

Markus Reinprecht, BSc.

Design Verification Plan for electrified Powertrains

MASTER'S THESIS

To obtain the academic degree:

Diplom Ingenieur / Master if Science

Master's Program - Production Science and Management

submitted to

Technical University of Graz

Supervisor:

Assoc.Prof. Dipl.-Ing. Dr.techn. Michael Bader

Institut für Maschinenelemente und Entwicklungsmethodik

Supervisor:

DI Günter Winkler

AVL List GmbH.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources.

Graz, _____

Date

Signature

Abstract

AVL is expanding its knowledge and expertise in eAxle development and therefor this thesis was triggered.

Due to increasing numbers in BEVs and P4-hybrid architectures new questions for validating those systems emerge. This thesis elaborates the basic steps for a generic DVP for eAxles that later on can be adjusted and modified to the requirements of the customer. In addition to that, the thesis shall also focus on the factor reliability and cost, which are interconnected.

Especially durability tests for eAxles are standardized by e.g. VDA, FCA etc. Their failure mechanisms, procedures and damage calculations are described in this thesis as well. Moreover, it shall offer a bridge between the mentioned above and the factor reliability. Coming back to the factor cost, the number of samples shall be reduced to save costs and total testing time, while keeping the reliability on the same level as with the original planned number of samples.

White spots of the elaborated DVP can also be seen, together with where failures of specific machine components occur and how to intercept them as early as possible in the development process.

Finally, in the last chapter an outlook for future steps is given.

Acknowledgement

I want to thank Mr. Assoc.Prof. Dipl.-Ing. Dr.techn. Michael Bader working for the Institute of Machine Components and Methods of Development and Mr. DI Günter Winkler working for AVL List GmbH for being able to conduct this master's thesis at Graz University of Technology and especially for supporting me with excellent advice, coaching skills and compassion.

In addition to that I want to thank my coworkers from AVL DI Hubert Huemer, DI Lukas Kolleritsch, DI Herwig Rieger, DI (FH) Wilhelm Vallant for challenging and enriching discussions throughout this project.

Next, I would like to show my appreciation to my colleagues from AVL Germany Mrs. Dipl. -Ing. Katrin Wand, Ms. Nicole Hofmaier MSc. and Ms. Petra Sipos MSc., for participating in the DVP workshop in September 2018 and supporting me with valuable input regarding eMotor and Inverter for this thesis.

Furthermore, I want to thank Ms. Maria Buchsteiner for proofreading this thesis. I really appreciate this devoted help.

And then I'd also like to value my fellow student coworkers Maria Buchsteiner, Stefan Embacher, Michael Hofer, Benjamin Kratky BSc., György Marton Marinov BSc., Benjamin Nowak BSc. and Raphael Diplinger with who I was able to form the best winning team there is, for me personally. Finally, my biggest appreciation goes to my parents Susanne and Michael, my sister Elisa, my girlfriend Vanessa and my whole family for supporting and understanding me during tough times

at university but also in life, their financial and emotional support to finish my studies and the endless love they gave me.

Thank you all!

"Success is never owned, it is rented and the rent is due every day!"

Table of Contents

A	bstract		3
A	cknow	ledge	ement4
1	Intr	oduc	tion11
	1.1	Sco	pe11
	1.2	Obj	ective12
	1.3	Sch	edule12
2	The	fund	damentals for developing a DVP13
	2.1	Elec	tric Vehicles13
	2.1.	1	Hybrid Electric Vehicles14
	2	.1.1.:	1 Parallel hybrid propulsion systems15
	2.1.	2	Battery Electric Vehicle
	2.2	eMo	otor17
	2.2.	1	Permanent magnet synchronous motor18
	2.2.	2	DC motors19
	2.2.	3	3 phase AC Induction Motors20
	2.3	Inve	erter / Power electronic21
	2.4	Trai	nsmissions for electrified powertrains22
	2.5	Des	ign Verification Plan24
	2.5.	1	What is the DVP&R?24
	2.5.	2	Why should a DVP&R be implemented?24
	2.5.	3	When should a DVP&R be implemented?25
	2.5.	4	How should a DVP&R be implemented?25

2.	5.5 C	Definition of Verification, Validation and Testing	26
	2.5.5.1	Verification	27
	2.5.5.2	Validation	27
	2.5.5.3	Testing of a system	30
2.6	The t	theory of reliability	33
2.	6.1 T	The failure rate	33
2.	6.2 т	The bathtub curve	34
2.	6.3 E	Behavior of the bathtub curve	36
2.	6.4 F	Parameters of reliability	37
	2.6.4.1	MTTF	37
	2.6.4.2	MTTFF	38
	2.6.4.3	MTBF	38
	2.6.4.4	Failure Rate and Failure Quota	39
	2.6.4.5	B _x Lifetime	39
2.7	The n	meaning of probability	40
2.8	Weib	oull Distribution	41
2.9	Calcu	ulation of System Reliability with the Boolean Theory	42
2.10) Failur	re Mode and Effects Analysis	46
2.	10.1 F	FMEA improvements in VDA 4.2	48
	2.10.1.1	1 System Elements and System Structure	49
	2.10.1.2	2 Functions and Function Structure	50
	2.10.1.3	3 Failure Analysis	53
	2.10.1.4	4 Risk Assessment	54
	2.10.1.5	5 Optimization	55

	2.11 Failure	Modes	58
	2.11.1 Fat	igue	58
	2.11.2 We	ear	59
	2.11.2.1	Abrasive Wear	59
	2.11.2.2	Adhesive Wear	60
	2.11.2.3	Tribochemical Wear	60
	2.11.2.4	Rubbing Wear	60
	2.11.3 The	ermal and Chemical Aging	61
	2.11.4 Co	rrosion	61
	2.11.5 Cav	vitation	62
3	Developing	the eAxle DVP	63
	3.1 DVP Wo	orkshop	64
	3.1.1 Na	ming	64
	3.1.1.1	The levels in the DVP	64
	3.1.1.2	The definition of a test case	66
	3.1.1.3	The definition of a test specification	67
	3.1.1.4	Sample Phases	68
	3.1.2 Tes	st Categories	68
	3.1.2.1	Performance Testing	69
	3.1.2.2	Electrical Testing	69
	3.1.2.3	Mechanical Testing	70
	3.1.2.4	Environmental Testing	70
	3.1.2.5	Thermal Testing	70

	3	.1.2.7	EMC Testing	71
	3.1.	3 S	tructuring the DVP	72
	3	.1.3.1	Test ID	73
	3	.1.3.2	Test Categories	73
	3	.1.3.3	Test Case	73
	3	.1.3.4	Test Description	73
	3	.1.3.5	Standard / Paragraph / Edition	73
	3	.1.3.6	Test Environment & Additional Info	74
	3	.1.3.7	Number of Samples	74
	3	.1.3.8	Acceptance Criteria	75
	3	.1.3.9	RQ ID / Remarks	75
	3.2	Exem	plary calculation of reliability	76
	3.3	Case S	Study	78
	3.3.	1 C	ase 1 – The overall responsibility	78
	3.3.	2 C	ase 2 – The eAxle and eMotor DVP	80
	3.3.	3 C	ase 3 – The eMotor responsibility	81
	3.3.	4 C	ase 4 – Validation of an eAxle and Transmission	81
	3.4	High 1	Temperature & High Humidity Endurance - HTHE	82
	3.5	High 1	Temperature Operating Endurance - HTOE	86
	3.6	Powe	r Thermal Cycle Endurance - PTCE	90
	3.7	Powe	r Related Endurance Test - PRET	93
4	Furt	ther St	eps	95
5	Sun	nmary	and Outlook	96
6	Арр	endix.		98

	6.1.1	eAxle DVP	.98
	6.1.2	eMotor DVPFehler! Textmarke nicht definie	ert.
	6.1.3	Inverter DVPFehler! Textmarke nicht definie	ert.
	6.1.4	Transmission DVP	118
	6.1.5	FP-Sheet1	123
	6.1.6	Failure Correlation – Functional testing	124
	6.1.7	Failure Correlation – Durability testing1	124
7	Table Of	f Figures1	125
8	List Of T	ables1	128
9	List Of F	ormulas1	128
10	Refer	ences	130

Abbreviations

AC Alternating Current DUT Device under test E/E electrical and electronic eAC electric Air Condition DC Direct Current **EM Electric Motor** EMC Electromagnetic Compatibility FMEA Failure Mode and Effects Analysis FCA Fiat Chrysler Automobiles **FP-Sheet Failure Parameter Sheet** HCF High Cycle Fatigue HV High Voltage **ICE Internal Combustion Engine** LCF Low Cycle Fatigue **NVH Noise Vibration Harshness PE Power Electronics** RAD Relative Accumulated Damage **RPN Risk Priority Number** UUT Unit Under Test VDA Verband der Automobilindustrie WSC Wet Starting Clutch

1 Introduction

The following thesis is prepared in collaboration with Graz University of Technology's "Institute of Machine Components and Methods of Development" and AVL LIST GmbH.

1.1 Scope

During the development of ICEs, transmissions or powertrains manufacturers use standardized procedures for endurance and functional test conditions both in vehicle and on test beds, to evaluate the state of development on system, subsystem and component level. Especially for this generic DVP durability considerations are emphasized. In the last years AVL was expanding its knowhow in the field of electrified powertrains and therefore a standardized test program for electrified powertrains to verify and validate their design needs to be developed. To systematically derive and evaluate test procedures AVL is using the AVL – Load Matrix [™] method. This thesis will focus on deriving the DVP on eAxle level from partly existing test cases on subsystem level (transmission, eMotor, and inverter) and the differentiation between different development phases. In addition to that the thesis will also focus on reliability evaluation.

AVL has come up with three different scenarios in March 2018 for the distribution of ICEs, BEVs & HEVs and hydrogen fuel cell powered vehicles. Figure 1 shows the medium version of the mentioned scenarios with is the average assumption. The estimations say that in 2030 the pure ICE vehicles will become less and the number electrified powertrains is increasing.

Figure 1: AVL's prediction for the future distribution of powertrains for light vehicles

1.2 Objective

The aim of this master's thesis is to derive a generic DVP for electrified powertrains.

1.3 Schedule

The following schedule was consistently and constantly modified during the progress of this master's thesis. It includes the most important milestones, the parallel approaches and initiated actions that are necessary to perform the master's thesis.

Figure 2: Milestone plan

																	Ze	eitp	lan														
	STATUS CW5			2018													2019																
				September			October			November					December				January					February			March				April		il
		36	37	38	39	40	41	42	43	44	45	46	47	48	49 !	50 !	51	52	1	2	3 4	4 !	56	5 3	7 8	9	10	11	12	13	14 1	15 1	i6 17
	Setting Goals and Define Tasks for the master's thesis	M1																															
	Workshop				M3																												
	Analysis of already existing DVPs		M2																														
	Test Case descriptions on subsystem level													M4																			
0	Compose Theoretical Part of Master's thesis																																
blo	Reliability evaluation																																
ma	Differentiation according responsibilities																	1	M5														
rbe	Reliability calculation																																
Ŧ	Failure Parameter Sheet																																
	Failure Mode Correlation																																
	Detection of white spots in DVP																																
	Written completion of thesis																																
	Hand in @ TU Graz and AVL																					N	16										
	Work																																
	Holiday																																
	Final Hand-In																																

Figure 3: Time schedule for Masters' Thesis

2 The fundamentals for developing a DVP

In this chapter all the necessary theoretical contexts for e-drive systems and for developing a generic DVP will be illustrated and described separately.

2.1 Electric Vehicles

Due to high energy efficiency, diversification of energy resources, load equalization of their power systems, no local exhaust emissions and political will and therefor laws, regulations and fundings, electric vehicles are an uptrend on the global market. In addition to that they can also be operated very quietly. The main obstacles to overcome are shorter driving ranges, high upfront costs and especially recharding topics compared to cars powered by ICEs. The possible solution approaches range from better battery technology, fuel cells, and capacitors to flywheels. To overcome those shortcomings HEVs have been introduced to the market as interim solution, which incorporate electric motors with ICEs. HEVs combine the strengths of both power supplies and therefore extend the range and reduce recharging / refueling times drastically. [1] The benefits and shortcomings of ICE and battery electric vehicles are shown in the following figure:

poor

ICE

qualitative

Figure 4: Electrification and ICE offer quite complementary characteristics [2]

Additionally, from a development perspective it is necessary to state that the complexity for hybrid powertrains is higher than for BEVs or ICE-powered vehicles on their own.

2.1.1 Hybrid Electric Vehicles

Referring to Art. 3 Par. 14 of the EU-Directive 2007/46/EC a hybrid motor vehicle is defined as a vehicle which uses at least two different energy converters and two different energy storage systems (on-vehicle) with the purpose of vehicle propulsion. [3] Chemical, electrical or mechanical energy storage systems number among them, with applicable energy converters that may convert stored energy into mechanical energy for propulsion of the vehicle. [4] [5] If the conventional propulsion system is combined with a rechargeable storage system, additional degrees of freedom derive that enable more efficient operating strategies. [4] In addition to that energy from braking may be recovered by using recuperative braking systems during adequate driving conditions (downhill, accelerator pedal position = 0, etc.). Therefor rechargeable systems like eMotors together with capacitor or batteries or mechanical storage systems like flywheels and pressure reservoir may be used. In the automotive sector most of the hybrid cars combine conventional combustion systems with eMotors and save the electric energy in a battery. Those batteries have a higher energy density, but lower power density compared to mechanical storage systems or capacitors. [6]

Figure 5: Schematic overview of the three base structures for hybrid electric powertrains (serial, parallel, power split) [7]

2.1.1.1 Parallel hybrid propulsion systems

One of the main benefits of the parallel hybrid system is that only one eMotor is necessary for simultaneous propulsion of ICE and eMotor and that it may also be used pure mechanically driven. This leads to the so-called boost modes, where the eMotor supports the ICE during maximum load situations with additional propulsion power. Due to this fact the ICE's dimensions may also be smaller and therefor the fuel consumption decreases. [7]

Figure 6: Differentiation of parallel hybrid powertrains concerning the location of the eMotor (P1 -P4) [7]

The EM is mounted directly to the crank shaft, therefor it may not be decoupled from the P1 ICE. The ICE has to be dragged during electric driving and recuperation phases.

The EM is separated from the ICE by a clutch and so the ICE and EM can be usedP2 independently. P2 systems may be used with DCTs and automatic transmissions with or without torque converters.

P3 EM is sitting at the output shaft of the transmission and the power doesn't have to be routed through the transmission. The EM can use a broader rev range.

EM and ICE power different axles. Due to that fact all-wheel drive systems can be realized.

P4 P4 hybrids are also often combined with P1 systems, in which the second EM is located directly at the crank shaft.

Table 1: Differentiation of parallel hybrid powertrain systems [7]

2.1.2 Battery Electric Vehicle

BEVs can achieve zero emissions (tank to wheel), due to only using batteries or other electric energy storage bases power sources. Nevertheless, high initial costs, the earlier mentioned lower driving range and long periods for recharging cause limitations.

Additionally, fuel cell vehicles may also be considered as BEVs, regarding architectural point of view. They can be equipped with batteries or supercapacitors. They generate electrical energy from hydrogen, which is later on stored in batteries or used to propel the eMotor. [1]

2.2 eMotor

For passenger car powertrains different types of EMs, provided by different manufacturers, are used. Those different types have their own advantages and disadvantages, which will be illustrated in the following chapters. Generally speaking the main types are

- Permanent magnet synchronous motors (Tesla Model 3, Chevy Bolt, BMW i3, VW e-Golf)
- Series wound DC motors (used in early applications) •
- 3 phase AC motors (Mercedes EQC, Audi eTron, Tesla Model S) ٠

which are quite similar structure wise but have different operation modes. [8]

The following table gives a brief overview for different eMotor designs:

Rating criteria: (+) advantage, (0) neutral rating, and (-) disadvantage									
Machine type Criteria	PMSM	DCM	3 phase AC IM						
Cost	-	0	++						
Torque/power density	++	-	0						
Efficiency	++	-	+						
Manufacturability	0	++	++						
Reliability	+	-	++						
Size/weight/ volume	++	-	+						
Overload capability	+	-	+						
Robustness	+	0	++						
Field weakening	+	++	++						
Thermal limitations	-	0	+						
Noise/torque ripple	++	-	++						
Lifetime	+	-	++						
Future potential	++	-	++						

Table 2- Overview of different eMotor designs [9]

e.g.: Field weakening as seen in Table 2 is used to adjust an emotors rotational speed through reducing the magnetic flux of the excitation winding. The point from where the voltage is kept at a specific level (e.g. 400V @ 50Hz), the output torque and magnetic flux a start to decrease.

2.2.1 Permanent magnet synchronous motor

PM synchronous motors are used for high powers or special applications. The excitation is generated by DC-fed windings, especially for large motors. For smaller applications of synchronous machines the providing of DC is more complex, particularly with small motors. As a result of that the field winding is less efficient compared to the bigger ones. For those small application permanent magnets, reluctance variations or usage of a ring shaped hysteretic material are used in the rotors. Through the excitation of the permanent magnets the speed of the motor is similar to induction machines but without joule losses. PM synchronous motors have a high efficiency, can be controlled accurately, are compact and have good dynamic characteristics. One of the main cons is the high price for acquisition.

Figure 7 shows a half section of an excited synchronous motor: [8]

Figure 7: Half section of a PM synchronous motor [8]

The main parts of a PM synchronous motor are: [8]

- Winding in the stator (1)
- PM or DC excitation on the rotor (2)

2.2.2 DC motors

DC machines had a leading position for a long period in time due to the simple use of direct current. Although AC machines were introduced DC machines remained in favor for some applications, due to their good controllability and startup behavior. As soon as power electronics appeared on the market, induction and synchronous machines took the lead over due to their higher reliability and lower costs for maintenance. DC machines are sometimes still used for low power applications. They consist of two main parts: the rotating armature and the standstill excitation system. Figure 8 shows a half section of a DC motor. [8]

Figure 8: Half section of a DC motor [8]

The main parts of a DC motor are:

- Main poles (1)
- Excitation winding / permanent magnets (2)
- Core iron sheets (3)
- Commutator segments (4)
- Segments and brushes (5)
- Closing Yoke (6)

The main benefits of those DC motors are fast rev up and down, simple and good controllability and high starting torque.

2.2.3 3 phase AC Induction Motors

Induction motors characteristics show a robust design combined with a high efficient energy conversion. Due to those facts they are the most common in electric powertrains. Moreover, the induction motors together with power electronic converters drove DC commutator motors off the market, regarding variable speed applications.

Figure 9 shows the half section of a 3 phase AC induction machine:

Figure 9: Half section of a 3 phase AC induction motor [8]

The main parts of a 3 phase AC induction motor are:

- Laminated stator core with 3 phase winding in slots (1)
- Laminated rotor core with bars in slots (2)
- ventilator (3)
- short circuit end-rings with cooling blades (4)

2.3 Inverter / Power electronic

AC may be converted to DC via rectifiers in generator mode. Controlled rectifiers can do this but are not capable of converting it with a variable frequency. Therefor inverters are necessary to convert DC to AC efficiently. Rectifiers only convert AC to DC, but inverters are capable of doing it both ways, even though their primarily used function is converting DC to AC. They are very often used to do that with variable amplitude and variable frequency. Variable frequency currents determine rotational speed. Therefore, frequency may be allocated to rotational speed and amplitude determines the resulting torque. A combination of frequency and amplitude then creates an operation point for the e-motor. 3 phase voltage source inverters are most commonly used in automotive. In Figure 10 the location of the inverter (PE) is shown in a schematic parallel hybrid system. Figure 10 also shows the structure of a P2 hybrid powertrain including the inverter / power electronic.

Figure 10: Structure of a P2 powertrain system [7]

Legend:

eAC - electric Air Conditioning

HV Batter – High Voltage Battery

DC - Direct Current

EM – eMotor

WSC – Wett Slip Clutch

PE – Power Electronics

2.4 Transmissions for electrified powertrains

In contrast to conventional transmissions, transmissions for purely electric propelled cars (also for P4 hybrid axles) multi-speed gearboxes are not given, only single or double speed transmissions. Due to the properties and characteristics of EMs only a limited number, if even necessary, is needed for the application. Small EM applications may be used, because of their high maximal revolution speeds, to achieve the desired vehicle speed. The high low-end torque of those motors is necessary for low vehicle speeds. Usually gear ratios for passenger cars range from 9 to 16, which make the Ems perform well. Generally spoken four designs of gearboxes are used for purely electrified powertrains:

Figure 11: Overview of typical e-Drive architectures [2]

As seen in Figure 11 the benefits and downsides of different transmission architectures are listed.

The layshaft Co-Axial layout has its benefits especially in regard to packaging, NVH and efficiency. The high efficiency and NVH are interconnected due to the gear design.

The layshaft Offset layout's major downside is the high consumption in space caused by less favorible packaging. In contrast to that the complexity and therefore cost as well as efficiency is very desirable.

The planetary Gear Co-Axial layout's main advantage is packaging due to its compact design, which leads to the high complexity in the gear stages.

The planetary gear offset layout is very similar to the the planetary Co-Axial layout with the downside of higher space distribution, but the benefit of less costs.

For hybrid systems that combine ICE and EM in their power flow, automated transmissions are used. Those can be:

- Double Clutch Transmissions
- Automated Manual Transmissions
- Automatic torque converter transmissions

2.5 Design Verification Plan

From recent experience it may be stated that many customers don't know how to verify and validate their electrified powertrains efficiently and reliably, due to the high level of innovation. According to "Verification, Validation and Testing of Engineered Systems " [10] 50 to 60 % of all system development costs can be assigned to verification, validation and testing activities or to correcting system defects during the lifetime of the product or its development process. Those processes need to be carried out in all development processes or manufacturing projects. [10] Therefor a DVP is like a compendium of verification, validation and testing (VVT) activities with corresponding methods that need to be executed over the entire lifecycle of a product. It also tries to answer the questions: How and when should a test be performed and when is it time to stop testing? With this elaborated AVL model of the DVP, costs, time or both shall be further reduced in the future.

2.5.1 What is the DVP&R?

This tool is used to approve if products, systems, subsystems or components meet their design specifications and performance requirements. Design specifications and performance requirements are documented in the DVP&R together with the test cases that are performed to check whether they have been met or not. This thesis focuses on the DVP part of the DVP&R and therefor the reporting part will be kept short. The DVP is connected closely to the Failure Mode and Effects Analysis (FMEA), but both have different purposes during the development of a product. The FMEA's purpose is to answer the question "What" and the DVP the question "How" to assess the product.

The "Whats" are answered by lists of the analysis and verification tests during the FMEA

The "Hows" are describe how the test has to be performed, or rather the testing methods and conduct of the tests, including acceptance criteria.

2.5.2 Why should a DVP&R be implemented?

The DVP&R includes thorough and complete documentation of all analysis and verification procedures during the product development phase, design changes or later on product

recertifications. The goal is to have one single document that includes the status of the analysis and the verification procedures understandably, for the whole team, all stakeholders and customers. Furthermore, it is beneficial for quality investigations during the whole lifespan of a product.

2.5.3 When should a DVP&R be implemented?

These DVP&R tools are very frequently used in combination with FMEA during the development of a new product or design changes to a product. Additionally, it may also be used for any other verification analysis or testing. The DVP&R methodology is used for

Performing tests for root cause analysis

Planning and documenting test information to validate a product's performance after a design change

Recertification of a product for new regulatory requirements.

The DVP&R method can also be used to document the history of a product. This information may then be used if a new iteration step is outstanding, or a new but similar design is developed.

2.5.4 How should a DVP&R be implemented?

Different DVP layouts differ greatly from company to company, according to the preferences and own requirements. The quintessence is though the same, independently from the used format. The DVP is not a static document, due to adjustments during the design verification process. It derives from the following:

FMEA activities

Product improvement processes

Product certification / recertification

Root Cause Analysis

The "R" of DVP&"R" stands for the reporting section. It documents all results after each test performed and completed. This may be the trigger for design changes or further testing. The whole DVP&R process is finished, when all tests and analysis have verified that the design meets its requirements and specs.

2.5.5 Definition of Verification, Validation and Testing

Figure 12: Verification and validation in SE perception [10]

General differentiation between verification and validation:

- Verification is the process of evaluating a system to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase. [10]
- Validation is the process of evaluating a system to determine whether it satisfies the stakeholders of that system. [10]

2.5.5.1 Verification

A verified system is one that has been finished and evaluated against specified requirements, to find out whether it satisfies the requirements it was built for. Verification answer the question: *Was the product built correctly?* [10]

Therefore functional tests are defined as verification of a component's or system's function.

ANSI/EIA-632 defines verification as "the confirmation by examination and provision of objective evidence that the specified requirements to which a product was built, coded or assembled has been fulfilled." [10]

In contrast to that IEEE-610 defines verification as "the process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase." [10]

A failure in verification may derive from one or more of the following:

- Specified requirements (specifications, drawings, parts lists) have not been documented adequately.
- Developers/builders have not been following the specified requirements for the product.
- Procedures, workers, tools and equipment are improper or have been improperly used for building the product.
- Procedures and means have been improperly planned for verification.
- Verification procedures have been improperly implemented. [10]

If a failure occurs the DVP needs to be adjusted and an iterative loop has to be performed.

2.5.5.2 Validation

A validated system is one that has been realized and evaluated against specified requirements to identify if a product satisfies the stakeholders. Validation answers the questions: *Does the product do what it is supposed to do in its intended environment? Was the right product built?*

Therefore, durability tests are defined as validation of a component's or system's ability to withstand durability loads.

ANSI/EIA – 632 defines validation as "the Confirmation by examination and provision of objective evidence that the specific intended use of a product (developed or purchased), or aggregation of products, is accomplished in an intended usage environment." [10]

In contrast to that IEEE-610 defines validation as "The process of evaluating a system or component during or at the end of the development process to determine whether it satisfies specified requirements" [10]

To generate a duty cycle, which is an input for the DVP it is necessary to know specific input variables like:

- In which market shall the product be used?
- What are the lifetime targets?
- What does the road profile distribution look like?
- Does a reference customer load duty cycle exist?

From those variables the load data can then be derived via track profile selection, AVL CRUISE simulation, system analysis and damage calculation. The duty cycle is then defined by evaluating & balancing part specific damages, design duty cycle verification and the test program generation.

Figure 13: Overview of the AVL Duty Cycle Generation [2]

The AVL Load Matrix approach is used to identify how to activate certain failure modes within the duty cycle.

SUBSYSTEM	FAILURE MODE	FAILURE LOCATION	CAUSE OF FAILURE	EFFECT ON SYSTEM	ACTIVATION
Input Shaft / Gear	Wear	Tooth flank	Mech. Load	NVH → Damage of transmission	High load operation

Table 3: Exemplary failure mode activation methodology [2]

A failure in validation may derive from one or more of the following:

- Input requirements have not been identified adequately, e.g. target market or usage space of product not clear
- Design process has been executed incorrectly
- Input requirement changes have not been communicated
- Procedures have been improperly planned for validation
- Validation procedures have been improperly implemented [10]

2.5.5.3 Testing of a system

Figure 14: AVL Validation Methodology DVP&R [2]

Figure 14 shows the schematic overview of AVL's validation methodology DVP&R, which consists of the following main sections:

- Requirement engineering
- FMEA (Failure Mode and Effects Analysis)
- Failure Mode Analysis
- Damage Calculation
- Testing & Simulation

They all have a huge impact on the DVP due to both giving and receiving information from the above-mentioned main sections of the DVP&R.

This methodology covers all necessary tasks both to verify and validate a product and to monitor the ongoing progresses of the execution and the activities connected to it. On the one hand this methodology on the one hand aims at reducing the risk of missing tests in the validation and verification process and on the other hand to increase efficiency in regard to economical and technical aspects. First of all, requirements need to be defined, second the system analysis has to be performed, where all components and their failure modes are identified. (See also chapter 2.10 - Failure Mode and Effects Analysis)

This analysis includes the following topics:

- 1. Location of the component or subsystem e.g. housing, shaft, gear
- 2. Failure modes e.g. wear, HCF, LCF
- 3. Root cause of the failure e.g. thermal, electrical or mechanical load
- 4. Effect on the system e.g. leakage, short circuit, breakage
- 5. Damaging operation conditions e.g. transient-, high load operations
- 6. Damage model e.g. empirical, simulation based, simplified physical model

Generally speaking, the next step is to define all necessary verification and validation targets that need to be met in order to have a validated design. All failure modes from the system analysis need to be covered by the listed test cases in the DVP.

Figure 15: Overview of the most important sections of the DVP [2]

Figure 15 shows an exemplary overview of the DVP at transmission level. The main sections are shown in the following table:

Test ID	Nomenclature for every test
Test Category	Every test may be differentiated into either functional or durability testing
Test Case	The smallest unit of a test procedure. It contains the name and minimal hints to the procedure (See also chapter <i>3.1.3.3</i>)
Test description	Brief description of the test case. How, what and why it is performed.
Test Environment	Test Bed, Simulation, In Vehicle
Test Environment Additional info	This column includes additional information about e.g. on which test bed the test has to be performed. E.g. Powertrain test bed, High load test bed etc.
Test Responsibility	Name of the responsible engineer and also whether AVL, the supplier or the customer is responsible.
Test Duration	Includes information about the test duration itself, without setup and commissioning time
Samples	Number of samples needed for every sample phase
Test status	Passed, Not Passed, Open, Done, Cancelled, Planned, Not Planned, e.g.: Passed (Not Passed) means that all requirements were (not) met. Those requirements are project specific.

Table 4 Overview of the components

2.6 The theory of reliability

"Reliability is the probability that a product does not fail during a defined period of time under given functional and surrounding conditions. [11]" The following chapters were elaborated to better understand the impact of reliability on test duration and number of used samples.

2.6.1 The failure rate

To calculate the failure rate $\lambda(t)$ it is necessary to divide the failures at a point in time t or in a class *i* by the sum of units still intact:

Figure 16: Histogram of the failure rate and the empirical failure rate [11]

Figure 16 shows the failure rate $\lambda(t)$ and the empirical failure rate $\lambda * (t)$ for a S-N curve trial run. The failure rate in the last class in Figure 16 is shooting towards infinity, because no intact samples are left any more. The equation's denominator approaches zero.[11]

2.6.2 The bathtub curve

The failure rate represents the measurement for the risk of a part to fail, under the condition that the sample has already survived up to this point in time. It defines how many of the still intact samples will break in the next time unit. To gain more statistical data the failure rate is not only used to describe wear out failures, but also early and random failures. The whole lifecycle of a sample can then be visualized in the so-called bathtub curve:

Figure 17: Bathtub curve [11]

The name bathtub curve derives from its shape. [12] [13] It describes the failure rate of the sample over time, but also takes its cause into account. For example, early failures may be caused by faulty assembly processes or production failures, random failures by operational failures by the customer or maintenance failures and wear out failures due to failure modes described at a later time in this thesis. To overcome those failures different counter measures can be set like pilot run series for early failures, correct operation and maintenance for random failures and practical trials for wear out failures. [11]

Region 1:

The likability for failure is decreasing over time, due to decreasing failure rate. Those failures are mostly caused by assembly-, production-, material problems or by design flaws. [11]

Region 2:

Due to the constant failure rate the risk for failure of the sample stays the same. In this region the risk can also be assumed as relatively low. Those failures are very hard to predict. Often they are caused by dirt particles or maintenance and operation failures. [11]

Region 3:

In the last region both the failure rate and the risk for failure increase drastically, due to wear out failures.

The counter measures for the failures in region 1 and 2 have to be taken early into account in the development process (design phase). Counter Measures for region 3 have to be implemented in the dimensioning phase, thus the design engineer has a huge impact on the results. Region 3 is the only region that may be calculated. In addition to that this region is also the most decisive one for reliability. [11]

2.6.3 Behavior of the bathtub curve

The bathtub curve is not always significant for all technical systems. A complex system's failure behavior is not only characterized by the bathtub curve, but also by differing failure distribution, that show different behaviors in individual areas. Different behaviors are shown in the figure below:

	Fa	ilure behaviour	General characteristics	Typical examples
Se	А		abnormal curve	 old steam engine (late 18th to early 19th century)
rout failure			 simple devices complex machines with bad design (one single dominat- ing type of failure) 	 car water pump shoelace 1974 Vega engine
wea	С	$\lambda _{t}$	structureswearout element	 car bodies airplane and automobile tires
res	D	λt	 complex machines with high-stress trials after start of operation 	 high pressure relief valves
om failt	Е	λt	 well designed complex machines 	gyro compassmultiple sealing high pressure centrifugal pump
rand	F	$\sum_{k=1}^{\lambda} t$	 electronic components complex components after corrective maintenance 	 computer "mother boards" programmable controls

Figure 18: Various failure behaviors [14]

"Studies done by civil aviation (1968 UAL) show that only 4% of all failures have a trend as in example "A", 2% have a trend as in example "B", 5% as in example "C", 7% as in example "D", 14% as in example "E" and 68% as in example "F". A constant failure behavior trend as in example "E" should be strived for in the design phase." [11]
2.6.4 Parameters of reliability

The following parameters are used to describe reliability data in the area of reliability engineering:

MTTF	Mean Time To Failure
MTTFF	Mean Time To First Failure
MTBF	Mean Time Between Failure
λ	Failure Rate
q	Failure Quota
Bq	Lifetime

Table 5 Parameters of reliability

2.6.4.1 MTTF

The lifetime of a non-repairable system can be defined differently. The mean for the time without failures for an observed period of time is the expected value for the lifetime t, normally called (Mean Time To Failure). [11]

MTTF may be calculated as follows:

$$MTTF = E(\tau) = \int_0^\infty t * f(t)dt = \int_0^\infty R(t)dt$$

Equation 2 - Calculation of MTTF

Concerning MTTF it is not of importance, what happens to the components after the failure. [11] For MTTF the mathematical mean serves a good estimation, whereat t_1 to t_n are realizations of failure free time periods which are observed independently for identical time observation units.[15]

Figure 19: Schematic overview of MTTF function [11]

2.6.4.2 MTTFF

If a component may be repaired, the MTTFF should be used to describe the mean lifetime of a repairable component until its first failure. Therefore MTTFF correlates to MTTF of non-repairable components. [11]

2.6.4.3MTBF

In addition to that MTBF is used to describe the lifetime after the first failure of a component, until the next failure occurs and repair or maintenance is necessary. [11]

Figure 20: Schematic overview of MTTFF and MTBF [11]

2.6.4.4 Failure Rate and Failure Quota

The failure quota is defined as:

$$q = \frac{failures in a time interval}{initial quantity * interval size}$$

Equation 3 - Calculation of the failure quota

This failure quota may be used as an estimation for the failure rate λ . In contrast to that, the failure quota focusses on the relative change of an observed time interval.

If 10 Units out of a total number of 100 specimen fail within one day, the failure quota is:

$$q = \frac{10}{100} \left[\frac{1}{day} \right] \triangleq 10\% \ per \ day$$

Equation 4 - Exemplary calculation of the failure quota

The failure rate focusses on the risk of a component to fail if it has survived until now. For a more detailed description go to chapter *2.6.1 The failure rate*.

2.6.4.5B_x Lifetime

The x in B_x stands for the point in time at which x% of all components have already failed. As a general rule B_1 , B_{10} and B_{50} lifetime values are used to describe the reliability of a system. [11]

Figure 21: B_x Lifetime of a system [11]

2.7 The meaning of probability

Von Mises defined the relative frequency in 1912 as:

$$h_{rel} = \frac{m}{n}$$
 Equation 5 - Calculation of the relative frequency

Where *n* is the size of a random test specimen, in that all entries are distributed equally in the trial and where *m* is the number of elements which are recorded. The further *n* is increased, the less $h_{rel,n}$ is scattered and strives against a constant value of h_x as shown in the following figure: [11]

Figure 22: Dependency of the relative frequency at random specimen sizes [11]

Due to that fact, the limit of the relative frequencies can be approximated by the probability of failure.

$$\lim_{n \to \infty} \frac{m}{n} = P(A)$$
 Equation 6 - Calculation of the probability of failure

"The exact theoretical observations can be seen in the weak and strong law of large numbers as well as in the Bernoulli law of large numbers" [16–18]

This equation lacks reliability due to dealing with estimation and not with definition. Therefore, it is not universal. There have been attempts to develop an all-inclusive probability theory, which could not be solved. However for basic reliability judgments the equation is sufficient enough. [11]

2.8 Weibull Distribution

Many different failure behaviors can be described with the Weibull Distribution. Its density function illustrates this.

Figure 23: Density function of the Weibull distribution [11]

The density function is depending on the shape function b. The confidence intervals of statistical analysis are represented by the spread of the shape parameters. These are also dependent on the level of stress. Especially for gears and shafts the shape parameter b has to be chosen in accordance to the level of stress. The higher the stress, the higher the shape parameter b has to be. For low b-values the function behaves like an exponential distribution [11]

Figure 24: Shape Parameter [11]

Particularly bearings are the only machine components for which the failure behavior is documented in standards (ISO DIN 281 and DIN 622). [11]

In addition to that the three parametric Weibull distribution consists of the parameter's lifetime T, shape parameter b and the failure free time t_0 .

2.9 Calculation of System Reliability with the Boolean Theory

Based on the components' failure behavior it is possible to calculate the failure behavior of a complete system using Boolean system theory. [11, 19–23]

The parameters b, T and T_0 describe the failure behavior for each individual component.

For this calculation some assumptions have to be made:

- Either the system is non-repairable (lifetime until first failure), or a repairable system. Then it is only possible to calculate the reliability up to the first occurring failure.
- The state of condition is either "failed" or "functional"
- Failure behavior of one component does not influence the failure behavior of another component

Reliability schematic diagrams show effects and influences of one component to the complete system. A system starting with I (Input) and ending with O (Output) is functional as long as the connection between those two can be established. [11]

Figure 25: Reliability Schematic Diagram [11]

Figure 25.a shows that if one of the components fails, the whole system fails. (Serial structure) Figure 25.*b means that* only if all components fail the system fails (Parallel Structure) Figure 25.*c* is a combination of the two mentioned above. If component 1 fails, the whole system fails. Also, both components 2/1 and 2/2 have to fail, to make the system fail.

It is possible that the mechanical setup does not correlate with the reliability schematic diagram and that some components occur more than once.

The following example shows the process of creating a reliability schematic diagram from a drawing of a free wheel clutch to the complete reliability structure:

Figure 26: From free Wheel Clutch drawing to Reliability Schematic Diagram [11]

Figure 26 shows:

- a) Drawing of the example system "free wheel clutch"
- b) Principle sketch of the free wheel clutch system
- c) Serial structure for the failure cause "interruption"
- d) Parallel structure for the failure cause "clamping"
- e) Complete reliability structure for the system free wheel clutch

The system's function in Figure 26 consists of transferring torque in one direction and interrupting it in the other direction. Then no torque transfer is possible any more. This method is used to break

the single failure causes down on a structural level and then to evaluate them. The failure cause in this case is clamping on the one hand and interruption on the other. Clamping leads to rotational movement, whereas interruption disconnects the linked joints. *Figure 21.d* states a parallel system, due to further functionality of the system, even if one clutch clamps. Many systems therefore have a serial structure, due to elaborate evaluation of redundancies for high volume parts and repetition. To calculate the reliability for a serial system like this the following equation is used: [11]

$$R_{s}(t) = R_{c1}(t) * R_{c2}(t) * \dots * R_{cN}(t) \text{ or } R_{s}(t) = \prod_{i=1}^{n} R_{ci}(t) \qquad \text{Equation } 7 - \text{Calculation of the}$$

$$reliability \text{ of a serial system}$$

The definite reliability of each component is supposedly smaller than 1. Therefore, the reliability of the system is always less than the weakest component's reliability. With every additional component the reliability decreases. The failure behavior of the component may be described with a three-dimensional Weibull distribution: [11]

 $R_{C}(t) = e^{-(\frac{t-t_{0}}{T-t_{0}})^{b}}$

Equation 8 - Calculation of the failure behavior

Figure 27: System reliability over the number of components [11]

The system's reliability may be calculated by the following equation:

$$R_{S}(t) = e^{-\left(\frac{t-t_{01}}{T_{1}-t_{01}}\right)^{b_{1}}} * e^{-\left(\frac{t-t_{02}}{T_{2}-t_{02}}\right)^{b_{2}}} * e^{-\left(\frac{t-t_{03}}{T_{3}-t_{03}}\right)^{b_{3}}}$$
 Equation 9 - Calculation of the system reliability

To calculate the time t for a specific system reliability $R_S(t)$ can only be done by iteration. An exception would be $R_S(t) = 0, 9$, where the B_{10s} lifetime may be used. For special occasions the function of $R_S(t)$ is represented by an exact Weibull distribution. [11]

For a parallel system the reliability may be calculated by:

$$R_{s}(t) = 1 - (1 - R_{1}(t)) * (1 - R_{2}(t)) * \dots * (1 - R_{N}(t)) \text{ or } R_{s}(t) = 1 - \prod_{i=1}^{n} (1 - R_{i}(t))$$

Equation 10 - Calculation of the system reliability for a parallel system

Here, n represents the system's redundancy grade.

2.10 Failure Mode and Effects Analysis

"FMEA can be understood as the most commonly used and well-known qualitative reliability method in the area of reliability methodology. It is a dynamic preventive reliability method used in the modification of systems and accompanies the design cycle for modification of components. The overall aim is to analyze and modify components in the light of experience to achieve an optimum criterion of reliability assessment." [11]

FMEA was used and developed by NASA (National Aeronautics and Space Administration) in the sixties of the last century and is used since then. It is also used for quality assurance, due to increasing complexity of products, cost demands and the desire for shorter development periods. In the following the FMEA methodology according to VDA 4.2 will be elaborated, because it is the most commonly used and most extensive procedure in the automotive industry in Europe. [11]

Since 1980 the FMEA method is specified in DIN 25 448 and stands for "<u>F</u>ailure <u>M</u>ode and <u>E</u>ffects <u>A</u>nalysis". It is a systematically, preemptively and team-oriented used method, with its fundamental idea to find all possibly occurring failure modes for random systems, subsystems and components, in combination with their failure effects and causes. Additionally, risk assessments and specifications for optimization actions are performed. This methodology shall help to find weak spots and occurring risks of a product early in the development phase of a product, in order to still be able to eradicate problems.[11]

Figure 28 shows different procedures of the FMEA that are used most often:

Figure 28: Types of FMEA [11]

An FMEA is carried out by interdisciplinary teams, to contain all areas of operation for the analysis.

FMEA is used due to the following:

- increasing quality demands from customers
- cost optimization for products
- compulsory liability required of the producer

The aims pursued by the system FMEA are:

- increase in the function security and reliability of products
- reduction in guarantee and warranty costs
- shorter development processes
- new production startups with fewer disturbances
- improved fulfilment of deadlines
- economical manufacturing
- improved services
- improved internal communication

2.10.1 FMEA improvements in VDA 4.2

The procedure has been improved to

- identify functional relationships between the system and its system elements
- to derive possible failure functions of a system element and all logical connections between failure functions of various system elements that belong together, to describe their effects, failure modes and cause for the system. [11]

Thus, a system is defined as an entity

- that excludes itself from surroundings via system boundaries. Interfaces are input and output variables.
- that can be separated into partial systems or system elements, with hierarchical levels
- that may be divided into different types according to its purpose (e.g. assembly, function groups, etc.) [11]

A function in terms of FMEA is the general specific connection between input and output variables for systems.

Figure 29: A function modifies the Input to generate a desired output [11]

Examples of functions would be:

Transmission	Convert torque / speed								
Electric motor	Convert electrical energy into mechanical energy								
Pressure relief valve	Limit pressure								
RAM (Read Access Memory)	Save signals								

Figure 30: The 5 steps of FMEA [11]

2.10.1.1 System Elements and System Structure

This step is further divided into the following subsections:

- Definition of level of complexity of the system that is investigated
- Separating the system into its system elements (assembly, function groups, components)
- Hierarchical order of those system elements

Figure 31: Limitation of the observed system and its system structure [11]

2.10.1.2 Functions and Function Structure

For creating the functions of the system, the "top down" approach may be used, beginning with the function on the highest level.

Figure 32: Function analysis in FMEA [11]

To fulfill the function at the top all functions below need to be functional as well. [11]

According to Pahl/Beitz the main categories for the functions are:

Geometry	dimensions, height, width, length, diameter, required space, quantity, alignment, connection, extensions and expansion
Kinematics	extension and expansion
Forces	movement type, movement direction, speed, acceleration, size of force, direction of force, frequency of force, weight, load, strain, stiffness, spring, spring characteristics, stability, resonances
Energy	power, degree of efficiency, loss, friction, ventilation, state variables e.g. pressure, temperature, humidity, heating, cooling, connection energy, storage, work intake, transformation of energy
Material	physical and chemical characteristics of the input and output product, auxiliary materials, required materials (law of nourishment), material flow and transportation
Signal	input and output signals, display mode, operation and monitoring equipment, type of signal
Safety	direct safety technology, protective systems operation, work and environment
	safety
Ergonomics	Man-Machine relationship, operation, type of operation, lucidity, lighting,
	design
Manufacturing	confinement through production plants, largest producible dimensions, preferred production
Control	process, workshop facilities, possible quality and tolerances measuring and control options, specific regulations (TUV, ASME, DIN, ISO)
Assembly	specific assembly regulations, assembly, installation, construction site assembly,
	foundation
Transportation	limitation through lifting gear, path profile, route of transport according to size and weight, type of dispatch
Usage	low noise level, wear rate, application / distribution area, place of installation
Maintenance	maintenance-free and/or amount and time required for maintenance, inspection, replacement and repair, painting, cleaning
Recycling	reuse, recycle, waste management, waste disposal, disposal

Schedule end of development, network plan for intermediate steps, time of delivery

Table 7- Guidelines for specification lists [24]

Top functions are essential for the correct operation of the system to fulfill product goals. The top system function is separated into its partial system functions and subsystem functions until their components functions are established. [11]

Figure 33: Functions of the system elements [11]

Figure 33 shows how the system's top functions may be further distributed until component level has been reached.

2.10.1.3 Failure Analysis

All possible failures that cause limitation or failure of the function have to be taken into account, during the failure analysis.

The following table shows typical failure modes that might occur during operation of the system:

• crack	• too loud	overstretched
abrasion	 congested 	 bent, sagging
 rejected 	 contaminated 	 distorted, deformed, dented
 chips away 	• leaky	 relaxed, loose, wobbles
 wear (also bedding-in, pittings,) 	• busted	 clamps, sluggish
 insufficient time characteristics 	 depressurized 	 friction is too high of too low
 rotted, decomposed (prematurely) 	 false pressure 	 too much expanded
 damaged, prematurely worn out 	 corroded 	 part is missing
 vibrates 	 overheated 	 wrong part (not a safely usable constr.)
• swings	• burnt	 wrong position (no constr. measurement)
resonances	 charred 	 too maintenance intensive
 unpleasant sound 	blocked	 poorly replaceable
 constr. inverted assembly possible 	 false speed 	 not further useable
fracture	 false acceleration 	 interchanged (no constr. measurement)
 location to reverse side is false 	 false spring characteristics 	
false configuration	 false weight 	
 entry of dirt and water 	 poor degree of efficiency 	

 Table 8 - possible failure modes during operation [11]
 Image: Comparison of the second se

Those failure modes may be found and also supported by the following methods:

- damage statistics
- experience of the FMEA team members
- check lists
- creativity procedures (Brainstorming, 635, Delphi, etc.)
- systematically with the functions or failures functions / fault trees.

The relationships between failure- effects, modes and causes can be clarified with a failure network. This process is shown in the following figure:

Figure 34: Failure network for the fracture of a sleeve [11]

Failure modes may be carried over to another level since there could be interdependencies or overlappings.

2.10.1.4 Risk Assessment

For assessing the risk three different criteria are used:

- <u>S</u>everity
- Probability of the <u>O</u>ccurrence
- Probability for <u>D</u>etection of the occurring failure cause

In regard to severity the investigation is performed from the standpoint of the customer. The range for the severity number S ranges from 1 (very low severity) to 10 (extremely high severity – hazard for people) [11]

After considering all listed preventive actions the assessment for probability of occurrence O is performed. Again, the value ranges from 1 (very improbable potential failure cause) to 10 (very likely that the failure cause will occur). Hence, this investigation states the quantity of defective components that remain in the whole batch of a product. [11]

To investigate the probability for detection D all detection actions have to be assessed. Actions to detect resulting potential failure causes are taken into account. A value of 1 means that it is very likely to detect the failure cause before delivering the product to the customer, whereas a value of 10 is assigned if no detection actions are mentioned. [11]

Those three variables lead to the **<u>R</u>**isk **<u>P</u>**riority **<u>N</u>umber**. It is calculated by:

$$RPN = S \ x \ O \ x \ D$$

Figure 35: Exemplary distribution of RPN [11]

Therefore, it can range from 1 (very low) to 1000 (very high). The RPN represents the total risk for the system operator and is used as a base for decisions regarding optimization actions. For high RPNs it is important to lower the risk by design and quality assuring actions. This also goes for S, O & D values greater thatn 8. O x D hints the probability for remaining defects that might get to the customers. [11]

2.10.1.5 Optimization

Optimization has to be performed for high RPNs or high individual assessment values. The process is started at the failure cause with the highest RPN. There are two commonly approaches used for how to proceed. Either the process is continued deceedingly until a certain limit is reached (e.g. RPN = 125) or following the Pareto principle, until the first 20-30 % of RPNs were processed. Additionally, high individual assessment values have to be investigated. E.g. Occurrence > 8 leads to very frequently occurring failures. Severity > 8 points out that the risk has to be taken into account very seriously. Moreover detection values greater than 8 are very hard to detect. [11] The following table gives a brief summary of the paragraph above:

Ranking of failure causes according to their RPN values
Concept optimization beginning with the failure causes with the
greatest RPN

until a set RPN limit (e.g. RPN = 125) or
until a certain amount of failure causes (common according to the Pareto principle ca. 20 -30 %)

Failure causes with

> 8
\$ 5 > 8
\$ D > 8
observed separately

FMEA result observed separately

Optimization measures would be new preventive or detection measures derived from the FMEA results. They can either prevent the potential failure cause, reduce its occurrence, reduce the severity, or increase the likability of detection by altering the design or process, conceptional changes for the product and changes in testing procedures. [11]

The taken measures shall be ranked according to their priority:

- Change of concept
- Increase concept reliability
- Effective detection actions

Then the RPN is recalculated for all the systems, subsystems and components and compared to the initial state as seen in the figure below:

Figure 36: Comparison of initial and revised RPNs [11]

2.11 Failure Modes

2.11.1 Fatigue

Figure 37: Surface Fatigue [25]

Fatigue may be divided into High Cycle Fatigue (HCF) and Low Cycle Fatigue (LCF) which are both parts of the dynamic strength of a material. All reoccurring load cycles lead to increasing material failure. They start to become visible by an initial crack and then further proceeding stress frequency lead to fatigue failure of the part. Even stresses that are significantly below the yield strength can cause fatigue failures. Due to that fact it is not enough to calculate the static proof of strength for the part. [26]

Figure 38: Pitting and crack of the tooth tip due to fatigue of the tooth flank [27]

2.11.2 Wear

Wear can be divided into abrasive-, adhesive-, tribochemical- and rubbing wear.

Figure 39: Seizure over the total width of the gear contact pattern of a gear [27]

2.11.2.1 Abrasive Wear

Due to relative movement of surfaces, material separation processes occur. Abrasion may be further divided into micro-ploughing, micro-fatigue, micro-breakage and micro filing, whereby the three first listed play a subordinated role for gears. Chip formation may be a result of roughness peaks of hard tooth surfaces or hard particles within the lubricant rubbing against opposing bodies. [28]

Figure 40: Abrasive wear [25]

2.11.2.2 Adhesive Wear

By reasons of boundary- and mixed friction roughness peaks are deformed, so that boundary layers which are adhesive to the surface, are broken through. The contact of metallic contact partners leads to molecular boundaries, which strength of material is higher than the surface material itself. Because of relative movement of the contact partners material separation occur. Thus, material is transferred from one surface to the other, or loosened wear particles are formed. This mechanism appears under too high load or lack or lubricant as seizure [28]

Figure 41: Adhesive Wear [25]

2.11.2.3 Tribochemical Wear

Herein chemical reactions between particles and intermediate- or ambient medium occur. They are activated by tribological stress. This chemical process leads to particles and reaction layers, which have different mechanical properties compared to the surface material. This process is deliberately used during gear production through using additives or cooling lubricants to generate wear reducing reaction layers at tooth flank surfaces. In contrast to that corrosion phenomena are undesirable, which may occur because of the condition of the ambient medium. [28]

2.11.2.4 Rubbing Wear

Rubbing wear occurs due to vibrational motion with small amplitude between two surfaces in contact which leads to loss of material.

2.11.3 Thermal and Chemical Aging

The term aging describes the chemical change that occurs because of high temperatures in combination with catalytic metals. During the aging process oil molecules are oxidized. Turbulences in the oil and contamination in it intensify aging. Through oxidation inhibiting additives in oils, it is possible to increase the resistance to oxidation.[27] Although high temperatures have a huge impact on the aging process, it is also necessary to take the ratio between total lubricant volume and lubricant throughput into account. Because only a relatively small part or the lubricant quantity is exposed to those high temperatures. [29]

2.11.4 Corrosion

DIN EN ISO 8044:2015 defines corrosion as the following:

"Physicochemical interaction between a metal and its environment that results in changes in the properties of the metal, and which may lead to significant impairment of the function of the metal, the environment, or the technical system, of which these form a part [30]"

Figure 42: Corrosive Wear [25]

2.11.5 Cavitation

Cavitation is the formation of cavities in fluids due to local undershooting of the vapor pressure and is followed by an implosion. The undershooting of the vapor pressure may occur due to vibrations or turbulence flows. Hence micro jets with very high velocities emerge, that might hit the material's surface. [31]

Figure 43: cavitation Wear [25]

3 Developing the eAxle DVP

To stay competitive manufacturing companies need to improve their product and also introduce new ones to the market. Due to different reasons products may be rushed to the market, without concerning verification or validation procedures. Therefore, failures of the product are detected very often after the dispatch of those products. In addition to that, inappropriate testing or no testing leads to field failures, high warranty costs, loss of equity capital, product recalls and field campaigns. Those faults are very hard to endure for companies. To overcome those faults designers and manufacturers use design analysis tools and develop product testing procedures, which should be carried out very diligently. Especially with eAxles many manufacturers don't know how to perform validation procedures. This is where AVL comes into play.

Overcoming those shortcomings is done in automotive, heavy equipment and aviation industry by organizing, describing, reporting and keeping documentation of the results with the Design Verification Plan and Report (DVP&R). AVL has DVPs on subsystem level (Transmission, eMotor and inverter). One of this master's thesis' goals was it to elaborate a DVP for eAxles that use synergies from their subsystems and enhance them in regards of reliability.

AVL	0,00
-----	------

) L

Jaconno	Anser decrons	Hoode	
evel 2	Level 3.1	Level 3.2	Level 3.3
Level	3.1 E-Motor	Subsystem	

	DVP&R: Planning													
Test ID	Test Category	Test Case	Test Description	Standard / Paragraph / Edition	Test Environment	Test Environment additional in <mark>-</mark>	Sample				Acceptance Criteria	RQ-ID	Remarks 👻	
F-11	Functional Electrical Testing	Temperature sensor tansient temperature connection check	Measurement of dynamic behavior the measured sensor signal with a defined current profile in the winding (heating up DUT)		Electric test bed	Climat conditioning	19					Performance and parameter values meet requirements, Functional status A	2109806	
F-15	Functional Electrical Testing	Open circuit voltage measurement - PMSM EESM	Measurement of no-load voltage	IEC 60034-1, IEC 60349-2, IEC 60349-4	No load test bed		67		6	30	30	Performance and parameter values meet requirements, Functional status A	2109806	Parameter test
F-16	Functional Electrical Testing	Open circuit loss measurement - PMSM IM	Measurement of no-load losses (bearing, windage, hysteresis)	IEC 60034-1, IEC 60349-2, IEC 60349-4	No load test bed		67			30	30	Performance and parameter values meet requirements, Functional status A	2109806	
F-17 a	Functional Electrical Testing	Short circuit current measurement	Short circuit current measurement - PMSM	IEC 60034-1, IEC 60349-4	Load test bed		67			30	30	Performance and parameter values meet requirements, Functional status A	2109806	
F-17 Ь	Functional Electrical Testing	Short circuit current measurement - EESM	Short circuit current measurement - EESM	IEC 60034-1, IEC 60349-2	Load test bed		67			30	30	Performance and parameter values meet requirements, Functional status A	2109806	-
F-17 c	Functional Electrical Testing	Short circuit current measurement	Locked rotor current as function of phase voltage - IM	IEC 60034-1, IEC 60349-2	Load test bed		67			30	30	Performance and parameter values meet requirements, Functional status	2109806	

Figure 44: Schematic overview of the E-Motor DVP [2]

3.1 DVP Workshop

In September 2018 three different departments of AVL came together to hold a workshop on what the future DVP would look like. Representatives of the eMotor, Power Electronics, Design, Software and Testing fractions where attending. The initial obstacle was there removed jointly, to create a common understanding of the DVP that from now on is used for the above-mentioned fractions.

3.1.1 Naming

The first and most essential obstacle to overcome was the naming of different terms and definitions that are used in the DVP-document. For example, the term for the specimen was defined as UUT – Unit under Test and not as Design under Test, as many other fractions were used to use.

3.1.1.1 The levels in the DVP

Figure 45: Overview of the DVP's header [2]

As shown in Figure 45 the main sheet tabs of the DVP levels are mentioned together with project information, instructions and the about part.

The actual selected tab is highlighted in blue and all information according to the level is displayed below on the screen.

Level 2	eAxle level - consisting of generic test cases for eMotor, Inverter / Power Electronics and Transmission in conjunction
Level 2.1	eDrive level – this level was additionally added at the very end of this master thesis, hence it is not shown in Figure 45
Level 3.1	eMotor level – here all generic test cases for verification of the eMotor are listed
Level 3.2	Inverter / Power Electronics level – consists of all generic test cases for verification of an inverter
Level 3.3	Transmission level – consists on all generic test cases for verification of a transmission, from which this thesis derived from partly, due to my former experience.

Table 10 - Brief description of the DVP levels

Table 10 shows an overview including a short description for each level of AVL's DVP. In the further chapters more detailed explanations will be given.

3.1.1.2 The definition of a test case

One of the main challenges was finding a word that would satisfy all fractions that were joining the workshop to describe one row or line in the DVP document.

Test case was the name that was agreed upon jointly. It describes the purpose of the test that shall be performed.

Figure 46: Finding the building blocks of AVL's DVP [32]

Therefore, a test case is one single line in the DVP that consists of the following main building blocks, that came up during the brainstorming process:

- Intention Answers the "Why" the test is performed
- Generic Procedure Answers the "How" the test is performed
- Acceptance Criteria
- Project specific data and definitions

Additionally, the questions "Where" and "When" are answered. E.g. "Where" would be on which test environment, with which measurement devices and which accuracy of those devices is necessary to perform the test. Furthermore "When" is used to come up with an order for the test cases to use synergies, to not always use a new specimen or UUT.

3.1.1.3 The definition of a test specification

A test specification or test spec in short, consists of at least one test case. The worst-case scenario would be, if only one test case is covered. It can also consist of several test cases. Additionally, to that it also consists of more detailed information about the test environment.

Test Spec = *Test Bed* + *AVL Puma* + *Periphery*

Figure 47: Schematic example of a test specification [32]

Figure 47 shows the structure of a test specification consisting of three exemplary test cases and their individual requirements.

3.1.1.4 Sample Phases

Overview of the sample phases by AVL								
Generation 0	Concept phase							
Generation 1	Functional development based on prototypes							
Generation 2	Durability behavior development based on							
	prototype							
Generation 3	Production validation							

3.1.2 Test Categories

Every test case can be assigned to a specific test category, which is furthermore allocated to a main chapter.

Those chapters are either "Functional Testing" or "Durability Testing". This classification leads to the separation into two different types of tests that verify the function of a component, subsystem, system or product or check if lifetime targets were met.

Additional each of the main chapters can be further segmented as shown in Figure 48 and Figure 49.

Functional Testing aims at evaluating the component's, subsystem's or system's function by testing it.

Figure 48: Overview of the functional test categories [32]

In contrast to that durability testing aims to cover the whole lifetime target of a component, subsystem or system.

Figure 49: Overview of the durability test categories [32]

The following chapters explain the subcategories more detailed.

3.1.2.1 Performance Testing

Those tests aim at evaluating, verifying and assessing the products performance. The test cases for functional performance testing range from efficiency simulation with AVL simulation tools, to low temperature efficiency tests on transmission level, to maximum phase current tests on inverter level to check whether the operates correctly when maximum phase current is applied, to efficiency maps on eMotor level, to peak performance maps on eAxle level.

3.1.2.2 Electrical Testing

Functional electrical testing relates to power electronics, eMotor and eAxles. The distinction between high voltage (HV) and low voltage (LV) is necessary especially for assessing power electronics and eAxle test cases. Those tests range from simple insulation resistance measurements, to winding resistance measurements, to HV – pre – charge tests to verify the robustness of the system. Those tests have almost no impact on the mechanical components of a transmission.

3.1.2.3 Mechanical Testing

Functional mechanical testing can be applied to all considered subsystem and system levels. Especially on transmission level a wide variety of mechanical test cases are part of the DVP. For transmission level many test cases are also simulation related. Due to frontloading money and time can be saved through simulation support, which is actively carried out for all mechanical parts. Housing or transmission shaft carrier FEA on transmission level, or demagnetization phenomena on eMotor level may be evaluated. In practice high load tests, pin perforation tests, maximum speed stop test by the eMotor or park lock actuation tests are performed.

3.1.2.4 Environmental Testing

Functional environmental testing plays an important rule for all subsystems plus for the system level eAxle. More and more suppliers and manufactures have to ensure the resistance of their products or components to environmental influences like salt, high altitudes, humidity and water, sand and dust, radiation, as well as high pressure stream jets.

3.1.2.5 Thermal Testing

Functional thermal testing considers tests that generally focus on high and low temperature impacts on the UUT. Those tests range from static temperature behaviors, where the unit under test is driven in the highest gear with maximum speed with the according torque to check for steady-state temperatures, to heat rejection tests, where cooling circuits are investigated, to locked rotor tests on eAxle levels, where the speed is 0 rpm and the current is increased in several steps until the limit of winding temperature in steady state is reached.

3.1.2.6 NVH Testing

NVH stands for Noise Vibration Harshness, which describes the sum of audible and perceptible vibrations of a vehicle or machine. Also, on simulation side multi body system dynamic analysis of housings, shafts, gears and bearings that are considering mounting stiffness are performed. On transmission and eAxle level NVH Rattle and Whine tests are carried out by assessing of structural weak parts by checking structure and air borne noise, but also general noise behavior tests for eMotor, Inverter and eAxles to verify that no noise pollution for the driver and pedestrians occurs.

3.1.2.7 EMC Testing

EMC stands for Electro-Magnetic Compatibility and describes a device's electro-magnetic isolation from other devices. This is the ability to not influence other devices by electric or electromagnetic effects or vice versa. No such tests are carried out on transmission level. Especially for power electronics, eMotor, E-Drive and eAxle level tests range from high voltage ripple immunity on HV DC supply lines, to immunity tests to magnetic fields against external narrow bands, to the radiated emissions of an eMotor below 30 MHz by using a loop antenna, to immunity against electrostatic discharge of the unit under test.

3.1.3 Structuring the DVP

AVL's DVP needed adjustments to the already existing design regarding its look and appearance. Therefor the following columns were added, moved or converted:

- Test ID
- Test Category
- Test Case
- Test Description
- Standard / Paragraph / Edition
- Test Environment
- Test Environment Additional Info
- Number of Samples
- Acceptance Criteria
- RQ-ID (Requirement Identification)
- Remarks
- •

Test ID	Test Category	Test Case	Test Description	Standard / Paragraph / Edition	Test Environment	Test Environment additional in <mark>∵</mark>		s	iample		v	Acceptance Criteria	RQ-ID	Remarks
F-11	Functional Electrical Testing	Temperature sensor tansient temperature connection check	Measurement of dynamic behavior the measured sensor signal with a defined ourrent profile in the winding (heating up DUT)		Electric test bed	Climat conditioning	19	1	6	6	6	Performance and parameter values meet requirements, Functional status A	2109806	
F-15	Functional Electrical Testing	Open circuit voltage measurement - PMSM EESM	Measurement of no-load voltage	IEC 60034-1, IEC 60349-2, IEC 60349-4	No load test bed		67			30	30	Performance and parameter values meet requirements, Functional status A	2109806	Parameter test
F-16	Functional Electrical Testing	Open circuit loss measurement - PMSM IM	Measurement of no-load losses (bearing, windage, hysteresis)	IEC 60034-1, IEC 60349-2, IEC 60349-4	No load test bed		67			30	30	Performance and parameter values meet requirements, Functional status A	2109806	
F-17 a	Functional Electrical Testing	Short circuit current measurement	Shart circuit current measurement - PMSM	IEC 60034-1, IEC 60349-4	Load test bed		67			30	30	Performance and parameter values meet requirements, Functional status A	2109806	
F-17 b	Functional Electrical Testing	Short circuit current measurement - EESM	Shart circuit current measurement - EESM	IEC 60034-1, IEC 60349-2	Load test bed		67			30	30	Performance and parameter values meet requirements, Functional status A	2109806	0
F-17 c	Functional Electrical Testing	Short circuit current measurement	Locked rotor current as function of phase voltage - IM	IEC 60034-1, IEC 60349-2	Load test bed		67			30	30	Performance and parameter values meet requirements, Functional status A	2109806	8

Figure 50: Schematic overview of the eMotor DVP [2]
3.1.3.1 Test ID

This column is used to allocate an identification number or code for each test case. They can either be AVL specific or derived from standards like IEC 60034-1.

3.1.3.2 Test Categories

See chapter 3.1.2 and its subchapters for further information

				DVP&R: Planning										
Test II	. Test Category .	Test Case	Test Description	Standard / Paragraph / Edition	Test Environme	Test Environment additional infr			iample			Acceptance Criteria	RQ-ID 🛫	Remark 🖕
							Total Quantity	Gen 0	Gen 1	Gen 2	Gen 3			
Functional	Testing											Declamore and		
P-01a	Functional Performance Testing	Fixed operation point measurement with 51 load at base speed	Performance measurement - Single load point: current, torque, speed, efficiency at maximum continous load at base speed and nominal boundary conditions (voltage, cooling, temperature)	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed		67					performance and parameter values meet requirements, Functional status A	2109818	Parameter test
P-02	Functional Performance Testing Functional Electrical IV Testing Functional Electrical IV Testing Functional Mechanical Testing Functional Energy Testing Functional Thermal Testing Functional IN-MT Testing Functional ENC Testing	itinuous load operating ge	Temperature-rise test: Characteristic curve - continuous load: Evaluate max torque/ speed curve for continuous operation at specific boundary conditions (voltage, cooling, temperature). Load until thermal steady state condition is reached.	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed		19					Performance and parameter values meet: requirements, Functional status A	2109818	

Figure 51: Available test categories for functional testing [2]

3.1.3.3 Test Case

In this column the names for each test are listed in a way that the basic idea – the intention of the test – is clear to all parties involved in the development process.

3.1.3.4 Test Description

This column contains brief descriptions for every test case. They shall be kept simple and short to not blow the extent of the DVP.

3.1.3.5 Standard / Paragraph / Edition

This section contains listing of the standards, norms, etc. where the test case was derived from.

3.1.3.6 Test Environment & Additional Info

The test environment was agreed upon to be either: Simulation, Test Bed or in Vehicle. The additional info contains further instructions about the test bed type. For instance, it can be:

- High load test bed
- Climatic chamber
- Inverter load test bed
- EMC chamber
- NVH test bed
- 3M test bed
- Workbench
- FEA
- Vehicle

3.1.3.7 Number of Samples

The number of total samples is calculated by summing up the number for every generation of samples according to chapter *3.1.1.4*. Those numbers either derive from standards, norms mentioned in the chapter *3.1.3.5 Standard / Paragraph / Edition*, from statistical probability or empirical values from the past. Figure 52 shows a schematic overview of the sample section in the DVP.

				DVP&R: Planning		<u> </u>							(/
Test II 🖵	Test Category 🖵	Test Case 🖵	Test Description	Standard / Paragraph / Edition	Test Environme 🚽	Test Environment additional infe		Sample				Acceptance Criteria	RQ-ID 🖵	Remark: 🖕
							Total Quantity	Gen 0	Gen 1	Gen 2	Gen 3			
Functional T	esting							_	_	_	_		_	_
P-01 a	Functional Performance Testing	Fixed operation point measurement with S1 load at base speed	Performance measurement - Single load point: current, torque, speed, efficiency at maximum continuus load at base speed and nominal boundary conditions (voltage, cooling, temperature)	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed		67	1	6	30	30	erformance and arameter values neet equirements, unctional status A	2109818	Parameter test
P-02	Functional Performance Testing	Continuous load operating range	Temperature-rise test: Characteristic curve - continuous load: Evaluate max torque/ speed curve for continuous operation at specific boundary conditions (voltage, cooling, temperature). Load until thermal steady state condition is reached.	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed		19	1				erformance and arameter values heet equirements, unctional status A	2109818	
P-03 a	Functional Performance Testing	Short time overload operating range	Temperature-rise test: Characteristic curve - short-time overload Evaluate max torque/ speed curve for short time overload operation at specific boundary conditions (voltage, cooling, temperature) Specify start temperature and either time or temperature limit. Load until limits are reached	IEC 60034-1, (IEC 60034-4-1), IEC 60349-2, IEC 60349-4	Load test bed		19	1		6		erformance and arameter values heet equirements, unctional status A	2109818	
P-04 a	Functional Performance Testing	Efficiency map (characteristic maps)	Characteristic machine maps test - Torque, Power, Current, Loss, Efficiency, Torque ripple Measurement of operating points: Torque (n),Power(n), L (d(M,n), L (q(M,n), Losses(M,n), Efficiency (M,n) Torque ripple (M,n); @Un, Umax, Umin @target temperatures (winding, magnet)	IEC 60034-1, (IEC 60034-4-1), IEC 60349-2, IEC 60349-3, IEC 60349-4	Load test bed		67	1				erformance and arameter values neet equirements, unctional status A	2109818	Parameter test

Figure 52: Overview of how the sample number is calculated [2]

3.1.3.8 Acceptance Criteria

The idea was, since this DVP is a generic version, to come up with the following very general definition: "*No visible damage on the specimen. UUT must be fully functional after test.*" Later adaptions for customer projects are then performed. These acceptance criteria are then derived and narrowed down from the customer's requirements.

3.1.3.9 RQ ID / Remarks

The last two columns contain information regarding requirements that are linked to customer or R&D projects or additional information that is not listed in the columns mentioned before.

3.2 Exemplary calculation of reliability

Due to requests by customers to reduce sample costs for the testing, this chapter shall elaborate how the reliability changes if the number of samples is modified. The calculation is based on chapters *2.6-2.9*.

For this example, a reliability value as well as the confidence level are requested to be 90%. Furthermore, a lifetime target of 250 000 km has been defined by the customer.

Failure distribution: Weibull-Approach		
Example: Reliability 90%, Confidence level 90%		
Max. significance level a	0,1	
Shape parameter b (Weibull distribution)	2	
Reliability goal R_target for target time	0,9	
target time t_Target	250000	[km]
RAD for all tests	1	
Time for equivalent test t_equivalent	250000	[km]
Number of Samples n to reach R(t)	21,9	
Numbers of samples (VDA) n_Plan	27	
Numbers of samples (suggested) n_suggested	10	
Reliability R_Plan	91,8%	91,8%
Reliability R_suggested	79,4%	79,4%

Figure 53: Calculating the reliabilities for 27 and 10 samples [2]

The significance level is characterized as $\alpha = 1 - P_A$, where P_A is the confidence level. Furthermore, the shape parameter *b* of 2 was chosen. (AVL best practice $2 \le b \le 4$). *RAD* stands for relative accumulated damage and is a value that compares the test cycle's damage to the one from the reference cycle. A value of RAD = 1 means that the test cycle's damage is equal to the reference cycle's.

To calculate the required number of samples needed to reach the reliability goal of 90% Equation 11 needs to be solved.

$$n_{R} = \frac{\ln(\alpha)}{\ln(R_{target})} * \left(\frac{t_{Target}}{t_{equivalent}}\right)^{b}$$
 Equation 11 – Calculating the number of samples

For the requirements mentioned above, a total number of 22 samples need to be tested, for RAD = 1.

After that Equation 12 and Equation 13 need to be solved for the planned number of samples from the VDA document (27 samples) and the suggested number of samples.

$$R_{Plan} = e^{\left(\frac{\ln(\alpha)}{n_{Plan}} * \left(\frac{t_{Target}}{t_{equivalent}}\right)^{b}\right)}$$
$$R_{Suggested} = e^{\left(\frac{\ln(\alpha)}{n_{suggested}} * \left(\frac{t_{Target}}{t_{equivalent}}\right)^{b}\right)}$$

Equation 12 – Calculating the reliability for the planned number of samples from VDA

Equation 13 - Calculating the reliability for the suggested number of samples

The reliability for 27 samples is 91,8%, whereas for 10 sample it is only 79,4%, as seen in Figure 53. To increase the reliability although, only 10 samples are tested, the value for *RAD* needs to be increased. MS Excels solver function was used to calculate the *RAD* and the equivalent test range. Hence a *RAD* value of 1,64 is the result of the calculation, which means that the test cycle is 64% more damaging than the reference cycle. This also leads to an equivalent test range of 409701 km for the same reliability (91,8%), as shown in Figure 54. Due to that fact it may be stated that through over testing the number of samples may be reduced.

Failure distribution: Weibull-Approach		
Example: Reliability 90%, Confidence level 90%		
Max. significance level a	0,1	
Shape parameter b (Weibull distribution)	2	
Reliability goal R_target for target time	0,9	
target time t_Target	250000	[km]
RAD for all tests	1,6388026	
Time for equivalent test t_equivalent	409701	[km]
Numbers of samples (VDA) n_Plan	27	
Numbers of samples (suggested) n_suggested	10	
Reliability R_Plan	91,8%	
Reliability R_suggested	91,8%	79,4%

Figure 54: Calculating the RAD value and test range [2]

3.3 Case Study

In the following chapter a better understanding of the case study shall be given to the reader.

	Case 1	Case 2	Case 3	Case 4
eAxle	Х	В		Х
eMotor	Х	В	А	
Inverter	Х			
Transmission	Х			Х

Table 11 - Overview of the case studies

Legend:

X – All sample phases

B – B sample phase

A – A sample phase

Case 1 shall be a DVP where the responsibility for all four levels lies with AVL to verify eAxle, eMotor, inverter and transmission.

Case 2 focuses on only verifying the eAxle and eMotor.

Case 3's responsibility aims at eMotor and inverter.

In contrast to that Case 4 assesses the DVP for an eAxle and its transmission.

3.3.1 Case 1 – The overall responsibility

This generic approach covers all test cases listed in the DVP for each level. To verify all functions and to meet all requirements the whole lot of test cases has to be handled, processed and conducted. The summary and tabular listing can be found in chapter *6.1.1 eAxle DVP*. This scenario can be seen as the total amount of possible test cases that are necessary to perform. Since it is a generic DVP with a black box approach some tests will be removed or adjusted in the customer project, due to interdependencies respectively to the system's or subsystem's architectures.

For example, in relation to transmissions, test cases that assess shift elements, electric oil pumps, park locks, differential tests, over speed capability or towing may be left out if not applicable to the system. In this case the architecture describes a P4 module / eAxle that is further explained in chapter *2.1.1.1 Parallel hybrid propulsion systems*.

Figure 55: Overview of the considered eAxle [2]

If the responsibility lies with all levels of system and subsystems the following points have to be taken into account:

For large scale production series the number of validated samples and therefore depth of testing has to be high, to ensure a high reliability of the product. From experience German OEMs demand higher levels of reliability compared to Chinese ones. This results from the higher prices for the vehicle as well as the reputation from the past. A Reliability of 0% could be put into practice but is a high-risk approach, because no statement about how many samples will fail may be made. In Contrast to that a reliability of 100% is not possible to obtain, due to not justifiably cost-utilization ratio.

3.3.2 Case 2 – The eAxle and eMotor DVP

When the eAxle-only DVP is considered, suppliers or tier ones deliver the subsystems transmission, inverter and eMotor. They can either be delivered by one supplier or several independently working ones. Additionally, it can be assumed, that the suppliers already validated their designs sufficiently. Often suppliers, especially in the new emerging market of e-drive, are not sure how, to validate their subsystems. Therefor it is often necessary to support them with their testing and validation activity.

Those tests do not cover the whole generic test procedure for e.g. gearboxes. As mentioned above, it is assumed that the transmission and inverter have already been validated and therefore just the basic performance tests like efficiency test, torque and speed sweeps and initial run in procedures are performed. To validate the eAxle and eMotor without the final transmission or inverter a front-loading approach consisting of a HiL and SiL procedures are necessary. Instead of transmission and inverter dummy-systems which represent the physical attributes may be used for hardware test procedures.

For transmission the following parameters need to correlate with the real system:

- Mass
- Inertia
- Gear ratio
- Interface
- Stiffness
- Clearance

In regard to inverters, programmable controllers are necessary to perform similar current and amplitude ramps, plus the interface has to correlate with the original one.

Parameter tests are test procedures that are combined into one test. Therefor they are a collection of functional tests for characterization of eAxle functions.

Especially for eAxles specific durability tests are defined by norms, which are elaborated in the following chapters *3.4*.

3.3.3 Case 3 – The eMotor responsibility

To successfully test an eMotor an operational Inverter is necessary. Due to the fact that only the eMotor shall be investigated in the A phase / Gen 0, a special testing inverter, which will be replaced by the real inverter in later sample phases, shall be used. Especially in the A phase / Gen 0 it is important to verify basic functions of the component, subsystem or system considered, although some material or design changes are likely to occur after this phase. The resulting DVP can be found in chapter *Fehler! Verweisquelle konnte nicht gefunden werden. Fehler! Verweisquelle konnte nicht gefunden werden.* For later phases of the eMotor the number of samples is also added in chapter *Fehler! Verweisquelle konnte nicht gefunden werden. Fehler! Verweisquelle konnte nicht gefunden werden.* During A phase / Gen 0 only one sample for each test case was considered.

3.3.4 Case 4 – Validation of an eAxle and Transmission

In this case the responsibility for the validation of the transmission and eAxle. Firstly the transmission, which is considered as a subsystem, has to be tested. Secondly the whole eAxle is tested. The procedure is later on also performed in parallel for eAxle and transmission.

During A phase / Gen 0 only basic functionality tests, ultimate strength tests for the differential of the transmission plus durability test runs for the transmission as well shall be executed.

During B phase / Gen 1 contact pattern tests, to analyses the macro and micro geometry of the tooth flanks, durability and emergency shifting tests, no oil test, to analyze the behavior of the transmission without oil, lubrication tests, over speed and load tests together with torsional stiffness and NVH fingerprint tests need to be performed.

During C phase / Gen 2 the first environmental tests need to be implemented like altitude tests. In addition to that and the tests from the previous phase, bolt tests that check the bolt connection after a durability runs need to be added as well. The number of durability runs need to be increased also and extended by durability shifting and high-speed tests to cover the lifetime of the product. Emergency tests for the park lock, limp home and shift elements are also included in this phase.

During D phase / Gen 3 the number of samples has to be increased to result in a better statistical statement. Low and high temperature tests, emergency sealing tests and drag torque / efficiency

tests at different oil temperatures have to be conducted, plus referencing tests for the shift actuation (if applicable).

3.4 High Temperature & High Humidity Endurance - HTHE

HTHE stands for High Temperature & High Humidity Endurance and is therefore assigned to durability testing. HTHE as well as HTOE and PTCE durability tests are mandatory tests for all modules, sensors that send CAN or LIN messages and for all ignition on/off related operations. This test shall simulate all possible failure modes and conditions that might occur during a vehicle's service life time, when electronic devices and modules are exposed to high temperature and humidity.

Failure modes include electrical short circuits resulting from oxidation and galvanic corrosion of metals and absorption of water by those materials. Further failures are potting, seal, adhesive and conformal coating compound failures that cause metals and materials to lose their strength and swell.

To describe all occurring effects of temperature and humidity on the failure life of a vehicle's electronic components the Lawson Model shall be used. This model is used to accelerate the HTHE test cycle. [33]

The test procedure goes as follows:

- 1. Place component in a test chamber maintained at 85 °C.
- 2. Introduce humidity to the chamber and maintain the relative humidity inside the chamber at 85% RH.
- 3. Accumulate test time when both temperature and humidity are at 85 °C and 85% RH.
- 4. Functionally test the component every 47 hours or as specified in the Component Specific Performance Standard (may involve few minutes to 1-hour maximum operational time). If the component needs to be removed from the chamber for functional testing, then steps 1 and 2 must be repeated when resuming testing prior to accumulating additional test time.
- 5. Any parametric or functions checks at different thermal conditions (-40 °C, RT, +85 °C) can be performed with humidity uncontrolled. [33]

To define the acceleration factor the following equation is used:

$$AF_T = e^{\left[-\frac{E_a}{k}\left(\frac{1}{T_a} - \frac{1}{T_f}\right)\right]}$$

Equation 14- Calculating the temperature acceleration factor [33]

- *AF_T*: *Temperature acceleration factor*
- E_a : Activity energy
- k: Boltzmann constant
- T_a : Temperatur of accelerated test
- *T_f*: Field temperature condition
- T Absolute temperatur in Kelvin

$$AF_{RH} = e^{b\left[RH_a^2 - RH_f^2\right]}$$

Equation 15- Calculating the humidity acceleration factor [33]

- AF_{RH} : Humidity acceleration factor
- $b:Constant (b = 5.57 \times 10^{-4})$
- *RH*: *Relative Humidity* [%]
- RH_a: Humidity during accelerated test
- RH_f: Field humidity condition

Both equations Equation 14 and Equation 15 can be combined to one single equation:

$$AF_{T,RH} = AF_T * AF_{RH} = e^{\left[-\frac{E_a}{k}\left(\frac{1}{T_a} - \frac{1}{T_f}\right)\right] + b\left[RH_a^2 - RH_f^2\right]}$$
 Equation 16- The Lawson model equation [33]

• *AF_{T,RH}: Combined acceleration factor of the Lawson model*

It has to be stated that Lawson and Arrhenius models use different Activation Energy models, since both describe two different failure mechanisms.

Hence the total HTHE testing time may be calculated by:

$$t_{HTHE} = \frac{t_{non-op.time}}{AF_{T,RH}}$$
 Equation 17 - Calculation of the total HTHE testing time [33]

- *t_{HTHE}*: *Total testing time for HTHE test*
- $t_{non-op,time}$: Non Operatint time during service life in field
- AF_{T,RH}: Combined acceleration factor of the Lawson model

Exemplary calculation of the HTHE test duration:

An ECU located under-hood compartment shall be considered. The target service life time in the field shall be 15 years / 150 000 miles. The average temperature during non-operating times is $T_f = 23 \ ^{\circ}C \ or \ 296 \ K$ and the average humidity is supposedly $RH_f = 65 \ \%$.

Further details:

- $T_a = 85^{\circ}C \text{ or } 358 \text{ K} \rightarrow Temperatur of accelerated test}$
- $RH_a = 85 \% \rightarrow Humidity during accelerated test$

From that the combined acceleration factor of the Lawson Model is calculated as:

• $AF_T = e^{\left[-\frac{E_a}{k}\left(\frac{1}{T_a} - \frac{1}{T_f}\right)\right]} = 23,32$

•
$$AF_{RH} = e^{b\left[RH_a^2 - RH_f^2\right]} = 5,32$$

• $AF_{T,RH} = AF_T * AF_{RH} = 129,3$

The non-operating time in the field for 15 years / 150 000 miles shall be 129 000 h.

•
$$t_{HTHE} = \frac{129\,000}{129,3} = 998 \, h$$

For sake of simplicity the HTHE duration shall be 1000 h for powertrain or safety applications and 700 h for other applications.

The following table shows HTHE durations under different temperature and humidity conditions:

Temperature & Relative	PT-Emission / Passive Safety*	All Other Applications
Humidity	or Other Applications **	(Inside Cabin)
85 C & 85% RH	1 000 Hours	700 Hours
80 C & 90% RH	760 Hours	530 Hours
75 C & 95% RH	570 Hours	395 Hours
70 C & 95% RH	715 Hours	500 Hours
65 C & 95% RH	905 Hours	630 Hours
*either Outside or Inside Cabin		
** only Outside Cabin		

Table 12 - Overview for different boundary conditions [33]

3.5 High Temperature Operating Endurance - HTOE

HTOE stands for High Temperature Operating Endurance test. An electronic component internally generated heat, packaging location and local environments have strong impacts on them regarding temperature. Therefor HTOE shall simulate all occurring cumulative damage resulting from bias operation and failure modes under different temperature conditions like solder plastic creep, crack propagation and drying of electrolytic capacitors. To reduce testing time and especially testing costs, accelerated tests at higher temperature levels with voltage are used to generate the damage corresponding to the real damage. To calculate the damage and to describe phenomena caused by kinetics of chemicals and molecules, the Arrhenius model is used. Which will be elaborated later on in this chapter. [33]

This test has to be performed for all electronic components / devices if certain features of the same module operate at different temperatures. E.g. a CD mechanism in a vehicle is not operable above 70°C, but the AM/FM/SAT function may still be above 85°C. Both features have to be split with agreed percentage ratios. (E.g. 50 % / 50 %) [33]

Figure 56 - The HTOE test cycle

The Arrhenius model is used to describe the kinetics of many chemical and molecular phenomena. Many failure modes are caused by mechanisms that operate at the molecular level. These failure mechanisms include electro-migration, diffusion, oxidation, ionic contamination, dielectric breakdown, and surface charge accumulation in silicon oxides, electrolytic corrosion, chemical and galvanic corrosion, aluminum penetration in silicon, and others. Other failure mechanism operates at a macro level and includes solder plastic creep, crack propagation in many materials, drying of electrolytic capacitors, and others. [33]

The mathematical relationship used for the HTOE test is:

$$R = C * e^{\frac{-E_a}{k * T}}$$

Equation 18 - Calculation of the reaction rate[33]

- R: Reaction rate
- C: empherical constant
- k: Boltzmann constant
- *E_a*: empherical activation energy = 0.7 eV/K
- T Absolute temperatur in Kelvin

For each failure mechanism a unique activation energy E_a can be found like shown in the following table:

Failure Mechanism	Ea [eV]
Dielectric breakdown	0.3 to 0.6
Diffusion failures	0.5
Corrosion - electrolysis	0.3 to 0.6
Corrosion - chemical and galvanic	0.6 to 0.7
Electro-migration	0.5 to 1.2
Charge loss (MOS/EPROM)	0.8
Ionic contamination	1.0
Surface charge accumulation in silicon oxide	1.0 to 1.05
Aluminum penetration into silicon	1.4 to 1.6

Table 13 - Failure mechanism and their activation energy constant [33]

For HTOE tests E_a is assumed to be 0,7 eV to calculate its test duration of E/E components. Thus, it appears that the testing time can be reduced by increasing the activation energy. Hence all activation energies greater or equal 0,7 eV and their failure mechanisms are covered by HTOE.

Furthermore, the Arrhenius model can be used to identify the lifetime of electronic components at constant temperatures, when failures are caused by the above mentioned molecular mechanisms. As with the Lawson Model also an acceleration factor, between ratio of field usage time and test time with equivalent damage, exists. [33]

$$AF_T = e^{\left[-\frac{E_a}{k}\left(\frac{1}{T_a} - \frac{1}{T_s}\right)\right]}$$
Equation 19 - Calculation of the Test Acceleration Factor[33]

- *AF_T*: *Test acceleration factor*
- *E_a*: *Activity energy*
- k: Boltzmann constant
- *T_a*: *Temperatur of accelerated test* [*K*]
- *T_s*: *Field service temperature* [*K*]

Since the temperature during component operation time is not the same as the field service life, different component temperature profiles are defined according to their mounting position. Each profile consists of various series of temperatures and their corresponding percentage distribution.

Hence the total testing time may be calculated by: [33]

$$t_{HTOE} = t_{op.time} \sum_{i} \frac{p_i}{A_{T,i}}$$
 Equation 20 - calculation of the HTOE test time[33]

- *t_{HTOE}*: Total testing time for HTOE test
- *t_{op.time}: Operating time during service life in field*
- $A_{T,i}$: Combined acceleration factor

The test procedure may further be accelerated by using the maximum possible operating temperature, which is the maximum environmental temperature. $t_{op.time}$ has to be calculated and evaluated for every component. [33]

Exemplary calculation of the HTOE test duration:

The HTOE test time for a passive safety application like an ORC Module shall be calculated, with a service life time of 15 years / 150 000 miles. 95% of the customers operate the vehicle for 12 000 h and the HTOE test shall be conducted at 85°C.

- 1. The temperatures are converted from Celsius to the Kelvin absolute temperature scale.
- 2. Using the distribution, the operating time at different temperatures is calculated.
- 3. For each temperature, an acceleration factor AF_T is calculated using the Arrhenius equation.
- 4. The equivalent test time at T_2 is calculated by dividing the time at each temperature by the acceleration factor for each temperature.

Temperature	s for Class TC1	Distribution	Operating Time in 12 000 Hours	AFT	Equivalent Test Time @ 85°C
-40°C	233.15°K	6%	720	193 577	0,004 h
23°C	296.15°K	65%	7 800	115.9	67 h
60°C	333.15°K	20%	2 400	5.49	437 h
80°C	353.15°К	8%	960	1.38	696 h
85°C	358.15°K	1%	120	1	120 h
				Total	1320h

5. The total test time required is the sum of the individual test times.

To simplify the test procedure the test duration is reduced to 1300 h in total for powertrain / safety applications and to 950 h for all other applications. [33]

3.6 Power Thermal Cycle Endurance - PTCE

PTCE is an acronym for Power Thermal Cycle Endurance, which aims on assessing failure modes deriving from different coefficients of thermal expansion for different materials under temperatures that are not constant. Dynamic temperature changes cause mechanical stresses on adjoining materials during the lifetime of the vehicle. Hence cracked solder joints or similar mechanical failures may occur for electrical or electronic components. [33]

The Coffin-Manson Model describes the fatigue life of materials under shear strain from thermal expansion & contraction. [33]

The test procedure for the PTCE test consists of minimum and maximum temperatures and transitions between them in the test chamber.

Test time [h]

Figure 57- Schematic overview of one PTCE cycle [33]

Legend:

T_{soak}: The dwell time required for the component to reach the same temperature as chamber ambient during thermal cycling.

- 1. Place component in a thermal chamber at RT.
- 2. Ramp down the chamber temperature to T_{min} temperature in a non-operating or low power mode per the Component Specific Performance Standard
- 3. Maintain the chamber temperature for time duration T_{soak} . After the T_{soak} time, start to operate the component before ramping the temperature. The time required should be specific to the component as specified in the Component Specific Performance Standard.
- 4. Ramp up the chamber temperature to T_{max} temperature
- 5. Maintain the chamber temperature for time duration T_{soak} .
- 6. Ramp down the chamber to RT. Follow the operating mode, monitoring status and other test parameters.
- 7. Repeat steps 2 through 6 for the required number of cycles.
- 8. Perform the functional checks at start and end of the test cycles. [33]

The Coffin-Manson Model describes the fatigue life of materials under shear strain and is therefore used fort the PTCE test.

$$N_f = A * \frac{1}{\varepsilon_{ST}^2}$$

Equation 21 Calculating the number of shear cycles until failure [33]

- N_f: Number of shear cycles until failure
- ε_{ST} : Shear strain
- A: Empherical constant

The exponent of 2 clearly shows that the damage caused by shear strain is non-linear. Hence the low-level shear events can be ignored and the focus shall lie on understanding the few high shear events occurring. The shear strain for different materials with different coefficients of thermal expansion are proportional to temperature change. Events with greater temperature differences have a greater impact for electronic components than smaller ones. They can be generalized as follows: [33]

$$N_f = rac{1}{(\Delta T)^C}$$
 Equation 22 Calculating the number of shear cycles with ΔT [33]

- ΔT : Difference in temperature
- *C*: approximately 2 for solder materials

To calculate accelerated cycles with procedure equivalent shear fatigue damage the relationship is:

$$A_f = \frac{N_a}{N_f} = \left(\frac{\Delta T_f}{\Delta T_a}\right)^C$$
 Equation 23 - Calculation of the test acceleration factor [33]

- A_f : Test acceleration factor
- N_a : Number of cycles required for an accelerated test temperature range
- N_f : Number of cycles experienced during the service life with the usage temperature rage

Typical ΔT_f values are defined in the FCA standard. Due to different values of the actual ΔT_f values may be different to the ones from the table. A responsible engineer has to validate the actual amount of thermal delta. [33]

The aim of PTCE test is a thermal cycle that is accelerated to the maximum.

Exemplary calculation of the PTCE test duration:

For an ECU (temp. class TC1 and a service life time in the field of 10 years) the number of cycles in the PTCE test shall be calculated.

1. The Number of Temperature Cycles during the Service Life is N_{f} = 8200 cycles

2. Since the component belongs to temperature class TC1, the Average Temperature difference in field is $\Delta T_{\text{field}} = 34^{\circ}\text{C}$.

3. From T_{max} = 85°C and T_{min} = -40°C, the Temperature Delta during a test cycles is $\Delta T_f = 125^\circ\text{C}$

To calculate the total test time the number of cycles has to be multiplied by the duration of every cycle: [33]

$$N_a = 8200 * \left(\frac{34}{125}\right)^2 = 607 \ [cycles]$$

To simplify the procedure the number of PTCE test cycles shall be increased to 1000 for Powertrain and Passive Safety applications and reduced to 600 for other applications. [33]

3.7 Power Related Endurance Test - PRET

The term PRET stands for Power Related Endurance Test and is a method to verify the lifetime durability of different drivetrain components. In this exemplary calculation a test cycle is derived from a real driving cycle that has a life time target of 300 000 km. This is dependent on the vehicle category. Every operating point is defined with its own value of torque and speed. With this test all power related failure modes shall be assessed, to ensure high quality and reliability of the components. This test is to verify mechanical components to not show any signs of wear, cracks or similar failure modes after conducting the test. During this test parameter test inspections, trend measurements and visual inspections of oil samples are conducted.

The following components are investigated:

- E-machine
- Inverter
- Gears
- Solders
- Bondings
- Weldings
- Bonding and welding joints
- Seal rings
- Bearings
- Housing

Since this process is still in development phase the initial suggestion of the flow diagram goes as follows:

Figure 58- Flow diagram of the PRET test procedure

Parameter tests are performed to record and later on to evaluate specific parameters of the UUT like efficiency, drag torque etc. The evaluation can either be done on the fly via live evaluation or afterwards via post processing.

4 Further Steps

After the creation of the DVP an FP-Sheet was conducted, where possible occurring failures for typical machine components of an eAxle, transmission, eMotor and inverter are listed. Additionally, the location, where the failure might occur, its cause, effect on system level, the damaging operating condition and possible aggravating conditions are listed for every failure. The new approach was then to create a matrix, which shows by which functional or durability testing category a failure may be activated.

In chapter *6.1.5 FP-Sheet* the result is shown. Those failures were then put into the correlation sheet for functional and durability testing. In those sheets the brown cells show the need for condition monitoring that also shall be combined with new big data approaches. The red marked cells are the white spots were no test cases and therefor failures can be covered. This was only applicable for durability mechanical testing. Durability mechanical testing, as well as functional EMC and electrical testing is not applicable for transmissions.

5 Summary and Outlook

This master's thesis goal was to generate a generic DVP for eAxles based on the partly existing subsystem DVPs of eMotor, inverter and transmission. For better understanding and means of standardization a common wording within AVL was created, which will from now on used in the concerned departments in Regensburg, Stuttgart and in the headquarters in Graz.

In chapter 2 *The fundamentals for developing a DVP* the foundation for developing a DVP was elaborated, which was then intensified and implemented in chapter 3 *Developing the eAxle DVP*. Due to requests by suppliers the parameter of reliability had to be taken into consideration. Especially for sports cars and hyper sports cars a reduction of test samples was the desired goal. In these fields economy of scale regarding production is, due to very limited production numbers, not feasible. To reduce testing costs frontloading approaches and proper testing is necessary to intercept failures as early as possible in the development process. This is also shown in Figure 59. The aim is a shift to the left from the already established powertrain test beds and road testing to frontloading (simulation) and component test beds to reduce costs.

Figure 59: Price indication for different test environments [2]

To visualize failures and in order to track them through the development process the excel sheets shown in chapters *6.1.6* and *6.1.7* were used. The testing method used within AVL focuses on activating certain failures based on a FMEA and the AVL Load Matrix approach. One of the results is the FP-Sheet shown in chapter *6.1.5*. White spots could be found on inverter level, since no

mechanical durability tests on subsystem level are implemented. In the future these white spots shall be eradicated and replaced by tests that activate the desired failures.

In chapter 3.2 *Exemplary calculation of reliability* the effects of reducing the number of test samples for durability testing was elaborated. This shows that a reduction of samples leads to reduction in reliability. To increase the reliability or achieve the same value as stated in the VDA the RAD and therefore testing time per sample needs to be increased.

Additionally, it is planned to elaborate a new test cycle that combines different temperature related and mechanical failure mechanisms, to reduce the number of samples and testing time.

6 Appendix

6.1.1 eAxle DVP

Project info Instructions About Level 2 Level 3.1 Level 3.2 Level 3.3 Level 2 e -Axle System

								DVP&R:	Planning									
Test ID	Test Category	Test Case	Test Description	Standard / Paragraph /	Test Environment	Test Environment	Test Respo	nsibility	Test Duration	Total	S	Sample		Test stat	Test report	Accentance Criteria	▼ ▼ RO-ID	- Remarks
	icst category			Edition		additional info	Responsible Person	Department	(Execution Time)	Quantity	Gen 0	Gen 1	Gen 2 Gen	3	ID / Path			
Functional	Testing	-	-	-	-		-											
	Functional Mechanical Testing	Gearbox Test Run-In Test	To run the gears of transmission.		Test Bed					2			1 1			No visible demages after test, no water ingress in the DUT, no sealing demage. All functionalities remains as required after test.	2067874	
x	Functional Mechanical Testing	Gearbox Test Speed Sweep	To execute the speed ramp for complete speed range.		Test Bed					2			1 1			No visible demages after test, no water ingress in the DUT, no sealing demage. All functionalities remains as required after test.	2067874	
x	Functional Mechanical Testing	Gearbox Test Torque Sweep	To execute the torque ramp for complete speed range.		Test Bed					2			1 1			No visible demages after test, no water ingress in the DUT, no sealing demage. All functionalities remains as required after test.	2067874	
	Functional Mechanical Testing	Park Lock Actuation Test	To check if the park lock engages and disengages.		Test Bed					6			3 3			No visible demages after test, no water ingress in the DUT, no sealing demage. All functionalities remains as required after test.	2067874	
	Functional Mechanical Testing	Park Lock Dynamic Test	To check when the park lock is engaged in speed relevant conditions.		Test Bed					6			3 3			No visible demages after test, no water ingress in the DUT, no sealing demage. All functionalities remains as required after test.	2067874	
	Functional Mechanical Testing	Park Lock Static high load Test	To evaluate the maximum static load that can be hold by park lock.		Test Bed					6			3 3			No visible demages after test, no water ingress in the DUT, no sealing demage. All functionalities remains as required after test.	2067874	
	Functional Electrical HV Testing	Active Discharge	To get the time of system active discharge.		Test Bed					0						No visible demages after test, no water ingress in the DUT, no sealing	2067870	depending on eDrive variant (e.g. active discharge
	Functional Electrical HV Testing	Pre-Parameter test	To check i.g. CAN communication, interlock, HV connections, resolver, coolant, visual inspection, (for different ambient		Test Bed					0						demage. All functionalities remains as required after test. No visible demages after test, no water ingress in the DUT, no sealing demage. All functionalities remains as required after test.	2067870	parameter test
	Functional Electrical LV Testing	Quiescent Current	To get the value of quiescent current.		Test Bed					0						No visible demages after test, no water ingress in the DUT, no sealing	2067868	
	Functional Electrical LV Testing	Park Lock Actuation & Time	To check if the park lock can engage and disengage & to check the time for engagement and disengagement.		Test Bed					0						demage. All functionalities remains as required after test. No visible demages after test, no water ingress in the DUT, no sealing demage. All functionalities remains as required after test.		parametertest
	Functional Flacture IV/Testing	Adama Fundamina	T		Test Ded					0						No visible demages after test, no water ingress in the DUT, no sealing	20072000	
	i unctional clectrical LV Testing		i o evaluate the mass of system.		rest Bed					U						demage. All functionalities remains as required after test.	2007000	
	Functional Electrical LV Testing	Geometrical Measurement	To check if the system is deformed during the test.		Test Bed					0						demage. All functionalities remains as required after test.		
	Functional Mechanical Testing	Park Lock Emergency Test	To check if the park lock is able to engage and disengage.		Test Bed					6			3 3			No visible demages after test, no water ingress in the DUT, no sealing demage. All functionalities remains as required after test.	2067874	
	Functional Mechanical Testing	Insertion Forces Side Shaft Test	To get the needed force of side shaft assembly and disassembly .		Test Bed	Workbench				6			3 3			No visible demages after test, no water ingress in the DUT, no sealing demage. All functionalities remains as required after test.	2067874	
	Functional EMC Testing	LV - Conducted RF emission from components/modules on LV-power lines – Voltage method	Measurement of RF disturbance voltages on Low voltage supply lines	CISPR 25	Test Bed	EMC Chamber				4	1	1	1 1			Emission does not exceed the limits according requirement	2067876	
	Functional EMC Testing	HV - Conducted RF emission from components/modules on HV power lines – Voltage method	Test methods for shielded power supply systems for high voltages in electric and hybrid vehicles: Measurement of RF disturbance voltages on shielded HV voltage supply lines	CISPR 25	Test Bed	EMC Chamber				4	1	1	1 1			Emission does not exceed the limits according requirement	2067876	
,	Functional EMC Testing	LV - Conducted RF emission from components/modules other than supply lines and cable bunches – current probe method	Measurement of RF disturbance cureents on low voltage wiring	CISPR 25	Test Bed	EMC Chamber				4	1	1	1 1			Emission does not exceed the limits according requirement	2067876	

														1
		HV - Conducted RF emission from components/modules	Test methods for shielded power supply systems for high											
	Functional EMC Testing	on HV power lines and and three phase motor lines to	voltages in electric and hybrid venicles:	CISPR 25	Test Bed	EMC Chamber		4	1 1 1	1		Emission does not exceed the limits according requirement	2067876	
		the electric motor – current	Measurement of RF disturbances currents on shielded HV cables											
		probe method												
		HV - Conducted Emissions	Test methods for components with internal disturbance sources											
	Functional EMC Testing	from Currents on Shafts and Hoses	on Shafts and/or Hoses leading outside:	(based on CISPR 25)	Test Bed	EMC Chamber		4	1 1 1	1		Emission does not exceed the limits according requirement	2067876	
		LV - Conducted Pulse-												
	Functional EMC Testing	Voltages on	Measurement of Pulse emissions at the LV Supply	ISO 7637-2	Test Bed	EMC Chamber		4	1 1 1	1		Emission does not exceed the limits according requirement	2067876	
		LV Supply Lines	Voltage transient emissions test along high voltage supply lines											
	Functional EMC Testing	HV - Conducted Pulse Emissions on	voltage transient emissions test along ingit voltage supply intes	ISO DTS 7637-4	Test Bed	EMC Chamber		4	1 1 1	1		Emission does not exceed the limits according requirement	2067876	
		HV Supply Lines	respectively HV- and ground (line- to-ground)											
		Max. voltage rise & fall slew	Limitation of max, voltage rise and fall times for all extern											
	Functional EMC Testing	rates of Power & Signals connections at connector	available power and signal connections (power, I/O,		Test Bed	laboratory		4	1 1 1	1		rise and fall slew rates do not exceed limits of the requirement or exceptional approval is given by Vehicle manufacturer	2100919	
		pins Max. current rise & fall slew	· · · · · · · · · · · · · · · · · · ·											+
	Functional EMC Testing	rates of Power & Signals	Limitation of max. current rise and fall times for all extern available power and signal connections (power,	-	Test Bed	laboratory		4	1 1 1	1		rise and fall slew rates do not exceed limits of the requirement or	2100919	
		pins	I/O, Communication)									exceptional approval is given by vehicle manufacturer		
	Functional EMC Testing	HV-Load Shedding	To avoid voltage spikes in the case of HV-Relais switching	based on ISO DTS 6737-4	Test Bed	EMC Chamber		3	1 1	1		Spikes do not exceed requirement limits	2067876	
		Radiated electromagnetic	Countermeasures concept has to be delivered											+
	Functional EMC Testing	emissions from	Measurement of radiated RF disturbance with external antennas	CISPR 25	Test bed	EMC Chamber		3	1 1	1		Emission does not exceed the limits according requirement	2099323	
		ALSE method												
		HV - Radiated electromagnetic emissions	Test methods for shielded power supply systems for high voltages											
	Functional EMC Testing	from components/modules	- in electric and hybrid vehicles:	CISPR 25	Test bed	EMC Chamber		3	1 1	1		Emission does not exceed the limits according requirement	2099323	
		ALSE method	Radiated emissions from components/modules – ALSE method											
	Functional EMC Testing	HV - radiated emissions	Measurement of electrical fields in the frequency range below	CISPR 25	Test bed	EMC Chamber		3	1 1	1		Emission does not exceed the limits according requirement	2099323	
	Functional EMC Testing	HV - Radiated Emissions	Measurement of magnetic fields in the frequency range below	(GBT-18387 adopted for	Test bed	EMC Chamber		3	1 1	1		Emission does not exceed the limits according requirement	2099323	
	-	HV - radiated emissions	30MHz using a loop antenna Measurement of radiated RE disturbance using the stripline	components)										
	Functional EMC Testing	electromagnetic field Stripline	methode	CISPR 25	Test bed	EMC Chamber		3	1 1	1		Emission does not exceed the limits according requirement	2099323	
	Functional EMC Testing	Low frequency magnetic field emission <150kHz	Measurement of magnetic fields in the frequency range below 150 kHz using a hand held loop antenna (MIL-STD-461 or rimited close to the companyat		Test bed	EMC Chamber		4	1 1 1	1		Emission does not exceed the limits according requirement	2099323	
	Functional EMC Testing	Magnetic field emission -	Measurement of magnetic fields to limit exposure of persons to	ICNIRP	Test bed	EMC Chamber		4	1 1 1	1		Emission does not exceed the limits according requirement	2100921	
		LV - Conducted immunity	variing magnetic tields									Functional status /stati at the requested severity level(s) are fulfilled		
	Functional EMC Testing	against pulses on LV-supply lines	Conducted immunuity against pulses on LV-supply lines	ISO 7637-2	Test bed	EMC Chamber		4	1 1 1	1		according requirement	2099325	
	Functional EMC Testing	Fast pulses coupled on other than supply lines	Conducted Immunity against fast pulses capacitive coupled on other than supply lines	ISO 6737-3	Test bed	EMC Chamber		4	1 1 1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2099325	
	Functional EMC Testing	LV - Conducted Immunity Slow pulses coupled on other than supply lines	Conducted Immunity against slow pulses inductive coupled on other than supply lines	ISO 7637-3	Test bed	EMC Chamber		4	1 1 1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2099325	
	Functional EMC Testing	Conducted Immunity - extended audio frequency	Immunity to conducted disturbances in the extended audio	ISO 11452-10	Test bed	EMC Chamber		3	1 1	1		Functional status /stati at the requested severity level(s) are fulfilled	2099325	
		range	Immunity against pulses on the HV-DC Supply:											
	Functional EMC Testing	HV - Voltage Ripples on HV DC Supply Lines	Voltage Ripple coupling between HV+ HV	ISO DTS 7637-4	Test bed	EMC Chamber		3	1 1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2099325	
		HV Dulsod Sinusoidal	HV+ GND and HV- GND											
	Functional EMC Testing	Disturbances on HV DC	Pulsed Sinusoidal Disturbances coupling between HV+ HV-,	ISO DTS 7637-4	Test bed	EMC Chamber		3	1 1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2099325	
		Supply Lines HV - Low Frequency	HV+ GND and HV- GND Immunity against pulses on the HV-DC suply:									Functional status (stati at the requested severity level(s) are fulfilled		
	Functional EMC Testing	Sinusoidal Disturbances on HV Supply Lines	Low Frequency Sinusoidal Disturbances coupling between HV+ HV-, HV+ GND and HV- GND	ISO DTS 7637-4	Test bed	EMC Chamber		3	1 1	1		according requirement	2099325	
		immunity to electrical fast transient/burst	Specifications concerning the immunity of ESAs to electrical fast									Functional status /stati at the requested severity level(s) are fulfilled		
	Functional EMC Testing	disturbances conducted	transient/burst disturbances conducted along HV DC power lines.	(based on IEC 61000-4-4)	Test bed	EMC Chamber		4	1 1 1	1		according requirement	2099325	
		Immunity to surge	For components beeing HV-supplied during vehicle charging											
	Functional EMC Testing	conducted along HV DC power lines	'Specifications concerning the immunity of ESAs to surge on DC	(based on IEC 61000-4-5)	Test bed	EMC Chamber		3	1 1	1		according requirement	2099325	
			power lines - coupled throught chargers Radiated Immunity against external narrowband									Functional status /stati at the requested severity level(c) are fulfilled		
	Functional EMC Testing	Radiated Immunity LV - BCI	electromagnetic sources on LV-wiring : Harness Excitation (BCI)	ISO 11452-4	Test bed	EMC Chamber		4	1 1 1	1		according requirement	2099327	
		De dista di anno 1	Radiated Immunity against external narrowband electromagnetic sources on HV-wiring (HV-DC, HV-inverter	100 11 120 1	T	DAG CI						Functional status /stati at the requested severity level(s) are fulfilled	2000227	
	+unctional EMC Testing	Radiated Immunity HV - BCI	output to motor) - Shielded and also without shieding of HV -	ISO 11452-4	Test bed	EMC Chamber		3	1 1	1		according requirement	2099327	
		Radiated Immunity external	Radiated Immunity against external narrowband											
	Functional EMC Testing	Absorber-lined shielded	electromagnetic sources (without pulsed radar) : Test with external Antennas in the ALSE	ISO 11452-2	Test bed	EMC Chamber		3	1 1	1		according requirement	2099327	
	Functional FMC Testing	enclosure Radiated Immunity -	Radiated Immunity against external radar pulses:	ISO 11452 2	Test had	FMC Chamber		2		1		Functional status /stati at the requested severity level(s) are fulfilled	2099327	
		Radar Pulses	Test with external Antennas in the ALSE Radiated Immunity against narrowband electromagnetic	.55 11452*2	.est beu	cine challiber		,			<u> </u>			
	Functional EMC Testing	board transmitters	sources of on board transmitters : Test with external Antennas in the ALSE	ISO 11452-9	Test bed	EMC Chamber		3	1 1	1		according requirement	2099327	
	Functional EMC Testing	Radiated Immunity -	Radiated Immunity against external narrowband electromagnetic sources :	ISO 11452-7	Test bed	EMC Chamber		3	1 1	1		Functional status /stati at the requested severity level(s) are fulfilled	2099327	
		Direct power injection	Direct radio frequency (RF) power injection		. cot bed	e endliber						according requirement		
	Functional EMC Testing	Radiated Immunity - Stripline	electromagnetic sources :	ISO 11452-5	Test bed	EMC Chamber		3	1 1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2099327	
			Radiated Immunity against external narrowband									Functional status /stati at the requested severity level(s) are fulfilled		
	Functional EMC Testing	Immunity to magnetic fields	e electromagnetic sources : Immunity against magnetic fields	ISO 11452-8	Test bed	EMC Chamber		3	1 1	1		according requirement	2099327	
	Functional EMC Testing	ESD - EUT unpowered - Packaging and Handling on	Immunity against electrostatic discharge - EUT unpowered and	ISO 10605	Test bed	EMC Chamber		4	1 1 1	1		Functional status /stati at the requested severity level(s) are fulfilled	2099329	
	-	PINs ESD - EUT unpowered -	In connected discharge on connector pins											
	Functional EMC Testing	Packaging and Handling on Housing	unconnected discharge on housing	ISO 10605	Test bed	EMC Chamber		4	1 1 1	1		according requirement	2099329	
	Functional EMC Testing	ESD - EUT operating	Immunity against electrostatic discharge - EUT operating	ISO 10605	Test bed	EMC Chamber		4	1 1 1	1		Functional status /stati at the requested severity level(s) are fulfilled	2099329	
L			Graz, January 31, 2019					1			L	Jaccoroning requirement	I I	ł

Functional EMC Testing	HV - LV -Coupling between HV and LV systems: Voltage method	For shielded HV systems: 'Coupling between HV and LV systems: Conducted emission with tests signal injection – Voltage method	CISPR 25	Test bed	EMC Chamber		4	1 1	1 :	1	Emissi not exi	ion Limits of decoupling measurements according requirements are ceeded	2099331	
Functional EMC Testing	HV - LV - Coupling between HV and LV systems: Current probe method	For shielded HV systems: Coupling between HV and LV systems: Conducted emission with tests signal injection – Current probe method	CISPR 25	Test bed	EMC Chamber		4	1 1	1	1	Emissi	ion Limits of decoupling measurements according requirements are ceeded	2099331	
Functional EMC Testing	HV - LV - Coupling between HV and LV systems: Radiated Emission test	For shielded HV systems: Coupling between HV and LV systems: Conducted emission with tests signal injection – HV-specific radiated emission test	CISPR 25	Test bed	EMC Chamber		3	1	1	1	Emissi not exc	ion Limits of decoupling measurements according requirements are ceeded	2099331	
Functional EMC Testing	HV - LV -Coupling between HV and LV systems: Measurement of the HV-LV coupling attenuation	For shielded HV systems: 'Coupling between HV and LV systems: Measurement of the HV-LV coupling attenuation with Network analyzer	CISPR 25	Test bed	EMC Chamber		4	1 1	1	1	Decou	pling factor is inot lower than requeseted in the requirement	2099331	
 Functional EMC Testing	coupling attenuation	Requirements regarding the shielding of HV-housings with its	IEC 61000-5-7	Test bed	EMC Chamber		2	1	1	1	Shieldi	ing factor is inot lower than requested in the requirement	2099221	
Functional Elvic Testing	sinelaning of nousings	openeings Requirements regarding the shielding/shield connection of HV-	1000-5-7	Test bed	EWIC Chamber		3	-	-	•	Shieldi	ing factor is inot lower than requeseted in the requirement and	2055551	
Functional EMC Testing	HV wiring and connectors	wiring and HV-connector housings		Test bed	EMC Chamber		3	1	1	1	shieldi than re	ing impedance and shielding connection impedance are not higher equested in the requirement	2099331	
 Functional Electrical HV Testing	Short circuit withstand	parameter according requirement		Test bed			0				param	neter according requirement	2067870	
Functional Performance Testing	Idle map	parameter according requirement		Test bed			0				param	neter according requirement	2067878	Part of efficiency map
Functional Performance Testing	Temperature Behaviour	Hold each torque/speed set point for a period of time		Test bed			0				param repeat tempe	Neter according requirement; t with different DC voltages; Cooling conditions, UUT starting eratures to confirm design requirements		
		Test is performed for (all four) operating area on the torque vs											2067878	
Functional Performance Testing	Efficiency Map	speed chart over the entire operating area on the order of		Test bed			0				param	neter according requirement	2067878	
Functional Performance Testing	Continuous performance map	At each speed level the load torque are raised slowly from zero to the specified continuous torque. Then it should be held for continuous load point At the bicket range or bicket range are priced with from		Test bed			0				param	neter according requirement	1991273	
Functional Performance Testing	Peak performance map	zero to the specified peak torque for defined time (~30sec).		Test bed			0				param	neter according requirement	1001273	
Functional Performance Testing	Driving cycle test (Speed/Torque profile)	Battery emulated		Test bed			0				param	neter according requirement	2067880	
Functional Thermal Testing	Locked Rotor test	Rotor is blocked, speed is 0rpm. Increase current in several steps until limit of winding		Test bed			0				param	neter according requirement		e.g. standstill
		temperature in steady state is reached.					-						2114274	
Functional NVH Testing	NVH Test	during nominal operating condition. (no noise pollution for the driver and for preferrings)		Test bed			0							
 Functional Mechanical Testing	Stone impact tests	Harmfull impact test on surface due to stone impact. Faliure	LV 124	Test bed			12	6	6		No visi	ible demages after test. All functionalities remains as required after	2067874	
Functional Mechanical Testing	Vibration	Test verify robustness of the DUT againts vibration load during driving "operating situation. Faliure mode: fatigue, cracks, subcomponent detachments, etc	LV 124 / ISO_16750-3 / ISO 19453-3:2018	Test bed			12	6	6		No visi same,	ible demages after testing. All functionality of the DUT remains the special care on NVH.	2067874	e.g. loads from powertrain (e.g. 2,2 x 3,3g = 7,26g)
Functional Mechanical Testing	Free fall	Test verify robustness of the DUT after free fall	LV 124 / ISO_16750-3 / ISO 19453-3:2018	Test bed			12	6	6		No visi test.	ible demages after test. All functionalities remains as required after	2067874	e.g. eAxle falls from the pallet
Functional Mechanical Testing	Mechanical shock	Test verify mechanical loads on the component, e.g., when driving over curbs or in the case of car accidents. Test also verify the resistance of the component to flaw patterns, such as cracks and subcomponent detachments /half sinus mechanical shocks in each direction/	LV 124 / ISO_16750-3 / ISO 19453-3:2018	Test bed			12	6	6		No visi same,	ible demages after testing. All functionality of the DUT remains the special care on NVH.	2067874	
Functional Mechanical Testing	Qualification of screw connection	Verify the quality of the screw connection	AVL internal standard	Test bed			12	6	6		Contro	ol test (product related)	2067874	Parameter test
 Functional Mechanical Testing	Screwing after aging Tolerance (geometrical)	Verify the quality of the screw based fixation of the DUT	AVL internal standard	Test bed			12	6	6		Contro	ol test (product related)	2067874	Parameter test
 Functional Mechanical Testing	evaluation on system level	Tolerance evaluation (fit sizes)	AVL internal standard	Test bed			12	6	6		Contro	ol test (product related)	2067874	
 Functional Environmental Testing	Water protection test	Test verify robustness of the DUT when exposed to water. e.g., when exposed to condensed water, rain, or splash water	LV 124	Test bed			12	6	6		No visi demag	ible demages after test, no water ingress in the DUT, no sealing ge. All functionalities remains as required after test.	2067864	
Functional Environmental Testing	Dust protection test	Intrusion Protection (IP) Test verify robustness of the DUT when exposed to dust.	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed			12	6	6		No visi of dust	ible demages after test, no sealing demage, only permitted amount t ingress in the DUT. All functionalities remains as required after test.	2067864	
Functional Environmental Testing	High and Low Temperature storage	Verifaction of rubustness of the DUT againts High and Low temperature storage.	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed			12	6	6		No visi DUT m	ible demage on the speciement. nust be fully functional after test.	2067864	
Functional Environmental Testing	Step temperature test / Incremental temperature test	Test verify robustness of the DUT after temperature changes in small steps, during operation of the DUT	LV 124 / ISO_16750-4	Test bed			12	6	6		All fun	inctionalities should remain as required in every temperature step	2067864	
Functional Environmental Testing	Temperature shock	Test verify robustness of the DUT againts fast temperature changes under different ambient temperatures	LV 124 / ISO_16750-4	Test bed			12	6	6		No visi DUT m	ible demage on the speciement. nust be fully functional after test.	2067864	
Functional Environmental Testing	Thermal shock with submerge / Immerse	Test verify the tightness and robustness of the DUT when the DUT is immeresed into cold water after heating it up.	LV 124 / ISO_16750-4 / ISO_19453-4	Test bed			12	6	6		No visi test.	ible demages after test. All functionalities remains as required after	2067864	
Functional Environmental Testing	Thermal shock with splash water	Test verify the tightness and robustness of the DUT when water splashes on the heated DUT.	LV 124 / ISO_19453-4	Test bed			12	6	6		No visi demae	ible demages after test, no water ingress in the DUT, no sealing ge. All functionalities remains as required after test.	2067864	
Functional Environmental Testing	High-pressure cleaning / steam jet	Test verify the tightness of the DUT againts steam jet.	LV 124	Test bed			12	6	6		No visi demae	ible demages after test, no water ingress in the DUT, no sealing ge. All functionalities remains as required after test.	2067864	
Functional Environmental Testing	Corrosion test / Salt spray test	Check the resistance of a system/component to salt mist and salt water on winter streets. Failure mode is electrical maffunction due to leakage currents caused by the ingress of salt water, or check the resistance of materials and surface- coating of a system/component to salt mist and salt water on streets in winter. Test generates corrosion similar to reality.	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed			12	6	6		No visi test. N	ible demages after test. All functionalities remains as required after to sealing damage.	2067864	
Functional Environmental Testing	Damp heat, constant	This test simulates the use of the system/component under steady high ambient humidity	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed			12	6	6		No visi DUT m	ible demage on the speciement. nust be fully functional after test.	2067864	
Functional Environmental Testing	Damp heat, cyclic	Test verify robustness of the DUT by cyclic temperature changes with high humidity during vehicle operation. It is meant to verify the resistance of the component to damp heat.	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed			12	6	6		No visi test.	ible demages after test. All functionalities remains as required after	2067864	
Functional Environmental Testing	Damp heat, cyclic with frost	Test verify robustness of the DUT by cyclic temperature changes and frost with high humidity during vehicle operation. It is meant to verify the resistance of the components to damp heat.	LV 124	Test bed			12	6	6		No visi test.	ible demages after test. All functionalities remains as required after	2067864	
Functional Environmental Testing	Chemical resistance	Resistance against the chemicals which can get in contact on/to the DUT. (Cemicals, should be defined by the project)	LV 124, ISO_16750-5 / ISO 19453-5	Test bed			12	6	6		No visi on con	ible demages after test, no ingress of cemicals in the DUT, no harm mponenets. All functionalities remains as required after test.	2067864	
											-		-	

	Functional Electrical HV Testing	Equipotential bonding contact resistance	Test verify the robustness of the equipotential bonding for all DUT parts that can be touched and are conductive. Faliure mode: The electrical contact between the equipotential bonding conductor and the DUT and to all the DUT's conductive parts that can be touched may deteriorate during environmental and service life tests.	LV 123	Test bed	0			Required functional status should remain as specified. Required safety function should operate.	0	control test/ parameter test
	Functional Mechanical Testing	Protection against contact	Verify the conctact protection of the DUT	AVL internal standard	Test bed	0			Control test (product related)		control test/ parameter test
	Functional Electrical HV Testing	Insulation resistance	The test gives an indication of the relative quality of the insulation system and material. This test ensures a minimum value of ohmic resistance required to avoid current between galvanically isolated circuits and conductive parts of the DUT.	AVL internal standard	Test bed	0			Required functional status should remain as specified. Required safety function should operate.	0	control test/ parameter test
	Functional Electrical HV Testing	Dielectric strength / Withstand voltage	This test simulates the dielectric strength between components of the DUT that are galvanically isolated from each other, e.g., connector pins, relays, windings, or lines. The test must be performed on components that contain or control inductive subcomponents.		Test bed	0			Required functional status should remain as specified. Required safety 206787 function should operate.	0	control test/ parameter test
Durability T	acting	•				 	•	• •		·	

Durability	, bility Testing														
	Durability Thermal Testing	PTCE Powered Thermal To check the effects of high temperatre and high humidity on Cycle Endurance durability		Test Bed	B2B	18	6 6 6		2114399						
	Durability Mechanical Testing	PRET Powertrain Related Check damage of electrical and mechanical components in Endurance Test shortened duty cycle		Test Bed	Validation Rig	18	6 6 6		2114387						
	Durability Thermal Testing	HTOE High Temperature To check the effects of high temperatre and high humidity on Operating Endurance durability		Test Bed	Validation Rig - Climatic Chamber	18	6 6 6		2114399						
	Durability Thermal Testing	HTHE High Temperature and Humidity Endurance To check the effects of high temperatre and high humidity on durability - damp heat steady state		Test Bed	Validation Rig - Climatic Chamber	18	6 6 6		2114399						

6.1.2 eMotor DVP

Project info Instructions About Level 2 Level 3.1 Level 3.2 Level 3.3 Level 3.1 E-Motor Subsystem

							DVP&R: Planning	5												
	Test ID	Test Category	Test Case	Test Description	Standard / Paragraph / Edition	Test Environmer	Test Environment additional info	Test Respor	nsibility	Test Duration		s	ample		¥	Test statur	Test report ID / Path 💌	Acceptance Criteria <mark>-</mark>	RQ-ID	Remarks
								Responsible Person	Responsible Department	[11]	Total Quantity	Gen 0	Gen 1	Gen 2	Gen 3					
F	unctional T	esting				1	1		ſ	1	-						1			
Ρ	-01	Functional Performance Testing	Fixed operation point measurement	Performance measurement - Single load point: current, torque, speed, efficiency at a specific load point at specific boundary conditions (voltage, cooling, temperature)	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed			DY-EM		1	1	6	6	6			Performance and parameter values meet requirements, Functional status A	2109818	
Р	-01 a	Functional Performance Testing	Fixed operation point measurement with S1 load at base speed	Performance measurement - Single load point: current, torque, speed, efficiency at maximum continous load at base speed and nominal boundary conditions (voltage, cooling, temperature)	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed			DY-EM		67	1	6	30	30			Performance and parameter values meet requirements, Functional status A	2109818	Parameter test
Ρ	-02	Functional Performance Testing	Continuous load operating range	Temperature-rise test: Characteristic curve - continuous load: Evaluate max torque/ speed curve for continuous operation at specific boundary conditions (voltage, cooling, temperature). Load until thermal steady state condition is reached.	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed			DY-EM		19	1	6	6	6			Performance and parameter values meet requirements, Functional status	2109818	
Р	-03 a	Functional Performance Testing	Short time overload operating range	Temperature-rise test: Characteristic curve - short-time overload Evaluate max torque/ speed curve for short time overload operation at specific boundary conditions (voltage, cooling, temperature) Specify start temperature and either time or temperature limit. Load until limits are reached	IEC 60034-1, (IEC 60034-4-1), IEC 60349-2, IEC 60349-4	Load test bed			DY-EM		19	1	6	6	6			Performance and parameter values meet requirements, Functional status A	2109818	:
P	-04 a	Functional Performance Testing	Efficiency map (characteristic maps)	Characteristic machine maps test - Torque, Power, Current, Loss, Efficiency, Torque ripple Measurement of operating points: Torque (n),Power(n), Ld(M,n), Ld(M,n), Losses(M,n), Efficiency (M,n) Torque ripple (M,n): @Un, Umax, Umin @target temoeratures (winding. magnet)	IEC 60034-1, (IEC 60034-4-1), IEC 60349-2, IEC 60349-3, IEC 60349-4	Load test bed			DY-EM		67	1	6	30	30			Performance and parameter values meet requirements, Functional status A	2109818	Parameter test
		Functional Performance Testing	Step test continuous/peak	Temperature-rise test Verification of DUT capability to have a defined number of peak load events out of continuous operation in a specific time interval (e.g. 5 peak load events of 2 sec in an interval of 5 min without reaching thermal limits)	DIN EN 60034-1	Load test bed					14	1	1	6	6			Performance and parameter values meet requirements, Functional status A	2109818	
																		Dorformor		
		Functional Electrical Testing	No-load saturation	Evaluate values of saturation in iron and magnets in no-load condition		Simulation	FEM Evaluation				4	1	1	1	1			Performance and parameter values meet requirements	2109806	,
		Functional Electrical Testing	Continuous load saturation	Evaluate values of saturation in iron and magnets for previously defined critical continuous operating points		Simulation	FEM Evaluation				4	1	1	1	1			Performance and parameter values meet requirements	2109806	,
		Functional Electrical Testing	Peak load saturation	Evaluate values of saturation in iron and magnets for previously defined peak load operating points		Simulation	FEM Evaluation				4	1	1	1	1			Performance and parameter values meet requirements	2109806	i
		Functional Electrical Testing	Torque current characteristic	Evaluate values in constant speed range and impact of saturation		Load test bed					4	1	1	1	1			Performance values meets requirement, Functional status A	2109806	
		Functional Electrical Testing	Demagnetization	Evaluate areas of demagnetization of permanent magnets - (Peak current times safety factor (e.g. 1.2) pure demagnetization filed in d-axis)		Simulation	FEM Evaluation				4	1	1	1	1			Performance and parameter values meet reguirements	2109806	,
		Functional Electrical Testing	Current density	Evaluate values of current density in slot (J)		Simulation					4	1	1	1	1			Performance and parameter values meet requirements	2109806	

	Functional Electrical Testing	Thermal loading	Evaluate values of thermal loading (~J*A)		Simulation			4	1	1	1	1		Performance and parameter values meet requirements	2109806
	Functional Electrical Testing	Impulse voltage	Dielectric tests with impulse voltage (surge) Verify clearances will withstand specified transient overvoltages. Intented to simulate overvoltages of atmospheric origin and covers overvoltages due to switching of low-voltage equipment	IEC 60664-1 (IEC60060-1)	Electric test bed		DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
F-07	Functional Electrical Testing	Withstand voltage	Dielectric tests with alternating voltage; dielectric tests with direct voltage; demonstrate the adequacy of the protection measures to isolate live parts of voltage class B electric circuits	IEC 60034-1 (IEC 60060-1); IEC 60349-2, IEC 60349-4; ISO 6469-3 (IEC 60664-1, IEC 61180-1)	Electric test bed		DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806 EOL
F-08	Functional Electrical Testing	Insulation resistance	Measurement of insulation resistance for voltage class B electric circuits	ISO 6469-3	Electric test bed		DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status	2109806 Parameter test
F-09	Functional Electrical Testing	Winding resistance	Measurement of phase resistance	IEC 60034-1, IEC 60349-2, IEC 60349-4	Electric test bed	Climat conditioning	DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806 Parameter test
	Functional Electrical Testing	Winding inductance	Measurement of winding inductance		Electric test bed			4	1	1	1	1		Performance and parameter values meet requirements, Functional status A	2109806
F-14	Functional Electrical Testing	Functional check of position / speed sensor	Measurement of sensor signal over n rotations with a reference signal		No load test bed		DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806 Parameter test
F-10	Functional Electrical Testing	Functional check of thermal sensors	Measurement of thermal sensor at defined DUT temperatures		Electric test bed	Climat conditioning	DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806 Parameter test
F-11	Functional Electrical Testing	Connection check of thermal sensor	Measurement of dynamic behavior the measured sensor signal with a defined current profile in the winding (heating up DUT)		Electric test bed	Climat conditioning	DY-EM	19	1	6	6	6		Performance and parameter values meet requirements, Functional status A	2109806
	Functional Electrical Testing	Direction of rotation / Phase sequence	Check direction of rotation / phase sequence in relationship to terminal markings and connection	IEC 60034-1, IEC 60034-8	No load test bed		DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806 EOL
F-15	Functional Electrical Testing	Open circuit voltage measurement - PMSM EESM	Measurement of no-load voltage	IEC 60034-1, IEC 60349-2, IEC 60349-4	No load test bed		DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806 Parameter test
F-16	Functional Electrical Testing	Open circuit loss measurement - PMSM IM	Measurement of no-load losses (bearing, windage, hysteresis)	IEC 60034-1, IEC 60349-2, IEC 60349-4	No load test bed		DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
	Functional Electrical Testing	No-load losses and current - - EESM	No-load condition, field current measurement for rated induced stator voltage, no-load losses	IEC 60034-1, IEC 60034-4-1, IEC 60349-2	No load test bed		DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
F-17 a	Functional Electrical Testing	Short circuit current measurement	Short circuit current measurement - PMSM	IEC 60034-1, IEC 60349-4	Load test bed		DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
F-17 b	Functional Electrical Testing	Short circuit current measurement - EESM	Short circuit current measurement - EESM	IEC 60034-1, IEC 60349-2	Load test bed		DY-EM	67	1	6	30	30		Performance and parameter values meet requirements, Functional status A	2109806

F-17 c	Functional Electrical Testing	Short circuit current measurement	cked rotor current as function of phase voltage - IM	IEC 60034-1, IEC 60349-2	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
F-18 a	Functional Electrical Testing	Short circuit torque measurement - PMSM	ort circuit torque measurement - PMSM	IEC 60034-1, IEC 60349-4	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
F-18 b	Functional Electrical Testing	Short circuit torque measurement - EESM	ort circuit torque measurement - EESM	IEC 60034-1, IEC 60349-2	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
	Functional Electrical Testing	Short circuit dynamic test Tra	ansient current and torque measurement	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed	DY-EM	4	1 1	1	1		Performance and parameter values meet requirements, Functional status A	2109806
F-19	Functional Electrical Testing	Short circuit withstand test circ	neck for temperature stability in continuous 3-pole short- rcuit mode	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
	Functional Electrical Testing	Pull up torque Sta	arting torque measurement of DUT	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
	Functional Electrical Testing	Idling - IM current No ind	o load current measurement - function of phase voltage - duction machine	IEC 60034-1, IEC 60034-2-3, IEC 60034-28	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
	Functional Electrical Testing	Idling - IM losses No	p load losses - induction machine	IEC 60034-1, IEC 60034-2-3, IEC 60034-28	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
	Functional Electrical Testing	Locked rotor torque - Me induction machine	easurement of locked rotor torque - IM	IEC 60034-1, IEC 60034-2-3, IEC 60034-28	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806
	Functional Electrical Testing	No-load condition - PMSM No	p-load condition - Fundamental RMS voltage measurement	IEC 60034-1, IEC 60349-4	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values	2109806 EOL
	Functional Electrical Testing	Current-load condition - Cur PMSM me	urrent-load condition - Fundamental RMS current easurement	IEC 60034-1, IEC 60349-4	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806 EOL
	Functional Electrical Testing	No-load excitation current at rated voltage by open- circuit test - EESM	o-load condition, field current measurement for rated induced ator voltage, no-load losses	IEC 60034-1, IEC 60349-2	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806 EOL
	Functional Electrical Testing	No-load losses at unity No power factor - EESM fac	p-load condition, losses at unity power ctor	IEC 60034-1	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806 EOL
	Functional Electrical Testing	Excitation current at rated Fie armature voltage - EESM circ	eld current measurement for rated stator current in short rcuit condition	IEC 60034-1, IEC 60349-2	Load test bed	DY-EM	67	1 6	30	30		Performance and parameter values meet requirements, Functional status A	2109806 EOL

	Functional Electrical Testing	No Load current - induction machine	No-load current measurement at specified phase voltage - IM	IEC 60034-1, IEC 60349-2	Load test bed		DY-EM	67	1	6	30	30	Performance and parameter values meet requirements, Functional status A	2109806 EOL
	Functional Electrical Testing	Locked rotor current - induction machine	Locked rotor current mesrurement at specified phase voltage - IM	IEC 60034-1, IEC 60349-2	Load test bed		DY-EM	67	1	6	30	30	Performance and parameter values meet requirements, Functional status A	2109806 EOL
								0						
F-02	Functional Mechanical Testing	Visual inspection	Visual inspection of DUT, detect anomalies and faults, photo documentation, no disassembly	DIN EN 13018	Workbench		DY-EM	67	1	6	30	30	Anomalies shall be noted and documented by means of photos	2109812 Parameter test
F-03	Functional Mechanical Testing	Visual inspection of stator and rotor	Visual inspection of DUT, detect anomalies and faults, photo documentation	DIN EN 13018	Workbench		DY-EM	67	1	6	30	30	Anomalies shall be noted and documented by means of photos	2109812 Parameter test
F-04	Functional Mechanical Testing	Dimensional check	Dimensional check of DUT against drawing dimension and measurement of weight		Workbench		DY-EM	67	1	6	30	30	Performance and parameter values meet requirements, Functional status A	2109812 Parameter test
F-05	Functional Mechanical Testing	Cooling duct tightness test	Leak tightness test of the cooling duct DUT		Workbench	Pressure	DY-EM	67	1	6	30	30	No leakage, Functional status A	2109812 Parameter test
	Functional Mechanical Testing	Cooling duct pressure loss test	Measurement of pressure loss in the cooling duct DUT, (Check max. permitted pressure drop)		Workbench	Pressure measurement	DY-EM	19	1	6	6	6	Parameter values meet requirements, Functional status A	2109812
	Functional Mechanical Testing	Bolt test	Losening torques compared to tightening torques, use digital torque wrench to measure residual torque of all bolt connection		Workbench		DY-EM	67	1	6	30	30	Parameter values meet requirements, Functional status A	2109812
M-06	Functional Mechanical Testing	Shaft extension run out	Check of balancing quality of the rotor	ISO 21940-11	No load test bed		DY-EM	67	1	6	30	30	Performance and parameter values meet requirements, Functional status A	2109812 Parameter test
F-12	Functional Mechanical Testing	Cogging torque - PMSM	Cogging torque measurement for one rotation cycle of the rotor at different temperatures	IEC 60349-4	No load test bed		DY-EM	67	1	6	30	30	Performance and parameter values meet requirements, Functional status A	2109812
	Functional Mechanical Testing	Maximum speed run	No load test at maximum speed		No load test bed		DY-EM	19	1	6	6	6	Performance and parameter values meet requirements, Functional status A	2109812
	Functional Mechanical Testing	Maximum speed stop test	Break test at maximum speed		No load test bed	Burst protection	DY-EM	19	1	6	6	6	Performance and parameter values meet requirements, Functional status A	2109812
M-03	Functional Mechanical Testing	Axial force test for validation of F_ax	Check DUT for malfunction/breakage caused by axial forces to the shaft		Load test bed	Vibration/external forces (Climat chamber)	DY-EM	13		1	6	6	No plastification no functional impairment, no crack or fracture	2109812
M-04 a	Functional Mechanical Testing	Radial force test for validation of F_rad: Overspeed test	Overspeed test at hot temperature	IEC 60034-1, IEC 60349-2, IEC 60349-4	Load test bed	Climat chamber	DY-EM	14	1	1	6	6	Performance and parameter values meet requirements, Functional status (2109812
M-04 b	Functional Mechanical Testing	Radial force test for validation of F_rad: Burst speed test	Burst test at hot temperature at guranteed burst speed out of simulation	LV 147	No load test bed	Climat chamber, Burst protection	DY-EM	14	1	1	6	6	No plastification no functional impairment, no crack or fracture	2109812
	Functional Mechanical Testing	Burst speed determination	Burst test, rise of speed till distortion or burst	IEC 60034-1, IEC 60349-2, IEC 60349-4	Special load test bed	Burst protection	DY-EM	13		1	6	6		2109812

M-07	Functional Mechanical Testing	Resonant frequency analysis stator and rotor	ldentfy resonance frequency and determine amplitude of DUT	IEC 60068-2-6	Vibration bed	Climat chamber	DY-EM	13		1	6	6		Performance and parameter values meet requirements, Functional status	2109812
M-08	Functional Mechanical Testing	Rotating bending test for validation of F_b	Check DUT for malfunction/breakage caused by bending forces to the shaft		Load test bed	Vibration/external forces (Climat chamber)	DY-EM	13		1	6	6		A No plastification no functional impairment, no crack or fracture	2109812
M-09	Functional Mechanical Testing	Torsion test for validation of M_T	Check DUT for malfunction/breakage/plastification caused by torsional forces to the shaft		Load test bed	Vibration/external forces (Climat chamber)		13		1	6	6		No plastification no functional impairment, no crack or fracture	2109812
M-11	Functional Mechanical Testing	Vibration test - imbalance	Check for vibration associated with machine imbalance	IEC 60349-2, IEC 60349-4	Load test bed	Vibration sensor	DY-EM	14	1	1	6	6		Performance and parameter values meet requirements, Functional status A	2109812
M-01	Functional Mechanical Testing	Mechanical Shock	Check DUT for malfunction/breakage caused by shock to body and frame	ISO 19453-3 (IEC 6008-2-27)	Test bed	Shock	DY-EM	37		1	18	18		No malfunction and/or breakage	2109812
M-02a	Functional Mechanical Testing	Vibration stress with temperature overlap	Mixed mode vibriation test a) Sine on random vibration b) Random vibration	ISO 19453-3 (IEC 60068-2-80, IEC 60068-2-64)	Load test bed	Vibration/external forces (Climat chamber)	DY-EM	12			6	6		No malfunction and/or breakage	2109812
	Functional Mechanical Testing	Free fall	Checks DUT for malfunctions / breakage caused by free fall	ISO 19453-3 (IEC 60068-2-31)	Test bed	Shock	DY-EM	12			6	6		No malfunction and/or breakage, Functional status C	2109812
	Functional Mechanical Testing	Surface strength/scratch and abrasion resistance	Test and requirements to be agreed	ISO 19453-3	Test bed		DY-EM	12			6	6		Functional status C, Damage which influence fuction of DUT is not permissible	2109812
K-04	Functional Mechanical Testing	Gravel bombardment / Stone - chipping	Gravel bombardment Investigation of the robustness and corrosion behavior of the DUT as regards the effects of gravel and stone chipping plus prior damage for subsequent stresses	ISO 19453-3, ISO 20567-1	Test bed	Gravel chaber	DY-EM	12			6	6		Functional status C, Damage which influence fuction of DUT is not permissible	2109812
								0							
P-05	Functional NVH Testing	E-Motor Accoustic noise level	Verify noise emission of equipment is below sound power level limits	IEC 60034-9, IEC 60349-2, IEC 60349-4	Load test bed	Sound measurement	DY-EM	62	1	1	30	30		Performance and parameter values meet requirements, Functional status A	2114178
M-10	Functional NVH Testing	Vibration test - severity	Quantitative mechanical vibration measurement bearing housing - no load condition	IEC 60034-14, IEC 60349-2, IEC 60349-4	Load test bed	Vibration sensor	DY-EM	61		1	30	30		Performance and parameter values meet requirements, Functional status A	2109812
								0							
	Functional Thermal Testing	Heat rejection	Evaluation of thermal coupling (cooling circuit) of the DUR [temperatur behaviour under heating condition eg. defined current for heating]		Electric test bed	Climat chamber	DY-EM	19	1	6	6	6		Performance and parameter values meet requirements, Functional status A	2114180
	Functional Thermal Testing	Temperature rise in high speed with open terminals	Temperature rise test - No load condition at high speed Temperature measurement (losses)	IEC 60349-4	No load test bed	Climat chamber	DY-EM	19	1	6	6	6		Performance and parameter values meet requirements, Functional status A	2114180
F-15 a	Functional Thermal Testing	Temperature coefficient measurement of induced voltage - PMSM	Confirmation of temperature coefficient of the induced voltage - no load measurement at hot condition	IEC 60349-4	No load test bed	Climat chamber	DY-EM	19	1	6	6	6		Performance and parameter values meet requirements, Functional status A	2114180
	Functional Thermal Testing	E-Motor cooling behaviour test - Cool down	Evaluation of cool down behaviour of DUT		Load test bed	Climat chamber	DY-EM	19	1	6	6	6		Performance and parameter values meet requirements, Functional status A	2114180

K-01	Functional Thermal Testing	Low temperature storage	Exposure of DUT to low temperatures without electrical operation, e.g. during shipment of the system/component.	ISO 19453-4, IEC 60068-2-1: Test A	Load test bed	Climat chamber	DY-EM	24	13	1	6	6		No material changes that effect DUT function, Functional status A	2114180
K-09	Functional Thermal Testing	Hich tempeartur storage	Dry heat test storage Exposure of DUT to high temperatures without electrical operation, e.g. during the shipment of the system/component.	ISO 19453-4, IEC 60068-2-2: Test B	Load test bed	Climat chamber	DY-EM	48	13	1	6	6		No material changes that effect DUT function, Functional status A	2114180
	Functional Thermal Testing	High temperature operation test	Simulates exposure of DUT to high temperature with electrical operation	ISO 19453-4, IEC 60068-2-2: Test B	Load test bed	Climat chamber	DY-EM	96	13	1	6	6		No material changes that effect DUT function, Functional status A	2114180
	Functional Thermal Testing	Temperature cycle with specific change rate	Simulates varying temperatues with electrical operation of the DUT	ISO 19453-4, IEC 60068-2-14: Test Nb	Load test bed	Climat chamber	DY-EM			1	6	6		No material changes that effect DUT function, Functional status A	2114180
	Functional Thermal Testing	Rapid change of temperature with specified transition duration	Accelerated test, simulates very high number of slow temperature cycles	ISO 19453-4, IEC 60068-2-14: Test Na	Load test bed	Climat chamber	DY-EM			1	6	6		No material changes that effect DUT function, Functional status A	2114180
			Test of the component's look tightness requirements (ingress of						0					Eurotional status	
К-07	Functional Environmental Testing	IP protection class	water and solid foreign bodies)	ISO 20653	Test bed	IP test environment	DY-EM		13	1	6	6		A	2109802
	Functional Environmental Testing	Temperature shock with splash water	Cold water shock test - Splash test Simulates thermal shock induced by cold water for DUT in splash area	ISO 19453-4	Test bed	Splash	DY-EM			1	6	6		Functional status A	2109802
	Functional Environmental Testing	Temperature shock with submersion	Cold water shock test - Submersion test Simulates thermal shock induced by cold water for DUT in splash area	ISO 19453-4	Test bed	Water tub	DY-EM			1	24	24		Functional status A	2109802
K-05a	Functional Environmental Testing	Corrosion test - salt spray test	Salt spray test - corrosion test Simulates the exposure of the DUT to salt spray, failure mode corrosion	ISO 19453-4, IEC 60068-2-52, Test Kb	Load test bed	Salt spray, Climat conditioning	DY-EM		13	1	6	6		Functional status A, DUTs corrosion and damage shall be documented with photos	2109802
K-05b	Functional Environmental Testing	Salt spray test - leakage and function test	Simulates the exposure of the DUT to salt spray, failure mode leakage / malfunction	ISO 19453-4, ISO 60068-2-11 Ka	Load test bed	Salt spray, Climat conditioning	DY-EM		13	1	6	6		Functional status A, no leakage	2109802
K-05c	Functional Environmental Testing	Salt spray test - combined cycle test	The test simulates the exposure of the DUT to salt spray - accelerated corrosion test combination of corrosion and leakage and function tests	ISO 19453-4, IEC 60068-2-52, Test Kb ISO 60068-2-11 Ka	Load test bed	Salt spray, Climat conditioning	DY-EM		13	1	6	6		Functional status A, DUTs corrosion and damage shall be documented with photos, no leakage	2109802
K-08	Functional Environmental Testing	Immersion test in salt water solution	This test simulates sudden immersion of the DUT e.g. the situation when driving the vehicle through dirty water.	LV147 (IEC 60068-2-18)	Load test bed	Salt spray, Climat conditioning	DY-EM		13	1	6	6		Performance and parameter values meet requirements, Functional status A	2109802
	Functional Environmental Testing	Damp heat , cyclic	Humid heat, cyclic test - dewing Simulates use of DUT under cyclic high ambient humidity	ISO 19453-4, IEC 60068-2-30, Test Db	Load test bed	Climat conditioning	DY-EM			1	6	6		Performance and parameter values meet requirements, Functional status A	2109802
	Functional Environmental Testing	Damp heat, constant	Damp heat test steady -state Simulates use of DUT under steady high ambient humidity	ISO 19453-4, IEC 60068-2-78	Load test bed	Climat chamber	DY-EM		13	1	6	6		Performance and parameter values meet requirements, Functional status A	2109802
C-02	Functional Environmental Testing	Corrosion test with flow of mixed gas	simulates the use of the system/component in the presence of corrosive gases (e.g. in highly polluted atmospheres).	IEC 60068-2-60, Test Ke	Load test bed	Gas	DY-EM		13	1	6	6		Performance and parameter values meet requirements, Functional status A	2109802
	Functional Environmental Testing	Solar radiation test	Check resistance to solar radiation	ISO 19453-4	Test bed	Solar chamber	DY-EM			1	6	6		Performance and parameter values meet requirements, Functional status A	2109802

К-03	Functional Environmental Testing	Dust protection test	Dust test Resistance on ingress of dust into the DUT	ISO 20653, IEC 60068-2-68	Test bed	Dust chamber	DY-EM	13		1 6	6		Performance and parameter values meet 2109802 requirements, Functional status A	
	Functional Environmental Testing	Condensation test	Simulates condensation by rapid chage of temperature and humidity	ISO 19453-4	Load test bed	Climat chamber	DY-EM			1 6	6		Performance and parameter values meet 2109802 requirements, Functional status A	
к-06	Functional Environmental Testing	Damp heat ,cyclic with frost	Behavior of the DUTs under condensation with frost overlap.	IEC 60068-2-38, Test Z/AD	Load test bed	Climat chamber		13		1 6	6		Performance and parameter values meet 2109802 requirements, Functional status A	
	Functional Environmental Testing	Atmospheric pressure test	Test of partial discharge at low pressure	IEC 60664-1, 6.1.3.5	Electric test bed	Pressure chamber	DY-EM			1 6	6		Performance and parameter values meet 2109802 requirements, Functional status A	
C-01	Functional Environmental Testing	Chemical resistance	Chemical Loads The purpose of the test is to determine whether UUT (e- machine) is unacceptably affected by temporary exposure to contaminating agents.	ISO 19453-5	Test Bed	Chemical agents, Climat conditioning	DY-EM	13		1 6	6		Performance and parameter values meet requirements, Functional status C, Markings and labelling shall remain visisble	
								0						
	Functional EMC Testing	LV - Conducted RF emission from components/modules other than supply lines and cable bunches – current probe method	Measurement of RF disturbance cureents on low voltage wiring	CISPR 25	Test Bed	EMC Chamber		4	1	1 1	1		Emission does not exceed the limits according requirement	
	Functional EMC Testing	Max. voltage rise & fall slew rates of Power & Signals connections at connector pins	Limitation of max. voltage rise and fall times for all extern available power and signal connections (power, I/O, Communication)	-	Test Bed	laboratory		3		1 1	1		rise and fall slew rates do not exceed limits of the requirement or exceptional approval is given by Vehicle manufacturer	
	Functional EMC Testing	Max. current rise & fall slew rates of Power & Signals connections at connector pins	Limitation of max. current rise and fall times for all extern available power and signal connections (power, I/O, Communication)	-	Test Bed	laboratory		3		1 1	1		rise and fall slew rates do not exceed limits of the requirement or exceptional approval is given by Vehicle manufacturer	
	Functional EMC Testing	Radiated Emissions magnetic field <30MHz	Measurement of magnetic fields in the frequency range below 30MHz using a loop antenna	(GBT-18387 adopted for components)	Test bed	EMC Chamber		3		1 1	1		Emission does not exceed the limits according requirement	
	Functional EMC Testing	HV - radiated emissions electromagnetic field Stripline	Measurement of radiated RF disturbance using the stripline methode	CISPR 25	Test bed	EMC Chamber		3		1 1	1		Emission does not exceed the limits according requirement	
	Functional EMC Testing	Low frequency magnetic field emission <150kHz	Measurement of magnetic fields in the frequency range below 150 kHz using a hand held loop antenna (MIL-STD-461 or similar) close to the component		Test bed	EMC Chamber		4	1	1 1	1		Emission does not exceed the limits according requirement	
	Functional EMC Testing	Magnetic field emission - protection of persons	Measurement of magnetic fields to limit exposure of persons to variing magnetic fields	ICNIRP	Test bed	laboratory		4	1	1 1	1		Emission does not exceed the limits according requirement	
	Functional EMC Testing	LV - Conducted Immunity Fast pulses coupled on other than supply lines	Conducted Immunity against fast pulses capacitive coupled on other than supply lines - e.g. resolver signal	ISO 6737-3	Test bed	EMC Chamber		4	1	1 1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	
	Functional EMC Testing	LV - Conducted Immunity Slow pulses coupled on other than supply lines	Conducted Immunity against slow pulses inductive coupled on other than supply lines	ISO 7637-3	Test bed	EMC Chamber		3		1 1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement 2100886	
------------------------	--	---	---------------------------	----------	-------------	--	------	---	---	---	---	--	--	---------
Functional EMC Testing	HV - Voltage Ripples on HV motor phase wiring	Immunity against pulses on the HV-motor phase Voltage Ripple coupling between u-v-w and u-v-w against GND possibly affecting e.g. resolver signal	similar to ISO DTS 7637-4	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according	2100886
Functional EMC Testing	HV - Pulsed Sinusoidal Disturbances on HV motor phase wiring	Immunity against pulses on the HV-DC Supply: Pulsed Sinusoidal Disturbances coupling between u-v-w and u-v- w against GND possibly affecting e.g. resolver signal	similar to ISO DTS 7637-4	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100886
Functional EMC Testing	HV - Low Frequency Sinusoidal Disturbances on HV motor phase wiring	Immunity against pulses on the HV-DC suply: Low Frequency Sinusoidal Disturbances coupling between u-v-w and u-v-w against GND possibly affecting e.g. resolver signal	similar to ISO DTS 7637-4	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100886
Functional EMC Testing	immunity to electrical fast transient/burst disturbances conducted on HV motor phase wiring	Specifications concerning the immunity of ESAs to electrical fast transient/burst disturbances coupling between u-v-w and u-v-w against GND possibly affecting e.g. resolver signal	(based on IEC 61000-4-4)	Test bed	EMC Chamber		4	1	1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100886
Functional EMC Testing	Radiated Immunity LV - BCI	Radiated Immunity against external narrowband electromagnetic sources on LV-wiring : Harness Excitation (BCI)	ISO 11452-4	Test bed	EMC Chamber		4	1	1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100888
Functional EMC Testing	Radiated Immunity externa electromagnetic fields - Absorber-lined shielded enclosure	Radiated Immunity against external narrowband electromagnetic sources (without pulsed radar) : Test with external Antennas in the ALSE	ISO 11452-2	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100888
Functional EMC Testing	Radiated Immunity - Radar Pulses	Radiated Immunity against external radar pulses: Test with external Antennas in the ALSE	ISO 11452-2	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100888
Functional EMC Testing	Radiated Immunity on board transmitters	Radiated Immunity against narrowband electromagnetic sources of on board transmitters : Test with external Antennas in the ALSE	ISO 11452-9	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100888
Functional EMC Testing	Radiated Immunity - Direct power injection	Radiated Immunity against external narrowband electromagnetic sources : Direct radio frequency (RF) power injection	ISO 11452-7	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100888
Functional EMC Testing	Radiated Immunity - Stripline	Radiated Immunity against external narrowband electromagnetic sources : Stripline methode	ISO 11452-5	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100888
Functional EMC Testing	ESD - EUT unpowered - Packaging and Handling on PINs	Immunity against electrostatic discharge - EUT unpowered and unconnected discharge on connector pins	ISO 10605	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100890
Functional EMC Testing	ESD - EUT unpowered - Packaging and Handling on Housing	Immunity against electrostatic discharge - EUT unpowered and unconnected discharge on housing	ISO 10605	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100890
Functional EMC Testing	ESD - EUT operating	Immunity against electrostatic discharge - EUT operating	ISO 10605	Test bed	EMC Chamber		3		1	1	1		Functional status /stati at the requested severity level(s) are fulfilled according requirement	2100890
Functional EMC Testing	HV - LV -Coupling between HV and LV systems: Voltage method	For shielded HV systems: 'Coupling between HV motor phases and LV systems: Conducted emission with tests signal injection – Voltage method	based on CISPR 25	Test bed	EMC Chamber		4	1	1	1	1		Emission Limits of decoupling measurements according requirements are not exceeded	2100892

	Functional EMC Testing	HV - LV - Coupling between HV and LV systems: Current probe method	For shielded HV systems: 'Coupling between HV motor phases and LV systems: Conducted emission with tests signal injection – Current probe method	based on CISPR 25	Test bed	EMC Chamber			4	1	
	Functional EMC Testing	HV - LV - Coupling between HV and LV systems: Radiated Emission test	For shielded HV systems: 'Coupling between HV motor phases and LV systems: Conducted emission with tests signal injection – HV-specific radiated emission test	based on CISPR 25	Test bed	EMC Chamber			3		
	Functional EMC Testing	HV - LV -Coupling between HV and LV systems: Measurement of the HV-LV coupling attenuation	For shielded HV systems: 'Coupling between HV motor phases and LV systems: Measurement of the HV-LV coupling attenuation with Network analyzer	based on CISPR 25	Test bed	EMC Chamber			4	1	
	Functional EMC Testing	Shielding of housings	Requirements regarding the shielding of HV-housings with its openeings	IEC 61000-5-7	Test bed	EMC Chamber			3		
	Functional EMC Testing	HV wiring and connectors	Requirements regarding the shielding/shield connection of HV- wiring and HV-connector housings		Test bed	EMC Chamber			3		
									0		
									0		
-									_	_	
Durability Te	sting		Valtaga pulsa pattern anduransa test over defined cycle (e.g. also								
1		1	voltage pulse pattern endurance test over defined cycle (e.g.also			1	1	1			

	Functional EMC Testing	HV - LV - Coupling between HV and LV systems: Current probe method	For shielded HV systems: 'Coupling between HV motor phases and LV systems: Conducted emission with tests signal injection – Current probe method	based on CISPR 25	Test bed	EMC Chamber		4	1	1	1	1	Emission Limits of decoupling measurements according requirements are not exceeded	2100892
	Functional EMC Testing	HV - LV - Coupling between HV and LV systems: Radiated Emission test	For shielded HV systems: 'Coupling between HV motor phases and LV systems: Conducted emission with tests signal injection – HV-specific radiated emission test	based on CISPR 25	Test bed	EMC Chamber		3		1	1	1	Emission Limits of decoupling measurements according requirements are not exceeded	2100892
	Functional EMC Testing	HV - LV -Coupling between HV and LV systems: Measurement of the HV-LV coupling attenuation	For shielded HV systems: 'Coupling between HV motor phases and LV systems: Measurement of the HV-LV coupling attenuation with Network analyzer	based on CISPR 25	Test bed	EMC Chamber		4	1	1	1	1	Decoupling factor is inot lower than requeseted in the requirement	2100892
	Functional EMC Testing	Shielding of housings	Requirements regarding the shielding of HV-housings with its openeings	IEC 61000-5-7	Test bed	EMC Chamber		3		1	1	1	Shielding factor is inot lower than requeseted in the requirement	2100894
	Functional EMC Testing	HV wiring and connectors	Requirements regarding the shielding/shield connection of HV- wiring and HV-connector housings		Test bed	EMC Chamber		3		1	1	1	Shielding factor is inot lower than requeseted in the requirement and shielding impedance and shielding connection impedance are not higher than requested in the requirement	2100894
								0						
								0						
Durability	y Testing													
			Voltage pulse pattern endurance test over defined cycle (e.g.also										Performance and	
	Durability Electrical Testing	Durability withstand voltage	active discharge)		Load test bed		DY-EM	13		1	6	6	parameter values meet requirements	2109810
	Durability Electrical Testing	Partial discharge free insulation	Impulse voltage test endurance (Impulse voltage insulation class test)	IEC 60034-18-41, IEC 60034-18-42	Load test bed		DY-EM	13		1	6	6	Performance and parameter values meet requirements	2109810
								0						
	Durability Mechanical Testing	High speed durability	Endurance test, DUT is running at maximum continuous power and at maximum speed.		Load test bed		DY-EM	13		1	6	6	Performance and parameter values meet	2114280
													Functional status	
M-05	Durability Mechanical Testing	Radial force test for validation of F_rad: Dynamic rpm test	Load cycle test Accelration to max speed and breaking to stop with maximum torque	LV 147	Load test bed		DY-EM	13		1	6	6	A Performance and parameter values meet requirements, Functional status A	2114280
M-05	Durability Mechanical Testing	Radial force test for validation of F_rad: Dynamic rpm test Launch durability test	Load cycle test Accelration to max speed and breaking to stop with maximum torque Standstill, accleration under maximum load with maximum speed stop (High speed on/off durability Endurance test, compare to PTCE test, DUT (e-machine) operating power toggle between maximum load and basic load at maximum speed)	LV 147	Load test bed Load test bed		DY-EM	13		1	6	6	A Performance and parameter values meet requirements, Functional status A Performance and parameter values meet requirements, Functional status A	2114280
M-05	Durability Mechanical Testing Durability Mechanical Testing Durability Mechanical Testing	Radial force test for validation of F_rad: Dynamic rpm test Launch durability test Driving cycle test	Load cycle test Accelration to max speed and breaking to stop with maximum torque Standstill, accleration under maximum load with maximum speed stop (High speed on/off durability Endurance test, compare to PTCE test, DUT (e-machine) operating power toggle between maximum load and basic load at maximum speed) Dynamical driving, hill driving and dynamical accleration to check the e-motor real driving condition	LV 147	Load test bed Load test bed Load test bed		DY-EM DY-EM DY-EM DY-EM	13		1 1 1 1	6	6 6	A Performance and parameter values meet requirements, Functional status A Performance and parameter values meet requirements, Functional status A Performance and parameter values meet requirements, Functional status A	2114280
M-05	Durability Mechanical Testing	Radial force test for validation of F_rad: Dynamic rpm test Launch durability test Driving cycle test Constant load pattern test	Load cycle test Accelration to max speed and breaking to stop with maximum torque Standstill, accleration under maximum load with maximum speed stop (High speed on/off durability Endurance test, compare to PTCE test, DUT (e-machine) operating power toggle between maximum load and basic load at maximum speed) Dynamical driving, hill driving and dynamical accleration to check the e-motor real driving condition Durability test with constant load test profile (pattern durability)	LV 147	Load test bed Load test bed Load test bed		DY-EM DY-EM DY-EM DY-EM DY-EM	13 13 13 13 13		1 1 1 1	6 6 6	6 6 6	Functional status A Performance and parameter values meet requirements, Functional status A Performance and parameter values meet requirements, Functional status A Performance and parameter values meet requirements, Functional status A	2114280 2114280 2114280 2114280 2114280

	Durability Thermal Testing	High temperature endurance test	Endurance test, the DUT (e-machine) is running at maximum continuous power and at at base speed (max speed before field weakening range).		Load test bed	Climat chamber	DY-EM	13	1	6	6	No material changes that effect DUT function, Functional status A, Discoloration shall be documented	2109804
к-02	Durability Thermal Testing	Thermal shock in air	This is an accelerated test which simulates a very high number of slow temperature cycles in the vehicle.	IEC 60068-2-14, Test Na	Load test bed	Climat chamber	DY-EM	13	1	6	6	No material changes that effect DUT function, Functional status A, Discoloration shall be documented	2109804
L-01	Durability Thermal Testing	HTOE High Temperature Operation Endurance	High Temperature Operation Endurance (HTOE) Calculation according to Arrhenius, lifetime of the component at high temperatures	IEC 60068-2-2: Dry Heat	Load test bed	Climat chamber	DY-EM	13	1	6	6	Performance values meets requirement, Functional status A	2109804
L-02	Durability Thermal Testing	PTCE Power Thermal Cycle Endurance	Power Thermal Cycle Endurance (PTCE) Calculation according to Coffin - Manson, lifetime endurance load of the component for temperature change acc. to environment and operation. In addition the number of cold starts is to be ensured	IEC 60068-2-14	Load test bed	Climat chamber	DY-EM	13	1	6	6	Performance and parameter values meet requirements, Functional status A	2109804
L-03	Durability Enviromental Testing	HTHE High Temperature and Humidity Endurance	High Temperature and Humidity Endurance (HTHE) Calculation according to Lawson, lifetime load of the component at high temperatures and high air humidity. Different effects may occur as material bulging due to humidity absorption, failure of seals and sealing, coating agent failures, electrical short circuits due to condensation, oxidation and/or galvanic corrosion of metals etc	IEC 60068-2-38, IEC 60068-2-30	Load test bed	Climat chamber	DY-EM	13	1	6	6	Performance and parameter values meet requirements, Functional status A	2109804

6.1.3 Inverter DVP

Project info Instructions About Level 2 Level 3.1 Level 3.2 Level 3.3 Level 3.2 Power Electronics Subsystem

							DVP&R: P	lanning									
				Standard / Paragraph /		Test Environment	Test Respo	nsibility	Test Duration		Sample			Test report			
Test ID	Test Category	Test Case	Test Description	Edition	Test Environmer	additional info	Despersible Desser	- Responsible	(Execution Time	Total Core 0		•	Test statu	ID / Path	Acceptance Criteria	RQ-ID 🔽	Remarks
							Responsible Person	Department		Quantity		den s					
Functional	Testing			_	_	_	_	_	_	_	_	_	_	_		_	
	Functional Thermal Testing	High and Low Temperature storage	Verifaction of rubustness of the DUT againts High and Low temperature storage.	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed	Climatic chamber				6	6	6	Planned	1	No visible demage on the speciement. DUT must be fully functional after test.	2067731	Faliure mode: Componenet wear out (electonics, housing, sealing, wire, harness, corrosion etc) cracks, componenet
	Functional Thermal Testing	Temperature shock	Test verify robustness of the DUT againts fast temperature changes under different temperatures in between -40°C up to	LV 124 / ISO_16750-4	Test bed	Climatic chamber				6	6	6	Planned	1	No visible demage on the speciement. DUT must be fully functional after test.	2067731	<u>Faliure mode:</u> Component wear out (electonics, housing, sealing, wire, harness, corrosion etc) cracks, component
	Functional Thermal Testing	Temperature cycle	Test verify robustness of the DUT againts long run temperature changes cycle in between -40°C up to 140°C	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed	Climatic chamber				6	6	6	Planned	r	No visible demage on the speciement. DUT must be fully functional after test.	2067731	Faliure mode: Component wear out (electonics, housing, sealing, wire, harness, corrosion etc) cracks, component
	Functional Thermal Testing	Step temperature test / Incremental temperature test	Test verify robustness of the DUT after temperature changes in small steps. during operation of the DUT	LV 124 / ISO_16750-4	Test bed	Climate chamber +				12	6	6		/	All functionalities should remain as required	2067731	demages, dislocation of componenets, or deformation. <u>Faliure mode:</u> Functional status faliure occures in temperature steps
	Functional Thermal Testing	Low Temperature operation	Test verify robustness of the DUT and the right functional status requirement, after operatin under low temperatures.	LV 124	Test bed	Climatic chamber				12	6	6		į	All functionalities should remain as required offer low temperature operation	2067731	Faliure mode: Functional status faliure occures after low temperature operation
	Functional Environmental Testing	Noxious gas test	Conditioning of the DUT under a special gas concentration over a temperature and humidity conditions	LV 124 / ISO_1650-4 / ISO 19453-4	Test bed	Noxious Gas Test Chamber				6	6	6	Planned	I	to visible demage on the speciement.	2067731	<u>Faliure mode</u> : It is meant to verify the resistance of the component to flaw patterns, such as corrosion and component damage.
	Functional Environmental Testing	Corrosion test / Salt spray test	Check the resistance of a system/component to salt mist and salt water on winter streets. Failure mode is electrical malfunction due to leakage currents caused by the ingress of salt water, or check the resistance of materials and surface- coating of a system/component to salt mist and salt water on streets in winter. Test generates corrosion similar to reality.	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed	Salt spray chamber, tub	,			6	6	6		r f r	No visible demages after test. All unctionalities remains as required after test. No sealing damage.	2067731	<u>Faliure mode</u> : Corrosion on componenet, elecrical faliure due to corrosion, dislocation of componenets. Functional status faliure occures after testing.
	Functional Environmental Testing	Damp heat, cyclic	Test verify robustness of the DUT by cyclic temperature changes with high humidity during vehicle operation. It is meant to verify the resistance of the component to damp heat.	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed	Climatic chamber				6	6	6		ſ	No visible demages after test. All unctionalities remains as required after test.	2067731	Faliure mode: Corrosion on componenets, sealing damage, electrical malfunction caused by moisture
	Functional Environmental Testing	Damp heat, cyclic with frost	Test verify robustness of the DUT by cyclic temperature changes and frost with high humidity during vehicle operation. It is meant to verify the resistance of the components to damp heat.	LV 124	Test bed	Climatic chamber				6	6	6		ſ	No visible demages after test. All unctionalities remains as required after test.	2067731	Faliure mode: Corrosion on componenets, sealing damage, electrical malfunction caused by moisture
	Functional Environmental Testing	Water protection test	Intrusion Protection (IP) Test verify robustness of the DUT when exposed to water. e.e., when exposed to condensed water, rain, or splash water	LV 124	Test bed	IP test environment				6	6	6		ſ	No visible demages after test, no water ngress in the DUT, no sealing demage. All unctionalities remains as required after test.	2067731	Faliure mode: leak tightness check, verification of the sealings, corrosion on components
	Functional Environmental Testing	Dust test	Intrusion Protection (IP) Test verify robustness of the DUT when exposed to dust.	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed	Dust chamber				6	6	6		i i	No visible demages after test, no sealing lemage,only permitted amount of dust ingress in the DUT. All functionalities remains is required after test	2067731	Faliure mode: Dut is not tight againts dust, electrical or mechanical faliure
	Functional Environmental Testing	Solar radiation test	If required, resistance to solar radiation shall be ensured by the choice of a suitable material.	LV 124 / ISO_16750-4 / ISO 19453-4	Test bed	Solar radiation chamber				6	6	6		I	No visible demages after test, no sealing lemage, no deformation of the componenets mainly bousing)	2067731	Faliure mode: DUT components (mainly housing) will deformate, cracks occure, other deformation on components
	Functional Environmental Testing	Chemical resistance	Resistance against the chemicals which can get in contact on/to the DUT. (Cemicals, should be defined by the project)	LV 124, ISO_16750-5 / ISO 19453-5	Test bed	Climat chamber				6	6	6			No visible demages after test, no ingress of emicals in the DUT, no harm on components. All functionalities remains as equired after test.	2067731	Faliure mode: Corrosion, component damage
	Functional Environmental Testing	Thermal shock with splash water	Test verify the tightness and robustness of the DUT when water splashes on the heated DUT.	LV 124 / ISO_19453-4	Test bed	Climat chamber / water dispenser				6	6	6		r i f	No visible demages after test, no water ngress in the DUT, no sealing demage. All unctionalities remains as required after test.	2067731	Faliure mode: componenet damage, sealing damage, untightness
	Functional Environmental Testing	High-pressure cleaning / steam jet	Test verify the tightness of the DUT againts steam jet.	LV 124	Test bed	Chamber with steam jet				6	6	6		i	No visible demages after test, no water ngress in the DUT, no sealing demage. All unctionalities remains as required after test	2067731	Faliure mode: componenet damage, sealing damage, untightness
	Functional Environmental Testing	Thermal shock with submerge /	Test verify the tightness and robustness of the DUT when the DUT is immerced into cold water after heating it up	LV 124 / ISO_16750-4 /	Test bed	Climat chamber / Water tub				6	6	6			· · · · · · · · · · · · · · · · · · ·	2067731	Faliure mode: componenet damage, sealing damage,
	Functional NVH Testing	NVH testing / acoustic design	Test checks the noise emmision of the DUT during operation	AVL internal standard	Test bed	Acoustic test bed				6	6	6		ſ	Aeasured noise emmission is under limit	2067731	Faliure mode: The noise emmission exceeds the required limit.
	Functional Environmental Testing	Atmospheric pressure test	The partial discharge inception voltage is affected by atmospheric pressure. When distance is close enaugh that partial discharge can occure.	ISO 19453-4	Test bed	Partial discharge testr + climat chamber				6	6	6		ı	No partial discharge occure during testing	2067731	Faliure mode: Partial discharge measurable
	Functional Mechanical Testing	Connector Test I	Insertion force / mounting force / locking force	AVL internal standard	Test Bed	Traction Machine			3	12	6	6		1 r	No demage on componenet, all functions emains the same after test. As required after Test .	2067764	Faliure mode: componenet damage according specification and offer drawing
	Functional Mechanical Testing	Connector Test II	Extraction force / dissasambly force	AVL internal standard	Test Bed	Traction Machine			3	12	6	6		1 T	No demage on componenet, all functions emains the same after test. As required after Test .	2067764	Faliure mode: componenet damage according specification and offer drawing
	Functional Mechanical Testing	Connector Test III	Pin torsion test	AVL internal standard	Test Bed	Traction Machine			3	12	6	6		ľ	No demage on componenet, all functions emains the same after test. As required after Test .	2067764	Faliure mode: componenet damage according specification and offer drawing
	Functional Mechanical Testing	Tensile strength	Verifying test for componets what should recieve higher tensile force durfing life time.	AVL internal standard	Test bed	Tensile tester				6	6	6		l r	No demage on componenet, all functions emains the same after test. As required after Test .	2067764	Faliure mode: componenet damage according specification and offer drawing
	Functional Mechanical Testing	Pin perforation test	Test verify pin push in and pull out forces with tensile tester.	AVL internal standard	Test bed	Tensile tester				6	6	6		l r	No demage on componenet, all functions emains the same after test. As required after Test .	2067764	Faliure mode: componenet damage according specification and offer drawing
	Functional Mechanical Testing	Connector force perpendicular to the assembly direction	Test verify connector's perpendicular push in and pull out forces with tensile tester.	AVL internal standard	Test bed	Tensile tester				6	6	6		1	No demage on componenet, all functions emains the same after test. As required after Test .	2067764	Faliure mode: componenet damage according specification and offer drawing

Functional Mechanical Testing	Vibration	Test verify robustness of the DUT againts vibration load during "driving" operating situtation. Faliure mode: fatigue, cracks, subcomponent detachments, etc	LV 124 / ISO_16750-3 / ISO 19453-3:2018	Test bed	Vibration bed (climat chamber)		6		6	6	No visible demages after testing. All functionality of the DUT remains the sa special care on NVH.	me, 2067764 dislocation of component wear out/damage (electonics, housing, sealing, wire, harness, corrosion etc) cracks, dislocation of components, or deformation, subcomponent detachment
Functional Mechanical Testing	Mechanical shock	Test verify mechanical loads on the component, e.g., when driving over curbs or in the case of car accidents. Test also verify the resistance of the component to flaw patterns, such as cracks and subcomponent detachments /half sinus mechanical shocks in each direction/	LV 124 / ISO_16750-3 / ISO 19453-3:2018	Test bed	Shock bed		6		6	6	No visible demages after testing. All functionality of the DUT remains the sa special care on NVH.	me, 2067764 Faliure mode: Componenet wear out/damage (electonics, housing, sealing, wire, harness, corrosion etc) cracks, dislocation of componenets, or deformation, subcomponeent detachment
Functional Mechanical Testing	Coolant Circuit pressure pulsation	Verify pressure fluctuations in coolant circuit, as well during the post-heating phase and vacuum filling of the cooling system must be applied exclusively to components that are connected to a coolant circuit.	LV 124	Test bed	Shock bed		6		6	6	No component demage, all functionality remains as reqired after testing	2067764 Eallure mode: Due to pressure fluctuations in coolant circuit, component damage, subcomponeent detachment
Functional Mechanical Testing	Free fall	Test verify robustness of the DUT after free fall, 1 meter on concrete or steel Generally: 3 direction - 3 parts at least. Simulates process chain faluire cases.	LV 124 / ISO_16750-3 / ISO 19453-3:2018	Test bed	Free fall tester		6		6	6	No visible demages after test. All functionalities remains as required after	test. 2067764 Faliure mode: Componenet damage, subcomponeent detachment
Functional Mechanical Testing	Stone impact tests	Harmfull impact test on surface due to stone impact. Faliure mode: deformation or crack	LV 124	Test bed	stone impact test environment / chamber		6		6	6	No visible demages after test. All functionalities remains as required after	test. 2067764 Faliure mode: Componenet damage, subcomponeent detachment
Functional Mechanical Testing	Leakage	Air/coolant leakage tightness of componenet/system.	AVL internal standard	Test bed	Container / tub /reductor		6	i 🗾	6	6	No visible demages after test, no air lea above the specified air leak.	2067764 Faliure mode: sealing damage Parameter test
Functional Mechanical Testing	Visual inspection	Naked eye inspection of component/system to evaluate the damage, cracks, changes, rupteres, flaking, discoloration, or deformation.	AVL internal standard	Test bed	natural eye		6		6	6	Control test	2067764 Control test Begining, intermediate and end of the tests.
Functional Mechanical Testing	Residual torque	Use digital torque wrench to measure residual torque	AVL internal standard	Test bed	torque wrench		6		6	6	Control test	2067764 Control test, process description
Functional Mechanical Testing	Qualification of screw connection	Verify the quality of the screw connection	AVL internal standard	Test bed	Tensile tester /		6	i 📕	6	6	Control test (product related)	Qualification, process description
Functional Mechanical Testing	Screwing after aging	Verify the quality of the screw based fixation of the DUT	AVL internal standard	Test bed	torque wrench		6		6	6	Control test (product related)	2067764 Control test, process description
 Functional Mechanical Testing	Protection against contact	Verify the conctact protection of the DUT	AVL internal standard	Test bed	torque wrench		6		6	6	Control test (product related)	2067764 according specification and one drawing 2067764 according specification
	(IV) - Direct current supply voltage	The nurnose of this test is to verify equipment functionality at			Inverter load test			i — — — — —			Required functional status should rema	n as Faliure mode: Required functional status failure after test-
Functional Electrical LV Testing	- Short / long term	minimum and maximum supply voltage.	ISO 16750-2	Test Bed	bed		0,3 6		6	6	specified. Required safety function shou operate.	ld 2067756 malfunction/dysfunction on the specified min and max supply voltage; required safty function not applicable
Functional Electrical LV Testing	LV - Long-term overvoltage	Test examines componenet behavior and resistance in the event of long-term overvoltage.	LV 124	Test bed	Inverter load test bed		12		6	6	Required functional status should rema specified. Required safety function shou operate.	n as Ealiure mode: Required functional status failure after test- ald 2067756 malfunction/dysfunction on the specified min and max supply voltage; required safty function not applicable
Functional Electrical LV Testing	LV - Transient overvoltage	Switching off loads when engine is operating, what may result transient overvoltages in the electric system	LV 124	Test bed	Inverter load test		12	i 🗌	6	6	Required functional status should rema specified	n as 2067756 Faliure mode: Required functional status failure after test
Functional Electrical LV Testing	LV - Tranisent undervoltage	Switching on loads may result in transient undervoltages,	LV 124	Test bed	Inverter load test		12	i – T	6	6	Required functional status should rema	n as 2067756 Faliure mode: Required functional status failure after test
Functional Floatsian IV/ Teation	LV - Superimposed alternating	depending on the state of the power electric system. This test simulates a residual alternating current on the direct	11/12/ /100 10750 2	Test De d	bed Inverter load test		0.2 1.2	(6	<u> </u>	specified. Required functional status should rema	
 Functional Electrical LV Testing	voltage	current supply.	LV 124 / ISO 16750-2	Test Bed	bed		0,3 12	·	Ь	•	specified.	. Kequired functional status failure after test
Functional Electrical LV Testing	LV - Variation of decrease and increase of supply votage (Slow decrease and increase of supply voltage)	Test simulates the gradual discharge and recharge of the battery.	LV 124 / ISO 16750-2	Test Bed	Inverter load test bed		0,3 12		6	6	Required functional status should rema specified. 2.) Outside of the defined operating: Required functional status can deviate f required functional status can deviate f	n as 2067756 <u>Faliure mode:</u> Required functional status failure after test rom
								۱ I			specified.	
Functional Electrical LV Testing	LV - Momentary drop in supply	This test simulates the effect when a conventional fuse element	LV 124 / ISO 16750-2	Test Bed	Inverter load test		12		6	6	specified. Required functional status should rema	n as 2067756 Faliure mode: Required functional status failure after test;
Functional Electrical LV Testing Functional Electrical LV Testing	LV - Momentary drop in supply voltage / Short interruprions LV - Reset behavior at voltage drop	This test simulates the effect when a conventional fuse element melts in another circuit. This test verify the reset behaviour of the DUT at different voltage drops. This test is applicable to equipment with reset function, e.g. equipment containing microcontroller(s).	LV 124 / ISO 16750-2 LV 124 / ISO 16750-2	Test Bed Test Bed	Inverter load test bed Inverter load test bed		12		6	6	Required functional status should rema specified.	n as 2067756 Faliure mode: Required functional status failure after test; required safty function not applicable 2067756 Faliure mode: Required functional status failure after test; required safty function not applicable
Functional Electrical LV Testing Functional Electrical LV Testing Functional Electrical LV Testing	LV - Momentary drop in supply voltage / Short interruprions LV - Reset behavior at voltage drop LV - Starting profile / Start pulses	This test simulates the effect when a conventional fuse element melts in another circuit. This test verify the reset behaviour of the DUT at different voltage drops. This test is applicable to equipment with reset function, e.g. equipment containing microcontroller(s). This test verify the behaviour of a DUT during and after cranking.	LV 124 / ISO 16750-2 LV 124 / ISO 16750-2 LV 124 / ISO 16750-2	Test Bed Test Bed Test Bed	Inverter load test bed Inverter load test bed Inverter load test bed		12		6 6 6	6	Required functional status should rema specified. Required functional status should rema specified. Required functional status should rema specified. Required functional status should rema specified. Required safety function shou operate.	n as 2067756 Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: required safty function not applicable
Functional Electrical LV Testing Functional Electrical LV Testing Functional Electrical LV Testing Functional Electrical LV Testing	LV - Momentary drop in supply voltage / Short interruprions LV - Reset behavior at voltage drop LV - Starting profile / Start pulses LV - Load dump	This test simulates the effect when a conventional fuse element melts in another circuit. This test verify the reset behaviour of the DUT at different voltage drops. This test is applicable to equipment with reset function, e.g. equipment containing microcontroller(s). This test verify the behaviour of a DUT during and after cranking. This test verify the behaviour of a DUT during and after cranking. This test is a simulation of load dump transient occurring in the event of a discharged battery being disconnected while the alternator is generating charging current with other loads remaining on the alternator circuit at this moment.	LV 124 / ISO 16750-2 LV 124 / ISO 16750-2 LV 124 / ISO 16750-2 LV 124 / ISO 16750-2	Test Bed Test Bed Test Bed Test Bed	Inverter load test bed Inverter load test bed Inverter load test bed Inverter load test bed		12 12 12 12 12 12		6 6 6 6	6 6 6	Required functional status should rema specified. Required functional status should rema specified. Required safety function shou operate. Required functional status should rema specified.	n as 2067756 Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: Faliure mode: required safty function not applicable n as 2067756 Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: required safty function not applicable
Functional Electrical LV Testing	LV - Momentary drop in supply voltage / Short interruprions LV - Reset behavior at voltage drop LV - Starting profile / Start pulses LV - Load dump LV - Reversed voltage	This test simulates the effect when a conventional fuse element melts in another circuit. This test verify the reset behaviour of the DUT at different voltage drops. This test is applicable to equipment with reset function, e.g. equipment containing microcontroller(s). This test verify the behaviour of a DUT during and after cranking. This test is a simulation of load dump transient occurring in the event of a discharged battery being disconnected while the alternator is generating charging current with other loads remaining on the alternator circuit at this moment. This test checks the ability of a DUT to withstand against the connection of a reversed battery in case of using an auxiliary starting device. This test is not applicable to:	LV 124 / ISO 16750-2 LV 124 / ISO 16750-2	Test Bed Test Bed Test Bed Test Bed	Inverter load test bed Inverter load test bed Inverter load test bed Inverter load test bed Inverter load test bed		12 12 12 12 12 12 12 0,3 12		6 6 6 6 6 6	6	Required functional status should rema specified. Required safety function shou operate.	n as 2067756 Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: Faliure mode: required safty function not applicable n as 2067756 Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: Faliure mode: required safty function not applicable n as 2067756 Ealiure mode: Faliure mode: Faliure mode: Required functional status failure after test; required safty function not applicable n as 2067756 Ealiure mode: Faliure mode:
Functional Electrical LV Testing	LV - Momentary drop in supply voltage / Short interruprions LV - Reset behavior at voltage drop LV - Starting profile / Start pulses LV - Load dump LV - Reversed voltage LV - Reversed voltage	This test simulates the effect when a conventional fuse element melts in another circuit. This test verify the reset behaviour of the DUT at different voltage drops. This test is applicable to equipment with reset function, e.g. equipment containing microcontroller(s). This test verify the behaviour of a DUT during and after cranking. This test verify the behaviour of a DUT during and after cranking. This test is a simulation of load dump transient occurring in the event of a discharged battery being disconnected while the alternator is generating charging current with other loads remaining on the alternator circuit at this moment. This test checks the ability of a DUT to withstand against the connection of a reversed battery in case of using an auxiliary starting device. This test strating device. This test shall be agreed between customer and supplier. This test so verify reliable operation of a component if two or more power supply paths exist. For instance, a component may have a power ground and a signal <i>around</i> that zenutitive on different circuit.	LV 124 / ISO 16750-2 LV 124 / ISO 16750-2	Test Bed Test Bed Test Bed Test Bed Test Bed	Inverter load test bed		12 12 12 12 12 12 12 0,3 12 12		6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Image: Construction of the construc	n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: Faliure mode: malfunction/dysfunction on the specified component; required safty function not applicable n as 2067756 Faliure mode: Faliure mode: malfunction/dysfunction not applicable
Functional Electrical LV Testing	LV - Momentary drop in supply voltage / Short interruprions LV - Reset behavior at voltage drop LV - Starting profile / Start pulses LV - Load dump LV - Load dump LV - Reversed voltage LV - Ground reference and supply offset LV - Single line interruption / pin interuption (Open circuit tests)	This test simulates the effect when a conventional fuse element melts in another circuit. This test verify the reset behaviour of the DUT at different voltage drops. This test is applicable to equipment with reset function, e.g., equipment containing microcontroller(s). This test verify the behaviour of a DUT during and after cranking. This test is a simulation of load dump transient occurring in the event of a discharged battery being disconnected while the alternator is generating charging current with other loads remaining on the alternator circuit at this moment. This test checks the ability of a DUT to withstand against the connection of a reversed battery in case of using an auxiliary starting device. This test is not applicable to: This test shall be agreed between customer and supplier. This test serves to verify reliable operation of a component if two or more power supply paths exist. For instance, a component may have a power ground and a signal accound that sea outputs on different circuit. This test simulates an open contact condition.	LV 124 / ISO 16750-2 LV 124 / ISO 16750-2	Test Bed Test Bed Test Bed Test Bed Test Bed Test Bed	Inverter load test bed		12 12 12 12 12 12 12 0,3 12 12 12		6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Image: Construction of the construc	n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: required safty function not applicable n as 2067756 Faliure mode: Faliure mode: required safty function not applicable n as 2067756 Faliure mode: Faliure mode: mafunction/dysfunction on the specified component; required safty function not applicable n as 2067756 Faliure mode: Faliure mode: mafunction/dysfunction on the specified component; required safty function not applicable n as 2067756 Faliure mode: Faliure mode: mafunction/dysfunction on the specified component; required safty function on the specified component; required safty function not he specified component; required safty function not applicable
Functional Electrical LV Testing	LV - Momentary drop in supply voltage / Short interruprions LV - Reset behavior at voltage drop LV - Reset behavior at voltage drop LV - Starting profile / Start pulses LV - Load dump LV - Load dump LV - Reversed voltage LV - Reversed voltage LV - Stingle line interruption / pin interuption (Open circuit tests) LV - Multiple line interruption/ (Open circuit tests)	This test simulates the effect when a conventional fuse element melts in another circuit. This test verify the reset behaviour of the DUT at different voltage drops. This test is applicable to equipment with reset function, e.g., equipment containing microcontroller(s). This test verify the behaviour of a DUT during and after cranking. This test verify the behaviour of a DUT during and after cranking. This test is a simulation of load dump transient occurring in the event of a discharged battery being disconnected while the alternator is generating charging current with other loads remaining on the alternator circuit at this moment. This test heads the ability of a DUT to withstand against the connection of a reversed battery in case of using an auxiliary starting device. This test is not applicable to: This test simula be agreed between customer and supplier. This test simula be agreed between customer and supplier. This test simulates an open contact condition. The purpose of this test to ensure functional status as defined in the specification of the DUT when the DUT is subjected to a rapid multiple line interruption.	LV 124 / ISO 16750-2 LV 124 / ISO 16750-2	Test Bed Test Bed Test Bed Test Bed Test Bed Test Bed Test Bed Test Bed	Inverter load test bed		12 12 12 12 12 12 12 0,3 12 12 12 12 12 12		6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1		Required functional status should rema specified. Required functional status should rema	n as 2067756 Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: Ealiure mode: required safty function not applicable n as 2067756 Ealiure mode: Ealiure mode: Required functional status failure after test; mafunction/dysfunction on the specified component; required safty function not applicable n as 2067756 Ealiure mode: Ealiure mode: Required functional status failure after test- mafunction/dysfunction on the specified component; required safty function not he specified component; required safty function not paplicable
Functional Electrical LV Testing	LV - Momentary drop in supply voltage / Short interruprions LV - Reset behavior at voltage drop LV - Reset behavior at voltage drop LV - Starting profile / Start pulses LV - Load dump LV - Load dump LV - Reversed voltage LV - Ground reference and supply offset LV - Single line interruption / pin intteruption (Open circuit tests) LV - Multiple line interruption/ (Open circuit tests) LV - Connector interruption (Open circuit tests)	This test simulates the effect when a conventional fuse element melts in another circuit. This test verify the reset behaviour of the DUT at different voltage drops. This test is applicable to equipment with reset function, e.g. equipment containing microcontroller(s). This test verify the behaviour of a DUT during and after cranking. This test verify the behaviour of a DUT during and after cranking. This test verify the behaviour of a DUT during and after cranking. This test is a simulation of load dump transient occurring in the event of a discharged battery being disconnected while the alternator is generating charging current with other loads remaining on the alternator circuit at this moment. This test she ability of a DUT to withstand against the connection of a reversed battery in case of using an auiliary starting device. This test shall be agreed between customer and supplier. This test shall be agreed between customer and supplier. This test shall be agreed between customer and supplier. This test simulates an open contact condition. The purpose of this test to ensure functional status as defined in the specification of the DUT when the DUT is subjected to a rapid multiple line interruption.	LV 124 / ISO 16750-2 LV 124 / ISO 16750-2 ISO 16750-2	Test Bed Test Bed Test Bed Test Bed Test Bed Test Bed Test Bed Test Bed	Inverter load test bed		12 12		6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1		Required functional status should rema specified. Required functional status should rema	n as 2067756 Ealiure mode: Required functional status failure after test; required safty function not applicable n as 2067756 Ealiure mode: Required functional status failure after test; required safty function not applicable n as 2067756 Ealiure mode: Required functional status failure after test; required safty function not applicable n as 2067756 Ealiure mode: Required functional status failure after test; required safty function not applicable n as 2067756 Ealiure mode: Required functional status failure after test; required safty function on the specified componenet; required safty function on the specified componenet; required safty function not applicable n as 2067756 Faliure mode: Required functional status failure after test-malfunction/dysfunction on the specified componenet; required safty function not applicable n as 2067756 Ealiure mode: Required functional status failure after test-malfunction/dysfunction on the specified componenet; required safty function not applicable n as 2067756 Ealiure mode: Required functional status failure after test-malfunction/dysfunction on the specified componenet; required safty function not applicable<
Functional Electrical LV Testing	LV - Momentary drop in supply voltage / Short interruprions LV - Reset behavior at voltage drop LV - Reset behavior at voltage drop LV - Starting profile / Start pulses LV - Load dump LV - Load dump LV - Reversed voltage LV - Ground reference and supply offset LV - Ground reference and supply offset LV - Single line interruption / pin intteruption (Open circuit tests) LV - Connector interruption (Open circuit tests) LV - Short circuit protection: Signal circuits	This test simulates the effect when a conventional fuse element melts in another circuit. This test verify the reset behaviour of the DUT at different voltage drops. This test is applicable to equipment with reset function, e.g. equipment containing microcontroller(s). This test verify the behaviour of a DUT during and after cranking. This test verify the behaviour of a DUT during and after cranking. This test verify the behaviour of a DUT during and after cranking. This test is a simulation of load dump transient occurring in the event of a discharged battery being disconnected while the alternator is generating charging current with other loads remaining on the alternator circuit at this moment. This test stacks the ability of a DUT to withstand against the connection of a reversed battery in case of using an audiary starting device. This test store applicable to: This test store power supply paths exist. For instance, a component may have a power ground and a signal accound that are autouts on different circuit. The purpose of this test to ensure functional status as defined in the specification of the DUT when the DUT is subjected to a rapid connector interruption. The purpose of this test to ensure functional status as defined in the specification of the DUT when the DUT is subjected to a rapid connector interruption. These tests simulate short circuits to the inputs and outputs of the DUT	LV 124 / ISO 16750-2 LV 124 / ISO 16750-2 ISO 16750-2 LV 124 / ISO 16750-2	Test Bed	Inverter load test bed Inverter load test bed		12 12		6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1		Image: Construction of the extension of the	n as 2067756 Eallure mode: Required functional status failure after test; required safty function not applicable n as 2067756 Eallure mode: Required functional status failure after test; required safty function not applicable n as 2067756 Eallure mode: Required functional status failure after test; required safty function not applicable n as 2067756 Eallure mode: Required functional status failure after test; required safty function not applicable n as 2067756 Eallure mode: Required functional status failure after test; required safty function not applicable n as 2067756 Eallure mode: Required functional status failure after test; required safty function on the specified component; required safty function not applicable

Functional Electrical LV Testing	LV -Short circuit protection: Load circuits	This test stresses the insulation system and checks the ability of the dielectric material to withstand a higher voltage caused by switching off. This test ensures the dielectric withstand voltage capability of circuits with galvanic isolation. This test is required only for systems/components which contain inductive elements (e.g. relays, motors, coils) or are connected to circuits with inductive load.	LV 124 / ISO 16750-2	Test Bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067756	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical LV Testing	LV - Insulation resistance	The test gives an indication of the relative quality of the insulation system and material. This test ensures a minimum value of ohmic resistance required to avoid current between galvanically isolated circuits and conductive parts of the DUT.	LV 124 / ISO 16750-2	Test Bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067756	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical LV Testing	LV - Dielectric strength / Withstand voltage	d This test simulates the dielectric strength between components of the DUT that are galvanically isolated from each other, e.g., connector niss relays windings or lines. The test must be	LV 124 / ISO 16750-2	Test Bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067756	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical LV Testing	LV - Generated voltage slope	This test evaluates the generated voltage slope and confirms that it is within the specified maximum rate.	ISO DIS 21498	Test Bed	Inverter load test bed		12	6	6		The DUT shall be connected to a load/source and shall provide the capability to change the power on request. The voltage shall be monitored and evaluated.	2067756	Falure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical LV Testing	LV -Low Voltage test 1	Current compensation, standby- and pulsing mode shall be possible, LV voltage range shall be useable	AVL internal standard	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067756	Faliure mode: Required functional status failure after test
Functional Electrical LV Testing	LV -Low Voltage test 2	The level of the low voltage supply can vary, but full performance (@HV-side) shall be guaranteed in a nominal area. (HV working point is fixed, and the LV suppy vary)	AVL internal standard	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067756	Faliure mode: Required functional status failure after test
Functional Electrical LV Testing	LV - Jump start	Simulates an external power supply, with the maximum voltage from the commercial vehicles.	LV 124	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067756	Faliure mode: Required functional status failure after test; required safty function not applicable
Functional Electrical LV Testing	LV - Voltage curve with electric system control	Test simulates the behavior of the electric system with voltage controls. Testcase depands on the product, fluctuation of the voltage function of the set recented the lead core.	LV 124	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067756	Faliure mode: Required functional status failure after test
Functional Electrical LV Testing	LV - Quiescent current/closed	Determination of the quiescent - current draw of the component on different environmental houndaries	LV 124	Test bed	Inverter load test		12	6	6		Required functional status should remain as specified	2067756	Faliure mode: Required functional status failure after test
Functional Electrical LV Testing	LV - Backfeeds	Test verify that the DUT is free of backfeeds to switched terminals	LV 124	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should	2067756	Faliure mode: Required functional status failure after test; required safty function not applicable
Functional Electrical LV Testing	LV - Overcurrent	Test verify the robustness of the mechanical switches, electronic outputs, and contatcts againts overcurrent. Overcurrent protection	LV 124	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067756	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical LV Testing	LV - Wake-Up Test	Wake-up signal shall be implemented within the specification	AVL internal standard	Test bed	Inverter load test bed		12	6	6		Right signals for the wake up test.	2067756	Faliure mode: No answer, or different behaviour for the signal
Functional Electrical HV Testing	HV - Operation within the regular HV operating voltage range	Test verify the specified functional status, the max specified power under the specified working points.	LV123 / ISO DIS 21498	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067758	Faliure mode: Required functional status failure after test
Functional Electrical HV Testing	HV - Operation within the HV overvoltage range	Test verify that the specified functional status and specified power is kept under various operating parameteres, in the HV overvoltage range.	LV123 / ISO DIS 21498	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067758	Faliure mode: Required functional status failure after test
Functional Electrical HV Testing	HV- Operation within the HV undervoltage range	Test verify the specified functional status, the max specified power under the specified working points in the HV undervoltage range.	LV123 / ISO DIS 21498	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067758	Faliure mode: Required functional status failure after test
Functional Electrical HV Testing	HV - pre-charge	Test verify the robustness of the HV energy storage and HV components when starting up during pre-chargig under operation.	LV123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067758	Faliure mode: Required functional status failure after test
Functional Electrical HV Testing	HV - Generated HV voltage dynamics	Test verify that the HV functional status does not change during the power jumps under the HV voltage dynamics generated by the component fall within the specified limits.	LV123 / ISO DIS 21498	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067758	Faliure mode: Required functional status failure after test
Functional Electrical HV Testing	HV - System HV voltage dynamics	Test verify the HV componenets in the HV system when the HV voltage rate changes.	LV123 / ISO DIS 21498	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067758	Faliure mode: Required functional status failure after test
Functional Electrical HV Testing	HV- Voltage dynamics of energy storage devices	Test has to verify the robustness of the HV energy storage device when the load jumps generate HV electric system dynamics in the energy storage.	LV123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	HV - Generated HV voltage ripple	Tests verify that the generated HV ripple will not cause any change in the HV functional status.	LV123 / ISO DIS 21498	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067758	Faliure mode: Required functional status failure after test
Functional Electrical HV Testing	HV - System HV voltage ripple	Tests verify the robustness of the HV componenets when HV ripple produced in the HV system	LV123 / ISO DIS 21498	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified.	2067758	Faliure mode: Required functional status failure after test
Functional Electrical HV Testing	HV - Load dump	Test verify the HV system in the event of a load dump.	LV123 / ISO DIS 21498	Test bed	Inverter load test bed		12	6	6	 	Required functional status should remain as specified.	2067758	Faliure mode: Required functional status failure after test
Functional Electrical HV Testing	HV - Voltage offset	lest verify the robustness HV components during and offset btw the HV potentials and GND	LV123 / ISO DIS 21498	Test bed	bed		12	6	6	 	specified.	2067758	Faliure mode: Required functional status failure after test
Functional Electrical HV Testing	HV - Overcurrent	lest verify the robustness of the mechanical switches, electronic outputs, and contacts againts overcurrent. Overcurrent protection.	LV123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Failure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	HV - Service life	Test verify the robustness of the DUT againts the occuring loads what has an influence on the required service life.	LV123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	<u>Faliure mode:</u> Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	HV - Pulse	The robustness of HV components must be tested in regard to switching edges with a high change rate	LV123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	HV -Detection of open HV-lines	Purpuse of the test is to detect the opened HV lines	LV123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	HV - voltage cycle - Safety	The purpose of this test is to check the component's HV-voltage- dependent serviceability and performance.	LV123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	Passive Discharge	The robustness of the DUT's passive discharge circuit must be verified	LV123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	Active Discharge	The robustness of the DUT's active discharge circuit must be verified	LV123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	HV isolation resistance to LV	Test verify that the insulation resistance is not lower than the value required in the Component Performance Specification.	LV 123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	HV dielectric strength to LV	Test verify that the component's dielectric strength is higher than the limits specified in the Performance Specification. Faliure mode: dielectric strength between HV and LV may deteriorate during electrical, environmental, and service life tests.	LV 123	Test bed	Inverter load test bed		12	6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable

Functional Electrical HV Testing	HV - Equipotential bonding contact resistance	Test verify the robustness of the equipotential bonding for all DUT parts that can be touched and are conductive. Faliure mode: The electrical contact between the equipotential bonding conductor and the DUT and to all the DUT's conductive parts that can be touched may deteriorate during environmental and concinc life totate.	LV 123	Test bed	Inverter load test bed	12		6			Required functional status should remain as specified. Required safety function should operate.	2067758	Ealiure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	HV - shield contact resistance	Test verify the robustness of the DUT's HV shield's electrical contact must be verified. Faliure mode: The electrical contact for the HV shield may deteriorate during environmental and service life tests.	LV 123	Test bed	Inverter load test bed	12		6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	HV - Protective earth and touch current	Test verify that the requirements for the protective earth connection and for the DUT's touch current are being met. The test must be carried out for the on-board charger in the AC supply circuit. Fehlier mode: The properties of components, contacts, and insulation in an electric system charger may deteriorate as a result of aging or during electrical, environmental, and service life tests.	LV 123	Test bed	Inverter load test bed	12		6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	Faliure mode: Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Electrical HV Testing	HV - Crash Signal Test	Test simulates the behavior of the inverter in the event of a crash.	LV123	Test bed	Inverter load test bed	12		6	6		Required functional status should remain as specified. Required safety function should operate.	2067758	<u>Faliure mode:</u> Required functional status failure after test- malfunction/dysfunction on the specified componenet; required safty function not applicable
Functional Performance Testing	Continuous current test	Confirmation of the correct thermal behaviour of the DUT during operating	AVL internal standard	Test bed	Inverter load test bed	12		6	6		Required functional status should remain as specified. Required safety function should operate.	2067773	Faliure mode: Overheated wire, melted electronical componenets; required safty function not applicable
Functional Performance Testing	Maximum phase current test	When maximum phase current is applied, DUT operates	AVL internal standard	Test bed	Inverter load test bed	12		6	6		Required functional status should remain as specified. Required safety function should operate.	2067773	Faliure mode: Overheated wire, melted electronical componenets; required safty function not applicable
Functional Performance Testing	Maximum Power	When maximum power applied, DUT operates	AVL internal standard	Test bed	Inverter load test bed	12		6	6		Required functional status should remain as specified. Required safety function should operate.	2067773	Faliure mode: Overheated wire, melted electronical componenets; required safty function not applicable
Functional Testing	Basic Functionality	Verify basic functions (coolant pressure, PWM control, torque setpoint)	AVL internal standard	Test bed	Inverter load test bed	6		6	6			2067770	Initially for each new sample/charge, test can be skipped at the end of the project. Important for desin changes and for A-sample (no serial production)
Functional Testing	Resolver Calibration	Calibration of the right Resolver angle for commutation	AVL internal standard	Test bed	Inverter load test	12		6			Required software routine should calibrate	2067770	Resolver calibration has to be done for each new resolver or
Functional Testing	Fault injection test	Artificial made faliure on resolver, motor temperature, CAN, phase etc (could be software [values are not correct or inactive] or machanical failure)	AVL internal standard	Test bed	Inverter load test bed	12		6	6		Required functional status should remain as specified.	2067770	
Functional EMC Testing	LV - Conducted RF emission from components/modules on LV-powe lines – Voltage method	Measurement of RF disturbance voltages on Low voltage supply r lines	CISPR 25	Test Bed	EMC Chamber	4	1	1	1	1	Emission does not exceed the limits according requirement	2067768	
Functional EMC Testing	HV - Conducted RF emission from components/modules on HV power lines – Voltage method	Test methods for shielded power supply systems for high voltages in electric and hybrid vehicles: Measurement of RF disturbance voltages on shielded HV voltage supply lines	CISPR 25	Test Bed	EMC Chamber	4	1				Emission does not exceed the limits according requirement	2067768	
Functional EMC Testing	HV - Conducted common mode RF emission from components/modules on motor phases – Voltage methode	Test methods for 3 phase inverter output leading to the e- machine/motor Measurement of common mode RF disturbance voltages on 3 -phase Inverter output using motor motor simulation	CISPR 25	Test Bed	EMC Chamber	4	1	1	1	1	Emission does not exceed the limits according requirement	2067768	
Functional EMC Testing	LV - Conducted RF emission from components/modules other than supply lines and cable bunches – current probe method	Measurement of RF disturbance cureents on low voltage wiring	CISPR 25	Test Bed	EMC Chamber	4	1	1	1		Emission does not exceed the limits according requirement	2067768	
Functional EMC Testing	HV - Conducted RF emission from components/modules on HV power lines and three phase motor lines to the electric motor – current probe method	Test methods for shielded power supply systems for high voltages in electric and hybrid vehicles: Measurement of RF disturbances currents on shielded HV cables	CISPR 25	Test Bed	EMC Chamber	3					Emission does not exceed the limits according requirement	2067768	
Functional EMC Testing	HV - Conducted Emissions from Currents on Shafts and Hoses	Current measurement for components with internal disturbances on hoses leading outside: and using a motor model (to simulated issues with potential shaft currents on later system level)	(based on CISPR 25)	Test Bed	EMC Chamber	4	1	1	1	1	Emission does not exceed the limits according requirement	2067768	
Functional EMC Testing	LV - Conducted Pulse- Emissions - Voltages on LV Supply Lines	Measurement of Pulse emissions at the LV Supply	ISO 7637-2	Test Bed	EMC Chamber	4	1	1	1	1	Emission does not exceed the limits according requirement	2067768	
Functional EMC Testing	HV - Conducted Pulse Emissions on HV Supply Lines	Voltage transient emissions test along high voltage supply lines measured between HV+ and HV- (line-to-line) and between HV+ respectively HV- and ground (line- to-ground)	ISO DTS 7637-4	Test Bed	EMC Chamber	4	1	1	1		Emission does not exceed the limits according requirement	2067768	
Functional EMC Testing	Max. voltage rise & fall slew rates of Power & Signals connections at connector pins	Limitation of max. voltage rise and fall times for all extern t available power and signal connections (power, I/O, Communication)	-	Test Bed	laboratory	4	1	1	1		rise and fall slew rates do not exceed limits of the requirement or exceptional approval is given by Vehicle manufacturer	2100935	
Functional EMC Testing	Max. current rise & fall slew rates of Power & Signals connections at connector pins	Limitation of max. current rise and fall times t for all extern available power and signal connections (power, I/O, Communication)	-	Test Bed	laboratory	4	1	1	1	1	rise and fall slew rates do not exceed limits of the requirement or exceptional approval is given by Vehicle manufacturer	2100935	
Functional EMC Testing	HV-Load Shedding	To avoid voltage spikes in the case of HV-Relais switching Countermeasures concept has to be delivered	based on ISO DTS 6737-4	Test Bed	EMC Chamber	3		1	1	1	Spikes do not exceed requirement limits	2067768	
Functional EMC Testing	Radiated electromagnetic emissions from components/modules - ALSE method	Measurement of radiated RF disturbance with external antennas	CISPR 25	Test bed	EMC Chamber	3		1	1		Emission does not exceed the limits according requirement	2099278	

	HV - Radiated electromagnetic	Test methods for shielded power supply systems for high												
Euroctional EMC Testing	emissions from	voltages	CIEDD 25	Tort hod	EMC Chambor						1		Emission does not exceed the limits acco	ling 2000.278
Functional Livic Testing	components/modules - with	in electric una hybria venicies.	CISFN 25	Test beu	Elvic chamber			3			-		requirement	2055276
	shielded HV-wiring ALSE method	Radiated emissions from components/modules - ALSE method												
Functional EMC Testing	HV - radiated emissions	Measurement of electrical fields in the frequency range below	CISPR 25	Test bed	EMC Chamber			3		1	1	1	Emission does not exceed the limits acco	ing 2099278
 	HV - Radiated Emissions	Measurement of magnetic fields in the frequency range below	(GBT-18387 adopted for										Emission does not exceed the limits acco	ling
 Functional EMC Testing	magnetic field <30MHz	30MHz using a loop antenna	components)	Test bed	EMC Chamber			3		1	1	1	requirement	2099278
Functional EMC Testing	HV - radiated emissions electromagnetic field Stripline	Measurement of radiated RF disturbance using the stripline methode	CISPR 25	Test bed	EMC Chamber			3			1		requirement	^{ing} 2099278
	Low frequency magnetic field	Measurement of magnetic fields in the frequency range below											Emission does not exceed the limits acco	ling
Functional EMC Testing	emission <150kHz	150 kHz using a hand held loop antenna (MIL-STD-461 or similar) close to the component		Test bed	EMC Chamber			3		1	1	1	requirement	2099278
	Manager field emission	Management of managic fields to limit surgeous of paragements											Emission does not avoud the limits one	line
Functional EMC Testing	protection of persons	variing magnetic fields	ICNIRP	Test bed	EMC Chamber			3			1		requirement	2100937
	Radiated emissions from													
Functional EMC Testing	components/modules – Stripline	Measurement of radiated RF disturbance by using a stripline	CISPR 25	Test bed	EMC Chamber			3			1		Emission does not exceed the limits accorrequirement	^{ing} 2099278
	method												Functional status /stati at the requested	
Functional EMC Testing	LV - Conducted immunity against pulses on LV-supply lines	Conducted immunuity against pulses on LV-supply lines	ISO 7637-2	Test bed	EMC Chamber			3			1		severity level(s) are fulfilled according	2099287
Functional EMC Testing	Fast pulses coupled on other than	Conducted Immunity against fast pulses capacitive coupled	ISO 6737-3	Test bed	EMC Chamber			4	1		1		severity level(s) are fulfilled according	2099287
	supply lines												requirement	
	LV - Conducted Immunity												Functional status /stati at the requested	
Functional EMC Testing	Slow pulses coupled on other than	on other than supply lines	ISO 7637-3	Test bed	EMC Chamber			4	1		1		severity level(s) are fulfilled according	2099287
	supply lines												requirement	
Functional EMC Tecting	Conducted Immunity - extended	Immunity to conducted disturbances in the extended audio	150 11453 10	Test hed	FMC Chamber								Functional status /stati at the requested	2000287
r ancaonar civic restilig	audio frequency range	frequency range	150 11432-10	icat beu	LIVIC CITATIDE								requirement	2000207
		Immunity against pulses on the HV-DC Supply:											Functional status /stati at the requested	
Functional EMC Testing	HV - Voltage Ripples on HV DC Supply Lines	Voltage Ripple	ISO DTS 7637-4	Test bed	EMC Chamber			3			1		severity level(s) are fulfilled according	2099287
		HV+ GND and HV- GND											requirement	
Functional EMC Testing	HV - Pulsed Sinusoidal Disturbances on HV DC Supply	Immunity against pulses on the HV-DC Supply: Pulsed Sinusoidal Disturbances coupling between HV+ HV-,	ISO DTS 7637-4	Test bed	EMC Chamber			3			1		Functional status /stati at the requested severity level(s) are fulfilled according	2099287
	Lines	HV+ GND and HV- GND											requirement	
Functional EMC Testing	HV - Low Frequency Sinusoidal	Low Frequency Sinusoidal Disturbances	ISO DTS 7637-4	Test bed	EMC Chamber			3			1		severity level(s) are fulfilled according	2099287
	immunity to electrical fast	coupling between HV+ HV-, HV+ GND and HV- GND											requirement	
Functional FMC Testing	transient/burst disturbances	Specifications concerning the immunity of ESAs to electrical fast transient/burst disturbances conducted along HV DC power	(based on IEC 61000-4-4)	Test bed	FMC Chamber			4	1	1	1	1	Functional status /stati at the requested severity level(s) are fulfilled according	2099287
	conducted along HV-DC power lines.	lines.	,,										requirement	
	Immunity to surge conducted	For components beeing HV-supplied during vehicle charging											Functional status /stati at the requested	
Functional EMC Testing	along	coupled to the power grid 'Specifications concerning the immunity of ESAs to surge on DC	(based on IEC 61000-4-5)	Test bed	EMC Chamber			3			1		severity level(s) are fulfilled according	2099287
	HV DC power lines	power lines - coupled throught chargers											requirement	
Functional EMC Testing	Radiated Immunity LV - BCI	electromagnetic sources on LV-wiring :	ISO 11452-4	Test bed	EMC Chamber			4	1		1		severity level(s) are fulfilled according	2099303
		Harness Excitation (BCI) Radiated Immunity against external parrowhand											requirement	
Functional FMC Testing	Radiated Immunity HV - BCI	electromagnetic sources on HV-wiring (HV-DC, HV-inverter	150 11452-4	Test hed	FMC Chamber			3			1		Functional status /stati at the requested severity level(s) are fulfilled according	2099303
Tunctional Livic resting	nadiated minunity nv - bei	output to motor) - Shielded and also without shieding of HV -	150 11452 4	Test bed	Elvic chamber			,					requirement	200000
	Radiated Immunity external	Radiated Immunity against external narrowband											Functional status /stati at the requested	
Functional EMC Testing	electromagnetic fields - Absorber- lined shielded enclosure	electromagnetic sources (without pulsed radar) : Test with external Antennas in the ALSE	ISO 11452-2	Test bed	EMC Chamber			3		1	1	1	severity level(s) are fulfilled according requirement	2099303
Provide a light of the set	Radiated Immunity -	Radiated Immunity against external radar pulses:			-								Functional status /stati at the requested	2000000
Functional EMC Testing	Radar Pulses	Test with external Antennas in the ALSE	150 11452-2	lest bed	EMC Chamber			3		1	1	1	severity level(s) are fulfilled according requirement	2099303
Functional EMC Testing	Radiated Immunity on board	Radiated Immunity against narrowband electromagnetic	160 11453 0	Torthad	EMC Chamber			2				1	Functional status /stati at the requested	2000202
Concentrate Livic Testing	transmitters	Test with external Antennas in the ALSE	130 11432-9	i est beu	Livic Chailiber			3		1		1	requirement	
Functional EMC Testing	Radiated Immunity -	Radiated Immunity against external narrowband electromagnetic sources :	ISO 11452-7	Test bed	EMC Chamber			3		1	1	1	Functional status /stati at the requested severity level(s) are fulfilled according	2099303
	Direct power injection	Direct radio frequency (RF) power injection											requirement	
Functional EMC Testing	Radiated Immunity - Stripline	kaaiated immunity against external narrowband electromagnetic sources :	ISO 11452-5	Test bed	EMC Chamber			3			1		Functional status /stati at the requested severity level(s) are fulfilled according	2099303
~		Stripline methode											requirement	
Functional EMC Testing	Immunity to magnetic fields	electromagnetic sources :	ISO 11452-8	Test bed	EMC Chamber			3			1		severity level(s) are fulfilled according	2099303
		Immunity against magnetic fields											requirement Functional status /stati at the requested	
Functional EMC Testing	ESD - EUT unpowered - Packaging and Handling on PINs	Immunity against electrostatic discharge - EUT unpowered and unconnected discharge on connector pins	ISO 10605	Test bed	EMC Chamber			4	1		1		severity level(s) are fulfilled according	2099305
													requirement Functional status /stati at the requested	+ +
Functional EMC Testing	ESD - EUT unpowered - Packaging and Handling on Housing	Immunity against electrostatic discharge - EUT unpowered and unconnected discharge on housing	ISO 10605	Test bed	EMC Chamber			4	1		1		severity level(s) are fulfilled according	2099305
	-					<u> </u>							requirement Functional status /stati at the requested	
Functional EMC Testing	ESD - EUT operating	Immunity against electrostatic discharge - EUT operating	ISO 10605	Test bed	EMC Chamber			4	1		1		severity level(s) are fulfilled according	2099305
	HV - LV -Coupling between HV and	For shielded HV systems:											requirement	
Functional EMC Testing	LV systems:	Coupling between HV and LV systems:	CISPR 25	Test bed	EMC Chamber			4	1		1		Emission Limits of decoupling measurem	^{its} 2099307
	Voltage method	method												
	HV - LV - Coupling between HV and	For snielded HV systems: 'Coupling between HV and LV systems:		_									Emission Limits of decoupling measurem	nts
FUNCTIONAL EMC Testing	LV systems: Current probe method	Conducted emission with tests signal injection – Current probe	CISPR 25	lest bed	EMC Chamber			4	1	1	1	1	according requirements are not exceeded	2039307
	HV - IV - Counting between HV and	For shielded HV systems:				<u> </u>								+ +
Functional EMC Testing	LV systems:	Coupling between HV and LV systems:	CISPR 25	Test bed	EMC Chamber			3			1		Emission Limits of decoupling measurem	^{its} 2099307
	Radiated Emission test	radiated emission test												

	Functional EMC Testing	HV - LV -Coupling between HV and LV systems: Measurement of the HV-LV coupling attenuation	For shielded HV systems: 'Coupling between HV and LV systems: Measurement of the HV-LV coupling attenuation with Network analyzer	CISPR 25	Test bed	EMC Chamber			4	1	1	1 1	Decoupling factor is inot lower than requeseted in the requirement	2099307
	Functional EMC Testing	shielding of housings	Requirements regarding the shielding of HV-housings with its openeings	IEC 61000-5-7					3		1	1 1	Shielding factor is inot lower than requeseted in the requirement	2099309
	Functional EMC Testing	HV wiring and connectors	Requirements regarding the shielding/shield connection of HV- wiring and HV-connector housings						3		1	1 1	Shielding factor is inot lower than requeseted in the requirement and shielding impedance and shielding connection impedance are not higher than requested in the requirement	2099309
Durability Te	sting			Г	[1	l.	T	т т	а	b c	d		Falling straight descent straight had been sented by the
	Durability Thermal Testing	High temperature operation endurance (HTOE)	Lifetime fullfillment under accelerated conditions with realistic loads under constant high temperature conditions		Test Bed	Inverter load + Climat chamber			18		6	6 6	No visible demage on the speciement. DUT must be fully functional after test.	2067753 side parts, sealing wear out, dislocation or deformation of componenets.
	Durability Thermal Testing	Power temperature cycling endurance (PTCE)	Lifetime fullfillment under accelerated conditions with realistic loads under thermal cycling conditions		Test Bed	Inverter load + Climat chamber			18		6	6 6	No visible demage on the speciement. DUT must be fully functional after test.	Faliure: visual demages, wear outs, broken parts, broken 2067753 side parts, sealing wear out, dislocation or deformation of componenets.
	Durability Electrical Testing	HV On/Off durability for HV components	Test shall verify that the components initialization are reliable on all voltage levels.		Test Bed	Inverter load test bed			18		6	6 6	All function requirements remains as specified.	Faliure: componenet faliure, required functional status 2067760 failure after test, malfunction/dysfunction on the specified componenet; required safty function not applicable
	Durability Enviromental Testing	High temperature humidity endurance (HTHE) / Damp heat steady state	This test simulates the use of the system/component under steady high ambient humidity		Test Bed	Climat chamber			18		6	6 6	No visible demage on the speciement. DUT must be fully functional after test.	Faliure: visual demages, wear outs, broken parts, broken 2067753 side parts, sealing wear out, dislocation or deformation of componenets, electrical malfunction caused by moisture.

6.1.4 Transmission DVP

Test status	Test repo <mark>v</mark> ID / Path	Acceptance Criteria	RQ-ID 🎽	¥	Remarks
	_		_	_	
Open			2110730		
Open			2110730		stresses, static and fatigue strength
Open			2110730		stresses, static and fatigue strength, contact opening
Open			2110730		bearing location stiffness check with benchmark
Open			2110730		tensile, shear
Open			2110730		contact opening
Open			2110730		gear tooth strength (bending, pitting, spalling,), robust macro geometry and pre optimized micro geometry.
Open			2110730		bearing lifetime acc. To load specturm, max. bearing pressure distribution
Open			2114363		total transmission losses (incl. Bearing, gears and bearings) and analytical churning losses
Open			2110618		torsional vibrations, gear and bearing forces, averaged surface velocity, gear specific results (dyn. TE, gear misalignment, contact pattern)
Open			2110730		intersection plots to show individual influence of gear parameters, multidimensional optimization
Open			2110730		
Open			2110730		

F	unctional NVH Testing	Power unit vibrations analysis	Power unit vibration analysis in low frequency range (up to 500- 1000H2) using multi-body dynamic simulation (MBS) by EXCITE in combination with Finite Element Method (FEM). Transient analysis in time domain of elastic vibrating, rotating and oscillating structure parts coupled by non-linear contact elements under operating conditions from inertia forces and gas forces. Vibration evaluation (engine mounts, auxiliaries,bearing caps), crankshaft vibration (torsion, bending), bearing loads (forces and moments) and normal liner forces under full nonerating scale tance	AVL Guideline	Simulation		DTV		4	1	1 1	1	Open	2110618	
F	unctional Performance Testing	Benchmark / Requirement definition	Benchmark study to define requirements to define a base for testing and result evaluation.		Test Bed		DTV	5	4	1	1 1	1	Open	2114363	
F	unctional Mechanical Testing	Lubrication Oil Level Test	The aim of the Oil Level Test is the verification of the correct oil volume in the transmission so that each operating function could be proceeded		Test Bed	Tilt TB	DTV		9	4	3 1	1	Done	2110730	
F	unctional Mechanical Testing	Lubrication Oil Pump Suction Cold Test	Check of sufficient oil supply to components which require lubrication (bearings, seal rings, gears,) and cooling (solenoids, clutch packs) under all normal operating conditions. Also T low temperatures conditions (high viscosity of the fluid) particularly the oil pump will be tested - additional check lubrication under tilting		Test Bed	Tilt TB	DTV	4	4	1	1 1	1	Done	2110730	
F	unctional Mechanical Testing	Transmission lubrication system development - Loaded Hot	Check of sufficient oil supply to components which require lubrication (bearings, seal rings, gears,) and cooling (solenoids, clutch packs) under all normal operating conditions. Defined load points (depending on UUT)		Test Bed	Validation Rig	DTV	2	4	1	1 1	1	Open	2110730	
F	unctional Mechanical Testing	Transmission lubrication system development - Tilt Hot/Cold	Check of sufficient oil supply to components which require lubrication (bearings, seal rings, gears,) and cooling (solenoids, clutch packs) under tilting under all normal operating conditions and low temperatures conditions (high viscosity of the fluid).		Test Bed	Tilt	DTV	2	4	1	1 1	1	Open	2110730	
F	unctional Mechanical Testing	Transmission basic parameter test	Testing of all basic functions (shifting, speed variation,) of the transmission and base calibration. Test range depends on the further planned tests of each transmission		Test Bed	Schlepppalette	DTV	0,5	4	1	1 1	1	Open	2110730	
F	unctional Mechanical Testing	Efficiency Strip Down Measurement	The target is to receive the drag torque for each component or subsystem		Test Bed	Schlepppalette	DTV						Done	2110730	
F	unctional Mechanical Testing	Efficiency Break Loose Torque Test	During this test the needed break loose torque is measured for defined operating points of the UUT depending on the oil sump temperature and the engaged gear.		Test Bed	Schlepppalette	עדס						Done	2110730	
F	Functional Mechanical Testing	Efficiency Run-In Procedure	Stable operation and ready for further testing		Test Bed	Schlepppalette	עדס		0	x	x x	x	Done	2110730	
F	unctional Thermal Testing	Transmission temperature behavior hot (static)	check of the temperature behavior under maximal velocity, nmax, highest gear		Test Bed	2M Func. / Schlepppalette	DTV	0,5	4	1	1 1	1	Open	2110616	
F	unctional Mechanical Testing	Gear Contact Assessment	Investigation to check the contact pattern in each gear under different load levels (Driving, coasting) on the tooth flank during very low speeds		Test Bed	HLTB	עדס	1	4	1	1 1	1	Done	2110730	
F	unctional Mechanical Testing	Transmission static high load test (ultimate strength)	Check of high torque resistance of torque transmitting components (ultimate strength). First test max. applied torque is the design torque and after passing this torque level> max transmittable torque (Damage of transmission)		Test Bed	HLTB	עדס	1,5	4	1	1 1	1	Open	2110730	
F	Functional Mechanical Testing	Park Lock Static High Load Test (ultimate strength)	Check of high torque resistance of park lock components. First test max. applied torque is the design torque and after passing this torque level> max transmittable torque (Damage of transmission)		Test Bed	HLTB	υτν	0,5	2	1	1		Done	2110730	
F	unctional Mechanical Testing	Park Lock Functionality (dynamic)	Check the functionality of the parking mechanismus (all components).		Test Bed	HLTB	DTV	0,5	2	1	1		Done	2110730	
F	unctional Mechanical Testing	Seal ring run endurance test	Check and Analsysis of all sealing parts during a test program with high rotating speeds and high oil temperatures in the transmission (high speed at highest gear) additional focus on bearings		Test Bed	2M Func.	DTV	3	4	1	1 1	1	Open	2110730	
F	unctional Performance Testing	Transmission efficiency test	The Efficiency measurement test aims at assessing the transmission efficiency in each gear at different speed and load conditions and temperatures.		Test Bed	2M Func. / 3M	VTD	1	4	1	1 1	1	Open	2114363	

Functional Performance Testing	Efficiency Normal Driving Condition Test	The Normal Driving Condition Test simulates nominal driving conditions to determine the efficiency of every operating point depending on predefined loads, speeds and temperatures.	Test Bed	2M Func. / 3M					Done	2114363	
Functional Performance Testing	Efficiency Low Temperature Test	The Efficiency Low Temperature Test simulates low temperature driving conditions to determine the efficiency of the UUT depending on predefined loads and speeds in each gear.	Test Bed	2M Func. / 3M					Done	2114363	
Functional Mechanical Testing	Transmission temperature behavior (dynamic)	Validation of temperature behaviour of transmission at full load accelerations and decellerations	Test Bed	2M Func. /B2B / Validation rig	DTV	1	4	1 1 1	1 Open	2110730	
Functional NVH Testing	NVH Rattle Test	Assessment of structural weak parts in terms of NVH by checking structure borne noise.	Test Bed	NVH	DTV	2	4	1 1 1	1 Done	2110618	
Functional NVH Testing	NVH Whine Test	Assessment of structural weak parts in terms of NVH by checking air borne noise.	Test Bed	NVH	VTD	2	4	1 1 1	1 Done	2110618	
Functional Performance Testing	Efficiency Drag Loss Test	The drag loss measurement test aims at assessing the drag losses in each gear at different speed and load conditions and temperatures.	Test Bed	2M Func. / 3M	VTD	1	4	1 1 1	1 Done	2114363	
Functional Performance Testing	Synchronizer Performance Test	Shift force vs. Shift time	Test Bed	Schlepppalette	VTD	0,5	4	1 1 1	1 Done	2114363	
Functional Mechanical Testing	Transmission overspeed capability		Test Bed		עדס		4	1 1 1	1 Open	2110730	
Functional Mechanical Testing	Towing Test	Check emergency oil lubrication behaviour of transmission during towing (emergency towing with low speed &	Test Bed	Schlepppalette	VTD	0,5	4	1 1 1	1 Done	2110730	
Functional NVH Testing	Transmission NVH analysis (vibration)	NVH behaviour in different driving manuevers NTC	in Vehicle	Vehicle	Customer	2	2	1	1 Open	2110618	
Functional NVH Testing	Transmission NVH analysis (noise)	NVH behaviour in different driving manuevers NTC	in Vehicle	Vehicle	Customer	2	4	2	2 Open	2110618	
Functional Mechanical Testing	Park lock functionality (Dynamic)	park lock different functions at vehicle testCheck the functionality of the parking mechanismus (all components)	in Vehicle	Vehicle	Customer	2	2		2 Open	2110730	
Functional Mechanical Testing	Park lock function at max. gradient	-reliability of park lock system at max gradient - reliability of park lock system at 30% max gradient NTC -force of disanganging at hill (pull out force)	in Vehicle	Vehicle	Customer	1	2		2 Open	2110730	
Functional Mechanical Testing	Park lock function at max. gradient	-reliability of park lock system at max gradient - reliability of park lock system at 30% max gradient -force of disanganging at hill (pull out force)	Test Bed	HLTB	VTD	1	4	2	2 Open	2110730	
Functional Mechanical Testing	Park lock functionality (Dynamic)	Dynamic simualtion of park lock functionality (all mechanical components)	Simulation		DTV	2	4	1 1 1	1 Open	2110730	

Functional Mechanical Testing	Vehicle lubrication testing	Validation of max. tilting angle (high radial forces)		in Vehicle	Vehicle	Customer	0,5	2			1	1 Open	2110730	
Functional Thermal Testing	Temperature behaviour - Col climate	d Cold climate vehicle test		in Vehicle	Vehicle	Customer	3	2			1	1 Open	2110616	
Functional Thermal Testing	Temperature behaviour - Hot climate	t Hot climate vehicle test		in Vehicle	Vehicle	Customer	3	2			1	1 Open	2110616	
Functional Environmental Testing	High Altitude testing	system behavior on high altitude		in Vehicle	in Vehicle	Customer	3	2			1	1 Open	2110612	
Functional Environmental Testing	Corossion test	Corossion (ISO) resistance (transmission parts in salt spray and climate chamber)		in Vehicle	in Vehicle	Customer	0,5	4	1		1	1 Open	2110612	
Functional EMC Testing	EMC test	EMC behavior of all transmission relevant electrical components		in Vehicle	in Vehicle	Customer	0,5	2			1	1 Open		
Functional Environmental Testing	Water wading	Water resistance		in Vehicle	in Vehicle	Customer	1	2			1	1 Open	2110612	
Functional Mechanical Testing	Vehicle rough road test	Test on rough road (gravel, cobblestone, pot holes)		in Vehicle	in Vehicle	Customer	2	4	1		1	1 Open	2110730	
Functional Mechanical Testing	Transmission oil and hydrauli system simulation	In transmissions with various gear ratios and mechanical continous variable transmissions, the gearbox oil has several functions. It transmits power hydrodynamically in the torque converter or retarder, affects the friction coefficient profiles of clutches, dissipates heat and lubricates the gears and bearings. It provides information and pressure energy for the actuation of values and toffing elements.	AVL Guideline	Simulation		DTV		4	1		1	1 Open	2110730	
Functional Mechanical Testing	Park Lock Functionality (stati	Check the functionality of the parking mechanismus (all components).		Test Bed	HLTB	DTV	0,5	2	1			Done	2110730	
Functional Mechanical Testing	Stop and Go Test	Acceleration with maximum load including coast phase. Focus on DMF and clutch functionality.		Test Bed	2М	DTV	1	3	1	1	1	Done	2110730	
Functional Mechanical Testing	Big Parameter Test	a collection of functional tests for characterization of RGS functions. Test Rig Ping Lubrication Tn-Check Static Shifting Run In 2 Tn-Map / Efficiency Torque Split Ratio EOL (Dynamic All Functions Check)		Test Bed	2M	DTV	0,5	3			1	1 Open	2110730	
Functional Mechanical Testing	Bolt Test	Losening torques compared to tightening torques		Test Bed	Workbench	DTV		3	1	1	1	Open	2110730	
Functional Mechanical Testing	Forbidden Shifting Test	Shift conditions that are not allowed		Test Bed	2М	DTV		1			1	Open	2110730	

	Functional Mechanical Testing	Lubrication Static Tilting Test	verification of the correct oil volume in the transmission so that each operating function could be proceeded		Test Bed	Tilt TB		DTV						Done		2110730	
	Functional Mechanical Testing	No Oil Test	evaluation of steady state temperature without oil,Validation of the worst case lubrication of the Rear Gearbox System (RGS). By realizing an initial oiling only, extreme driving conditions		Test Bed	2M		DTV		2		1 1		Open		2110730	
	Functional Mechanical Testing	Temperature Cycle Test	The aim of T cycle Low/High temperature Test is to check that all all material combinations and bolt connections do not loss function affected by temperature influences.		Test Bed	Climatic Chamber		DTV		2		1 1		Open		2110730	
	Functional Mechanical Testing	Torsional Stiffness	Validation according to backlash and elastic deformation Plastic deformations must not occur.		Test Bed	HLTB		DTV		2		1 1		Open		2110730	
	Functional Mechanical Testing	Uncammanded Engangement	FUSI: Validation of the Rear Gearbox System (RGS) in case that an uncommanded engagement in gear 1 (G1) and G2 at synchronization speeds higher 250 rpm is rejected. RGS parts may fail but must not lead in a blocked gearbox.		Test Bed	2М		DTV		2		1 1		Open		2110730	
	Functional Mechanical Testing	FUSI Shifting Test	Shifting under conditions where no shifts are intended		Test Bed	2М		DTV		2		1	1	Open		2110730	
	Functional Mechanical Testing	Limp Home Engagement	Special vehicle conditions force the Rear Gearbox System (RGS) to start driving without being referenced. In this state (unknown position) the RGS shifts into Gear 2 (G2, most safety state). This is called "Limp Home Engagement" (LHE). The plausibility of G2 is checked via ratio		Test Bed	2M		DTV		3		1 1	1	Open		2110730	
	Functional Mechanical Testing	Dynamic Shifting	Validation of the shifting function of the Rear Gearbox System (RGS) at different vehicle speeds, de- and accelerations $(\pm 2 m/s^2 \pm \pm 0 r pm/s)$, at maximum operating temperature of 90 °C as well as at -30 °C.		Test Bed	2M		DTV		3		1 1	1	Open		2110730	
	Functional Mechanical Testing	Park lock function test	park lock different functions at vehicle test -drop in speed -missuse		in Vehicle	in Vehicle		Customer		2		1	1	Open		2110730	
	Functional Thermal Testing	Temperatur behaviour in vehicle	Transmission cooling behaviour		in Vehicle	in Vehicle		Customer		3		1 1	1	Open		2110616	
Danah Ilita Ta	-	1		1	1		1 1								I		1
Durability re	Durability Environmental Testing	Launch system durability	Wide open throttle acceleration (WOT) including coast phase,		Test Bed	3M /2M TB		DTV	3	9	2	2 2	3	Open		2110614	
	Durability Machanical Tasting	Chifting durchility	durability of DMF and clutch Shifting operation under real driving situations (torque, speed,		Test Ded	Validation Rig		DT)/	12	12	2	2 2		Open		 2110722	
	Durability Mechanical Testing	High Speed Endurance Test) Durability run in each gear with 80% load and max. speed (reduction depending on gear dimensioning 1,2,R), highest created durations to be obvioud		Test Bed	3M/2M TB Validation, B2B		DTV	0,5	8	2	2 2	2	Done		2110732	
	Durability Mechanical Testing	Transmission load cycle durability test (Load points)	Accelerated durability run with max. loads (reduction depending on gear dimensioning 1,2,R) test run until transmission failure or 150% design lifetime damage to stop test	GWM	Test Bed	3M/2M TB Validation, B2B		DTV	4	16	4	4 4	4	Open		2110732	
	Durability Mechanical Testing	Transmission durability test (dynamic)	Mixed cycle (dynamic) real life parts out of CRUISE) until transmission failure or 150% design lifetime damage to stop test		Test Bed	3M/2M TB Validation, B2B		DTV	18	4		2	2	Open		2110732	
	Durability Mechanical Testing	Towing durability	Durability towing with highway speed		Test Bed	Schlepppalette		DTV	0,5	4	1	1 1	1	Open		2110732	
	Durability Mechanical Testing	Park lock durability	-ratcheting -different loads (no load, pull out max gradient, pull out at 30% max gradient)		Test Bed	HLTB		DTV		2		1 1		Open		2110732	
	Durability Mechanical Testing	Park Lock Mis-Engagement Wear Durability	Test procedure is focused on Mis-Engagement of the parking mechanism pawl with tooth to tooth.		Test Bed			DTV						Done		2110732	
	Durability Mechanical Testing	Vehicle durability	Mixed cycle (dynamic) real life manuvers until transmission failure or 150% design lifetime damage to stop test		in Vehicle	in Vehicle		Customer	6	4	1	1 1	1	Open		2110732	
	Durability Mechanical Testing	Vehicle durability trailer towing	Mixed cycle (dynamic) real life manuvers until transmission failure or 150% design lifetime damage to stop test. Max.gross vehicle weight (trailer)		in Vehicle	in Vehicle		Customer	6	4	1	1 1	1	Open		2110732	
	Durability Mechanical Testing	Park lock reliablity test	-reliability of park lock system at max gradient - reliability of park lock system at 30% max gradient -force of disanganging at hill (pull out force)		in Vehicle	in Vehicle		Customer		3		1 1	1	Open		2110732	

6.1.5 FP-Sheet

Subsystem /	Failure	Failure location	Cause of failure	Effect on system level	Damaging operating	Aggravating	Test Coverage										
component					conditions	conditions			Fur	nction	al Tes	ting			Durab	oility Te	esting
									_		Ð						
											estir					<u>.</u> <u>a</u>	ها. الم
								Les			ΞĽ	bu			bu 🧯	Stin Post	ာ သီ ကြ
											inta	esti	δ		esti H	<u> </u>	stin
											ше	Ĕ	stin		Ĕ	ent:	н Ц С
											L O	e Li	Ĕ		rica		nal na
											ĬŽ	hei	ž		ecti	ech	
											al E	a T				∑ ŭ	į È
											ion	<u>io</u>	<u>iõ</u>				
											nct	nct	nct		irab	irab irab	Irab
											E I	ЪЦ	L L				Δ Δ
Transmission																	
Housing																	
T-H1	Fatigue	critical positions (differentia	mechanical load (vibration of Powertrain)	crack in housing>oil escape>transmission failure	Vibration at resonance poir	nt									}	х	
T-H2	Low Cycle Fatigue (LCF)	housing "upper part"	mechanical load (high torque) -plastification	crack in housing>oil escape>transmission failure	Transient operation / High	load				Х				_		X	
T-H3	Corrosion	housing surface	chemical load by water ingrees (winter activities)	Leakage> Oil escape							X					×	<u> </u>
Lubrication																	
1-L2	Ageing (thermal)	lubricant	thermal load	malefucation of lubrication -> tranmsission failure	High temperature impact						_	X		_			X
I-L3	Ageing (cnemical)	lubricant	chemical load by water or foreign poarticles	malefuchtion of lubrication -> tranmsission failure	numidity, abration from oth	her parts					X	\vdash				X	
	Ectique (HCE)	notab area (area with goar	machanical load	domage of transmission	High load aparation												
T 192		noich area (area with geor									<u> </u>	<i> </i>			—— — 1	~	
T-152	Wear	childa alea (shear siless (mechanical load and thermal load	damage of transmission	transient operation									-	— í	$\hat{\mathbf{v}}$	
Ball bearing	Wear	Shart (Spine)								^						^	
T-BB1	Eatique (HCE)	ring	mechanical load	damage of transmission	High load operation					x					_	X	
T-BB2	Wear	rolling body	mechanical load (low lubrication) - tribology	NVH degradation, damage of bearing	High load operation	High temperature	operat	ion								x	X
T-BB3	Wear (fracture fatique)	rolling path	mechanical load	damage of transmission	High load operation										_	X	
Gear		51			<u> </u>												
T-G1	Fatigue (HCF)	tooth root	mechanical load	damage of transmission	High load operation					Х						х	
T-G2	Low Cycle Fatigue (LCF)	tooth root	mechanical load (plastification)	damage of transmission	High load operation											х	
T-G3	Wear	tooth flank	mechanical load	high backlash> NVH degradation> damage of transmission	High load operation											х	
EM																	
Housing																	
EM-H1	Fatigue	critical positions (differentia	mechanical load (vibration of Powertrain)	crack in housing - > water intrution -> malefunciton of e-drive	Vibration at resonance poir	nt										х	
EM-H2	Low Cycle Fatigue (LCF)	housing "upper part"	mechanical load (high torque) -plastification	crack in housing - > water intrution -> malefunciton of e-drive	Transient operation / High	load				Х					?	Х	
EM-H3	Corrosion	housing surface	chemical load by water ingrees (winter activities)	crack in housing - > water intrution -> malefunciton of e-drive							X					×	
Rotor Shaft																	
EM-RS1	Fatigue (HCF)	notch area (area with geor	mechanical load	Damage of eMotor	High load operation						<u> </u>			_		X	
EM-RS2	Fatigue (LCF)	Spline / press fit	mechanical load and thermal load	Damage of eMotor	High load operation	High temperature	operat	ion			<u> </u>			-		X	X
EM-RS3	vvear	snaft (spline)	mechanical load and thermal load	NVH degradation, damage of bearing	transient operation	High temperature	opera	ion		X		X				X	X
EM-BB1	Estique (HCE)	ring	mechanical load	Damage of eMotor	High load operation					v						v .	
		ning rolling body		N/H degradation, damage of bearing		High tomporature	onoral	ion			<u> </u>	<i> </i>			—— — 1	~	
EM-BB3	Wear (fracture fatique)	rolling path	mechanical load (Pitting)	Damage of eMotor	High load operation	i iigii terriperature	opera							_		X	
Cable										~							
EM-C1	Aging	Insulation	thermal load	Damage of eMotor	temperature impact	chemical load			<		X	X			X	X	k
EM-C2	Wear	Insulation	mechanical load	Damage of eMotor	High load operation	High temperature	operat			Х					x	Х	
EM-C3	Corrosion	Insulation	chemical load by water ingrees (winter activities)	Damage of eMotor	humidity						Х				x	Х	k l
Power Electronics																	
Housing																	
PE-H1	Fatigue	critical positions (differentia	mechanical load (vibration of Powertrain)	crack in housing - > water intrution -> malefunciton of e-drive	Vibration at resonance poir	nt				Х						Х	
PE-H2	Low Cycle Fatigue (LCF)	housing "upper part"	mechanical load (high torque) -plastification	crack in housing - > water intrution -> malefunciton of e-drive	Transient operation / High	load										Х	
PE-H3	Corrosion	housing surface	chemical load by water ingrees (winter activities)	Leakage - > water intrution -> malefunciton of e-drive	humidity						X					X	
Sealing																	
PE-S1	Wear	sealing	mechanical load	Leakage, undesired controled of elements,> damage of e-drive	high speed operation					Х						X	
PE-S2	Ageing (thermal)	sealing (rubber)	thermal load	Leakage, undesired controled of elements,> damage of e-drive	temperature impact						X	X					Х
Input Plug																	
PE-IP1	Ageing (thermal)	Communication input	thermal load	accelerating or regenerative braking -> undesired motor torque	temperature impact			X				X			Х		Х
PE-IP2	Corrosion	Communication input	chemical load by water ingrees (winter activities)	No PDO (Process Data Object) timeout message -> undesired motor t	chumidity										X	Х	
PE-IP3	Corrosion	Isolation	cnemical load by water ingrees (winter activities)	Short Circuit or non operational / water or chemicals intrution	numidity						X				X	X	
CIRCUIT Board	Weer	Soldoring	machanical load	male function of the oDrive system is undering threating to any	Vibration at recent	Ligh to an end to	00000										
	Aging	Soldering		male function of the eDrive system -> undesired motor torque	tomporaturo import	nign temperature	operat			X	<u> </u>					X	
F E-UD2	Aging	Soldening	unermai 10au	male runction of the epitve system -> undesired motor torque	remperature impact						1					X	

6.1.6 Failure Correlation – Functional testing

			Functional Testing			
Functional Performance Testing						
e-Axle						
Condition Monitoring					EM-RS3 / EM-RS2 / EM-C1	Condition Monitoring Condition Monitoring
Condition Monitoring Condition Monitoring Condition Monitoring	EM-C1 / EM-C2 / EM-C3 / PE - IP1 / PE - CB1/ PE-CB2 EM-C1 / EM-C2 / EM-C3 / PE - IP1 / PE - CB1/ PE-CB2 EM-C1 / EM-C2 / EM-C3 / PE - IP1 / PE - CB1/ PE-CB2	EM-C1 / EM-C2 / EM-C3 / PE - CB1/ PE-CB2 EM-C1 / EM-C2 / EM-C3 / PE - CB1/ PE-CB2 EM-C1 / EM-C2 / EM-C3 / PE - CB1/ PE-CB2	T-H1_/T-H2_/T-H3_/T-S1_/T-S2_/T-S3_/T-881_/T-882_/T-883_/T-G1_/T-G2_/T-G3_/EM-H1_/EM-H3_/EM-HS3_/EM-RS3_/EM-RS3_/EM-881_/EM-882_/EM-RS3_/EM-883_/EM-C2_/PE-H1_/PE-H2_/PE-S1_/PE-C81_ T-H1_/T-H2_/T-H3_/T-S1_/T-S2_/T-S3_/T-681_/T-682_/T-683_/T-G1_/T-G2_/T-G3_/EM-H1_/EM-H32_/EM-RS3_/EM-RS3_/EM-RS3_/EM-882_/EM-883_/EM-C2_/PE-H1_/PE-H2_/PE-S1_/PE-C81_ T-H1_/T-H2_/T-H3_/T-S1_T-T-S2_/T-683_/T-681_/T-682_/T-683_/T-681_/T-68_/T-63_/EM-H1_/EM-H2_/EM-RS3_/EM-RS3_/EM-RS3_/EM-RS3_/EM-882_/EM-883_/EM-C2_/PE-H1_/PE-H2_/PE-S1_/PE-C81_	TH3 / T.13 / EMH3 / EMH1 / EMH2 / EMH2 / EHH2 / PE-CB1 / PE-CB2 TH3 / T.13 / EMH3 / EMH2 / EMH2 / EMH2 / PE-C2 / PE-IP1 / PE-CB1 / PE-CB2 TH3 / T.13 / EMH3 / EMH2 / EMH2 / EMH2 / PE-C2 / PE-IP1 / PE-CB1 / PE-CB2	T-L2 / T-882 / PE-S2 / PE-91 / PE-CB1 / PE-CB2 T-L2 / T-882 / PE-S2 / PE-91 / PE-CB1 / PE-CB2 T-L2 / T-882 / PE-S2 / PE-91 / PE-CB1 / PE-CB2	Condition Monitoring Condition Monitoring Condition Monitoring Condition Monitoring Condition Monitoring Condition Monitoring
Transmission						
Condition Monitoring						
Condition Monitoring			T-H1 / T-H2 / T-H3 / T-H51 / T-H52 / T-H52 / T-B82 / T-B83 / T-G1 / T-G2 / T-G4			Condition Monitoring
Condition Monitoring			T-H1 / T-H2 / T-H3 / T-H51 / T-H52 / T-H53 / T-881 / T-G1 / T-G2 / T-G3			Condition Monitoring
Condition Monitoring			T+H / T+H2 / T+H3 /	T+H3 / T-L3	T-L2 / T-882	Condition Monitoring
EM		·				
Condition Monitoring					EM-RS3 / EM-RS2 / EM-C1	Condition Monitoring Condition Monitoring
Condition Monitoring						Condition Monitoring Condition Monitoring
Condition Monitoring						Condition Monitoring Condition Monitoring
Condition Monitoring	EM-C1 / EM-C2 / I	M-C3	BMH1 / DMH2 / DMHS1 / DMHS1 / DMHS3 / DMHS	EM-H3 / EM-C1 / EM-C3	EM-RS3 / EM-RS2 / EM-C1	Condition Monitoring Condition Monitoring
Power Electronics						Condition Monitoring
Condition Monitoring	PF - IP1 / PF - CR1 / PF-CR2	PF - CB1 / PF-CB2	PF-H1 / PF-H2 / PF-K1 / PF-CR1	PF-S2 / PF-IP1 / PF-CR1 / PF-CR2	PE-S2 / PE-IP1 / PE-CB1 / PE-CB2	Condition Monitoring Condition Monitoring
Condition Monitoring						Condition Monitoring Condition Monitoring
						Condition Monitoring

6.1.7 Failure Correlation – Durability testing

	Durability		
Durability Electrical Testing	Durability Mechanical Testing	Durability Enviromental Testing	Durability Thermal Testing
844.C1 / 844.C2 / 844.C3 / PE-IP1 / PE-IP2 / PE-IP3 844.C1 / 844.C2 / 844.C3 / PE-IP1 / PE-IP2 / PE-IP3 844.C1 / 844.C2 / 844.C3 / PE-IP1 / PE-IP2 / PE-IP3	T+H1 / T+H2 / T+H3 / T+H3 / T+H3 / T+B3 / T+B82 / T+B83 / T+G1 / T+G2 / T+G3 / EM+H1 / EM+H2 / EM+H53 / EM+H53 / EM+B53 / EM+B53 / EM+B52 / EM+B53 / EM+B2 / EM+B53 /	T-H3 / T-L3 / EM-H3 / EM-C1 / EM-C3 / PE-H3 / PE-H2 / PE-H2 / PE-H2 T-H3 / T-L3 / EM-H3 / EM-C1 / EM-C3 / PE-H3 / PE-H2 / PE-H2 / PE-H2 T-H3 / T-L3 / EM-H3 / EM-C1 / EM-C3 / PE-H3 / PE-H3 / PE-C32	T-12, / 1462, / 146453 / 146453 / 146457 / 14657 / 14537 / 14567 / 14567 / 14567 / 14567 T-12, / T-882 / 145453 / 145453 / 145452 / 14567 / 14557 / 14567 / 14567 / 145682 T-12 / T-882 / 145483 / 145483 / 145452 / 14567 / 14552 / 14567 / 145582 T-12 / T-882 / 145483 / 145483 / 145452 / 14567 / 14552 / 14567 / 145582
	T411 / T+12 / T+13 /	T-H3 / T-L3	T-L2 / T-B82
	1411 / 142 / 143 / 154 / 1542 / 153 / 1485 / 1485 / 1485 / 1485 / 1543 / 1545 /	T-H3 / T-L3 T-H3 / T-L3	T-L2 / T-882 T-L2 / T-882
			EM-RS2 / EM-R2 / EM-C1
EM-C1 / EM-C2 / EM-C3	EM-H1 / EM-H2 / EM-HS1 / EM-HS1 / EM-HS3 / EM-B3 / EM-B3 / EM-B3 / EM-B3 / EM-C2	EM-H3 / EM-C1 / EM-C3	EM-RS3 / EM-RS2 / EM-C1
EM-C1 / EM-C2 / EM-C3	EW-H1 / EW-H2 / EW-H2 / EW-H31 / EW-H33	EM-H3 / EM-C1 / EM-C3	EM-RS3 / EM-RS2 / EM-C1
	Dinity / Linity		
PE-IP1 / PE-IP2 /PE-IP3	PEH1 / PEH2 / PE-51 / PE-081	PE-H3 / PE-IP2 / PE-IP3 / PE-CB2	
PE-IP1 / PE-IP2 /PE-IP4	PEH1/PEH2/PEH2/PEH2/PEH2	PE-H3 / PE-IP2 / PE-IP3 / PE-CB3	
PE-IP1 / PE-IP2 /PE-IP5	PE-H1 / PE-H2 / PE-S1 / PE-S1 / PE-S3	PE-H3 / PE-IP2 / PE-IP3 / PE-CB4	PE-S2 / PE-IP1 / PE-CB1 / PE-CB4

7 Table Of Figures

Figure 1: AVL's prediction for the future distribution of powertrains for light vehicles
Figure 2: Milestone plan12
Figure 3: Time schedule for Masters' Thesis12
Figure 4: Electrification and ICE offer quite complementary characteristics [2]13
Figure 5: Schematic overview of the three base structures for hybrid electric powertrains (serial, parallel, power split) [7]14
Figure 6: Differentiation of parallel hybrid powertrains concerning the location of the eMotor (P1 -P4) [7]15
Figure 7: Half section of a PM synchronous motor [8]18
Figure 8: Half section of a DC motor [8]19
Figure 9: Half section of a 3 phase AC induction motor [8]20
Figure 10: Structure of a P2 powertrain system [7]21
Figure 11: Overview of typical e-Drive architectures [2]22
Figure 12: Verification and validation in SE perception [10]26
Figure 13: Overview of the AVL Duty Cycle Generation [2]28
Figure 14: AVL Validation Methodology DVP&R [2]
Figure 15: Overview of the most important sections of the DVP [2]
Figure 16: Histogram of the failure rate and the empirical failure rate [11]
Figure 17: Bathtub curve [11]
Figure 18: Various failure behaviors [14]36
Figure 19: Schematic overview of MTTF function [11]
Figure 20: Schematic overview of MTTFF and MTBF [11]
Figure 21: B _x Lifetime of a system [11]39

Figure 22: Dependency of the relative frequency at random specimen sizes [11]	40
Figure 23: Density function of the Weibull distribution [11]	41
Figure 24: Shape Parameter [11]	41
Figure 25: Reliability Schematic Diagram [11]	43
Figure 26: From free Wheel Clutch drawing to Reliability Schematic Diagram [11]	44
Figure 27: System reliability over the number of components [11]	45
Figure 28: Types of FMEA [11]	47
Figure 29: A function modifies the Input to generate a desired output [11]	48
Figure 30: The 5 steps of FMEA [11]	49
Figure 31: Limitation of the observed system and its system structure [11]	49
Figure 32: Function analysis in FMEA [11]	50
Figure 33: Functions of the system elements [11]	52
Figure 34: Failure network for the fracture of a sleeve [11]	53
Figure 35: Exemplary distribution of RPN [11]	55
Figure 36: Comparison of initial and revised RPNs [11]	57
Figure 37: Surface Fatigue [25]	58
Figure 38: Pitting and crack of the tooth tip due to fatigue of the tooth flank [27]	58
Figure 39: Seizure over the total width of the gear contact pattern of a gear [27]	59
Figure 40: Abrasive wear [25]	59
Figure 41: Adhesive Wear [25]	60
Figure 42: Corrosive Wear [25]	61
Figure 43: cavitation Wear [25]	62
Figure 44: Schematic overview of the E-Motor DVP [2]	63
Figure 45: Overview of the DVP's header [2]	64

Figure 46: Finding the building blocks of AVL's DVP [32]66
Figure 47: Schematic example of a test specification [32]67
Figure 48: Overview of the functional test categories [32]68
Figure 49: Overview of the durability test categories [32]69
Figure 50: Schematic overview of the eMotor DVP [2]72
Figure 51: Available test categories for functional testing [2]73
Figure 52: Overview of how the sample number is calculated [2]74
Figure 53: Calculating the reliabilities for 27 and 10 samples [2]76
Figure 54: Calculating the RAD value and test range [2]77
Figure 55: Overview of the considered eAxle [2]79
Figure 56- Schematic overview of one PTCE cycle [33]90
Figure 57- Flow diagram of the PRET test procedure94
Figure 58: Price indication for different test environments [2]96

8 List Of Tables

Table 1: Differentiation of parallel hybrid powertrain systems [7]	16
Table 2- Overview of different eMotor designs [9]	17
Table 3: Exemplary failure mode activation methodology [2]	29
Table 4 Overview of the components	32
Table 5 Parameters of reliability	37
Table 6 – Gives examples of functions	48
Table 7- Guidelines for specification lists [24]	52
Table 8 - possible failure modes during operation [11]	53
Table 9 - Concept Optimization Procedure	56
Table 10 - Brief description of the DVP levels	65
Table 11 - Overview of the case studies	78
Table 12 - Overview for different boundary conditions [33]	85
Table 13 - Failure mechanism and their activation energy constant [33]	87

9 List Of Formulas

Equation 1 - Calculation of the failure rate	33
Equation 2 - Calculation of MTTF	37
Equation 3 - Calculation of the failure quota	39
Equation 4 - Exemplary calculation of the failure quota	39
Equation 5 - Calculation of the relative frequency	40
Equation 6 - Calculation of the probability of failure	40
Equation 7 - Calculation of the reliability of a serial system	45
Equation 8 - Calculation of the failure behavior	45

Equation 9 - Calculation of the system reliability46
Equation 10 - Calculation of the system reliability for a parallel system46
Equation 11 – Calculating the number of samples76
Equation 12 – Calculating the reliability for the planned number of samples from VDA77
Equation 13 - Calculating the reliability for the suggested number of samples77
Equation 14- Calculating the temperature acceleration factor [33]84
Equation 15- Calculating the humidity acceleration factor [33]84
Equation 16- The Lawson model equation [33]84
Equation 17 - Calculation of the total HTHE testing time [33]84
Equation 18 - Calculation of the reaction rate[33]87
Equation 19 - Calculation of the Test Acceleration Factor[33]88
Equation 20 - calculation of the HTOE test time[33]88
Equation 21 Calculating the number of shear cycles until failure [33]91
Equation 22 Calculating the number of shear cycles with ΔT [33]91
Equation 23 - Calculation of the test acceleration factor [33]92

10 References

- D. Crolla, Encyclopedia of Automotive Engineering, first., Auflage, John Wiley & Sons, New York, NY, 2015.
- [2] AVL List GmbH, AVL Best Practice.
- [3] European Parlament, Definition of a hybrid motor vehicle, 2007, Official Journal of the European Union, September 5th 2007 (September 5th 2007), Information on https://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007L0046&from=EN (accessed 12 September 2018).
- [4] Hofman, T., Steinbuch, M., van Druten, R., Serrarens, A., Rulebased energy management strategies for hybrid vehicles, in: International Journal of Electric and Hybrid Vehicles 1, pp. 71–94.
- [5] H. Tschöke, Die Elektrifizierung des antriebsstangs: Basiswissen, Springer Vieweg, Wiesbaden, 2015.
- [6] Reif, K., Noreikat, K.-E., Borgeest, K., Kraftfahrzeug- Hybridantriebe: Grundlagen, Komponenten, Systeme, Anwendungen, Vieweg+Teubner Verlag, Wiesbaden, 2012.
- [7] D. Görke, Untersuchungen zur kraftstoffoptimalen Betriebsweise von Parallelhybridfahrzeugen und darauf basierende Auslegung regelbasierter Betriebsstrategien, first. Aufl. twentiethsixteenth, Springer Fachmedien Wiesbaden, Wiesbaden, 2016.
- [8] Jan A. Melkebeek, Electrical Machines and Drives: Fundamentals and Advanced Modelling, firstst edition twentietheighteenth, Springer International Publishing, Cham, 2018.
- [9] M. Yilmaz, Limitations/Capabilities of Electric Machines Technologies and Modelling Approaches for electric Motor Design and Analysis in Plug-in Electric Vehicle Applications, in: Renewable and Sustainable Energy Reviews, pp. 88–99.
- [10]A. Engel, Verification, Validation and Testing of Engineered Systems, first., Auflage, Wiley, J, New York, NY, 2010.
- [11]B. Bertsche, Reliability in Automotive and Mechanical Engineering: Determination of Component and System Reliability, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2008.

- [12]Z.M. Lieblein J, Statistical Investigations of the Fatigue Life of Deep-Groove Ball Bearings, in: Journal of Research of the National Bureau of.
- [13]P.D.T. O'Connor, A. Kleyner, Practical reliability engineering, fifth. ed., [elektronische Ressource], Wiley-Blackwell, Oxford, 2012.
- [14]Mercier W A, Implementing RCM in a Mature Maintenance Program: Proceedings of the 2001 Annual Reliability and Maintainability Symposium (RAMS).
- [15]A. Birolini, Reliability Engineering, Springer, Dordrecht, 2007.
- [16]E. Kreyszig, Statistische Methoden und ihre Anwendungen: Mit zahlreichen Tabellen, seventh. Aufl., 1979.
- [17]G. Härtler, Statistische Methode für die Zuverlässigkeitsanalyse, Springer Wien, Wien, 2013.
- [18]K.C. Kapur, L.R. Lamberson, Reliability in engineering design, Wiley, New York, 1977.
- [19] Verein Deutscher Ingenieure, Boolesches Model, VDI 4008 (1998).
- [20]H. Rosemann, Zuverlässigkeit und Verfügbarkeit technischer Anlagen und Geräte: Mit praktischen Beispielen von Berechnung und Einsatz in Schwachstellenanalysen, Springer Berlin Heidelberg, Berlin, Heidelberg, 1981.
- [21]Reinschke K, Zuverlässigkeit von Systemen mit endlich vielen Zuständen: Systeme mit endlich vielen Zuständen, VEB Verlag Technik, Berlin, 1973.
- [22]Messerschmitt-Bölkow-Blohm GmbH, Technische Zuverlässigkeit, Springer, Berlin, 1971.
- [23]A. Birolini, Reliability Engineering: Theory and Practice, Fourth Edition, Springer, Berlin, Heidelberg, 2004.
- [24]J. Feldhusen, K.-H. Grote, Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, eighth., vollst. überarb. Aufl. twentieththirteenth, 2013.
- [25]Information on https://www.machinerylubrication.com/Read/1375/wear-modes-lubricated
- [26]B. Schlecht, Maschinenelement 1, Pearson Deutschland, 2015.
- [27]H. Naunheimer, B. Bertsche, G. Lechner, J. Ryborz, Fahrzeuggetriebe: Grundlagen, Auswahl, Auslegung und Konstruktion, second., bearb. und erw. Aufl., Springer-Verlag, Berlin, Heidelberg, 2007.

- [28]F. Klocke, C. Brecher, Zahnrad- und Getriebetechnik: Auslegung Herstellung Untersuchung Simulation, Carl Hanser Verlag, München, 2017.
- [29]E DIN 31652, Hydrodynamische Radial-Gleitlager im stationären Betrieb; Teil 1: Berechnung von Kreiszylinderlagern, Teil 2: Funktionen für die Berechnung von Kreiszylinderlagern, Teil 3: Betriebsrichtwerte für die Berechnung von Kreiszylinderlagern.
- [30]DIN EN ISO 8044:2015, Corrosion of metals and alloys Basic terms and definitions, twentiethfifteenth ed., 8044, 2015 (2015).
- [31]GfT, Arbeitsblatt 7 Tribologie, Verschleiß, Reibung DEFINITIONEN, BEGRIFFE, PRÜFUNG, 2002 (2002).
- [32]AVL Workshop.
- [33]Fiat Chrysler Automobiles, Environmental specification for electrical / electronic (E/E) components, Initial Release, CS.00056, FCA, 2015 (27 December 2015).