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Abstract

The super-twisting and continuous twisting algorithms are well-known higher-order
sliding mode methods that bring many benefits in the case they are applied re-
spectively to perturbed first and second-order systems. However, for systems with
saturating actuators, the windup effect may be produced and therefore, the closed-loop
performance may degenerate. This thesis deals with the development of comprehen-
sive higher-order sliding mode control approaches, in which anti-windup schemes
are adopted. In order to lift additional constraints placed on the bound and class of
addressed disturbances and uncertainties, the properties of the standard higher-order
sliding mode algorithms are maintained. The performances of the standard ones
are, however, significantly improved in the case that the initial conditions of the
systems are far away from the origin. For the closed loops of the proposed techniques,
global stability properties are investigated. This gives parameter settings for the
controllers. Having employed numerical simulations, feasibility and effectiveness of
the introduced strategies are indicated. Furthermore, exemplarily in a real-world
application, it is illustrated how the windup effect is counteracted by applying the
saturated feedback controls.
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Kurzfassung

Die Super-Twisting und Continuous Twisting Algorithmen sind bekannte Gleitzu-
stand Verfahren höherer Ordnung, die viele Vorteile bringen, falls sie auf gestörte
Systeme erster und zweiter Ordnung angewendet werden. Bei Systemen mit sättigen-
den Stellgliedern kann jedoch der “Aufwickeleffekt” erzeugt werden, und daher kann
die Leistung im geschlossenen Regelkreis degenerieren. Diese Dissertation befasst sich
mit der Entwicklung umfassender Gleitzustand Regelungsansätze höherer Ordnung,
bei denen Wicklungsschutz angewendet werden. Um zusätzliche Einschränkungen für
die Grenze und Klasse der adressierten Störungen und Unsicherheiten aufzuheben,
werden die Eigenschaften der Standard Gleitzustand Algorithmen höherer Ordnung
beibehalten. Die Leistungen der Standardsysteme werden jedoch erheblich verbessert,
wenn die Anfangsbedingungen der Systeme weit vom Ursprung entfernt sind. Für die
Regelkreise der vorgeschlagenen Techniken werden globale Stabilitätseigenschaften
untersucht. Dies gibt Parametereinstellungen für die Steuerungen. Durch numerische
Simulationen werden Machbarkeit und Wirksamkeit der vorgestellten Strategien
aufgezeigt. Weiterhin wird exemplarisch in einer realen Anwendung gezeigt, wie
der Aufwicklungseffekt durch Anwenden der gesättigten Rückkopplungsregler entge-
gengewirkt wird.
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Nomenclature

Mathematical Symbols

∀ for all

R the set of Real numbers

sup the supermum

Notations

sgn(χ) =

{
1 if χ > 0

−1 if χ < 0

sgn(0) ∈ [−1, 1]

dχcγ = |χ|γ sgn(χ)

dχc0 = sgn(χ)

satη (χ) =

{
χ for |χ| ≤ η

η dχc0 for |χ| > η

Abbreviations

CTA continuous twisting algorithm

RED robust exact differentiator

STA super-twisting algorithm

TA twisting algorithm
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1. Introduction

1.1. State of the Art

Sliding mode control approaches have been successfully applied to systems, which
are subject to particular classes of plant uncertainties and external disturbances, see
e.g. [RGH15; Li+17]. The closed-loops satisfactory robust performances have been
demonstrated therein. Traditional sliding mode control, i.e. first-order sliding mode
approach, can be just employed in the case that the relative degree of the system with
respect to a defined sliding variable is one. It guarantees a saturated and discontinuous
control input. A second-order sliding mode technique such as the twisting as well as
super-twisting algorithm provides a continuous control signal in such a first-order
system. These high-order sliding mode algorithms improve the sliding accuracy of the
first-order sliding mode control under discrete-time measurements in the case that
the sampling interval is small enough [Lev93; Sht+14]. They are able to counteract
perturbations, which are Lipschitz continuous with respect to time, and recorded in
the literature as the chattering reduction strategies if the actuator dynamics are fast
enough [PF19]. It is noted that by using the super-twisting algorithm, unlike the
other algorithms such as the twisting algorithm, the time derivative of the sliding
variable is not incorporated into the control law design.

For a perturbed double integrator system, the twisting algorithm contributes to
a finite-time convergence of the state variables to the origin. There is no need to
design a sliding function. A saturated and discontinuous control signal is ensured
[Lev93; PP09]. The continuous twisting controller introduced in [Tor+17] provides
a continuous actuating signal for the aforementioned system. It also enjoys the
advantage that both of the states converge to zero in a finite time. As a result of
adopting this algorithm, perturbations, which are Lipschitz continuous with respect
to time, can be theoretically exactly compensated. For systems with fast actuator
dynamics, the chattering effect can be reduced. Furthermore, under discrete-time
measurements with the small sampling interval, higher precision is achieved comparing
to the standard twisting controller.

Due to the fact that unlimited control energy is unavailable, actuator saturation
is a nonlinearity experienced frequently in industrial applications. Large tracking
errors lead to large compensatory signals, which cannot be introduced to the system
due to physical restrictions (e.g. a fully open or closed valve) or safety requirements.

1



1. Introduction

As a result, the settling time is increased since the signal driving the system is
smaller than the signal generated by the controller. Input saturation can also cause
large overshoots or undershoots or both if the controller contains integral action.
This undesired effect, which is produced through an overreaction of the integrator
during that the controller works in an open loop situation, is called “integral windup”
or “controller windup” in the literature [Hip06]. In this thesis, it is simply called
“windup”. In order to prevent this effect, some methods such as the observer technique
and the conditioning technique have been developed for classical linear controllers,
see e.g. [Hip06; HKH87].

In the case that the control input is transferred to the system through a saturating
actuator, applying the conventional super-twisting and continuous twisting controllers
also poses a challenge. The control signals provided by them may exceed the given
saturation bounds. The continuous element of the super-twisting algorithm (the
square root of the sliding variable absolute value) as well as the continuous elements
of the continuous twisting algorithm (the cube and square roots of the states absolute
values) will not be within the bounds for every initial condition. As a result, the
discontinuous integral actions of these controllers can give rise to the windup effect.
In [BCB18], a domain of attraction for such a system under the conventional super-
twisting control is computed and the finite-time stability within this domain is
guaranteed. It is shown that in the case the initial condition of the closed-loop
system belongs to this domain, the control signal remains within the bounds and
windup does not occur. The satisfactory closed-loop performance, however, may be
degenerated when the initial values are outside this domain.

A continuous non-singular terminal sliding mode control with an anti-windup scheme
is applied to a practical application in [Wan+14]. The time derivative of a saturation
function is included in the sliding surface therein, which is not working in a general
case from the mathematical point of view. In order to attenuate the windup effect, a
second-order sliding mode control scheme is introduced in [Lev93], which contributes
to a continuous and bounded input. A sub-optimal second-order sliding mode con-
troller is modified in [FR09] to ensure that the sliding variable converges to the origin
in a finite time despite the fact that the actuator is saturated. In both of the control
laws presented in [Lev93] and [FR09], switching between two control strategies based
on the saturation bounds is included. This may result in high frequency switching
on the bounds. Owing to the limitation on the switching frequency (e.g. by the
discrete-time realization of the control law), some undesirable oscillations in the
control signals as well as zigzag motions in the system trajectories appear.

A saturated super-twisting algorithm removing the aforementioned problem of high
frequency switching is proposed in [Cas+16b; Cas+16a]. At most, one switch between
two different sliding mode algorithms based on a predefined neighborhood of the origin
exists therein. In [Cas+16b], the global finite-time stability of the closed-loop system

2



1.2. Problem with Conventional Controllers

origin is ensured by means of a Lyapunov-based proof. It is given in [SH19b] how to
choose an optimal Lyapunov function such that the magnitude of the discontinuity
is minimized and the permissible bound of disturbances is maximized. However, in
principle, the convergence for perturbations with the bound more than half of the
saturation limit cannot be guaranteed based on this proof. Moreover, a continuous
control signal is only produced if there is no disturbance. In order to deal with
perturbations, whose bound is close to the saturation limit, a disturbance estimator
is employed in [Cas+16a]. The convergence is speeded up removing the transient
process of the super-twisting algorithm therein. However, this makes the sliding
mode control law redundant since both the estimator and controller reconstruct
disturbances. In [SH19a], by simplifying the control law designed in [Cas+16b] and
imposing new conditions on the control parameters, a continuous control signal is
introduced to the system and perturbations with any bound that is less than the
saturation limit can be handled. It is noted that the aforementioned concept needs
to be modified to be applicable to a system of order more than one.

1.2. Problem with Conventional Controllers

In the following, problem with conventional high-order sliding mode control methods
in the case that the actuator is saturated is illustrated in simulation.

1.2.1. First-Order System

Consider a system described by

dz

dt
= satρ(u) + a(t) , (1.1)

where the output of the system is denoted by z ∈ R. u is the scalar control input and
the actuator is saturated if |u| > ρ, where ρ is a known constant. This saturation is
realized from the definition

satη (χ) =

{
χ for |χ| ≤ η ,

η dχc0 for |χ| > η ,
(1.2)

where the notation

dχc0 = sgn(χ) as a particular case of dχcγ = |χ|γsgn(χ)

3



1. Introduction

is used. The effect of perturbations is represented by the function a. The conventional
super-twisting controller for the aforementioned system of relative degree one is
designed as

u = −k1 dzc
1
2 + ν , (1.3a)

dν

dt
= −k2 dzc0 , (1.3b)

where k1 and k2 are the positive constants to be tuned. Let’s assume the system is
subject to perturbations

a(t) = 2 + 0.6 sin(t) + 0.4 sin(5t) . (1.4)

It is noted that the absolute value of the time derivative of a is upper bounded by the
constant La = 2.6. Therefore, the control constants k1 = 2.4 and k2 = 2.7 are selected
such that the sufficient conditions set in [SH17] as k1 >

√
k2 + La and k2 > La are

satisfied. The numerical simulation is carried out through Matlab/Simulink using
the forward Euler method with the sampling step size of 1 ms and the initial values
z(t = 0) = z0 = 20 and ν(t = 0) = ν0 = 0. The response curves of the system in
the case that there is no saturating actuator (ρ = ∞) are compared in Figure 1.1
with the results obtained through that the actuator is saturated (ρ = 5). It is noted
that the control signals introduced to the system through the actuator are depicted
therein. In the case of the system with saturating actuator, this signal is different
from that one generated by the controller. Since the initial condition is far away
from the origin, the generated signal exceeds the saturation limits and therefore, the
windup effect is produced.

The original super-twisting algorithm proposed in [Lev93] to retain the control input
within a bound reads as

u = ν + ũ ,

dν

dt
=

{
−u if |u| > ρ

−k2 dzc0 if |u| ≤ ρ ,

ũ =

{
−k1c

1
2 dzc0 if |z| > c

−k1 dzc
1
2 if |z| ≤ c ,

(1.5)

where the positive constant values k1, k2, and c are selected appropriately. For the
nominal case of system (1.1), i.e. a = 0 , ∀t ≥ 0, with ρ = 3 and z0 = 20, this control
law with k1 = 1, k2 = 0.5, c = 5, and ν0 = 0 is implemented in simulation with the
sampling time of 50 ms. As depicted in Figure 1.2, zigzag motions in the system
trajectory, which is due to high frequency switching on the bound, can be seen. By
increasing discretization step size, the amplitude of this oscillation increases.

4
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Figure 1.1.: The system output z and control input u simulated for the first-order system under
the conventional super-twisting control without and with saturating actuator.
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Figure 1.2.: The system trajectory of applying the original super-twisting approach given in (1.5)
to the unperturbed case with saturating actuator.
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1. Introduction

1.2.2. Second-Order System

Take into consideration a system represented by

dz1

dt
= z2 , (1.6a)

dz2

dt
= satρ(u) + ā(t) , (1.6b)

y = z1 , (1.6c)

where z1 , z2 ∈ R are the state variables and y is the output of the system. Similar
to that mentioned for the first-order system, the scalar control input u is restricted.
The function ā denotes disturbances. The standard continuous twisting controller for
this system is implemented as

u = −l1 dz1c
1
3 − l2 dz2c

1
2 + ν , (1.7a)

dν

dt
= −l3 dz1c0 − l4 dz2c0 , (1.7b)

where the non-negative control parameters l1, l2, l3, and l4 need to be chosen
appropriately [Tor+17]. It is assumed that the system is affected by

ā(t) = 0.6 + 0.5 sin(t) + 0.4 sin(5t) . (1.8)

Since the Lipschitz constant of ā is Lā = 2.5, the scaled gains l1 = 23.95, l2 = 11.86,
l3 = 5.75, and l4 = 2.75 are selected as assigned in [Tor+17]. Considering the initial
values z1(t = 0) = z1,0 = 80, z2(t = 0) = z2,0 = −20, and ν0 = 0, the numerical
simulation is carried out using the same solver and sampling step size as employed for
the conventional super-twisting control. The system performance without and with
saturating actuator is shown in Figure 1.3. Similar to the first simulation example,
in the case that the generated control signal is going beyond the actuator limits
(ρ = 10), large overshoots and undershoots and a long settling time can be seen.

1.3. Study Objective and Contribution

First and second-order systems are considered in Part I and II of this thesis respec-
tively. Detailed problem statements are given in the corresponding chapters. The
objective is to design feedback control laws for different cases and scenarios of the
systems such that

• the states of the systems tend to the origin despite the presence of disturbances
and uncertainties;

6
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Figure 1.3.: Simulation response curves for applying the standard continuous twisting control to
the second-order system without and with saturating actuator.

• either the control signal is continuous everywhere or it has a finite number of
discontinuities;

• the windup effect is mitigated in the case that the absolute value of u is not
confined to the saturation limit ρ.

The major contribution of this study is to introduce comprehensive higher-order
sliding mode control strategies adopting anti-windup schemes. Non-redundant sliding
mode control laws are presented in the sense that no disturbance estimator is
employed. They are developed retaining the properties of the standard higher-order
sliding mode algorithms and removing additional constraints imposed on the bound
and class of perturbations and uncertainties. In the case that a state variable is not
measurable, a sliding mode observer estimating the state is brought into play. The
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1. Introduction

research aims to introduce a control concept that can be extended for higher-order
systems.

A portion of the material of this thesis has been presented within the publications:

M. A. Golkani et al. “Observer-based saturated output feedback control using twisting
algorithm.” In: 14th International Workshop on Variable Structure Systems (VSS).
June 2016, pp. 246–250. © 2016 IEEE.

M. A. Golkani et al. “A novel saturated super-twisting algorithm.” In: Systems &
Control Letters 119 (2018), pp. 52–56. © 2018 Elsevier B.V.

M. A. Golkani et al. “Saturated continuous twisting algorithm.” In: 15th International
Workshop on Variable Structure Systems (VSS). July 2018, pp. 138–143. © 2018
IEEE.

M. A. Golkani et al. “An anti-windup scheme for the super-twisting algorithm.” In:
58th Conference on Decision and Control (CDC). Dec. 2019, pp. 6947–6952. © 2019
IEEE.

M. A. Golkani et al. “Saturated feedback control using different higher-order sliding-
mode algorithms.” In: Variable-Structure Systems and Sliding-Mode Control: From
Theory to Practice. Vol. 271. Springer, 2020, pp. 125–148. (Reprinted/adapted by
permission from Springer Nature © 2020).

1.4. Thesis Structure

The new version of the saturated super-twisting algorithm presented in [Gol+18a]
is applied to the first-order system in Chapter 2. It is compact in the sense that
switching from one algorithm to another one and the disturbance estimator are not
used. However, this modification makes a fairly restrictive assumption on the bound
and class of disturbances. In this chapter, the condition of the control gains laid
down in [Gol+18a] is eased through a new proof. The system output z tends to the
origin in a finite time and the continuous control signal remains within the given
saturation bounds.

In order to enlarge the bound and class of addressed perturbations without using the
estimator, as it is recorded in [Gol+19], an anti-windup strategy is incorporated in
Chapter 3 into the design of a control law that is based on the super-twisting algorithm.
It is applied to a first-order system affected by uncertainties and perturbations.
Although the generated control signal may exceed the saturation limits, the windup
effect is counteracted. The actuating signal is continuous everywhere and the global
finite-time stability of the system origin is guaranteed.
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1.4. Thesis Structure

The saturated continuous twisting algorithm presented in [Gol+18b; Gol+20] can be
employed for the second-order system. Saturated and continuous control inputs and
finite-time convergence of the system states z1 and z2 are ensured. It is illustrated in
Chapter 4 that no estimator is required in the case that both the states are available
for measurement and the first-order robust exact differentiator only needs to be used
when the output is just measurable. Due to the fact that ā is just reconstructed here
through the controller, this control law becomes non-redundant. Furthermore, in this
chapter, the sufficient condition for the control parameters imposed in [Gol+18b] is
relaxed by introducing the geometric proof provided in [Gol+20] for this algorithm.

In Chapter 5, having adopted the twisting algorithm as presented in [Gol+16;
Gol+20], a Lipschitz continuous control signal with known maximum absolute value
is introduced to the system, where the relative degree of the system with respect
to the sliding function is one. Therefore, the second-order system states z1 and
z2 drive to zero asymptotically. Since the time derivative of the sliding variable is
incorporated into the control law design, estimate information of the time derivative
of z2 is required. It is noted that for the system dealt with in Chapter 4, this control
law is redundant since both the estimator and controller reconstruct disturbances
ā. However, it is shown in this chapter that it absolutely makes sense to use this
algorithm for the second-order system with a multiplicative unknown.

In Chapter 6, having introduced new versions of the saturated continuous twisting
algorithm, the restriction imposed on the class of disturbances by applying the
approaches proposed in Chapters 4 and 5 is eased. Their permissible bound is also
increased. It is explained that these new schemes should come into play when both
of the system states are available. The states z1 and z2 of the system under the
Lyapunov-based saturated continuous twisting control converge to the origin in a
finite time. It is indicated that at most one switch from a suitable relay controller
to the continuous twisting controller exists in this technique. As mentioned in this
chapter, this concept can be adopted to controllers for systems of order more than
two.
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Part I.

First-Order System
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2. Saturated Super-Twisting
Algorithm

In this chapter, system (1.1) is taken into consideration. A saturated control approach
based on the super-twisting algorithm is introduced, whose implementation enjoys
the advantage of a simple structure. As a global remedy for such a system with
saturating actuator, it contributes substantially to an improvement in the standard
super-twisting performance in the case that the initial value of the system state is
far away from the origin.

2.1. Problem Statement

Having considered system (1.1), the following assumption is made.

Assumption 2.1. The function a is globally bounded and Lipschitz continuous with
respect to time, i.e.

|a(t)| ≤ aM < ρ and

∣∣∣∣
da

dt

∣∣∣∣ ≤ La , ∀t ≥ 0 , (2.1)

where aM and La are some known constants.

Remark 2.1. The inequality aM < ρ has to be satisfied in order to be able in
principle to steer the system state z to zero through the saturated control signal
(otherwise, z = 0 cannot be an equilibrium state of system (1.1) for every admissible
function a).

In this chapter, it is aimed at designing a control law for the aforementioned system
such that the system state z converges to zero in a finite time and the control signal
u is continuous everywhere and bounded by

sup|u| ≤ ρ , ∀t ≥ 0 . (2.2)

13



2. Saturated Super-Twisting Algorithm

2.2. Saturated Super-Twisting Control

Having adopted the super-twisting algorithm, the proposed saturated and continuous
actuating signal is obtained through

u = −k1satε

(
dzc 1

2

)
+ ν , (2.3a)

dν

dt
= −k2 dzc0 − k3ν , |ν0| ≤

k2

k3

, (2.3b)

where the initial value ν0 as well as positive constants k1, ε, k2, and k3 need to be
selected appropriately. Sufficient conditions for choosing the control gains are given
later. As it is demonstrated in Figure 2.1, it becomes evident that

∣∣∣∣satε

(
dzc 1

2

)∣∣∣∣ ≤ ε , ∀z . (2.4)

Lemma 2.1. If the initial value ν0 is selected such that |ν0| ≤ νM = k2

k3
holds, then

the control signal u is bounded by

|u(t)| ≤ k1ε+ νM , ∀t ≥ 0 . (2.5)

Proof. (2.3b) is a linear differential equation of ν with a bounded input. It can be
represented as

dν

dt
= k̄ − k3ν , (2.6)

where k̄ is a constant real value that belongs to the set [−k2, k2]. Its solution reads as

ν(t) =
k̄

k3

+

(
ν0 −

k̄

k3

)
e−k3t. (2.7)

ε

−ε

satε

(
dzc 1

2

)
z

Figure 2.1.: The representation of the satε function.
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2.2. Saturated Super-Twisting Control

If |ν0| is less than or equal to k2

k3
, then |ν| is upper bounded by k2

k3
. Therefore, the

supremum of |ν| is

sup|ν| ≤ νM , ∀t ≥ 0 , (2.8)

where the condition |ν0| ≤ νM is fulfilled. The upper bound of |u| in (2.5) is derived
easily from inequalities (2.4) and (2.8).

Hence, for any initial condition z0 ∈ R and |ν0| ≤ νM , the continuous actuating signal
remains within the given saturation bounds, i.e. u ∈ [−ρ, ρ], if the control parameters
are chosen such that

k1ε+
k2

k3

≤ ρ (2.9)

is satisfied. Block diagrams of the conventional super-twisting control and the
saturated version presented above are compared in Figure 2.2. It can be seen that
in the proposed scheme, a saturation block and a feedback loop are added to the
conventional algorithm in order to retain the control signal within the saturation
bounds. It is noted that neither switching between two control strategies based on
the saturation bound ρ (as introduced in [Lev93] and [FR09]) nor switching from
one sliding mode algorithm to another one based on a predefined neighborhood of
the origin (as proposed in [Cas+16b; Cas+16a]) is incorporated into the design.

−k1

−k2
∫

+z u

ν

(a) Conventional STA

−k1

−k2

+

+
∫

−k3

z u

ν

(b) Proposed Scheme

Figure 2.2.: Block diagrams of conventional super-twisting control (1.3) and the saturated version
proposed in this chapter.
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2. Saturated Super-Twisting Algorithm

Remark 2.2. Having applied the traditional first-order sliding mode control ap-
proach, a saturated and continuous control signal can be also obtained through

du

dt
= −k dσc0 − λu , (2.10)

where k and λ are positive constants and the sliding function σ is defined as

σ =
dz

dt
+ λz . (2.11)

Similar to that proved in the aforementioned lemma, it can be derived that
|u(t)| ≤ k

λ
, ∀t ≥ 0. Please note that the estimate information of the time derivative

of z needs to be incorporated into the sliding function design. This makes the sliding
mode control law for the considered system redundant since both the controller and
estimator reconstruct disturbances a.

2.3. Stability Analysis

For system (1.1) under control law (2.3), the closed-loop dynamics is written as

dx1

dt
= −k1satε

(
dx1c

1
2

)
+ x2 , (2.12a)

dx2

dt
= −k2 dx1c0 − k3x2 + φ(t) , (2.12b)

where a vector is defined as x =
[
x1 x2

]T

=
[
z ν + a

]T

. Suppose that (2.1) holds,

then φ(t) = k3a+ da
dt

in the closed-loop system is bounded by

|φ(t)| ≤ φM = k3aM + La , ∀t ≥ 0 . (2.13)

For the perturbed system as well as the nominal system, i.e. a = 0 , ∀t ≥ 0, under
the proposed control law, the finite-time convergence of the system state z is ensured
in this section setting sufficient conditions for the gains. Different Lyapunov functions
are employed here and the quite restrictive conditions imposed on the gains in the
perturbed case in [Gol+18a] are relaxed by providing a novel proof.

2.3.1. Nominal Case

The stability properties of system (2.12) in the case that the system is not subject to
perturbations and therefore φ(t) = 0 , ∀t ≥ 0, are investigated in this subsection.
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2.3. Stability Analysis

Proposition 2.1. In the nominal case, the origin x = 0 is globally finite-time stable
and the control input does not exceed the saturation bounds (i.e. (2.2) is met) if the
parameters k1, ε, k2, and k3 are chosen such that (2.9) is fulfilled,.

Proof. Consider the vector

ζ =
[
ζ1 ζ2

]T

=
[
dx1c

1
2 x2

]T

. (2.14)

A strict and Lipschitz Lyapunov function candidate for system (2.12) without dis-
turbances is introduced here as

Vn = ζ2
1 +

1

2k2

ζ2
2 = |x1|+

1

2k2

x2
2 . (2.15)

Remark 2.3. Since the satε function and the linear term −k3x2 are incorporated
into system (2.12), it is not possible any more to compute constant matrices for the
Algebraic Lyapunov Equation as presented in [MO12].

The time derivative of the aforementioned Lyapunov function reads as

dVn
dt

= −k1satε

(
|x1|

1
2

)
− k3

k2

x2
2 . (2.16)

It becomes evident that the globally positive definiteness of the radially unbounded
function Vn as well as globally negative definiteness of dVn

dt
(according to (2.4)) is

guaranteed by the positive control parameters. Thus, the global asymptotic stability
of the origin is achieved.

Lemma 2.2. For closed-loop system (2.12), the conditions of the quasihomogeneity
principle [Orl08, Theorem 4.2] are fulfilled. This is due to the fact that

• the right-hand side of differential equation (2.12) consists of a locally homo-
geneous piece-wise continuous function of degree qSTA = −1 with respect to
dilation rSTA = (2, 1);

• the components of the continuous function ψ = −k3x2 + φ(t) are globally
bounded (according to the boundedness of ν, a, and da

dt
);

• system (2.12) is globally asymptotically stable around the origin.

Therefore, the convergence of the vector x in a finite time is justified applying the
aforementioned principle.
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2. Saturated Super-Twisting Algorithm

2.3.2. Perturbed Case

In this subsection, the stability analysis of system (2.12) in the presence of distur-
bances, i.e. a 6= 0 and thus φ(t) 6= 0, is carried out. In order to show that the variables
x1 and x2 tend to zero in a finite time, a Lyapunov function candidate, in which two
quadratic functions are included, is considered in [Gol+18a] as

Vd = ζTPζ + xTP̃ x ,

P =
1

2

[
6k2 + k2

1 −k1

−k1 1

]
, P̃ =

1

2

[
k2

3 k3

k3 2

]
.

(2.17)

It is an absolutely continuous function of x, radially unbounded and globally positive
definite (if k2 is positive).

Remark 2.4. It is noted that Vd is continuous but not locally Lipschitz due to
the fact that ζ1 is not Lipschitz at x1 = 0. However, as it is explained in [MO12]
by means of Zubov’s theorem [Poz08, Theorem 20.2], it can be still employed
as a Lyapunov function. Since Vd along the system trajectories ϕ(t,x0), where
x(t = 0) = x0 ∈ R2, is indeed an absolutely continuous function of time t, its time
derivative is defined almost everywhere. Now, it needs to be shown that Vd(ϕ(t,x0))
decreases monotonically to zero, which is true if and only if dVd

dt
is negative definite

almost everywhere.

In the case that |x1|
1
2 ≤ ε, taking the time derivative of Vd along the trajectories of

the system yields

dVd
dt

= −
(

2k1k2 +
k3

1

2

)
|x1|

1
2 + k2

1x2 dx1c0 −
k1

2

x2
2

|x1|
1
2

+ 3x2φ(t)

− k1 dx1c
1
2 φ(t)− k1k

2
3|x1|

3
2 − 2k3x

2
2 − k2k3|x1|+ k3x1φ(t) . (2.18)

Considering the bound of perturbations in (2.13), it can be derived that

dVd
dt
≤ − 1

|x1|
1
2

ζTQζ − k1k
2
3|x1|

3
2 − 2k3x

2
2 − k3 (k2 − φM)|x1| (2.19)

with

Q =
1

2

[
4k1k2 + k3

1 − 2k1φM −
(
k2

1 + 3φM
)

−
(
k2

1 + 3φM
)

k1

]
.

Hence, dVd
dt

is negative definite if k1 > 0, k3 > 0, and k2 > 2φM +
(

3φM
2k1

)2

.
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2.3. Stability Analysis

For |x1|
1
2 > ε, (2.18) is rewritten as

dVd
dt

= Wd1 +Wd2 +Wd3 (2.20)

with

Wd1 = −k2k3|x1|+ k1k3x2 dx1c
1
2 − 2k3x

2
2 + k3x1φ(t) ,

Wd2 = −k1k2|x1|
1
2 +

(
k2

1

2
− εk1k3

)
x2 dx1c0 +

εk2
1

2
x2 dx1c−

1
2

− k1

2

x2
2

|x1|
1
2

+ 3x2φ(t)− k1 dx1c
1
2 φ(t) ,

Wd3 = −εk1

(
3k2 +

k2
1

2

)
+ 2k1k2|x1|

1
2 − εk1k

2
3|x1| .

It can be achieved that
Wd1 ≤ −ζTQ̃1ζ , (2.21)

where

Q̃1 =

[
k2k3 − k3φM −k1k3

2

−k1k3

2
2k3

]
.

The matrix Q̃1 is positive definite if k3 > 0 and k2 > φM +
k2

1

8
. For the case |x1|

1
2 > ε,

it can be shown that

εk2
1

2
x2 dx1c−

1
2 ≤ k2

1

2
|x2| . (2.22)

Therefore, having satisfied
k2

1

2
− εk1k3 > 0, it can be concluded that

Wd2 ≤ −
1

|x1|
1
2

ζTQ̃2ζ , (2.23)

where

Q̃2 =
1

2

[
2k1k2 − 2k1φM −

(
k2

1 + 3φM
)

−
(
k2

1 + 3φM
)

k1

]
.

This matrix is positive definite if k1 > 0 and k2 > 4φM +
9φ2

M

2k2
1

+
k2

1

2
. Based on Young’s

inequality [HLP52], it becomes evident that

2k1k2|x1|
1
2 ≤ k1k2

(
|x1|+ 1

)
. (2.24)
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2. Saturated Super-Twisting Algorithm

Thus, it can be written

Wd3 ≤ −εk1

(
3k2 +

k2
1

2
− k2

ε

)
− k1

(
εk2

3 − k2

)
|x1| . (2.25)

If ε > k2

k2
3

+ 2k2

6k2+k2
1
, then Wd3 is negative definite.

Consequently, the globally negative definiteness of dVd
dt

is ensured if the control
parameters are selected as

k1 > 0 , k2 > 4φM +
9φ2

M

2k2
1

+
k2

1

2
,

k3 > 0 , ε >
2k3

k1

+
k2

k2
3

+
2k2

6k2 + k2
1

.

(2.26)

It is noted that (2.9) also needs to be satisfied to retain the control signal within
the saturation bounds. This leads to rather restrictive conditions on the parameters,
which limits the permissible bound of perturbations. According to (2.9) and (2.26),
the inequality

8k3k
2
1aM + 9k2

3a
2
M + k4

1

2k2
1

< k2 < k3ρ (2.27)

needs to be fulfilled. Solving this inequality for k3 gives

k2

ρ
< k3 <

k1

(√
7k2

1 + 18k2 − 4k1

)

9aM
. (2.28)

Hence, the allowable bound of perturbations can be realized as

aM <
k1

(√
7k2

1 + 18k2 − 4k1

)

9k2

ρ . (2.29)

It can be derived (e.g. numerically) that aM has to be less than one sixth of the
saturation bound ρ. In the following, this is relaxed to one third of ρ through a novel
parameter setting for the controller.

Proposition 2.2. There exist constants k̃1 and k̃2 such that for any positive real
value φM , the choice of the control parameters as

k1 = φ
1
2
M k̃1 , k2 = φM k̃2 (2.30)

guarantees that if (2.9) and

k1ε >
k2

k3

+ aM (2.31)

are satisfied, then the origin x = 0 is globally finite-time stable and the absolute value
of the continuous control signal is bounded by ρ for all t ≥ 0.
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2.3. Stability Analysis

Remark 2.5. By solving the sum-of-squares problem formulated within the following
proof using a Matlab toolbox, e.g. Sostools [Pap+13], the values of k̃1 and k̃2

can be determined numerically. A valid choice is

k̃1 = 2.2 , k̃2 = 1.1 . (2.32)

Proof. In the case that |x1|
1
2 > ε, (2.12a) reads as

dx1

dt
= −k1ε dx1c0 + x2 . (2.33)

Since x2 is bounded (based on (2.8) and (2.1)) by

|x2| ≤ νM + aM , ∀t ≥ 0 , (2.34)

|x1| is decreasing if the control constants are selected as given in (2.31). After the

finite time T , |x1|
1
2 = ε is satisfied, which leads to

dx1

dt
= −k1 dx1c

1
2 + x2 , (2.35a)

dx2

dt
= −k2 dx1c0 − k3x2 + φ(t) . (2.35b)

In the following, it is shown that |x1| declines further. This guarantees the globally

boundedness of |z| 12 by ε in the case that |z0|
1
2 ≤ ε. On the occasion |x1|

1
2 = ε, taking

the time derivative of |x1| along the trajectory of (2.35a) yields

d|x1|
dt

=
dx1

dt
dx1c0 = −k1|x1|

1
2 + x2 dx1c0

≤ −k1ε+|x2| . (2.36)

Considering (2.34), if the sufficient condition (2.31) is met, then d|x1|
dt

is negative

definite. This implies that |x1| decreases and it can be inferred that |x1|
1
2 ≤ ε , ∀t > T .

The control gains k1 and k2 are scaled for all φM > 0 as given in (2.30). This is
justified by changing the coordinates in (2.35) as

x = φM x̃ = φM

[
x̃1 x̃2

]T

. (2.37)

The transformation gives

dx̃1

dt
= −k̃1 dx̃1c

1
2 + x̃2 , (2.38a)

dx̃2

dt
= −k̃2 dx̃1c0 − k3x̃2 +

φ(t)

φM
. (2.38b)
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2. Saturated Super-Twisting Algorithm

It is noted that
|φ(t)|
φM

is less than or equal to one for all t ≥ 0 (according to (2.13)).

This is used to design a Lyapunov function in the following. Although system (2.38)
is not a weighted homogeneous system (see e.g. [Lev05; Ber+14]) due to the presence
of the linear term −k3x̃2, it is possible to ensure the asymptotic stability of the origin
x̃ = 0 employing the Lyapunov function candidate

V (x̃) = α1|x̃1|
3
2 − α2x̃1x̃2 + α3|x̃2|3 . (2.39)

This is the homogeneous generalized form function of degree three with the weights
two and one considered in [SM14]. α1, α2, and α3 are the coefficients and in order to
guarantee the globally positive definiteness of V , both α1 and α3 need to be positive.
It is differentiable and its time derivative along the trajectories of (2.38) reads as

dV

dt
= − (W1 +W2)− 3α3k3|x̃2|3 , (2.40)

with

W1 = β1|x̃1| − β2 dx̃1c
1
2 x̃2 + β3 dx̃2c2 dx̃1c0 + β4|x̃2|2 , (2.41a)

W2 = β5x̃1 − β6 dx̃2c2 . (2.41b)

Both of the above discontinuous homogeneous functions are of degree two and their
coefficients denote

β1 =
3

2
α1k̃1 − α2k̃2 , β2 =

3

2
α1 + α2k̃1 , β3 = 3α3k̃2 , β4 = α2 , (2.42a)

and

β5 = α2

(
−k3ν + da

dt

)

φM
, β6 = 3α3

φ(t)

φM
. (2.42b)

It is noted that β5 (according to (2.8) and (2.1)) as well as β6 (as mentioned above) is
bounded by some known constants. The extrema of β5 are computed in Appendix A.
A quadrant analysis, similar to that conducted in [SM14], is carried out in this
appendix to determine conditions of the control gains and the coefficients of V such
that V and W1 + W2 are globally positive definite. As a consequence, similar to
the nominal case, the finite-time stability of the origin is guaranteed according to
Lemma 2.2.

Remark 2.6. It is deduced from the conditions of the control parameters imposed
in (2.30) that

k2 > k3aM + La (2.43)
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2.4. Simulation Examples

needs to be fulfilled. Having also taken into consideration (2.31) and (2.9), it is
concluded that perturbations with aM < ρ

3
can be handled. It is also noted that La

has to be a portion of the saturation limit ρ, which restricts the class of addressed
disturbances. In the next chapter, a wider class of perturbations with a larger bound
aM close to ρ can be dealt with applying an anti-windup strategy instead of the
saturated super-twisting algorithm.

2.4. Simulation Examples

In this section, it is indicated in simulation how the proposed control approach
works in the nominal and perturbed cases. The achieved closed-loop performances
are compared with the results obtained through the conventional super-twisting
algorithm given in (1.3). The system under the saturated super-twisting control law
presented in [Cas+16b; Cas+16a] is also simulated. This controller is implemented
as

[
u
dν
dt

]
=





[
−ρ dzc0

0

]
, ν0 = 0 if s = 0

[
−k1 dzc

1
2 + ν

−k2 dzc0

]
, ν(t = t1) = ν̄ if s = 1 ,

(2.44)

where ν̄ is either set to zero (in [Cas+16b]) or to the negative value of disturbances
estimation (in [Cas+16a]). The value of the binary variable s is determined by a
dynamic switching law. It is set to zero and the relay controller is employed if the
initial value z0 is outside a neighborhood of the origin. After that the state enters
a bound, one is assigned to s and the super-twisting algorithm is applied, which is
maintained even if the state leaves the band. In order to assess the effectiveness of
the proposed technique in this chapter, the constants k1 and k2 are left the same in
implementation of control laws (2.3), (1.3), and (2.44).

2.4.1. Nominal Case

In this simulation case, assuming that a = 0, it is supposed the actuating signal
remains bounded with ρ = 5. The positive control parameters of the proposed method
are chosen as k1 = ε = 2 and k2 = k3 = 1 satisfying (2.9). The numerical simulation
is carried out considering the initial values z0 = 20 and ν0 = 0. The performances of
the three algorithms are depicted in Figure 2.3. It can be clearly seen in the lower
plot that the control signal of the scheme proposed in this chapter is continuous
and bounded by the specification. The latter contributes substantially to alleviation
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2. Saturated Super-Twisting Algorithm

of the windup effect as illustrated in the zoomed portion of the upper plot. It is
also demonstrated that the output of the system under the proposed control law
converges to the origin with a satisfactory speed, which is similar to the performance
of the saturated super-twisting (with switching). Please note that the implementation
of the proposed control technique is much easier since no switching between the
algorithms takes place.

Control law (2.3) is also implemented with the same setting as that one made for the
original super-twisting approach in the previous chapter. Their system trajectories
are compared in Figure 2.4. It can be seen that undesirable oscillations are alleviated
in the performance of the proposed technique.

2.4.2. Perturbed Case

In this scenario, it is assumed that the system is subject to disturbances a(t) given in
(1.4). The saturation bound [−ρ, ρ] as well as the initial condition z0 is the same as the
previous example. It is noted that aM = 3 is more than half of the given constant ρ.
Therefore, as it is explained in [Cas+16a], information of the perturbation estimator
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Figure 2.3.: Simulation response curves obtained through the unperturbed system under three
different control laws (2.3), (2.44), and (1.3), which are labeled respectively with the
Proposed Scheme, Saturated STA (with Switching), and Conventional STA.
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Figure 2.4.: System trajectories of applying the proposed technique and the original super-twisting
algorithm presented respectively in (2.3) and (1.5) to the nominal case.

should be incorporated into the control law introduced in [Cas+16b]. The control
gains k1 = 4 and k2 = 9 are selected based on the sufficient condition mentioned
therein as

k1 > 0 , k2 > 3La + 2

(
La
k1

)2

. (2.45)

Furthermore, the estimator constants are well-tuned such that the estimation error
tends to zero in a finite time faster than the convergence of the system state.
Consequently, as it is indicated in the upper plot of Figure 2.5, the maximum rate of
convergence is achieved (the dashed red line).

For the proposed approach, as it is given through the aforementioned proof, the
permissible bound of disturbances is relaxed to just less than ρ

3
. Although this is not

satisfied in this example, the two other parameters ε = 0.1 and k3 = 2 are assigned
such that (2.9) and (2.43) hold. In the next chapter, where the allowable bound and
class of perturbations are enlarged, all sufficient conditions set for the corresponding
stability analysis are met. Having implemented the proposed compact and non-
redundant strategy (the integrator is initialized with ν0 = 0 and no information of
perturbations is required), similar convergence to that one obtained through the
saturated super-twisting (with estimator) is illustrated.

A large overshoot and long settling time can be seen in the performance of the
conventional super-twisting. It is noted that the dotted black lines in the lower plots
of Figure 2.3 and Figure 2.5 show the evolution of the control signals of this algorithm
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Figure 2.5.: Simulation results in the perturbed case comparing the proposed approach with the
saturated super-twisting applying the disturbance estimator as presented in [Cas+16a]
as well as the conventional super-twisting.

introduced to the systems through the saturating actuators, which are different from
that ones generated by the controller. In contrast, the signals produced by the
proposed control method and the conventional super-twisting with one switching are
bounded by the saturation limits due to their structures.
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3. An Anti-Windup Strategy for the
Super-Twisting Algorithm

This chapter deals with a first-order system with uncertainties and disturbances. A
comprehensive second-order sliding mode control strategy adopting an anti-windup
scheme is introduced, in which the properties of the standard STA are retained and
no additional constraints on the bound and class of perturbations are imposed.

3.1. Problem Statement

Consider a system represented by

dz

dt
= b(t, z)satρ(u) + a(t, z) , (3.1)

where a and b, which are the functions of time and state, represent the effect of
uncertainties and disturbances.

Assumption 3.1. The functions a and b are globally bounded and Lipschitz contin-
uous with respect to time and state, i.e.

∣∣a(t, z)
∣∣ ≤ aM ,

∣∣∣∣
∂a

∂t

∣∣∣∣ ≤ La ,

∣∣∣∣
∂a

∂z

∣∣∣∣ ≤ La,z , ∀t ≥ 0 , (3.2a)

0 < bm ≤ b(t, z) ≤ 1 ,

∣∣∣∣
∂b

∂t

∣∣∣∣ ≤ Lb ,

∣∣∣∣
∂b

∂z

∣∣∣∣ ≤ Lb,z , ∀t ≥ 0 , (3.2b)

where the constants aM , La, La,z, bm, Lb, and Lb,z are known. The upper bound of
b(t, z) without loss of generality1 is one. Furthermore, as it is explained in Remark 2.1,
the inequality ∣∣∣∣

a(t, z)

b(t, z)

∣∣∣∣ ≤
aM
bm

< ρ , (3.3)

has to be fulfilled.

This chapter aims to design a control law for system (3.1) such that

1For other known upper bounds, the proposed technique may still be applied.
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3. An Anti-Windup Strategy for the Super-Twisting Algorithm

• the finite-time convergence of the system state z is achieved;
• the control signal u is continuous everywhere and in the case that the generated

signal exceeds the saturation limits, the windup effect is counteracted.

3.2. Proposed Scheme

An anti-windup technique is incorporated into the standard super-twisting controller
as

u = −k1 dzc
1
2 + ν , (3.4a)

dν

dt
= −k2 dzc0 − k3βν , |ν0| ≤

k2

k3

, (3.4b)

where the initial value of the control law state variable ν0 , similarly to the saturated
super-twisting algorithm introduced in the previous chapter, is chosen appropriately.
The value of the binary variable β is assigned as

β =

{
1 if |u| > ρ

0 if |u| ≤ ρ .

It is shown later that at most, one switch in β from one to zero occurs therein if the
control parameters k1, k2, and k3 are selected appropriately. This implies that once
the produced control signal satisfies |u| ≤ ρ , the actuator saturation does not happen
afterwards. Sufficient conditions for choosing the control parameters are given in the
next section. Please note that, in contrast to (2.44), the introduced actuating signal
is continuous everywhere due to the fact that the aforementioned switch lies in the
same channel as the discontinuous element of the algorithm. Furthermore, in contrast
with (1.5), the term k2 dzc0 exists in (3.4) for any value of u, which prevents high
frequency switching on the saturation bounds. Therefore, similar to that illustrated
in Figure 2.4, zigzag motions are also removed in the system trajectory of applying
the scheme proposed in this chapter.

It is worth mentioning that, compared to the previous chapter, the control signal
generated here does not remain within the bounds ±ρ if the initial value of z is very
large. However, the proposed control scheme in this chapter enjoys the advantages
that the windup effect is also alleviated and the standard STA is recovered close to the
origin. The latter contributes significantly to an enlargement of the class of addressed
disturbances in the sense that the limit ρ does not impose any constraint on the
Lipschitz constant La (assuming ∂a

∂z
= ∂b

∂z
= 0). It is noted that, in comparison with

[Cas+16b; Cas+16a], the implementation of control law (3.4) is relatively simpler
since a switch is made if the absolute value of the control input is out of the bound
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ρ rather than making a switch based on a predefined neighborhood of the origin.
Moreover, perturbations with any bound aM that is less than bmρ can be handled
here without using a disturbance estimator. A block diagram of the control approach
introduced in this chapter is depicted in Figure 3.1.

3.3. Stability Analysis

Global finite-time stability properties of the closed-loop system are established in
this section.

Proposition 3.1. Suppose that Assumption 3.1 is satisfied. For system (3.1) under
control law (3.4), the origin z = 0 is globally finite-time stable if the control parameters
are selected such that

k1 > 2

√
k2ρ

bmρ− aM
, k2 >

La + La,z (ρ+ aM) +
(
Lb + Lb,z (ρ+ aM)

)
aM

b2
m

,

ρ ≥ k2

k3

(3.5)

holds.

Proof. In the case that |u| > ρ , the closed-loop dynamics reads as

dz

dt
= ρb duc0 + a , (3.6a)

dν

dt
= −k2 dzc0 − k3ν . (3.6b)

As it is proved in Lemma 2.1, |ν| is bounded here by a calculable constant since
(3.6b) is a linear differential equation with the state variable ν and the bounded
input dzc0. Having chosen ν0 and the control gains as given in (3.4b) and (3.5)
respectively, |ν| ≤ ρ holds as long as β = 1. Thus, in this phase that the actuator is

saturated, either −k1 dzc
1
2 and ν are in the same sign or they have different signs

with k1|z|
1
2 > |ν|+ ρ. Therefore,

duc0 =
⌈
−k1 dzc

1
2

⌋0

= −dzc0 (3.7)

is fulfilled here, which implies that |z| is decreasing while ν is bounded. After the
finite time T ,

|z| 12 ≤ 2ρ

k1

(3.8)
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−k1

−k2

+

+
∫

−k3

> ρ

×

z u

β

ν

Figure 3.1.: Block diagram of proposed control law (3.4). It is noted that the output of the
comparison block is one if its input is greater than the bound ρ. The output β is zero
if |u| ≤ ρ.

is satisfied, which leads to |u| = ρ for the first time and a switch to β = 0. In the
following, it is shown that the control signal remains within the limits afterwards,
i.e.
∣∣u(t)

∣∣ ≤ ρ , ∀t > T .

On the occasion |u| = ρ , taking the time derivative of |u| along the trajectory of
system (3.1) yields

d|u|
dt

=
du

dt
duc0 =

(
−k1

2
|z|− 1

2
dz

dt
+
dν

dt

)
duc0

= −k1

2
|z|− 1

2

(
b|u|+ a duc0

)
− k2 dzc0 duc0 . (3.9)

Considering (3.8) and Assumption 3.1, it can be derived that

d|u|
dt
≤ −k

2
1 (bmρ− aM)

4ρ
+ k2 . (3.10)

If the sufficient conditions imposed in (3.5) are met, then d|u|
dt
< 0 holds, which implies

that |u| decreases. Therefore, in order to guarantee the globally boundedness of |u| by
ρ, it needs to be indicated that (3.8) holds afterwards. To that end, it will be shown
that (3.8) is maintained if |u| ≤ ρ is satisfied. Hence, violating either of these two
inequalities requires the other one to be violated before and, since both hold at time
instant T , neither can be violated.

To show that (3.8) is satisfied for |u| ≤ ρ, consider the closed-loop dynamics, which
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3.3. Stability Analysis

is written in this case as

dz

dτ
= −k1 dzc

1
2 + ω , (3.11a)

dω

dτ
=

1

b

(
−k2 dzc0 + δ

)
, (3.11b)

where time is scaled through dτ = bdt , the auxiliary variable ω is defined as ω = ν + a
b
,

and δ reads as

δ =
d

dt

(
a(t, z)

b(t, z)

)
=

(
∂a
∂t

+ ∂a
∂z

dz
dt

)
b(t, z)−

(
∂b
∂t

+ ∂b
∂z

dz
dt

)
a(t, z)

(
b(t, z)

)2 . (3.12)

It can be verified that ν and z have the same sign if |u| ≤ ρ and |ν| > ρ. Since dν
dt

has the opposite sign of ν in that case (according to (3.4b)), |ν| decreases. Having
given that |ν| ≤ ρ holds at t = T , it satisfies this bound for all time. Then, |ω| is
bounded by 2ρ (according to (3.3)), and it can be inferred from (3.11a) that (3.8) is
maintained.

In system (3.11), the asymptotic stability of the state vector ζ :=
[
z ω

]T

can be

ensured by using the Lyapunov function candidate considered in [SH17] as

V (ζ) =





2
√
ω2 + 3λ2k2

1z − ω for ζ ∈M ,

2
√
ω2 − 3λ2k2

1z + ω for −ζ ∈M ,

3 |ω| otherwise.

(3.13)

The positive constant λ < 1 is chosen such that

k1 >
1

λ

√
2k2

bm
(3.14)

is met, and the set M is defined as

M =
{
ζ | z ≥ 0 , ω ≤ λk1

√
z
}
. (3.15)

The time derivative of V in the scenario of ζ ∈M along the trajectory of system (3.11)
reads as

dV

dτ
=

3λ2k2
1

(
−k1

√
z + ω

)
− 2ω

(
k2−δ
b

)

√
ω2 + 3λ2k2

1z
+
k2 − δ
b

. (3.16)

It is noted that δ given in (3.12) as well as b is uniformly bounded since (3.2a) and
(3.2b) hold and actuator is saturated when |u| > ρ (dz

dt
is bounded). Hence, despite

the presence of b and δ, dV
dτ

is a homogeneous function (see e.g. [BB05]) of degree zero
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with respect to
√
z and ω. As it is done in [SH17], the performance of function (3.16)

for z and ω such that ω2 + 3λ2k2
1z = 1 holds is assessed in the following. Having

defined the function g(ω) as

g(ω) =
dV

dτ

∣∣∣
ω2+3λ2k2

1z=1
= −λk2

1

√
3− 3ω2 + 3λ2k2

1ω +

(
k2 − δ
b

)
(1− 2ω) , (3.17)

the second derivative of g with respect to ω in the interval
[
−1, 1

2

]
is

d2g

dω2
=

√
3λk2

1

(1− ω2)
3
2

≥ 0 , ∀ω ∈
(
− 1,

1

2

]
. (3.18)

The local maximums of g that are on the border of the aforementioned interval are
computed as

g(−1) = 3

(
k2 − δ
b
− λ2k2

1

)
, (3.19a)

g(
1

2
) =

3λ (λ− 1) k2
1

2
. (3.19b)

It is noted that if the constants k1 and k2 are selected as given in (3.5), the con-
dition set on k1 in (3.14) as well as k2 > |δ| is fulfilled. Thus, g(−1) is less than

3
(

2k2

bm
− λ2k2

1

)
. From (3.14) and 0 < λ < 1, it is derived that both g(−1) and

g(1
2
) are negative. As a result of this negativeness, through homogeneity, it can be

concluded that dV
dτ
< 0 holds in the entire set M. The second scenario in (3.13), i.e.

−ζ ∈M , can be investigated symmetrically. In the third scenario, differentiating V
with respect to τ and applying (3.11b) to that gives

dV

dτ
=

3

b

(
−k2 dzωc0 + dωc0 δ

)
. (3.20)

As mentioned above, |δ| is less than the chosen parameter k2, which also results in
the negative definiteness of dV

dτ
in this scenario. Owing to that the time derivative

of V along the trajectory of system (3.11) is upper bounded by a negative constant
almost everywhere, the finite-time convergence of ζ is realized. This completes the
global finite-time stability proof of the origin z = 0.

Remark 3.1. According to (3.5), it is achieved that

aM < bmρ−
4k2ρ

k2
1

. (3.21)

It can be seen that having chosen k2 > |δ| , by assigning a larger value to k1,
perturbations with a larger bound aM close to bmρ can be addressed. It becomes
evident that in the case b = 1 is known, the allowable bound is enlarged to aM < ρ.
Please note that k3 does not place any constraint on the permissible bound and class
of disturbances.

32



3.4. Simulation Examples

3.4. Simulation Examples

In this section, it is demonstrated in simulation how the proposed control scheme
comparing to the control strategies recorded in the literature and the previous
chapter is able to deal with three different problem settings. Since uncertainties
and multiplicative unknowns are not considered in [Cas+16b; Cas+16a] as well as
Chapter 2, it is assumed that ∂a

∂z
= 0 and b = 1 is known in the first two cases.

However, the bound of perturbations is enlarged from aM < ρ
2

in the first case to
aM = 0.9ρ in the second case. In the third case, the system is subject to disturbances
and uncertainties, i.e. a and b are unknown functions of time and state. In all the
cases, it is supposed that the actuating signal is saturated with ρ = 5.

In the first and second cases, the results obtained through the aforementioned versions
of saturated STA are compared with the achieved closed-loop performance of the
proposed technique in this chapter. The saturated version presented in [Cas+16b;
Cas+16a] is given in (2.44). However, instead of satisfying (2.45), the control gains
k1 and k2 are selected here as proposed in [SH19b] fulfilling

k1 > 2

√
k2 −

√
k2

2 − L2
a , k2 > La . (3.22)

In Chapter 2, a novel stability analysis of the closed-loop system in the presence of
perturbations is carried out to impose less restrictive conditions on the parameters.
Nevertheless, the fairly restrictive conditions are still set and in the simulation
example presented there, it is shown that controller (2.3) may be tuned satisfying
(2.9) and necessary condition (2.43). Furthermore, in order to make a comparison, the
system under the conventional super-twisting control law given in (1.3) is simulated
in all the cases. The sufficient conditions for selecting the control constants set in
[BCB18] are modified here as

k1 > 1.8

√
k2 + Γ

bm
, k2 > Γ =

La + La,z (ρ+ aM) +
(
Lb + Lb,z (ρ+ aM)

)
aM

b2
m

.

(3.23)

3.4.1. First Case

In this simulation case, perturbations are represented as

a(t) = 1 + 0.6 sin(t) + 0.8 sin(5t) . (3.24)

As mentioned above, b = 1 holds in this case. Therefore, in the conditions of the
proposed scheme as well as the conventional STA given in (3.5), (3.23), k2 just needs
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3. An Anti-Windup Strategy for the Super-Twisting Algorithm

to be greater than La = 4.6. The selected control constants are listed in Table 3.1.
As laid down in (3.5), k3 is chosen such that k2

k3
< ρ holds. It is noted that a larger

value for k3 contributes to that ν is retained closer to zero when the actuator is
saturated. This leads to the actuating signal leaving the saturation a little bit earlier.
Since disturbances are bounded with aM = 2.4 < ρ

2
, the saturated STA considered

in [Cas+16b], in which the disturbance estimator is not incorporated, is employed
in this case and its gains are set such that (3.22) holds. For the saturated version
introduced in the previous chapter, having met (2.9) and (2.43), the parameters
values are provided in Table 3.1.

For all the algorithms, the numerical simulation is carried out with the sampling step
size of 1 ms and the initial values z0 = 30 and ν0 = 0. Their performance is shown
in Figure 3.2. It is revealed in the upper plot that the same rate of convergence is
achieved by applying the approaches proposed in this chapter and in [Cas+16b]. The
output of the system under the control law designed in Chapter 2 converges similarly.
Please note that the implementation of the strategy introduced in [Cas+16b] is not
as simple as the implementation of others. As it is illustrated in the zoomed portion
of the plot, similar precision is obtained through all the algorithms. The evolution
of the control signals introduced to the system through the saturating actuator is
depicted in the lower plot. It is noted that for control laws (1.3) and (3.4), this is
different from the generated control signal u, which is not bounded by the saturation
limits. This results in a large overshoot and long settling time in the performance of
the conventional STA. The proposed scheme, however, contributes significantly to
the counteraction of the windup effect.

3.4.2. Second Case

In this scenario, b remains known, but the bound of disturbances given in (3.24) is
increased as

a(t) = 3.1 + 0.6 sin(t) + 0.8 sin(5t) . (3.25)

Since La remains the same as last case, some of the control gains are left unchanged,
see Table 3.1. However, aM = 4.5 is close to the saturation bound ρ. Hence, having
well-tuned the perturbation estimator constants such that the estimation error con-
verges in a finite time faster than the convergence of the system output, information
of the estimator is exploited in implementation of control law (2.44).

The simulation is initialized in this case with z0 = −30 and ν0 = 0. As it is indicated
in Figure 3.3, the saturated version of STA with the estimator as well as the proposed
technique produces a similar satisfactory performance. In the zoomed portion of the
upper plot, it is demonstrated that the output of the system under control law (2.3)
does not converge with the same accuracy as those obtained through the other
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Table 3.1.: Parameters of Applied Controllers

Controller Parameter
Simulation Case

1st 2nd 3rd

Anti-Windup Scheme
k1 6.1 14 21.8
k2 4.7 4.7 14.2
k3 1 1 3

Conventional STA
k1 5.5 5.5 12.4
k2 4.7 4.7 14.2

Saturated STA in [Cas+16b; Cas+16a]
k1 4 4 —
k2 4.7 4.7 —

Saturated STA in Chapter 2

k1 4 4 —
k2 10.7 10.7 —
k3 2.5 2.5 —
ε 0.18 0.18 —

algorithms. This is due to the fact that in this approach, La needs to be a portion of
the limit ρ and therefore there is no chance both inequalities (2.9) and (2.43) are
satisfied in the case aM is close to ρ. The values given in Table 3.1 for this controller
in the second simulation case are assigned such that the absolute value of the control
signal is confined to ρ.

3.4.3. Third Case

In this case, in addition to perturbations, uncertainties and multiplicative unknowns
are taken into consideration as

a(t, z) = 1 + 0.6 sin(t) + 0.4 sin(5t) + 0.4 cos(z) , (3.26a)

b(t, z) = 0.8 + 0.1 sin(t) + 0.1 cos(z) . (3.26b)

It is noted that b(t, z) is lower bounded by bm = 0.6 and therefore, a(t, z) needs
to be bounded by aM < 3 (according to (3.3)). As mentioned before, this problem
setting is not dealt with in [Cas+16b; Cas+16a] and the previous chapter. Thus,
simulation response curves obtained through the system under control laws (3.4)
and (1.3) are compared in this scenario. The selected control parameters are listed
in Table 3.1. The simulation is carried out with the same initial condition as the last
case. It can be clearly seen in Figure 3.4 that the windup effect is also mitigated in
this performance of the proposed approach. The precision is different comparing to
the result of the conventional STA due to the difference in the parameter values, but
it is satisfactory in both the algorithms.
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Figure 3.2.: Simulation response curves of the first case obtained through the system under four
different control laws (3.4), (1.3), (2.44) with ν̄ = 0, and (2.3), which are labeled
respectively with Proposed Scheme, Conventional STA, Saturated STA in [Cas+16b],
and Saturated STA presented in the previous chapter.
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Figure 3.3.: Simulation results of the second case comparing the proposed approach with the
conventional STA, the saturated STA applying the disturbance estimator as presented
in [Cas+16a], as well as the saturated version of STA given in Chapter 2.
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Figure 3.4.: The system output z and control input u simulated in the third case, where the system
is affected by uncertainties and disturbances. The results obtained through the proposed
approach and the conventional STA are compared since uncertainties and multiplicative
unknowns are not addressed in [Cas+16b; Cas+16a] and the previous chapter.
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Second-Order System
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4. Saturated Continuous Twisting
Algorithm

In this chapter, system (1.6), which is also known as the perturbed double integrator
system, is taken into consideration. Investigations of two scenarios are conducted:

4.i. Full State Information: it is assumed that the state z2 as well as the system
output y is available for measurement.

4.ii. Output Feedback Control: the output is just measurable and z2 needs to be
estimated.

For both of them, a saturated control scheme based on the continuous twisting algo-
rithm is introduced. In the latter scenario, the first-order robust exact differentiator
is used as a state observer.

4.1. Problem Statement

For system (1.6), the following assumption is made.

Assumption 4.1. The function ā is globally bounded and Lipschitz continuous with
respect to time, i.e.

∣∣ā(t)
∣∣ ≤ āM < ρ and

∣∣∣∣
dā

dt

∣∣∣∣ ≤ Lā , ∀t ≥ 0 , (4.1)

where the constants āM and Lā are known. It is noted that the inequality āM < ρ has
to be satisfied due to the same reason as explained in Remark 2.1 (to ensure that
z2 = 0 is an equilibrium state of system (1.6) for every admissible function ā).

In this chapter, it is aimed at designing a control law for the aforementioned second-
order system such that the system states z1 and z2 tend to the origin in a finite time
and the control signal u is continuous everywhere and confined to the saturation
bounds.
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Remark 4.1. The objective cannot be achieved by applying the aforementioned
saturated super-twisting algorithm and anti-windup strategy to this system. Let’s
define a sliding function as

σ = z2 + λz1 , (4.2)

where λ is a positive constant. Its time derivative reads as

dσ

dt
= u+ ā+ λz2 . (4.3)

If ā + λz2 is considered as perturbations and uncertainties, bounds of z2, which
cannot be realized from a saturated control input, need to be known. In the case λz2

is compensated through the saturated super-twisting control law as

u = −λz2 − k1satε

(
dσc 1

2

)
+ ν , (4.4a)

dν

dt
= −k2 dσc0 − k3ν , |ν0| ≤

k2

k3

, (4.4b)

the absolute value of the generated control signal is not bounded by a calculable
constant anymore. If this term is incorporated into the controller designed in Chapter 3
as

u = −λz2 − k1 dσc
1
2 + ν , (4.5a)

dν

dt
= −k2 dσc0 − k3βν , |ν0| ≤

k2

k3

, (4.5b)

the stability properties established therein may be violated. Exemplarily, in the case
|u| > ρ, σ and u may have the same sign in contrast to that derived in (3.7).

4.2. Saturated Continuous Twisting Control

Full State Information: assuming that the states z1 and z2 are available, the
proposed saturated and continuous control input is obtained through

u = −k1satε1

(
dz1c

1
3

)
− k2satε2

(
dz2c

1
2

)
+ ν , (4.6a)

dν

dt
= −k3 dz1c0 − k4ν , |ν0| ≤

k3

k4

, (4.6b)

where the initial value ν0 as well as the positive constants k1, ε1, k2, ε2, k3, and k4

need to be selected appropriately. Similar to that illustrated in Figure 2.1, it can be
shown that ∣∣∣∣satε1

(
dz1c

1
3

)∣∣∣∣ ≤ ε1 , ∀z1 ,

∣∣∣∣satε2

(
dz2c

1
2

)∣∣∣∣ ≤ ε2 , ∀z2 .

(4.7)
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4.2. Saturated Continuous Twisting Control

Sufficient conditions for choosing the control parameters are given later in the next
section. Block diagrams of the standard continuous twisting control and the saturated
version for the Full State Information scenario are compared in Figure 4.1.

Remark 4.2. The term dz2c0 within the continuous twisting algorithm presented
in [Tor+17] is omitted in (4.6). This is due to the fact that it does not contribute to
the stability of the origin of the closed-loop system.

Lemma 4.1. If the initial value ν0 is chosen such that |ν0| ≤ νM is satisfied, where
νM = k3

k4
, then the actuating signal u is bounded by

∣∣u(t)
∣∣ ≤ k1ε1 + k2ε2 + νM , ∀t ≥ 0 . (4.8)

Proof. Similar to that proved in Lemma 2.1, It is derived that ν is bounded by
∣∣ν(t)

∣∣ ≤ νM , ∀t ≥ 0 , (4.9)

where |ν0| ≤ νM is met. The upper bound of |u| in (4.8) is realized based on
inequalities (4.7) and (4.9).

Output Feedback Control: If the state z2 is not measurable, it is replaced in
(4.6a) with its estimate ẑ2 as

u = −k1satε1

(
dz1c

1
3

)
− k2satε2

(
dẑ2c

1
2

)
+ ν , (4.10a)

dν

dt
= −k3 dz1c0 − k4ν , |ν0| ≤ νM . (4.10b)

In [SMF18], the estimation obtained through the first-order as well as second-order
RED is incorporated into the output feedback design of the continuous twisting
algorithm. The closed-loops performances applying these two observers are compared
therein and it is shown that under discrete-time measurements, the accuracy is
improved in the case that the second-order RED is used. However, employing this
order of the differentiator makes the continuous twisting control approach redundant
since perturbations are reconstructed through the estimator as well as the controller.
Therefore, for the saturated continuous twisting algorithm, the estimation is provided
via a super-twisting observer designed as

e1 = z1 − z̃1 , (4.11a)

dz̃1

dt
= µ1 de1c

1
2 + ẑ2 , (4.11b)

dẑ2

dt
= u+ µ2 de1c0 , (4.11c)

where z̃1 is an auxiliary variable and µ1 and µ2 are positive values to be chosen
appropriately, see e.g. [Lev98; DFL05].
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4. Saturated Continuous Twisting Algorithm

−l1

−l2

−l3

−l4

+

+
∫

z1

z2 u

ν

(a) Standard CTA

−k1

−k2

−k3

+

+
∫

−k4

z1

z2 u

ν

(b) Saturated CTA

Figure 4.1.: Block diagrams of standard continuous twisting control (1.7) and the saturated version
proposed in this chapter for the Full State Information scenario.

Remark 4.3. It is noted that the upper bound of the absolute value of the control
input (4.10) remains the same as that one presented in Lemma 4.1.

4.3. Stability Analysis

For the closed loops, with and without observer, global finite-time stability properties
are established in this section.
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4.3. Stability Analysis

4.3.1. Full State Information

For system (1.6) under control law (4.6), the closed-loop dynamics reads as

dx1

dt
= x2 , (4.12a)

dx2

dt
= −k1satε1

(
dx1c

1
3

)
− k2satε2

(
dx2c

1
2

)
+ x3 , (4.12b)

dx3

dt
= −k3 dx1c0 − k4x3 + φ̄(t) , (4.12c)

where the state vector is defined as

x =
[
x1 x2 x3

]T

=
[
z1 z2 ν + ā

]T

. (4.13)

Suppose that the inequalities given in (4.1) are fulfilled, then φ̄(t) = k4ā+ dā
dt

in the
closed-loop system is bounded, i.e.

∣∣φ̄(t)
∣∣ ≤ φ̄M = k4āM + Lā , ∀t ≥ 0 . (4.14)

Proposition 4.1. There exist constants k̄1, k̄2, and k̄3 such that for any positive
real value φ̄M , choosing the control constants as

k1 = φ̄
2
3
M k̄1 , k2 = φ̄

1
2
M k̄2 , k3 = φ̄M k̄3 (4.15)

guarantees that if

1

2
k1ε1 = k2ε2 >

k3

k4

+ āM , (4.16a)

ρ ≥ k1ε1 + k2ε2 +
k3

k4

(4.16b)

hold, then the origin x = 0 is globally finite-time stable and the actuator is not
saturated, i.e. u ∈ [−ρ, ρ] for all t ≥ 0.

Remark 4.4. Similar to Chapter 2, Sostools [Pap+13] can be employed to de-
termine the values of k̄1, k̄2, and k̄3. Having solved the sum-of-squares problem
formulated within the following proof, they can be assigned as

k̄1 = 9 , k̄2 = 5 , k̄3 = 1.1 . (4.17)
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4. Saturated Continuous Twisting Algorithm

Proof. The case |x1|
1
3 ≤ ε1 and |x2|

1
2 ≤ ε2 leads to the closed-loop system

dx1

dt
= x2 , (4.18a)

dx2

dt
= −k1 dx1c

1
3 − k2 dx2c

1
2 + x3 , (4.18b)

dx3

dt
= −k3 dx1c0 − k4x3 + φ̄(t) . (4.18c)

The control gains k1, k2 and k3 are scaled for all φ̄M > 0 as given in (4.15). Changing
the coordinates in (4.18) as

x = φ̄Mζ = φ̄M

[
ζ1 ζ2 ζ3

]T

(4.19)

yields

dζ1

dt
= ζ2 , (4.20a)

dζ2

dt
= −k̄1 dζ1c

1
3 − k̄2 dζ2c

1
2 + ζ3 , (4.20b)

dx3

dt
= −k̄3 dx1c0 − k4ζ3 +

φ̄(t)

φ̄M
. (4.20c)

Similar to system (2.38),
|φ̄(t)|
φ̄M
≤ 1 holds for all t ≥ 0 (based on (4.14)) and sys-

tem (4.20) is not a weighted homogeneous system (due to the presence of the
linear term −k4ζ3). It is, however, possible to use the Lyapunov function candidate
considered in [Tor+17] based on the homogeneous generalized form function as

V (ζ) = α1|ζ1|
5
3 + α2ζ1ζ2 + α3|ζ2|

5
2 + α4ζ1 dζ3c2 − α5ζ2ζ

3
3 + α6|ζ3|5 , (4.21)

where the coefficient vector is defined as α =
[
α1 · · · α6

]T

∈ R6. It is differentiable

and homogeneous of degree five with the weights r =
[
3 2 1

]T

. Taking the time

derivative of V in (4.21) along the trajectories of system (4.20) gives

dV

dt
= − (W1 +W2) . (4.22)

The function W1, which is similar to the derived function for the unperturbed case
in [Tor+17], reads as

W1(ζ) = β1 |ζ1|
4
3 + β2ζ1 dζ2c

1
2 − β3 dζ1c

2
3 ζ2 + β4 dζ1c

1
3 dζ2c

3
2 + β5 |ζ2|2

− β6ζ1ζ3 + β7 |ζ1| |ζ3| − β8 dζ1c
1
3 ζ3

3 + β9 dζ1c0 dζ3c4 − β10 dζ2c
3
2 ζ3

− β11ζ2 dζ3c2 − β12 dζ2c
1
2 ζ3

3 − β13 dζ1c0 ζ2 |ζ3|2 + β14 |ζ3|4 , (4.23)
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4.3. Stability Analysis

where the coefficients are

β1 = α2k̄1 , β2 = α2k̄2 , β3 =
5

3
α1 , β4 =

5

2
α3k̄1 ,

β5 =
5

2
α3k̄2 − α2 , β6 = α2 , β7 = 2α4k̄3 , β8 = α5k̄1 ,

β9 = 5α6k̄3 , β10 =
5

2
α3 , β11 = α4 , β12 = α5k̄2 ,

β13 = 3α5k̄3 , β14 = α5 .

(4.24)

The function W2 in (4.22) is written as

W2(ζ) = −β15ζ1|ζ3|+ β16ζ2|ζ3|2 − β17 dζ3c4 , (4.25)

where the coefficients denote
[
β15 β16 β17

]T

=
[
2α4 3α5 5α6

]T

Ξ , (4.26)

with Ξ =
−k4ν+ dā

dt

φ̄M
. It is worth mentioning that both W1 and W2 are discontinuous

homogeneous functions of degree four. Furthermore, the coefficients β15, β16, and β17

are bounded by some known constants (according to (4.9) and (4.1)). In order to
determine conditions of the control parameters k1, k2, and k3 and the coefficients α
such that W1 +W2 as well as V is positive definite, a quadrant analysis as proposed
in [SM14; Tor+17] is carried out in Appendix B. Please note that the other constants
ε1, ε2, and k4 do not play a role in the formulation of the sum-of-squares problem
mentioned therein and they come into play in the following.

In the case that |x1|
1
3 > ε1 and |x2|

1
2 > ε2, (4.12a) and (4.12b) read as

dx1

dt
= x2 , (4.27a)

dx2

dt
= −k1ε1 dx1c0 − k2ε2 dx2c0 + x3 . (4.27b)

The twisting algorithm is recovered since the defined variable x3 is bounded (according
to (4.9) and (4.1)) by

|x3| ≤ ηM = νM + āM , ∀t ≥ 0 . (4.28)

Having selected the control parameters ε1, ε2, and k4 such that (4.16a) is satisfied,
the states x1 and x2 drive to the origin (see e.g. [Sht+14]) and therefore the previous
scenario or one of the following cases occurs.

For |x1|
1
3 > ε1 and |x2|

1
2 ≤ ε2 , the aforementioned closed-loop system is rewritten as

dx1

dt
= x2 , (4.29a)

dx2

dt
= −k1ε1 dx1c0 − k2 dx2c

1
2 + x3 , (4.29b)
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4. Saturated Continuous Twisting Algorithm

where (4.28) holds. If |x1|
1
3 ≤ ε1 and |x2|

1
2 > ε2 , having considered the boundedness

of x3, the closed-loop system is represented as

dx1

dt
= x2 , (4.30a)

dx2

dt
= −k1 dx1c

1
3 − k2ε2 dx2c0 + x3 . (4.30b)

For these two cases, the following local Lyapunov functions are introduced in
[Gol+18b], which can guarantee the boundedness of the states. Therein, the proposed
Lyapunov function candidate for (4.29) is

V1(x1, x2) = k1ε1 |x1|+
1

2
x2

2 +
k2

ε2
x1x2 − x1x3 . (4.31)

Since x2 as well as x3 is bounded in this case, this function is positive definite if
(4.16a) is satisfied. Differentiating V1 along the trajectories of (4.29) gives

dV1

dt
≤ −k2

ε2
|x1|

(
k1ε1 + k2ε2 dx1c0 dx2c0 −

(
ηM +

(2k3 + Lā) ε2
k2

)
dx1c0

)
, (4.32)

where 2k3 + Lā is the upper bound of |dx3

dt
| in (4.12c). It can be seen that dV1

dt
is

globally negative semi-definite if

k1ε1 > k2ε2 + ηM +
(2k3 + Lā) ε2

k2

(4.33)

is fulfilled. Having compared the aforementioned condition with that one imposed
in (4.16a), it is revealed that satisfying the relaxed sufficient condition set here in
Proposition 4.1 does not result in the global negative semi-definiteness of dV1

dt
. A

Lyapunov function candidate for (4.30) is presented in [Gol+18b] as

V2(x1, x2) = |x1|
4
3 +

2

3k1

x2
2 . (4.34)

It becomes evident that the radially unbounded function V2 is globally positive
definite. Its time derivative along the trajectories of (4.30) yields

dV2

dt
≤ − 4

3k1

|x2|
(
k2ε2 − ηM dx2c0

)
. (4.35)

If (4.16a) is met, the globally negative semi-definiteness of dV2

dt
is ensured, which

implies that x2 is bounded.

The convergence of the states cannot be guaranteed through the Lyapunov functions
V1 and V2. However, it is derived intuitively from the aforementioned arguments that
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4.3. Stability Analysis

the system trajectory in the corresponding cases cannot escape far away from the
standard trajectory of the twisting algorithm. A mathematical explanation contributes
here to the global stability proof of the closed-loop system origin. Intersections of
a majorant curve with a straight line parallel to the axis x1 = 0 drawn at x1 = ε31
as well as straight lines parallel to the axis x2 = 0 passing through x2 = ±ε22 for
x1 > 0 (see Figure 4.2) are computed. It is shown in the following that |x2,M | < |x2,0|
is always met if (4.16a) holds, which implies the states convergence. The majorant
trajectory of (4.29) for x1 > 0 is pointed out in Figure 4.2 by x1,1 , x1,M , and x1,2 .
It can be represented by

x2
dx2

dx1

=




−k2x

1
2
2 − k1ε1 + ηM for x2 > 0 ,

k2 (−x2)
1
2 − k1ε1 − ηM for x2 ≤ 0 ,

(4.36)

where ηM is given in (4.28). The curve intersects the axis x2 = 0 at the point x1,M ,
which can be determined through the solution of (4.36) for x2 > 0 based on x1,1 (the
intersection with x2 = ε22) as

x1,M = x1,1 −
2 (k1ε1 − ηM)3 ln (k1ε1 − ηM + k2ε2)

k4
2

+
2 (k1ε1 − ηM)2 ε2

k3
2

− (k1ε1 − ηM) ε22
k2

2

+
2ε32
3k2

+
2 (k1ε1 − ηM)3 ln (k1ε1 − ηM)

k4
2

. (4.37)

Having calculated the solution of (4.36) for x2 ≤ 0 , x1,2 (the intersection with
x2 = −ε22) based on x1,M is derived as

x1,2 = x1,M +
2 (k1ε1 + ηM)3 ln (k1ε1 + ηM − k2ε2)

k4
2

+
2 (k1ε1 + ηM)2 ε2

k3
2

+
(k1ε1 + ηM) ε22

k2
2

+
2ε32
3k2

− 2 (k1ε1 + ηM)3 ln (k1ε1 + ηM)

k4
2

. (4.38)

If the control parameters are selected as given in (4.16a), substituting (4.37) into
(4.38) gives

x1,2 = x1,1 −
1

k4
2

q (4.39)

with

q = 2
(
k3

1ε
3
1 + 3k1ε1η

2
M

)
ln (q1) + 2

(
η3
M + 3k2

1ε
2
1ηM

)
ln (q2)

− 28

24
k3

1ε
3
1 − k1ε1η

2
M −

1

2
k2

1ε
2
1ηM .
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ε31

ε22

−ε22

x2,0

x2,M

0 x1,M

x1,1

x1,2

x2,1

x2,2

x1

x2

Figure 4.2.: A majorant trajectory for the saturated continuous twisting algorithm.

The bounds of q1 and q2 are obtained as

2.77 < q1 =

(
3
2
k1ε1 − ηM

) (
k1ε1 + ηM

)

(
k1ε1 − ηM

) (
1
2
k1ε1 + ηM

) < 3 , (4.40)

0.75 < q2 =

(
k1ε1 + ηM

)(
k1ε1 − ηM

)

(
1
2
k1ε1 + ηM

) (
3
2
k1ε1 − ηM

) < 1.34 . (4.41)

Therefore, the lower bound of q is calculated as

q > 0.83k3
1ε

3
1 + 5k1ε1η

2
M − 0.58η3

M − 2.24k2
1ε

2
1ηM > 0 . (4.42)

This implies that x1,2 is smaller than x1,1. The points x2,1 and x2,2 of intersection with
x1 = ε31 can be obtained through the majorant trajectory of the twisting algorithm
realized in (4.27). For x1 > 0, this differential equation is rewritten as

d2x1

dt2
=

{
−k1ε1 − k2ε2 + ηM for x2 > 0 ,

−k1ε1 + k2ε2 − ηM for x2 ≤ 0 ,
(4.43)

where ηM , as mentioned above, is the upper bound of |x3|. By solving (4.43), the
aforementioned points are easily computed based on x1,1 and x1,2 as

x2
2,1 = 2

(
x1,1 − ε31

) (
k1ε1 + k2ε2 − ηM

)
+ ε42 , (4.44)

x2
2,2 = 2

(
x1,2 − ε31

) (
k1ε1 − k2ε2 + ηM

)
+ ε42 . (4.45)

Since x1,2 < x1,1 holds, it can be concluded that |x2,2| < |x2,1| is met if (4.16a) is
satisfied. Finally, the majorant trajectory of (4.30) for x1 > 0 needs to be considered
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4.3. Stability Analysis

in order to determine the points x2,0 and x2,M . It can be denoted by

x2
dx2

dx1

=




−k1x

1
3
1 − k2ε2 + ηM for x2 > 0 ,

−k1x
1
3
1 + k2ε2 − ηM for x2 ≤ 0 ,

(4.46)

where x3 is replaced with its bounds ηM and −ηM . The curve intersections with the
axis x1 = 0 are achieved based on x2,1 and x2,2 through the solution of (4.46) for
x2 > 0 and x2 ≤ 0 respectively. They read as

x2
2,0 = x2

2,1 + 2

(
3

4
k1ε1 + k2ε2 − ηM

)
ε31 , (4.47)

x2
2,M = x2

2,2 + 2

(
3

4
k1ε1 − k2ε2 + ηM

)
ε31 . (4.48)

Having fulfilled (4.16a), |x2,M | < |x2,0| is guaranteed owing to that |x2,2| is smaller
than |x2,1| . It can be carried out similarly for the half-plane x1 ≤ 0 .

This completes the global asymptotic stability proof of the origin x = 0 in the Full
State Information scenario. Similar to that mentioned in Lemma 2.2, the conditions
of the quasihomogeneity principle are satisfied since

• the right-hand side of differential equation (4.12) consists of a locally homo-
geneous piece-wise continuous function of degree qCTA = −1 with respect to
dilation rCTA = (3, 2, 1);

• the components of the continuous function −k4x3 + φ̄(t) are globally bounded
(according to the boundedness of ν, ā, and dā

dt
);

• system (4.12) is globally asymptotically stable around the origin.

Consequently, the finite-time convergence of the state vector x is realized applying
this principle. Furthermore, according to Lemma 4.1, it is ensured that the control
input is bounded for any z1,0 , z2,0 ∈ R . In order to retain it within the given
saturation bounds −ρ and ρ, it is sufficient that the control constants are chosen
such that (4.16b) holds.

Remark 4.5. It is inferred from the conditions of the control gains laid down in
(4.15) that

k3 > k4āM + Lā (4.49)

needs to be satisfied. Having also considered (4.16), it is deduced that perturbations
with āM < ρ

7
can be dealt with. Furthermore, disturbances, which change very

fast, cannot be handled since Lā needs to be a portion of the saturation bound ρ.
In Chapter 6, a wider class of perturbations with a larger bound āM is addressed
applying a novel approach.

51



4. Saturated Continuous Twisting Algorithm

4.3.2. Output Feedback Control

In the following, the stability properties of the closed-loop system, in which the
observer is incorporated into the design, are investigated.

Proposition 4.2. Suppose that the assumptions about perturbations as given in (4.1)
are satisfied. For system (1.6) under control law (4.10) employing observer (4.11), if
the observer constants are selected such that

µ1 = 1.5
√
āM , µ2 = 1.1āM (4.50)

hold and the control parameters are chosen such that Proposition 4.1 is fulfilled,
then the origin of the closed-loop system x = 0 is globally finite-time stable and the
continuous actuating signal remains bounded by the given saturation limits ±ρ.

Proof. Having considered observer dynamics (4.11) and defined the error variable
e2 = z2 − ẑ2, the overall closed-loop system using the mapping (4.13) is represented
as

dx1

dt
= x2 , (4.51a)

dx2

dt
= −k1satε1

(
dx1c

1
3

)
− k2satε2

(
dx2 − e2c

1
2

)
+ x3 , (4.51b)

dx3

dt
= −k3 dx1c0 − k4x3 + φ̄(t) , (4.51c)

de1

dt
= −µ1 de1c

1
2 + e2 , (4.51d)

de2

dt
= −µ2 de1c0 + ā(t) . (4.51e)

By taking into account the vector

x̃ =
[
x̃1 x̃2 x̃3

]T

=
[
x1 x2 − e2 x3

]T

, (4.52)

the subsystem in the variables x1, x2, and x3, i.e. (4.51a) to (4.51c), is rewritten as

dx̃1

dt
= x̃2 + e2 , (4.53a)

dx̃2

dt
= −k1satε1

(
dx̃1c

1
3

)
− k2satε2

(
dx̃2c

1
2

)
+ x̃3 −

de2

dt
, (4.53b)

dx̃3

dt
= −k3 dx̃1c0 − k4x̃3 + φ̄(t) . (4.53c)
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A possible choice of the observer constants is that given in (4.50), see e.g. [Lev98].
As a result of choosing µ1 and µ2 properly, the observer errors e1 and e2 are bounded
and converge to zero in the finite time T . It becomes evident that de2

dt
is also bounded

for all t ≥ 0. A similar geometric approach as mentioned above can be used in order
to show that, within cascaded system (4.51), subsystem (4.53) is input-to-state stable

with respect to the input
[
e2 −de2

dt
0
]T

. Therefore, it is ensured that the state

vector x̃ remains bounded for all t ≥ 0. The finite-time convergence of the vector x,
for t ≥ T , is guaranteed as it is proved for the Full State Information scenario.

4.4. Simulation Examples

In this section, it is shown in simulation how the saturated continuous twisting
algorithm works in Full State Information and Output Feedback Control. The
achieved performance is compared to the results obtained through the standard
continuous twisting algorithm presented in (1.7). In both of the scenarios, similar
to Chapter 1, it is supposed that the control input is saturated with ρ = 10 and
the system is subject to perturbations ā(t) given in (1.8). In order to assess the
effectiveness of the proposed approach in this chapter, the constants k1, k2, and k3

of control laws (4.6) and (4.10) are chosen as k1 = l1, k2 = l2, and k3 = l3. As it is
explained in Remark 4.2, the term dz2c0 is omitted in saturated CTA. The three
other parameters ε1 = 0.1, ε2 = 0.39, and k4 = 2 are set such that (4.16b) and (4.49)
are satisfied. The numerical simulation is carried out with the sampling step size of
Ts = 10−4 s and considering the same initial values as set in Chapter 1.

In the first simulation scenario, Full State Information, it is assumed that both
of the system states are measurable and therefore the observer is not employed.
In the simulation of Output Feedback Control, super-twisting observer (4.11) is
incorporated. Since the addressed disturbances are bounded with āM = 1.5, the
observer gains µ1 = µ2 = 2 are chosen. The performance of both of the algorithms,
saturated CTA and standard CTA, for Output Feedback Control is depicted in
Figure 4.3. It is revealed in Figure 4.4 that the observer errors tend to zero in a finite
time. Since their convergence is much faster comparing to the convergence of the
states, similar performance to that demonstrated in Figure 4.3 is achieved in the
case of Full State Information.

It can be clearly seen in the lower plot of Figure 4.3 that due to the structure
of the proposed control technique, the produced actuating signal is bounded by
the saturation limit specification. It contributes significantly to the mitigation of
the windup effect as illustrated in the plots of the states. Large overshoots and
undershoots as well as a long settling time can be seen in the response curves of
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Figure 4.3.: Simulation response curves for Output Feedback Control comparing the proposed
scheme with the standard continuous twisting algorithm. Similar results are obtained
through the simulation of Full State Information.

standard CTA. As it is indicated in the zoomed portions of the upper and middle
plots, for the system under saturated CTA, the finite-time convergence of the states
is achieved with the same precision as that one obtained through the standard
algorithm. Although the values of the constants ε1 and ε2 are small, it is shown in
the zoomed portion of the lower plot that the controller of saturated CTA produces
the continuous signal. It is noted that the control signal evolution of standard
CTA introduced to the system through the saturating actuator is depicted in the
aforementioned plot, which is different from that one generated by the controller.
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Figure 4.4.: Simulation results of the observer errors, which are unchanging as the algorithm of the
controller differs.

4.5. Experimental Implementation

In this section, a system, which represents an ideal platform to test the saturated
CTA as well as the standard CTA in a real-world application, is considered. Since
only its output is available for measurement, the Output Feedback Control strategy
is applied.

Hydraulic actuators provide a very high power-to-weight-ratio, modular design, high
precision, and durability. They are widely used in industrial applications, which need
high forces or torques (e.g. in heavy equipments such as earth moving or forestry
machines). There is a strong trend nowadays towards fully or at least partially
automating such working machines. Automation requires advanced low-level control
strategies allowing precise control of the hydraulic actuators. However, uncertainties
such as unknown load forces, external disturbances and changing operating conditions
render the control design a rather challenging task.

The synthesis of position control systems of hydraulic cylinders can be divided
into two steps. The first step aims to design a controller for the non-linear valve
system, which, in most cases, relies on an exact linearization of the valve dynamics.
Generally, the valve dynamics are completely known and the parameters, which
remain constant during operation, are mostly available in data-sheets. In the second
step, an outer loop controller is designed for the moving piston. This mechanical
subsystem is subject to external forces and possibly time-varying plant parameters
(e.g. due to changing masses of the load). Therefore, usually, a robust control strategy
is essential.

A cascaded control structure is designed in [KR16] for the reference trajectory
tracking of the piston rod of the hydraulic differential cylinder, which is subject to
an unknown load force. The proposed control law is implemented on the test bench
which is equipped with industrial hydraulic components. It consists of two coupled
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hydraulic cylinders. One of these cylinders is regarded as the operating cylinder whilst
the other one is used to apply certain load profiles (disturbances). For assessment
purposes, a force sensor, which provides real-time measurements of the external
load force, is installed at the test rig. The controller for the operating cylinder is
composed of an inner loop, which aims to linearize the valve dynamics, and an outer
loop. Here, saturated continuous twisting controller for reference trajectory tracking
is applied to the outer loop. The first-order RED is implemented to estimate the
unmeasured state variable. The inner control loop also requires full state information.
Hence, the information of the observer is provided to both loops. It is noted that the
load force in the outer piston position control loop is not reconstructed through the
estimator.

4.5.1. System Model

A schematic diagram of a hydraulic differential cylinder is depicted in Figure 4.5. A
general feature of a differential cylinder is that the effective piston cross sections have
different areas. Due to this characteristic, depending on the direction, the cylinder
moves at two different velocities at a constant flow rate QA and QB respectively.
The control goal is to make that the position of the piston rod y tracks a certain
reference profile despite the presence of unknown load force Fext. The flows QA and
QB are regulated by a servo valve. A hydraulic pump provides the valve with a
considerable constant pressure, which is assumed to be independent of external load
force. The pressure and the volume in the chambers A and B are denoted by pA , pB

and VA , VB respectively.

A mathematical model describing the dynamics of the piston movement is derived
by applying Newton’s second law of motion as

m
d2y

dt2
= Fh − Fr − Fext , (4.54)

where m is the total moving mass, i.e. the sum of the piston mass and the mass of
the hydraulic medium, and Fr represents the friction force. The hydraulic force reads
as

Fh = (pA − αkpB)Ak , (4.55)

where Ak is the so-called piston ring surface and αk denotes the ratio between the
piston rod cross section and the piston ring surface. It is assumed that the valve is
controlled and the closed-loop dynamics is described by an integrator, i.e.

dFh

dt
= uh , (4.56)

where uh is considered as the input of the system.
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Figure 4.5.: A layout of the differential hydraulic cylinder.

4.5.2. Control Design

The control input is obtained through

uh = k0

(
Fh,d − Fh

)
, (4.57)

where Fh,d denotes the desired piston force and k0 is a positive constant. Hence, an
inner force control loop with closed-loop dynamics

dFh

k0dt
+ Fh = Fh,d (4.58)

is established. The choice k0 > 0 ensures that the hydraulic force Fh asymptotically
tracks a constant desired force Fh,d . Having applied the saturated continuous twisting
control law, a bounded desired piston force is introduced as

Fh,d = uCTA + Fr , (4.59)

where uCTA is identical to u given in (4.10) with z1 = y − yd and ẑ2 = dy
dt
− dyd

dt
. It

yields an outer feedback loop for reference trajectory tracking of the piston position
and velocity. In the outer closed loop, x3 reads as

x3 = ν − Fext −m
d2yd

dt2
. (4.60)

Please note that this control strategy does not require any information on the piston
acceleration and external load. However, implementation of the outer control loop
requires a model based estimation of the friction force Fr as well as estimation of
the piston velocity dy

dt
. In order to achieve a perfect tracking in principle, a smooth

function of time t to be twice differentiable and slow enough such that its second
time derivative is negligible is used as the reference position yd (see Figure 4.6). As a
consequence, −Fext is regarded as perturbations ā taken into consideration in (1.6).
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Figure 4.6.: Experimental response curves for Output Feedback Control comparing the proposed
saturated continuous twisting algorithm with the standard one. The position, external
force, and control input are illustrated.

The closed-loop performance using the saturated CTA is compared here with the
result achieved through the standard CTA. The parameters of control law (1.7) are
well tuned as

l1 = 1000 , l2 = 800 , l3 = 1500 , l4 = 0 . (4.61)

It is noted that by setting l4 = 0, the term dz2c0 of the standard CTA is removed.
Eliminating this term, which is not necessary for the stability of the closed-loop
system origin (see e.g. [MMF17; MMF19]), reduces the windup effect. However,
this cannot prevent the actuator from being saturated and thus, cannot remove
the overshoot as shown in the corresponding response curves of the control input
and piston position. In order to assess the effectiveness of the proposed saturated
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CTA, the constants k1 , k2 , and k3 are left the same as l1 , l2 , and l3 respectively in
implementation of control law (4.10). The three other control gains are selected in
this case such that (4.16b) holds, where ρ is assumed to be 500N. They can be

k4 = 6 , ε1 = 0.12 , ε2 = 0.16 . (4.62)

Furthermore, the state observer is tuned such that the estimation error tends to zero
in a finite time faster than the convergence of the system state.

The performance of both of the algorithms is depicted in Figure 4.6. In the lower
plot (right), it can be clearly seen that due to the structure of the saturated CTA,
the produced actuating signal is bounded by the saturation limit specification. By
contrast, the control input of standard CTA (left) introduced to the system is
saturated through the actuator since the generated signal by the controller is got
beyond the limit. As it is shown in the middle plots, both of the controllers can
reconstruct the external force properly. A large overshoot is demonstrated in the
response curve of piston position in the case of standard CTA. In contrast, the
windup effect is significantly mitigated and a satisfactory performance is achieved in
the case that saturated CTA is applied.

59





5. Saturated Feedback Control Using
the Twisting Algorithm

This chapter deals with a second-order system affected by uncertainties and distur-
bances. The twisting algorithm is applied to the design of an observer-based control
law. A Lipschitz continuous control signal, which remains within the saturation
bounds, is provided.

5.1. Problem Statement

Consider a system described by

dz1

dt
= z2 , (5.1a)

dz2

dt
= b̄(t, z2)satρ(u) + ā(t, z2) , (5.1b)

y = z1 , (5.1c)

where ā and b̄, which are the functions of time and state, denote uncertainties and
disturbances.

Assumption 5.1. The functions ā and b̄ are globally bounded and Lipschitz contin-
uous with respect to time and state, i.e.

∣∣ā(t, z2)
∣∣ ≤ āM ,

∣∣∣∣
∂ā

∂t

∣∣∣∣ ≤ Lā ,

∣∣∣∣
∂ā

∂z2

∣∣∣∣ ≤ Lā,z2 , ∀t ≥ 0 , (5.2a)

0 < b̄m ≤ b̄(t, z2) ≤ 1 ,

∣∣∣∣∣
∂b̄

∂t

∣∣∣∣∣ ≤ Lb̄ ,

∣∣∣∣∣
∂b̄

∂z2

∣∣∣∣∣ ≤ Lb̄,z2 , ∀t ≥ 0 , (5.2b)

where āM , Lā, Lā,z2, b̄m, Lb̄, and Lb̄,z2 are some known constants. The upper bound of
b̄(t, z2) without loss of generality1 is one. As it is explained in the previous chapters,
the inequality ∣∣∣∣∣

ā(t, z2)

b̄(t, z2)

∣∣∣∣∣ ≤
āM
b̄m

< ρ (5.3)

1For other known upper bounds, the proposed technique may still be applied.
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has to be satisfied.

This chapter aims to design a control law for system (5.1) such that the system
output y is insensitive to uncertainties and disturbances and the control signal u is
continuous everywhere and bounded by the saturation limits.

Remark 5.1. Since z2 can be regarded as the velocity of a mechanical system,
addressing uncertainties depending on this state is important in many practical
applications. Uncertainties depending on z1 are not considered in the class of plant
uncertainties here. This is due to that in such a case, z2 appears in the time derivatives
of ā and b̄ and therefore, bounds of z2, which cannot be realized from a saturated
control input, need to be known.

Remark 5.2. If perturbations lie within a different channel from the control signal,
they are called unmatched perturbations [ES98]. In order to tackle them, fairly restric-
tive assumptions have been made on them in [YLY13; DL17]. Bounded unmatched
disturbances, whose time derivatives are also bounded, are dealt with in [EF10;
FBF13; GSP14]. Having assumed the entire state vector is available for measurement,
unmatched as well as matched perturbations are compensated using a high-order
sliding mode differentiator in [Yan+14]. However, it can be shown that the problem is
trivial if a second-order system is subject to matched disturbances and uncertainties
a1(t, ξ2) and unmatched perturbations a2(t) as

dξ1

dt
= ξ2 + a2(t) , (5.4a)

dξ2

dt
= b̃(t, ξ2)satρ(u) + a1(t, ξ2) , (5.4b)

y = ξ1 , (5.4c)

where matched ones, similar to that given in (5.2a), are globally bounded and
Lipschitz continuous as

∣∣a1(t, ξ2)
∣∣ ≤ a1,M ,

∣∣∣∣
∂a1

∂t

∣∣∣∣ ≤ La1 ,

∣∣∣∣
∂a1

∂ξ2

∣∣∣∣ ≤ La1,ξ2 , ∀t ≥ 0 ,

with the known constants a1,M , La1 , and La1,ξ2 . It is noted that in this case, unmatched
disturbances can be a linearly growing function of time t satisfying

∣∣∣∣
da2

dt

∣∣∣∣ ≤ La2 ,

∣∣∣∣∣
d2a2

dt2

∣∣∣∣∣ ≤ L̄a2 , ∀t ≥ 0 ,

where the constants La2 and L̄a2 are also known. Please note that this system is
neither strongly detectable nor strongly observable [Hau83] and therefore, there is
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no chance to estimate ξ2 and reconstruct a2(t) in the case that ξ2 is unavailable

for measurement. By applying the mapping
[
z1 z2

]T

=
[
ξ1 ξ2 + a2(t)

]T

to system

(5.4), system (5.1) is recovered, where ā(t, z2) = a1(t, z2 − a2(t)) + da2

dt
and z2 can

be estimated using a robust exact differentiator. It becomes evident that ā and its
derivatives with respect to time and z2 are globally bounded. As a consequence, the
systems with matched perturbations and uncertainties are dealt with in this study.

It becomes evident that in the case of system (5.1), there is no chance to reconstruct
either ā or b̄, or both using an RED. Furthermore, for the scenario of Output Feedback
Control imagined in 4.ii, the super-twisting algorithm cannot be applied from the
mathematical point of view, which is explained in the following.

5.1.1. Problem with Super-Twisting Controller

A super-twisting controller based on an observer using high-order sliding mode
algorithm is introduced in [Cha+16] for the perturbed double integrator system (b̄ is
assumed to be known and ā is just taken into account as a function of time). It is
shown therein that the implementation of the standard super-twisting controller using
the first-order RED as given in (4.11) to estimate z2 does not have a mathematical
justification. This is due to that, in the overall closed-loop system, the discontinuous
element of this differentiator lies in the same channel as the continuous element
of the controller and therefore, the second-order sliding mode does not exist. It is
proposed therein that the estimation of z2 should be obtained through a higher-order
differentiator.

Having employed the second-order RED, a state observer for system (5.1) is intro-
duced as

e1 = z1 − z̃1 , (5.5a)

dz̃1

dt
= µ1 de1c

2
3 + ẑ2 , (5.5b)

dẑ2

dt
= u+ µ2 de1c

1
3 + z̃2 , (5.5c)

dz̃2

dt
= µ3 de1c0 , (5.5d)

where ẑ2 denotes the estimation of the state z2, z̃1 and z̃2 are auxiliary variables, and
the positive values µ1, µ2, and µ3 are observer constants to be chosen appropriately. It
may be noted that u+ z̃2 represents the estimate information of system’s second chan-
nel (5.1b). By defining the error variables e2 = z2 − ẑ2 and ẽ2 =

(
b̄− 1

)
u+ ā− z̃2 ,
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the error dynamics is written as

de1

dt
= −µ1 de1c

2
3 + e2 , (5.6a)

de2

dt
= −µ2 de1c

1
3 + ẽ2 , (5.6b)

dẽ2

dt
= −µ3 de1c0 + ψ , (5.6c)

where ψ reads as

ψ =

(
∂b̄

∂t
+

∂b̄

∂z2

dz2

dt

)
u+

(
b̄− 1

)du
dt

+
∂ā

∂t
+
∂ā

∂z2

dz2

dt
. (5.7)

In order to achieve the convergence of e =
[
e1 e2 ẽ2

]T

to zero in the finite time T ,

ψ needs to be globally bounded [Lev98].

The estimation of the state z2 is incorporated into the sliding function definition
as

σ1 = ẑ2 + λz1 , (5.8)

where λ is a positive constant value. A control law based on the super-twisting
algorithm is designed as

u = −λẑ2 − k1 dσ1c
1
2 + ν , (5.9a)

dν

dt
= −k2 dσ1c0 − µ3 de1c0 , (5.9b)

where control parameters k1 > 0 and k2 > 0 need to be selected appropriately. It
is noted that the control signal u is continuous, but it is not Lipschitz continuous.
Thus, ψ in (5.7) cannot be bounded for all t ≥ 0 in the case b̄ is unknown. This leads
to that

∀T, ∃t > T : e 6= 0 . (5.10)

Taking the time derivative of the sliding function σ1 in (5.8) yields

dσ1

dt
= u+ µ2 de1c

1
3 + z̃2 + λ (ẑ2 + e2)

= −k1 dσ1c
1
2 − k2

∫ τ

0

dσ1c0 dt+ µ2 de1c
1
3 + λe2 . (5.11)

Consequently, in order to drive the system trajectories to the surface σ1 = 0 and
maintain the motion on that, the constants k1 and k2 need to be chosen based on
upper bound of |e|. Moreover, from (5.10), it is derived that for t > T , ẑ2 is not
always equivalent to z2.
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Furthermore, as it is pointed out in the previous chapter, for such a second-order
system with saturating actuator (even if b̄ is known), the anti-windup scheme for
the super-twisting control as well as the saturated super-twisting algorithm does
not make a contribution. On this occasion, the twisting algorithm may be adopted
to handle the problem. Providing a continuous control signal by using the twisting
algorithm contributes significantly to avoidance of two dangerous chattering classes
known as bounded and unbounded [Lev10]. In order to introduce this continuous
control input to the system, a sliding function needs to be defined such that the
relative degree of the system with respect to this function is one. Due to the fact
that the time derivative of the sliding variable is included in the control law design,
in the scenario of Full State Information considered in 4.i, the estimation of the time
derivative of z2 obtained through the first-order RED needs to be exploited to build
up the controller. However, in the Output Feedback Control scenario imagined in
4.ii, estimates of z2 and its time derivative obtained through the second-order RED
mentioned in (5.5) need to be used. Please note that in this case, perturbations and
uncertainties ā cannot be estimated and compensated in a controller. Therefore, this
robust control technique becomes non-redundant. Since sliding functions and control
laws will be similar in the aforementioned scenarios, the Output Feedback Control
scenario is considered here.

5.2. Saturated Output Feedback Control

Having considered sliding function (5.8), the proposed saturated and Lipschitz
continuous control input is obtained through

du

dt
= −k

(
dσ1c0 +

1

2
dσ2c0

)
− µ3 de1c0 − λu , u(t = 0) = u0 , (5.12)

where k is a positive constant to be selected and σ2 is defined as

σ2 = u+ z̃2 + λẑ2 . (5.13)

It is noted that the high-order sliding mode observer also provides z̃2, which is
included in σ2. In the following, it is outlined how the initial value u0 of the control
signal needs to be chosen. A block diagram of the control approach is depicted in
Figure 5.1.

Lemma 5.1. The supremum of the control signal absolute value is

sup
∣∣u(t)

∣∣ ≤ uM =
3k + 2µ3

2λ
, ∀t ≥ 0 , (5.14)

where the initial value u0 is selected such that |u0| ≤ uM holds.
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Figure 5.1.: Block diagram of proposed control law (5.12). Please note that z̃1 and z̃2 as well as ẑ2

are provided by the second-order RED given in (5.5).

Proof. Similar to the proof of Lemma 2.1, (5.14) can be easily derived since (5.12)
is a linear differential equation with the state variable u and a bounded input.

As a result of this lemma, the Lipschitz constant of the control input reads as

∣∣∣∣
du

dt

∣∣∣∣ ≤
3k

2
+ µ3 + λuM = 2λuM . (5.15)

5.3. Stability Analysis

In the following, the stability properties of the closed-loop system, in which the
observer error dynamics is considered, are investigated.

Proposition 5.1. Suppose that Assumption 5.1 is fulfilled. For system (5.1) with
any real values z1,0 and z2,0 under control law (5.12), the system states z1 and z2

tend to zero asymptotically and the continuous control signal remains within the given
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saturation bounds, i.e. u ∈ [−ρ, ρ] for all t ≥ 0, if the controller and observer gains
are chosen such that

k > 2λ
(
uM
(
1− b̄m

)
+ āM

)
, (5.16a)

ρ ≥ uM , (5.16b)

µ1 = 2ψ
1
3
M , µ2 = 1.5×

√
2ψ

2
3
M , µ3 = 1.1ψM , (5.16c)

with

ψM =
(
Lb̄ + Lb̄,z2 (uM + āM) + 2λ

(
1− b̄m

) )
uM + Lā + Lā,z2 (uM + āM) (5.16d)

hold.

Proof. Substituting (5.12), (5.5c), (5.5d), and (5.6b) into the time derivatives of σ1

and σ2 gives

dσ1

dt
= σ2 + µ2 de1c

1
3 + λe2 , (5.17a)

dσ2

dt
= −k

(
dσ1c0 +

1

2
dσ2c0

)
+ λ

((
b̄− 1

)
u+ ā− de2

dt

)
. (5.17b)

Having considered the boundedness of control input and its time derivative presented
in (5.14) and (5.15), it can be concluded that the absolute value of ψ in (5.7) is
globally bounded by the calculable constant value ψM . Hence, the observer error
vector e converges to zero in the finite time T if the positive gains µ1, µ2, and µ3

are chosen properly. As proposed in [LL14], they can be selected satisfying (5.16c).
It becomes evident that e1, e2, and de2

dt
are bounded for all t ≥ 0. As proven in

[Mor12, Theorem 5.1], within the overall closed-loop system considering (5.17) and
(5.6), the trajectories of driven subsystem (5.17) cannot scape to infinity in a finite
time. Therefore, for t < T , the states σ1 and σ2 cannot become unbounded and
afterward, for t ≥ T , their finite-time convergence is guaranteed if the control
constants k and λ are selected such that the inequalities in (5.16) are satisfied. This
implies asymptotic stability of the system states z1 and z2. The boundedness of the
actuating signal for any z1,0 , z2,0 ∈ R is justified applying Lemma 5.1. It becomes
evident that its absolute value is bounded by the constant value ρ if uM ≤ ρ is
fulfilled.

Remark 5.3. A feasible region of the observer and controller gains µ3 and k based
on the inequalities given in (5.16) may be found numerically through a computer
algebra software. In the case b̄ is known and ā is just a function of time, where the
problem setting of the previous chapter is revisited, they can be tuned independently
as

k > 2λāM , µ3 > Lā . (5.18)
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Choosing them such that (5.16b) is fulfilled leads to a bounded control signal
by a given ρ. Considering the aforementioned conditions, the permissible bound
of perturbations derived in Remark 4.5 is relaxed here to āM < ρ

3
. However, Lā

still needs to be a portion of the saturation limit ρ and therefore, the class of
addressed disturbances is left restricted. In the next chapter, this restriction is also
eased. Furthermore, in the case that either b̄ is unknown or ∂ā

∂z2
6= 0 or both, the

fairly restrictive assumptions made on the bound and class of perturbations and
uncertainties by satisfying the conditions imposed in (5.16) are eased.

5.4. Simulation Examples

In this section, it is illustrated how the proposed control law is able to handle two
different problem settings. In the first one, the simulation example of the previous
chapter is revisited, i.e. it is assumed that b̄ is known and ā represents external
disturbances and it does not depend on the system state variable. It is noted that, as
mentioned earlier, for such a perturbed double integrator system, control law (5.12)
is redundant and it is unnecessary for the application implementation. Nevertheless,
it is applied in simulation to this system in order to make a comparison with the
results achieved in the previous chapter. In the second case, the system is subject to
both model uncertainties and perturbations, i.e. both unknown b̄ and ā are functions
of time and z2. The observer and controller gains are selected based on bound
specifications systematically.

5.4.1. Perturbed Double Integrator System

In this simulation case, b̄ = 1 and perturbations ā(t) are denoted by the function
given in (1.8). The absolute value of the control signal u is supposed to remain
bounded by ρ = 10. As presented in (5.8), the sliding variable σ1 is defined with
λ = 5. In this example, the parameters k and µ3 can be tuned satisfying (5.18) and
(5.16b). Since the function ā is Lipschitz continuous with Lā = 2.5, the parameters
of the second-order RED, as mentioned in the above proof, can be e.g. µ1 = 2.71,
µ2 = 3.91, and µ3 = 2.75. Now, considering the bound āM = 1.5 of disturbances,
the control parameter k = 31.5 is selected such that the desired boundedness of the
control signal is ensured.

The numerical simulation is carried out using the same solver and sampling step
size as employed in the previous chapter. The initial condition of the system is left
unchanged and the initial value of the control input is set to u0 = 0. The results are
compared in Figure 5.2 with the achieved closed-loop performance of the saturated
continuous twisting algorithm in the Output Feedback Control scenario. As it is
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proved above, having applied the twisting algorithm, the system states tend to zero
asymptotically, whereas the states of the system under the saturated continuous
twisting control converge in a finite time. However, as it can be seen in the zoomed
portions of the upper and middle plots, similar precision is obtained through both
the algorithms. This may be different by assigning another value to λ or realizing the
saturated CTA with different discretization step size. The control signal evolution is
illustrated in the lower plot. Both of the algorithms produce continuous signals, which
are bounded by the saturation bound specification. The finite-time convergence of
the error dynamics of the observer employed in this chapter is indicated in Figure 5.3.
Please note that the errors convergence of the first-order RED, whose information
is used for the saturated CTA in the case of Output Feedback Control, is shown
in Figure 4.4. In the aforementioned approaches, the convergence of the observer
errors is faster comparing to the convergence of the sliding variables (in the twisting
algorithm-based control) or the convergence of the sates (in the saturated CTA).

5.4.2. System with Uncertainties and Disturbances

In this example, it is assumed that the system is affected by uncertainties as well as
disturbances. They are represented as

ā(t, z2) = 0.4 + 0.4 sin(t) + 0.3 sin(
√

10t) + 0.1 cos(z2) , (5.19a)

b̄(t, z2) = 0.95 + 0.03 sin(2t) + 0.02 cos(z2) . (5.19b)

Inequalities (5.2a) and (5.2b) are satisfied with āM = 1.2, Lā = 1.35, Lā,z2 = 0.1,
b̄m = 0.9, Lb̄ = 0.06, and Lb̄,z2 = 0.02. The bound ρ and the constant λ are left
unchanged. In contrast to the previous simulation case, the control and observer
parameters k and µ3 cannot be chosen independently any more, which leads to a
more restrictive set of acceptable parameter pairs. Having considered the sufficient
conditions imposed in (5.16), the parameter plan is realized using Mathematica,
which is depicted in Figure 5.4. A suitable choice of the parameters is e.g. k = 22.11
and µ3 = 16.83, which makes the actuating signal bounded by uM = 10. The observer
gains µ2 = 13.07 and µ1 = 4.96 are selected appropriately as mentioned before.

The simulation is carried out with the same configuration and initial values as used
in the previous example. Since this problem setting is not dealt with in [SMF18] and
the previous chapter, the results of the system under control law (5.12) are revealed
in Figure 5.5. As it can be seen in the upper and middle plots, the proposed control
law is capable of driving the system states asymptotically to zero in the presence of
perturbations and model uncertainties. It is noted that for the second-order RED
also employed in this simulation case, similar performance to that demonstrated in
Figure 5.3 is achieved.
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Figure 5.2.: Simulation results for the scenario of Output Feedback Control obtained through the
second-order system with b̄ = 1 and ∂ā

∂z2
= 0 under control laws (5.12) and (4.10).
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Figure 5.3.: Simulated errors of the second-order RED used for the case of perturbed double
integrator system. Its information is incorporated into the twisting algorithm-based
control law.
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Figure 5.4.: Feasible parameter region for the system in the presence of uncertainties and distur-
bances denoted by (5.19) in the case that ρ = 10 and λ = 5.
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Figure 5.5.: Simulation response curves for the second-order system with uncertainties and pertur-
bations under the saturated feedback control using the twisting algorithm. It is noted
that uncertainties as well as multiplicative unknowns are not addressed in the standard
and saturated CTA.
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6. Lyapunov-based Saturated
Continuous Twisting Algorithm

In this chapter, it is investigated how the permissible bound and class of perturba-
tions ā addressed in the previous two chapters can be relaxed. The second-order
systems, with and without considering uncertainties and multiplicative unknowns,
are taken into account. It is aimed at designing control laws for systems (1.6) and
(5.1) such that the system states converge to the origin in a finite time and the control
signal belongs to the set [−ρ, ρ] for all t ≥ 0 and is continuous almost everywhere
with a finite number of discontinuities. Having assumed both the states of the systems
are available for measurement, new versions of the saturated continuous twisting
algorithm are introduced.

6.1. Proposed Schemes

In the following, a novel Lyapunov-based saturated continuous twisting algorithm
as well as a modification of the saturated continuous twisting control presented in
Chapter 4 is proposed.

6.1.1. First Approach

The saturated continuous twisting control given in (4.6) is modified as

u = −k1satε1

(
dz1c

1
3

)
− k2satε2

(
dz2c

1
2

)
+ ν , (6.1a)

dν

dt
=

{
0 if t < T

−k3 dz1c0 if t ≥ T ,
(6.1b)

where the initial value ν0 = 0 is assumed and T is

T = inf
{
t | |z1(t)| 13 +|z2(t)| 12≤ γ

}
. (6.2)

If the non-negative constant γ is chosen appropriately such that γ ≤ min (ε1, ε2)
holds, the controller produces a bounded signal until the states enter a neighborhood
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6. Lyapunov-based Saturated Continuous Twisting Algorithm

of the origin. After that, the continuous twisting algorithm is recovered, which is
maintained even if the states leave the neighborhood. Similar to that proved in
Proposition 4.1, if either z1,0 or z2,0 or both are outside the bands, it can be shown
that the states of the closed-loop system converge to domains in the vicinity of the
origin. Having considered level sets of the Lyapunov function given in (4.21), the
stability of the closed-loop system origin can be guaranteed in a similar way to that
carried out in [Cas+16b]. Please note that here γ should not be selected too small
close to zero (otherwise, in the presence of disturbances, there is no switch in (6.1b)
and thus, the states do not tend to zero at all). This means a lower bound for γ
also needs to be considered. In the next approach introduced in this chapter, this
restriction is removed and a small non-negative value can be assigned to γ.

As a result of applying the above control law to system (1.6), the conditions imposed
on the control gains in (4.16) are relaxed to

1

2
k1ε1 = k2ε2 > āM , (6.3a)

ρ ≥ k1ε1 + k2ε2 . (6.3b)

Furthermore, there is no linear term in (6.1b) and k3 just needs to be greater than
the Lipschitz constant Lā. Therefore, the allowable bound of disturbances is increased
to

āM <
ρ

3
(6.4)

and the restriction on the class of perturbations is relaxed as shown in the next
section. Therein, a novel extension of the proof concept presented in [Cas+16b] is
made utilizing a sum-of-squares based Lyapunov function. It is worth mentioning
that, similar to the saturated continuous twisting algorithm given in Chapter 4, the
introduced actuating signal here is continuous everywhere since the aforementioned
switch is placed in the same channel as the discontinuous element of the control
law.

6.1.2. Second Approach

The concept of the saturated super-twisting algorithm proposed in [Cas+16b] is
modified here in order to be applicable to a second-order system affected by per-
turbations and uncertainties. The Lyapunov-based saturated continuous twisting
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control law for system (5.1) reads as

[
u
dν
dt

]
=






−

2
3
ρ
(
dz1c0 + 1

2
dz2c0

)

0


 if t < T

[
−k1 dz1c

1
3 − k2 dz2c

1
2 + ν

−k3 dz1c0

]
if t ≥ T ,

(6.5)

where, similar to the previous scheme, ν0 = 0 holds and T is the first time instant
as defined in (6.2). It is given later how to choose the switching level parameter
γ, which just needs to be a small enough non-negative constant in this technique.
Furthermore, an appropriate choice of the positive gains k1, k2, and k3 is made
exemplarily, whose values can be scaled. Here, the relay controller based on the
twisting algorithm is applied up to the time instant T and thereafter, the continuous
twisting controller is employed. Thus, there is at most one switch between these two
sliding mode algorithms and the number of discontinuities in the control signal is
finite. A block diagram of this novel algorithm is shown in Figure 6.1. Lyapunov
function candidate (4.21) is also used in the stability analysis of the closed-loop
system, which is detailed in the next section. It can be seen, compared to the
previous approach in this chapter, the same class of perturbations can be handled.
The permissible bounds of disturbances for the cases with and without mutiplicative
unknowns are determined in the next section.

It is noted that for every initial condition of the system in the scenario of Output
Feedback Control, the state z2 in both of the above saturated control approaches
cannot be replaced with its estimate ẑ2 obtained through the first-order RED given
in (4.11). This is explained later based on the following analysis.

6.2. Stability Analysis

Since the stability analyses of the above-mentioned schemes are similar and the
condition of the control parameter γ is less restrictive in the latter one, stability
properties of the closed loop of the Lyapunov-based saturated continuous twisting
algorithm are established in the following. Investigation into the stability of the
closed-loop system under the assumption of scenario 4.i is conducted.

Proposition 6.1. Suppose that Assumption 5.1 and

āM
b̄m

< κρ with κ ≤ 1

3
(6.6)
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Figure 6.1.: Block diagram of proposed control law (6.5). It is noted that the output of the
comparison block is one if its input is less than or equal to the constant γ and zero
otherwise. The output of OR is initialized with zero and the switches are in the upper
positions when this output is one.

are satisfied, where b̄m is greater than or equal to constant permissible lower
bound κb̄. Then there exist constants γ, k̄1, k̄2, k̄3, δ̄1, and δ̄2 such that for all

δ̄M ∈
[
0 , δ̄1

(
ρ− āM

b̄m

)]
, where

δ̄M =
Lā +

(
Lā,z2 + Lb̄,z2 āM

)
(ρ+ āM) + Lb̄āM

b̄2
m

, (6.7)

the choice of the control parameters as

k1 = µ
2
3 k̄1 , k2 = µ

1
2 k̄2 , k3 = µk̄3 (6.8a)

with

µ = max

(
δ̄M , δ̄2

(
ρ+

āM
b̄m

))
(6.8b)

guarantees that the origin of the closed-loop system (plant (5.1) under control
law (6.5)) is globally finite-time stable.
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Remark 6.1. In order to solve the sum-of-squares problem formulated within the
following proof, Yalmip [Löf04] and SeDuMi [Stu99] are used here. The values of
the constants γ, k̄1, k̄2, and k̄3 can be

γ = 0 , k̄1 = 10 , k̄2 = 5 , k̄3 = 1.1 . (6.9)

Furthermore, κb̄ = 0.76, δ̄2 = 0.09, and different values of δ̄1 as listed in Table 6.1
are determined numerically. Please note that δ̄1 increases while κ decreases.

Proof. For t < T , the closed-loop dynamics is written as

dz1

dt
= z2 , (6.10a)

dz2

dt
= −2

3
ρb̄

(
dz1c0 +

1

2
dz2c0

)
+ ā . (6.10b)

The finite-time convergence of the states to zero is ensured if (6.6) holds. It is noted
that in the case b̄ = 1, (6.4) is recovered, i.e. both of the aforementioned approaches
can make the same relaxation of the permissible bound of ā. As a result of the states
convergence, the switching condition given in (6.2) is met eventually.

For t ≥ T , the closed-loop system can be represented by

dx1

dτ
=
x2

b̄
, (6.11a)

dx2

dτ
= −k1 dx1c

1
3 − k2 dx2c

1
2 + x3 , (6.11b)

dx3

dτ
=

1

b̄

(
−k3 dx1c0 + δ̄

)
, (6.11c)

where time is scaled through dτ = b̄dt, the state vector is defined as

x =
[
x1 x2 x3

]T

=
[
z1 z2 ν + ā

b̄

]T

, (6.12)

and δ̄ reads as

δ̄ =
d

dt

(
ā(t, z2)

b̄(t, z2)

)
=

(
∂ā
∂t

+ ∂ā
∂z2

dz2
dt

)
b̄(t, z2)−

(
∂b̄
∂t

+ ∂b̄
∂z2

dz2
dt

)
ā(t, z2)

b̄2(t, z2)
. (6.13)

It is noted that, similar to that explained in Chapter 3, b̄ and δ̄ are uniformly bounded
(due to that (5.2a) and (5.2b) are satisfied and dz2

dt
is also bounded for all t ≥ 0). It is

realized that
∣∣δ̄
∣∣ is bounded by δ̄M defined in (6.7). The control gains k1, k2, and k3
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Table 6.1.: Permissible values of δ̄1 for different values of κ in the case that the control parameters
are chosen as given in (6.9).

δ̄1

1
4
≤ κ ≤ 1

3
0.21

1
6
≤ κ < 1

4
0.27

1
12
≤ κ < 1

6
0.39

0 ≤ κ < 1
12

0.72

are scaled for all δ̄M as given in (6.8a). This is justified by changing the coordinates
in (6.11) as

x = µζ = µ
[
ζ1 ζ2 ζ3

]T

. (6.14)

The transformation yields

dζ1

dτ
=
ζ2

b̄
, (6.15a)

dζ2

dτ
= −k̄1 dζ1c

1
3 − k̄2 dζ2c

1
2 + ζ3 , (6.15b)

dζ3

dτ
= −1

b̄

(
k̄3 dζ1c0 +

δ̄

µ

)
. (6.15c)

Please note that
|δ̄|
µ
≤ 1 holds (according to (6.8b)). This fact is used to design a

Lyapunov function in the following. Even though unknown b̄ exists here, the Lyapunov
function candidate considered in [Tor+17] can still be employed. Having taken the
time derivative of the Lyapunov function given in (4.21) along the trajectories of
system (6.15),

dV

dτ
= − (W1 +W2) (6.16)

is derived. The functions W1 and W2 are the same as those written in (4.23) and
(4.25) respectively, where their coefficients read as

β1 = α2k̄1 , β2 = α2k̄2 , β3 =
5α1

3b̄
, β4 =

5

2
α3k̄1 ,

β5 =
5

2
α3k̄2 −

α2

b̄
, β6 = α2 , β7 =

2α4k̄3

b̄
, β8 = α5k̄1 ,

β9 =
5α6k̄3

b̄
, β10 =

5

2
α3 , β11 =

α4

b̄
, β12 = α5k̄2 ,

β13 =
3α5k̄3

b̄
, β14 = α5 ,

(6.17a)
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and [
β15 β16 β17

]T

=
[
2α4 3α5 5α6

]T 1

b̄

(
δ̄

µ

)
. (6.17b)

Conditions of the control parameters and the coefficients α are determined using a
sum-of-squares optimization such that the positive definiteness of V and W1 +W2

and an inequality corresponding to level sets of the Lyapunov function V , which is
given in the following, are satisfied. Considering the extrema of δ̄

µ
mentioned above,

the coefficients of W2 can be denoted by the overlined letters as

[
β15 β16 β17

]T

= ±1

b̄

[
2α4 3α5 5α6

]T

. (6.18)

It is noted that for W1 and W2, the upper and lower bounds of b̄ are taken into
consideration in a quadrant analysis carried out in Appendix C.

In order to guarantee the stability of the combination of the aforementioned closed
loops, it needs to be ensured that the control signal remains within the given
saturation bounds for all t ≥ T . This leads to the closed loop of the continuous
twisting algorithm without input saturation from that point onward. To achieve that,
level sets of V , which are of the form

Ωc =
{
ζ ∈ R3 | V (ζ) ≤ c

}
, (6.19)

are considered. It is required to establish an invariant set in the space
(
ζ1, ζ2,

ν
µ

)
.

Therein, the function ā
µb̄

acts as an offset for the third coordinate and a displacement

of the equilibrium point with the maximum amplitude of āM
µb̄m

is made along the ν
µ
-axis.

Therefore, ζ3 in V (ζ) can be replaced with 1
µ

(
ν + ā

b̄

)
, where ν

µ
can be represented by

± ρ
µ

+ k̄1 dζ1c
1
3 + k̄2 dζ2c

1
2 (the planes, which are defined such that the control signal

is on the border of the saturation limit). The largest level c1 such that |u| ≤ ρ holds
in the entire set Ωc1 can be computed as

c1 = min
| ā
b̄
|≤ āM

b̄m

min
ζ

{
V (ζ) | ζ3 =

ρ

µ
+ k̄1 dζ1c

1
3 + k̄2 dζ2c

1
2 +

ā

µb̄

}
. (6.20)

Due to symmetry reasons, u = ρ is only considered. The switching parameter γ needs
to be selected such that the states z1 and z2 are within Ωc1 at the switching time
instant T . The smallest level c2 for a given γ such that the states are contained in
the set Ωc2 at T can be calculated as

c2 = max
| ā
b̄
|≤ āM

b̄m

{
V

(
ζ1, ζ2,−

ā

µb̄

) ∣∣∣∣∣ µ
1
3 |ζ1|

1
3 +µ

1
2 |ζ2|

1
2≤ γ

}
. (6.21)
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It can be concluded that the states are in Ωc1 after the switch if

c2 ≤ c1 (6.22)

is fulfilled. Through the aforementioned quadrant analysis conducted in Appendix C,
allowable values of āM , b̄m, and δ̄M for the assigned control constants γ, k̄1, k̄2, and
k̄3 and the given bound ρ are found such that V and W1 +W2 are positive definite
and inequality (6.22) holds. It is noted that γ = 0 can be chosen here since the
twisting algorithm can make that the states tend to the origin in a finite time. By
this choice, as it is shown in therein, the least restrictive upper bound of āM

b̄m
is

obtained. Having taken into consideration the permissible upper and lower bounds
of µ, inequality (6.22) is satisfied for all values of δ̄M ≥ 0.

Remark 6.2. For every initial values of z1 and z2, the estimate information ẑ2

obtained through the super-twisting observer presented in (4.11) cannot be used
instead of z2 in the above proposed approaches. This becomes evident by considering
the following counterexample. Let’s imagine that z1,0 is a small value close to zero
and z2,0 is far away from the origin. Since z1 is available for measurement and z2

is not, the initial values of the observer are set as
[
z̃1,0 ẑ2,0

]
=
[
z1,0 0

]
. Having

replaced z2(t) with ẑ2(t) in (6.2), the time instant T may be zero and therefore,
the continuous twisting algorithm is recovered at the very beginning. However, in a
finite time, ẑ2 tends to z2, whose initial value is far away from zero and its absolute
value may be still big enough to make that the generated control signal exceeds the
saturation limits at a time instant greater than T . In other words, the aforementioned
invariant set cannot be established since the error e2 and its time derivative are
added to closed loop (6.15). This problem is, however, trivial. Since the convergence
time of the observer error dynamics can be estimated accurately (see e.g. [SHF18]),
it is possible to employ a linear controller while the observer errors drive to zero and
thereafter the proposed control techniques are brought into play.

Remark 6.3. It is worth mentioning that the proposed Lyapunov-based saturated
continuous twisting algorithm does not work with every relay controller, i.e. a suitable
one needs to be incorporated into the control law design. For instance, having applied
the control algorithm with prescribed convergence law (see e.g. [Lev93; Sht+14]) as

u = −ρ
⌈
z2 + λ dz1c

1
2

⌋0

, (6.23)

where λ is a positive constant, the system trajectory may reach the sliding manifold

z2 +λ dz1c
1
2 = 0 before switching to the continuous twisting algorithm. This produces

the chattering effect and thus, such a relay controller cannot be used.
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Remark 6.4. For systems of order more than two, the concept of the Lyapunov-
based saturated continuous twisting algorithm can be generalized if suitable relay
controllers, e.g. extensions of the twisting algorithm, are built up. The continuous
twisting algorithm for the higher-order systems (see [MMF17; MMF19]) can be
employed for t ≥ T since a family of Lyapunov functions has been proposed for it.
For the triple integrator system described by

dz1

dt
= z2 , (6.24a)

dz2

dt
= z3 , (6.24b)

dz3

dt
= u (6.24c)

under the control law

u = −ρ1 dz1c0 − ρ2 dz2c0 − ρ3 dz3c0 , (6.25)

it is shown in [SM13] that there is no set of the positive constants ρ1, ρ2, and ρ3

such that the origin of the closed-loop system is globally asymptotically stable. It is,
however, proved therein that for almost every initial condition, the system states
can tend to the origin in a finite time. Investigations of the saturated algorithm that
consists in switching from this relay controller to the continuous twisting controller
for the third-order system should be conducted in the future.

6.3. Simulation Examples

In this section, comparing to the control strategies recorded in the literature and
the previous two chapters, it is illustrated in simulation how the control approaches
proposed in this chapter and particularly the Lyapunov-based saturated continuous
twisting algorithm can handle two different problem settings (assuming both of the
system states are available for measurement). Since uncertainties and multiplicative
unknowns are not taken into consideration in [Tor+17] and Chapter 4, the simulation
example considered in Chapters 1 and 4 is revisited in the first case. The simulation
example of Subsection 5.4.2, where the system is subject to uncertainties and
disturbances, is revisited in the second case. While the saturation limit ρ = 10 is left
unchanged, the bounds of perturbations are enlarged here as given in the following.

In the first case, the result obtained through the saturated CTA presented in Chapter 4
is compared with the achieved closed-loop performances of the proposed schemes
in this chapter. Furthermore, in order to make a comparison, the system under the
standard continuous twisting control law given in (1.7) is simulated. In the second
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case, the results achieved by applying the saturated feedback control presented in
Chapter 5 and the Lyapunov-based saturated continuous twisting algorithm are
compared.

6.3.1. First Case

In this simulation case, the bound of the function given in (1.8) is increased and
perturbations are denoted by

ā(t) = 2.5 + 0.4 sin(t) + 0.2 sin(4t) . (6.26)

As mentioned above, ∂ā
∂z2

= 0 and b̄ = 1 hold in this case. It is noted that ā and its time
derivative are bounded by āM = 3.1 and Lā = 1.2 respectively. Hence, the conditions
laid down in Proposition 6.1 are met and the versions of the saturated CTA proposed
in this chapter are able to handle these disturbances, whereas the saturated CTA
introduced in Chapter 4 cannot deal with them. As assigned in [Tor+17], the scaled
parameters l1 = 14.68, l2 = 8.22, l3 = 2.76, and l4 = 1.32 of the standard CTA
given in (1.7) are chosen based on Lā. Similar to Chapter 4, the effectiveness of
the proposed schemes in this chapter as well as the saturated CTA is assessed by
selecting the constants k1, k2, and k3 of control laws (4.6), (6.1), and (6.5) the same
as l1, l2, and l3 respectively. For controller (4.6), there is no chance to tune ε1, ε2,
and k4 such that all inequalities given in (4.16) and (4.49) are satisfied. They are
assigned as ε1 = 0.39, ε2 = 0.34, and k4 = 2 to confine the control signal to ±ρ. For
controller (6.1), ε1 = 0.45 and ε2 = 0.4 are chosen to meet the conditions given in
(6.3). For both of the control laws designed in this chapter, 0.3 is assigned to γ.

For all the algorithms, the numerical simulation is carried out with the sampling

step size of 1 ms and the initial values
[
z1,0 z2,0

]
=
[
230 −20

]
and ν0 = 0. Their

performance is illustrated in Figure 6.2. It is revealed in the upper and middle plots
that the same rate of convergence is achieved by applying the strategies introduced
in this chapter. They contribute substantially to the alleviation of the windup effect
since their produced signals remain within the saturation bounds. The evolution
of the control signals introduced to the system through the saturating actuator is
demonstrated in the lower plot. Please note that only for control law (1.7), this is
different from the generated control signal u, which is not bounded by the saturation
limits. As explained before, this causes a long settling time and large overshoots
and undershoots in the results of standard CTA. As it is shown in the zoomed
portions of the state plots, similar precision is obtained through the Lyapunov-based
saturated CTA, modified saturated CTA, and standard CTA. It can be seen that the
states of the system under the control law proposed in Chapter 4 do not converge
with the same accuracy as those achieved by the other algorithms. This is due to
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that both inequalities (4.16b) and (4.49) cannot be fulfilled in this example, where
the upper bound āM is close to ρ

3
.

In the case γ = 0.05 is set, the performances of the new versions of the saturated CTA
presented in this chapter are compared in Figure 6.3. As expected, the states of
the perturbed system under control law (6.1) cannot tend to the origin with the
same precision as that obtained through applying controller (6.5). This is explained
earlier in this chapter that γ cannot be selected arbitrarily small in the modified
saturated CTA.
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Figure 6.2.: Simulation response curves of the perturbed double integrator system under four control
laws (6.5), (1.7), (6.1), and (4.6), which are labeled respectively with Lyapunov-based
Saturated CTA, Standard CTA, Modified Saturated CTA, and Saturated CTA. It is
noted that 0.3 is assigned to the switching level parameter γ.
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6. Lyapunov-based Saturated Continuous Twisting Algorithm

6.3.2. Second Case

In this case, b̄ given in (5.19b) is left unchanged and ā given in (5.19a) is replaced
with

ā(t, z2) = 1.35 + 0.3 sin(t) + 0.1 sin(
√

10t) + 0.05 cos(z2) . (6.27)

It is noted that the conditions imposed in Proposition 6.1 are satisfied since b̄m = 0.9,
āM = 1.8, and δ̄M = 2.15. As mentioned before, this problem setting is not dealt
with in [Tor+17] and Chapter 4. It is, however, addressed in the previous chapter.
Since the Full State Information scenario is considered here, the estimate of the
time derivative of z2, which is incorporated into the state feedback control using the
twisting algorithm, can be obtained through the first-order RED. Thus, observer (5.5)
is replaced with

e2 = z2 − ẑ2 , (6.28a)

dẑ2

dt
= u+ µ1 de2c

1
2 + z̃2 , (6.28b)

dz̃2

dt
= µ2 de2c0 . (6.28c)

In that case, twisting algorithm-based control law (5.12) is rewritten as

du

dt
= −k

(
dσ1c0 +

1

2
dσ2c0

)
− µ2 de2c0 − λu , (6.29a)

with

σ1 = z2 + λz1 , (6.29b)

σ2 = u+ z̃2 + λz2 . (6.29c)

The observer gains µ1 = 1.5
√
ψM = 5.65 and µ2 = 1.1ψM = 15.59 are selected (ψM

is the upper bound of the absolute value of ψ computed in (5.16d)). The same values
as set in the previous chapter are assigned to λ and u0. In order to retain the control
signal within the saturation limits, k = 22.94 is chosen such that ρ ≥ 3k+2µ2

2λ
is

fulfilled. The parameters k1 = 16.66, k2 = 7.33, and k3 = 2.36 of the Lyapunov-based
saturated CTA are tuned as given in (6.8a). γ = 0.05 and ν0 = 0 are set in this
simulation case.

For both of the algorithms, the numerical simulation is carried out with the same
sampling interval and initial values as used in the previous case. The finite-time
convergence of the error dynamics of the observer, whose information is exploited in
implementation of control law (6.29), is indicated in Figure 6.4. Since āM is greater
here comparing to the example taken in Subsection 5.4.2, there is no chance both
inequalities (5.16a) and (5.16b) hold. Hence, as it is depicted in Figure 6.5, the
convergence of the system states under the twisting algorithm-based control law is
not as satisfactory as that achieved by the Lyapunov-based saturated CTA.
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Figure 6.3.: Simulation results (zoomed portions of the state plots) for the perturbed system under
the new versions of the saturated continuous twisting control designed in this chapter
in the case γ = 0.05 is selected.
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Figure 6.4.: Simulated errors of the first-order RED used for the case of system with disturbances
and uncertainties. Since z2 is assumed to be also available for measurement in this
chapter, this observer is employed to provide z̃2 for the twisting algorithm-based control
law.
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Figure 6.5.: Simulation response curves comparing the Lyapunov-based saturated continuous twist-
ing algorithm introduced in this chapter with the twisting algorithm-based approach
presented in the previous chapter. In this simulation case, the system is subject to
disturbances and uncertainties.

6.4. Experimental Implementation

In order to test the Lyapunov-based saturated continuous twisting algorithm in
a real-world application, it is applied to the hydraulic differential cylinder system
described within Section 4.5. To compare the closed-loop performance with the
results shown in Figure 4.6, the gains k1, k2, and k3 of control law (6.5) are chosen
respectively the same as l1, l2, and l3 given in (4.61). Furthermore, 0.4 is assigned
to γ. It is noted that the time derivative of z1 needs to be estimated in this real-
world system. Therefore, as proposed in Remark 6.2, having converged ẑ2 to z2, the
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Figure 6.6.: Experimental performance of the proposed Lyapunov-based saturated continuous
twisting algorithm (after converging the observer errors). The position, external force,
and control input are depicted.

Lyapunov-based saturated CTA comes into play. The response curves are illustrated
in Figure 6.6. It can be seen that, similar to the saturated CTA, the produced control
signal remains within the saturation bounds (due to the structure of the algorithm).
As a consequence, the windup effect is also alleviated here and a similar satisfactory
performance is obtained through applying this new version of the saturated CTA.
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7. Conclusion and Outlook

This thesis presents feedback control techniques for first and second-order systems
affected by perturbations and uncertainties. Since the control inputs are introduced
to the systems through saturating actuators, anti-windup strategies are incorporated
into the design of the control laws.

Having applied the saturated super-twisting algorithm built up in this study to the
first-order system, the global asymptotic stability of the closed-loop system origin
is proved by means of different Lyapunov functions. Furthermore, the finite-time
convergence is guaranteed based on the quasihomogeneity principle. In the case that
the approach proposed in Chapter 3 is applied to this system, it is shown by means of
a Lyapunov function that these closed-loop system states also converge to the origin
in a finite time. For different problem settings in simulation, the performance of both
the approaches indicates that the generated control signal is continuous everywhere
and the windup effect is alleviated. However, in the latter, the standard super-
twisting algorithm is recovered after a finite time. This results in that the class of
addressed disturbances is not restricted by the saturation limit. Furthermore, without
using a disturbance estimator, the latter scheme is able to reject perturbations and
uncertainties with the maximum permissible bound that can be handled with the
actuator limitation.

For both scenarios of the perturbed double integrator system, Full State Informa-
tion and Output Feedback Control, the saturated continuous twisting algorithm is
developed. A Lyapunov function and a geometric scheme are incorporated into the
global asymptotic stability proof of the closed-loop system origin. The finite-time
convergence is realized based on the quasihomogeneity principle again. In the case
that the twisting algorithm-based control considered in Chapter 5 is employed, the
sliding function drives to zero in a finite time. This implies that the system states tend
to the origin asymptotically therein. Having applied the Lyapunov-based saturated
continuous twisting algorithm introduced in Chapter 6, the global finite-time stability
of the closed-loop system origin is guaranteed by means of a Lyapunov-based proof if
both of the system states are available. Therefore, as proposed therein, this controller
is used after the convergence of the observer errors. To provide required estimates
in the above approaches, an appropriate order of the robust exact differentiator is
adopted to the observer. The aforementioned controllers can be tuned such that the
produced signals remain within the saturation bounds. This contributes greatly to
mitigation of the windup effect, which is confirmed through the experimental studies
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7. Conclusion and Outlook

on a hydraulic differential cylinder as well as numerical simulations. It is noted that
the continuous twisting algorithm is recovered after a finite time in the last control
technique. Hence, the bound and class of addressed perturbations and uncertainties
are enlarged through that.

A list of problems of interest for future work is:

• investigating proper discretization schemes, which are applicable to the proposed
saturated feedback control algorithms;

• carrying out the stability analysis of the closed-loop system, in which the ex-
tended version of the Lyapunov-based saturated continuous twisting algorithm,
as mentioned in Remark 6.4, is applied to a perturbed third-order system;

• developing suitable relay controllers that can be incorporated into the extensions
of the Lyapunov-based saturated continuous twisting algorithm for higher-order
systems;

• designing non-redundant control laws based on robust higher-order sliding
mode observers for such perturbed systems with saturating actuators.
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A. Quadrant Analysis for the
Saturated Super-Twisting
Algorithm

The functions V defined in (2.39) and W1 and W2 given in (2.41) are symmetric with
respect to the origin. Therefore, the two sets

N1 = {x̃1 , x̃2 ≥ 0} (A.1a)

and

N2 = {x̃1 ≥ 0 , x̃2 ≤ 0} , (A.1b)

out of four sets, only need to be considered. The coordinates are changed to

ϑ̃ =
[
ϑ̃1 ϑ̃2

]T

as

|x̃1| = ϑ̃4
1 , |x̃2| = ϑ̃2

2 . (A.2)

Please note that the even numbers are assigned to the exponents in order to satisfy
the quadrant constraints. For the above sets N1 and N2, V1(ϑ̃) and V2(ϑ̃) are written
respectively as

V1(ϑ̃) = α1ϑ̃
6
1 − α2ϑ̃

4
1ϑ̃

2
2 + α3ϑ̃

6
2 (A.3a)

and

V2(ϑ̃) = α1ϑ̃
6
1 + α2ϑ̃

4
1ϑ̃

2
2 + α3ϑ̃

6
2 . (A.3b)

For the aforementioned quadrants, W1(ϑ̃) is given as

W11(ϑ̃) = β1ϑ̃
4
1 − β2ϑ̃

2
1ϑ̃

2
2 + (β3 + β4) ϑ̃4

2 (A.4a)

and

W12(ϑ̃) = β1ϑ̃
4
1 + β2ϑ̃

2
1ϑ̃

2
2 + (−β3 + β4) ϑ̃4

2 (A.4b)

respectively.

The coefficients β5 and β6 given in (2.42b) are only subject to some bounded time-
varying functions. In both the sets N1 and N2, the maximum and minimum values of
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A. Quadrant Analysis for the Saturated Super-Twisting Algorithm

β6 are ±β̄6 = ±3α3. In order to find the upper bound of Ψ =
−k3ν+ da

dt

φM
, the minimum

value of ν needs to be realized. In the case x̃2 ≥ 0, ν ≥ −aM holds and thus, the
maximum value of Ψ is one (based on (2.13)). Its lower bound is similarly calculated
by setting the maximum value of ν, which is νM . As a result, the minimum value of
−k3ν + da

dt
is −k2 − La. Since La

φM
≤ 1 holds (according to (2.13)), the lower bound

of Ψ considering (2.30) is −k̃2 − 1. Hence, W2(ϑ̃) for the set N1 reads as

W21(ϑ̃) = β̄5ϑ̃
4
1 − β̄6ϑ̃

4
2 , (A.5a)

W21(ϑ̃) = −β̃5ϑ̃
4
1 + β̄6ϑ̃

4
2 , (A.5b)

where the coefficients β̄5 and β̃5 are

β̄5 = α2 , β̃5 = α2

(
k̃2 + 1

)
. (A.6)

For x̃2 ≤ 0, the upper bound of Ψ is k̃2 + 1 since ν can be greater than or equal
to −νM . Its minimum value in this case is −1 due to the fact that ν ≤ aM holds
therein. Therefore, W2(ϑ̃) for the set N2 is

W22(ϑ̃) = β̃5ϑ̃
4
1 + β̄6ϑ̃

4
2 , (A.7a)

W22(ϑ̃) = −β̄5ϑ̃
4
1 − β̄6ϑ̃

4
2 . (A.7b)

It becomes evident that to guarantee the functions V and W1 + W2 are positive
definite, two polynomials for V and four polynomials for W1 +W2 need to be sum of
squares at the same time. Please note that the positive definiteness of a function is
ensured if the corresponding polynomials, after subtraction of positive polynomials
with the same degree, are sum of squares (e.g. V is positive definite if V1(ϑ̃) − Γ

and V2(ϑ̃)− Γ are sum of squares, where Γ is cΓ

(
ϑ̃6

1 + ϑ̃6
2

)
with a small enough

positive real constant cΓ). Exemplarily, having selected the gains given in (2.32), the
coefficients α1, α2, and α3 obtained through Sostools [Pap+13] with cΓ = 0.001
are

α1 = 2.32 , α2 = 1.13 , α3 = 0.17 . (A.8)
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B. Quadrant Analysis for the
Saturated Continuous Twisting
Algorithm

Since the functions V defined in (4.21) and W1 and W2 given in (4.23) and (4.25)
are symmetric with respect to the origin, the following four sets out of eight sets
only need to be considered:

M1 = {ζ1 , ζ2 , ζ3 ≥ 0} , (B.1a)

M2 = {ζ2 , ζ3 ≥ 0 , ζ1 ≤ 0} , (B.1b)

M3 = {ζ1 , ζ3 ≥ 0 , ζ2 ≤ 0} , (B.1c)

M4 = {ζ1 , ζ2 ≥ 0 , ζ3 ≤ 0} . (B.1d)

Similar to that made for the saturated super-twisting control in the previous appendix,

the coordinates are changed to ϑ =
[
ϑ1 ϑ2 ϑ3

]T

as

|ζ1| = ϑ6
1 , |ζ2| = ϑ4

2 , |ζ3| = ϑ2
3 . (B.2)

The exponents are also even numbers here to fulfill the octant constraints. For the
aforementioned sets M1, M2, M3, and M4, V (ϑ) is given as

V1(ϑ) = α1ϑ
10
1 + α2ϑ

6
1ϑ

4
2 + α3ϑ

10
2 + α4ϑ

6
1ϑ

4
3 − α5ϑ

4
2ϑ

6
3 + α6ϑ

10
3 , (B.3a)

V2(ϑ) = α1ϑ
10
1 − α2ϑ

6
1ϑ

4
2 + α3ϑ

10
2 − α4ϑ

6
1ϑ

4
3 − α5ϑ

4
2ϑ

6
3 + α6ϑ

10
3 , (B.3b)

V3(ϑ) = α1ϑ
10
1 − α2ϑ

6
1ϑ

4
2 + α3ϑ

10
2 + α4ϑ

6
1ϑ

4
3 + α5ϑ

4
2ϑ

6
3 + α6ϑ

10
3 , (B.3c)

V4(ϑ) = α1ϑ
10
1 + α2ϑ

6
1ϑ

4
2 + α3ϑ

10
2 − α4ϑ

6
1ϑ

4
3 + α5ϑ

4
2ϑ

6
3 + α6ϑ

10
3 , (B.3d)

respectively. For these sets, W1(ϑ) is written as

W11(ϑ) = β1ϑ
8
1 + β2ϑ

6
1ϑ

2
2 − β3ϑ

4
1ϑ

4
2 + β4ϑ

2
1ϑ

6
2 + β5ϑ

8
2 − (β6 − β7)ϑ6

1ϑ
2
3

− β8ϑ
2
1ϑ

6
3 − β10ϑ

6
2ϑ

2
3 − (β11 + β13)ϑ4

2ϑ
4
3 − β12ϑ

2
2ϑ

6
3 + (β9 + β14)ϑ8

3 , (B.4a)

W12(ϑ) = β1ϑ
8
1 − β2ϑ

6
1ϑ

2
2 + β3ϑ

4
1ϑ

4
2 − β4ϑ

2
1ϑ

6
2 + β5ϑ

8
2 + (β6 + β7)ϑ6

1ϑ
2
3

+ β8ϑ
2
1ϑ

6
3 − β10ϑ

6
2ϑ

2
3 − (β11 − β13)ϑ4

2ϑ
4
3 − β12ϑ

2
2ϑ

6
3 − (β9 − β14)ϑ8

3 , (B.4b)

W13(ϑ) = β1ϑ
8
1 − β2ϑ

6
1ϑ

2
2 + β3ϑ

4
1ϑ

4
2 − β4ϑ

2
1ϑ

6
2 + β5ϑ

8
2 − (β6 − β7)ϑ6

1ϑ
2
3

− β8ϑ
2
1ϑ

6
3 + β10ϑ

6
2ϑ

2
3 + (β11 + β13)ϑ4

2ϑ
4
3 + β12ϑ

2
2ϑ

6
3 + (β9 + β14)ϑ8

3 , (B.4c)

W14(ϑ) = β1ϑ
8
1 + β2ϑ

6
1ϑ

2
2 − β3ϑ

4
1ϑ

4
2 + β4ϑ

2
1ϑ

6
2 + β5ϑ

8
2 + (β6 + β7)ϑ6

1ϑ
2
3

+ β8ϑ
2
1ϑ

6
3 + β10ϑ

6
2ϑ

2
3 + (β11 − β13)ϑ4

2ϑ
4
3 + β12ϑ

2
2ϑ

6
3 − (β9 − β14)ϑ8

3 , (B.4d)
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respectively.

For W2, as mentioned before, the coefficients given in (4.26) are bounded. The
maximum and minimum values of Ξ are computed for every octant in the following.
Since ζ3 ≥ 0 holds in the setsM1,M2, andM3, ν can be just greater than or equal
to −āM therein. Thus, in these sets, Ξ is upper bounded by one (based on (4.14)). It
becomes evident that its lower bound can be obtained therein by setting ν = νM . As
a result, the minimum value of −k4ν+ dā

dt
is −k3−Lā. Since Lā

φ̄M
≤ 1 holds (according

to (4.14)), the lower bound of Ξ considering (4.15) is −k̄3 − 1. In the set M4, where
x3 is less than or equal to zero, the upper bound of Ξ is k̄3 + 1. This is achieved by
setting ν = −νM . In order to calculate its lower bound therein, the upper bound of
ν needs to be determined. Here, ν cannot be greater than āM and therefore, Ξ is
lower bounded by −1. Hence, W2(ϑ) in the above-mentioned sets is

W21(ϑ) = −β̄15ϑ
6
1ϑ

2
3 + β̄16ϑ

4
2ϑ

4
3 − β̄17ϑ

8
3 , (B.5a)

W21(ϑ) = β̃15ϑ
6
1ϑ

2
3 − β̃16ϑ

4
2ϑ

4
3 + β̃17ϑ

8
3 , (B.5b)

W22(ϑ) = β̄15ϑ
6
1ϑ

2
3 + β̄16ϑ

4
2ϑ

4
3 − β̄17ϑ

8
3 , (B.5c)

W22(ϑ) = −β̃15ϑ
6
1ϑ

2
3 − β̃16ϑ

4
2ϑ

4
3 + β̃17ϑ

8
3 , (B.5d)

W23(ϑ) = −β̄15ϑ
6
1ϑ

2
3 − β̄16ϑ

4
2ϑ

4
3 − β̄17ϑ

8
3 , (B.5e)

W23(ϑ) = β̃15ϑ
6
1ϑ

2
3 + β̃16ϑ

4
2ϑ

4
3 + β̃17ϑ

8
3 , (B.5f)

W24(ϑ) = −β̃15ϑ
6
1ϑ

2
3 + β̃16ϑ

4
2ϑ

4
3 + β̃17ϑ

8
3 , (B.5g)

W24(ϑ) = β̄15ϑ
6
1ϑ

2
3 − β̄16ϑ

4
2ϑ

4
3 − β̄17ϑ

8
3 , (B.5h)

where the coefficients denote

[
β̄15 β̄16 β̄17

]T

=
[
2α4 3α5 5α6

]T

(B.6a)

and

[
β̃15 β̃16 β̃17

]T

=
[
2α4 3α5 5α6

]T (
k̄3 + 1

)
. (B.6b)

It can be concluded that four polynomials for the Lyapunov function and eight
polynomials for its time derivative need to be sum of squares at the same time in
order to ensure that V1 and W1 +W2 are positive definite. Similar to that mentioned
in the previous appendix, in order to ensure that a function is positive definite, the
corresponding polynomials, from which positive polynomials with the same degree
are deducted, need to be sum of squares. Exemplarily, in this case V is positive
definite if V1(ϑ) − Υ, V2(ϑ) − Υ, V3(ϑ) − Υ, and V4(ϑ) − Υ are sum of squares,
where Υ is cΥ

(
ϑ10

1 + ϑ10
2 + ϑ10

3

)
with the small enough positive real constant cΥ. If
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the gains k̄1, k̄2, and k̄3 are selected as given in (4.17), the coefficients α obtained
through Sostools [Pap+13] with cΥ = 0.001 are

α1 = 5370 , α2 = 1189 , α3 = 269.8 ,

α4 = −118.1 , α5 = 1.9 , α6 = 0.16 .
(B.7)
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C. Quadrant Analysis for the
Lyapunov-based Saturated
Continuous Twisting Algorithm

Since the same Lyapunov function as that one considered in the previous appendix is
applied here, having transformed the coordinates as given in (B.2), V (ϑ) for the four
sets considered in (B.1) is written as those given in (B.3). It is noted that unknown
b̄ is also addressed through the Lyapunov-based saturated CTA and therefore, in
each octant, two polynomials for W1(ϑ) based on the upper and lower bounds of b̄
are taken into account. For the upper bound of b̄, which is one (according to (5.2b)),
the coefficients of the polynomials given in (B.4) are identical to those derived in
(4.24). For the lower bound of b̄, it is replaced with its permissible lower bound κb̄
within the coefficients obtained in (6.17a) and therefore, the polynomials W11, W12,
W13, and W14 with the coefficients

β1 = α2k̄1 , β2 = α2k̄2 , β3 =
5α1

3κb̄
, β4 =

5

2
α3k̄1 ,

β5 =
5

2
α3k̄2 −

α2

κb̄
, β6 = α2 , β7 =

2α4k̄3

κb̄
, β8 = α5k̄1 ,

β9 =
5α6k̄3

κb̄
, β10 =

5

2
α3 , β11 =

α4

κb̄
, β12 = α5k̄2 ,

β13 =
3α5k̄3

κb̄
, β14 = α5

(C.1)

are considered. Investigation of allowable value of κb̄ is conducted later.

In contrast to the previous appendix, for the sets M1, M2, M3, and M4, W2(ϑ) is
easily realized as

W21(ϑ) = −β15ϑ
6
1ϑ

2
3 + β16ϑ

4
2ϑ

4
3 − β17ϑ

8
3 , (C.2a)

W22(ϑ) = β15ϑ
6
1ϑ

2
3 + β16ϑ

4
2ϑ

4
3 − β17ϑ

8
3 , (C.2b)

W23(ϑ) = −β15ϑ
6
1ϑ

2
3 − β16ϑ

4
2ϑ

4
3 − β17ϑ

8
3 , (C.2c)

W24(ϑ) = −β15ϑ
6
1ϑ

2
3 + β16ϑ

4
2ϑ

4
3 + β17ϑ

8
3 , (C.2d)

respectively, where the coefficients are given in (6.18). This is due to that the
continuous twisting algorithm is recovered after a finite time in this approach. Based
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on the upper and lower bounds of δ̄
µ

and b̄, four polynomials for W2(ϑ) in each
octant are derived. It can be seen that thus far to guarantee that V and W1 +W2

are positive definite, four polynomials for the Lyapunov function and 16 polynomials
for its time derivative need to be sum of squares at the same time. It is explained in
the previous appendices how a sum-of-squares problem should be formulated such
that the positive definiteness of the functions is ensured. In the following, another
seven polynomials are introduced, which also need to be sum of squares in order to
ensure that the control signal is confined to the saturation limits for t ≥ T .

Due to that the functions ā, b̄, and δ̄ play a role in computing the levels c1 and c2, it
is also required to make a transformation as

1

µ

(
ρ+

ā

b̄

)
= ϑ2

4 . (C.3)

As given in (6.20), the largest level c1 is realized in the case

ζ3 = ρ
µ

+ k̄1 dζ1c
1
3 + k̄2 dζ2c

1
2 − ā

µb̄
holds. Therein, the function V (ζ) is repre-
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ā

µb̄

⌋2

− α5ζ2

(
ρ

µ
+ k̄1 dζ1c

1
3 + k̄2 dζ2c

1
2 +

ā
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Having made the transformation of ζ1, ζ2, and ā
µb̄

as given in (B.2) and (C.3),

Vρ(ϑ1, ϑ2, ϑ4) for the set M1 is written as

Vρ,1(ϑ1, ϑ2, ϑ4) = α1ϑ
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In each of the sets M2 and M3, two polynomials based on sign of
ρ
µ

+ k̄1 dζ1c
1
3 + k̄2 dζ2c

1
2 + ā

µb̄
are derived. For the set M2, they are
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In the set M3, they read as
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It is noted that the set M4 is disregarded in this case since ζ3 is greater than or
equal to zero for ζ1, ζ2 ≥ 0 and u = ρ (the upper bound of | ā

b̄
| is a portion of ρ as

given in (6.6)). According to (6.8b), ϑ2
4 is constrained as

ϑ2
4 ∈
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The sum-of-squares problem is formulated here such that the polynomials

Vρ,1 − S1 − S2 − c1 , Vρ,21 − S1 − S2 − c1 , Vρ,22 − S1 − S2 − c1 ,

Vρ,31 − S1 − S2 − c1 , Vρ,32 − S1 − S2 − c1

(C.9)

are sum of squares, where S1 and S2 are

S1 =
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4 −
1

δ̄1

)
G1(ϑ1, ϑ2, ϑ4) , (C.10a)
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Please note that G1 and G2 are sum of squares themselves.

It can be considered that max
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≤ γ holds in the case the switching
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2 ≤ γ is met. Therefore, the smallest level c2 presented in

(6.21) can be computed through maximizing Vγ
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written as
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It can be seen that by setting γ = 0, Vγ decreases to its lowest value and hence, the
maximum upper bound of āM

b̄m
for the given saturation limit ρ is realized. Based on

(6.6) and (6.8b), it is derived that

c2 = α6

(
āM
µb̄m

)5

≤ α6

(
1

4δ̄2

)5

. (C.12)
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C. Quadrant Analysis for the Lyapunov-based Saturated Continuous Twisting Algorithm

To guarantee that inequality (6.22) is satisfied, this constraint is also integrated into
the sum-of-squares problem. Allowable values of δ̄1 and δ̄2 for different values of κ
as well as permissible value of κb̄ are investigated such that feasible solutions for
the coefficients α and coefficients of G1 and G2 are achieved. Table 6.1 is provided.
Exemplarily, for ρ = 10 and āM

b̄m
= 3.3, having chosen the constants given in (6.9), the

coefficients α obtained using Yalmip [Löf04] and SeDuMi [Stu99] with cΥ = 10−6,
δ̄1 = 0.21, δ̄2 = 0.09, and κb̄ = 0.76 are

α1 = 106.4 , α2 = 16.75 , α3 = 4.952 ,

α4 = −1.551 , α5 = 0.014 , α6 = 0.001 .
(C.13)

It is noted that, as mentioned before, the small positive real constant cΥ is assigned
to ensure the positive definiteness of V and W1 +W2.
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