
Dominic Pirker BSc

Design and Implementation of a
Global and Secured Drone Identification System

with Hardware-Based Security

Master’s Thesis
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Ass.-Prof. Dipl.-Ing. Dr.techn. Christian Steger
Institute for Technical Informatics

Advisor

Ass.-Prof. Dipl.-Ing. Dr.techn. Christian Steger
Dipl.-Ing. Thomas Fischer (Infineon Technologies AG)

Graz, January 2019

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master’s thesis.

.............................. ...
Date Signature

1

Abstract

Since the drone market is growing rapidly, safety critical problems are gaining priority.
Recent incidents, such as those which interrupted the air traffic on airports in London, have
raised awareness for drone identification, authentication and tracking, in order to find and
discipline the legal owner. To prevent that kind of incidents, aviation authorities such as
the FAA or the EASA, are currently working on regulations. Drone identification systems
in general consist of two main components: the drone, and the flight control server. There
are two major challenges within this context. First, the communication channel between
the two parties has to be secured reliably, in order to verify the exchanged information.
Second, most state-of-the-art solutions require detection beforehand.

This thesis proposes a globally available, secured drone identification system, based
on reliable security mechanisms and standardized protocols. In order to achieve a secured
communication channel, the Transport Layer Security (TLS) protocol is used. This pro-
tocol performs an authentication procedure during the connection establishment. TLS is
based on digital signatures and certificates, which implies the need for a secured environ-
ment to prevent leakage of confidential information. Since state-of-the-art cryptographic
protocols are mostly implemented purely in software, they are prone to side channel at-
tacks. These attacks can lead to extraction of confidential information. Therefore the TLS
layer is partitioned between the host and a Hardware Security Module (HSM). The HSM
provides a secured storage for authentication keys and certificates, which are necessary
for securing the communication channel. To validate the certificates which are used for
authentication of the drone against the flight control server and vice versa, the certifi-
cates have to be distributed to all parties within the system beforehand. To solve this,
a certificate provisioning process is proposed. To provide reliable and global connectivity
to the drone, an LTE module is attached to connect to the cellular network. In order
to reach global, economical connectivity and prevent the expensive usage of roaming tar-
iffs, an Embedded SIM (eSIM) instead of a traditional SIM is used for Mobile Network
Operator (MNO) authentication. The eSIM provides a mechanism to change the MNO
over-the-air, depending on the location or other desired properties.

Compared to current available solutions, the proposed system provides reliably secured
authentication of a drone against a flight control server, which does not require detection
beforehand. Due to the fact that standardized protocols, a certified HSM and a globally
available physical link is used, upcoming regulations could be influenced. This thesis also
seeks to raise awareness for further challenges beyond future regulations concerning drone
identification.

2

Kurzfassung

Durch das rasante Wachstum des Drohnenmarktes steigt auch die Gefahr im Luftraum,
wodurch sicherheitskritische Aspekte an Bedeutung gewinnen. In Anbetracht jüngster Er-
eignisse, wie jenen, wo Drohnensichtungen den Stillstand zweier Londoner Flughäfen er-
zwungen haben, sollte Bewusstsein für die Wichtigkeit von Identifizierungssystemen von
Drohnen geschaffen werden. Behörden wie die FAA oder die EASA arbeiten bereits an
Regulierungen, um solche Vorfälle zu vermeiden. Prinzipiell bestehen Drohnenidentifika-
tionssysteme aus zwei Komponenten: der Drohne, sowie dem Server der Flugsicherung.
In diesem Zusammenhang gibt es zwei Herausforderungen. Einerseits muss der Kommu-
nikationskanal zwischen der Drohne und dem Server zuverlässig gesichert werden, um die
ausgetauschten Informationen zu verifizieren, und andererseits müssen bei den meisten
bereits verfügbaren Systemen, die Drohnen zuerst detektiert werden.

Im Kontext dieser Masterarbeit, wird ein global verfügbares System, basierend auf
zuverlässigen Sicherheitsmechanismen sowie standardisierten Protokollen, zur Identifizie-
rung von Drohnen vorgeschlagen. Um den Kommunikationskanal zwischen der Drohne
und der Flugsicherung abzusichern, wird das Transport Layer Security (TLS) Protokoll
verwendet, welches während dem Verbindungsaufbau, eine Authentifizierung durchführt.
Dieses Protokoll basiert auf digitalen Signaturen und Zertifikaten, welche in einer sicheren
Umgebung gespeichert werden müssen, um Verlust von vertraulichen Daten zu vermeiden.
Dadurch, dass Verschlüsselungsprotokolle welche ausschließlich in Software implementiert
sind, anfällig für Seitenkanalattacken sind, wird in dem vorgeschlagenen System die TLS
Schicht zwischen dem Host Controller und einem Hardware Security Module (HSM) par-
titioniert. Das HSM stellt einen geschützten Speicher für Authentifizierungsschlüssel und
Zertifikate, welche für das TLS Protokoll notwendig sind, zur Verfügung. Zur Validie-
rung der notwendigen Zertifikate welche zur Authentifizierung der Drohne gegenüber dem
Flugkontrollserver und vice versa, genutzt werden, müssen diese im Vorhinein im System
verteilt werden. Im Rahmen dieser Arbeit wird eine Methode zur Bereitstellung bzw. Ver-
teilung der Zertifikate vorgeschlagen. Um eine zuverlässige und globale Konnektivität der
Drohne sicherzustellen, wurde ein LTE Modul integriert. Eine globale und auch kosteneffi-
ziente Konnektivität wird erreicht, indem anstelle einer traditionellen SIM, eine Embedded
SIM (eSIM) verwendet wird. Die eSIM erlaubt, den Mobile Network Operator (MNO) ba-
sierend auf dem aktuellen Standort oder anderen gewünschten Aspekten, ferngesteuert zu
wechseln, wodurch das Verwenden eines teuren Roaming Tarifs hinfällig wird.

Im Vergleich zu anderen, bereits verfügbaren Lösungen, bietet das vorgeschlagene Sys-
tem eine zuverlässige und sichere Authentifizierung der Drohne gegenüber der Flugsiche-
rung. Durch die Vorteile von standardisierten Protokollen, dem zertifizierten HSM sowie
dem global verfügbaren Netzwerk, könnte das vorgeschlagene System, oder Teile davon, in
Regulierungen einfließen. Diese Masterarbeit sollte auch Bewusstsein für weitere Heraus-
forderungen bezüglich Drohnenidentifikation schaffen, welche trotz neuer Regulierungen,
sowie der Umsetzung von Identifikationssystemen für Drohnen erhalten bleiben.

3

Contents

List of Figures 6

List of Tables 8

1 Introduction 9
1.1 Motivation . 9
1.2 Goals . 9
1.3 Overview . 10

2 State of the Art 11
2.1 Drone Identification . 11

2.1.1 Regulations . 11
2.1.2 ISO Working Group . 11
2.1.3 Identification Systems . 12

2.1.3.1 DJI AeroScope . 12
2.1.3.2 Vodafone RPS . 13
2.1.3.3 Radar based System . 14
2.1.3.4 Image Processing based System 15

2.2 Data Transmission . 15
2.2.1 Data Serialization Formats . 15
2.2.2 Data Communication Technologies 19

2.2.2.1 LTE . 20
2.2.2.2 eSim . 20

2.2.3 Protected Communication . 23
2.2.3.1 Hardware Security Modules 24
2.2.3.2 Side Channel Attacks . 25
2.2.3.3 OPTIGA Trust X . 26
2.2.3.4 Comparison to other Hardware Security Modules 27

2.3 Positioning Systems . 29
2.3.1 Outdoor Positioning Systems . 29
2.3.2 Indoor Positioning Systems . 29

2.3.2.1 Bluetooth Low Energy . 29
2.4 Infineon Larix Drone . 31

2.4.1 Hardware Architecture . 31
2.4.2 CleanFlight . 33
2.4.3 Drone Control . 33

4

3 Design 35
3.1 Overview . 35

3.1.1 Use Case . 35
3.1.2 System Overview . 36

3.2 Communication Protocol Stack . 37
3.2.1 CBOR . 37
3.2.2 TLS . 38
3.2.3 TCP/IP . 43
3.2.4 LTE . 44

3.3 Hardware Design . 44
3.3.1 Components . 45

3.3.1.1 Raspberry Pi . 45
3.3.2 LTE Base Shield . 45

3.3.2.1 eSIM . 46
3.3.2.2 LTE Modem . 46

3.3.3 HSM . 47
3.4 Software Design . 47

3.4.1 Client Software (Drone) . 47
3.4.1.1 Application . 47
3.4.1.2 TLS . 49

3.4.2 Flight Control Server Software . 50
3.4.2.1 Application . 50
3.4.2.2 TLS . 51

4 Implementation 52
4.1 Hardware Implementation . 52

4.1.1 Client Hardware (Drone) . 52
4.1.1.1 LTE Base Shield . 52
4.1.1.2 Raspberry Pi UARTs . 54

4.1.2 Flight Control Server Hardware . 55
4.1.3 Demonstration Setup . 55

4.1.3.1 BLE Beacons . 56
4.2 Software Implementation . 58

4.2.1 Drone Software . 58
4.2.1.1 Application . 58
4.2.1.2 TLS . 61
4.2.1.3 BLE Tools . 67

4.2.2 Flight Control Server Software . 68
4.2.2.1 Application . 68
4.2.2.2 TLS . 74

4.2.3 BLE Beacon Software . 74
4.3 Evaluation . 75

4.3.1 TLS Library Comparison . 75

5 Conclusion 76
5.1 Outlook . 77

Acronyms 79

Bibliography 82

5

List of Figures

1.1 Infineon Technologies AG multicopter . 10

2.1 Concept of AeroScope . 13
2.2 OTDOA positioning method [81] . 14
2.3 Schematic representation of the eUICC [26] 21
2.4 eSim comparison (M2M and consumer approach) 22
2.5 RSP system with LPA in the device [27] . 23
2.6 TLS communication protocol stack . 24
2.7 TLS partitioning (modified from [64]) . 24
2.8 Side channel attack tree [82] . 26
2.9 System block diagram for OPTIGA Trust X [37] 27
2.10 BLE stack [82] . 30
2.11 BLE distance measurement . 31
2.12 Drone hardware architecture . 32
2.13 Aircraft principal axes and multicopter motor directions 32
2.14 Control flow for Larix EDU controlled by smartphone 33

3.1 Use case for authenticated drone steering 35
3.2 No-fly zones . 36
3.3 Connection overview of secured drone identification system 37
3.4 Communication protocol stack for drone identification system 38
3.5 AES-GCM algorithm (modified from [80]) 39
3.6 TLS handshake overview [82] . 41
3.7 Certificate retrieval . 43
3.8 Drone hardware design . 44
3.9 Raspberry Pi LTE shield [75] . 45
3.10 Quectel EC25 Mini PCle LTE module [74] 47
3.11 Drone software design . 48
3.12 TLS host software architecture . 49
3.13 Flight control server software design . 50

4.1 Drone hardware stack . 53
4.2 Redesigned LTE base shield . 54
4.3 Raspberry Pi Zero W pinout (modified from [69]) 55
4.4 Demonstration setup . 56
4.5 Nordic nRF52-DK (used as BLE beacon) [58] 57
4.6 BLE beacon setup . 57
4.7 Client (drone) software - application implementation 59
4.8 Infineon TLS library file architecture . 62

6

4.9 Cipher suite example . 64
4.10 Flight control server software - application implementation 69
4.11 Flight control server GUI . 70
4.12 Basic structure of AT commands [22] . 71
4.13 Basic structure of AT command response [22] 72
4.14 Principle of bilateration (modified from [32]) 74

7

List of Tables

2.1 ASN.1 example . 16
2.2 CBOR data stream . 17
2.3 CBOR example . 17
2.4 COSE message identification [72] . 18
2.5 XDR structure . 18
2.6 Sample data set . 18
2.7 Comparison of data serialization formats . 19
2.8 Byte streams of data serialization formats 19
2.9 OPTIGA Trust X competitor comparison 28

4.1 Ranges of unsigned integer (in CBOR) . 61
4.2 TLS comparison . 75

8

Chapter 1

Introduction

1.1 Motivation

Drone identification or remote identification of UAVs is a topic with increasing impor-
tance, especially these days, since several incidents happened. One of the most important
aspects is preventing drones respectively their legal owners, from flying into or over crit-
ical zones or areas. These zones can be airports, power plans, prisons, crowded places
etc. Just recently, airports in London had to interrupt their air traffic due to drone sight-
ings. Several thousands of people were stranded at the airport [1]. This, but also other
recent incidents, should wake up aviation authorities to introduce a drone identification
and tracking system, or at least to publish a regulation within this context, as soon as
possible. The Federal Aviation Administration (FAA) sent out an Request for Informa-
tion (RFI) already 2016 and also just recently (December 2018), they ask third parties for
information and proposals for possible remote drone identification systems [23]. Also the
European Aviation Safety Agency (EASA), which is the aviation authority on European
Union (EU) level, is working on proposals for regulations. Since drone identification and
authentication is, and also will be a big topic in the future, this thesis introduces a concept
and a design, as well as an implementation of a reliable and secured drone identification
system.

1.2 Goals

The goals of this thesis are on one hand, identifying current available solutions in the con-
text of drone identification and pointing out their weak points and potentially exploitable
vulnerabilities. On the other hand, a concept and a design for a secured drone identifica-
tion system should be developed. To proof the feasibility of the proposed system and the
chosen technologies, a proof-of-concept prototype should be implemented. The proposed
system should provide state-of-the-art security for the communication channel from and
to the drone. As a starting point for the implementation, an Infineon Technologies AG
multicopter solution was given, as depicted in Figure 1.1.

9

Figure 1.1: Infineon Technologies AG multicopter

1.3 Overview

This thesis introduces a secured drone identification, authentication and tracking system.
First, the legal aspects were analyzed and current regulations for drones in general, were
reviewed. Since there are no regulations forced yet (only proposals available), there is still
room for interpretation and new ideas. An important step in this thesis was to analyze
and point out drawbacks of current available solutions, or solutions which are still in a
research phase.

The newly proposed system should obviate the disadvantages from other solutions,
and in the best case it should not come up with new drawbacks. Since the regulations are
still in a phase where they could be influenced and affected in one way or the other, one
of the most important points was to rely on standardized, state-of-the-art and well proved
protocols and technologies. This makes it feasible or at least easier to convince aviation
authorities, in order to influence new regulations, which are coming up for sure in the next
couple of years. Therefore, the introduced communication protocol stack is only based on
such primitives, which are summarized in the state-of-the-art chapter.

The design and concept of the system are covering the realistic use case for the secured
drone identification system. It is split into the design of the communication protocol stack,
the hardware design and the software design for the drone as well as for the flight control
server, where TLS is used for securing the communication channel. The implementation
chapter gives an overview about the developed prototype and demonstration. The goal
of the demonstrator is to show the feasibility of the security framework and the introduc-
tion of no-fly zones, which are prohibited areas such as airports or prisons. Further the
demonstration also shows the quite new eSIM technology, which is used for authentication
against an MNO to gain access to the LTE network. In the end, the proposed system is
evaluated and compared to the already available system.

10

Chapter 2

State of the Art

This chapter gives an overview of drone identification, detection and tracking algorithms.
There exist several detection and tracking algorithms, but for most systems, the iden-
tification, respectively the authentication, of the drone or the pilot is not possible. In
addition to the existing systems, technologies which are essential for the purpose of drone
identification are summarized. Further, the drone which is used for the demonstration of
the proposed drone identification system is described.

2.1 Drone Identification

2.1.1 Regulations

Up to now, there are almost no regulations for drone identification which have to be taken
into account while flying with drones. The only requirement in the sense of identification
of drones is the labeling obligation, which means Unmanned Aerial Vehicles (UAVs) with
a weight above 0.25 kg have to be labeled with name and address, to identify the owner of
the drone in case of a crash [10]. In Germany the Civil Aviation Authority, originally called
Luftfahrt-Bundesamt (LBA), is taking care about the aerial space, especially about the air
passenger’s rights. On EU level, the EASA is taking care about safety and environmental
protection in air. The EASA is a higher instance compared to LBA concerning aviation
safety, meaning that the EASA is auditing the LBA. The authority in the United States,
which is taking care about these regulations is called FAA. These authorities are discussing
about various of regulations to fight against safety problems and other issues caused by
the increasing number of UAVs in the air. They also want to prevent drones from flying
over critical and sensitive locations, such as airports, power plants, crowded places and
so on. To achieve this, UAVs have to be uniquely identifiable on one hand, and on the
other hand they have to be tracked in order to comprehend their position. That means
all the authorities will regulate the identification and tracking of UAVs, even tough the
regulations will be different depending on the location.

2.1.2 ISO Working Group

In 2017, the special committee ISO/IEC JTC 1/SC 17, which is working on standardiza-
tions concerning cards and security devices for personal identification, created the working
group WG 12. This working group is developing standards related to drone licensing and
drone identity modules [40]. Since the first meeting was in April 2018, there is no released
document, but only proposals. In their proposals they want to standardize a module called

11

Drone Identity Module (DIM). On one hand, the main functionality of the DIM shall be
the mutual authentication against a drone monitoring and tracking server which is driven
by an aviation authority and on the other hand, the establishment for the secure channel
for tracking information e.g. Global Positioning System (GPS) information. They also
want to take future mechanisms such as drone-to-drone communication into account.

2.1.3 Identification Systems

The regulations and standardizations for identification and tracking are not official yet,
meaning they are all just proposals. Anyway there are companies and research groups
which are already working on the development of such systems. DJI, the leading man-
ufacturer for civilian drones, has already published their own identification and tracking
system called AeroScope. Another company which is working on such a system is Voda-
fone. Many systems which are in development or research progress are detection and
tracking systems. If a system also offers identification or authentication, the drone has
mostly to be detected by the system before, except for Vodafone’s RPS system. Voda-
fone’s approach covers similar points as the drone identification system which is developed
within this thesis, but there are still several disadvantages which are explained in the
corresponding chapter (Chapter 5).

2.1.3.1 DJI AeroScope

DJI’s AeroScope is already available on the market, but it is a drone detection and tracking
system and not a drone identification and tracking system. That means, a drone has first to
be detected, before the drone can be identified and tracked. AeroScope is a system which
uses the communication link between the drone and its remote control. The transmitter of
the drone broadcasts the telemetry data and additional information such as serial number,
which can be detected by any AeroScope receiver [18]. This means that the main elements
of AeroScope are the observation receiver, which can either be stationary or portable, and
the integrated software system. Due to the fact that AeroScope is based on the signals
sent between the drone and the remote control, it only works in a given range. Depending
on the antennas attached to the receiver unit, the range varies up to approximately 40 km
[18]. Further, AeroScope is only compatible with DJI drones and not with drones from
other manufactures, because not all the drone manufacturers are structuring their remote
control data in the same way. Figure 2.1 depicts the approach of DJI’s AeroScope system
and illustrates which drones are detectable by the system.

The big advantage of this system is that nothing has the be modified or changed on
the costumers drone system, or more specifically, on the drone itself or on the remote
control. This is at least valid for DJI drones. If drones from other manufacturers should
be detected, the manufacturers have to adapt their way of sending the data from the
remote control to the drone. Further, for every location, where drones should be detected
and tracked, a AeroScope system is necessary. This would force for example every airport,
military facilities, prisons and other locations with safety concerns to equip their areas
with such a system [16]. Another problem which comes with the fact, that the command-
and-control link between the drone and the remote control is used, is that it is easily
possible to spoof such packets. In addition, privacy concerns coming up, because all the
data captured by the AeroScope system are broadcasted. If the regulations which are
coming up in future, desire to send information about the user or the owner of the drone,
it starts to affect the privacy of these persons.

12

AeroScope

DJI

DJI

DJI

other

Figure 2.1: Concept of AeroScope

2.1.3.2 Vodafone RPS

Vodafone is developing a system together with the EASA, called Vodafone 4G Radio
Positioning System (RPS) [77]. The system is based on the Long Term Evolution (LTE)
network. The main components of the system are the LTE module and a Subscriber
Identity Module (SIM) card. In [77] it is stated, that an eSIM is used in this system, but
there is no official statement from Vodafone which confirms that. Vodafone declares, that
their system is able to cover the following use cases [83]:

• Real-time tracking of each drone (with up to 50 meter accuracy) by drone operators
and authorized bodies such as air traffic control

• Over-the-horizon/beyond line-of-sight control by the operator, greatly reducing the
risk of accidental incursions when operators lose sight of their drones

• Protective geofencing, with drones pre-programmed to land automatically or return
to the operator when approaching predetermined exclusion zones (such as airports
and prisons)

• Emergency remote control intervention to provide the authorities with the means of
overriding a drone operator’s control to alter a drone’s flight path or force it to land

• SIM-based e-identification and owner registration

The location tracking in Vodafone’s 4G RPS system is not based on GPS, but on
location data gathered out of the LTE network. Vodafone did not publish any detailed
information about their RPS system, but they are stating, that the system should be
released for commercial use in 2019 [83].

The method for positioning a device within the LTE network is based on Observed
Time Difference Of Arrival (OTDOA), which is a downlink positioning method, where the
Time Of Arrival (TOA) of signals received from multiple (at least three) base stations are
measured [81]. The signals used for OTDOA are called positioning reference signals. In

13

order to get the OTDOA, the TOAs from several neighbor base stations are subtracted
from the TOA of a reference station. Each time difference results geometrically in a hy-
perbola, where the point of the hyperbolas intersection represents the user device location
[81]. Figure 2.2 depicts the positioning system and its measurement uncertainty, which is
in a range of about 50 meters. In this example, base station 1 is taken as a reference base
station and the two OTDOAs are calculated [81]:

τ2,1 = τ2 − τ1 (2.1)

τ3,1 = τ3 − τ1 (2.2)

Figure 2.2: OTDOA positioning method [81]

A big advantage of this approach is, that the LTE network already exists. So there
is no need for additional receivers such as those from DJI’s AeroScope. The drawback of
this method is that there is a need to adapt the consumer device (the drone), in the sense
of adding a new hardware block containing an LTE module together with a SIM card
or eSIM. Adding LTE capability to drones brings more advantages than only tracking
drones, such as controlling the UAV beyond the line-of-sight or transmitting high quality
video streams. This is possible because LTE is capable of high transmission rates.

2.1.3.3 Radar based System

Another experimental approach for drone detection and tracking, is based on radar sys-
tems. This approach comes with many difficulties, because drones are rather small, com-
pared to typical targets for radar detections approaches. Further, birds have similar and

14

often even larger sizes than drones, which makes the classification difficult [45]. If, as
partly in [45] with phase-interferometric Doppler radar, it is possible to solve the problem
of classification, the disadvantage compared to DJI’s AeroScope system is, that the iden-
tity of the drone (or it’s owner) cannot be determined. That means radar based systems
are only detecting and tracking drones. An advantage compared to the AeroScope system
is, that the drone does not have to be modified in any way. Another disadvantage as for
the AeroScope system is, that many base stations are necessary, depending on the range
of the radar.

2.1.3.4 Image Processing based System

In paper [61], another drone detection and tracking system is introduced [61]. This system
is based on image processing and neural networks. A Pan-Tilt-Zoom (PTZ) camera and
a Convolutional Neural Network (CNN) is used [61]. If a drone is captured with the
PTZ camera, it is tracked, which means with each camera only one drone is track-able.
The used state-of-the-art CNN in this paper, is working in two stages [61]. In the first
stage the object is detected based on a given image, and in the second stage the object
is classified. This system has similar advantages and disadvantages as the radar based
systems. Details about this system are not explained here, because the focus of this
system is not the identification respectively authentication of drones, but detecting and
tracking. Details can be found in [61].

2.2 Data Transmission

In terms of storing and transmitting data, data serialization formats are playing a major
role, because processing or transmitting structural data is not possible without serializing
the data before. To reconstruct the origin data structure, rules - respectively a format, has
to be defined in advance. There are already many different data serialization formats with
different focuses out there, which means, that in most cases there is no need to define a new
format. Mobile applications, as this thesis deals with, are typically resource limited and
therefore the data size property has be taken into account when choosing a serialization
format. Further, mobile applications need a wireless and widely spread communication
technology, which is LTE nowadays.

2.2.1 Data Serialization Formats

This chapter gives a comparison of four standardized data serialization formats with the
indicator stated in [78], such as data size, serialization speed and ease of use. Only
standardized serialization formats for binary representation are selected in this chapter,
considering our use case. The comparison is based on sample data which contains location
information (coordinates and attitude) and an identifier.

2.2.1.1 ASN.1

The Abstract Syntax Notation One (ASN.1) is a data serialization standard defined by
the International Telecommunication Union - Telecommunication Standardization Sector
(ITU-T) and the International Organization for Standardization (ISO).

15

Most commonly, data is encoded with the Basic Encoding Rules (BER) in ASN.1.
BER encoded data consists of the following four components, as written in ITU-T X.690
[41]:

• Identifier octets

• Length octets

• Content octets

• End-of-content octets (optional; defined in length octets)

Especially in mobile applications the Packed Encoding Rules (PER) are preferred
because they save bandwidth due to the more compact transfer syntax. For the identifier
octets, there exist several different data types.

”The abstract syntax of the data elements is described in ASN.1 modules, us-
ing basic types and construction rules. The basic types are the BOOLEAN,
INTEGER, ENUMERATED and REAL types, plus the BIT STRINGs and
OCTET STRINGs and a special type called OBJECT IDENTIFIER, which
provides unique indexes for various types of entities and protocols, coded on a
small number of octets.” [33]

In addition to this basic types, there also exists further types, for instance an UTF8-String
type which is used in the comparison example.

Overhead
Payload Type Raw data

Length Type*

09 80 D1 1689577BE7D7EB REAL 45.0729823
09 80 CF 1F2DC797D9A5F9 REAL 15.5894134
04 80 00 016B REAL 363
08 6162636465666768 UTF8-String ”abcdefgh”

Table 2.1: ASN.1 example

Table 2.1 presents an example to explain the structure of an ASN.1 encoded data set.
For example 0916 means length 9 and 8016 represents the type REAL, where the payload
consists of the exponent (D116) and the mantissa (1689...16). Type* represents the type
for REAL number encoding (Base, Exponent, Mantissa).

2.2.1.2 CBOR

The data serialization format Concise Binary Object Representation (CBOR) was created
by the Internet Engineering Task Force (IETF) and is designed for small code size and
small message size [72].

”CBOR is a data format whose design goals include the possibility of extremely
small code size, fairly small message size, and extensibility without the need for
version negotiation.” [13]

CBOR is based on the JSON data model, and in comparison to ASN.1 no scheme is
necessary. The structure consists of an initial byte, which contains the major type and
additional information. The major type is represented by the high-order three bits and

16

additional information is stored in the remaining five bits. Major types are: Unsigned
integer, negative integer, byte string, text string, array of data items, map of pairs of data
items, optional semantic tagging of other major types, floating point numbers etc. [13].
Encoded CBOR data can be seen as a stream of data items e.g. [14].

CBOR data Data item 1 Data item X

Byte count 1 byte (data item header) Variable Variable etc...

Structure Major type Add. info Payload length (opt.) Data payload (opt.) etc...

Bit count 3 bits 5 bits 8 bits x variable 8 bits x variable etc...

Table 2.2: CBOR data stream

Considering Table 2.2 the following example points out the way CBOR data is struc-
tured and serialized. The two left columns are overhead, which contains information about
the type and/or information about the length of the data. For example the byte 8416 rep-
resents an array (816) with the length of four (416) elements.

Overhead Payload Type (length) Raw data

84 array (4)
FB 404689577BE7D7EB double 45.0729823
FB 402F2DC797D9A5F9 double 15.5894134
19 016B unsigned int 363
48 6162636465666768 bytes (8) ”abcdefgh”

Table 2.3: CBOR example

CBOR also provides basic security services, which are defined in the CBOR Object
Signing and Encryption (COSE) protocol. This protocol is specified in RFC 8152 [72].
All the COSE messages are built on the array type from the CBOR serialization format.
This array always starts with the same three elements [72]:

• Protected header parameters (wrapped in a byte string)

• Unprotected header parameters (as a map)

• Content of the message (either plain text or cipher text)

To separate different types of cryptographic concepts, COSE messages can consist of sev-
eral layers. Further, the protocol defines a set of message types, which can either be tagged
or not. Tagged message types contain a CBOR tag which identifies the COSE type. To
identify the type for untagged messages, there are additional methods. A detailed ex-
planation for those methods can be found in [72]. Table 2.4 depicts the existing COSE
message types as well as their corresponding CBOR tags.

2.2.1.3 BSON

Binary JSON (BSON) is a data serialization format based on JavasScript Object Notation
(JSON) with the major extension for binary data. ”BSON is a binary format in which
zero or more ordered key/value pairs are stored as a single entity.” [12] This serialization

17

CBOR tag COSE type Data item Semantics

98 cose-sign COSE Sign COSE signed data object
18 cose-sign1 COSE Sign1 COSE single signer data object
96 cose-encrypt COSE Encrypt COSE encrypted data object
16 cose-encrypt0 COSE Encrypt0 COSE single recipient encrypted data object
97 cose-mac COSE Mac COSE MACed data object
17 cose-mac0 COSE Mac0 COSE MAC w/o recipient object

Table 2.4: COSE message identification [72]

format stores field names within the encoded data, which provides flexibility. On the other
hand, this leads to overhead and therefore to a disadvantage in space efficiency.
Basic types for BSON are: byte, int32, int64, uint64, double, decimal128.

2.2.1.4 XDR

The External Data Representation (XDR) was initially defined by Sun Microsystems and
later also considered as an Request for Comments (RFC) (RFC 1014) [79]. In XDR, the
block size is always a multiple of four bytes of data. If the byte number is not a multiple
of four, then the block gets filled up (padded) with zero to three zero bytes to fulfill this
constraint as depicted in Table 2.5.

byte 0 byte 1 ... byte n-1 0 ... 0

n bytes r bytes

n+r (where (n+r) mod 4 = 0

Table 2.5: XDR structure

The following basic data types are supported by XDR: Integer, unsigned integer,
enumeration, boolean, hyper integer and unsigned hyper integer, floating point, double-
precision floating point, variable/fixed-length opaque data, string, variable/fixed-length
array, structures, discriminated union, void, typedef, optional data [79].

2.2.1.5 Comparison

As stated in the introduction of this section, this comparison focuses on important prop-
erties for data serialization formats such as data size, serialization speed and ease of use.
For comparison the following raw data set was used:

Field name Value Size Type

Latitude 47.0729823 8 bytes double
Longitude 15.4212163 8 bytes double
Attitude 3633 2 bytes unsigned integer
Identifier ”abcdefgh” 8 bytes string

Total 26 bytes

Table 2.6: Sample data set

18

Figure 2.7 depicts a comparison of the data serialization formats ASN.1, CBOR, BSON
and XDR. Beside the major properties, there is another important fact which should be
considered for the choice of the serialization format while designing an application. If the
application or parts of it, should be standardized at some point, then a standardized data
serialization format should be preferred. Further it should be considered which libraries
are available for the serialization, which is an indicator for the ease of use. A programming
language typically used to write code for micro controllers is C, therefore it makes sense
to use a standardized serialization format with an already available C library.
In the presented example, it can be observed that CBOR has the lowest overhead as well
as the best timings for de- and encoding of data. The only disadvantage in comparison to
BSON is that CBOR is sensitive to the order of the arriving raw data fields. In contrast,
BSON not only encodes information about the data field and the data itself into the data
stream, but also the field names. This is an advantage in terms of flexibility, but it also
leads to a huge overhead. Especially for mobile applications with limited resources this
can cause problems or decrease the efficiency of the mobile application.

Format Plain Encoded Overhead Overhead Encoding Decoding Standardized

ASN.1 26 bytes 34 bytes 8 bytes 31 % 0.622 ms 0.405 ms ISO
CBOR 26 bytes 31 bytes 5 bytes 19 % 0.045 ms 0.041 ms RFC
BSON 26 bytes 57 bytes 31 bytes 119 % 0.500 ms 0.160 ms BSON spec
XDR 26 bytes 32 bytes 6 bytes 23 % 0.258 ms 0.101 ms RFC

Table 2.7: Comparison of data serialization formats

In Table 2.8 the encoded data streams for all compared serialization formats and the
used libraries are indicated. All test were executed on a Raspberry Pi 3 Model B V1.2
with Raspbian GNU/Linux 9 (stretch) and Python 2.7.13 installed.

Format Used library version Encoded data

ASN.1 Python asn1tools 0.122.0
0980d11689577be7d7eb0980cf1f2dc797d9a5f9048000016
b086162636465666768

CBOR Python cbor 1.0.0
84fb404689577be7d7ebfb402f2dc797d9a5f919016b68616
2636465666768

BSON Python bson 0.5.6
39000000016c617400ebd7e77b57894640016c6f6e00f9a5d
997c72d2f4010617474006b01000002696400090000006162
6364656667680000

XDR Python xdrlib
404689577be7d7eb402f2dc797d9a5f943b58000000000086
162636465666768

Table 2.8: Byte streams of data serialization formats

2.2.2 Data Communication Technologies

In order to transmit data, a data communication technology is necessary. A widely spread
state-of-the-art standard for this purpose is LTE/4G. It’s successor is 5G, which is cur-
rently in the roll out phase, and therefore not yet available in most regions. All these
standards are released by 3rd Generation Partnership Project (3GPP)[52].

19

2.2.2.1 LTE

LTE has a high bandwidth (up to 20 MHz) as well as a high down- and uplink data rate
(uplink: 75 Mbps, downlink; 300 Mbps). Therefore LTE can also be used for further
use cases in addition to a drone identification system, such as cloud connectivity or video
streaming [52]. In order to get access to a mobile network, such as LTE, the device has
to identify itself against a mobile network operator, which is done with a SIM.

2.2.2.2 eSim

Traditionally, SIM cards are needed to identify a device, respectively a user, against a
network operator and subsequently to connect the device to the internet. The SIM card
is also known as Universal Integrated Circuit Card (UICC) and is available in different
form factors for instance Mini SIM, Micro SIM or Nano SIM. That means an UICC
contains applications to enable access to GSM, UMTS/3G and LTE/4G networks. With
this technology, the SIM card has to be replaced if the user wants to change the MNO.
Based on this existing removable SIM card technology, GSM Association (GSMA) has
defined a set of specifications to allow users to change the operator with Remote SIM
Provisioning (RSP). This technology is called eSIM or Embedded Universal Integrated
Circuit Card (eUICC) with the specific form factor MFF2, which is defined in the ETSI
standard [21]. Due to this miniaturization, the physical size of devices can be reduced
and therefore also new devices can be equipped with a mobile network connection. One
of the main reasons for eUICC is the simplification of industrial and logistical processes
for the distribution of Machine to Machine (M2M) equipment [28]. This means, instead
of replacing the SIM card, the MNO can be changed by switching the Profile, which is
explained in more detail in Section 2.2.2.2.2.

2.2.2.2.1 Architecture

This section gives a high-level overview of the architecture of the eUICC. More details
can be found in the corresponding GSMA specification [26].

”The Embedded UICC Controlling Authority Security Domain (ECASD) is responsi-
ble for the secure storage of credentials needed to support the required security domains
on the eUICC.” [26] The ECASD contains private keys for creating signatures, associ-
ated certificates for the eUICC authentication and public keys for verifying SM-DP+ and
SM-DS. SM-DP+ stands for ”Subscription Manager Data Preparation - enhanced” and
is responsible for the creation, generation, management and the protection of resulting
Profiles in the M2M world [71]. The Subscription Manager Discovery Server (SM-DS) is
used for discovering available Profiles, if the consumer device approach is chosen. Further,
the ECASD contains the eUICC manufacturer’s keyset for key and certificate renewal [26].

ISD-R and ISD-P stands for Issuer Security Domain Root, respectively Profile. While
ISD-R is responsible for creating new ISD-Ps as well as their lifecycle management, ISD-P
represents a secure container for hosting a Profile. The Profile Policy Enabler, the Telecom
Framework and the Profile Package Interpreter are eUICC operating system services with
certain responsibilities described in the architecture specification [26].

The Local Profile Assistant (LPA) services provide the necessary access to the root
SM-DS address and the optionally stored default SM-DP+. Further, it facilitates the
reception of the Bound Profile Package transferred from the LPA itself. They also provide
a Local Profile Management and information about installed Profiles. In addition, these
services provide functions to authenticate the LPA against the SM-DS [26]. The LPA can

20

Figure 2.3: Schematic representation of the eUICC [26]

either be in the device (e.g. smartphone) or directly in the eUICC. In the second case it
is called embedded LPA.

GSMA distinguishes between two different approaches for eSIM. On one hand there
is the M2M solution and on the other hand there is the consumer device solution. The
main difference between those approaches is the way a Profile change is triggered, which
is sketched in Figure 2.4.

For the M2M approach the service provider triggers an MNO change and the new
Profile is pushed to the device. Contrarily, in the consumer approach the consumer is
allowed to change the MNO directly on the device and subsequently the new Profile is
pulled onto the device. Further, the M2M eSIM is linked to only one subscription manager,
where the consumer eSIM can affiliate to any subscription manager based on the Public
Key Infrastructure (PKI) [25].

Profiles are MNO specific and are necessary to identify the eUICC against a certain
MNO to provide services. On an eUICC several Profiles can be stored, but only one Profile
can be enabled at a time, all others have to be disabled.

A Profile consists of Profile components [27]:

• One MNO-SD

• Supplementary Security Domains (SSD) and CASD

• Applets

• Applications, e.g. NFC applications

• NAAs

• Other elements of the file system

• Profile metadata, including Profile Policy Rules

21

MNO A

MNO B

MNO A

MNO B

MNO A
MNO B

new MNO

Connected Device

Trigger

Push
Pull

Select

Service
Provider

M2M Consumer

Consumer

Figure 2.4: eSim comparison (M2M and consumer approach)

The MNO-SD represents the operator, contains the operator’s Over-The-Air (OTA)
keys and provides a corresponding secure OTA channel. If a Profile is enabled, the eUICC
behaves as a traditional UICC. This applies especially for the Network Access Application
(NAA), which holds a set of files and credentials which belongs to an MNO to grant access
to a mobile network like LTE and also for applets contained in the Profile [27].

In general, the eUICC’s main purpose is identifying a device against a mobile network
operator to gain access to the mobile network, but since eUICC supports Java Card, it is
possible to extend the functionality by adding a Java applet to the Profile. For example
MasterCard or Visa have already deployed applets for secured paying.

2.2.2.2.2 Remote SIM Provisioning

RSP describes downloading, installing, enabling/disabling and deleting of Profiles on an
eUICC. The detailed technical specification can be found in the official GSMA document
[27]. As already mentioned in Section 2.2.2.2.1, it has to be distinguished between eUICC
M2M and eUICC consumer. Both types have similar functionality, but in general they
are totally different products with various differences concerning the architecture. Figure
2.5 shows the RSP system for the consumer approach, with the LPA in the device.

To initially get a Profile into the eUICC, a registration at the SM-DS happens, and
the eUICC Manufacturer (EUM) applies for a certificate from the Certificate Issuer (CI).
Then the eUICC gets the certificate from the EUM and stores it in the ECASD.

If the end user wants to change the network operator, a new Profile has to be down-
loaded if it is not yet on the eUICC (in a disabled state). Therefore a contract with the
network operator has to be signed. Then the SM-DP+ prepares the Profile and informs
the Discovery Server. If the end user wants to add the Profile on the device, the SM-DS is
asked, where the corresponding Profile can be found. The device receives the information
from the SM-DS, at which SM-DP+ the Profile is located. In the final step, the device
downloads the Profile from the SM-DP+ and then it is ready to be enabled.

The LPA, which is in the device in this case, provides software modules for the LPA
services located in the eUICC, which are the Local User Interface (LUI), the Local Profile
Download (LPD) and the Local Discovery Service (LDS). The LDS is responsible for

22

Figure 2.5: RSP system with LPA in the device [27]

retrieving pending event records from the SM-DS. The Profile download happens in two
stages, where the LPD acts as a proxy. First, the Bound Profile Package from the SM-DP+
is downloaded into the LPD in a single transaction, and then the Bound Profile Package
is transferred into the eUICC in segments. The LUI allows the end user to perform Local
Profile Management on the device [27].

2.2.3 Protected Communication

The communication protocol stack is depicted in Figure 2.6, where the TLS block is
important to provide protected communication.

To establish a protected communication, the TLS protocol is widely used and also
approved by the IETF. TLS is establishing a connection between a server and a client
with authenticity, integrity and confidentiality. The first step in the TLS protocol is val-
idating certificates and the version of TLS protocol to initiate and further encrypt the
communication tunnel [2]. After this step the most important phase, the TLS handshake
starts, where asymmetric public key cryptography is used to authenticate each other and
exchange necessary keys. If the handshake was successful, the information exchange can
start. The information is encrypted by using symmetric cryptography to provide confi-
dentiality, where the symmetric key is exchanged in the handshake before [82]. To ensure
authenticity and integrity, the TLS protocol signs each message with a Message Authen-
tication Code (MAC) [2].

In order to provide hardware-based security, the TLS block from Figure 2.6, is parti-
tioned between the host controller and a secure element (HSM). For secure elements from
Infineon Technologies AG, the typical structure of the TLS layer is depicted in Figure 2.7.

23

Physical Link

IP
Internet Protocol

TCP
Transmission Control Protocol

TLS
Transport Layer Security Protocol

Application

Figure 2.6: TLS communication protocol stack

TLS Partitioning

Secure ElementHost Controller

ECDSA Signature Creation and Validation

AES Engine

SHA256 Hash Module

ECDHE Shared Key Generation

TLS Application Interface

X.509 Certificate Parser

TLS Handshake Engine

TLS Record Layer TLS Key Derivation

True Random Number Generator

Figure 2.7: TLS partitioning (modified from [64])

2.2.3.1 Hardware Security Modules

”HSMs are used to protect highly sensitive data. For example, HSMs are gen-
erally defined to handle cryptographic responsibilities, such as key generation,
public/private key cryptography, data encryption, and secure storage of crypto-
graphic data. As implied by the name, conventional HSMs provide their func-
tionality by way of hardware, i.e., circuitry. The conventional HSM hardware
is defined to provide a specific and restrictive external interface that allows
only authorized entities to access the data stored with the HSM and control the
HSM for the purpose of generating data.” [20]

Beside safeguarding digital keys and providing capabilities for cryptographic process-
ing, HSMs protect against certain physical attacks, e.g. side channel attacks. With a
HSM a clean separation between the application logic and the security responsibilities of a
system is enforced. The cryptographic algorithms are executed in a trusted environment
and are therefore not prone to certain software loopholes, such as buffer overflows.

24

Typically, HSMs are certified by international standards such as the Federal Informa-
tion Processing Standards (FIPS), Common Criteria (CC) or Deutsche Kreditwirtschaft
(DK), to indicate that certain criteria are met.

HSMs provide various features to achieve integrity, availability and confidentiality for
the communication of the device with the outer world. As already mentioned, HSMs offer
a protected memory to store cryptographic keys and certificates. Further, they come with
symmetric and/or asymmetric algorithms. Rivest–Shamir–Adleman (RSA), Elliptic Curve
Digital Signature Algorithm (ECDSA), Elliptic Curve Diffie-Hellman Ephemeral Key Ex-
change (ECDHE) or Elliptic Curve Cryptography (ECC) are examples for asymmetric
algorithms and Advanced Encryption Standard (AES), Data Encryption Standard (DES)
or International Data Encryption Algorithm (IDEA) are examples for symmetric algo-
rithms. All the cryptographic algorithms depend on random numbers with high entropy.
There are two ways for creating random numbers. On one hand random numbers can
be generated in software, which ends up with deterministic randomness, where on the
other hand, random numbers can be generated based by physical sources, such as thermal
noise or the photoelectric effect, which are statistically random [49]. HSMs provide a True
Random Number Generator (TRNG). Another feature, available in certain HSMs, is the
possibility of cryptographic hashing. Cryptographic hash functions are used to create a
checksum from data with undefined size, to provide integrity. Common cryptographic
hash functions are for example SHA-1, SHA-256 or MD5.

2.2.3.2 Side Channel Attacks

Side channel attacks are attacks, which are trying to extract secret keys and information
via an indirect path, using side channel information. Side channel information can be
derived from physical characteristic such as power consumption, electromagnetic radiation,
execution time etc., which correlates to specific steps in cryptographic algorithms [50].
In general, side channel attacks can be categorized into three main groups, which are
manipulative attacks, observing attacks and semi-invasive attacks, as illustrated in Figure
2.8 [54].

Manipulative attacks are attacks where the adversary manipulates the hardware itself.
This attack group includes more obvious attacks such as using microscopic needles to
extract information directly form the signal line, as well as performing microsurgery on
the silicon using the Focused-Ion Beam (FIB) technology [54].

Observing attacks are already well known over decades. The most known property to
observe is the power consumption, while performing cryptographic algorithms. In general,
observing attacks are attacks which are just analyzing the input and the output and not
manipulating the chip or the hardware itself. Further examples for properties to observe
are the timing behaviour and the heating effect. The third side channel attack group is
called semi-invasive attacks. Here, adversaries are trying to induce a faulty behaviour into
a security controller, which means the functionality of the chip is disturbed by external
influences such as power spikes and light emissions [82] [54]. This can be used to circumvent
security decisions in the software, but keeping the hardware operational.

25

Figure 2.8: Side channel attack tree [82]

2.2.3.3 OPTIGA Trust X

The OPTIGA Trust X is a high-end security controller (HSM) developed by Infineon
Technologies AG. The three main use cases for the OPTIGA Trust X are:

• Authentication

– Brand and IP protection

• Protected communication

– Transport Layer Security (TLS)

– Datagram Transport Layer Security (DTLS)

• Secured firmware update, secured boot

In Figure 2.9 the system block diagram for a application with the OPTIGA Trust X
is depicted. The system consists of a host and a secure element part, which are connected
via an Inter-Integrated Circuit (I2C) interface. The green blocks on the left are providing
an interface to the functionality of the OPTIGA Trust X, which are referred as OPTIGA
Trust X Host Library. The blue blocks sketch user implemented parts, such as the target
application and abstraction layer for specific drivers (PAL).

This HSM can store four ECC keys as well as four X.509 certificates. The four keys can
be replaced according to the lifecycle management of the application. Since authentication
is getting more and more important, the OPTIGA Trust X offers a trust anchor for mutual
authentication and for secured firmware update, which is stored in the protected storage
of the HSM [66]. The OPTIGA Trust X provides a set of data objects which can store
arbitrary data. This HSM comes also with a cryptographic toolbox, where cryptographic
functions and protocols can be invoked via the local host [37].

26

Figure 2.9: System block diagram for OPTIGA Trust X [37]

The OPTIGA Trust X comes with a set of functionalities which are explained in great
detail in the solution reference manual [38]. The key features (Crypto Functions in Figure
2.9) of this secure element are:

• Elliptic Curve Digital Signature Algorithm (ECDSA)

– Signature creation

– Signature verification

– Key pair generation

• Elliptic Curve Diffie-Hellman Ephemeral Key Exchange (ECDHE)

• True Random Number Generator (TRNG)

• Hash SHA256

• TLS 1.2 Key Derivation Function (KDF)

The authentication use case is supported by the ECDSA sign functionality. To provide
protected communication via the TLS or DTLS protocol, the ECDSA sign and verify
functionality as well as the TRNG, the Hash SHA256, the ECDHE and the KDF are
required. During the TLS handshake a shared secret is calculated with support of the
ECDHE functionality of the OPTIGA Trust X. Afterwards the derive key command is
used to expand the generated key to a certain length, which can later also be split up
in several keys for the encryption and MACs. To implement secured firmware update
or secured boot for a secured system, the hash functionality and signature verification
functionality are necessary. The input for the calculate hash function of the OPTIGA
Trust X can either be supplied by the host or be taken from an arbitrary data object
within the HSM. Since all data objects in the HSM have associated access permissions,
the required permissions must be met [38].

2.2.3.4 Comparison to other Hardware Security Modules

27

F
ea

tu
re

s
In

fi
n

eo
n

M
ic

ro
ch

ip
N

X
P

S
T

O
P

T
IG

A
T

ru
st

X
A

T
E

C
C

50
8A

A
7
1C

H
S

T
S

A
F

E
-A

1
0
0

C
er

ti
fi

ed
C

C
E

A
L

6+
N

o
N

o
C

C
E

A
L

5
+

E
C

D
S

A
Y

es
Y

es
Y

es
Y

es

E
C

D
H

Y
es

Y
es

Y
es

Y
es

A
E

S
A

E
S

-1
28

N
o

A
E

S
-1

2
8

A
E

S
-1

2
8
,

A
E

S
-2

5
6

E
C

C
N

IS
T

P
25

6,
P

38
4

N
IS

T
P

25
6

N
IS

T
P

2
56

N
IS

T
P

2
5
6
,

P
3
8
4

T
R

N
G

Y
es

Y
es

Y
es

N
o

H
a
sh

in
g

S
H

A
-2

56
S

H
A

-2
56

S
H

A
-2

56
S

H
A

-2
5
6
,

S
H

A
-3

8
4

K
D

F
Y

es
Y

es
Y

es
N

o

S
to

ra
ge

9.
7

k
B

(1
6

sl
ot

s)
fo

r:
4

E
C

C
b

a
se

d
ke

y
p

ai
rs

6
k
B

N
V

M

4
X

.5
09

ce
rt

s
K

ey
s

8
12

8
b

it
sy

m
ke

y
s

4
E

C
C

b
as

ed
ke

y
s

S
ig

n
at

u
re

s
3

E
C

C
b

a
se

d
p

u
p

ke
y
s

4.
5

k
B

ar
b

it
ra

ry
d

at
a

ob
je

ct
s

C
er

ti
fi

ca
te

s
3

A
E

S
-1

2
8

co
n

fi
g

ke
y
s

2
P

K
I

tr
u

st
an

ch
or

C
al

ib
ra

ti
on

4
k
B

se
cu

re
st

or
a
ge

O
th

er
in

fo
1

k
ey

fo
r

I2
C

In
te

rf
ac

e
I2

C
(<

1
M

H
z)

I2
C

(<
1

M
H

z)
,

S
P

I
I2

C
(<

4
00

k
H

z)
I2

C
(<

4
0
0

k
H

z)

M
o
n

o
to

n
ic

co
u

n
te

r
Y

es
Y

es
Y

es
Y

es

U
n

iq
u

e
ID

Y
es

Y
es

Y
es

Y
es

T
L

S
h

a
n

d
sh

ak
e

in
H

S
M

Y
es

N
o

N
o

N
o

S
W

li
b

ra
ry

H
o
st

li
b

ra
ry

O
p

en
S

S
L

en
gi

n
e

H
os

t
li

b
ra

ry
H

o
st

li
b

ra
ry

O
p

en
S

S
L

en
gi

n
e

W
ol

fS
S

L

T
o
p
er
a
ti
n
g

S
T

R
:
−

25
◦ C

to
85

◦ C
T

R
:
−

40
◦ C

to
85

◦ C
T

1:
−

2
5
◦ C

to
85

◦ C
T

R
:
−

4
0
◦ C

to
1
0
5
◦ C

E
T

R
:
−

40
◦ C

to
10

5
◦ C

T
2:
−

4
0
◦ C

to
90

◦ C

I o
p
er
a
ti
n
g

6
-

15
m

A
(a

d
ju

st
ab

le
)

5
m

A
10

m
A

1
4

-
2
1

m
A

<
10

0
µ

A
sl

ee
p

<
15

0
n

A
u

lt
ra

sl
ee

p
40

µ
A

ty
p
ic

al
sl

ee
p

<
4
6
0
µ

A
st

a
n

d
b
y

1
0
µ

A
d

ee
p

sl
ee

p

P
a
ck

a
gi

n
g

P
G

-U
S

O
N

-1
0-

2
S

O
IC

(6
x

4.
9

m
m

)
H

V
S

O
N

8
(4

x
4

m
m

)
S

O
8
N

(5
x

4
m

m
)

(3
x

3
m

m
)

U
D

F
N

(2
x

3
m

m
)

W
L

C
S

P
(2

x
2

m
m

)
U

F
D

F
P

N
8

(2
x

3
m

m
)

T
ab

le
2.

9:
O

P
T

IG
A

T
ru

st
X

co
m

p
et

it
or

co
m

p
ar

is
on

28

2.3 Positioning Systems

For drone identification systems, the positioning of the drone is the second important part,
beside the identification of the drone respectively the user. For real use cases, the drone
is operated outdoor, but for demonstrating the identification of the drone, the drone will
be operated on a small environment (on a table), which means that outdoor positioning
systems will not work properly.

2.3.1 Outdoor Positioning Systems

For outdoor positioning systems GPS is widely used, which is part of the Global Navi-
gation Satellite Systems (GNSSs). GNSS systems can provide a sub meter accuracy in
outdoor environments [60]. Another approach are cellular based systems, which are worse
in accuracy (several meters). Vodafone is using such an approach and they state, that
they can reach an accuracy of approximately 50 meters [83].

2.3.2 Indoor Positioning Systems

For indoor positioning systems there is no prevailing standard [60]. A heavily used tech-
nology for indoor positioning systems is Bluetooth Low Energy (BLE), which is described
in the subsequent section (Section 2.3.2.1). Alternatively, Wi-Fi is often used. Both tech-
nology have similar advantages and disadvantages, which are mainly the problem of radio
interference and inherent latency [60]. Both approaches are based on the Received Signal
Strength Indicator (RSSI) measurement. The accuracy is in a meter range, but by using a
certain number of measurement points and a special beacon setup, the accuracy can be im-
proved. Details about the beacon setup are depicted in the corresponding implementation
section (Section 4.1.3.1).

2.3.2.1 Bluetooth Low Energy

BLE is a wireless technology designed for very low power consumption. When using
BLE, different network topologies such as point-to-point, broadcast or mesh can be used.
Compared to the basic Bluetooth [9], a power consumption of 1% to 50% can be reached,
depending on the use case. Figure 2.10 depicts the basic blocks of the BLE stack. The
physical layer operates in the 2.4 GHz frequency spectrum of the Industrial, Scientific and
Medical (ISM) band with 40 channels which are spaced with 2 MHz. When a device is
working in advertising mode it broadcasts information. For this purpose, three out of the
40 channels are reserved. The link layer is responsible for the state of the device, which
can either be standby, advertising, scanning, initiating or connected [84].

”The Generic Attribute Profile (GATT) establishes how data will be organized and
exchanged over a BLE connection.” [56] The GATT server shall contain Generic Access
Profile (GAP) services to configure certain GAP parameters such as advertising payload.
In addition the GAP defines security modules and procedures which are implemented
in the Security Manager Protocol (SMP) [8]. For the use case, covered in this thesis
and depicted in Figure 2.11, the broadcaster and observer role, are key features, since a
Bluetooth beacon is used for distance estimation.

2.3.2.1.1 Distance Measurement with BLE

Since in paper [53], BLE is evaluated for indoor distance estimation, we tried such an
approach for this use case with some modifications which are described in more detail in

29

BLE Stack – Host Part

BLE Stack – Controller Part

Link Control and Adaption Protocol
(L2CAP)

Link Layer (LL)

Physical Layer (PHY)

Security Manager
Protocol (SMP)

Attribute Protocol
(ATT)

Generic Attribute
Protocol (GATT)

Generic Access
Profile (GAP)

Host Controller Interface (HCI)

Figure 2.10: BLE stack [82]

the corresponding implementation section (Section 4.2.2.1.7).
To use BLE for distance measurement, the broadcaster is advertising packets. These

packets are received by the observer, which scans for BLE packets. The observer evaluates
the signal strength and provides the RSSI to the application.

”The RSSI represents the power of a signal received from a remote transmitter
measured in dBm, it is inversely proportional to the square of the distance from
the transmitter and depends on the type of device or antenna. Its value can be
used to estimate the distance between transmitter and receiver, but it is very
sensitive to the environmental conditions.” [53]

The theoretical correlation between the received and transmitted signal power can be
derived from the Friis equation [24], [53]:

PR = PT
GTGRλ

2

(4π)2dn
(2.3)

where PT and PR are the transmitted and received signals in Watt; GT and GR are the
gain of the transmitting and receiving antennas; λ is the wavelength; d is the distance in
meters; n represents the propagation exponent, which has typically a value of 2-4 (e.g. 2
for free space), depending on the environmental conditions [53].

30

For evaluating and testing the reproducibility, the single-board development kit Nordic
nRF52-DK was used in advertising mode, whereas a Raspberry Pi 3 Model B V1.2 was
scanning for BLE devices. On the broadcasting device, the parameters advertising interval
and transmission power have to be set. The Nordic nRF52-DK is able to send advertising
packets in intervals between 100 ms and 10.24 s. The supported values for the transmis-
sion power are: -40 dBm, -20 dBm, -16 dBm, -12 dBm, -8 dBm, -4 dBm, 0 dBm, +3
dBm and +4 dBm (as stated in the GAP interface specification). For distance estimation
with BLE, the advertising interval was chosen as short as possible in order to reach a high
timing resolution.

BLE Beacon
[Advertising Mode]

Drone
[Scanning Mode]

Distance RSSI

Figure 2.11: BLE distance measurement

The Raspberry Pi in scanning mode, contains a Bluetooth (BT) module which is
connected via Universal Asynchronous Receiver Transmitter (UART) to the system bus.
The communicate between the host and the controller part is done via a standardized Host
Controller Interface (HCI). The Linux distribution Raspbian provides a set of libraries
and tools called hcitools, which is used to configure Bluetooth connections [55]. To enable
the scanning mode on the Raspberry Pi, the command hcitool lescan has to be executed.
To inquire remote devices and monitor gathered Bluetooth packets, the command ./btmon
was used [55].

2.4 Infineon Larix Drone

Since Infineon Technologies AG is working on ready-to-use multicopter solutions where
almost every integrated component is out of Infineon’s product portfolio, it was obvious
to work with an in-house solution in the context of this project. The Larix EDU Copter
was chosen, because it has an on-board Raspberry Pi interface, which is used for further
extensions. Figure 1.1 depicts Infineon’s multicopter Larix EDU.

2.4.1 Hardware Architecture

The most important parts of the drone are depicted in Figure 2.12. The heart of the Larix
EDU is the Infineon XMC4500. The XMC4500 is a microcontroller based on the ARM
Cortex-M4 processor core and is optimized for industrial connectivity, industrial control,
power conversion, as well as for sense and control [35]. The XMC4500 contains the main
software, the flight control software CleanFlight, which can be updated, configured and
tuned by the Google Chrome app CleanFlight Configurator (details in Section 2.4.2). The
controller communicates with an Inertial Measurement Unit (IMU), which provides the
different sensor values, such as acceleration information or rotational speed information,
to the controller. Out of these sensor values, the current orientation of the multicopter
can be calculated. In order to execute a movement in a certain angular direction such as
roll, pitch or yaw as sketched in Figure 2.13 (left), the reference values from the remote
control are taken, to adjust the rotational speed of the four motors. To bring the total

31

 Infineon Larix EDU V2

Flight Controller
Infineon XMC 4500

Open-Source Software
CleanFlight Power Management

Battery, Voltage Regulators

Pressure Sensor
Infineon DPS422

Gyroscope
TDK InvenSense MPU-9250

Motor Control
ESC board

I2C

I2C

PWM

5V

Figure 2.12: Drone hardware architecture

angular momentum of the copter to zero, the each two diagonal located motors have to
spin in the same direction, which is depicted in Figure 2.13 (right).

Roll

Pitch

Yaw

Vertical

Longitudinal

Lateral

Figure 2.13: Aircraft principal axes and multicopter motor directions

On the Infineon Larix EDU, the Infineon pressure sensor DPS422 is used for the
stabilization of the altitude. The DPS422 is a digital barometric air pressure sensor with
high accuracy and low current consumption, which can measure pressure and temperature
[36]. The pressure and the altitude are indirectly proportional, meaning the pressure
decreases if the device is increasing its altitude, and the measured pressure increases if the
device decreases its altitude.

Another important component for drones is the gyroscope, which feeds the IMU to
calculate the current orientation. On the Larix EDU the multi-chip module MPU-9250 is
integrated. It consists of two dies, where one die contains the 3-axis gyroscope and the
3-axis accelerometer, and the other die houses a 3-axis magnetometer [31]. The MPU-9250
is a 9-axis motion tracking device combined with a Digital Motion Processor (DMP) which
relieves the host processor from calculating motion algorithms.

The Larix EDU provides an Pulse Width Modulation (PWM) interface for Electronic
Speed Control (ESC) for each of the four motors. That means the ESC controls the
rotational speed of the motors according to the data received on the PWM interface.
PWM is a technique which creates a rectangular pulse with varying width. Typically
the pulse width for a motor speed from 0-100 % is 1-2 ms, with a frequency of 50 Hz
which results in a repetition interval of 20 ms. The motor control is done in a separate

32

board, mounted below the main board of the Larix EDU and connected with a 4-in-1 ESC
connector.

The UAV used for this thesis is powered with a 12V Lithium-Polymer (LiPo) battery.
On the flight controller board, voltage converters are integrated to provide 5 V respectively
3 V for the electronics.

2.4.2 CleanFlight

CleanFlight is an open-source software, which provides a flight controller firmware and
related tools such as the CleanFlight Configurator, which is a Google Chrome app based
software. The firmware has been ported to the XMC4500 in this case. The CleanFlight
Configurator provides simplified updating, configuring and tuning of the flight controller
firmware. Further, the configuration tool shows sensor values such as pressure values or
data from the gyroscope and the magnetometer. The data gathered by the receiver is also
displayed visually within the Configurator. The connection between the flight controller
and the CleanFlight Configurator which runs on a PC, is established via USB.

2.4.3 Drone Control

Transmitter
Smartphone or Remote Control

Multicopter
Larix EDU (extended with Raspberry Pi Zero)

Receiver
Raspberry Pi

Flight Controller
XMC4500

ESC
XRotor Micro

Control Commands
DSMX Protocol

APP

Wi-Fi (TLS protected communication)

UART PWM

Figure 2.14: Control flow for Larix EDU controlled by smartphone

The Infineon Larix EDU can either be controlled by smartphone or by a standard
remote control. In each case the commands are formatted according to the Spektrum

33

DSMX protocol. Spektrum is a company which produces Radio Control (RC) equipment,
who developed the DSMX as well as its predecessor DSM2 which are both 2.4 GHz based
transmission protocols. The main difference between those two protocols is the channel
selection. Where the DSM2 protocol can only switch between two random channels,
the DSMX protocol is more resistant to noise and interference, because the reliability is
improved by using more agile frequency channel switching algorithms. The transmitter is
sending a 16-byte data packet, formatted according to the Spektrum DSMX protocol, in
periodic time intervals (e.g. 11 ms or 22 ms) to the receiver [39]. The 16-byte data packet
contains the control information for roll, pitch and yaw of the multicopter, as well as the
speed and arming information for the rotors.

In Figure 2.14, the control flow for the Larix EDU controlled via a smartphone ap-
plication is depicted. The smartphone application uses the gyroscope to control roll and
pitch, and sliders to control the rotor speed and the yaw. Out of those values, the 16-byte
data packet for the Spektrum DSMX protocol is build and sent via TLS secured Wi-Fi
channel to the receiver.

In this case, the receiver is a Raspberry Pi, which is mounted on the multicopter. The
received command is relayed via the Raspberry Pi to the flight controller board, which
runs the flight controller software CleanFlight, via UART, with 115200 bps, 8 bits, no
parity and 1 stop bit. The flight controller board is connected via a 4-in-1 ESC connector
to the motor control board, where a PWM signal is transmitted in order to control the
four rotors.

34

Chapter 3

Design

This chapter describes the general use case and the design of the software and hardware
architecture of the proposed solution.

3.1 Overview

3.1.1 Use Case

The general use case for authenticated steering of a drone is depicted in Figure 3.1. The
user respectively the pilot wants to steer a drone. In order to be allowed to do that, the
drone has to authenticate itself with information about the drone and the pilot against a
flight control server, which is managed by an authority. If in any case the pilot is doing
something not allowed in the context of steering the drone, the flight control server is
informing or disciplining the pilot. This can be handled in various different ways, such as
taking away the control of the drone. Details about the chosen approach can be found in
the subsequent chapter.

Drone

Pilot

System

steering

authenticating
locating

informing
disciplining

managing

Authority

FC Server

Figure 3.1: Use case for authenticated drone steering

35

3.1.2 System Overview

Since the drone market is increasing enormously, safety critical problems are coming up.
The most important aspect is preventing drones respectively their pilots from flying into
or over critical zones or areas such as airports, power plans, prisons etc. In this document,
the prohibited zones will be called no-fly zones. In Figure 3.2 the idea behind no-fly zones
is sketched. To solve that problem, the UAVs have to be tracked and identified, because
there has to be a responsible person (pilot) behind each drone. As already mentioned in
Section 2.1.1, there are many discussions about regulations for these aspects but there
are neither final rules which have to be followed by the drone owner, nor by the drone
manufacturer.

Power Plant

Prison

Airport

Figure 3.2: No-fly zones

Due to the fact that most UAVs are too small to be detected by classical aircraft
tracking solutions, which are used to detect planes, each drone could be equipped with
a transponder such as a Automatic Dependent Surveillance - Broadcast (ADS-B). This
solution would load to a spectral problem. To mitigate this problem, the transmit power
could be lowered, but this results in a smaller detection range. Further, the flight control
data which is broadcasted by the transponder is neither secured nor authenticated.

This means the existing methods which are currently in use for larger objects are
not capable of handling such enormously increasing number of objects in the air. As
already mentioned in Section 2.1.3, there are already companies which are developing
drone identification systems, but each has its disadvantages which should be solved in the
system proposed within this work.

In order to develop a global system, a global communication network is necessary. A
widely spread communication network is LTE, which is used for the drone identification

36

network proposed within this work. A big advantage for using a global system is, that not
every no-fly zone has to be equipped with a detection or tracking system such as DJI’s
AeroScope (Section 2.1.3.1). Figure 3.3 depicts the connection overview of the proposed
secured drone identification system. The basic idea of the new system is to connect the
drone to the internet via LTE over an MNO. On the other side, there is a flight control
server which is connected to the internet as well. Based on the LTE network connection,
the drone establishes a TLS protected communication channel to the flight control server,
which is controlled by an aviation authority. The secured communication channel is used
to send information, such as location information and identification data from the drone
to the flight control server. Further, this secured communication link can be used to send
steering data from the flight control server to the drone, for example to execute a safe
landing of the drone, if a no-fly zone has been entered.

Drone

MNO

Flight
Control

LTE Internet

TLS Protected Communication

Flight Information (GPS, Drone ID, …)

Figure 3.3: Connection overview of secured drone identification system

The goal of this work is to develop a proof-of-concept solution for a secured and
reliable drone identification system, based on standardized and well established protocols
and security mechanisms. An example for a standardized protocol is TLS, which is widely
spread in applications such as internet banking and secured web browsing. Further details
about standardized methods which are used in the proposed system for various purposes
can be found in the corresponding chapters.

3.2 Communication Protocol Stack

In Figure 2.6 (Section 2.2.3), a general communication protocol stack for secured com-
munication is sketched, according to the OSI model. Focusing on the proposed drone
identification system, Figure 3.4 depicts a more detailed protocol stack structure together
with the used techniques for each layer.

3.2.1 CBOR

CBOR is an RFC standardized data serialization format with efficient message encoding,
compared to other serialization formats. This means that the overhead added to the
payload is fairly small, which is an important fact, if messages should be sent on a wireless
channel several times every second, as in the case of the proposed drone identification
system. With public available and well established software libraries for encoding and
decoding structured messages with CBOR, it is possible to parse arbitrary data structures
without putting effort in extending the available software libraries, which are available in
common programming languages such as C or Python. As pointed out in Table 2.7, CBOR

37

Physical Link
LTE

IP
Internet Protocol

TCP
Transmission Control Protocol

TLS
Transport Layer Security Protocol

Drone Identification Protocol
CBOR Encoded

Figure 3.4: Communication protocol stack for drone identification system

has the least encoding overhead compared to the other data serialization formats. Further,
CBOR is with 0.045 ms and 0.041 ms also faster for encoding and decoding of a sample
data set, which consists of GPS data (latitude, longitude, attitude) and an identifier. Due
to the fact that the next layer in the communication protocol stack is the TLS layer, it
would not even be necessary to transmit an identifier with each message, because the
drone has to transmit its identifier (a certificate in that case) during the TLS handshake,
which is explained in greater detail in the subsequent chapter. That means, during the
connection establishment between the drone and the flight control server a significant data
transfer is done in order to complete the TLS handshake, but the messages sent during
operation (several times per second) get more compact.

3.2.2 TLS

TLS is a well established and widely used protocol to provide privacy, data integrity
and authenticity between two communicating parties [34]. TLS consists of two layers,
the TLS record protocol and the TLS handshake protocol. The basic properties of the
record protocol are the privacy and the reliability of the connection, where the privacy is
established with a symmetric cryptography algorithm (e.g. AES) and the integrity and
authenticity are ensured by a MAC (e.g. based on SHA-256) or Authenticated Encryption
with Associated Data (AEAD) cipher.

3.2.2.1 TLS Record Layer Encryption

For block ciphers, such as AES, different modes of operation are available. To name com-
mon examples for those modes, the recommendation from National Institute of Standards
and Technology (NIST) defines five confidentiality modes for the use with an underlying
symmetric key block cipher [19]:

• Electronic Codebook (ECB)

• Cipher Block Chaining (CBC)

• Cipher Feedback (CFB)

• Output Feedback (OFB)

• Counter (CTR)

38

Based on those modes of operation, there exist extended modes which provide not
only confidentiality, but also authenticity and integrity. These modes are called authenti-
cated encryption modes. A widely used example in this context is called AES-GCM [80].
Galois/Counter Mode (GCM) is a mode of operation, based on the CTR mode, which
already comes with confidentiality. The cipher text with GCM is produced in the same
way as in the common CTR mode as sketched in the upper part of Figure 3.5. This works
by creating a counter block, where the sequential block number is concatenated (alterna-
tively added or XORed) with the Initialization Vector (IV) and encrypted with the block
cipher (AES in this case), which results in the keystream. The cipher text block is then
computed by XOR-ing the plain text block with the keystream [29].

Compared to the common CTR mode, the GCM also provides integrity and authen-
ticity, which is achieved by generating a so called authentication tag. This is depicted in
the lower part of Figure 3.5 [80]. To generate such an authentication tag, the GHASH
function is used. Detailed information about the definition of the GHASH function can
be found in [15] and [80]. Figure 3.5 sketches the authenticated encryption algorithm
AES-GCM with a single block of additional application data (labeled as Auth Data 1)
and N blocks of plain text. ”AES(K) denotes the block cipher encryption using the secret
key K, and GHASHH(X) denotes Galois field multiplication in GF(2128) by hash key H,
and incr denotes the counter increment function.” [80]

 Extension for AES-GCM

 As CTR mode

Incr
Counter1 IV

AES (K)

CounterN IV

AES (K)

Plaintext_1

Counter0 IV

AES (K)

Ciphertext_1

GHASHH(X) GHASHH(X) GHASHH(X)

GHASHH(X)

Plaintext_N

Ciphertext_N

Auth Data_1 lenA || lenC

Auth Tag

Incr...

...

Keystream_1 Keystream_NKeystream_0

Figure 3.5: AES-GCM algorithm (modified from [80])

39

3.2.2.2 TLS Handshake Layer Sequence

Figure 3.6 sketches the messages exchanged by the TLS handshake protocol, where the
most important steps, regarding to the drone identification system, are explained in detail
here.

The ClientHello message is sent from the client to the server and contains cryptographic
information including the cipher suites which are supported by the client. The different
cryptographic primitives, together with corresponding examples, a cipher suite typically
contains are [48]:

• Key Exchange

– RSA, DH(E), ECDH(E)

• Authentication

– RSA, DSA, ECDSA

• Encryption

– AES, CAMELLIA, DES

• Hash

– SHA-1, SHA-256, MD5

If a client connects to a server, the client has to validate the identity of the server
during establishing a connection. This is done by checking the server Certificate, which
is sent right after the ServerHello message, where the ServerHello message is an answer
to the ClientHello message during the TLS handshake. The sent server certificate is the
first certificate in a list of certificates, called certificate chain. The server Certificate is
followed by an arbitrary number of intermediate certificates, where each certificate has
been used to sign the previous certificate in the list. ”The client verifies the chain until
it reaches a certificate which is signed by a trusted root certificate which is contained in
the clients certificate storage.” [82] If the last certificate cannot be verified by the client,
the authentication is not successful and therefore the TLS handshake is aborted and a
TLS alert message is sent. In addition to the verification of the server, the client can
authenticate itself against the server. This is optional but used in the context of the
drone identification system to provide authentication for the drone (client in this case)
against the flight control server. If the drone authentication is done during the TLS
handshake procedure, the application does not have to send the authentication data within
the periodically sent messages. To use the optional available TLS feature during the TLS
handshake, the server has to send a client CertificateRequest message. As an answer to this
request, the client sends the certificate embedded in a message with the same structure as
the server Certificate in the previous step. The validation of the client Certificate works
in the same way as the validation of the server Certificate message. The retrieval of the
certificates is illustrated in the following chapter. Detailed information about the other
steps happening during the TLS handshake are explained in [34]. Implementation details
about the TLS handshake are given in Section 4.2.1.2.

40

ClientHello

ServerHello

Certificate

ServerKeyExchange

CertificateRequest

ServerHelloDone

Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Application Data Application Data

TLS Client TLS Server

TLS Protocols

Handshake Protocol

Change Cipher Spec Protocol

Application Protocol

Alert Protocol

Encryption State

Plain
Communication

Encrypted
Communication

Figure 3.6: TLS handshake overview [82]

41

3.2.2.3 Certificate Provisioning (Aviation Authority Lookup Service)

In order to perform a TLS handshake, the Certificate Authority (CA) certificates which
are stored in the certificate storage, have to be retrieved beforehand. The procedure for the
certificate retrieval process is split into two parts, the client and the server side. The client
side consists of the drone itself and the drone manufacturer CA. The server side contains
the flight control server, the authority or government CA and an aviation authority lookup
service, which is proposed within this project.

In Figure 3.7 the certificate retrieval process is sketched, which is designed in a similar
way as the Domain Name System (DNS) lookup service. The basic idea is, that the drone is
requesting the domain and the CA certificate of the regional authority from the aviation
authority lookup service, to later establish a TLS secured communication channel to a
flight control server for authentication and location tracking. In order to perform these
two steps, certain steps are necessary beforehand, because the drone needs to know the
domain or IP to the aviation authority lookup service. Those steps are later on called
offline steps, because this is done during manufacturing of the drone and only performed
once. Further the drone needs the certificate of the lookup service in order to ensure that
it is connecting to a trusted server.

Since the goal of the system is that the drone has to authenticate itself against an
authority, the certificates have to be generated according to discretions of this authority.
Those certificates are given to the flight control server as well as to the aviation authority
lookup service, where the certificates are put into a database. The lookup service also gets
the domain from the flight control server which is forwarded by the authority. Each region
has its own aviation authority. Each authority is registered at the global lookup service.
The global lookup service contains the domain as well as the certificate of the regional
aviation authority. Further, each drone manufacturer has a certificate authority with the
responsibility to create a certificate for each manufactured drone. In addition to the drone
certificate, the drone manufacturer has to store the domain of the global lookup authority
on the drone’s and put the certificate of the global lookup authority in the drone trusted
certificate storage. All the steps explained up to now, are steps which have to be done
offline (highlighted in green in Figure 3.7). That means all these steps happen before the
actual authentication of the drone against the flight control server can be performed.

After these offline steps, each drone has a CA certificate as well as a IP or domain of
the aviation authority lookup service and a certificate for authentication. On the other
side, the flight control server has a certificate of the regional authority CA. One step
which is seen as a precondition, because it is out of scope and therefore not explained, is
the process of getting the drone manufacturer CA certificate onto the flight control server
for validating the drone’s authentication certificate. This could either be implemented
with a separate lookup service, with a database on the flight control server which is filled
beforehand or also by storing the certificates on the server of the aviation authority lookup
service.

The steps for the actual authentication process of the drone are sketched in orange
(Figure 3.7). In the first step, a TLS secured connection between the drone and the
lookup service is established, where the trustworthiness of the server of the lookup service
is checked by the drone with the CA certificate, which is already stored on the drone.
Trough this secured connection the domain and the CA certificate of the regional authority
is requested. In order to get the right domain to the regional authority’s flight control
server, the lookup service needs to know the location of the drone. To get the location
information, either the GPS data can be sent by the drone or the lookup service can gather
the location information from the IP address of the drone. Another possibility to get the

42

Client Side

Drone
CA Certficate (Lookup Service)

IP/Domain (Lookup Service)
Certificate (Drone)

Drone Manufacturer CA

Server Side

Lookup Service

 Regional Authority CA (Government CA)

Flight Control Server

(Drone Manufacturer CA stored)

Certificate/Domain (Lookup Service)
and

Certificate (Drone)

Step 2
 TLS Connection

Send Drone ID Data

Certificate/Domain

Certificate

Step 1
TLS Connection

Get IP/Domain and CA Certificate
(from Regional Authority,

depending on Location
of Drone)

Global

1 x per Region

N x per Region

Certificate/Domain
(Lookup Service)

Database

Figure 3.7: Certificate retrieval

location of the drone, would be to extract information about the connected LTE cell.
After receiving the domain and the certificate of the regional authority, the secured

connection to the flight control server can be established. On one hand the flight control
servers identity is validated by the drone with the certificate received in the previous step,
and on the other hand the drone is authenticating itself against the flight control server
with the drone certificate which is stored on the drone during the manufacturing process.
The flight control server is validating the drone with the certificate of drone manufacturer
CA which is already on the flight control server (precondition).

3.2.3 TCP/IP

In order to transport packets between two communicating parties over a packet switched
network such as IP, a transport protocol has to be selected. There are two common,
well established and widely used protocols, the User Datagram Protocol (UDP) and the
Transmission Control Protocol (TCP). The biggest difference between those protocols is
that TCP is a connection oriented and UDP is a state less protocol. TCP guarantees
an ordered packet delivery, which is done by adding a sequence number to each packet.
Further, TCP is also providing retransmission of lost packets. The detection of lost packets
is done by acknowledging each packet. Another property of TCP is that data is sent in
a continuous stream. That means there is no maximum message size, compared to UDP
which is message oriented. In UDP corrupted or lost packets are not retransmitted and
the application is not informed about any loses. Since TLS requires that packets are
transmitted in the right order, we need a reliable transport protocol. In addition certain
TLS handshake messages exceed the maximum message size, therefore a continuous data
stream is beneficial. That means TCP is the right choice for this system. The Internet

43

Protocol (IP), which is the most used protocol for the internet layer, is used to transport
packets between two hosts based on the IP address, which is in the packet header.

3.2.4 LTE

The base of the communication protocol stack (Figure 2.6) is the physical link, which in
general can either be wired or wireless. Since the drone is a flying object, only a wireless
link is useful in practice. To cover as many regions as possible with the proposed drone
identification system, a widely available physical link should be used. Since LTE is the
state-of-the-art wireless communication technology with a large areal coverage, especially
near civilization, it is chosen for the UAV side of the drone identification system. Due to
the high bandwidth (up to 20 MHz) as well as the high down- and uplink data rate (uplink:
75 Mbps, downlink; 300 Mbps), LTE can be used for further use cases in addition to the
drone identification system, such as cloud connectivity or video streaming [52]. Further it
would also be possible to use the LTE connection to remote control a drone beyond line
of sight.

3.3 Hardware Design

This chapter describes the hardware design of drone, which is used in the developed proof-
of-concept solution for a secured and reliable drone identification system. The basis for this
hardware system is Infineon’s flight controller board Larix EDU V2 (depicted in Section
2.4.1).

 Extensions

Raspberry Pi Zero W

Raspbian/Debian Linux
with Security FrameworkHSM

Infineon OPTIGA Trust X

Camera
Raspberry Pi Camera Module

UART

LTE Base Shield

LTE Modem
QUECTEL EC25

eSIM
Infineon/Avnet eUICC

USB

I2C

CSI

 Infineon Larix EDU V2

Flight Controller
Infineon XMC 4500

Open-Source Software
CleanFlight Power Management

Battery, Voltage Regulators

Pressure Sensor
Infineon DPS422

Gyroscope
TDK InvenSense MPU-9250

Motor Control
ESC board

I2C

I2C

PWM

5V

Figure 3.8: Drone hardware design

44

3.3.1 Components

3.3.1.1 Raspberry Pi

The flight controller board contains a Raspberry Pi pin header, to easily extend the system
with the single board computer Raspberry Pi. The Raspberry Pi hosts the application,
which is explained in detail in the corresponding software design and implementation
chapter (Section 3.4.1, Section 4.2.1). The variant used for this system is the Raspberry
Pi Zero W, which is more compact compared to the Raspberry Pi 3. The drawbacks of
the Raspberry Pi Zero W are the lower processing power and less connection possibilities.
This is not a problem because the application running on the Raspberry Pi has decent
requirements regarding processing power. Further, there is no need for connecting pe-
ripheral devices such as display, mouse or keyboard during normal operation. Therefore
the less connection options are not a problem. The Raspberry Pi Zero W is connected
via a UART interface (4 wires: Power supply, ground, transmit and receive pin). The
Operation System (OS) running on the Raspberry Pi Zero W is Raspbian, which is the
official supported OS. The Raspberry Pi Camera Module is connected via Camera Serial
Interface (CSI) to the Raspberry Pi, which can be used for video streaming or steering
beyond the line of sight. An explanation of the Camera Module would be out of scope
within this context, but detailed information can be found in [68].

3.3.2 LTE Base Shield

In order to connect the drone, respectively the Raspberry Pi, into the LTE network, an
LTE modem as well as a SIM is necessary. That means those two components need to
be connected to the Raspberry Pi. A simple way to do that, is using a Raspberry Pi
LTE shield, which acts as a bridge for an LTE module. On this shield, the LTE module
and the SIM can be connected. The functionality was fully tested with a shield which
is freely available at the market (Figure 3.9). For space saving reasons, the base shield
was modified for this project. The LTE module can be connected with the standardized
Mini PCI Express connector, and the SIM slot is build for the widely used form factor
3FF (Micro SIM). As depicted in Figure 3.8, the base shield is connected via Universal
Serial Bus (USB) to the Raspberry Pi. Further details can be found on the manufacturer
website [75]. Details about the adopted base shield can be found in the implementation
chapter in Section 4.1.1.1.

Figure 3.9: Raspberry Pi LTE shield [75]

45

3.3.2.1 eSIM

Details about the eSIM technology are described in the corresponding state-of-the-art
chapter (Section 2.2.2.2). One of the purposes of this project is to showcase the eSIM,
especially the main advantage of the eSIM, the simple change of an MNO. To implement
that, at least two different MNOs are necessary. Due to the fact that most MNOs are
currently ramping up the provision of Profiles for the eSIM, there are only test Profiles
available up to now. In order to showcase an MNO switch, the Avnet eUICC test pack
was chosen ([5]), because this test pack provides two different MNO test Profiles. Another
important fact for choosing the Avnet eUICC test pack is, that Avnet is an Infineon
authorized distributor and therefore there is a support link between Infineon Technologies
AG and Avnet [4]. The test pack contains eSIMs with different form factors, which are
the form factor 2FF (Mini SIM) and MFF2. The chips used in the eSIMs are Infineon
security controllers, based on 32-bit ARM cores.

As described in the state-of-the-art section of the eSIM (Section 2.2.2.2), a Profile
contains applets. One further potential use case could be an applet which allows storing
keys and certificates to build up a secured communication and/or identify against a third
party. Due to the fact, that an applet has to belong to a Profile, it is necessary to cooperate
with a mobile network operator to realize an applet implementation. This procedure is
out of scope in this context, but for the future, it could be a possible solution for several
use cases.

3.3.2.2 LTE Modem

Since the LTE connection, respectively the authentication at an MNO should be estab-
lished with an eSIM, the LTE module has to be compatible with the eSIM. In general
eUICCs should behave as its predecessor UICC, because it is an GSMA standardized tech-
nology, but since the eUICCs are in an early phase, it is possible that problems occur. In
order to avoid that, an Avnet pre-qualified LTE modem was chosen. The selected LTE
base shield requires an LTE modem on a Mini PCIe module basis. The Quectel EC25
Mini PCIe Cat 4 module was chosen (Figure 3.10), since it is pre-qualified by Avnet and
the form factor fits to the remaining hardware parts without the expense of redesigning
the module. Cat 4 represents one out of eight available LTE user equipment categories
which differ by data rates (Cat 4 - uplink: 50 Mbps, downlink; 150 Mbps). That means
with the chosen hardware for the LTE part of the system, a plug and play solution was
selected, even though the base shield was redesigned for space reasons. As depicted in
Figure 3.10, the Quectel EC25 LTE module includes three antenna interfaces, the main
antenna interface, the GNSS antenna interface and a receiver diversity antenna interface.
GNSS is a collective term for satellite based global navigation systems such as GPS. Since
within this solution, GPS is not used for localization, there is no GNSS antenna connected
to the corresponding antenna interface. For connecting to a cellular network (LTE in
this case), an antenna has to be connected to the main antenna interface. To improve
the Signal-to-Noise Ratio (SNR), a diversity antenna can be connected. The principle of
diversity is exploiting statistically independent respectively uncorrelated paths for com-
munication [46]. Based on this principle, the reflection effect as well as the multipath
signals of the propagated radio signal can be reduced. For the proposed solution Printed
Circuit Board (PCB) antennas (dimension: 37 mm x 7 mm x 1 mm) were used for the
main and the receiver diversity antenna [73].

46

Figure 3.10: Quectel EC25 Mini PCle LTE module [74]

3.3.3 HSM

Infineon’s OPTIGA Trust X, which has the form factor PG-USON-10-2, was used as HSM
for the proposed solution. Details about the OPTIGA Trust X are depicted in Section
2.2.3.3. The HSM is connected via I2C. This bus interface can be used to connected
further sensors. The OPTIGA Trust X is physically located on the redesigned LTE base
shield, which is explained in detail in the corresponding implementation section (Section
4.1.1.1).

3.4 Software Design

In this section, the software design of the developed proof-of-concept solution for a secured
and reliable drone identification system is described. This solution consists of two parts,
a client (drone) and the flight control server.

3.4.1 Client Software (Drone)

Figure 3.11 depicts the software design for the client software running on the drone. The
main components are the application and the TLS block. Additionally a TCP socket is
necessary as a transport channel, in order to establish a reliable connection via the LTE
network, which is sketched in yellow (Figure 3.11). To execute security mechanisms with
support of the HSM, additional software blocks are necessary to provide an interface to
the TLS software block. The green highlighted parts of Figure 3.11 sketch the additional
hardware devices and the corresponding interfaces to the Raspberry Pi, which is hosting
the software.

3.4.1.1 Application

The application which is running on the drone has three main tasks. Since the goal of
this project is to develop a secured drone identification system, one task is the drone
identification task. This task is gathering location information such as GPS coordinates,
and is sending them to the flight control server as depicted in the use case diagram in
Figure 3.1. In order to send data (location information, identifier, etc.) over an already
established channel, the data have to be serialized before transmission. This means, that
structured data objects have to be converted to a stream of bytes beforehand. Since the
CBOR data serialization format is used within this system, a CBOR library is necessary
in order to encode and decode the structured data.

47

Application

TLS

AT Relay Drone ID RC Relay

Serial Port Serial PortCBOR

Handshake Layer

Record Layer

Command Library

Protocol Stack

HAL

TCP/IP Socket

eSIM
[LTE module]

Flight
Controller

HSM

LTE

USB UART

I2C

Application Interface

Figure 3.11: Drone software design

As depicted in the use case diagram in Figure 3.1 and its corresponding section (Section
3.1.1), the flight control server should be able to take away the control over the drone
from the pilot, to discipline the pilot in case of non-observance of rules or regulations. To
handle this, the application which is running on the drone’s Raspberry Pi, needs to relay
the steering data to the flight controller, which are received from the flight control server
instead of the remote control. This task is forwarding the received steering data to the
flight controller via a serial port. For this purpose, the flight controller is connected via
an UART interface to the Raspberry Pi.

In the developed solution, an eSIM is used to identify the device against an MNO
which provides the access to the LTE network as a service. To showcase one of the main
advantages of the eSIM, which is the MNO Profile switch, a dedicated task is necessary.
Avnet’s eUICCs can be administrated not only remotely, but also locally by AT commands.
Practically, the Profile switch could be triggered by the drone owner, but for demonstration
purposes, it will be triggered by the flight control server. Therefore the task which is
running on the Raspberry Pi and responsible for the Profile switch, has to relay the
incoming AT commands to the eUICC. This works by forwarding the AT commands via
the USB connected LTE base shield. Information about AT commands and the detailed
description about the Profile switch can be found in the implementation chapter in Section
4.2.2.1.4.

48

All the tasks described here, need to communicate with the flight control server. To
clearly separate the responsibilities of these tasks, each task is using a dedicated TLS
secured TCP/IP socket for communication.

3.4.1.2 TLS

TCP/IP sockets are used in order to establish a connection over the LTE network. Accord-
ing to the designed communication protocol stack (Figure 3.4), TLS has to be implemented
on top of the transport layer (TCP in this case).

To provide the security mechanisms to the application, an Application Programming
Interface (API) is necessary. The API provides the functionality to perform a TLS hand-
shake and allows the application to read and write from/to the secured channel, which
is handled in the record layer of TLS (see Section 3.2.2). Before read and write actions
to/from the secured channel are possible, the TLS handshake has to be completed.

As depicted in Figure 2.7, the functionality of the TLS layer is split between the host
controller and the secure element, if a HSM is used to relieve the host controller and
provide hardware based security for storing key material and performing cryptographic
operations. The secure element is taking care of all cryptographic operations which are
related to long term keys as for example used by ECDSA. The partitioning between
the host controller and the secure element can differ depending to the application. The
protocol specified in the TLS standard is implemented in a host library.

TLS Architecture
Legend

Transport (TCP/IP)

TLS Record Layer

TLS Handshake Layer OPTIGA Command Library

Hardware Abstraction Layer (HAL)

I2C Driver

TLS Application Interface

Application
Platform

Generic

Timer

I2C Protocol Stack

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Figure 3.12: TLS host software architecture

Figure 3.12 depicts the detailed TLS host software architecture which can be used in a
variety of application not just limited to the use case for proposed solution, where in Figure
3.11 a higher level overview about the TLS software blocks is given. In the developed
solution, the security mechanisms for the TLS handshake procedure are outsourced from
the host controller to the HSM. The HSM is connected via a serial interface to the host
(in this case I2C). Since every platform requires a different driver a Hardware Abstraction
Layer (HAL) has been implemented to allow portability of the software. On top of the
physical transport layer an I2C protocol stack is necessary to provide features such as

49

reliability and packet fragmentation to the transport layer, which consists of physical,
data link, network and transport layer [17]. To trigger an HSM security mechanisms from
the application, an HSM specific command library is necessary.

3.4.2 Flight Control Server Software

In Figure 3.13 the software design of the flight control server is depicted. The structure is
analogous to the design of the software running on the client (Figure 3.11). The software
of the flight control server consists of the application itself, a TLS block for securing a
communication channel and a TCP/IP socket in order to establish a connection over the
LTE network.

TLS

Application

Profile Switch Drone ID Remote
Control

CBOR

TCP/IP Socket

LTE

OpenSSL

[OpenSSL Wrapper]

Graphical User Interface (GUI)

Figure 3.13: Flight control server software design

3.4.2.1 Application

The application contains the counterparts to the three main tasks of the client software
described in Section 3.4.1.1 and a Graphical User Interface (GUI) to provide the possibility
for visualization and interaction with the user. The flight control server receives the drone
identification data (e.g. location information) in a CBOR structured data stream. This

50

information is then decoded and visualized in the GUI. If the no-fly zone is entered by
a drone, an alarm is triggered. As explained in the corresponding client software design
section (Section 3.4.1.1), the flight control server should be able to remote control the
drone. Therefore some basic steering commands can be sent to the drone, which are
triggered via an event (e.g. button pressed) from the GUI. In addition to that, an MNO
change on the eSIM is supported. To trigger an MNO Profile change, the GUI provides
an input possibility but also an info box for indicating the available Profiles, as well as
highlighting the enabled Profile.

3.4.2.2 TLS

Since TLS is providing a point-to-point encryption, also the flight control server needs a
TLS block. As the focus of the developed solution is not on the server side, this TLS block
is fully implemented in software, contrarily to the client side, where the security mecha-
nisms are partitioned between the host controller and an HSM. For this implementation,
the OpenSSL library is used, because the library contains an open-source implementation
of the TLS protocol. Depending on the chosen programming language, a wrapper for the
OpenSSL library is necessary. As TLS needs a reliable channel, TCP/IP sockets are cho-
sen to establish a communication channel between the client (drone) and the flight control
server.

51

Chapter 4

Implementation

This chapter describes the software and hardware implementation details of the proposed
solution for the client (drone) and the flight control server, as well as for the general
demonstration setup.

4.1 Hardware Implementation

4.1.1 Client Hardware (Drone)

In the current hardware implementation, the drone hardware consists of stacked modules
which are placed on top of the battery and the carbon frame of the drone, as depicted in
Figure 4.1. The basic drone components, such as frame, motor controller board and flight
control board, were developed from MCI Innsbruck.

As depicted in Figure 3.8, the lowest part in the stack is the motor control board
(ESC board). The provided motor control board is the XRotor Micro40A 4in1 BLHeli-S
DShot600, which is freely available on the market [30]. On top of the motor control
board, there is the flight controller board Infineon Larix EDU V2, which was developed in
a cooperation between MCI Innsbruck and Infineon Technologies AG. More information
about the basic drone components are depicted in the corresponding state-of-the-art sec-
tion (Section 2.4.1). The next module in the stack, is the single board computer Raspberry
Pi Zero W, which hosts the drone identification software. This part is explained in detail
in the corresponding software implementation section (Section 4.2.1). In order to connect
the drone, respectively the Raspberry Pi to the LTE network, the top module is the LTE
module, This module is plugged into the LTE base shield, which is needed as a bridge
between the Raspberry Pi and the LTE module. The LTE base shield was redesigned from
[76]. The main components on the LTE base shield are the LTE module, the eSIM and
the HSM OPTIGA Trust X. Further details about the redesigned base shield are depicted
in the subsequent section (Section 4.1.1.1).

4.1.1.1 LTE Base Shield

The LTE base shield was redesigned to match the form factor of the Raspberry Pi Zero
W, which is used in this project. The original shield was designed for the Raspberry Pi 3.

Further, the eSIM with the form factor MFF2 was placed on the base shield in addition
to the SIM connector with the 2FF form factor, to show the size difference between them.
This aspect is an important advantage of the eUICC. This also allows to test and evaluate
different SIMs. To select the eSIM which should be actually used for authenticating

52

ESC Board

Flight Controller Board

Raspberry Pi

LTE Base Shield

LTE Module

eSIM HSM

Battery

Carbon Frame

Figure 4.1: Drone hardware stack

against an MNO, a jumper has to be set correctly. The eSIM comes with the capability
of changing the MNO without physically replacing the SIM card, which is depicted in
the corresponding state-of-the-art section (Section 2.2.2.2). Traditional SIM cards have
to be replaced when changing the provider, therefore a SIM connector (or SIM slot) was
necessary in the past, in order to provide the possibility to change the card (respectively
the MNO). The SIM connector needs to be accessible in order to change the SIM card,
and therefore it cannot be placed on any arbitrary place within the device, which leads
to restrictions compared to the eSIM. The size and placement aspect is especially in the
Internet of Things (IoT) context very important, because those devices tend to be small
in physical size.

The main component of the base shield is the LTE module, which is top module in the
client hardware stack (Figure 4.1). The chosen module is the Quectel EC25 Mini PCIe
Cat 4 module, which is described in corresponding design section (Section 3.3.2.2). It has
a Mini PCIe form factor, and therefore it is a plug and play solution for the LTE modem
Quectel EC25-E. This avoids expensive and difficult embedding of the LTE modem on the
base shield.

Another block which was integrated into the redesigned LTE base shield, is the HSM
OPTIGA Trust X. The HSM in general, is functionally independent from the LTE module,
but it was placed there to avoid an additional hardware block in the stack.

The original LTE base shield provides two connection types, UART and USB. For this
project the USB connection is used for two reasons. The first reason is that the Raspberry
Pi only provides two UART interfaces, which are already in use for the flight controller
connection and the (internal) BT module connection. In the following chapter the UART
interfaces of the Raspberry Pi are explained in detail (Section 4.1.1.2). The second reason

53

for choosing USB as an interface to the LTE base shield, is the higher data rate compared
to UART (UART: about 900 Kbit/s for down- and uplink) [75]. The data rate for USB
2.0 is up to 480 Mbit/s [67].

Figure 4.2: Redesigned LTE base shield

4.1.1.2 Raspberry Pi UARTs

The Raspberry Pi has two built-in UARTs, a PL011 and a mini UART [70]. The PL011
UART is ARM’s PrimeCell UART (for details see [3]), which is similar to the UARTs
used in most personal computers [11]. ”By default, on Raspberry Pis equipped with the
wireless/Bluetooth module (Raspberry Pi 3 and Raspberry Pi Zero W), the PL011 UART
is connected to the BT module, while the mini UART is used for Linux console output.”
[70] Since within this project, the Bluetooth module is also used, this would mean that
the mini UART could be used for connecting the flight controller board. The baud rate of
the mini UART is linked to the core frequency of the Raspberry Pi, which can vary [70].
This is an issue for the communication with the flight controller board, because it requires
a constant baud rate. To avoid any issues in this context, the assignment of the UARTs
are changed. That means the PL011 UART is used to connect the flight controller board,
and the mini UART is used to connect the Bluetooth module. This settings can be done
by using the raspi-config utility (details can be found in [70]). In Linux based operating
systems, interfaces such as USB or UART are represented as file streams in the systems
/dev folder. The file /dev/ttyS0 represents the mini UART and the file /dev/ttyAMA0
represents the PL011 UART. As depicted in Section 3.3.1.1, the UART interface consists
(in the bidirectional case) of four wires, which are power supply, ground, transmit and
receive. As depicted in Figure 4.3, the transmit and receive pins for the (before assigned)
UART interface are represented by the General Purpose Input Output (GPIO) pins 14 and
15. In the hardware setup for the client (drone) of the proposed solution, the Raspberry
Pi pins 4 (power), 6 (ground), 8 (UART transmit) and 10 (UART receive) are connected
to the flight controller board.

54

Figure 4.3: Raspberry Pi Zero W pinout (modified from [69])

4.1.2 Flight Control Server Hardware

The flight control server is running on a Raspberry Pi 3, with a touch screen monitor for
interaction.

4.1.3 Demonstration Setup

The goal of this project is to propose a secured drone identification and tracking system,
as well as showcasing it in a demonstration.

In general, the drone has to authenticate itself against a so called flight control server
first, and then the drone sends its location data periodically to this flight control server.
Since the requirements for the demonstration are, that it has to be functional indoor and
it has to be possible to operate in a small area (such as a table), GPS can not be used for
locating the drone, because GPS is not or only partially available indoor. As a workaround,
BLE distance measurement is used to approximate the location of the drone on a small
given area, or more specifically on a table. Details about the BLE distance measurement
can be found in Section 2.3.2.1.1. The focus of this project is not to implement an indoor
positioning system, but to enable the possibility to simulate no-fly zones as depicted in
Section 3.1.2.

Figure 4.4 sketches the implemented demonstration setup, which consists of the drone
itself, the flight control server and a table, where BLE beacons are mounted in a specific
way, as explained in detail in Section 4.1.3.1. Due to the reason of safety and ease of use,
the drone is tethered with a cord. That means the drone can only fly in a given range,
which is important to avoid accidents during the demonstration. This is legitimate, since
the focus of this project is not steering the drone or do special flight maneuvers.

To simulate a no-fly zone, a given segment is marked on the table as sketched in Figure
4.4. For visualization, the GUI hosted on the flight control server, represents the table two
dimensionally (top view), which is depicted in the flight control server software section
(Section 4.2.2.1) in Figure 4.11. If the drone enters the no-fly zone, an alarm on the flight
control server is triggered and visualized in the GUI. If the drone is leaving the no-fly
zone, the alarm is disabled again.

55

Table

No-Fly Zone

BLE Beacons

BLE Beacons

Drone

Flight Control
Server

Figure 4.4: Demonstration setup

In practice, an example for this scenario could be, that the flight control server is
sending an automatic stop sequence to the drone to perform a save landing as soon as a
no-fly zone is entered. Further consequences, such as disciplining the pilot or confiscating
the drone, are imaginable in practice.

In the demonstration setup, the steering of the drone is done by the flight control
server, which would already allow taking over the control from the pilot (e.g. performing
a save landing) after entering a no-fly zone. The GUI of the flight control server provides
basic steering commands, such as starting, landing or flying in a given direction, which
are explained in detail in Section 4.2.2.1.

4.1.3.1 BLE Beacons

For the Bluetooth beacons, the single-board development kit Nordic nRF52-DK is used,
which is a highly flexible, multi-protocol system on chip [58]. The used development kit
is depicted in Figure 4.5. It supports the BLE protocol stack and a proprietary 2.4 GHz
protocol stack [58]. Nordic’s nRF5 Software Development Kit (SDK) provides drivers and
libraries as well as examples and a development environment together with documentation
[57].

As analyzed in [44], the accuracy for positioning with BLE beacons, increases with the
number of beacons used. Since the drone is tethered, the height of the drone (while flying)
varies only a few centimeter. Therefore a two dimensional positioning is sufficient. In
order to calculate the position, the principle of bilateration is used, which is explained in
Section 4.2.2.1.7. Therefore at least two distinct distances to a given point are necessary.
Figure 4.6 depicts the BLE beacon setup for the drone position estimation. To improve
the accuracy and minimize the small height variation influence, two BLE beacons are
stacked with a certain distance in order to get one distance to the drone, which results
from averaging the two values. As depicted in Figure 4.6, two pillars, each consisting of
two stacked BLE beacons, are mounted on two corners of the table. In order to avoid the
location calculation on the drone, the distances are replaced by the RSSI values (measured

56

Figure 4.5: Nordic nRF52-DK (used as BLE beacon) [58]

by the drone) and forwarded to the flight control server. Another reason to send the RSSI
values instead of the distances, via the TLS secured communication channel, is to provide
the opportunity for improvements of positioning method later on (without changes on the
drone). The flight control server is calculating the distance with a simplified Friis equation
[24]. The exact position calculation procedure is described in the corresponding software
implementation section (Section 4.2.2.1.6).

Table

Drone

BLE Beacons

x

Figure 4.6: BLE beacon setup

57

4.2 Software Implementation

This section describes the software implementation of the proposed drone identification
and tracking solution, which consists of three parts, the drone software, the flight control
server software and the software on the BLE beacon. As already depicted in the software
design section, the client and the server part are both using a TCP/IP socket as a transport
channel. Due to the fact that these sockets are a platform independent network interface,
it does not matter which OS is used on one side or the other. Further, this also allows the
free choice of the programming language on both sides.

4.2.1 Drone Software

In this section the implementation of the software hosted on the drone is explained in
detail. In this solution, the drone software is hosted on a Raspberry Pi Zero W. As an
OS, the official Raspbian GNU/Linux 9 (stretch) is used. The main software parts are
the implementation of the application itself, the TLS implementation and the BLE tools,
which are used in order to estimate the location of the drone in a given area.

4.2.1.1 Application

As depicted in the software design block diagram (Figure 3.11), the application is divided
into three main parts, the AT command relay, the steering relay (remote control relay)
and the drone identification and tracking. Since the drone identification and tracking data
should be sent in a secured way, the application needs a transport layer security protocol
(TLS in this case). The TLS layer of the software on the drone, is partitioned between
the host (Raspberry Pi Zero W) and an HSM (OPTIGA Trust X). The command library
for the OPTIGA Trust X is written in C. In order to avoid expensive re-writing of the
command library or implementing a wrapper for the command library, the application
hosted by the drone was also implemented in C. The used C library for this project is glibc
2.24.

In Figure 4.7, the implementation of the client application is depicted. The AT relay
and the RC relay are running in separate threads (Thread-1 and Thread-4 in Figure 4.7).
The drone identification part is split into two threads, one for reading and parsing the
input coming from the BT monitor (btmon), and one for forwarding new BT beacon data
(RSSI values) to the flight control server (Thread-2 and Thread-3 in Figure 4.7). Details
about each part of the application are given the corresponding sections.

4.2.1.1.1 RC Relay

In the proposed solution, the flight control server is sending the steering commands to the
drone’s Raspberry Pi (as depicted in Section 4.1.3). The Raspberry Pi needs to relay the
steering commands to the Larix EDU V2 flight controller board. As depicted in Figure 3.8,
the flight controller board is connected via UART to the Raspberry Pi. The chosen UART
interface on the Raspberry Pi is the PL011, which is represented within the OS through
the file /dev/ttyAMA0. Details about the UARTs on the Raspberry Pi are described in the
corresponding hardware implementation section (Section 4.1.1.2). To relay the steering
data via UART to the flight controller, the serial port for UART has to be initialized
and configured beforehand. In order to clearly separate the application from the UART
interaction, corresponding files were created (uart.c, uart.h). These files represent the
declaration and implementation for the functions, which are necessary to relay data to the
UART interface. The implemented functions are uart init(), uart tx() and uart close().

58

C – Application (Input: btmon)

AT Relay Drone ID RC Relay

 usb_init()

 openChannel(ServerRole)

 channelRead() <LOOP>
usb_tx()
usb_rx()

channelSend()

 datalist_init()

 readInput(btmon)
parseInputData() <LOOP>

searchForBTBeacon()
addToDataList()

 forwardLocationToFCServer()
openChannel(ClientRole)

checkForNewData() <LOOP>
serializeData()

channelSend()

 uart_init()

 openChannel(ServerRole)

 channelRead() <LOOP>
uart_tx()

mutex_init()
openOptigaApplication()

Thread-1

Thread-2

Thread-3

Thread-4

Figure 4.7: Client (drone) software - application implementation

When opening the system file /dev/ttyAMA0, specific parameters (baud rate, parity bits,
stop bits, etc.) needs to be set, in order to allow a correct communication via UART.

The steering commands are data packets with the length of 16 bytes, formatted ac-
cording to Spektrum’s DSMX protocol [39], which are generated at the flight controller
server (within this project). The drone’s Raspberry Pi is receiving the steering commands
via an TLS secured TCP/IP socket (implemented in an endless loop), which has to be
opened beforehand. Details about the TLS connection are described in Section 4.2.1.2.

4.2.1.1.2 AT Relay

The AT relay application block is responsible for relaying AT commands, which are gen-
erated at the flight control server (details in Section 4.2.2.1.3), to the LTE module (which
hosts the eSIM), in order to get information about the eSIM or to trigger an MNO change.
This works similar as the RC relaying block, except that the AT relay block has to provide
the possibility to send back the AT command response to the flight control server. Details
about AT commands are described in the corresponding section (Section 4.2.2.1.4). As
depicted in the hardware block diagram (Figure 3.8), the LTE base shield (which is the
bridge to the LTE module) is connected via USB to the Raspberry Pi. The USB interface
is as well as the UART interface, represented as a file in Linux based operating systems
(in this case /dev/ttyUSB3). That means, to open the serial port for USB, the port has
to be initialized respectively opened with specific parameters beforehand (with usb init(),
analogous to UART). The functionalities which are necessary for initializing, as well as
reading and writing to USB port, are clearly separated in corresponding declaration and
implementation files (usb.c, usb.h).

As the RC commands, the AT commands are received via a TLS secured TCP/IP
socket. Therefore the socket has to be opened before the AT commands can be received.

59

Details about the TLS connection are described in Section 4.2.1.2. After establishing
the secured channel, the thread is continuously waiting for incoming data. If an AT
command is received, the command is relayed to the before opened system file (in this
case /dev/ttyUSB3), with the function usb tx(). The response which is read (with usb rx())
from the serial port (represented by the system file) is sent back to the flight control server,
via the already established TLS connection. After sending the response back, the thread
is again waiting for new incoming AT commands.

4.2.1.1.3 Drone ID

Since the main goal of this project is to propose a secured drone identification and tracking
system, the most important parts of the application are gathering and sending location
information data to the flight control server. As explained in Section 4.1.3, RSSI values
from BLE beacons are used as location information (instead of e.g. GPS). Linux based
operation systems (in this case Raspbian) are providing tools to (inter-) act with BT
devices, which are explained in Section 4.2.1.3. The command btmon is monitoring all
BT devices together with their RSSI values and other information about the device (see
Section 4.2.1.3). Therefore, the Drone ID application block takes the output of btmon as
an input. This software block is divided into two distinct threads.

The first thread (Thread-2 in Figure 4.7) is responsible for parsing the input data for a
certain pattern (parseInputData()). The input data comes from the output of the btmon
command. The parsing happens in an infinite loop. The pattern which has to be parsed
by the application is explained in detail in the BLE tool section (Section 4.2.1.3). Shortly,
it has to be parsed for the before specified BLE beacons (hardware addresses) and their
corresponding RSSI value. This value is put into a list of certain data structs, which
represent the RSSI values for each of the before specified BLE beacons. As explained
in the BLE beacons’ hardware implementation section (Section 4.1.3.1), there are 2 x 2
beacons specified within this project. In Listing 4.1, the BLE beacons are represented by
their hardware addresses. In this implementation, the data struct for the RSSI values, is
represented by a dimensional integer array, as depicted in the lower part of Listing 4.1.

Listing 4.1: BLE beacons and RSSI values struct

1 #define NR_PILLARS 2

2 #define NR_BEACONS_PER_PILLAR 2

3 char *BEACON_HW_ADDRESSES[NR_PILLARS][NR_BEACONS_PER_PILLAR] = {

4 {"EC:2E:5D:7B:AE:48", "C7:1F:BF:43:DA:62"},

5 {"E9:56:D5:DA:40:ED", "E8:D9:AE:DC:C1:10"}

6 };

7
8 struct Data

9 {

10 int rssi[NR_PILLARS][NR_BEACONS_PER_PILLAR];

11 } data;

The second thread within this application block (Thread-3 in Figure 4.7), is waiting
for new data within the data list which gets filled from the first thread of this application
block. The waiting for new data is happening in an endless loop. If there is new data
in the list, the latest data struct from the list is serialized according to the CBOR data
serialization format, which is explained in detail in Section 2.2.1.2. The used CBOR library
for this project is the libcbor v0.5.0, downloaded from [62]. In order to serialize the used
data struct, the data has to be converted to a cbor item t according to the data type. As
described in Section 4.1.3.1, RSSI values parsed from the btmon output can either be 0 or

60

negative. As stated in [43], the minimum usable RSSI value is -88 dBm. Therefore an 8
bit integer is sufficient, as depicted in Table 4.1.

Type Bytes Output Range

negint8 1 -1 to -256
negint16 2 -1 to -65 536
negint32 4 -1 to -4 294 967 296
negint64 8 -1 to -18 446 744 073 709 551 616

Table 4.1: Ranges of unsigned integer (in CBOR)

The libcbor library provides positive and negative integers, but the value 0 is only held
by the positive integer type. This has to be taken into account when converting the RSSI
value into a cbor item t. That means if the value is 0, the function cbor build uint8(...)
from the CBOR library has to be used and otherwise the function for creating a negative
integer has to be used (cbor build negint8(...)). After converting the single values from
integers to cbor item t, the items have to be pushed to the parent element within the
CBOR structure. In Listing 4.2 a generic function for creating a CBOR root element out
of the RSSI data struct is depicted (with an additional string containing other information
e.g. ID).

Listing 4.2: Function to convert RSSI data struct to CBOR element

1 cbor_item_t *convert_data_to_cbor_item(struct Data data)

2 {

3 cbor_item_t *root = cbor_new_definite_array(NR_OF_STRUCTMEMBERS);

4 cbor_item_t *pillars = cbor_new_definite_array(NR_PILLARS);

5 int i, j;

6 for (i = 0; i < NR_PILLARS; i++)

7 {

8 cbor_item_t *pillar = cbor_new_definite_array(

NR_BEACONS_PER_PILLAR);

9 for (j = 0; j < NR_BEACONS_PER_PILLAR; j++)

10 {

11 cbor_array_push(pillar , data.rssi[i][j] == 0 ?

cbor_build_uint16 (0) : cbor_build_negint16(abs(

data.rssi[i][j]) - 1));

12 }

13 cbor_array_push(pillars , pillar);

14 }

15 cbor_array_push(root , cbor_build_string(data.id));

16 cbor_array_push(root , pillars);

17
18 return root;

19 }

After creating a CBOR element, it has to be serialized with the function cbor serialize(...)
from libcbor. The serialized data is sent to the flight control server via the before estab-
lished TLS connection (details are depicted in Section 4.2.1.2).

4.2.1.2 TLS

As explained in the corresponding design section (Section 3.4.1.2), the TLS layer is split
between the host controller and the secure element. In Figure 3.12 the TLS host software
architecture is depicted. In this section, the implementation of the TLS application inter-
face together with the OPTIGA Trust X command library is explained. The command

61

library provides the functionality to support certain steps of the TLS handshake. These
support functions are implemented in the secure element and invoked by the host. The
TLS application interface provides the TLS functionality to the application. The imple-
mented IFX TLS application interface provides the basic functionality optimized for IoT
applications. The IFX library consists of several C source files and the corresponding
header files, depicted in Figure 4.8.

TLS Handshake Layer TLS Record Layer

ifx_tls_common.c

Application Interface

ifx_tls_client.c ifx_tls_server.c
ifx_tls_record_layer.c

Helpers

Certificate Parser Crypto Transport

SHA256 AES-GCM

ifx_tls.c

Figure 4.8: Infineon TLS library file architecture

The application interface is implemented in the file ifx tls.c, where the main func-
tions are tls init(...), tls perform handshake(...), ifx tls write(...) and ifx tls read(...). As
previously depicted in Figure 2.7, the TLS layer can be separated into the TLS hand-
shake layer and the TLS record layer. This separation is also represented by the file
structure of the IFX TLS library. The TLS record layer is implemented in the file
ifx tls record layer.c. As the tasks in the TLS record layer are sending and receiving
TLS packets, the most important functions are called ifx tls record layer receive(...) and
ifx tls record layer transmit(...). The TLS handshake procedure consists of several steps,
where it has to be distinguished if the host is acting in client or server role. Therefore,
the functionality for the TLS handshake layer is represented by three different files (plus
corresponding header files), which are ifx tls common.c, ifx tls client.c and ifx tls server.c.
In Addition, several helper functions for example for certificate parsing or certain cryp-
tographic functions are necessary. The X.509 certificate parser functions as well as the
hash algorithm SHA256 are used in the TLS handshake layer. In the TLS record layer,
the AES and GCM files as well as the transport file, which contains helpers for the net-
work sockets, are necessary. The following paragraph gives detailed information about the
implementation of the TLS handshake procedure.

4.2.1.2.1 TLS Handshake Layer

In the corresponding design section in Figure 3.6 an overview of the TLS handshake is
depicted. The green as well as the blue blocks from this figure are implemented in the
before mentioned files ifx tls common.c, ifx tls client.c and ifx tls server.c.

62

The client file (ifx tls client.c) contains the functionality for sending the messages
depicted on the left side of the picture, as well as the parsing for the server messages.
Where the server file (ifx tls server.c) contains the functionality for sending the server
messages (right side of Figure3.6) and the parsing for the messages sent from the client.
Certain message are sent and parsed by the client and the server, for example the write
Certificate message. Therefore the write and parse functions are implemented in the
common file (ifx tls common.c). The TLS handshake procedure is implemented as a state
machine according to [34].

4.2.1.2.2 ClientHello

The ClientHello message is the first message with the purpose of sending the security
enhancement capabilities of the client to the server, which are:

• Highest TLS version

– TLS 1.2

• Client random number

– Must be random and unpredictable to prevent reuse of messages

– Generated with TRNG by secure element

• Session ID

– Always zero in this case, because session resumption is not used

• Supported cipher suites

– TLS ECDHE ECDSA WITH AES 128 GCM SHA256

• Compression methods

– No compression in this case, because compared to the certificates the size re-
duction is negligible

– Compression will be removed in TLS 1.3 due to security reasons

• Extensions

– Supported signature and hash algorithms (for authentication)

SHA256, ECDSA

– Supported elliptic curves (for ECDHE key exchange)

NIST P256

– Supported ECC point formats (for ECDHE key exchange)

Uncompressed ECC point format

In Figure 4.9, the used cipher suite TLS ECDHE ECDSA WITH AES 128 GCM SHA256
is explained.

The chosen cipher suite is one of the most used cipher suites in state-of-the-art IoT
applications. The key exchange algorithm ECDHE is based on ECC, which needs accord-
ing to NIST recommendations, a smaller key size in order to reach the same cryptographic
strength [47]. Therefore it has a better performance, especially on processing power and
storage limited IoT devices. The key size and the hashing algorithm varies in different

63

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

Protocol
Key Exchange Algorithm
Authentication
Encryption Algorithm
Key Size
Block Cipher Mode of Operation
Hash Algorithm for MAC

Figure 4.9: Cipher suite example

applications. For this project, only the hashing algorithm SHA256 is implemented, be-
cause the used HSM (OPTIGA Trust X) only supports this hashing algorithm (depicted
in Table 2.9).

4.2.1.2.3 ServerHello

Before sending the ServerHello message, which is the response to the ClientHello message,
the received message has to be parsed by the server. The security enhancement capabilities
from the client are extracted by the server and if a set of acceptable security algorithms is
found, the server sends the ServerHello message. Otherwise an alert message is sent and
the TLS handshake procedure is aborted. The ServerHello message has a similar structure
as the ClientHello message.

4.2.1.2.4 Server Certificate

The Certificate message contains the certificate chain. Within the IFX TLS library, this
message composition is implemented in the ifx tls common.c file, because it is necessary
for both parties of the TLS handshake (client and server). In this implementation, the
certificate chain which sent within this message, is read from the secured certificate storage
of the OPTIGA Trust X, which is explained in Section 2.2.3.3.

4.2.1.2.5 ServerKeyExchange

As specified in the selected cipher suite, ECDHE is used for key exchange in this imple-
mentation. The ECC key pair is generated by the server and transmits the public key in
this message. The client will later use the servers public key to calculate the pre-master
secret [34]. During the creation of this message, the server authentication is performed.
This is done by hashing and signing the ECDHE public key. The hash and signature
algorithms where previously specified in the ClientHello extensions, which are SHA256
and ECDSA in this implementation.

4.2.1.2.6 CertificateRequest

As described in the corresponding TLS design section, the CertificateRequest message is
optional. The server sends this message, if he wants the client to authenticate itself against
the server by sending Certificate message, which contains a certificate chain. As in the
proposed drone identification system, the drone (client) has to perform an authentication

64

against the flight control server, the transmission of the optional CertificateRequest mes-
sage is implemented and used. With this message, the supported certificate types as well
as the supported hash and signature algorithms are sent.

4.2.1.2.7 ServerHelloDone

At the end of the ServerHello and its associated messages, the ServerHelloDone message is
sent. After sending this message, the server waits for a response from the client. This mes-
sage is an empty handshake message. This step is required because the CertificateRequest
message is optional.

4.2.1.2.8 Parse Received Server Messages

In this step, the client is parsing all messages received from the server up to now (from
ServerHello to ServerHelloDone). All information received through the ServerHello mes-
sage is checked for errors. If an error occurs, an alert message is sent and the TLS
handshake procedure ends. Further, the server random number is saved, because it is
needed in a later step within the TLS handshake procedure. It is necessary to copy the
value, because all messages which are already parsed are discarded.

The parse certificate function is as the Certificate message, implemented in the file
ifx tls common.c, because it used by both parties. It makes use of the helper functions
from the file ifx tls x509 parser.c. The certificate chain is parsed, as explained in the corre-
sponding design section (Section 3.2.2.2). The validity is checked certificate by certificate.
In this implementation of the certificate parser, there is no memory allocated, except for
the struct, which holds the address to the public key of the certificate and its length.
For the first certificate in the chain, the public key is saved for a later step during the
TLS handshake procedure. The last certificate in the chain has to be a certificate which
is signed by a trusted root certificate, which is hold by the certificate storage [82]. For
further steps during the TLS handshake, the public key of the root certificate is extracted.

In the next step, the ServerKeyExchange message is parsed and the Elliptic Curve
Diffie-Hellman (ECDH) public key is extracted and stored. During parsing this message,
the signature of the message is verified.

As in this implementation the CertificateRequest message is sent by the server, the
client has to parse this message and check if it can serve the requested certificate types.
Otherwise an alert message is sent and the TLS handshake procedure ends.

Since the ServerHelloDone message is an empty handshake message, the length of the
message, which should be zero (excluding the header), is checked. Otherwise an alert
message is sent.

4.2.1.2.9 Client Certificate

Triggered by the CertificateRequest message from the server, the client has to send a
Certificate message to the server. As described in the analogous server message (Paragraph
4.2.1.2.4), the implementation is common for both roles. The sent Certificate is extracted
from the certificate storage of the OPTIGA Trust X.

4.2.1.2.10 ClientKeyExchange

This message is used to set the pre-master secret [34]. The pre-master secret can either be
a shared secret or a pre-shared secret. In this implementation the shared secret is used.
The shared secret is generated with the HSM (OPTIGA Trust X). Since ECDHE is used

65

as a key exchange algorithm, this is done by transmitting the Diffie-Hellman public value
(generated by the HSM), which is a point on the elliptic curve. In this implementation,
the function to write the ClientKeyExchange message, also contains the derivation of the
bulk key which happens in additional two steps.

The master secret is generated with the KDF of the HSM with the pre-master secret
and the random numbers from the client and the server as input. After that, the bulk key
is generated with the KDF of the HSM, with the before generated master secret and again
the random numbers as input. The bulk key is compared to the master secret, expanded
in length, to be long enough to be split into a client write MAC key, a server write MAC
key, a client write encryption key, a server write encryption key and an initialization vector
for the AES-GCM algorithm [34].

4.2.1.2.11 CertificateVerify

”This message is used to provide explicit verification of a client certificate.” [34] In this
implementation the message contains a signature of the hash over all TLS handshake
messages sent and received up to now.

4.2.1.2.12 Client ChangeCipherSpec

This message composition is implemented in the file ifx tls common.c, because it is used by
the client and the server. With the ChangeCipherSpec message, which is part of the change
cipher spec protocol (not of the handshake protocol), it is indicated, that from now on all
messages are encrypted with the before negotiated cipher suite and keys [82]. As depicted
in Figure 3.6, up to inclusively the ChangeCipherSpec message, the communication was
plain and from now on all the message are encrypted (indicated with gray and blue bars
on the picture border).

4.2.1.2.13 Client Finished

If the key exchange as well as the authentication process was successful, the encrypted
Finished message is sent. The steps for creating the label, which is sent with the Finished
message are:

1. Hash all sent and received messages

2. Append the label ”client finished” to the hash

3. Use KDF to create label (with hash, label and master secret as input)

This function is implemented in the common C file, because the client and the server
are sending the analogous Finished messages (with different label). This process ensures
that all messages are linked together and that they can never be reused. In every TLS
handshake new unpredictable random numbers (for client and server) as well as a random
session key are generated.

4.2.1.2.14 Parse Received Client Messages

Parsing the client Certificate message, works analogous to the parser of the server Certifi-
cate message as described in the Section 4.2.1.2.8.

The function to parse the ClientKeyExchange message is implemented analogous to
the implementation for writing the message. First, the shared secret (pre-master secret)

66

is generated. Then the master secret and the bulk key are derived. After that step, the
necessary keys for the encrypted communication are negotiated.

Further, the signature sent by the clients CertificateVerify message is validated. The
validation happens with a function provided by the OPTIGA Trust X. If the validation
fails, an alert message is sent and the TLS handshake procedure ends.

To verify the Finished message, the server calculates the finished value in the same
way as the client does. This works by hashing all the sent and received messages, append
the label ”client finished” and use the KDF (with hash, label and master secret as input).
The calculated value is compared to the received value (from the client Finished message).
If the values do not match, an alert message is sent and the handshake ends.

4.2.1.2.15 Server ChangeCipherSpec

This message is analogous to the clients ChangeCipherSpec message. It indicates that
from now on all messages are sent encrypted.

4.2.1.2.16 Server Finished

This message as well as the parsing on the client side work in the same way as the client
Finished message. After successfully receiving and validating the server Finished message,
the TLS handshake procedure is done and the application data can be sent encrypted.

The functions for writing and reading from the TLS secured communication channel
are specified in the file ifx tls.c and are called ifx tls write(...) and ifx tls read(...).

4.2.1.2.17 TLS Record Layer

The before described application interface functions for reading and writing are calling
functions from the TLS record layer, specified in the file ifx tls record layer.c, which is
using helper functions from the transport files.

As specified in the cipher suite, the encryption algorithm AES-GCM is used with a key
size of 128 bit. The AES-GCM algorithm is explained in the corresponding design section
(Section 3.2.2.1). The record layer functions for transmitting and receiving are using
the helper files aes.c and gcm.c, which contain cryptographic functions. Each packet on
the TLS record layer, consists of a header and the payload. The header contains of the
protocol type, the TLS version (in this case TLS 1.2) and the length of the payload.
Possible protocol types are:

• Handshake protocol

• Change cipher spec protocol

• Application protocol

• Alert protocol

4.2.1.3 BLE Tools

Since BLE RSSI values from several BLE beacons (detailed structure of BLE beacons are
given in Section 4.1.3.1) are used to localize the drone within the demonstration setup, the
C application hosted on the Raspberry needs to access these values. Linux based operation
systems (in this case Raspbian) are providing tools to (inter-) act with BT devices. First,
the operating system has to trigger a scanning procedure for BLE devices. This is done
with hcitool command set. The detailed command set can be found in the Linux manual
[51] or within the operating system with the command man 1 hcitool. The command,

67

used to scan for BLE devices, is hcitools lescan –duplicates and displays the hardware
addresses of the devices which are in the range of the BT module of the Raspberry Pi.
The parameter -duplicates is necessary, because the BLE beacons are periodically sending
advertising packets. This results in multiple packets from the same device, which otherwise
would be filtered by the tool.

After triggering the operating system to perform a BLE scanning procedure, the re-
ceived data packets have to be displayed. This is done with the Bluetooth monitor, which
is started with the command btmon. The Bluetooth monitor is displaying all BT devices
together with their signal strength values RSSI and other information about the device
as depicted in Listing 4.3. These Linux commands are used for simplicity reasons for the
demonstration setup. Otherwise the BT protocol stack has to be implemented.

Listing 4.3: Example for HCI Event from Bluetooth monitor

1 HCI Event: LE Meta Event (0x3e) plen 42 [hci0] 8.747653

2 LE Advertising Report (0x02)

3 Num reports: 1

4 Event type: Non connectable undirected - ADV NONCONN IND (0x03)

5 Address type: Random (0x01)

6 Address: E8:D9:AE:DC:C1:10 (Static)

7 Data length: 30

8 Flags: 0x04

9 BR/EDR Not Supported

10 Company: Nordic Semiconductor ASA (89)

11 Data: 02150112233445566778899aabbccddeeff001020304c3

12 RSSI: -57 dBm (0xc7)

The most important information from Listing 4.3 extracted by the parseInputData(...)
function from the C application, is the hardware address (Address: E8:D9:AE:DC:C1:10
(Static), in this case) and the RSSI value which is -57 dBm in this example.

4.2.2 Flight Control Server Software

This section describes the software running on the flight control server, which is im-
plemented on a Raspberry Pi 3. Details about the used hardware are depicted in the
corresponding hardware implementation section (Section 4.1.2). The OS installed on the
Raspberry Pi is the official Raspbian GNU/Linux 9 (stretch). Beside the OS, the main
software parts are the application itself and the TLS implementation.

4.2.2.1 Application

Due to the fact that the TLS secured TCP/IP sockets are a platform independent network
interface, it does not matter which programming language is chosen. That means it does
not necessarily have to be C, which is used on the client (drone) side. The chosen pro-
gramming language is Python (version 3.5.3). As depicted in the corresponding software
design section (Section 3.4.2), the main parts of the application are the functionality for
drone remote control, Profile switch and the drone identification itself.

Figure 4.10 depicts the structure of the flight control server application. The software
blocks are the equivalents to the client (drone) software application, which are the blocks
for Profile switch (AT relay), remote control (RC relay) and drone identification. Addi-
tionally, a GUI is implemented in order to provide the possibility for visualization and
interaction with the user, which is also depicted in Figure 4.10.

In the file main.py, the functional separation between the threads is implemented. The
setup for the GUI is implemented in mainWindow.py. The file locating.py holds helper

68

Python – Application

Profile Switch Drone ID Remote Control

 openChannel(ClientRole)

 waitForEvent(GUI) <LOOP>
createATCmdSequence()

channelSend()
channelRead()

-> GUI

 datalist_init()

 openChannel(ServerRole)

 channelRead() <LOOP>
deserializeData()

addToDataList()

 locateDrone()
checkForNewData() <LOOP>

doBilateration(data)
->GUI

 openChannel(ClientRole)

 sendSteeringData() <LOOP>
buildDataPacket(GUI)

channelSend()

Thread-1
Thread-2

Thread-3

Thread-4

Graphical User Interface (GUI) - PyQt

1.

1.

2.

2.

3.

3.

4.

4.

 connectSignals(Buttons)

 window = mainWindow()
 window.show()

 app.exec_() <LOOP>

Thread-5

Figure 4.10: Flight control server software - application implementation

functions for the location estimation. In the file steering.py the 16-byte control data packet
is created according to the input received from the GUI.

4.2.2.1.1 Graphical User Interface (GUI)

”Python has a huge number of GUI frameworks (or toolkits) available for it,
from TkInter (traditionally bundled with Python, using Tk) to a number of
other cross-platform solutions, as well as bindings to platform-specific (also
known as ”native”) technologies”. [63]

For this project, the common cross-platform framework PyQt is used, which works with
Python 2 and 3. The GUI was created with the Qt Designer (version 5.9.1). Detailed
information about how to create a GUI with the PyQt Designer can be found in [65].
To add the functionalities to the GUI elements, so called signals are used. This works
by connecting the corresponding functions to the elements, which are called Qt Widgets.
After connecting the GUI elements to the corresponding functions, the GUI is opened
(window.show()) and event handling is started app.exec ()).

In Figure 4.11 the flight control server GUI is depicted. It is divided into three distinct

69

areas, which are the remote control section (1), the eSIM section (2) and the drone position
section (3). The remote control section provides the basic functionality to remote control
the drone. The control cross allows to perform roll and pitch movements. The slider,
together with the up and down button are changing the speed of the rotors. The On/Off -
button is responsible for arming and disarming the rotors. The Play-button provides the
possibility of automatic starting (up to a given height, tethered) and landing the drone.
The second area allows the interaction with the eSIM (via the TLS secured channel), which
is used for identifying the drone against a certain MNO to provide network services. After
a successful connection setup to the drone, the available MNO Profiles are read out of the
eSIM and displayed on the GUI. In addition, the enabled Profile is highlighted. If there is
more than one Profile available at the eSIM, an MNO Profile change can be triggered by
selecting the desired Profile and clicking on the Swap Profile-button. The area on the right
side within the GUI is sketching a map, which is representing the table from the demo
setup from Section 4.1.3. In the lower right corner, the no-fly zone is visualized. Details
about the functionalities behind the GUI are described in the corresponding section below.

1 3

2

Figure 4.11: Flight control server GUI

4.2.2.1.2 Drone Remote Control

The functionality for the drone remote control is running in a distinct thread (Thread-4
in Figure 4.10). This thread is periodically sending (every 20 ms, but timing not critical)
the 16 bytes long data packet according to Spektrum’s DSMX protocol, to the drone’s
Raspberry Pi which is relaying the data packets to the flight controller. The data packet
is sent to the flight control server via the before established TLS connection (details
are depicted in Section 4.2.2.2). The 16-byte control data packet contains the control
information for roll, pitch and yaw of the multicopter, as well as the speed and arming
information for the rotors. Initially, the control data packet is filled with Idle-values,
which keeps the drone in a neutral position with disarmed rotors. If a remote control

70

event within the GUI happens, these idle values are modified. If for example the Right-
button is pressed, the roll-value within the control data packet gets modified as long as
the button is released.

4.2.2.1.3 Profile Switch

This software block is responsible for triggering a Profile switch within the eSIM, which is
used on the client (drone) for authentication against an MNO. In the proposed solution,
the Profile switch is based on AT commands. These commands are generated on the server
side and forwarded to the client, which is relaying them to the LTE module, as explained
in Section 4.2.1.1.2. The AT command structure as well as the necessary AT command
sequence for switching the MNO Profile on the eSIM are described in the following section.

4.2.2.1.4 AT Commands

AT commands are commands which are used to configure modems. AT is the abbreviation
for Attention, and it is used as a compulsive prefix for every command. The standard is
specified in the ITU-T recommendation V.250 [42]. The use of this standard, avoids the
necessity of modem specific drivers. In general there are three groups of AT commands, the
basic commands, the register commands and the extended commands. For some modems
there is a fourth group of command, which is called proprietary or special command
set. The basic command set provides basic interaction functionality such as dialing or
answering a call. The register commands are used to set certain register values based on
indices. The extended commands are separated into test, read, write and action commands
[22].

In Figure 4.12 and Figure 4.13, the structure of basic and extended AT commands
and its response are depicted. The main parts of the command line structure are the
AT prefix, and the command itself, which is concatenated with a + for the extended
case, and without it for the basic case. The commands are separated with a semicolon.
For reading commands, a question mark is added and for test commands an equal sign
followed by a question mark is used. Write commands are followed by an equal sign
and parameters, which are separated with commas. Each command line ends with the
termination character <CR>.

Figure 4.12: Basic structure of AT commands [22]

In Figure 4.13 the response structure is depicted. The final result code in case of a
successful command execution should always be OK.

71

Figure 4.13: Basic structure of AT command response [22]

4.2.2.1.5 Command Sequence

In order to perform a local Profile switch on Avnet’s eSIM, AT commands has to be
sent to the eSIM to enable an already downloaded Profile. In this case a local Profile
switch means, that the Profile switch is not executed by Avnet’s Subscription Manager
Secure Router (SM-SR). The following listing shows the procedure together with the AT
commands which has to be followed according to Avnet’s starter guide for the eUICC test
pack purchased from [5] [6].

1. Open channel to modem (channel 1)

AT+CSIM=10,”0070000001”

2. Select applet

AT+CSIM=42,”01A4040010A0000000770307601100FE0000300001”

3. Send specific command to applet

(a) Get eID

AT+CSIM=10,”8116000012”

(b) Audit (get current state)

AT+CSIM=42,”01A4040010A0000000770307601100FE0000300001”

(c) Enable Profile

AT+CSIM=42,”8101000010A0000005591010FFFFFFFF890000****”

**** indicates Issuer Security Domain Profile (ISDP) to select

4. Close channel to modem (channel 1)

AT+CSIM=10,”0070800100”

4.2.2.1.6 Drone Identification and Tracking

The drone identification and tracking part of the application is separated into two threads
(Thread-3 and Thread-4 in Figure 4.10). One thread is listening for new location infor-
mation data on the before opened channel. If new location information data is received,
the CBOR encoded data is de-serialized and saved to a list of BLE RSSI values, which are
used for estimating the drone location. In the second thread of this drone identification
and tracking software block, the estimated location of the drone is calculated based on the
principle of bilateration, which is described in the subsequent section (Section 4.2.2.1.7).
To smooth the noisy RSSI values, the average of the last five values is calculated. This

72

results in values with less noise, but still a fair drone position update interval. The update
interval is 0.5 s, because the advertising interval of the BLE beacons is 100 ms. In order to
calculate the position of the drone, the BLE RSSI values have to be converted to distance
values beforehand. The following equation (Equation 4.1) is used to convert the RSSI
value to a distance value, based on a reference value (RSSI value on 1 m distance):

d = 10
RSSI1m−rssi

10N (4.1)

where d is the calculated distance; RSSI1m is the reference RSSI value in 1 m distance;
rssi is the RSSI value to convert; N represents the propagation exponent (2 for free space).

The identification of the drone against the flight control server is done with the cer-
tificate received during the TLS handshake procedure for the connection establishment,
which is explained in the corresponding design section (Section 3.2.2.3).

4.2.2.1.7 BLE Bilateration

Bilateration is a geometric principle to calculate the position of a a point P, with the
knowledge of two distances to the point P from two distinct stations. For example, GPS
receivers are using the principle of trilateration, which works in the same way as bilater-
ation but it uses three input distances. This results in one distinct point of intersection
of the circles which can be drawn with the distances and the positions of the stations as
center of the circle. That means, bilateration has a restriction compared to trilateration,
but since the BLE beacons are located in the corners of the area of interest, there is only
one possible point of intersection. Compared to the principle of lateration, the angulation
principle (e.g. triangulation) takes the angles instead of distances as input parameter.

In order to avoid the computational expensive solving of three or more quadratic
equations, the principle of Heron-bilateration is used [32]. Equations 4.2 and 4.3 depict
the formulas for calculating the x and y position of the unknown point P, which is the
drone position in this case (modified from [32]):

x = xH2 − 2

√
s(s− dH1)(s− dH2)(s− b12)

b12

with b12 = |yH1 − yH2| and s =
1

2
(dH1 + dH2 + b12)

(4.2)

y = yH2 +
√
d2H2 − h212

with h12 = xH2 − x
(4.3)

Figure 4.14 depicts the parameters which are used in Equations 4.2 and 4.3 for cal-
culating the Heron-bilateration [32]. The points H1 and H2 are the stations (beacon
positions in this case) and the corresponding distances dH1 and dH2 are the distances from
the stations to the unknown point P.

In addition to the implementation of the equations above, the input parameters (RSSI
values) have to be checked for errors or infeasibility, such as the maximum possible values
for the distances, which can be exceeded, because the BLE RSSI values are noisy.

73

H1 (xH1, yH1)

H2 (xH2, yH2)O (0, 0)

P (x, y) h12

dH1

dH2

b12

x

y

Figure 4.14: Principle of bilateration (modified from [32])

4.2.2.2 TLS

As depicted in the corresponding design section for the servers TLS (Section 3.4.2.2),
the TLS block is fully implemented in software. The used software library is OpenSSL,
an open-source software library for the TLS protocol. For the demonstration setup, the
certificates and keys which are necessary for the secured connection establishment are
stored locally on the flight control server. As the application on the flight control server
is written in Python, a wrapper for the OpenSSL library is necessary. Python provides
this wrapper with the ssl module. Detailed information about the OpenSSL library can
be found on the official website [59].

4.2.3 BLE Beacon Software

For the BLE beacons software, an example project from the nRF5 SDK version 15.2.0 was
used. The used project is a beacon transmitter sample application, which is setting the
board into BLE advertising mode to broadcast BLE advertising packets in a given time
interval with a given output power. The provided advertising intervals are between 100 ms
and 10.24 s. In order to get a high timing resolution, the smallest interval (100 ms) was
chosen. The values for the provided transmission power are between -40 dBm and +4 dBm.
The highest value was chosen, because it results in the best RSSI - distance correlation. In
order to work with the example project, the Integrated Development Environment (IDE)
Segger Embedded Studio ARM V3.40 was used. To flash the software to the board, Segger
J-Link (version v6.22) was used.

74

4.3 Evaluation

In this chapter, the Infineon TLS library is compared to the open-source library OpenSSL,
based on the use case for IoT devices.

4.3.1 TLS Library Comparison

OpenSSL is a full-featured TLS library written in C [59]. The library supports several TLS
and DTLS versions, a huge set of cipher suites and it also provides a cryptographic library
[59]. In contrast to that, the Infineon TLS library, only supports TLS version 1.2 and
one specific cipher suite. The OpenSSL library is suitable for a various set of applications
and devices, where the Infineon TLS library is optimized for low processing power devices,
especially in the IoT area. The main differences between those two libraries are depicted
in Table 4.2.

OpenSSL IFX TLS

Language C C

Open-source Yes No

TLS versions 1.0, 1.1, 1.2, 1.3 (draft) 1.2

SSL versions (insecure) 2.0, 3.0 -

DTLS versions 1.0, 1.2 -

Lines of code ∼ 546,200 [7] ∼ 3500 + 6800*

Compiled code size (for Raspbian) ∼ 460 kB ∼ 64 kB

Table 4.2: TLS comparison

(*) The lines of code for the Infineon TLS library, is split into two parts. Approxi-
mately 3500 lines for the TLS library itself, plus approximately 6800 lines of code for the
cryptographic helper functions. That means, compared to the OpenSSL library, the lines
of code are roughly 50 times less. Especially for IoT devices, libraries with less compiled
code size as well as fewer lines of code are more suitable. On one hand, the storage is
mostly limited and on the other hand, some IoT devices need to get certified. That means
all the software needs to be reviewed, which leads to a huge working overhead, if the lines
of code are significantly more. Due the the storage limitation of IoT devices, another
advantage of the Infineon TLS library can be taken into account. The X.509 certificate
parser is implemented in a more efficient way, regarding memory consumption. In this
implementation, the parser is not allocating any memory, except for the struct, which
holds the address to the public key of the certificate and its length.

Since the OpenSSL library is backwards compatible to older TLS versions, downgrading
attacks are possible and security issues which are already solved in newer versions can be
exploited. For applications, where an interaction with a user is necessary, the version
downgrading could be desirable, because it should be possible for users with older browser
to interact with the server. This is not relevant for IoT applications, such as implemented
in this project.

75

Chapter 5

Conclusion

The proposed drone identification and tracking system, which is introduced in this thesis,
is based on standardized protocols and state-of-the-art technologies. Using standardized
protocols for authentication (TLS) and data serialization (CBOR) instead of using propri-
etary protocols, increases acceptance changes in case of submitting the proposed system
to an authority such as the FAA or the EASA. This would be the first step in order to
convince authorities to adopt the proposed concept or even parts of the concept as a basis
for new, upcoming regulations in the context of drone identification and authentication.
TLS, which is an RFC standardized and approved by the IETF, provides the impor-
tant properties authenticity, integrity and confidentiality. The authentication respectively
identification of the drone (and further of the legal owner) is the most important part
within this context. The TLS protocol is not only used for authentication, but also for
securing the communication channel. During the connection establishment for the secured
communication channel (where the authentication happens), keys and certificates are nec-
essary. In order to securely store the necessary keys and certificates, the TLS layer of the
communication is partitioned between the host (drone) and an HSM. The used HSM is
the Infineon OPTIGA Trust X, which is Common Criteria (CC) certified, and provides
a secured storage. Further, this design decision allows to relieve the host controller from
processing power expensive, cryptographic operations.

For this system, the LTE network is selected as a physical link. In order to reach
global, economical connectivity, an eSIM is used for the network authentication against
an MNO. The economical aspect can be reached, due to the fact, that for eSIMs, over-
the-air MNO changes are possible, which allows to select country specific MNOs, instead
of using a global roaming tariff for the LTE connection. This is done with the introduction
of Profiles and Remote SIM Provisioning (RSP), where each Profile is linked to an MNO.
To change the MNO, a certain Profile has to be activated if it is already on the eSIM.
Otherwise the Profile has to be downloaded first. Depending on the application, the
consumer or the M2M approach can be chosen. Detailed information about Profiles are
given in the eSIM section (Section 2.2.2.2). Contrarily, for traditional SIM cards, the SIM
has to be physically replaced, in order to change the MNO. Due to this fact, traditional
SIMs have to be placed on an accessible position in order to replace for an MNO change.
eSIMs can be placed in every arbitrary position within the device because it does not have
to be replaced. This aspect is especially in the IoT context very important, because those
devices tend to be small in physical size.

Compared to other drone identification and tracking systems, the proposed system
has several advantages. First of all, this system is a real identification and authentication
system, not as DJI’s AeroScope, which is a detection and tracking system. That means

76

the AeroScope system (which is explained in Section 2.1.3.1) needs to detect a drone first,
in order to track and identify it later on. Further, the detection range is limited to the
range of the base station. That means every area which should be observed (no-fly zones)
needs a base station. If more no-fly zones are within a given range, one base station can
be used for surveillance, but since the range is limited to approximately 40 km [18], a huge
amount of base stations would be necessary in order to reach a global coverage. This is
not feasible, even tough the drone itself has to be modified in addition (all except DJI
drones).

Within the newly proposed system, the drone is identifying as well as authenticating
itself against a flight control server, which is driven by an official authority. Theoretically,
it would be possible to have one single flight control server, which is used by every drone
for authentication. In practice, this is not really feasible, because of several reasons. One
reason would be the different regulations and laws of different countries and also the
huge amount of drones, connecting to the server. As depicted in the certificate retrieval
process (Figure 3.7), it would be a good practice to have several flight control servers per
region. This is a similar approach as for DNS. That means for the proposed system, there
is one global lookup service, which holds all certificates and domains from the regional
authority CAs in a database. This global lookup service is used in order to get the
corresponding domain of the regional authority, depending on the location. Further, each
regional authority is driving one ore more flight control server. Possible parameters for
the number of flight control servers could be the size of the region and the density of drone
owners in this region. The chosen approach introduces a globally available system, with
a standardized, state-of-the-art secured communication channel. The system is globally
available, due to the fact that the chosen physical communication channel (LTE, later 5G)
is widely spread, especially near civilization.

An advantage compared to Vodafone’s RPS system is, that LTE is only used as a com-
munication channel, not also for authentication. This means the physical channel could
easily be replaced at any time, by any other communication channel, which is probably
available in the future (e.g. 5G).

A disadvantage, which is a probably not possible to circumvent, if an active identifi-
cation and authentication process happens, is that the drone system has to be modified.
It has to be equipped with LTE, but this comes with other possible use cases, such as be-
yond the line-of-sight steering or transmitting high quality video streams. This is possible
because LTE is capable of high transmission rates. Further, an additional software has
to be implemented on the drone, but this could be standardized, in order to limit addi-
tional implementation work for the drone manufacturers. Another drawback which comes
with additional system blocks (software and/or hardware) is, that it lowers the battery
duration.

5.1 Outlook

For the future it would be advisable to propose the developed design and concept to
aviation safety authorities, such as the FAA or the EASA. One good way to do so,
would be to engage with an aviation authority via an RFI. If there is some legitimate
interest shown from an authority, the proposed system should be improved in several ways.
For example the application running on the drone, could be improved in the context of
energy efficiency, which is a very important property for mobile applications. Further, the
certificate retrieval process could be implemented as described in the design and concept.
These steps were done manually in the current prototype. Additionally, the demonstration

77

could be extended and changed in a way to operate it in realistic environments. That
means to operate several drones (instead of only one) outside, and use GPS as a positioning
system. On the flight control server side, the tracking of the drone could be implemented
and stored in a database.

If, theoretically, a regulation comes up which uses a system similar to the proposed
solution, there is one aspect which should be kept in mind. The commercial drone man-
ufacturers could be forced to implement the system for every drone they are selling, but
people can also built their own drone, without the identification system implemented. It
theoretically could be forbidden by law to launch such drones, but it will never be possible
to totally prevent it. Due to the fact that people need to have a certain amount of know-
how to built their own drone, a regulation for commercial drone manufacturers would at
least gather a big part of drone owners. Keeping that aspect in mind means, that also
in future, radar systems cannot be totally replaced or omitted by such identification and
authentication systems.

78

Acronyms

ADS-B Automatic Dependent Surveillance - Broadcast
AEAD Authenticated Encryption with Associated Data
AES Advanced Encryption Standard
API Application Programming Interface
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules
BLE Bluetooth Low Energy
BSON Binary JSON
BT Bluetooth
CA Certificate Authority
CBC Cipher Block Chaining
CBOR Concise Binary Object Representation
CC Common Criteria
CFB Cipher Feedback
CI Certificate Issuer
CNN Convolutional Neural Network
COSE CBOR Object Signing and Encryption
CSI Camera Serial Interface
CTR Counter
DES Data Encryption Standard
DH Diffie-Hellman Key Exchange
DIM Drone Identity Module
DK Deutsche Kreditwirtschaft
DMP Digital Motion Processor
DNS Domain Name System
DSA Digital Signature Algorithm
DTLS Datagram Transport Layer Security
EASA European Aviation Safety Agency
ECASD Embedded UICC Controlling Authority Security Domain
ECB Electronic Codebook
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman
ECDHE Elliptic Curve Diffie-Hellman Ephemeral Key Exchange
ECDSA Elliptic Curve Digital Signature Algorithm
ESC Electronic Speed Control
eSIM Embedded SIM
ETSI European Telecommunications Standards Institute
EU European Union
eUICC Embedded Universal Integrated Circuit Card

79

EUM eUICC Manufacturer
FAA Federal Aviation Administration
FIB Focused-Ion Beam
FIPS Federal Information Processing Standards
GAP Generic Access Profile
GATT Generic Attribute Profile
GCM Galois/Counter Mode
GNSS Global Navigation Satellite System
GPIO General Purpose Input Output
GPS Global Positioning System
GSMA GSM Association
GUI Graphical User Interface
HAL Hardware Abstraction Layer
HCI Host Controller Interface
HSM Hardware Security Module
IDE Integrated Development Environment
IDEA International Data Encryption Algorithm
IETF Internet Engineering Task Force
IMU Inertial Measurement Unit
IoT Internet of Things
IP Internet Protocol
ISDP Issuer Security Domain Profile
ISD-R Issuer Security Domain - Profile
ISD-P Issuer Security Domain - Root
ISM Industrial, Scientific and Medical
ISO International Organization for Standardization
ITU-T International Telecommunication Union - Telecommunication

Standardization Sector
IV Initialization Vector
I2C Inter-Integrated Circuit
JSON JavasScript Object Notation
KDF Key Derivation Function
LBA Luftfahrt-Bundesamt
LDS Local Discovery Service
LiPo Lithium-Polymer
LPA Local Profile Assistant
LPD Local Profile Download
LTE Long Term Evolution
LUI Local User Interface
MAC Message Authentication Code
MNO Mobile Network Operator
M2M Machine to Machine
NFC Near Field Communication
NAA Network Access Application
NIST National Institute of Standards and Technology
OFB Output Feedback
OS Operation System
OTA Over-The-Air
OTDOA Observed Time Difference Of Arrival

80

PAL Platform Abstraction Layer
PCB Printed Circuit Board
PER Packed Encoding Rules
PKI Public Key Infrastructure
PTZ Pan-Tilt-Zoom
PWM Pulse Width Modulation
RC Radio Control
RFC Request for Comments
RFI Request for Information
RPS Radio Positioning System
RSSI Received Signal Strength Indicator
RSA Rivest–Shamir–Adleman
RSP Remote SIM Provisioning
SDK Software Development Kit
SIM Subscriber Identity Module
SMP Security Manager Protocol
SM-DS Subscription Manager Discovery Server
SM-DP+ Subscription Manager Data Preparation - enhanced
SM-SR Subscription Manager Secure Router
SNR Signal-to-Noise Ratio
TCP Transmission Control Protocol
TOA Time Of Arrival
TLS Transport Layer Security
TRNG True Random Number Generator
UART Universal Asynchronous Receiver Transmitter
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
UICC Universal Integrated Circuit Card
USB Universal Serial Bus
XDR External Data Representation
3GPP 3rd Generation Partnership Project

81

Bibliography

[1] Alice Evans. Heathrow airport: Drone sighting halts departures. https://www.bbc.
com/news/uk-46803713. [Online; accessed 2019-01-10].

[2] L. Alqaydi, C. Y. Yeun, and E. Damiani. Security enhancements to TLS for improved
national control. In 2017 12th International Conference for Internet Technology and
Secured Transactions (ICITST), pages 274–279, Dec 2017.

[3] ARM. PrimeCell UART (PL011) Technical Reference Manual. r1p4 edition, 2005.

[4] Avnet. Infineon. https://www.avnet.com/shop/us/m/infineon/. [Online; accessed
2019-01-07].

[5] Avnet. Welcome to the Avnet eUICC test pack. https://www.avnet.com/

wps/portal/silica/products/product-highlights/product-registration/

avnet-euicc-test-pack/. [Online; accessed 2019-01-02].

[6] Avnet. Welcome to the Avnet eUICC test pack. 0.85 edition, 2018.

[7] BlackDuck. OpenSSL. https://www.openhub.net/p/openssl. [Online; accessed
2019-01-08].

[8] Bluetooth SIG. Bluetooth Specification Version 5.0. 2016.

[9] Bluetooth SIG, Inc. Bluetooth technology. https://www.bluetooth.com/

bluetooth-technology/radio-versions, 2018. [Online; accessed 2018-07-12].

[10] BMVI. Klare Regeln für Betrieb von Drohnen. https://www.bmvi.de/SharedDocs/
DE/Artikel/LF/151108-drohnen.html, 2018. [Online; accessed 2018-09-20].

[11] Brendan Horan. Practical Raspberry Pi. Apress, 1 edition, 2013.

[12] BSON. BSON. http://bsonspec.org/spec.html. [Online; accessed 2018-07-10].

[13] Bormann C. and Hoffman P. Concise Binary Object Representation (CBOR). RFC
7049, RFC Editor, October 2013.

[14] CBOR. CBOR — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/
wiki/CBOR, 2018. [Online; accessed 2018-07-10].

[15] T. Chen, W. Huo, and Z. Liu. Design and Efficient FPGA Implementation of Ghash
Core for AES-GCM. In 2010 International Conference on Computational Intelligence
and Software Engineering, pages 1–4, Dec 2010.

[16] COPTRZ. Real-time DJI Drone Detection System. https://www.coptrz.com/

dji-aeroscope/. [Online; accessed 2018-09-28].

82

https://www.bbc.com/news/uk-46803713
https://www.bbc.com/news/uk-46803713
https://www.avnet.com/shop/us/m/infineon/
https://www.avnet.com/wps/portal/silica/products/product-highlights/product-registration/avnet-euicc-test-pack/
https://www.avnet.com/wps/portal/silica/products/product-highlights/product-registration/avnet-euicc-test-pack/
https://www.avnet.com/wps/portal/silica/products/product-highlights/product-registration/avnet-euicc-test-pack/
https://www.openhub.net/p/openssl
https://www.bluetooth.com/bluetooth-technology/radio-versions
https://www.bluetooth.com/bluetooth-technology/radio-versions
https://www.bmvi.de/SharedDocs/DE/Artikel/LF/151108-drohnen.html
https://www.bmvi.de/SharedDocs/DE/Artikel/LF/151108-drohnen.html
http://bsonspec.org/spec.html
https://en.wikipedia.org/wiki/CBOR
https://en.wikipedia.org/wiki/CBOR
https://www.coptrz.com/dji-aeroscope/
https://www.coptrz.com/dji-aeroscope/

[17] T. Fischer C. Lesjak R. Matischek D. Houdeau, W. Maurer. Implementation of
the architecture concept on test bench-level. Power Semiconductor and Electronics
Manufacturing 4.0, 1.1, 2016.

[18] David Atkinson. Drone Detection and Tracking with Aeroscope. https://www.

heliguy.com/blog/2018/03/06/discussing-dji-aeroscope/. [Online; accessed
2018-09-28].

[19] M. Dworkin. NIST Special Publication 800-38A, 2001 Edition: Recommendation for
Block Cipher Modes of Operation, Methods and Techniques. December 2001.

[20] Dwight F. Hare Ellen H. Siegel. Hardware security module (HSM) chip card, 12 2004.

[21] ETSI. Smart Cards; Machine to Machine UICC; Physical and logical characteristics
(Release 9). 2010.

[22] ETSI. Digital cellular telecommunications system (Phase 2+); Universal Mobile
Telecommunications System (UMTS); LTE; AT command set for User Equipment
(UE). 10.3.0 edition, 2011.

[23] FAA. FAA UAS Remote Identification Request for Information (RFI) - Data Ex-
change Strategies and Demonstrastions for UAS Remote Identification. Technical
report, FAA, 2019.

[24] H. T. Friis. A Note on a Simple Transmission Formula. Proceedings of the IRE,
34(5):254–256, May 1946.

[25] GSM Association. GSMA eUICC PKI Certificate Policy Version 1.1. 2017.

[26] GSM Association. RSP Architecture Version 2.2. 2017.

[27] GSM Association. RSP Technical Specification Version 2.2. 2017.

[28] GSM Association. Embedded SIM. https://www.gsma.com/aboutus/leadership/

committees-and-groups/working-groups/sim-working-group/embedded-sim,
2018. [Online; accessed 2018-07-30].

[29] S. Gueron and V. Krasnov. Speeding up Counter Mode in Software and Hardware.
In 2014 11th International Conference on Information Technology: New Generations,
pages 338–340, April 2014.

[30] Hobbywing. XRotor Micro40A 4in1 BLHeli-S DShot600. http://www.hobbywing.

com/goods.php?id=588. [Online; accessed 2018-11-14].

[31] Horizon Hobby, LLC. Specification for Spektrum Remote Receiver Interfacing. Rev a
edition, 2016.

[32] C. Huang, L. Lee, C. C. Ho, L. Wu, and Z. Lai. Real-Time RFID Indoor Positioning
System Based on Kalman-Filter Drift Removal and Heron-Bilateration Location Es-
timation. IEEE Transactions on Instrumentation and Measurement, 64(3):728–739,
March 2015.

[33] C. Huitema and A. Doghri. Defining Faster Transfer Syntaxes for the OSI Presenta-
tion Protocol. SIGCOMM Comput. Commun. Rev., 19(5):44–55, October 1989.

83

https://www.heliguy.com/blog/2018/03/06/discussing-dji-aeroscope/
https://www.heliguy.com/blog/2018/03/06/discussing-dji-aeroscope/
https://www.gsma.com/aboutus/leadership/committees-and-groups/working-groups/sim-working-group/embedded-sim
https://www.gsma.com/aboutus/leadership/committees-and-groups/working-groups/sim-working-group/embedded-sim
http://www.hobbywing.com/goods.php?id=588
http://www.hobbywing.com/goods.php?id=588

[34] IETF. RFC5246 - The Transport Layer Security (TLS) Protocol Version 2.1.
tools.ietf.org, 2008.

[35] Infineon Technologies AG. XMC4500 Microcontroller Series for Industrial Applica-
tions. V1.5 edition, 2017.

[36] Infineon Technologies AG. DPS422 Digital barometric pressure and temp sensor for
portable and IOT devices. V1.3 edition, 2018.

[37] Infineon Technologies AG. OPTIGA Trust X Datasheet. 2018.

[38] Infineon Technologies AG. OPTIGA Trust X1 Solution Reference Manual. 2018.

[39] InvenSense Inc. MPU-9250 Product Specification. 1.1 edition, 2016.

[40] ISO. ISO/IEC JTC 1/SC 17. https://www.iso.org/committee/45144.html. [On-
line; accessed 2018-10-15].

[41] ITU-T. ITU-T Recommendation X.690 : Information technology – ASN.1 encoding
rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER)
and Distinguished Encoding Rules (DER). Technical report, 2002.

[42] ITU-T. ITU-T Recommendation V.250: DATA COMMUNICATION OVER THE
TELEPHONE NETWORK, Control procedures, Serial asynchronous automatic di-
alling and control. Technical report, 2003.

[43] B. Changseok J. Joonyoung, K. Dongoh. Distance Estimation of Smart Device us-
ing Bluetooth. In The Eighth International Conference on Systems and Networks
Communications, pages 13–18, Oct 2013.

[44] M. Ji, J. Kim, J. Jeon, and Y. Cho. Analysis of positioning accuracy corresponding to
the number of BLE beacons in indoor positioning system. In 2015 17th International
Conference on Advanced Communication Technology (ICACT), pages 92–95, July
2015.

[45] M. Jian, Z. Lu, and V. C. Chen. Drone detection and tracking based on phase-
interferometric Doppler radar. In 2018 IEEE Radar Conference (RadarConf18), pages
1146–1149, April 2018.

[46] Johannes Ebert. Wireless Communication Networks and Protocols. Lecture Slides,
TU Graz. [delivered 2018-03].

[47] Julie Olenski. ECC 101: What is ECC and why would I want to use it? https://

www.globalsign.com/en/blog/elliptic-curve-cryptography/. [Online; accessed
2019-01-04].

[48] M. Koschuch, T. Fruhwirth, A. Glaser, S. Schmidt, and M. Hudler. Speaking in
tongues practical evaluation of TLS cipher suites compatibility. In 2015 12th Interna-
tional Joint Conference on e-Business and Telecommunications (ICETE), volume 01,
pages 13–23, July 2015.

[49] K. Lee, S. Y. Lee, C. Seo, and K. Yim. TRNG (True Random Number Generator)
Method Using Visible Spectrum for Secure Communication on 5G Network. IEEE
Access, 6:12838–12847, 2018.

84

https://www.iso.org/committee/45144.html
https://www.globalsign.com/en/blog/elliptic-curve-cryptography/
https://www.globalsign.com/en/blog/elliptic-curve-cryptography/

[50] Y. Li, X. Meng, S. Wang, and J. Wang. Weighted key enumeration for EM-based
side-channel attacks. In 2018 IEEE International Symposium on Electromagnetic
Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compati-
bility (EMC/APEMC), pages 749–752, May 2018.

[51] M. Krasnyansky, M. Holtmann. hcitool(1) - Linux man page. https://linux.die.

net/man/1/hcitool. [Online; accessed 2018-11-20].

[52] Magdalena Nohrborg. LTE. http://www.3gpp.org/technologies/

keywords-acronyms/98-lte. [Online; accessed 2018-10-19].

[53] A. Maratea, S. Gaglione, A. Angrisano, G. Salvi, and A. Nunziata. Non parametric
and robust statistics for indoor distance estimation through BLE. In 2018 IEEE In-
ternational Conference on Environmental Engineering (EE), pages 1–6, March 2018.

[54] Marcus Janke, Dr. Peter Laakmann. In Attacks on Embedded Devices, Embedded
World Conference Nurenberg, 2016.

[55] Maxim Krasnyansky, Marcel Holtmann. hcitool (1) - Linux Man Pages. https:

//www.systutorials.com/docs/linux/man/1-hcitool/, 2018. [Online; accessed
2018-07-13].

[56] Microchip Technology, Inc. Generic Attribute Profile (GATT) Overview. http://

microchipdeveloper.com/wireless:ble-gatt-overview, 2018. [Online; accessed
2018-07-13].

[57] Nordic Semiconductor. nRF5 SKD. http://infocenter.nordicsemi.com/index.

jsp?topic=%2Fcom.nordic.infocenter.sdk%2Fdita%2Fsdk%2Fnrf5_sdk.html.
[Online; accessed 2018-11-22].

[58] Nordic Semiconductor. nRF51822. https://www.nordicsemi.com/eng/Products/

Bluetooth-low-energy/nRF51822. [Online; accessed 2018-11-22].

[59] OpenSSL Software Foundation. OpenSSL. https://www.openssl.org/. [Online;
accessed 2019-01-02].

[60] M. Slanina P. Sedlacek and D. Kovac. An Overview of Indoor and Outdoor Positioning
Technologies with Focus on their Precision . Electro Revue, 18(6), December 2016.

[61] J. Park, D. H. Kim, Y. S. Shin, and S. Lee. A comparison of convolutional object
detectors for real-time drone tracking using a PTZ camera. In 2017 17th International
Conference on Control, Automation and Systems (ICCAS), pages 696–699, Oct 2017.

[62] Pavel Kalvoda. libcbor. http://libcbor.org/. [Online; accessed 2018-11-20].

[63] Python Software Foundation. GUI Programming in Python. https://wiki.python.
org/moin/GuiProgramming. [Online; accessed 2018-11-22].

[64] L. Qi et al. A Secure End-to-End Cloud Computing Solution for Emergency Man-
agement with UAVs. December 2018.

[65] Qt Company Ltd. Qt Designer Manual. http://doc.qt.io/qt-5/

qtdesigner-manual.html. [Online; accessed 2018-11-22].

85

https://linux.die.net/man/1/hcitool
https://linux.die.net/man/1/hcitool
http://www.3gpp.org/technologies/keywords-acronyms/98-lte
http://www.3gpp.org/technologies/keywords-acronyms/98-lte
https://www.systutorials.com/docs/linux/man/1-hcitool/
https://www.systutorials.com/docs/linux/man/1-hcitool/
http://microchipdeveloper.com/wireless:ble-gatt-overview
http://microchipdeveloper.com/wireless:ble-gatt-overview
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk%2Fdita%2Fsdk%2Fnrf5_sdk.html
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk%2Fdita%2Fsdk%2Fnrf5_sdk.html
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822
https://www.openssl.org/
http://libcbor.org/
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
http://doc.qt.io/qt-5/qtdesigner-manual.html
http://doc.qt.io/qt-5/qtdesigner-manual.html

[66] S. Fries R. Falk. Advanced Device Authentication: Bringing Multi-Factor Authenti-
cation and Continuous Authentication to the Internet of Things. In CYBER 2016,
The First International Conference on Cyber-Technologies and Cyber-Systems, pages
69–74, October 2016.

[67] Ranjan Parekh. Principles of Multimedia. Tata McGraw-Hill, 1 edition, 2006.

[68] Raspberry Pi Foundation. Camera Module. https://www.raspberrypi.org/

documentation/hardware/camera/. [Online; accessed 2018-10-31].

[69] Raspberry Pi Foundation. Raspberry Pi Zero W (Wireless). https://micro-pi.ru/
raspberry-pi-zero-w-rpi0w-bcm2835/. [Online; accessed 2018-11-16].

[70] Raspberry Pi Foundation. The Raspberry Pi Uarts. https://www.raspberrypi.

org/documentation/configuration/uart.md. [Online; accessed 2018-11-16].

[71] SAMSUNG. eSIM Architecture. https://developer.samsung.

com/tech-insights/eSIM/esim-architecture",note="[Online;

accessed2018-07-31], 2018.

[72] Cellars A. Schaad j. CBOR Object Signing and Encryption (COSE). RFC 8152, RFC
Editor, July 2017.

[73] Sixfab. LTE-G-086 Cellular Miniature PCB Antenna. https://sixfab.com/

product/lte-g-086-cellular-miniature-pcb-antenna/. [Online; accessed 2018-
11-06].

[74] Sixfab. Quectel EC25 Mini PCle 4G/LTE Module. https://sixfab.com/product/

quectel-ec25-mini-pcle-4glte-module/. [Online; accessed 2018-11-05].

[75] Sixfab. Raspberry Pi 3G-4G/LTE Base Shield V2. https://sixfab.com/product/

raspberry-pi-3g-4glte-base-shield-v2/. [Online; accessed 2018-11-05].

[76] Sixfab. Raspberry Pi Iot Shields Sources. https://github.com/sixfab/

rpiShields. [Online; accessed 2018-11-14].

[77] Steve McCaskill. Vodafone’s 4G RPS to boost drone tracking. https://www.

techradar.com/news/vodafones-4g-rps-to-boost-drone-tracking. [Online; ac-
cessed 2018-10-01].

[78] Audie Sumaray and S. Kami Makki. A Comparison of Data Serialization Formats
for Optimal Efficiency on a Mobile Platform. In Proceedings of the 6th International
Conference on Ubiquitous Information Management and Communication, ICUIMC
’12, pages 48:1–48:6, New York, NY, USA, 2012. ACM.

[79] Inc. Sun Microsystems. XDR: External Representation Standard. RFC 1014, RFC
Editor, June 1987.

[80] B. Sung, K. Kim, and K. Shin. An AES-GCM authenticated encryption crypto-core
for IoT security. In 2018 International Conference on Electronics, Information, and
Communication (ICEIC), pages 1–3, Jan 2018.

[81] Sven Fischer. Observed Time Difference Of Arrival (OTDOA) Positioning in 3GPP
LTE. Qualcomm, 1.0 edition, 2014.

86

https://www.raspberrypi.org/documentation/hardware/camera/
https://www.raspberrypi.org/documentation/hardware/camera/
https://micro-pi.ru/raspberry-pi-zero-w-rpi0w-bcm2835/
https://micro-pi.ru/raspberry-pi-zero-w-rpi0w-bcm2835/
https://www.raspberrypi.org/documentation/configuration/uart.md
https://www.raspberrypi.org/documentation/configuration/uart.md
https://developer.samsung.com/tech-insights/eSIM/esim-architecture", note = "[Online; accessed 2018-07-31]
https://developer.samsung.com/tech-insights/eSIM/esim-architecture", note = "[Online; accessed 2018-07-31]
https://developer.samsung.com/tech-insights/eSIM/esim-architecture", note = "[Online; accessed 2018-07-31]
https://sixfab.com/product/lte-g-086-cellular-miniature-pcb-antenna/
https://sixfab.com/product/lte-g-086-cellular-miniature-pcb-antenna/
https://sixfab.com/product/quectel-ec25-mini-pcle-4glte-module/
https://sixfab.com/product/quectel-ec25-mini-pcle-4glte-module/
https://sixfab.com/product/raspberry-pi-3g-4glte-base-shield-v2/
https://sixfab.com/product/raspberry-pi-3g-4glte-base-shield-v2/
https://github.com/sixfab/rpiShields
https://github.com/sixfab/rpiShields
https://www.techradar.com/news/vodafones-4g-rps-to-boost-drone-tracking
https://www.techradar.com/news/vodafones-4g-rps-to-boost-drone-tracking

[82] Thomas Fischer. Design and Implementation of a Secure Personal Assistant Device
with BLE and NFC. TU Graz, 2016.

[83] Vodafone Group. Vodafone to protect the Skies with Trials of the Worlds first
IoT Drone Tracking and Safety Technology. https://www.vodafone.com/content/

index/media/vodafone-group-releases/2018/iot-drone-tracking.html. [On-
line; accessed 2018-10-01].

[84] Bing Zhou, Xianxiang Chen, Xinyu Hu, Ren Ren, Xiao Tan, Zhen Fang, and Shan-
hong Xia. A Bluetooth low energy approach for monitoring electrocardiography and
respiration. In 2013 IEEE 15th International Conference on e-Health Networking,
Applications and Services (Healthcom 2013), pages 130–134, Oct 2013.

87

https://www.vodafone.com/content/index/media/vodafone-group-releases/2018/iot-drone-tracking.html
https://www.vodafone.com/content/index/media/vodafone-group-releases/2018/iot-drone-tracking.html

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Overview

	State of the Art
	Drone Identification
	Regulations
	ISO Working Group
	Identification Systems
	DJI AeroScope
	Vodafone RPS
	Radar based System
	Image Processing based System

	Data Transmission
	Data Serialization Formats
	ASN.1
	CBOR
	BSON
	XDR
	Comparison

	Data Communication Technologies
	LTE
	eSim

	Protected Communication
	Hardware Security Modules
	Side Channel Attacks
	OPTIGA Trust X
	Comparison to other Hardware Security Modules

	Positioning Systems
	Outdoor Positioning Systems
	Indoor Positioning Systems
	Bluetooth Low Energy

	Infineon Larix Drone
	Hardware Architecture
	CleanFlight
	Drone Control

	Design
	Overview
	Use Case
	System Overview

	Communication Protocol Stack
	CBOR
	TLS
	TLS Record Layer Encryption
	TLS Handshake Layer Sequence
	Certificate Provisioning (Aviation Authority Lookup Service)

	TCP/IP
	LTE

	Hardware Design
	Components
	Raspberry Pi

	LTE Base Shield
	eSIM
	LTE Modem

	HSM

	Software Design
	Client Software (Drone)
	Application
	TLS

	Flight Control Server Software
	Application
	TLS

	Implementation
	Hardware Implementation
	Client Hardware (Drone)
	LTE Base Shield
	Raspberry Pi UARTs

	Flight Control Server Hardware
	Demonstration Setup
	BLE Beacons

	Software Implementation
	Drone Software
	Application
	TLS
	BLE Tools

	Flight Control Server Software
	Application
	TLS

	BLE Beacon Software

	Evaluation
	TLS Library Comparison

	Conclusion
	Outlook

	Acronyms
	Bibliography

