsburgh 0(2.5)
0.66(8.5)

0(2.5)
0.66(8.5)

0(2.5) 0.26 24.5 0

Table 2.10.: User× item similarities (and corresponding scores used by BRC) as input for AV G, BRC, LMS
to derive a group recommendation. The

√
symbol indicates the item with the best evaluation.

In our example (see Table 2.11), the derived group profile is represented by the union of the categories
stored in the individual user profiles. Items are recommended that are similar to the categories in the group
profile and have not been consumed by group members. In our example, the derived group profile gp
entails the categories Beach, City Tours, and Nature.

category individual item categories gp
u1 u2 u3 u4 u5

beach x x x x x x

city tours - x - x - x

nature x - x - x x

entertainment - - - - - -

Table 2.11.: Aggregation of preferences (categories) of group members into a group profile gp.

The similarity between the group profile gp and candidate items can be determined using Formula 2.3. The
similarities between gp and items ti (taken from our example itemset shown in Table 2.8) are determined
by comparing the categories beach, citytours, nature, and entertainment (see Table 2.12). For example,
similarity(gp, t1) =

2∗|categories(gp)∩categories(t1)|
|categories(gp)|+|categories(t1)|

= 2
5 = 0.4. In this context, we assume that the items of

Table 2.12 have not been consumed by the group.

similarity(gp, item) =
2∗ |categories(gp)∩ categories(item)|
|categories(gp)|+ |categories(item)|

(2.3)

31

Chapter 2. Algorithms for Group Recommendation

item name similarity(gp, ti)

t1 Vienna 2
5 = 0.4

t2 Yellowstone 2
4 = 0.5

t3 New York 2
5 = 0.4

t4 Blue Mountains 2
4 = 0.5

t5 London 2
5 = 0.4

t6 Beijing 2
5 = 0.4

t7 Cape Town 6
7 = 0.86

√

t8 Yosemity 2
4 = 0.5

t9 Paris 2
5 = 0.4

t10 Pittsburgh 2
4 = 0.5

Table 2.12.: Applying content-based filtering (CBF) to a group profile gp (see Table 2.11). The
√

symbol
indicates the item with the best evaluation determined by CBF.

2.6. Constraint-based Recommendation for Groups

Taking into account groups in constraint-based recommendation (Felfernig and Burke, 2008) requires the
extension of recommendation task for individuals.

Definition (Recommendation Task for Groups). A recommendation task for groups can be defined by the
tuple (G, R = R1∪ ..∪Rm, I) where G = {u1,u2, ..,um} represents a group of users, R j = {r1 j,r2 j, ...,rn j}
represents a set of requirements (ri j denotes the requirement i of group member j), and I = {t1, .., tk}
represents a set of items. The goal is to identify items in I which fulfill all requirements in R. A solution
for a recommendation task can be defined as follows.
Definition (Recommendation Task for Groups – Solution). A solution for a recommendation task for groups
(G,R, I) is a set S ⊆ I such that ∀ti ∈ S : ti ∈ σ[R]I where σ is the selection operator of a conjunctive query,
R represents requirements defined by group members, and I represents a collection of items.
In group recommendation settings, each group member should specify his/her requirements (in our exam-
ple, these are hard constraints related to season and topics) and preferences (weights or soft constraints)
with regard to a set of interest dimensions (in our example, security, attractiveness, and crowdedness) –
see Table 2.13. Requirements are constraints that are used to pre-select items, preferences specify weights
that are used to rank the pre-selected items.

user requirements preferences (weights)
season topics security attractiveness crowdedness

u1 r11 :spring - 0.5 0.4 0.1
u2 r12 :spring r22 :citytours 0.2 0.7 0.1
u3 - r13 :entertainment 0.3 0.3 0.4
u4 r14 :spring - 0.6 0.2 0.2
u5 - r15 :citytours 0.1 0.8 0.1

Table 2.13.: User-specific requirements and preferences (weights).

32

2.6. Constraint-based Recommendation for Groups

In both scenarios, i.e., aggregated predictions and aggregated models, group members have to define their
requirements and preferences.

Aggregated Predictions. We will first show how to handle aggregated predictions in constraint-based
recommendation for groups (see Figure 2.7).

Figure 2.7.: Constraint-based recommendation for groups based on aggregated predictions. User prefer-
ences are constructed iteratively (conversational recommendation approach). Item ti j repre-
sents item j (including corresponding item utilities) determined by recommender i.

A constraint-based recommender derives user-specific recommendations (items and user-specific item
utilities) on the basis of a set of requirements and preferences. Item utilities for specific
group members can be determined with multi-attribute utility theory (MAUT) (Winterfeldt and Ed-
wards, 1986; Yu et al., 2006) (see Formula 2.4). For example, on the basis of the user re-
quirements defined in Table 2.13 and the example itemset of Table 2.14, the utility of item
t1 for user u1 can be determined as follows: utility(u1, t1) = ∑d∈Dimensions contribution(t1,d) ×
weight(u1,d) = contribution(t1,security) × weight(u1,security) + contribution(t1,attractiveness) ×
weight(u1,attractiveness) + contribution(t1,crowdedness)×weight(u1,crowdedness) = 5.0 × 0.5 + 5.0
× 0.4 + 2.0 × 0.1 = 2.5 + 2.0 + 0.2 = 4.7. These user-specific item utilities are aggregated into a group
recommendation (see Table 2.15).

utility(ua, item) = ∑
d∈Dimensions

contribution(item,d)×weight(ua,d) (2.4)

If an entry of item ti in user-specific item utilities in Table 2.15 > 0, this indicates that the item ti fulfills all
requirements of the corresponding group member. In contrast, table entries = 0 are used to indicate that
an item does not completely fulfill the requirements of a group member. For example, the requirements
of u2 ({r12,r22}) are not completely fulfilled by t2 (r22 : topics = citytours is not supported). Even if an
item does not completely fulfill the requirements of some users, it could be recommended. The lower
the number of users with completely fulfilled requirements with regard to a specific item ti, the lower the
probability that ti will be recommended. A set of individual user requirements can also be inconsistent
with the effect that no fitting item can be identified. In such a case, diagnosis methods can help to guide
the user out of the no solution could be found dilemma (Felfernig et al., 2009b).∗∗∗

∗∗∗Issues related to conflict resolution will be discussed at the end of this section.

33

Chapter 2. Algorithms for Group Recommendation

item name security attractiveness crowdedness

t1 Vienna 5 5 2
t2 Yellowstone 4 4 4
t3 New York 3 5 1
t4 Blue Mountains 4 3 5
t5 London 3 4 1
t6 Beijing 3 3 1
t7 Cape Town 2 3 3
t8 Yosemity 4 4 4
t9 Paris 3 5 1
t10 Pittsburgh 3 3 3

Table 2.14.: Travel destinations described with regard to the dimensions security (high evaluation repre-
sents a high security), attractiveness (high evaluation represents a high attractiveness), and
crowdedness (high evaluation represents a low crowdedness). For example, security = 5 for
the item Vienna indicates the highest possible contribution to the dimension security (scale
1..5).

Also in constraint-based recommendation, an alternative to the aggregation of user × item utilities
(Table 2.15) is to aggregate items proposed by individual recommenders. If we want to generate a
recommendation based on the Fairness (FAI) aggregation strategy and 5 is the upper bound for the number
of proposed items, each group member would choose his/her favorite item (not already selected by another
group member). In the example shown in Table 2.15, t1 has the highest utility for user u1, it also has the
highest utility for user u2, however, since u1 already selected t1, u2 has to identify a different one, which
is now t3. Furthermore, we assume that u3 selects t9, u4 selects t8, and user u5 selects t5. The group
recommendation resulting from this aggregation step is {t1, t3, t5, t8, t9}.

Aggregated Models. Another possibility of determining recommendations for groups in constraint-based
recommendation scenarios is to first aggregate individual user preferences (Jameson, 2004) (requirements
and weights related to interest dimensions) into a group profile gp and then to determine recommendations
(see Figure 2.8).

Figure 2.8.: Constraint-based recommendation for groups based on aggregated models. Group preferences
are constructed iteratively (conversational recommendation).

34

2.6. Constraint-based Recommendation for Groups

item
item contribution user-specific item utilities (scores) aggregation

secur.
attr.

crowd.
u1 u2 u3 u4 u5 AVG BRC LMS

t1 5.0 5.0 2.0 4.7(9) 4.7(9) 3.8(9) 4.4(9) 4.7(9)
4.46
√

45.0
√ 3.8

√

t2 4.0 4.0 4.0 4(7.5) 0.0 0.0 4(7) 0.0 1.6 14.5 0.0

t3 3.0 5.0 1.0
3.6(4.5) 4.2(7.5) 2.8(7.5)

3(4)
4.4(7.5)

3.6 31.0 2.8

t4 4.0 3.0 5.0 3.7(6) 0.0 0.0 4(7) 0.0 1.54 13.0 0.0

t5 3.0 4.0 1.0 3.2(3) 3.5(6) 2.5(6) 2.8(2) 3.6(6) 3.12 23.0 2.5

t6 3.0 3.0 1.0 2.8(1)
2.8(3.5)

2.2(5) 2.6(1) 2.8(3) 2.64 13.5 2.2

t7 2.0 3.0 3.0 2.5(0)
2.8(3.5)

0.0 2.4(0) 2.9(4) 2.12 7.5 0.0

t8 4.0 4.0 4.0 4(7.5) 0.0 0.0 4(7) 0.0 1.6 14.5 0.0

t9 3.0 5.0 1.0
3.6(4.5) 4.2(7.5) 2.8(7.5)

3(4)
4.4(7.5)

3.6 31.0 2.8

t10 3.0 3.0 3.0 3(2) 3(5) 0.0 3(4) 3(5) 2.4 16.0 3.0

Table 2.15.: User-specific item utilities (and corresponding scores used by BRC) with regard to security,
attractiveness, and crowdedness determined by utility analysis. The

√
symbol indicates the

item with the best evaluation.

The construction of a group profile gp is sketched in Table 2.16. Beside aggregating the user requirements
R = {r11,r12,r22,r13,r14,r15}, we also have to aggregate user preferences specified in terms of weights
related to the interest dimensions security, attractiveness, and crowdedness.
On the basis of the requirements defined in gp and the item definitions in Table 2.8, a conjunc-
tive query σ[r11,r12,r22,r13,r14,r15]I results in: {t1, t3, t5, t6, t7, t9}, i.e., these items are consistent with
the requirements defined in gp. Formula 2.5 can be used then to determine item-specific utilities
on the basis of the group profile gp. For example, utility(gp, t1) = ∑d∈Dimensions contribution(t1,d)×
weight(gp,d) = contribution(t1,security) × weight(gp,security) + contribution(t1,attractiveness) ×
weight(gp,attractiveness) + contribution(t1,crowdedness)×weight(gp,crowdedness) = 5 × 0.34 + 5
× 0.48 + 2× 0.18 = 1.7 + 2.4 + .36 = 4.46. The resulting utilities are shown in Table 2.17.

utility(gp, item) = ∑
d∈Dimensions

contribution(item,d)×weight(gp,d) (2.5)

It can be the case that a set of user requirements is inconsistent with all items of an itemset. In such a
situation, users of a constraint-based recommender have to adapt their requirements such that at least one
solution can be identified. Related techniques will be discussed in the following section.

35

Chapter 2. Algorithms for Group Recommendation

weights &
requirements

u1 u2 u3 u4 u5 gp

security 0.5 0.2 0.3 0.6 0.1 0.34 (AVG)

attractiveness 0.4 0.7 0.3 0.2 0.8 0.48 (AVG)

crowdedness 0.1 0.1 0.4 0.2 0.1 0.18 (AVG)

season r11: spring r12: spring - r14: spring - r11,r12,r14

topics -
r22:

citytours

r13:
enter-

tainment
-

r15:
citytours

r22,r13,r15

Table 2.16.: Construction of a group profile (gp). User-specific weights regarding the interest dimensions
security, attractiveness, and crowdedness are aggregated into gp using AVG. Furthermore,
user requirements ri j are combined into R = {r11,r12,r22,r13,r14,r15}.

2.7. Handling Inconsistencies

Since item retrieval in constraint-based recommendation is based on semantic queries (e.g., conjunctive
queries), situations can occur where no solution can be identified for the given set of requirements
(Felfernig et al., 2012), i.e., σ[R]I = /0 (R represents the union of requirements specified by individual
group members and I represents the example itemset shown in Table 2.8). An example of such a
situation is the following (adapted version of the examples introduced in the previous sections): R =
{r11 : season = summer,r21 : eval = 5.0,r12 : season = summer,r13 : topics = entertainment,r14 : topics =
entertainment,r15 : eval = 5.0} where σ[R]I = /0. Also in the context of group recommendation scenarios,
we are interested in how to change the requirements defined by group members in order to be able to come
up with a recommendation consistent with the requirements of all group members.

In the aggregated predictions scenario, inconsistencies induced by requirements occur on the ’single user’
level: a user specifies his/her requirements but no recommendation can be identified. In this context,
diagnosis algorithms help to identify possible changes to the user requirements such that a recommendation
can be identified. This way, it can be guaranteed that no user-specific inconsistent requirements are passed
to the group level.

In the aggregated models scenario, the task of resolving inconsistent situations is a similar one: in the
case of inconsistencies between requirements defined by a specific group member, diagnosis can actively
support him/her in restoring consistency.††† However, even if the requirements of a user profile are con-
sistent, integrating the requirements of individual users into a group profile gp can induce inconsistencies
on the group level (Felfernig et al., 2016). In the aggregated models scenario, diagnosis also supports
the achievement of global consistency, i.e., all joint preferences defined by individual group members al-
low the derivation of at least one solution. Table 2.18 shows the user requirements specified in our example.

The conflict sets induced by our example requirements (R) are: CS1 : {r11,r21}, CS2 : {r11,r15}, CS3 :
{r12,r21}, CS4 : {r12,r15}, CS5 : {r13,r21}, CS6 : {r13,r15}, CS7 : {r14,r21}, and CS8 : {r14,r15}. If we
resolve the conflicts by deleting the requirements r21 and r15, a corresponding diagnosis (hitting set) ∆1 =

†††A discussion of algorithms for diagnosis determination can be found in (Reiter, 1987; Felfernig et al., 2004, 2009b, 2011b).

36

2.7. Handling Inconsistencies

item item contribution
utility(gp, ti)

secur. attr. crowd.

t1 5 5 2 4.46
√

t2 4 4 4 4.0

t3 3 5 1 3.6

t4 4 3 5 3.7

t5 3 4 1 3.12

t6 3 3 1 2.64

t7 2 3 3 2.66

t8 4 4 4 4.0

t9 3 5 1 3.6

t10 3 3 3 3

Table 2.17.: Item utilities determined on the basis of the weights defined in gp (see Table 2.16). Only items
ti are taken into account that are consistent with the requirements in gp (others are shown
greyed out). The

√
symbol indicates the item with the highest utility.

{r21,r15} can be identified. The second diagnosis is ∆2 = {r11,r12,r13,r14}. The determination of the
diagnoses ∆1 and ∆2 is shown on the basis of the HSDAG approach (Hitting Set Directed Acyclic Graph)
(Reiter, 1987) (see Figure 2.9). Table 2.18 includes a third diagnosis (∆3 = {r11,r21,r15}) which has been
included to show that non-minimal diagnoses ∆¬min are not preferred by aggregation functions (see Tables
2.19 – 2.20). A corresponding subset (∆ ⊂ ∆¬min) exists that already fulfills the diagnosis properties. In
our example, ∆1 ⊂ ∆3 holds, i.e., ∆3 is a non-minimal diagnosis.

Figure 2.9.: Determination of the minimal diagnoses ∆1 and ∆2 using the HSDAG approach (Reiter, 1987)
(paths to minimal diagnoses are denoted with

√
).

As different diagnosis candidates exist (∆1,∆2,∆3), we have to figure out which one should be recom-
mended to the group. Similar to the determination of recommendations, diagnosis candidates can be
ranked on the basis of different aggregation functions. In Table 2.19 we sketch an approach to rank di-
agnoses depending on the number of requirements that have to be deleted/adapted by individual group
members. Diagnosis ∆1 has the lowest number of needed changes (ADD); consequently it can be rec-

37

Chapter 2. Algorithms for Group Recommendation

requirement ∆i

∆1 ∆2 ∆3

r11(season=0100) • •
r21(eval=5.0) • •
r12(season=0100) •
r13(topic=entertainment) •
r14(topic=entertainment) •
r15(eval=5.0) • •

Table 2.18.: Example user requirements and related diagnoses in the aggregated models scenario (ri j =
requirement i of user j): ∆1 = {r21,r15}, ∆2 = {r11,r12,r13,r14}, and ∆3 = {r11,r21,r15}.
∆3 is a non-minimal diagnosis included to show that aggregation functions prefer minimal
diagnoses.

ommended. Least Misery (LMS) recommends one out of {∆1,∆2}. As mentioned, we will not discuss
diagnosis algorithms in this chapter; for a detailed discussion of diagnosis search and selection in group
contexts we refer to (Felfernig et al., 2016).

diagnosis changes per user aggregation
u1 u2 u3 u4 u5 ADD LMS

∆1 1 0 0 0 1 2
√

1
√

∆2 1 1 1 1 0 4 1
√

∆3 2 0 0 0 1 3 2

Table 2.19.: Diagnosis recommendation in the aggregated models scenario based on (1) counting the
needed changes per user and (2) LMS. The

√
symbol indicates recommended diagnosis can-

didates.

Diagnosis ranking can be better personalized, if we assume that requirements have importance weights
learned, for example, on the basis of previous group decisions (Felfernig et al., 2009b; Guo et al., 2017).
Table 2.20 depicts an example of the determination of diagnosis utilities on the basis of weighted require-
ments – the utility of a diagnosis can be determined on the basis of Formula 2.6. That implements an
additive aggregation strategy: the higher the sum of the individual weights w(ri j), the higher the impor-
tance of the related requirements for the group members. Consequently, the lower the total importance of
the included requirements, the higher the utility of the corresponding diagnosis (see Formula 2.6). In this
setting, diagnosis ∆2 outperforms ∆1 (also ∆3) since ∆2 includes requirements less relevant for the individ-
ual group members. Least Misery (LMS) in this context analyzes (user-wise) attribute-specific estimated
negative impacts of requirement deletions.

utility(∆) =
1

∑ri j∈∆ w(ri j)
(2.6)

Remark. An issue for future work in this context is to analyze the possibility of combining the group profile
(gp) with local user profiles. This could serve to assure consensus in the group earlier, and avoid efforts
related to conflict resolution on the group level. If parts of the group profile are integrated into individual
user profiles, this could also help to take into account the requirements of other group members at the very

38

2.8. Critiquing-based Recommendation for Groups

∆i weighted requirements aggregation
w(r11) = 0.1 w(r21) = 0.3 w(r12) = 0.1 w(r13) = 0.1 q(r14)0.1 w(r15)=0.3 utility LMS

∆1 0 0.3 0 0 0 0.3 1.67 0.3
∆2 0.1 0.0 0.1 0.1 0.1 0 2.5

√
0.1
√

∆3 0.1 0.3 0 0 0 0.3 1.42 0.3

Table 2.20.: Utility-based diagnosis recommendation in the aggregated models scenario. The
√

symbol
indicates the highest rated diagnosis.

beginning of the decision making process. Further details on how to determine personalized diagnoses on
the basis of search heuristics can also be found in (Felfernig et al., 2009b, 2013b).

2.8. Critiquing-based Recommendation for Groups

Critiquing-based recommendation (Guzzi et al., 2011; Chen and Pu, 2012a) is based on the idea of showing
reference items to users and allowing users to give feedback in terms of critiques. Critiques trigger a new
critiquing cycle where candidate items (items that fulfill the critiques defined by the user∗) are compared
with regard to their utility as a new reference item. This utility is evaluated on the basis of (a) similarity
metrics that estimate the similarity between a reference item and a candidate item and (b) the degree of
support of the critiques already defined by a user.† Intuitively, the more similar a candidate item is with
regard to the reference item and the more critiques it supports, the higher its utility. In the following, we
assume that the determination of candidate items for a specific group member takes into account his/her
previous critiques and the similarity between reference and candidate item. The utility of a candidate
item as the next reference item can be determined on the basis of Formulae 2.7 – 2.9. In this context,
utility(c,r,u) denotes the utility of a candidate item c to act as a reference item for user u taking into
account the current reference item r. Furthermore, sim(c,r) determines the similarity between r and c.
Finally, support(c,critiques(u)) evaluates the support candidate item c provides for the critiques defined
by user u. In this context, support is measured in terms of (a) consistency between candidate item and
critiques and (b) the weight of individual critiques (for example, older critiques could have a lower weight).

utility(c,r,u) = sim(c,r)× support(c,critiques(u)) (2.7)

support(c,critiques) = Σcrit∈critiquesconsistent(c,crit)×weight(crit) (2.8)

consistent(c,crit) =

1 if σ[crit]{c} 6= /0

0 otherwise
(2.9)

Let us assume that the first reference item (item r that is the first one shown to start a critiquing session)
shown to each group member is t1. Table 2.21 depicts example critiques defined thereafter on t1 by the
group members u1, u2, and u3. We also assume that items used in the example correspond to the travel
destinations itemset shown in Table 2.8. Finally, we assume equal weights for critiques.

∗Different variants thereof exist in critiquing-based systems ranging from taking into account only the most recent critique to all
critiques in the critiquing history.

†Also denoted as compatibility score (McCarthy et al., 2006).

39

Chapter 2. Algorithms for Group Recommendation

user 1stcritique 2ndcritique

u1 t1:winter ∈ season (cr11) t3:eval > 3.3 (cr12)
u2 t1:nature ∈ topics (cr21) t2:winter ∈ season (cr22)
u3 t1:eval > 4.5 (cr31) t4:citytours ∈ topics (cr32)

Table 2.21.: A group-based critiquing scenario: each group member already specified two critiques (de-
noted as critiquing history). The reference item for the 1st critiquing cycle is assumed to be
t1(u1,u2,u3), the reference items for the 2nd critiquing cycle are t3(u1), t2(u2), and t4(u3).

The similarities between potential combinations of reference items (r) and candidate items (c) are depicted
in Table 2.22. The attributes season (EIB), topics (EIB), and eval (NIB) are taken into account.‡ For ex-
ample, sim(t1,t2) = s(t1.season.spring, t2.season.spring)× 1

9 + s(t1.season.summer, t2.season.summer)× 1
9

+ s(t1.season.autumn, t2.season.autumn)× 1
9 + s(t1. season. winter, t2.season.winter)× 1

9 +
s(t1.topics.citytours, t2.topics.citytours)× 1

9 + s(t1. topics.entertainment, t2.topics.entertainment)× 1
9 +

s(t1.topics.nature, t2.topics. nature)× 1
9 + s(t1.topics.beach, t2.topics.beach)× 1

9 + s(t1.eval, t2.eval)× 1
9 =

0.66.

item t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 1.0 .66 .75 .32 .86 .88 .54 .61 .74 .77
t2 - 1.0 .43 .64 .53 .54 .67 .96 .42 .64
t3 - - 1.0 .52 .88 .86 .54 .42 .99 .74
t4 - - - 1.0 .4 .44 .53 .6 0.51 .56
t5 - - - - 1.0 .96 .42 .53 .89 .84
t6 - - - - - 1.0 .43 .5 0.85 .88
t7 - - - - - - 1.0 .62 .53 .53
t8 - - - - - - - 1.0 0.42 .6
t9 - - - - - - - - 1.0 .73
t10 - - - - - - - - - 1.0

Table 2.22.: Items of Table 2.8 (similarity with regard to season, topics, and eval).

The selection of a new reference item in the critiquing scenario shown in Table 2.21 is depicted in
Table 2.23. In this context, reference items are not considered potential candidate items, since the
same item should not be presented in follow-up critiquing cycles. Each table entry represents the
utility of a specific candidate item (from Table 2.8) with regard to a reference item. For example,
utility(c : t2,r : t3,u : u1) = sim(t2, t3)× support(t2,critiques(u1)) = 0.43× (0×0.5+1×0.5) = 0.21 (two
critiques, i.e., equal weights = 0.5).

If a user interacts with a critiquing-based recommender in standalone mode (critiques of other users are
not taken into account), he/she receives recommendations related to his/her preferences (McCarthy et al.,
2006). In parallel, critiques from individual group members can be forwarded to a group recommender.
Different variants thereof are possible. For example, recommendations determined for a single user can

‡Similarity metrics (see (McSherry, 2004)) – we assume, minval=0 and maxval=5.

40

2.8. Critiquing-based Recommendation for Groups

u r utility(ti,r,u)
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

u1 t3 - .21 - .52 0 .43 .54
√

0 .49 .37
u2 t2 - - .21 .64 0 0 .67

√
.48 .21 0

u3 t4 - 0 .26 - .2 .44 .26 0 .25 .56
√

Table 2.23.: Selection of new reference items based on the utility of candidate items ti (calculation is based
on Formula 2.7). We assume that previous reference items are not reference item candidates
anymore (represented by ’-’ entries). The

√
symbol denotes the selected new reference items.

also take into account the preferences of the whole group by simply taking into account some or all of
the critiques stored in the group profile (McCarthy et al., 2006). In this context, weights regarding the
trade-offs between the importance of user-individual critiques and critiques on the group level have to be
specified.

Aggregated Predictions. The process of critiquing-based group recommendation using aggregated
predictions is sketched in Figure 2.10.

Figure 2.10.: Critiquing-based recommendation for groups with aggregated predictions. User preferences
are constructed iteratively (conversational recommendation).

On the basis of an initial reference item, individual critiquing-based recommenders start the first critiquing
cycle and – depending on user feedback – determine follow-up reference items. In other words, several
interaction cycles preceed a decision. After individual group members have completed their selection
process, the corresponding results (see, e.g., Table 2.21) can be used to determine a group recommendation.
Table 2.24 depicts user-specific utilities of new items (the similarity values are taken from Table 2.23).
An alternative to the aggregation of item utilities (Table 2.24) is to aggregate items proposed by individual
critiquing-based recommenders. A group recommendation can be determined, for example, by taking
the item with the highest utility value per group member (Formula 2.7). The group recommendation
is {t7, t10}. As discussed in (Guzzi et al., 2011), items can be proposed by group members and group
members can provide counter-proposals that – with some likelihood – are acceptable to other group
members.

41

Chapter 2. Algorithms for Group Recommendation

c utility(c,r,u) (score) aggregation
u1(r : t3) u2(r : t2) u3(r : t4) AVG BRC LMS

t1 0 (1.5) 0 (2) 0 (1.5) 0 5 0
t2 0.21 (4) 0 (2) 0 (1.5) 0.07 7.5 0
t3 0 (1.5) 0.21 (5.5) 0.26 (6.5) 0.16 13.5 0
t4 0.52 (8) 0.64 (8) 0 (1.5) 0.39 17.5 0
t5 0 (1.5) 0 (2) 0.2 (4) 0.07 7.5 0
t6 0.43 (6) 0 (2) 0.44 (8) 0.29 16 0
t7 0.54 (9) 0.67 (9) 0.26 (6.5) 0.49

√
24.5
√

0.26
√

t8 0 (1.5) 0.48 (7) 0 (1.5) 0.16 10 0
t9 0.49 (7) 0.21 (5.5) 0.25 (5) 0.32 17.5 0.21
t10 0.37 (5) 0 (2) 0.56 (9) 0.31 16 0

Table 2.24.: User-specific utilities of new items (see Formula 2.7).
√

indicates the item with the best
evaluation determined by the corresponding aggregation function.

Aggregated Models. Following this strategy, a group model (critiquing history on the group level) has to
be generated (see Figure 2.11).

Figure 2.11.: Critiquing-based recommendation for groups with aggregated models. Group preferences are
constructed iteratively (conversational recommendation).

On the basis of a group model (group profile - gp), a corresponding group recommendation can be deter-
mined. In order to build a group profile (gp), critiques defined by group members have to be aggregated.
Table 2.25 depicts an example of the aggregation of group member specific critiquing histories into a group
profile (gp). In this scenario, the aggregation of individual critiques can lead to a situation where none of
the items completely fulfills the defined critiques (see the example group profile in Table 2.25). As a con-
sequence, we have to identify recommendations which support as many critiques as possible. In order to
determine a ranking for the different items, Formula 2.10 can be applied where utility(t,gp) denotes the
utility of item t with regard to the critiques part of the group profile gp, and weight represents the weight
of a critique. In our example, we assume equal weights, however, weights can also be used to reduce the
impact of less up-to-date critiques.

utility(t,gp) = Σcrit∈critiques(gp)consistent(t,crit)×weight(crit) (2.10)

42

2.9. Hybrid Recommendation for Groups

group G group profile (defined by critiques) of G

{u1,u2,u3}
winter ∈ season, nature ∈ topics, eval >

4.5, citytours ∈ topics

Table 2.25.: Set of critiques (=group profile gp) defined by the group G = {u1,u2,u3}.

Table 2.26 represents a list of items (determined on the basis of Formula 2.10) and corresponding utilities
with regard to the critiques contained in the group profile gp. For example, utility(t1,gp) = 0×0.25+0×
0.25+0×0.25+1×0.25 = 0.25.

item utility

t1 0.25
t2 0.25
t3 0.5
t4 0.75

√

t5 0.25
t6 0.5
t7 0.75

√

t8 0.25
t9 0.5
t10 0.5

Table 2.26.: Group-specific utilities of new items determined on the basis of Formula 2.10. The
√

symbol
indicates items with the highest utility values.

2.9. Hybrid Recommendation for Groups

As already mentioned, hybrid recommendation helps to compensate specific limitations of one recom-
mendation approach with the strengths of another one (Burke, 2002; DePessemier et al., 2017). We will
now sketch hybridization in the context of group recommender systems (Berkovsky and Freyne, 2010;
DePessemier et al., 2014, 2015).

Weighted. The idea of weighted hybrid recommendation is to combine the results received from individual
recommenders into a corresponding group recommendation. Table 2.27 shows a simple example of
applying weighted hybridization in the context of group recommendation. A collaborative recommender
for groups (CF) based on the aggregated models (AM) strategy and a content-based filtering recommender
(CBF) for groups based on the aggregated predictions (AP) strategy return the item rankings shown
in Table 2.27. The Borda Count (BRC) strategy (see Table 2.2) can now be applied to aggregate the
corresponding scores.

Mixed. Hybrid recommendation based on the mixed strategy combines the recommended items returned
by the individual recommenders (see Table 2.28).

43

Chapter 2. Algorithms for Group Recommendation

item recommender-specific evaluations (scores) aggregation
CF ratings (AM,AVG) CBF similarities (AP,LMS) BRC

t1 4.9 (8) 0.81 (9) 17
√

t2 2.2 (1) 0.32 (1) 2
t3 5.0 (9) 0.66 (7) 16
t4 4.3 (7) 0.61 (6) 13
t5 1.5 (0) 0.2 (0) 0
t6 3.8 (3) 0.55 (5) 8
t7 3.4 (2) 0.49 (4) 6
t8 4.1 (4) 0.45 (3) 7
t9 4.2 (5.5) 0.33 (2) 7.5
t10 4.2 (5.5) 0.79 (8) 13.5

Table 2.27.: Recommendation results of two group recommenders (CF based on aggregated models (AM)
and CBF based on aggregated predictions (AP)) as list of ranked items are aggregated on the
basis of Borda Count (BRC). The

√
symbol indicates the item with the best evaluation.

In our example, the rankings returned by two group recommenders are aggregated using the fairness (FAI)
function where items are included in the final recommendation following the zipper principle, i.e., the
item ranked highest by the CBF recommender is integrated first, then the item ranked highest by the CF
recommender is integrated into the recommendation result, and so on.

44

2.10. Matrix Factorization for Groups

item recommender-specific rankings aggregation
CF (AM,AVG) CBF (AP,LMS) FAI (ranking)

t1 10 9 10
t2 2 1 1

√

t3 7 6 7
t4 6 5 6
t5 1 4 2
t6 3 7 4
t7 5 3 5
t8 9 8 9
t9 4 2 3
t10 8 10 8

Table 2.28.: Recommendation results of two group recommenders (CF and CBF) as a list of ranked items
aggregated on the basis of Fairness (FAI) that implements the zipper principle (alternate in-
clusion of best ranked items – the item ranked highest by CBF is integrated first).

√
indicates

the item with the highest ranking.

2.10. Matrix Factorization for Groups

Up to now, we have discussed ways to apply the recommendation approaches of collaborative filtering,
content-based filtering, constraint-based, critiquing-based, and hybrid recommendation in group contexts.
Matrix factorization is a popular approach to collaborative filtering based recommendations (Koren et al.,
2009) . The underlying idea is to explain ratings by characterizing items and users on the basis of a set
of factors. The original user × item matrix is separated into two lower-dimensional ones that explain user
item interactions on the basis of the mentioned factors (see Table 2.29).
In this context, each item t is associated with a vector qt that describes to which extent t represents the
factors. Furthermore, each user u is associated with a vector pu that describes to which extent the factors
are important for the user. Finally r̂ui = qT

i pu represents an approximation of a user’s u rating of t (rui

denotes a user’s real rating). More formally, we factorize the rating matrix RRR ∈ Rn×m containing known
ratings for n users and m items into matrices PPP ∈Rn×k and QQQ ∈Rm×k such that PPPQQQT closely approximates
RRR. In literature and practice, there are several possibilities to measure and minimize the approximation
error of the factorization. A popular choice for the approximation error is the sum of the squared errors
combined with a simple regularization term, e.g. ∑ru,i 6=•(ru,i− µ−~p T

u ~qi)
2 + λ(||~pu||2 + ||~qi||2), where µ

is the global rating average and • represents an unknown rating. Minimization of the error is typically
computed with a variant of the gradient descent method.
An approach to the application of matrix factorization in the context of group recommendation scenarios
is presented in (Ortega et al., 2016). The authors introduce two basic strategies denoted as After Fac-
torization (AF) and Before Factorization (BF). When using AF (see Table 2.30), user-individual matrix
factorization is performed in order to identify user-specific factors which are thereafter aggregated (e.g.,
by determining the average (AVG) of the user-individual factor values). When using BF (see Table 2.31),
first user-individual item ratings are aggregated into a group profile, followed by a matrix factorization
approach. These two basic variants follow the idea of aggregated predictions (AF) and aggregated models
(BF).

45

Chapter 2. Algorithms for Group Recommendation

i1 i2 i3 i4 i5 i6 i7 i8

u1 5 1 2 2 2
u2 1 4 2 5 1 4
u3 3 5 1 2 4
u4 4 5 3 5 3
u5 4 1 1 4 3
u6 4 1 1 5 1
u7 2 2 2 4 1
u8 4 3 4 3

(a) Rating matrix RRR

pu,1 pu,2 pu,3
u1 0.27984223 1.33194126 -0.25748666
u2 -0.13639896 -1.00299326 1.09421098
u3 0.29145967 -1.08249042 0.85824434
u4 1.29398513 0.94631031 0.77574863
u5 0.25258519 0.72222304 -1.20079938
u6 -1.26795635 1.16829146 -0.11806872
u7 -0.82074846 0.92881098 -0.20635514
u8 0.15691092 0.64969789 0.53725284

(b) User factors PPP

qi,1 qi,2 qi,3
i1 0.23698436 1.38151089 -0.23953783
i2 -0.19159424 -1.01718827 0.59249957
i3 1.60559024 0.21567611 -0.26351522
i4 0.3814163 -0.94038814 0.9485212
i5 0.43533279 -0.3900103 1.52692825
i6 0.1258419 1.88675619 0.13922563
i7 -0.47012841 0.65365324 0.03900384
i8 0.98047664 -0.63261944 0.51537004

(c) Item factors QQQ

Table 2.29.: We factorize the rating matrix RRR containing known ratings for n = 8 users and m = 8 items
into matrices PPP and QQQ such that PPPQQQT closely approximates RRR. For illustration purposes, we
minimize the sum of the squared errors of the approximation together with a simple squared
L2-norm regularization term. We set k = 3 factors and regularization parameter to λ = 0.02.
We initialize PPP and QQQ randomly and optimize with the gradient descent algorithm. Note that
factorization brings similar users close to each other in the factor space (c.f. factors of users
u2 and u3 in PPP), whereas dissimilar users are projected further apart (c.f. factors of users u1
and u2 in PPP).

pG,1 pG,2 pG,3

G 0.144968 -0.25118 0.56499

(a) AF: Group factors

i1 i2 i3 i4 i5 i6 i7 i8
G 2.40 3.41 2.88 3.68 3.87 2.47 2.64 3.44

(b) AF: Predicted ratings

Table 2.30.: In the After Factorization (AF) approach the group of users is factorized by merging factors
of users (e.g., by calculating averages) in a given group. In our example, we group three users
from G= {u1,u2,u3}. Note that users u2 and u3 are highly similar to each other but are highly
dissimilar to user u1. Thus, we expect the group ratings to be biased towards the ratings of
users u2 and u3 as group ratings for items i1 (lower because of a low rating from user u2) and
i2 (higher because of a high rating of user u2) show.

Due to its simplicity, AF is efficiently calculated and provides a solid baseline for group recommendation
approaches based on matrix factorization. However, in practice BF gives significantly better prediction
results on larger datasets and for larger groups. For more details on matrix factorization based recommen-
dation approaches we refer to (Koren et al., 2009). Approaches to apply matrix factorization in the context
of group recommendation scenarios are discussed in (Hu et al., 2011; Ortega et al., 2016).

46

2.11. Conclusions and Research Issues

pG,1 pG,2 pG,3

G 0.12873 -0.56466 -0.03111

(a) BF: Group factors

i1 i2 i3 i4 i5 i6 i7 i8
G 2.11 3.38 2.94 3.40 3.08 1.80 2.42 3.32

(b) BF: Predicted ratings

Table 2.31.: In the Before Factorization (BF) approach a virtual group user is created from the rating matrix
by e.g. calculating the average ratings (AV G) for the users from a given group. In the next
step, the group factors are calculated from the given factorization by calculating the (Ridge)
regression coefficients on the ratings of the virtual user. Finally, the group factors allow us
to predict group ratings. The intuition behind BF approach is that the virtual user is a better
representation of the users group than a simple aggregation of users factors. In our example,
BF predicts a significantly lower rating than AF for item i6 because there is much stronger
evidence in the data for a low rating (two 1-star ratings).

2.11. Conclusions and Research Issues

In this chapter, we have introduced different group recommendation techniques which are based on the rec-
ommendation approaches for individual users. We showed how related group recommendation scenarios
can be designed for collaborative filtering, content-based filtering, constraint-based including utility-based
recommendation, critiquing-based, and hybrid recommendation. In this context, we focused on a dis-
cussion of the two aggregation strategies: (1) aggregated predictions (items) and (2) aggregated models.
In (1), recommendations are determined for individual group members and then aggregated. In (2), the
preferences of group members are aggregated, and recommendations are then determined on the basis of
information contained in the integrated group profile. An issue already solved in a couple of person-2-
person recommendation environments is which algorithms can be used to find a person that fits another
person with regard to a set of predefined criteria. An online dating application is reported, for example,
in (Wobcke et al., 2015). Another application is the identification of experts to support the answering of
specific questions (McDonald and Ackerman, 2000). A related issue, especially relevant in the context of
group decision making, is group synthesis, i.e., the identification of a group that is able to solve a specific
problem or to make a decision. Initial work on group synthesis in the context of open innovation scenarios
can be found in (Brocco and Groh, 2009; Hong et al., 2014). A major criteria is to identify a group that is
able to solve a given (decision) task, taking into account availability aspects such as engagement in other
projects. This scenario can become even more complex if we want to configure a set of groups to solve a
specific task. Consider the following university-based task: Given that there are 300 students registered in
a software engineering course, divide the population into groups of 6, such that each group is best suited to
complete a specific project. A related issue is the analysis of inter-group influences, for example, in which
way influential groups influence susceptible groups (Recalde, 2017). Further research issues are related
to the topics of evaluating group recommenders, explaining group recommendations, taking into account
group dynamics, and counteracting biases that trigger suboptimal decisions.

47

48

Chapter 3
An Analysis of Group Recommendation
Heuristics for High- and
Low-Involvement Items

Parts of the contents of this chapter have been published in (Felfernig et al., 2017a). The author of this
thesis provided major parts of this chapter in terms of writing, literature research,

user study design, data analysis, and evaluation.

3.1. Abstract

Group recommender systems are based on aggregation heuristics that help to determine a recommendation
for a group. These heuristics aggregate the preferences of individual users in order to reflect the preferences
of the whole group. There exist a couple of different aggregation heuristics (e.g., most pleasure, least
misery, and average voting) that are applied in group recommendation scenarios. However, to some extent it
is still unclear which heuristics should be applied in which context. In this chapter, we analyze the impact of
the item domain (low-involvement vs. high-involvement) on the appropriateness of aggregation heuristics
(we use restaurants as an example of low-involvement items and shared apartments as an example of high-
involvement ones). The results of our study show that aggregation heuristics in group recommendation
should be tailored to the underlying item domain.

3.2. Introduction

In contrast to single user recommender systems (Jannach et al., 2010; Jameson et al., 2015), group
recommenders focus on the recommendation of items to groups (Jameson and Smyth, 2007; Masthoff,
2011). For example, Masthoff (Masthoff, 2004) presents concepts for television item sequencing for
groups, O’Connor et al. (O’Connor et al., 2001) present a collaborative filtering based approach to
movie recommendation for groups, McCarthy et al. (McCarthy et al., 2006) present a critiquing-based
recommendation approach for groups of users (skiing holiday package selection), Ninaus et al. (Ninaus
et al., 2014a) demonstrate the application of group recommendation techniques in software requirements
engineering, Jameson (Jameson, 2004) presents user interface concepts that help to elicit and aggregate

49

Chapter 3. An Analysis of Group Recommendation Heuristics for High- and Low-Involvement Items

user preferences in the tourism domain (and beyond), and Stettinger et al. (Stettinger et al., 2015a,b)
introduce a domain-independent recommendation-enhanced decision support environment for groups
named CHOICLA.

There exist different approaches to determine recommendations for groups (Jameson and Smyth, 2007).
In most scenarios, preferences of individual group members are aggregated on the basis of aggregation
functions (heuristics) (Masthoff, 2011). The outcome of such an aggregation reflects the preferences
of the whole group with regard to a given set of items. In the study presented in this chapter, we
simulate a situation where users have explicitly specified their preferences with regard to a set of items
(restaurants and shared apartments) and aggregation heuristics are then used to infer the corresponding
group preferences. In this context, the task of each study participant was to analyze a given set of user
preferences with regard to an item set and then to provide a recommendation for the whole group.

Group recommender systems can be regarded as tools that support groups in decision making processes.
Depending on the type of item, users tend to invest more or less time until a final decision is taken.
For example, a car purchase comes along with a long-term decision process where different alternatives
are compared in-depth against each other. In contrast, when choosing a restaurant, the corresponding
decision is typically taken rather fast. An important question to be answered in this context is whether
the underlying decision heuristics differ since this has a major impact on the development of group
recommender systems.

Depending on the decision scenario, humans tend to achieve an acceptable trade-off between effort
and accuracy related to a decision making process and the corresponding outcome (Payne et al., 1993).
Satisficing (Simon, 1955) is a related term that describes a human decision behavior where the first
alternative is chosen that satisfies the wishes and needs of a user. Finally, items with high related decision
efforts are often denoted as high-involvement items whereas items with low related decision efforts are
denoted as low-involvement items (Petty et al., 1983). The impact of suboptimal decisions regarding
high-involvement items is much higher compared to low-involvement items. For instance, a suboptimal
decision in the shared apartment domain manifests, e.g., in search efforts for a new apartment, unnecessary
payments for the old apartment, relocation costs, and additional time efforts. In the restaurant domain, the
effects of a suboptimal decision are typically negligible.

To the best of our knowledge, in-depth analyses of the selection of preference aggregation heuristics
depending on the item domain do not exist. Related work is presented in (Masthoff, 2011) where individual
aggregation heuristics are compared in the movie domain without further comparing the heuristics in other
item domains. We present the results of a study that investigates the impact of item type (high-involvement
vs. low-involvement) on the chosen decision strategy.∗

The remainder of this chapter is organized as follows. In Section 3.3 we shortly introduce the aggregation
heuristics that are often used in group recommendation scenarios. In Section 3.4 we analyze to which extent
the item type has an impact on chosen decision heuristics and which heuristics have the highest prediction
quality in specific item domains. With the final section we discuss research issues and conclude the chapter.

∗The work presented in this chapter has been partially conducted within the scope of the research projects WeWant (basic research
project funded by the Austrian Research Promotion Agency) and OpenReq (Horizon 2020 project funded by the European Union).

50

3.3. Group Recommendation Heuristics

3.3. Group Recommendation Heuristics

The scenario in our study is based on the assumption that each (hypothetical) member of a group
explicitly specifies her preferences w.r.t. a given set of items. On the basis of this preference specification,
corresponding aggregation functions (heuristics) aggregate preferences to a group model that represents
the inferred preferences of the whole group. An example of a setting where each group member has
already specified his/her preferences is depicted in Table 3.1.

restaurant 1 restaurant 2 restaurant 3

1st user 5 1 3
2nd user 4 2 3
3rd user 5 1 3
4th user 4 2 3

AVG 5 2 3
LMIS 4 1 3
MPLS 5 2 3
MGD 4 or 5 1 or 2 3
ENS 5 2 3
MUL 400 4 81

Table 3.1.: Example setting: four group members evaluated restaurants. Study participants had to recom-
mend one “winner” item per setting. The individual decision heuristics AVG (average), LMIS
(least misery), MPLS (most pleasure), MGD (minimal group distance), ENS (ensemble voting),
and MUL (multiplicative) will recommend “restaurant 1” to the group.

The following set of aggregation functions was used within the scope of our study (corresponding
examples of the application of these functions are depicted in Table 3.1).

Average (Formula 3.1) returns the average (in our example rounded to the nearest whole number) voting
for item s as recommendation for the whole group. For example, the AVG value for restaurant 1 is 5.

AV G(s) =
Σu∈Userseval(u,s)

|Users|
(3.1)

Least Misery (Formula 3.2) returns the lowest voting for item s as group recommendation. For example,
the LMIS value for restaurant 1 is 4.

LMIS(s) = min(
⋃

u∈Users

eval(u,s)) (3.2)

Most Pleasure (Formula 3.3) returns the highest voting for item s as group recommendation. For example,
the MPLS value for restaurant 1 is 5.

MPLS(s) = max(
⋃

u∈Users

eval(u,s)) (3.3)

51

Chapter 3. An Analysis of Group Recommendation Heuristics for High- and Low-Involvement Items

Minimal group distance (Formula 3.4) returns a rating d which has the minimum distance to the ratings of
group members. For example, the MGD value for restaurant 1 is 4 or 5.

MGD(s) = arg min
d∈{1..5}

(Σu∈Users|eval(u,s)−d|) (3.4)

Ensemble voting (Formula 3.5) returns the majority value of the individual decision strategies. The majority
of the following individual voting strategy results would be used to calculate the ensemble voting value:
H = {AVG, LMIS, MPLS, MGD}. For example, the ENS value for restaurant 1 is 5 because the value 5
occurs 3 times (result of AVG, MPLS, MGD) and the value 4 occurs only 2 times (result of LMIS, MGD).

ENS(s) = maxarg(d∈{1..5})(#(
⋃

u∈Users

eval(u,s) = d)) (3.5)

Multiplicative heuristic (Formula 3.6) multiplies the rating values of all users for item s. For example, the
MUL value for restaurant 1 is 400 (5*4*5*4 = 400).

MUL(s) = ∏
u∈Users

eval(u,s) (3.6)

In the example depicted in Table 3.1, each of the used heuristics would recommend restaurant 1 which is
the dominating alternative in this scenario.

3.4. User Study

Overview. The overall goal of the user study was to figure out in which way decision heuristics of users
change depending on the corresponding item domain. As an example of a high-involvement item we chose
shared apartments, as an example of low-involvement items we chose restaurants.

We conducted a user study with students from two Austrian universities.† In the data collection phase,
N=420 subjects participated in the study where each participant had to perform two tasks: (1) select a
restaurant for the given preferences of a synthesized group (each group had four group members – an
example of such a synthesized setting is depicted in Table 3.1) with regard to a set of three restaurants and
(2) explain the selection (recommendation). Overall, each of 20 different tasks (see Table 3.3) received
about 20 evaluations from different study participants. The overall idea was that study participants were
confronted with synthesized group settings (see, e.g., Table 3.1) and had to provide feedback on which
item they would recommend to the group. This approach to analyze the decision making of groups is
referred to as user as wizard evaluation method (Masthoff, 2006).

Evaluations of group members were simulated on the basis of six evaluation patterns (see Table 3.2) which
follow a symmetric distribution of user preferences as follows.

• average support (AV): there is an average support by each group member and none of the group
members has a strong preference regarding acceptance or rejection.

• disagreement (DIS): there is no clear opinion about the item, i.e., evaluations range from positive to
negative.

†Graz University of Technology (www.tugraz.at) and Alpen-Adria Universität Klagenfurt (www.aau.at).

52

3.4. User Study

• majority positive (MAP): the majority has evaluated the item positively, only one user does not sup-
port the item.

• majority negative (MAN): the majority has evaluated the item negatively, only one user likes the item.

• no support (NO): none of the group members prefers the item, i.e., the group as a whole refuses the
item.

• full support (FULL): the item is a preferred one for each group member, i.e., fully supported by all
group members.

Table 3.2 depicts the six different patterns used within the scope of our study. For example, in the task
depicted in Table 3.1, pattern FULL was used for restaurant 1, pattern NO was used for restaurant 2, and
pattern AV was used for restaurant 3.

pattern 1st user 2nd user 3rd user 4th user

1 (AV) 3 3 3 3
2 (DIS) 1 2 3 4

3 (MAP) 1 4 5 4
4 (MAN) 5 2 1 2
5 (NO) 1 2 1 2

6 (FULL) 5 4 5 4

Table 3.2.: Patterns of user preferences (evaluations) used in the study, for example, pattern 6 (FULL)
reflects a situation where all group members evaluate the alternative very positively.

The complete set of tasks that were generated on the basis of the patterns depicted in Table 3.2 is
depicted in Table 3.3. This table is the result of generating all possible combinations of three different
patterns out from 6 patterns. The sequence in which the three patterns have been displayed to study
participants was randomized. Each study participant had to solve two tasks, i.e., to select two items
in two different settings (one in a restaurant and the other one in a shared apartment group decision context).

On the basis of the collected dataset, we evaluated the prediction quality of the group decision heuristics
AVG, LMIS, MPLS, MGD, ENS, and MUL where precision (Herlocker et al., 2004) was measured in
terms of the ratio between the number of correctly predicted group decisions (recommendations of study
participants were interpreted as corresponding group decisions) and the overall number of predictions. Our
hypothesis (H1) in this context was that for the same overall combinations of patterns, study participants
apply different decision heuristics depending on the item domain, i.e., depending on the item domain (and
related basic involvement type), different decision strategies are applied.

Within the scope of the study, participants had to provide explanations as to why they recommended
(selected) a specific item for a defined group setting. This information is the basis for our second
hypothesis (H2): depending on the item type, different types of explanations are used for the selected item.
The explanation type was determined on the basis of sentiments which have been manually extracted from
textual explanations provided by the study participants.

53

Chapter 3. An Analysis of Group Recommendation Heuristics for High- and Low-Involvement Items

task 1st pattern 2nd pattern 3rd pattern dominance

1 1 2 3 n
2 1 2 4 n
3 1 2 5 n
4 1 2 6 y
5 1 3 4 n
6 1 3 5 n
7 1 3 6 y
8 1 4 5 n
9 1 4 6 y
10 1 5 6 y
11 2 3 4 n
12 2 3 5 y
13 2 3 6 y
14 2 4 5 n
15 2 4 6 y
16 2 5 6 y
17 3 4 5 n
18 3 4 6 y
19 3 5 6 y
20 4 5 6 y

Table 3.3.: Tasks used in the user study. N=20 tasks represent all possible combinations of three out of
six patterns (see Table 3.2). Dominance denotes the fact that the item set used in the task
includes a dominant item, i.e., an item that is not outperformed by another item in terms of a
user evaluation. For example, restaurant 1 in Table 3.1 is a dominating item.

Results. Our goal was to figure out whether study participants used different decision strategies depending
on the item domain (restaurants and shared apartments). First, we analyzed tasks in the dataset which
included a dominating item, i.e., an item that outperforms alternative items in at least one user evaluation
and is not outperformed by other items. For example, restaurant 1 in Table 3.1 outperforms the other
restaurants in all corresponding user evaluations.

Table 3.4 summarizes the results of this analysis for the tasks which include dominating items: in both item
domains (restaurants and shared apartments), the MPLS heuristics had the highest precision compared to
AVG, LMIS, MGD, ENS and MUL (chi-square test, p < 0.05). In all of our evaluations, the rather high
precision rates can be explained by the low number of alternatives used in the individual task settings (the
study participants had to compare only three items).

Second, we analyzed task settings which did not include dominating items. Table 3.5 summarizes
the corresponding results: in the restaurant domain, the AVG heuristic had the highest precision (p <

0.05). In the shared apartment domain, LMIS significantly outperformed the other heuristics (p < 0.05).
Consequently, in settings with no clear winner (settings where no dominating alternative is included), the
choice of a decision heuristic depends on the item domain.

54

3.4. User Study

domain AVG LMIS MPLS MGD ENS MUL

restaurants 90.7% 91.2% 94.3% 90.7% 92.0% 90.7%
apartments 92.9% 93.4% 93.7% 92.9% 93.6% 92.9%

Table 3.4.: Precision of decision heuristics in the domains of restaurants and shared apartments for tasks
only including dominating items.

domain AVG LMIS MPLS MGD ENS MUL

restaurants 81.2% 75.0% 48.3% 79.1% 37.2% 70.9%
apartments 74.1% 83.3% 35.7% 73.0% 22.1% 69.0%

Table 3.5.: Precision of decision heuristics in the domains of restaurants and shared apartments for tasks
not including dominating items.

Table 3.6 summarizes the precision of decision heuristics including dominating and non-dominating items
in the domains restaurant and shared apartments. In restaurant domain, the AVG heuristic outperforms best
and in the shared apartment domain, the LMIS heuristic significantly outperforms all the other heuristics.

domain AVG LMIS MPLS MGD ENS MUL

restaurants 86.5% 83.9% 73.6% 85.5% 67.4% 81.8%
apartments 84.5% 88.9% 67.6% 84.0 61.5% 85.7%

Table 3.6.: Precision of decision heuristics in the domains of restaurants and shared apartments for tasks
including dominating and non-dominating items.

In order to understand the reasons why study participants selected certain alternatives, we applied a manual
sentiment analysis to analyze the explanations provided by the study participants (see Table 3.7). All
explanations were analyzed with regard to the dimensions dominance, fairness, and consensus. In both
item domains (restaurants and shared apartments), item dominance was the preferred way of explaining
item recommendations. This can be explained by the fact that group recommendations identified by a study
participant are in many cases considered as the best ones for the group (i.e., are considered as dominating
the alternative ones).
If the task setting did not include dominating items, the share of consensus- and fairness-related ex-
planations increased. In the restaurant domain, explanations more referred to the aspect of consensus
whereas in the shared apartment domain, the aspect of fairness plays a more important role. Typically,
restaurants are related to low-involvement decisions where the misery of a minority seems to be more
acceptable compared to high-involvement decisions. The results of our sentiment analysis are summarized
in Table 3.7.

In tasks that included dominating items, the explanations of users predominantly referred to the dominance
of a specific item, for example, I recommend item x since it dominates the other alternatives and thus
is clearly the best recommendation in the given setting. In situations with no clear winner, i.e., no
dominating items were included in the task setting, the share of explanations related to the dimensions

55

Chapter 3. An Analysis of Group Recommendation Heuristics for High- and Low-Involvement Items

dimensions dom:restaurants dom:apartments non-dom:restaurants non-dom:apartments

dominance 93.1% 93.3% 62.6% 54.1%
fairness 2.3% 3.3% 13.9% 23.5%

consensus 4.6% 3.3% 23.5% 22.4%

Table 3.7.: Explanation focus depending on the item domain. The sentiment dimensions used in our anal-
ysis were dominance of an item, fairness with regard to every group member, and consen-
sus within the group. Dominating alternatives in the item set (columns dom:restaurants and
dom:apartments) trigger more explanations regarding item dominance. In scenarios that do not
include dominating alternatives, other dimensions play a more important role. In apartment de-
cisions, fairness plays a more important role. Finally, consensus plays a role in both, apartment
and restaurant decisions.

of consensus and fairness increases. From the three analyzed aggregation heuristics, AVG reflects the
idea of consensus, i.e., items are recommended that represent a kind of trade-off for all group mem-
bers. In this context, for example, completely negative evaluations of a single user do not necessarily
prevent the recommendation of the corresponding item. Fairness is reflected by the LMIS heuristic
since low evaluations of even single users have a much stronger impact on the recommendation and in
most of the cases avoid the recommendation of items that are not preferred by a minority of group members.

3.5. Conclusions and Future Work

In this chapter we have presented the results of a user study that focused on the analysis of the existing
differences in used decision strategies depending on the item type. For the two domains of restaurants
and shared apartments, we could show the existence of different aggregation heuristics especially in
situations where there is no clearly dominating item. We consider our work as a first step towards a more
in-depth analysis of the usage of aggregation heuristics in different item domains. Within the scope of
our future work we will focus on the analysis of further group decision heuristics and compare their item
domain-specific sensitivity. For example, we will analyze the impact of integrating different aspects of
risk-awareness into the design of group recommendation heuristics. In this context we will also analyze
variations in the number of items and group members. Furthermore, we will analyze the impact of factors
such as gender, cultural background, and histories of decisions already taken by the same group on the
decision making approach applied by the group. Finally, we will focus on the analysis of different possible
ways to visualize and explain the current status of a decision process with the overall objective to increase
consensus in the group and make high-quality decisions more efficiently.

56

Chapter 4
Beyond Item Recommendation:
Using Recommendations to Stimulate
Knowledge Sharing in Group Decisions

Parts of the contents of this chapter have been published in (Atas et al., 2017). The author of this thesis
provided major parts of this chapter in terms of writing and literature research.

4.1. Abstract

The intensity of domain knowledge exchange among group members is an important factor that directly
influences group decision quality. The more frequent information is exchanged among group members, the
higher the quality of the corresponding decision. In this chapter we present results of an empirical study
conducted with groups of students – the task of each group was to take a decision regarding the exam topics
the group prefers. This group decision had to be taken on the basis of a group decision support environment
with included recommendation functionality and a discussion forum that allows for information exchange
among group members. Depending on the included variant of the group recommendation algorithm, groups
received recommendations that varied in terms of recommendation diversity. The results of the study show
that increased recommendation diversity leads to an increased degree of information exchange among
group members.

4.2. Introduction

Single user recommender systems focus on the recommendation of items to individuals (Jannach et al.,
2010; Ricci et al., 2011). In contrast, group recommender systems∗ determine item recommendations that
fit the preferences of group members (Jameson and Smyth, 2007; Masthoff, 2011). Table 4.1 provides an
overview of example group recommendation environments. Jameson (Jameson, 2004) introduces a proto-
type application that supports groups of users to elicit and aggregate user preferences with regard to holiday
destinations. Masthoff (Masthoff, 2004) introduces concepts for television item sequencing for groups of

∗The work presented in this chapter has been conducted within the scope of the Horizon 2020 project OpenReq (Intelligent
Recommendation & Decision Technologies for Community-Driven Requirements Engineering).

57

Chapter 4. Beyond Item Recommendation:Using Recommendations to Stimulate Knowledge Sharing in Group Decisions

users on the basis of different models from social choice theory (see also (Masthoff, 2011)). O’Connor
et al. (O’Connor et al., 2001) present a collaborative filtering based approach to movie recommendation
that determines recommendations for groups of users. Ninaus et al. (Ninaus et al., 2014a) demonstrate the
application of group recommendation technologies in software requirements engineering scenarios where
stakeholders are in charge of cooperatively developing, evaluating, and prioritizing requirements. Ku-
denko et al. (Kudenko et al., 2003) propose a system which helps a group of users while purchasing a
product from an electronic catalog and mediates a group discussion with the goal to achieve consensus.
McCarthy et al. (McCarthy et al., 2006) introduce a critiquing-based recommendation approach that sup-
ports groups of users in a skiing holiday package selection process. Finally, CHOICLA (Stettinger et al.,
2015b) is a group decision support environment which includes group recommendation technologies in a
domain-independent fashion – related example application domains are personnel decisions and restaurant
selection. For a detailed overview of existing group recommender applications we refer to Jameson and
Smyth (Jameson and Smyth, 2007) and Boratto et al. (Boratto and Carta, 2015).

system domain reference

TRAVEL DECISION FORUM tourist destinations (Jameson, 2004)
POLYLENS movies (O’Connor et al., 2001)

INTELLIREQ software requirements (Ninaus et al., 2014a)
CATS ski holiday packages (McCarthy et al., 2006)

CHOICLA domain-independent, (Stettinger et al., 2015b)
e.g., personnel decisions

Table 4.1.: Example group recommender systems. For an in-depth discussion of group recommender ap-
plications we refer to (Jameson and Smyth, 2007; Boratto and Carta, 2015).

Also in the context of recommender systems, decision biases frequently occur and can lead to low-quality
decisions (Chen et al., 2013; Felfernig, 2014; Jameson et al., 2015). Masthoff and Gatt (Masthoff and Gatt,
2006) report possible approaches for the prediction of group member satisfaction with recommendations
– in this context, conformity and emotional contagion are stated as major influence factors. Felfernig et
al. (Felfernig et al., 2011b) and Stettinger et al. (Stettinger et al., 2015a) discuss the impact of conformity
on group decision making and report an increasing diversity of the preferences of group members the later
individual preferences are disclosed. Chen and Pu (Chen and Pu, 2012b) show how emotional feedback of
group members can be integrated in a music recommendation system. An outcome of their study is that
emotional feedback can help to enhance the mutual awareness regarding the preferences of other group
members.

Knowledge exchange between group members can have a major impact on decision quality (Mojzisch
and Schulz-Hardt, 2010). The probability of discovering the relevant knowledge (knowledge of one
group member not known to the other group members) to take a high-quality (if optimality criteria exist,
also an optimal) decision increases with an increased frequency of information exchange between group
members (Wittenbaum et al., 2004). One possible reason for increased knowledge exchange between
group members is group diversity (in terms of dimensions such as demographic and educational back-
ground). The higher the degree of diversity, the higher the probability of higher quality decision outcomes
(measured, e.g., in terms of the degree of susceptibility to the framing effect (Yaniv, 2011)). Schulz-Hardt
et al. (Schulz-Hardt et al., 2006) report the role of dissent in group decision making scenarios: the higher

58

4.3. Preference Aggregation Mechanisms

the dissent in initial phases of a group decision process, the higher the probability that the group manages
to share the decision-relevant information. An initial study on selection criteria for preference aggregation
in group decision making is reported in Felfernig et al. (Felfernig et al., 2017a) – a major outcome is an
observed shift from consensus-based strategies such as average voting to borderline strategies such as
least misery in the case of high-involvement items such as apartments and financial services.

The major focus of our work is to analyze the impact of recommendation diversity on the frequency of
information exchange between group members. We integrated different recommendation strategies with
a varying degree of recommendation diversity into our group decision support environment (Stettinger
et al., 2015b) and analyzed the impact of recommendation diversity on knowledge interchange between
users. The underlying idea is that too similar recommendations provide only a limited coverage of the
whole item space (see, e.g., (McGinty and Smyth, 2003)) and increased diversity helps to introduce new
alternatives and to trigger discussions / information exchange with regard to these alternatives.

In contrast to the mainstream in recommender systems research (Jannach et al., 2010; Ricci et al., 2011),
we do not focus on improving the prediction quality of recommendation approaches. Our aim is to
investigate possibilities to exploit recommendation technologies to foster intended behavior which can also
be interpreted as a kind of persuasive technology. In group decision scenarios, it is often more important to
increase the performance of the group and foster group members’ information exchange, than predicting
decisions that will be taken by the group. Based on this idea, we analyze the impact of recommendation
diversity on the degree of knowledge exchange in a group. This chapter (extended version of (Felfernig
et al., 2015)) analyzes three different basic group recommendation heuristics (aggregation functions) (min,
avg, and max group distance) with regard to their impact on the communication behavior (knowledge
exchange) within a group.

The major contributions of this chapter are the following. We show that recommendation diversity can
help to increase the degree of information exchange in group decision making. Furthermore, a higher
degree of information exchange also correlates with a higher preparedness to adapt initially articulated
preferences. Finally, we discuss related open research issues.

The remainder of this chapter is organized as follows. In Section 4.3 we introduce the different preference
aggregation mechanisms used in our group recommendation approach that help to achieve different degrees
of recommendation diversity. Thereafter, in Section 4.4 we introduce the hypotheses and present the results
of our empirical study. In Section 4.5 we report open issues for future work. With Section 4.6 we conclude
the chapter.

4.3. Preference Aggregation Mechanisms

Different preference aggregation mechanisms were used in our study (see Section 4.4) that was conducted
on the basis of our group decision support environment CHOICLA (Stettinger et al., 2015b). This system
includes different group preference aggregation mechanisms from social choice theory (Masthoff, 2011)
– GDmin, GDmax and GDavg (see below) have been included for the purpose of the work presented in
this chapter. The mentioned aggregation mechanisms differ from each other especially with regard to the
calculated diversity (see Formula 4.1). In this context, diversity(d) is interpreted in terms of the deviation

59

Chapter 4. Beyond Item Recommendation:Using Recommendations to Stimulate Knowledge Sharing in Group Decisions

of recommendations d (recommended evaluation of specific alternatives, i.e., exam modes) from the
evaluations provided by individual group members (eval(u,s) where u is a user and s represents a specific
alternative/item, e.g., an exam mode).

diversity(d) =
∑u∈Users |eval(u,s)−d|

#Users
(4.1)

The following group aggregation mechanisms were used within the scope of our study. First, the minimum
group distance (GDmin) determines a rating d (rating scale [1..5]) that reflects the minimum distance to the
individual preferences of the group members (see Formula 4.2). Consequently, Formula 4.2 implements
a low-diversity recommendation approach that tries to take into account the initial preferences of group
members.

GDmin(s) = arg min
d∈{1..5}

(
∑

u∈Users
|eval(u,s)−d|

)
(4.2)

Maximum group distance (GDmax) returns a rating d that represents the maximum distance to the pref-
erences of individual group members (see Formula 4.3). Consequently, Formula 4.3 implements a high-
diversity recommendation approach that often neglects the preferences of individual group members.

GDmax(s) = arg max
d∈{1..5}

(
∑

u∈Users
|eval(u,s)−d|

)
(4.3)

Finally, average group distance (GDavg) represents a value between maximum and minimum group dis-
tance (see Formula 4.4) and thus can be considered as a compromise between minimum and maximum
group distance.

GDavg(s) =
GDmin(s)+GDmax(s)

2
(4.4)

These aggregation functions were used as a basis for the user study discussed in the following section.

4.4. Empirical Analysis

Our user study on the impact of different aggregation functions on the preparedness of group members
to exchange information has been conducted on the basis of the CHOICLA decision support environ-
ment (Felfernig et al., 2015; Stettinger et al., 2015b). A screenshot of the Android version of CHOICLA

is depicted in Figure 4.1. N=256 computer science students (12% female, 88% male) participated in the
study – all students were enrolled in a software engineering course (object-oriented analysis and design)
and assigned to a group that had to implement a software within the scope of the course. Within the scope
of our user study, each of these groups also had to choose a preferred exam mode for object-oriented
analysis and design. An example of such an exam mode is: 1 theoretical question on State Charts (SC),
1 theoretical question on Sequence Diagrams (SD), and two practical exercises on Object-Relational
Mapping (ORM).

All study participants were aware about the fact that there is no guarantee that the preferred exam mode
will be taken into account in upcoming exams. The task of each group was to select a specific exam mode
on the basis of the CHOICLA decision support environment. Figure 4.1 depicts example screenshots of the

60

4.4. Empirical Analysis

Android version of CHOICLA. The study participants had the chance to choose between n=15 different
exam modes which differ (1) in terms of the share of practical exercises (PE) and theoretical questions
(TQ) and (2) in terms of the share of specific topics. For example, PE(2xSC, 2xORM) denotes an exam
mode that includes only practical exercises (i.e., no theoretical questions) related to the topics of state
charts (SC) and object relational mapping (ORM).

Figure 4.1.: CHOICLA group decision support environment (Stettinger et al., 2015b) (Android version).
Recommendations (suggestions) are determined on the basis of the different aggregation func-
tions introduced in Section 4.3.

Within the scope of the study, each group member had to define his/her own preferences with regard to the
available exam modes (see Figure 4.1). Before a group member did not define his/her initial preferences,
there was no possibility to see the preferences of the other group members (the underlying idea is to
avoid anchoring biases that result from a too early preference disclosure (Stettinger et al., 2015a)). On
the basis of a short introductory statement before starting the decision process, study participants were
encouraged to take a look at the group recommendations (tab suggestion) which was done by 91.41% of
the participants at least once. An overview of the assignment of individual groups to specific CHOICLA

versions that differ in terms of the used aggregation mechanism is depicted in Table 4.2.

aggregation function #groups #participants

GDmin 17 92
GDavg 12 69
GDmax 16 95

total 45 256

Table 4.2.: Assignment of preference aggregation mechanisms to groups.

61

Chapter 4. Beyond Item Recommendation:Using Recommendations to Stimulate Knowledge Sharing in Group Decisions

The hypotheses analyzed within the scope of the empirical study were the following. H1: preference
aggregation mechanisms with a higher resulting recommendation diversity increase the degree of knowl-
edge exchange within a group. High-diversity recommendations can act as an anchor (Adomavicius
et al., 2011) and can also induce the feeling of dissent and a corresponding need to resolve the dissent.
Increased knowledge exchange between group members can increase the probability of identifying the
knowledge relevant for taking an optimal decision (Mojzisch and Schulz-Hardt, 2010; Wittenbaum et al.,
2004). Examples of the different types of knowledge exchanged within the scope of a group decision
processes are shown in Table 4.3. This table summarizes the total amount of messages exchanged between
group members that can be assigned to one of the categories of content-related, preference-related,
and recommendation-related. In the following we characterize these categories on the basis of related
examples.

Content-related. A student only took a look at exercises related to a specific topic, e.g., Object-relational
Mapping (ORM) and asks for further information regarding alternative topics. Another group member
points out that there are only a few slides with very simple and understandable examples on the topic of
state charts which are also very useful in industrial contexts.

Preference-related. A group member mentions that he/she prefers to include exercises related to the
Unified Process (UP) compared to State Charts (SC).

Recommendation-related. A participant does not like the group recommendation and he/she wants to
discuss assignment topics that are more acceptable for the group as a whole.

Information units exchanged between group members were analyzed manually with regard to the three
mentioned categories. In the context of recommendation-related information exchange, we evaluated
the valence for recommendation-related comments, i.e., how positive/negative a recommendation was
perceived.

H2: a higher degree of knowledge exchange provides more flexibility to change initial preferences
afterwards. If more decision-relevant knowledge is exchanged between the members of a group, the
amount of global decision-relevant knowledge is increased. This improves the individual capabilities
of taking into account additional decision alternatives. Increased knowledge exchange between group
members plays a key role to overcome a discussion bias (group discussions tend to be dominated by
information group members already knew before the discussion (Stasser and Titus, 1985)).

Hypothesis H1 can be confirmed, i.e., the degree of exchanged decision-relevant knowledge depends
on the chosen aggregation function. The higher the diversity, the higher the number of exchanged
decision-relevant knowledge (see Table 4.3). The number of the given comments for maximum group
distance is highest (total number of comments for GDmax = 278, GDavg = 92, GDmin = 49). Furthermore,
also the overall time invested in taking a decision increases with the diversity of recommendations (see
Table 4.4).

We can also confirm hypothesis H2. The flexibility of the group members to change their initial preference
increases with the higher amount of knowledge exchange. Table 4.5 confirms hypothesis H2 which pro-
vides an overview of the changes of initial ratings depending on the supported aggregation mechanisms.

62

4.5. Future Work

function content preference recommendation
#comments avg. #comments avg. #comments avg. valence

GDmin 22 1.29 0 0 27 1.59 +4.2
GDavg 31 2.58 26 2.16 35 2.92 +0.9
GDmax 79 4.93 91 5.69 108 6.75 -4.4

Table 4.3.: Content-, preference-, recommendation-related comments (#comments, avg. #comments per
group, and valence [-5 .. +5] (for recommendation-related comments)).

function duration (h) proc. time (min)
avg. std.dev. avg. std.dev.

GDmin 71.06 13.05 210.71 20.19
GDavg 85.64 26.58 234.56 17.67
GDmax 101.18 19.48 278.46 16.74

Table 4.4.: Duration (endtime-starttime) and processing time (total time of system interaction) invested per
group for decision task completion (i.e., rating of alternatives).

The average degree of opinion adaptation of groups is highest with GDmax.

function degree of rating adaptation

GDmin 0.67
GDavg 1.32
GDmax 2.46

Table 4.5.: Changes of initial ratings depending on included aggregation mechanism (difference between
original rating and final rating).

Summarizing, the higher the diversity of preference aggregation, the higher the amount of knowledge
exchange between group members. Thus, diverse group recommendations can help to increase the
probability of identifying optimal solutions due to a higher probability of exchanging knowledge relevant
for the optimal decision (Schulz-Hardt et al., 2006; Stasser and Titus, 1985). This can be considered as an
important aspect to be taken into account by online decision support environments.

4.5. Future Work

A major focus will be the analysis of further aggregation mechanisms relevant in social choice scenar-
ios (Masthoff, 2011). Of major relevance in this context is to answer the question on the optimal degree
of recommendation diversity that helps to optimize the parameters degree of information exchange and
perceived recommendation quality. Tables 4.6 and 4.7 show that the satisfaction with group recommenda-
tions decreases with a higher degree of recommendation diversity.

63

Chapter 4. Beyond Item Recommendation:Using Recommendations to Stimulate Knowledge Sharing in Group Decisions

function GDmin GDavg GDmax

diversity 0.84 1.38 2.23

Table 4.6.: Diversity of group recommendations.

function very satisfied satisfied average unsatisfied very unsatisfied

GDmin 67 12 9 2 2
GDavg 17 14 12 14 12
GDmax 2 1 15 25 52

Table 4.7.: Satisfaction with group recommendations.

4.6. Conclusions

This chapter presents the results of an empirical study that focused on possibilities of increasing the amount
of knowledge exchange in group decision scenarios. Thus, in contrast to the mainstream of recommender
systems research, we focused on the application of recommendation technologies to improve decision
processes per-se. The results of our empirical study show that recommendation diversity has an impact
on the frequency of information exchange between group members – the higher the diversity, the more
information is exchanged between group members. Furthermore, recommendations with a higher diversity
can lead to an increased preparedness of changing initially defined preferences, i.e., these recommendations
can be regarded as a mechanism to counteract discussion biases. We regard this work as a contribution to
establish recommender systems as a core mechanism to improve the quality of group decision processes.

64

Chapter 5
Polarization Effects in Group Decisions

Parts of the contents of this chapter have been published in (Atas et al., 2018a). The author of this thesis
provided major parts of this chapter in terms of writing, literature research,

user study design, data analysis, and evaluation.

5.1. Abstract

Group Recommender Systems aim to support the identification of items that best fit individual preferences
of group members. However, decision making behavior of group members can be affected by decision
biases which can deteriorate group decision quality. In this chapter, we analyze the existence of Group
Polarization Effects in two different domains and present a way to counteract these effects. Group Polar-
ization is the tendency of a group to make decisions that are more extreme than the average of individual
group members’ preferences. We analyze Group Polarization in the context of risk analysis and cost es-
timation. In risk related group decisions, we figured out that if individual group members tend to make
cautious decisions, then the group decision will be more cautious. However, in decisions related to cost
estimation, the group estimations are lower than the average of group members’ estimations (i.e., cautious
shift). Furthermore, our results show that individual group members with diverse preferences are not in-
fluenced by Group Polarization Effects. The diversity in preferences of individual group members helps to
counteract Group Polarization Effects.

5.2. Introduction

Recommender systems are decision support systems that support users to identify a set of items fitting
their wishes and needs (Jannach et al., 2010; Ricci et al., 2011). Most of the existing recommender
systems support single users in identifying useful objects and services such as books, personal computers,
songs, and smart phones (Resnick and Varian, 1997). However, there are many scenarios where a group
of users receives recommendations and consumes items (Masthoff, 2011; Felfernig et al., 2018d). For
instance, visiting a restaurant for a dinner with colleagues (Felfernig et al., 2017a), watching a movie
with friends (Masthoff, 2011), or planning the next holiday destination with family (Jameson, 2004).

Similar to single user decisions, group decisions are affected by decision biases. There exist different
types of decision biases which can deteriorate group decision quality (Mandl et al., 2011; Felfernig,

65

Chapter 5. Polarization Effects in Group Decisions

2014). Decoy Effects (Tversky and Simonson, 1993) influence the decision behavior between two items
after a third irrelevant item (i.e., decoy item) is included into the item set. Serial Position Effects (Murphy
et al., 2006) (also called Primacy-Recency Effects) can influence the group decision behavior based on the
illustration of recommended items. Experiments show that when recommended items are shown as a list,
there is a tendency to recall (i.e., remember) the first and last items (Stettinger et al., 2015b). Anchoring
Effects (Jacowith and Kahneman, 1995; Adomavicius et al., 2011) negatively influence the group decision
behavior when the first piece of information (i.e., anchor element) is shown to other group members. An
example of such information can be the rating or comment of a group member regarding an alternative
item. If such information is shown to other group members, this can affect later perceptions and decisions.

However, there exist many other group decision biases which manipulate the group decision and neg-
atively influence the decision quality. In this chapter, we analyze the influence of Group Polarization
Effects (Stoner, 1961; Myers and Lamm, 1976; Sunstein, 2002) in two different domains and present a
way to counteract these.∗ James Stoner (Stoner, 1961) discovered Group Polarization Effects in 1961
by comparing the risk-taking of individuals and groups. He found out that decisions made by groups are
more extreme than the initial decisions of individual members. This phenomenon indicates, if individual
group members tend to make risky decisions, then the group decision will be even riskier and if they tend
to make cautious decisions, then the group decision will be more cautious. This phenomenon occurs,
because if a group of users with the same opinion come together, then, they will most probably follow the
same opinion. Lamm et al. (Lamm and Sauer, 1974) analyze Group Polarization Effects in a bargaining
situation based on a dataset collected in a user study. Each study participant had the task to distribute
several units of money (i.e., profit units) between him-/herself and another participant. After comparing the
average of individual and group profit units, they observed that group decisions tend to be more extreme
than the average of initial inclination of individual members. Another related work is presented in (Sia
et al., 2002) which analyzes the impact of Group Polarization Effects in computer-mediated discussion
forums. The results show that computer-mediated group discussions trigger stronger Group Polarization
Effects than face-to-face group discussions.

To the best of our knowledge, related work regarding proving and counteracting Group Polarization Effects
in different domains (i.e., risk analysis and cost estimation) does not exist. In this chapter, we analyze
Group Polarization Effects in risk- and cost related group decisions. In risk related decisions, we figured
out that if individual group members tend to make cautious decisions, then the group decision will be more
cautious (i.e., there exist Group Polarization Effects). However, if individual group members tend to make
risky decisions in the risk analysis domain, then the group decision is not riskier. In the context of cost
related decisions, if individual group members tend to estimate lower costs, then the cost estimation of the
group is much lower (i.e., there exist Group Polarization Effects). But, if individual group members tend
to estimate higher costs, then the cost estimation of the group is not higher than the average of individual
group members’ estimations. Besides analyzing the impact of Group Polarization Effects in different
domains, we tried to find a way to counteract this decision bias. We figured out that individual group
members with diverse preferences are not influenced by group polarization effects, which means that the
variety of individual group members’ preferences helps to counteract Group Polarization Effects.

The remainder of this chapter is structured as follows. Section 5.3 introduces the design of an empirical

∗The work presented in this chapter has been partially conducted within the scope of the research projects WeWant (basic research
project funded by the Austrian Research Promotion Agency) and OpenReq (Horizon 2020 project funded by the European Union).

66

5.3. User Study

user study and describes the structure of the collected dataset. In Section 5.4, we discuss the results of our
evaluation based on the data collected in a user study. Finally, Section 5.5 provides a brief summary of our
work, emphasizes the outcome of this chapter, and discusses ideas for future work.

5.3. User Study

We conducted a user study with 211 computer science students where participants were involved in
individual- and group decisions in two different domains (risk analysis, cost estimation). Our user study
was conducted in two phases (individual decisions, group decisions) at a university in Austria.† First, the
task of each user study participant was to make decisions individually regarding two different domains. In
the next step, decisions regarding two different domains were made within a group. For group decision
making, we formed 211 individual participants (∼89% male and ∼11% female) to 39 different groups
(one group with group size of 2, one group with group size of 4, 17 groups with group size of 5, and 20
groups with group size of 6). Before a group decision was initiated, each group member exchanged and
discussed his/her opinion with other group members between 5 and 10 minutes. After each group member
discussed and articulated his/her opinion, a group decision was made. Furthermore, decisions made by
individuals and groups were not performed in a short time. As is well-known, if a decision is triggered
right after another decision, the second decision could be influenced by the first decision. In order to
prevent the influence of the second decision from the first one, the group decisions have been performed
40 days after the individual decisions. Moreover, all group members had the equal importance within the
group and there was not any group leader. Otherwise, group decisions can be influenced by GroupThink
bias (Esser, 1998; Janis, 1972) which means as soon as the group leader articulates his/her opinion to other
group members, group leader’s opinion will influence other group members’ perceptions and decisions.

5.3.1. Risk Analysis domain

In the first domain, a scenario regarding risk analysis was described. The description of the scenario was
as follows:
“Assume, there is a recommender Library A which is applied in several companies and universities for a
long time. Unfortunately, Library A is based on an already outdated technology which is unable to analyze
a huge amount of data. Recently, a new Recommender Library B was launched which is much more
efficient in dealing with large volumes of data. The new recommender library is therefore well prepared
for more demanding tasks in the future. However, the integration of Library B involves risks in terms of
stability and integration effort.”

The question posted to participants was following: “Please estimate the risk that would makes sense
to change to library B?” The task of each user study participant was to select one out of the following
options which represents the taken risk in percentage: 0%, 20%, 40%, 60%, 80%, and 100%, whereby 0%
indicates full risk and 100% indicates no risk.

†Graz University of Technology (www.tugraz.at).

67

Chapter 5. Polarization Effects in Group Decisions

5.3.2. Cost Estimation domain

In the second domain, participants had to estimate the development costs of the well-known “WhatsApp”
chat application (in iOS, Android, and Web) in Euro starting from the first idea to the current version
on the open market. Additionally, we mentioned that the developer group of the “WhatsApp” application
consists of a large number of employees who work in different areas such as management, testing, software
development, and design. The question posted to participants was following: “How would you estimate the
total development costs of the WhatsApp application?” In this scenario, user study participants had not any
predefined options like in the first domain. The cost estimation was not limited and it was freely selectable.
Using predefined options in this context could trigger decision biases such as Anchoring Effects. Finally,
we collected the individual- and group estimations decided by user study participants and analyzed Group
Polarization Effects based on the following defined hypotheses:

• H1: “In risk related decisions, groups tend to make decisions that are more extreme than the average
of individual group members’ preferences.” It means, if the individual group members tend to make
risky/cautious decisions, then the group decisions will be riskier/ more cautious. The related works
by Myers and Lamm (Myers and Lamm, 1976), Stoner (Stoner, 1961), and Sunstein (Sunstein,
2002) motivate us to analyze this phenomenon.

• H2:“In cost related decisions, there is no Group Polarization Effects, because we believe that cost
estimations get more realistic (i.e., does not move to the extreme values) if each individual group
member first discusses the cost estimation in detail and then makes a group decision.” The papers
of Torp and Klakegg (Torp and Klakegg, 2016) and Futrell et al. (Futrell et al., 2001) state also that
an estimation gets more realistic after a group discussion.

• H3: “If individual group members’ preferences are diverse, then group decisions are not influenced
by Group Polarization Effects in both domains.” We think that the group decision will not move
to extreme values in situations where group members’ preferences are diverse, because a risky or a
cautious group decision will always ignore preferences of some group members which will decrease
the group satisfaction. To the best of our knowledge, publications with regard to counteracting Group
Polarization Effects do not exist. This motivate us to develop and analyse this hypothesis.

The evaluation of the collected dataset based on the defined hypotheses is presented in Section 5.4.

5.4. Evaluation and Discussion

For the analysis of Group Polarization Effects, we compared whether there is a tendency for a group to
make decisions that are more extreme than the average of individual group members’ preferences. In order
to inspect the impact of Group Polarization Effects, we analyzed whether group decisions are riskier, if
individual group members tend to make risky decisions. Likewise, we analyzed whether group decisions
are more cautious, if individual group members tend to make cautious decisions. Moreover, we analyzed
the decision behavior of groups where individual group members have diverse preferences. We believe
that group members with diverse preferences help to counteract Group Polarization Effects, because if
group members’ preferences are diverse, then the group decision will not move to the extremes in order to

68

5.4. Evaluation and Discussion

satisfy every group member. For analyzing Group Polarization Effects for risky and cautious groups and to
analyze groups with diverse preferences, we divided all groups into the upper-, lower-, and mixed-category
(see Figure 5.1).

Figure 5.1.: Groups divided into three different categories. Groups in the Upper-Category are used to
analyze the decision behavior of risky groups, groups assigned to the Lower-Category are
used to analyze the decision behavior of cautious groups, and groups assigned to the Mixed-
Category are used to counteract Group Polarization Effects.

For analyzing Group Polarization Effects, first, we defined a threshold which represents the middle point of
preferences and a deviation in order to allocate a space for groups in the mixed-category. If the average of
preferences articulated by individual group members is between the threshold ± deviation and if individual
group members’ preferences are diverse, then these groups have been assigned to the mixed-category.
For instance, if a group consists of four group members and two of them make risky and another two
group members make cautious decisions, then the group will most probably make a decision near to the
threshold (i.e., middle point) in order to satisfy all group members. Otherwise, groups have been assigned
to the upper-category, if the average of individual group members’ preferences is higher than threshold +

deviation and assigned to a lower-category, if the average of individual group members’ preferences is
lower than threshold− deviation. Groups in the upper-category are used to analyze the impact of Group
Polarization Effects for risky groups and lower-category groups are used to analyze the impact of Group
Polarization Effects for cautious groups. Furthermore, groups assigned to mixed-category are analyzed in
order to find a way for counteracting this bias.

5.4.1. Group Polarization Effects in Risk Analysis Domain

For the first domain (i.e., risk analysis), we tried different thresholds (between 40% and 70%) and different
deviations (between 1% and 10%) in order to show the polarization effect as clearly as possible. We found
out, that the clearest polarization effect occurs for a threshold of 60% and a deviation of 7%. Applying the
chosen threshold and deviation leads to following group distribution: 16/39 groups were assigned to the
upper-, 7/39 to the lower-, and 16/39 groups were assigned to the mixed-category (see Table 5.1).

We figured out a polarization effect for groups in the upper-category (see Table 5.1). For 13 out of
16 groups assigned to the upper-category, the percentage value articulated by the group was higher
than the average of percentages articulated by individual group members. Table 5.1 shows that group
percentage values of all 16 groups assigned to the upper-category are higher than the average of individual
group members’ percentages (µindividual = 73,42% and µgroup = 76,25%). Additionally, we can observe
that the standard deviation of percentages for groups in the upper-category is very low (σindividual =
3,68% and σgroup = 4,06%). This means, there is a cautious shift for groups in the risk-analysis domain

69

Chapter 5. Polarization Effects in Group Decisions

Category # Groups Individual Preferences Group Preferences
µ σ Margin of Error µ σ Margin of Error

Upper-Category 16 73,42 3,68 73,42 ± 1,86 76,25 4,06 76,25 ± 2,58
Lower-Category 7 44,95 4,22 44,95 ± 2,18 71,43 4,51 71,43 ± 3,61
Mixed-Category 16 60,63 13,23 60,63 ± 6,14 61,25 5,51 61,25 ± 3,88

Table 5.1.: Analysis of Group Polarization Effects in the risk analysis domain for a threshold of 60% and
a deviation of 7%. The results are represented in percentage by the mean µ, the standard devi-
ation σ, and the margin of error by using a confidence interval of 95 %. There are 16 groups
assigned to the Upper-Category, 7 assigned to the Lower-Category, and 16 assigned to the
Mixed-Category. Group Polarization Effects occur for groups assigned to the upper-category,
but there are no polarization effects for groups assigned to the lower-category. Groups assigned
to mixed-category help to counteract Group Polarization Effects.

and the percentages are close to the defined threshold, because high percentage value indicates in this
context lower risk. However, we did not observe Group Polarization Effects for groups assigned to the
lower-category. The results show that for only one out of 7 groups, the group percentage was lower than
average of individual percentages (µindividual = 44,95% and µgroup = 71,43%). Based on these observations,
the hypothesis H1 is partly confirmed, because the analysis of groups in the upper-category confirms
the hypothesis H1 and the analysis of groups in the lower-category does not confirm it. Moreover, we
figured out that groups assigned to mixed-category (i.e., groups with diverse individual preferences)
indicate a solution for counteracting Group Polarization Effects. The preferences of group members
in the mixed-category indicate that the average of group percentages and average of individual group
members’ percentages are close to the middle point (i.e., to the threshold) and don’t move to the extreme
values. Furthermore, we can also clearly see that for groups in the mixed-category, the standard deviation
of group preferences is much lower (σ = 5,51%) than the standard deviation of individual preferences
(σ = 13,23%). This means, preferences of individuals were not close to the middle point (i.e., individual
preferences were diverse) and group preferences were close to the middle point. Due to this fact, we can
conclude that the third hypothesis is confirmed.

5.4.2. Group Polarization Effects in Cost Estimation Domain

For the second domain, cost estimations articulated by user study participants regarding the WhatsApp
application were analyzed. The decisions of user study participants were very different from each other
(estimations between 5K e and 2B e). In such cases where values are widely distributed, the comparison
of the cost estimation made by the group with the average of cost estimations made by individual group
members makes less sense, because as soon as an individual group member defines a very extreme price
(very high or very low price), the average of individuals prices’ change significantly. To omit extreme
prices articulated by study participants, we clustered the prices with K-Means Algorithm using Java
Machine Learning Library (Abeel et al., 2009). For determining the optimal cluster size, we tried different
cluster sizes between 3 and 50 and figured out that the most optimal cluster size is 30. After that, we
replaced the prices entered by user participants with the cluster centroid values. This procedure enables us
to convert all different prices given by user study participants in 30 different values.

70

5.4. Evaluation and Discussion

After the clustering step, we tried different thresholds (2,8M e - 500M e) and different deviations
(100K e - 2,5M e) in order to show the polarization effect as clearly as possible. We figured out that
the clearest polarization effect occurs for a threshold of 3M e and a deviation of 2.2M e. Based on the
chosen threshold and deviation, 26/39 groups were assigned to the upper-, 7/39 groups to the lower-, and
6/39 groups were assigned to the mixed-category (see Table 5.2). Groups assigned to upper- and lower-
categories were used again to analyze Group Polarization Effects and groups assigned to mixed-category
were used to counteract Group Polarization Effects. The analysis with the chosen cluster size, threshold,
and deviation shows that there is no polarization effect for groups assigned to the upper-category (µindividual

= 81,44 million e and µgroup = 61,11 million e). However, we identified that Group Polarization Effects
occurs for groups assigned to the lower-category and figured out that the average of group prices is 60
thousand e (0,24 million e - 0,18 million e) lower than the average of individual prices (see Table 5.2).
Additionally, we figured out that all the 7 groups assigned to lower-category have lower group prices than
the average of individual prices (i.e., cautious shift). Besides, the standard deviation of the individual- and
group preferences assigned to the Lower-Category are very low (σindividual = 70 thousand e and σgroup =
60 thousand e). The analysis of groups in the upper-category confirm our hypothesis H2. However, the
analysis of groups in the lower-category does not confirm the hypothesis H2. Therefore, the hypothesis
H2 is partly confirmed. Next, we analyzed groups assigned to the mixed-category (i.e., group members
with diverse preferences) and show that these groups counteract Group Polarization Effects. The price
distance between the average of group estimations and the average of individual estimations is 1,69
million e (µindividual = 2,27 million e and µgroup = 3,96 million e). At first sight, the distance of 1,69
million e seems to be huge, but compared to the prices given by participants (5K e - 2B e) this difference
is very low. Here, we can again observe that the average of cost estimations made by groups and the
average of individual cost estimations are close to the middle point (i.e., to the threshold) and do not move
to extreme values. The hypothesis H3 is also confirmed for the 2nd domain.

Category # Groups Individual Preferences Group Preferences
µ σ Margin of Error µ σ Margin of Error

Upper-Category 26 81,44 5,22 81,44 ± 3,15 61,11 5,20 61,11 ± 2,77
Lower-Category 7 0,24 0,07 0,24 ± 0,03 0,18 0,06 0,18 ± 0,02
Mixed-Category 6 2,27 1,81 2,27 ± 0,12 3,96 0,03 3,96 ± 0,02

Table 5.2.: Analysis of Group Polarization Effects in the cost estimation domain for a threshold of
3M e and a deviation of 2,2M e. The results of each category are represented in Me (million
Euros) by the mean µ, the standard deviation σ, and the margin of error by using a confidence in-
terval of 95 %. There are 26 groups assigned to Upper-Category, 7 assigned to Lower-Category,
and 6 assigned to Mixed-Category. Group Polarization Effects occur for groups assigned to the
lower-category. Groups assigned to mixed-category help counteract Group Polarization Effects.

5.4.3. Discussion

The results of our evaluation regarding Group Polarization Effects in risk-analysis domain is partly con-
firmed by (Stoner, 1961; Lamm and Sauer, 1974; Sia et al., 2002). The reason of different outcomes could
be the different group sizes which range from 2 to 6, the low engagement of user study participants in
the decisions, or the strongly gender biased dataset (∼89% male and ∼11% female). To the best of our

71

Chapter 5. Polarization Effects in Group Decisions

knowledge, related work regarding Group Polarization Effects in cost estimations do not exist. Our results
regarding the cost estimation domain partly confirm our hypothesis H2 which indicates that cost related
decisions are not affected by Group Polarization Effects, because cost estimations will get more realistic
if each individual group member first discusses the cost estimation in detail and then makes a group de-
cision (Torp and Klakegg, 2016; Futrell et al., 2001). Furthermore, we proved that group members with
diverse preferences help to counteract this bias. If a group try to make a decision and if most of group mem-
bers follow the same opinion, the outcome will be most probably an extreme decision. To counteract this
bias, arguments against the group members’ opinion have to be provided. These arguments can be provided
automatically by a system or a new group member can be added to the group who has different opinion
than other group members. This strategy will prevent the group from extreme decisions. Otherwise, the
opinion of group members will be always supported and this triggers the Confirmation bias (Schwind and
Buder, 2012) which is the tendency to search and recall information in a way that confirms one’s preexisting
beliefs.

5.5. Conclusion and Future Work

With the work presented in this chapter, we have analyzed the impact of Group Polarization Effects in
two different domains based on a dataset collected in a user study. Furthermore, we presented a way
to counteract the group polarization bias in order to prevent the deterioration of decision quality. The
analysis of Group Polarization Effects in risk related decisions shows that group decisions are more
cautious if preferences of individual group members are cautious. However, we did not identify Group
Polarization Effects for risky groups in the risk analysis domain. For the second domain (i.e., cost
estimation), group decisions are not influenced by Group Polarization Effects if the individual group
members’ decisions are over-estimated. However, there is a tendency that the group will make a very low
cost estimation, if the average of individual group members’ estimations are low. Additionally, we confirm
in both domains that group members with diverse preferences are not influenced by Group Polarization Ef-
fects. The variety of individual group members’ preferences helps to counteract Group Polarization Effects.

With regard to Group Polarization Effects we will analyze this bias in further domains such as personnel
decisions and requirements prioritization in software requirements engineering in the future. Another
planned future work is to analyze Group Polarization Effects based on different genders and age groups
and to analyze the impact of this bias in high/low-involvement domain decisions (Felfernig et al., 2017a).

72

Chapter 6
Socially-Aware Recommendation for
Over-Constrained Problems

Parts of the contents of this chapter have been published in (Atas et al., 2018c). The author of this thesis
provided major parts of this chapter in terms of writing, literature research,

user study design, data analysis, and evaluation.

6.1. Abstract

Group recommender systems support the identification of items that best fit the individual preferences of
all group members. A group recommendation can be determined on the basis of aggregation functions.
However, to some extent it is still unclear which aggregation function is most suitable for predicting an
item to a group. In this chapter, we analyze different preference aggregation functions with regard to
their prediction quality. We found out that consensus-based aggregation functions (e.g., Average, Minimal
Group Distance, Multiplicative, Ensemble Voting) which consider all group members’ preferences lead to
a better prediction quality compared to borderline aggregation functions, such as Least Misery and Most
Pleasure which solely focus on preferences of some individual group members.

6.2. Introduction

Recommender systems are decision support systems that support users in identifying a set of items fitting
their wishes and needs (Jannach et al., 2010). These systems help users to identify useful objects/services
(often referred to as items) such as movies, books, songs, web sites, financial services, travel destinations,
and restaurants (Felfernig et al., 2017a). Nowadays, most recommender systems are designed for single
users (Herlocker et al., 2004). However, there are many scenarios where items are supposed to be
consumed by groups (Masthoff, 2011). Examples thereof are deciding about a restaurant to visit for
a dinner with colleagues, deciding about a movie to watch with the family, or deciding about a travel
destination to visit with friends next year.

Group (i.e., socially-aware) recommender systems support the identification of items that to some extent
fit the individual preferences of group members. Examples of such systems are the following. O’Connor
et al. (O’Connor et al., 2001) present a collaborative filtering movie recommender system for groups

73

Chapter 6. Socially-Aware Recommendation for Over-Constrained Problems

named POLYLENS which is based on the Least Misery aggregation function. Masthoff (Masthoff, 2004)
introduces concepts to recommend television items to user groups (e.g., choosing a list of television pro-
grams to watch together with the family). Moreover, Masthoff found out that group members use some of
the aggregation functions (e.g., Average, Average-Without-Misery, and Least Misery) in television domain
and take the fairness aspect into account. Jameson (Jameson, 2004) introduces the TRAVEL DECISION

FORUM which is used to elicit and aggregate group members’ preferences using Average aggregation
function for selecting tourist destinations. Ardissono et al. (Ardissono et al., 2003) introduce INTRIGUE

which aggregates group members’ preferences using Average aggregation function and recommends
sightseeing destinations to groups. Furthermore, McCarthy et. al (McCarthy et al., 2006) propose a
critiquing-based travel recommender system named COLLABORATIVE TRAVEL ADVISORY SYSTEM

(CATS) which allows to jointly plan skiing vacations. CATS averages the preferences of all group
members and recommends a skiing vacation to the group. Ninaus et al. (Ninaus et al., 2014a) introduce a
requirement engineering tool named INTELLIREQ, which is tailored to groups of stakeholders designing
release plans. INTELLIREQ is based on the Majority aggregation function. Stettinger et al. (Stettinger
et al., 2015b) introduce a domain-independent decision support environment for groups named CHOICLA

which is based on multi-attribute utility theory (Winterfeldt and Edwards, 1986).

In this chapter, we present a constraint-based socially-aware recommender system which recommends
digital SLR (Single-Lens Reflex) cameras to groups by applying different aggregation functions.∗ In this
context, we focused on comparing aggregation functions with regard to their capability to predict relevant
items in situations where no solutions could be found for a given set of preferences. The result of our
study indicates that borderline aggregation functions such as Least Misery and Most Pleasure have a low
prediction quality. They only focus on the lowest and highest values from all individual preferences,
i.e., borderline aggregation functions do not consider all existing preferences. On the other hand,
consensus-based aggregation functions such as Average, Ensemble voting, Multiplicative, and Minimal
Group Distance consider the preferences of all group members and are more suitable for predicting a
product for groups (see Section 6.5).

The remainder of this chapter is structured as follows. In Section 6.3, we present a working example from
the digital camera domain and explain properties and variables of the used dataset. Section 6.4 introduces
the clustering approach used to synthesize groups. In Section 6.5, we introduce different group aggregation
functions and apply these on the synthesized groups. Subsequently, Section 6.6 presents the results of our
evaluation. We discuss issues for future work and conclude the chapter in Section 6.7.

6.3. Working Example

For demonstration purposes, we introduce a group recommendation scenario from the domain of digital
cameras. The work presented in this chapter has been conducted in two phases: First, we conducted a user
study where each participant had to declare his/her preferences with regard to a digital camera. Second,
we synthesized the collected data in order to form groups which were then used to evaluate different
preference aggregation functions with regard to their prediction quality.† Each participant of the user study
had to declare preferences (i.e., constraints) regarding 10 different camera variables and then select three

∗The work presented in this chapter has been partially conducted within the scope of the research projects WeWant (basic research
project funded by the Austrian Research Promotion Agency) and OpenReq (Horizon 2020 project funded by the European Union).

†This approach follows group synthesis approaches as introduced in (Baltrunas et al., 2010)

74

6.4. Building Synthetic Homogeneous Groups

out of these 10 variables which are most important for him/her. Finally, if the defined preferences were
inconsistent with the underlying product catalog, participants had to select an alternative camera from the
product catalog. For simplicity, we reduce our product catalog from 20 to 5 entries (see Table 6.1).

ID eff-res display touch wifi nfc gps video-res zoom weight price

P1 20.9 3.5 yes yes no yes 4K-UHD/3840x2160 3.0 1405 5219
P2 6.1 2.5 yes yes no no No-Video-Function 3.0 475 659
P3 6.1 2.2 no no no no No-Video-Function 7.8 700 189
P4 6.2 1.8 yes yes yes no 4K-UHD/3840x2160 5.8 860 2329
P5 6.2 1.8 no no no yes Full-HD/1920x1080 3.0 560 469

Table 6.1.: An example product catalog. In this context, eff-res = effective resolution in mega-pixel, dis-
play = display size in inch, touch = touch screen functionality (yes/no), wifi = wireless commu-
nication functionality (yes/no), nfc = near field communication support (yes/no), gps = global
positioning system functionality (yes/no), video-res = video resolution, zoom = zoom factor of
the camera, weight = weight in grams, and price = price in Euro.

All sessions where user requirements were inconsistent (i.e., over-constrained) with the product catalog
(i.e., no solution could be found) were stored. In the following, these sessions were used to synthesize user
groups that form the basis for our evaluation of different preference aggregation functions. Our approach
to group synthesis is introduced in Section 6.4.

6.4. Building Synthetic Homogeneous Groups

Since the dataset from our user study is collected from individual participants, dataset for groups has to
be synthesized. Synthesizing a dataset by clustering individual participants (i.e., forming groups) is a
common approach in recommender systems (Baltrunas et al., 2010). The metrics in Formulae 6.1 – 6.3
are used to determine preference similarity sim(p,c) between a reference participant p who currently
declared his/her preferences and a candidate participant c from a set of candidates. In this context, s(pi,
ci) denotes the similarity of the preference i between a reference participant p and a candidate participant
c. In addition, w(i) indicates the importance (weight) of a preference i for a participant, val(i) represents
the value of preference i, and minval(pi)/maxval(pi) are minimum/maximum values of a preference i taken
from the product catalog.

Formula 6.2, Near-Is-Better (NIB) is used if the preferences of the candidate participant have to be as
near as possible to the preferences of the reference participant. For instance, the recommended camera
should be the one which its price is as near as possible to the price specified by the customer. Formula 6.3,
Equal-Is-Better (EIB) is applied in situations where the preferences of two participants have to be equal.
For a complete overview of related attribute-level similarity functions we refer to (Jannach et al., 2010).

sim(p,c) =
∑i∈variables s(pi,ci)∗w(i)

∑i∈variables w(i)
(6.1)

75

Chapter 6. Socially-Aware Recommendation for Over-Constrained Problems

NIB : s(pi,ci) = 1− |val(pi)− val(ci)|
maxval(pi)−minval(pi)

(6.2)

EIB : s(pi,ci) =

1 if pi = ci

0 otherwise
(6.3)

The following part of this section presents the clustering of participants in order to form groups of similar
participants (i.e., homogeneous groups). In order to calculate the similarity between two participants
(i.e., potential group members), Formula 6.2 (NIB) is applied to the variables effective resolution, display
size, zoom, weight, and price. Furthermore, Formula 6.3 (EIB) is applied to the variables touch-screen,
wifi, nfc, gps, and video resolution. For the purpose of clustering homogeneous group members, the
similarity among participants has to be calculated first. Then, the n most similar group members
(e.g., cluster size = 4) are selected as group members. This process is repeated for the remaining par-
ticipants until all groups have been determined. An example of a synthesized group is depicted in Table 6.2.

participant eff-res display touch wifi nfc gps video-res zoom weight price

1st participant 20.8 2.5 yes yes no yes 4K-UHD/3840x2160 5.0 700 1649
2nd participant 20.9 2.5 yes yes no yes 4K-UHD/3840x2160 5.0 475 2149
3rd participant 20.9 2.7 yes yes no yes 4K-UHD/3840x2160 7.8 560 2749
4th participant 14.2 2.7 yes yes no no 4K-UHD/3840x2160 5.0 475 659

Table 6.2.: A synthesized homogeneous group with cluster size of 4. Participants with similar preferences
are considered as group members.

participant 1st imp. variable 2nd imp. variable 3rd imp. variable chosen product

1st participant eff-res weight price P1
2nd participant eff-res price video-res P1
3rd participant eff-res display price P3
4th participant eff-res weight price P2

Table 6.3.: The chosen products and three most important camera variables selected by the participants
from Table 6.2.

In order to provide a better understanding for the application of similarity metrics, we will show how the
similarity between the 1st group member and the 2nd group member can be calculated (see Table 6.2).
For simplicity, we assume equal weights of all the camera variables for both group members (w(i) = 1).
Formula 6.4 shows the similarity calculation between the 1st group member and the 2nd group member on
effective resolution. In order to apply Formula 6.2 (NIB) on the effective resolution variable, maximum
and minimum effective resolution values are required. The maxval and minval values are taken from the
maximum and minimum effective resolution values of the product catalog (see Table 6.1).

76

6.5. Applying Group Aggregation Functions and Recommending Products to Groups

s(1st participante f f−res,2nd participante f f−res)

= 1−
|val(1st participante f f−res)− val(2nd participante f f−res)|

maxval(e f f − res)−minval(e f f − res)

= 1− |20.8−20.9|
20.9−6.1

= 0.9932

(6.4)

sim(1st participant,2nd participant)

=
∑i∈variables s(1st participanti,2nd participanti)∗w(i)

∑i∈variables w(i)

=
0,9932+1+1+1+1+1+1+1+0,7581+0,9006

1∗10
= 0.9652

(6.5)

By applying Formula 6.2 and Formula 6.3 to all the remaining variables, the similarity between two group
members regarding their preferences can be calculated as presented in Formula 6.5.

The task is now to predict a product for the whole group using aggregation functions (see Section 6.5). The
similarities between the group member’s preferences and products from the product catalog are presented
in Table 6.4.

6.5. Applying Group Aggregation Functions and Recommending

Products to Groups

For aggregating individual group member’s preferences to a group preference, group aggregation functions
have to be used. In collaborative filtering scenarios, group aggregation functions are often applied to the
ratings predicted for group members first and then a recommendation for the group can be proposed. How-
ever, in our evaluation, we first calculated similarities between group member preferences and products
from the product catalog and then applied different aggregation functions on all of these similarities. This
intermediate step is needed for determining the attribute similarity. Our approach can be demonstrated
based on the group members’ preferences in Table 6.2. The group has to decide about the gps feature of
the camera and group members articulated the following preferences: eval(1st participant, gps) = yes;
eval(2nd participant, gps) = yes; eval(3rd participant, gps) = yes; eval(4th participant, gps) = no. In such
a setting, one has first calculate similarities between group member’s preferences and products from the
product catalog and then apply an aggregation function to derive a group recommendation.

In order to predict products to groups, the following aggregation functions have been applied (see For-
mulae 6.6 - 6.11). We differentiate between consensus-based (Average, Minimal Group Distance, Multi-
plicative, and Ensemble voting) and borderline (Least Misery and Most Pleasure) aggregation functions.
Formula 6.6 (AVG) returns the average value of all individual values for an item i as a recommendation,
whereby eval(p,i) denotes the evaluation of item i by the participant p. Formula 6.7 (Least Misery) returns
the item with the highest of all lowest individual values and Formula 6.8 (Most Pleasure) returns the high-
est value of all individual values for an item i as a recommendation. Minimum Group Distance (MGD)

77

Chapter 6. Socially-Aware Recommendation for Over-Constrained Problems

in Formula 6.9 returns a value d which has the minimum distance to all individual values. Multiplicative
(MUL) in Formula 6.10 returns the product of all individual values for an item i as a recommendation.
Ensemble Voting (ENS) in Formula 6.11 returns the majority item from the items predicted by individual
aggregation functions which are defined in Formula 6.6 - 6.10.

AV G(i) =
Σp∈Participantseval(p, i)
|Participants|

(6.6)

LMIS(i) = min(
⋃

p∈Participants

eval(p, i)) (6.7)

MPLS(i) = max(
⋃

p∈Participants

eval(p, i)) (6.8)

MGD(i) = arg min
d∈{1..5}

(Σp∈Participants|eval(p, i)−d|) (6.9)

MUL(i) = ∏
p∈Participants

eval(p, i) (6.10)

ENS(i) = maxarg(d∈{1..5})(#(
⋃

p∈Participants

eval(p, i) = d)) (6.11)

participant P1 P2 P3 P4 P5

1st participant 0.7046 0.5307 0.4179 0.5431 0.4566
2nd participant 0.7603 0.4809 0.3018 0.5580 0.3816
3rd participant 0.7311 0.4828 0.3718 0.4708 0.3458
4th participant 0.4681 0.7673 0.5638 0.6397 0.5339

aggregation function predicted product

AVG 0.6660 0.5654 0.4138 0.5529 0.4294 P1
LMIS 0.4681 0.4809 0.3018 0.4708 0.3458 P2
MPLS 0.7603 0.7673 0.5638 0.6397 0.5339 P2
MGD 0.7046 0.5307 0.4179 0.5431 0.4566 P1
MUL 0.1833 0.0945 0.0264 0.0913 0.0322 P1
ENS P1

Table 6.4.: Similarities between group member’s preferences (see Table 6.2 and Table 6.3) and products
from the product catalog (see Table 6.1). Weights (w(i)) of Table 6.3 have been taken into
account. The weight sequence {4,3,2,1} is used here, whereby the first value refers to the 1st ,
the next value to the 2nd , and the third value to the 3rd most important variable, and the last one
refers to the remaining variables. Different aggregation functions are applied on these similarity
values, then the product with the highest similarity is recommended to the group.

Table 6.4 depicts the recommended items chosen by aggregation functions based on the similarity values
between group member preferences and products from the product catalog. For instance, AVG determines
Product 1 (P1) for the whole group. After predicting products for a group, the precision (i.e., prediction
quality) of each aggregation function can be calculated (see Table 6.5). The precision of an aggregation
function is the ratio between the number of correctly predicted products and the total number of predictions

78

6.6. Evaluation

(chosen products).

participant chosen AVG LMIS MPLS MGD MUL ENS
product (P1) (P2) (P2) (P1) (P1) (P1)

1st participant P1 1 0 0 1 1 1
2nd participant P1 1 0 0 1 1 1
3rd participant P3 0 0 0 0 0 0
4th participant P2 0 1 1 0 0 0

Precision 50% 25% 25% 50% 50% 50%

Table 6.5.: Calculated prediction quality (precision) of each aggregation function. The value “1” refers to
a correct prediction (i.e., the product chosen by a group member and predicted product by the
aggregation function are identical) and “0” refers to an incorrect prediction. Consensus-based
aggregation functions AVG, MGD, MUL, and ENS predict P1 as the most suitable product for the
group with a precision of 50% (2

4). Borderline aggregation functions LMIS and MPLS predict
P2 as the most suitable product for the group and achieve a precision of 25% (1

4).

In the following section we present the evaluation of results based on the data collected from our user study.

6.6. Evaluation

The evaluation of the over-constrained camera dataset collected from our user study will be presented here.
We conducted a user study with 263 computer science students (∼85% male and ∼15% female) from
two universities in Austria.‡ Each user study participants articulated 14 different preferences (10 out of
14 preferences refer to different camera variable values, three refer to the three most important camera
variables, and a reference value refers to the selected product from the product list). All the 20 products
from our product catalog were digital SLR cameras which were manually collected from the NIKON
company’s website.§ The acquired data about the importance of the camera variables was essential for
our analysis. For instance, a participant who defines the price as his/her most important variable is most
probably focused on the price and wants get the best digital camera for a specific price. In contrast to a
different participant who defined, for example, the effective resolution and some other technical properties
as the most important ones. Such fine-grained information about the preferences of group members helps
to improve the prediction quality of group recommendation.
For determining the aggregation function with the highest precision, we varied different parameters such
as group size and importance of the camera variables (weights). We analyzed the precision of each ag-
gregation function with 210 different weight sequences and 5 different group sizes (ranging from 2 to 6)
and generated 1050 (210*5) combinations thereof. Groups could be formed with different group sizes, for
example, for group size of 4, there are 65 groups (263 participants / group size of 4 = 65.75⇒ 65 groups).
After groups were formed, similarities between group member’s preferences and products from product
catalog (n=20) were calculated. Then, aggregation functions were applied on these similarities in order to
predict a product for a group. We analyzed our dataset with all the combinations and found out that group

‡Graz University of Technology (www.tugraz.at) and Alpen-Adria Universität Klagenfurt (www.aau.at).
§All the products from the product catalog were manually collected from www.nikonusa.com and www.nikon.de.

79

Chapter 6. Socially-Aware Recommendation for Over-Constrained Problems

size of 4 leads to the highest precision. Consequently, the 4-member groups achieve the highest similarity
results for our camera dataset and for group sizes higher and lower than 4, the group gets diverse. In or-
der to confirm this statement, we calculated the average precision of aggregation functions for each group
size which is depicted in Figure 6.1. Here we can clearly see, that the precision of aggregation functions
increases with group sizes ranging from 2 to 4 and decreases starting with group size 5. We can conclude
that there exists a correlation between the degree of group homogeneity and prediction quality of the group
recommendation algorithm.

Figure 6.1.: Average precision of aggregation functions for each group size. The highest precision of each
aggregation function is achieved for group size of 4.

After the optimal group size was found, we focused on finding the optimal weight sequence (weight se-
quence which achieves the highest precision). As already mentioned before, 210 different weight sequences
were used. Each sequence consisted of 4 different values: the first value refers to the 1st , the next value
to the 2nd , and the third value to the 3rd most important variable, and the last one refers to the remaining
variables. In our user study, weight sequences were generated by using the following rules:
(1) All the values in the weight sequence should be ranked in the descending order whereby the first value
represents the 1st most important variable and the last value represents the less important camera variables.
(2) All values in the weight sequence lie in the range of 1 to 10. Formula 6.12 shows the number of all the
used weight sequences (=210).

NumberO fWeights =
(

n
k

)
=

(
10
4

)
=

10!
4!∗ (10−4)!

= 210 (6.12)

In order to determine the weight sequence with the highest precision, we first calculated the average
precision of all aggregation functions for each weight sequence and then selected the weight sequence
with the highest precision. We figured out that the weight sequence {10,8,4,1} achieves the highest
precision (see Figure 6.2). Furthermore, we analyzed the top five weight sequences which achieve the
highest precisions in order to find the pattern behind the optimal weight sequences (i.e., weight sequences
with the highest precision). One main finding was that the first 2 values which represent the weights of
the two most important camera variables are close to each other and the two last values which represent
the weight of the 3rd most important variable and the weights of the remaining camera variables are close
to each other. In addition to that, regarding the optimal weight sequences, we figured out that the weight

80

6.6. Evaluation

of the most important variable is always as high as possible (i.e., 10) and the weights of the remaining of
camera variables are as low as possible (i.e., 1). Therefrom we learn that the domain values of the weight
sequences are not equally distributed, rather extreme values are used for the most and least important
variables in the weight sequence. Figure 6.2 illustrates the precision of aggregation functions for the
weight sequence with the highest precision (i.e., {10,8,4,1}) - the highest precision is achieved again for
group size of 4. As aforementioned, depending on the group size, different groups are generated. For
instance, for the group size of 3, there are 87 different groups (=263/3). Thereby, the precision of each
aggregation function is calculated by taking the average of the precisions generated for all the 87 groups
(see Figure 6.2).

Figure 6.2.: Precision of aggregation functions for the weight {10,8,4,1}. Group size of four leads again to
the highest precision for each used aggregation function and aggregation functions AVG, MUL,
and ENS achieve the highest precision.

Once the optimal weight and optimal group size were obtained, we moved our focus towards finding the
optimal aggregation function which represents the main task of this chapter. In order to determine the most
optimal aggregation function, we took the highest of the average precisions calculated for each aggregation
function. The precision of each aggregation function were calculated by taking the average of precisions
generated for 1050 combinations (1050 combination is tailored by combining six different group sizes and
210 weight sequences). The final result includes the following precisions of the aggregation functions:
AVG = 7.34%, ENS = 7.32%, MUL = 7.26%, MGD = 7.22%, MPLS = 7.21%, and LMIS = 6.80%.¶ These
results are also clearly displayed in Figure 6.1, Figure 6.2, and Table 6.5. They show that LMIS and MPLS
always lead to a low precision since they focus only on the lowest and highest values of all individual
preferences and do not consider other group member preferences. Furthermore, AVG, ENS, MUL, and
MGD which take all of group members’ preferences into account lead to better precisions.

¶The precision of each aggregation function is not high, because these are the average precisions calculated for all different
combinations of weight sequences and group sizes (we varied 210 different weight sequences and six different group sizes).

81

Chapter 6. Socially-Aware Recommendation for Over-Constrained Problems

6.7. Conclusion and Future Work

In this chapter, we analyzed the applicability of preference aggregation functions for groups in situations
where the preferences of group members become inconsistent (i.e., over-constrained). Our socially-aware
constraint-based recommender system shows that borderline aggregation functions like LMIS and MPLS
lead to a low precision because these functions take the minimum/maximum values from all the indi-
vidual group member preferences and don’t consider the preferences of other group members. Besides,
consensus-based aggregation functions (such as AVG, ENS, MUL, and MGD) which consider all group
members’ preferences are more suitable to predict a product for the groups. Furthermore, we also demon-
strated that modifications of the group size and the usage of different weight sequences have a potential to
achieve better precision. Moreover, we tested the dataset with 210 different weight sequences and different
group sizes (2 - 5). We found out that the domain values of the weight sequences are not equally distributed,
rather extreme values are used for the most and least important variables in the weight sequence. In addi-
tion, the 4-member groups achieve the highest similarity results for our camera dataset and for group sizes
higher and lower than 4, the group gets diverse. The chosen group aggregation functions are representa-
tives of consensus-based and borderline functions. The analysis of further related aggregation functions
is within the scope of our future work. Socially-aware decisions are usually made in groups consisting of
similar group members (e.g. taking vacation with friends or watching a movie with the family). Thus, we
clustered similar participants in order to form homogeneous groups. Finally, we plan for the future to build
diverse/randomized groups instead of homogeneous groups and try to find the most suitable aggregation
function for such groups.

82

Chapter 7
Socially-Aware Diagnosis for
Constraint-Based Recommendation

Parts of the contents of this chapter have been published in (Atas et al., 2019a). The author of this thesis
provided major parts of this chapter in terms of writing, literature research,

user study design, data analysis, and evaluation.

7.1. Abstract

Constraint-based group recommender systems support the identification of items that best match the in-
dividual preferences of all group members. In cases where the requirements of the group members are
inconsistent with the underlying constraint set, the group needs to be supported such that an appropriate
solution can be found. In this chapter, we present a guided approach that determines socially-aware diag-
noses based on different aggregation functions. We analyzed the prediction quality of different aggregation
functions by using data collected in a user study. The results indicate that those diagnoses guided by the
Least Misery aggregation function achieve a higher prediction quality compared to the Average Voting,
Most Pleasure, and Majority Voting. Moreover, another major outcome of our work reveals that diagnoses
based on aggregation functions outperform basic approaches such as Breadth First Search and Direct Di-
agnosis.

7.2. Introduction

Recommender systems are decision support systems that support users in identifying a set of useful items
matching their wishes and needs (Jannach et al., 2010; Felfernig et al., 2017a). Although most existing
recommender systems are designed for single user recommendation scenarios (Herlocker et al., 2004),
there exist many scenarios where items are supposed to be consumed by groups (Felfernig et al., 2018d;
Masthoff, 2011). Examples thereof are deciding on a restaurant to have dinner with colleagues, deciding
on a movie to watch together with family members, deciding on a travel destination to visit with friends in
the next year, or deciding on a new digital camera to use together with your partner.

Compared to collaborative (Goldberg et al., 1992; Konstan et al., 1997) and content-based filtering (Paz-
zani and Billsus, 1997; Mooney and Roy, 2000), constraint-based group recommender systems (Burke,

83

Chapter 7. Socially-Aware Diagnosis for Constraint-Based Recommendation

2000; Jannach et al., 2010) recommend products and services based on a predefined constraint set.
Constraint-based recommender systems are especially applied to complex items and they are also
predestined to be used in the context of group decision making, since these systems allow the inclusion of
fine-grained constraints (e.g., knowledge-base constraints and requirements of different group members).
In order to identify a solution that satisfies all group members, constraint-based group recommenders
must take into account the knowledge-base of a domain (e.g., the car domain) as well as the preferences
of all group members. These constraint-based systems can be applied to recommend cars (Win and
Srisura, 2019), holiday destinations (Torrens et al., 2003), and furniture items to groups (Peischl et al.,
2009; Leitner et al., 2012; Reiterer et al., 2015; Reiterer, 2015). The increasing complexity of such
items leads to several challenges such as the identification of a suitable recommendation from a huge
set of possible solutions/suggestions and the resolution of inconsistencies between the user requirements
and the knowledge-base constraints (Reiterer et al., 2015). However, the application of these systems
to recommend such complex items in group scenarios introduces further challenges. For instance, in
constraint-based group recommender systems (Felfernig et al., 2018d), the inconsistencies between
the group member preferences have to be resolved by taking into account the preferences of all group
members. When interacting with constraint-based group recommender systems, users usually face
situations where the recommender is not able to identify a solution (i.e., a recommendation) for a given
set of requirements. In such cases, users have to be supported in finding a way out of the “no solution
could be found” dilemma (Reiterer et al., 2015). However, if the recommended solution considers only the
preferences of some of the group members, the group satisfaction will decrease and thus it can negatively
influence the mood of the group. For instance, if a couple commonly decides on the purchase of a new
digital camera, the final decision must satisfy both persons. Otherwise, this could lead to a situation where
at least one of the persons is not satisfied with the new digital camera. Therefore, both, the fairness aspect
among group members as well as the satisfaction of all group members regarding a commonly consumed
item represent the key aspects of a optimal group decision.

To the best of our knowledge, an in-depth analysis with respect to socially-aware diagnosis (i.e., a
diagnosis suitable for a whole group of users) for constraint-based recommender systems does not exist.
Given this motivation, we developed an approach that determines socially-aware diagnoses guided by
aggregation functions in situations where the preferences of group members are inconsistent with the
underlying constraint set.∗ In such situations, a minimal set of group member preferences has to be
adapted or deleted. However, the identification of a suitable diagnosis for groups is a cumbersome
process. Most approaches related to the determination of diagnoses are based on Breadth-First Search
and focus on the identification of a diagnosis of minimal cardinality (i.e., a diagnosis with a minimal
set of constraints) (Felfernig et al., 2004). However, such minimal cardinality diagnoses do not always
ensure the most appropriate diagnosis for a group. For instance, if a diagnosis with minimal cardinality
only includes preferences of one group member, only this group member has to adapt or delete his/her
preferences and the preferences of other group members can remain unchanged. Therefore, such strategies
are in most cases not fair and this can decrease the overall group satisfaction. Furthermore, the calculation
of diagnoses for an inconsistent constraint set as in Breadth-First Search is often infeasible due to an
unacceptable runtime performance (Felfernig et al., 2013b). To counteract this problem, a socially-aware
diagnosis technique which helps to identify diagnoses that best match the preferences of all group mem-

∗The work presented in this chapter has been conducted within the scope of the research projects WeWant (basic research project
funded by the Austrian Research Promotion Agency - 850702) and OpenReq (Horizon 2020 project funded by the European Union -
732463).

84

7.3. Working Example

bers, is required. In this context, we focused on comparing group preference aggregation functions with
regard to their capability to predict relevant diagnoses for groups in situations where no solutions can be
found. We analyzed group preference aggregation functions such as Least Misery, Most Pleasure, Average
Voting, and Majority Voting. The results of our studies show that diagnoses guided by the Least Misery
aggregation function achieve a higher prediction quality than diagnoses guided by Average voting, Most
Pleasure, or Majority Voting aggregation functions. In addition to that, we also compared the prediction
quality of aggregation-function-based diagnoses with basic approaches such as Breadth First Search and
Direct Diagnosis. The results indicate that diagnoses guided by group aggregation functions achieve a
higher prediction quality than Breadth First Search and Direct Diagnosis. Moreover, our comparison also
includes an analysis of the runtime performance of these algorithms.

The remainder of this chapter is structured as follows. In Section 7.3, we present a working example
from the digital camera domain. Section 7.4 introduces the calculation of socially-aware diagnoses guided
by group preference aggregation functions based on a digital camera recommendation example. In Sec-
tion 7.5, we explain how the individual users were clustered to generate a dataset for groups using similarity
metrics. Section 7.6 introduces different group preference aggregation functions which were used for the
determination of socially-aware diagnoses. Finally, in Section 7.7, we discuss the results of our evaluation
based on the data collected in a user study. We conclude the chapter with a discussion of issues for future
work (see Section 7.8).

7.3. Working Example

For demonstration purposes, we introduce a constraint-based group recommendation scenario to be applied
in the context of the digital camera domain. In this working example, a group of users provides their
individual preferences regarding the attributes of a digital camera such as video resolution, optical zoom,
etc. Due to the natural variance of opinions between different people, some of the provided preferences
of the individual group members can be inconsistent. Our constraint-based group recommender system
then tries to identify a suitable recommendation (i.e., digital camera) for the group. A constraint-based
recommendation task for groups can be expressed as a constraint satisfaction problem (CSP) (Tsang,
1993) which is often used for the definition of constraint-based group tasks (Felfernig et al., 2016).

Definition 1: Constraint-based Group Recommendation Task. A constraint-based group recom-
mendation task can be defined as a triple (V,D,C) where V = {v1,v2, ...,vn} is a finite set of variables,
D = {dom(v1),dom(v2), ...,dom(vn)} represents a set of domains for each variable, and C = CKB ∪CR

conforms to the set of constraints consisting of knowledge-base specific constraints (CKB) and requirement
constraints defined by the group members (CR). The requirement constraints defined by the group
members CR =

⋃
CRi is the union of group member requirements where CRi represents the requirements

(i.e., preferences) of group member i.

An example of a constraint-based digital camera recommendation task for a group can be expressed as fol-
lows. In this example, the variable video-res defines the video resolution of the digital camera, the variable
opt-zoom represents the optical zoom factor of the digital camera, the variable touch-screen describes the
touch-screen functionality of the display, the variable water-proof indicates whether the digital camera is
waterproof or not, and the variable wireless corresponds to the wireless communication functionality. The

85

Chapter 7. Socially-Aware Diagnosis for Constraint-Based Recommendation

underlying knowledge-base is represented by CKB and the group member requirements are represented by
CR.

• V = {video-res,opt-zoom, touch-screen,water-proof,wireless}

• D = {
dom(video-res) = {basic,no-video, Full HD, 4K UHD},
dom(opt-zoom) = {0.7,0.85,1.0},
dom(touch-screen) = {yes,no},
dom(water-proof) = {yes,no},
dom(wireless) = {yes,no}
}

• CKB = {
c1 : water-proof = yes⇒ video-res =4K UHD,

c2 : touch-screen = yes⇒ video-res 6= basic,
c3 : opt-zoom = 0.7⇒ video-res = basic,
c4 : opt-zoom = 0.85⇒ video-res 6=4K UHD,

c5 : video-res = basic⇒ opt-zoom 6= 1.0
}

• CR = {
CR1 = {c6 : water-proof = yes,c7 : opt-zoom = 0.85}
CR2 = {c8 : video-res = basic,c9 : wireless = no}
CR3 = {c10 : touch-screen = yes,c11 : wireless = yes}
}

Definition 2: Constraint-based Group Recommendation.
A constraint-based group recommendation for a constraint-based group recommendation task is defined
as an instantiation I = {v1 = ins1, v2 = ins2, ..., vn = insn} where insi ∈ dom(vi). A constraint-based
recommendation is consistent if the instantiations in I are consistent with the constraint set

⋃
ci ∈ C.

Furthermore, a constraint-based group recommendation is complete if all variables in V are instantiated
and valid if the constraint-based recommendation is consistent and complete.

7.4. Calculating Socially-Aware Diagnoses

For a set of user requirements which is inconsistent with the underlying knowledge-base, several diagnoses
can be found (a diagnosis can be referred to as a minimal set of requirements that needs to be adapted by
group members in order to restore consistency). In general, group members do not want to see and evaluate
large sets of diagnosis alternatives. The preferred diagnosis should be identified by a diagnosis algorithm
and the constraints included in this diagnosis set should be adapted in order to find a suitable solution
(i.e., recommendation) for a group (Felfernig et al., 2013b). In this chapter, we identify group-relevant
diagnoses by using different preference aggregation functions. In case of an inconsistency between CR and
CKB, a diagnosis has to be determined. In many cases, a breadth first search based diagnosis (Reiter, 1987)

86

7.4. Calculating Socially-Aware Diagnoses

is applied in order to find a set of diagnoses DIAGS = {∆1,∆2, ...,∆n} with minimal cardinality such that
∀∆i ∈ DIAGS : CKB∪ (CR−∆i) is consistent (see the following definitions).

Definition 3: Conflict Set. A conflict set is a set CS⊆ ∪CRi such that CS∪CKB is inconsistent. A conflict
set CS is minimal if and only if there does not exist a conflict set CS′ ⊂CS. In our work, the identification
of conflict sets is based on the QUICKXPLAIN algorithm (Junker, 2004) which is based on an efficient
divide and conquer search strategy.

Definition 4: Group-based Requirements Diagnosis. A group-based requirements diagnosis is a set of
constraints ∆ ⊆ CRi such that CKB ∪ (CRi−∆) is consistent. A diagnosis ∆ is defined as minimal if and
only if there does not exist a diagnosis ∆′ ⊂ ∆ such that CKB∪ (CRi−∆′) is consistent.

On the basis of the example in Section 7.3, we identified the following conflict sets: CS1 = {c9,c11},
CS2 = {c6,c7}, CS3 = {c8,c10}, and CS4 = {c6,c8}. A conflict can exist between two group members’
preferences (e.g., CS1) or between a certain group member’s preferences and knowledge-base constraints
(e.g., CS2). In situations where conflicts exist, a minimal set of constraints that causes conflicts has to be
adapted such that at least a solution can be found. For a better understanding, the diagnoses determination
of the digital camera example is shown as a HSDAG (Hitting Set Directed Acyclic Graph) (Reiter,
1987) in Figure 7.1. The following diagnoses can be obtained: ∆1 = {c9,c6,c8}, ∆2 = {c9,c6,c10},
∆3 = {c9,c7,c8}, ∆4 = {c11,c6,c8}, ∆5 = {c11,c6,c10}, and ∆6 = {c11,c7,c8}.

Figure 7.1.: All possible diagnoses of the constraint-based digital camera recommendation example are de-
termined and shown in a Hitting Set Directed Acyclic Graph. Thereby, six different diagnoses
were found. After one of these diagnoses was applied to the constraint set, a solution for the
group could be determined.

A basic approach to determine diagnoses is the Breadth First Search (Reiter, 1987) which starts at the
tree’s root and explores the neighbor nodes first before moving to the next level. The Breadth First Search
based diagnosis detection for the digital camera recommendation example is depicted in Figure 7.2. It
identifies the diagnosis ∆1 = {c9,c6,c8}. The application of ∆1 leads to at least one solution (e.g., video-
res=Full HD, opt-zoom=0.85, touch-screen=yes, water-proof=no, wireless=yes). As already mentioned
before, the calculation and evaluation of all possible diagnoses (see Figure 7.1) or the determination of a
diagnosis based on Breadth First Search (see Figure 7.2) is often infeasible due to an unacceptable runtime
performance (Bangor et al., 2008). Furthermore, a diagnosis determined by the Breadth First Search

87

Chapter 7. Socially-Aware Diagnosis for Constraint-Based Recommendation

does not guarantee the identification of the fairest diagnosis for the group. These reasons motivated us to
develop a constraint-based recommender system which is able to detect socially-aware diagnoses in an
efficient way.

Figure 7.2.: Diagnosis guided by Breadth First Search for the constraint-based digital camera recommen-
dation example. The diagnosis ∆1 = {c9,c6,c8} is determined for the group which leads to
at least one solution (e.g., video-res=“Full HD”, opt-zoom=0.85, touch-screen=yes, water-
proof=no, wireless=yes).

The developed approach determines socially-aware diagnoses which are guided by the following group
preference aggregation functions: Least Misery (LM), Most Pleasure (MP), Average Voting (AVG), and
Majority Voting (MAJ). The determination of a diagnosis guided by group aggregation functions is done in
the following ordering: First, a conflict set is chosen (e.g., CS1) which is calculated by the QUICKXPLAIN

algorithm. Then, an aggregation function is used to guide the search (i.e., to resolve the conflict set). A
conflict set can be resolved as soon as at least one of the constraints of the conflict set has been deleted
or adapted. The HSDAG algorithm represents each of these constraints (included in a conflict set) as a
single tree path (see Figure 7.1). Choosing a tree path is equivalent to the deletion of this constraint in a
conflict set. The applied group aggregation function (e.g., Least Misery) selects an appropriate tree path
in HSDAG based on the number of preference adaptations of individual group members. After deciding
on a tree path, the QUICKXPLAIN algorithm can be applied again in order to identify another conflict set
(e.g., CS2). The same process is repeated until a diagnosis (i.e., no conflict set) can be identified. The
identification of a socially-aware diagnosis for the digital camera recommendation example guided by
the Least Misery aggregation function is depicted in Figure 7.3. The Least Misery aggregation function
takes the fairness among group members into account and avoids individual misery in the group (Felfernig
et al., 2017a). In general, the Least Misery aggregation function recommends the item with the highest of
all lowest individual ratings (see Section 7.6). However, in this specific context, the number of adaptations
instead of the ratings of group members has to be aggregated to a group value. In order to focus on the
fairness among group members and to avoid individual misery, Least Misery returns the highest adaptation
value of all individual values.

For a better understanding of our presented approach, we will explain the identification of socially-aware
diagnoses for the digital camera recommendation example guided by the Least Misery aggregation
function. The first conflict set CS1 = {c9,c11} identified by the QUICKXPLAIN algorithm can be resolved
if we adapt or remove one of the two constraints. The exclusion of the constraint c9 : {wireless = no}
means that the 2nd user would have to delete one of his/her preferences and the exclusion of the constraint

88

7.4. Calculating Socially-Aware Diagnoses

Figure 7.3.: The HSDAG tree of the digital camera recommendation example. The identification of a diag-
nosis guided by the Least Misery aggregation function leads to the diagnosis ∆2 = {c9,c6,c10}.
The number of adaptations for group members is shown as a triple sequence.

c11 : {wireless = yes} means that the 3rd user would have to delete one of his/her preferences. The number
of preference adaptations per user is presented as a triple in Figure 7.3, where the first value represents
the number of adaptations for the 1st user, the second value refers to the number of adaptations of the
2nd user, and the last value corresponds to the number of adaptations for the last user. This means, the
removal of the constraint c9 leads to the triple (0,1,0) and the exclusion of c11 to the triple (0,0,1). In
the next step, a group preference aggregation function has to be applied in order to guide the search.
The application of the Least Misery aggregation function for both paths leads to the same aggregated
value: LM(0,1,0)=1, LM(0,0,1)=1. In this context, the path with the lowest aggregated value (i.e., lowest
aggregated number of adaptations) will be chosen, because the lower the aggregated value is, the lower
the number of preference adaptations per individual group group member will be. Therefore, choosing
the path with a lower aggregated value will satisfy the group more likely than choosing a path with a
higher aggregated value. However, if both paths have the same aggregated value, then the left path will
be chosen.† After the left path (i.e., removing the constraint c9) has been chosen, the conflict detection
algorithm QUICKXPLAIN (Junker, 2004) determines another conflict set which is: CS2 = {c6,c7}. The
exclusion of the constraint c9 from the previous step and the exclusion of the constraint c6 (in this step)
leads to the triple (1,1,0) which finally results in the aggregated group value of LM(1,1,0)=1. On the
contrary, the removal of the constraints c7 and c9 leads to the aggregated group value of LM(1,1,0)=1. In
such cases, where the aggregated values are equal, the left tree path is chosen again (i.e., c6 is deleted).
After the resolution of both conflict sets CS1 and CS2, the conflict detection algorithm QUICKXPLAIN

determines another conflict set which is CS3 = {c8,c10}. The deletion of the constraints c9, c6, and c8 (i.e.,
taking the left path) leads to the aggregated group value of LM(1,2,0)=2 and the deletion of the constraints
c9, c6, and c10 leads to the aggregated group value of LM(1,1,1)=1. Likewise, the removal of the constraint
c10 results in a lower aggregated value than the removal of the constraint c8. This ensures that the right path
is chosen which appears to be a fair solution for the group. This process is then continuously repeated until
a diagnosis for the group can be determined. The use of the Least Misery aggregation function leads to the
path {left→ left→ right} in HSDAG which is shown in Figure 7.3. This means that the constraints c9, c6,
and c10 have to be adapted or removed from the constraint set in order to identify a suitable digital camera

†We used this as a simple tie breaker rule to solve a conflict set.

89

Chapter 7. Socially-Aware Diagnosis for Constraint-Based Recommendation

for the group. The application of the identified diagnosis ∆2 = {c9,c6,c10} to the constraint set will result
in a solution for the group (e.g., video-res=basic, opt-zoom=0.85, touch-screen=no, water-proof=no,
wireless=yes).

7.5. Building Synthetic Homogeneous Groups using Similarity

Metrics

After the main idea of our approach has been discussed (see Section 7.3 and Section 7.4), some processes
to evaluate our approach need to be explained in more detail as well. We tested our approach with a
real-world dataset collected in a user study (see Section 7.7). The dataset consists of individual user re-
quirements regarding digital cameras. Due to the fact that all data in our user study has been collected from
individual (user study) participants and that our approach is supposed to be applied in group scenarios, our
test dataset has to be synthesized to generate a dataset for groups (i.e., groups are synthetically generated).
We synthesized a dataset for groups, as our approach identifies diagnoses for groups of users instead of
single users. The synthesis of a dataset by clustering individual participants (i.e., forming group of users)
is a common approach in the context of recommender systems evaluation (Baltrunas et al., 2010). Usually,
most of the group decisions are usually made in groups of users with similar tastes. In order to form groups
of such similar users, some similarity metrics were applied (see Formulae 7.1 – 7.3). The term sim(p,c)
indicates the preference similarity between the participant p who currently declared his/her preferences
and a candidate participant c from a set of candidates. The notion s(pi, ci) denotes the similarity of the
variable i between a reference participant p and a candidate participant c. The term imp(i) expresses the
importance of a variable i for a participant and val(i) represents the value of variable i. Moreover, the terms
minval(pi) as well as maxval(pi) are minimum and maximum values of a variable i taken from the product
catalog. Equal-Is-Better (see Formula 7.2) is used in situations where the preferences of two participants
must be equal. For instance, Formula 7.2 can be used for the following digital camera variables: video-res,
touch-screen, water-proof, and wireless. Formula 7.3 (Near-Is-Better; NIB) is applied if the preferences of
the candidate participants have to be as near as possible to the preferences of the reference participant. This
equation can be applied for the comparison of numerical (integer and double) variables such as opt-zoom
of the digital camera. For further information regarding similarity metrics we refer to (Jannach et al., 2010).

sim(p,c) =
∑i∈variables s(pi,ci)∗ imp(i)

∑i∈variables imp(i)
(7.1)

EIB : s(pi,ci) =

1 if pi = ci

0 otherwise
(7.2)

NIB : s(pi,ci) = 1− |val(pi)− val(ci)|
maxval(pi)−minval(pi)

(7.3)

After the collection of the dataset from individual user study participants, similar users were identified
and formed to a group by using the aforementioned similarity metrics (see Formula 1-3). For a better
understanding of the application of the similarity metrics, we compute the similarity between two example
users. We assume that two individual user study participants (i.e., example users) provided the preferences
presented in Table 7.1. For the sake of simplicity, we further assume an equal importance of all the digital

90

7.5. Building Synthetic Homogeneous Groups using Similarity Metrics

camera variables for both users (imp(i) = 1). Formula 7.4 shows the similarity calculation between both
users with regard to the opt-zoom variable by using the NIB similarity metric. The maxval and minval
values of the opt-zoom variable are taken from the domain definition in the digital camera recommendation
example.

User video-res opt-zoom touch-screen water-proof wireless
UserA basic 0.85 yes yes no
UserB Full HD 0.7 yes no no

Table 7.1.: Example preferences of two users about a digital camera (UserA and UserB).

s(UserAopt−zoom,UserBopt−zoom) = 1−
|val(UserAopt−zoom)− val(UserBopt−zoom)|
maxval(opt− zoom)−minval(opt− zoom)

= 1− |0.85−0.7|
1−0.7

= 0.5
(7.4)

It is also important to mention that the similarity metrics have to be applied to all product variables (i.e,
all variables of the digital camera) in order to calculate the similarity between two users based on their
preferences. Formula 7.5 represents the similarity calculation between UserA and UserB.

sim(UserA,UserB) =
∑i∈variables s(UserAi,UserBi)∗ imp(i)

∑i∈variables imp(i)

=
0+0.5+1+0+1
1+1+1+1+1

= 0.5
(7.5)

The application of Formulae 7.2 and 7.3 on user preferences determines the similarity between two users.
After the calculation of the similarity between each user study participant, similar users were clustered in
order to form a group. For the generation of groups with similar users, we always picked the first user
from the user study participant-list and then calculated the similarity between the first user and all the other
users by using similarity metrics. Then, we took the most similar n users and generated a group with a
size of n+ 1 (i.e., the first user + n users which were similar to the first user). We repeated the same
procedure for the remaining users in order to create several groups with similar users. After the building
of groups of similar users, a consistency check based on the group members’ preferences was necessary
to determine whether there are inconsistencies. In general, the majority of group member preferences
contains inconsistencies and these inconsistencies have to be adapted or removed in order to find at least
one solution for the group. In our chapter, the inconsistencies between the group member preferences
were determined by the conflict detection algorithm QUICKXPLAIN. After the identification of the conflict
sets, a diagnosis for the group had to be identified. In our chapter, we identified a diagnosis for the group
(i.e., socially-aware diagnosis) by using group preference aggregation functions which are presented in
Section 7.6.

91

Chapter 7. Socially-Aware Diagnosis for Constraint-Based Recommendation

7.6. Determining Diagnoses by Applying Group Preference

Aggregation Functions

Usually, group preference aggregation functions are applied to aggregate individual group member’s
preferences (i.e., evaluations regarding an item) (Masthoff, 2011). In this chapter, preference aggregation
functions aggregate the number of preference adaptations per individual user to a group value by consid-
ering the importance of domain variables from the users’ points of view (see Formula 7.6). Formula 7.6
shows that a user’s evaluation of a diagnosis fragment pod (part of diagnosis) is calculated based on the
number of changes and weights (i.e., importance) of variables. In order to guide a diagnosis, the following
aggregation functions are used: Least Misery (see Formula 7.7) returns the highest value (i.e., number
of changes), Most Pleasure (see Formula 7.8) returns the lowest value, Average Voting (see Formula 7.9)
returns the average value, and Majority Voting (see Formula 7.10) returns the majority value of all
individual evaluations for a diagnosis part pod as a recommendation. Finally, Formula 7.11 is applied on a
diagnosis part by using one of the group aggregation functions (see Formulae 7.7-7.10) in order to select
the tree path which leads to the minimum preference adaptations for the group. To summarize, we can
conclude that these aggregation functions are applied to conflict sets in order to guide the diagnosis search.

In group decision scenarios, the preferences of group members often have a different impact on the group
decision, due to different importance preferences of the individual group members. For instance, if different
family members have to jointly decide on a new house, usually, the preferences of the father and the mother
will have a higher impact on the family’s decision than the preferences of their children. In such cases,
a single preference adaptation for each group member has a different impact on the group decision. If
group members with different weights (i.e., importance) exist, then Formulae 7.7-7.10 have to be extended
by the importance of users (i.e., *imp(u)). In our evaluation, we assume that all group members have
equal importance and therefore the importance of the individual group members was not considered in the
Formulae 7.7-7.10.

eval(u, pod) = ∑
v∈Variables

(#changes(u, pod,v)∗ imp(u,v)) (7.6)

LM(pod) = max(
⋃

u∈Group

eval(u, pod)) (7.7)

MP(pod) = min(
⋃

u∈Group

eval(u, pod)) (7.8)

AVG(pod) =
∑u∈Group eval(u, pod)

|Group|
(7.9)

MAJ(pod) = ma jority(
⋃

u∈Group

eval(u, pod)) (7.10)

selection(pod) = min(
⋃

pod∈pods

eval(pod)) (7.11)

After the determination of a suitable socially-aware diagnosis guided by one of the group aggregation
functions, the identified diagnosis is applied to recommend a digital camera to the group.‡

‡In this context, we recommended only one product (i.e., digital camera) per group.

92

7.7. Evaluation

7.7. Evaluation

In this section, the evaluation of a dataset collected within a user study is presented. The dataset consists
of 262 entries and its data have been collected from students at two Austrian universities. The dataset is
composed of user requirements regarding digital SLR (Single-Lens Reflex) cameras. Our user study was
conducted in three steps. First, each participant of the user study had to declare preferences regarding 10
different variables of a digital camera. After that, each participant selected three out of these 10 variables
as his/her most preferred (i.e., most important) variables. In the final step, each participant had to select a
camera from the product catalog.§ Each digital camera in the product catalog was specified by using 10
different variables: effective resolution (in mega-pixel), display size (in inch), touch screen functionality
(yes/no), wireless communication functionality (yes/no), near field communication support (yes/no),
global positioning system functionality (yes/no), video resolution, zoom factor, weight (in grams), and
price (in Euro). In our product catalog, we included 20 different SLR cameras from NIKON’s company
website.¶ As already mentioned before, we also collected a dataset which includes the importance of
the camera variables of each participant which was of high relevance for our analysis. For instance, for
some participants the most important variable is the price, whereas for some other participants, it might be
the effective resolution of the camera. These fine-grained details about the individual preferences of the
group members allow a reasonable assignment of the participants to suitable groups in the group building
process. In addition to that, we also took the importance of the camera variables per participant for the
aggregation function based diagnosis determination (see Formula 7.6) into special consideration. This was
essential, since the adaptation of a specific camera variable which is necessary to find a solution could
otherwise negatively influence the behaviour of the individual participants. For instance, the removal or
adaptation of a camera variable which seems to be less important for the participant (e.g., GPS) can lead
to the following value: #changes(userX , pod,gps)∗ imp(userX ,gps) = 1∗1 = 1.
However, an adaptation of a very important camera variable from the user’s point of view (e.g., price)
would have a stronger impact: #changes(userX , pod, price)∗ imp(userX , price) = 1∗4 = 4.
Although in both cases only a single adaptation (i.e., one change) has been made, the impact will be
different (i.e., for userX, the price is 4 times more important than the GPS feature of the camera) because
of the different importance of the variables.

In order to take this information into account, we applied different weight sequences which represents the
importance of the camera variables per participant. A weight sequence consists of 4 different values. An
example of a weight sequence is {4,3,2,1}, whereby the first value refers to the weight of the 1st most
important value, the next value to the weight of the 2nd most important value, and the third value to the
weight of the 3rd most important camera variable, and the last value represents the weight of the remaining
camera variables. As already mentioned before, each participant selected three out of 10 camera variables
which are the most important from his or her point of view. Therefore, the weight sequence consist of 3
values which represent the importance of the 3 most important variables and one value representing the
importance of the remaining 7 variables.

The data collected from our user study was analyzed with
(10

4

)
= 210 different weight sequences and 4

different aggregation functions (LM, MP, AVG, and MAJ). Additionally, we synthesized the dataset in
order to group similar participants and we generated groups of 5 different group sizes (i.e., the group sizes

§The preferences of each user study participant were inconsistent with the underlying product catalog.
¶All products were manually collected from www.nikonusa.com and www.nikon.de

93

www.nikonusa.com
www.nikon.de

Chapter 7. Socially-Aware Diagnosis for Constraint-Based Recommendation

vary from 2 to 6). Consequently, the formation of unequally sized groups leads to a different number of
generated groups. For instance, if the group size is assumed to be 2, there would be 131 different groups
(i.e., #participants

groupsize = 262
2). The data collected in the user study was analyzed with 5 different group sizes and

210 different weight sequences (i.e., 5∗210 = 1050 combinations) by using 4 different group aggregation
functions. Furthermore, we compared our approach with a Breadth First Search based diagnosis detection
and a FASTDIAG diagnosis-based algorithm which allows an efficient calculation of a single diagnosis at
a time (see Table 7.2).

In order to evaluate and to compare the diagnoses determined by each group preference aggregation func-
tion as well as by Breadth First Search and also by FASTDIAG, the prediction quality (i.e, precision) of the
diagnosis was determined. As already mentioned before, each user study participant had to choose an alter-
native camera from the product catalog. In this context, the precision can be considered as the ratio between
the number of correctly predicted products and the total number of all predictions (see Formula 7.12). The
precision of an aggregation function is calculated by taking the average of the precision values which were
generated for each single group. For instance, for a group size of 2, there exist 131 different groups and the
precision represents the average of the precision values of those predictions generated for all 131 groups.

precision =
|correctly predicted diagnoses|
|predicted diagnoses|

(7.12)

Group-
size LM MP AVG MAJ FastDiag BFS
2 0.126 0.114 0.136 0.114 0.145 0.115
3 0.121 0.113 0.116 0.100 0.113 0.101
4 0.122 0.115 0.115 0.100 0.093 0.095
5 0.124 0.107 0.111 0.112 0.088 0.088
6 0.126 0.097 0.111 0.108 0.086 0.085
average 0.124 0.109 0.118 0.107 0.105 0.097

Table 7.2.: Precision of the different aggregation functions, the Breadth First Search (BFS), and the FAST-
DIAG algorithm for group sizes between 2 and 6. The last row (average) shows the average
precision of the different group sizes. The LM aggregation function achieves the highest aver-
age precision.

The analysis of our dataset shows that the different group sizes do not significantly influence the precision
of the applied group preference aggregation functions (see Table 7.2). However, the precision of the
FASTDIAG (Felfernig et al., 2013b) and Breadth First Search (BFS) algorithms decreases whenever the
group size increases. As previously mentioned, the number of group member preferences as well as the
number of conflicts increases with an increasing number of group members. Hence, the higher the number
of the conflict sets is, the higher the number of possible diagnoses will be. In situations where several
diagnoses are available, the most suitable diagnosis has to be determined in an intelligent way. Given
a huge number of diagnoses, the probability of finding the most suitable diagnosis for the group using
FASTDIAG is very low.‖ This could be explained by the fact that the FASTDIAG algorithm always tries
to identify a diagnosis with minimal cardinality and it does not consider the fairness aspect among group

‖In FASTDIAG, the group member preferences have been applied in a randomized ordering. The precision of the FASTDIAG

algorithm can be further improved if the group member preferences are ordered based on the importance.

94

7.7. Evaluation

members. Likewise, if the group size is high (i.e., there exist several possible diagnoses), the probability
that the most suitable diagnosis is determined by Breadth First Search is also very low. Consequently, the
precision of the FASTDIAG and Breadth First Search algorithms decreases when the group size increases.
For the analysis of the dataset, we first started to form groups of size 2 and then progressively increased
the group size over time. We immediately recognized that different group sizes did not have a significant
impact on the precision of the aggregation functions. However, the application of different weight
sequences led to different precision results for all group preference aggregation functions. We analyzed
the 5 highest (out of 210) weight sequences which achieved the highest precision results and noticed that
the weight sequences which achieved the highest precision commonly share the same pattern. Also, the
values in the weight sequences were not equally distributed. Instead, quite extreme values were used for
the most and the least important variables in the weight sequences (e.g., {10,6,4,1}). This means that the
weight of the most important variable should always be as high as possible (i.e., 10) and the weight of the
least important variable should be as low as possible (1) in order to reach a high level of prediction quality.

After the analysis of different group sizes and weight sequences, we could also determine the group
preference aggregation function that achieved the highest precision. The precision of each aggregation
function was calculated by taking the average of precision values of all 1050 combinations (i.e., group
size * number of weight sequences = 5 ∗ 210). The last row of Table 7.2 represents the average precision
of each aggregation function. It indicates that the Least Misery aggregation function achieves a higher
precision than the Average voting, Most Pleasure, and Majority Voting aggregation functions. Since
the analyzed dataset was collected from students, our assumption was that the decision on a digital
SLR camera for students is always related with high (decision) efforts. On the basis of these facts, we
believe that for students, digital SLR cameras fall into the category of high-involvement items (i.e., the
decision on such items is related with high efforts). The data analysis results mentioned in the paper
of Felfernig et al. (Felfernig et al., 2017a) confirm our result and also indicate that group decisions for
items in high-involvement domains take the aspect of fairness into account which simply reflects the
idea of the Least Misery aggregation function. For example, if a family plans to buy a new house (i.e.,
high-involvement item), the final decision must be fair to everybody and should satisfy all family members.
Furthermore, we also analyzed the precision results presented in Table 7.2. These precision results are
very low for the following reasons: In our approach, we tried to identify a product which satisfies all group
members. However, in our user study nearly every group member (i.e., user study participant) selected a
different digital camera when compared to other group members. For instance, if we assume that a group
of 4 members selected different digital cameras, the prediction quality could maximally reach up to 25%
(100% / 4 group members). This is due to the reason that our approach predicts only one product for
the whole group. Furthermore, there are often situations where our approach identifies a digital camera
which has not been chosen by any group member (i.e., prediction quality is 0%), because the identified
product should satisfy all group members and not only a single participant. Besides, in such cases where
the user requirements were inconsistent with the underlying knowledge-base, the user study participants
selected a digital camera independent of their preferences. Sometimes the participants selected a product
which is not similar to their preferences. This means that the selected product as well as the participants’
requirements were not similar. Because of such reasons, the prediction performance results presented in
Table 7.2 were very low.

Moreover, in sharp contrast to the Breadth First Search algorithm, our approach generates predictions of
higher precision quality (see Table 7.2). Furthermore, the Breadth First Search based diagnosis detection

95

Chapter 7. Socially-Aware Diagnosis for Constraint-Based Recommendation

did not work efficiently and also consumed a lot of time. For example, the time consumption of Breadth
First Search for the group-size=2 was approximately 4 times higher than the time consumption of our
approach and for group-size=6, it was even 100 times slower than our approach. The FASTDIAG algorithm
detects minimal diagnoses with a logarithmic complexity in terms of the number of consistency checks.
Although the algorithm itself works quite fast, the precision of the detected diagnoses is significantly
lower than the precision achieved by our approach.

7.8. Conclusion and Future Work

In this chapter, we introduced a novel approach to socially-aware diagnosis by using group aggregation
functions. For this purpose, we designed a user study, collected a dataset in a domain of high-involvement
items (i.e., digital cameras) and synthesized the dataset from individual participants in order to generate
groups of users. Thereafter, a socially-aware diagnosis approach which was guided by group preference
aggregation functions, was determined and applied in group member constraints in order to recommend
a digital camera to a group. Finally, we measured the prediction quality of each aggregation function
and figured out that the Least Misery aggregation function achieves a higher precision compared to the
Average Voting, Most Pleasure, and Majority Voting aggregation functions. The results show that the
aspect of fairness plays a major role in selections of high-involvement items based on socially-aware
diagnoses. Another important finding was that such group aggregation functions which are based on the
determination of a diagnosis achieve a better precision than Breadth First Search and FASTDIAG.

Our future plans include the analysis of further group aggregation functions and weight (i.e, importance)
sequences. In our work, we clustered similar participants based on the reason that group decisions are
usually made in groups consisting of group members with similar tastes. Consequently, the assumption
can be made that diverse and randomized groups could be clustered as well as diagnoses for such groups
could be determined by using different aggregation functions.

96

Chapter 8
Towards Similarity-Aware
Constraint-Based Recommendation

Parts of the contents of this chapter have been published in (Atas et al., 2019b). The author of this thesis
provided major parts of this chapter in terms of writing, literature research,

user study design, data analysis, and evaluation.

8.1. Abstract

Constraint-based recommender systems help users to identify useful objects and services based on a given
set of constraints. These decision support systems are often applied in complex domains where millions of
possible recommendations exist. One major challenge of constraint-based recommenders is the identifica-
tion of recommendations which are similar to the user’s requirements. Especially, in cases where the user
requirements are inconsistent with the underlying constraint set, constraint-based recommender systems
have to identify and apply the most suitable diagnosis in order to identify a recommendation and to in-
crease the user’s satisfaction with the recommendation. Given this motivation, we developed two different
approaches which provide similar recommendations to users based on their requirements even when the
user’s preferences are inconsistent with the underlying constraint set. We tested our approaches with two
real-world datasets and evaluated them with respect to the runtime performance and the degree of similarity
between the original requirements and the identified recommendation. The results of our evaluation show
that both approaches are able to identify recommendations of similar solutions in a highly efficient manner.

8.2. Introduction

Recommender Systems (RS) have become an essential means for guiding users in a personalized
way to interesting or useful objects and services (often referred to as items) (Jannach et al., 2010;
Ricci et al., 2011). These decision support systems help users to identify useful items matching their
wishes and needs, such as movies, books, songs, web sites, financial services, travel destinations, and
restaurants (Jannach et al., 2010; Gasparic and Janes, 2016; Paraschakis, 2016; Felfernig et al., 2017a).
In contrast to traditional recommendation approaches such as collaborative (Konstan et al., 1997) and
content-based filtering (Pazzani and Billsus, 1997), constraint-based RS (Burke, 2000; Jannach et al.,
2010) recommend products and services based on a given constraint set. These systems are usually applied

97

Chapter 8. Towards Similarity-Aware Constraint-Based Recommendation

in complex domains such as cars, personal computers (PC), and financial services. They allow individual
customization of complex industrial products and services in order to satisfy individual customer needs
(i.e, user requirements) (Reiterer et al., 2015). When interacting with constraint-based RS, users articulate
their requirements (e.g., when interacting with a PC recommender, a user specifies different properties
such as memory type, memory size, processor type, price, and brand of PC). In this context, inconsistent
requirements will be automatically or manually adapted (de Kleer et al., 1992; Burke, 2000). Finally, a
recommendation will be suggested to the user. A complex product such as a personal computer can have
millions of recommendations and the RS has to deal with difficult problems such as system maintain-
ability, consistency maintenance, and efficient response times. One major challenge of constraint-based
recommenders is to identify the most suitable recommendation for a user based on his/her articulated
requirements. Especially, in cases where user requirements are inconsistent with the underlying constraint
set, users have to be supported in finding a way out from the no recommendation could be found (Reiterer
et al., 2015) dilemma (i.e., identifying a diagnosis). Besides, after identifying and applying a diagnosis,
the proposed recommendation should be similar to the user’s defined requirements in order to increase the
user’s satisfaction and be computed with a performance acceptable for interactive settings. The identifi-
cation of a recommendation which is similar to a user’s requirements is a challenging task if millions of
recommendations exist. The most naive solution is the comparison of each possible recommendation with
a given set of user requirements in order to identify the most similar recommendation for the user which is
not possible due to an unacceptable runtime performance.

To the best of our knowledge, such similarity-aware constraint-based RS do not exist. A related work
is presented in Eiter et al. (Eiter et al., 2009) where the authors analyse several decision/optimization
versions of identifying similar and diverse solutions in the context of Answer Set Programming (ASP). The
authors introduce offline and online methods to determine the computational complexity of similar/diverse
solutions. Hebrard et al. (Hebrard et al., 2005) present a number of practical approaches to identify
the distance of similar and diverse solutions in constraint programming and focus on determining the
computational complexity of distance functions for similar and diverse solutions. The approach suggested
by (Hebrard et al., 2005) calculates the whole set of possible solutions at once and then identifies similar
and diverse solutions. In our approaches, we do not calculate the whole set of possible solutions, since
this is not feasible due to the high complexity of item domains. Given this motivation, we developed two
different approaches that suggest similar recommendations to the users based on their requirements even
if the user preferences are inconsistent with the underlying constraint set.∗ We tested our approaches
with two different datasets (PC and bike recommendations) and evaluated them with regard to their
runtime performance and the degree of similarity between the original requirements and identified
recommendations. The results of our evaluation indicate that our approaches are able to identify similar
recommendations with a high similarity degree in a highly efficient manner.

The remainder of this chapter is structured as follows. In Section 8.3, we introduce a working example from
the personal computer domain. Section 8.4 presents the identification and application of a diagnosis based
on users’ requirements and the determination of candidate recommendations (i.e., possible solutions). In
Section 8.5, we introduce similarity metrics to calculate the similarity between the original requirements
and the possible solutions in order to identify the solution with the highest similarity. Section 8.6 introduces

∗The work presented in this chapter has been partially conducted within the scope of the research projects WeWant (basic research
project funded by the Austrian Research Promotion Agency - 850702) and OpenReq (Horizon 2020 project funded by the European
Union - 732463).

98

8.3. Working Example

our developed approaches for the identification of similar recommendations. Section 8.7 provides the
evaluation results of both approaches with two different real-world datasets. Finally, we conclude the
chapter with a discussion of some ideas for future work in Section 8.8.

8.3. Working Example

For demonstration purposes, we introduce a constraint-based recommendation scenario from the domain
of personal computers (PC). The example presented in this section introduces the KB (variable definitions
and constraints) and user requirements regarding a PC. For simplicity reasons, we used only some of
the PC variables as a constraint satisfaction problem (CSP) which is often used for the definition of a
constraint-based recommendation task (Tsang, 1993).

Definition 1: Constraint-Based Recommendation Task. A constraint-based recommendation task
expressed in CSP representation is defined as a triple (V,D,C) where V = {v1,v2, ...,vn} is a set of
finite domain variables, D = {dom(v1),dom(v2), ...,dom(vn)} refers to the set of variable domains and
C = CKB ∪CR corresponds to the set of constraints representing product-specific constraints (CKB) and
requirement constraints defined by a user (CR).

A simplified example of a constraint-based recommendation task in the PC domain is the following. In
this context, the variable max-price represents the maximal price of a PC in Euro, min-hd-cap corresponds
to the minimum hard-disc capacity in GB, price refers to the price of a PC in Euro, pro-freq represents
the clock-rate of a processor in GHz, mb-ram-cap refers to the capacity of the motherboard RAM in
GB, and hd-cap represents the capacity of the hard-disc in GB. Additionally, there are variables which
indicate the importance of PC variables from the user’s point of view.† For instance, the expression
imp-price = 5 implies that the defined price limit is very important for the user whereas the expression
imp-price = 1 indicates a price limit which is not important from the user’s point of view. The product
knowledge is represented as CKB = {c1 − c5} and the user requirements are expressed as CR = {c6 − c13}.

• V = {max-price,min-hd-cap,price,pro-freq,mb-ram-cap,hd-cap, imp-price, imp-hd-cap,
imp-pro-freq, imp-mb-ram-cap}

• D = {dom(max-price) = {1000,2000,3000,3500},
dom(min-hd-cap) = {512,1024},
dom(price) = [400 ... 3500],
dom(pro-freq) = {2,2.2,2.6,3.15},
dom(mb-ram-cap) = {8,16},
dom(hd-cap) = {64,128,256,512,1024},
dom(imp-price) = dom(imp-hd-cap) =
dom(imp-mb-ram-cap) = dom(imp-pro-freq) = [1 ... 5]}

• CKB={ c1: (hd-cap≥512 && mb-ram-cap≥8)⇒ price≥2250,
c2: (hd-cap≥1024 && mb-ram-cap≥16)⇒ price≥3250,
c3: mb-ram-cap=16⇒ pro-freq≥3.15,

†If this information is not provided, equal importance of all variables is assumed.

99

Chapter 8. Towards Similarity-Aware Constraint-Based Recommendation

c4: price≤max-price,
c5: min-hd-cap≥hd-cap}

• CR = {c6 : max-price = 2000,c7 : min-hd-cap = 1024,c8 : pro-freq = 2.6,
c9 : mb-ram-cap = 16,c10 : imp-price =3,c11 : imp-hd-cap =2,
c12 : imp-mb-ram-cap =5,c13 : imp-pro-freq =1}

A constraint-based recommendation can be defined based on the given constraint-based recommendation
task.

Definition 2: Constraint-based recommendation. A constraint-based recommendation for a recommen-
dation task is defined as an instantiation I = {v1 = ins1,v2 = ins2, ...,vn = insn} where insi ∈ dom(vi). A
constraint-based recommendation is consistent if the instantiations in I are consistent with the

⋃
ci ∈ C.

Furthermore, a recommendation for a constraint-based recommendation task is complete if all variables in
V are instantiated and valid if the recommendation is consistent and complete. In this chapter, we ranked
our solutions and always recommend the first solution (i.e., recommendation) to the user. For a detailed
discussion at ranking approaches for solutions we refer to (Winterfeldt and Edwards, 1986).

8.4. Identification of Personalized Diagnoses

For the recommendation task introduced in Section 8.3, it is not possible to find a solution due to
some inconsistencies between the user requirements CR and the product-specific constraints CKB. For
instance, user’s constraints regarding the clock-rate of the processor and RAM capacity of the motherboard
(c8,c9) contradict each other, because the third constraint in the knowledge base (KB) indicates that the
clock-rate of the processor must be greater or equal to the value of 3.15 GHz if the RAM capacity of the
motherboard is 16 GB. Consequently, we have to identify a minimal set of user constraints which has
to be adapted or deleted in order to get rid of the no recommendation could be found dilemma. In some
certain cases where the user requirements CR are inconsistent with the underlying constraint set CKB, the
users have to be supported in identifying constraints which trigger an inconsistency. Such constraints can
be determined on the basis of the minimal conflict detection principle (Junker, 2004). On the basis of
minimal conflict sets, diagnoses (i.e., hitting sets) can be determined thereof (Reiter, 1987). Such diag-
noses are proposals of requirements which should be changed such that the system is able to find a solution.

Definition 3: Conflict Set. A conflict set is a set CS ⊆CR such that CS∪CKB is inconsistent. A conflict
set CS is minimal if and only if there does not exist a conflict set CS′ ⊂ CS. In the working example
defined in Section 8.3, there exist two minimal conflict sets: CS1 = {c6,c7} and CS2 = {c8,c9}. CS1

and CS2 are conflict sets since each individual conflict set is in conflict with CKB. A basic approach to
determine minimal diagnoses from minimal conflict sets is the so-called hitting set directed acyclic graph
(HSDAG) (Reiter, 1987).

Definition 4: Diagnosis. A diagnosis defines a set of constraints ∆⊆CR such that CKB∪ (CR−∆) is con-
sistent. A diagnosis ∆ is defined as minimal if and only if there does not exist a diagnosis ∆′ ⊂ ∆ such that
CKB∪ (CR−∆′) is consistent. Based on the identified minimal conflict sets, the following diagnoses can be
identified by using the HSDAG approach: ∆1 = {c6,c9}, ∆2 = {c6,c8}, ∆3 = {c7,c8}, and ∆4 = {c7,c9}.
A basic approach for resolving conflicts is to adapt or to delete (see Section 8.6) the constraints contained
in a diagnosis set. In order to identify the most suitable diagnosis for the user, the importance of diagnosed

100

8.5. Determination of Similarity Degree Using Similarity Metrics

constraints (i.e, diagnosed variables) from the user’s point of view has to be taken into account. For
instance, selecting the first diagnosis (∆1 = {c6,c9} = {max-price = 2000 e, mb-ram-cap = 16 GB})
would require the deletion or adaptation of the constraints regarding max-price of PC and the RAM
capacity of motherboard variables, but as indicated in Section 8.3, the price of PC is moderately important
(imp-price=3) and the RAM capacity of motherboard is very important (imp-mb-ram-cap=5) for the user.
The deletion or adaptation of important user constraints decreases the user satisfaction. In such cases
where several diagnoses exist, one should select the diagnosis which contains unimportant user constraints
such that users are still satisfied with the proposed constraint adaptation. Moreover, this strategy helps
to identify recommendations which are similar to users’ requirements, because the similarity calculation
(between user requirements and identified recommendations) applied in our approach depends on the
importance of the variables (see Section 8.5). This means, the adaptation of important variables will
often deteriorate the degree of similarity compared to the adaptation of less important variables. For an
automated minimal diagnosis detection, we apply the FASTDIAG (Felfernig et al., 2013b) algorithm,
which allows an efficient calculation of one diagnosis at a time. Furthermore, FASTDIAG enables to
identify a minimal diagnosis which consists of unimportant user requirements. If the user requirements
provided to FASTDIAG are already sorted based on their importance, then the algorithm tries to identify a
minimal diagnosis which consists of unimportant constraints (i.e., user requirements) in the first half of
the constraint list. In our working example, ∆3 contains less important constraints compared to ∆1, ∆2,
and ∆4. The application of ∆3 = {c7,c8} = {min-hd-cap = 1024 GB, pro-freq = 2.6 GHz} leads to six
different solutions. One of the six possible solutions is the following:
price = 1000 e, pro-freq = 3.15 GHz, hd-cap=64 GB, mb-ram-cap= 16 GB

Our approaches (see Section 8.6), take the first 10 solutions and recommend the solution to the user which
is most similar to the user’s requirements. The similarity between the user’s requirements and the identified
solutions can be calculated using similarity metrics presented in Section 8.5.

8.5. Determination of Similarity Degree Using Similarity Metrics

Similarity metrics (McSherry, 2004) are applied for the similarity calculation between the user require-
ments and a recommendation (see Formulae 8.1- 8.5). The metrics are denoted as more-is-better (MIB;
e.g., hard-disc capacity of a PC), less-is-better (LIB; e.g., price of a PC), nearer-is-better (NIB; e.g.,
clock-rate of the processor should be as near as possible to 2.6 GHz), and equal-is-better (EIB; color of
a PC) (McSherry, 2003). The term sim(r,u) indicates the similarity between a recommendation r from
a set of recommendations and requirements of a user u. The notation s(ri, ui) represents the similarity
between the requirement of user u and the recommendation r with respect to the variable i (attribute-level
similarity). In addition, imp(i) denotes the importance of a variable i from the user’s point of view and
val(i) represents the value of variable i. The terms minval(ri)/maxval(ri) are minimum/maximum values of
a variable i taken from the KB definition.

sim(r,u) =
∑i∈variables s(ri,ui)∗ imp(i)

∑i∈variables imp(i)
(8.1)

MIB : s(ri,ui) =
val(ui)−minval(ri)

maxval(ri)−minval(ri)
(8.2)

101

Chapter 8. Towards Similarity-Aware Constraint-Based Recommendation

LIB : s(ri,ui) =
maxval(ri)− val(ui)

maxval(ri)−minval(ri)
(8.3)

NIB : s(ri,ui) = 1− |val(ui)− val(ri)|
maxval(ri)−minval(ri)

(8.4)

EIB : s(ri,ui) =

1 if ri = ui

0 otherwise
(8.5)

8.6. Approaches for the Identification of Similar Recommendations

We developed two approaches for the identification of recommendations which are similar to the user’s
requirements. The soft relaxation-based approach is based on a soft relaxation of inconsistent user
requirements. A soft relaxation in this context makes a strictly specified user requirement less strict.
For instance, a soft relaxation for a user constraint price = 100 e can be represented as a deviation of
10 e: {price ≥ 90 e && price ≤ 110 e}. This relaxation strategy is used to identify items which are
similar to the users’ specifications. In contrast to a soft relaxation, a hard relaxation does not use any
deviation, it simply deletes the specified value instead. The hard relaxation-based approach identifies
similar recommendations by deleting the diagnosed user requirements (= hard relaxation) and using search
heuristics from CHOCO constraint solver.

Soft Relaxation-Based Approach: The first developed approach for the identification of similar recom-
mendations is based on a soft relaxation of inconsistent user requirements. This approach uses following
lines of the Algorithm 1: 1-4, 10, and 12-17. It takes at first user’s requirements and checks whether
the user’s requirements are consistent with the underlying KB by using a constraint solver (see lines
1-2 in Algorithm 1). If they are consistent, the recommender will only consider the first 10 solutions
and recommends the solution which has the highest similarity (see line 13). As a KB of complex items
such as cars, PCs, and smart homes consisting of hundreds of constraints, the user’s requirements are
often inconsistent with the underlying KB. In the case of an inconsistency, a suitable diagnosis has to be
identified. For identifying a suitable diagnosis, the user’s requirements will be sorted by their importance.
Thereafter, the FASTDIAG algorithm analyzes the already sorted user constraints and identifies a diagnosis
(see line 3). After the identification of a suitable diagnosis, all variables in the diagnosis set will be relaxed
(soft relaxation) in order to find solutions similar to the specified user requirements (see line 4). The goal
of the relaxation is to avoid empty search results. Such strategies try to identify solutions which are similar
to the user’s requirements. The presented relaxation strategy is a basic approach for identifying similar
numerical values (Dabrowski and Acton, 2011). For the relaxation of non-numerical variables (e.g., color
of the PC), there also exist some strategies. Wilson and Martinez (Wilson and Martinez, 1997) present
improved versions of heterogeneous distance functions for nominal variable values by representing the
variables as vectors. This means that, variables are represented by different aspects (e.g., the colors are
presented in a RGB color model). Another approach to relax non-numerical variables is the relaxation
based on the popularity (i.e., the most popular variable value will be used). This strategy can help to
identify recommendations where the user’s requirements are inconsistent with the underlying KB, but it is
not able to identify recommendations similar to the user’s requirements. For instance, if the user specifies
that the color of the PC should be white ({c1:color=white}), a relaxation of color=black does not make
sense, even if the black color is popular. We apply another simple approach for non-numerical variables. If

102

8.6. Approaches for the Identification of Similar Recommendations

a non-numerical user requirement was inconsistent with the underlying KB, then its neighbor values from
the set of variable domains were used for the relaxation. For instance, assuming that a user specifies that
the color of the PC should be yellow which would be inconsistent and that the domain of the color-variable
is defined as follows: dom(color)= {black, brown, red, orange, yellow, green, blue, gray, white}. In
such cases, we are choosing the neighbors of the user’s specified value and relax the non-numerical user
requirement as follows: {color = yellow ‖ color = orange ‖ color = green}. After the relaxation of
the inconsistent variables, a recommendation will be suggested to the user (see line 10). Thereafter, the
similarity metrics mentioned in Section 8.5 are applied in order to calculate the similarity between the user
requirements and the recommended item. Finally, the average of all similarities for all users is taken into
account in order to determine the quality of the soft relaxation-based approach.

Hard Relaxation-Based Approach: This approach identifies recommendations similar to the user’s re-
quirements by deleting the diagnosed user requirements (i.e., hard relaxation) and by using constraint
solver heuristics. This approach uses the following lines of the Algorithm 1: 1-3, 6-8, and 12-17. First,
the approach takes the user’s requirements and checks whether the user requirements CR are consistent
with the underlying KB CKB. In the case of a consistency, the recommender will only consider the first 10
solutions and recommend the solution which has the highest similarity with the original user requirements
(see line 1-2 in Algorithm 1). Otherwise, FASTDIAG will only consider all those user requirements which
are already ordered with respect to their importance and identify a diagnosis with minimal cardinality. The
identified diagnosis will most probably contain less important user requirements which is a strategy to pre-
vent a deterioration of the user’s satisfaction. Thereafter, all diagnosed user requirements will be deleted
from the user constraint set which guarantees that at least one item can be recommended based on the user’s
remaining constraints. After that, the variable- and value-ordering heuristics of the CHOCO (Prud’homme
et al., 2017) constraint solver are applied in order to identify similar recommendations.‡ In CHOCO, the
user defines constraints and tries to identify solutions which satisfy his/her requirements by using alternat-
ing constraint filtering algorithms with a search mechanism. The following CHOCO heuristics are applied
in our approach:

• CHOCO value-ordering heuristics:
IntDomainMax, IntDomainMin, IntDomainMedian, IntDomainRandom, IntDomainRandomBound,
IntDomainMiddle

• CHOCO variable-ordering heuristics:
FirstFail, Largest, Smallest, Random, AntiFirstFail, MaxRegret

At the beginning, a variable-ordering heuristic has to be selected for the application of the CHOCO heuris-
tics, to determine the ordering of the variables. Then, a value-ordering heuristic can be applied for each
variable to determine the ordering of the values. There are 36 different heuristic combinations (6xVariable-
and 6xValue-Ordering heuristics). The application of a heuristic combination will not affect the recom-
mendation list, but its application will lead to a different ranking of the list. Our goal is to identify the
heuristic combination which leads to a recommendation list where the most similar recommendations are
located on the top of the list. However, we did not apply CHOCO value-ordering heuristics for each vari-
able, because for some variables the used value-ordering heuristics should not change. For instance, for
the price of the PC, only the less-is-better (IntDomainMin Value ordering heuristic) metric makes sense

‡CHOCO (Prud’homme et al., 2017) is a free open-source constraint solver library for the Java programming language.
http://www.choco-solver.org/

103

Chapter 8. Towards Similarity-Aware Constraint-Based Recommendation

(i.e., the cheaper the PC is, the higher the user’s satisfaction would be). Therefore, for some variables, the
applied value-ordering heuristic will not change and for the remaining variables, we tried all the heuristic
combinations. The heuristic combination which leads to the most similar recommendations is later used to
test the hard relaxation-based approach (see line 8). Finally, the rest of the algorithm will be executed as
explained before.

Algorithm 1 Identification of similar requirements based on soft- and hard-relaxation

1: for user u : users do
2: if checkConsistency(u.reqs) == f alse then
3: diagVars = FASTDIAG(orderReqsBasedOnImp(u.reqs))
4: relaxReqs = reqsRelaxation(diagVars)
5: if checkConsistency(u.reqs+ relaxReqs) == f alse then
6: deleteDiagConstraints(diagVars)
7: applyChocoHeuristics()
8: rec = getRecommendation(u.reqs - diagVars, heuristic)
9: else

10: rec = getRecommendation(u.reqs + relaxReqs)
11: end if
12: else
13: rec = getRecommendation(u.reqs)
14: end if
15: similarityPerUser += calculateSim(rec, u.reqs)
16: end for
17: similarity = similarityPerUser / users.size()

8.7. Evaluation

The evaluation of similarity-aware constraint-based recommendation based on both approaches is presented
in this section. The training and testing of our approaches are based on two different knowledge bases (from
personal computer and bike domains) defined by the Configuration Benchmarks Library (CLib).§

8.7.1. Personal Computer Dataset

The first dataset represents the KB of a personal computer which consists of 45 variables with different
domain values and of more than 200 KB constraints. Such knowledge bases from complex domains
have usually millions of solutions and the similarity calculation between the user requirements and all
possible solutions in order to identify the most similar recommendation is not possible due to the poor
runtime performance. For testing our approaches, we artificially generated 500 random user require-
ments.¶ Additionally, we also randomly generated the importance of variables from the user’s point of view.

§https://www.itu.dk/research/cla/externals/clib/, Maintained by CLA group. KB definition in CSP representation:
https://github.com/CSPHeuristix/CDBC/

¶All user requirements were inconsistent with the underlying KB.

104

8.7. Evaluation

Soft Relaxation-Based Approach: The result of this approach achieves a very high similarity on average,
but it does not always guarantee to find recommendations for all users (see Table 8.1). However, in certain
cases where the recommender can identify a solution, the similarity degree will be very high since all the
variable values of the identified recommendation will be close to the requirements defined by the user. The
non-cumulative normal distribution of the similarities is depicted in Figure 8.1. As shown in Table 8.1 and
Figure 8.1, the average of similarities based on the soft relaxation-based approach is very high and data
points are close to the mean (µ = 94,11 % and σ = 2,66).

Hard Relaxation-Based Approach: In this approach, we train the system with 500 automatically
generated user requirements in order to identify the most suitable CHOCO heuristic. We figured out that the
Largest variable-ordering as well as the IntDomainMedian value-ordering heuristic combination achieve
the highest similarity on average. This means that the CHOCO constraint solver orders variables based
on the largest values in its domain and then selects the median value from the variable domain. After the
identification of the most suitable heuristic combination, we tested the same approach with another 500
user requirements which were not used in the training phase.

The results show (see Table 8.1 and Figure 8.1) that the mean and the standard deviation of the soft
relaxation-based approach are significantly better than the mean and the standard deviation of the hard
relaxation-based approach. However, an average similarity of 84,68 % and a standard deviation of 9,91 %
is also an acceptable result. Moreover, this approach is able to identify recommendations for all 500 users,
whereby the soft relaxation-based approach identifies recommendations only for 82 out of 500 users. The
time consumption of both approaches is about 20 seconds which means that a recommendation per user
can be calculated in∼40 ms which is quite acceptable.‖ The main reason for the huge time consumption in
both approaches is the CHOCO constraint solver which creates a new CHOCO model for each user. A new
CHOCO model will be generated for each user which takes all the user’s requirements and KB constraints
into the account.

8.7.2. Bike Dataset

The second dataset represents the KB of a bike recommendation which consists of 34 variables with
different domain values and more than 350 KB constraints.∗∗ Examples for constraints can be frame-type,
color, or tire-height of the bike. Furthermore, there are also constraints regarding the customers (i.e., users)
such as gender, height, and weight of a customer.

Soft Relaxation-Based Approach: The evaluation on both datasets shows similar results (see Table 8.1
and Figure 8.1). The results show that the average similarity of the soft relaxation-based approach is
very high and the data points are very close to the mean. Furthermore, the time consumption of the soft
relaxation-based approach using the bike dataset is much higher than the personal computer dataset.
The reason for this is the high number of KB constraints in the bike dataset (120 ms vs. 40 ms per
recommendation).

Hard Relaxation-Based Approach: We can from the results (see Table 8.1 and Figure 8.1) observe that

‖Our approaches were implemented in programming language Java and were executed on a computer with following properties:
Windows 10 Enterprise; 64-bit operating system; Intel(R) Core(TM) i5-5200 CPU @ 2,20 GHz processor; 8,00 GB RAM.
∗∗For training and testing our approaches, we automatically generated again 500 user requirements. All user requirements were

inconsistent with the underlying KB.

105

Chapter 8. Towards Similarity-Aware Constraint-Based Recommendation

the hard relaxation-based approach is able to work independently from the domain. The application of this
approach on both datasets leads to similar results. As already discussed, the time consumption of the hard
relaxation-based approach using the bike dataset takes longer than using the personal computer dataset
(84 ms vs. 40 ms per user recommendation).

Relaxation µ σ Margin of Confidence Number of Time
Type in % in % Error in % Interval in % Recommendations in sec.
Soft (PC) 94,11 2,66 94,11 ± 0,08 95 82/500 23,2
Hard (PC) 84,68 9,91 84,68 ± 0,04 95 500/500 19,4
Soft (Bike) 91,24 7,02 91,24 ± 0,08 95 190/500 60,2
Hard (Bike) 81,31 16,17 81,31 ± 0,06 95 500/500 42,1

Table 8.1.: Similarity results of the soft- and hard relaxation-based approaches on both datasets. µ indicates
the mean and σ the standard deviation.

Figure 8.1.: Normal distribution of similarities on PC and bike datasets using soft- and hard relaxation-
based approach.

Our observation of the characteristics of each approach using datasets from different domains leads to the
conclusion that both approaches are able to identify similar recommendations independently from the do-
main even when the user’s requirements are inconsistent with the underlying KB. The soft relaxation-based
approach is able to identify similar recommendations with a high similarity (> 91 %), but it is not able
to identify recommendations for all the users. The hard relaxation-based approach can identify similar
recommendations for all users, but its average similarity (> 81 %) is lower than the average similarity of
the soft relaxation-based approach. To properly counteract these undesired issues, we propose a hybrid ap-
proach which combines the advantages of both approaches (see Algorithm 1). The hybrid approach simply
tries to identify a recommendation using the soft relaxation-based approach. Whenever a recommendation
can be identified, the similarity will be very high. Otherwise, the hard relaxation-based approach will be
applied which guarantees that at least one recommendation can be suggested to each user.

106

8.8. Conclusion and Future Work

8.8. Conclusion and Future Work

This chapter analyzed two different constraint-based RS which can recommend items similar to the user’s
requirements. Both recommendation approaches are able to identify similar recommendations even when
the user’s requirements are inconsistent with the underlying KB. We evaluated both RS in terms of the
similarity degree and the runtime performance with KB from different domains and figured out that both
approaches are able to recommend similar items in an effective and efficient way. Finally, we propose a
hybrid recommender system which can identify similar recommendations with a high degree of similarity
by combining the advantages of both approaches.

With regard to similarity-aware constraint-based recommendations, we want to evaluate our approaches
in other domains such as cars, round trips, and smart homes in order to determine their performance.
Moreover, we plan to develop our own heuristic based on the idea of the CHOCO heuristics in order to
identify recommendations which are similar to the user’s requirements. Another idea regarding future
work is to develop intelligent relaxation strategies for numerical and non-numerical variables in order to
recommend similar items to the users.

107

108

Chapter 9
Automated Identification of Type-Specific
Dependencies Between Requirements

Parts of the contents of this chapter have been published in (Atas et al., 2018b). The author of this thesis
provided major parts of this chapter in terms of writing, literature research,

user study design, and evaluation.

9.1. Abstract

Requirements Engineering is one of the most important phases in a software project. The elicitation of
requirements and the identification of dependencies between these requirements appears to be a challeng-
ing task. In this chapter, we present an approach to automatically identify requirement dependencies of
type requires by using supervised classification techniques. Our results indicate that the implemented
approach can detect potential requires dependencies between requirements (formulated on a textual level).
We evaluated our approach on a test dataset and figured out that it is possible to identify requirement
dependencies with a high prediction quality. We trained and tested our system with different classifiers
such as Naive Bayes, Linear SVM, k-Nearest Neighbors, and Random Forest. The results show that
Random Forest classifiers correctly predict dependencies with an F1 score of ∼82%.

9.2. Introduction

A software project can be regarded as successful if the defined goals are achieved. Requirements En-
gineering plays a crucial role for the success of software projects. Incomplete Requirements Engineering
processes mostly lead to project failures (Hofmann and Lehner, 2001; Mobasher and Cleland-Huang, 2011;
Felfernig et al., 2017c). Leffingwell (Leffingwell, 1997) reports that 40% of project failures are caused by
poorly defined software requirements. Bokhari et al. (Bokhari and Siddiqui, 2010) indicates that the spec-
ification of a requirement should be complete, correct, consistent, unambiguous, verifiable, and traceable.
In order to prevent project failures, each core activity in the Requirements Engineering process has to be
tested and reviewed in detail by experts. Core activities of a Requirements Engineering process are the def-
inition and elicitation of requirements, the negotiation of requirements, the identification of dependencies,
the identification of stakeholders, quality assurance, and release planning. Since the size and complexity

109

Chapter 9. Automated Identification of Type-Specific Dependencies Between Requirements

of software projects increases rapidly, there is a high demand on applying automated and intelligent tech-
niques to support core activities of the Requirements Engineering processes (Castro-Herrera et al., 2009;
Mobasher and Cleland-Huang, 2011; Ninaus et al., 2014b).
Dependency Identification is a crucial activity in Requirements Engineering. During this phase, stakehold-
ers have to find and define correct dependencies very carefully and as early as possible (Li et al., 2012).
In the case of incomplete, incorrect, or inconsistent dependencies, the project can most probably not be
successfully completed. If dependencies between requirements are manually defined by stakeholders, there
is a certain risk that the defined set of dependencies is incomplete and may contain conflicts. To phrase
it differently, dependencies play a major role in the detection of inconsistencies in a software project.
Only if stakeholders are aware of all existing inconsistencies early in a project, effortful re-designs and
re-implementations can be avoided. Nowadays, many projects have a large number of requirements and the
identification of dependencies can be challenging for humans. Due to this fact, there is an urgent need for
automated technologies which can assist the stakeholders in finding dependencies between requirements.
This is exactly where our approach comes into play. It empowers stakeholders to counteract the aforemen-
tioned issues by supporting them in finding dependencies. Up to now, some related work exists regarding
the extraction of pieces of legal texts from documents and the detection of references between them (Tran
et al., 2014; Sannier et al., 2017). In particular, in the context of Requirements Engineering several
content-based techniques are exploited to identify similar requirements based on a textual-level (Nin-
aus et al., 2014b). However, all of these approaches lack the ability to predict the direction of a dependency.

Our main contribution in this chapter is to introduce an intelligent system in order to tackle the open
issues regarding dependencies between requirements by using supervised learning techniques based on
text-mining. We introduce an intelligent approach to automatically identify requirement dependencies of
type requires.∗ Overall, there exist different dependency types such as requires, excludes, and includes.
Our approach focuses on detecting requirement dependencies of type requires since it is the dependency
type that most frequently occurs in software projects (Ferber et al., 2002). Moreover, due to its nature,
this type of dependency is directional. Thus, it has the highest impact on the assignment of requirements
to releases as well as on the ordering of the requirements in release planning scenarios. By taking also
the direction of the requires-dependency into account, dependency detection is able to work even more
precisely. Also, the input that is suitable for dependency detection has to be selected more carefully.
This also introduces an additional strictness aspect when designing dependency detection mechanisms.
Furthermore, considering the direction of the requires-dependency when predicting a dependency is a
more challenging task than just predicting the existence of a dependency between two requirements
regardless of the dependency-direction. In other words, the direction of the requires-dependency for a
given requirement-pair must be exactly predicted by the system in order to be considered as a correctly
classified dependency. For example, assuming that R1 requires R2 and R2 does not require R1, a predicted
requires-dependency for the pair (R1, R2) would be considered as a correctly classified example. However,
a requires-dependency for the pair (R2, R1) would be considered as an incorrectly classified example.

In order to be able to predict such dependencies, our system uses a document classification approach.
Based on the title and the textual description of the requirements, dependencies between them are
identified using Natural Language Processing (NLP) techniques (Ryan, 1993). Additionally, different
preprocessing techniques are applied in order to prepare a dataset for the classifiers and to filter irrelevant

∗The work presented in this chapter has been conducted within the scope of the Horizon 2020 project OPENREQ (732463).

110

9.3. User Study

information. We analyzed our approach with different classifiers such as Naive Bayes, Linear SVM,
k-Nearest Neighbors, and Random Forest. The results show that the Random Forest classifier can correctly
detect new dependencies between requirements with a F1 score of ∼82%.

The remainder of this chapter is organized as follows. In Section 9.3, we present the design of our em-
pirical study. Section 9.4 introduces the applied Natural Language Processing techniques. Subsequently,
in Section 9.5 we present the results of our evaluation. Section 9.6 describes the threats to internal and
external validity. Finally, Section 9.7 provides a brief recapitulation of our work, emphasizes the outcome
of this chapter, and discusses ideas for future work.

9.3. User Study

The evaluation of our approach is based on a real-world dataset collected within a user study that focused
on the detection of dependencies between requirements for a sports watch. The dataset contains text-based
requirements which have been defined in cooperation with industry partners (software development
companies) engaged in one of our research projects. It is important to point out that the text of the
requirements has not been written for the purpose of this study, but for the purpose of having a complete
real-world basis for the development of a sports watch which can be used in different kind of application
scenarios. This means that the text of the requirements does not contain certain sections which clearly
indicate the existence of a dependency to another requirement (e.g., “requires ...”, “is dependent on ...”).
Hence, the requirements collection can be considered as not being influenced by undesired bias effects
and therefore represents a good basis to be used to evaluate a dependency-detection approach once all
dependencies have been found.

The purpose of the user study was to enrich the given collection of requirements with all dependencies ex-
isting between these requirements. This was achieved by letting the participants find these dependencies as
well as by including additional dependencies found by a selected team of requirements engineering experts
with longstanding experience. This way, a very complete final dataset was generated (see Section 9.4.1).
However, before the students’ dependencies could be combined with the expert’s dependencies, the depen-
dencies found by the students had to be further reviewed by a different team of experienced requirement
engineers in order to assure a well-defined and correct set of the students’ dependencies. The final dataset
was used to train and validate our system in order to automatically identify dependencies between require-
ments. Within the scope of the user study, dependencies between requirements were collected by 182
computer science students at a university in Austria the Graz University of Technology.† The user study
was conducted in two steps. First, we showed 30 different requirements regarding a sports watch to each
participant. Each requirement consists of an id, a title, and a textual description. The title and the descrip-
tion were both written in German language. A few examples of such requirements (translated to English)
are listed in Table 9.1. In order to counteract the undesired occurrence of Serial Position Effects (Murphy
et al., 2006; Stettinger et al., 2015b), all requirements were shown in random order to each participant.
In the second step, the set of randomly ordered requirements was shown to participants. The participants
were asked to manually find all correct dependencies of type requires between two requirements based
on the shown title and description. Thereby, the participants stated 6461 dependencies in total, whereby
657 of those dependencies were unique. For instance, considering all the requirements from Table 9.1, the

†Graz University of Technology (http://www.tugraz.at).

111

http://www.tugraz.at

Chapter 9. Automated Identification of Type-Specific Dependencies Between Requirements

Id Title Description

R1 Speed Measurement

As evaluation after a workout, the average speed must be shown.
The following statistics should be displayed: average speed and
maximum speed. For measuring the average and maximum speed,
time and distance have to be measured, and a storage unit for storing
the data is necessary.

R2 Distance Measurement
For statistical purposes, a distance measurement is necessary which
needs data from a GPS sensor. This data is needed for the evaluation
software and therefore stored in memory.

R3 GPS
To capture position data, a GPS sensor should be used. Through the
measured position and time information, the speed and the distance
can be measured.

R4 Ideal BMI
Based on the data on height, weight, body fat, age and gender, the
watch should be able to calculate the ideal BMI for a user.

R5 Infrared
In order to be able to connect the watch with a computer, WLAN,
Bluetooth, and infrared modules must be available.

Table 9.1.: Five example requirements out of 30 requirements which have been shown to participants of
the user study.

following dependencies of type requires can be found:

• R1→ R2

• R1→ R3

• R2→ R3

For example, the dependency of “R1 → R2” indicates that the requirement with the title “Speed Mea-
surement” (R1) requires the requirement with the title “Distance Measurement” (R2). After collecting all
the dependencies, Natural Language Processing techniques have been exploited to support the automated
detection of dependencies (see Section 9.4).

9.4. Approach to Automated Dependency Detection

For the training and testing of our system, we used several classification approaches (see Section 9.4.3).
Based on these approaches, the system automatically learns a model which then can be used to identify
new dependencies. Before training our system, preprocessing of the input data (i.e., data collected from
the user study participants) was necessary in order to clean and prepare the data for the succeeding feature
generation phase. First, we extracted the title and the description of each requirement and split them into
words (also known as tokens). After this so-called tokenization process, stop words (e.g., “the”, “a”, “in”)
and punctuation/special characters (e.g., “-”, “.”, “;”) were removed in order to filter out those tokens
containing non-relevant information. This step was crucial as it could negatively influence the overall
performance of the used classifier. Next, we determined and assigned corresponding POS-tags (Part-Of-
Speech tagging) using the Stanford CoreNLP library (Manning et al., 2014) to all tokens. Furthermore, we
applied Lemmatisation by using the Pattern library‡ on the complete list of tokens based on the assigned

‡Pattern Library: https://www.clips.uantwerpen.be/pattern

112

https://www.clips.uantwerpen.be/pattern

9.4. Approach to Automated Dependency Detection

POS-tags. Thereby, the lemmatisation technique aims to replace a word with its lemma (Plisson et al.,
2004). For instance, words like “comes”, “coming”, and “came” will be mapped to the same word “come”.
This significantly reduces the number of words (i.e., tokens) and, hence, also reduces the number of features
which were used for training. This way, the trained model is less complex, avoid over-fitting scenarios and
hence can behave more flexible.

9.4.1. Dataset

Based on the 30 predefined requirements (see Section 9.3), there are 870 possible dependency combinations
(more formally,

(30
2

)
.2), whereby each dependency can only exist between two different requirements. The

binomial coefficient has to be multiplied with the factor two since a dependency between two requirements
of type requires cannot be considered as bidirectional. This is due to the fact, that there are two different
dependency possibilities of type requires between each pair of requirements. For instance, the dependency
“R1 requires R2” (more formally, R1 → R2) is not the same as “R2 requires R1” (more formally, R2 →
R1). However, in practice, a dependency between R1 → R2 can exist in parallel to its reverse equivalent
dependency R2 → R1. For instance, in order to know when the battery of a sports watch is charged, the
charging function requires a charging indicator/display. Likewise, charging indicator without a charging
function is useless and therefore charging indicator requires a charging function.
We created a pool of all 870 possible dependency combinations between two different requirements and
assign a boolean value to all of these combinations which indicates the existence of a dependency between
the two requirements. Whenever a dependency between two different requirements was identified by a user
study participant, the boolean value true was assigned to this dependency, otherwise the value false. We
call this boolean value the existence-label and used it to train and test our model (see Section 9.4.3). We
figured out, that the existence label lacks of a huge class imbalance between the two classes false and true
as the number of requirement-pairs which are not dependent, dominated. In total, we observed that 764 of
all 870 requirement-pairs were independent in terms of requires-dependency (i.e., the false class represents
the majority class) and the remaining 106 of all 870 pairs were dependent in terms of requires-dependency
(i.e., the true class represents the minority class). As already mentioned in Section 9.3, the user study
participants identified 657 unique dependencies of type requires. However, to train and test our approach,
we only used 106 out of 657 dependencies. Hence, the set of 106 dependencies in combination with the
complete set of 30 requirements represents the final dataset that was used to train and test the system.
The dependencies of the final dataset were obtained by combining a given set of dependencies found by
experts with a set of dependencies found by the participants of the user study (see Section 9.3). Those
dependencies (manually) detected by the study participants were further reviewed and included in the final
dataset by a team of selected experts with longstanding experience and practical knowledge in the field of
requirements engineering. The purpose of combining the dependencies found by the experts and the study
participants was to derive a golden record which can assure a higher sensitivity and accuracy of our trained
model. The golden record then further serves as a high-quality ground truth to the model which ensures
completeness, preciseness, and clearness of the data. Consequently, by providing a profound/stable ground
truth, the trained model can make more accurate predictions. This is very important since a weak ground
truth could make the model unable to predict certain dependencies and hence lead to a poor prediction
quality. For example, if we would have included only the dependencies found by the experts and would
have ignored the dependencies found by the students in the final dataset, our model would have been
trained with dependencies which are incorrect or incomplete. This could make the model quite unstable
in terms of prediction quality and lead to falsely classified dependencies. In particular, the model would

113

Chapter 9. Automated Identification of Type-Specific Dependencies Between Requirements

be unable to detect some (actual) dependencies. As a (fatal) consequence, such undetected (i.e., unseen)
dependencies could further cause a requirements engineering project to fail.

Moreover, in order to train and to build a reliable classification model which can distinguish between all
possible classes and hence perform well on unseen data, also the balancing of all classes (in this particular
case we only have two classes true/false) is an indispensable task. Otherwise, a high overall prediction
quality could be easily achieved even if the system did not identify any of the existing dependencies,
since the majority class is represented by false (i.e., no dependency between the two requirements of
a requirement-pair exists). Due to this fact, random undersampling was applied in order to re-balance
the pool of all dependencies (Bowyer et al., 2011; Galar et al., 2012). This way, we can make sure that
50% of all selected requirement-pairs are dependencies (i.e., true) and 50% of all selected pairs are not
dependencies (i.e., false). For the analysis of our approach in training- and test-phases, we used 106 true
and 106 false samples. Finally, we used this balanced pool of requirement pairs and randomly shuffled it
in order to prepare for training and testing. Each requirement-pair defines a sample in the dataset. After
this, preprocessing of the data is complete and reasonable features can be defined.

9.4.2. Feature Definition

The decision which features to choose is a crucial step for a classifier (Hall, 1999). The used features are
n-grams, POS-tags, and the direction of the “requires”-dependency.

• n-gram features:
The extracted tokens/words (i.e., unigrams) as well as the sequences of two to four adjacent tokens
were used as features (i.e., bigrams, trigrams, and fourgrams were used). For the remainder of this
chapter these n-grams are called n-gram terms.
For instance, n-grams of the word sequence “automatic identification of dependencies” would be the
following:

– Unigrams:

{“automatic”, “identification”, “of”, “dependencies”}

– Bigrams:

{“automatic identification”, “identification of”, “of dependencies”}

– Trigrams:

{“automatic identification of”, “identification of dependencies”}

– Fourgram:

{“automatic identification of dependencies”}

• POS-tag features:
In addition to the n-gram features, POS-tags which were determined during the preprocessing
phase were used as additional features. Since the sequence of POS-tags can also be a use-
ful information when detecting a dependency, different sequences of adjacent POS-tags ranging
from two to four (i.e., bigrams, trigrams, and fourgrams of POS tag labels) were also used as features.

114

9.4. Approach to Automated Dependency Detection

• direction of the “requires”-dependency:
Since our dataset consists of dependencies of type “requires”, the direction of the dependency is an
essential information which needs to be considered as a separate feature (see Section 9.4.1). In other
words, a “requires”-dependency for the requirement-pair (Rx, Ry) is not the same as a “requires”-
dependency for its counterpart-pair (Ry, Rx). Due to this fact, a new binary feature is introduced
which compares the two IDs of both requirements of the respective requirement pair. The comparison
uses the lower operator to compare both IDs. It returns “true” if the ID of the first requirement is
lower than the ID of the second requirement (e.g., 1 < 2 for the case R1 requires R2), and “false”
otherwise (e.g., 2 < 1 for the case R2 requires R1).

In order to adequately learn and predict dependencies between two requirements, meaningful information
about the two requirements of a requirement-pair must be provided to the classifier. Therefore, the title
and the textual description (i.e., detailed information about the requirement) of both requirements were
extracted and tokenized as already mentioned before (i.e., n-gram features). For each requirement-pair
(Rx, Ry), we applied term frequency-inverse document frequency (TF-IDF) (Wu et al., 2008) on each
n-gram term of the title and description of Rx and Ry, in order to determine the relevance of the respective
n-gram term. The TF-IDF measurement combines term frequency (TF) of a term with its inverse document
frequency (IDF) in order to get the importance of a specific term. For each requirement pair (Rx, Ry),
all determined TFIDF values of the pair were combined into a single vector, whereby the TF-IDF value
of each n-gram feature of Rx was multiplied with the weight 2 and the TF-IDF value of each n-gram
feature of Ry was multiplied with the weight 1. The combination of having a higher weight for the n-gram
features of the first requirement and including the direction of the “requires”-dependency feature, allows
the classifier to sharply distinguish between a requirement-pair (Rx, Ry) and its counterpart (Ry, Rx). A
sequence of all feature values of a sample represents the input vector for this sample.

Formula 9.1 demonstrates the exact setting of a feature vector~v for a requirement-pair (Rx, Ry), whereby i
and j represent one specific element from the complete ngram set of a given requirement.
Furthermore, the function T FIDF calculates the TF-IDF value of a given ngram term and ~POS(Rx) repre-
sents the complete vector containing all determined POS tags of the given requirement Rx.

~v(Rx,Ry) =
⋃

i∈ngrams(Rx)

{T FIDF(i).2} ∪

⋃
j∈ngrams(Ry)

{T FIDF(j).1} ∪

⋃
k∈ngrams(Rx)

~POS(k) ∪

⋃
l∈ngrams(Ry)

~POS(l) ∪ (x < y)

(9.1)

9.4.3. Classification

For the classification step, the requirement-pair dataset is used to learn a model. Thereby, our approach
trains a classifier which is then used to determine new requirement dependencies. We trained and tested
four different classifiers (Naive Bayes, Linear Support Vector Classifier, k-Nearest Neighbors Classifier,
Random Forest) from SciKit-Learn library§ (Pedregosa et al., 2011) in order to compare the prediction

§Scikit-learn: http://scikit-learn.org

115

http://scikit-learn.org

Chapter 9. Automated Identification of Type-Specific Dependencies Between Requirements

quality of the classifiers. Naive Bayes classification is based on a very simple concept which takes the
Bayes Theorem into account for prediction purposes. The algorithm does not require large training sets and
has shown to work efficiently in case of document classification (Metsis et al., 2006). A Linear Support
Vector Classifier uses a Support Vector Machine with a linear kernel in order to classify samples in hyper-
space. Similar to Naive Bayes classifiers, prediction models based on a Support Vector Machine have also
proven to perform well in case of document classification (Joachims, 1998). Random Forest represents a
combination of many uncorrelated decision trees. Although single decision trees can run into over-fitting
problems quite easily, ensemble classifiers such as Random Forests very unlikely tend to encounter such
issues (Breiman, 2001). Finally, k-Nearest Neighbors classification (KNN) is a very basic approach that
predicts the class based on the majority class of the k closest (i.e., lowest distance) neighbors of a sample.
In general, KNN has shown to perform well regarding document classification, however, the classifier’s
prediction quality heavily depends on the quality of the words being used (Trstenjak et al., 2014).

9.4.4. Feature Extraction and Feature Selection with Grid Search

For the learning purpose, we support each classifier with several features (see Table 9.2) such as:

• vectorizer max features determines the number of used features. A value of 300 means that the
300 most frequent features in the training set are used for training and none means that there is no
limitation and the system can use all features.

• vectorizer max df is for ignoring some specific words which can occur very often in the text such as
“and”, “or”, .., etc. A value of 0.5 means that the classifier should ignore all the words which have
an overall occurrence rate that is higher than 50%.

• vectorizer min df indicates that the vectorizer should ignore words which generally occur very rarely.
A value of 3 means ignoring all the words which occur less often than three times.

• vectorizer n-gram range is for the determining of n-grams. For instance, (1,2) indicates the analysis
of uni- and bigrams.

Grid Search TF-IDF features
Features possible values
vectorizer max features {none, 300, 400, 500, 1000}
vectorizer max df {0.5, 0.7, 0.9, 1.0}
vectorizer min df {1, 2, 3}
vectorizer n-gram range {(1, 1), (1, 2), (1, 3), (1, 4)}

Table 9.2.: Possible parameter combinations for the TF-IDF Vectorizer

In order to extract and select suitable features for the given classifiers, we provide a predefined set of pos-
sible parameter combinations for the TF-IDF vectorizer (see Table 9.2). Thereby, Grid Search in combina-
tion with k-fold Cross-validation (Stone, 1974) (with k = 3) is applied in order to find a suitable parameter
combination for the vectorizer which then extracts and selects appropriate features for the respective clas-
sifier. Using Grid search with 3-fold Cross Validation, the dataset is divided into three equally sized folds
whereby two folds are used to train the classifier with the respective parameter combination and one fold
to evaluate the prediction quality. To evaluate the predication quality, the F1 measure is used. This step is

116

9.5. Evaluation

repeated for each possible parameter combination from the given parameter set. Thereafter, the parameter
combination which achieves the highest F1 value for the given classifier is chosen.

9.5. Evaluation

As already mentioned in Section 9.4.4, k-fold Cross Validation was used to evaluate the classifiers. The
dataset was split into three (i.e., k = 3) equally sized parts. Two folds (i.e., training dataset) were used to
train the classifier and one fold (i.e., test dataset) to evaluate the prediction quality of the trained classifier
model with unseen data. In total, there exist k = 3 rounds. This procedure was then repeated with a
different splitting until all combinations were analyzed, i.e., all three rounds were done. Thereafter, the
average result of all rounds for each measure was computed. The samples of the test dataset are new
requirement-pairs that have not been used for training (i.e., are not part of the training set). This way,
the classifier predicts for each tested requirement-pair whether its first requirement (called Rx) requires
its second requirement (called Ry) or not. More formally, the classifier answers the question Rx → Ry

for each requirement-pair in the test set. The predicted class (i.e., true or f alse) can then be compared
with the actual class (i.e., value of the existence label) of the respective requirement-pair. Based on this
comparison, the overall prediction quality is measured by using the Precision, Recall, and F1 measures
(see Formulae 9.2- 9.4). The precision presented in Formula 9.2 is the fraction of relevant requirement
dependencies tp (i.e., true positives) among all the retrieved requirement dependencies consisting tp and
fp (i.e., false positives). Formula 9.3 indicates the recall which is the fraction of relevant requirement
dependencies tp that have been retrieved over the total amount of relevant requirement dependencies tp
and fn (i.e., false negatives). Moreover, F1 in Formula 9.4 indicates the harmonic mean which is based
on the calculated precision and recall values. In order to individually compare the prediction quality
of both classes (i.e., true and f alse), these measures are applied separately for each of both classes.
Additionally, the Area under the Receiver Operating Characteristic Curve (AUROC) (DeLong et al.,
1988) is calculated. AUROC defines the area between the ROC curve and the horizontal x-axis. More
formally, AUROC represents the integral of the ROC curve. The resulting value is then a characteristic
value of how imbalanced the prediction quality for different classes is. This way, a possible prediction
imbalance for a certain class (i.e., the classifier can predict one class very well but the prediction quality
of the other class is very low) can be easily observed from the evaluation results.

precision =
t p

t p+ f p
(9.2)

recall =
t p

t p+ f n
(9.3)

F1 = 2.
precision · recall

precision+ recall
(9.4)

As already mentioned in Section 9.4.3, four different classifiers were evaluated. Training and testing
are both performed by using the features described in Section 9.4.2. In order to check the suitability of
POS-tags as separate features, each classifier was evaluated twice (one time without POS-tags and another
time by including POS-tags as additional features).

117

Chapter 9. Automated Identification of Type-Specific Dependencies Between Requirements

Dependency exists (true) No dependency exists (false)
Classifier Precision Recall F1 AUROC Precision Recall F1 AUROC
Naive Bayes 0.944 0.654 0.773 0.787 0.640 0.941 0.762 0.213
Linear SVM 0.947 0.692 0.800 0.828 0.667 0.941 0.780 0.172
k-NN 0.842 0.615 0.711 0.767 0.583 0.824 0.683 0.233
Random Forest 0.950 0.731 0.826 0.865 0.696 0.941 0.800 0.135

Table 9.3.: Precision, Recall, and F1 Scores for the different Classifiers without POS Tags as Features

Average
Classifier Precision Recall F1
Naive Bayes 0.824 0.767 0.768
Linear SVM 0.836 0.791 0.792
k-NN 0.740 0.698 0.700
Random Forest 0.849 0.814 0.816

Table 9.4.: Average Precision, Recall, and F1 Scores for the different Classifiers without POS Tags as
Features

Table 9.3 and 9.4 show the evaluation results of the first evaluation scenario. In the first evaluation
scenario, POS-tags are not included in the set of used features. Hence, the used features are TF-IDF
values of n-grams and the direction feature (see Section 9.4.2). Table 9.3 and 9.4 give an overview of
the measured values (Preion, Recall, F1, and AUROC) achieved by each classifier for the true class
(i.e., requires-dependency exists), the f alse class (i.e., no requires-dependency exists), and the weighted
average of both classes in terms of Precision, Recall, and F1. The values for Precision, Recall, F1,
and AUROC can range from 0.0 to 1.0. High values of Precision, Recall, and F1 indicate a high
prediction quality, whereas the absolute distance between the AUROC value and the number 0.5 (which
corresponds to the area of a random predictor (Butkiewicz et al., 2009)) should be as large as possible.
The results in Table 9.3 and 9.4 show that all four classifiers can achieve a good prediction quality for
both classes (i.e., true and f alse) when not taking POS-tags into account. This means that the existence
of a requires-dependency can be predicted very well. In particular, the Linear SVM and Random Forest
classifiers show a high prediction rate for both classes. Hence, the average values for both classes shown in
Table 9.3 and 9.4 in terms of precision (Linear SVM: 0.836, Random Forest: 0.849), recall (Linear SVM:
0.791, Random Forest: 0.814) and F1 (Linear SVM: 0.792, Random Forest: 0.816) are also remarkable.
Moreover, the Naive Bayes approach also achieves decent results for the given setting. Although the Naive
Bayes approach assumes that all features of the feature vector are independent (which is usually wrong for
natural language text), the algorithm has proven to also work well with dependent features extracted from
text (C̆ubranić, 2004) (see Section 9.4.3). Furthermore, k-Nearest Neighbors classifier cannot predict both
classes as well as the other classifiers when using only n-grams and the dependency-direction as features.
By taking a look at the AUROC values of both classes for each estimator, a good prediction balance for
both classes can also be noticed. Thereby, Random Forest achieves very notable results (0.865 for true
class and 0.135 for the f alse class).

The evaluated results of the prediction quality for the second evaluation scenario are presented in Table 9.5
and Table 9.6. In this scenario, POS-tags are introduced as additional features and included in the set

118

9.5. Evaluation

of used features. In comparison to the F1 values achieved in the previous evaluation step, only the k-
Nearest Neighbors classifier shows better prediction quality in terms of the F1 measure for both classes
and consequently also on average (0.793). Additionally, this estimator also achieves the best prediction
quality of all classifiers for this specific evaluation scenario. The AUROC values of both classes for this
classifier confirm the existence of a good prediction balance for both classes (0.801 for true class and
0.199 for the f alse class). However, Random Forest shows the best prediction balance (AUROC of true
class: 0.853, AUROC of f alse class: 0.147). The inclusion of POS-tags as additional features significantly
lowers the prediction quality of all other three classifiers. Most notably, the highest loss of the prediction
rate (when compared to the first evaluation scenario) can be noticed for the Naive Bayes classifier. On
average, this estimator can only achieve a precision of 0.725, a recall of 0.674, and a F1 value of 0.676.
Furthermore, the AUROC values of this classifier for both classes (0.756 for positive and 0.244 for negative
lie closer to the area of 0.5) which indicates a prediction imbalance issue. Due to the nature of the Naive
Bayes approach, it can determine the probability of a given word for a class quite well (Metsis et al., 2006).
However, the variety of different words overwhelms the variety of different POS-tags (i.e., each POS-tag
represents a large set of many different words). Consequently, the probability that a specific class contains
a certain POS-tag (e.g., “verb”) more likely might not be an appropriate basis for making a specific decision
to select this certain class.

Dependency exists (true) No dependency exists (false)
Classifier Precision Recall F1 AUROC Precision Recall F1 AUROC
Naive Bayes 0.833 0.577 0.682 0.756 0.560 0.824 0.667 0.244
Linear SVM 1.000 0.577 0.732 0.792 0.607 1.000 0.756 0.208
k-NN 0.870 0.769 0.816 0.801 0.700 0.824 0.757 0.199
Random Forest 0.833 0.769 0.800 0.853 0.684 0.765 0.722 0.147

Table 9.5.: Precision, Recall, and F1 Scores for the different Classifiers including POS Tags as Features

Average
Classifier Precision Recall F1
Naive Bayes 0.725 0.674 0.676
Linear SVM 0.845 0.744 0.741
k-NN 0.803 0.791 0.793
Random Forest 0.774 0.767 0.769

Table 9.6.: Average Precision, Recall, and F1 Scores for the different Classifiers including POS Tags as
Features

Overall, the prediction quality of all classifiers is decently high. In other words, all classifiers are able
to identify correct dependencies by just providing them all possible pairs of requirements for which the
requires-dependency should be validated. Finally, it is important to mention that it is not sufficient if the
classifier only predicts the existence of a dependency between two requirements of a given requirement-
pair correctly. This is due to the reason that the direction of the requires-dependency must also be exact in
order to be correct. In other words, for example, assuming that R1 requires R2 and R2 does not require R1,
a predicted requires-dependency for the pair (R1, R2) would be considered as correctly classified example.
However, a requires-dependency for the pair (R2, R1) would be considered as incorrectly classified exam-

119

Chapter 9. Automated Identification of Type-Specific Dependencies Between Requirements

ple. Taking this strictness aspect into account when taking a look at the results, all the results achieved by
the classifiers are even more remarkable.

9.6. Threats to Validity

This section describes the threats to internal and external validity of our approach.

9.6.1. Internal Validity

From our point of view there are some threats to the internal validity of our automated dependency
detection approach. One threat of our approach is the validation of our results with a small dataset. Our
results are based on data collected from 182 participants which is insufficient for a correct validation.
There still exists the necessity to train and to test our approach with further datasets in order to prove the
results presented in Tables 9.3 - 9.6. Furthermore, suitable n-gram features were extracted and selected
based on a limited set of reasonable parameters by using Grid search (see Table 9.2). A more appropriate
and intelligent strategy for feature extraction and selection would find different features which may achieve
even higher prediction quality.

As described in Section 9.4.1, we shuffled our dataset consisting of requirement-pairs and applied a random
undersampling strategy in order to counteract class imbalance issues. However, undersampling leads to loss
of important information which could be useful for the classifier in order to further improve its prediction
quality. Furthermore, a different randomization of the dataset could also lead to slightly different results
compared to the values given in the Tables 9.3 - 9.6. Additionally, in the case of the cold start problem,
the performance of the classifiers to predict the correct dependency between two requirements of a given
requirement-pair could be inadequate.

9.6.2. External Validity

For the analysis of our approach in training- and test-phases, we used a dataset collected in a user study
with 182 participants. Within the scope of future work, we will test our system with different datasets in
order to confirm our results. Testing our approach with different datasets may lead to small deviations of
the values presented in Tables 9.3 - 9.6. Due to the experimental testing of our approach, a test in the live-
operation may also lead to different results. Furthermore, our dataset consists of requirements described in
German and the system is optimized to perform well with text provided in German language. Analyzing a
dataset based on a different language can lead to different evaluation results.

9.7. Conclusion and Future Work

In this chapter we introduced an intelligent approach for the automated identification of requirement
dependencies of type requires. Our approach analyzes the title and the description of each requirement
and detects dependencies by using NLP techniques. The data for the dataset was collected in a user study.
Before the training of the system, preprocessing techniques were applied in order to prepare a dataset for
the classifiers and to filter irrelevant information. Afterwards, we analyzed our approach with different
classifiers such as Naive Bayes, Linear SVM, k-Nearest Neighbors, and Random Forest using several
features determined via Grid search in order to identify the most suitable feature combinations for each

120

9.7. Conclusion and Future Work

classifier. The results show that average values of precision, recall, and F1 without POS-Tags generally
perform better than including POS-Tags for all applied classifiers except the k-Nearest Neighbors classifier.
Furthermore, a Random Forest classifier without POS-Tags returns the best F1 value on average which
correctly predicts the dependencies between requirements with a probability of ∼82%.

Within the scope of future work, we plan to introduce an additional preprocessing step where we will
replace words with their synonyms and combine similar words by using an online thesaurus. Moreover, the
currently used random undersampling strategy was necessary to avoid undesired class imbalance issues (see
Section 9.6.1). However, it could be replaced with more advanced and sophisticated sampling techniques
in order to further improve the overall prediction quality of the system (Bowyer et al., 2011; Galar et al.,
2012). Furthermore, we found out that many of the dependencies which have not been found often by
the study participants are those which cannot be observed directly from the title and description of the
requirements. In order to detect such dependencies, further domain knowledge is required. Although we
did not do any optimizations regarding this aspect, our classification models were able to find some of such
dependencies. This shows that the classifiers are already able to generalize in such a way that they can
discover and consider some latent patterns. However, further improvements have to be made in order to
improve the prediction quality for such dependencies. Finally, our developed approach can be used as a
recommender system (e.g., in terms of a hybrid solution of different prediction models) which identifies
dependencies between a set of requirements and recommends them to requirement engineers.

121

122

Chapter 10
ASP-based Knowledge Representations
for IoT Configuration Scenarios

Parts of the contents of this chapter have been published in (Felfernig et al., 2017b). The author of this
thesis provided major parts of this chapter in terms of writing, literature research,

knowledge base definition, and implementation.

10.1. Abstract

The purpose of this chapter is to introduce basic application scenarios for configuration technologies in
Internet of Things (IoT) product domains. We show how to represent configuration knowledge in the
domain of smart homes on the basis of Answer Set Programming. In this context, we introduce different
configuration model elements and constraint types and show their corresponding Answer Set Programming
representation in a way that is also useful for beginners. We conclude the chapter with a discussion of open
issues for future work.

10.2. Introduction

Configuration is one of the most successfully applied AI technologies (Stumptner, 1997; Felfernig
et al., 2014a). It is a specific type of design activity where a product is configured on the basis of a
set of already defined component types and corresponding constraints that restrict the way in which
component instances can be combined. A configuration task is defined in terms of a generic product
structure, a corresponding set of constraints, and a set of requirements (often also denoted as customer
requirements) that additionally restrict the set of possible solutions. A solution (configuration) for a config-
uration task is represented by a set of component instances, their connections and attribute settings which
altogether are consistent with the constraints and requirements included in the configuration task definition.

There is a multitude of application domains for knowledge-based configuration – example domains are the
automotive sector, financial services, operating systems, software product lines, and railway interlocking
systems (Felfernig et al., 2014a). Configuration technologies nowadays become increasingly popular
in different kinds of Internet of Things (IoT) (Atzori et al., 2010) scenarios. The Internet of Things is
an emerging paradigm that envisions a networked infrastructure which enables the interconnection of

123

Chapter 10. ASP-based Knowledge Representations for IoT Configuration Scenarios

devices (things) anyplace and anytime. In the IoT context, configurators can be applied, for example,
to the identification of ramp-up configurations (self-configuration), i.e., to figure out which components
(potential software and hardware) are needed in a certain IoT setting. Configuration technologies can also
be applied during runtime where, for example, a configurator helps to identify paretooptimal configurations
of communication protocols with regard to criteria such as performance and cost of data transfer.

The size and complexity of configuration problems in the IoT domain often does not allow the application
of basic configuration knowledge representation and reasoning such as constraint satisfaction (Tsang,
1993). Smart homes often consist of hundreds or even thousands of different components and constraints
– such scenarios are in the need of a component-oriented knowledge representation that is easy to use
and maintain (Felfernig et al., 2014a; Hotz et al., 2014). Open source constraint-based approaches do not
support such a representation and existing component-oriented commercial environments are based on
proprietary knowledge representations with limitations also in terms of standardization. An alternative to
constraint-based knowledge representations especially useful for large and complex configuration domains
is Answer Set Programming (ASP) (Gelfond and Lifschitz, 1988; Soininen and Niemelä, 1998). ASP
supports the definition of component hierarchies and related constraints in a declarative way (which is not
possible with basic CSP-based configuration environments). Potential component instances have to be
pre-defined, i.e., in its basic form ASP does not support pure component generation during runtime.

There exist a couple of research contributions related to the application of answer set programming in
the configuration context. Soininen and Niemelä (Soininen and Niemelä, 1998) can be considered as
pioneers who first showed the application of ASP to represent and solve configuration tasks. A resulting
configuration environment is presented, for example, in (Tiihonen et al., 2003; Felfernig et al., 2014a). An
object-oriented layer to answer set programs has been introduced by (Falkner et al., 2015). In this work,
configuration tasks can be represented on an object-oriented level without being forced to take into account
specific details of ASP-based configuration knowledge representations. Thus, this work can be seen as
a contribution to improve the applicability of ASP technologies especially in terms of reducing efforts
related to knowledge base development and maintenance. Feature model related ASP representations
are introduced in (Myllärniemi et al., 2014). An approach to the testing of object-oriented models on
the basis of ASP is introduced in (Falkner et al., 2012); in this context it is shown how UML-based
configuration knowledge representations can be represented in ASP and how positive and negative test
cases can be represented and included for the purpose of supporting unit tests on knowledge bases.
Friedrich et al. (Friedrich et al., 2011) introduce an approach to re-configuration in ASP – in this context,
a reconfiguration can be considered as a set of changes to an already existing configuration such that
new requirements are taken into account. Finally, Teppan et al. (Teppan and Friedrich, 2016) introduce a
hybrid approach that integrates constraint solving with ASP. A major advantage of this integration is that
the grounding bottleneck∗ in answer set programming can be transformed into a more efficiently solvable
search problem in constraint programming.† The major focus of this chapter are ASP-based knowledge
representations. For an overview of different further approaches to configuration knowledge representation
we refer to (Felfernig et al., 2014a).

∗See Section 10.5.
†Although CSPs often do not support flexible (component-oriented) knowledge representations, they have the potential to support

ASP-based reasoning processes (e.g., in terms of increasing efficiency).

124

10.3. IoT Domains and Configuration Models

The contributions of this chapter are the following.‡ First, we introduce ASP-based configuration knowl-
edge representations in the context of Internet Of Things (IoT) scenarios. Second, our aim is to provide easy
to understand examples (for ASP newbies) of how to represent configuration knowledge in ASP and also to
show limitations of ASP knowledge representations. Third, we discuss different issues for future research
that will help to accelerate a broad application of ASP technologies in knowledge-based configuration.
The remainder of this chapter is organized as follows. In Section 10.3 we discuss IoT-related configuration
domains and introduce a smart home configuration model which is used as working example throughout
the chapter. In Section 10.4 we show how to translate individual model elements into a corresponding
ASP-based representation. In this context we also sketch how ASP solvers operate to determine a solution
for a configuration task (Section 10.5). In Section 10.6 we sketch the role of ASP solving in our IoT-related
research project. The chapter is concluded with a discussion of open research issues (Section 10.7).

10.3. IoT Domains and Configuration Models

In the following we provide an overview of IoT domains where the application of ASP-based configuration
technologies is reasonable. In this context, we introduce a simplified configuration model from the domain
of smart homes in order to show different facets of ASP-based configuration knowledge representations.
Air Pollution Monitoring. Air pollution monitoring systems help to ensure healthy living conditions,
for example, in cities. An issue in this context is the distribution of sensors in a city topology that
assures a representative collection of measurement data. This data is analyzed on the basis of different
types of learning algorithms that help to figure out in which contexts which actions have to be triggered.
Examples of related actions are a general warning to leave the house, reduced speed limits on highways,
recommendations to groups (e.g., schools) in terms of the maximum time that should be spent outdoors,
and warnings regarding the malfunctioning of filter equipments in industrial production. In air pollution
monitoring, configuration technologies can be used to select the type and placement of sensors given a
specific topology (e.g., a topology of a city) and also to select the types of algorithms that should be used
for data analysis in certain contexts.

Health Monitoring. Health monitoring solutions can be based on different types of data that can be used
to determine recommendations related to factors such as eating behavior, sports activities, sleeping times,
and also data about the body condition. Many tools already allow the manual entering of consumed food,
however, in future scenarios such information will be available on the basis of standardized data exchange
protocols. Measurement of sports activities and sleeping time is already included in many commercial
solutions. Finally, detailed information about the physical condition of a person is not taken into account
in many of the existing tools. In such scenarios, configuration technologies can be used to parametrize
the underlying algorithms, for example, recommended heart rates when doing physical practices depend
on the age, gender, and weight of a person (and further physical parameters). Whether specific food items
can be recommended or not depends, for example, on potential allergies of a person. Finally, especially in
group sports (e.g. football or tennis), the type of training also depends on the participating persons. For
example, if three persons are participating in a tennis training session and one person has a bad physical
condition, this has an impact on the selection of exercise units for this group.

‡The work presented in this chapter has partially been conducted within the scope of the Horizon 2020 Project AGILE (Adoptive
Gateways for dIverse MuLtiple Environments, 2016–2018).

125

Chapter 10. ASP-based Knowledge Representations for IoT Configuration Scenarios

Energy Production and Management. Energy production is in the need of configuration technologies in
various scenarios, for example, wind turbines must be configured and parametrized in order to be able
to maximize energy production in a certain environment. Knowledge about where and when a higher
amount of energy will be needed can trigger a corresponding reconfiguration of the load factor of water
reservoirs. In the context of private energy production, configuration technologies can help to rearrange
energy consumption times, for example, when to recharge the electric car or when to activate the washing
machine. Especially in the context of energy management in buildings, reconfiguration technologies can
play a role by supporting the change of building parameters depending on given environmental data such
as temperature, weather conditions, and forecasts.

Enhanced Retail Services. In-store shopping is based on specific distributions of sensors and other devices
such as information displays. During the ramp-up phase of such an application it has to be assured that
customer location sensors are distributed in a reasonable fashion and information displays are positioned
in such a way that the information can be easily seen by customers. In such scenarios, configuration
technologies can be applied in order to determine the amount of sensors needed, the positioning of
information displays, and also to determine the layout of the whole shop depending on the product
assortment that should be offered to a customer.

Animal Monitoring. There exist a couple of scenarios where information about animal locations and in-
formation about the physical condition of animals is important. For example, in wildlife scenarios where
animals are spread over huge and not accessible areas, it is important to provide an infrastructure for animal
monitoring that is not based on physical presence of human administrators. In such contexts, for example,
different types of drones can be used to support data collection. Depending on the region size and topog-
raphy and requirements regarding the amount of data to be collected, drones have to be configured in a
way that optimizes the trade-off between energy consumption, range, and support of the defined data col-
lection requirements. In such scenarios, configuration technologies can be useful to support the complete
configuration of the needed data collection equipment.
Smart Homes. A simplified smart home configuration model is depicted in Figure 10.1. Smart homes (Leit-
ner et al., 2016) include functionalities for actively supporting persons in their daily life. Examples thereof
are intelligent light management that allows to (semi-automatically) adapt the illumination of rooms de-
pending on the time of the day and season, energy management that supports intelligent air conditioning
for whole buildings, security management (e.g., when nobody is at home), and functionalities related to the
support of ambient assisted living scenarios with related functionalities such as automated fall detection. In
such scenarios, configuration technologies can be used to design in detail which smart home hardware and
software components (e.g., sensors, actuators, and apps) have to be installed in which part of the building.
The smart home model depicted in Figure 10.1 will serve as working example in this chapter to demonstrate
ASP-based configuration knowledge representations.

126

10.4. Configuration Knowledge Representation in ASP

Figure 10.1.: Simplified configuration model (reduced #component types, #attributes, domains, and multi-
plicities) of a smart home used for demonstration purposes. Additional constraints are pre-
sented in our discussion of ASP-based configuration knowledge representations.

10.4. Configuration Knowledge Representation in ASP

In the following we will show how to represent configuration knowledge for a simplified configuration
model from the domain of smarthomes (see Figure 10.1).§

(a) Potential Component Instances. In the ASP context, all decision variables have to be pre-specified. In
our example model shown in Figure 10.1, three different component types are included which are repre-
sented by the predicate names smarthome, room, and appliance (with the subtypes stove and room). For
these component types we have to specify the maximum amount of instances that can be part of a related
smarthome configuration (see Figure 10.2), i.e., one smarthome (e.g., psmarthome(1) denotes a potential
instance of smarthome with id 1), two instances of room, and 4 instances of each subtype of appliance.
The integer number arguments (e.g., proom(2;3)) in the ASP facts serves as a unique key to distinguish the
(potential) instances.

psmarthome (1) .
proom (2 ; 3) .
p s t o v e (4 ; 5 ; 6 ; 7) .
p t v (8 ; 9 ; 1 0 ; 1 1) .

Figure 10.2.: Definition of potential smart home component instances using Answer Set Programming
(ASP) notation. For example, proom(2;3) denotes two potential instances of type room.

(b) Component Types and Instances. For a configuration, it has to be decided which of the potential in-
stances shall be included. Therefore we establish an association of the aforementioned definitions of poten-
tial instances with the ”real” component instances that can be included in a configuration (see Figure 10.3).

§For demonstration purposes we use the syntax of the clingo environment (see potassco.sourceforge.net).

127

Chapter 10. ASP-based Knowledge Representations for IoT Configuration Scenarios

For each potential instance it has to be decided whether to include this as an instance in a configuration
or not, for example in our configuration knowledge base, each potential room instance can be part of a
configuration or not (this is specified by the lower and upper bounds of the corresponding rule).

0{ smarthome (X) }1 :− psmarthome (X) .
0{ room (X) }1 :− proom (X) .
0{ s t o v e (X) }1 :− p s t o v e (X) .
0{ t v (X) }1 :− p t v (X) .

Figure 10.3.: Definition of component types (in ASP). For example, each potential instance of type room
(i.e., proom(X)) can be part of a configuration as room(X).

(c) Generalization Hierarchies. Generalization hierarchies allow to further categorize different component
types (see Figure 10.4). For demonstration purposes, we represent stove and tv as (disjunctive) subtypes of
the component type appliance – an alternative to introducing a type attribute similar as for room. We also
include a rule that assures that instances of appliances are instantiated to stove or tv. Note that disjunctive-
ness between subtypes is assured by definition (see Figures 10.2 and 10.3).
As we are not interested in incomplete configurations (e.g., instances of appliance that are not refined to
stove or tv), we add a constraint that ensures that each appliance instance is either refined to a stove instance
or a tv instance. This is only necessary when users are allowed, for example, to include component instances
represented by corresponding facts (e.g., appliance(4)).

a p p l i a n c e (X) :− s t o v e (X) .
a p p l i a n c e (X) :− t v (X) .
:− a p p l i a n c e (X) , n o t s t o v e (X) , n o t t v (X) .

Figure 10.4.: Defining generalization hierarchies (in ASP). For example, each stove is an appliance and
each tv is an appliance, and vice-versa, each appliance is either a stove or a tv.

(d) Attributes. For the defined component type attributes, we have to introduce attribute domain definitions
(see Figure 10.5).

dommaxprice (1 . . 1 0 0) .
domcountry (germany ; a u s t r i a) .
domcommunication (wi red ; w i r e l e s s) .
domtype (k i t c h e n ; l i v i n g r o o m) .
domisa lwayson (t r u e ; f a l s e) .
domisdange rous (t r u e ; f a l s e) .
d o m p r i c e o f s e n s o r (6 0) .

Figure 10.5.: Attribute domain definitions (in ASP). For example, dommaxprice represents an (integer) at-
tribute that will be used to specify the maximum price of a smarthome solution. For simplicty,
we only include price information related to stoves – see also Figure 10.6.

Attribute domain definitions have to be associated with the corresponding component types, for example,
the domain definition domcountry of the attribute country has to be associated with the component type

128

10.4. Configuration Knowledge Representation in ASP

smarthome (see Figure 10.6). With ASP choice rules we enforce that each instance has exactly one domain
value for each of its attributes. Generalization is covered in a natural way: see the right-hand-side of the last
two rules in the figure. As attributes are created only for existing instances (but not for potential instances),
spurious solutions (such as arbitrary attribute settings for unused potential instances and their combination)
are avoided.

1{ c o u n t r y (X,Y) : domcountry (Y)}1:− smarthome (X) .
1{ communica t ion (X,Y) : domcommunication (Y)}1:− smarthome (X) .
1{maxpr i ce (X,Y) : dommaxprice (Y)}1:− smarthome (X) .
1{ t y p e (X,Y) : domtype (Y) }1:− room (X) .
1{ i s a l w a y s o n (X,Y) : domisa lwayson (Y)}1:− a p p l i a n c e (X) .
1{ i s d a n g e r o u s (X,Y) : domisdange rous (Y)}1:− a p p l i a n c e (X) .
1{ p r i c e o f s e n s o r (X,Y) : d o m p r i c e o f s e n s o r (Y)}1:− s t o v e (X) .

Figure 10.6.: Associating attributes with component types (in ASP). For example, country is an attribute
associated with smarthomes. On an instance level, attribute instances are only generated
if corresponding component instances exist, i.e., attribute instances are only created when
necessary.

If domain definitions are reduced in subcomponent types, this can be expressed in a corresponding ASP
rule, for example, isdangerous(X,false):- tv(X). expresses the fact that a tv set is not considered as a dan-
gerous appliance (see Figure 10.7).

i s a l w a y s o n (X, f a l s e) :− s t o v e (X) .
i s d a n g e r o u s (X, t r u e) :− s t o v e (X) .
i s a l w a y s o n (X, f a l s e) :− t v (X) .
i s d a n g e r o u s (X, f a l s e) :− t v (X) .

Figure 10.7.: Reducing ASP attribute domain definitions, for example, in generalization hierarchies. For
example, the isdangerous attribute of type appliance is reduced to true if the corresponding
component is a stove.

(e) Associations and Multiplicities. Associations between component types on the model level are repre-
sented in terms of binary predicates on the ASP level (see Figure 10.8). We use ASP rules to define potential
links, e.g. smarthomeroom, with the allowed minimum and maximum multiplicities of the association.

1{ smarthomeroom (X,Y) : room (Y) }2 :− smarthome (X) .
1{ smarthomeroom (Y,X) : smarthome (Y) }1 :− room (X) .
1{ r o o m a p p l i a n c e (X,Y) : a p p l i a n c e (Y) }2 :− room (X) .
1{ r o o m a p p l i a n c e (Y,X) : room (Y) }1 :− a p p l i a n c e (X) .

Figure 10.8.: Defining associations and corresponding multiplicities (in ASP). For example, each
smarthome has 1-2 associated components of type room.

129

Chapter 10. ASP-based Knowledge Representations for IoT Configuration Scenarios

(f) Incompatibility Constraints. Such constraints typically specify incompatibilities regarding the combi-
nation of specific component types or simply combinations of incompatible attribute values. An example
of an incompatibility is represented by the following constraint that expresses the fact that a tv should not
be situated in a room of type kitchen (see Figure 10.9).

:− r o o m a p p l i a n c e (X,Y) , t y p e (X, k i t c h e n) , t v (Y) .

Figure 10.9.: Defining incompatibility constraints (in ASP). For example, no tv should exist in a kitchen.

(g) Requires Constraints. Requirements relationships describe situations where the integration of a certain
component or the selection of a certain attribute value also requires the integration/selection of further
component types/attribute values. An example constraint is the following: smarthomes in Austria must
have two rooms (the corresponding ASP representation is shown in Figure 10.10).

2{ smarthomeroom (X,Y) : room (Y) }2 :−
smarthome (X) , c o u n t r y (X, a u s t r i a) .

Figure 10.10.: Defining requires constraints (in ASP). For example, smarthomes in Austria include at least
two rooms.

(h) Resource Constraints. Resource constraints specify producer and consumer relationships, for example,
a resource (producer) could be the money available for the smarthome (maxprice specified by the cus-
tomer) and the consumers could be the installed sensors (represented by the attribute priceofsensor). A
corresponding resource constraint could indicate that the sum of the prices of all sensors must not exceed
the upper price limit specified by the customer (attribute maxprice). An implementation of a resource
constraint in ASP is shown in Figure 10.11.

s e n s o r p r i c e (T) :− T = #sum{ PR , A : p r i c e o f s e n s o r (A, PR) } .
:− smarthome (X) , maxpr i ce (X,Y) , s e n s o r p r i c e (P) , P > Y.

Figure 10.11.: Defining resource constraints (in ASP). For example, the price of a smarthome (represented
by sensorprice only) must not exceed the maxprice defined by the customer.

(i) Navigation Constraints. ASP allows to represent complex constraints which require navigation between
instances. For example, a stove in one room excludes further stoves in other rooms of the same smarthome
(see Figure 10.12). This can also be interpreted as a further example of an incompatibility constraint (see
Figure 10.9). Even recursively defined predicates can be used in such constraints such that transitive clo-
sures (e.g. reachability in graphs) and constraints on them can be expressed. This is a modeling advantage
compared to standard constraint solvers.

130

10.5. ASP Solving and Limitations

:− s t o v e (A1) , r o o m a p p l i a n c e (R1 , A1) , smarthomeroom (H, R1) ,
R1 != R2 ,
smarthomeroom (H, R2) , r o o m a p p l i a n c e (R2 , A2) , s t o v e (A2) .

Figure 10.12.: Defining navigation constraints (in ASP). For example, two different rooms with a stove
must not be part of the same smarthome configuration. In this context, R1 != R2 assures that
two different rooms are analyzed with regard to the inclusion of a stove.

(j) Example Customer Requirements. Having defined the whole configuration knowledge base, customers
can specify their requirements with regard to a corresponding smarthome configuration as facts and even
more generally as constraints (see Figure 10.13). Examples of such customer requirements are: the
smarthome installation will be located in Austria and no dangerous appliances should be installed (see
the following constraints).

smarthome (1) .
c o u n t r y (1 , a u s t r i a) .
:− a p p l i a n c e (X) , i s d a n g e r o u s (X, t r u e) .

Figure 10.13.: Defining requirements (in ASP). For example, the smarthome should be in austria and no
dangerous appliances should be included.

10.5. ASP Solving and Limitations

Classical ASP solvers (Gebser et al., 2012) work in two steps: (1) grounding which translates the
ASP program to a variable-free format and (2) propositional (SAT) solving of the grounded program.
Figure 10.14 shows a reduced version of our smarthome configuration knowledge base.

The knowledge base in Figure 10.14 is a subset of the class diagram in Figure 10.1. It includes a
component type smarthome with the attribute country and a component type room with the attribute type.
A smarthome can have 1 or 2 rooms but Austrian smarthomes must have two rooms (this is defined in
terms of an additional constraint). One potential instance is defined for smarthome and three potential
instances are defined for room. The requirements specify the inclusion of a room of type kitchen.

The grounding results are shown in Figure 10.15 – the relationship to the knowledge base of Figure 10.14
is explained in terms of comments. ASP facts of the original knowledge base are also represented as facts
in the grounded knowledge base. Variables in rules are removed and the rules are duplicated accordingly,
for example, three rules are generated for the three possible room instances: i.e., proom(X) in the second
rule for generation of instances is replaced with each of the three facts for potential instances and the head
of the rule is replaced accordingly. Furthermore, the count aggregate is represented in its standard form
instead of just curly brackets.

131

Chapter 10. ASP-based Knowledge Representations for IoT Configuration Scenarios

% p o t e n t i a l i n s t a n c e s
psmarthome (1) . proom (2 ; 3 ; 4) .

% a t t r i b u t e domain d e f i n i t i o n s
domcountry (germany ; a u s t r i a) . domtype (k i t c h e n ; l i v i n g r o o m) .

% d e f i n i t i o n / g e n e r a t i o n o f i n s t a n c e s
0{ smarthome (X) }1 :− psmarthome (X) .
0{ room (X) }1 :− proom (X) .

% a s s o c i a t i n g a t t r i b u t e s wi th component t y p e s
1{ c o u n t r y (X,Y) : domcountry (Y) }1 :− smarthome (X) .
1{ t y p e (X,Y) : domtype (Y) }1 :− room (X) .

% d e f i n i t i o n / g e n e r a t i o n o f a s s o c i a t i o n s
1{ smarthomeroom (X,Y) : room (Y) }2 :− smarthome (X) .
1{ smarthomeroom (Y,X) : smarthome (Y) }1 :− room (X) .

% f u r t h e r c o n s t r a i n t s
:− smarthome (X) , c o u n t r y (X, a u s t r i a) ,

n o t 2{ smarthomeroom (X,Y) : room (Y) }2 .

% c u s t o m e r r e q u i r e m e n t s
room (2) . t y p e (2 , k i t c h e n) .

Figure 10.14.: Restricted version of example smarthome configuration model.

In general, grounding can lead to extremely large knowledge bases, especially if rules or constraints entail
many variables with a large domain. The domain sizes are multiplied which leads to exponential growth in
the number of variables in the worst case. This shows one of the weaknesses of answer set programs - they
are not well-suited for problems with large integer domains or floating point numbers. Ways to deal with
this issue is to combine answer set programming with constraint solving techniques (see, e.g., (Gebser
et al., 2015; Teppan and Friedrich, 2016)) and lazy grounding (see, e.g., (Eiter et al., 2018)).

Solving an ASP results in answer sets (solutions). Each solution must be well-founded (i.e., derived from
the given facts) and consistent (i.e. not violating any constraint). Figure 10.16 shows all solutions (answer
sets) derived from the example in Figure 10.14.

132

10.5. ASP Solving and Limitations

% p o t e n t i a l i n s t a n c e s
psmarthome (1) . proom (2) . proom (3) . proom (4) .

% a t t r i b u t e domain d e f i n i t i o n s
domcountry (germany) . domcountry (a u s t r i a) .
domtype (k i t c h e n) . domtype (l i v i n g r o o m) .

% d e f i n i t i o n / g e n e r a t i o n o f i n s t a n c e s
0<=# c o u n t {1 ,0 , smarthome (1) : smarthome (1)}<=1.
0<=# c o u n t {1 ,0 , room (2) : room (2)}<=1.
0<=# c o u n t {1 ,0 , room (3) : room (3)}<=1.
0<=# c o u n t {1 ,0 , room (4) : room (4)}<=1.

% a s s o c i a t i n g a t t r i b u t e s wi th component t y p e s
1<=# c o u n t {1 ,0 , c o u n t r y (1 , germany) : c o u n t r y (1 , germany) ;

1 , 0 , c o u n t r y (1 , a u s t r i a) : c o u n t r y (1 , a u s t r i a)
}<=1:− smarthome (1) .

1<=# c o u n t {1 ,0 , t y p e (2 , k i t c h e n) : t y p e (2 , k i t c h e n) ;
1 , 0 , t y p e (2 , l i v i n g r o o m) : t y p e (2 , l i v i n g r o o m)
}<=1:− room (2) .

1<=# c o u n t {1 ,0 , t y p e (3 , k i t c h e n) : t y p e (3 , k i t c h e n) ;
1 , 0 , t y p e (3 , l i v i n g r o o m) : t y p e (3 , l i v i n g r o o m)
}<=1:−room (3) .

1<=# c o u n t {1 ,0 , t y p e (4 , k i t c h e n) : t y p e (4 , k i t c h e n) ;
1 , 0 , t y p e (4 , l i v i n g r o o m) : t y p e (4 , l i v i n g r o o m)
}<=1:−room (4) .

% d e f i n i t i o n / g e n e r a t i o n o f a s s o c i a t i o n s
1<=# c o u n t {

1 , 0 , smarthomeroom (1 , 2) : smarthomeroom (1 , 2) : room (2) ;
1 , 0 , smarthomeroom (1 , 3) : smarthomeroom (1 , 3) : room (3) ;
1 , 0 , smarthomeroom (1 , 4) : smarthomeroom (1 , 4) : room (4)
}<=2:−smarthome (1) .

1<=# c o u n t {1 ,0 , smarthomeroom (1 , 2) :
smarthomeroom (1 , 2) : smarthome (1)}<=1:− room (2) .

1<=# c o u n t {1 ,0 , smarthomeroom (1 , 3) :
smarthomeroom (1 , 3) : smarthome (1)}<=1:− room (3) .

1<=# c o u n t {1 ,0 , smarthomeroom (1 , 4) :
smarthomeroom (1 , 4) : smarthome (1)}<=1:− room (4) .

% f u r t h e r c o n s t r a i n t s
:− smarthome (1) ; c o u n t r y (1 , a u s t r i a) ; n o t 2<=# c o u n t
{1 ,0 , smarthomeroom (1 , 2) : smarthomeroom (1 , 2) : room (2) ;
1 , 0 , smarthomeroom (1 , 3) : smarthomeroom (1 , 3) : room (3) ;
1 , 0 , smarthomeroom (1 , 4) : smarthomeroom (1 , 4) : room (4)}<=2.

% c u s t o m e r r e q u i r e m e n t s
room (2) . t y p e (2 , k i t c h e n) .

Figure 10.15.: Grounded version of restricted smarthome configuration model.

As the customer prefers room 2 and country austria requires 2 rooms, there is only one answer set
(Answer: 1) with one room - its type is kitchen (as specified by the customer requirements) and the country

133

Chapter 10. ASP-based Knowledge Representations for IoT Configuration Scenarios

is germany. Sketch of the reasoning steps: room(2) can be seen as a propositional variable with truth value
TRUE. It appears in the body of the second rule for generation of associations and that body contains no
other variables. Therefore the head is evaluated and requires exactly one variable in the count aggregate to
be set to TRUE. The only one is smarthomeroom(1,2) and it is founded if smarthome(1) is generated by
the first count aggregate for generation of instances. Therefore, it derives the facts smarthomeroom(1,2)
and smarthome(1). For country, there are exactly two alternatives, but only germany does not lead to a
constraint violation. Therefore country(1,germany) is added as a fact (i.e. assigned truth value TRUE in
the SAT view of the reasoning process). As no other variables need to be set (all count aggregates are
fulfilled), we have the first solution.

All other solutions derive a second room. This allows all combinations of the alternatives for type (kitchen,
livingroom), country (germany, austria) and identifier (3, 4). One can imagine that the corresponding
multiplication of alternatives can lead to tremendously many solutions. At least concerning the identifiers,
the solutions are equivalent (i.e. there is no relevant difference between answer sets 2 to 5 and answer
sets 6 to 9). In order to reduce the search space for such unneeded solutions, symmetry breaking
techniques (Drescher et al., 2010) and search heuristics (Gebser et al., 2013) can be used.

Figure 10.17 shows symmetry breaking constraints which force the solver to use identifiers from lowest to
highest. In the knowledge base defined by the ASP entries of Figure 10.2–10.13, the number of answer
sets would be reduced from 8.400 to 2.800 if the symmetry breaking constraints are taken into account.
Adding constraint :- room(X), proom(Y), X>Y, not room(Y). to Figure 10.14 would reduce the number of
answer sets from 9 to 5 in Figure 10.16.

134

10.6. AGILE Configuration Technologies

− Answer : 1 −
smarthome (1) c o u n t r y (1 , germany)
room (2) t y p e (2 , k i t c h e n)
smarthomeroom (1 , 2)
− Answer : 2 −
smarthome (1) c o u n t r y (1 , germany)
room (2) t y p e (2 , k i t c h e n) room (4) t y p e (4 , l i v i n g r o o m)
smarthomeroom (1 , 2) smarthomeroom (1 , 4)
− Answer : 3 −
smarthome (1) c o u n t r y (1 , a u s t r i a)
room (2) t y p e (2 , k i t c h e n) room (4) t y p e (4 , l i v i n g r o o m)
smarthomeroom (1 , 2) smarthomeroom (1 , 4)
− Answer : 4 −
smarthome (1) c o u n t r y (1 , germany)
room (2) t y p e (2 , k i t c h e n) room (4) t y p e (4 , k i t c h e n)
smarthomeroom (1 , 2) smarthomeroom (1 , 4)
− Answer : 5 −
smarthome (1) c o u n t r y (1 , a u s t r i a)
room (2) t y p e (2 , k i t c h e n) room (4) t y p e (4 , k i t c h e n)
smarthomeroom (1 , 2) smarthomeroom (1 , 4)
− Answer : 6 −
smarthome (1) c o u n t r y (1 , germany)
room (2) t y p e (2 , k i t c h e n) room (3) t y p e (3 , k i t c h e n)
smarthomeroom (1 , 2) smarthomeroom (1 , 3)
− Answer : 7 −
smarthome (1) c o u n t r y (1 , a u s t r i a)
room (2) t y p e (2 , k i t c h e n) room (3) t y p e (3 , k i t c h e n)
smarthomeroom (1 , 2) smarthomeroom (1 , 3)
− Answer : 8 −
smarthome (1) c o u n t r y (1 , germany)
room (2) t y p e (2 , k i t c h e n) room (3) t y p e (3 , l i v i n g r o o m)
smarthomeroom (1 , 2) smarthomeroom (1 , 3)
− Answer : 9 −
smarthome (1) c o u n t r y (1 , a u s t r i a)
room (2) t y p e (2 , k i t c h e n) room (3) t y p e (3 , l i v i n g r o o m)
smarthomeroom (1 , 2) smarthomeroom (1 , 3)

Figure 10.16.: Solutions for smarthome knowledge base of Figure 10.15.

:− room (X) , proom (Y) , X>Y, n o t room (Y) .
:− s t o v e (X) , p s t o v e (Y) , X>Y, n o t s t o v e (Y) .
:− t v (X) , p t v (Y) , X>Y, n o t t v (Y) .

Figure 10.17.: Symmetry breaking constraints for the entries of Figures 10.2–10.13.

10.6. AGILE Configuration Technologies

The configuration knowledge representations discussed in this chapter are applied within the scope of the
European Union project AGILE¶ that focuses on the development of recommendation and configuration
technologies for IoT gateways. Within AGILE, configuration technologies are applied to support different

¶agile-iot.eu.

135

Chapter 10. ASP-based Knowledge Representations for IoT Configuration Scenarios

kinds of ramp-up scenarios, i.e., initial setups of IoT gateways infrastructures entailing the needed hardware
and software components. Furthermore, AGILE supports runtime configuration and reconfiguration, for
example, in terms of optimizing the usage of data exchange protocols with regard to optimality criteria such
as economy and efficiency. The basis for AGILE configuration solutions in ramp-up domains is the clingo
environment. In AGILE, we are especially focusing on improving the performance of constraint-based
reasoning and model-based diagnosis that are both supporting technologies also in the context of answer
set programs (Felfernig et al., 2012; Shchekotykhin, 2014; Teppan and Friedrich, 2016).

10.7. Research Issues

There are still a couple of research challenges to be tackled to make ASP-based configuration more appli-
cable and performant. Graphical configuration knowledge representations and a corresponding automated
translation into ASP-based representations will help to improve knowledge engineering processes. An
automated generation of ASP knowledge bases from object-oriented product topologies has already been
proposed in (Falkner et al., 2015); translation routines for standard constraints such as requires, excludes,
and resources would help to further increase knowledge engineering efficiency. Improving constraint an-
swer set programming or finding new ways of integrating ASP and CSP could lead to a full exploitation
of the different advantages of both paradigms. In order to solve large-sized problems, lazy grounding and
heuristics must be combined and improved (related work is reported, e.g., in (Weinzierl, 2017)). All means
to reduce problem sizes of ASPs should be exploited, for example, precise estimation of the number of
needed instances (see (Taupe et al., 2016)). Finally, domain-specific constraints such as discussed in (Hotz
and Wolter, 2013) have to be analyzed with regard to their representation in ASP.

10.8. Conclusions

In this chapter we give an overview of basic applications of configuration technologies in Internet of Things
(ioT) scenarios. In this context we show how to apply answer set programming (ASP) techniques to rep-
resent and solve configuration problems. ASP is a logic-based approach and well-suited for a component-
oriented representation of configuration tasks. This capability is extremely useful especially in large and
complex product domains. In order to provide a basic reference for ASP beginners, we show how to
represent most representative constraints in ASP.

136

Chapter 11
Conclusions and Future Work

Many scenarios in which groups of users must take decisions occur in the world today, such as choosing a
restaurant to have a dinner at with family members or selecting a movie to watch with friends (Masthoff,
2011; Felfernig et al., 2018d). This increased interest in group decision scenarios motivated us to improve
and further develop group decision technologies. This thesis provides different approaches to boost the
quality of group decisions, to counteract biases which deteriorate group decisions and to increase the
satisfaction of the group members. These improvements are briefly summarized in this chapter. First, we
present our contributions based on the research questions (see Section 11.1), then show the limitations of
our approaches, and finally give an outlook on future research issues.

11.1. Conclusions

In this section, we provide a summary of the research questions presented in Section 1.2 and summarize
our main contributions.

Research question Q1:

How can constraint-based recommendation for individual users be implemented for group scenar-
ios?
In the context of this work, we provided an overview of group recommendation algorithms and techniques
to researchers and practitioners in the field of group recommender systems (see Chapter 2). In particular,
we introduced algorithms and techniques based on the recommendation paradigms for individual users.
Furthermore, we illustrated group recommendation scenarios through real-world examples and showed
how to apply such group scenarios for the well-known recommendation concepts such as collaborative
filtering, content-based filtering, constraint-based including utility-based recommendation, critiquing-
based, and hybrid recommendation. These recommendation concepts were classified in two aggregation
strategies: aggregated predictions and aggregated models. In the aggregated predictions strategy, there
are two basic approaches. (1) Recommendations for individual group members are generated and then
merged together for the recommendation of items to groups. (2) Group-member-specific predictions for
candidate items are aggregated. The outcome of this approach is a ranking of candidate items. In the

137

Chapter 11. Conclusions and Future Work

aggregated models strategy, the profiles of individual group members are aggregated to generate a group
profile. Subsequently, group recommendations are determined based on the aggregated profile.

Research question Q2:

Which recommendation strategy should be applied in which item domain?
To analyze the impact of the item domain on the appropriateness of group recommendations strategies,
we conducted a user study where participants explicitly specified their preferences with regard to a set
of items (see Chapter 3). For this purpose, we classified item domains according to their decision efforts
(i.e., the degree of user involvement) and selected restaurants as an example of low-involvement item
domains and shared apartments as an example of high-involvement item domains. Subsequently, the
dataset collected from the user study was analyzed and aggregation heuristics were then used to infer the
corresponding group preferences. The following group aggregation functions were analyzed with regard
to their prediction qualities: Most Pleasure, Least Misery, Average Voting, Minimal Group Distance,
Ensemble Voting, and Multiplicative. The results showed that user study participants applied different
aggregation strategies depending on the underlying item domain.

Research question Q3:

How does recommendation diversity influence the information exchange among group members?
In Chapter 4, we introduced an approach to increase the knowledge exchange among group members for
the purpose of discovering the relevant knowledge (i.e., hidden profiles) in the context of a group decision
and achieving high-quality decisions through the discovered knowledge exchange among group members.
Our focus was to analyze the impact of recommendation diversity on the frequency of information
exchange between group members. For this purpose, we analyzed the following recommendation strate-
gies with varying degrees of diversity: minimum group distance (i.e., low-diversity recommendations),
maximum group distance (i.e., high-diversity recommendations), and average group distance (i.e., recom-
mendation diversity that represents a compromise between minimum and maximum). Furthermore, we
conducted a user study using the group decision support environment CHOICLA (Stettinger and Felfernig,
2014), in order to analyze the impact of these recommendation strategies on the knowledge exchange
among group members. Our empirical results showed that preference aggregation mechanisms with a high
resulting recommendation diversity increase the frequency of knowledge exchange within a group.

Research question Q4:

How do “Group Polarization Effects” influence the outcome of group decisions and how can these
effects be counteracted?
In this context, we analyzed the existence of “Group Polarization Effects” in risk- and cost-related group
decisions. We conducted a user study with 211 computer science students who were involved in individual
and group decisions in two different dimensions (risk analysis and cost estimation). Subsequently, we
analyzed the collected dataset to investigate whether there was a tendency of the groups to make decisions
that are more extreme than the average of individual group members preferences. The results showed the
following outcomes (see Chapter 5): In the risk dimension, “Group Polarization Effects” only occur if
individual group members tend to make cautious decisions, whereas in the cost estimation dimension,
these effects only exist at the lower boundaries of the cost range. In addition, we presented a solution to

138

11.1. Conclusions

counteract this bias by diversifying the preferences of group members. This approach helps to avoid the
negative impacts of this bias on the decision quality.

Research question Q5:

Which aggregation functions are suitable for predicting items to groups in situations where the
preferences of group members become inconsistent?
Chapter 6 introduced a constraint-based group recommender system, which focused on comparing
aggregation functions with regard to their capability to predict relevant items to groups. In particular, we
analyzed the prediction quality of aggregation functions in situations where no solution could be found
for a given set of preferences. In this context, our proposed recommender system attempts to suggest
items with a high related decision effort to groups (i.e., high-involvement items). Two categories of
aggregation functions were analyzed for determining the prediction quality: consensus-based (Average
Voting, Minimal Group Distance, Multiplicative, and Ensemble Voting) and borderline (Least Misery and
Most Pleasure). These aggregation functions were analyzed based on a dataset collected in a user study
with 263 participants. The outcome shows that consensus-based aggregation functions which consider
all group members preferences achieved a higher prediction quality compared to borderline aggregation
functions which solely focus on the preferences of some individual group members.

Research question Q6:

How to identify a socially-aware diagnosis when group members’ preferences are inconsistent?
In the context of constraint-based group recommenders, we presented a guided approach that determines
socially-aware diagnoses based on different aggregation functions in situations where the preferences
of group members are inconsistent with the underlying constraint set (see Chapter 7). The goal of this
approach was to identify diagnoses for groups that best match the preferences of all group members
(i.e., we tried to identify a diagnosis which was fair and did not decrease the overall group satisfaction).
For this purpose, we conducted a user study where participants first articulated their preferences for a
digital camera (i.e., high-involvement item), and then selected a digital camera.∗ We then developed a
constraint-based recommender system which suggests socially-aware diagnoses guided by the following
aggregation functions: Least Misery, Most Pleasure, Average Voting, and Majority. Finally, based on
the collected dataset (i.e., the preferences of groups and their diagnoses), aggregation functions were
evaluated with regard to their prediction qualities. Our results showed that the aspect of fairness (i.e., the
idea of Least Misery aggregation function) plays a major role in the selection of high-involvement items.
Furthermore, we could show that the prediction quality of our approach outperforms the basic approaches,
such as Breadth-First Search and Direct Diagnosis.

Research question Q7:

How can a constraint-based recommender system identify a recommendation which is similar to the
preferences articulated by a user?
Chapter 8 introduced two constraint-based recommendation approaches which provide similar rec-
ommendations to users based on their articulated preferences. As already stated in previous sections,

∗The preferences of each user study participant were inconsistent with the underlying knowledge base.

139

Chapter 11. Conclusions and Future Work

such recommender systems are usually applied in complex domains where millions of recommendation
possibilities exist. The goal of our approach was to identify a recommendation from a long list of
recommendations similar to preferences articulated by the users. We tested our approach with datasets
from two domains (bike and personal computer) and performed an evaluation of runtime and the similarity
degree between users’ requirements and the identified recommendation. The results of our evaluation
indicate that our approaches are able to recommend similar items in an effective and efficient way.

Research question Q8:

How can requirement dependencies be identified automatically using supervised classification
techniques?
Since the size and complexity of software projects is rapidly increasing, the identification of the dependen-
cies between requirements has become a challenging task for humans. Due to this fact, we realized that
there was an urgent need for automated techniques which can assist stakeholders in finding dependencies
between requirements. We developed an approach which can detect requirement dependencies of the type
“requires” since it is the dependency type that most frequently occurs in software projects (Ferber et al.,
2002). For this purpose, we conducted a user study that focused on the detection of dependencies between
text-based requirements for a sports watch (see Chapter 9). Subsequently, the collected dataset was used
to train and test our system by using several classification approaches (Naive Bayes, Linear Support Vector
Classifier, k-Nearest Neighbors Classifier, and Random Forest). Our approach analyzed the title and
the description of each requirement and identified dependencies by using Natural Language Processing
techniques. Furthermore, for this approach, we first prepared the collected dataset (preprocessing, tok-
enization, Part-Of-Speech tagging), and then analyzed our approach with different classifiers. The results
showed that the Random Forest classifier could correctly detect new dependencies between requirements
with an F1 score of 0.82.

Research question Q9:

How can configuration knowledge be efficiently represented in the IoT domain?
In Chapter 10, we introduced the application of an efficient knowledge representation for complex config-
uration scenarios in the Internet of Things (IoT) domain. Since the size and complexity of configuration
problems in the IoT domain increases dramatically, the basic knowledge representation and reasoning
such as constraint satisfaction are not easy to use and maintain (Hotz et al., 2014; Felfernig et al., 2014a).
This challenge motivated us for the application of an efficient knowledge representation. We applied
Answer Set Programming (ASP) in the IoT domain, which is a logic-based approach and well-suited for
component-oriented knowledge representations (Gelfond and Lifschitz, 1988; Soininen and Niemelä,
1998). In this context, we showed the applicability of ASP representations in the IoT domain and provided
basic configuration examples. Furthermore, we demonstrated the limitations of ASP and discussed
open issues for future research that will help to accelerate a broad application of ASP technologies in
knowledge-based configuration.

140

11.2. Future Work

Limitations
This thesis presented several approaches to support high-quality group decisions. However, our approaches
still have some limitations in the evaluation methods and decision making processes. Our approaches were
evaluated using small datasets for example (datasets from 200-400 participants) collected from homoge-
nous user study participants (computer science students with ∼ 90% male and ∼ 10% female proportion).
In addition, our user studies were conducted with individual participants. Due to the fact that our ap-
proaches are intended for application in group scenarios, we synthesized these datasets to generate a dataset
for groups (i.e., groups were synthetically generated). In this context, we clustered participants with sim-
ilar preferences (i.e., homogeneous groups were generated) based on the reason that group decisions are
usually made in groups consisting of group members with similar tastes (e.g., friends, family members,
etc.). Many decision scenarios arise, however, in which items are consumed by diverse group members
(e.g., restaurant recommendations for the participants of a conference or music recommendations for users
who are currently in the fitness studio). Another limitation lies in the consideration of the factors which
can influence group decisions, such as fairness in repeated group decisions, the impact of group diversity
on decision making processes, group dynamics, cohesiveness between group members, and many other
factors. Moreover, we did not analyze the impact of intelligent user interface elements on group decisions,
which could accelerate the consensus making process, promote group discussions, or disclose hidden pro-
files. Further limitations are the investigation of negotiation patterns to accelerate the consensus process
within the group (i.e., to resolve conflicts) and persuasive explanations to increase the acceptance of the
recommended item.

11.2. Future Work

This section presents relevant topics for future research based on the limitations defined in Section 11.1.
Intelligent user interfaces
In this thesis, we focused primarily on the determination of optimal strategies (i.e., heuristics) for making
group recommendations in dependence on both the decision scenario and the item domain. There are
other factors, however, which can influence the quality of group decisions. For instance, the selection
of preference acquisition interfaces (5-star rating vs. ranking vs. thumbs up/down, drag&drop vs.
emoticons vs. textual explanations) can have an impact on how group members articulate their preferences
for items (McNee et al., 2003; Chen, 2011). These interfaces should thus be selected based on the
item domain, group dynamics, and the decision scenario. Should this not be done, there is a risk that
the articulated preferences of the group members will not truly reflect their opinions. Moreover, such
interfaces can be applied for increasing the frequency of information exchanges between group members.
For instance, showing notification icons which refer to the occurred conflicts among group members can
help group members be aware of the existence of the conflicts in early stages of decision making processes
and thus, additional group discussions can be triggered (i.e., disclosing of hidden profiles). Another
possibility is the integration of gamification-based concepts in recommender systems such as Planning
Poker (Haugen, 2006), which increases the participation of users in group decisions and accelerates the
consensus making process (Felfernig et al., 2017c). To the best of our knowledge, related work does
not exist concerning the inclusion of the intelligent user interfaces in group decision making processes.
For future work, we propose innovative decision making approaches, which support the discussed user
interfaces and analyze the impacts of these user interfaces in the context of different item domains and
decision scenarios.

141

Chapter 11. Conclusions and Future Work

Group diversity and group dynamics
Group diversity: As already stated in Section 11.1, we clustered participants with similar preferences
and analyzed our approaches with homogeneous groups (e.g., similar ages and educational backgrounds).
Within the scope of future work, we will further evaluate our recommendation approaches with diverse
groups (i.e., group members with diverse cultures, educational backgrounds, genders, and ages). In (Atas
et al., 2017), we found that group diversity can help to increase the knowledge exchange among group
members and thus also raises the quality of the group decision. The answer to the question on the optimal
degree of information exchange and perceived recommendation quality, however, has until now remained
unclear. In this context, the optimal degree of group diversity should be determined depending on the
decision scenario. Diverse groups usually consist of group members with different tastes, interests, occu-
pations, cultures, and educational backgrounds. In such groups, members analyze a group decision from
different perspectives and this triggers additional discussions which help to disclose the hidden profiles.
Therefore, (new) group members with diverse preferences need to be integrated into homogeneous groups
in order to provide other perspectives and to increase the decision quality (Zhang et al., 2007). In this
context, the question arises of “how to identify correct persons/group members (i.e., experts) who are able
to make an optimal group decision”. In order to support such scenarios, Liquid Democracy concepts can
be applied which represent a hybrid voting model of participative democracy (Zhang and Zhou, 2017;
Atas et al., 2018d). Besides, to achieve an optimal group recommendation, each group member should be
an expert in the corresponding item domain. Unfortunately, in reality, group members do not always have
the necessary knowledge about the corresponding item domain and therefore, the advice of the experts
is necessary to precisely evaluate items. In such situations, Liquid Democracy concepts enable group
members to play an active role (i.e., the current user evaluates an item by him/her-self) or a passive role
(i.e., the current user asks for advice of an expert). In this context, our wish is to develop methods and
approaches for determining the optimal degree of group diversity and to analyze the impact of different
group diversity degrees on decision making. Furthermore, we intend to integrate Liquid Democracy in our
group recommender systems.

Group dynamics: In reality, group decisions are influenced by several factors which are often not
considered in group recommender systems, such as the interaction among group members (i.e., group
dynamics) or the cohesiveness between group members which is helpful for understanding the decision
making behaviour of groups. Group dynamics (Forsyth, 2006; Brown, 2012) describe the social interaction
of groups and this phenomenon is classified into intragroup dynamics and intergroup dynamics. The
former refers to the interaction between group members within a group, whereas the latter is the interaction
of a group with other groups. In the context of group decision making, the intragroup dynamics affect
group decisions in situations in which conflicts occur in the context of group member preferences, which
they then attempt to resolve in the process of negotiating to reach a consensus, or when they exchange
relevant information about a decision to disclose hidden profiles. In this thesis, we have mostly considered
the preferences of individual group members, but have not considered the impact of such factors on
different stages of the group decision making process. Bruce W. Tuckman introduced in his study the
stages in the building of groups (e.g., forming, storming, norming, and performing) and showed that these
stages are necessary for groups to grow, face challenges, overcome problems, find solutions, and deliver
results (Tuckman, 1965; Tuckman and Jensen, 1977). In the context of group decision technologies, the
group dynamics can influence group-building stages in the following scenarios: forming (when groups
are formed for the first time, group members begin to know each other’s preferences), storming (diverse

142

11.2. Future Work

preferences of group members have the effect of raising conflicts among group members), norming
(groups begin to resolve conflicts and make consensus), and performing (a group decision is made). Group
dynamics clearly influence the decisions made in each of the group forming stages. For future work, we
thus plan to investigate the group dynamics in our approaches and also to analyze the influence these have
on different domains and scenarios.

Social factors in group decisions
In the previous paragraphs, we pointed out that the application of intelligent user interfaces, diversity
of the group, and group dynamics can have a strong impact on decision making behaviour. In this
context, we further discuss the influence of some factors which were partly considered in this thesis.
For instance, in group scenarios and repeated decisions, fairness aspects can affect the satisfaction
of group members (Burke, 2017; Xiao et al., 2017; Felfernig et al., 2018b). In the context of group
recommendations, fairness should be taken into account in the following scenarios: conflict resolution (the
identified diagnosis must be fair to all group members and should not require only the adaption or removal
of the constraints of some group members), group recommendation generation (the applied aggregation
function should consider the preferences of all group members and identify a recommendation which
satisfies all group members), and repeated decisions (if a decision is often repeated by the same group,
then the preferences of group members should be taken into account on an equal basis, i.e., no member
has a higher priority than the others).

Moreover, in our thesis, we did not consider the personality and emotions of group members on the group
decision making process (Tkali et al., 2016). It is an acknowledged fact that the personality and current
emotions of a user can influence his/her decision making behaviour. For instance, Neidhardt et al. intro-
duced an approach to elicit the personality information of users in the tourism domain (Neidhardt et al.,
2015). Recently, researchers have tried to model the personality and emotion of users by integrating this
information into their systems as a means of understanding the human personality and emotions (Kilmann
and Thomas, 1977; D’Errico and Poggi, 2016; Felfernig et al., 2018c). In the future, we should consider
all of the factors mentioned in order to increase the decision quality and to better understand the decision
making behaviour of users.

Conflict detection and negotiation mechanisms
Although decision technologies have been applied for a number of years, there are still open issues in
the context of basic decision making processes. For instance, the basic question of when is a conflict
seen as a conflict? has only been partly answered to date. We assume that conflict detection depends
on many factors, such as the personalities of involved group members (e.g., optimistic or pessimistic
characteristics), the item domain, and the applied rating scale (e.g., in 5-star rating scale, a difference
higher than one star can be seen as a conflict, where in percentage scale, a difference of more than 15%
can be seen as a conflict). Unfortunately, the determination of conflicts in group decisions scenarios is
very challenging. To the best of our knowledge, no related work exists which can answer this question.

Another important future research topic is the investigation of the negotiation mechanisms. Traditionally,
the members of groups apply different negotiation types (also termed negotiation patterns) to provide ar-
guments for their conflict resolution proposals (Brett, 1991; Kersten, 1997; Boehm et al., 2001; Salamo
et al., 2012). The application of the negotiation patterns in repeated group decision making in particu-
lar can accelerate the consensus making process and increase the acceptance and satisfaction of all group

143

Chapter 11. Conclusions and Future Work

members with regard to the recommended items. These patterns usually consist of promises for the future,
which can be differentiated based on the duration of the negotiation process (long-term vs. short-term).
For instance, in the context of a group decision on restaurant selection which is repeated every week, the
following negotiation pattern can be used: “I agree to visit restaurant X if we agree to visit restaurant Y
next time!”. Furthermore, we can differentiate these negotiation types based on the following categories:
threat (e.g., “If we select the restaurant X, then I will not come, because I don’t like Italian food.”), re-
ward (e.g., ‘‘If we select my favorite restaurant now, then next time, we can have dinner in your favorite
restaurant.”), appeal (e.g., “We should select restaurant X because nobody has a problem with this.”). This
means, we can classify the negotiation types into six patterns (short-term award, long-term award, short-
term threat, long-term threat, short-term appeal, and long-term appeal). In this context, explanations for
group recommendations can be shaped using these negotiation patterns, which provide an insight into the
group recommendation process and help to speed up the consensus making process. However, up to now,
these negotiation patterns have not been adequately analyzed and integrated into decision making support
systems. Within the scope of future work, we will analyze the impact of negotiation patterns on group
decision processes.

144

List of Figures

2.1. Two basic aggregation strategies in group recommendation: (1) recommendation based
on single user profiles with a downstream aggregation of items (or evaluations/ratings)
recommended to group members/users (aggregated predictions) and (2) recommendation
based on aggregated models (group profiles). 22

2.2. Collaborative filtering for groups based on aggregated predictions (ratings). r̂i j is the
rating prediction for item j proposed by recommender i (i = 1..n). 26

2.3. Collaborative filtering for groups based on aggregated predictions (items). 27

2.4. Collaborative filtering for groups based on aggregated models. 27

2.5. Content-based filtering for groups based on aggregated predictions. Similarity si j denotes
the similarity between user i and item j determined by recommender i (i = 1..n). 29

2.6. Content-based filtering for groups based on aggregated models. 30

2.7. Constraint-based recommendation for groups based on aggregated predictions. User pref-
erences are constructed iteratively (conversational recommendation approach). Item ti j

represents item j (including corresponding item utilities) determined by recommender i. . 33

2.8. Constraint-based recommendation for groups based on aggregated models. Group prefer-
ences are constructed iteratively (conversational recommendation). 34

2.9. Determination of the minimal diagnoses ∆1 and ∆2 using the HSDAG approach (Reiter,
1987) (paths to minimal diagnoses are denoted with

√
). 37

2.10. Critiquing-based recommendation for groups with aggregated predictions. User prefer-
ences are constructed iteratively (conversational recommendation). 41

2.11. Critiquing-based recommendation for groups with aggregated models. Group preferences
are constructed iteratively (conversational recommendation). 42

4.1. CHOICLA group decision support environment (Stettinger et al., 2015b) (Android version).
Recommendations (suggestions) are determined on the basis of the different aggregation
functions introduced in Section 4.3. 61

5.1. Groups divided into three different categories. Groups in the Upper-Category are used
to analyze the decision behavior of risky groups, groups assigned to the Lower-Category
are used to analyze the decision behavior of cautious groups, and groups assigned to the
Mixed-Category are used to counteract Group Polarization Effects. 69

145

List of Figures

6.1. Average precision of aggregation functions for each group size. The highest precision of
each aggregation function is achieved for group size of 4. 80

6.2. Precision of aggregation functions for the weight {10,8,4,1}. Group size of four leads
again to the highest precision for each used aggregation function and aggregation functions
AVG, MUL, and ENS achieve the highest precision. 81

7.1. All possible diagnoses of the constraint-based digital camera recommendation example
are determined and shown in a Hitting Set Directed Acyclic Graph. Thereby, six different
diagnoses were found. After one of these diagnoses was applied to the constraint set, a
solution for the group could be determined. 87

7.2. Diagnosis guided by Breadth First Search for the constraint-based digital camera rec-
ommendation example. The diagnosis ∆1 = {c9,c6,c8} is determined for the group
which leads to at least one solution (e.g., video-res=“Full HD”, opt-zoom=0.85, touch-
screen=yes, water-proof=no, wireless=yes). 88

7.3. The HSDAG tree of the digital camera recommendation example. The identification of
a diagnosis guided by the Least Misery aggregation function leads to the diagnosis ∆2 =

{c9,c6,c10}. The number of adaptations for group members is shown as a triple sequence. 89

8.1. Normal distribution of similarities on PC and bike datasets using soft- and hard relaxation-
based approach. 106

10.1. Simplified configuration model (reduced #component types, #attributes, domains, and
multiplicities) of a smart home used for demonstration purposes. Additional constraints
are presented in our discussion of ASP-based configuration knowledge representations. . . 127

10.2. Definition of potential smart home component instances using Answer Set Programming
(ASP) notation. For example, proom(2;3) denotes two potential instances of type room. . . 127

10.3. Definition of component types (in ASP). For example, each potential instance of type room
(i.e., proom(X)) can be part of a configuration as room(X). 128

10.4. Defining generalization hierarchies (in ASP). For example, each stove is an appliance and
each tv is an appliance, and vice-versa, each appliance is either a stove or a tv. 128

10.5. Attribute domain definitions (in ASP). For example, dommaxprice represents an (integer)
attribute that will be used to specify the maximum price of a smarthome solution. For
simplicty, we only include price information related to stoves – see also Figure 10.6. . . . 128

10.6. Associating attributes with component types (in ASP). For example, country is an attribute
associated with smarthomes. On an instance level, attribute instances are only generated
if corresponding component instances exist, i.e., attribute instances are only created when
necessary. 129

10.7. Reducing ASP attribute domain definitions, for example, in generalization hierarchies. For
example, the isdangerous attribute of type appliance is reduced to true if the corresponding
component is a stove. 129

10.8. Defining associations and corresponding multiplicities (in ASP). For example, each
smarthome has 1-2 associated components of type room. 129

10.9. Defining incompatibility constraints (in ASP). For example, no tv should exist in a kitchen. 130

10.10. Defining requires constraints (in ASP). For example, smarthomes in Austria include at
least two rooms. 130

146

List of Figures

10.11. Defining resource constraints (in ASP). For example, the price of a smarthome (repre-
sented by sensorprice only) must not exceed the maxprice defined by the customer. . . . 130

10.12. Defining navigation constraints (in ASP). For example, two different rooms with a stove
must not be part of the same smarthome configuration. In this context, R1 != R2 assures
that two different rooms are analyzed with regard to the inclusion of a stove. 131

10.13. Defining requirements (in ASP). For example, the smarthome should be in austria and no
dangerous appliances should be included. 131

10.14. Restricted version of example smarthome configuration model. 132
10.15. Grounded version of restricted smarthome configuration model. 133
10.16. Solutions for smarthome knowledge base of Figure 10.15. 135
10.17. Symmetry breaking constraints for the entries of Figures 10.2–10.13. 135

147

148

List of Tables

1.1. Overview of the contributions with regard to the research questions of this thesis. 16

2.1. Characteristics to classify group recommenders (Masthoff, 2011, 2015). 20

2.3. Examples of majority-based aggregation: Plurality Voting (PLU), Borda Count (BRC), and
Copeland Rule (COP, “+” indicates a win, “-” a loss, and “0” a tie).

√
denotes the item ti

with the best evaluation, i.e., the recommendation. 24

2.2. Basic aggregation functions for group recommender systems (Chevaleyre et al., 2007;
Levin and Nalebuff, 1995; Masthoff, 2011, 2015; Senot et al., 2010) where argmax is as-
sumed to return a recommended item. Tie breaking rules such as random selection can be
applied. M, C, and B denote the aggregation categories majority-based, consensus-based,
and borderline; u represents a user (group member), G a group, t an item, and I a set of items. 24

2.4. Examples of consensus-based aggregation: Additive Utilitarian (ADD), Average (AVG),
and Multiplicative (MUL). 25

2.5. Examples of Borderline aggregation: Least Misery (LMS), Most Pleasure (MPL), and Ma-
jority Voting (MAJ). 25

2.6. Rating predictions and corresponding scores (scores are used by BRC). Recommendations
are derived on the basis of aggregation functions (AV G, BRC, LMS). The

√
symbol indi-

cates the item with the best evaluation. 26

2.7. Applying collaborative filtering (CF) to a group profile gp (gp-ratings have no relationships
to earlier examples). The

√
symbol indicates the item with the best CF-based evaluation. . 28

2.8. Travel destinations described based on season (digit 1 indicates a recommended season
and 0 indicates a non-recommended one; seasons start with spring), associated topics, and
average user rating (eval). 30

2.9. Example profiles of group members (preferences regarding travel destinations). If a group
member ui likes a category, this is denoted with ’x’. 30

2.10. User × item similarities (and corresponding scores used by BRC) as input for AV G, BRC,
LMS to derive a group recommendation. The

√
symbol indicates the item with the best

evaluation. 31

2.11. Aggregation of preferences (categories) of group members into a group profile gp. 31

2.12. Applying content-based filtering (CBF) to a group profile gp (see Table 2.11). The
√

symbol indicates the item with the best evaluation determined by CBF. 32

2.13. User-specific requirements and preferences (weights). 32

149

List of Tables

2.14. Travel destinations described with regard to the dimensions security (high evaluation rep-
resents a high security), attractiveness (high evaluation represents a high attractiveness),
and crowdedness (high evaluation represents a low crowdedness). For example, security =
5 for the item Vienna indicates the highest possible contribution to the dimension security
(scale 1..5). 34

2.15. User-specific item utilities (and corresponding scores used by BRC) with regard to security,
attractiveness, and crowdedness determined by utility analysis. The

√
symbol indicates the

item with the best evaluation. 35

2.16. Construction of a group profile (gp). User-specific weights regarding the interest dimen-
sions security, attractiveness, and crowdedness are aggregated into gp using AVG. Further-
more, user requirements ri j are combined into R = {r11,r12,r22,r13,r14,r15}. 36

2.17. Item utilities determined on the basis of the weights defined in gp (see Table 2.16). Only
items ti are taken into account that are consistent with the requirements in gp (others are
shown greyed out). The

√
symbol indicates the item with the highest utility. 37

2.18. Example user requirements and related diagnoses in the aggregated models scenario (ri j =
requirement i of user j): ∆1 = {r21,r15}, ∆2 = {r11,r12,r13,r14}, and ∆3 = {r11,r21,r15}.
∆3 is a non-minimal diagnosis included to show that aggregation functions prefer minimal
diagnoses. 38

2.19. Diagnosis recommendation in the aggregated models scenario based on (1) counting the
needed changes per user and (2) LMS. The

√
symbol indicates recommended diagnosis

candidates. 38

2.20. Utility-based diagnosis recommendation in the aggregated models scenario. The
√

symbol
indicates the highest rated diagnosis. 39

2.21. A group-based critiquing scenario: each group member already specified two critiques
(denoted as critiquing history). The reference item for the 1st critiquing cycle is assumed
to be t1(u1,u2,u3), the reference items for the 2nd critiquing cycle are t3(u1), t2(u2), and
t4(u3). 40

2.22. Items of Table 2.8 (similarity with regard to season, topics, and eval). 40

2.23. Selection of new reference items based on the utility of candidate items ti (calculation is
based on Formula 2.7). We assume that previous reference items are not reference item
candidates anymore (represented by ’-’ entries). The

√
symbol denotes the selected new

reference items. 41

2.24. User-specific utilities of new items (see Formula 2.7).
√

indicates the item with the best
evaluation determined by the corresponding aggregation function. 42

2.25. Set of critiques (=group profile gp) defined by the group G = {u1,u2,u3}. 43

2.26. Group-specific utilities of new items determined on the basis of Formula 2.10. The
√

symbol indicates items with the highest utility values. 43

2.27. Recommendation results of two group recommenders (CF based on aggregated models
(AM) and CBF based on aggregated predictions (AP)) as list of ranked items are aggregated
on the basis of Borda Count (BRC). The

√
symbol indicates the item with the best evaluation. 44

2.28. Recommendation results of two group recommenders (CF and CBF) as a list of ranked
items aggregated on the basis of Fairness (FAI) that implements the zipper principle (alter-
nate inclusion of best ranked items – the item ranked highest by CBF is integrated first).

√

indicates the item with the highest ranking. 45

150

List of Tables

2.29. We factorize the rating matrix RRR containing known ratings for n = 8 users and m = 8 items
into matrices PPP and QQQ such that PPPQQQT closely approximates RRR. For illustration purposes, we
minimize the sum of the squared errors of the approximation together with a simple squared
L2-norm regularization term. We set k = 3 factors and regularization parameter to λ= 0.02.
We initialize PPP and QQQ randomly and optimize with the gradient descent algorithm. Note
that factorization brings similar users close to each other in the factor space (c.f. factors of
users u2 and u3 in PPP), whereas dissimilar users are projected further apart (c.f. factors of
users u1 and u2 in PPP). 46

2.30. In the After Factorization (AF) approach the group of users is factorized by merging factors
of users (e.g., by calculating averages) in a given group. In our example, we group three
users from G = {u1,u2,u3}. Note that users u2 and u3 are highly similar to each other but
are highly dissimilar to user u1. Thus, we expect the group ratings to be biased towards the
ratings of users u2 and u3 as group ratings for items i1 (lower because of a low rating from
user u2) and i2 (higher because of a high rating of user u2) show. 46

2.31. In the Before Factorization (BF) approach a virtual group user is created from the rating
matrix by e.g. calculating the average ratings (AV G) for the users from a given group. In the
next step, the group factors are calculated from the given factorization by calculating the
(Ridge) regression coefficients on the ratings of the virtual user. Finally, the group factors
allow us to predict group ratings. The intuition behind BF approach is that the virtual user
is a better representation of the users group than a simple aggregation of users factors. In
our example, BF predicts a significantly lower rating than AF for item i6 because there is
much stronger evidence in the data for a low rating (two 1-star ratings). 47

3.1. Example setting: four group members evaluated restaurants. Study participants had to
recommend one “winner” item per setting. The individual decision heuristics AVG (aver-
age), LMIS (least misery), MPLS (most pleasure), MGD (minimal group distance), ENS
(ensemble voting), and MUL (multiplicative) will recommend “restaurant 1” to the group. . 51

3.2. Patterns of user preferences (evaluations) used in the study, for example, pattern 6 (FULL)
reflects a situation where all group members evaluate the alternative very positively. 53

3.3. Tasks used in the user study. N=20 tasks represent all possible combinations of three out of
six patterns (see Table 3.2). Dominance denotes the fact that the item set used in the task
includes a dominant item, i.e., an item that is not outperformed by another item in terms of
a user evaluation. For example, restaurant 1 in Table 3.1 is a dominating item. 54

3.4. Precision of decision heuristics in the domains of restaurants and shared apartments for
tasks only including dominating items. 55

3.5. Precision of decision heuristics in the domains of restaurants and shared apartments for
tasks not including dominating items. 55

3.6. Precision of decision heuristics in the domains of restaurants and shared apartments for
tasks including dominating and non-dominating items. 55

151

List of Tables

3.7. Explanation focus depending on the item domain. The sentiment dimensions used in our
analysis were dominance of an item, fairness with regard to every group member, and con-
sensus within the group. Dominating alternatives in the item set (columns dom:restaurants
and dom:apartments) trigger more explanations regarding item dominance. In scenarios
that do not include dominating alternatives, other dimensions play a more important role.
In apartment decisions, fairness plays a more important role. Finally, consensus plays a
role in both, apartment and restaurant decisions. 56

4.1. Example group recommender systems. For an in-depth discussion of group recommender
applications we refer to (Jameson and Smyth, 2007; Boratto and Carta, 2015). 58

4.2. Assignment of preference aggregation mechanisms to groups. 61

4.3. Content-, preference-, recommendation-related comments (#comments, avg. #comments
per group, and valence [-5 .. +5] (for recommendation-related comments)). 63

4.4. Duration (endtime-starttime) and processing time (total time of system interaction) invested
per group for decision task completion (i.e., rating of alternatives). 63

4.5. Changes of initial ratings depending on included aggregation mechanism (difference be-
tween original rating and final rating). 63

4.6. Diversity of group recommendations. 64

4.7. Satisfaction with group recommendations. 64

5.1. Analysis of Group Polarization Effects in the risk analysis domain for a threshold of 60%
and a deviation of 7%. The results are represented in percentage by the mean µ, the standard
deviation σ, and the margin of error by using a confidence interval of 95 %. There are 16
groups assigned to the Upper-Category, 7 assigned to the Lower-Category, and 16 assigned
to the Mixed-Category. Group Polarization Effects occur for groups assigned to the upper-
category, but there are no polarization effects for groups assigned to the lower-category.
Groups assigned to mixed-category help to counteract Group Polarization Effects. 70

5.2. Analysis of Group Polarization Effects in the cost estimation domain for a threshold of
3M e and a deviation of 2,2M e. The results of each category are represented in Me (mil-
lion Euros) by the mean µ, the standard deviation σ, and the margin of error by using a
confidence interval of 95 %. There are 26 groups assigned to Upper-Category, 7 assigned
to Lower-Category, and 6 assigned to Mixed-Category. Group Polarization Effects occur
for groups assigned to the lower-category. Groups assigned to mixed-category help coun-
teract Group Polarization Effects. 71

6.1. An example product catalog. In this context, eff-res = effective resolution in mega-pixel,
display = display size in inch, touch = touch screen functionality (yes/no), wifi = wireless
communication functionality (yes/no), nfc = near field communication support (yes/no),
gps = global positioning system functionality (yes/no), video-res = video resolution, zoom
= zoom factor of the camera, weight = weight in grams, and price = price in Euro. 75

6.2. A synthesized homogeneous group with cluster size of 4. Participants with similar prefer-
ences are considered as group members. 76

6.3. The chosen products and three most important camera variables selected by the participants
from Table 6.2. 76

152

List of Tables

6.4. Similarities between group member’s preferences (see Table 6.2 and Table 6.3) and prod-
ucts from the product catalog (see Table 6.1). Weights (w(i)) of Table 6.3 have been taken
into account. The weight sequence {4,3,2,1} is used here, whereby the first value refers to
the 1st , the next value to the 2nd , and the third value to the 3rd most important variable, and
the last one refers to the remaining variables. Different aggregation functions are applied
on these similarity values, then the product with the highest similarity is recommended to
the group. 78

6.5. Calculated prediction quality (precision) of each aggregation function. The value “1” refers
to a correct prediction (i.e., the product chosen by a group member and predicted product by
the aggregation function are identical) and “0” refers to an incorrect prediction. Consensus-
based aggregation functions AVG, MGD, MUL, and ENS predict P1 as the most suitable
product for the group with a precision of 50% (2

4). Borderline aggregation functions LMIS
and MPLS predict P2 as the most suitable product for the group and achieve a precision of
25% (1

4). 79

7.1. Example preferences of two users about a digital camera (UserA and UserB). 91
7.2. Precision of the different aggregation functions, the Breadth First Search (BFS), and the

FASTDIAG algorithm for group sizes between 2 and 6. The last row (average) shows the
average precision of the different group sizes. The LM aggregation function achieves the
highest average precision. 94

8.1. Similarity results of the soft- and hard relaxation-based approaches on both datasets. µ
indicates the mean and σ the standard deviation. 106

9.1. Five example requirements out of 30 requirements which have been shown to participants
of the user study. 112

9.2. Possible parameter combinations for the TF-IDF Vectorizer 116
9.3. Precision, Recall, and F1 Scores for the different Classifiers without POS Tags as Features 118
9.4. Average Precision, Recall, and F1 Scores for the different Classifiers without POS Tags as

Features . 118
9.5. Precision, Recall, and F1 Scores for the different Classifiers including POS Tags as Features 119
9.6. Average Precision, Recall, and F1 Scores for the different Classifiers including POS Tags

as Features . 119

153

154

Bibliography

T. Abeel, Y. V. de Peer, and Y. Saeys. 2009. Java-ML: A Machine Learning Library. The Journal of
Machine Learning Research 10, 931–934 (April 2009). (Cited on page 70.)

G. Adomavicius, J. Bockstedt, S. Curley, and J. Zhang. 2011. Recommender Systems, Consumer Prefer-
ences, and Anchoring Effects. In RecSys 2011 Workshop on Human Decision Making in Recommender
Systems. 35–42. (Cited on pages 4, 62, and 66.)

M. Aldanondo and E. Vareilles. 2008. Configuration for Mass Customization: How to Extend Product
Configuration Towards Requirements and Process Configuration. Journal of Intelligent Manufacturing
19, 5 (2008), 521–535. (Cited on page 5.)

L. Ardissono, A. Goy, G. Petrone, M. Segnan, and P. Torasso. 2003. Intrigue: Personalized Recommenda-
tion of Tourist Attractions for Desktop and Hand Held Devices. Applied Artificial Intelligence 17, 8-9
(2003), 687–714. (Cited on page 74.)

K. Arrow. 1950. The Difficulty in the Concept of Social Welfare. Journal of Political Economy 58, 4
(1950), 328–346. (Cited on page 22.)

M. Atas, A. Felfernig, M. Stettinger, and T. N. T. Tran. 2017. Beyond Item Recommendation: Using
Recommendations to Stimulate Knowledge Sharing in Group Decisions. In 9th International Conference
on Social Informatics (SocInfo 2017). Oxford, UK, 368–377. (Cited on pages 3, 12, 57, and 142.)

M. Atas, S. Reiterer, A. Felfernig, T. N. T. Tran, and M. Stettinger. 2018a. Polarization Effects in Group
Decisions. In Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personal-
ization (UMAP ’18). ACM, New York, NY, USA, 305–310. (Cited on pages 4, 13, and 65.)

M. Atas, R. Samer, and A. Felfernig. 2018b. Automated Identification of Type-Specific Dependencies
between Requirements. In 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI).
688–695. (Cited on pages 5, 15, and 109.)

M. Atas, R. Samer, A. Felfernig, T. N. T. Tran, S. Polat-Erdeniz, and M. Stettinger. 2019a. Socially-Aware
Diagnosis for Constraint-Based Recommendation. In Proceedings of the 27th ACM Conference on User
Modeling, Adaptation and Personalization (UMAP ’19). ACM, New York, NY, USA, 121–129. (Cited
on pages 3, 14, and 83.)

M. Atas, T. N. T. Tran, A. Felfernig, S. Polat-Erdeniz, R. Samer, and M. Stettinger. 2019b. Towards
Similarity-Aware Constraint-Based Recommendation. In Advances and Trends in Artificial Intelligence.
From Theory to Practice, F. Wotawa, G. Friedrich, I. Pill, R. Koitz-Hristov, and M. Ali (Eds.). Springer
International Publishing, Cham, 287–299. (Cited on pages 3, 15, and 97.)

M. Atas, T. N. T. Tran, A. Felfernig, and R. Samer. 2018c. Socially-Aware Recommendation for Over-
Constrained Problems. In Recent Trends and Future Technology in Applied Intelligence, M. Mouhoub,

155

Bibliography

S. Sadaoui, O. Ait Mohamed, and M. Ali (Eds.). Springer International Publishing, Cham, 267–278.
(Cited on pages 3, 13, and 73.)

M. Atas, T. N. T. Tran, R. Samer, A. Felfernig, M. Stettinger, and D. Fucci. 2018d. Liquid Democracy in
Group-based Configuration. In Proceedings of the 20th Configuration Workshop, Graz, Austria, Septem-
ber 27-28, 2018. 93–98. (Cited on page 142.)

L. Atzori, A. Iera, and G. Morabito. 2010. The Internet of Things: A Survey. Computer Networks 54, 15
(2010), 2787–2805. (Cited on pages 6 and 123.)

A. Azaria, A. Hassidim, S. Kraus, A. Eshkol, O. Weintraub, and I. Netanely. 2013. Movie recommender
system for profit maximization. In Proceedings of the 7th ACM conference on Recommender systems.
121–128. (Cited on page 1.)

L. Baltrunas, T. Makcinskas, and F. Ricci. 2010. Group Recommendations with Rank Aggregation and
Collaborative Filtering. In 4th ACM Conference on Recommender Systems. Barcelona, Spain, 119–126.
(Cited on pages 20, 21, 74, 75, and 90.)

A. Bangor, P. T. Kortum, and J. T. Miller. 2008. An Empirical Evaluation of the System Usability Scale.
International Journal of HumanComputer Interaction 24, 6 (2008), 574–594. (Cited on page 87.)

S. Berkovsky and J. Freyne. 2010. Group-based Recipe Recommendations: Analysis of Data Aggregation
Strategies. In 4th ACM Conference on Recommender Systems. Barcelona, Spain, 111–118. (Cited on
pages 4, 21, and 43.)

S. Berkovsky, J. Freyne, M. Coombe, and D. Bhandari. 2010. Recommender Algorithms in Activity
Motivating Games. ACM Conference on Recommender Systems (RecSys’10) (2010), 175–182. (Cited
on pages 25 and 28.)

B. Boehm, P. Grunbacher, and R. O. Briggs. 2001. Developing groupware for requirements negotiation:
lessons learned. IEEE Software 18, 3 (May 2001), 46–55. (Cited on page 143.)

M. U. Bokhari and S. T. Siddiqui. 2010. A Comparative Study of Software Requirements Tools For Secure
Software Development. 2, 2 (2010), 1–12. (Cited on page 109.)

L. Boratto and S. Carta. 2015. The Rating Prediction Task in a Group Recommender System that Automat-
ically Detects Groups: Architectures, Algorithms, and Performance Evaluation. Journal of Intelligent
Information Systems 45, 2 (2015), 221–245. (Cited on pages 21, 58, and 152.)

L. Boratto, S. Carta, and G. Fenu. 2017. Investigating the Role of the Rating Prediction Task in Granularity-
based Group Recommender Systems and Big Data Scenarios. Information Sciences 378 (2017), 424–
443. (Cited on pages 19 and 21.)

J. Borràs, A. Moreno, and A. Valls. 2014. Intelligent tourism recommender systems: A survey. Expert
Systems with Applications 41, 16 (2014), 7370–7389. (Cited on page 1.)

K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P. Kegelmeyer. 2011. SMOTE: Synthetic Minority
Over-sampling Technique. CoRR abs/1106.1813 (2011). (Cited on pages 114 and 121.)

L. Breiman. 2001. Random Forests. Machine Learning 45, 1 (01 Oct 2001), 5–32. (Cited on page 116.)

J. M. Brett. 1991. Negotiating group decisions. Negotiation Journal 7, 3 (01 Jul 1991), 291–310. (Cited
on page 143.)

156

Bibliography

D. Bridge, M. H. Göker, L. McGinty, and B. Smyth. 2005. Case-based recommender systems. The Knowl-
edge Engineering Review 20, 3 (2005), 315–320. (Cited on pages 2 and 8.)

M. Brocco and G. Groh. 2009. Team Recommendation in Open Innovation Networks. In ACM Conference
on Recommender Systems (RecSys’09). NY, USA, 365–368. (Cited on page 47.)

R. Brown. 2012. Group Processes. Blackwell Publishing. (Cited on page 142.)

R. Burke. 2000. Knowledge-based recommender systems. Encyclopedia of library and information systems
69, Supplement 32 (2000), 175–186. (Cited on pages 1, 2, 83, 97, and 98.)

R. Burke. 2002. Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-
Adapted Interaction (UMUAI) 12, 4 (2002), 331–370. (Cited on pages 2, 3, and 43.)

R. Burke. 2017. Multisided Fairness for Recommendation. In 2017 Workshop on Fairness, Accountability,
and Transparency in Machine Learning (FAT/ML 2017). 1–5. (Cited on page 143.)

R. Burke, A. Felfernig, and M. Goeker. 2011. Recommender Systems: An Overview. AI Magazine 32, 3
(2011), 13–18. (Cited on page 1.)

M. Butkiewicz, R. Mueller, D. Selic, E. Dawson, and J. Meiler. 2009. Application of Machine Learning
Approaches on Quantitative Structure Activity Relationships. (Cited on page 118.)

C. Castro-Herrera, C. Duan, J. Cleland-Huang, and B. Mobasher. 2009. A Recommender System for
Requirements Elicitation in Large-scale Software Projects. In Proceedings of the 2009 ACM Symposium
on Applied Computing (SAC ’09). ACM, New York, NY, USA, 1419–1426. (Cited on page 110.)

L. Chen, G. Chen, and F. Wang. 2015. Recommender Systems Based on User Reviews: the State of the
Art. User Modeling and User-Adapted Interaction 25, 2 (2015), 99–154. (Cited on pages 20 and 21.)

L. Chen, M. deGemmis, A. Felfernig, P. Lops, F. Ricci, and G. Semeraro. 2013. Human Decision Making
and Recommender Systems. ACM Transactions on Interactive Intelligent Systems 3, 3 (2013), 1–7.
(Cited on page 58.)

L. Chen and P. Pu. 2012a. Critiquing-based Recommenders: Survey and Emerging Trends. User Modeling
and User-Adapted Interaction (UMUAI) 22, 1–2 (2012), 125–150. (Cited on page 39.)

Y. Chen. 2011. Interface and Interaction Design for Group and Social Recommender Systems. In Proceed-
ings of the Fifth ACM Conference on Recommender Systems (RecSys 11). Association for Computing
Machinery, New York, NY, USA, 363366. (Cited on page 141.)

Y. Chen and P. Pu. 2012b. CoFeel: Using emotions for social interaction in group recommender systems.
CEUR Workshop Proceedings 891 (01 2012), 48–55. (Cited on page 58.)

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. 2007. A Short Introduction to Computational Social
Choice. In 33rd conference on Current Trends in Theory and Practice of Computer Science. Harrachov,
Czech Republic, 51–69. (Cited on pages 22, 24, and 149.)

K. Christakopoulou, F. Radlinski, and K. Hofmann. 2016. Towards Conversational Recommender Systems.
In International Conference on Knowledge Discovery and Data Mining (KDD 2016). San Francisco, CA,
USA, 815–824. (Cited on pages 20 and 21.)

C. Christakou, S. Vrettos, and A. Stafylopatis. 2007. A hybrid movie recommender system based on
neural networks. International Journal on Artificial Intelligence Tools 16, 05 (2007), 771–792. (Cited
on page 1.)

157

Bibliography

M. Dabrowski and T. Acton. 2011. Beyond Similarity-Based Recommenders: Preference Relaxation and
Product Awareness. In E-Commerce and Web Technologies, C. Huemer and T. Setzer (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 296–307. (Cited on page 102.)

Z. Dávid. 2016. Recommender Systems meet Finance: a Literature Review. In FINREC. 3–10. (Cited on
page 1.)

J. de Kleer, A. K. Mackworth, and R. Reiter. 1992. Readings in Model-based Diagnosis. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, Chapter Characterizing Diagnoses and Systems, 54–65.
(Cited on page 98.)

E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson. 1988. Comparing the Areas under Two or More
Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 44, 3
(1988), 837–845. (Cited on page 117.)

T. DePessemier, J. Dhondt, and L. Martens. 2017. Hybrid Group Recommendations for a Travel Service.
Multimedia Tools and Applications 76, 2 (2017), 2787–2811. (Cited on page 43.)

T. DePessemier, J. Dhondt, K. Vanhecke, and L. Martens. 2015. TravelWithFriends: A Hybrid Group Rec-
ommender System for Travel Destinations. In 9th ACM Conference on Recommender Systems, Workshop
on Tourism Recommender Systems. 51–60. (Cited on page 43.)

T. DePessemier, S. Dooms, and L. Martens. 2013. An Improved Data Aggregation Strategy for Group
Recommenders. In 3rd Workshop on Human Decision Making and Recommender Systems (held in con-
junction with the 7th ACM Conference on Recommender Systems). Hong Kong, China, 36–39. (Cited
on page 21.)

T. DePessemier, S. Dooms, and L. Martens. 2014. Comparison of Group Recommendation Algorithms.
Multimedia Tools and Applications 72, 3 (2014), 2497–2541. (Cited on page 43.)

F. D’Errico and I. Poggi. 2016. Social Emotions. A Challenge for Sentiment Analysis and User Models.
Springer, 13–34. (Cited on page 143.)

C. Drescher, O. Tifrea, and T. Walsh. 2010. Symmetry-breaking answer set solving. In ICLP10 Workshop
on Answer Set Programming and Other Computing Paradigm. 177–194. (Cited on page 134.)

H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher, C. Castro-Herrera, and M. Mirakhorli.
2011. On-demand Feature Recommendations Derived from Mining Public Product Descriptions. In
Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11). ACM, New
York, NY, USA, 181–190. (Cited on page 5.)

T. Eiter, E. Erdem, H. Erdoğan, and M. Fink. 2009. Finding Similar or Diverse Solutions in Answer Set
Programming. In Proceedings of the 25th International Conference on Logic Programming (ICLP ’09).
Springer-Verlag, Berlin, Heidelberg, 342–356. (Cited on page 98.)

T. Eiter, T. Kaminski, C. Redl, and A. Weinzierl. 2018. Exploiting Partial Assignments for Efficient Eval-
uation of Answer Set Programs with External Source Access. Journal of Artificial Intelligence Research
62 (07 2018), 665–727. (Cited on page 132.)

M. Ekstrand, J. Riedl, and J. Konstan. 2011. Collaborative Filtering Recommender Systems. Foundations
and Trends in Human-Computer Interaction 4, 2 (2011), 81–173. (Cited on page 25.)

J. Esser. 1998. Alive and well after 25 Years: A Review of Groupthink Research. Organizational Behavior
and Human Decision Processes 73, 2-3 (1998), 116–141. (Cited on pages 4 and 67.)

158

Bibliography

A. Falkner, A. Ryabokon, G. Schenner, and K. Shchekotykhin. 2015. OOASP: Connecting Object-Oriented
and Logic Programming. In 13th International Conference on Logic Programming and Nonmonotonic
Reasoning. Lexington, KY, USA, 332–345. (Cited on pages 124 and 136.)

A. Falkner, G. Schenner, G. Friedrich, and A. Ryabokon. 2012. Testing Object-Oriented Configurators
With ASP. In ECAI 2012 Workshop on Configuration. Montpellier, France, 21–26. (Cited on page 124.)

A. Felfernig. 2014. Biases in Decision Making. In Proceedings of the International Workshop on Decision
Making and Recommender Systems 2014 (CEUR Proceedings), Vol. ISSN 1613-0073, Vol 1278. CEUR
Proceedings, 32–37. (Cited on pages 7, 58, and 65.)

A. Felfernig, M. Atas, T. N. T. Tran, and M. Stettinger. 2016. Towards Group-based Configuration. Inter-
national Workshop on Configuration 2016, Toulouse, France, 69–72. (Cited on pages 36, 38, and 85.)

A. Felfernig, M. Atas, T. N. T. Tran, M. Stettinger, and S. Polat-Erdeniz. 2017a. An Analysis of Group
Recommendation Heuristics for High- and Low-Involvement Items. In International Conference on In-
dustrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2017). Arras,
France, 335–344. (Cited on pages 2, 4, 12, 22, 49, 59, 65, 72, 73, 83, 88, 95, and 97.)

A. Felfernig, L. Boratto, M. Stettinger, and M. Tkalčič. 2018a. Algorithms for Group Recommendation.
Springer International Publishing, Cham, 27–58. (Cited on pages 11 and 19.)

A. Felfernig, L. Boratto, M. Stettinger, and M. Tkalčič. 2018b. Evaluating Group Recommender Systems.
Springer International Publishing, Cham, 59–71. (Cited on page 143.)

A. Felfernig, L. Boratto, M. Stettinger, and M. Tkalčič. 2018c. Personality, Emotions, and Group Dynam-
ics. Springer International Publishing, Cham, 157–167. (Cited on page 143.)

A. Felfernig and R. Burke. 2008. Constraint-based Recommender Systems: Technologies and Research
Issues. In ACM International Conference on Electronic Commerce (ICEC08). Innsbruck, Austria, 17–26.
(Cited on pages 2, 8, 20, 21, and 32.)

A. Felfernig, A. Falkner, M. Atas, S. Polat-Erdeniz, C. Uran, and P. Azzoni. 2017b. ASP-based Knowledge
Representations for IoT Configuration Scenarios. In 19th International Configuration Workshop. 62–67.
(Cited on pages 6, 16, and 123.)

A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. 2004. Consistency-based Diagnosis of Con-
figuration Knowledge Bases. Artificial Intelligence 152, 2 (2004), 213–234. (Cited on pages 9, 36,
and 84.)

A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. 2011a. Developing constraint-based recommenders.
In Recommender systems handbook. Springer, 187–215. (Cited on page 2.)

A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen. 2014a. Knowledge-based Configuration: From Research
to Business Cases. Elsevier/Morgan Kaufmann Publishers. 41–72 pages. (Cited on pages 5, 6, 10, 123,
124, and 140.)

A. Felfernig, K. Isak, K. Szabo, and P. Zachar. 2007. The VITA Financial Services Sales Support Environ-
ment. Vancouver, Canada, 1692–1699. (Cited on pages 1 and 6.)

A. Felfernig, M. Jeran, G. Ninaus, F. Reinfrank, and S. Reiterer. 2013a. Toward the Next Generation of
Recommender Systems. In Multimedia Services in Intelligent Environments: Recommendation Services.
Springer, 81–98. (Cited on page 19.)

159

Bibliography

A. Felfernig, M. Mairitsch, M. Mandl, M. Schubert, and E. Teppan. 2009a. Utility-Based Repair of In-
consistent Requirements. In Next-Generation Applied Intelligence. Springer Berlin Heidelberg, Berlin,
Heidelberg, 162–171. (Cited on page 8.)

A. Felfernig, M. Schubert, G. Friedrich, M. Mandl, M. Mairitsch, and E. Teppan. 2009b. Plausible Re-
pairs for Inconsistent Requirements. In 21st International Joint Conference on Artificial Intelligence
(IJCAI’09). Pasadena, CA, 791–796. (Cited on pages 33, 36, 38, and 39.)

A. Felfernig, M. Schubert, and S. Reiterer. 2013b. Personalized Diagnosis for Over-Constrained Problems.
In 23rd International Conference on Artificial Intelligence (IJCAI 2013). Peking, China, 1990–1996.
(Cited on pages 39, 84, 86, 94, and 101.)

A. Felfernig, M. Schubert, and C. Zehentner. 2012. An Efficient Diagnosis Algorithm for Inconsistent
Constraint Sets. Artificial Intelligence for Engineering Design, Analysis, and Manufacturing (AIEDAM)
26, 1 (2012), 53–62. (Cited on pages 36 and 136.)

A. Felfernig, M. Stettinger, L. Boratto, and M. Tkalcic. 2018d. Group Recommender Systems: An Intro-
duction. Springer US. (Cited on pages 2, 3, 4, 65, 83, 84, and 137.)

A. Felfernig, M. Stettinger, A. Falkner, M. Atas, X. Franch, and C. Palomares. 2017c. OPENREQ: Recom-
mender Systems in Requirements Engineering. In RS-BDA17. Graz, Austria, 1–4. (Cited on pages 5,
109, and 141.)

A. Felfernig, M. Stettinger, and G. Leitner. 2015. Fostering Knowledge Exchange using Group Recom-
mendations. (Cited on pages 59 and 60.)

A. Felfernig, M. Stettinger, G. Ninaus, M. Jeran, S. Reiterer, A. Falkner, G. Leitner, and J. Tiihonen. 2014b.
Towards Open Configuration. In 16th Intl Workshop on Configuration. Novi Sad, Serbia, 89–94. (Cited
on page 5.)

A. Felfernig, C. Zehentner, G. Ninaus, H. Grabner, W. Maalej, D. Pagano, L. Weninger, and F. Reinfrank.
2011b. Group Decision Support for Requirements Negotiation. Springer Lecture Notes in Computer
Science 7138 (2011), 105–116. (Cited on pages 36 and 58.)

S. Ferber, J. Haag, and J. Savolainen. 2002. Feature Interaction and Dependencies: Modeling Features for
Reengineering a Legacy Product Line. In Software Product Lines, G. J. Chastek (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 235–256. (Cited on pages 110 and 140.)

D. Forsyth. 2006. Group Dynamics. Thomson Higher Education. (Cited on page 142.)

G. Friedrich, A. Ryabokon, A. Falkner, A. Haselböck, G. Schenner, and H. Schreiner. 2011.
(Re)configuration using Answer Set Programming. In Workshop on Configuration. Barcelona, Spain,
17–25. (Cited on page 124.)

R. T. Futrell, L. I. Shafer, and D. F. Shafer. 2001. Quality Software Project Management. Prentice Hall
PTR, Upper Saddle River, NJ, USA. (Cited on pages 68 and 72.)

M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera. 2012. A Review on Ensembles for
the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. Trans. Sys. Man
Cyber Part C 42, 4 (July 2012), 463–484. (Cited on pages 114 and 121.)

H. Garcia-Molina, G. Koutrika, and A. Parameswaran. 2011. Information Seeking: Convergence of Search,
Recommendations, and Advertising. Commun. ACM 54, 11 (2011), 121–130. (Cited on page 21.)

160

Bibliography

M. Gasparic and A. Janes. 2016. What Recommendation Systems for Software Engineering Recommend.
J. Syst. Softw. 113, C (March 2016), 101–113. (Cited on page 97.)

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. 2012. Answer Set Solving in Practice. Morgan &
Claypool Publishers. (Cited on page 131.)

M. Gebser, B. Kaufmann, R. Otero, J. Romero, T. Schaub, and P. Wanko. 2013. Domain-specific heuristics
in answer set programming. Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI
2013 (01 2013), 350–356. (Cited on page 134.)

M. Gebser, A. Ryabokon, and G. Schenner. 2015. Combining Heuristics for Configuration Problems Using
Answer Set Programming. In 13th International Conference on Logic Programming and Nonmonotonic
Reasoning. Lexington, KY, USA, 384–397. (Cited on page 132.)

M. Gelfond and V. Lifschitz. 1988. The stable model semantics for logic programming. In 5th International
Conference of Logic Programming (ICLP’88). 1070–1080. (Cited on pages 124 and 140.)

S. Ghazarian and M. Nematbakhsh. 2015. Enhancing Memory-based Collaborative Filtering for Group
Recommender Systems. Expert Systems with Applications 42, 7 (2015), 3801–3812. (Cited on page 25.)

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. 1992. Using collaborative filtering to weave an infor-
mation tapestry. Commun. ACM 35, 12 (1992), 61–71. (Cited on pages 2 and 83.)

T. Greitemeyer and S. Schulz-Hardt. 2003. Preference-consistent evaluation of information in the hidden
profile paradigm: Beyond group-level explanations for the dominance of shared information in group
decisions. Journal of personality and social psychology 84, 2 (2003), 322. (Cited on pages 7 and 12.)

J. Guo, L. Sun, W. Li, and T. Yu. 2017. Applying Uncertainty Theory to Group Recommender Systems
Taking Account of Experts Preferences. Multimedia Tools and Applications (2017), 1–18. (Cited on
page 38.)

F. Guzzi, F. Ricci, and R. Burke. 2011. Interactive Multi-party Critiquing for Group Recommendation.
In 5th ACM Conference on Recommender Systems. Chicago, IL, USA, 265–268. (Cited on pages 39
and 41.)

M. A. Hall. 1999. Correlation-based feature selection for machine learning. (1999). (Cited on page 114.)

N. C. Haugen. 2006. An empirical study of using planning poker for user story estimation. In AGILE 2006
(AGILE’06). 9 pp.–34. (Cited on page 141.)

E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. 2005. Finding Diverse and Similar Solutions in Con-
straint Programming. In Proceedings of the 20th National Conference on Artificial Intelligence - Volume
1 (AAAI’05). AAAI Press, 372–377. (Cited on page 98.)

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. 2004. Evaluating Collaborative Filtering
Recommender Systems. ACM Trans. Inf. Syst. 22, 1 (Jan. 2004), 5–53. (Cited on pages 53, 73, and 83.)

H. F. Hofmann and F. Lehner. 2001. Requirements engineering as a success factor in software projects.
IEEE Software 18, 4 (Jul 2001), 58–66. (Cited on pages 5, 10, and 109.)

S. Hong, C. Mao, Z. Yang, and H. Lai. 2014. A New Team Recommendation Model with Applications in
Social Network. In 18th IEEE International Conference on Computer Supported Cooperative Work in
Design (CSCWD). NY, USA, 644–648. (Cited on page 47.)

161

Bibliography

L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley, and K. Wolter. 2014. Configuration Knowl-
edge Representation and Reasoning. In Knowledge-Based Configuration: From Research to Business
Cases. 41–72. (Cited on pages 10, 124, and 140.)

L. Hotz and K. Wolter. 2013. Smarthome Configuration Model. In Knowledge-based Configuration – From
Research to Business Cases, A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen (Eds.). Morgan Kaufmann
Publishers, Chapter 10, 157–174. (Cited on page 136.)

X. Hu, X. Meng, and L. Wang. 2011. SVD-based Group Recommendation Approaches: An Experimental
Study of Moviepilot. In ACM Recommender Systems 2011 Challenge on Context-aware Movie Recom-
mendation. 23–28. (Cited on page 46.)

K. Jacowith and D. Kahneman. 1995. Measures of Anchoring in Estimation Tasks. Personality and Social
Psychology Bulletin 21, 11 (1995), 1161–1166. (Cited on pages 4 and 66.)

A. Jameson. 2004. More than the Sum of its Members: Challenges for Group Recommender Systems. In
International Working Conference on Advanced Visual Interfaces. 48–54. (Cited on pages 4, 20, 34,
49, 57, 58, 65, and 74.)

A. Jameson, S. Baldes, and T. Kleinbauer. 2004. Two Methods for Enhancing Mutual Awareness in a Group
Recommender System. In ACM Intl. Working Conference on Advanced Visual Interfaces. Gallipoli, Italy,
447–449. (Cited on page 20.)

A. Jameson and B. Smyth. 2007. Recommendation to Groups. In The Adaptive Web, P. Brusilovsky,
A. Kobsa, and W. Nejdl (Eds.). Lecture Notes in Computer Science, Vol. 4321. 596–627. (Cited on
pages 3, 4, 19, 21, 49, 50, 57, 58, and 152.)

A. Jameson, M. Willemsen, A. Felfernig, M. de Gemmis, P. Lops, G. Semeraro, and L. Chen. 2015.
Human Decision Making and Recommender Systems. In Recommender Systems Handbook, 2nd Edition,
F. Ricci, L. Rokach, and B. Shapira (Eds.). Springer, 611–648. (Cited on pages 20, 49, and 58.)

I. Janis. 1972. Victims of groupthink: A psychological study of foreign decisions and fiascoes. Houghton-
Mifflin. (Cited on pages 4, 7, 8, and 67.)

D. Jannach, M. Zanker, A. Felfernig, and G. G. Friedrich. 2010. Recommender Systems: An Introduction.
Cambridge University Press, New York, NY, USA. (Cited on pages 1, 2, 3, 49, 57, 59, 65, 73, 75, 83,
84, 90, and 97.)

T. Joachims. 1998. Text categorization with Support Vector Machines: Learning with many relevant fea-
tures. In Machine Learning: ECML-98, C. Nédellec and C. Rouveirol (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 137–142. (Cited on page 116.)

U. Junker. 2004. QUICKXPLAIN: Preferred explanations and relaxations for over-constrained problems,
In Proceedings of the 19th National Conference on Artifical Intelligence. AAAI, 167–172. (Cited on
pages 87, 89, and 100.)

G. E. Kersten. 1997. Support for Group Decisions and Negotiations An Overview *. In Multicriteria Anal-
ysis, J. Clı́maco (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 332–346. (Cited on page 143.)

R. Kilmann and K. Thomas. 1977. Developing a Forced-Choice Measure of Conflict-Handling Behavior:
The ”MODE” Instrument. Educational and Psych. Measurement 37, 2 (1977), 309–325. (Cited on
page 143.)

162

Bibliography

M. Kompan and M. Bielikova. 2014. Group Recommendations: Survey and Perspectives. Computing and
Informatics 33, 2 (2014), 446–476. (Cited on page 21.)

J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, and J. Riedl. 1997. GroupLens: Applying
Collaborative Filtering to Usenet News. Communications of the ACM 40, 3 (1997), 77–87. (Cited on
pages 2, 25, 83, and 97.)

Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix Factorization Techniques for Recommender Systems.
IEEE Computer 42, 8 (2009), 30–37. (Cited on pages 45 and 46.)

D. Kudenko, M. Bauer, and D. Dengler. 2003. Group Decision Making through Mediated Discussions.
In User Modeling 2003, P. Brusilovsky, A. Corbett, and F. de Rosis (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 238–247. (Cited on page 58.)

H. Lamm and C. Sauer. 1974. Discussion-induced shift toward higher demands in negotiation. European
Journal of Social Psychology 4, 1 (1974), 85–88. (Cited on pages 66 and 71.)

D. Leffingwell. 1997. Calculating the return on investment from more effective requirments management.
10 (1997), 13–16. (Cited on page 109.)

G. Leitner, A. Fercher, A. Felfernig, and M. Hitz. 2012. Reducing the Entry Threshold of AAL Systems:
Preliminary Results from Casa Vecchia. In 13th Intl. Conference on Computers Helping People with
Special Needs. Linz, Austria, 709–715. (Cited on pages 2 and 84.)

G. Leitner, A. Fercher, A. Felfernig, K. Isak, S. Polat-Erdeniz, A. Akcay, and M. Jeran. 2016. Recom-
mending and Configuring Smart Home Installations. In Workshop on Configuration. 17–22. (Cited on
page 126.)

J. Levin and B. Nalebuff. 1995. An Introduction to Vote-Counting Schemes. Journal of Economic Per-
spectives 9, 1 (1995), 3–26. (Cited on pages 24 and 149.)

C. Li and Z. Luo. 2011. Detection of shilling attacks in collaborative filtering recommender systems. (10
2011). (Cited on page 8.)

J. Li, R. Jeffery, K. H. Fung, L. Zhu, Q. Wang, H. Zhang, and X. Xu. 2012. A Business Process-Driven
Approach for Requirements Dependency Analysis. In Business Process Management, A. Barros, A. Gal,
and E. Kindler (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 200–215. (Cited on pages 5
and 110.)

S. L. Lim, D. Quercia, and A. Finkelstein. 2010. StakeNet: Using Social Networks to Analyse the Stake-
holders of Large-scale Software Projects. In Proceedings of the 32Nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 295–304. (Cited on
page 5.)

E. Lind, L. Kray, and L. Thompson. 2001. Primacy Effects in Justice Judgments: Testing Predictions
from Fairness Heuristic Theory. Organizational behavior and human decision processes 85 (08 2001),
189–210. (Cited on page 3.)

G. Linden, B. Smith, and J. York. 2003. Amazon.com Recommendations – Item-to-Item Collaborative
Filtering. IEEE Internet Computing 7, 1 (2003), 76–80. (Cited on page 25.)

J. Liu, P. Dolan, and E. R. Pedersen. 2010. Personalized news recommendation based on click behavior.
In Proceedings of the 15th international conference on Intelligent user interfaces. 31–40. (Cited on
page 1.)

163

Bibliography

S. Loh, F. Lorenzi, R. Saldaña, and D. Licthnow. 2003. A tourism recommender system based on col-
laboration and text analysis. Information Technology & Tourism 6, 3 (2003), 157–165. (Cited on
page 1.)

G. Macher, M. Atas, E. Armengaud, and C. Kreiner. 2015. Automotive Real-time Operating Systems: A
Model-based Configuration Approach. SIGBED Rev. 11, 4 (Jan. 2015), 67–72. (Cited on page 6.)

T. Mahmood and F. Ricci. 2009. Improving Recommender Systems with Adaptive Conversational Strate-
gies. In 20th ACM Conference on Hypertext and Hypermedia. Torino, Italy, 73–82. (Cited on pages 20
and 21.)

M. Mandl, A. Felfernig, E. Teppan, and M. Schubert. 2011. Consumer Decision Making in Knowledge-
based Recommendation. J. Intell. Inf. Syst. 37, 1 (Aug. 2011), 1–22. (Cited on page 65.)

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky. 2014. The Stanford
CoreNLP Natural Language Processing Toolkit. In Association for Computational Linguistics (ACL)
System Demonstrations. 55–60. (Cited on page 112.)

J. Marquez and J. Ziegler. 2015. Preference Elicitation and Negotiation in a Group Recommender Systems.
In Interact 2015 (LNCS), Vol. 9297. Springer, 20–37. (Cited on page 21.)

J. Masthoff. 2004. Group Modeling: Selecting a Sequence of Television Items to Suit a Group of Viewers.
User Modeling and User-Adapted Interaction (UMUAI) 14, 1 (2004), 37–85. (Cited on pages 22, 23,
24, 49, 57, and 74.)

J. Masthoff. 2006. The user as wizard: A method for early involvement in the design and evaluation
of adaptive systems. In Fifth Workshop on User-Centred Design and Evaluation of Adaptive Systems,
S. Weibelzahl, A. Paramythis, and J. Masthoff (Eds.). 460–469. Proceedings of the Fifth Workshop on
User-Centred Design and Evaluation of Adaptive Systems, held in conjunction with the 4th International
Conference on Adaptive Hypermedia & Adaptive Web-based Systems (AH’06), Dublin, Ireland, June
20th, 2006. (Cited on page 52.)

J. Masthoff. 2011. Group Recommender Systems: Combining Individual Models. Recommender Systems
Handbook (2011), 677–702. (Cited on pages 2, 3, 4, 19, 20, 22, 24, 49, 50, 57, 58, 59, 63, 65, 73, 83,
92, 137, and 149.)

J. Masthoff. 2015. Group Recommender Systems: Aggregation, Satisfaction and Group Attributes. Rec-
ommender Systems Handbook (2015), 743–776. (Cited on pages 19, 20, 22, 24, and 149.)

J. Masthoff and A. Gatt. 2006. In pursuit of satisfaction and the prevention of embarrassment: affective
state in group recommender systems. User Modeling and User-Adapted Interaction 16, 3 (01 Sep 2006),
281–319. (Cited on page 58.)

K. McCarthy, L. McGinty, B. Smyth, and M. Salamó. 2006. Social Interaction in the CATS Group Rec-
ommender. In Workshop on the Social Navigation and Community based Adaptation Technologies. 743–
776. (Cited on pages 20, 21, 39, 40, 41, 49, 58, and 74.)

D. McDonald and M. Ackerman. 2000. Expertise Recommender: A Flexible Recommendation System and
Architecture. In Conference on Computer Support Cooperative Work. Philadelphia, PA, USA, 231–240.
(Cited on page 47.)

L. McGinty and B. Smyth. 2003. On the Role of Diversity in Conversational Recommender Systems.
In Case-Based Reasoning Research and Development, K. D. Ashley and D. G. Bridge (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 276–290. (Cited on page 59.)

164

Bibliography

S. M. McNee, S. K. Lam, J. A. Konstan, and J. Riedl. 2003. Interfaces for Eliciting New User Preferences in
Recommender Systems. In Proceedings of the 9th International Conference on User Modeling (UM03).
Springer-Verlag, Berlin, Heidelberg, 178187. (Cited on page 141.)

D. McSherry. 2003. Similarity and Compromise. In Case-Based Reasoning Research and Development,
K. D. Ashley and D. G. Bridge (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 291–305. (Cited
on page 101.)

D. McSherry. 2004. Maximally Successful Relaxations of Unsuccessful Queries. In 15th Conference on
AI and Cognitive Science. AAAI Press, 127–136. (Cited on pages 29, 40, and 101.)

R. Van Meteren and M. Van Someren. 2000. Using content-based filtering for recommendation. In Pro-
ceedings of the Machine Learning in the New Information Age: MLnet/ECML2000 Workshop. 47–56.
(Cited on page 2.)

V. Metsis, I. Androutsopoulos, and G. Paliouras. 2006. Spam filtering with naive bayes-which naive bayes?.
In CEAS, Vol. 17. 28–69. (Cited on pages 116 and 119.)

B. Mobasher and J. Cleland-Huang. 2011. Recommender Systems in Requirements Engineering. AI
Magazine 32, 3 (2011), 81–89. (Cited on pages 5, 109, and 110.)

A. Mojzisch and S. Schulz-Hardt. 2010. Knowing Others’ Preferences Degrades the Quality of Group
Decisions. Journal of personality and social psychology 98 (05 2010), 794–808. (Cited on pages 58
and 62.)

R. J. Mooney and L. Roy. 2000. Content-based Book Recommending Using Learning for Text Categoriza-
tion. In Proceedings of the Fifth ACM Conference on Digital Libraries (DL ’00). ACM, New York, NY,
USA, 195–204. (Cited on pages 2 and 83.)

J. Murphy, C. Hofacker, and R. Mizerski. 2006. Primacy and Recency Effects on Clicking Behavior.
Journal of Computer-Mediated Communication 11, 2 (2006), 522–535. (Cited on pages 66 and 111.)

D. G. Myers and H. Lamm. 1976. The group polarization phenomenon. Psychological bulletin 83, 4
(1976), 602. (Cited on pages 4, 66, and 68.)

V. Myllärniemi, J. Tiihonen, M. Raatikainen, and A. Felfernig. 2014. Using Answer Set Programming
for Feature Model Representation and Configuration. In Workshop on Configuration. 1–8. (Cited on
page 124.)

J. Neidhardt, L. Seyfang, R. Schuster, and H. Werthner. 2015. A Picture-based Approach to Recommender
Systems. Information Technology & Tourism 15, 1 (2015), 49–69. (Cited on page 143.)

T. Nguyen. 2017. Conversational Group Recommender Systems. In International Conference on User
Modelling, Adaptation and Personalization (UMAP’17). ACM, 331–334. (Cited on page 20.)

T. Nguyen and F. Ricci. 2017. A Chat-Based Group Recommender System for Tourism. In Information
and Comm. Tech. in Tourism, R. Schegg and B. Stangl (Ed.). 17–30. (Cited on page 20.)

G. Ninaus, A. Felfernig, M. Stettinger, S. Reiterer, G. Leitner, L. Weninger, and W. Schanil. 2014a. IN-
TELLIREQ: Intelligent Techniques for Software Requirements Engineering. In Prestigious Applications
of Intelligent Systems Conference (PAIS). 1161–1166. (Cited on pages 5, 49, 58, and 74.)

G. Ninaus, F. Reinfrank, M. Stettinger, and A. Felfernig. 2014b. Content-based recommendation techniques
for requirements engineering. In 2014 IEEE 1st International Workshop on Artificial Intelligence for
Requirements Engineering (AIRE). 27–34. (Cited on page 110.)

165

Bibliography

M. O’Connor, D. Cosley, J. Konstan, and J. Riedl. 2001. PolyLens: A Recommender System for Groups of
Users. In Europ. Conf. on Computer-Supported Cooperative Work. ACM, 199–218. (Cited on pages 49,
58, and 73.)

F. Ortega, A. Hernando, J. Bobadilla, and J. H. Kang. 2016. Recommending Items to Group of Users
using Matrix Factorization based Collaborative Filtering. Information Sciences 345, C (2016), 313–324.
(Cited on pages 25, 45, and 46.)

D. Paraschakis. 2016. Recommender Systems from an Industrial and Ethical Perspective. In Proceedings
of the 10th ACM Conference on Recommender Systems (RecSys ’16). ACM, New York, NY, USA, 463–
466. (Cited on page 97.)

J. Payne, J. Bettman, and E. Johnson. 1993. The Adaptive Decision Maker. Cambridge University Press,
New York. (Cited on page 50.)

M. Pazzani and D. Billsus. 1997. Learning and Revising User Profiles: The Identification of Interesting
Web Sites. Machine Learning 27, 3 (01 Jun 1997), 313–331. (Cited on pages 2, 83, and 97.)

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830. (Cited on page 115.)

B. Peischl, M. Nica, M. Zanker, and W. Schmid. 2009. Recommending Effort Estimation Methods for Soft-
ware Project Management. In 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology, Vol. 3. 77–80. (Cited on pages 2 and 84.)

D. Pennock, E. Horvitz, and C. Giles. 2000. Social Choice Theory and Recommender Systems: Anal-
ysis of the axiomatic foundations of collaborative filtering. In 17th National Conference on Artificial
Intelligence (AAAI). Austin, TX, USA, 729–734. (Cited on page 19.)

R. Petty, J. Cacioppo, and D. Schumann. 1983. Central and Peripheral Routes to Advertising Effectiveness:
The Moderating Role of Involvement. Journal of Consumer Research 10 (1983), 135–146. (Cited on
page 50.)

J. Plisson, N. Lavrac, and D. Mladenic. 2004. A Rule based Approach to Word Lemmatization. In Pro-
ceedings of the 7th International Multiconference Information Society. IS-2004. 83–86. (Cited on
page 113.)

C. Prud’homme, J. G. Fages, and X. Lorca. 2017. Choco Documentation. TASC - LS2N CNRS UMR
6241, COSLING S.A.S. (Cited on page 103.)

L. Quijano-Sánchez, D. Bridge, B. Dı́az-Agudo, and J. Recio-Garcı́a. 2013. A Case-Based Solution to the
Cold-Start Problem in Group Recommenders. In 23rd International Conference on Artificial Intelligence
(IJCAI 2013). 3042–3046. (Cited on page 25.)

L. Recalde. 2017. A Social Framework for Set Recommendation in Group Recommender Systems. In
European Conference on Information Retrieval. Springer, 735–743. (Cited on page 47.)

R. Reiter. 1987. A Theory of Diagnosis from First Principles. AI Journal 32, 1 (1987), 57–95. (Cited on
pages 9, 36, 37, 86, 87, 100, and 145.)

S. Reiterer. 2015. An Integrated Knowledge Engineering Environment for Constraint-based Recommender
Systems. In FINREC. 11–18. (Cited on pages 2, 8, and 84.)

166

Bibliography

S. Reiterer, A. Felfernig, J. Michael, M. Stettinger, M. Wundara, and W. Eixelsberger. 2015. A Wiki-based
Environment for Constraint-based Recommender Systems Applied in the E-Government Domain. In
UMAP Workshops. 1–10. (Cited on pages 2, 3, 84, and 98.)

P. Resnick and H. R. Varian. 1997. Recommender Systems. Commun. ACM 40, 3 (March 1997), 56–58.
(Cited on pages 6 and 65.)

F. Ricci, L. Rokach, and B. Shapira. 2011. Introduction to recommender systems handbook. In Recom-
mender systems handbook. Springer, 1–35. (Cited on pages 1, 57, 59, 65, and 97.)

F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. 2010. Recommender Systems Handbook. Springer-
Verlag, Berlin, Heidelberg. (Cited on pages 1, 2, and 3.)

B. Van Roy and X. Yan. 2009. Manipulation-Resistant Collaborative Filtering Systems. In Proceedings of
the Third ACM Conference on Recommender Systems (RecSys 09). Association for Computing Machin-
ery, New York, NY, USA, 165172. (Cited on page 8.)

K. Ryan. 1993. The role of natural language in requirements engineering. In [1993] Proceedings of the
IEEE International Symposium on Requirements Engineering. 240–242. (Cited on page 110.)

D. Sacharidis. 2017. Group Recommendations by Learning Rating Behavior. In International Conference
on User Modelling, Adaptation and Personalization (UMAP’17). ACM, 174–182. (Cited on pages 22
and 25.)

M. Salamo, K. McCarthy, and B. Smyth. 2012. Generating Recommendations for Consensus Negotiation
in Group Personalization Services. Personal and Ubiquitous Computing 16, 5 (2012), 597–610. (Cited
on page 143.)

N. Sannier, M. Adedjouma, M. Sabetzadeh, and L. Briand. 2017. An Automated Framework for Detection
and Resolution of Cross References in Legal Texts. Requir. Eng. 22, 2 (June 2017), 215–237. (Cited
on page 110.)

S. Schulz-Hardt, F. Brodbeck, A. Mojzisch, R. Kerschreiter, and D. Frey. 2006. Group Decision Making
in Hidden Profile Situations: Dissent as a Facilitator of Decision Quality. Journal of Personality and
Social Psychology 91, 6 (2006), 1080–1093. (Cited on pages 58 and 63.)

C. Schwind and J. Buder. 2012. Reducing confirmation bias and evaluation bias: When are preference-
inconsistent recommendations effective - And when not? 28 (11 2012), 22802290. (Cited on page 72.)

C. Senot, D. Kostadinov, M. Bouzid, G. Picault, A. Aghasaryan, and C. Bernier. 2010. Analysis of Strate-
gies for Building Group Profiles. In Conference on User Modeling, Adaptation, and Personalization
(UMAP 2010) (LNCS), Vol. 6075. Big Island, Hawaii, USA, 40–51. (Cited on pages 22, 24, and 149.)

C. Senot, D. Kostadinov, M. Bouzid, J. Picault, and A. Aghasaryan. 2011. Evaluation of Group Profiling
Strategies. In IJCAI 2011. 2728–2733. (Cited on pages 22, 23, and 24.)

K. M. Shchekotykhin. 2014. Interactive Debugging of ASP Programs. CoRR abs/1403.5142 (2014), 1597–
1603. (Cited on page 136.)

C. L. Sia, B. C. Y. Tan, and K. K. Wei. 2002. Group Polarization and Computer-Mediated Communication:
Effects of Communication Cues, Social Presence, and Anonymity. Information Systems Research 13, 1
(2002), 70–90. (Cited on pages 66 and 71.)

H. Simon. 1955. A Behavioral Model of Rational Choice. Quarterly Journal of Economics 69 (1955),
99–118. (Cited on page 50.)

167

Bibliography

T. Soininen and I. Niemelä. 1998. Developing a declarative rule language for applications in product
configuration. In PADL. 305–319. (Cited on pages 124 and 140.)

G. Stasser and W. Titus. 1985. Pooling of unshared information in group decision making: Biased infor-
mation sampling during discussion. Journal of personality and social psychology 48, 6 (1985), 1467.
(Cited on pages 3, 7, 12, 62, and 63.)

M. Stettinger and A. Felfernig. 2014. CHOICLA: Intelligent Decision Support for Groups of Users in
Context of Personnel Decisions. In ACM RecSys’2014 IntRS Workshop. Foster City, CA, USA, 28–32.
(Cited on pages 29 and 138.)

M. Stettinger, A. Felfernig, G. Leitner, and S. Reiterer. 2015a. Counteracting Anchoring Effects in Group
Decision Making. In 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP’15)
(LNCS), Vol. 9146. Dublin, Ireland, 118–130. (Cited on pages 4, 8, 50, 58, and 61.)

M. Stettinger, A. Felfernig, G. Leitner, S. Reiterer, and J. Michael. 2015b. Counteracting Serial Position
Effects in the CHOICLA Group Decision Support Environment. In Proceedings of the 20th International
Conference on Intelligent User Interfaces (IUI ’15). ACM, New York, NY, USA, 148–157. (Cited on
pages 50, 58, 59, 60, 61, 66, 74, 111, and 145.)

M. Stolze, S. Field, and P. Kleijer. 2000. Combining Configuration and Evaluation Mechanisms to Support
the Selection of Modular Insurance Products. In Proceedings of the 8th European Conference on Infor-
mation Systems, Trends in Information and Communication Systems for the 21st Century, ECIS 2000,
Vienna, Austria, July 3-5, 2000. 858–865. (Cited on page 6.)

M. Stone. 1974. Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal
Statistical Society. Series B (Methodological) 36, 2 (1974), 111–147. (Cited on page 116.)

J. A. F. Stoner. 1961. A comparison of individual and group decisions involving risk. Ph.D. Dissertation.
Massachusetts Institute of Technology. (Cited on pages 4, 8, 66, 68, and 71.)

M. Stumptner. 1997. An Overview of Knowledge&Dash;Based Configuration. AI Commun. 10, 2 (April
1997), 111–125. (Cited on pages 5, 10, and 123.)

C. R. Sunstein. 2002. The law of group polarization. Journal of political philosophy 10, 2 (2002), 175–195.
(Cited on pages 4, 66, and 68.)

R. Taupe, A. Falkner, and G. Schenner. 2016. Deriving Tighter Component Cardinality Bounds for Product
Configuration. In 18 th International Configuration Workshop. 47. (Cited on page 136.)

E. Teppan and G. Friedrich. 2016. Heuristic Constraint Answer Set Programming. In ECAI 2016. 1692–
1693. (Cited on pages 124, 132, and 136.)

J. Tiihonen, T. Soininen, I. Niemelä, and R. Sulonen. 2003. A practical tool for mass-customizing con-
figurable products. In 14th International Conference on Engineering Design. 1290–1299. (Cited on
page 124.)

M. Tkali, B. Carolis, M. de Gemmis, A. Odic, and A. Kosir. 2016. Emotions and Personality in Personal-
ized Services: Models, Evaluation and Applications. (Cited on page 143.)

O. Torp and O. Klakegg. 2016. Challenges in Cost Estimation under UncertaintyA Case Study of the
Decommissioning of Barsebck Nuclear Power Plant. 6 (10 2016), 14. (Cited on pages 68 and 72.)

168

Bibliography

M. Torrens, P. Hertzog, L. Samson, and B. Faltings. 2003. Reality: A Scalable Intelligent Travel Planner.
In Proceedings of the 2003 ACM Symposium on Applied Computing (SAC ’03). ACM, New York, NY,
USA, 623–630. (Cited on pages 2, 8, and 84.)

O. T. Tran, B. X. Ngo, M. L. Nguyen, and A. Shimazu. 2014. Automated reference resolution in legal
texts. Artificial Intelligence and Law 22, 1 (01 Mar 2014), 29–60. (Cited on page 110.)

B. Trstenjak, S. Mikac, and D. Donko. 2014. KNN with TF-IDF based Framework for Text Categorization.
Procedia Engineering 69 (2014), 1356 – 1364. 24th DAAAM International Symposium on Intelligent
Manufacturing and Automation, 2013. (Cited on page 116.)

E. P. K. Tsang. 1993. Foundations of constraint satisfaction. Academic Press. I–XVIII, 1–421 pages.
(Cited on pages 85, 99, and 124.)

B. W. Tuckman. 1965. Developmental sequence in small groups. Psychological bulletin 63, 6 (1965), 384.
(Cited on page 142.)

B. W. Tuckman and M. A. C. Jensen. 1977. Stages of small-group development revisited. Group &
Organization Studies 2, 4 (1977), 419–427. (Cited on page 142.)

A. Tversky and I. Simonson. 1993. Context-dependent Preferences. Manage. Sci. 39, 10 (Oct. 1993),
1179–1189. (Cited on page 66.)

D. C̆ubranić. 2004. Automatic bug triage using text categorization. In In SEKE 2004: Proceedings of
the Sixteenth International Conference on Software Engineering & Knowledge Engineering. KSI Press,
92–97. (Cited on page 118.)

Y. Wang, W. Dai, and Y. Yuan. 2008. Website browsing aid: A navigation graph-based recommendation
system. Decision Support Systems 45, 3 (2008), 387–400. (Cited on page 1.)

A. Weinzierl. 2017. Blending Lazy-Grounding and CDNL Search for Answer-Set Solving. 191–204.
(Cited on page 136.)

Glen Whyte. 1989. Groupthink reconsidered. Academy of Management Review 14, 1 (1989), 40–56. (Cited
on page 4.)

D. R. Wilson and T. R. Martinez. 1997. Improved Heterogeneous Distance Functions. J. Artif. Int. Res. 6,
1 (Jan. 1997), 1–34. (Cited on page 102.)

K. Win and B. Srisura. 2019. Approaching Mobile Constraint-Based Recommendation to Car Parking
System. 306–313. (Cited on pages 2 and 84.)

D. Winterfeldt and W. Edwards. 1986. Decision Analysis and Behavioral Research. Cambridge University
Press. (Cited on pages 33, 74, and 100.)

G. M. Wittenbaum, A. B. Hollingshead, and I. C. M. Botero. 2004. From cooperative to motivated infor-
mation sharing in groups: moving beyond the hidden profile paradigm. 286–310. (Cited on pages 3, 58,
and 62.)

W. Wobcke, A. Krzywicki, Y. Kim, X. Cai, M. Bain, P. Compton, and A. Mahidadia. 2015. A Deployed
People-to-People Recommender System in Online Dating. AI Magazine 36, 3 (2015), 5–18. (Cited on
page 47.)

H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok. 2008. Interpreting TF-IDF Term Weights As Making
Relevance Decisions. ACM Trans. Inf. Syst. 26, 3 (June 2008), 13:1–13:37. (Cited on page 115.)

169

Bibliography

L. Xiao, Z. Min, Z. Yongfeng, G. Zhaoquan, L. Yiqun, and M. Shaoping. 2017. Fairness-Aware Group
Recommendation with Pareto-Efficiency. In ACM Conference on Recommender Systems (RecSys’17).
ACM, 107–115. (Cited on page 143.)

I. Yaniv. 2011. Group diversity and decision quality: Amplification and attenuation of the framing effect.
International Journal of Forecasting 27, 1 (2011), 41 – 49. (Cited on pages 7 and 58.)

Z. Yu, X. Zhou, Y. Hao, and J. Gu. 2006. TV Program Recommendation for Multiple Viewers based on
User Profile Merging. User Modeling and User-Adapted Interaction 16, 1 (2006), 63–82. (Cited on
pages 21 and 33.)

X. Yuan, J. H. Lee, S. J. Kim, and Y. H. Kim. 2013. Toward a user-oriented recommendation system for
real estate websites. Information Systems 38, 2 (2013), 231–243. (Cited on page 1.)

Bingsheng Zhang and Hong-sheng Zhou. 2017. Brief announcement: Statement voting and liquid democ-
racy. In Proceedings of the ACM Symposium on Principles of Distributed Computing. 359–361. (Cited
on page 142.)

D. Zhang, P. B. Lowry, L. Zhou, and X. Fu. 2007. The Impact of IndividualismCollectivism, Social
Presence, and Group Diversity on Group Decision Making Under Majority Influence. Journal of Man-
agement Information Systems 23, 4 (2007), 53–80. (Cited on page 142.)

170

	1 Introduction
	1.1 Background and Motivation
	1.2 Research Objectives
	1.3 Contributions
	1.4 Thesis Outline

	2 Algorithms for Group Recommendation
	2.1 Introduction
	2.2 Preference Aggregation Strategies
	2.3 Social Choice based Preference Aggregation Functions
	2.4 Collaborative Filtering for Groups
	2.5 Content-based Filtering for Groups
	2.6 Constraint-based Recommendation for Groups
	2.7 Handling Inconsistencies
	2.8 Critiquing-based Recommendation for Groups
	2.9 Hybrid Recommendation for Groups
	2.10 Matrix Factorization for Groups
	2.11 Conclusions and Research Issues

	3 An Analysis of Group Recommendation Heuristics for High- and Low-Involvement Items
	3.1 Abstract
	3.2 Introduction
	3.3 Group Recommendation Heuristics
	3.4 User Study
	3.5 Conclusions and Future Work

	4 Beyond Item Recommendation: Using Recommendations to Stimulate Knowledge Sharing in Group Decisions
	4.1 Abstract
	4.2 Introduction
	4.3 Preference Aggregation Mechanisms
	4.4 Empirical Analysis
	4.5 Future Work
	4.6 Conclusions

	5 Polarization Effects in Group Decisions
	5.1 Abstract
	5.2 Introduction
	5.3 User Study
	5.3.1 Risk Analysis domain
	5.3.2 Cost Estimation domain

	5.4 Evaluation and Discussion
	5.4.1 Group Polarization Effects in Risk Analysis Domain
	5.4.2 Group Polarization Effects in Cost Estimation Domain
	5.4.3 Discussion

	5.5 Conclusion and Future Work

	6 Socially-Aware Recommendation for Over-Constrained Problems
	6.1 Abstract
	6.2 Introduction
	6.3 Working Example
	6.4 Building Synthetic Homogeneous Groups
	6.5 Applying Group Aggregation Functions and Recommending Products to Groups
	6.6 Evaluation
	6.7 Conclusion and Future Work

	7 Socially-Aware Diagnosis for Constraint-Based Recommendation
	7.1 Abstract
	7.2 Introduction
	7.3 Working Example
	7.4 Calculating Socially-Aware Diagnoses
	7.5 Building Synthetic Homogeneous Groups using Similarity Metrics
	7.6 Determining Diagnoses by Applying Group Preference Aggregation Functions
	7.7 Evaluation
	7.8 Conclusion and Future Work

	8 Towards Similarity-Aware Constraint-Based Recommendation
	8.1 Abstract
	8.2 Introduction
	8.3 Working Example
	8.4 Identification of Personalized Diagnoses
	8.5 Determination of Similarity Degree Using Similarity Metrics
	8.6 Approaches for the Identification of Similar Recommendations
	8.7 Evaluation
	8.7.1 Personal Computer Dataset
	8.7.2 Bike Dataset

	8.8 Conclusion and Future Work

	9 Automated Identification of Type-Specific Dependencies Between Requirements
	9.1 Abstract
	9.2 Introduction
	9.3 User Study
	9.4 Approach to Automated Dependency Detection
	9.4.1 Dataset
	9.4.2 Feature Definition
	9.4.3 Classification
	9.4.4 Feature Extraction and Feature Selection with Grid Search

	9.5 Evaluation
	9.6 Threats to Validity
	9.6.1 Internal Validity
	9.6.2 External Validity

	9.7 Conclusion and Future Work

	10 ASP-based Knowledge Representations for IoT Configuration Scenarios
	10.1 Abstract
	10.2 Introduction
	10.3 IoT Domains and Configuration Models
	10.4 Configuration Knowledge Representation in ASP
	10.5 ASP Solving and Limitations
	10.6 AGILE Configuration Technologies
	10.7 Research Issues
	10.8 Conclusions

	11 Conclusions and Future Work
	11.1 Conclusions
	11.2 Future Work

	List of Figures
	List of Tables
	Bibliography

