

II

III

Acknowledgment
I would like to thank everyone who has supported me during the generation process of this

thesis as well as during my studies.

Especially, I would like to thank Ass.Prof. Dipl.-Ing. Dr.techn. Wolfgang Vorraber for his

supervision, great ideas, numerous advices and my introduction to the lived field of

business informatics in the department of Engineering- and Business Informatics.

I would like to highlight my second supervisor, Dipl.-Ing. Birgit Mösl, Bsc, for the various

update meetings, instant guiding answers concerning content and organization.

Without my two supervisors, my created thesis would not exist as it does now.

I would like to thank my family, especially my parents, Andrea and Karl, sisters, Christina

and Anna-Lisa, and grandparents, for enabling my studies and supporting me during my

entire study program.

Finally, I would like to thank Julia Buchmayer for the honest feedback sessions, for finding

errors in my first version of this work and for the support within all the semesters of our

studies.

IV

Abstract
In this thesis, a newly developed visualization tool for value networks is introduced. The

tool visualizes the V2
 value network notation and is designed to be individually extendable

in the future. Leading to the actual implementation of the visualization tool, selected

research areas as well as main concepts, which emphasize the need for value networks,

are discussed.

The disciplines dealing with complex systems, considering their design, development and

maintaining phases, are a widely discussed topic. Requirements engineering is a mainly

used approach to identify and document systems’ needs. The key phases during the

requirements engineering process include the system analysis, the formulation of

requirements and the appropriate documentation, requiring detailed knowledge about the

stakeholders’ needs. As important is the expertise about using precise documentation

techniques to express the core idea behind each requirement. There are various

possibilities, from pure linguistic representations until graphical representations.

Requirements engineering tries to identify the (stakeholders’) needs of a system. To

emphasize the role of stakeholders and to arrange the engineering process according to

their needs, stakeholder-centered engineering is discussed. Used methodologies in this

area range from pure stakeholder analysis techniques, like the power versus interest grids

and stakeholder influence diagrams, to philosophies, e.g. service design thinking. The

stakeholder analysis techniques emphasize the need for understanding the stakeholders

in their environments. Service design thinking is an approach, which uses the insights of

the stakeholder analysis to design a service fulfilling the needs of the stakeholders.

Systems engineering is the last big picture, which shifts the focus to the overall engineering

process to be able to deal with complex systems. It involves basic philosophies, such as

system thinking. Top-down approaches as well as black/white-box-oriented thinking are

used to design systems in a systematic and structured way. The research field also

references requirements engineering and the stakeholder centered engineering.

To meet the needs of analyzing systems and their environments, while focusing on the

stakeholders’ perspective, a browser-based visualization tool for the V2 value network

notation has been implemented. The focus of this notation lies on the value-based

exchanges in a stakeholder network. Legal as well as motivational aspects get modeled,

too. The visualization tool offers a client-sided browser tool for smoothly generating

stakeholder networks and looking at the same network from different perspectives. Built-

in functions, as layer switching and inline text-editing, enable an easy creation process of

a linked stakeholder network with its corresponding value exchanges. The tool itself is the

base for further research investigations, including a future simulation model, based on the

created graphs.

V

Zusammenfassung
In dieser Arbeit wird ein neu entwickeltes Visualisierungstool, welches eine graphische

Darstellung der V2 Wertschöpfungsnetzwerk-Notation ermöglicht und in naher Zukunft

individuell erweiterbar sein soll, vorgestellt. Hinführend auf die Implementierung des

Visualisierungstools wird ein Überblick über ausgewählte Forschungsgebiete und

Konzepte, welche die Notwendigkeit von „Value Networks“ unterstreichen sollen,

geschaffen.

Die immer komplexer werdenden Systeme, welche sich mittlerweile aus interdisziplinären

Gebieten zusammensetzen, stellen die Forschung vor neue Herausforderungen. Um

diesem Trend entgegenzukommen, bietet der erste Teil dieser Arbeit einen Überblick über

wichtige Modelle in der Systementwicklung. Zu Beginn wird das „Requirements

Engineering“ analysiert, wobei die Systemanalyse, die qualitative Definition von

Anforderungen, sowie deren entsprechende Dokumentation von großer Bedeutung sind.

Wichtige Aspekte der Anforderungsdokumentation, wie beispielsweise sprachliche

Barrieren, werden besonders hervorgehoben.

Um den Fokus von den Anforderungen eines Systems auf die gezielte Entwicklung in

Bezug auf die Stakeholder zu legen, wird der stakeholderzentrierte Gestaltungsprozess

genauer betrachtet. Analysemethoden, wie die Stakeholder-Einfluss-Diagramme, sollen

die Abhängigkeiten zwischen den einzelnen Personengruppen aufzeigen. Ein gesamtes

Konzept der Stakeholder-zentrierten Systemgestaltung wird in der Philosophie „Service

Design Thinking“ gelebt. „Service Design Thinking“ bietet eine Reihe von Methoden und

Werkzeugen, welche die Gestaltung und Entwicklung von Serviceprodukten voll und ganz

den Bedürfnissen der Stakeholder verschreibt. „Systems Engineering“ hingegen legt den

Fokus auf die gesamteinheitliche Gestaltung von (komplexen) Systemen und deren

interdisziplinäre Vernetzung. Die Philosophie beschreibt unter anderem strukturierte

Vorgehensweisen, wie etwa die Schritt-für-Schritt-Verfeinerung von Systemteilen. Auch

„blackbox“-Ansätze, wo bewusst detaillierte Einblicke in interne Systemverhalten ignoriert

werden, gehören zu der Grundidee.

Um die Stakeholder-zentrierte Möglichkeit einer System(umwelt)-Analyse zu unterstützen,

wurde ein Visualisierungstool für die V2 Wertschöpfungsnetzwerk-Notation geschaffen.

Dieses Werkzeug ist browser-basiert und ermöglicht eine rasche Visualisierung eines

sogenannten „Value“-Netzwerkes. Es ist zudem möglich, einzelne Ebenen des

Netzwerkes ein- bzw. auszublenden, um verschiedene Sichtweisen mehrerer Graphen in

einer Gesamtübersicht zu vereinen. Das Visualisierungstool ermöglicht eine rasche und

detaillierte Analyse der wichtigsten Einflussfaktoren in (großen, komplexen) Systemen.

Die aktuelle Version des Tools bietet eine hervorragende Ausgangsposition für zukünftige

Erweiterungen, inklusive einer angedachten Simulationsschnittstelle.

VI

Content
1. Introduction ... 1

2. Requirements Engineering .. 3

2.1. Definitions .. 3

2.1.1. What is Requirements Engineering? ... 3

2.1.2. Reasons for Requirements Engineering .. 4

2.2. Requirements .. 4

2.2.1. Types of Requirements ... 4

2.2.2. Fields of Requirements ... 4

2.2.3. Functional Requirements vs. Non-Functional Requirements 5

2.2.4. Tasks of Requirements ... 5

2.3. Project Structures .. 6

2.3.1. Iterative-incremental Procedure Models .. 7

2.3.2. Agile Procedure Models .. 9

2.4. System Analysis .. 10

2.4.1. Object Engineering.. 11

2.5. From System Analysis to a Real Requirement ... 15

2.5.1. Continuously Increasing Quality of Requirements ... 15

2.5.2. Systematic Approach for Good Requirements .. 16

2.6. Documentation of Requirements .. 19

2.6.1. Context-oriented Documentation Techniques ... 19

2.6.2. Behavior-oriented Documentation Techniques ... 21

2.6.3. Data-oriented Documentation Techniques .. 22

2.6.4. Others ... 22

2.7. Dealing with Non-functional Requirements .. 22

2.7.1. Problems Estimating Non-functional Requirements 23

2.7.2. Formulation of Non-functional Requirements .. 23

3. Stakeholder Centered Engineering ... 24

3.1. Stakeholder Analysis ... 24

VII

3.1.1. Basic Stakeholder Analysis Technique ... 24

3.1.2. Power Versus Interest Grids ... 25

3.1.3. Stakeholder Influence Diagrams ... 25

3.2. Service Design Thinking .. 26

3.2.1. Core Principles .. 26

3.2.2. Procedure ... 28

3.2.3. Tools of Service Design .. 29

4. Systems Engineering .. 39

4.1. Systems Engineering Philosophy ... 39

4.1.1. System Thinking ... 39

4.1.2. Systems Engineering Procedure Model .. 42

4.2. Problem Solving Process ... 46

4.2.1. Model-Based Systems Engineering .. 47

4.3. Current Systems Engineering Tasks .. 48

4.3.1. Integrating Framework .. 48

5. Implementation of a Visualization Tool .. 50

5.1. Notation ... 50

5.1.1. Value Exchange and Resource Layer ... 50

5.1.2. Legal Layer ... 51

5.1.3. Dynamics and Motivation Layer .. 52

5.1.4. Values and Needs Layer ... 53

5.1.5. Overview ... 54

5.2. Tool introduction .. 54

5.3. Selection of Technologies .. 55

5.3.1. Desktop-Version vs. Web Application ... 55

5.3.2. Technologies for the Web-based Application .. 56

5.4. Tool overview and Prerequisites .. 58

5.5. Architecture .. 59

5.6. Design ... 59

5.6.1. Libraries .. 60

VIII

5.6.2. Design Pattern .. 61

5.7. Requirements .. 63

5.8. Implementation Basics ... 72

5.9. Custom Elements .. 72

5.9.1. Legal Layer Actor Example Definition ... 72

5.10. Main Functionalities .. 75

5.10.1. Using Draft Elements ... 75

5.10.2. Link Selection and Link Intersections ... 76

5.10.3. Label Adding and Label Rotation ... 78

5.10.4. Text editing .. 80

5.10.5. Layer Switching and Layer Selection ... 81

5.11. Future Work .. 85

5.11.1. Future Requirements ... 85

5.11.2. Future Functionalities (Extensions) .. 87

6. Conclusion .. 89

6.1. References .. 90

IX

List of Abbreviations
CSS Cascading Style Sheets

DOM Document Object Model

DSGVO Datenschutz-Grundverordnung

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

INCOSE International Council on Systems Engineering

JSON JavaScript Object Notation

MIT Massachusetts Institute of Technology

MPL Mozilla Public License

MVC Model View Controller

PNG Portable Network Graphics

RUP Rational Unified Process

SysML OMG Systems Modeling Language

UML Unified Modeling Language

XP eXtreme Programming

X

List of Tables
Table 1: Example Use-Case of a Simple Login (Semi-Formal) 20

Table 2: Pros and Cons of Desktop Version .. 55

Table 3: Pros and Cons of Browser-based Application .. 55

Table 4: Functional Requirements ... 63

Table 5: Graphical Requirements ... 67

Table 6: Quality Requirements ... 68

Table 7: Legal Requirements ... 69

Table 8: Example Use-Case of the Actor Layer Switching Requirement F12 (Semi-Formal)

 ... 70

Table 9: Future Security Requirements .. 85

Table 10: Future Legal Requirements .. 85

Table 11: Future Functional Requirements .. 86

XI

List of Figures
Figure 1: V-Model (Ruparelia, 2010, p. 10) .. 8

Figure 2: Example Use-Case-Diagram (based on (Rupp, 2004, p. 164) 21

Figure 3: Example Persona (Stickdorn et al., 2018, p. 42) ... 30

Figure 4: Example Journey Map (Stickdorn et al., 2018, p. 45) 32

Figure 5: Example Global Actor Viewpoint (Gordijn, 2002, p. 49) 36

Figure 6: Example Detailed Actor Viewpoint (Gordijn, 2002, p. 60) 37

Figure 7: Example Value Activity Viewpoint (Gordijn, 2002, p. 63) 38

Figure 8: Systems Engineering Explained, Based On (Haberfellner et al., 2018, p. 10) . 39

Figure 9: Complicated and Complex Systems, Based On (Haberfellner et al., 2018, p. 34)

 ... 41

Figure 10: Top-Down Approach, Based On (Haberfellner et al., 2018, p. 56) 43

Figure 11: Sample Actors With a Simple Value Exchange Situation 51

Figure 12: Sample Legal Layer Elements .. 51

Figure 13: Endogenous Motivation Example .. 52

Figure 14: Sample Value Needs Elements ... 53

Figure 15: Overview of the Basic Elements of All Layers (Vorraber, 2019, p. 37) 54

Figure 16: Basic Informal Architecture of the Visualization Tool 59

Figure 17: UML Component Diagram of Architecture ... 61

Figure 18: MVC Pattern (Curry and Grace, 2008, p. 88) .. 62

Figure 19: Graphical Draft for Requirement G1 .. 69

Figure 20: Graphical Draft for Requirement G3 and G4 ... 70

Figure 21: Example UML Activity Diagram for the Actor Layer Switching Requirement . 71

Figure 22: Example Definition Legal Layer Actor ... 74

Figure 23: Dragging a Sample Label Element .. 76

Figure 24: Short Code Excerpt For Setting Default Link ... 77

Figure 25: Example of a Link Type Selection ... 78

Figure 26: Example1 of Label Rotation .. 78

Figure 27: Example2 of Label Rotation .. 79

Figure 28: Code Example Showing the Label-Link Dropping ... 80

Figure 29: Example of Text Arrangement... 81

Figure 30: Actor Layer Selection Example Before Selecting a New Layer 82

Figure 31: Actor Layer Selection Example After Selecting a New Layer 82

Figure 32: Code Example of Actor Layer Selection .. 83

Figure 33: Label and Annotation Selection Example .. 84

Figure 34: Label and Annotation Selection Example 2 ... 84

1 Introduction

1

1. Introduction
The emerging complex systems represent a networked and interdisciplinary research field.

Multiple system parts, coming from different practical fields, interact with each other and

need to be designed to work hand in hand. Embedded in their environment, key aspects

of stakeholders mainly influence the system itself. This work tries to give an overview of

baseline techniques needed for a structured work on such systems, including their

environment.

Beginning with requirements engineering in chapter two, the key concept of researching,

documenting and maintaining stakeholder requirements is discussed. Core principles, like

defining qualitative requirements, whereas potential linguistic problems and unclearness

is removed, aligning requirements engineering with various project procedure models until

documenting and maintaining the generated knowledge are some of the main points at the

start of this work.

Chapter three focuses on stakeholder analysis and its importance to the engineering

process with the help of an emerging philosophy, called service design thinking. (Stickdorn

and Schneider, 2013; Stickdorn et al., 2018) This technique focuses on human factors and

allows generating various artefacts to support the engineering process. To complete the

picture of the overall engineering of systems, in chapter four the research field of systems

engineering has been further investigated. This field offers the possibility to combine

software and classical systems engineering as an interdisciplinary approach. It references

the field of requirements engineering as part of the complete system designing and

analyzing process. The main aspect of current systems engineering research fields is

about using model-based approaches to better deal with complex, networked subparts.

(Haberfellner et al., 2018)

For analyzing those complex systems, the stakeholder-centered analysis in the very

beginning is a substantial part for a successful project, business or service.

1 Introduction

2

A useful tool to investigate stakeholders and their interactions is the value network

notation, or shortly V2, proposed by Vorraber (2019) and Vorraber and Vössner (2011). By

now, there was no visualization tool, which fulfills the criteria for the intended visual

elements. In order to close this gap, the practical part of this work was the implementation

of a visualization tool for the V2 value network notation. The tool has been programmed to

enable the user a quick and easy way to generate a viewpoint representation of

stakeholders, build a network and analyze these networks concerning different layers. The

practical part of this work in chapter five offers a step by step explanation, how the tool has

evolved, what the key intention behind it is and what main functionalities it offers. With the

help of the visualization tool, value networks can be smoothly created. This offers the

possibility for detailed insights into the requirements and development issues of a system.

2 Requirements Engineering

3

2. Requirements Engineering
Requirements Engineering is a substantial part in the documentation process of what a

system should be capable of. Before analyzing the system’s environment, the discussion,

definition and documentation of the system’s requirements is a necessary starting point.

2.1. Definitions

This chapter mainly focuses on the reason why requirements engineering is necessary

and what is covered by it.

2.1.1. What is Requirements Engineering?

There are several definitions in the field of requirements engineering, but most of them

focus on the same core factors. Requirements engineering is a discipline which builds

bridges between the (product) creator and the (product) user. The main aim is to establish

a well-defined requirements analysis as well as a working requirements management.

(Rupp, 2004, pp. 498–501; Institute of Electrical and Electronics Engineers, 1990)

The core of requirements engineering is the establishment of a well-suited requirements

analysis. Taking a deeper look at the requirements analysis itself, there are differing

opinions about what is part of the requirements analysis task. Institute of Electrical and

Electronics Engineers (1990) and Rupp (2004, pp. 498–501) talk about the process of

defining and formulating the user’s requirements. There are also some sources which want

to include the task of validating those generated requirements. (Rupp, 2004, pp. 498–501)

The definition of requirements engineering shows that it is all about describing the needs

or expectations of customers for a certain system. But that is solely a certain task in the

big project of doing requirements engineering. (Rupp, 2004, pp. 2–3)

For that reason, the whole process will be rolled up. Some important steps/questions will

be (Rupp, 2004, pp. 2–3):

 Why do we need requirements engineering?

 What are requirements?

 How can requirements be described and formalized?

 How can requirements be documented?

 How can requirements be managed and maintained?

 Are there good practices how to do requirements analysis?

 Outline for practical usages.

2 Requirements Engineering

4

2.1.2. Reasons for Requirements Engineering

The reason, why a systematic requirements engineering should be part of every project,

is an obvious one: The later changes in specification have to be done, the more expensive

and time exhausting they get. Additionally, defining requirements in a structured and

reasonable way offers a guided path from the project idea to the concrete product or

service with a clear description what should be part of it. An important task of requirements

engineering is also the description of quality measurements, which should be fulfilled by

certain requirements. (Rupp, 2004, pp. 10–11)

2.2. Requirements

Requirements have a broad definition. They should precisely define what shall be done by

the product or service. Another important aspect is to describe what a certain person, who

is involved in the process, should get delivered. (Rupp, 2004, p. 138)

It is always a good idea to describe requirements in the form, what a system should be

capable of. The question, how the system is delivering the result, is not part of a typical

requirement. (Sommerville and Sawyer, 1997, p. 4)

2.2.1. Types of Requirements

Concerning types of requirements, there are various possibilities to form groups. One of

the most used criteria are: (Rupp, 2004, p. 138):

 The field of the requirement

 The level of detail the requirement is formulated

 The priority levels

2.2.2. Fields of Requirements

Talking about different fields of requirements, there are various types which can be

distinguished. Some examples are (Rupp, 2004, p. 140)

 Requirements describing functions

 Quality-related requirements

 Technical requirements

 Requirements considering legal rights

2 Requirements Engineering

5

2.2.3. Functional Requirements vs. Non-Functional Requirements

As mentioned in the chapter before, a widely used criteria to differentiate between

requirements is the distinction between functional and non-functional requirements.

Functional requirements describe the system’s direct requirements concerning its abilities

and the interactions with users. (Rupp, 2004, p. 140)

Non-functional requirements are simply all which are not part of the functional

requirements. (Rupp, 2004, p. 140)

Mainly, functional requirements describe pure functionality of a system while non-

functional requirements determine boundary conditions or constraints which must be

fulfilled while delivering the functional requirement. It is not always a clear boundary

between functional and non-functional requirements. There may also be the possibility of

splitting a requirement into a functional and non-functional part. (Sommerville and Sawyer,

1997, pp. 7–8)

Quite often, non-functional requirements are represented as quality requirements,

constraints relating the implementation process or the system as a physical object.

(Partsch, 2010, pp. 27–30)

Partsch (2010, pp. 27–30) also talks about considering the requirements for the project

organization as non-functional requirements.

2.2.4. Tasks of Requirements

Requirements are the core of the whole requirements engineering process as they are

used to describe the target product or service in a structured way. When looking at the

way how these requirements influence the process of system development, primary and

secondary tasks for requirements can be figured out. (Rupp, 2004, p. 11)

2 Requirements Engineering

6

Primary Tasks of Requirements

Primarily, requirements directly influence the development process of the product/service.

The requirements form the base for several important decisions during and after the

product/service development (Rupp, 2004, p. 11):

 They are a meaningful tool for communication. The requirements make internal

discussions easier as every team member has the same information and exactly

knows, what is the content of the discussion.

 They also serve as the external communication material, which is needed to create

announcements, as well as parts of the contract, where the exact specification of the

product/service is included.

 The two mentioned points beforehand solely describe the usage of the requirements

during the primary development process, but another very important issue is the fact

that maintenance tasks and possible integrations also must be done based on the

described requirements.

 Lastly, requirements have a big effect on the system architecture, as they strictly

determine, what the system should be aware of.

Secondary Tasks of Requirements

Secondarily, requirements also affect people and organizations outside the primary

development process, e.g. during the planning phase or after the development process.

The way the effects take place differs from sector to sector. (Rupp, 2004, p. 12)

Some classical secondary effects of requirements are (Rupp, 2004, p. 12):

 Detecting potential for future rationalization

 Increasing customer/employee satisfaction when directly considering

customer/employee wishes.

2.3. Project Structures

As it is defined now what a requirement is and how they can be categorized, the question

arises, how they are defined during a project. To answer this question, it must be clear

how the project structure itself is organized. There are some basic models which are widely

used to describe the main procedure way in a project. (Rupp, 2004, p. 43)

2 Requirements Engineering

7

Three categories can be identified (Rupp, 2004, p. 43):

1. Iterative-incremental procedure models

2. Use-case driven procedure models

As already mentioned in the name, use-cases are used to determine the system

development process. Use-case driven procedures are discussed in chapter 2.6.1.

3. Agile procedure models

2.3.1. Iterative-incremental Procedure Models

Iterative-incremental procedure models divide the project work into several incremental

parts, which build up on each other. The development itself is organized as temporal

iterations. For each following segment (increment), findings from previous steps can be

integrated. In combination with the repeating iterative activities the procedure model type

is a very widely used one. (Rupp, 2004, p. 43)

Rational Unified Process

The Rational Unified Process – shortly RUP – defines a model of how to develop object-

oriented software. Basically, it can be used also in different areas than software

engineering, but then it has to be adapted at some points. (Rupp, 2004, pp. 43–46;

Kruchten, 2007, pp. 17–33)

RUP is based on six best practices, which are widely used in the software development

sector (Kruchten, 2007, pp. 17–33; Rupp, 2004, p. 44):

1. Iterative development of software products

2. Requirements engineering and management

3. Usage of architectures, which are based on components

4. Modeling of software with the help of visual methods

5. Definition and verification of the developed software’s quality – throughout the whole

development

6. Embedded change management

As it is clearly visible, RUP also defines requirements engineering as a very important step

towards successful software development. RUP besides mentions other main parts, as

iterative - use-case-driven - design, design-driven development and dynamic changes in

design and architecture as important steps for a modern software project. But RUP itself

is not just a description of important points, it is a real product and process, which evolves,

changes over time and can be directly applied. (Kruchten, 2007, pp. 17–33)

2 Requirements Engineering

8

V-Model

The V-Model is an incremental-iterative approach which tries to give a guideline how to

structure a project, how to consider user requirements, transform these into technical

requirements and document them in an appropriate way. (Allgemeiner Umdruck Nr. 250/1,

1997; Allgemeiner Umdruck Nr. 250/3, 1997; Rupp, 2004, pp. 46–49)

The level of detail increases with each incremental step as shown in Figure 1. The “V” in

the name of the model is based on the structure of the temporal process. As already

mentioned, the level of detail in combination with the definition and appropriate

documentation of user and technical requirements is the first milestone. Each of the

previous steps gets mapped to a certain quality testing step. (Allgemeiner Umdruck Nr.

250/1, 1997; Allgemeiner Umdruck Nr. 250/3, 1997; Rupp, 2004, pp. 46–49)

The V-Model offers a basic structure how to define and document systems, which is not

solely limited to software, e.g. it is also used in the VDI 2206 by Gausemeier and

Moehringer (2002). It is not a fixed, static procedure. A better explanation is a rough check

list which tries to offer a framework for avoiding most common mistakes, like missing

documents, unnecessary documents, missing quality as a result of a lack of testing.

(Allgemeiner Umdruck Nr. 250/1, 1997; Allgemeiner Umdruck Nr. 250/3, 1997; Rupp,

2004, pp. 46–49)

Figure 1: V-Model (Ruparelia, 2010, p. 10)

2 Requirements Engineering

9

2.3.2. Agile Procedure Models

There may be some projects for which the detailed, fixed pattern for problem solving is not

the most appropriate one. In this case, agile procedure models may be preferable. They

use a broad toolset of available methods and focus mainly on four basic patterns (Beck et

al., 2001):

 The individuals and their interactions involved in a project are more important than the

used tools or patterns.

 The delivery of a working (software) product is more important than the documentation

step.

 The collaboration with the project customer is more important than the negotiations

with the customer.

 Reacting to changing requirements is more important than strictly following one way.

The core field of agile methods is software development, but basically the agile methods

can be executed in nearly all fields of project working.

eXtreme Programming

eXtreme Programming – shortly called XP – has evolved to a very famous agile (software)

development procedure. The core thinking behind is producing running software as soon

as possible. (Beck, 1999, pp. 7–10)

Various fundamentals have evolved which describe XP best (Beck, 1999, pp. 7–10):

 Working in pairs (four eyes principal), often described as pair programming

 Starting with a simple design and add further functions later

 Refactoring the system to stay flexible

 Minimal effort for the first running system, evolve it in the direction which is most

valuable

 Write test cases before evolving the system

 Testing of the system several times a day

2 Requirements Engineering

10

Scrum

Scrum is an agile development method, mainly used in the software development branch.

It does not require a strict predefined definition of procedures or team structure, it rather

defines a rough methodology to enhance the software developed by the most important

features very fast. (Schwaber and Beedle, 2002; Haberfellner et al., 2018, pp. 103–104)

Elements, which have to be implemented, are basically prioritized according to their

importance. Out of these elements, a certain number of features is selected to be

implemented in the next iteration, which is called a sprint. Sprints should have a pre-

defined duration, typically below the maximum of a month. (Schwaber and Beedle, 2002;

Haberfellner et al., 2018, pp. 103–104)

Scrum uses mainly three different roles (Schwaber and Beedle, 2002; Haberfellner et al.,

2018, pp. 103–104):

1. Product Owner

The product owner is responsible for prioritizing the elements to be implemented, sets

the main target of the project and is also responsible for providing the budget.

2. Team

The team is responsible for implementing the elements from the prioritized list,

communicates directly with the product owner and can set limits how many elements

are realistic to be met within the next sprint.

3. Scrum Master

The scrum master is overviewing the whole development process, tries to guide the

team through their working tasks, supervises roles and guarantees a smooth project

progress.

2.4. System Analysis

System analysis is a main part in requirements engineering as it should reveal the needs

of different stakeholders. As it is simply not possible to document every single aspect of a

system’s requirements in one model, multiple system models are used to express the

dynamics of different viewpoints. With the guidance of the developed system models it

should be clear for the stakeholders, what the system is aware of and if their requirements

are met. These models are well-suited tools for guiding the system analysis task.

(Sommerville and Sawyer, 1997, pp. 164–165)

For further supporting the step of system analysis, there are some basic guidelines which

should teach, how to best proceed during the analysis step. (Rupp, 2004, p. 53)

2 Requirements Engineering

11

The procedure guidelines are not very different to the project procedure models, they

should be understood as a more detailed approach to design the step of system analysis.

Some system analysis approaches are dependent on how the overall structure of a project

looks like, e.g. there may be some approaches which perfectly fit into an agile project

architecture or some which fit in other models better. (Rupp, 2004, p. 53)

2.4.1. Object Engineering

Object engineering is an approach which is used to systematically describe a system with

its requirements in a way that they can be maintained and managed in the future. (Rupp,

2004, p. 55)

The object engineering approach defines (Rupp, 2004, pp. 55–56):

 The activities which are necessary to fulfill the above-mentioned approach.

 The persons who should be aware of fulfilling the activities.

 The dependencies between certain activities.

 The results which are generated by certain activities – called artefacts.

 The methods for planning, doing and controlling the activities and generating the

artefacts.

 Methodologies for describing certain artefacts.

The components of the object engineering approach can be combined and weighted

differently, depending on the prerequisites of the project, which highly depend on the

project structure itself. (Rupp, 2004, p. 55)

Methods in Object Engineering

Methods are used to give the applying company/person(s) a set of techniques for doing

the activities. They vary from investigation, over definition to documentation and quality

assurance tools. (Rupp, 2004, p. 56)

Notations in Object Engineering

Notations are a required tool to create a suitable documentation for the created artefacts.

The way, artefacts are written down, can differ – depending on the artefact itself. Notations

can be e.g. natural language, program code, use-case diagrams, activity diagrams. There

is a huge number of different possibilities, the main point is to describe the artefact as

detailed and clear as possible. (Rupp, 2004, p. 56)

2 Requirements Engineering

12

Artefacts in Object Engineering

Artefacts are defined as a physical result of a prior activity in the object engineering

approach. They are used as input for next phases. (Rupp, 2004, p. 55)

In object engineering five main artefacts are defined as (Rupp, 2004, p. 55):

1. Targets, including stakeholder definition and boundary conditions

2. Requirements, written down in natural language

3. Analytical model

4. Conditions for fulfillment of requirements

5. Simulation model

Target Definition

Targets are a certain form of requirements, but on a more generic level as they are defined

on a wider base. Right at this high abstraction level it is very important to know the

stakeholders of the project and to analyze their dependencies and influences. Otherwise,

it will be very hard to deliver an acceptable product. (Rupp, 2004, p. 57)

Identifying the stakeholders of a system, talking with them, examining their needs and

considering them while implementing will not only make the system a better one, but also

underline the stakeholders’ importance. This will in fact lead to more satisfied customers,

improving the system usage and acceptance in the end. Additionally, it will help the system

engineers to get a better feeling, how different groups of people see the system and what

they desire. (Sommerville and Sawyer, 1997, pp. 72–74)

A fact, which is often neglected in this early time of a project, are the boundary conditions

restricting the project as a whole. Very likely, the main target(s) and the boundary

conditions also influence the choice of the project procedure model. (Rupp, 2004, p. 57)

Requirements

Requirements are the central artefact in the object engineering approach. Typically, they

are defined in natural language as it is simply understood and accepted broadly. The

downside of natural language is a sometimes imprecise and incomplete understanding.

(Rupp, 2004, p. 57)

2 Requirements Engineering

13

Analytical Model

In order to get a quick overview of what is newly defined in the requirements, an analytical

model should be created. This model should emphasize the dependencies and influences

between different parts of the system, usually realized with graphical modeling. A widely

used modeling language is UML (Unified Modeling Language), which offers various

diagram types, for example class diagrams. In these UML class diagrams, an object-

oriented approach is used to generate classes with corresponding attributes and

operations. (Rupp, 2004, pp. 58–60)

Requirements should be “translated” into a suitable notation for modeling. Very often, such

a translation into the model reveals some problems concerning different requirements or

conflicts within one requirement. This possibility is used to further refine the definition of

the requirements and update those definitions in the requirements specification document.

(Rupp, 2004, pp. 58–60)

Fulfilling Criteria for Requirements

Besides the definition of the requirements, criteria for the fulfillment of each requirement

has to be defined. This ensures that the system can be tested against the defined

requirements and on the other hand that the quality of the requirements can be ensured.

(Rupp, 2004, p. 60)

To enable a precise control mechanism for requirements, it is advised to use quantitative

values for fulfillment criteria wherever applicable. This will result in a lower risk for

discussion between the customer and the developers during the development phase of

the project. (Sommerville and Sawyer, 1997, p. 157)

The fulfillment criteria play an important role during the verification and validation step. The

proofing techniques can be simple manual checks with e.g. checklists or more formal

techniques, which may also include mathematical proofs or software guided test cases. It

is very important to precisely describe requirements and stay consistent in their description

when using different words multiple times. (Partsch, 2010, pp. 51–54)

The definition of the fulfillment criteria is done in parallel to the definition of the

requirements. This results in being able to see if the requirements are testable and if all

corner cases are thought through and covered. The fulfillment criteria are often defined by

another person, who has certain knowledge in testing (software) products. This offers

another point of view and increases the quality of the requirement itself as unclear facts

are identified very early in the development process. (Rupp, 2004, p. 60)

2 Requirements Engineering

14

Simulation Model (Prototype)

Dealing with requirements in a written form can be exhausting for certain stakeholders.

For this purpose, prototypes are introduced which should model a more or less detailed

part of the final system to show certain functionality. (Rupp, 2004, p. 61)

Depending on the needs of the current project stage, prototypes can come in many

different forms: paper drawn prototypes which should give also some graphical

explanation, programmed tools which model just a single functionality or even bigger

prototypes which include a broad number of functionalities. The purpose of prototypes is

essential: some are made to be thrown away, some are made to be integrated later on in

the final product. (Rupp, 2004, p. 61)

No matter which type of prototype is used, they always help the stakeholders to feel like

really using the final system which introduces a completely new sight on the requirements.

In the end, quality of the requirements will increase, some requirements will be thrown

away and new requirements will arise. (Rupp, 2004, p. 61)

Usage of the Object Engineering Approach

The way the object engineering approach is used highly depends on the project structure

itself. It is possible to use just a subset of the explained artefacts or combine them in

different time steps. Investing time in (at least for a certain project) useless artefacts is not

desired. (Rupp, 2004, pp. 63–77)

The decision, which exact procedure model with all its artefacts will be the right one, is not

solely depending on the project structure, there are various factors – called project

boundary conditions – which influence the way the final product will be implemented.

(Rupp, 2004, pp. 63–77)

Basically, three main areas of influencing factors can be distinguished (Rupp, 2004, p. 68):

1. Human factors

2. Organizational factors

3. Content and complexity of the system area

Human factors are in practice one of the most important influences during a project.

Common influencing factors include (Rupp, 2004, p. 68):

 Communication

 Knowledge level of stakeholders

 Knowledge level of developers/analysts

 Stakeholder homogeneity

 Culture

2 Requirements Engineering

15

The other two influencing factors focus more on the system which has to be developed or

extended and how complex the environment as well as the system’s content is. (Rupp,

2004, pp. 63–77)

2.5. From System Analysis to a Real Requirement

It is a tough way from the target of a system, over the requirements of the stakeholders to

a valid representation of all requirements. In this chapter common influences, which make

system analysis a very hard job, will be discussed.

2.5.1. Continuously Increasing Quality of Requirements

Starting point is the system analysis task where one or more system analysts communicate

intensively with the stakeholders to describe the desired features. The required information

has to be provided by the stakeholders, the given information must be documented in a

way that it represents the given facts. This is where first problems occur: Stakeholders

know implicitly what they want, but there may be situations where they simply (Rupp, 2004,

pp. 197–238):

 expect knowledge which is clear for them, but which is the other way around not clear

for an outstanding person.

 cannot express precisely what the desired requirement is about.

This is also caused by linguistic problems as the natural language is often not as

precise as required.

 change or leave out details which are important.

The three main areas of linguistic effects, considered by Rupp (2004, p. 201), include

deletion (facing selected aspects while leaving out others), generalization (considering

examples as representative for a whole category) and distortion (changing memory

details).

The main purpose of a systematic requirements description approach is to overcome these

potential problems, gather the knowledge needed from different stakeholders, understand

what they are really about (deep understanding of domain) and then document them in a

way that the problems above do not occur for the next person reading the requirements.

(Rupp, 2004, pp. 197–238)

2 Requirements Engineering

16

This step also heavily depends on the accurate language usage. It is not recommended

using complex sentence buildings with e.g. conditional dependencies. The better way is to

make simple and straight forward sentences, which do not make a discussion necessary.

This further leads to reduced costs as requirements do not need to be refactored and more

people, especially stakeholders, understand the key message of the requirements. Better

requirements with a higher stakeholder satisfaction will be the result. (Sommerville and

Sawyer, 1997, p. 147)

There are very good guidelines in Rupp (2004) and Sommerville and Sawyer (1997) which

show basic rules that should be followed to achieve a widely accepted, incremental,

qualitative better solution.

In International Organization for Standardization et al. (2018, p. 12), additional language

criteria for requirements are mentioned, which cover the need of requirement validation.

To ensure that requirements can be proven fulfilled or not, unprecise language should be

avoided. This means excluding text-fragments, such as (International Organization for

Standardization et al., 2018, p. 12):

 Subjective interpretable words

 Superlatives

 Vague comparisons (e.g. “better than”)

2.5.2. Systematic Approach for Good Requirements

The previous chapter focused on how to increase quality of existing requirements

concerning mostly linguistic features. This chapter focuses on how to construct qualitative

requirements with a pre-defined template. The knowledge of the previous chapter can also

be applied afterwards to further increase requirements quality. (Rupp, 2004, pp. 239–269)

The template consists of six main steps (Rupp, 2004, pp. 239–269):

1. Defining the process which is the baseline of the requirement

2. Defining how the system does a certain activity

3. Defining the strictness of the requirement

4. Extend the requirements with needed objects and explanations

5. Define conditions under which circumstances the requirement should be fulfilled

6. Apply the approach of the previous chapter for increasing quality

2 Requirements Engineering

17

Other resources, like International Organization for Standardization et al. (2018, p. 10),

mention additional construct elements for good requirements, e.g. the fact that a

requirement can be limited by a specific number of constraints. In International

Organization for Standardization et al. (2018, p. 10) it is also highlighted that a requirement

clearly determines the system’s capabilities, when used by a pre-defined user, but the

requirement does not tell anything about the user’s skills.

Defining the Process

The center of each requirement is the raw functionality which should be provided. Further

on, this is called the process which should be mainly described with a verb. (Rupp, 2004,

pp. 242–243)

Defining the Characteristics of a Certain Activity

After defining the process, the question, how the system executes the certain process,

arises. Three main types can be distinguished (Rupp, 2004, pp. 243–245):

1. The system executes the process totally on its own.

2. The system offers the functionality to the user.

Whom should be given the possibility to do something?

3. The system executes the process in dependence of another system.

What should the system be aware of? The requirement of the other system should not

be part of this requirement as it is an encapsulated system.

Defining the Strictness of the Requirement

Depending on the importance of a certain requirement, it is necessary to express it with

the corresponding linguistic baseline. There is a big difference between a system which

 shall

 should

 will

do something. It is very important to highlight must haves with the corresponding strict

formulation. (Rupp, 2004, pp. 239–269)

Sommerville and Sawyer (1997, p. 149) also suggest using the above-mentioned words

whereas “shall” expresses a must have requirement, “should” shows a nice-to-have

requirement and “will” states external provision.

2 Requirements Engineering

18

Extending the Requirements

Until this step, the raw functionality has been described. To give a more detailed

explanation and insight, further objects and explanations can be added to clarify what is

meant by the requirement. (Rupp, 2004, pp. 246–247)

Defining Conditions

In software development it is usual that things should be done under certain

circumstances. For this reason, conditions are also embedded into the definition of

requirements to express what must be fulfilled that a certain activity is executed. There

may not only be logical conditions, temporal conditions are also another form which can

be very useful. (Rupp, 2004, pp. 239–269)

As already mentioned earlier, it can be confusing when using conditions in natural

language. Complex conditional aspects are better either divided into smaller, clear

subparts or are visualized appropriately. (Sommerville and Sawyer, 1997, pp. 147–156)

Increasing the Quality of the Requirement

A basic template has been modeled for creating systematic requirements. Now the quality

can be increased, whereas semantic unclearness should be erased. This is done using

the methods described in the previous chapter. (Rupp, 2004, pp. 249–250)

Development of Semantic and Logical Tables

Besides using the template steps for creating meaningful requirements, definition tables

are widely used in practice. Mainly, two different tables are created (Rupp, 2004, pp. 251–

257):

1. Semantic tables in which used process words (the core of the requirement) are

described precisely in the way what they mean, what type of system activity they

express and how they can be used.

2. Logical tables which should translate classical logical operators (OR, AND, XOR, etc.)

into a verbal representation to give an overview what a certain linguistic condition

means.

2 Requirements Engineering

19

2.6. Documentation of Requirements

In the previous chapters we focused on what a requirement is and how it can be described

best using natural language, but as already mentioned, the natural language is not the

only method for documenting requirements. (Rupp, 2004, pp. 156–157)

In some cases, it is not the best as other methods, like e.g. a graphical representation,

mathematical functions or even program code can express the requirement in a more

precise way. Engineers very likely already know many notations, which reduces the costs

for introducing another way of requirements representation. (Sommerville and Sawyer,

1997, pp. 154–156)

The documentation methods can be explained in four different areas (Rupp, 2004, p. 157):

1. Behavior-oriented

2. Data-oriented

3. Context-oriented

4. Others

There are various techniques for each group of documentation techniques which are used

in practice. This chapter should give a quick overview of the most important ones.

2.6.1. Context-oriented Documentation Techniques

Use-cases

A very famous representor of the context-oriented documentation techniques are the use-

cases. They are used to describe the system from an actor’s (user/stakeholder) view. They

should show how the environment interacts with the system and what the result of an

action is. (Rupp, 2004, pp. 161–166)

On the one hand, use-cases can be described semi-formally (organized, but with natural

language) where each process (use-case) is described in terms of the actors interacting

with the system, the preconditions, the postconditions and the main points which are done

during the process. Table 1 shows an example. (Rupp, 2004, pp. 161–166)

2 Requirements Engineering

20

Table 1: Example Use-Case of a Simple Login (Semi-Formal)

Use-Case

Name

Log-In

Short

Description

The user logs in into the existing system providing her/his username

and her/his password.

Actors User, System

Trigger User clicks on login-button

Precondition The user has already registered on the systems platform and knows

her/his corresponding login data. The login page is already loaded.

Result The user is successfully logged in, the user area is loaded.

Postcondition The system has approved the identity of the user and is ready to start

personal functions.

Main action

plan
1. The user puts in her/his username in the username field.

2. The user inserts her/his password in the password field.

3. The user clicks on the login-button.

4. The system proofs the inserted username and password

combination.

5. The system automatically loads the page for the user’s personal

area.

On the other hand, there is the possibility to utilize use-case-diagrams, where each use-

case, pre-defined with the shown use-case specification, is represented, associated with

actors (environment) and other use-cases (inter-system) to obtain a contextually view on

the system and its environment. It is very important that the use-case diagram includes the

important requirements in form of use-cases as it is shown in Figure 2. But with the

increasing number of use-cases, the diagram can get unstructured and chaotic which

should be avoided. Stakeholders should gain a quick overview over the system’s process

and interactions with its environment. (Rupp, 2004, pp. 161–166)

2 Requirements Engineering

21

Figure 2: Example Use-Case-Diagram (based on (Rupp, 2004, p. 164)

2.6.2. Behavior-oriented Documentation Techniques

As described in Object Management Group (2017), the UML2 specification offers also

possibilities to model activities to show systems behavior during a process. Basic core

elements are (Rupp, 2004, p. 166; Object Management Group, 2017):

 Activities

 Actions taken by the system

 Object Nodes

 Control Nodes for expressing conditions

 Edges for connection

With these basic elements a system’s procedure of a certain use-case can be described

in terms of when does the system what under which circumstances, all graphically

displayed.

2 Requirements Engineering

22

2.6.3. Data-oriented Documentation Techniques

UML2 also defines in Object Management Group (2017) a possibility to arrange the

system’s components in a class diagram. It is an object-oriented approach which has the

basic elements (Rupp, 2004, p. 186; Object Management Group, 2017):

 Classes

 Attributes which belong to certain classes

 Operations

 Associations

Classes define formal described structures of certain things in the system. All the instances

of a class have the same structure which is defined in the class itself. Classes can contain

attributes, which are fields for stored information of a certain instance of a class.

Operations are used to show what a certain part of the system can do. Associations are

used to express relationships between classes. Like in the object-oriented programming

approach, looking at a class diagram the stakeholders can easily identify different parts of

the system, the different abilities of the parts and the relationships between them in one

single diagram. Needless to say, this is a data-centered approach as it solely describes

what data is provided and saved for certain parts of the system. (Rupp, 2004, p. 186;

Object Management Group, 2017)

2.6.4. Others

The other documentation techniques - which cannot be further specified - include for

example the natural language description which was covered in detail in previous sections.

(Rupp, 2004, p. 157)

2.7. Dealing with Non-functional Requirements

Non-functional requirements are a special part in requirements engineering as they

represent one of the least approved and often neglected parts during the whole process.

The previous sections described in detail how to form requirements and maintain or

document them. Dealing with non-functional requirements, it is often a lack of structured

possibilities or attitudes of under-prioritizing which leads to a bad description of those non-

functional parts. (Rupp, 2004, pp. 269–288)

2 Requirements Engineering

23

The value of non-functional requirements is often under-estimated. They can lead to

(Rupp, 2004, pp. 270–271):

 Higher customer satisfaction

Customer often focus on quality criteria more than on some small missing functions.

 Increased productivity

 A complete picture of the whole system, often leading to new functional and non-

functional requirements

2.7.1. Problems Estimating Non-functional Requirements

As already mentioned, non-functional requirements are often forgotten in their importance

as the structured description of direct functionalities seems to be the most important. In

addition to this, the fact that non-functional requirements are influenced and demanded by

different groups of stakeholders – not only the real system users – leads to a confused,

helpless attitude. (Rupp, 2004, pp. 269–288; Partsch, 2010, pp. 27–30)

Even for stakeholders, their non-functional requirements may not be clear in the first

sense. For this purpose, it can be very helpful to work with prototypes which help them

realizing what is necessary. Another helping guide for stakeholders could be showing them

examples of other non-functional requirements to give them a quick inspiration based on

what others came up with. (Rupp, 2004, pp. 269–288)

2.7.2. Formulation of Non-functional Requirements

Non-functional requirements are a special task for formulation as they often cannot be

visualized good enough. Textual representations are quite common for non-functional

requirements. (Partsch, 2010, p. 71)

The formulation of non-functional requirements has some specific important issues apart

from the classic description of requirements, which already have been discussed (Rupp,

2004, pp. 275–276):

 Writing down non-functional requirements, it is essential to give them some quality

criteria which can be tested. It has to be absolutely clear, to which extend a non-

functional requirement has been fulfilled afterwards.

 UML also offers possibilities for modeling non-functional requirements.

 Non-functional requirements should be referenced to functional requirements

whenever possible.

3 Stakeholder Centered Engineering

24

3. Stakeholder Centered Engineering
The previous chapter covered in detail how requirements of an evolving system can be

formulized and documented. In this chapter, the focus will be shifted to the needs of

different stakeholders during a (software) project and how their requirements can be

organized.

Stakeholders of a certain project can be understood as the group of individuals who

influence the progress and result of the project or who are affected by the process or the

outcome of a certain project. (Freeman, 2010)

3.1. Stakeholder Analysis

During a stakeholder-centered engineering process the stakeholders should be the main

factor to think about. In later chapters tools, which help to model the stakeholder

interrelations, will be introduced. The beginning should be a stakeholder analysis to get an

overview of the certain stakeholders and how they can be described. After answering these

questions, the interrelations between them in the big ecosystem of an organization and its

environment can be modelled.

3.1.1. Basic Stakeholder Analysis Technique

The basic stakeholder analysis technique is widely used to identify stakeholders and to

summarize their interests in terms of one’s own organization. This can lead to first strategic

plans concerning the stakeholders. Main steps involve (Bryson, 1995, pp. 71–75, 2003,

pp. 13–14):

 Brainstorming of potential stakeholder candidates.

 Preparing an overview sheet for each stakeholder. For each one, writing down:

o What the stakeholder desires from the organization

o Judge how well the organization is doing now to fulfill the stakeholder’s needs

o Identify what can be improved to satisfy the stakeholder’s needs

o Identify how the stakeholder effects the organization

o Write down what the organization may desire from the stakeholder

 Possibly rank the stakeholders according to their power.

3 Stakeholder Centered Engineering

25

3.1.2. Power Versus Interest Grids

The power versus interest grid was described in Eden and Ackermann (2004) and helps

to organize the stakeholders in a matrix. The two dimensions, which define the matrix, are

the interest of the stakeholders in the organization and the power of the stakeholders

affecting the organization. The resulting matrix can be categorized into four different fields,

each standing for a specific combination concerning interest and power. The result helps

the organizations to get a feeling on whom to focus on, where to pay attention and to

identify the most important players. (Eden and Ackermann, 2004, 121-125 344-346;

Bryson, 2003, pp. 14–15)

3.1.3. Stakeholder Influence Diagrams

Stakeholder influence diagrams are used after completing the power versus interest grid.

Within this method the goal is to draw influencing lines between the placed stakeholders

in the grid. The process is used to be carried out in a group with various adjustments of

the influencing lines. Basically, also a two way influence is allowed, but the main direction

of the bigger influence should be clearly marked. (Eden and Ackermann, 2004, pp. 349–

350; Bryson, 2003, p. 15)

3 Stakeholder Centered Engineering

26

3.2. Service Design Thinking

Service design thinking, described in Stickdorn and Schneider (2013) and Stickdorn et al.

(2018), is a discipline which tries to enable service engineering. The stakeholders and their

needs are put in the center of all considerations. Service design thinking focuses on

understanding stakeholder requirements, leading to a unique user experience.

3.2.1. Core Principles

Service design thinking is based on, according to Stickdorn and Schneider (2013, p. 34),

five core principles, named user-centered, co-creative, sequencing, evidencing and

holistic.

Since 2010, these values have been slightly adapted which leads, according to Stickdorn

et al. (2018, p. 28), to the following core principles, named human-centered, collaborative,

iterative, sequential, real and holistic.

There are other sources which investigate the base of service design. Luo (2011) sees

service design as a process, where people interact with service touchpoints. There are

some different emphasizes between Luo (2011) and Stickdorn et al. (2018), but the core

idea behind service design is the same. It is all about people, namely stakeholders.

User-centered/Human-centered

The core of a successful service creation is the deep understanding of the later users.

Service design thinking requires more than simple statistical analysis, it is about seeing

the service with the user’s eyes. This is necessary as e.g. two statistic identical persons

(same age, same social status) can have totally different opinions and attitudes. It is

essential to know the users and their background intentions. (Stickdorn and Schneider,

2013, pp. 36–37)

Giving the users alternatives to make the service more flexible, is a widely used approach

for involving different user groups in the service process. (Luo, 2011, p. 52)

In the updated version the understanding of the user is replaced with the understanding of

all human beings involved in the design process which expresses the need for stakeholder

involvement. (Stickdorn et al., 2018, p. 28)

3 Stakeholder Centered Engineering

27

Co-creative/Collaborative

The service engineering process is a co-creative process, where different people have to

establish a common understanding of how to fulfill the customers’ needs. In this process it

is advised to integrate not only customers, but all stakeholders, which are influenced by

the future service. Real service design thinking includes all stakeholders and tries to deal

with the problem of creativity transportation from one human being to others. (Stickdorn

and Schneider, 2013, pp. 38–39)

The new collaborative core principle totally agrees on the previous one, but tries to

emphasize the involvement of all stakeholders with different backgrounds in the service

design process. (Stickdorn et al., 2018, p. 28)

Iterative

The updated principles contain also the fact that the whole service design process should

be executed fast and iterative. The final goal is the introduction of the service. (Stickdorn

et al., 2018, p. 28)

Sequencing/Sequential

Services can be seen as different, sequencing static pictures, which form a movie in the

end. To design a successful service, all pictures have to be well thought through, they

should even be prototyped like it is known in the product innovation process. Mainly, the

service can be divided into three main periods (Stickdorn and Schneider, 2013, pp. 40–

41):

1. The pre-service stage

2. The service stage

3. The post-service stage

All three stages have to be dealt with to give the customers an optimal service solution

and meeting their needs. (Stickdorn and Schneider, 2013, pp. 40–41)

The whole service process is one of the core aspects for the service process innovation,

where designers try to optimize the lived key elements for the customers. Thoughts, like

when and where to pay during the service, are important examples during the service

process innovation. (Luo, 2011, p. 53)

3 Stakeholder Centered Engineering

28

Evidencing/Real

Services often deliver their true value in moments where the customer is not really aware

of consuming it. But when paying for the service, the customer should be sure why she/he

is paying the bill. A widely used approach is to make the customer remember the positive

effect of the service with some kind of memory: This can be an accurately designed bill, a

small present or even a customer-oriented e-mail. If it is considered the right way, customer

satisfaction and willingness to pay can be increased. (Stickdorn and Schneider, 2013, pp.

42–43)

The updated version of the core principles tries to emphasize the fact that all stages of the

service design should be made real: From the research phase, over the prototyping phase

until the values delivered by the service as mentioned above. (Stickdorn et al., 2018, p.

28)

Holistic

Service design thinking should be done in a holistic way. It is very important to consider

the environment where the service takes place (and what a certain customer might be

sensing in this moment). Different service sequences with customers should be taken into

account to get a feeling for the service in its macro environment. (Stickdorn and Schneider,

2013, pp. 44–45)

3.2.2. Procedure

The complex method of designing a service with all its core principles, its holistic viewpoint,

can be described with a simple mindset which should be followed during the whole

designing process. There may be resources suggesting some more steps, but the basic

idea behind them should be the same. One of the most important facts about the procedure

model is that it is organized iteratively which means that from each step during the process

there may be one or more steps to be taken back to optimize the result. (Stickdorn and

Schneider, 2013, pp. 124–127)

The four suggested main steps by Stickdorn and Schneider (2013, pp. 122–123) are

exploration, creation, reflection and implementation.

Exploration

The first task is about designing the big picture. Service design is all about the customer.

For the first step it is important to get a feeling for the companies’ attitudes and if they know

what service design is about. This ensures the overall goal and enables effective co-

creativeness. (Stickdorn and Schneider, 2013, pp. 128–129)

3 Stakeholder Centered Engineering

29

The exploration task further references the field of system analysis and design, as every

service is in fact a system consisting of several elements interacting with each other. The

methods and philosophy behind systems engineering will be discussed in chapter 4. (Luo,

2011, pp. 52–53)

Afterwards, the service designers have to figure out where to start, in fact this is the

definition of the problem itself. In this case there are various tools guiding the design team

visualizing attitudes or mindsets of involved people to help understanding the big picture

as well as describing some detailed viewpoints. The visualization of the findings is the final

approach for this step. (Stickdorn and Schneider, 2013, pp. 128–129)

Creation and Reflection

This is the generating step of the whole process which is directly mapped to the next step

of reflection. One of the basic thoughts of service design thinking is to find out many

possible mistakes as early as possible. The two steps are mainly about doing progress,

receiving feedback and iteratively do this again if needed. The main task of gaining

response is how to test parts of the service as it is simply not tangible. Therefore, comic-

strips, mock-ups or even stage are used for generating the emotional base for customers

to give real feedback. (Stickdorn and Schneider, 2013, pp. 130–133)

Implementation

When all obvious problems are cleared and the service is ready to be activated, the

implementation phase is reached. It is also mainly about how to introduce change, how to

guide these changes and how to control them. Change management is the topic which

deals with the whole procedure of how to do change best. One thing, which is often

forgotten, is the fact that not only the customers have to be integrated into the change

process, but also the employees which should be able to live and transport the ideas

behind the service. (Stickdorn and Schneider, 2013, pp. 134–135; Cameron and Green,

2009)

3.2.3. Tools of Service Design

Tools of service design are prepared, systematic approaches for guiding the service-

designer to model the real-world observations in a pre-defined way. (Stickdorn et al., 2018,

p. 37)

Research Data

Research data is probably one of the most important tools in service design as heavily

influences the later process of finding real insights. Data is basically collected as raw- or

interpreted-data. Raw data is collected without any obvious relations while in interpreted

data, the researcher or data scientist tries to find patterns which should give detailed

insights into the topic. (Stickdorn et al., 2018, pp. 38–39)

3 Stakeholder Centered Engineering

30

Personas

Personas are used to describe certain stakeholder groups in a clear format, Figure 3 shows

an example persona. There can be various forms, but mainly a persona is a kind of a one

pager offering an insight towards the attitudes and interests of a certain stakeholder group.

It should be mentioned that personas do not necessarily be equal to the marketing target

groups, especially in service design, these two differentiations are not overlapping.

Different needs at specific service levels define the personas. It is very important that

personas offer a good understanding of the main needs and attitudes of a certain

stakeholder group. For this reason, the following core elements are used (Stickdorn et al.,

2018, pp. 41–43):

 Image of a typical stakeholder in the certain group

 A representative name of the persona

 Demographic information (this should be chosen wisely to prevent stereotypes or

misleading assumptions)

 Quotes, expressing the stakeholder’s attitude in one sentence

 Descriptions of the interests, skills, attitudes, goals and so on

 Visualized statistics to give a quick overview of the most important quantitative data

Figure 3: Example Persona (Stickdorn et al., 2018, p. 42)

3 Stakeholder Centered Engineering

31

Journey maps

Journey maps are used to visualize all key experiences during the service lifecycle,

beginning from the basic need, over using the service until the post-service phase with

certain customer support activities. (Stickdorn et al., 2018, pp. 44–49)

Generally, journey maps are organized as timelines, which should lead through the whole

journey of a certain customer. At each step, various types of information are added to the

timeline (Stickdorn et al., 2018, pp. 44–49):

 A short text based description of the phase (point B in Figure 4)

 Storyboards, which should graphically show, what the phase is about (comic style,

point D in Figure 4)

 Emotional graphs, showing the emotional feeling at each step (point E in Figure 4)

 Communication channels used at each step (point F in Figure 4

 A list of stakeholders involved or responsible for the certain step

 The dramatic arc curve, showing the grade of engagement mapped to a scale from,

e.g. one to five (point H in Figure 4)

 Backstage processes, which are often visualized as flow charts

 What if scenarios, about what could go wrong.

3 Stakeholder Centered Engineering

32

Journey maps can be made at different levels of detail for the same service. It is very

common to draw a journey map for the whole service and then also make some journey

maps for specific steps of the whole service in detail. (Stickdorn et al., 2018, pp. 44–49)

Figure 4: Example Journey Map (Stickdorn et al., 2018, p. 45)

Service Blueprints

Service blueprints are designed to be an extension to the user journeys. They build up a

timeline structure, which goes into detail about the frontstage and backstage processes

getting triggered by user actions. Besides the frontstage and backstage processes,

support processes also get integrated into the service blueprint overview. (Stickdorn et al.,

2018, pp. 54–55)

3 Stakeholder Centered Engineering

33

System Maps

System maps are used to visualize the system, embedded in its environment. There are

various types of different system maps, which try to include different aspects. Classical

elements in such a map are for instance (Stickdorn et al., 2018, pp. 58–59):

 Stakeholders

 Channels

 Processes included in the scenario

 Places if important

 Platforms

Additionally to the various aspects, there are three main types of system maps, according

to Stickdorn et al. (2018, pp. 58–59), named stakeholder maps, value network maps and

ecosystem maps. They try to visualize the environment of a service in different levels of

detail (Stickdorn et al., 2018, pp. 58–59):

Stakeholder maps are often utilized to represent different scenario states of a certain

ecosystem, including possible future states. (Stickdorn et al., 2018, pp. 58–59)

Stakeholder Maps

Stakeholder maps show different stakeholders, embedded in the environment of the

service. They are very useful for getting an overview of stakeholders influencing or being

influenced by the service. Stakeholder roles and their interrelations are further part of

stakeholder maps. It is always a very informative tool as it reveals facts during the

generation process, which are often neglected or simply overseen. (Stickdorn et al., 2018,

pp. 59–60)

Stakeholders mostly get arranged in sectors by making a distinction between internal and

external stakeholders or customers. Other used aggregation criteria are the importance of

the stakeholders in the service environment. For completing the stakeholder map,

relationships are added for modeling influencing powers. (Stickdorn et al., 2018, pp. 59–

60)

Value Network Maps

Value network maps are an extension of classical stakeholder maps, but instead of

visualizing pure relationships between stakeholders they try to model the value exchange

between them. Value exchanges e.g. can be simple money exchange for service,

information or even things like trust. Icons are used to describe the value exchange while

arrows determine the direction of the value exchange. (Stickdorn et al., 2018, pp. 61–62)

Value network maps will be a core focus in the practical part of this work in chapter 5.

3 Stakeholder Centered Engineering

34

E3-Value Ontology

The e3-value ontology, in detail described in Gordijn (2002), offers the possibility to

visualize value exchanges between different stakeholders. It consists of three different

layers, each of them discussing special points of interest (Gordijn, 2002, pp. 46–47):

1. Global actor viewpoint

2. Detailed actor viewpoints

3. Value activity viewpoints

Global actor viewpoint

The global actor viewpoint is used to give a quick overview of the value exchanges

between the different actors. Details, especially concerning the actors, can be derived from

the detailed actor viewpoints. Figure 5 shows an example of a global actor viewpoint. The

main elements of the global actor viewpoint are (Gordijn, 2002, pp. 48–58):

 Actors

An actor is considered to be an economically independent participant.

 Value objects

Value objects can be any form of value exchanged between the actors involved in the

model. It can be a service, a product or any other form of value for at least one involved

actor. In the e3-value ontology, the modeling of the value objects is not focusing on the

real instances of values, but rather on the type of value objects. In some cases, it might

be interesting to focus on the actual instance of the value object, then the ontology

talks about value object instances.

 Value ports

Value ports are used to interconnect the actors as they allow value object flows

between them. A value object flow should model a change of ownership.

 Value exchanges

Value exchanges are used for modeling the potential changes of ownership between

actors concerning the value objects. The number of changes and the actual value

object instances are not the point of interest here.

3 Stakeholder Centered Engineering

35

 Value interfaces

Value interfaces are modeled to show the actor’s willingness to provide some sort of

value in expectation of a compensation. One actor can have one or more value

interfaces, but usually one interface contains one in-going and one out-going value

offering. The basic form of a value interface consists of exactly one offering. If one

value port is occupied in a value interface, then all value ports have to do so.

 Value offerings

Value offerings are a concept to model the willingness for an actor to offer something

for her/his environment or to expect some kind of value from it. Value offerings are not

explicitly visualized, they can be filtered when looking at all in-going or out-going value

ports of a value interface.

 Value transactions

Value transactions are used to union different value exchanges. They must occur

together to fulfill the need of desired in-going and out-going value exchanges. Value

transactions are visualized with lines intersecting the value exchanges they contain.

The value exchanges are marked with points.

 Market segments

Market segments are used to group actors which have a mostly common viewpoint on

how to value different objects. Not all actors are modelled individually, but rather

implicitly, which means actors are summed up concerning their equal viewpoints. If

there is an actor, who has a completely different viewpoint on values than the others,

there is the possibility to model her/him individually. Market segments are used to

group actors, but mainly their value interfaces are joined. The visualization shows a

stack of rectangles with the common value interface.

3 Stakeholder Centered Engineering

36

Figure 5: Example Global Actor Viewpoint (Gordijn, 2002, p. 49)

Detailed Actor Viewpoint

The detailed actor viewpoint, shown with an example in Figure 6, is used to give more

detailed insights into the actors grouped in the global actor viewpoint. These actors are

often united for terms of simplicity. Such types of actors are named value constellations.

(Gordijn, 2002, pp. 58–62)

Value constellations are used to show commonly shared attitudes towards value

interfaces. Therefore, value interfaces are grouped to express membership of different

actors. In the detailed actor viewpoint these constellations are modelled in detail. (Gordijn,

2002, pp. 58–62)

Another reason for the detailed actor viewpoint is to represent partnerships of different

actors. (Gordijn, 2002, pp. 58–62)

3 Stakeholder Centered Engineering

37

Composite Actors

In the detailed actor viewpoint, the role of the actors is split up into two different types. The

first one is the composite actor who groups value interfaces together with other actors. It

is used to express the above-mentioned reasons for the viewpoint itself, mainly for

expressing unity of different actors. It is very important to highlight again that value

interfaces are grouped, not actors. Actors may offer different value objects in addition to

certain partnerships. Finally, a composite actor has its own value interface to connect to

the environment. (Gordijn, 2002, pp. 58–60)

Elementary Actors

Elementary actors do not take value interfaces from other actors and are therefore the

finest representative unit of the detailed actor viewpoint. (Gordijn, 2002, pp. 60–62)

Figure 6: Example Detailed Actor Viewpoint (Gordijn, 2002, p. 60)

3 Stakeholder Centered Engineering

38

Value Activity Viewpoint

The value activity viewpoint is used to link actors with value activities, thus describing how

the actors are doing their value creation, as the value activities should lead to profit. Each

value activity can have one or more value interfaces, but a value interface can have zero

or one value activity. The task of figuring out the value activities and assigning them to

actors is often a very hard task during the generation of the model. An example value

activity viewpoint is shown in Figure 6. (Gordijn, 2002, pp. 62–64)

Figure 7: Example Value Activity Viewpoint (Gordijn, 2002, p. 63)

Ecosystem maps

Ecosystem maps are another extension of stakeholder maps or value network maps. To

model the real world as detailed as possible, they also consider machines, interfaces and

their communication besides the human interactions, even if the communication takes

place between two machines. As the ecosystem map can get confusing very fast, a well-

defined level of scope has to be preselected. (Stickdorn et al., 2018, pp. 62–63)

4 Systems Engineering

39

4. Systems Engineering
Systems engineering is an approach, which tries to define methodologies for solving

problems in different areas. The main assumption is that there is a current situation and a

future situation, where the problem is solved, as it is shown in Figure 8. Systems

engineering tries to deliver a methodology for supervising the solution finding and

implementation process. (Haberfellner et al., 2018, p. 9)

Figure 8: Systems Engineering Explained, Based On (Haberfellner et al., 2018, p. 10)

4.1. Systems Engineering Philosophy

The systems engineering philosophy is based on two main aspects (Haberfellner et al.,

2018, pp. 10–11):

1. System thinking

2. Procedure model

4.1.1. System Thinking

The system thinking describes a common understanding, how to describe systems, their

elements as well as their environment. It should support modeling complex system

appearances to show the big picture. (Haberfellner et al., 2018, pp. 27–35)

4 Systems Engineering

40

System thinking furthermore offers definitions, how to describe basic elements, their

relations as well as their environment. The most important definitions include (Haberfellner

et al., 2018, pp. 27–35):

 Basic definitions of what a system is, how it can be seen as a composition of different

elements and their interrelations. Elements can also be further described in detail with

their attributes and functions.

 System boundaries, especially where to see the borders of a certain system

 System structures

 Subsystems and main systems, which should allow describing smaller systems being

part of another bigger system, but embedded as a standalone element. Systems

engineering often talks about “system of systems”. Basically, this can be seen as a

composition of main and sub systems. The main usage of introducing another definition

here is to emphasize the fact the subsystem can be also seen as an independent

system, which delivers its value or part of it even without the help of the main system.

Classical subsystems depend on their main system and are just responsible for a part

of the main purpose.

 System hierarchy

Looking at the prior definitions of elements, subsystems, main systems and system of

systems, the complex system itself can be described using a hierarchical order.

 Blackbox-thinking, offering the possibility to see a system just as a function which has

an input and delivers a certain output. The step in-between in this approach is not

important. The opposite thinking approach is called whitebox-thinking, which tries to

look in detail at the way the output is generated according to the input. Typically, the

procedure from the blackbox to the whitebox approach is used in top-down analysis

methods.

 Differentiation between simple, complicated and complex systems, where the number

of elements and the dynamic character play important roles. Figure 9 shows the

characteristics of complex and complicated systems.

4 Systems Engineering

41

Figure 9: Complicated and Complex Systems, Based On (Haberfellner et al., 2018, p. 34)

The systems of systems approach influences other engineering disciplines as the

boundaries between different types of systems get blurry. Through the complex, networked

design of large scale systems, isolated components cannot be viewed as standalone parts

anymore. This heavily influences certain assumptions, e.g. in requirements engineering,

where systems are mostly planned concerning their desired internal functionalities.

Integrated in another bigger system, this often gives totally new insights and changes the

requirements. Requirements engineering as one of the affected disciplines needs to

address these trends. (Easterbrook, 2007)

Viewpoints in System Thinking

System thinking offers, besides the definition of the above mentioned key elements, ways

to look at the same system from different views. Every viewpoint shifts the focus on how

the system with its elements is modelled. It is not possible, to model every single aspect

in detail. It is very important to get a clear understanding which message a model should

transfer. Models may also highlight different aspects considering the problem itself or the

people, which should work with it. (Haberfellner et al., 2018, pp. 35–42)

4 Systems Engineering

42

Common viewpoints are (Haberfellner et al., 2018, pp. 35–42):

 Environment-oriented viewpoint

This viewpoint considers the system itself as a blackbox and focuses on the

environment and the interactions with the system. It is a good way to get a feeling,

which external factors influence the system.

 Input-/Output-oriented viewpoint

This viewpoint also handles the system itself as a blackbox, but focuses directly on

how the input of the environment can influence the output of the system, considering

its internal behavior. The concrete internal actions are not taken into account here.

 Structure-oriented viewpoint

The structure inside the system with all its elements and relationships is the primary

focus. Guided by the model obtained, it should be possible to retrace, how the output

is generated. Mainly, processes and structures are used.

System Hierarchy Concept

The system hierarchy concept helps to prevent the system thinking task from getting lost

in too many details. The goal to obtain detailed information where necessary is also

fulfilled. The system hierarchy concept can be seen as a function of zooming in: At the

beginning, the big picture is modeled, where the major relationships are displayed. If this

model is not sufficient for the certain purpose, there is the possibility to get rid of the

blackbox approach of the subsystems and inspect one level deeper, where subsystems

get defined and are put in relation. This step can be done several times to get a more

detailed view on certain aspects if needed. (Haberfellner et al., 2018, pp. 40–41)

4.1.2. Systems Engineering Procedure Model

The procedure model of the systems engineering philosophy is based on four main

aspects (Haberfellner et al., 2018, p. 53):

1. Using the top-down approach to start from the big picture and go into detail further

2. Using different variants

3. Grouping system development tasks by time

4. Using a defined problem-solving guidance for every problem

4 Systems Engineering

43

Top-Down Approach

The top-down approach, as shown in Figure 10, is used in systems engineering to enable

dealing with complex and big ecosystems. Overall, it is recommended starting with a rough

view, including the environment and to lighten up levels of detail step by step. This way of

thinking was already mentioned in the system hierarchy concept and uses the transition

from black-boxes to white-boxes. The top-down approach helps to get an important

overview at the beginning and to redefine the view for certain problems. It may also include

redefinitions and direction changes if needed during (detailed) analysis. (Haberfellner et

al., 2018, pp. 54–57)

Figure 10: Top-Down Approach, Based On (Haberfellner et al., 2018, p. 56)

Principle of Variants

Systems engineering is designed to find the best possible solution for a certain problem

structure. The principle of variants is used to consider alternatives at different levels of

detail to ensure the best solution will be found. The focus should not be on the first

plausible solution. (Haberfellner et al., 2018, pp. 57–60)

Considering the top-down approach as shown in Figure 10, the optimal solution finding

process would be (Haberfellner et al., 2018, pp. 57–60):

 Starting at the top with a very low level of detail

 Investigating all possible variants for the level of detail

 For each found variant, work out all possible, more detailed versions (next level)

4 Systems Engineering

44

It should be clear that finding all different variants for every level of detail in advance would

guarantee the best decision. Concerning time and invested resources, this is in fact not

the preferred way in practice, as with every level of detail the number of variants will

increase dramatically. (Haberfellner et al., 2018, pp. 57–60)

Considering the pros and cons from the optimal solution finding process in systems

engineering, the practical workflow would be (Haberfellner et al., 2018, pp. 57–60):

 Considering (parts of) the system as a black-bock for investigating different impacts on

input/output.

 Selecting the best variant

 Configuring the best structure for reaching the required impact from the level above, in

fact, opening the black box

 Repeating steps from above if further refinement is necessary

Systems Engineering in Project Phases

Dealing with systems engineering and the prior mentioned methods, like the top-down

approach and thinking in variants, it is very useful to part the overall process into separate

project steps which offer opportunities for control, rearrangement and decision making.

Popular project phases include (Haberfellner et al., 2018, pp. 61–69):

 Kick-off

Moment where the need for solving a certain problem is recognized and resources are

available for potentially solving the problem.

 Pre-study

Highly interrelates with the black-box-oriented step in the top-down approach where

the big picture is modelled, figuring out different possible solution approaches,

including the systems’ environment. This step is not going into detail concerning exact

structures and solution elements.

 Main study

The main aim of this step is to make a decision about the core concept of the solution,

thinking about structures and architecture to support the pre-study results.

 Detailed studies

Detailed studies are carried out for certain, detailed system parts which have to be

investigated further. Those parts should be concretized as far as possible to verify a

riskless implementation and introduction of the system part.

4 Systems Engineering

45

 System implementation and testing

Represents the actual building of the modelled system. The way implementation and

testing is done can vary a lot between different project structures.

 System introduction

It is the main introduction of the finished system, or parts of it. Always comes with a

high risk that unknown side effects may occur.

 Finalization of the project

The project gets terminated and the final solution is approved by the customer.

Problem Solving Cycle

Looking at the project phases provided in the previous chapter, another model can be

introduced to support the problem-solving issues in every phase of a project. Considering

the project phases as a macro cycle, this can be seen as a micro cycle. (Haberfellner et

al., 2018, pp. 70–81)

The classical problem solving cycle is basically described in Hall (1962) and includes the

following steps (Haberfellner et al., 2018, pp. 70–81; Hall, 1962):

 Kick-off

 Situation analysis

Clarifying the starting point, mainly answering the questions, like, what the current

situation and the actual problem is about. Side conditions, e.g. previous made

decisions, the environment or time limits, should be collected.

 Target definition

Based on the delivered information from the situation analysis, the target(s) should be

formalized and documented. It is very important that the aims also consider other

targets from higher levels. As in nearly every framework, the main aims should be

realistic and reachable with the underlying resources. If there occur conflicts between

different goals, it may be a good solution to prioritize them.

 Synthesis of solutions

Considering the information from the situation analysis and the goals derived, it is

necessary to come up with possible solution variants. The level of detail depends on

the current project phase in which the problem solution cycle is started. Creativity

techniques are important tools for finding various solutions for pre-defined problems.

4 Systems Engineering

46

 Analysis of solutions

After the constructive generation of possible solution variants, solution analysis is

applied to determine whether a concrete solution approach is suitable in terms of e.g.

requirements of the entire system, integration, economic terms.

 Solution rating

Rating methods are used to identify the best solution between all possible variants.

During the analysis of solutions, the focus was on the suitability. Here, different

approaches, like rentability proofing, cost-value interpretations, are important.

 Decision

Based on the previous steps, a decision for a certain solution must be made.

 Result

The final result of the solution finding process may be a decision for a certain solution

or the insight that within the current boundaries, a suitable solution cannot be figured

out. This can lead to different next steps, from redefining the problem, over rearranging

resources or even to the cancellation of the project.

4.2. Problem Solving Process

The systems engineering philosophy is the key mentality behind the real problem solution

finding process. The previous defined principles, e.g. the top-down approach, thinking in

variants, the problem-solving cycle, will be enrolled during the actual system generation

process. The main steps of the system engineering process include (Haberfellner et al.,

2018, pp. 129–130):

 System designing

The definition and processing of the problem which must be solved with the help of a

certain system. Definition of the system to fulfill the solutions’ conditions.

 Project management

All necessary activities to support the organization of the project. Contains various

fields, like pure organizational tasks, decision making, power distribution, economical

calculations.

4 Systems Engineering

47

4.2.1. Model-Based Systems Engineering

The classical way of representing and maintaining systems engineering processes with

the help of documents is being replaced in the past years. The main reason behind that

development is that systems today are not pure hardware or software systems anymore,

they are more a complex network of integrated hardware and software aspects. Document-

based processes are not able to reflect this linked and rapidly changing network as

integration is hardly representable and maintainable with documents. (Haberfellner et al.,

2018, p. 162)

The International Council on Systems Engineering (INCOSE) defined and actively drives

forward the model-based systems engineering approach. Model-based systems

engineering is an approach, which tries to replace the document-based development by a

model-centered approach. This enables integrated design, requirements engineering, but

also other fields as verification and analysis throughout the whole development process.

The model-centered thinking is not a completely newly invented approach, it has its roots

in different other branches, such as mechanical or software engineering. (Object

Management Group, 2019a; Haberfellner et al., 2018, pp. 162–163)

The center of the approach is the system model, which can be understood as an eco-

system with the results of the different development processes acting as elements, e.g.

requirements, design patterns. These elements interact with each other, in fact they are

linked which causes influences on change. (Haberfellner et al., 2018, pp. 162–163)

OMG Systems Modeling Language (OMG SysML, or shortly SysML) is a defined modeling

language which supports the (model-based) systems engineering process with its core

components. It defines on the one hand graphical notations, but on the other hand also

semantic tools for representing e.g. behavior or requirements. (Object Management

Group, 2019b)

Generally, SysML can be seen as a part of UML2 with additional extensions which are

necessary to fit the requirements of the systems engineering process. (Object

Management Group, 2019b)

For data interchange between the concrete modeled parts of the system, the model-based

systems engineering is mainly using two different interfaces (Object Management Group,

2019b):

1. The ISO 10303-233:2012 (International Organization for Standardization, 2018)

2. The OMG XML Metadata Interchange (XMI) which is compatible with the first one

4 Systems Engineering

48

4.3. Current Systems Engineering Tasks

As already mentioned in prior chapters, systems nowadays are not sharply limited

standalone systems with hardly any interaction. Today they are more about highly

networked systems with components from classical (hardware) systems and software

parts. (Turner et al., 2009)

This makes an integration of two related, but in many points differently executed disciplines

necessary: Systems engineering and software engineering. Both disciplines share many

applied tools, but their basic intentions and prerequisites are often completely different and

need to be handled differently. (Turner et al., 2009)

A first important challenge is the fact that the way of thinking is completely different in both

engineering approaches. Software engineers are used to basically have an unlimited

horizon of possible solutions where nearly everything is possible. System engineers on the

other side are used to be bound to e.g. physical laws. Additionally, software engineers

potentially focus on correctness of their implemented software whereas system engineers

try to emphasize safety or reliability needs. (Turner et al., 2009)

There are various methods, which have been adopted from either approach to be applied

to another one. There are methodologies used in both approaches as they share a

common baseline with analysis, requirements engineering, design and

verification/validation. The ISO/IEC/IEEE 15288:2015 offers an overview of a framework

which is usable with nearly all systems, including hardware, software, processes and so

on. (International Organization for Standardization et al., 2015)

4.3.1. Integrating Framework

An integrating framework for software engineering and systems engineering is called

“Touchpoint”. It is based on four main components which have to be identified for solving

the integration task of both disciplines (Turner et al., 2009):

1. Processes

2. Touchpoints

3. Faults

4. Resolution Strategies

The first step is to identify the processes which are applied during the systems and

software engineering disciplines. As a help for identifying those, the ISO/IEC/IEEE

15288:2015 can be used. (Turner et al., 2009; International Organization for

Standardization et al., 2015)

4 Systems Engineering

49

Second, touchpoints between the applied processes have to be identified. A touchpoint is

given if the corresponding activities and their interrelations affect the outcome of the whole

project. (Turner et al., 2009)

Third, faults are identified why the interaction between the two related processes

negatively influences the value outcome. Faults can be (Turner et al., 2009):

 Gaps where the interaction between the two engineering approaches is missing

 Clashes where the two applied processes’ results are not compatible with each other

 Waste where resources are used in both disciplines for producing the same result

Lastly, resolution strategies need to be found for fixing the faults found. Resolution

strategies can be further described in more detail (Turner et al., 2009):

 Processes

 People

 Environment

 Technology

The Touchpoint framework offers a great opportunity to start working on the integration

task between the two engineering disciplines of systems and software. A lot of time and

resources have to be invested to define in detail where both disciplines interact with each

other and where the interaction is not done in a valuable way in each project. (Turner et

al., 2009)

5 Implementation of a Visualization Tool

50

5. Implementation of a Visualization

Tool
Nowadays business models are complex and intense networked buildings, whereas

different influences with various interactors intersect. As already mentioned in chapter 4,

systems engineering, systems are complex, highly networked structures with various

influences. It is not an easy task to identify key players and main influences in complex

graphs. For this reason, a value network notation, which enhances an existing notation

from Biem and Caswell (2008), described in Vorraber (2019), is used as a basis for this

practical part. The notation is based on different layers, which try to focus on numerous

aspects of the business model network graph. Actors are introduced which influence each

other by common links. The links get further refined by added labels and annotations.

(Vorraber, 2019)

5.1. Notation

Different layers are introduced to look at the same graph from different perspectives and

to mainly highlight different important aspects (Vorraber, 2019):

 Value exchange and resource layer

 Legal layer

 Values and needs layer

 Dynamics and motivation layer

5.1.1. Value Exchange and Resource Layer

The value exchange and resource layer helps to analyze different actors in a certain

network, especially which values are exchanged between them. The value exchanges are

modelled by links between the actors, as shown in Figure 11. These exchanges can carry

different labels, each standing for a specific value type. The actors themselves are

displayed as circles with sectors, describing their capabilities and assets. (Vorraber, 2019;

Biem and Caswell, 2008)

5 Implementation of a Visualization Tool

51

Important here is also the differentiation between provided and received values. The first

ones are represented with solid lines, whereas the second ones are modelled with dashed

lines. (Vorraber, 2019; Biem and Caswell, 2008)

Figure 11: Sample Actors With a Simple Value Exchange Situation

5.1.2. Legal Layer

Legal regulations are always important and must be supervised during a business model

development accordingly. For that reason, the legal layer offers the possibility to keep track

of the legal compliance of the actors as well as of their value exchanges. For the legal

obligations, square labels – appended on the links – are used. A simple traffic light system

is introduced to show the state of legal compliance. Figure 12 shows example legal layer

elements. (Vorraber, 2019; Vorraber et al., 2016)

Figure 12: Sample Legal Layer Elements

5 Implementation of a Visualization Tool

52

5.1.3. Dynamics and Motivation Layer

The dynamics and motivation layer is based on the main works of Vroom (1967) and Porter

and Lawler (1968), whereas actors underlie external and internal factors, which influence

their activity in a certain network. The following elements, in enhancement to Biem and

Caswell (2008), were defined (Vorraber, 2019; Vorraber and Vössner, 2011):

 Endogenous motivation, emphasizing the internal motivational factors for a certain

actor within the entity

 Exogenous motivation, modeling the external forces the actor is exposed to when

fulfilling the value activity (Kelman, 1961).

Each of the motivational elements can be marked as defensive, neutral or active. An

example can be seen in Figure 13. (Vorraber and Vössner, 2011; Vorraber, 2019)

Additional concepts introduced are those of the value engines/breaks. (Vorraber et al.,

2019)

Value exchanges, which lead to positive benefits, may lead to positive values generated

by the connected actors. In the end, considering positive influence in form of a cycle, value

engines are depicted to express such a construct. The other way around, where negative

benefits are identified, value breaks can be modeled, which express the overall, less

supported value creation. The concept of value engines/breaks highlights the shift from

looking at single entities for analyzing their business models to rather examining the whole

interconnected network. This enables a deeper understanding of how dynamics change

the way value is created/perceived. (Vorraber, 2019; Vorraber et al., 2019)

Figure 13: Endogenous Motivation Example

5 Implementation of a Visualization Tool

53

5.1.4. Values and Needs Layer

Business model tools like the business model canvas (Osterwalder and Pigneur, 2010)

focus on value creation, considering especially customers and providers. Ethical values

are not considered in detail. But for the purpose of socio-techno-economic systems, where

all different viewpoints meet, ethical values can be an important part for modeling to

understand the background of each actor. Other tools, like Tandemic (2019) and Breuer

and Lüdeke-Freund (2017), try to fill that missing link. (Vorraber, 2019)

The following enhancements to Breuer and Lüdeke-Freund (2017) are intended to cover

ethical and other values in a detailed and networked aspect (Vorraber, 2019):

 Functional needs

 Technical non-functional needs

 Social economic needs

 Social human needs

 Ethical needs

 Safety needs

The fact that another layer is introduced is definitely worth the time. One of these values

can risk the whole business model if one of the actors introduces some negative value.

(Vorraber, 2019)

Figure 14 shows a small example how the actual needs can be marked in a range between

met and not met.

Figure 14: Sample Value Needs Elements

5 Implementation of a Visualization Tool

54

5.1.5. Overview

Figure 15 shows an overview of the basic elements, including actors, labels, links, etc.,

which are used in the notation.

Figure 15: Overview of the Basic Elements of All Layers (Vorraber, 2019, p. 37)

5.2. Tool introduction

The need for modeling and evaluating the before-mentioned value network using the

shown notation made a visualization tool, fitting exactly the purpose of the explained

requirements, necessary. There exist various visualization tools, which are well approved

and help visualizing different kinds of graphical elements, including desktop version

programs, like Microsoft Visio, and browser-based applications.

The main problem with these existing graphical tools is not their implementation, but their

purpose behind the scene. The graphical existing tools offer well-defined, approved and

thought through user interfaces, which cannot be reached in a short period of time.

The main advantage of the newly generated visualization tool – in its current version - is

the fact, that it offers:

 Design for supporting the above-mentioned value network notation with all its elements

 Support for the value network creation workflow

 Instantly switching between different layers to enable a quick editing and illustration of

different views on one and the same graph

 Individual, direct support for future needs

5 Implementation of a Visualization Tool

55

5.3. Selection of Technologies

At the beginning of the project, decisions have to be made concerning the usage of

technologies. The selected technologies will influence the whole project. The final product,

including its user experience, is mainly dependent on the chosen alternatives.

5.3.1. Desktop-Version vs. Web Application

The first main decision is about whether to design a standalone desktop version program

or a browser-based web application. Table 2 and Table 3 show a short comparison

between both approaches which was very useful to find a decision.

Table 2: Pros and Cons of Desktop Version

Desktop Program Version

Pros Cons

+Usage of mature programming

languages, as C++/Java/C#

-More prerequisites for users

+Independency of browser applications

and their different support levels

-Different OS systems

+Better resource management -Collaborative work problematic

Table 3: Pros and Cons of Browser-based Application

Browser-based Web Application

Pros Cons

+Nearly instant go for user (no installations

mainly)

-Resource management in browsers

+Quick start from anywhere -Probably more intense work with browser-

based programming languages (error

seeking, browser compatibility)

+Great technologies for graphical drawing

(HTML5, JavaScript)

+Reachability in web

+Collaborative working straightforward

+Easy server-communication via pre-

defined protocols and languages (HTTP,

PHP)

5 Implementation of a Visualization Tool

56

The choice for an alternative was a very quick decision, as obviously the pros of the

browser-based application definitely outweigh those of the desktop version, concerning

the purpose of the visualization tool in this case.

5.3.2. Technologies for the Web-based Application

For the browser-based technology development, a web-server, a database and a

client/server-side scripting language will be needed. In its current project version, the

browser-based application does not require to implement server-side functionality.

Therefore, technologies are simply selected on the client-side. Nevertheless, there will be

a full extension of the server-side in the future. For that reason, the server-side

technologies will also be dealt with. A full description of planned activities will be included

in section 0.

The layout itself of the web page will be done with HTML5 (Hypertext Markup Language)

and CSS (Cascading Style Sheets). HTML5 offers great extensions to its prior version

which e.g. help to deal with inputs or drawing.

Client-side Software

The software decision on the client-side is in fact just about which browser is installed and

used. The most common browsers, which are currently on the market, are (Refsnes Data,

2019):

 Google Chrome

 Mozilla Firefox

 Safari

 Opera

 Microsoft Edge/Internet Explorer

Client-side Scripting Language

The main part of the visualization tool will be the client-side scripting as for the current

project step, the application will be fully executable on the client. The choice of the scripting

language was made at the beginning of the project, JavaScript is the selected option. It

offers easy possibilities to build a fully interactive web-page with DOM-manipulation as

wells as event handling.

5 Implementation of a Visualization Tool

57

Server-side Software Tools

As already mentioned, the server-side will not be implemented in the current version of the

project, but it is intended to be included in future works. Therefore, an overview of the main

aspects or software tools will be worked out.

Node.js

Node.js is an event-driven, JavaScript based software for creating web-services.

JavaScript can be directly used for programming the server functionalities. Events are

used instead of threads to lower the risk of deadlocking or blocking threads. (Joyent Inc.,

2019)

Apache HTTP Server

The Apache HTTP Server is a well-established web server, which can be easily

customized and is used in a wide area. For writing server-side scripts, a programming

language, like PHP, Python or Ruby, has to be used. (Apache Software Foundation, 2019)

Twisted

Twisted is a Python-based software, offering web-server functionalities. Twisted offers an

event-driven web-server written in Python. (Twisted Matrix Labs, 2019)

Databases

MySQL

MySQL is very popular relational database system. There is a free version as well as a

premium version available. In earlier times MySQL was an open-source project,

maintained by a wide community. Since Oracle bought MySQL there has been a shift from

MySQL to MariaDB in the open-source-community. Nevertheless, MySQL is a widely used

database with high security features. (Oracle Corporation, 2019; MariaDB Foundation,

2019a)

MariaDB

MariaDB is a database server engine developed by the developers of MySQL as an open-

source project which will stay open-source according to MariaDB Foundation (2019a). It is

almost fully compatible with MySQL with some exceptions. (MariaDB Foundation, 2019b)

Scripting Languages

Various programming languages can be used to enable the server-side scripting. A broad

used language is PHP. But like mentioned in the Node.js section, JavaScript is also a

possible language as well as Python or Ruby. It is a more personal decision which

language to use.

5 Implementation of a Visualization Tool

58

Complete Packages

XAMPP

XAMPP is a free package which includes Apache, MariaDB, PHP and Pearl. It is simple

to set up and can be used for developing tasks like browser-based development as

everything which is needed is included in the package. It is available for all common

operating system platforms. (Apache Friends, 2019b)

WAMPP

WAMPP is, similar to XAMPP, a complete package which includes Apache, MySQL and

PHP, but it is solely developed for Windows. It is also a subjective decision which one of

the packages to prefer, WAMPP is especially developed for the use under Windows. One

argument for WAMPP for the usage of the final software as a real product could be a more

thought through system concerning security issues, XAMPP in its download version is

emphasized to be used for development solely. (Alter Way, 2019; Apache Friends, 2019a)

5.4. Tool overview and Prerequisites

The visualization tool is designed as a browser-based application which can be simply

used in a normal web-browser. In its current version there is no need of registering for

using the system, everything can be made on the client-side (For further development

activities, please refer to chapter 0).

All functionalities are tested under:

 Firefox (66.0.3, 64 bit)

 Google Chrome (73.0.3683.103, 64-Bit)

Basically, a browser and access to the source files is all that is needed to start working

with the visualization tool.

5 Implementation of a Visualization Tool

59

5.5. Architecture

The basic software architecture is a very simple one: As already described in the previous

section, the current version is absolutely fine with working on the client-side only. There is

no need for a server-side handling, as no user registration nor a saving of a certain user

session is needed.

The architecture, shown in Figure 16, can be explained in a few sentences: The basic

HTML-page gets rendered by a user chosen web-browser. The CSS-files help to render

the style. The JavaScript-files, which are also stored on the client dynamically, update the

HTML rendering of the site according to individually programmed events. The main

program logic is contained in the individually programmed JavaScript-files.

Figure 16: Basic Informal Architecture of the Visualization Tool

5.6. Design

The design of the implemented visualization tool is determining the way, how the

background data is saved and how the visualization is rendered. This section will give an

overview of the used patterns and software tools. The architecture in the form of an UML

component diagram is shown in Figure 17.

5 Implementation of a Visualization Tool

60

5.6.1. Libraries

JointJS

The framework “JointJS”, described in client.IO (2019a), was used for basic administration

of the graph model and view rendering. JointJS is a simple tool which supports building

diagram visualization tools. There is also a commercial version, called “Rappid”. The

JointJS is licensed under the Mozilla Public License (MPL) 2.0. For obtaining the MPL 2.0

please visit: https://www.mozilla.org/en-US/MPL/2.0/

The dependencies needed for JointJS (lodash.js, jquery.js, backbone.js) are released

under the MIT-license.

JointJS is a simple library which helps to work with basic graphical elements. It uses SVG

and guarantees a strict separation of model and view (client.IO, 2019b). JointJS does

NOT:

 Replace individual programming work needed for this certain project.

 Include the main features of the value network visualization tool.

 Hinder from directly programming SVG elements or editing HTML elements.

 Overrule CSS styles.

 Limit current and further development activities.

What JointJS offers, is:

 Standard definition of lightweight, graphical elements (circle, rectangle, basic links).

 Separation of model and view.

 JSON-export and import of the model behind the graph.

 Great customization (elements, events) potential which was explicitly needed for this

task.

 Very good documentation.

 Could be removed and replaced if potential conflicts occur in future.

Bootstrap

Bootstrap (Bootstrap, 2019) is used just for some minor layout properties, like pop-up-

windows and small modals. The basic page layout is done in pure HTML+CSS. Bootstrap

offers a huge selection of fixed designed web components. It is released under the MIT-

license.

5 Implementation of a Visualization Tool

61

Figure 17: UML Component Diagram of Architecture

5.6.2. Design Pattern

As already mentioned, the basic design of this visualization tool is using the MV(C) design

pattern (see Figure 18). MVC stands for Model, View, Controller and strictly enforces to

separate the data from the actual graphical rendering. The controller part is responsible

for reacting to events in the graphical user interface (the view) and change the underlying

model accordingly. Changes in the model subsequently influence the view as the data is

the base for the graphical representation. (Krasner and Pope, 1988)

It is a widely used concept to strictly separate data and view, as data should be stored in

some kind of storage system, whereas the view itself gets rendered by a certain

application. Mixing those approaches would result in an unstructured and unclean way of

data processing. Furthermore, it is a commonly accepted and usual way to separate

different needs of software in independent logical units, which could be easily exchanged

or edited without the need of looking at the other part. (Krasner and Pope, 1988)

5 Implementation of a Visualization Tool

62

Figure 18: MVC Pattern (Curry and Grace, 2008, p. 88)

JointJS is using the MV-principle by simply completely separating the data, saved in the

model, from the view, saved in the so-called paper. Events can be triggered on base of the

model(s) as well as based on the paper(s). (client.IO, 2019b)

The controller part is not explicitly implemented (there are some exceptions concerning

e.g. link creation). This has to be done from the person who uses the library.

5 Implementation of a Visualization Tool

63

5.7. Requirements

Table 4 to Table 7 should give an overview of the defined requirements, which have been

written down during the project meetings. The requirements (present requirements as well

as future requirements) are divided into the following categories:

 Functional requirements

 Graphical requirements

 Security requirements

 Legal requirements

 Quality requirements

Table 4: Functional Requirements

Requirement ID Short Name Description

F1 Element Drawing The user shall be enabled to add layer

elements to the drawing graph.

Elements can be:

 Actor elements

 Link labels

 Annotations

 Text fields

F2 Drag and Drop Drawn elements shall be movable via

drag and drop.

F3 Element Selection The user shall be enabled to select

elements, which have been inserted in

the graph.

5 Implementation of a Visualization Tool

64

F4 Element Deletion The user shall be enabled to delete

elements from the drawing. Deletion

should be possible only for selected

elements.

F5 Element Resizing The user shall be enabled to resize the

drawn elements (except links), the

resize functionality should automatically

be enabled when the user hovers the

cursor over one of the corners of the

element. The functionality shall be

visualized by a changing cursor style.

The outer corners are defined by 80% of

the width and height of the

corresponding object.

F6 Link Adding The system shall enable the user to

draw links between actor elements.

F7 Link Deletion The system shall provide a possibility to

delete inserted links.

F8 Label Adding The user shall be able to add labels of

all layers on to the connection links.

Label positions should be automatically

calculated.

F9 Label Rotation The appended labels shall rotate

according to the links direction to show

the direction of the appended label.

F10 Link Intersections The system should detect link path

intersections and correct them.

F11 Link Selection The user shall be able to select the link

type, which is drawn when connecting

elements. Link Types are:

 Solid line links (black)

 Dashed line links (black)

 Dashed line links (red) (exogenous

link)

5 Implementation of a Visualization Tool

65

F12 Actor Layer Switching The user shall be able to switch

between the actor layers. There must

always be exactly one actor layer

shown.

Actor layers include:

 Value exchange and resources layer

 Legal layer

 Values and needs layer

F13 Layer Selection The user shall be able to select the

layers for drawing labels and annotation

elements. The layer selection is also

defining, which labels and annotation

elements are displayed in the graph.

The selectable layers are:

 Value exchange and resources layer

 Legal layer

 Values and needs layer

 Dynamics and motivation layer

The number of selected layers can be

between zero and four.

F14 Text Editing The user shall be able to edit text

contents inside the actor elements and

text fields.

F15 Text Arrangement The system should automatically

identify the needed space for the input

text and arrange the font size and line

breaks to fit the text inside the text area.

The minimum font size should be 12pt.

5 Implementation of a Visualization Tool

66

F16 MVC The system shall consider the MVC

design pattern. It shall strictly limit the

model from the user view. Every change

in the model shall update the user view.

F17 Graph Download The system shall enable the user to

download her/his current work progress

in form of a JSON-file.

F18 Graph Upload The user shall be able to upload a

JSON-file which contains a graph

definition previously downloaded with

the graph download functionality.

F19 Image Download The system shall offer the user the

possibility to download her/his current

work progress in form of a PNG-image.

F20 Undo The system shall offer the user the

possibility to undo up to the last 15

changes, which have been made on the

graph. The undo shall be activated

either by a keypress combination

(CTRL+Z) or by a button.

5 Implementation of a Visualization Tool

67

Table 5: Graphical Requirements

Requirement ID Short Name Description

G1 Basic Layout The system should be arranged with the

following layout: One menu header, one

left-side menu for the model elements,

one main drawing area and one footer

element. (See Figure 19)

G2 Upload Pop Up The upload of the JSON-file shall trigger

a pop-up window, which offers the

possibility to seek the local file system

for finding an appropriate file.

G3 Draft Bar On the left, the system should display a

draft area. This area is for dragging draft

elements onto the main graph. (See

Figure 20)

G4 Draft Bar Subdivision The draft area shall be divided into

categorial subsections. The subsections

should pop-up/down on click. The draft

bar shall be divided into the following

sections (see Figure 20):

 Actor elements

 Labels and Annotations

 Links

5 Implementation of a Visualization Tool

68

Table 6: Quality Requirements

Requirement ID Short Name Description

Q1 Browser Functionality The system shall offer the same

functionality in both defined browser

applications.

Q2 Layer Switching Time The system shall operate the layer

switching functionality within one

second after the user has triggered the

switch.

Q3 Invalid User Actions The user should be notified by the

system if the requested operation,

triggered in the user interface, causes

an invalid operation.

The notification can either be a pop-up

window or an undo of the requested

operation.

Q4 User Interface Structure The provided user interface should be

sufficiently structured, such as the

drawing process is smoothly supported.

Smoothly supported means that a user

who has used the system for drawing a

graph once, can insert every drawing

element within three seconds.

Q5 Upload Time The upload of graphs included in JSON-

format should not last longer than two

seconds maximum.

Small graphs (element number <100)

shall be loaded within one second.

Medium graphs (element number 100-

500) shall be loaded within 1,5 seconds.

Big graphs (element number >500) shall

be loaded within 2 seconds.

5 Implementation of a Visualization Tool

69

Table 7: Legal Requirements

Requirement ID Short Name Description

L1 Licensing The implemented software shall comply

with the licenses of the used libraries.

L2 DSGVO The system shall be compliant with the

DSGVO in Europe.

Figure 19: Graphical Draft for Requirement G1

5 Implementation of a Visualization Tool

70

Figure 20: Graphical Draft for Requirement G3 and G4

Semi-formal and graphical explanations of requirements can be seen in Table 8 and Figure

21. Table 8 describes the requirement F12 with a use-case description, whereas Figure

21 uses the UML activity diagram type to show activity flows of requirement F12.

Table 8: Example Use-Case of the Actor Layer Switching Requirement F12 (Semi-Formal)

Use-Case

Name

Actor Layer Switching (F12)

Short

Description

The user selects an actor layer to be displayed. All inserted actor

elements as well as the model elements in the draft area get filtered

according to the selection.

Actors User, System

Trigger User clicks on selection field for layers.

Precondition The user has fully loaded the page. There is only one actor layer

visible. All previous inserted actor elements were inserted

successfully.

Result The user only sees actors for the selected layer.

Postcondition The system has successfully hidden all actor elements, which are not

from the selected layer type.

Main action

plan
1. The system investigates all inserted elements.

2. The system proofs the types of the elements.

3. The system shows matching actor types and hides actors not

matching the selected layer.

4. The system updates the affected links.

5. The system updates the draft area actor elements.

5 Implementation of a Visualization Tool

71

Figure 21: Example UML Activity Diagram for the Actor Layer Switching Requirement

5 Implementation of a Visualization Tool

72

5.8. Implementation Basics

HTML offers a wide area of pre-defined events, including mouse events and keyboard

events. Additionally, JointJS offers the possibility to react on various events, either on basis

of the graph (model) or paper (view). The program can also react on changes of single

elements in the graph. For a complete list of possible events, look at (client.IO, 2019b).

Basically, all functionalities get triggered by the user with a certain event. The main work

is to use the right events and alter the correct elements/data.

5.9. Custom Elements

One of the key constructs of the whole visualization tool are the individually implemented

elements. Basically, a markup as well as standard attributes have to be defined to ensure

an appropriate data saving in the model and to guarantee an exact rendering in the view.

Mainly all defined attributes are SVG-attributes as JointJS is working with SVG-elements.

There are some individual attributes which are used for the internal implementation itself.

Arbitrary figure constructs can be implemented using a combination of different SVG-

elements. (client.IO, 2019b, 2019a)

5.9.1. Legal Layer Actor Example Definition

In Figure 22 the definition of the legal layer actor can be found. This definition is used with

the constructor to generate standardized legal layer actors. There are various attributes,

from defining the circle radius, over defining straight lines for the circle sectors until

individual attributes, which help for internal implementations, e.g. “maxTSpans” or

“children”.

Further definitions can be found in the full project implementation as the example should

be sufficient to give an overview on how the individual components are realized.

5 Implementation of a Visualization Tool

73

joint.dia.Element.define('custom.LegalLayer',{
 attrs:{
 main:{
 refCx: '50%',
 refCy: '50%',
 refR: '48%',
 strokeWidth: 2,
 stroke: 'black',
 refWidth: '98%',
 refHeight:'98%',
 fill: 'white',
 textElements: 2,
 refWidthCalc: '100',
 refHeightCalc: '100'
 },
 magnet_helper:{
 refCx: '50%',
 refCy: '50%',
 refR: '49%',
 strokeWidth: 0,
 stroke: 'none',
 refWidth: '100%',
 refHeight:'100%',
 fill: 'white',
 },
 sector1:{
 offsetX: '6',
 endX: '94',
 d: 'M 6 0 L 94 0',
 strokeWidth: 2,
 stroke: 'black',
 refX: '',
 refY: '30%'
 },
 text1:{
 numberChildren: 0,
 //children: tspan html elements
 children: [] ,
 //max number of possible tspan html elements
 maxTSpans: 1,
 currTSpans:1,
 fontSize: 9,
 fontWeight: 'bold',
 fill: 'black',
 text: 'Actor',
 refX:'50%',
 textAnchor:'middle',
 refY: '15%',
 refWidth: '70%',
 refHeight: '15%',
 height: '15%',
 event: 'element:pointerclick',
 contenteditable: true

 },

5 Implementation of a Visualization Tool

74

 text2:{
 numberChildren: 0,
 //children: tspan html elements
 children: [] ,
 //max number of possible tspan html elements
 maxTSpans: 5,
 currTSpans:1,
 fontSize: 9,
 text: 'Legal obligations',
 refX:'50%',
 textAnchor:'middle',
 refY: '40%',
 refWidth: '70%',
 refHeight: '30%'

 }

 }
},{
 markup:[{
 tagName:'circle',
 selector:'magnet_helper'
 },{
 tagName: 'circle',
 selector: 'main'
 },
 {
 tagName: 'path',
 selector: 'sector1'
 },{
 tagName: 'text',
 selector: 'text1'
 },{
 tagName: 'text',
 selector: 'text2'
 }]
});

Figure 22: Example Definition Legal Layer Actor

5 Implementation of a Visualization Tool

75

5.10. Main Functionalities

Now that the basic design, the idea behind the tool and the requirements are defined, a

short overview of the main implemented features will be given. For the full functionality,

please refer to the implemented project.

5.10.1. Using Draft Elements

One of the first main functionalities to be implemented was the task to enable dragging a

copy of the draft elements from the draft side-bar onto the main graph, as shown in Figure

23. The dragging starts with a pointerdown-event on the draft element and ends with a

pointerup-event over the main graph. The important background information needed for

this functionality is that the draft area(s) and the main graphs are separate models and

views. This leads to the fact that elements cannot be simply moved between those areas

as the “papers are the limit”.

To overcome this issue, a simple algorithm has been developed, which includes the

following main steps:

1. React on cell-pointerdown event in the draft-sidebar areas

2. Create a completely new graph and corresponding paper

3. Clone the clicked element of the draft area

4. Add the clone to the newly created graph

5. Add mousemovelisteners to the newly created paper

6. With every mousemove, rearrange the position of the newly created paper

7. React on cell-pointerup event, which signals that the drop has to be done

8. Proof if element is really dropped on main graph

9. Insert clone of dragged element into main graph

10. Delete temporary created graph and corresponding models of step 2

5 Implementation of a Visualization Tool

76

Figure 23: Dragging a Sample Label Element

5.10.2. Link Selection and Link Intersections

To fulfill the not permanently binding requirement of avoiding link intersections, the user

has the possibility to choose different types of links. The user can choose between:

 Solid line links

 Dashed line links

 Red dashed line links (exogenous links)

In addition to the different graphical interpretations of links, the user can choose between

links which differ in the way their route is rendered. The user can select

 Smooth links

 Manhattan links (orthogonal routing)

The manhattan-type link can detect intersections between different links whereas the

smooth link cannot. Nevertheless, the user has the choice to decide which type she/he

wants to use. The choice of the link type depends on the graph which is generated. There

may be use-cases, where the orthogonal, non-intersecting links are more appropriate, but

there may also be scenarios, which desire smooth connections between elements.

To activate the types of links, the user is able to select the different types in the draft-area

side bar. The selected link type gets highlighted to show the user the current selection.

5 Implementation of a Visualization Tool

77

switch(cellView.model.attributes.type.toLowerCase()){
 case "custom.smoothlinknormal":
 second_paper.options.defaultLink = new
 joint.shapes.custom.SmoothLinkNormal();
 cellView.highlight();
 return;
 case "custom.smoothlinkdashed":
 second_paper.options.defaultLink = new
 joint.shapes.custom.SmoothLinkDashed();
 cellView.highlight();
 return;
 case "custom.manhattanlinknormal":
 second_paper.options.defaultLink = new
 joint.shapes.custom.ManhattanLinkNormal();
 cellView.highlight();
 return;
 case "custom.manhattanlinkdashed":
 second_paper.options.defaultLink = new
 joint.shapes.custom.ManhattanLinkDashed();
 cellView.highlight();
 return;
 case "custom.manhattanexogenousdynamicslink
 second_paper.options.defaultLink = new
 joint.shapes.custom.ManhattanExogenousDynamicsLink();
 cellView.highlight();
 return;
 case "custom.smoothexogenousdynamicslink
 second_paper.options.defaultLink = new
 joint.shapes.custom.SmoothExogenousDynamicsLink();
 cellView.highlight();
 return;
 default:
 alert("Wrong link type in draft paper3. Something is wrong!");
 return;
}

Figure 24: Short Code Excerpt For Setting Default Link

Figure 24 shows a small excerpt of the actual implementation code where the default link

type is set according to the selected type. The different link types are individually created.

A sample definition will be included later. Figure 25 explains the corresponding activity in

the user interface.

5 Implementation of a Visualization Tool

78

Figure 25: Example of a Link Type Selection

5.10.3. Label Adding and Label Rotation

The user gets the opportunity to drag and drop labels directly from the draft area of the

graph onto a link between two elements. If the label is dropped over the link, the label is

appended to the link itself, in fact becoming a part of the link. The label position is

automatically computed, taking care of the number of already added labels onto the link.

Afterwards the label is accordingly moving with the link, including rotations, to always point

in the direction of the link. The rotation feature should improve readability of the graph (see

Figure 26 and Figure 27).

Figure 26: Example1 of Label Rotation

5 Implementation of a Visualization Tool

79

Figure 27: Example2 of Label Rotation

To have a look on the current implementation, the basic idea is to react on the same event

as when inserting an element into the main graph. But when the element is from type

“label” it should be checked whether it potentially, within a certain delta, crosses a link. If

it intersects, the label is directly added to the link. Otherwise, it is inserted as normal

element (it still can be dropped on the link later on via drag and drop). The code sample in

Figure 28 shows the key part of the implementation code where the actual intersection

check is done.

5 Implementation of a Visualization Tool

80

function proofAppendLabel(cellView){
 var bbox_dropped_element = cellView.model.getBBox();
 var links = jointjs_graph_main.getLinks();
 for(var i = 0; i < links.length;i++){
 var linkView = links[i].findView(second_paper);
 var closest_point = linkView.getClosestPoint(
 bbox_dropped_element.center());
 var diff = {};
 diff.x = Math.abs(closest_point.x-bbox_dropped_element.center().x);
 diff.y = Math.abs(closest_point.y-bbox_dropped_element.center().y);
 //inserting label intersects with link -->
 //insert label into link and delete old label element
 if(diff.x < 50 && diff.y < 50){
 var markup = Object.assign(cellView.model.attributes.markup);
 var attrs = Object.assign(cellView.model.attributes.attrs);

 //prevent double insert of same labels
 if(links[i].labels().filter(element => element.attrs.text1.text
 ==attrs.text1.text).length != 0){
 cellView.remove();
 continue;
 }
 //adjust position of inserted label (last label + delta)
 var pos = 0.2;
 pos = pos + links[i].labels().length/7.0;
 links[i].appendLabel({markup,attrs,position:{distance:pos}});
 cellView.model.remove();
 cellView = null;
 rotateLabels([links[i]],second_paper);
 break;
 }
 }
}

Figure 28: Code Example Showing the Label-Link Dropping

5.10.4. Text editing

Another important feature of the visualization tool is the direct editing of text elements.

Triggered by a double-click-event on the text area, the user gets the possibility to change

the text inside the field dynamically. The written text space arrangement algorithm checks

the space available for the certain text area and rearranges the text with the help of:

 Font-size changes (minimal font-size is 12pt)

 Line Breaks

 Arrangement of words per line

With every change of the inserted text, the rearrangement algorithm is called (“oninput-

event” fired). Figure 29 shows examples of text arrangements within different sizes of text

areas.

5 Implementation of a Visualization Tool

81

Figure 29: Example of Text Arrangement

5.10.5. Layer Switching and Layer Selection

One of the most promising and important features of the newly implemented visualization

tool is the possibility to instantly switch between different layers. This allows the user to

interactively design one and the same graph from different views, generating in fact

multiple graphs at the same time. The insights generated with looking at different layers is

one of the real values gained by the visualization tool.

Different layer options are offered to the user. The user can switch between the so-called

actor layers, which determine the actor layout drawn on the graph. As shown in Figure 30,

the user can select the displayed actor layer in a config drop-down menu. Only one

selection is allowed at the same time. These layers include:

 Value exchange and resources layer

 Legal layer

 Values and needs layer

Figure 31 shows the same graph after selecting a different actor layer.

5 Implementation of a Visualization Tool

82

Figure 30: Actor Layer Selection Example Before Selecting a New Layer

Figure 31: Actor Layer Selection Example After Selecting a New Layer

5 Implementation of a Visualization Tool

83

For the implementation each actor element has to save its corresponding element

representations in the other layers to provide the instant switching between the layers. The

called “sibling-elements” are saved by their Id in the model of each actor element.

The layer switch is triggered by the click on a radio-button field, which determines the

selected layer. According to the selected layer, the actor elements’ siblings are used to

find the corresponding sibling elements, which must be shown. Finally, all links are

redirected to the shown sibling elements. All other actor elements, which have a different

layer than the selected, can be hidden. The code example in Figure 32 shows the

showing/hiding of actor elements as well as redirection of links according to the sibling ids.

//function for hidding/showing checked layer actors
function checkboxFunctionActors(text){
 var elements_draft = graph1Draft.getElements();
 for(var i = 0 ; i < elements_draft.length;i++){
 if(elements_draft[i].attributes.type.toLowerCase().includes(text)){
 elements_draft[i].attr("./visibility","visible");
 }else {
 elements_draft[i].attr("./visibility","hidden");
 }
 }

 var elements = jointjs_graph_main.getElements();
 for(var i = 0 ; i < elements.length;i++){
 //labels get handled by checkboxes!
 if(elements[i].attributes.type.toLowerCase().includes("labels")){
 continue;
 }
 if(elements[i].attributes.type.toLowerCase().includes(text)){
 elements[i].attr('./visibility','visible')

 }else {
 elements[i].attr("./visibility","hidden");
 }

 //filter out those siblings which are visible now and set target or
 //source to their cells according to their saved ids
 var links_outbound = jointjs_graph_main.getConnectedLinks(
 elements[i],{outbound:true});
 for(var j = 0; j < links_outbound.length;j++){
 links_outbound[j].source(jointjs_graph_main.
 getCell(elements[i].attr("./siblings").
 filter(element => jointjs_graph_main.getCell(
 element).attr("./visibility") == "visible")[0]));
 }
 var links_inbound = jointjs_graph_main.getConnectedLinks(
 elements[i],{inbound:true});
 for(var j = 0; j < links_inbound.length;j++){
 links_inbound[j].target(jointjs_graph_main.
 getCell(elements[i].attr("./siblings").
 filter(element => jointjs_graph_main.getCell(
 element).attr("./visibility") == "visible")[0]));
 }
 }
}

Figure 32: Code Example of Actor Layer Selection

5 Implementation of a Visualization Tool

84

Additionally, the user can select the layers for the displayed labels and annotations. The

above-mentioned layers are hereby expanded by the dynamics and motivation layer. The

user can select a number of different layers, which is between zero and four. According to

the selected layers the added labels and annotations get shown/hidden accordingly. For

example, if the user selects the legal layer, only the annotations concerning legal issues

are shown in the left side menu, as illustrated in Figure 33. Figure 34 shows the same

graph with additional labels shown by selecting more checkboxes.

Figure 33: Label and Annotation Selection Example

Figure 34: Label and Annotation Selection Example 2

5 Implementation of a Visualization Tool

85

5.11. Future Work

The current version of the visualization tool is a well-established project, which enables a

fluent creation of the value network model described in Vorraber (2019). The workflows

are very smooth and the key aspect of creating and analyzing value networks from different

viewpoints is supported.

As in nearly every project, there is always space for improvement. Those improvements

exceed the fixed scope at the beginning of the project and are therefore planned to be

implemented in future project extensions.

This chapter will give a short overview of future features, which may be attractive to include

them in the implementation.

5.11.1. Future Requirements

Requirements can be identified for some exploratory future implementation parts. The

described requirements in Table 9 to Table 11 should give an overview of some extension

examples where requirements can already be defined. There may be some additional

extensions described in section 0, which are at the current point of time very vague and

not precisely describable.

Table 9: Future Security Requirements

Requirement ID Short Name Description

S1 Availability The System shall be available 24 hours

a day, seven days a week. A downtime

of one day per year is acceptable.

S2 Data Security The system shall consider data security

tasks to protect user-related data saved

on server.

Table 10: Future Legal Requirements

Requirement ID Short Name Description

L3 DSGVO The system shall stay compliant with the

DSGVO in Europe. In case person

related data will be stored due to future

extensions, the DSGVO requirements

shall be met.

5 Implementation of a Visualization Tool

86

Table 11: Future Functional Requirements

Requirement ID Short Name Description

F21 User Registration The system shall allow the user to

register and create himself/herself a

user account. A unique nickname and a

password shall be selected.

F22 Log In The user shall be able to log in into

her/his created user account by

providing the nickname and the

corresponding password.

F23 Session Handling The created graphs shall be linked to

the user account when logged in.

Changes in the graphs are

automatically saved on the server-side.

F24 Personal Working

Space

When logged in, the user shall see

her/his previous created graphs which

were linked to her/his user account.

F25 Printing Function The user shall be able to print her/his

current drawn graph directly on her/his

printer.

F26 Dynamic Page Update The system shall support dynamic page

update, no reload of the whole page

should be necessary.

F27 Individual Layer

Creation

The system shall support individual

layer creation by the user. The user

shall be able to select the actor’s section

number as well as the content of each

section.

5 Implementation of a Visualization Tool

87

5.11.2. Future Functionalities (Extensions)

For the purpose of further improvements, some basic extensions have been thought of

which might be useful in extended use-cases.

The first step for improvement could be the introduction of a server-side implementation

for user handling and database storage. As already discussed in the section of

technologies, a working server implementation has to be selected as well as a suiting

database. The server-side should take care of the following activities:

 User registrations

 Log in/Log out (session handling)

 Graph storages

The server-side implementation would clearly bring the advantage of local file

independency, in fact linking the created graphs to a certain user, which will then be

available after login. It would also enable saving further configurations of the system per

user and make the whole system a little bit more individual.

The server-side must be secured in an appropriate way as user-data is saved on the

database-server. This causes administrative overheads and efforts.

The client-side functions as already implemented should not be touched and stay included

in further releases. The lightweight, easy and fast client-side application is often a desired

requirement for certain users.

Extension by individual elements can also be a further field of implementation, whereas

the users are provided with an input mask, which allows customized declaration of

individual components within a certain limit. This would offer the users a big potential if

certain aspects of the included value network notation change over time or if different

aspects have to be considered. To provide such an extension, further stakeholder analysis

has to be done to get a deeper insight into the needs and expectations for such innovation

processes.

5 Implementation of a Visualization Tool

88

Another potential use-case could be using the graph model as a starting point for

simulation tasks to e.g. identify influencing powers of stakeholders concerning a certain

viewpoint in a specific network. The simulation results could be graphically highlighted in

the graph view. This extension would provide the value network visualization tool with the

ability to analyze the underlying model in a deeper way and would lead to a more detailed

result. The tool would then not solely be on the visualization side, but also act as a kind of

data analyzation tool. The way how such a simulation can be implemented and integrated

into the visual creation of the graph, was not part of this project and is therefore not

included in this version. Nevertheless, it is an interesting point of thinking which shows the

great potential of the created tool. The baselines (e.g. strict separation of view and data in

the MVC pattern) already exist and offer a great possibility to build on for the suggested

simulation process.

6 Conclusion

89

6. Conclusion
It has been investigated in detail, how important a structured engineering process is.

Starting with the systems engineering approach, where complete systems are modelled

using methods, like the top-down approach, different problems and solutions have been

discussed to describe the dynamics of a system properly. Special engineering techniques,

like service design thinking, have been described to highlight the focus on the

stakeholders’ interests and their visualization. For examining and documenting the

stakeholders’ needs, requirements engineering has been reviewed. The three main

discussed theory chapters build a common understanding of how important the

stakeholder centered, systematic design and analysis during an engineering process is.

For this reason, a visualization tool has been developed to enable a value-network

stakeholder map. It offers a detailed stakeholder analysis, using various viewpoints on one

and the same influencing graph.

The implemented visualization tool provides great opportunities for a fluent value network

graph generation. It is easy and quick to use, as no registration nor special software are

required. The implemented functionalities guarantee a fast and easy creation of a value

network, which can be analyzed using different viewpoints, while showing and hiding

different types of elements.

It is, like with every other software product, possible to implement extensions if needed by

the main users of the system. Future directions of implementations are already in the

mindset and will be headed for in the near future.

Hopefully, the implemented tool helps to further strengthen the position of value networks

in research and gives one or the other new user the possibility to easily get used to the

topic by starting to work with it.

6 Conclusion

90

6.1. References

Allgemeiner Umdruck Nr. 250/1 (1997), Entwicklungsstandard für IT-Systeme des

Bundes, Vorgehensmodell.: Teil 1: Regelungsteil.

Allgemeiner Umdruck Nr. 250/3 (1997), Entwicklungsstandard für IT-Systeme des

Bundes, Vorgehensmodell.: Teil 3: Handbuchsammlung.

Alter Way (2019), “Wampserver. A Windows Web Development Environment”, available

at: http://www.wampserver.com/en/ (accessed 17 April 2019).

Apache Friends (2019a), “Windows Frequently Asked Questions”, available at:

https://www.apachefriends.org/faq_windows.html (accessed 30 April 2019).

Apache Friends (2019b), “XAMPP Apache + MariaDB + PHP + Perl”, available at:

https://www.apachefriends.org/index.html (accessed 17 April 2019).

Apache Software Foundation (2019), “What is Apache?”, available at:

https://wiki.apache.org/httpd/FAQ#What_is_Apache.3F (accessed 17 April 2019).

Beck, K. (1999), Extreme Programming Explained: Embrace Change, First Edition,

Addison-Wesley, Boston.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C.,

Mellor, S., Schwaber, K., Sutherland, J. and Thomas, D. (2001), “Manifesto for Agile

Software Development”, available at: http://agilemanifesto.org/ (accessed 26 February

2019).

Biem, A. and Caswell, N. (2008), “A Value Network Model for Strategic Analysis”, in

Proceedings of the 41st Annual Hawaii International Conference on System Sciences

(HICSS 2008), Waikoloa, HI, USA, 07.01.2008 - 10.01.2008, Institute of Electrical and

Electronics Engineers, New York, pp. 1–7.

Bootstrap (2019), “Bootstrap”, available at: https://getbootstrap.com/docs/4.3/getting-

started/download/ (accessed 16 April 2019).

Breuer, H. and Lüdeke-Freund, F. (2017), “Values-Based Network and Business Model

Innovation”, International Journal of Innovation Management, Vol. 21 No. 03, p.

1750028.

Bryson, J.M. (1995), Strategic Planning for Public and Nonprofit Organizations: A Guide

for Strengthening and Sustaining Organizational Achievement, The Jossey-Bass

nonprofit sector series, Rev. ed., 3rd print, Jossey-Bass, San Francisco, Calif.

Bryson, J.M. (2003), “What To Do When Stakeholders Matter. A Guide to Stakeholder

Identification and Analysis Techniques”, A paper presented at the National Public

Management Research Conference October 2003, available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.2874&rep=rep1&type=

pdf (accessed 2 March 2019).

6 Conclusion

91

Cameron, E. and Green, M. (2009), Making Sense of Change Management: A complete

guide to the models, tools & techniques of organizational change, 2. ed., Kogan Page,

London u.a.

client.IO (2019a), “joint.js”, available at: https://www.jointjs.com/opensource#Download-

JointJS (accessed 16 April 2019).

client.IO (2019b), “JointJS Documentation”, available at:

https://resources.jointjs.com/docs/jointjs/v2.2/joint.html (accessed 16 April 2019).

Curry, E. and Grace, P. (2008), “Flexible Self-Management Using the Model-View-

Controller Pattern”, IEEE Software, Vol. 25 No. 3, pp. 84–90.

Easterbrook, S. (2007), “Scale Changes Everything: Understanding the Requirements for

Systems of Systems”, in Sixth International IEEE Conference on Commercial-off-the-

Shelf (COTS)-Based Software Systems, 2007: ICCBSS '07 ; Feb. 26, 2007 - March 2,

2007, Banff, Alberta, Canada, Banff, AB, Canada, 2/26/2007 - 3/2/2007, Institute of

Electrical and Electronics Engineers Computer Society, Los Alamitos, Calif. [u.a.], p.

16.

Eden, C. and Ackermann, F. (2004), Making Strategy: The Journey of Strategic

Management, Reprinted., Sage, London.

Freeman, R.E. (2010), Strategic management: A stakeholder approach, Cambridge

University Press, Cambridge.

Gausemeier, J. and Moehringer, S. (2002), “VDI 2206- A New Guideline for the Design of

Mechatronic Systems”, IFAC Proceedings Volumes, Vol. 35 No. 2, pp. 785–790.

Gordijn, J. (2002), “Value-based Requirements Engineering. Exploring Innovative e-

Commerce Ideas”, Faculteit der Exacte Wetenschappen, Universiteit De Boelelaan,

Amsterdam, 2002.

Haberfellner, R., de Weck, O., Fricke, E. and Vössner, S. (2018), Systems Engineering:

Grundlagen und Anwendung, 14., überarb. Aufl., Orell Füssli Verlag, Zürich.

Hall, A.D. (1962), A Methodology for Systems Engineering, Van Nostrand, Princeton N.J.

u.a.

Institute of Electrical and Electronics Engineers (1990), IEEE Standard Glossary of

Software Engineering Terminology, IEEE Std 610.12-1990, Institute of Electrical and

Electronics Engineers, New York.

International Organization for Standardization (2018), “ISO 10303-233:2012. Industrial

automation systems and integration -- Product data representation and exchange --

Part 233: Application protocol: Systems engineering”, available at:

https://www.iso.org/standard/55257.html (accessed 29 April 2019).

International Organization for Standardization, International Electrotechnical Commission

and Institute of Electrical and Electronics Engineers (2018), ISO/IEC/IEEE 29148:

2018(E): ISO/IEC/IEEE International Standard - Systems and software engineering --

6 Conclusion

92

Life cycle processes -- Requirements engineering, International standard,

ISO/IEC/IEEE 29148-2018, Institute of Electrical and Electronics Engineers, New York.

International Organization for Standardization, International Electrotechnical Commission,

Institute of Electrical and Electronics Engineers, IEEE-SA Standards Board and IEEE

Xplore (Online service) (2015), Systems and software engineering-- System life cycle

processes: Ingénierie des systèmes et du logiciel-- Processus du cycle de vie du

système, International standard, ISO/IEC/IEEE15288:2015(E), Institute of Electrical

and Electronics Engineers, New York.

Joyent Inc. (2019), “About Node.js”, available at: https://nodejs.org/en/about/ (accessed

17 April 2019).

Kelman, H.C. (1961), “Processes of Opinion Change”, Public Opinion Quarterly, Vol. 25

No. 1, pp. 57–78.

Krasner, G.E. and Pope, S.T. (1988), “A Description of the Model-View-Controller User

Interface Paradigm in the Smalltalk80 System”, Journal of Object-oriented

Programming - JOOP, Vol. 1, pp. 1–34.

Kruchten, P. (2007), The Rational Unified Process: An introduction, The Addison-Wesley

object technology series, 3. ed., 7. printing, Addison-Wesley, Upper Saddler River, NJ.

Luo, Q. (2011), “User-Oriented Service Design and Innovation”, in 2011 International

Conference of Information Technology, Computer Engineering and Management

Sciences ICM 2011: Proceedings 24-25 September 2011, Nanjing, Jiangsu, China,

Nanjing, Jiangsu, China, 9/24/2011 - 9/25/2011, Institute of Electrical and Electronics

Engineers Computer Society, Los Alamitos, Calif., pp. 51–54.

MariaDB Foundation (2019a), “MariaDB About”, available at: https://mariadb.org/about/

(accessed 17 April 2019).

MariaDB Foundation (2019b), “MariaDB versus MySQL - Features”, available at:

https://mariadb.com/kb/en/library/mariadb-vs-mysql-features/ (accessed 17 April

2019).

Object Management Group, I. (2017), “OMG Unified Modeling Language. Version 2.5.1”,

available at: https://www.omg.org/spec/UML/ (accessed 26 February 2019).

Object Management Group, I. (2019a), “MBSE Wiki”, available at:

http://omgwiki.org/MBSE/doku.php (accessed 20 April 2019).

Object Management Group, I. (2019b), “What is SYSML?”, available at:

http://www.omgsysml.org/what-is-sysml.htm (accessed 21 April 2019).

Oracle Corporation (2019), “MySQL”, available at: https://www.mysql.com/de/ (accessed

17 April 2019).

Osterwalder, A. and Pigneur, Y. (2010), Business Model Generation: A Handbook for

Visionaries, Game Changers, and Challengers, Wiley, Hoboken, NJ.

6 Conclusion

93

Partsch, H.A. (2010), Requirements-Engineering systematisch: Modellbildung für

softwaregestützte Systeme, 2. Auflage, Springer Berlin Heidelberg, Berlin/Heidelberg.

Porter, L.W. and Lawler, E.E. (1968), Managerial Attitudes and Performance, The Irwin-

Dorsey series in behavioral science, 1. print, Richard D. Irwin, Homewood Illinois.

Refsnes Data (2019), “Browser Statistics”, available at:

https://www.w3schools.com/browsers/default.asp (accessed 17 April 2019).

Ruparelia, N.B. (2010), “Software development lifecycle models”, ACM SIGSOFT

Software Engineering Notes, Vol. 35 No. 3, pp. 8–13.

Rupp, C. (2004), Requirements-Engineering und -Management. Professionelle, iterative

Anforderungsanalyse für die Praxis. 3., neu bearb. Aufl, Hanser, München.

Schwaber, K. and Beedle, M. (2002), Agile Software Development with Scrum, Series in

agile software development, Prentice Hall, Upper Saddle River, NJ.

Sommerville, I. and Sawyer, P. (1997), Requirements engineering: A good practice guide,

Reprinted., Wiley, Chichester.

Stickdorn, M., Hormess, M.E., Lawrence, A. and Schneider, J. (2018), This is Service

Design Doing: Applying Service Design Thinking in the Real World A Practitioners'

Handbook, First edition, O'Reilly Media, Inc, Sebastopol, CA.

Stickdorn, M. and Schneider, J. (Eds.) (2013), This is Service Design Thinking: Basics,

Tools, Cases, 3. printing, paperback edition, BIS Publ, Amsterdam.

Tandemic (2019), “Social Business Model Canvas”, available at:

http://www.socialbusinessmodelcanvas.com/ (accessed 16 April 2019).

Turner, R., Pyster, A. and Pennotti, M. (2009), “Developing and Validating a Framework

for Integrating Systems and Software Engineering”, in 2009 3rd Annual IEEE Systems

Conference, Vancouver, BC, Canada, 3/23/2009 - 3/26/2009, Institute of Electrical and

Electronics Engineers, New York, pp. 407–412.

Twisted Matrix Labs (2019), “What is Twisted?”, available at:

https://twistedmatrix.com/trac/ (accessed 17 April 2019).

Vorraber, W. (2019), “A Hybrid Service Analysis and Engineering Framework for New

Business Models”, internal paper, under revision.

Vorraber, W., Lichtenegger, G., Brugger, J., Gojmerac, I., Egly, M., Panzenböck, K., Exner,

E., Aschbacher, H., Christian, M. and Voessner, S. (2016), “Designing Information

Systems to Facilitate Civil-Military Cooperation in Disaster Management”, International

Journal of Distributed Systems and Technologies, Vol. 7 No. 4, pp. 22–40.

Vorraber, W., Mueller, M., Voessner, S. and Slany, W. (2019), “Analyzing and Managing

Complex Software Ecosystems: A Framework to Understand Value in Information

Systems”, IEEE Software, Vol. 36 No. 3, pp. 55–60.

6 Conclusion

94

Vorraber, W. and Vössner, S. (2011), “Modeling Endogenous Motivation and Exogenous

Influences in Value”, Journal of Convergence Information Technology, Vol. 6 No. 8, pp.

356–363.

Vroom, V.H. (1967), Work and Motivation, 3rd printing, Wiley, New York, NY.

