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Neural Beamforming

Abstract (English)

Neural beamforming encompasses the merger of two different scientific disciplines, namely
acoustic beamforming, and artificial neural networks. While the former uses statistical signal
processing to spatially separate signals such as human speech, the latter uses non-linear function
approximators to perform signal classification or regression tasks. Classical beamforming is used
in unsupervised tasks such as denoising, or isolating sources with a known position. In these
applications, the beam is steered towards the desired source. For tasks such as speaker tracking
or blind source separation, the location of the individual speakers is unknown, rendering the
problem ill-posed. Neural networks help to solve this class of problems by inferring the missing
information from the underlying distribution of the multi-channel audio data. The symbiosis
between beamforming and neural networks allows us to tackle hard problems such as the cocktail
party scenario.
This thesis explores the evolution of neural beamforming from modest post-filters up to com-

plete blind speaker separation systems, by covering four distinct topics: (i) Mask-based beam-
forming, which extracts a single speaker from background noise. This method employs a neural
network to estimate a speech mask in frequency-domain. This mask is then used to obtain
a classical beamformer. Here, we present our Eigennet structure which exploits spatial infor-
mation embedded in the dominant Eigenvector of the spatial power-spectral density matrix of
the noisy microphone inputs. (ii) Complex-valued neural beamforming, where complex-valued
neural networks are used to predict beamforming weights in frequency-domain. This enables
the beamformer to quickly react to location changes such as speaker movement. This concept
outperforms classical beamformers, as the neural network directly optimizes the max-SNR ob-
jective of the beamformer. We present our CNBF architecture, which uses Wirtinger calculus
to derive complex-valued recurrent network layers and non-holomorphic functions required for
beamforming. (iii) Time-domain neural beamforming, where the concept of cross-domain learn-
ing is introduced. It allows to formulate the beamforming principle in a latent space, which
is learned by a neural network. The enhanced signal is directly synthesized in time-domain.
This approach is completely detached from a physical representation of sound waves, or classi-
cal beamforming algorithms. Our TDNBF formulation provides solutions for problems such as
low-latency beamforming, dereverberation, and non-linear residual echo cancellation. (iv) Blind
source separation, where we propose a monolithic, all-in-one solution to perform multi-speaker
separation, dereverberation and speaker diarization using a single neural network, termed the
BSSD architecture. This approach is capable to solve the cocktail party problem with an un-
known number of speakers. It uses an analytic or statistic adaption layer, which virtually moves
each identified speech source to the coordinate origin of the microphone array, from where it is
extracted and dereverberated using a neural network in time-domain. This system was devel-
oped with application-driven constraints in mind, such as a reverberant environment with an
unknown number of speakers, low latency, and real-time processing using small blocks of audio
at a time.
Throughout this thesis, all methods are experimentally evaluated using multi-channel record-

ings from a variety of acoustic environments. We demonstrate their respective performance
using metrics such as the word error rate or the signal-to-distortion ratio.
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Notational Conventions

General Notation
a scalar value
A(l) vector
A(l, k) matrix with indices (l, k)
A(l, k,m) tensor with indices (l, k,m)

Operators
Rd d-dimensional space of real numbers
Cd d-dimensional space of complex numbers
Re{·} real part of a complex expression
Im{·} imaginary part of a complex expression
∇x gradient with respect to x
∇2
x Hessian with respect to x

i imaginary unit
| · | absolute value
|| · ||p lp-norm
� element-wise multiplication
~ convolution operator
1(·) indicator function
(·)∗ conjugate value
(·)T vector/matrix transpose
(·)H vector/matrix adjoint
Tr{·} trace operator
F(x) Fourier transform of x
∠Z phase of the complex-valued argument Z
[x]+ clipping of x to positive values

Probability
X random variable
x value of random variable
PX|Y (x, y) conditional probability distribution of X given Y
N (µ, σ2) Gaussian distribution with mean µ and variance σ2

E{x} expected value of X
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1
Introduction

1.1 Motivation

Speech enhancement is concerned with improving the perceived intelligibility and quality of
human speech. In our restless world, speech signals are often degraded by additive noise or
interfering speakers, e.g. road-noise, manufacturing noise, or a crowded subway train. These
noise sources cause discomfort and listener fatigue in many telecommunication applications such
as mobile phones, intercoms, or hearing aids. Especially in hands-free scenarios, background
noise levels can reach the loudness of the desired speech signal, as there is no handset to shield the
ear of the listener from ambient sounds. In human-machine interfaces, degraded speech signals
have a negative influence on speech recognition rates. In these applications, misheard voice
commands lower the overall user acceptance, e.g. car navigation systems or voice assistants.
Consequently, improving the perceptual aspects of speech signals has been an active field of
research for many decades. Speech enhancement algorithms are used as preprocessors in a
variety of applications, e.g. speech codecs, hearing aids, or noise-canceling headphones.
As mobile devices keep getting cheaper and more powerful, the scientific focus has shifted from

Single-Channel Speech Enhancement (SCSE) to Multi-Channel Speech Enhancement (MCSE)
methods. This allows addressing more complex types of noise signals, such as interfering speak-
ers. While many noise signals can be modeled using their temporal statistics, separating two
speech signals is much harder. The general case of separating multiple speakers who are talk-
ing over one another is known as the cocktail party problem. By using multiple microphones,
the speakers can be spatially separated based on their location. Speaker separation algorithms
include acoustic beamforming or blind source separation algorithms, such as Independent Com-
ponent Analysis (ICA). Fueled by the success of deep learning, both speech enhancement and
speaker separation algorithms made compelling advances over the last years. By combining
traditional signal processing methods and non-linear function approximators, the performance
of these algorithms achieves near-perfect signal reconstruction in many application scenarios. In
this work, we elaborate on the fusion of acoustic beamforming and neural networks, which we
termed neural beamforming.

1.2 Single-Channel Speech Enhancement

Historically, speech enhancement has mainly been recognized as a single-channel problem. The
reason for this is: (i) Processing multiple signals require expenditures in both acoustics hardware
and computing resources. (ii) Array processing algorithms were mostly developed for radar
applications, and had yet to be adapted to the acoustic domain [1].
Over the last decades, a vast collection of algorithms has been conceived for SCSE. The most

important approaches are based on the Wiener filter [1], [2] and spectral subtraction [3], [4].
Other methods include statistical models based on the Maximum Likelihood (ML), Maximum
A-Posteriori (MAP), Minimum Mean-Squared Error (MMSE), Bayesian estimators, or subspace
methods using Singular Value Decomposition (SVD) or Eigenvalue Decomposition (EVD). A
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1 Introduction

comprehensive overview can be found in [5]–[7].
Due to its relatively low complexity, spectral subtraction is by far the most widely used

commercial SCSE method, even today. This method relies on the observation that human
speech is sparse in both time and frequency [8]. Therefore, the spectrum of unwanted signal
components like interfering noise can be estimated during periods where the desired speech
signal is absent. The required noise statistics may be obtained by Minimum Statistics (MS)
[9], or Improved Minima-Controlled Recursive Averaging (IMCRA) [10]. A central assumption
being made is that the noise spectrum is more or less stationary, or at least slowly changing
compared to the speech spectrum. The noise spectrum estimate is then subtracted from the
spectrum of the mixture, using a spectral gain mask [11], [12]. Only the magnitude is affected
by this process, the phase information is left unchanged. Figure 1.1 shows the basic principle of
spectral subtraction.

Figure 1.1: General architecture of spectral subtraction algorithms [13].

Recent studies showed that neglecting the phase affects the intelligibility and quality of the
enhanced signal [14]–[16]. Further, estimation errors of the noise spectrum also have a severe
impact on the speech quality: Under-estimation of the noise spectrum results in randomly
distributed residual noise artifacts, lowering the speech quality. Over-estimation of the noise
spectrum results in the deletion of spectral components of the desired speech, resulting in a
decreased speech intelligibility. As real-world noises are challenging to predict, estimation errors
can not be avoided. Consequently, speech quality and intelligibility cannot be maintained at the
same time using spectral subtraction [6].
More recently, deep learning has been used for SCSE with great success. In particular, the

noise estimation stage in Figure 1.1 is replaced by a Neural Network (NN), which predicts the
gain mask directly from the log-power spectrum of the noisy speech data. To train the NN, the
ground truth gain mask is required as label. The NN infers the spectral statistics of the noise
signal from the training data, which outperforms all of the above model-based noise estimators,
resulting in superior speech quality and intelligibility [17]–[24]. Alternative approaches do not
use a gain mask at all, but rather rely on speech synthesizers [25]. Here, a Deep Neural Network
(DNN) is used to predict a noise-free waveform in time-domain, given a degraded input signal.
Examples for such systems are: Wave-U-Net [26], TasNet [27] and Conv-TasNet [28].

1.3 Multi-Channel Speech Enhancement
When more than one microphone is available, not only the temporal information but also the
spatial features of the sound field can be utilized. This allows for MCSE methods, which can be
divided into two main groups: (i) Blind Source Separation (BSS) and (ii) beamforming.
BSS denotes both the supervised and unsupervised separation of multivariate signals into their

individual sources, i.e. speech, images, or medical data such as EEG signals. Typically, ICA is
used to perform unsupervised BSS, as it maximizes the statistical independence of the estimated
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components. This is achieved by maximizing the Kurtosis (non-Gaussianity) of the underlying
distribution of the multivariate data [29]. Algorithms for unsupervised speech separation can
be found in [30], [31]. Algorithms for supervised speech separation include Non-negative Matrix
Factorization (NMF) [32]–[34], and DNNs [27], [35], [36].

While BSS aims at separating all involved sources in the mixture, beamforming enhances only
a set of desired sources while treating all others as interference. A beamformer is comprised of
a set of spatio-temporal filters, which processes each of the microphone signals followed by
a summation operation. If those filters are designed with the objective to extract a desired
broadband signal like speech, it is considered as a broadband or superdirective beamformer.
Common beamforming structures are the Minimum Variance Distortionless Response (MVDR)
beamformer [37], and its Generalized Sidelobe Canceler (GSC) formulation [38]. Both aim
at minimizing the signal power of the interfering signal at the beamformer output, while also
minimizing distortions of the target signal [39]–[42]. Another design concept is achieved by
Generalized Eigenvalue (GEV) beamformer [43], which trades minimal speech distortions for
maximum SNR at the beamformer output. Every beamformer requires a steering vector to direct
the beam towards the desired signal, i.e. the target speaker. This direction can be estimated
using Direction Of Arrival (DOA) algorithms such as PHase Acoustic Transform (PHAT) [12],
MUltiple SIgnal Classification (MUSIC) [11], or Direction-Dependent SNR (DD-SNR) [44]. The
steering vector is comprised of a set of time delays, which corresponds to the direct line of sight
between a sound source and the microphone array. However, sounds do not only propagate via
a straight line, but also via multiple reflections caused by the room acoustics [45]. The complete
propagation path from the speaker to a microphone is known as Acoustic Transfer Function
(ATF) [46], [47]. Depending on the reverberation contained in the ATFs, DOA estimation can
be a difficult task.
With recent advances in DNNs, using a DOA algorithm is no longer required, as the steering

vector may be replaced by a gain mask. This mask identifies the time-frequency bins that contain
the desired signal in the noisy data. The gain mask can be directly estimated from the noisy
microphone data. It is used to calculate the spatial Power-Spectral Density (PSD) matrices of
the desired and interfering sound sources. The PSD matrix of the desired speech signal contains
the ATF of the speaker in its principal Eigenvector [42], [48]. Hence, mask-based beamforming
proved to be superior to DOA based approaches [21], [49]–[53]. Alternatively, the complex-valued
beamforming weights themselves may be derived from the noisy microphone observations, using
DNNs, i.e. [54], [55]. With the help of time-domain NNs, complete BSS systems have been
constructed. They perform speaker separation [56], diarization [57], dereverberation [58] and
Automatic Speech Recognition (ASR) [59] all at once.

1.4 Contributions from published papers

Before the major breakthrough of deep learning, a typical MCSE processing chain consisted of
a DOA estimation algorithm [11], [38], an adaptive beamformer such as the GSC [37], [60], a
postfilter [12], [61], and an ASR system based on Hidden Markov Models (HMMs) and Gaus-
sian Mixture Models (GMMs) [62], [63]. The main purpose of the beamforming front-end is to
provide a clean, noise-free speech signal for the ASR back-end [64]. Typically, these systems are
limited to a single speaker in the near-field of the microphone array. To adapt the beamformer
weights, algorithms such as the Normalized Least Mean Squares (NLMS) algorithms are used
[2], [12]. Over the last couple of years, each of these building blocks has been replaced with a
NN, resulting in impressive performance gains and applications for problems deemed too hard at
the time. For example, it has become possible to automatically detect, count and localize an un-
known number of sources from a mixture of speakers [56], rendering DOA estimation algorithms
obsolete. Further, statistical beamformers such as the MVDR, GSC [38], or GEV [43] have been
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1 Introduction

outperformed in both the time- and frequency-domain by dedicated NN architectures [26], [53],
[58], [65]. In order to do so, complex-valued NN have been devised, making complex-valued back-
propagation possible using Wirtinger Calculus [66]. This progression allowed for beamformers
with new properties and applications such as the Complex-Valued Neural Beamformer (CNBF)
[67], which is capable to quickly adapt to multiple sources without relying on temporal signal
statistics. Further, time-domain beamformers such as Beam-TasNet [68] or the Time-Domain
Neural Beamformer (TDNBF) [58] allow for real-time applications with processing delays down
to 4ms. In parallel to the acoustic front-end, ASR systems experienced dramatic improvements
as well [62], [69]–[71]. More recently, end-to-end solutions which combine far-field speech en-
hancement and ASR systems have been proposed [59]. The summation of these advances even
made it possible to solve the infamous cocktail party phenomenon [56], [58]. During the last
couple of years, we were able to accompany this impressive journey with our own contributions.
All published papers can be found in the appendix in Chapter A.

• "A multi-channel postfilter based on the diffuse noise sound field", Lukas Pfeifenberger and
Franz Pernkopf, 22nd European Signal Processing Conference, Lisbon, 2014. In this paper,
we proposed a multi-channel postfilter for the MVDR beamformer, which is based on the
spatial coherence function of diffuse sound fields. The postfilter exploits the different
properties of the near-field and far-field coherence, which can be expressed analytically
under certain assumptions. For further details, see Appendix A.1.

• "Blind source extraction based on a direction-dependent a-priori SNR", Lukas Pfeifenberger
and Franz Pernkopf, Interspeech 2014 - 15th Annual Conference of the International Speech
Communication Association, Singapore, 2014. In this paper, we propose a concept to
estimate the unknown location of a single speaker embedded in diffuse background noise.
We formulate an iterative algorithm which maximizes the DD-SNR, thereby identifying the
DOA of the desired speech source. As the DD-SNR is related to the gain of the postfilter,
we could show that the performance of this algorithm surpasses traditional DOA methods
such as MUSIC [11]. For further details, see Appendix A.2.

• "Multi-channel speech processing architectures for noise robust speech recognition: 3rd

CHiME challenge results", Lukas Pfeifenberger, Tobias Schrank, Matthias Zöhrer, Martin
Hagmüller and Franz Pernkopf, IEEE Automatic Speech Recognition and Understand-
ing Workshop, Scottsdale, 2015. In this paper, we contributed to the CHiME3 speaker
separation and speech recognition challenge [72], where a single speaker is embedded in
background noise in various acoustic environments. We contributed multiple variants of
the MVDR beamformer and the direction-dependent Signal to Noise Ratio (SNR) from
[44]. Further, we proposed one of the first neural postfilters, which increases the SNR at
the output of the beamformer by applying a gain mask in the frequency-domain. We use
the DD-SNR as input for this NN. Further, we adapted the Kaldi ASR engine [73] for this
type of speech enhancement. For further details, see Appendix A.3.

• "Deep beamforming and data augmentation for robust speech recognition: Results of the 4th

CHiME challenge", Tobias Schrank, Lukas Pfeifenberger and Matthias Zöhrer, Johannes
Stahl, Pejman Mowlaee, Franz Pernkopf, 4th International Workshop on Speech Processing
in Everyday Environments, San Francisco, 2016. In this paper, we contributed to the
CHiME4 challenge with our Eigenvector beamforming concept, which uses the principal
Eigenvector of the spatial PSD matrix of the noisy multi-channel speech signal to estimate
the location of the desired speaker. This concept proved to be beneficial to the neural
postfilter, as the Eigenvector contains spatial information about the desired speech signal.
For further details, see Appendix A.4.

• "DNN-based speech mask estimation for Eigenvector beamforming", Lukas Pfeifenberger,
Matthias Zöhrer and Franz Pernkopf, The 42nd IEEE International Conference on Acous-
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tics, Speech and Signal Processing, New Orleans, 2017. In this paper, we extended the
Eigenvector beamformer to a neural network which estimates a Speech Presence Probabil-
ity (SPP) mask using the cosine similarity in a temporal sequence of principal Eigenvectors,
derived from the noisy multi-channel speech signal. This SPP is then used to obtain the
spatial PSD matrices for both the desired speech signal and the unwanted background
noise. With these matrices, beamformers such as the MVDR or GEV can be derived in
an offline fashion, i.e. the beamforming weights are derived based on the signal statistics
of a whole utterance. Further, we examined the relation between the SPP and an optimal
postfilter in the max-SNR sense. For further details, see Appendix A.5.

• "Eigenvector-based speech mask estimation using logistic regression", Lukas Pfeifenberger,
Matthias Zöhrer and Franz Pernkopf, International Conference on Spoken Language Pro-
cessing, Stockholm, 2017. In this paper, we optimized the Eigenvector beamformer by
using a resource efficient logistic regression, which uses significantly less parameters than
our previous implementation in [48]. Further, we proposed the Phase Aware Normalization
(PAN) as an alternative to the existing Blind Analytical Normalization (BAN) method,
to compensate amplitude distortions caused by the GEV beamformer [43]. For further
details, see Appendix A.6.

• "Eigenvector-Based speech mask estimation for multi-channel speech enhancement", Lukas
Pfeifenberger, Matthias Zöhrer and Franz Pernkopf, IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2019. In this paper, we extend the Eigenvector beam-
former to multiple speakers, speaker tracking, and block-online processing. By selecting
the spatial location of the desired and unwanted speakers in the training data, we can train
the NN to extract a single speaker at a specific location, or even track a speaker within
a limited region of space. While the GEV beamformer still depends on long-term signal
statistics, we determine new beamformer weights for short blocks of audio data, thereby
getting closer to the real-time application scenario. For further details, see Appendix
A.7.

• "Deep complex-valued neural beamformers", Lukas Pfeifenberger, Matthias Zöhrer and
Franz Pernkopf, The 44th IEEE International Conference on Acoustics, Speech and Signal
Processing, Brighton, 2019. In this paper, we proposed a new beamforming scheme to
address the real-time issue and to further increase the signal separation performance. By
using complex-valued neural networks, a new set of beamforming weights is estimated for
each time frame, without the need for long-term signal statistics. This allows the NN to
instantaneously adapt to the desired signal, and to surpass the SNR of statistical beam-
formers. We further proposed building blocks such as complex-valued Long Short-Term
Memory (LSTM) layers and derivatives for non-holomorphic beamforming functions, using
Wirtinger Calculus [66]. For further details, see Appendix A.8.

• "Nonlinear residual echo suppression using a recurrent neural network", Lukas Pfeifen-
berger and Franz Pernkopf, International Conference on Spoken Language Processing,
Shanghai, 2020. In this paper, we proposed a neural postfilter to suppress the non-linear,
residual echo of an Acoustic Echo Canceler (AEC), using a very small, real-time capable
NN. While being a classical SCSE method, this work is closely related to a postfilter for a
statistical beamformer. For further details, see Appendix A.9.

• "Blind speech separation and dereverberation using neural beamforming", Lukas Pfeifen-
berger and Franz Pernkopf, IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2020. In this paper, we proposed a complete framework to tackle the cocktail
party problem. Our system addresses blind speaker separation in the far-field, using both
complex-valued and time-domain neural beamformers. We iteratively localize and sepa-
rate each speaker from a mixture of an unknown number of speakers. Further, we perform
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dereverberation of the extracted speakers, to enable speaker identification using speaker
embedding vectors. We also contribute an algorithm to assign enhanced utterances to
speaker identities. Both beamforming and speaker identification are performed by the
same, monolithic NN. For further details, see Appendix A.10.

1.5 Outline of this thesis
With a scientific field as rich and extensive as speech enhancement, it is a challenging task
to compile a comprehensive document that contains all relevant aspects of this topic. In this
thesis, we will discuss the evolution of MCSE and BSS methods backed by beamforming and deep
learning. Starting with unsupervised adaptive beamformers, we present a coherent story leading
towards an all-in-one system for multi-speaker separation, dereverberation and diarization. With
a thorough introduction to the basics of beamforming, the interested reader will be equipped
with the necessary background to benefit from the presented topics. We start this journey by
proposing six problems that are specific to MCSE and BSS, i.e.

1. Isolate a single speaker from background noise.

2. Isolate a single speaker from a mixture of multiple speakers.

3. Track moving speakers.

4. Isolate and dereverberate a speaker in the far-field.

5. Separate all speakers in a mixture of multiple speakers.

6. Assign an identity to an isolated speaker.

In the following chapters, we will discuss properties, solutions, and experiments for each one
of these topics. While a large part of our contributions to this list has previously been published,
a significant portion has been reworked to align with the structure of this thesis. Each chapter
has been enriched with additional experiments and insights accompanying the respective topics.

Chapter 2 provides an introduction to the topic of multi-microphone speech processing,
starting from signal processing with Multiple Input - Multiple Output (MIMO) systems.
Next, adaptive beamforming is introduced, including the MVDR, GSC, and GEV beam-
formers. Then, some basic properties of sound fields are presented, i.e. the near-field and
the far-field. Their properties are exploited for signal whitening, which proves to be useful
throughout this thesis. Further, we explore various source localization algorithms such
as Steered Response Power Phase Transform (SRP-PHAT), Generalized Cross Coherence
Phase Transform (GCC-PHAT) and DD-SNR. The chapter is concluded by subjective
and objective performance measures for speech enhancement, such as the SNR, Signal
to Distortion Ratio (SDR), Word Error Rate (WER), Short-Time Objective Intelligibil-
ity measure (STOI), Perceptual Evaluation of Speech Quality (PESQ), and Perceptual
Evaluation methods for Audio Source Separation (PEASS).

Chapter 3 introduces mask-based beamforming. Starting with a gain mask to further
enhance the output of a beamformer, this chapter covers the Eigennet beamformer, which
uses a neural network to estimate a speech mask. This mask is used to estimate the
spatial PSD matrices of the involved sound sources. From these PSD matrices, various
beamformers may be constructed. This concept is capable to isolate a single speaker from
ambient background noise, or from multiple speakers, as long as they are not moving. The
chapter is concluded with two experiments using the Eigennet beamformer.
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Chapter 4 explores complex-valued neural beamforming, where a neural network is used
to predict complex-valued beamforming weights. This concept allows to track and isolate
a single speaker, given a spatial region of interest. As a prerequisite, complex-valued
back-propagation and Wirtinger Calculus are introduced. Further, complex-valued neural
networks are presented. We conclude the chapter with an experiment to compare the
performance between the Eigennet architecture and complex-valued neural beamforming.

Chapter 5 addresses time-domain beamforming as an extension to complex-valued neu-
ral beamforming. The properties and benefits of time-domain neural networks for speaker
separation are presented. This system is capable to track and isolate a moving speaker,
as well as performing other tasks such as dereverberation. Further, a comparison between
time- and frequency-domain neural beamforming methods is done, by using static and
moving speakers in an experiment involving realistic room impulse responses. Therefore,
the experimental setup for recording static and dynamic room impulse responses is in-
troduced. We conclude the chapter with three experiments, where the performance of
both time- and frequency-domain neural networks is compared, i.e. neural beamforming,
dereverberation, and non-linear residual echo suppression.

Chapter 6 addresses blind source separation, where an unknown number of speakers are
isolated from a mixture of multiple speakers, i.e. the meeting room scenario. We construct
a monolithic system for speaker localization, separation, dereverberation and identifica-
tion. This provides solutions to all six problems of the list above. This chapter covers
algorithms and models for source localization, selective attention, dereverberation, and
speaker identification. We conclude the chapter with experiments on speaker separation
and diarization, involving up to four speakers.

Chapter 7 concludes this thesis, and provides an outlook into future research topics.

– 21 –



Neural Beamforming

– 22 –



Neural Beamforming

2
Background

2.1 Microphone Arrays
Acoustic beamformers consist of an array of multiple microphones in a defined geometry or
aperture. Ideally, the microphones are considered to be omni-directional sound pressure receivers
with perfect linearity and no additive system noise. For the sake of simplicity, we assume an
anechoic environment, where no reverberation occurs. Figure 2.1 shows 4 microphones M1 . . .M4
in an arbitrary geometry. Further, we randomly place two speakers at locations XS and XN .
They emit the independent waveforms s(t) and n(t) as point sound sources [45]. At the mth

microphone, both waveforms are picked up as superposition

zm(t) = s(t− τs,m) + n(t− τn,m), (2.1)

where τs,m and τn,m denotes the time delay between the respective speaker and the mth micro-
phone. The delays are given by

τs,m = ‖XS −Mm‖
c

,

τn,m = ‖XN −Mm‖
c

,

(2.2)

where c denotes the speed of sound, which is approximately 343ms in air at 20◦C. At the A/D
conversion stage, the signals from the four microphones are quantized with the sampling rate fs.
For the sake of readability, we use the time index t for both continuous and quantized signals, as
quantization errors do not affect the properties of MIMO signal processing. It can be seen from
Figure 2.1, that the signal from speaker XS has to travel a shorter distance towards microphone
1, than the signal from speaker XN . Hence, the time delay τs,1 < τn,1. This time difference of
arrival depends on both the position of the sound sources and the geometry of the microphone
array. By exploiting this information, a beamformer is able to differentiate between spatially
separated sound sources.

– 23 –



2 Background

Figure 2.1: Microphone array with four microphones in an arbitrary geometry, and two point sound sources.

2.2 Adaptive Beamforming

2.2.1 System Model

Based on the physical model shown in Figure 2.1, we define a microphone array of M micro-
phones, arranged into an arbitrary geometry. Without loss of generality, we define the first
source XS as the desired speech signal s(t), and the other source XN as interfering noise signal
n(t) with an unknown location, i.e. ambient sounds or sensor noise. We assume the sources
to be stationary, i.e. neither the speaker nor the noise source is moving over time. Figure 2.1
indicates that the sound waves from the speaker to the microphone travel along a straight line.
However, in a realistic scenario, we cannot assume that the sound propagation is anechoic, i.e.
without reflections. We have to consider the whole acoustic path from the location of the speaker
to the microphones, including all reflections and acoustic echoes. This path is known as ATF,
and it is typically modeled as a Finite Impulse Response (FIR) filter [12]. With this definition,
the signal at the mth microphone is written as

zm(t) = sm(t) + nm(t), (2.3)

where sm(t) and nm(t) are the speech and noise signals as received by the mth microphone.
The relation between the speech signal s(t) at the location of the speaker, and the speech signal
sm(t) at the mth microphone is given by

sm(t) = s(t) ~ am(t), (2.4)

where am(t) denotes the ATF from the location of the speaker to the mth microphone. For
the second sound source in Figure 2.1, an equivalent ATF an(t) can be formulated. However, if
nm(t) denotes ambient noise without a distinct origin, neither the point source n(t) nor the ATF
an(t) exists. In this case, we refer to nm(t) as diffuse noise. We can still make some statistical
assumptions about this type of noise, as will become clear in the remainder of this chapter. The
noisy speech signal zm(t) is transformed into the Short-time Fourier Transform (STFT) domain,
i.e. Zm(l, k) = F(zm(t)). By inserting Eq. 2.4 into 2.3, we arrive at

Zm(l, k) = Sm(l, k) +Nm(l, k) = S(l, k)Am(k) +Nm(l, k), (2.5)
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where the frequency bin k = 1, . . . ,K and the STFT time frame is denoted by l. The length
of the STFT window needs to be sufficiently long to model the multiplicative filter operation
S(l, k)Am(k) without aliasing. Note that we do not assign a frame index l to the ATFs, as we
assume them to be constant over time, i.e. the speaker is not moving. By stacking all M signals
to a M × 1 vector, the signals from all microphones can be written in a more compact notation:

Z(l, k) = S(l, k)A(l, k) + N(l, k), (2.6)

where

Z(l, k) =
[
Z1(l, k), . . . , ZM (l, k)

]T
S(l, k) =

[
S1(l, k), . . . , SM (l, k)

]T
N(l, k) =

[
N1(l, k), . . . , NM (l, k)

]T
A(k) =

[
A1(k), . . . , AM (k)

]T
.

(2.7)

With this notation, we can define the most generic beamformer, the filter-and-sum beamformer
[1], [60] as shown in Figure 2.2. It uses a set of beamforming weights W (k) of shape M × 1
to filter the noisy microphone signals Z(l, k), and add the filtered results to form the output
Y (l, k), i.e.

Y (l, k) = WH(k)Z(l, k), (2.8)

where we assume the beamforming weights W (k) ∈ C to be constant over time, which reflects
the requirement of stationary sound sources. With this signal model, we will introduce three of
the most common beamformer types in the sequel.

Figure 2.2: Filter-and-sum beamformer. The microphone signals and the beamformer output are denoted as
Zm(l, k) and Y (l, k), respectively.

2.2.2 Minimum Variance Distortionless Response Beamformer (MVDR)

We start with some statistical observations, which arise from the stationary setup shown in
Figure 2.1. The spatial PSD matrix [74] for the microphone signals Z(l, k) is defined as

ΦZZ(k) , E{Z(l, k)ZH(l, k)}, (2.9)

where the expectation operator is applied to the time dimension, i.e. the frame index l. For
discrete microphone observations Z(l, k), the expectation operator reduces to the average

ΦZZ(k) = 1
L

L∑
l=1

Z(l, k)ZH(l, k), (2.10)
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where L denotes the total number of frames in the processed block of audio data. For uncor-
related speech and noise signals, this PSD matrix can be decomposed into its speech and noise
components,

ΦZZ(k) = ΦSS(k) + ΦNN (k). (2.11)

According to Eq. 2.6, ΦSS(k) can be decomposed into the speech PSD ΦS(k) and the ATFs
A(k) from the speaker to the microphones [11], such that:

ΦSS(k) = A(k)AH(k)ΦS(k), (2.12)

where ΦS(k) , E{|S(l, k)|2}. Note that the amplitude of the ATFs is not necessarily normalized,
i.e. ||A||2 6= 1. We use the filter-and-sum beamformer defined in Eq. 2.8, to obtain the
beamformer output Y (l, k). The Mean Square Error (MSE) of this output with respect to the
desired speech signal S(l, k) is given by the cost function

J(k) , E{|Y (l, k)− S(l, k)|2}. (2.13)

Using Eq. 2.8 and the PSD matrices given in Eq. 2.11 and Eq. 2.12, the cost function reduces
to

J = WHΦZZW + ΦS −WHAΦS − ΦSA
HW , (2.14)

where we omitted the frequency index k for enhanced readability. Setting the derivative of Eq.
2.14 to zero gives

∇J = ∂J(W )
∂WH

= −2ΦZZW + 2AΦS
!= 0. (2.15)

The solution of Eq. 2.15 is known as the MSE-optimal multi-channel Wiener filter WOPT [74],
[75], i.e.

WOPT = Φ−1
ZZAΦS

=
[
AAHΦS + ΦNN

]−1
AΦS .

(2.16)

Using the matrix inversion lemma [1], we obtain

WOPT =
[
Φ−1
NN −

ΦSΦ−1
NNAAHΦ−1

NN

1 + ΦSAHΦ−1
NNA

]
AΦS

= Φ−1
NNA

AHΦ−1
NNA︸ ︷︷ ︸

WMVDR

· ΦS

ΦS +
[
AHΦ−1

NNA
]−1︸ ︷︷ ︸

G= ξ
1+ξ

.
(2.17)

The filter WMVDR can be recognized as the MVDR beamformer [12], [37]. Note that it is
equivalent to the Linearly Constrained Minimum Variance (LCMV) beamformer [42], [75] with
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the single constraint

WLCMV = argmin
W

{
WHΦZZW

}
subject to AHW

!= 1.
(2.18)

The Wiener postfilter G = ξ
1+ξ depicts a real-valued gain mask, which is applied at the beam-

former output. Rearranging Eq. 2.17, leads to

ξ = ΦSA
HΦ−1

NNA, (2.19)

which is equivalent to the SNR at the beamformer output, i.e.

ξ = WH
MVDRΦSSWMVDR

WH
MVDRΦNNWMVDR

. (2.20)

In practice, both the noise PSD matrix ΦNN (k) and the ATFs A(k) are not directly observable,
which makes the MVDR difficult to implement.

2.2.3 Generalized Sidelobe Canceler (GSC)

For implementing the MVDR beamformer, an estimate of the noise PSD matrix Φ̂NN (k) is
required. The GSC formulation circumvents this requirement by splitting the beamforming
filter WMVDR(k) into three components: (i) A steering vector vS(k), which provides a spatial
focus towards the desired sound source. (ii) A blocking matrix B(k), which cancels the desired
speaker to obtain a clean reference of the noise signal. (iii) An Adaptive Interference Canceler
(AIC) HAIC(k) which subtracts the noise reference from the summation signal obtained by the
steering vector [37], [38]. Figure 2.3 shows the block diagram of the GSC. For its robustness and
simplicity, the GSC is used in a wide range of applications [39]–[42]. Its weights are given as

WMVDR ≈WGSC = vS −BHAIC . (2.21)

Figure 2.3: Block diagram of the GSC beamformer, with the steering vector vS(k), the blocking matrix B(k)
and the AIC HAIC(k).

Steering Vector

While the GSC avoids the direct estimation of Φ̂NN (k), the steering vector vS(k) is still a
crucial component, as it directs the beamformer towards the general direction of the desired
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source signal. Clearly, the ideal steering vector would be the ATFs themselves. However, they
are unknown in practice and hard to estimate in reverberant environments [12]. Therefore, the
steering vector is usually modeled as a vector of simple time delays [11], i.e.

vS(k) =
[
e−jωkτ1 , e−jωkτ2 , · · · , e−jωkτM

]T
, (2.22)

where ωk = 2π k
2K fs is the discrete frequency variable, and τm denotes the time delay from the

desired source to the mth microphone [39], [46], [47].

Blocking Matrix

The blocking matrix B(k) is used to obtain noise reference signals which are free of any speech
components. This is achieved by steering nulls in the direction of the speech source [12], i.e.

BHA
!= 01×M . (2.23)

A blocking matrix that satisfies this constraint is given by:

B = I − vSv
H
S , (2.24)

where I is the M × M identity matrix. Further variants, like sparse or adaptive blocking
matrices, are given in [40], [76]. However, the time-delays in the steering vector in Eq. 2.22 only
model the direct path, i.e. the direct line of sight between the speaker and the microphones.
Multi-path propagations caused by reverberations and acoustic echoes are not accounted for.
This causes the blocking matrix to fail at suppressing the speech signal entirely, leading to target
leakage [12]. The speech signal leaking through the blocking matrix will be regarded as noise by
the AIC, and consequently be subtracted from the beamformer output. This effect limits the
overall performance of the GSC beamformer, especially in reverberant or far-field application
scenarios.

Adaptive Interference Canceler

The filters HAIC(l, k) of the AIC are calculated adaptively using the NLMS algorithm by min-
imizing the MSE at the beamformer output Y (l, k) [2]. Together with the blocking matrix,
the AIC adaptively models the unknown spatial noise PSD ΦNN (k). Similar to AECs, a Voice
Activity Detector (VAD) has to be used to avoid divergence of the filter weights during speaker
activity.

2.2.4 Generalized Eigenvalue Beamformer (GEV)

Another alternative to the MVDR and GSC beamformers is given by the GEV beamformer [43],
[77], which constrains the filter weights W (l, k) to maximize the SNR ξ(l, k) at the beamformer
output, i.e.

WSNR = argmax
W

ξ, (2.25)
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with

ξ = WHΦSSW

WHΦNNW
. (2.26)

The solution to Eq. 2.25 is found by setting the derivative of Eq. 2.26 to zero:

∂ξ(W )
∂WH

= 2ΦSSW − 2ξΦNNW

WHΦNNW
!= 0, (2.27)

which leads to the following generalized Eigenvalue problem [77]:

Φ−1
NNΦSSW = ξW . (2.28)

Using the definition of ΦSS in Eq. 2.12, a solution for Eq. 2.28 is given by

WGEV = ζΦ−1
NNA, (2.29)

where ζ is an arbitrary complex scalar.

Phase Aware Normalization

The beamforming filter WGEV will not have a distortionless response, i.e. AHWGEV 6= 1. We
therefore proposed the PAN factor in [53]: By comparing the MVDR from Eq. 2.17 and the
GEV from Eq. 2.29, it can be seen that both beamforming vectors are identical up to the scalar
factor GPAN , i.e.

WMVDR = GPANWGEV = Φ−1
NNA

AHΦ−1
NNA

. (2.30)

By rearranging Eq. 2.29 into A = ΦNNWGEV ζ
−1, and inserting into Eq. 2.30, we arrive at

GPAN = ζ∗

WH
GEV ΦNNWGEV

. (2.31)

Since ζ is an arbitrary complex scalar, we can choose the magnitude of the ATFs freely. By
defining ||A||22

!= 1, Eq. 2.29 can be rearranged to ζ = AHΦNNWGEV , which we insert into Eq.
2.31 to obtain the PAN factor:

GPAN = WH
GEV ΦNNA

WH
GEV ΦNNWGEV

. (2.32)

From Eq. 2.30 it can be seen that the PAN factor turns the GEV beamformer into the MVDR
beamformer. However, the GEV avoids the inversion of the noise PSD matrix ΦNN by solving
the generalized Eigenvalue problem given in Eq. 2.28. This leads to improved numerical stability
[78]. However, like with the MVDR beamformer, both the PSD matrices ΦSS and ΦNN are not
directly observable.
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2.3 Sound fields
In Section 2.2, we introduced the concept of ATFs, which models the acoustic path from a
sound source to a microphone as FIR filter. In particular, this filter models all reverberations
and echoes caused by reflections off of walls and other obstacles in the acoustic environment.
The spatial correlation of these ATFs amongst multiple microphones is known as a sound field
[45]. To measure a sound field, we use the spatial coherence function ΓZZ(k), which is anM×M
matrix for M microphones. Its elements are obtained by

ΓZmZn(k) = ΦZmZn(k)√
ΦZmZm(k)ΦZnZn(k)

, (2.33)

where ΦZmZn(k), ΦZmZm(k) and ΦZnZn(k) denote the corresponding elements of the spatial PSD
matrix ΦZZ(k) from Eq. 2.9. If the microphone signals Z(l, k) are dominated by directional
sounds, the spatial coherence ΓZZ represents a near-field. If the microphone signals Z(l, k) are
dominated by diffuse sounds, the spatial coherence ΓZZ represents a far-field.

2.3.1 Near-Field

The near-field of a microphone is considered as the region where ωk·r
c � 1, with ωk = 2π k

2K fs
being the discrete frequency variable, and r is the distance from the source to the microphone
array [45]. Sounds originating from this region are mostly directional, as the distance r is
required to be small. Hence, we can approximate the signal arriving at the mth microphone as
a single plane wave, i.e.

Zm(k) = φZ(k) · e−iωkrm/c, (2.34)

where φZ(k) denotes the amplitude of the signal, and c denotes the speed of sound. Further,
we assume equal amplitudes φZ at each microphone, i.e. all microphones have the same ideal
magnitude response. Inserting Eq. 2.34 into the definition of ΦZZ(k) in Eq. 2.9 leads to

ΦZmZn(k) = E
{
Zm(k)Z∗n(k)

}
= ΦS(k) · e−iωkdmn cos θ/c, (2.35)

where dmn cos θ = |rm− rn| cos θ, i.e. the distance between the mth and nth microphone, as seen
from the angle of the source θ. By assuming equal amplitudes φZ at all microphones, the energy
ΦS(k) is also equal for each element ΦZmZn(k) of the PSD matrix ΦZZ(k). Further, inserting
into Eq. 2.33 leads to the directional coherence function

ΓZmZn(k) = e−iωkdmn cos θ/c. (2.36)

It can be seen that the coherence purely depends on the Inter-channel Phase Differences (IPDs)
of the microphone signals, the signal energy ΦS(k) is not relevant.

2.3.2 Far-Field

The far-field of a microphone is considered as the region where ωk·r
c � 1. Sounds originating

from this region are diffuse, as the distance r is required to be large, i.e. the microphones will
mostly pick up reverberations of the source signal [45]. These reverberations are time-delayed
reflections of the source signal, attenuated by the reflection coefficient of the walls of the acoustic
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enclosure. Every reflection can be thought of a virtual source image, whose location is determined
by the geometry of the enclosure and the microphone array. Typically, there are thousands of
reflections in the far-field, resulting in a spherical (isotropic) distribution of the virtual source
images. This distribution can be approximated by uncorrelated signals impinging from every
direction with equal amplitude [45], [60]. Hence, we average the cross-spectral density over all
spherical directions, i.e.

ΦZmZn(k) = 1
4π

∫ π

0

∫ 2π

0
ΦS · e−iωkdmn cos θ/c · sin θdθdΦ

= ΦS
sin(ωkdmn/c)
ωkdmn/c

,

(2.37)

where sin θdθdΦ can be recognized as the area element of a unit sphere. By inserting this result
into Eq. 2.33, we obtain the far-field (diffuse) coherence, i.e.

ΓZmZn(k) = sin(ωkdmn/c)
ωkdmn/c

, (2.38)

which is a real-valued function.

Visualization

To illustrate the spatial coherence, we measured the sound field of an arbitrary office room of
size 4m× 5m, and a circular 6-element microphone array with a diameter of 92.6mm [79]. We
simulated a point sound source using a mobile phone, which plays broadband noise. By placing
the sound source in the near-field of the microphones, i.e. r = 0.25m, we expect a directional
coherence, i.e.

|ΓZmZn |2(k) = 1, (2.39)

where we use the squared coherence to obtain a real-valued figure. By placing the sound source
in the far-field of the microphones, i.e. r = 3m, we expect a diffuse coherence, i.e.

|ΓZmZn |2(k) = sin2(ωkdmn/c)
ω2d2

mn/c
2 . (2.40)

Figure 2.4 illustrates the squared coherence for the near-field and the far-field, using the first
two microphones of the array. It is obtained using Eq. 2.9 and 2.33. Further, the theoretical
result for the isotropic coherence from Eq. 2.38 is shown. It can be seen that the coherence
for the directional case is close to one, indicating spatially correlated signals. Note that spatial
correlation does not include temporal correlation, as the signals may still have different time
lags. The coherence for the diffuse case is close to zero, indicating spatially uncorrelated signals.
For low frequencies, the far-field condition is not met, as the coherence is close to one for both
cases. This is due to the fact that the wavelength of low frequencies is large compared to the
aperture of the microphone array. As a consequence, the IPDs between the microphone signals
are small, and the spatial selectivity of the beamforming array is poor.
These observations are elementary properties of every sound field, and will be employed

throughout this thesis in applications such as signal whitening, spatial decorrelation, and feature
pre-processing.
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Figure 2.4: Squared spatial coherence for the near-field and the far-field between two microphones with a
distance of d12 = 46.3mm.

2.4 Source Localization

As we have seen in Section 2.2, the desired speech signal is identified by the location of the
speaker, relative to the microphone array. The acoustic path from the speech source to each
microphone is defined by the ATFs, which are typically modeled by FIR filters. These filters
contain all multi-path propagations and reverberations caused by the acoustic environment.
The location of the speaker - i.e. the direction of the sound waves impinging at the array - is
encoded as the group delays of these filters. Algorithms to estimate these delays are known as
DOA estimators.

2.4.1 Steered Response Power Phase Transform

The most widely used DOA estimator is SRP-PHAT [60]. It uses a set of pre-defined time
delays τm,q and compares them against the time delays of the spatial PSD of the microphone
observations Z(k, l). For a set of q = {1 . . . Q} of given speaker positions, and m = {1 . . .M}
microphones, τm,q is defined as

τm,q =

√
(xm − xq)2 + (ym − yq)2 + (zm − zq)2

c
, (2.41)

where xm, ym, zm are the cartesian coordinates of the mth microphone, and xq, yq, zq are the
cartesian coordinates of the qth speaker position in the set. The SRP-PHAT is then defined as

p(k, q) = 1
M2

M∑
m=1

M∑
n=1

ΦZmZn(k)
|ΦZmZn(k)|e

−iωk(τm,q−τn,q), (2.42)

where the term ΦZmZn(k) can be recognized as the (m,n)th element of the spatial PSD matrix
ΦZZ(k) from Eq. 2.9. Maximizing over p(k, q) gives the time delays τm,q̂ that best fit the
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observations Z(k, l), i.e.

q̂ = argmax
q

K∑
k=1

p(k, q). (2.43)

The time delays τm,q̂ can then be used to construct the steering vector

vS(k, q̂) =
[
e−jωkτ1,q̂ , e−jωkτ2,q̂ , · · · , e−jωkτM,q̂

]T
, (2.44)

which may be used to construct the MVDR or GSC beamformer.

2.4.2 Direction-Dependent SNR

In [44], we proposed the DD-SNR, which is an alternative to the SRP-PHAT. It is based on the
maximization of the SNR at the microphone signals. We formulate an analytic model of the
sound field at the microphone array, which only depends on the ATFs from the sound source
to the array. By approximating these ATFs with a monochromatic plane wave - i.e. a steering
vector - we can infer the direction of the sound source by maximizing the SNR over a pre-defined
set of source directions. Further, we assume that the spatial distribution of the background noise
N(k) is close to the ideal isotropic sound field. If the location of the noise source is in the far-
field of the array, this assumption is always met [45], [80]. With this assumption, we can rewrite
Eq. 2.11 to

ΦZZ(k) = A(k)AH(k)ΦS(k) + ΓNN (k)ΦN (k), (2.45)

where ΓNN (k) is the spatial coherence matrix of the ideal isotropic sound field, from Eq. 2.38.
Its elements are given as

ΓNm,Nn(k) = sin(ωkdm,n/c)
ωkdm,n/c

, (2.46)

which is equivalent to Eq. 2.38. Next, we define the (m,n)th element of the coherence matrix
ΓZZ of the microphone signals as

ΓZmZn(k) = ΦZmZn(k)√
ΦZmZm(k)ΦZnZn(k)

, (2.47)

which is equivalent to Eq. 2.33. For an actual implementation, the spatial PSD matrix ΦZZ(k)
may be obtained using recursive averaging, i.e.

ΦZZ(l, k) = ΦZZ(l − 1, k)α+ (1− α)Z(l, k)ZH(l, k), (2.48)

where 0 ≤ α ≤ 1 is a smoothing parameter. If the array aperture is small, and the microphones
are matched - i.e. their magnitude response is equal - we can assume that they receive the same
signal energy. Hence, the diagonal elements of the PSD matrix ΦZZ are equal, i.e.

ΦZm(k) ≈ ΦZn(k) ≈ ΦS(k) + ΦN (k). (2.49)

– 33 –



2 Background

Note that the addition is valid, as the speech and noise signals are statistically independent. By
inserting Eq. 2.49 into 2.47 and 2.45, we get

ΓZZ(k)
[
ΦS(k) + ΦN (k)

]
≈ A(k)AH(k)ΦS(k) + ΓNN (k)ΦN (k). (2.50)

Solving for the SNR ξ(k) = ΦS(k)
ΦN (k) leads to

ξ(k) ≈ Tr
{[

ΓZZ(k)−A(k)AH(k)
]−1[

ΓNN (k)− ΓZZ(k)
]}
. (2.51)

In this expression, the coherence ΓZZ(k) can be obtained using Eq. 2.47 and 2.48, and the
coherence for the diffuse sound field ΓNN (k) is a constant, given by Eq. 2.46. Hence, the SNR
ξ(k) only depends on the unknown ATFs A(k). By replacing the ATFs with the steering vector
vS(k, q) from Eq. 2.44, we can evaluate the SNR against a pre-defined set of candidate directions
q ∈ {1 . . . Q}. This leads to the DD-SNR, i.e.

ξ(k, q) ≈ Tr
{[

ΓZZ(k)− vS(k, q)vHS (k, q)
]−1[

ΓNN (k)− ΓZZ(k)
]}
. (2.52)

Analogous to the SRP-PHAT, the time delays τm,q for the steering vector vS(k, q) are calcu-
lated using Eq. 2.41. Maximizing the DD-SNR identifies the steering vector that best fits the
observations at the microphones Z(l, k), i.e.

q̂ = argmax
q

K∑
k=1

ξ(k, q). (2.53)

For further details on the DD-SNR, we refer the interested reader to Appendix A.2.

2.5 Postfiltering

Due to spatial correlations of the sound field, the achievable SNR at the output of a beamformer
withM microphones is limited to approximately 10log10(M) dB for diffuse noise [1]. In practice,
this value is significantly lower due to estimation errors in both the steering vector and the spatial
noise PSD matrix. To increase the SNR at the output of the beamformer, a postfilter is used.
In Section 2.2.2, Eq. 2.17 we have already defined the Wiener-optimal postfilter for the MVDR
beamformer as

G = ΦS

ΦS +
[
AHΦ−1

NNA
]−1 = ΦS

ΦS + WHΦNNW
= ΦS

ΦS + ΦN̂

= ξ

1 + ξ
, (2.54)

where ΦN̂ can be identified as the noise spectrum at the output of the beamformer. Note that
ΦS is identical to the speech spectrum at the output of the beamformer, due to the minimum
distortion constraint from the MVDR beamformer, i.e. AHW

!= 1. Similar to SCSE, the noise
spectrum ΦN̂ at the beamformer output has to be estimated. A widely used algorithm for this
task is the IMCRA method [41], [81], [82].
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2.5.1 Postfilter based on the GCC-PHAT

Typically, the postfilter G(l, k) ∈ [0, 1] is applied at the output of the beamformer, such that
Eq. 2.8 expands to

Y (l, k) = WH(k)Z(l, k)G(l, k). (2.55)

Therefore, G(l, k) can be regarded as a real-valued gain mask, similar to SCSE. An intuitive
postfilter is provided by the GCC-PHAT [60]. It is given as

G(l, k) = |ZH(l, k)vS(k)|2
||Z(l, k)||22 · ||vS(k)||22

. (2.56)

It can be seen that Eq. 2.56 exploits the cosine similarity between the magnitude-normalized
microphone inputs Z(l, k), and the steering vector vS(k). If the direction of the steering vector
and Z(l, k) match, G(l, k) is close to 1. For signals originating from other directions, G(l, k) < 1.
However, we have already seen that the microphone signals are strongly correlated towards low
frequencies in Section 2.3, Figure 2.4. This effect significantly reduces the performance of this
postfilter [11], [12], [60], [74].

2.5.2 Postfilter based on the diffuse noise sound field

In [83], we proposed a postfilter based on back-projection: When extracting a single speaker from
ambient noise, we typically assume the background noise to be in the far-field (diffuse), and the
desired speaker to be in the near-field (directional) of the array. To direct a beamformer such as
the MVDR or GSC towards the speaker, a steering vector as shown in Eq. 2.22 is required. As the
steering vector consists of a set of time-delays τ1 . . . τM , it can be thought of a monochromatic
plane wave. Consequently, the enhanced signal at the output of the beamformer represents
the directional component of the sound field. By back-projecting the beamformer output to
the inputs, we subtract the directional component from the sound field, and only the diffuse
component remains. This concept allows to formulate a postfilter, which further enhances the
beamformer output.
Back-projection is achieved by multiplying the beamformer output Y (k) with the steering

vector vS(k) (i.e. spatializing), and subtracting the product from the microphone signal Z(l, k).
This leads to the noise reference signal Z ′′(l, k), i.e.

Z ′(l, k) = vS(k)Y (k) = vS(k)WH(k)S(k) + vS(k)WH(k)N(k),

Z ′′(l, k) = Z(l, k)−Z ′(l, k) =
[
I − vS(k)WH(k)

]
N(l, k).

(2.57)

The spatial PSD matrices of these multi-channel signals are then given as

ΦZ′Z′ = vSW
HΦSSWvHS + vSW

HΦNNWvHS

= ΦS′S′ + ΦN ′N ′

= vSv
H
S ΦS + vSv

H
S ΦN̂ ,

(2.58)
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and

ΦZ′′Z′′ =
[
I − vSW

H
]
ΦNN

[
I −WvHS

]
= ΦN ′′N ′′ ,

(2.59)

The SNR ξ(k) at the output of the beamformer from Eq. 2.54 can be expressed as

ξ(k) = ΦS

ΦN̂

= Tr{ΦS′S′}
Tr{ΦN ′N ′}

, (2.60)

By inserting Eq. 2.58 and 2.59, we arrive at

ξ(k) = Tr{ΦZ′Z′}
Tr{ΦZ′′Z′′}

Tr{ΦN ′′N ′′}
Tr{ΦN ′N ′}

− 1, (2.61)

Under the assumption of the ideal diffuse noise sound field, which we already defined in Eq.
2.46, we can approximate ΦNN ≈ ΦNΓNN , and simplify the ratio

Tr{ΦN ′′N ′′}
Tr{ΦN ′N ′}

≈
Tr
{[
I − vSW

H
]
ΓNN

[
I −WvHS

]}
Tr
{
vSWHΓNNWvHS

} , (2.62)

Since we can directly measure ΦZ′Z′ and ΦZ′′Z′′ from the back-projected signals Z ′(l, k) and
Z ′′(l, k), the SNR ξ(k) can be obtained from Eq. 2.61. For further details, see Appendix A.1.

2.6 Spatial Whitening

In Section 2.3, we have seen that the spatial selectivity of a beamforming array is poor for low
frequencies. As the energy of most sounds is large at low frequencies, this effect will also have
an impact on the performance of a statistical beamformer like the MVDR or GEV. In [53], [67],
we proposed to decorrelate the microphone signals, using the properties of the isotropic sound
field. This spatial whitening spreads both the IPDs and Inter-channel Time Differences (ITDs)
of the microphone signals. As the whitening algorithm only depends on the array geometry,
its parameters (i.e. the whitening matrix) can be calculated off-line. We demonstrate the
effectiveness of spatial whitening by examining both the whitened beamformer and the whitened
postfilter.

2.6.1 Effect on the beamformer

First, we define the steering vector with regard to the zenith angle θ and the azimuth angle φ
of a sphere around the microphone array, i.e.

vS(k, θ, φ) =
[
e−iωkτ1,θ,φ , e−iωkτ2,θ,φ , · · · , e−iωkτM,θ,φ

]T
, (2.63)
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which we use to evaluate the directivity pattern of a simple delay-and-sum beamformer, i.e.

Ψ(k, θ, φ) = |ZH(k)vS(k, θ, φ)|2
||Z(k)||22 · ||vS(k, θ, φ)||22

. (2.64)

The directivity pattern Ψ(k, θ, φ) evaluates the normalized energy of a delay-and-sum beam-
former with respect to the spherical angles θ and φ [11]. The input Z(k) denotes a single plane
wave impinging from an arbitrary direction θZ and φZ , simulating a single sound source. We
decorrelate the microphone observations Z(k) using Zero-phase Component Analysis (ZCA)
whitening [84]. By using EVD, we can decompose the spatial coherence matrix of the ideal
isotropic sound field from Eq. 2.38 into

ΓNN (k) = EΓ(k)DΓ(k)EH
Γ (k). (2.65)

where EΓ and DΓ are M ×M sized Eigenvector and eigenvalue matrices of ΓNN (k). The ZCA
whitening matrix is then defined as

U(k) = EΓ(k)D−
1
2

Γ (k)EH
Γ (k). (2.66)

To avoid a division by zero, the diagonal elements of DΓ are loaded with a small constant
ε = 10−3. We prefer ZCA whitening over Principal Component Analysis (PCA) whitening,
as the ZCA preserves the orientation of the distribution of the data [84]. Whitening of the
individual time-frequency bins Z(l, k) is achieved by using

ZU (l, k) = U(k)Z(l, k). (2.67)

By whitening both Z(k) and vS(k, θ, φ), we arrive at

ΨU (k, θ, φ) = |ZH(k)UH(k) ·U(k)vS(k, θ, φ)|2
||U(k)Z(k)||22 · ||U(k)vS(k, θ, φ)||22

, (2.68)

Figure 2.5 shows the directivity pattern for a signal Z(k) originating from θZ = π
4 and φZ = 0.

Panel (a) shows the directivity Ψ(k, θ, φ) from Eq. 2.64, for θ ∈ [−π, π] and φ = 0. It can be
seen that the directivity for low frequencies is poor. Panel (b) shows ΨU (k, θ, φ) from Eq. 2.68.
It can be seen that the directivity for low frequencies is greatly increased.
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(a) Ψ(k, θ, φ) (b) ΨU (k, θ, φ)

Figure 2.5: Directivity pattern for the delay-and-sum beamformer. (a) Ψ(k, θ, φ) from Eq. 2.56 for a single
speaker at θZ = 50◦ and φZ = 0◦. (b) ΨU (k, θ, φ) from Eq. 2.68 with whitening.

2.6.2 Effect on the Postfilter
Whitening the microphone signals also has a positive effect on the postfilter, which we demon-
strate by using the postfilter based on the GCC-PHAT from Section 2.5. By whitening both the
microphone signals Z(l, k) and the steering vector vS(k) in Eq. 2.56, we obtain the whitened
postfilter

GU (l, k) = |ZH(l, k)UH(k) ·U(k)vS(k)|2
||U(k)Z(l, k)||22 · ||U(k)vS(k)||22

, (2.69)

where U(k)Z(l, k) can be recognized as the whitened input mixture, and U(k)vS(k) as whitened
steering vector. Figure 2.6 demonstrates the effect of spatial whitening. Panel (a) shows G(l, k)
from Eq. 2.56 for a single speaker and a matching DOA vector. It can be seen that the
microphone signals are highly correlated at low frequencies. This can also be seen in Figure 2.4
in Section 2.3. Panel (b) shows GU (l, k) from Eq. 2.69 with whitening. It can be seen that the
separation performance is greatly improved for low frequencies, i.e. the microphone signals are
decorrelated by the whitening matrix U(k). For further details, see Appendix A.7.
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(a) G(l, k) (b) GU (l, k)

Figure 2.6: Effectiveness of spatial whitening at low frequencies. (a) G(l, k) from Eq. 2.56 for a single
speaker. (b) GU (l, k) from Eq. 2.69 with whitening.

2.7 Performance Measures

The performance of speech enhancement algorithms can be assessed in both speech quality and
speech intelligibility. It is important to note that these two measures are not related, which has
been shown 80 years ago with the first vocoders, invented at Bell Labs. A vocoder generates
intelligible speech by using only a limited number of sine wave generators, completely ignoring
any quality attributes. The intelligibility of speech can easily be quantified using a technical
measure such as counting the number of correctly understood words in an uttered sentence, i.e.
using the WER or the Speech Intelligibility Index (SII) as a metric. Other attributes such as the
SNR or SDR may be used to quantify the amount of additive noise, or the presence of artifacts
introduced by speech enhancement algorithms.
In contrast, speech quality is highly subjective in nature, which makes it is difficult to evaluate

reliably or in an objective fashion. The most reliable assessment of speech quality is given by
a subjective listening test. Such a test requires a preferably large group of individual listeners,
who are asked to rate the quality of speech by comparing a reference signal s(t) to an enhanced
- and possibly degraded - speech signal y(t). The listening test is standardized by the MUSHRA
protocol [85]. Typically, a pre-determined scale such as Mean Opinion Score (MOS) is used for
this purpose. However, with the advent of widespread speech communication applications and
networks, subjective listening tests became impractical, as they are time consuming and labor
intensive [5], [6], [86]. Therefore, the assessment of an automated, objective quality measure for
speech is an active field of research for several decades. Defining speech quality in an objective
and unambiguous fashion is a non-trivial task, as it is still unknown how to model speech quality
in a deterministic manner [87]. Certain quantifiable factors which contribute to perceived speech
quality are known, i.e. loudness, pitch, noise, reverberation, or bandwidth. However, indistinct
attributes such as ’natural’, ’scratchy’, ’muffled’ or ’timbre’ are much harder to quantify. Fur-
ther, psychoacoustic effects such as spectral and temporal masking, pitch perception, or sound
localization play an important role in the assessment of speech quality. Also, the physiologic
properties of the human auditory system cannot be ignored. Measurable properties such as the
hearing threshold and bandwidth are modeled using Head-Related Transfer Functions (HRTFs)
[1], [12]. The earliest psychoacoustic measures made an attempt to evaluate speech quality based
on discontinuity, noisiness, and coloration of speech [88]–[90]. Algorithms such as the Speech
Transmission Index (STI) [91] are able to assess simple nonlinear degradations such as clipping,
or degradations introduced by the acoustic transmission path like a telephone line. More recent

– 39 –



2 Background

measures model the subjective judgement of the average human listener, by predicting a MOS
or percent score. Examples are the Perceptual Objective Listening Quality Analysis (POLQA)
[92], Perceptual Model-Quality Assessment (PEMO-Q) [93], PESQ [94] or PEASS [95].
In this chapter, we will focus on the SNR, SDR, and WER as speech intelligibility measures,

and the STOI, PESQ, and PEASS as objective speech quality measures.

2.7.1 SNR

As the most intuitive performance measure, the SNR is used as a means to express the ratio
of desired to interfering signal energy. In the case of speech signals, this ratio is expressed in
decibels, i.e.

SNR = 10log10
ΦS

ΦN
= 10log10

E{|s(t)|2}
E{|n(t)|2} , (2.70)

where s(t) and n(t) denote the desired and interfering signals, respectively. The SNR can also
be used in frequency-domain representation, i.e.

SNR = 10log10

K∑
k=1

w(k) ΦS(k)
ΦN (k) , (2.71)

where w(k) denotes a frequency-dependent weighting index. Due to its simplicity, it is often
used as a design criterion for AEC or beamforming algorithms, e.g. the MVDR in Section 2.2.2.
A relation to psychoacoustic measures such as the articulation index or the PESQ has been
shown in [12]. Further, it is well known that the performance of ASR systems correlates directly
with the SNR of the input speech signal.

2.7.2 SDR

An alternative to the SNR is given by the SDR [12]. It aims at measuring distortions originating
from speech enhancement algorithms, i.e. residual echoes for AECs, or noise artifacts from both
SCSE and MCSE algorithms. These artifacts are measured by comparing an enhanced signal
y(t) with a clean reference signal s(t). The SDR is defined as

SDR = 10log10
φS
φD

= 10log10
E{|s(t)|2}

E{|s(t)− y(t)|2} , (2.72)

where φD denotes the energy of the distortions, i.e. s(t) − y(t). It can also be formulated
in frequency-domain, even though the result is dominated by mismatches in frequency bands
where the energy of the reference signal s(t) is low. Further, the scale and sign of the enhanced
signal y(t) have a significant impact on the SDR, as the slightest difference in amplitude results
in a large mismatch. To address this issue, the Scale Independent Signal to Distortion Ratio
(SI-SDR) has been formulated.
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SI-SDR

The SI-SDR weighs the reference signal s(t) before calculating the SDR [96], i.e.

SI-SDR = 10log10
E{|αs(t)|2}

E{|αs(t)− y(t)|2} . (2.73)

The weighing factor α maximizes the SDR by ensuring orthogonality between the reference
signal s(t) and the residual s(t)− y(t). It is given as

α = E{s(t)y(t)}
E{|s(t)|2} . (2.74)

The SI-SDR is especially useful for speech enhancement or speech generation algorithms that
do not focus on the signal magnitude, but rather on the signal statistics, such as temporal
characteristics or formant structures. Examples are Text-To-Speech (TTS) systems or non-
linear speech enhancement algorithms based on DNNs.

2.7.3 WER

In human-machine interfaces, algorithms for ASR or keyword spotting are used. The usability
and acceptance of such systems depends greatly on the correct recognition and interpretation of
the uttered commands [86]. Clearly, speech intelligibility plays a major role in this process, as
speech degradation results in reduced recognition rates. Usually, the recognition rate is expressed
as WER, which is a metric based on the Levenshtein distance [97]. It measures the similarity
between two sentences, based on the correct recognition of individual words. In particular, the
WER expresses the ratio of word recognition errors to the total number of words in a sentence,
i.e.

WER = S +D + I

N
= S +D + I

S +D + C
, (2.75)

where {S,D, I, C} are the number of substitutions, deletions, insertions, and correct words,
respectively. The total number of words in the sentence is given as N = S + D + C. Word
substitutions account for erroneously identified words, insertions account for missing words, and
deletions account for recognized words that are not part of the spoken utterance.

2.7.4 STOI

While the SNR, SNR, and WER are technical measures, the STOI is considered a psychoacoustic
measure. It aims at evaluating the intelligibility of a speech signal which has been modified by
a time-frequency weighing, i.e. spectral subtraction in SCSE. It is closely related to the STI,
which measures the speech intelligibility of a signal after it has been degraded by a transmission
path, such as a telephone line or a loudspeaker [5], [90], [98]. In contrast to many objective
intelligibility measures, it does not evaluate the long-term statistics of entire speech signals, but
rather local regions of 384ms in length. Therefore it is able to capture the fast variations in the
temporal statistics of speech, which are affected by the great majority of both SCSE and MCSE
algorithms [12]. The STOI measure operates on 15 one-third octave bands between 150Hz and
5kHz, where a STFT with a window length 50ms and 50% overlap is used. It compares the time-
frequency bins of a clean reference signal s(t) and a degraded signal y(t), whose intelligibility is
to be evaluated. The time-frequency bins of both signals are normalized and weighted, before a
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linear correlation coefficient is calculated to express the similarity of both signals in each band.
The overall score is obtained by averaging over all one-third octave bands and all STFT time
frames, and ranges from 0 to 100%.

2.7.5 PESQ
While psychoacoustic measures like the STOI are suitable for evaluating the distortions intro-
duced by speech enhancement algorithms, PESQ explicitly addresses distortions encountered
when speech is transmitted over telecommunication networks, i.e. clipping, packet loss, signal
delays, jitter, additive noise, and codec compression artifacts. Even though these distortions
may not be caused by speech enhancement algorithms directly, they cannot be ignored when
evaluating the speech quality and intelligibility of the whole speech transmission system. To
objectively quantify these types of distortions, PESQ was selected as the ITU-T recommenda-
tion P.862, thereby replacing the old Perceptual Speech Quality Measure (PSQM) standard [94].
The structure of the PESQ measure is shown in Figure 2.7. The reference signal s(t) and the
degraded signal y(t) are equalized to the same level, and filtered to emulate the transmission
bandwidth of a standard telephone headset, i.e. 300-3400Hz. Then, the signals are time-aligned
to correct time delays introduced by the transmission network. Next, the signals are converted
from the frequency-domain to the loudness domain using an auditory transform, i.e. the bark
scale [12]. The loudness differences between the reference and the degraded signal are weighted
to account for the distortions that may be perceived by a human listener, and averaged over
time and frequency to predict an objective score closely related to the MOS.
With the advent of digital speech transmission and Voice over IP (VoIP) networks, PSQM

quickly became a de-facto standard for automated assessment of speech quality and intelligibility
of telephone systems. To accommodate to the rapid advances in available network bandwidth,
a number of extensions have been proposed to PESQ, i.e. binaural listening through head-
phones, and a wideband frequency response which extends the standard telephone bandwidth
to 50-7000Hz. Further, the predicted score is mapped by a logistic function to better fit the
MOS. These extensions are summarized as wideband PESQ, and are documented in the ITU-T
recommendation P.862.2 [5]. Figure 2.8 illustrates the relation between the predicted score for
both the narrowband and wideband variants of PESQ and the perceptual MOS score.

Figure 2.7: Block diagram of the PESQ algorithms [5].
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Figure 2.8: Output mapping between narrowband PESQ (dashed line), and wideband PESQ (solid line) to
the subjective MOS score [5].

2.7.6 PEASS

To further improve on the assessment of perceptual speech quality, PEASS models the subjective
judgement of human listeners using non-linear function approximators, i.e. NNs [95], [99]. Fur-
ther, it addresses multi-channel speech enhancement methods such as beamforming. Therefore,
PEASS can also be used to evaluate speech separation algorithms. It takes three multi-channel
inputs: (i) the enhanced signal ŝ(t), (ii) the reference signal s(t), (iii) and the noise reference
n(t). PEASS implements the following three-step procedure:

Decomposition of the input signals

First, the input signals are converted to the frequency-domain using the STFT. Next, the signals
are converted from the frequency-domain to the loudness domain using an auditory transform,
a gammatone filterbank [12]. This loudness information is then used to obtain three distortion
components: (i) target distortions etarget, additive interferences einterf, and artifacts eartif, such
that

ŝj(t)− sj(t) = etarget
j (t) + einterf

j (t) + eartif
j (t), (2.76)

where j denotes the channel index of the multi-channel input signals.

Assessment of the perceptual salience of each component

Next, the perceptual salience of each of the three components in Eq. 2.76 is expressed as the
following four energy ratios: (i) A global ratio qoverall

j , which estimates the perceptual quality
of the enhanced signal. (ii) A target-distortion ratio qtarget

j , which measures the perceived
distortions in relation to the reference signal. (iii) An interference ratio qinterf

j , which measures
the perceived distortions in relation to the noise reference signal. (iv) An artifact ratio qartif

j ,
measuring additional artifacts such as musical noise. The ratios are calculated using the PEMO-
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Q algorithm [93], i.e.

qoverall
j = PEMO-Q(ŝj(t), sj(t))
qtarget
j = PEMO-Q(ŝj(t), ŝj(t)− etarget

j (t))
qinterf
j = PEMO-Q(ŝj(t), ŝj(t)− einterf

j (t))
qartif
j = PEMO-Q(ŝj(t), ŝj(t)− eartif

j (t))

(2.77)

Non-linear mapping into four objective scores

The PEMO-Q saliences are then used as input features to a NN, which predicts the following four
objective scores: (i) the Overall Perceptual Score (OPS), (ii) the Target Perceptual Score (TPS),
(iii) the Interference Perceptual Score (IPS), and (iv) the Artifact Perceptual Score (APS). Each
score ranges from 0 to 100 for improved human readability, where a larger number indicates a
higher perceptual quality. To approximate the subjective judgement of human listeners, the NN
is trained on 6400 subjective scores, which have been obtained by 23 human listeners for a variety
of acoustic scenarios and background noises following the MUSHRA protocol [85]. Figure 2.9
illustrates the block diagram of the NN.

Figure 2.9: Block diagram of the NN used by the PEASS algorithm for the computation of the OPS, TPS,
IPS and APS scores. [95]
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3
Mask-based Beamforming

3.1 Motivation

With the definition of the MVDR beamformer and the Wiener-optimal postfilter in Section
2.2.2 the theoretical SNR limit in terms of linear signal processing can be reached. However,
directing the beamformer towards the desired source is still a challenging task, as the location
of that source may be unknown, and the spatial PSD matrices of the individual sources are
not observable. If the PSD matrices of the desired speaker and the unwanted noise are known,
every statistical beamformer can be calculated without the need for adaptive algorithms such
as the GSC beamformer. Based on the observation that human speech is sparse both in time
and frequency, it is possible to estimate the spectrum of either the speech or the noise, by only
evaluating the time-frequency bins of the input mixture Z(l, k) which are dominated by the
respective signal component. Hence, instead of the spatial PSD matrices, only the required
activity patterns of the speech and the noise have to be estimated. Such an activity pattern is
known as a speech mask.
This approach can be generalized to more than two independent sources in the input mixture,

i.e. to multiple speakers for BSS: For C sources, the time-frequency bins of the input mixture
Z(l, k) are divided into C partitions, so that each partition only contains one source. Clearly,
with an increasing number of sources, more overlaps occur, i.e. time-frequency bins which
contain more than one source. However, as long as this percentage is low, this effect can be
neglected [72], [78], [100]. For multi-channel signals, the location of each source is encoded in the
ITDs and IPDs of the input, i.e. in the time delay or phase of the data. Therefore, stationary
sources can be identified by their constant spatial statistics. The relation between the spatial
statistics and the speech mask can be modeled using non-linear function approximators, where
we distinguish two types: (i) Model-based approaches such as GMMs, where the Expectation
Maximization (EM) algorithm is used to find the MAP estimates of the model parameters [65],
[100], [101]. These methods usually rely on some prior knowledge about application-specific
variables, i.e. the array geometry or the statistics of the noise. (ii) Data-driven approaches
using DNNs [19], [20], [48]–[51], [72], where a DNN is used to infer the speech mask from the
noisy microphone observations.
The CHiME3 challenge was won by a model-based approach, where a complex Gaussian

Mixture Model (cGMM) is used to model the PSD matrices of the involved sound sources [65].
The model parameters are estimated with an EM algorithm, and the posterior probabilities are
used as speech masks for the respective source components. However, a template for both the
spatial speech and noise PSD matrices is required to initialize the EM algorithm [102]. While
model-based approaches are often easy to implement, they have a number of other limitations,
such as a fixed number of sources, or pre-determined signal statistics to describe the type and
location of the involved signals, i.e. ambient background noise. Further, the PSD matrices are
required to be constant over time by the GMM, which limits the model to stationary sources.
Further limitations arise from both the frequency and source permutation problem [29], where
it is not known which extracted signal belongs to which speaker. This problem can arise on
an utterance level, where whole signal chunks are permuted, or on a frequency level, where

– 45 –



3 Mask-based Beamforming

individual frequency bins are permuted [65].
All of these problems have already been solved by data-driven approaches using DNNs [53],

[56], [78], [103]–[105]. They have the advantage of jointly estimating a mask for all frequencies,
thereby exploiting both the spatial and frequency information embedded in the data. Further,
several end-to-end solutions have been proposed to combine mask-based beamformers with ASR
systems [104], [106], [107], allowing for joint training of both the mask estimator and the ASR
front-end, allowing the ASR system to benefit from the multi-channel signal representation.
In this chapter, we introduce our contributions to mask-based beamforming, which includes

our CHiME3 system in Appendix A.3, our CHiME4 system in Appendix A.4, and the Eigenvector
beamformer in Appendix A.5. Further, we address multi-speaker separation and tracking in
Appendix A.7.

3.2 Speech Masks
A speech mask provides the activity pattern of a desired source signal over the time-frequency
bins of a given multi-channel microphone signal. The speech mask is represented a probability
p(l, k) ∈ [0, 1], which indicates whether the input Z(l, k) is part of the desired signal or not.
This SPP [100] can be formulated as either Ideal Ratio Mask (IRM), Ideal Binary Mask (IBM)
[23] or Cosine Similarity Mask (CSM) [51]. The IRM or soft-mask is defined as:

pIRM(l, k) = ΦS(l, k)
ΦS(l, k) + ΦN (l, k) = ξ(l, k)

1 + ξ(l, k) , (3.1)

where ΦS(l, k) = ∑M
m=1 |S(l, k,m)|2 denotes the instantaneous energy of the desired speech

signal, and ΦN (l, k) is the instantaneous energy of the interfering noise signal(s). The ratio
ξ(l, k) = ΦS(l,k)

ΦN (l,k) can be recognized as the instantaneous SNR, which is related to the Wiener-
optimal postfilter in Section 2.2.2, Eq. 2.17. The IBM is defined using the indicator function

pIBM(l, k) = 1
(
ΦS(l, k) > ΦN (l, k)

)
, (3.2)

where pIBM(l, k) is assigned 1 if ΦS(l, k) > ΦN (l, k), and 0 otherwise. For C > 2 sources, the
microphone signals are defined as

Z(l, k) =
C∑
c=1

Sc(l, k), (3.3)

where we define S1(l, k) as the desired source signal, and ∑C
c=2 Sc(l, k) as the interfering noise

signal, without loss of generality. For both the IRM and IBM, the sum of all speech masks for
all sources equates to 1, i.e.

C∑
c=1

pc(l, k) = 1. (3.4)

An exception is given by the CSM [51], which we define as

pCSM(l, k) = |ZH(l, k)UH(k) ·U(k)S(k)|2
||U(k)Z(l, k)||22 · ||U(k)S(k)||22

, (3.5)
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where U(k) can be recognized as the whitening matrix from Eq. 2.67. The whitening matrix
was derived from the ideal isotropic sound field, which assumes spatially isotropic noise. This
assumption is often met in scenarios involving reverberation and many sources, as shown in [53],
[58], [67]. The whitening is necessary to increase the spatial selectivity of the cosine similarity,
as the signals Z(k) and S(k) are highly correlated towards low frequencies, as shown in Section
2.6, Figure 2.6. It can be seen from Eq. 3.1 that the IRM is solely defined by the signal energies,
whereas the CSM from Eq. 3.5 is solely defined by the IPDs.

To illustrate the different speech masks, we used the 6-channel microphone array from [79],
and recorded two speakers S1(l, k) and S2(l, k) at arbitrary positions in front of the array, and
some background noise S3(l, k) from an office room. Figure 3.1 illustrates the mixture Z(l, k),
and the three different speech masks, where the desired signal is defined as S(l, k) = S1(l, k),
and the interfering noise is defined as N(l, k) = S2(l, k) + S3(l, k). From the pitch in panel (a)
it can be seen that the input mixture contains a female and a male speaker. The pitch of the
female speaker is significantly higher than the pitch of the male speaker. The IBM in panel (b)
extracts the activity pattern of the female speaker using Eq. 3.2. The IRM and CSM in panels
(c) and (d) appear to be very similar, except for a bit more noise in the CSM. However, the
CSM only uses the spatial information embedded in the IPDs of the multi-channel input signal.

(a) Z(l, k) (b) pIBM(l, k)

(c) pIRM(l, k) (d) pCSM(l, k)

Figure 3.1: Speech masks. (a) First channel of the input mixture Z(l, k). (b) IBM. (c) IRM. (d) CSM.
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3.2.1 PSD Matrix Estimation
By using a speech mask for a specific source c, we can approximate the spatial PSD matrix
belonging to that source by partitioning the time-frequency bins of the input Z(l, k), i.e.

Φ̂SS,c(l, k) =

l+T/2∑
t=l−T/2

Z(t, k)ZH(t, k)pc(t, k)

l+T/2∑
t=l−T/2

pc(t, k)
, (3.6)

where the window length T defines the number of frames during which we assume the spatial
characteristics of ΦSS,c(l, k) to be stationary, i.e. the corresponding speaker is not moving.
This block processing allows to apply a statistical beamformer to a whole block of T frames

at once. For moving sources, a trade-off has to be made: If T is set too small, the accuracy of
the estimated PSD matrices might be poor. The matrices might even become singular if the
gain mask is sparse. This may cause numerical problems with the MVDR or GEV beamformers,
where matrix inversion or EVD is required. If the window length T is too large, the estimated
PSD matrices might fail to adapt quickly enough to changes in the spatial characteristics of the
potentially moving sources [58], [106]. By using recursive averaging, real-time operation becomes
possible, i.e.

Φ̂SS,c(l, k) = Φ̂SS,c(l − 1, k)
[
1− pc(l, k)

]
+ Z(l, k)ZH(l, k)pc(l, k). (3.7)

This formulation allows tracking the spatial characteristics in Φ̂SS,c(l, k). However, caution
should be taken with the extreme values of the speech mask. If pc(l, k) is very close to 1, the
estimate Φ̂SS,c(l, k) will also become singular. Further, Eq. 3.7 must be initialized with Eq. 3.6,
to be usable in a real application. Similar approaches can be found in [65], [78].

3.2.2 Speech Mask Estimation
There is a wide variety of approaches to estimate a speech mask from noisy microphone observa-
tions, i.e. using cGMMs [65], Parametric Multichannel Wiener Filter (PMWF) [100], or GMMs
[101]. Since the CHiME3 and CHiME4 challenges [50], [72], non-linear function approximators,
i.e. NNs, are used to estimate a speech mask for a single speaker embedded in background noise
[19], [20], [78], [103]–[105]. For this purpose, magnitude-spectra are used as feature vectors.
However, the spatial information embedded in the IPDs of the microphone signals is neglected.
Consequently, such models lack the ability to separate multiple speakers from a mixture. In this
chapter, we introduce our Eignnet structure, which is able to extract multiple speakers from a
mixture by exploiting the spatial information embedded in the Eigenvectors of the spatial PSD
matrix of the noise microphone signals.

3.3 Neural Networks
In its simplest form, a NN is identical to a Multi-Layer Perceptron (MLP), which consists of
hierarchically stacked Feed-Forward layers. Each layer applies an affine transformation to the
input, followed by a non-linear activation function. The multilayer Feed-Forward architecture
gives NNs the potential of being universal approximators [108]. Therefore, NNs are considered as
non-linear function approximators, which are capable to learn abstract feature representations
via back-propagation [109], genetic algorithms [110], or sampling [111].

– 48 –



3.3 Neural Networks

3.3.1 Neural Network Layers

In this section, the most prominent building blocks of artificial NNs are briefly introduced.

Feed-Forward Layer

A Feed-Forward or Dense layer resembles a single layer of an MLP. It consists of several neurons,
which output a weighted sum of its inputs, followed by a non-linear activation function [63]. A
fully connected Dense layer operates on the input vector z ∈ R. Its output is defined as:

y = σ(Wz + b), (3.8)

where W ∈ R denotes a weight matrix, i.e. the kernel, b ∈ R is a bias vector, and σ(·) is a non-
linear activation function. Typically, a tanh or Rectified Linear Unit (ReLU) [112] activation
are used.

Long Short-Term Memory layer

To model temporal correlations within a sequence of data points, Recurrent Neural Networks
(RNNs) have been proposed [113]. A single RNN cell extends the Feed-Forward structure by
adding a recurrent connection, where the output at time step t depends on the previous time
step t− 1. A RNN cell is defined as

yt = σ(Wzt + Uyt−1 + b), (3.9)

where U denotes the recurrent weight matrix, and W denotes the input weights. The RNN cell
is trained using back-propagation through time, i.e. each time-step receives the gradient of the
previous step. For long time sequences the gradient tends to diminish exponentially, thereby
preventing the NN parameters from receiving further updates. To address this vanishing gradient
problem, the LSTM cell has been proposed [114]. Further, LSTM cells store information in an
internal cell state, which allows to model long-term dependencies within the data. An LSTM
cell is defined as:

it = σg(Wizt + Uiht−1 + bi), (3.10a)
ft = σg(Wfzt + Ufht−1 + bf ), (3.10b)
ot = σg(Wozt + Uoht−1 + bo), (3.10c)
at = σa(Wazt + Uaht−1 + ba), (3.10d)
ct = at � it + ft � ct−1, (3.10e)
ht = ot � σh(ct), (3.10f)

where it, ft and ot denote the input, forget and output gates, respectively. A nonlinear activation
function σg(·) ∈ [0, 1] is used to control the respective gate. Typically, a sigmoid function is
chosen. To keep the cell state ct from overflowing, the magnitude of the gate activation must be
smaller than 1, i.e. 0 < σg(·) < 1. Each gate depends on the input vector zt, the previous hidden
state vector ht−1, the weight matrices W , U and bias vectors b. The cell input activation at is
controlled by the activation function σa(·), which is typically a tanh function. The cell state ct
is updated using Eq. 3.10e. The output of the LSTM cell is provided by the hidden state ht,
where another tanh function is typically used as activation σh(·).
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Convolutional Layer

A Convolutional Neural Network (CNN) layer is able to capture the spatial and temporal de-
pendencies in multi-dimensional data such as images and sounds through the application of
learnable filter kernels. Inspired by the visual cortex of the human brain, CNNs enabled monu-
mental progress in the field of computer vision. In its simplest form, a CNN is defined as

y = σ(W ~ z + b), (3.11)

where W ∈ R are the filter weights, b ∈ R is a bias term, and σ(·) is a non-linear activation
function. Typically, a ReLU activation is used. Eq. 3.11 depicts a single filter channel of
a convolutional layer. For multiple channels, multiple instances of Eq. 3.11 are executed in
parallel.

Back-propagation

NNs are trained using back-propagation [109]. Therefore, each function in the forward or in-
ference path of a NN must be fully differentiable. The gradient of every trainable network
parameter θi ∈ Θ is derived with respect to a cost or objective function J(Θ). Due to the hier-
archical structure of a NN, the gradient follows the nested structure from the objective function
back to the first layer of the network. Therefore, the chain rule [63] must be applied to calculate
∂J(Θ)
∂Θ . For example, with a 2-layer NN, the objective is defined as

J(Θ) = h2(h1(Θ)), (3.12)

Then, the gradient with respect to the parameters Θ is derived using

∂J(Θ)
∂Θ = ∂J

∂h1

∂h1
∂Θ . (3.13)

The chain rule can be iteratively extended to pass error signals from the last layer of the NN
back to the inputs. This backward path is computed using automatic differentiation by dedicated
machine-learning frameworks. With the individual gradients ∂J

∂θi
, the network parameters are

updated using the delta rule, i.e.

θt+1 ← θt − µ
∂J

∂θt
, (3.14)

where t denotes the time step, and θt ∈ R are the network parameters. More sophisticated
parameter update rules include stochastic gradient descent [115], or one of its extensions with
momentum, i.e. ADAM [116].

3.4 Eigenvector-based Speech Mask Estimation
As discussed in Section 3.2, a speech mask is used to extract a single speaker embedded in
background noise. Typically, a NN is used to estimate this speech mask from the spectral
magnitude features of the noisy microphone observations [19], [20], [78], [103]–[105].
However, the spatial information embedded in the phase of the microphone signals is neglected.

Consequently, only a single speech source can be extracted from a noisy mixture. By utilizing
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the dominant Eigenvector of the spatial PSD matrix ΦZZ(k) of the noisy microphone inputs, the
loudest source in a noisy speech mixture can be extracted, i.e. the desired speaker. We refer to
this approach as Single-speaker Eigennet. To separate multiple speakers based on their location,
we utilize the normalized phase of the noisy speech mixture to track and isolate speakers within
a pre-defined region of interest. We refer to this approach as Multi-speaker Eigennet.

3.4.1 Single-speaker Eigennet

In a typical beamforming application, we expect one or multiple speech sources embedded in
ambient background noise such as random street noise or car engine noise. A distinct location can
be assigned to each speaker, as they are an almost ideal point sound source, and typically close
to the microphone array. On the other hand, most forms of background noise have no distinct
origin, and are typically farther away from the microphone array. Based on the observations in
Section 2.3, we can assume that the speakers exhibit a directional sound field (near-field), and
the noise features a diffuse sound field (far-field).
The time-frequency bins of the STFT of such a noisy mixture have two remarkable properties:

(i) Time-frequency bins that belong to a near-field source, i.e. a speaker, have a stable phase,
if the speaker is stationary or slowly moving. (ii) Time-frequency bins occupied by a far-field
source, i.e. the background noise, have an unstable phase, as there is no distinct origin. This
allows separating the involved sources based on the stability of their respective phases. By
performing EVD of the spatial PSD matrix ΦZZ(k), we get the phase of the dominant source
in the microphone signals Z(l, k), i.e.

ΦZZ,U (k) =
M∑
m=1

λZm(k)vZm(k)vHZm(k), (3.15)

where λZm(k) and vZm(k) are the Eigenvalues and Eigenvectors of the whitened PSD matrix
ΦZZ,U (k), respectively. Note that λZm(k) corresponds to the signal power, and vZm(k) corre-
sponds to the spatial information embedded in the whole signal, i.e. all time frames l = 1 . . . L.
We denote m = 1 as the dominant Eigenvector vZ1(k) belonging to the largest eigenvalue
λZ1(k). Clearly, the loudest signal component in the mixture Z(l, k) will exhibit the largest
eigenvalue. As shown in Section 2.6, the spatial selectivity of the phase in Z(l, k) is greatly
increased by using ZCA whitening. We use Eq. 2.67 to obtain the whitened time-frequency bins
ZU (l, k) = U(k)Z(l, k). With the definition of the spatial PSD matrix ΦZZ(k) in Eq. 2.9, we
calculate the whitened PSD matrix as

ΦZZ,U (k) = U(k)ΦZZ(k)UH(k). (3.16)

For a single speech source embedded in background noise, the dominant Eigenvector vZ1(k) will
either point towards the desired speech source, or towards a random position caused by the
random phase of the diffuse background noise, depending on which of the two components is
the loudest in the PSD matrix ΦZZ,U (k). Depending on the application, different approaches
may be chosen to obtain this PSD matrix. In the case of the CHiME4-challenge [64], the desired
speech source is not moving. Hence, whole utterances may be used to calculate the PSD matrix.
If the speaker moves during an utterance, block processing may be used, where ΦZZ,U (k) is
calculated over a limited amount of time frames to track the speaker’s location [48]. We use
the cosine similarity between the dominant Eigenvector vZ1(k) and the magnitude-normalized
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time-frequency bins ZU (l, k) as speech mask pevd(l, k), i.e.

pevd(l, k) = |Z
H
U (l, k)vZ1(k)|2
||ZU (l, k)||22

, (3.17)

where a value close to 1 indicates a high similarity, i.e. the direction of ZU (l, k) is the same as the
Eigenvector vZ1(k). This means that the time-frequency bin ZU (l, k) has a high probability to
belong to the desired source. A value close to zero indicates a low similarity, i.e. the direction of
the two components are dissimilar, and the time-frequency bin ZU (l, k) has a low probability to
belong to the desired source. Eq. 3.17 also provides an intuitive insight why more microphones
increase the performance of this speech mask: The dimensionality of the Eigenvector vZ1(k) is
equal to the number of the microphones being used, i.e. M . The higher the dimensionality, the
smaller the probability that the cosine similarity is large for random signals. However, there are
three sources of errors for this speech mask: (i) Unwanted noise components may point towards
the direction of the Eigenvector by chance. (ii) The noise may be louder than the desired speech
signal at certain frequencies, resulting in an Eigenvector not pointing at the desired speech
source. (iii) The noise may contain directional components from close-by sound sources like a
second speaker.
We have no analytic means to correct these errors, but we can exploit the time-frequency struc-
ture of human speech to improve the speech mask. To do so, a NN is trained on pevd(l, k), where
the IRM from Eq. 3.1 is used as label during training. In its simplest form, this NN consists of
a bidirectional LSTM layer, and a Dense layer. It uses a sigmoid activation function to output
the predicted speech mask pest(l, k). Figure 3.2 illustrates the architecture of the Eigennet. The
predicted speech mask is used to obtain the spatial PSD matrices of the speech and noise com-
ponents ΦSS(l, k) and ΦNN (l, k), as shown in Eq. 3.6. With these PSDs, the weights W (k) of
the GEV or MVDR beamformer can be constructed. For further details, see Appendix A.7.

Figure 3.2: Block diagram of the Eigennet architecture [53].

Subspace Steering

With the predicted speech mask pest(l, k) and Eq. 3.6, we can estimate the PSD matrices of
the desired and interfering signals. While the GEV beamformer can be constructed from these
PSD matrices as shown in Section 2.2.4, the MVDR beamformer also requires a steering vector
vS(k), which provides a spatial focus of the speech source. In Section 2.4 we used DOA based
steering vectors. However, it is also possible to extract the steering vector from signal subspace
[42]. EVD of the speech PSD matrix ΦSS(l, k) yields:

ΦSS(k) = A(k)AH(k)ΦS(k) =
M∑
m=1

vSm(k)vHSm(k)λSm(k), (3.18)
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where λSm and vSm are the Eigenvalues and Eigenvectors of ΦSS(l, k). For a single sound
source with a distinct location in the near-field, this matrix is of rank 1. Consequently, M − 1
Eigenvalues are zero. We denote the only non-zero eigenvalue as λS1 , and the corresponding
Eigenvector vS1 as dominant Eigenvector. Hence, Eq. 3.18 can be rewritten as

ΦSS(k) = vS1(k)vHS1(k)λS1(k). (3.19)

Clearly, with ΦS(k) and λS1(k) being scalars, the Eigenvector vS1(k) must be identical to the
ATF A(k) up to an unknown scaling factor. Hence, vS1(k) points towards the desired speaker in
signal subspace. Unlike a DOA based steering vector, vS1(k) is not limited to the ideal case of an
anechoic environment. It can model an arbitrary FIR filter, including multi-path propagations
and echoes of the target signal [11], [42], [43]. Therefore, subspace steering is preferred over DOA
steering in real-world applications. However, depending on the application and the number of
microphones being used, it may be favorable to use the GEV beamformer, as it has a similar
performance and only requires EVD, whereas the MVDR beamformer with subspace steering
requires EVD and matrix inversion.

Eigennet Performance

To demonstrate the performance of the Eigennet architecture, we use a single utterance from
the CHiME4 speech corpus [64]. The utterance F01_22GC010X_BUS is taken from the BUS
subset, where 6-channel recordings have been obtained from a single speaker while riding on a
bus. The interfering signals in this utterance include engine noise, ambient noise from other
people talking, and loud directional noise from a screaming baby. Figure 3.3 shows the speech
mask pevd(l, k) obtained by Eq. 3.17 in panel (a). It can be seen that the speech mask contains
the desired speaker, and the high-pitched cry from the baby during time 0-1s, and 6-8s. Due
to the high volume of the scream, the Eigenvector vZ1(k) points towards the baby rather than
the desired speaker. Further, other people’s voice patterns can be recognized throughout the
utterance, when comparing pevd(l, k) with the ideal mask pIRM(l, k) in panel (b). Due to the
screaming baby, the IRM is missing some of the structure of the desired speaker. Panel (c)
shows the predicted output of the NN, pest(l, k). It can be seen that the Eigennet ignored all the
interferences and restored the structure of the desired speaker. Panel (d) shows the spectrogram
of the first microphone signal Z(l, k,m = 1), where the speech patterns of the desired speaker,
the baby, and other passengers on the bus can clearly be identified. Panel (e) shows the enhanced
signal Y (l, k) after beamforming with the GEV beamformer, and normalized using PAN (see
Section 2.2.4). It can be seen that the interfering sources are suppressed by up to 30 dB.
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(a) pevd(l, k)

(b) pIRM(l, k)

(c) pest(l, k)

(d) Z(l, k,m = 1)

(e) Y (l, k)

Figure 3.3: (a) Cosine distance obtained by Eq. 3.17. (b) IRM obtained by Eq. 3.1. (c) Estimated
speech mask using the Eigennet from [48]. (d) First channel of the noisy CHiME4 utterance
F01_22GC010X_BUS. (e) Enhanced utterance obtained from the Eigennet and the GEV beam-
former from Section 2.2.4.
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3.4.2 Multi-speaker Eigennet

The Eigennet architecture can be extended to multiple speakers, as long as they are spatially
separable. In order to do so, the NN requires additional information. Instead of pevd(l, k), we
use both the spatial and magnitude information as a feature vector, i.e.

xEvsMag(l, k) = ZU (l, k)e−iφ1(l,k), (3.20)

where φ1(l, k) denotes the phase of the first channel, i.e. ∠ZU (l, k). This phase normalization
is necessary to relate the complex phase to a reference microphone, rather than being randomly
distributed due to the STFT. Note that this phase normalization is also done in the Single-
speaker Eigennet: Each Eigenvector vZ(k) can be scaled by an arbitrary complex scalar ζ.
Typically, EVD algorithms chose ζ = v∗Z,1(k)

|vZ,1(k)| , such that the phase of the first element (i.e. the
first microphone) of the Eigenvector becomes zero.
From Eq. 3.20 it can be seen that xEvsMag(l, k) is complex-valued. Therefore, we stack its real

and imaginary components to obtain real-valued features as inputs for the NN. Note that this
NN is significantly larger than the single-speaker Eigennet, as it requires 2M features per time-
frequency bin, whereas the single-speaker Eigennet only requires one feature per time-frequency
bin. With the spatial information fully available to the NN, it becomes possible to distinguish
speakers based on their location. If the speaker is within a specific region of acceptance, the NN
outputs ones for the respective time-frequency bins of the speech mask. Similarly, if the speaker
is within a region of rejection, the NN outputs zeros for those time-frequency bins. This also
allows for some speaker movement, as long as the speakers do not leave their designated regions.
These regions are defined by choosing the training data accordingly, i.e. labeling the speech
masks for speakers within the region of acceptance with ones. This information is sufficient to
enable the NN to perform speaker separation without any knowledge of the microphone array
or the acoustic environment. The NN is able to infer this data from the spatial information
embedded within the training examples [53]. Figure 3.4 shows an example of how to achieve
this selectivity with four speakers in an arbitrary arrangement and room. The region of interest
or acceptance is colored in green, and the region of rejection is colored in red. The training
data is selected in such a way that each speaker within the green region is a desired speech
source S(t, k), and the sum of all speakers within the red region are the interfering noise sources
N(t, k). The training labels, i.e. the IRM, can be obtained by Eq. 3.1. For further details, see
Appendix A.7.

Figure 3.4: Floorplan of a rectangular room with a circular microphone array and a region of acceptance
(green) and a region of rejection (red).
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3.5 Conclusion
The Eigennet architecture allows estimating a speech mask from noisy microphone data by
utilizing the spatial information embedded in the dominant Eigenvector of the whitened spatial
PSD matrix ΦZZ,U (k). For a single speaker embedded in ambient diffuse noise, the stability of
this Eigenvector is observed over the time frames of the STFT transformed microphone signals.
A stationary, near-field speaker will have a stable Eigenvector, whereas diffuse noise will have a
random Eigenvector. This behavior is exploited by a NN, which infers a speech mask from this
data. This architecture allows to extract a single speaker from background noise.
For multiple speakers, the Eigennet utilizes the phase and the magnitude of the individual

time-frequency bins of the STFT-transformed microphone signals, which encodes the location
of the desired sound source. Speaker separation is achieved by defining regions (locations) of
acceptance and rejection. The involved speakers may also be moving, and separation is possible
as long as they do not leave their designated regions. However, there are three limitations to
the Eigennet architecture: (i) In practice, it cannot be guaranteed that a moving speaker does
not leave a pre-defined region. Therefore, the method is best applied to static speakers, i.e.
the interior of a car. (ii) While a beamformer can separate speakers who occupy the same
time-frequency bins, the speech mask cannot. Therefore, mask-based beamforming relies on the
sparsity of human speech in both time and frequency. With multiple speakers, this assumption
is harder to meet, resulting in a reduced quality of the beamformed output signal. (iii) Further,
there is no real speaker tracking, as the identity of the target speaker is not considered. Each
speaker within the region of acceptance is regarded as the target signal. If two speakers are in
this region at the same time, both will be contained in the beamformed output signal. So far,
mask-based beamforming solves two of the six problems stated in the introduction, i.e.

1. Isolate a single speaker from background noise. X

2. Isolate a single speaker from a mixture of multiple speakers. X

3. Track moving speakers.

4. Isolate and dereverberate a speaker in the far-field.

5. Separate all speakers in a mixture of multiple speakers.

6. Assign an identity to an isolated speaker.

Mask-based beamforming still requires a traditional beamformer such as the MVDR or GEV,
which provides a static set of beamforming weights. In block-processing mode, a new speech
mask and beamforming weights may be calculated for consecutive blocks of audio. However,
speaker movements within that block, or shadowing by other speakers may also degrade the
beamformed output signal. By stacking the real and imaginary parts of the input features
ZU (l, k), certain properties of complex numbers such as rotation are lost. These properties may
be useful to infer the location of the individual speakers, but have to be learned explicitly by
the NN.
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4
Complex-valued Neural Beamforming

4.1 Motivation
Based on the limitations of the Eigennet structure, we abandon the concept of speech masks and
statistical beamformers such as the MVDR or GEV in favor of a different approach. The flexibil-
ity of NNs allows estimating optimal beamforming weights directly from the noisy microphone
observations. This concept has several benefits and offers new possibilities, i.e.

1. Block processing is no longer necessary, as a new set of beamforming weights is predicted
for each time-frequency bin. This enables real-time speaker tracking and precise speaker
extraction.

2. The computationally expensive matrix inversion or EVD of statistical beamformers is no
longer necessary.

3. The beamforming weights can be optimized for individual time-frequency bins, rather than
a whole block of time frames. This allows for increased suppression rates of unwanted signal
components.

4. The design criteria of the beamformer are no longer limited to max-SNR or MVDR. In-
stead, any criteria can be formulated as cost function of the NN.

However, as the beamforming weights live in the domain of complex numbers, such a NN
requires both complex-valued inputs and outputs, which in turn requires complex-valued gra-
dients in the backward path of the NN. Further, the beamforming operation itself involves
non-holomorphic functions like conjugation or absolute value, whose gradients do not exist. A
widely adopted solution for this problem is to split complex-valued numbers into their real and
imaginary parts, and treat them like real-valued numbers [26], [117]. Usually, this results in los-
ing important properties like complex rotation or symmetry [67], [118]. While it can be argued
that the universal approximation theorem enables a NN with a sufficient amount of parameters
to learn these properties, it has also been shown that NNs without complex gradients require
more parameters for the same task [119]. Using Wirtinger Calculus, it is possible to derive
complex-valued gradients from non-holomorphic functions with respect to a real-valued variable
[66], [120], [121].

4.2 Complex-valued Back-propagation
To use complex-valued functions with gradient descent optimization algorithms, we need to
differentiate these functions. A given function f(z) = f(x+ iy) is complex-differentiable (holo-
morphic), if its partial derivatives satisfy the Cauchy-Riemann equations, i.e.

∂u

∂x
= ∂v

∂y
, and ∂u

∂y
= −∂v

∂x
, (4.1)
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where f(x + iy) = u(x, y) + iv(x, y) is chosen as basis. Many complex-valued functions are
not complex-differentiable (non-holomorphic), for example: f(z) = z∗, where u(x, y) = x, and
v(x, y) = −y. For this function, the partial derivatives are not equal, i.e.

∂u

∂x
= 1, and ∂v

∂y
= −1. (4.2)

However, it is possible to choose a different basis, i.e. f(z) = f(z, z∗). With this basis, the
partial derivatives equate to

∂f

∂z
= 1

2

(
∂f

∂x
− i∂f

∂y

)
, (4.3a)

∂f

∂z∗
= 1

2

(
∂f

∂x
+ i

∂f

∂y

)
, (4.3b)

This definition is known as Wirtinger Calculus [66], [122]. With the basis given in Eq. 4.3, the
following derivation rule applies: When calculating the derivative of a function ∂f(z,z∗)

∂z , we can
regard all instances of z∗ as constants. Analogously, when calculating the derivative ∂f(z,z∗)

∂z∗ , we
can regard all instances of z as constants [120]. If f(z, z∗) is the objective function of a neural
network, its output must be real-valued, even if its inputs z ∈ C [123]. Therefore, we can switch
between 4.3a and 4.3b, i.e.

∂f

∂z∗
=
(
∂f

∂z

)∗
. (4.4)

4.2.1 Complex-valued Chain Rule

Analogous to real-valued functions, the complex-valued chain rule describes the relation of gra-
dients for nested functions, i.e. when a function is applied to the output of another. Figure 4.1
illustrates a chain of two functions:

Figure 4.1: Visualization of the complex-valued chain rule: The forward path includes the complex-valued
functions s = g(z) and J = f(s). Each function has its intermediate derivatives, which con-
tribute to the backward gradient.

In the example in Figure 4.1, the forward path consists of two complex-valued functions, i.e.

J = f(s) = f(m+ in),
s = g(z) = g(x+ iy),

(4.5)
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where z and s are complex-valued arguments, and J denotes a real-valued objective function.
The chain rule for real-valued functions generalizes directly to the complex domain [124]. There-
fore, we obtain:

∂J

∂x
= ∂J

∂m

∂m

∂x
+ ∂J

∂n

∂n

∂x
,

∂J

∂y
= ∂J

∂m

∂m

∂y
+ ∂J

∂n

∂n

∂y
.

(4.6)

Inserting Eq. 4.6 into Eq. 4.3a leads to

∂J

∂z∗
= 1

2

(
∂J

∂m

∂m

∂x
+ ∂J

∂n

∂n

∂x
+ i

∂J

∂m

∂m

∂y
+ i

∂J

∂n

∂n

∂y

)
,

=
(
∂J

∂s∗

)∗ ∂s
∂z∗

+ ∂J

∂s∗

(
∂s

∂z

)∗
,

(4.7)

with the partial derivatives [120]

∂s

∂z∗
= 1

2

(
∂s

∂x
+ i

∂s

∂y

)
= 1

2

(
∂m

∂x
+ i

∂n

∂x
+ i

∂m

∂y
− ∂n

∂y

)
, (4.8a)

∂s

∂z
= 1

2

(
∂s

∂x
− i ∂s

∂y

)
= 1

2

(
∂m

∂x
+ i

∂n

∂x
− i∂m

∂y
+ ∂n

∂y

)
. (4.8b)

(4.8c)

Complex-valued back-propagation is achieved by iteratively applying the chain rule to each
element of the neural network. Parameter optimization algorithms such as gradient descent or
ADAM [116] generalize nicely to the complex domain, i.e.

θt+1 ← θt − µ
∂J

∂z∗
, (4.9)

where t denotes the time step, and θ ∈ C are the network parameters.

4.2.2 Numeric Gradients

Even though modern machine learning frameworks support complex-valued back-propagation,
only a few non-holomorphic functions are implemented. To add custom functions, the gradients
in Eq. 4.3a and 4.3b, and the analytic solution from Eq. 4.7 have to be implemented by
hand. This can get difficult for complicated functions, therefore it is beneficial to test the
implementation using a numeric approximation of the gradient for specific input values [125].
For a given function s = g(z) = g(x+ iy), the partial derivatives can be approximated using the
finite differences

∂s

∂x
≈ g(x+ ε+ iy)− g(x− ε+ iy)

2ε ,

∂s

∂y
≈ g(x+ iy + iε)− g(x+ iy − iε)

2ε ,

(4.10)
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where ε is a small, non-zero constant. Inserting Eq. 4.10 into Eq. 4.8a, 4.8b, and 4.7 gives

∂J

∂z∗
≈ 1

2

(
∂J

∂s∗

)∗( ∂s
∂x

+ i
∂s

∂y

)
+ 1

2
∂J

∂s∗

(
∂s

∂x
− i ∂s

∂y

)∗
. (4.11)

This allows to perform numerical checks on the analytic gradient for a given gradient. Especially
for complicated functions, Eq. 4.11 provides an essential tool to verify dedicated implementa-
tions.

4.2.3 Examples

In this section, we derive the analytic gradients of some relevant functions for beamforming.
Further gradients of complex-valued functions can be found in [125].

Conjugate

For the conjugate function s = g(z) = z∗, the partial derivatives are

∂s

∂z∗
= 1,

∂s

∂z
= 0.

(4.12)

Inserting into Eq. 4.7 leads to

∂J

∂z∗
=
(
∂J

∂s∗

)∗ ∂s
∂z∗

+ ∂J

∂s∗

(
∂s

∂z

)∗
=
(
∂J

∂s∗

)∗
· 1 + ∂J

∂s∗
· 0 =

(
∂J

∂s∗

)∗
. (4.13)

Squared Magnitude

For the squared magnitude function s = g(z) = |z|2 = z · z∗, the partial derivatives are

∂s

∂z∗
= z,

∂s

∂z
= z∗.

(4.14)

Inserting into Eq. 4.7 leads to

∂J

∂z∗
=
(
∂J

∂s∗

)∗
· z + ∂J

∂s∗
·
(
z∗
)∗

= 2 · Re
{
∂J

∂s∗

}
z. (4.15)
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Complex Tanh

We define the complex tanh function as s = g(z) = tanh(|z|) z
|z| . The partial derivatives are

∂s

∂z∗
= tanh(|z|)

2|z| + sech2(|z|)
2 ,

∂s

∂z
= z sech2(|z|)

2z∗ − z2 tanh(|z|)
2|z|3 .

(4.16)

Inserting into Eq. 4.7 leads to

∂J

∂z∗
=
(
∂J

∂s∗

)∗(tanh(|z|)
2|z| + sech2(|z|)

2

)
+ ∂J

∂s∗

(
z sech2(|z|)

2z∗ − z2 tanh(|z|)
2|z|3

)∗
. (4.17)

Vector Magnitude Normalization

Let us consider the complex-valued vector z = [z1, . . . , zN ]T with N elements. This vector is
normalized using s = g(z) = z

|z| . The partial derivatives are given by

∂s

∂z∗
= − zzT

2|z|3 ,

∂s

∂z
= I

|z|
− zzT

2|z|3 ,
(4.18)

where I denotes the N ×N identity matrix. Inserting into Eq. 4.7 leads to

∂J

∂z∗
=
(
∂J

∂s∗

)H(
− zzT

2|z|3
)

+
(
∂J

∂s∗

)T( I

|z|
− zzT

2|z|3
)∗
,

= ∂J

∂s∗
1
|z|
− z

|z|3
Re
{
zH

∂J

∂s∗

}
.

(4.19)

Vector Phase Normalization

We normalize the phase of the complex-valued vector z = [z1, . . . , zN ]T to s = g(z) = z
z∗1
|z1| ,

where z1
|z1| denotes the phase factor of the first element of z. To obtain the partial derivatives,

we consider the first element s1 and the other N − 1 elements s2:N separately, i.e.

s1 = z1
z∗1
|z1|

= |z1|,

s2:N = z2:N
z∗1
|z1|

.

(4.20)
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The partial derivatives for the first element z1 of the input are given by

∂s1
∂z∗1

= z1
2|z1|

,

∂s1
∂z1

= z∗1
2|z1|

.

(4.21)

It can be seen from Eq. 4.20, that the first element also receives a gradient from s2:N . Its partial
derivatives are given by

∂s2:N
∂z∗1

= z2:N
2|z1|

,

∂s2:N
∂z1

= −z2:Nz
∗
1

2z1|z1|
.

(4.22)

The partial derivatives of the other N − 1 elements z2:N are given by

∂s2:N
∂z∗2:N

= 0,

∂s2:N
∂z2:N

= z∗1
|z1|

.

(4.23)

Inserting into Eq. 4.7 leads to

∂J

∂z∗1
=
(
∂J

∂s∗1

)∗
· z1

2|z1|
+ ∂J

∂s∗1
·
(
z∗1

2|z1|

)∗
+
(

∂J

∂s∗2:N

)∗
· z2:N

2|z1|
+ ∂J

∂s∗2:N
·
(
z2:Nz

∗
1

2z1|z1|

)∗
, (4.24)

and

∂J

∂z∗2:N
=
(

∂J

∂s∗2:N

)∗
· 0 + ∂J

∂s∗2:N
·
(
z∗1
|z1|

)∗
. (4.25)

4.3 Complex-valued Neural Networks

With the definition of complex back-propagation in Section 4.2 we can continue to define network
elements such as activation functions and layers.

4.3.1 Complex-valued Activation Functions

In any neural network, the choice of a non-linearity as activation function is an important
design parameter. Many activation functions are bounded (i.e. tanh or sigmoid), allowing
the activations to saturate on a finite level. With complex-valued neural networks, the choice
of an activation function is subject to certain restrictions: The Liouville Theorem states that
any bounded holomorphic function must be a constant [66], [126]. Therefore, we can only
use unbounded or non-holomorphic activation functions, where the latter requires Wirtinger
Calculus from Section 4.2. Further caution must be taken when generalizing activation functions
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from the real to the complex domain, where we have multiple options. For example, the tanh
function can be generalized in multiple ways:

σ(z) = tanh(z) = sinh(z)
cosh(z) = ez − e−z

ez + e−z , (4.26a)

σ(z) = tanh(z) = tanh(Re{z}) + i tanh(Im{z}), (4.26b)

σ(z) = tanh(z) = tanh(|z|) z
|z|
, (4.26c)

with z ∈ C. In Eq. 4.26a we can see the straight-forward extension of the tanh function from
the real-valued to the complex-valued domain [119]. Figure 4.2 shows the magnitude and phase
response over z ∈ C. It can be seen that this function has a value of 1.0 almost everywhere,
and exhibits periodic poles with a period of iπ. Further, its phase is discontinuous. Clearly, this
function is not ideal for non-linear activation in a neural network. Eq. 4.26b shows a widely
adopted scheme, where the tanh is calculated separately for the real and imaginary components
of z [121]. Figure 4.3 shows the magnitude and phase response for this case. It can be seen that
the magnitude does not saturate at 1.0, and the phase is nearly constant for each quadrant of
the complex domain. This behavior is also not favorable in a non-linear activation function. Eq.
4.26c shows our approach from [67], where we only modify the magnitude with a real-valued
tanh, and leave the phase intact. It can be seen from Figure 4.4 that the magnitude does saturate
at 1.0, and that the phase is linear. Note that this representation closely resembles the behavior
of a real-valued tanh function.

(a) (b)

Figure 4.2: (a) Magnitude and (b) phase response of Eq. 4.26a.

(a) (b)

Figure 4.3: (a) Magnitude and (b) phase response of Eq. 4.26b.
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(a) (b)

Figure 4.4: (a) Magnitude and (b) phase response of Eq. 4.26c.

Another complex-valued, non-linear activation function is given by the vector magnitude
normalization from Section 4.2.3, i.e.

σ(z) = z

|z|
, (4.27)

which is used in conjunction with the vector phase normalization, i.e.

σ(z) = z
z∗1
|z1|

, (4.28)

to normalize both the magnitude and phase of the complex-valued beamforming weightsW (l, k).
Further activation functions are given by the complex-valued sigmoid function, i.e.

σ(z) = 1
1 + e−Re{z} , (4.29)

and the complex-valued ReLU, i.e.

σ(z) = z + |Re{z} |+ i|Im{z} |
2 . (4.30)

Figure 4.5 shows the magnitude and phase response of the complex-valued sigmoid from Eq.
4.29. It can be seen that the magnitude exhibits the shape of a sigmoid function for the real part
of z, and the phase is zero, as this function only uses Re{z}. Figure 4.6 shows the magnitude and
phase response of the complex-valued sigmoid from Eq. 4.30. It can be seen that the magnitude
is zero for the quadrant where either Re{z} or Im{z} is negative. The phase is constant except
for the quadrant where both Re{z} and Im{z} are positive.
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(a) (b)

Figure 4.5: (a) Magnitude and (b) phase response of Eq. 4.29.

(a) (b)

Figure 4.6: (a) Magnitude and (b) phase response of Eq. 4.30.

4.3.2 Complex-valued Neural Network Layers

In this section, we will extend the definition of the NN layers from Section 3.3 into the complex
domain.

Complex-valued Feed-Forward Layer

The structure of a complex-valued Feed-Forward layer is identical to its real-valued counterpart
from Eq. 3.8, i.e.

y = σ(Wz + b), (4.31)

where W ∈ C is the weight matrix, and b ∈ C is the bias vector. This generalizes well into the
complex domain, as both the matrix-vector product and the addition are holomorphic functions.
However, the activation function σ(·) has to be replaced by one of the complex-valued activation
functions from Section 4.3.1.

Complex-valued Long Short-Term Memory Layer

Analogously to the complex-valued Feed-Forward layer, the structure of the LSTM cell from
Section 3.3 can be extended into the complex domain. However, all weights and variables are
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∈ C. This leads to the following definition of the complex-valued LSTM cell:

it = σg(Wizt + Uiht−1 + bi), (4.32a)
ft = σg(Wfzt + Ufht−1 + bf ), (4.32b)
ot = σg(Wozt + Uoht−1 + bo), (4.32c)
at = σa(Wazt + Uaht−1 + ba), (4.32d)
ct = at � it + ft � ct−1, (4.32e)
ht = ot � σh(ct), (4.32f)

where it, ft and ot denote the input, forget and output gates, respectively. The input activation
at, the internal cell state ct and the output state ht are ∈ C. Analogous to the real-valued
LSTM cell, the magnitude of the gate activation must be smaller than 1, to prevent the cell
state ct from overflowing, i.e. 0 < σg(·) < 1. An additional design choice needs to be made
for the gate activation σg(·), as it can either have a real-valued or complex-valued output. If
its output was complex-valued (i.e. with a non-zero phase), the phase of the internal cell state
ct in Eq. 4.32e would change during each time step t, regardless of the weights W , U or the
bias b. Consequently, the phase of the output ht would also change, as can be seen from Eq.
4.32f. This might lead to undesirable or even unstable behavior of the LSTM cell. To avoid this
problem, we choose real-valued gate activation σg(·), i.e.

σg(z) = 1
1 + e−Re{z} , (4.33)

The weight matrices W , U and bias vectors b are all ∈ C . The cell state ct is updated using
Eq. 4.32e. The complex-valued input and output activation functions are defined as

σa(z) = σh(z) = tanh(|z|) z
|z|
. (4.34)

The output of the LSTM cell is provided by the hidden state ht. Due to the numerically
demanding gradient calculation of these activation functions, complex-valued LSTM cells require
longer execution times than real-valued LSTM cells. Further, the recurrent nature of these layers
prevents an efficient GPU implementation.

Complex-valued Convolutional Layer

Similar to the complex-valued Feed-Forward layer, the CNNs generalize well into the complex
domain. It is defined as

y = σ(W ~ z + b), (4.35)

where W ∈ C are the filter weights, b ∈ C is a bias term, and σ(·) is the complex-valued ReLU
activation function, i.e. σ(z) = z+|Re{z}|+i|Im{z}|

2 . As the convolution operator is holomorphic, it
is possible to separate a complex-valued convolution into four real-valued convolutions [119], i.e.

W ~ z =
(
A~ x−B ~ y

)
+ i
(
B ~ x + A~ y

)
, (4.36)

with the complex-valued filter weights W = A+ iB, and the complex-valued inputs z = x+ iy.
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Typically, efficient GPU implementations use the Fast Fourier Transform (FFT) to perform
real-valued convolutions in frequency-domain [2]. Therefore, execution times are considerably
faster than for LSTM cells.

4.4 CNBF Architecture

With the complex-valued neural network layers from Section 4.3.2, we can design a NN which
accepts the complex-valued inputs Z(l, k) and predicts complex-valued outputs W (l, k). We
refer to this NN as CNBF. Unlike a statistical beamformer, which provides a single set of
beamforming weights W (k) for all L frames in a block of audio data, the CNBF provides
individual beamforming weights W (l, k) for each time frame l, i.e.

Y (l, k) = WH(l, k)Z(l, k)
= WH(l, k)S(l, k) + WH(l, k)N(l, k)
= WH(l, k)φS(l, k)vS(l, k) + WH(l, k)φN (l, k)vN (l, k),

(4.37)

where vS(l, k) and vN (l, k) are the magnitude-normalized vectors S(l, k) and N(l, k), respec-
tively, i.e.

vS(l, k) = S(l, k)
||S(l, k)||2

, and

vN (l, k) = N(l, k)
||N(l, k)||2

,

(4.38)

and φS(l, k) and φN (l, k) are the magnitudes of S(l, k) and N(l, k), respectively, i.e.

φS(l, k) = |S(l, k)|2, and
φN (l, k) = |N(l, k)|2.

(4.39)

Analogous to the statistical beamformers in Section 2.2, we have to define an optimization objec-
tive for the beamforming weights. However, there is no trade-off between signal distortions and
achievable SNR as with the MVDR or GEV beamformers, because the CNBF provides individ-
ual weights W (l, k) for each time-frequency bin. Therefore, we can define both a distortionless
response towards the desired speech signal S(l, k), and a total suppression of the ambient noise
N(l, k) at the same time, i.e.

WH
OPT (l, k)vN (l, k) != 0, and (4.40a)

WH
OPT (l, k)vS(l, k) != 1. (4.40b)

An intuitive solution to Eq. 4.40a is given by null steering [11], i.e.

W =
(
I − vNv

H
N

)
vS , (4.41)

where we omitted the time and frequency indices for brevity. From Eq. 4.38, it can easily be
seen that vHNvN

!= 1. Consequently, the constraint in Eq. 4.40a is fulfilled, i.w. WHvN = 0.
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Inserting Eq. 4.41 into Eq. 4.40b gives

WHvS = vS
(
I − vNv

H
N

)
vS = 1− |vHNvS |2. (4.42)

The second constraint in Eq. 4.40b can be easily met by dividing Eq. 4.41 by 4.42, i.e.

WOPT =
(
I − vNv

H
N

)
vS

1− |vHNvS |2
. (4.43)

Note that the theoretical SNR of this solution is infinite, as the noise signal is completely canceled
as defined in Eq. 4.40a. However, the NN has no access to the normalized vectors vS(l, k) and
vN (l, k). Therefore, the optimal beamforming weights have to be inferred from the noisy inputs
Z(l, k). By choosing an appropriate cost function, the NN will approximate WOPT (l, k), i.e.

L = −
L∑
l=1

K∑
k=1

∆SNR(l, k), (4.44)

where ∆SNR(l, k) measures the improvement in SNR, achieved by the beamforming weights
W (l, k), i.e.

∆SNR(l, k) = 10log10
|WH(l, k)S(l, k)|2
|WH(l, k)N(l, k)|2 − 10log10

|S(l, k)|22
||N(l, k)||22

. (4.45)

It can be seen that Eq. 4.43 maximizes this cost function. However, the second term does not
depend on the weights W (l, k), and is therefore a constant in the cost function. Its purpose is
to remove the scaling of the gradient by the inputs S(l, k) and N(l, k), thereby normalize the
learning rate over the frequency bins k. Further, there remains a single degree of freedom for
the predicted weight vectors W (l, k), as their magnitude cancels out in Eq. 4.45. We therefore
choose to normalize the magnitude of the weights to 1.0, using

W (l, k)← W (l, k)
|W (l, k)|2

. (4.46)

Analogous to mask-based beamforming from Chapter 3, we employ ZCA whitening from Eq.
2.67 to decorrelate the noisy microphone signals Z(l, k). With these building blocks, we can
define the CNBF architecture. Figure 4.7 illustrates its block diagram. The complex-valued NN
consists of two complex LSTM layers, and two complex Feed-Forward (Dense) layers. The inputs
of the NN are the whitened microphone signals ZU (l, k), and its outputs are the magnitude-
normalized beamforming weights W (l, k) from Eq. 4.46. The beamforming operation from Eq.
4.37 produces the enhanced signal Y (l, k).
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Figure 4.7: Block diagram of the CNBF architecture [67].

4.4.1 Performance

We compare the CNBF to the Eigennet from Section 3.4.2 by simulating a shoebox model of a
living room with various sound sources [45]. Figure 4.8 illustrates the acoustic setup with two
static speakers S1 and S2, a TV set S3, and two moving speakers D1 and D2. The dynamic
paths D1 and D2 change randomly within their designated regions, illustrated by the paths on
either side of the room. To simulate head movements of the static sources S1 and S2, random
position changes occur within a cube of 20cm in size. We use a circular microphone array with
M = 6 microphones and a diameter of 86mm, located next to the TV set. With this setup,
we use the Image Source Method (ISM) [127] to spatialize monaural recordings from the WSJ0
speech database [128]. The WSJ0 contains 12776 utterances from 101 different speakers for
training, and 5895 utterances from 18 different speakers for testing. For the dynamic paths,
new Room Impulse Responses (RIRs) are generated for each 100ms of audio, where the speaker
moves with 1m/s along a pre-defined trajectory. Further, we generate diffuse background noise
from YouTube [129], which is spatialized as described in [67].

Figure 4.8: Shoebox model of a living room showing stationary sound sources S1 to S3, and dynamic sound
sources D1 and D2. The microphone array is located next to the TV set [67].

Given the setup in Figure 4.8, we perform five experiments to compare the performance of
the Eigennet from Chapter 3, and the CNBF. We compare four scores, i.e.: the ∆SNR from
Eq. 4.45, and the PESQ, STOI, and WER from Section 2.7. We use the Google Speech-to-Text
API as ASR system [130]. No adaptation of the ASR has been performed. Note that the ASR
framework reports a WER of 6.1% for the clean WSJ0 test set (si_et_05). Each experiment has
a desired source S(l, k) and one or more interfering sources N(l, k), as shown in Table 4.1. It can
be seen that the CNBF outperforms the Eigennet in all scores and all experiments. This is due
to the design goal of the CNBF from Eq. 4.45. It achieves a higher SNR, as it estimates optimal
beamformer weights for each time-frequency bin in a max-SNR sense. This affects the other
scores as well, leading to an improved overall performance. For further details, see Appendix
A.8.
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Method Desired source Interfering source(s) ∆SNR PESQ STOI WER

Eigennet

D1 D2 4.445 dB 1.514 0.834 46.2 %
D1 diffuse 4.286 dB 1.576 0.837 32.9 %
S1 diffuse 4.516 dB 1.751 0.866 18.6 %
S1 S3 8.690 dB 1.439 0.811 45.7 %
S2 D1, S3 7.011 dB 1.402 0.792 58.4 %

CNBF

D1 D2 6.156 dB 1.688 0.825 21.6 %
D1 diffuse 8.736 dB 2.263 0.882 9.1 %
S1 diffuse 9.558 dB 2.551 0.902 6.2 %
S1 S3 10.306 dB 1.652 0.792 13.5 %
S2 D1, S3 9.212 dB 1.441 0.758 33.8 %

Table 4.1: Performance comparison of the Eigennet and the CNBF methods.

Figure 4.9 demonstrates the performance of the CNBF system in terms of spectrograms of the
involved signals of the fourth experiment, where S1 denotes the desired signal, and S3 is used as
the interfering signal. Panel (a) shows the STFT of the first channel of the input mixture Z(l, k).
Panel (b) shows the enhanced output YCNBF(l, k), obtained by the CNBF. Panel (c) shows the
enhanced output YMBF(l, k), obtained by the Eigennet shown in Figure 3.2. And panel (d) shows
the first channel of the desired target signal S(l, k). It can be seen that the enhanced signal
from both the CNBF and the Eigennet remove the interfering speaker S3. However, the SNR
achieved by the CNBF is clearly higher. This is to be expected, as the CNBF estimates a set
of beamforming weights for every time-frequency bin, whereas the Eigennet estimates a speech
mask, which leads to a single set of beamforming weights being used for the entire utterance.
Note that the optimal filter weights WOPT (l, k) from Eq. 4.43 would achieve perfect signal
reconstruction, i.e. remove the interfering speaker completely.
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(a) Z(l, k,m = 1)

(b) YCNBF(l, k)

(c) YMBF(l, k)

(d) S(l, k,m = 1)

Figure 4.9: (a) First channel of the input mixture. (b) Enhanced output of the CNBF. (c) Enhanced output
of the Eigennet. (d) First channel of the clean target speaker.

4.5 Conclusion

Unlike the Eigennet, the CNBF does not rely on a speech mask, or even on a traditional beam-
former, to extract a single speaker from a mixture of multiple sound sources. By tapping into the
full potential of complex-valued gradients, it is possible to outperform statistical beamformers
such as the MVDR or GEV. The CNBF addresses many of the open issues of the Eigennet archi-
tecture, such as speaker tracking, fast adaption to moving speakers, or overlapping speakers in
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the same time-frequency bins, which cannot be separated by a speech mask. So far, the CNBF
solves three of the six problems stated in the introduction, i.e.

1. Isolate a single speaker from background noise. X

2. Isolate a single speaker from a mixture of multiple speakers. X

3. Track moving speakers. X

4. Isolate and dereverberate a speaker in the far-field.

5. Separate all speakers in a mixture of multiple speakers.

6. Assign an identity to an isolated speaker.

However, the issue of overlapping regions of interest, or overlapping paths of moving speakers
remains unsolved. Furthermore, some practical problems arise from the usage of complex-
valued gradients, i.e. Non-holomorphic functions are still not supported by major machine
learning frameworks, and have therefore to be implemented by the user. Depending on the
CUDA back-end and the GPU hardware being used, implementing highly optimized gradients
can be a difficult task that requires an in-depth knowledge of cuDNN and the possible limitations
and pitfalls of both the driver and the actual hardware. Consequently, the execution times for
training complex-valued NNs are considerably larger than for their real-valued counterparts.
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5
Time-domain Neural Beamforming

5.1 Motivation
Beamforming in the frequency-domain allows for an efficient implementation of convolution
operations as simple multiplications [2]. For example, the filter and sum beamformer in Eq. 2.8
reduces to an inner vector product, as the corresponding signals are represented in the STFT
domain. With complex-valued NNs from Chapter 4, it is possible to back-propagate the complex-
valued gradient of these functions, which are used in the CNBF architecture. We can further
exploit the potential of complex-valued gradients by including functions such as the STFT to a
NN. Both the FFT and inverse Fast Fourier Transform (iFFT) are optimized implementations
of a complex-valued matrix-vector product. As such, they also have a complex-valued gradient
that can be back-propagated through the NN.
Furthermore, the fixed STFT and inverse STFT operations may be replaced by learnable

transformations, using network elements such as Feed-Forward or Convolutional layers. This
allows for additional degrees of freedom and design choices, i.e.

1. The time-frequency representation of audio signals may not necessarily be an optimal
representation for speech separation. A learnable transformation may be better suited for
this task.

2. The FFT decouples the phase and magnitude information of a signal. Modeling the phase
is a difficult task [14], [131]. Therefore, the majority of proposed SCSE methods only
modify the magnitude of a signal.

3. The relevant spatial cues for MCSE are embedded the ITDs between the microphone
channels. The FFT transforms these ITDs into IPDs, introducing issues such as spatial
aliasing [11], [60]. A time-domain representation circumvents these problems.

4. The FFT requires an inherent trade-off between frequency resolution and window length,
as the FFT matrix is square. This imposes restrictions on performance and real-time
capabilities. A customized transformation does not have these restrictions and allows for
very short latencies.

5. In time-domain, there is a greater variety of objective functions to choose from. We are
not limited to the SNR, but may choose other performance measures, such as the SI-SDR,
which enables additional tasks such as dereverberation.

Attracted by these possibilities, there are a number of time-domain SCSE algorithms, i.e.
Wave-U-Net [26], TasNet [27] and Conv-TasNet [28]. Also, speech synthesizers like WaveNet
have been successfully implemented in time-domain [25]. Further, mask-based beamformers
using time-domain NNs to estimate a speech mask have been proposed, i.e. Beam-TasNet [68],
SpeakerBeam [132], [133], Neural Speech Separation [134], Multi-Channel Deep Clustering [35],
[135], and Mask-based Convolutional Beamforming [136]. However, all of these approaches still
use a conventional frequency-domain beamformer such as the MVDR or GEV. Recently, true
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end-to-end multi-channel speech separation - which is done entirely in time-domain - has been
proposed in [137], [138] and [58]. In this chapter, we will compare time- and frequency-domain
NNs in three different applications: (i) Neural beamforming, (ii) Dereverberation, (iii) Residual
echo suppression.

5.2 Cross-domain Learning

For MCSE methods such as beamforming and BSS, the relevant information to separate sound
sources such as speakers by their locations is encoded within the ITDs between the microphone
channels, as demonstrated in Section 2.1. Let us ignore multi-path propagation for a moment,
and look at the simplified acoustic model shown in Figure 2.1. Here, τs,m denotes the time delay
required by the sound waves to travel from the speaker XS to the mth microphone. Hence, the
signal received by the microphone array can be expressed as

z(t,m) = s(t+ τs,m) = s(t)δ(t+ τs,m),
z(t, n) = s(t+ τs,n) = s(t)δ(t+ τs,n),

(5.1)

where δ(·) denotes a Dirac pulse, and m and n are the indices of two different microphones.
We obtain the ITD between those two microphones by calculating the temporal displacement
of z(t,m) relative to z(t, n). This is done using the cross-correlation, i.e.

Rzm,zn(t) =
∫ +∞

−∞
z(ν,m)z(t− ν, n)dν,

=
∫ +∞

−∞
s(ν)s(t− ν)δ(t+ τs,m − τs,n)dν,

= Rss(t)δ(t+ τs,m − τs,n),

(5.2)

where the ITD appears as Dirac pulse, i.e. δ(t+ τs,m − τs,n). Depending on the position of the
microphones and the speakers, the ITDs will be different, which allows for a spatial separation of
signals originating from different locations. Hence, a NN operating on the time-domain signals
z(t) is able to infer the ITDs by performing a similar convolution operation. By transforming
Eq. 5.2 into the frequency-domain, we obtain the IPD, i.e.

Φzm,zn(f) =
∫ +∞

−∞
Rzm,zn(t)e−i2πftdt,

= ΦS(f)e−i2πf(τs,m−τs,n).

(5.3)

The IPD between the microphones is given by the phase, i.e. e−i2πf(τs,m−τs,n). In theory, both
the ITDs and IPDs contain the same spatial information. However, several restrictions apply in
the frequency-domain: As sound waves travel with c = 343m/s, spatial under-sampling occurs
for frequencies f > c

2dmn , with dmn being the distance between the two microphones. This
under-sampling leads to aliasing effects known as sidelobes [11], [60]. Spatial aliasing causes
ambiguous IPDs, as the phase wraps around every 2π radians. Further, the window length of
the STFT operation leads to additional problems: If the window is too short, the ITDs may
not lie within the same window at all, causing aliased IPDs [2]. If the window is too large, the
overall processing delay will rise, affecting the real-time capability of the application. These
problems can be circumvented by replacing the STFT with a learnable transformation. A NN
may be utilized to infer an optimal transformation, given only the time-domain audio data. We
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refer to such an architecture as TDNBF.
Figure 5.1 illustrates a comparison of both the CNBF and TDNBF architectures. The signal

flow at the top shows the CNBF using complex neural networks from Chapter 4, including
the signal transformation to the frequency-domain using the STFT and inverse STFT stages.
Both steps rely on the overlap-add method, which involves the multiplication with a constant
window function to avoid aliasing [2], and the FFT and iFFT operations, respectively. The FFT
and iFFT themselves are complex-valued matrix multiplications, with a square FFT matrix.
Therefore, both the STFT and inverse STFT operations have a complex-valud gradient, and
can be treated like any layer in a complex-valued NN.
The signal flow at the bottom of Figure 5.1 illustrates the pure time-domain approach of the

TDNBF. It has a similar structure, but the frequency-domain has been replaced by a learnable,
latent representation of the data. To transform to and from this latent representation, we use
a Convolutional and a Deconvolutional layer, respectively. The Deconvolutional layer can be
thought of as the inverse operation of a Convolutional layer, as it produces a time-series or multi-
dimensional data from a latent representation, using the overlap-add method without a window
function [139]. Note that it does not perform deconvolution in the Wiener-sense [140], it rather
uses the same convolution operator as shown in Section 3.3.1. The length of the convolutional
kernels determines the temporal context of each filter operation. The number of filters used
in the convolutional layer determines the resolution in latent space, analogous to the number
of frequency bins used by the STFT. Similarly, the stride determines the latency of the filter
operation. In contrast to the STFT, all three of these parameters can be chosen independently.

Figure 5.1: Cross-domain learning: Signal flow of the CNBF and TDNBF architectures.

In the following sections, we will discuss three applications in both time- and frequency-domain
formulation, i.e. (i) Neural beamforming, using the TDNBF and the CNBF architectures. (ii)
Dereverberation, using the TDNBF and Weighted Prediction Error (WPE) [141]. (iii) Residual
echo suppression, using a gain mask similar to mask-based beamforming. As a prerequisite to
these applications, we want to have realistic, multi-channel recordings of both stationary and
moving speakers. Therefore, we use a multi-channel recording setup to obtain RIRs from real
acoustic environments like offices and meeting rooms.

5.3 RIR Recording and Spatialization
In the last chapter, we used a simulated shoebox room [142] to spatialize monaural audio data
for the CNBF experiments, i.e. we used simulated RIRs and convolved them with monaural
audio data, to obtain multi-channel recordings. For the experiments in this chapter, we recorded
realistic RIRs which were used to generate both stationary and moving speakers. The motiva-
tion to use recorded RIRs is rooted in the observation that the shoebox room fails to model
the complexity of realistic environments, i.e. fully furnished office or living rooms with differ-
ent materials and different absorption coefficients. This has already been observed in both the
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CHiME3 and CHiME4 challenges [64]. Our recording setup consists of a 6-channel microphone
array [79], and a 5W broadband loudspeaker (Visaton FR-58). To drive the loudspeaker from a
Linux-based PC with ALSA [143], we use the PlayRec Python module [144], which simultane-
ously plays and records audio from a sound card. We use an exponential chirp with a duration
of 5s, sweeping from 24 kHz down to 20 Hz as an excitation signal to deconvolve the RIRs [45],
[145]. For the WSJ0 audio data, we only use a bandwidth of 8 kHz. The recording setup with
the microphone array and the loudspeaker can be seen in Figure 5.2, panel (c).

5.3.1 Static RIRs
We use the above recording setup in 24 different, fully furnished office rooms with reverberation
times RT60 ∈ [200 . . . 900] ms. The reverb of the room depends on multiple factors such as
size, geometry, and absorption coefficient of the walls and the interior. We recorded 5 RIRs in
each room, where the position of both the loudspeaker and the microphone array are chosen
randomly, so that the distance between the two varies from 1m. . . 3m. These 120 recordings
are augmented to 720, by virtually rotating the array by 6 × 60◦, i.e. shifting the microphone
channels. This allows to spatialize monaural data such as the WSJ0 [146] speech database with
realistic RIRs, and superimpose multiple speakers, i.e.

z(t) =
C∑
c=1

sc(t) ~ hc(t) (5.4)

where hc(t) denotes the RIR for the cth speaker, and C is the total number of speakers in
the mixture. The vector hc(t) includes M RIRs from a specific location to the individual
microphones. Each of these individual RIRs is convolved with the same monaural signal sc(t).
Note that spatialization is done in frequency-domain, as the RIRs are very long. A similar
concept can be found in the wsj0-2mix from [147], where a mixture of 2 speakers is created
using WSJ0 data, but without reverberation or spatialization.

5.3.2 Dynamic RIRs
To simulate moving speakers, we use the above recording setup in a 6m× 7m office room with
a reverberation times RT60 of about 450 ms. Here, we placed the microphone array on a table
in the middle of the room, and record 448 × 4 RIRs on a grid with a spacing of 20 cm around
the microphone array. At each grid point, we measure four RIRs, where the loudspeaker is
turned 90◦ during each measurement, so that the speaker faces each cardinal direction. Figure
5.2 shows the recording setup in panel (a). Panel (b) illustrates the floorplan with the 448 grid
points, and four speaker positions similar to the setup from Figure 4.8. To simulate moving
speakers, we let them follow the virtual trajectories shown in panel (b), with a speed of 1m/s.
To spatialize a speech signal s(t) with a dynamic RIR, we first spatialize the signal with the
RIR on each grid point, i.e.

si,j,θ(t) = s(t) ~ hi,j,θ(t), (5.5)

where i and j are the grid indices, and θ is the looking direction. Next, we divide the speech
signal into B blocks of 100 ms length and an overlap of 50 ms. For each block b, we select the
nearest grid point ib, jb and facing direction θb of the trajectory at time tb. To assemble the
overall signal s(t), we use the overlap-add method [2] and the window function w(t), as shown
in Algorithm 1.

– 76 –



5.3 RIR Recording and Spatialization

Algorithm 1 Dynamic spatialization
1: s(t)← 0
2: for b in B do
3: s(t)← s(t) + w(t− tb)sib,jb,θb(tb : tb+1)
4: end for

(a)

(b) (c)

Figure 5.2: (a) RIR recording setup for moving speakers in a 6m× 7m office room. (b) Floorplan with 448
grid points. (c) Microphone array and measurement loudspeaker.
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5.4 TDNBF Architecture
The filter-and-sum beamformer from Eq. 2.8 can also be formulated in time-domain, i.e.

y(t) =
M∑
m=1

w(t,m) ~ z(t,m), (5.6)

where w(t,m) is the beamforming filter for the mth microphone in time-domain. Therefore, we
can use a NN with convolutional layers from Section 3.3.1 to learn these filters from the noisy
microphone data. Consequently, the actual NN structure used for the TDNBF architecture
resembles a beamforming operation similar to Eq. 2.8, as shown in Figure 5.3. Here, it can be
seen that the convolutional layer transforms the multi-channel input signal z(t) into a latent
representation z′(l), where l denotes the lth time frame, and each time frame has a width of
h neurons, similar to k frequency bins of the STFT. The left branch of the NN consists of
an LSTM layer, and two Feed-Forward (Dense) layers. The LSTM layer models the temporal
correlations of the mixture of speech signals, and the first Feed-Forward layer provides a non-
linear transformation using a softplus activation function, which is defined as

f(x) = log(1 + ex) . (5.7)

We chose a softplus activation instead of a tanh activation, to have both an unbounded activation
and a nonlinearity. Alternatively, a ReLU activation can also be used. However, the ReLU
outputs zeros for negative inputs, which effectively switches off the corresponding neurons. In
contrast, the softplus activation provides a small gradient for negative inputs. The second
Feed-Forward layer is a simple linear layer, i.e. a Dense layer with a linear activation function
f(x) = x. It outputs the beamforming weights w′(l) in latent space. Then, we perform the
multiplication

y′(l) = w′(l)� z′(l), (5.8)

which produces the enhanced signal y′(l) in latent space. Note that the linear layer produces
unconstrained beamforming weights w′(l). Thereby, no constraints are imposed on the actual
magnitude of the enhanced signal y′(l). Finally, the Deconvolutional layer converts the enhanced
signal back to the time-domain using the overlap-add method.
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Figure 5.3: TDNBF architecture.

Cross-domain learning allows to formulate the cost function entirely in time-domain, as the
gradient is back-propagated through the convolutional layers to the time-domain signal z(t).
Thereby, the training objective is not limited to technical measures such as the SNR or the MSE.
Rather, we may choose a performance measure which is better suited for speech reconstruction
and enhancement, i.e. the SDR from Section 2.7.2. In particular, we use the SI-SDR from
Eq. 2.73, as the actual amplitude of the enhanced signal does not influence speech quality or
intelligibility. For time-discrete signals, the cost function can be written as the negative SI-SDR,
i.e.

LSI-SDR = −10log10
( ||αr(t)||22
||αr(t)− y(t)||22

)
, (5.9)

where α = y(t)T r(t)
r(t)T r(t) . The reference signal r(t) denotes the desired speech signal, which should be

approximated by the enhanced TDNBF output y(t). Note that this cost function can also be
used with the CNBF architecture from Chapter 4, by back-propagating the gradient over the
iFFT and FFT blocks to the time-domain input signals, as shown in Figure 5.1.

5.4.1 Performance
To demonstrate the performance of the TDNBF architecture, we use the recording setup from
Section 5.3, where we generate two moving speakers D1 and D2, and two static speakers S1
and S2, as shown in Figure 5.2, panel (b). However, instead of the shoebox RIRs, we use the
recorded ones from Section 5.3. As speech database, the WSJ0 [146] is used. We perform four
experiments, where we compare the CNBF and TDNBF architectures, using the loss function
defined in Eq. 5.9. To measure the performance in terms of speaker separation, we employ the
SI-SDR and the WER from Section 2.7. We use the Google Speech-to-Text API as ASR system
[130]. Note that Google-ASR reports a WER of 6.1% for the clean WSJ0 test set (si_et_05)
[67]. Each experiment denotes the desired source S(t, k) and one or more interfering sources
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N(t, k), as shown in Table 5.1. It can be seen that both methods show similar performance
in either score. Further, the experiments with static speakers show better scores than the ones
with moving speakers. This is to be expected, as the NN only has to consider a static region
of interest in the first case. It is also worth noting that the WER scores for the real RIRs are
slightly worse than for the simulated ones, i.e. for the experiments in Table 4.1. A similar
observation can be made when comparing the performance scores of the real and simu data sets
of the CHiME3 and CHiME4 challenges [50], [72]. For further details, see Appendix A.10.

Method Desired source Interfering source(s) SI-SDR WER

CNBF

S1 S2 8.63 dB 12.9 %
S1 D2 7.21 dB 26.4 %
D1 D2 6.48 dB 30.2 %
D1 S2 6.22 dB 29.0 %

TDNBF

S1 S2 9.21 dB 13.5 %
S1 D2 7.69 dB 26.8 %
D1 D2 6.56 dB 29.9 %
D1 S2 6.39 dB 27.3 %

Table 5.1: Performance comparison of the CNBF and TDNBF methods with the SI-SDR objective.

5.5 Dereverberation
Algorithms such as speaker separation, speaker identification, or ASR deliver impressive results
for speakers in the near-field of the microphone array [148]–[150]. However, in the far-field, these
tasks are quite challenging. The spectrogram is smoothed out by reverberations and echoes of the
acoustic environment, thereby severely degrading both speech intelligibility and quality [151],
[152]. This type of signal degradation also occurs in rooms with a large reverberation time
RT60, i.e. office rooms or conference halls with hard floors and walls [153]. By dereverberating
the speech signal, the intelligibility - and consequently the performance of speaker separation,
speaker identification, and ASR algorithms - is greatly increased. Various deep learning based
methods have been proposed for dereverberation [118], [154], [155], most of which are based on
the WPE algorithm [141].
However, with the flexibility of cross-domain learning from Section 5.2, we can incorporate a

dereverberation objective directly into the cost function of the TDNBF architecture. As we have
seen in Section 2.3, sources in the far-field tend to behave like background noise, i.e. their spatial
coherence is nearly isotropic. This makes it difficult to locate and track their exact position, as
the phase noise increases with physical distance. This is a challenging condition for both the
Eigennet and the CNBF. However, by splitting a reverberant RIR h(t) into two components,
we can model a signal in the far-field of the microphone array as

z(t) = s(t) ~ h(t),
= s(t) ~ hDIR(t) + s(t) ~ hDIFF(t),

(5.10)

where hDIR(t) denotes the portion of the RIR contributing to the direct line of sight between the
speaker and the microphone array, and hDIFF(t) models all reverberations. Figure 5.4 illustrates
the idea behind Eq. 5.10.
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Figure 5.4: Separation of a reverberant RIR into its directional component hDIR(t) and its diffuse component
hDIFF(t).

Ideally, the direct line of sight results in hDIR(t) being reduced to a simple multi-channel time
delay, analogous to a steering vector as discussed in Section 2.2, i.e.

hDIR(t,m) = δ(t− τm), (5.11)

where δ(t− τm) denotes a Dirac impulse at delay τm, at the mth microphone. This assumption
only holds for unobstructed speakers, i.e. there must be no obstacles like corners or furniture
between the speaker and the microphone array. If there is a direct line of sight, we regard it as
the desired signal s(t), and all reflections are denoted as noise n(t), i.e.

s(t) = s(t) ~ hDIR(t),
n(t) = s(t) ~ hDIFF(t).

(5.12)

Thereby, we can separate the clean speech s(t), and the reverberations n(t). Clearly, neither of
these signals are directly observable. But we can define a monaural reference signal r(t), using
the directional component of the RIR from Eq. 5.11, i.e.

r(t) = s(t) ~ δ(t− τ1) = s(t− τ1), (5.13)

where we chose the first microphone with the time delay τ1 as an arbitrary reference. We insert
this reference signal into the SI-SDR objective in Eq. 5.9. Hence, we can use the anechoic,
monaural source signal s(t) as training target, up to an unknown time delay τ1. Given a direct
line of sight between the speaker and the first microphone, this delay can be estimated from a
known RIR h(t,m), i.e.

τ1 = argmax
t
|h(t,m = 1)|, (5.14)

which finds the time delay corresponding to the highest peak in the RIR. This delay belongs to
the direct line of sight, as all other paths are longer and consequently receive more attenuation.
Inserting the delay τ1 into Eq. 5.13 aligns the reference signal r(t) with the desired speech signal
of the first channel of the reverberated input signal z(t). By using this reference signal with the
SI-SDR objective, the TDNBF will minimize the relative differences between the enhanced signal
at the beamformer output y(t), and the anechoic reference r(t). Consequently, the input signal
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z(t) will be dereverberated by the TDNBF. Note that this cost function can perform multiple
tasks at once, i.e. if z(t) contains other interfering sources, they will be removed as well.
Consequently, the TDNBF can perform simultaneous speaker separation and dereverberation.
The SI-SDR with the reference signal r(t) is given as

LSI-SDR = −10log10
( ||αr(t)||22
||αr(t)− y(t)||22

)
, (5.15)

where α = y(t)T r(t)
r(t)T r(t) . If there is only a little reverb, the reference r(t) may also be obtained by

a close-talking microphone [64], although this approach requires very precise synchronization of
the sample rates of the reference microphone and the microphone array.
For large-scale experiments, recording multi-channel data is impractical and expensive. Al-

ternatively, monaural speech databases such as WSJ0 [146] may be spatialized with the RIR
recordings from Section 5.3. By permuting the 720 RIRs with the 12776 utterances for training,
more than 9 million training examples can be generated. For a single, monaural speech signal
s(t), spatialization is done using the RIR h(t), i.e.

s(t) = s(t) ~ h(t). (5.16)

With this setup, the required reference signal is given by r(t) = s(t− τ1).

5.5.1 Performance
To demonstrate the dereverberation performance of the TDNBF architecture, we use the same
NN as shown in Figure 5.3. Therefore, the only difference between beamforming and dereverber-
ation is formulated in the training objective. Consequently, the frequency-domain formulation
of the dereverberation NN is identical to the CNBF. As we have already compared the CNBF
against the TDNBF in Section 5.4, we use the WPE algorithm to perform dereverberation in
frequency-domain [141]. Figure 5.5 shows the dereverberation performance of the TDNBF ar-
chitecture for a single speaker. Panel (a) shows the spectrogram of the first channel of the input
z(t,m = 1). Panel (b) shows the dereverberated speaker y(t) using the TDNBF. Panel (c)
shows the dereverberated speaker yWPE(t) using the WPE algorithm. And panel (d) shows the
anechoic reference r(t), which was used as training target for the SI-SDR in Eq. 5.9. It can be
seen that both the TDNBF and WPE methods deliver similar results. However, the TDNBF op-
erates entirely in time-domain, whereas the WPE algorithm operates in the frequency-domain.
The TDNBF achieves a SI-SDR of 10.02 dB, and the WPE algorithm achieves a SI-SDR of
3.41 dB. This low score is due to the fact that the WPE algorithm is unsupervised and cannot
align its output to the reference signal r(t). The TDNBF architecture can be tuned to real-time
operation by using causal Convolutions.
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(a) z(t,m = 1)

(b) y(t)

(c) yWPE(t)

(d) r(t)

Figure 5.5: Dereverberation performance using the TDNBF and WPE approaches. (a) STFT of the first
microphone of the input z(t,m = 1). (b) Dereverberated speaker y(t) using the TDNBF. (c)
Dereverberated speaker yWPE(t) using the WPE algorithm [141]. (d) Anechoic reference r(t).

5.6 Nonlinear Residual Echo Suppression

Another example for cross-domain learning is given by Nonlinear Residual Echo Suppression
(NRES). Here, a speech mask is used to perform SCSE as a neural post-filter for an AEC. In
particular, a NN is trained to suppress audible echo artifacts caused by non-linearities in the
acoustic setup. Typically, an AEC models the acoustic path between a single loudspeaker and
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microphone as a linear FIR filter. The AEC algorithm subtracts an estimate of the echo from
the microphone signal, thereby enabling echo-free voice communication. However, the task of
echo cancellation is complicated by non-linear distortions in the loudspeaker and the amplifier,
and other sources of non-linearities such as structure-borne sounds [7], [45]. These distortions
cannot be modeled by linear filters. Consequently, the performance of an AEC is limited in real-
world applications, resulting in degraded speech quality and intelligibility. Figure 5.6 shows the
block diagram of a NRES system, with the involved signals represented in frequency-domain.
The loudspeaker is excited by the far-end signal X(l, k), which is reverberated by the room
acoustics, i.e. the acoustic echo. Together with the near-end speech signal S(l, k), this echo is
picked up by the microphone, i.e.

D(l, k) = H(k)X(l, k) + S(l, k), (5.17)

where H(k) denotes the Echo Impulse Response (EIR), modeled as linear FIR filter. The linear
AEC estimates the model Y (l, k), which is subtracted from the microphone signal to obtain the
residual signal, i.e.

E(l, k) = D(l, k)− Y (l, k). (5.18)

Both the microphone signal and the residual echo are fed into the NRES, where a speech mask
p(l, k) ∈ [0, 1] is calculated to obtain the enhanced output, i.e.

Z(l, k) = E(l, k)p(l, k). (5.19)

In an ideal, linear setup, the FIR echo model matches the actual echo exactly, i.e. Y (l, k) =
H(k)X(l, k). However, in a real application, non-linearities in the echo path are neglected.
Therefore, postfilter approaches such as power filters [156], [157] and Volterra kernels [158],
[159] have been devised to model these non-linearities with varying degrees of success [160]–
[163]. Similar to beamforming, NNs have outperformed traditional NRES postfilters dramati-
cally [164]–[169].

Figure 5.6: System model of an AEC with a NRES post-filter, with signals in the STFT domain.

In [170], we use a recurrent NN to estimate the real-valued speech mask p(l, k), where the
log-spectrograms of the microphone signal D(l, k) and the residual signal E(l, k) are used as
feature vectors. The approach uses a small NN with one LSTM layer, and two Feed-Forward
layers. Similar to the TDNBF, we formulate the training objective in time-domain. With the
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application of AEC and NRES, there are two optimization goals: (i) During single-talk - i.e.
when the near-end speaker S(l, k) is silent - we want to suppress as much of the echo as possible.
(ii) During double-talk - i.e. when both the far-end X(l, k) and near-end speakers S(l, k) are
overlapping - we want to maximize the intelligibility of the desired near-end speaker. To fulfill
both constraints, we formulate a hybrid objective, i.e.

LSDR = 10log10

∑
T |s(t)|2∑

T |s(t)− z(t)|2
, (5.20)

which maximizes the SDR during double-talk. We do not need the SI-SDR here, as the amplitude
of the enhanced signal is determined by the speech mask, i.e. p(l, k) ∈ [0, 1]. Note that the SDR
also suppresses most of the echo during single-talk. However, the human auditory system is very
sensitive to even the faintest speech artifacts, which might not be suppressed in favor of the main
objective of the SDR. Therefore, we explicitly maximize the Echo Return Loss Enhancement
(ERLE) during single-talk, which is given by

LERLE = 10log10

∑
T |d(t)|2∑
T |z(t)|2

. (5.21)

The hybrid cost function is given as:

LNRES = −LERLE − λLSDR, (5.22)

where the parameter λ allows to adjust the importance of either the ERLE or SDR constraint
during training. By using the concept of cross-domain learning from Section 5.2, we can incor-
porate the gradient of the FFT and iFFT operations to optimize the time-domain cost function
given in Eq. 5.22. Similar to the TDNBF, we can also formulate the NRES postfilter in
time-domain. The required residual signal e(t) from the AEC is already available due to the
zero-padding operations necessary in the block-partitioned, overlap-save AEC implementation
from [171]. The architecture of the time-domain NRES-NN is shown in Figure 5.7. The two
Convolutional layers at the top transform the input signals d(t) and e(t) into a latent space,
where the speech mask p′(l) is calculated. The speech mask is applied in latent space, i.e.

z′(l) = e′(l)� p′(l). (5.23)

The linear layer does not constrain the elements of the speech mask between 0 and 1. Instead, it
allows for an unconstrained speech mask, which removes the signal components corresponding
to the residual echo, which have been identified by the learnable transform in the Convolutional
layers. The amplitude of the enhanced output signal z(t) is determined by the reference signal
s(t) used in the SDR objective given in Eq. 5.20. Finally, the Deconvolution layer transforms
the enhanced signal z′(l) back to time-domain.
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Figure 5.7: NRES architecture in time-domain.

5.6.1 Performance
To test the performance of the NRES system, we use the setup from [170], where 1.75 h of
AEC recordings are obtained from a speakerphone in various hands-free talking scenarios. We
train the NNs of both the frequency- and time-domain NRES on the same data. The echo
model y(t) is obtained by the state-space block-partitioned AEC proposed in [172]. For each of
the 30 s long training examples, we zero-initialize the AEC filter coefficients to train the NN
during both the adaption phase and the stationary phase of the AEC. The ERLE of the AEC
reaches its maximum after approximately 10 s at 19 dB. As a baseline, we compare the NRES
postfilter to a state-of-the-art reference AEC implementation (Speex-DSP) [173]. Speex also
uses a frequency-domain, block-based echo canceler [174], and a residual echo-suppressor. We
configured the same echo-tail length of 512 ms. It can be seen that Speex slightly outperforms
the baseline in all scores. However, the NRES postfilter yields a significant improvement in all
scores in both its time- and frequency-domain implementations.

method ERLE SI-SDR WER
AEC only 19.206 5.454 44.73%
Speex-DSP 21.726 6.716 25.16%
NRES-FD 60.447 14.543 12.56%
NRES-TD 58.864 15.128 13.01%

Table 5.2: ERLE, SI-SDR and WER scores for the time- and frequency-domain NRES postfilter, the refer-
ence system (Speex-DSP) and the AEC without a postfilter as a baseline.

Figure 5.8 demonstrates the performance of both the frequency- and time-domain NRES in
terms of spectrograms. Panel (a) shows the STFT of the microphone signal d(t). Panel (b)
shows the enhanced output zFD(t) of the frequency-domain NRES, while panel (c) shows the
enhanced output of the zTD(t) time-domain NRES, and panel (d) shows the ground truth of
the near-end speaker s(t). It can be seen that the ERLE of zFD(t) is quite high during single-
talk. However, small errors in the speech mask cause audible echo during double-talk, degrading
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(a) d(t)

(b) zFD(t)

(c) zTD(t)

(d) s(t)

Figure 5.8: (a) Microphone signal d(d). (b) Enhanced output of the frequency-domain NRES. (c) Enhanced
output of the time-domain NRES. (d) Ground truth of the near-end speaker s(t).

the overall signal quality. The ERLE of zTD(t) is not as large, but the errors are more evenly
distributed over the spectrogram, resulting in a higher perceived quality. For further details on
the frequency-domain variant of the NRES, we refer the interested reader to Appendix A.9.
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5.7 Conclusion
In this chapter, we introduced the concept of cross-domain learning, which uses the complex-
valued gradient of the FFT and iFFT to allow for a cost function to be defined in time-domain.
This has the advantage of using a performance measure that is better suited for speech quality,
i.e. the SDR, instead of technical measures such as the SNR. This allows to include additional
tasks into the objective of the NN, such as dereverberation. Further, we replaced the FFT
by a learnable transformation, which generates a latent space using Convolutional neural net-
works. We demonstrated the versatility of cross-domain learning with three applications: Neural
beamforming, dereverberation, and residual echo suppression. Each of these applications have
been formulated in both time- and frequency-domain. While the time-domain systems deliver
promising results, they did not significantly outperform their frequency-domain counterparts.
This was also reported in [175]. However, the time-domain approaches offer increased flexibility
in terms of system latency and real-time requirements. So far, the TDNBF solves four of the
six problems stated in the introduction, i.e.

1. Isolate a single speaker from background noise. X

2. Isolate a single speaker from a mixture of multiple speakers. X

3. Track moving speakers. X

4. Isolate and dereverberate a speaker in the far-field. X

5. Separate all speakers in a mixture of multiple speakers.

6. Assign an identity to an isolated speaker.
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6
Blind Source Separation

6.1 Motivation

In the previous chapters, we have covered the evolution of neural beamforming, i.e. beam-
formers supplemented by NN. Starting with mask-based beamforming, we introduced complex-
valued neural beamforming and time-domain neural beamforming. These concepts enable high-
performance front-end systems for human-machine interfaces or teleconferencing systems. Es-
pecially with ASR systems, both speech intelligibility and speech quality play an important role
to ensure a low WER in adverse acoustic environments. However, there are still three open
aspects we have not covered so far:

1. Blind source separation: The speech separation methods discussed so far assume a known
region of interest, where the desired source is required to be located at. However, in
scenarios such as the infamous cocktail party problem, this assumption does not hold as we
have no information about a particular speaker’s location at any given moment in time.
While many existing BSS algorithms are able to separate speakers at unknown locations,
they are often limited to a pre-defined number of sources [26]–[28], [36], [68], [176]. In
practice, the number of speakers in a mixture is often unknown.

2. Speaker tracking: Source separation methods have no means of knowing the identity of
a specific speaker. Especially for moving speakers or meeting room scenarios, it may be
relevant to focus on and isolate a specific speaker, to perform tasks such as ASR. To track
a specific speaker, short blocks of audio have to be analyzed at a time. This implies a
permutation problem at block level, requiring speaker diarization [57], [177], i.e. assigning
a speaker identity to each block of extracted audio.

3. Distant speaker separation: In a close-talking application scenario, the desired speaker is
located in the near-field of the microphone array. Hence, the RIR from the speaker to the
microphone array is short, and there is not much coloration of the extracted speech signal.
However, in many real-world scenarios reverberation and echoes cannot be ignored, which
degrades speech separation, speaker recognition, and ASR performance [151]–[153].

In this chapter, we focus on these three aspects to construct an end-to-end speech separation
system, which is capable to isolate an open number of speakers in the far-field, and which tags
each speaker with a unique identification vector. We refer to this system as the Blind Source
Separation and Dereverberation (BSSD) architecture. In contrast to the similar works men-
tioned above, the BSSD system adheres to application-driven constraints, such as a reverberant
environment with an unknown number of speakers, low latency, and real-time processing using
small blocks of audio at a time.
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6.2 Speaker Localization
In the previous chapters, we used a pre-defined region of interest to isolate a specific speaker
from a multi-speaker mixture. We used a NN to infer this location from a spatially selected
training set, to separate desired from unwanted speaker locations. For separating all sources
in a mixture, this approach cannot be used. Instead, we segment the 3D space around the
microphone array into a finite set of possible speaker locations. In order to do so, we chose to
segment the DOA using spherical coordinates. In particular, we use a spherical segmentation
based on a Fibonacci spiral [178], which equally distributes a given number of points on the
surface of a sphere. This design choice is rooted in the following rationale:

1. A spherical segmentation uses only two angles, i.e. azimuth and elevation, whereas a
cubical segmentation requires three dimensions. This significantly reduces the number of
segments.

2. Source localization is entirely based on the direction of the impinging sound waves, as
shown in Section 2.3. Therefore, it can be treated as a 2D problem. While this introduces
the theoretical possibility of one speaker shadowing another, in practice this hardly ever
happens due to multi-path propagation of the sound waves [11], [60].

3. Source localization based on the direction of a sound source is robust and mostly inde-
pendent of the room acoustics [45]. Therefore, it can be performed unsupervised using
algorithms such as GCC-PHAT.

4. The designated source directions can be pre-calculated as a set of DOA vectors.

These DOA vectors are identical to the steering vectors used for the MVDR beamformer in
Section 2.2.2. We refer to a set of such vectors as the DOA bases. Let us define a set of D
unique DOA bases on a unit sphere around the microphone array, where each impinging sound
wave is modeled as plane wave, i.e.

V (d, k,m) = e−i2πfkτd,m , (6.1)

where fk is the frequency for index k and τd,m is the time delay from a point on the sphere to
the mth microphone, i.e.

τd,m =
√

(xm − xd)2 + (ym − yd)2 + (zm − zd)2

c
, (6.2)

with the speed of sound c. The cartesian coordinates of the mth microphone are denoted by
{xm, ym, zm}, and {xd, yd, zd} are the coordinates of the dth point on the sphere. By using a
Fibonacci spiral [178], these points can be equally distributed on the surface of the sphere, i.e.

φd = g · d,

θd = arcsin d

D − 1 ,

xd = cos θd cosφd,
yd = cos θd sinφd,
zd = sin θd,

(6.3)

where g = π(3 −
√

5) is known as the golden angle, and d = 1 . . . D is the DOA index. We
use a circular microphone array with M microphones [79]. Note that the array is flat, and we
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cannot distinguish between positive and negative z coordinates. It is therefore sufficient to only
use half a sphere for the DOA bases. To assign a DOA vector to a given source, we utilize the
GCC-PHAT [11], i.e.

d = argmax
d

K∑
k=1

|HH(k) · V (d, k)|2
||H(k)||22

, (6.4)

where H(k) represents the RIR of that source, and d denotes the index of the DOA vector
V (d, k) which best matches the direction of the source position. Using Eq. 6.4, we can assign a
DOA index d ∈ {1 . . . D} to each of the 720 recorded RIRs from Section 5.3. Figure 6.1 shows
a histogram using D = 100 DOA bases.

Figure 6.1: Histogram showing the number of RIRs from Section 5.3 assigned to a DOA index d using 6.4.

We again use the GCC-PHAT to estimate a speech presence probability for each time-
frequency bin of a given speech signal Z(l, k), for each DOA position. By comparing each DOA
vector V (d) against the direction of the input vector Z(l, k), we obtain the speech presence
probability γ ∈ [0, 1], i.e.

γ(l, k, d) = |Z
H(l, k) · V (d, k)|2
|Z(l, k)|22

. (6.5)

To increase the spatial selectivity and sensitivity of the GCC-PHAT, we use ZCA whitening
from Section 2.6. In particular, we rewrite Eq. 6.5 as

γU (l, k, d) = |ZH(l, k)UH(k) ·U(k)V (d, k)|2
||U(k)Z(l, k)||22 · ||U(k)V (d, k)||22

, (6.6)

where U(k)Z(l, k) can be recognized as the whitened input mixture, and U(k)V (d, k) as
whitened DOA vector. Note that γU (l, k, d) must not be confused with a speech mask, as
it only evaluates the probability of the signal Z(l, k) originating from direction V (d, k). Next,
we weigh the GCC-PHAT using the signal energy, i.e.

γW (l, k, d) = γU (l, k, d)
M∑
m=1
|Z(l, k,m)|2. (6.7)

This maps the energy of each time-frequency bin of the input signal over each DOA location.
To iteratively estimate the position of all speech sources in a given mixture of multiple speakers
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Z(l, k), we use the pseudo-code in Algorithm 2. First, we copy γW (l, k, d) from Eq. 6.7 into
γ′W (l, k, d). Then, we initialize an empty list of DOA locations D. During each iteration, we
determine the index d̂ of the global maximum of γ′W (l, k, d) over the set of D possible DOAs.
Then, we subtract the weighted GCC-PHAT at that maximum γW (l, k, d̂) from all DOA locations
in γ′W (l, k, :), which is used in the next iteration of the algorithm. This ensures that each speech
source is only extracted once, as we subtract the signal energy towards the direction d̂ from all
locations D. In essence, Algorithm 2 reorders the DOA indices into the list D. However, it does
not simply sort the indices by energy, as multiple DOA locations may share the energy from the
same speaker, due to the limited spatial resolution of the microphone array. Also, the algorithm
does not stop until all D positions are sorted. In the subsequent sections, we use the list of DOA
indices D to extract the correct number of speakers in a given mixture z(t).

Algorithm 2 Source localization
1: γ′W (l, k, d)← γW (l, k, d)
2: D ← []
3: while length(D) < D do
4: d̂← argmax

d

(∑L
l=1
∑K
k=1 γ

′
W (l, k, d)

)
5: D ← append(D, d̂)
6: γ′W (l, k, :)← max

(
γ′W (l, k, :)− γW (l, k, d̂), 0

)
7: end while

6.2.1 Performance

To test the effectiveness of Algorithm 2, we first spatialize some arbitrary WSJ0 recordings using

Z(l, k) = S1(l, k)H1(k) + S2(l, k)H2(k) + S3(l, k)H3(k), (6.8)

to generate a mixture Z(k) containing C = 3 speakers. For the RIRs H{1,2,3}(k), we select
three of the 720 RIR recordings from Section 5.3. For the STFT representation of the signals
in Algorithm 2, we use a window length of 1024 samples and a stride of 256 samples, i.e. an
overlap of 75%. During each iteration of Algorithm 2, we average the weighted speech presence
probability γ′W (l, k, d) over time and frequency, i.e.

γ̄W (d) =
∑L
l=1
∑K
k=1 γ

′
W (l, k, d)∑L

l=1
∑K
k=1

∑M
m=1 |Z(l, k,m)|2

. (6.9)

By plotting γ̄W (d) on the surface of a sphere, we obtain a spatial visualization of the speech
presence probability γU (l, k, d) from Eq. 6.6 for each possible DOA position d. Figure 6.2
illustrates γ̄W (d) in panel (a), (b) and (c) during the three iterations of Algorithm 2. The black
dots indicate the equally distributed DOA positions d ∈ {1 . . . D}, obtained with the Fibonacci
spiral from Eq. 6.3. The angular resolution averages to 13.82◦ between two neighboring points.
The positions of the speakers are labeled with X{1,2,3}, where position X2 and X3 have been
selected so that the respective speakers are standing right next to each other. The color gradient
corresponds to γ̄W (d) from Eq. 6.9, where the D points have been interpolated to fill the
hemisphere. The first iteration of Algorithm 2 is visualized in panel (a). It can be seen that
γ̄W (d) indicates signal activity for all of the three locations X{1,2,3}. The maximum operator
in Algorithm 2 selects the DOA index d̂1, which contributes the most energy to γ′W (l, k, d), i.e.
position X1. Then, it subtracts γW (l, k, d̂1) from γ′W (l, k, d), and executes the second iteration.
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From panels (b) and (c), it can be seen that Algorithm 2 successfully extracts the DOA indices
for all three speaker positions, even though speaker 2 and 3 are standing right next to each
other. In panel (c), a sidelobe [60] of the microphone array can be observed as the white patch
at the far end of the hemisphere. This happens due to multi-path propagations of the sound
waves in a realistic environment, i.e. with recorded RIRs.
Panel (d) shows the spectrogram of the first microphone of the input mixture, i.e. Z(l, k,m =

1). Panels (e), (f) and (g) illustrate the the GCC-PHAT γU (l, k, d̂{1,2,3}) during each iteration of
Algorithm 2. The GCC-PHAT is obtained by inserting the estimated DOA index d̂ into Eq. 6.6.
Despite looking similar, γU (l, k, d) is fundamentally different to a speech mask from Chapter 3,
as it measures the amount of energy originating from the spatial direction indicated by the DOA
index d, while a speech mask captures all time-frequency bins belonging to a specific speaker.
Panel (e) shows γU (l, k, d̂1), which is obtained during the first iteration of Algorithm 2. It can
be seen that there is a large amount of noise, as some time-frequency bins are shared amongst
multiple speakers. Again, this is caused by multi-path propagations in the RIRs, which are
different for each frequency. Therefore, reflections from speakers 2 and 3 are impinging from
the direction d̂1 at certain frequencies, which causes the noise. Further, from panels (f) and
(g) it can be seen that γU (l, k, d̂2) and γU (l, k, d̂3) look very similar. This is due their almost
identical position, and to the limited spatial resolution of the 6-channel microphone array [60].
However, for high frequencies, the differences are more pronounced. This happens because the
wavelength of high frequencies is small compared to the array aperture, resulting in distinct
phase differences.
The spatial resolution of the microphone array is roughly indicated by the size of the red

region in panel (c), where only a single source is left in γ̄W (d). Note that the resolution is not
equally distributed over the sphere, as it depends on the array geometry [60]. For a circular
array, the resolution is highest for an azimuth of θ = ±90◦, i.e. the poles of the sphere. Even
though the spatial resolution of the microphone array is relatively low, and two speakers are
standing right next to each other, Algorithm 2 is still able to separate all three speakers. It
assigns three distinct DOA indices d̂{1,2,3} to the speakers, which is all we are interested in at
this stage of the BSSD system.
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(a) γ̄W (d) at iteration 1 (b) γ̄W (d) at iteration 2 (c) γ̄W (d) at iteration 3

(d) Z(l, k,m = 1)

(e) γU (l, k, d̂1) at iteration 1

(f) γU (l, k, d̂2) at iteration 2

(g) γU (l, k, d̂3) at iteration 3

Figure 6.2: Speaker localization using Algorithm 2. (a) γ̄W (d) at iteration 1. (b) γ̄W (d) at iteration 2. (c)
γ̄W (d) at iteration 3. (d) Spectrogram of the first channel of the input mixture Z(l, k,m = 1).
(e) Speech presence probability γU (l, k, d̂1). (f) γU (l, k, d̂2). (g) γU (l, k, d̂3).
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6.3 Selective Attention
In Section 6.2, we used a set of predefined DOA vectors to localize up to D independent sound
sources. For each identified source, i.e. speaker, a DOA index is obtained from Algorithm 2.
With this index, the direction of the source is given by the DOA vector V (d̂, k). Now, we will
use this vector to extract the speaker positioned at this location.
In Section 4.4 we introduced the CNBF which extracts a speaker at a certain region of interest,

i.e. a pre-defined location. We can re-use this concept by modifying the input signal Z(l, k), so
that the desired speaker at location V (d̂, k) is always in a virtual region of interest. In particular,
we employ the DOA vector to modify the phase of the input signal, so that the IPDs are zero for
the desired speaker, and non-zero for other signal components. This moves the desired speaker
into the center of the microphone array, i.e.

Z̃(l, k) =
(
U(k)V (d̂, k)

)∗ � (U(k)Z(l, k)
)
, (6.10)

where U(k) denotes the whitening matrix from Section 2.6. When the multi-channel phase
of Z(l, k) is identical to the phase of the DOA vector V (d̂, k), the IPDs of Z̃(l, k) will be
zero. Consequently, signal components located at different positions will have non-zero IPDs.
We can train a NN such as the CNBF or TDNBF to extract a speaker whose IPDs are zero.
Clearly, this concept neglects the case when two speakers are positioned in such a way that their
relative direction towards the microphone array is identical, i.e. one speaker is shadowing the
other. However, due to multi-path propagations in the RIRs, there will always be some minor
differences in the IPDs for signals impinging from different locations, even when they are very
close to one another, as shown in Figure 6.2. Due to these differences, Algorithm 2 is able to
detect multiple source locations.
However, instead of modifying the phase of the input with the DOA vector V (d̂, k), it is also

possible to modify the input directly with a set of trainable NN weights, i.e.

Z̃(l, k) = A(d̂, k)Z(l, k), (6.11)

where A denotes a complex-valued tensor of shape D ×K ×M ×M . It allows to scale, shift
and mix the M channels of the complex-valued inputs Z(l, k) freely. Therefore, the tensor can
learn the same transformation as in Eq. 6.10, and a dedicated whitening step is not required.
However, to train all the weights in the tensor, examples for all D possible DOAs must be
presented to the NN. To distinguish both approaches, we refer to Eq. 6.10 as Analytic Adaption,
and to Eq. 6.11 as Statistic Adaption.
Both the analytic and statistic adaption can also be performed in time-domain, to be used

with the TDNBF architecture. It can be seen that Eq. 6.11 represents a matrix-vector product
in frequency-domain. Therefore, an identical operation can be formulated in time-domain using
FIR filters, i.e.

z̃(t,m) =
M∑
i=1

z(t, i) ~ a(d̂, tA,m, i), (6.12)

where a is a tensor of shape (D,TA,M,M), and TA is the filter length of the learnable convolution
kernels. This filter operation can be implemented using a single convolution layer. Similar to
the frequency-domain, Eq. 6.12 synchronizes the ITDs of the input signal to be zero for signals
originating from the direction of V (d̂), i.e. the desired speaker. For the analytic adaptation in
time-domain, we refer the interested reader to Appendix A.10.
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6.4 Speaker Identification
For the BSSD system to be useful in a real-world application such as meeting room or cocktail-
party scenarios, it is essential to know the identity of the extracted speaker. This allows the
algorithm to be executed in real-time applications, where small blocks of audio are processed
at a time. With the identity of the speaker, it becomes possible to decide whether two blocks
of extracted speech belong to the same speaker, or to different speakers. This process is known
as speaker diarization [57], [177]. Ideally, a speaker identification algorithm is agnostic to the
spoken text, and only relies on the speaker characteristics in the extracted signal. For this
purpose, embedding vectors may be used to map utterances into a feature space where distances
correspond to speaker similarity [179]. Typically, i-Vectors [148] or x-Vectors [149] are used for
this task. Algorithms such as Deep Speaker [150] rely on contrastive loss or triplet loss to learn
embeddings on a very large set of speakers [166], [180]–[182].
In the near-field of the microphone array, speaker identification algorithms relying on embed-

ding vectors deliver impressive results [148]–[150]. However, speaker recognition in the far-field
remains a challenging task, as the spectrogram is smoothed out by reverberations of the acoustic
environment [151]–[153]. By including the dereverberation objective for the TDNBF architec-
ture from Section 5.5, we obtain the isolated and dereverberated speaker yd̂(t) at the DOA
position V (d̂, k). We denote the identity of this speaker by the E dimensional embedding vector
ed̂. This embedding vector maps the utterance into a feature space where distances correspond
to speaker similarity [179]. The embedding vector is obtained using a NN, which is trained on
the log-power spectral density log

(
|Yd̂(l, k)|2

)
of the extracted speech signal. The structure of

this NN is given in Figure 6.3.
As we want to identify an open set of speakers, we need to be able to compare two random

utterances and determine whether they belong to the same speaker or not. Further, we want
to use small batch sizes to train the whole BSSD network in an end-to-end fashion. Therefore
we employ the triplet loss [180], which has been successfully used for speaker identification and
diarization tasks [150], [166], [181], [182]. The triplet loss performs well on small batch sizes [183].
The aim of the triplet loss is to ensure that two utterances from the same speaker have their
embeddings close together in the embedding space, and two examples from different speakers
have their embeddings farther away by some margin β. This criterion causes the embeddings of
the same speaker to form clusters, and these clusters are separated by the margin, i.e.

LTL =
∑
B′3

[
||ea − ep||2 − ||ea − en||2 + β

]
+
, (6.13)

where the embedding ea denotes an anchor, ep is an embedding from the same speaker as the
anchor (positive example), and en is an embedding from a different speaker (negative example).
In a batch of B′ utterances, there can be as much as B′3 triplets. It is therefore crucial to
only select a subset of valid triplets, where the positive example is from the same speaker as
the anchor, and the negative example belongs to a different speaker. Further, we only need to
consider triplets where the loss LTL is actually greater than zero. To select relevant triplets, we
utilize Hard Triplet Mining [184], where we select the hardest positive and negative example per
anchor. In particular, we randomly select P utterances from B speakers, where we determine the
largest distance ||ea − ep||2 between an anchor and a positive example within the P utterances
per speaker, and the smallest distance ||ea − en||2 between an anchor and a negative example
from the P (B − 1) remaining utterances. More formally, this procedure can be written as:

LTL-HTM = 1
B · P

B∑
i=1

P∑
a=1

[
β + max

p=1...P

(
||eia − eip||2

)
− min

j=1...B
n=1...P
i 6=j

(
||eia − ejn||2

)]
+
. (6.14)
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When the batch size B · P is small, the embeddings may collapse into a single point during
training [185]. To avoid this, we propose to minimize the cross-entropy between embeddings of
different speakers as follows:

LTL-CE = −1
(B2 −B)P 2

B∑
a=1

B∑
n=1
n6=a

P∑
i=1

P∑
j=1

log
(
|(ẽia)T ẽjn|2

)
, (6.15)

where ẽ = e
||e||2 is the magnitude-normalized embedding vector e. This regularization ensures

that the embeddings ea and en will be different. The cost function for the speaker identification
NN is then defined as:

LTL = λ1LTL-HTM + λ2LTL-CE, (6.16)

where λ1 and λ2 are weights for the individual terms of the triplet loss.

6.4.1 Distance Measure

In order to determine whether two embeddings e1 and e2 belong to the same speaker, we use the
euclidian distance from Eq. 6.13, i.e. ||e1 − e2||2. If the distance falls below a certain threshold
δ, we consider the two embeddings to belong to the same speaker. If it exceeds the threshold, the
respective speakers are considered to be different. Hence, two types of errors exist: (i) A false
positive is triggered when two embeddings from two different speakers are incorrectly classified
as belonging to the same speaker, which is measured using the False Acceptance Rate (FAR),
i.e.

FAR(δ) = 1
(B2 −B)P 2

B∑
a=1

B∑
n=1
n6=a

P∑
i=1

P∑
j=1

1
(
||eia − ejn||2 < δ

)
. (6.17)

(ii) A false negative is triggered when two embeddings from the same speaker are classified as
belonging to different speakers, which is measured using the False Reject Rate (FRR), i.e.

FRR(δ) = 1
B(P 2 − P )

B∑
a=1
p=a

P∑
i=1

P∑
j=1
j 6=i

1
(
||eia − ejp||2 > δ

)
. (6.18)

It can be seen that the FAR increases with the decision threshold δ, and the FRR decreases.
The value at which the FAR and FRR are equal, is known as the Equal Error Rate (EER). It
is determined by:

δ̂ = argmin
δ

(
|FAR(δ)− FRR(δ)|

)
EER = FAR(δ̂) = FRR(δ̂),

(6.19)

where δ̂ is considered as the optimal threshold belonging to the EER. We use this threshold to
determine whether two embeddings e1 and e2 belong to the same speaker, by using the euclidian
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distance as shown above, i.e.

pδ̂(e1, e2) = 1
(
||e1 − e2||2 < δ̂

)
, (6.20)

where a value of 1 indicates the same speaker, and a value of 0 indicates two different speakers.

6.5 BSSD Architecture
With the TDNBF beamformer defined in Section 5.4, the statistic adaption defined in Eq. 6.12,
and the SI-SDR objective defined in Eq. 5.9, we can extract and dereverberate the speaker at
the DOA V (d̂, k). Further, by assigning a unique embedding vector ed̂ to each extracted speaker
using the triplet loss from Eq. 6.16, we can identify each of the extracted speakers. In this last
step, we construct a monolithic structure with all of these building blocks to train the BSSD
network in an end-to-end fashion.
Figure 6.3 illustrates the structure of the BSSD architecture. The left branch performs beam-

forming and dereverberation, using the TDNBF beamformer from Section 5.4. The adaption
layer at the top implements Eq. 6.12, followed by a convolutional layer, which transforms time-
domain input z̃(t) into a latent space z′(l) with L frames and H filters. The filter kernels have
a length of KBF frames, and a stride of SBF . The activation function of this Convolution layer
is linear. The beamforming weights w′(l) are predicted from the spatial information embedded
in z′(l, h). This information is extracted by a bidirectional LSTM layer, a Feed-Forward (Dense)
layer with a tanh activation, and a linear layer. The linear layer allows the NN to freely chose
the amplitude and phase of the beamforming weights. The layer normalization in front of the
bidirectional LSTM layer normalizes the mean and variance of the data to 0 and 1, respectively.
This helps the NN to focus on the ITDs, instead of the magnitude of the speech signal. The
enhanced output y′

d̂
(l) is obtained by

y′
d̂
(l) = w′(l)� z′(l), (6.21)

where all variables are of shape L×H. Finally, a Deconvolution layer with the same parameters
as the Convolution layer produces the enhanced time-domain signal yd̂(t). The right branch
illustrates the structure of the speaker identification NN, which extracts the embedding vector
ed̂. It consists of a series of 6 convolutional layers with a filter length of KID frames, a stride
of SID, and increasing dilation factors of (1,2,4,8,16,32) frames. These layers output a latent
space of L × E dimensional embeddings. Each convolutional layer uses a softplus activation
function and layer normalization. A skip connection is added between every two convolutional
layers. Then, the L time frames are averaged to obtain a single, E dimensional embedding for
the whole utterance, using an averaging pooling layer. The linear layer at the end of the stack
outputs the unconstrained embedding vector ed̂. The overall cost function of the BSSD network
is given by combining the triplet loss given in Eq. 6.16, and the dereverberation loss given in
Eq. 5.15, i.e.

LBSSD = LSI-SDR + λ1LTL-HTM + λ2LTL-CE, (6.22)

where λ1 and λ2 are weights for the components of the triplet loss.
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Figure 6.3: Architecture of the BSSD network. The left branch performs beamforming and dereverberation,
and the right branch performs speaker identification. The symbols next to each layer denote the
dimensionality of the respective output tensor.

6.5.1 Speaker Extraction
With the complete BSSD architecture shown in Figure 6.3, we can formulate an algorithm to
extract the correct number of speakers from a given mixture z(t). First, we initialize an empty
list of extracted speech signals Y, and an empty list of speaker embeddings E . Next, we iterate
over the list of DOA indices D, which is obtained from Algorithm 2. Next, the input mixture
z(t) and the current DOA index d̂ are used as input to the BSSD network, which predicts an
isolated and dereverberated speech signal yd̂(t), and an embedding vector ed̂ to identify the
speaker corresponding to that speech signal. Then, we use the distance measure pδ̂(E , ed̂) from
Eq. 6.20 to determine whether the newly found speaker embedding ed̂ is already a member of
the list E . If pδ̂ returns 0, a new speaker has been found. The algorithm stops as soon as pδ̂
returns 1, i.e. a duplicate of an existing speaker has been found. This ensures that each speaker
is only extracted once. A single speech signal may be "seen" from different directions, due to
reflections and sidelobes in the RIRs [11]. Algorithm 3 shows the pseudo-code to illustrate the
speaker extraction process.
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Algorithm 3 Speaker extraction
1: E ← []
2: Y ← []
3: for d̂ in D do
4: yd̂(t), ed̂ ← BSSD(z(t), d̂)
5: if pδ̂(E , ed̂) == 0 then
6: Y ← append(Y, yd̂(t))
7: E ← append(E , ed̂)
8: else
9: break

10: end if
11: end for

6.5.2 Experiments

Experimental Setup

We use the WSJ0 speech database which contains 12776 utterances from 101 different speakers
for training, and 5895 utterances from 18 different speakers for testing. To generate mixtures
with 1 to 4 speakers, we use Eq. 5.4, and the 720 recorded RIRs from Section 5.3. From the
720 RIRs available, 640 are used for training, and 80 for testing. All recordings use a sample
rate of fs = 16 kHz. For the DOA vectors V (d, k), we use a set of D = 100 bases, which
are equally distributed on a sphere, as shown in Figure 6.2, panel (a). This provides sufficient
spatial resolution to separate speakers standing right next to each other. By using Eq. 6.4, we
assign a DOA index d to each of the 720 RIRs.
Next, we use Algorithm 2 to extract the corresponding DOA indices d̂ for each of the C

speakers. Then, the beamforming branch of the BSSD network in Figure 6.3 isolates and dere-
verberates the speaker at the position corresponding to d̂ from the noisy input mixture z(t).
The NN uses a latent space of H = 500 neurons to predict the beamforming weights w′(l).
Then, the enhanced signal y′

d̂c
(l) is calculated with Eq. 6.21. Finally, the identification branch

of the BSSD network predicts the speaker embedding ed̂ from the enhanced signal y′
d̂c

(l) in
latent space. Table 6.1 shows all hyper-parameters used for the BSSD network in Figure 6.3.

description parameter value
block length for 5s of audio sampled at fs = 16kHz T 80,000
number of microphones M 6
number of DOA bases used for speaker localization D 100
total number of frames in latent space L 1600
speaker embedding dimension E 100
number of Conv/Deconv filters in the beamforming branch H 500
filter length of the Conv/Deconv layers in the beamforming branch KBF 200
stride of the of the Conv/Deconv layers in the beamforming branch SBF 50
filter length of the Adaption layer (see Eq. 6.12) TA 200
filter length of the Conv layers in the identification branch KID 10
stride of the Conv layers in the identification branch SID 1
number of different speakers in a single training batch B 20
number of utterances per speaker in a single training batch P 3

Table 6.1: Parameters of the BSSD network shown in Figure 6.3.
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Training

The BSSD network is trained on mixtures of C = 2 sources, where each mixture z(t) =∑C
c=1 sc(t) ~ hc(t) is truncated to 5 s length. The RIR hc(t) is chosen randomly for each

example, so that all possible DOA locations are trained in the statistic adaption layer in Eq.
6.12. We use a batch size of 60 mixtures from the 101 speakers of the WSJ0 training set. To
enable efficient triplet mining with Eq. 6.14, we use P = 3 different utterances from B = 20
speakers for the first source sc=1(t) of each mixture. The second source sc=2(t) is chosen ran-
domly from the remaining 100 speakers from the WSJ0 training set. We use the clean, anechoic
first source as reference utterance, i.e. r(t) = sc=1(t − τ1). The ground truth DOA index d̂ is
used to train the network. During testing, Algorithm 2 is used to obtain an estimate of the DOA
index d̂. We use λ1 = 10−2 and λ2 = 10−4 for the cost function in Eq. 6.16. This ensures that
the beamforming branch is trained faster than the identification branch, as the latter depends on
the former. As the combination of the different RIRs and WSJ0 utterances allows for millions
of combinations, we randomly create new batches for training and validation for each epoch.
ADAM is used as optimizer [116], with a learning rate of 10−3.

Performance

Table 6.2 reports the SI-SDR, WER and EER scores. We use the Google Speech-to-Text API
as ASR system [130]. In its current version, this ASR framework reports a WER of 5.6% for
the anechoic WSJ0 test set (si_et_05). For C = 1 speaker, the BSSDs models only performs
dereverberation. It can be seen that the WER for this case is close to the anechoic ground
truth, which indicates that this ASR system was explicitly trained on reverberated speech.
Further, both the WER and EER scores are the lowest for one speaker. This is to be expected,
as no interfering components of other speakers reduce the intelligibility of the single speaker.
Consequently, the embeddings ed̂ exhibit the best identification performance. For more speakers,
the scores degrade gradually. The SI-SDR and the WER drop noticeably faster than the EER.

C SI-SDR WER EER
1 14.40 dB 5.72 % 2.89 %
2 9.33 dB 26.19 % 5.75 %
3 7.92 dB 42.32 % 7.28 %
4 6.84 dB 56.57 % 9.39 %

Table 6.2: Performance of the time-domain BSSD network on C = {1, 2, 3, 4} speakers.

Figure 6.5 shows the separation performance of the BSSD network for C = 3 sources. We used
the same speakers and the same spatial arrangement as in Figure 6.2, where speaker 2 and 3
are standing right next to each other. Panel (a) shows the spectrogram of the first channel of
the input mixture z(t,m = 1). Panel (b) illustrates the spectrogram for the reference signal for
the first speaker, i.e. r1(t). Panels (c), (d) and (e) show the spectrograms of the isolated and
dereverberated sources y{1,2,3}(t), respectively. It can be seen that all three speakers are clearly
separated from one another, and dereverberated, i.e. the smoothening of the spectrogram over
time has been removed. The SI-SDR for the enhanced outputs y{1,2,3}(t) is 9.36 dB, 8.44 dB
and 7.81 dB, respectively. The third speaker has the lowest score, as there are small artifacts
from the second speaker, which can be seen in panel (e).
Figure 6.4 illustrates the performance of the BSSD network during training. Panel (a) shows

the loss LSI-SDR from Eq. 5.9 versus training epochs. It can be seen that the SI-SDR settles
at around 10 dB after 4 · 104 epochs. Panel (b) shows the EER from Eq. 6.19 versus training
epochs. The EER drops to approximately 2% after 4 · 104 epochs. As the speaker identification
branch depends on the beamforming branch of the BSSD, the EER does not decrease until the
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SI-SDR is at a certain level, i.e. speaker separation has to work before speaker identification
can take place. Panel (c) shows the FAR and FRR from Eq. 6.17 and 6.18 versus the threshold
δ, after 105 training epochs. Both rates are equally low at δ ≈ 3.1, enabling the EER to be
as low as 2%. For further experiments, as well as the frequency-domain formulation of the
BSSD network, and the application as a block-online diarization system, the interested reader
is referred to Appendix A.10.

(a) LSI-SDR

(b) EER

(c) FAR and FRR

Figure 6.4: Performance of the BSSD network during training. (a) Loss LSI-SDR from Eq. 5.9 versus
training epochs. (b) EER from Eq. 6.19 versus training epochs. (c) FAR and FRR from Eq.
6.17 and 6.18 versus the threshold δ, after 105 training epochs.
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(a) z(t,m = 1)

(b) r1(t)

(c) y1(t)

(d) y2(t)

(e) y3(t)

Figure 6.5: Isolated and dereverberated speakers of a mixture with C = 3 speakers, using the BSSD network.
(a) Spectrogram of the first microphone of the input z(t,m = 1). (d) Reference signal r1(t). (c)
Isolated source y1(t). (d) y2(t). (e) y3(t).
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6.6 Conclusion
In this chapter, we introduced the BSSD network, which is able to separate, dereverberate,
and diarize an unknown number of speakers from a given mixture of multiple, overlapping
speakers. The BSSD architecture consists of three modules with dedicated tasks: (i) source
localization, (ii) beamforming and dereverberation, (iii) and speaker identification. The source
localization module operates unsupervised, i.e. by relying on a set of pre-defined DOA vectors,
which are compared against the input signal to identify a set of candidate source positions. The
beamforming and dereverberation module uses the TDNBF beamformer from Chapter 5, to
extract and dereverberate a speech source at a given source position. The speaker identification
module assigns an embedding vector to an extracted speech signal, which allows to re-identify
a speaker along consecutively processed blocks of audio. The interaction of these three modules
enables a monolithic, end-to-end training of the entire BSSD network. We have shown that this
architecture is capable of separating up to four speakers, even when they are standing close to
one another. By using block processing [53], it is possible to solve the cocktail party problem
for both static and moving speakers [58]. Therefore, the BSSD architecture solves all of the six
problems stated in the introduction, i.e.

1. Isolate a single speaker from background noise. X

2. Isolate a single speaker from a mixture of multiple speakers. X

3. Track moving speakers. X

4. Isolate and dereverberate a speaker in the far-field. X

5. Separate all speakers in a mixture of multiple speakers. X

6. Assign an identity to an isolated speaker. X
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7
Discussion and Outlook

In this thesis, we addressed six major problems in speech enhancement and speaker separation.
We provided the mathematical foundation to solve all of these problems by utilizing the rich
toolkit of classical signal processing and machine learning. We took inspiration from basic
beamforming principles, as well as complex analysis and deep neural networks to tackle the
cocktail party problem. Throughout this work, we provided solutions to four topics in the field
of neural beamforming: (i) Mask-based beamforming, (ii) Complex-valued neural beamforming,
(iii) Time-domain neural beamforming, (iv) and blind source separation. Each of these topics
has its dedicated chapter, where we presented our contributions and insights. Here we summarize
our most interesting findings and discuss how we advanced the field of speech enhancement and
speaker separation.

• Mask-based Beamforming: Mask-based beamforming provides a convenient way to
extract a single speaker from background noise. It has the distinct advantage of using a
simple neural network to estimate a speech mask, and there is no need to change any of
the well-established beamforming principles formulated in frequency-domain. However, the
neural network does not utilize the phase information in the microphone signals, thereby
neglecting spatial information. With the Eigennet beamformer, we provide this spatial
information as an additional input to the neural network. We utilize the Eigenvector
of the PSD matrix of the noisy input, which points towards the desired single speech
source in signal subspace. Further, we formulated a multi-speaker variant of the Eigennet,
which uses the normalized phase of the STFT representation of the noisy input signals.
The phase normalization helps the neural network to detect phase changes, and thereby
differences between multiple signal sources. Lastly, we introduced the concept of spatial
whitening, which decorrelates the microphone inputs. Spatial whitening increases the
spatial selectivity of any given microphone array, under the assumption of the ideal diffuse
noise sound field. This benefits source localization algorithms, beamformers, postfilters,
and the learning rate of neural networks, as was shown throughout this work.

• Complex-valued Neural Beamforming: While mask-based beamforming requires sta-
tionary speakers, the Eigennet allows for a limited degree of speaker movement, i.e. using
block processing. With complex-valued neural beamforming, this limitation can be alle-
viated. In contrast to a statistical beamformer, our CNBF architecture is able to predict
a set of individual beamforming weights for each time frame. This enables the neural
network to quickly react to changes in the speaker’s position and movement. Further, the
CNBF directly optimizes the max-SNR objective of the beamformer, instead of optimizing
a speech mask. Consequently, it outperforms both traditional beamformers and mask-
based approaches. As the prediction of beamforming weights requires complex-valued
neural networks, we employed the Wirtinger calculus to create complex-valued recurrent
network layers and non-holomorphic activation functions. As Wirtinger calculus is hardly
supported by any major machine learning framework, we implemented both the forward
and backward paths of numerous non-holomorphic functions required for beamforming.

• Time-domain Neural Beamforming: We introduced cross-domain learning as a nat-
ural extension to complex-valued neural beamforming. By including the gradient of both
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7 Discussion and Outlook

the FFT and iFFT into a neural network, we can formulate a training objective purely
in time-domain. This suggests to formulate the entire beamformer in time-domain, using
neural networks to directly synthesize the desired output signal. This approach is com-
pletely detached from the physical representation of sound waves, or any beamforming
algorithm. Instead, the neural network learns a latent representation that is optimized
to solve a given problem. We demonstrated the versatility of this approach by conduct-
ing three experiments: (i) We formulated the TDNBF architecture, which performs the
same tasks as the CNBF, but in time-domain instead of the frequency-domain. (ii) We
performed dereverberation by using an anechoic reference signal in the training objec-
tive of the TDNBF, which provided competitive results compared to the WPE algorithm.
(iii) Inspired by single-channel speech enhancement, we devised a postfilter to suppress
non-linear residual echoes in an AEC application, which we termed NRES. Here, we also
compared both time- and frequency-domain approaches.

• Blind Source Separation: Finally, we proposed a monolithic, all-in-one solution to
perform multi-speaker separation, dereverberation and diarization using a single neural
network, termed the BSSD architecture. As there are only little constraints on the number
or the location of the involved speakers, this approach solves the cocktail party or meeting
room problem. Speaker separation is achieved by using an analytic or statistic adaption
layer, which virtually moves a speech source to the coordinate origin of the microphone
array, from where it is extracted using a neural network in time-domain. This process
only depends on a single DOA vector, which is identified by a specialized variant of the
GCC-PHAT. Signal dereverberation is done by the dereverberation constraint formulated
for the TDNBF, which simultaneously performs speaker separation and dereverberation.
Finally, speaker diarization is built upon embedding vectors and the triplet loss, which we
modified to cope with small batch sizes and short utterances.

While each of our contributions provided new findings and insights, they also gave rise to
new questions and future research topics: With cross-domain learning, we can incorporate the
SI-SDR objective into the neural network. While this objective is loosely related to signal
intelligibility, there is no relation to signal quality. Measures such as PESQ or PEASS try to
address this shortcoming. However, these measures cannot be used to optimize a neural network.
It would be beneficial to have a subjective quality measure that provides a gradient, so that we
can incorporate it into the training objective of a neural network. While Generative Adversarial
Networks (GANs) provide a promising ansatz, there is yet a long way to go.
Non-linear residual echoes are challenging to model and hard to remove in a real-world AEC

application. While the NRES provides a small and efficient neural network to remove the echo
artifacts, the AEC itself is still formulated in frequency-domain, using a FIR filter with thousands
of taps to model the echo tail. Our findings with the NRES experiment strongly suggest that a
significantly shorter filter would be sufficient, if the gradient of the AEC itself was incorporated
into the neural network. In frequency-domain, this can be done using Wirtinger calculus. In
time-domain, this can be done using a latent representation similar to the TDNBF.
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ABSTRACT

In this paper, we present a multi-channel Directional-to-
Diffuse Postfilter (DD-PF), relying on the assumption of a
directional speech signal embedded in diffuse noise. Our
postfilter uses the output of a superdirective beamformer like
the Generalized Sidelobe Canceller (GSC), which is pro-
jected back to the microphone inputs to separate the sound
field into its directional and diffuse components. From these
components the SNR at the output of the beamformer can
be derived without needing a Voice Activity Detector (VAD).
The SNR is used to construct a noise cancelling Wiener fil-
ter. In our experiments, the developed algorithm outperforms
two recent postfilters based on the Transient Beam to Refer-
ence Ratio (TBRR) and the Multi-Channel Speech Presence
Probability (MCSSP).

Index Terms— beamforming, multi-channel postfilter,
diffuse sound field

1. INTRODUCTION

Speech intelligibility is a paramount issue in modern telecom-
munication systems. In many applications, background noise
is the primary source of speech degradation. While single-
channel speech enhancement systems require an inherent
trade-off between noise reduction and speech quality, multi-
channel speech enhancement systems also exploit the spatial
information of the sound field and, thereby achieve a better
performance. For this purpose, superdirective beamformers
like the Generalized Sidelobe Canceller (GSC) [1, 2] in con-
junction with multi-channel postfilters have gained the most
attraction over the last decade. In this paper we assume a
diffuse noise sound field, which can be found in a wide range
of applications, such as car interiors, subway stations or
roadside emergency telephones [3]. Further, we assume that
the speaker is located close to the array, resulting in strong
directional components in the Acoustic Transfer Functions
(ATFs). We therefore model the ATFs as simple time delays,
which can be identified by estimating the Direction of Arrival
(DOA) using one of the algorithms discussed in [4]. The
assumption of a diffuse noise sound field has already been
used in postfilter concepts like [3] and [5], where a Wiener

postfilter is derived from the speech and noise Power Spectral
Densities (PSDs) at the beamformer output. However, many
of these postfilters rely on a VAD and an accurate speech
PSD estimate. A comprehensive overview of these methods
is given in [6].

Our Direct-to-Diffuse Postfilter (DD-PF) algorithm es-
timates the SNR at the beamformer output by splitting the
sound field at the microphones into its directional and diffuse
components, using only the assumption of a diffuse noise
field. This approach is inspired by the Signal to Reverberant
Ratio (SRR) [7] and the multi-channel SNR in [8]. Other
approaches to multi-channel postfilters are, for example: the
Transient Beam to Reference Ratio (TBRR) [2], which relies
on the ratio of transient energies in the beamformer output
and in the output of the blocking matrix. These transient
energies are determined using noise floor estimates in both
the beamformer output and the blocking matrix outputs. The
Multi-Channel Speech Presence Probability (MC-SPP) [8]
algorithm can also be used without a beamformer, as it di-
rectly estimates the noise PSD matrix based on an a-priori
speech presence probability and recursive averaging. In a
similar approach given by [9], the SRR is mapped into a
speech absence probability (SAP) used for recursive noise
PSD estimation. Unlike these approaches, the performance
of our postfilter only depends upon target leakage in the
blocking matrix, and the diffuse noise field assumption.

This paper is organized as follows: Section 2 verifies the
assumptions about the sound fields. Section 3 introduces the
signal model and the beamformer. The DD-PF is derived
in Section 4. Section 5 presents the experimental setup and
performance results, where our postfilter is compared with
two other approaches: the TBRR [2] and the MC-SPP [8].
The performance and speech quality is evaluated by using the
Perceptual Evaluation Methods for Audio Source Separation
(PEASS) Toolkit [10, 11]. Section 6 concludes the paper.

2. VERIFICATION OF THE SOUND FIELDS

In our setup, we assume a hands-free telephone situated in a
noisy environment. In such a scenario, the speaker is located
much closer to the microphone array than the noise source(s).
Hence, a mostly directional speaker sound field and a diffuse
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noise sound field is expected. To verify these assumptions,
we placedM = 4 microphones in a linear array with an inter-
microphone distance of d = 5 cm. The array is located in a
5 × 8 m wide hall with a RT60 ≈ 550 ms (see Figure 1).

Fig. 1. Setup with a linear array consisting of M = 4 micro-
phones at an inter-microphone distance of d = 5 cm.

To simulate the speaker, a loudspeaker is placed at a dis-
tance of 0.5 m at a DOA of 0◦ in front of the array. For the
diffuse background noise, a second loudspeaker is placed 5
m away from the array. Using the MLS technique for room
impulse measurement [12], it can be verified that the speaker
sound field has a strong directional component and the noise
sound field is mainly diffuse. Figure 2 shows the squared co-
herence for both scenarios. This result is similar to [3].

Fig. 2. Measurement of the squared coherence using the first
two microphones for the loudspeaker at the position of (a) 0.5
m and (b) 5 m.

3. SIGNAL MODEL

In Figure 1 we denote the ambient noise at the mth micro-
phone as nm(t), and the ATF from the speaker to the mth mi-
crophone as am(t). With these definitions, the signal model
can be written as zm(t) = am(t) ∗ s(t) + nm(t) in time-
domain. In the fourier-domain Zm(jΩ) = Am(jΩ)S(jΩ) +
Nm(jΩ). Covering all M microphones, the signal model can
be written in a more compact vector notation as

Z(jΩ) = A(jΩ)S(jΩ) + N(jΩ). (1)

While the proposed postfilter can be used in conjunction with
any beamformer, we used the GSC for both its robustness
and simplicity. It has been implemented as suggested in [2,
13, 14]. Its filter weights are given as W (jΩ) = F (jΩ) −
H(jΩ)B(jΩ), with the delay and sum beamformer F (jΩ),
the blocking matrix B(jΩ) and an adaptive interference can-
celer H(jΩ).

Due to the mainly directional speaker sound field encoun-
tered in Section 2, we modeled the ATFs as simple time de-
lays, i.e. Âm(Ω) = ejkdm sin Θ, where k = ω

c is the wave
number, dm is the distance between the mth microphone and
an arbitrary reference point [1], and c is the speed of sound.
Since the blocking matrix depends on the ATFs, target leak-
age might occur as a consequence of undermodeling, result-
ing in a degraded speech signal at the GSC output. However,
we found the signal blocking factor [15] to be about 16dB in
our experiments, which seems quite sufficient.

If the beamformer is steered towards the speech source,
e.g. Â(jΩ) ≈ A(jΩ), all sounds originating from that di-
rection are allowed to pass, since WH(jΩ)Â(jΩ) ≈ 1. This
includes the speaker signal, and the portion of the noise im-
pinging from that direction [1]. The beamformer output can
therefore be written as

Y (jΩ) = WH(jΩ)Z(jΩ)

= Ŝ(jΩ) + WH(jΩ)N(jΩ),
(2)

where Ŝ(jΩ) is the estimate of the speech source, and
WH(jΩ)N(jΩ) is the noise component coming from the
direction of the speaker.

4. MULTI-CHANNEL POSTFILTER

Our DD-PF algorithm estimates the SNR at the beamformer
output without the need for a speech PSD estimate or a VAD.
This is achieved by back-projecting the GSC output Y (jΩ) to
the microphone signals Z(jΩ) using the ATF model Â(jΩ),
we obtain

Ẑ ′ = ÂY = ÂŜ + ÂWHN ,

Ẑ ′′ = Z − Ẑ ′ ≈ [I − ÂWH ]N ,
(3)

assuming ÂŜ = AS. This assumption holds if the target
leakage in the blocking matrix is low. The frequency argu-
ment jΩ has been omitted for brevity. It can be easily seen
that Ẑ ′ denotes the directional signal components, and Ẑ ′′

the remaining diffuse components. Due to statistical inde-
pendence of the speech and the noise signal, the spatial PSD
matrices of Ẑ ′ and Ẑ ′′ can be written as

ΦẐ′Ẑ′ = ÂΦŜŜÂ
H + ÂWHΦNNWÂH

= ΦŜ′Ŝ′ + ΦN̂ ′N̂ ′ and

ΦẐ′′Ẑ′′ ≈ [I − ÂWH ]ΦNN [I −WÂH ]

= ΦN̂ ′′N̂ ′′ .

(4)
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In [8], a multi-channel SNR as generalization from the single-
channel case was defined as ξ = Tr(Φ−1

N̂ ′N̂ ′ΦŜ′Ŝ′). Similarly,
we evaluate only the power ratio of the main diagonals of
these PSD matrices as

ξ =
Tr

(
ΦŜ′Ŝ′

)

Tr
(
ΦN̂ ′N̂ ′

) , (5)

because both PSD matrices ΦŜ′Ŝ′ and ΦN̂ ′N̂ ′ represent
purely directional sound fields. Additionally, we can cir-
cumvent the numerically ill-conditioned matrix inversion of
ΦN̂ ′N̂ ′ , caused by strong spatial correlations for low frequen-
cies. However, we cannot measure ΦŜ′Ŝ′ or ΦN̂ ′N̂ ′ directly,
but Eqn. (5) can be expressed as

ξ =
Tr

(
ΦẐ′Ẑ′

)

Tr
(
ΦẐ′′Ẑ′′

) Tr
(
ΦN̂ ′′N̂ ′′

)

Tr
(
ΦN̂ ′N̂ ′

) − 1. (6)

By assuming an ideal spherical diffuse noise sound field at the
microphones, the noise PSD matrix ΦNN can be written as

ΦNN = ΦNNΓNN , (7)

where ΦNN denotes the unknown PSD of the noise source,
and the elements of the spatial coherence matrix ΓNN are
defined as the coherence function [16] between the ith and the
jth microphone, i.e.

ΓNiNj (jΩ) =
sin(kdij)

kdij
, (8)

where dij is the distance between microphone i and j. Using

Eqn. (7), the ratio
Tr(ΦN̂′′N̂′′)
Tr(ΦN̂′N̂′)

in Eqn. (6) is obtained by

Tr
(
ΦN̂ ′′N̂ ′′

)

Tr
(
ΦN̂ ′N̂ ′

) =
Tr([I − ÂWH ]ΓNN [I −WÂH ])

Tr(ÂWHΓNNWÂH)
, (9)

using the ATF model Â and the beamforming filter W . The
coherence matrix ΓNN is a constant. The directional and
diffuse component of the input signal, Ẑ ′ and Ẑ ′′, are es-
timated online using Eqn. (3). Their respective PSDs are
found by recursive averaging, e.g. ΦẐ′Ẑ′,l = ΦẐ′Ẑ′,l−1α +

(1 − α)Ẑ ′Ẑ ′H , where l is the frame index. The SNR ξ is ob-
tained by using Eqn. (6). This SNR is then used to construct
a Wiener filter. We used the Optimally-Modified Log-Spectral
Amplitude Estimator (OM-LSA) algorithm [17], which is of-
ten found in noise cancelling applications.

5. EXPERIMENTS

5.1. Directivity Pattern

The proposed postfilter depends only on the current beam-
former state defined by Â and W . Therefore, the postfilter
can easily be incorporated into the overall Directivity Pattern

of the beamformer. The procedure described in [18] is used
to simulate the theoretical directivity pattern with a two ele-
ment array with d = 5 cm. The beamformer is fixed to look
towards 0◦. In comparison to the beampattern of the GSC
without a postfilter [4], Figure 3 demonstrates the improved
directivity especially for low frequencies.

To measure the real directivity pattern for comparison,
we used the room from Figure 1, and the array mounted on a
turntable. Figure 4 shows the measured beampattern for two
microphones. Especially for low frequencies, it is sharper
than the theoretical result. A cause for this effect could be
minor gain differences in the microphones, which are not
modeled by the simplified ATFs. However, it can be seen
that signals impinging from outside ±20◦ are completely
suppressed. Increasing the number of microphones up to four
did not change the directivity pattern significantly.

Fig. 3. Simulated directivity pattern for a two microphone
beamformer with an aperture of d = 5 cm.

5.2. Experimental Setup

To test the speech quality of our MCSE system against a
significant amount of speech data, the TIMIT [19], KCORS
[20], and (KCOSS) [21] speech corpora have been used. The
speech signals have been replayed with the loudspeaker at the
0.5 m position (see Figure 1). For the noise data, recordings
from various sources, e.g. traffic noise, industry parks, sub-
way stations and the NOIZEUS database have been replayed
with the loudspeaker at the 5 m position. In total, about 60
minutes of test material has been generated. For comparison,
we also implemented two other postfilter approaches – the
MC-SPP approach and the TBRR. For the GSC beamformer
we used a sparse blocking matrix B(jΩ), which has the same
performance as a dense eigenspace blocking matrix [22]. Its
main benefit is the linear growth of computational complexity
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Fig. 4. Measured directivity pattern for 2 Audix-TM1 micro-
phones placed d = 5 cm apart.

with the number of microphones. All GSC filters are imple-
mented as non-causal FIR filters, to allow both positive and
negative time delays [1]. The sampling frequency is fs = 16
kHz and the SFFT length is 16ms, where we used a hanning
window and 50% overlapping frames.

The PEASS Toolkit [10, 11] is used to evaluate the per-
formance of the algorithms in terms of performance and per-
ceptual speech quality. While PEASS might not be intended
specifically for speech enhancement tasks, we found it rep-
resents the perceived speech quality much better than for ex-
ample PESQ. PEASS delivers four scores: The Target Per-
ceptual Score (TPS) measures the perceptual quality of the
desired speech signal contained in the postfilter output. The
Interference Perceptual Score (IPS) measures the influence of
the residual noise components in the beamformer output. The
Artifact Perceptual Score (APS) measures the influence of ar-
tifacts like musical noise generated by the algorithm. And
the Overall Perceptual Score (OPS) provides a global mea-
sure of the perceptual quality of the enhanced output. Each
score ranges from 0 to 100 and large values indicate better
performance.

5.3. Results

Each algorithm is tested with a signal-to-interference ratio
(SIR) ranging from -20 dB to +20 dB in 5 dB steps. Fig-
ure 5 shows the performance of the postfilters in terms of the
PEASS measures. The OPS score of the TBRR and the MC-
SPP postfilters are more or less equal. However, the TBRR
performs better than the MC-SPP for the IPS and TPS score,
and the APS score indicates that the TBRR introduces the
most artifacts. The MC-SPP algorithm has the lowest IPS
score, as it relies on the inversion of the spatial noise PSD

matrix which is numerically unstable at low frequencies due
to high signal correlations. The TBRR algorithm has the low-
est APS score, as it relies on recursive noise floor estima-
tion [23,24]. Depending on the instationarity of the noise, this
technique is known to introduce musical artifacts. The speech
quality of the proposed DD-PF does not depend on spatial
speech PSD estimation or a VAD, but only on the estimate
of the directional and the diffuse sound components ΦẐ′Ẑ′

and ΦẐ′′Ẑ′′ . Their accuracy is determined by the shape of the
assumed noise field and the target leakage in the blocking ma-
trix. In our experiments, target leakage was quite low, and the
noise sound field was nearly diffuse. Therefore, we achieved
both a good speech quality and a good noise suppression at
the same time, even for low frequencies. This can be seen by
the OPS and TPS score.

Fig. 5. Comparison of postfilters using PEASS measures; (a)
OPS, (b) TPS, (c) IPS and (d) APS.

6. CONCLUSIONS

In this paper, we introduced the Directional-to-Diffuse Postfil-
ter (DD-PF), which splits the sound field at the microphones
into its directional and diffuse components to derive the SNR
at the output of the beamformer, from which a noise reduc-
tion Wiener filter is derived. Unlike similar approaches, the
algorithm does not depend on spatial speech PSD estima-
tion or a VAD, but only on target leakage in the beamformer
and the diffuse noise field assumption. In our experiments,
these conditions have been sufficiently met. The achieved di-
rectivity pattern is selective even at low frequencies and the
speech quality is significantly higher compared to the TBRR
and MC-SPP approaches.
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Abstract
In many hands-free applications, we encounter a speaker lo-
cated in the near-field embedded in diffuse far-field noise. In
this paper, we contribute an algorithm to estimate the speech
and noise power spectral density (PSD) based on a direction-
dependent SNR (DD-SNR). The only prior knowledge needed
is a model of the diffuse noise sound field. The enhanced
speech signal is obtained by a parametric multi-channel Wiener
filter (PMWF), which is constructed without any speech pres-
ence or absence probabilities, or smoothing in frequency. We
achieve high speech quality and sufficient noise reduction by it-
eratively improving the speech PSD estimate using the output of
the PMWF. The performance of our algorithm is demonstrated
by using the PESQ and PEASS measures.
Index Terms: multi-channel speech enhancement, blind source
extraction, noise PSD estimation

1. Introduction
Speech intelligibility is a paramount issue in many telecommu-
nication devices. Especially in hands-free applications, back-
ground noise is the primary source of speech degradation. Great
efforts have been made over the last decades to reduce this am-
bient noise. While single-channel speech enhancement algo-
rithms require an inherent trade-off between noise reduction and
speech quality, multi-channel algorithms also exploit the spatial
information of the sound field and thereby achieve better results.

Recent algorithms try to estimate the noise power spectral
density (PSD) from either the output of a beamformer, or di-
rectly from the microphone signals. Noise reduction is then
achieved by using a single- or multi-channel Wiener filter. In
[1], a transient beam to reference ratio (TBRR) is used to de-
rive a speech absence probability, which is used to control a re-
cursive noise floor averaging estimator. In [2], a multi-channel
speech presence probability (MC-SPP) is derived as a general-
ization of the classical single-channel a posteriori speech pres-
ence probability. The MC-SPP is used as a soft-decision rule
to estimate the spatial correlation matrix of the noise signal. A
similar approach can be found in [3], where a direct to diffuse
ratio (DDR) is used instead of the MC-SPP.

In this paper we do not use a speech absence or presence
probability, but estimate the noise PSD from differential signals
which cancel out the speaker. First, we extend the signal-to-
reverberant ratio proposed in [4] to the multi-channel case, in
order to obtain an a-priori direction-dependent SNR (DD-SNR).
This SNR is then used to estimate the acoustic transfer func-
tions (ATFs) from the speaker to the microphones. The ATFs in-
clude reflections like acoustic echoes, and are therefore hard to
estimate in general. However, in our case of a near-field speaker
the ATFs mainly consist of a constant delay and unity gain. The
ATFs are used to align the microphone inputs so that the speech

signal is either constructively or destructively added, thereby
allowing us to estimate the speech and noise PSDs. Finally, a
parametric multi-channel Wiener filter (PMWF) is employed to
obtain the enhanced speech signal. We show how the PMWF
can be used in a second iteration to achieve considerable noise
reduction and maintain a high speech quality at the same time.
The noise reduction performance and speech quality of our ap-
proach is evaluated by using the PESQ score and the Percep-
tual Evaluation Methods for Audio Source Separation (PEASS)
Toolkit [5, 6].

This paper is organized as follows: Section 2 introduces the
signal model and the involved sound field. Section 3 consid-
ers the estimation of the DD-SNR, and in Section 4 the speech
and noise PSDs are estimated. In Section 5, we formulate the
PMWF and show how to use its output in a second iteration.
Section 6 summarizes the entire algorithm for clarity. Section 7
evaluates our approach using the PESQ and PEASS scores, and
compares it against the TBRR and MC-SPP algorithms. Sec-
tion 8 concludes the paper.

2. Problem formulation
In our setup, we assume the desired speech source to be in
the near-field, and the interfering noise source to be located in
the far-field of a linear microphone array of M sensors, with
an inter-microphone distance of d = 5cm. Diffuse noise and
a near-field speaker (i.e., 0.5m speaker distance) are found in
many real-world scenarios like car interiors, subway stations or
roadside emergency telephones [7].

In the frequency domain, we define the signal at the ith mi-
crophone as Zi(k, l) = Ai(k, l)S(k, l) + Ni(k, l), using the
wave number k = 2πf

c
and the frame index l, where f and c

denote the frequency and the speed of sound, respectively. The
unknown speech signal is denoted by S(k, l), and Ni(k, l) ex-
presses the ambient noise signal at the ith channel. Ai(k, l) is
the unknown ATF from the speaker to the ith microphone. Cov-
ering all M microphones, the signal model can be written in
compact vector notation as

Z(k, l) = A(k)S(k, l) + N(k, l). (1)

The spatial correlation matrix [8] for all microphone signals is
defined as expectation of Z(k, l)ZH(k, l), i.e.:

ΦZZ(k) , E{Z(k, l)ZH(k, l)}. (2)

Usually, ΦZZ(k) can be estimated by recursive averaging us-
ing ΦZZ(k, l) = ΦZZ(k, l− 1)α+ (1−α)Z(k, l)ZH(k, l).
By assuming uncorrelated speech and noise signals, Eqn. (2)
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can also be stated as

ΦZZ(k, l) = ΦSS(k, l) + ΦNN (k, l)

= A(k)AH(k)ΦS(k, l) + ΓNN (k)ΦN (k, l),
(3)

where ΦS(k, l) and ΦN (k, l) denote the PSDs of the unknown
speech and noise sources, and ΓNN (k) is the spatial coherence
matrix of the diffuse or isotropic noise sound field. It can be
thought of as the summation of infinitely many plane waves im-
pinging from all directions at equal strength [9]. Its elements
are given as ΓNiNj (k) =

sin(kdij)

kdij
, where dij is the distance

between the ith and the j th microphone. With this setup, our
aim is to estimate the speech source S(k, l). However, we do
not intend to perform blind dereverberation, it is sufficient to es-
timate the speech signal at the first (the reference) microphone
A1(k)S(k, l).

3. Direction-dependent a-priori SNR
By simplifying the ATFs to single monochromatic plane waves
[9], it becomes possible to detect the presence of the speech
signal in the mixed sound field ΦZZ(k) without prior knowl-
edge [4], i.e.:

Ai(k, l) ≈ Ãi(k, l) = ejkdi sin Θ, (4)

where Θ is the impinging angle of the sound wave towards the
array, and di is the distance between the ith microphone and
an arbitrary reference point. This reference point is chosen to
be the first microphone [10], so that Ã1(k, l) , 1. Using this
simplified model, the SNR between the speech and noise PSDs
ξΘ(k, l) = ΦS(k,l)

ΦN (k,l)
can be estimated from Eqn. (3). We will

use this direction-dependent a-priori SNR (DD-SNR) as a sen-
sitive and robust voice activity detector. It can be derived using
the spatial coherence matrix for all M microphone signals:

ΓZZ(k, l) , E(k, l)ΦZZ(k, l)E(k, l), (5)

with E(k, l) =

diag
(

1√
ΦZ1Z1

(k,l)
, 1√

ΦZ2Z2
(k,l)

, · · · , 1√
ΦZMZM

(k,l)

)
,

where diag( · ) denotes a diagonal matrix [8]. The PSDs
ΦZiZi(k, l) are the main diagonal elements of the spatial cor-
relation matrix ΦZZ (k,l). Especially with small microphone
array apertures, we can assume equal signal energies among
all microphones. Therefore E(k, l) ≈ 1√

ΦS(k,l)+ΦN (k,l)

IM×M , and Eqn. (5) becomes

ΓZZ(k, l) = ΦZZ(k, l)
1

ΦS(k, l) + ΦN (k, l)
. (6)

Substituting Eqn. (6) into (3) gives the DD-SNR:

ξΘ(k, l) = Tr([ΓZZ(k, l)− Ã(k)ÃH(k)]−1

· [ΓNN (k)− ΓZZ(k, l)]),
(7)

which is similar to [3]. If the direction of arrival Θ is
not known a-priori, it can be globally detected by search-
ing over a small set of possible angles using ΘOPT (l) =

arg max
Θ

1
K

∑K
k=0 ξΘ(k, l). In [3], a similar measure to the

DD-SNR is used to derive a noise reduction Wiener filter. How-
ever, we found ξΘ(k, l) to be too inaccurate especially for low
frequencies, because in practice the ATFs won’t be pure time
delays, and the signal energies at the microphones won’t be

equal due to gain tolerances. But we can use ξΘ(k, l) to im-
prove the model of the ATFs from simple plane waves to multi-
path propagations, i.e. acoustic echos. With a good estimate
Â(k) ≈ A(k) we can align the microphone signals to ei-
ther constructively or destructively add the speech components,
which are used to derive the speech PSD ΦS(k, l) and the noise
PSD ΦN (k, l). From the mixture model in Eqn. (1), it can be
seen that Ai(k) is generally unobservable, since it is embedded
in additive noise. However, by inserting ξΘ(k, l) into Eqn. (3)
and using Â1(k, l) , 1 for the reference microphone we can
construct the following estimator:

Âi(k, l + 1) =Âi(k, l)α1(k, l) + (1− α1(k, l))

·
[

1 + ξΘ(k, l)

ξΘ(k, l)

ΦZiZ1(k, l)

ΦZ1Z1(k, l)
− ΓNiN1(k)

ξΘ(k, l)

]
.

(8)
To ensure this algorithm only adapts on frequency bins contain-
ing speech, we use the DD-SNR as voice activity detector:

α1(k, l) =

{
α, if ξΘ(k, l) > ξ0 and 1

K

∑K
k=0 ξΘ(k, l) > ξ0

0, otherwise.
(9)

Clearly, estimating the ATFs only works if the represented fil-
ters have a finite impulse response which can be modeled within
the duration of a FFT frame l. We chose 32ms as frame length,
which is sufficient to model the acoustic path from the speaker’s
location to the microphone array within the speaker distance of
0.5m. Reasonable results are obtained by setting the threshold
ξ0 to 0dB.

4. Estimation of the speech and noise PSD
We estimate the speech and noise PSDs by using a summation
signal and a differential signal, which are both obtained from
the ATF estimate Â(k, l). The summation signal is given by

Y (k, l) = FH(k, l)Z(k, l), (10)

which constructively adds the speech components in Z(k, l).
This is done via the matrix F (k, l) = Â(k,l)

||Â(k,l)||22
[11, 12]. The

differential signal is obtained with

U(k, l) = BH(k, l)Z(k, l) ≈ BH(k, l)N(k, l), (11)

which destructively adds the speech components, such that
BH(k, l)Â(k, l) , 0. In effect, the speech signal is canceled
out. B(k, l) can be identified as a blocking matrix [11, 13]
which forms a spatial zero towards the speech source [10]. A
very straightforward blocking matrix is given by B(k, l) =

IM×M − Â(k, l)FH(k, l). We used a more efficient sparse
blocking matrix, which is discussed in detail in [14]. The spatial
correlation matrix of the noise reference is given by

ΦUU (k, l) , E{U(k, l)UH(k, l)}
≈ BH(k, l)ΓNN (k)B(k, l)ΦN (k, l),

(12)

using Eqn. (3) and the assumptions above. An estimate of the
noise PSD ΦN (k, l) is then obtained by:

Φ̂N (k, l) =
Tr (ΦUU (k, l))

Tr (BH(k, l)ΓNN (k)B(k, l))
. (13)

In a similar fashion, the PSD of the summation signal is given
by

ΦY Y (k, l) , E{Y (k, l)Y ∗(k, l)}
= FHAAHFΦS + FHΓNNFΦN ,

(14)
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where we omitted the frequency and frame indices for brevity.
Solving for ΦS(k, l) gives an estimate of the speech PSD

Φ̂S(k, l) = max
(

ΦY Y − FHΓNNF Φ̂N , 0
)
, (15)

with FHAAHF ≈ 1. Following the signal model in Eqn.
(3), the estimated spatial correlation matrices for the noise and
speech signals are obtained by:

Φ̂NN (k, l) = ΓNN (k)Φ̂N (k, l)

Φ̂SS(k, l) = Â(k, l)ÂH(k, l)Φ̂S(k, l).
(16)

Many algorithms do not estimate the speech PSD Φ̂S(k, l) sep-
arately, since ΦSS(k, l) = ΦZZ(k, l)−ΦNN (k, l). However,
in practice this will cause over-subtraction in the PMWF. As a
consequence, musical artifacts may appear in the output signal.

5. Parametric multi-channel Wiener filter
Having an estimate of both the noise and speech PSD matrices,
a parametric multi-channel noise reduction Wiener filter [8] can
be formulated as:

hPMWF (k, l) =
Φ̂−1

NN (k, l)Φ̂SS(k, l)F (k, l)

ζ(k, l) + µ(k, l)
, (17)

where ζ(k, l) = Tr
(
Φ̂−1

NN (k, l)Φ̂SS(k, l)
)

can be identified
as the multi-channel SNR [8]. Heuristically, we chose the trade-
off parameter to be µ(k, l) = 1

ζ(k,l)
. For low µ(k, l), the

PMWF is close to the MVDR filter [10, 15]. For high µ(k, l)
there is a sufficient amount of noise reduction. Finally, a MMSE
estimate of the clean speech signal at the first microphone is ob-
tained by X(k, l) = hH

PMWF (k, l)Z(k, l). Clearly, estima-
tion errors in the ATFs Â(k, l), and the possible oversimplifi-
cation of the noise sound field ΓNN (k) will degrade the overall
performance. We found this degradation to be mainly caused by
residual noise, and not by missing speech components. By in-
serting Eqn. (16) into (17), and using F (k, l) = Â(k,l)

||Â(k,l)||22
it

can be seen that:

hPMWF (k, l) =
Γ−1

NN (k)Â(k, l)

ÂH(k, l)Γ−1
NN (k)Â(k, l)

ζ(k, l)

ζ(k, l) + µ(k, l)
.

(18)
This result can be identified as the MVDR filter [10] multiplied
by a SNR-dependent gain function. Given that the MVDR filter
does not distort signals defined by the ATFs, the PMWF output
X(k, l) contains the same speech components as the summation
signal Y (k, l) [10,11]. We can greatly enhance the noise reduc-
tion performance by updating the speech PSD Φ̂S(k, l) from
Eqn. (15). For this update, ΦXX(k, l) , E{X(k, l)X∗(k, l)}
is used instead of ΦY Y (k, l), so that Eqn. (15) turns into:

Φ̂′S(k, l) = max
(

ΦXX − FHΓNNF Φ̂N , 0
)
. (19)

The updated speech PSD is then used to iterate Eqn. (16) and
(17) a second time, which removes almost all residual noise
components and preserves the speech components identified in
the first run.

6. Summary of the DD-SNR algorithm
The determination of the DD-SNR algorithm consists of three
main parts: The calculation of the DD-SNR, the estimation of
the ATFs, and the calculation of the PMWF. It can be summa-
rized as follows:

1. Calculate the spatial coherence matrix ΓZZ(k, l) using
Eqn. (5) and (2).

2. Define a range for Θ and maximize the DD-SNR
ξΘ(k, l) using Eqn. (4) and (7), and ΘOPT (l) =

arg max
Θ

1
K

∑K
k=0 ξΘ(k, l).

3. Recursively update the ATFs Â(k, l) using Eqn. (8).
4. Calculate the speech and noise PSDs using Eqn. (15)

and (13).
5. Use the PMWF in Eqn. (17) to obtain the speech esti-

mate X(k, l) = hH
PMWF (k, l)Z(k, l).

6. Update the speech PSD Φ̂′S(k, l) using Eqn. (19), and
iterate Eqn. (16) and (17) a second time to obtain the
final result.

7. Performance evaluation
7.1. Experimental Setup

We used 2 microphones with a distance of d = 5cm in an ap-
proximately 8x5m wide room with a RT60 ≈ 550ms to record
multi-channel speech and noise tracks. The speaker source was
located 0.5m from the array, and the noise source 5m. This
setup produced sufficiently exact direct and diffuse sound fields.
The speech and noise tracks have been mixed together with a
signal-to-interference ratio (SIR) ranging from -20dB to +20dB.
To test the algorithm against a significant amount of speech
data, the TIMIT [16], KCORS [17] and KCOSS [18] speech
corpora are employed. For the noise data, recordings from var-
ious sources, i.e. traffic noise, industry parks, subway stations
and the NOIZEUS database have been used. In total, 60 minutes
of test material has been generated.

For comparison to other approaches, we implemented the
aforementioned TBRR [1] and the MC-SPP [2]. To get the the-
oretical maximum performance, the ground truth (i.e., the true
speech and noise correlation matrices ΦSS(k) and ΦNN (k))
has been used to construct a PMWF in an additional implemen-
tation. A sampling frequency of fs = 16 kHz and a FFT size
of 512 bins with 50% overlapping hanning windows is used
for each algorithm. To evaluate the performance of the algo-
rithms in terms of perceptual speech quality, the PESQ score
and the PEASS toolkit [5,6] are used. The latter explicitly aims
at the psycho-acoustically motivated quality assessment of au-
dio source separation algorithms. It delivers four scores: The
Target Perceptual Score (TPS) measures the perceptual quality
of the desired speech signal contained in the enhanced output.
The Interference Perceptual Score (IPS) measures the influence
of the residual noise components. The Artifact Perceptual Score
(APS) measures the influence of artificial artifacts like musical
noise, and the Overall Perceptual Score (OPS) provides a global
measure of the perceptual quality. Each score ranges from 0 to
100 and large values indicate better performance.

7.2. Performance results

In Figure 1, a comparison in terms of the PESQ score is given.
The ground truth marks the theoretical limit for the algorithms.
It can be seen that the DD-SNR algorithm provides a significant
improvement over the TBRR and MC-SPP algorithms, espe-
cially when the second iteration is included. For a SIR of +5dB,
the DD-SNR achieves an improvement of 1.6 in mean opinion
score (MOS) over MC-SPP.

Figure 2 shows the PEASS scores of the algorithms. The
OPS score for the TBRR and the MCSPP are very similar. A
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reason might be that both rely on the same Gaussian model for
the speech presence probability. Our DD-SNR approach relies
on the ATFs and the noise sound field model, and outperforms
the other algorithms especially for high SIRs. The TBRR and
DD-SNR show the highest TPS and IPS scores, which indicates
a higher speech intelligibility and a higher amount of noise re-
duction. However, the TBRR seems to introduce the most arti-
facts, as the APS score indicates. A possible reason might be
that this algorithm uses recursive noise floor averaging, which
is known to introduce artifacts for instationary noises.

For demonstration, the spectrograms of the signal at the
first microphone z1(t), the output of the DD-SNR algorithm
x(t), and the SNR ζ(k, l) after the first and second iteration are
shown in Figure 3 through 6. In this experiment, 15s of KCOSS
speech data have been mixed with instationary city traffic noise
with a SIR of 0dB, using the setup described above. The benefit
of the second iteration of the DD-SNR algorithm can be seen by
comparing Figure 5 and 6: The second iteration removes almost
all residual noise while preserving the speech components.

Figure 1: Comparison of the algorithms in terms of PESQ, us-
ing the MOS scale.

Figure 2: Comparison of the algorithms using PEASS mea-
sures; (a) OPS, (b) TPS, (c) IPS and (d) APS.

8. Conclusions
We proposed a multi-channel speech enhancement algorithm
that blindly estimates the speech and noise PSDs based on a
diffuse noise sound field and the DD-SNR. A PMWF is used to
obtain a MMSE estimate of the desired clean speech signal. The
overall performance is greatly increased by improving the esti-
mate of the speech PSD using the output of the PMWF in a sec-

ond iteration. We demonstrated that the algorithm outperforms
similar approaches using the PESQ and PEASS measures.

Figure 3: Received signal z1(t) at the first microphone, con-
taining non-stationary city traffic noise with a SIR of 0dB in a
setup with M = 2 microphones and d12 = 5cm.

Figure 4: Output x(t) of the DD-SNR algorithm after the sec-
ond iteration. The gain in SNR is limited to 30dB.

Figure 5: SNR ζ(k, l) and output x(t) of the DD-SNR algo-
rithm after the first iteration.

Figure 6: SNR ζ(k, l) and output x(t) of the DD-SNR algo-
rithm after the second iteration.
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ABSTRACT
Recognizing speech under noisy condition is an ill-posed
problem. The CHiME 3 challenge targets robust speech
recognition in realistic environments such as street, bus, caf-
fee and pedestrian areas. We study variants of beamformers
used for pre-processing multi-channel speech recordings. In
particular, we investigate three variants of generalized side-
lobe canceller (GSC) beamformers, i.e. GSC with sparse
blocking matrix (BM), GSC with adaptive BM (ABM),
and GSC with minimum variance distortionless response
(MVDR) and ABM. Furthermore, we apply several post-
filters to further enhance the speech signal. We introduce
MaxPower postfilters and deep neural postfilters (DPFs).
DPFs outperformed our baseline systems significantly when
measuring the overall perceptual score (OPS) and the per-
ceptual evaluation of speech quality (PESQ). In particular
DPFs achieved an average relative improvement of 17.54%
OPS points and 18.28% in PESQ, when compared to the
CHiME 3 baseline. DPFs also achieved the best WER when
combined with an ASR engine on simulated development and
evaluation data, i.e. 8.98% and 10.82% WER. The proposed
MaxPower beamformer achieved the best overall WER on
CHiME 3 real development and evaluation data, i.e. 14.23%
and 22.12%, respectively.

Index Terms— multi-channel speech processing, deep
postfilter, automatic speech recognition

1. INTRODUCTION

Background noise is the primary source of performance
degradation in speech recognition systems. While the capa-
bilities of single-channel speech pre-processing are limited,
multi-channel systems exploit the spatial information of the
sound field and usually achieve better speech recognition
results. Adaptive beamforming is a widely used technique
for multi-channel pre-processing of speech as alternative to
blind source separation approaches. For a sufficient amount
of noise reduction, beamformers are generally used in con-
junction with a postfilter.

The aim of the 3rd CHiME challenge is to develop a multi-
channel speech recognition system [1], where we encounter
multi-channel recordings of a speaker located in the near-
field, embedded in mostly far-field noise. The setup covers
different speakers, noise environments, and real-world prob-
lems like microphone failure, clipping, and other recording
glitches.

In this paper, we present a multi-channel speech enhance-
ment system which tries to cope with these conditions: First,
we detect recording glitches using the prediction error of an
auto-regressive model. Then, we estimate the position of the
speaker relative to the microphone array using our direction-
dependent signal-to-noise ratio (DD-SNR) algorithm [2],
which also provides a sufficiently accurate voice activity
detection (VAD). The speaker position is used to obtain a
steering vector for a generalized sidelobe canceller (GSC)
beamformer, which we implemented in three different vari-
ants. We also present two novelties here: Firstly we introduce
a MaxPower postfilter (PF), leading to the best speech recog-
nition result on CHiME 3 real data. Secondly we present deep
neural PFs – deep neural networks attached to beamformers,
improving the overall perceptual quality (OPS) of the target
speech significantly and also outperforming baseline systems
on simulated data. This front-end, i.e. the three beamformer
variants and different PFs, are empirically evaluated using the
PESQ and the OPS measures [3].

In the back-end, we use two speech recognition systems
based on the Kaldi toolkit [4]. The first is a GMM sys-
tem which makes extensive use of feature transformations
as this was shown to provide good results for distant talk
speech recognition [5]. The second is a DNN system that
employs pre-training with restricted Boltzmann machines,
cross entropy training and state-level minimum Bayes risk
training [1]. Our best model, i.e. MaxPower PF with a GMM
backend, reduces word error rate (WER) from 37.61% for
the baseline enhancement system to 22.12% (41% relative
improvement) on the real evaluation set.

The outline of the paper is as follows: In Section 2 we in-
troduce the architecture of the proposed system. Section 3 de-
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tails the multi-channel speech processing approaches includ-
ing the proposed beamformers. PFs are introduced in Sec-
tion 4 while the PESQ and PEASS scores of the front-end are
summarized in Section 6.1. The ASR system is presented in
Section 5 and the results are discussed in Section 6.2. Sec-
tion 7 concludes the paper.

2. SYSTEM OVERVIEW

BF PF
Feature
Extraction ASR

Re-
Scoring WER

X1..6
S̃

Ŝ

N̂

Ŷ

Fig. 1. System overview.

Figure 1 shows the setup of the components of the pro-
posed ASR system. Speech estimate Ŝ, the noise estimate
N̂ and the beamformer output Ŷ are fed into a postfilter pre-
dicting an enhanced speech estimate S̃. After feature extrac-
tion the signal is fed into the ASR. Next, Language model
re-scoring is applied and then the final word error rate (WER)
is calculated.

3. MULTI-CHANNEL SPEECH PROCESSING

The input signal vector X of the 6 microphone channels is
written as

X(k, l) = A(k, l)S(k, l) + N(k, l), (1)

where S is the speech signal, N is the noise part of the 6-
channel input signal in frequency-domain, k and l denote
the frequency bin and time frame, respectively, and A(k, l)
denotes the acoustic transfer function (ATF) from the true
speaker position to each microphone. In this challenge, ad-
ditional information is supplied by the noise context, a short
section of noise-only signal before each utterance. The noise
context for each utterance is referenced in annotations pro-
vided by the challenge organizers. This allows to estimate the
spatial noise correlation matrix ΦNN , which is given as

ΦNN (k, l) , E{NH(k, l)N(k, l)}, (2)

where E{·} denotes the expectation operation and {·}H the
Hermitian transpose.

We found that the noise context contains speech in some
utterances, which would cause speech cancellation in a beam-
former. We therefore decided to adaptively estimate ΦNN by
using VAD.

3.1. Failed Channel Detection

The above signal model requires signals which strictly ad-
here to the linear time-invariant theory. Clearly, errors such

as recording glitches, amplitude variations, time shifts or to-
tal signal loss must be detected before multi-channel speech
enhancement such as beamforming. In particular, we noticed
that especially channel 4 and 5 exhibit rather complex record-
ing glitches in about 15% of all isolated recordings. To ad-
dress these problems, a mere energy threshold may not suf-
fice. We therefore employed an auto-regressive linear predic-
tive coding (LPC) on each channel c in time-domain [6, 7],
and used the predictor error e(t) as criterion whether a chan-
nel is considered as failed, i.e.

e(t) = xc(t)−
M∑
m=1

xc(t−m)a(m), (3)

where a(m) are LPC coefficients and M = 100. A channel
xc(t) is considered as failed if the power of its predictor error
e(t) lies outside the±10dB corridor around the median of the
energy of the predictor errors of all channels. If a failed chan-
nel is detected this channel is not used for further processing.

3.2. Direction Of Arrival Estimation

For successful beamforming an accurate direction of arrival
(DOA) estimation is required. Therefore, the steered re-
sponse power phase transform (SRP-PHAT) [8] algorithm
has been already provided for this purpose. But it lacks a
proper VAD estimate, which might also be useful for estimat-
ing the spatial noise correlation matrix ΦNN during speech
pauses. For this purpose, we used our DD-SNR algorithm [2],
which provides a direction-dependent a-priori SNR ξτ (k, l)
under the assumption of an ideal, spherical noise sound field,
i.e.

ξτ (k, l) = Tr([ΓXX(k, l)−Aτ (k, l)AH
τ (k, l)]−1

· [ΓNN (k)− ΓXX(k, l)]),
(4)

where the DD-SNR ξ is also used as VAD, τ is the relative
time difference of arrival (TDOA) between all microphone
pairs, Aτ the corresponding ATFs, ΓXX and ΓNN are the
spatial coherence matrices [2] for the multi-channel signals
X and noise-only components N . The interested reader is
referred to [2] for more details.

The optimal TDOA τ also maximizes ξτ . It can be de-
tected for each time frame l by searching over a small set of
possible delays using τOPT (l) = arg max

τ

1
K

∑K
k=0 ξτ (k, l).

We quantize τ into 13 equally spaced segments which is suf-
ficient for each microphone pair and the given aperture.

3.3. Beamforming

After evaluating a wide variety of beamforming and multi-
channel speech enhancement algorithms [9–13], we decided
to use the general sidelobe canceller (GSC) [14]. The main
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Fig. 2. Block diagram of the generalized sidelobe canceller.

reasons are its observed empirical performance and robust-
ness for the given problem.
The entire beamformer can be expressed as

W (k, l) = F (k, l)−H(k, l)B(k, l) (5)

using the fixed beamformer (FBF) F , the adaptive interfer-
ence canceler (AIC) H , and the blocking matrix (BM) B. In
particular, we implemented the following three GSC variants
detailed in the following sub-sections. Details can be found
in [2, 15].

3.3.1. GSC with sparse BM

This variant is the standard GSC, as depicted in Figure 2. The
FBF is given as F (k, l) = A(k,l)

AH(k,l)A(k,l)
. The BM is defined

as [16]

B(k, l) =


−A

∗
2(k,l)

A∗
1(k,l) −A

∗
3(k,l)

A∗
1(k,l) · · · −A

∗
M (k,l)
A∗

1(k,l)

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , (6)

with M = 6 channels, and channel 1 as reference micro-
phone. The asterix in (6) denotes the conjugate complex coef-
ficient. We used the channel with the highest signal energy as
reference in our implementations. The AIC H is a non-causal
adaptive filter.

3.3.2. GSC with adaptive Blocking Matrix (ABM)

This variant features an adaptive BM presented in Figure 3.
The columns of the ABM are designed as non-causal adaptive
filters and the coefficients are determined via the normalized
least mean squares (NLMS) approach [17].

3.3.3. GSC with MVDR and ABM

It is possible to estimate the spatial noise correlation matrix
ΦNN during speech pauses using the DD-SNR from Sec-
tion 3.2 as VAD. Hence, the GSC may be replaced with the

Fig. 3. Block diagram of the adaptive blocking matrix.

minimum variance distortionless response (MVDR) solution
[18, 19] given as:

F (k, l) =
Φ−1
NN (k, l)A(k, l)

AH(k, l)Φ−1
NN (k, l)A(k, l)

. (7)

This has already been provided in the baseline enhancement
system, however, the estimate ΦNN may be inaccurate, there-
fore we only replaced the FBF in Figure 2 with the MVDR so-
lution. This allows for additional noise removal by the ABM
and AIC.

4. POSTFILTERING

4.1. MaxPower postfilter

Our first postfilter is based on the GSC with MVDR and
ABM. Similar to [15], the beamformer output Y (k, l) is
back-projected to the microphones using the ATFs A(k, l).
This way, the microphone inputs X can be split into their
speech and noise components Ŝ and N̂ :

Ŝ(k, l) = A(k, l)Y (k, l)

N̂(k, l) = X(k, l)−A(k, l)Y (k, l)
(8)

The final output of this method is chosen to be the maximum
energy of |Ŝ(k, l)|2 for each frequency bin k and time frame
l. As the phases of Ŝ(k, l) do not match, there would be no
reconstruction back into time domain. To circumvent this lim-
itation, each channel in Ŝ(k, l) has been aligned to the geo-
metric origin of the setup.

4.2. Multi-Channel postfilter

As second postfilter we used our parametric multi-channel
Wiener filter (PMWF) proposed in [2]. With the noise PSD
matrix ΦNN being already available, estimating the resid-
ual noise power in the beamformer becomes straightforward.
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With the beamforming filter W , the residual noise power in
the beamformer output is given as

ΦYNYN
(k, l) , E{WH(k, l)ΦNN (k, l)W (k, l)}. (9)

Together with the overall output power of the beamformer

ΦY Y (k, l) , E{WH(k, l)ΦXX(k, l)W (k, l)} (10)

the real-valued gain mask G is obtained as

G(k, l) =
ζ(k, l)

1 + ζ(k, l)
, (11)

where ζ(k, l) = ΦY Y (k,l)
ΦYNYN

(k,l)−1 can be identified as the output
SNR. Further smoothing over time may be achieved using a
spectral subtraction algorithm like the mean-square error log-
spectral amplitude estimator [20].

4.3. Deep neural postfilter

log|ΦYSYS
| log|ΦYNYN

|

DNN

G

(a)

log|ΦY Y |

DNN

G

(b)

log|ΦYSYS
|

DNN

G

(c)

log|ΦYNYN
|

DNN

G

(d)

Ĝ

DNN

G

(e)

Fig. 4. Variants of deep postfilter models. A neural network
maps the beamformed speech ΦYSYS

, noise ΦYNYN
or esti-

mated gain mask Ĝ to the optimal gain mask G. The first col-
umn shows the different combinations of various beamformer
components (a-d), respectively.

In [21–24] deep neural networks (DNNs) were applied to
single channel source separation, improving the overall qual-
ity of speech in terms of PESQ and OPS scores. In order
to analyze the enhancement capabilities of DNNs for multi-
channel inputs, we introduce deep postfilter models: In par-
ticular, we use DNNs to map beamformed log-spectrogram
outputs to the optimal gain mask G estimated from the close
talking microphone (channel 0). Figure 4 shows variants of
these postfilters using different beamformer components. In
particular, model (a) uses concatenated beamformed speech
log-spectrograms ΦYSYS

and noise log-spectrograms ΦYNYN

Fig. 5. PESQ scores of deep postfilter models (a-f).

as input. ΦYNYN
is estimated as in (9). ΦYSYS

can be caclu-
lated directly as ΦYSYS

(k, l) = ΦY Y (k, l)−ΦYNYN
(k, l). In

case of the models (b-e) ΦY Y , ΦYSYS
, ΦYNYN

, or the esti-
mated gain mask Ĝ were fed into the network. After training,
mask estimates are applied to the output signal of the beam-
former obtaining enhanced speech S̃ and noise estimates.

We trained 3 layer multi-layer perceptrons [25] with rec-
tifier activation functions using a context window of 1, 3, 5
frames and a MSE criteria on a subset of the CHiME 3
database. In particular we selected 400 utterances, 50 val-
idation utterances and 50 test utterances from the simulated
training corpus. Figure 5 and Figure 6 show the PESQ and
OPS scores [3] of the postfilter (PF) models (a-e), respec-
tively. For objective evaluation the estimated speech was
compared to the output of the GSC with MVDR and ABM
(with/without PMWF postfilter) and the baseline system. The
best deep postfilter, i.e. PF variant a (PFa), achieved an OPS
score of 71.97, a validation score of 54.03 and a test OPS of
50.83. It outperforms the beamformed signal GSC-MVDR-
ABM (with/without PMWF postfilter) as well as the provided
CHiME 3 baseline system. Therefore, we further investigate
this approach when applied to ASR.

5. ASR

Both ASR systems employed in this paper are based on the
baseline system provided by the 3rd CHiME challenge [1].
The GMM system uses mel frequency cepstral coefficients
(MFCC) as features which are input to a series of feature-
space transformations. The features are in this order trans-
formed by applying linear discriminant analysis, maximimum
likelihood linear transformation and feature-space maximum
likelihood linear regression. In addition, inter-speaker dif-
ferences are compensated for by doing speaker-adaptive
training. This pipeline proved to be highly competitive in
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Fig. 6. OPS scores of deep postfilter models (a-f).

the CHiME 2 challenge [5]. The DNN system employs
40-dimensional filterbank features and is pre-trained using
restricted Boltzmann machines with 6 hidden layers. The ac-
tual training stage of the DNN uses 4 hidden layers and also
does cross entropy training. Finally, sequence discriminative
training is performed using a state-level minimum Bayes risk
criterion.

In the following sections, we describe the changes we
made to the baseline system. These are to be found in the
frontend and in the postprocessing stage.

5.1. Feature extraction

In contrast to the baseline which uses MFCC features, we
additionally employ power-normalised cepstral coefficients
(PNCC) [26]. For these features, we use a Hamming window
with a window duration of 25 ms and a step size of 10 ms.
Parallel to MFCCs, we extract 13 features and collect deltas
and delta-deltas of these.

5.2. Rescoring

The postprocessing step features n-best list language model
rescoring. For this, we collect the 36 best hypotheses for each
utterance and reweight them with a class-based recurrent neu-
ral network language model (RNN-LM) [27]. The RNN-LM
is trained on the official training data only and is configured
to use a class size of 50.

6. RESULTS AND DISCUSSION

The data of the challenge and the recording setup is de-
scribed in detail in [1]. The data is a collection of two sets
of recordings: real data and simulated data. The first are
speech recordings made in noisy environments. The second

are clean recordings mixed with noise that has been recorded
in the same noisy environments. The real recordings were
made using 6 microphones custom-fitted to a tablet hand-
held device. The recordings with this device were conducted
in four different environments: on a bus (BUS), in a café
(CAF), in a pedestriean area (PED), and at a street junction
(STR). For real data, there is an additional channel recorded
with a head-mounted close-talking microphone. This chan-
nel, however, may not be used directly for obtaining ASR
results but is only to be used in training.

6.1. Preprocessing results

To evaluate our three beamformers, we used PESQ and OPS
scores. Evaluation is performed against the close-talking mi-
crophone channel for the real data set, and against the WSJ
corpus for the simulated data set. Tables 1 and 2 show the
scores for our four beamformers, and the baseline enhance-
ment system for comparison. Again the GSC-MVDR with
ABM and deep postfilter (PFa) outperforms the other beam-
formers in terms of OPS and PESQ scores. In particular the
proposed system achieved an average relative improvement
of 17.54% in OPS and 18.28% in PESQ compared to the
baseline enhancement system.

set train dev eval
Baseline enhancement simu 2.00 1.64 1.72
system real 1.59 1.42 1.50
GSC with sparse BM, simu 2.15 1.73 1.81
and PMWF real 1.51 1.37 1.35
GSC with ABM, simu 1.53 1.49 1.52
and PMWF real 1.36 1.30 1.36
GSC with MVDR simu 2.05 1.60 1.73
and ABM real 1.60 1.45 1.73
GSC with MVDR simu 2.55 2.17 2.28
and ABM, and PFa real 1.73 1.56 1.56
GSC with MVDR simu 1.98 1.69 1.63
and ABM, and MaxPower PF real 1.51 1.39 1.44

Table 1. PESQ scores for our beamformers with PFs and the
baseline.

set train dev eval
Baseline enhancement simu 54.80 44.22 47.31
system real 44.66 40.98 31.48
GSC with sparse BM, simu 59.64 46.99 46.77
and PMWF real 38.69 33.05 29.04
GSC with ABM, simu 48.61 43.84 43.71
and PMWF real 43.16 42.81 38.02
GSC with MVDR simu 52.4 45.87 47.18
and ABM real 48.26 45.87 37.93
GSC with MVDR simu 63.94 53.83 54.53
and ABM, and PFa real 48.69 46.54 37.72
GSC with MVDR simu 56.08 44.82 44.48
and ABM, and MaxPower PF real 47.18 44.90 36.96

Table 2. OPS scores for our beamformers with PFs and the
baseline.
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6.2. ASR results

Table 3 shows ASR results for the preprocessing methods pre-
sented in this paper. MaxPower outperforms all other pro-
posed methods on the real development data and the real eval-
uation data (14.53% WER and 22.14% WER, respectively),
whereas PFa achieved the best ASR scores on simulated data,
i.e. 8.98% and 10.82% on development and evaluation, re-
spectively. When comparing MFCCs and PNCCs , on aver-
age, PNCCs lead to an improvement of 6.04% WER on the
real evaluation set. Improvements vary, however, depend-
ing on noise environment and preprocessing. After language
model rescoring, the scores for the real development set and
the real evaluation set descrease slightly to 14.23% WER and
22.12% WER, respectively (see Table 4).

Due to time constraints, our results for the DNN-based
ASR system are limited to MaxPower which achieves best
results among GMM-based systems. While considerable
improvements are gained for the system using MFCCs
(−3.02% WER on real evaluation set), DNNs lead to in-
creased WER for the system using PNCCs (+2.03% WER
on real evaluation set).

development evaluation
features real simu real simu

Baseline MFCC 20.38 9.72 37.61 11.10
GSC sparse BM MFCC 26.14 10.39 44.01 12.75
GSC ABM MFCC 15.66 20.15 36.39 79.05
+ MVDR MFCC 16.78 10.16 27.45 11.47

+ PFa MFCC 17.93 8.98 27.72 10.82
+ MaxPower MFCC 15.70 10.77 25.22 14.86

+ DNN FBANK 14.54 9.52 22.20 15.67
Baseline PNCC 18.99 11.14 31.57 12.15
GSC sparse BM PNCC 22.32 11.17 36.98 13.87
GSC ABM PNCC 15.60 21.96 34.02 77.47
+ MVDR PNCC 16.34 11.01 24.55 12.69

+ PFa PNCC 16.77 10.64 25.58 12.37
+ MaxPower PNCC 14.53 12.05 22.14 15.08

+ DNN FBANK 15.79 10.42 24.17 16.72

Table 3. ASR results for our beamformers and the baseline
enhancement system.

development evaluation
environment real simulated real simulated
BUS 16.17 10.52 29.00 12.46
CAF 13.78 13.97 24.04 15.61
PED 11.73 9.53 19.75 14.81
STR 15.26 13.38 15.69 16.64
AVG 14.23 11.85 22.12 14.88

Table 4. Detailed results for single best system, MaxPower
using PNCC features and RNN language model rescoring.

7. CONCLUSION

We presented a comparison of different beamformers and
postfilters applied to the CHiME 3 speech database. We
studied three variants of GSC beamformers, i.e. GSC with
sparse blocking matrix (BM), GSC with adaptive BM (ABM),
and GSC with minimum variance distortionless response
(MVDR) and ABM. In addition we investigated three postfil-
ters (PF), a MaxPower PF, a parametric multi-channel Wiener
filter, and a deep neural PF. The proposed ASR systens use
either MFCC or PNCC features calculated from the the pre-
processed signals which are fed into GMM or DNN-based
systems. Finally n-best list re-scoring, using a recurrent neu-
ral network (RNN) language model, was applied.

We evaluated the overall perceptual score (OPS), and per-
ceptual evaluation of speech quality (PESQ) of the proposed
beamformers and postfilters. Deep neural postfilters using
an GSC-MVDR-ABM beamformer outperformed other BF
systems significantly, achieving an average relative improve-
ment of 17.54% in OPS and 18.28% in PESQ compared to
the baseline system. However, improvements in OPS were
not reflected in the ASR performance on the real data set, al-
though the best scores were achieved on the simulated data.
The GSC-MVDR-ABM beamformer followed by the Max-
Power postfilter and GMM ASR achieved the best WER on
real data. This configuration obtained a 22.14% WER and a
22.12% WER on the real evaluation set, with or without re-
scoring, respectively.
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Abstract
Robust automatic speech recognition in adverse environments is
a challenging task. We address the 4th CHiME challenge multi-
channel tracks by proposing a deep eigenvector beamformer as
front-end. To train the acoustic models, we propose to supple-
ment the beamformed data by the noisy audio streams of the
individual microphones provided in the real set. Furthermore,
we perform data augmentation by modulating the amplitude and
time-scale of the audio. Our proposed system achieves a word
error rate of 4.22% on the real development and 8.98% on the
real evaluation data for 6-channels and 6.45% and 13.69% for
2-channels, respectively.

1. Background
This report describes our proposed ASR system for the 6- and
2-channel task of the 4th CHiME challenge. The proposed mod-
ifications of the baseline system are:
• As multi-channel front-end we employ an optimal multi-

channel Wiener filter, which consists of an eigenvec-
tor GSC beamformer and a single-channel postfilter.
Both components depend on a speech presence proba-
bility mask, which we learn using a deep neural network
(DNN).

• In addition to the beamformed signals we use noisy
multi-channel real data to train the acoustic model of the
ASR, i.e. we perform multi-channel training.

• We perform data augmentation by modulating the signal
amplitude (volume perturbation) and time-scale modifi-
cations (speed perturbation).

• We perform sequential language model rescoring using
(gated) RNNs.

• We combine multiple systems with a lattice-based ap-
proach which uses minimum Bayes risk decoding.

A detailed introduction of the individual components and rele-
vant literature are provided in the next section.

2. Robust Multi-Channel ASR System
Figure 1 shows the block diagram of the proposed multi-
channel ASR system including the data augmentation and
multi-channel training of the recognizer. Each processing step
is detailed in the following sections.

This work was supported by the LEAD project, the Austrian Sci-
ence Fund (FWF) under the project number P25244-N15 and P27803-
N15 and the K-Project ASD. Furthermore, we acknowledge NVIDIA
for providing GPU computing resources.
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Figure 1: System overview.

2.1. Deep Eigenvector Beamformer

As multi-channel speech enhancement front-end we employ
a deep eigenvector beamformer, which consists of a general-
ized sidelobe canceller (GSC) beamformer [1–5], followed by
a single-channel postfilter. The GSC consists of a steering vec-
tor F , a blocking matrix B, and an adaptive interference can-
celler, such that: W = F −BHAIC . The GSC block diagram
is given in figure 2. The steering vector F has to model the
acoustic transfer functions (ATFs) from the speaker to the mi-
crophones [6]. Usually this is done by a direction of arrival
(DOA) estimation. However, this method does not include the
complex propagation paths present in the CHiME4 data, which
is why we use the dominant eigenvector of the speech PSD ma-
trix Φ̂SS as steering vector F , such that the beamformer is
directed towards the speech source in signal subspace. This
allows the beamformer to account for early echoes and rever-
beration of the speaker signal [6–8]. Hence, we refer to this
beamformer as eigenvector GSC (EV-GSC).

Using the steering vector F , the blocking matrix is given as
B = I − FFH . The adaptive interference canceller HAIC is
learned using an adaptive NLMS filter [9]. The single-channel
postfilter consists of a real-valued gain mask G = ξ

1+ξ
, which

is obtained from the SNR ξ at the beamformer output. It is
given as ξ = WHΦ̂SSW

WHΦ̂NNW
. The SNR depends on both the

speech and noise PSD matrices, which are estimated using
a time and frequency dependent speech presence probability
pSPP .

We use a DNN to learn pSPP from the dominant eigenvec-
tor of the PSD matrix of the noisy inputs. As we are operat-
ing in the frequency domain, each frequency bin k is assigned
to a kernel as shown in Figure 3. The feature vector xk for
each kernel consists of the cosine distance between the eigen-
vectors of 5 consecutive frames. This introduces some context-



Figure 2: GSC beamformer

sensitivity into our model. The DNN of each kernel uses a
hybrid model with a generative and a discriminative compo-
nent [10]. The generative component consists of two autoen-
coder layers, which perform unsupervised clustering of the in-
put data xk. The autoencoder kernels operate independently for
each frequency bin. We used 20 neurons in the first layer, and
10 neurons in the second layer. The discriminative component
consists of a regression layer which fuses the activations of all
autoencoder kernels, in order to exploit information which is
distributed across the frequency. The regression layer predicts
the K output labels pSPP (xk)). Figure 3 illustrates the kernel-
ized DNN used in our system.

For more details on the EV-GSC beamformer and the ker-
nelized DNN, we refer the reader to [11]. We use the same
architecture for the 2ch and 6ch track, as the training data is the
same for both tracks.

Figure 3: Kernelized DNN to estimate the speech presence
probability pSPP

2.2. ASR

The ASR system employs a hybrid DNN architecture built with
the Kaldi toolkit [12]. We do not only use the beamformed data
for training but add the noisy channels of the real data (except
for channel 2 which faces backwards). With this multi-channel
training (MC) we can both compensate for the small amount of
training data and make the acoustic model less sensitive to noise
that might be left over in the evaluation data. In the evaluation
stage we still use only the beamformed signals.

The GMM system uses 13 MFCCs and their deltas and
delta-deltas. The DNN uses 40 fMLLR features extracted from
this GMM system. For the DNN the data is augmented with
speed-perturbed copies of the original data. Additionally, the
data is volume-perturbed for greater robustness (pert). The
DNN is then generatively pre-trained using restricted Boltz-
mann machines. The DNN has 6 hidden layers and is trained

with a state-level minimum Bayes risk (sMBR) criterion. The
results which have been obtained in this way are then rescored
with a Kneser-Ney smoothed 5-gram model (5-gram), a recur-
rent neural network language model (RNNLM) and a gated
RNNLM (GRNNLM). The two RNNLMs consist of a single
hidden layer with 300 and 500 neural units, respectively.

We perform system combination by first combining the lat-
tices of the system with perturbed training data (pert), the sys-
tem with multi-channel training (MC) and the system that uses
both (MC + pert). We then decode the resulting lattices with an
sMBR criterion.

3. Experimental Evaluation
Table 1 shows the results of our systems for the 6- and 2-channel
tasks of the 4th CHiME challenge. For each data set the best
score for a single system and for system combination is in bold-
face. Due to time constraints we report only those results for
the 2-channel task which uses the system architecture that we
have found to be optimal for the 6-channel task (SC). Therefore
the following comparison focuses on the 6-channel task.

On average over the test sets, our proposed EV-GSC beam-
former of S2 performs 2% WER better than the baseline beam-
formIt beamformer of S1, i.e. 7.95% WER vs. 9.98% WER
for the RNNLM-rescored DNN. However, this performance im-
provement is the least pronounced for the real evaluation data.
Data augmentation through speed perturbation and volume per-
turbation (pert) of S3 results in an improvement of .74% WER
on average, i.e. 7.20% WER vs. 7.95% WER. Multi-channel
(MC) training of S4 leads to an improvement of 0.80% WER on
average, i.e. 7.15% WER vs. 7.95% WER. Both multi-channel
training and amplitude and time-scale perturbation (MC+pert)
of S5 results in an improvement of 1.19% WER on average,
i.e. 6.75% WER vs. 7.95% WER. Further rescoring with the
gated RNNLM leads to a small improvement of 0.04% WER.
The best results for 6-channels are achieved by a combination
of systems S3, S4, and S5 as S6. In particular, we obtain a
WER of 8.98% and 7.02% on the real and simulated test set,
respectively.

Table 2 shows the individual results for each environment
of our best system for the 6- and 2-channel track. For both
systems, performance on the real evaluation data set is consid-
erably worse for BUS than for any other environment.
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ABSTRACT

In this paper, we present an optimal multi-channel Wiener filter,
which consists of an eigenvector beamformer and a single-channel
postfilter. We show that both components solely depend on a speech
presence probability, which we learn using a deep neural network,
consisting of a deep autoencoder and a softmax regression layer. To
prevent the DNN from learning specific speaker and noise types, we
do not use the signal energy as input feature, but rather the cosine
distance between the dominant eigenvectors of consecutive frames
of the power spectral density of the noisy speech signal. We com-
pare our system against the BeamformIt toolkit, and state-of-the-art
approaches such as the front-end of the best system of the CHiME3
challenge. We show that our system yields superior results, both in
terms of perceptual speech quality and classification error.

Index Terms— multi-channel speech enhancement, eigenvector
beamforming, speech mask estimation

1. INTRODUCTION

In recent years, conventional single channel speech enhancement
methods have been outperformed by data-driven approaches. deep
neural networks (DNNs) have been employed to discriminatively
learn a gain mask for separation of the speech and noise components
in a noisy speech signal [1–5].

For multi-channel speech enhancement, acoustic beamforming
still outperforms single-channel methods due to the underlying phys-
ical model that can be exploited [6]. However, DNNs have proven
to be useful for learning a postfilter subsequent to a beamformer [7].
The generalized sidelobe canceller (GSC) is one of the most popular
beamformer designs. It requires an estimate of either the direction
of arrival (DOA) or the acoustic transfer function (ATF) from the
speech source to the microphones, which is then used as steering
vector [6]. For DOA estimation, the geometry of the microphone
array has to be known, while ATF estimation requires knowledge
of the statistics of the speech signal. More advanced beamforming
techniques require an estimate of the power spectral density (PSD)
matrix of the noise signal [8].

In this paper, we first show that the speech presence probability
mask for estimating the speech and noise statistics is sufficient to
construct an optimal multi-channel Wiener filter, consisting of an
eigenvector GSC (EV-GSC) and a single-channel postfilter. Re-
cently, various works have been presented on how to obtain the
speech presence probability using neural networks, e.g. [1, 3, 9].
Most methods rely on the energy of the noisy speech signals, and
therefore are highly dependent on the array geometry and the statis-
tics of the speech and noise presented in the training data. We aim

to use a more general approach, which requires as little assumptions
about the signals as possible: We only assume that the speaker is
moving slowly, and that the noise is non-stationary. We empirically
observed that the eigenvectors of the PSD matrix of the noisy speech
signals provide a good measure for speaker activity, independent of
signal energy and array geometry. Based on this observation, we
estimate the speech presence probability mask using a simple DNN
structure consisting of a deep autoencoder with a softmax regression
layer. The deep autoencoder learns a sparse representation of the
eigenvectors of the PSD matrix of the noisy speech signals for each
frequency bin. The softmax regression layer discriminatively maps
this representation to the speech presence probability mask. We
empirically compare our multi-channel speech enhancement system
to three state-of-the-art approaches: The BeamformIt-toolkit [10], a
GSC with steering vector estimation and an adaptive blocking ma-
trix (ABM) [7], and the front-end of the best CHiME3 system [11],
which uses a complex Gaussian mixture model (CGMM-EM) to
estimate the speech and noise statistics.

This paper is structured as follows: After the introduction of
the system model in Section 2 we show the importance of the
speech presence probability for constructing an optimal multi-
channel Wiener filter in Section 3. In Section 4 the estimation
of the speech presence probability is presented. In Section 5 we
evaluate our model on CHiME4 data. Section 6 concludes the paper.

2. SYSTEM MODEL

We use the CHiME4 setup [10], which provides multi-channel
recordings of a single speaker embedded into ambient noise. The
recordings have been made with M = 6 microphones mounted to
a tablet computer. Both real and simulated data is provided, as well
as a ground truth (i.e. speaker separated from noise). This allows
to evaluate the performance of our system based on the true speech
signal. According to this scenario, the signal model is given as

Z(k, l) = S(k, l) + N(k, l), (1)

where Z(k, l) denotes the M -channel recordings in the frequency
domain, stacked to a M × 1 vector at frequency bin k = 1, . . . ,K
and time frame l. S(k, l) and N(k, l) denote the separated multi-
channel speech and noise components.1 For uncorrelated speech and
noise signals, the PSD matrix of the input is given as

ΦZZ = ΦSS + ΦNN . (2)

1For enhanced readability, the frequency and time frame indices will be
omitted except where necessary.
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Since ΦSS contains a single speech source, it can be decomposed
into the speech PSD ΦS and the acoustic transfer functions (ATFs)
A from the speaker to the microphones [12], i.e.

ΦSS = AAHΦS . (3)

3. MULTI-CHANNEL SPEECH ENHANCEMENT

The MSE-optimal multi-channel Wiener filter for estimating the sin-
gle speaker from the inputs Z(k, l) is given as [13, 14]

WOPT = Φ−1
ZZΦZS

=
[
AAHΦS + ΦNN

]−1
ΦSA

=
Φ−1
NNA

AHΦ−1
NNA︸ ︷︷ ︸

WMVDR

· ΦS

ΦS +
[
AHΦ−1

NNA
]−1︸ ︷︷ ︸

G= ξ
1+ξ

,
(4)

where ΦZS is the cross-PSD of Z(k, l) and S(k, l), and the vector
WMVDR can be recognized as the MVDR beamformer. G depicts
a real-valued, single-channel gain mask. From (4), ξ is given as

ξ = ΦSA
HΦ−1

NNA (5)

which can be recognized as the SNR at the beamformer output, i.e.

ξ =
WH

MVDRΦSSWMVDR

WH
MVDRΦNNWMVDR

. (6)

3.1. Eigenvector Beamforming

In real-world applications, both the ATFs A and the noise PSD
matrix ΦNN are hard to estimate. The latter might even be ill-
conditioned and therefore not invertible. As a consequence, the
MVDR beamformer in (4) is difficult to be implemented. Instead,
the GSC is widely used [6, 15–18]. The GSC consists of a steer-
ing vector F , a blocking matrix B, and an adaptive interference
canceller HAIC , i.e.

WMVDR ≈WGSC = F −BHAIC . (7)

While the GSC avoids the inversion of ΦNN , the steering vector
F is still a crucial component, as it directs the beamformer into the
direction of the desired speech signal. Obviously, the optimal steer-
ing vector would be the ATFs A, but they are unknown and hard to
estimate in reverberant environments [6]. Eigenvalue decomposition
of (3) yields

ΦSS = vSv
H
S λS = AAHΦS , (8)

where λS and vS are the principal eigenvalue2 and eigenvector of
ΦSS , respectively. It can be seen that vS points towards the speech
source. The eigenvector includes reverberations and early echoes of
the target signal, hence it qualifies as a substitute for the unknown
ATFs A, and can be used as steering vector F . This concept is
known as eigenvector or subspace beamforming [12, 19] where

F := vS . (9)

However, ΦSS cannot be directly observed, but for the purpose
of eigenvector decomposition it can be approximated using

Φ̂SS(k, l) =

∑T
t=1 Z(k, t)ZH(k, t)pSPP (k, t)∑T

t=1 pSPP (k, t)
, (10)

2Note that ΦSS is of rank 1 for a single speaker, see (3).

where pSPP is the speech presence probability (0 ≤ pSPP ≤ 1),
and T is a number of frames during which the dominant eigenvector
vS is assumed to be constant, i.e. the speaker is not moving. Intu-
itively, using (9), a blocking matrix which satisfies BHA

!
= 01×M

is then given by

B = I − FFH = I − vSv
H
S , (11)

where I is the M ×M identity matrix. A similar concept is also
used in [20]. The adaptive interference canceller HAIC is usu-
ally implemented using an adaptive normalized least mean squares
(NLMS) filter [21]. Adaption of this filter has to be stopped while
the speaker is active, otherwise target cancellation occurs. Usually
this is done using voice activity detection (VAD). However, we used
a state-space model [22] to adapt HAIC , which does not require a
VAD.

Note that the steering vector F and the blocking matrix B de-
pend on the dominant eigenvector vS , hence we refer to this beam-
former as eigenvector GSC (EV-GSC). Furthermore, vS depends
on the speech presence probability pSPP , see (10). Therefore, the
performance of the beamformer depends on an accurate estimate of
pSPP .

3.2. Optimal Postfilter

Analogously to (10), the noise PSD matrix ΦNN (k, l) can be ap-
proximated as

Φ̂NN (k, l) =

∑T
t=1 Z(k, t)ZH(k, t)

(
1− pSPP (k, t)

)∑T
t=1

(
1− pSPP (k, t)

) . (12)

Using (6), the SNR at the beamformer output is

ξ =
WH

GSCΦ̂SSWGSC

WH
GSCΦ̂NNWGSC

(13)

and the postfilter from (4) is given as G = ξ
1+ξ

. Similar as for the
beamformer, the postfilter solely depends on the speech presence
probability pSPP .

4. SPEECH MASK ESTIMATION

As demonstrated above, the speech presence probability pSPP is
sufficient to construct an optimal multi-channel Wiener filter con-
sisting of our EV-GSC and a postfilter. Therefore, the estimation of
pSPP is the key component of our multi-channel speech enhance-
ment system. There are a number of concepts for estimating a speech
mask from noisy data, like parameter estimation using a CGMM
[11], or neural networks operating on spectrogram data [1,3,9]. Usu-
ally, these methods use the signal energy or PSDs as feature vectors,
and are therefore highly dependent on the array geometry and statis-
tics of the speech and noise presented in the training data.

However, in a scenario like CHiME4, no reliable assumptions
can be made about the signal statistics. The speaker position is un-
known, and the background noise is non-stationary and can contain
all sorts of sounds from passing-by cars, transient bursts from pneu-
matic bus doors to human speech. The number of usable micro-
phones can also change, due to microphone failures. Further the
array geometry might be unknown, like for the 2 channel track in
CHiME4 [10]. Also, the microphones may not be matched. In such
situations, the signal power alone is no reliable indicator for speech
presence. We observed that the eigenvectors of the PSD matrix ΦZZ
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of the noisy inputs provide a good measure for speaker activity, inde-
pendent of signal energy and array geometry. We only assume that
the speaker is slowly moving, and that the noise is non-stationary.
Eigenvalue decomposition of ΦZZ gives

ΦZZ =
M∑
m=1

λZ,mvZ,mvHZ,m, (14)

where λZ,m and vZ,m are the eigenvalues and eigenvectors of ΦZZ .
We denotem = 1 as the dominant eigenvector vZ,1. Note that λZ,m
corresponds to the signal power, and vZ,m corresponds to the spatial
information embedded in the signal.

4.1. Visualization of Eigenvectors

For M = 6 channels, the complex-valued eigenvectors vZ,1(k, l)
lie on the surface of a 11-dimensional unit sphere3. In Figure 1 we
show vZ,1(k, l) for 10,000 consecutive frames l from the ’embed-
ded’ street recordings. The selected frequency bin k corresponds to
≈ 2650Hz. The dots are colored according to pSPP (k, l), which has
been calculated from the PSDs of the speech and noise ground truth
available for the simulated data of CHiME4, i.e.

pSPP,true =
Tr{ΦSS}

Tr{ΦSS + ΦNN}
. (15)

Using PCA to visualize the first three principal components
of vZ,1 reveals an interesting structure. It can be seen that the
dominant eigenvectors form local clusters if speech is present (red
dots). During speech absence they are uniformly distributed over
the sphere (blue dots). This clustering indicates that the speaker is
indeed slowly moving, which will be exploited to estimate pSPP .

Fig. 1. 3D projection of vZ,1 for a single frequency bin over time.
The dots are colored according to pSPP,true.

4.2. Kernelized DNN

We use a DNN to learn pSPP from the dominant eigenvector vZ,1
of the PSD matrix ΦZZ of the noisy inputs. As we are operating
in the frequency domain, a separate kernel for each frequency bin

3An m-dimensional complex eigenvector has 2m−1 non-redundant real-
valued dimensons, as the eigenvector can be scaled by an arbitrary complex
constant so that one dimension collapses to zero.

k is required. To introduce some context-sensitivity into our model,
we do not use vZ,1(k, l) directly as feature vector, but calculate the
cosine distance4 xi,k between the current eigenvector vZ,1(k, l) at
time frame l and the ith most recent frame, i.e.

xi,k = Re
{
vZ,1(k, l)HvZ,1(k, l − i)

}
. (16)

This enables the DNN to exploit the temporal information em-
bedded in the signal. xi,k is stacked to produce a feature vector
xk per kernel k, so that a feature vector covering ∆ consecutive
frames consists of xk =

[
x1,k, x2,k, · · · , x∆,k

]
. Note that (16)

effectively eliminates the number of microphones from the feature
vector. Hence, we can apply the same DNN structure to a wide range
of multi-channel speech enhancement tasks.

The DNN of each kernel uses a hybrid model with a generative
and a discriminative component [2]. The generative component con-
sists of two autoencoder layers, which perform unsupervised clus-
tering of the input data xk. The autoencoder kernels operate inde-
pendently for each frequency bin. We varied the number of hidden
layers and the number of neurons per layer in our experiments, and
heuristically determined that 2 hidden layers comprising 20 and 10
neurons are a good compromise between clustering performance and
computational complexity. The discriminative component consists
of a regression layer which fuses the activations of all autoencoder
kernels, in order to exploit information which is distributed across
the frequency. The regression layer predicts the K output labels
pSPP (xk)). Figure 2 illustrates the kernelized DNN used in our
system. Note that we could also use a (bidirectional) long short term
memory (B-LSTM), but our kernelized DNN has the advantage of
an efficient implementation, and it is easy to train.

Fig. 2. Kernelized DNN with feature vector xk and output predic-
tions pSPP (xk).

4.3. DNN training

We use greedy layer-wise pretraining for the autoencoder kernels
[23], and discriminative fine-tuning for the softmax-layer using the
true label pSPP,true from (15). Optimization is done using stochastic
gradient descent with ADAM [24]. The autoencoder uses the KL-
divergence and weight decay to enforce a sparse representation of
the inputs xk. The softmax layer uses the cross entropy between the
true and predicted speech presence probability as cost function.

5. RESULTS

We trained our kernelized DNN using the 6-channel training data
of the CHiME4 corpus [10], for which the ground truth pSPP,true is

4Note that the eigenvector is already normalized to 1, i.e.

||vZ,1(k, l)||22
!
= 1
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available. The training set comprises 1600 real and 7138 simulated
utterances. Then we applied the DNN to the entire 2 and 6-channel
corpus consisting of 14658 utterances, which translates roughly into
28 hours of audio data. The DNN outputs the speech presence proba-
bility pSPP , which we use to construct the EV-GSC beamformer and
postfilter as described in Section 3. For more details on the CHiME4
data the interested reader is refered to [10].

5.1. Speech Mask Accuracy

Figure 3 shows the performance of the DNN for a single utterance
from the evaluation set (M04 420C020M CAF). Panel (a) shows
xi=1,k from the feature vector for the DNN, (b) shows the true label
calculated with (15), and (c) shows the prediction for pSPP obtained
from the softmax regression layer.

Fig. 3. Speech presence probability mask prediction.

We observe that xi=1,k already shows a high similarity to the
true speech presence probability, except for low frequencies and
some noise. Due to the fully connected softmax layer, the noise
can be almost completely removed, and the prediction accuracy is
also good for low frequencies. Table 1 reports the prediction error
for pSPP 5 for the 2 and 6 channel data of CHiME4 [10], and various
feature vector lengths ∆. Using a feature vector with more than 5
consecutive frames gives no significant performance improvement,
hence we select ∆ = 5 to be a reasonable trade-off between accu-
racy and computational complexity.

Scenario Train Dev Eval
2ch, ∆ = 3 15.46 15.85 16.58
2ch, ∆ = 5 15.08 15.61 16.17
2ch, ∆ = 7 14.89 15.32 16.02
6ch, ∆ = 3 11.16 11.69 12.24
6ch, ∆ = 5 10.74 11.41 11.85
6ch, ∆ = 7 10.55 11.28 11.74

Table 1. Prediction error for pSPP in %.

5The prediction error is the average over all time-frequency bins of
|pSPP − pSPP,true|.

5.2. Perceptual Speech Quality

With the predicted speech mask pSPP , we construct the EV-GSC
beamformer from Section 3.1. We use the Perceptual Evaluation
methods for Audio Source Separation (PEASS) Toolkit [25, 26] to
evaluate the performance of our multi-channel speech enhancement
system, and report the Overall Perceptual Score (OPS) and PESQ
[27] values. Tables 2 and 3 give a comparison of our system (EV-
GSC) against the CHiME4-baseline enhancement system using the
BeamformIt-toolkit [10], our GSC with steering vector estimation
and an adaptive blocking matrix (ABM) [7], and the front-end of the
best CHiME3 system [11], which uses a complex gaussian mixture
model (CGMM-EM) to estimate the speech and noise PSD matrices.
The model parameters are estimated with an EM algorithm, and the
posterior probability is used as speech presence probability.

It can be seen that our approach (EV-GSC) outperforms the
CHiME4 baseline, the GSC with ABM, and the CGMM-EM sys-
tems in terms of PESQ and OPS on the simulated (simu) and real
(real) data set for 6-channels (6ch). Even in the 2-channel case
(2ch) we obtain competitive results. In this case, the two channels
are randomly selected from the 6-channels, i.e. the array geometry
changes randomly.

Method Data set Train Dev Eval
CHiME4 baseline simu 1.35 1.31 1.26
(BeamformIt), 5ch [10] real 1.35 1.28 1.37
GSC with ABM and simu 1.98 1.69 1.63
and postfilter, 6ch [7] real 1.51 1.39 1.44
CGMM-EM with MVDR simu 1.79 1.59 1.51
and postfilter, 6ch [11] real 1.53 1.41 1.44
EV-GSC and postfilter, simu 2.04 1.89 1.86
6ch, ∆ = 5 real 1.72 1.74 1.63
EV-GSC and postfilter, simu 1.68 1.61 1.58
2ch, ∆ = 5 real 1.55 1.43 1.54

Table 2. PESQ scores.

Method Data set Train Dev Eval
CHiME4 baseline simu 33.11 34.73 31.46
(BeamformIt), 5ch [10] real 29.97 36.45 36.74
GSC with ABM and simu 56.08 44.82 44.48
and postfilter, 6ch [7] real 47.18 44.90 36.96
CGMM-EM with MVDR simu 52.15 43.02 40.59
and postfilter, 6ch [11] real 44.95 41.89 36.87
EV-GSC and postfilter, simu 59.09 48.32 48.64
6ch, ∆ = 5 real 52.34 46.09 44.16
EV-GSC and postfilter, simu 47.32 40.97 40.75
2ch, ∆ = 5 real 43.43 42.83 39.82

Table 3. OPS scores.

6. CONCLUSION AND FUTURE WORK

In this paper, we have shown the importance of the speech pres-
ence probability mask, which is used to construct an optimal multi-
channel Wiener filter followed by a single-channel postfilter. Fur-
ther, we presented a kernelized DNN to estimate this speech pres-
ence probability mask. To prevent the DNN from learning specific
speaker and noise types, we used the cosine distance between the
dominant eigenvectors of consecutive frames of the PSD of the noisy
speech as input feature. Finally, we compared our system against
three state-of-the-art approaches, and evaluate the perceptual speech
quality and classification error. Future work includes a in-depth eval-
uation of the DNN being used and performance comparison against
B-LSTMs. Furthermore, the relationship between the eigenvectors
and the speech presence probability mask is investigated.
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1 Signal Processing and Speech Communication Laboratory
Graz University of Technology, Graz, Austria

2 Ognios GmbH Salzburg, Austria
lukas.pfeifenberger@alumni.tugraz.at
{matthias.zoehrer,pernkopf}@tugraz.at

Abstract
In this paper, we use a logistic regression to learn a speech

mask from the dominant eigenvector of the Power Spectral Den-
sity (PSD) matrix of a multi-channel speech signal corrupted by
ambient noise. We employ this speech mask to construct the
Generalized Eigenvalue (GEV) beamformer and a Wiener post-
filter. Further, we extend the beamformer to compensate for
speech distortions. We do not make any assumptions about the
array geometry or the characteristics of the speech and noise
sources. Those parameters are learned from training data. Our
assumptions are that the speaker may move slowly in the near-
field of the array, and that the noise is in the far-field. We com-
pare our speech enhancement system against recent contribu-
tions using the CHiME4 corpus. We show that our approach
yields superior results, both in terms of perceptual speech qual-
ity and speech mask estimation error.
Index Terms: Multi-channel speech enhancement, broadband
beamforming, speech mask estimation

1. Introduction
In many beamforming structures, a steering vector is required
to provide a spatial focus towards the location of the speaker.
A simple and robust method is to obtain the steering vector
from a Direction Of Arrival (DOA) estimate. Many algorithms
have been devised for that purpose, i.e. PHAT, MUSIC [1], or
DD-SNR [2]. However, the DOA cannot model reverberation
or multi-path propagation caused by the enclosure, i.e. office
rooms or car interiors. This may result in target leakage, which
limits beamforming performance. More advanced approaches
aim at estimating the acoustic path from the speech source to
each microphone, which is known as Acoustic Transfer Func-
tion (ATF). Approximations are done using Relative Transfer
Functions (RTFs) [3,4]. The RTFs relate the ATFs with respect
to a reference point, and can be modeled by shorter FIR filters
[5]. Recent contributions use a spectral gain mask to distinguish
between speech and noise signals, which is then used to esti-
mate their respective PSD matrices. Such a speech mask may
be obtained using model-based clustering approaches [6–8], or
data-driven regression [9–12] based on various types of neural
networks (NN). While clustering approaches require some prior
knowledge like the array geometry or the statistics of the noise,
NNs are able to learn the speech mask from training data, with-
out additional information. Moreover, NNs have the distinct
advantage of jointly estimating a speech mask for all frequen-
cies, which proved to be superior in recent multi-channel speech
enhancement and recognition tasks [13, 14].

In this paper, we extend our work in [12], where we used
several NN architectures to estimate the speech mask using
eigenvector features. As the largest NN requires over a million

weights to be trained, the aim is to significantly reduce model
complexity, while maintaining performance. We introduce a
different approach to estimate the speech mask compared to [8]
and [9]. Instead of energy-related features, our NN utilizes the
dominant eigenvector of the PSD matrix of the microphone sig-
nals as feature vector. Therefore, the spatial information hidden
in the multi-channel data is exploited. The predicted speech
mask is then used to split the PSD matrix of the microphone
signals into its speech and noise components, where we use the
dominant eigenvector of the speech PSD as steering vector for
the beamformer. We show that the cosine similarity between
dominant eigenvectors of consecutive PSD matrices of the mi-
crophone signals is sufficient to predict the speech mask. By
using the cosine similarity, we obtain a feature which is inde-
pendent of both the signal energy and the microphone array ge-
ometry. Our assumptions are that the speaker is in the near-
field of the array and that the non-stationary noise is in the far-
field. The speaker may move slowly, resulting in slowly varying
ATFs. These relaxed conditions are found in many telephony
applications, i.e. hands-free calling kits, voice chats on mobile
devices, or roadside emergency telephones.

This paper is structured as follows: After the introduction
of the system model in Section 2, we demonstrate our extension
to the GEV beamformer for reducing speech distortions in Sec-
tion 3. In Section 4 we show the importance of the speech pres-
ence probability for constructing the beamformer and a postfil-
ter. In Section 5 the estimation of the speech presence prob-
ability using logistic regression is presented. In Section 6 we
present our results. Section 7 concludes the paper.

2. System Model
We assume a single speech source embedded in ambient noise.
The array consists of M microphones, arranged into an arbi-
trary array geometry. There may be multiple noise sources, and
their spatial and temporal characteristics may be unknown. Our
speech enhancement system is shown in Figure 1. We define

Z1(k, l)

Z2(k, l)

ZM(k, l)

..
.

Beamformer Postfilter

Speech Mask

Estimation

Y (k, l)

M

Figure 1: System overview, showing the microphone signals
Zm(k, l) and the beamformer+postfilter output Y (k, l) in fre-
quency domain.
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the signal at the mth microphone in the STFT domain as

Zm(k, l) = S(k, l)Am(k, l) +Nm(k, l), (1)

where the frequency bin k = 1, . . . ,K and the time frame is
denoted by l. The ATF of the speaker S(k, l) to the mth mi-
crophone is denoted by Am(k, l), and the noise received at that
microphone is denoted by Nm(k, l). By stacking all M signals
to a M × 1 vector, the signal model can be written as:

Z(k, l) = S(k, l)A(k, l) + N(k, l). (2)

For enhanced readability, the frequency and time frame in-
dices will be omitted except where necessary. The PSD ma-
trix for all microphone signals Z(k, l) is obtained using recur-
sive averaging, i.e.: ΦZZ(k, l) = ΦZZ(k, l − 1)α + (1 −
α)Z(k, l)ZH(k, l), where 0 ≤ α ≤ 1 is a smoothing param-
eter [15]. For uncorrelated speech and noise signals, this PSD
matrix can be split into its speech and noise components

ΦZZ(k, l) = ΦSS(k, l) + ΦNN (k, l). (3)

For a single speaker, ΦSS(k, l) will be of rank 1 and can there-
fore be decomposed into

ΦSS(k, l) = A(k, l)AH(k, l)ΦS(k, l). (4)

Note that the magnitude of the ATFs can be modeled by
ΦS(k, l) in (4), hence we define ||A||2 = 1.

3. Multi-Channel Speech Enhancement
We use a broadband beamformer [16] for multi-channel speech
enhancement. The beamformer output is given by

Y (k, l) = WH(k, l)Z(k, l)G(k, l), (5)

with the filter weights W (k, l), and the single-channel Wiener
postfilter G(k, l). Following the definition of the system model
in (2), the optimal filter weights are given by the MSE-optimal
multi-channel Wiener filter WOPT [15, 17], i.e.

WOPT =
Φ−1
NNA

AHΦ−1
NNA︸ ︷︷ ︸

WMVDR

· ΦS

ΦS +
[
AHΦ−1

NNA
]−1

︸ ︷︷ ︸
G= ξ

1+ξ

. (6)

The filter WMVDR can be recognized as the MVDR beam-
former [18, 19]. The postfilter G = ξ

1+ξ
depicts a real-valued

gain mask, which is applied at the beamformer output. It can
be seen from (4) and (6), that ξ is given as the multi-channel
SNR [17]

ξ = ΦSA
HΦ−1

NNA = Tr
{
Φ−1
NNΦSS

}
. (7)

3.1. GEV Beamformer

While it is possible to select from a broad range of broadband
beamformers such as the MVDR or the GSC, we use the GEV
for its superior performance in earlier experiments [12]. The
GEV beamformer, constrains the filter weights W (k, l) to max-
imize the SNR ξ(k, l) at the beamformer output [20, 21], i.e.

WGEV = arg max
W

ξ. (8)

The solution to (8) is given by the following generalized eigen-
value problem

ΦSSWGEV = ξΦNNWGEV , (9)

which is solved by

WGEV = ζΦ−1
NNA, (10)

where ζ is an arbitrary complex scalar. Comparing the GEV to
the MVDR beamformer, it can be immediately seen that they
only differ by a complex constant C

WMVDR =
Φ−1
NNA

AHΦ−1
NNA

= CWGEV (11)

However, this difference causes target speech distortions in the
GEV, i.e. WH

GEV (k, l)A(k, l) 6= 1. To compensate for these
distortions, we derive an expression for C as follows:

Assuming normalized ATFs ||A||2 = 1, we can rearrange
(10) into ζ = AHΦNNWGEV and express the complex con-
stant C by

CPAN =
WH

GEV ΦNNA

WH
GEV ΦNNWGEV

, (12)

which we refer to as Phase Aware Normalization (PAN). Note
that [20] proposes the Blind Analytical Normalization (BAN)
and the Blind Statistical Normalization (BSN) compensation
methods to estimate the absolute value of C, i.e.:

CBAN =

√
WH
GEV

ΦNNΦNNWGEV

WH
GEV

ΦNNWGEV
. In fact, it can be eas-

ily verified that the magnitudes of the BAN and PAN compen-
sation factors are identical. Inserting (12) into (11) gives the
GEV-PAN beamformer:

CPANWGEV =
WGEVW

H
GEV ΦNN

WH
GEV ΦNNWGEV

A = PA (13)

with the projection matrix P [22]. The expression B = I −P
can be identified as blocking matrix [21]. In theory, the com-
pensation factor CPAN turns the GEV into the MVDR beam-
former. However, as the former avoids the inversion of ΦNN

when using (9), it is numerically more stable and achieves better
PESQ and OPS scores [12].

3.2. Steering Vector Estimation

From (13) it can be seen that the GEV-PAN beamformer re-
quires the ATFs A(k, l). As they are unknown in practice and
hard to estimate in reverberant environments [18], we use a
steering vector F (k, l), which provides a spatial focus of the
speech source. Under reverberation-free conditions the steering
vector may be modeled as simple time delays using DOA es-
timation [1]. However, in realistic environments this approach
will result in speech loss at the beamformer output. We there-
fore advocate a steering vector in signal subspace [23]. Eigen-
value decomposition (EVD) of the speech PSD matrix gives

ΦSS = AAHΦS = vS1v
H
S1
λS1 , (14)

where λS1 and vS1 are the single eigenvalue and eigenvector
of ΦSS(k, l), as this matrix is of rank 1 for a single speaker.
Rearranging (14) leads to:

A =
λS1

AHvS1ΦS
vS1 = ζS1vS1 , (15)

where ζS1 can be recognized as another complex scalar. There-
fore, the dominant eigenvector of ΦSS is a scaled version of the
true ATF A(k, l), including multi-path propagations and early
echoes of the target signal [1,20,23]. Assuming ||A||2 = 1, the
dominant eigenvector vS1 is equal to the ATF.
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4. Speech Mask Estimation
In the last section, we have shown that the GEV-PAN beam-
former and the steering vector require an estimate of both the
speech and noise PSD matrices.

4.1. PSD matrix approximation

By using an oracle speech mask 0 ≤ pSPP(k, l) ≤ 1, which
represents the probability for each time-frequency bin to contain
speech, ΦSS(k, l) can be approximated with

Φ̂SS(k, l) =

∑l+T/2

t=l−T/2 Z(k, t)ZH(k, t)pSPP(k, t)
∑l+T/2

t=l−T/2 pSPP(k, t)
, (16)

where T is a number of frames during which we assume the spa-
tial characteristics of ΦSS(k, l) to be stationary, i.e. the speaker
is not moving [24]. Note that the energy of the speech signal
may change during the time period T , but this does not affect
(9), and hence the performance of the GEV beamformer. Analo-
gously to (16), the noise PSD matrix ΦNN (k, l) can be approx-
imated using the complementary probability 1− pSPP(k, t).

4.2. Speech Presence Probability

As shown above, the estimation of pSPP(k, l) is the key compo-
nent in our speech enhancement system. Using (7), we define
the optimal speech presence probability as

pSPP,opt(k, l) =
ξ(k, l)

1 + ξ(k, l)
= G(k, l). (17)

Note that the optimal speech presence probability is equal to the
Wiener postfilter given in (6).

Eigenvalue decomposition of the noisy speech PSD ma-
trix gives ΦZZ =

∑M
m=1 λZmvZmvHZm , where λZm and

vZm are its eigenvalues and eigenvectors, respectively. We
observed that the dominant eigenvector vZ1(k, l) is related to
pSPP,opt(k, l) [24]. It was shown that eigenvectors contain-
ing speech tend to form local clusters, while noisy eigenvectors
are distributed randomly over a multi-dimensional unit sphere.
Hence, the dominant eigenvector vZ1(k, l) provides a reliable
measure for speaker activity. Using the cosine similarity1 be-
tween two neighboring eigenvectors

x∆(k, l) = |vZ1(k, l)HvZ1(k, l −∆)|, (18)

we obtain a scalar x∆(k, l), independent of the number of mi-
crophones being used. To observe a difference between two
neighboring eigenvectors, the matrix ΦZZ has to be updated
with a sufficiently small time constant. During speaker activity,
x∆(k, l) is close to one, and close to zero otherwise. Note that
this feature is also independent of signal energy and array ge-
ometry. Figure 2 shows x∆(k, l) for a single utterance of the
CHiME4 corpus. It can be seen that x∆(k, l) already has some
similarity with the optimal speech mask pSPP,opt(k, l), shown in
Figure 3a. At low frequencies, the separation capability of this
feature is poor, as the wavelength of the signal is large compared
to the aperture of a typical microphone array. This information
has to be inferred from other frequency components.

1Note that the eigenvectors are already normalized to 1, i.e.
||vZ1

(k, l)||22 = 1.

Figure 2: Cosine similarity x∆=1(k, l) for a single utterance of
the CHiME4 corpus.

5. Logistic Regression
In contrast to the NNs based on LSTMs and MLPs used in [12],
we aim for a resource-efficient regression model to estimate the
speech mask. As our model operates in the time-frequency
domain, we derive a feature vector for each frequency bin k
and time frame l. In particular, we stack n∆ cosine distances
x∆(k, l) to add some context to the feature vector

xevd(k, l) =
[
x∆=1(k, l), . . . , x∆=n∆(k, l)

]T
, (19)

where we consider the eigenvectors in the vicinity n∆ of the
current time frame l containing the most relevant information.
We refer to (19) as eigenvector-delta. For each frequency bin k
we obtain an estimate

p̃SPP(k, l) =
eã(k,1)

∑2
i=1 e

ã(k,i)
, (20)

using the activation

ã(k, i) = W̃ (k, i)xevd(k, l) + b̃(k, i), (21)

where W̃ and b̃ denote the weights and bias values of the lo-
gistic regression, respectively. Note that p̃SPP(k, l) is calculated
independently for each frequency bin. To exploit the broadband
nature of human speech, we employ a second logistic regression
which calculates a refined estimate p̂SPP(k, l) = eâ(k,1)

∑2
i=1 e

â(k,i) .

The activation â(k, i) uses the estimate p̃SPP(k, l) of the neigh-
boring k − k∆ · · · k + k∆ frequency bins, i.e.

â(k, i) =

k+k∆∑

j=k−k∆

Ŵ (k, j, i)p̃SPP(j, l) + b̂(k, i). (22)

This architecture is capable to learn the basic structure of hu-
man speech. As the eigenvector-features do not contain any in-
formation about signal energy, speaker-dependent features are
ignored.

6. Results
6.1. Experimental Setup

To evaluate our model, we use the CHiME4 corpus [13], which
provides 2 and 6-channel recordings of a close-talking speaker
corrupted by four different types of ambient noise. The database
provides a training set (tr05), a validation set (dt05) and a test
set (et05). We use all utterances (real and simu) from each
set. The ground truth (i.e. the separated speech and noise
signals) is available for all recordings, which we use to calcu-
late the true speech mask pSPP,opt(k, l) with (7) and (17). Once
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trained, the logistic regression provides a prediction p̂SPP(k, l)

for each utterance, which is required to calculate Φ̂SS(k, l) and
Φ̂NN (k, l) with (16). The averaging window length is set to
T = 250ms. We use a STFT window length of 32ms and an
overlap of 50% to process the data. The speech and noise PSD
estimates are then used to construct the GEV-PAN beamformer.
Following (17), we use G(k, l) = p̂SPP(k, l) for the postfilter.

6.2. Speech Mask Accuracy

Figure 3 shows the performance of the logistic regression mod-
els by visualizing the optimal and predicted speech masks for
a single utterance from the test set. Table 1 reports the predic-

Figure 3: Speech presence probability for a single utterance
from the CHiME4 test set. (a) ground truth pSPP,opt(k, l), (b)
coarse prediction p̃SPP(k, l), (c) refined prediction p̂SPP(k, l).

tion error L = 100
KL

∑K
k=1

∑L
l=1

∣∣p̂SPP(k, l) − pSPP,opt(k, l)
∣∣ in

% for the logistic regression, labeled as evd logreg, and four
alternative NN models which we used in [12]. They are labeled
as ev lstm, evd lstm, evd mlp and psd lstm, and use multi-
ple hidden layers, each containing nh neurons. The last column
shows the number of parameters to be trained for each model.
It can be seen that the logistic regression uses two orders of
magnitude fewer weights while achieving comparable results.

6.3. Perceptual Speech Quality

Using the predicted speech mask p̂SPP(k, l), we construct the
GEV-PAN beamformer for both the 2 and 6-channel data. To
evaluate the performance of the resulting speech signal Y (k, l)
in terms of perceptual speech quality, we use the Percep-
tual Evaluation methods for Audio Source Separation (PEASS)

Table 1: Prediction error for p̂SPP(k, l) in % for the 6 channel
data. Results of proposed methods are bold face.

architecture n∆ nh train valid test # of weights
ev lstm, 6ch - 20,10 1.889 2.685 3.003 1457704
evd lstm, 6ch 7 20,10 2.184 2.183 2.520 1252104
evd mlp, 6ch 7 20,10 2.349 2.285 2.825 156513
psd lstm, 6ch - 20,10 2.711 3.415 3.489 1210984
evd logreg, p̃SPP, 6ch 3 - 3.980 3.894 5.700 1542
evd logreg, p̂SPP, 6ch 3 - 2.767 2.671 3.598 12336
ev lstm, 2ch - 10,5 3.919 4.265 4.377 1128744
evd lstm, 2ch 7 10,5 3.566 3.495 3.992 1252104
evd mlp, 2ch 7 10,5 3.695 3.613 4.778 156513
psd lstm, 2ch - 10,5 4.620 5.082 4.902 1046504
evd logreg, p̃SPP, 2ch 3 - 6.575 6.493 7.497 1542
evd logreg, p̂SPP, 2ch 3 - 4.382 4.282 5.901 13364

toolkit [25], and report the Overall Perceptual Score (OPS) and
PESQ [26] values. The ground truth required for these scores
is obtained using the pSPP,opt(k, l) and the GEV-PAN. Table 2
reports the PESQ and OPS scores of the logistic regression
and the other models used in Table 1. Further, we also re-
port the scores of the CHiME4-baseline enhancement system,
i.e. the BeamformIt!-toolkit [13], and the front-end of the best
CHiME3 system [8], which uses CGMM priors and the EM al-
gorithm to estimate the speech mask. It can be seen that the
performance of the much smaller logistic regression architec-
ture (evd logreg) is comparable to the NN models, even for
the 2-channel track. For this track, 2 out of the 6 microphones
have been chosen randomly, so that the array geometry is un-
known for each utterance. In summary, all our eigenvector-
based speech mask estimation models show an improvement
over the BeamformIt! baseline and the CGMM-EM system.

Table 2: Performance comparison of 6- and 2-channel data,
against the BeamformIt! and CGMM-EM systems.

architecture n∆ nh
PESQ [MOS] OPS [%]

train valid test train valid test
ev lstm, 6ch - 20,10 2.443 2.007 1.891 72 58 51
evd lstm, 6ch 7 20,10 2.226 1.969 1.874 67 59 52
evd mlp, 6ch 7 20,10 2.197 1.944 1.829 67 59 52
psd lstm, 6ch - 20,10 1.977 1.758 1.724 63 54 49
evd logreg, p̃SPP, 6ch 3 - 1.830 1.676 1.551 57 52 46
evd logreg, p̂SPP, 6ch 3 - 2.071 1.862 1.704 63 57 50
ev lstm, 2ch - 10,5 1.965 1.706 1.725 51 44 45
evd lstm, 2ch 7 10,5 2.090 1.850 1.869 48 43 43
evd mlp, 2ch 7 10,5 2.042 1.818 1.820 46 42 42
psd lstm, 2ch - 10,5 1.867 1.669 1.703 44 40 41
evd logreg, p̃SPP, 2ch 3 - 1.696 1.578 1.579 35 32 34
evd logreg, p̂SPP, 2ch 3 - 1.940 1.754 1.741 43 39 40
BeamformIt!, 5ch - - 1.350 1.292 1.326 31 36 35
CGMM-EM, 6ch - - 1.635 1.483 1.468 48 42 38

7. Conclusion
In this paper, we proposed a resource-efficient linear regres-
sion architecture for speech mask estimation as alternative to
NNs. Our system uses the dominant eigenvector of the PSD
of the microphone signals as feature vector. We compared our
results against the most recent model-based and data-driven ap-
proaches using the CHiME4 corpus. We have shown that our
model yields good results, both in terms of perceptual speech
quality and speech mask prediction error, while using two or-
ders of magnitude fewer parameters than comparable NN mod-
els. Unlike existing approaches, our system does not require
any information about the array geometry or the characteristics
of the speech and noise sources. Our assumptions are that the
speaker moves slowly and is located in the near-field of the ar-
ray, while the non-stationary noise is in the far-field.
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Abstract—We present the Eigennet architecture for estimating
a gain mask from noisy, multi-channel microphone observations.
While existing mask estimators use magnitude features, our system
also exploits the spatial information embedded in the phase of
the data. The mask is used to obtain the Minimum Variance Dis-
tortionless Response (MVDR) and Generalized Eigenvalue (GEV)
beamformers. We also derive the Phase Aware Normalization (PAN)
postfilter, which corrects both magnitude and phase distortions
caused by the GEV. Further, we demonstrate the properties of our
eigenvector features, and compare their performance with three
state-of-the-art reference systems. We report their performance in
terms of SNR improvement and Word Error Rate (WER) using
Google and Kaldi Speech-to-Text API. Experiments are performed
on the WSJ0 and CHiME4 corpora, where competitive perfor-
mance in both WER and SNR is achieved.

Index Terms—Multi-channel speech enhancement, Eigenvector
beamforming, speech mask estimation, Neural Networks.

I. INTRODUCTION

S PEECH enhancement is of paramount significance in many
telecommunication applications. Especially in hands-free

scenarios, background noise is the primary source of speech
degradation. Consequently, improving speech intelligibility and
quality has been an active field of research for many decades. As
computing platforms keep getting cheaper and faster, the focus
has shifted from single-channel speech enhancement (SCSE)
to multi-channel speech enhancement (MCSE) methods. While
SCSE relies exclusively on the spectral characteristics of the
speech and noise signals, MCSE allows the additional use of
spatial information.

MCSE methods can be divided into blind source separation
(BSS) and beamforming approaches. While BSS aims at separat-
ing all involved sources in the mixture, beamforming enhances
only a set of desired sources while treating all others as inter-
ference. A beamformer is comprised of a set of spatio-temporal
filters, which are convolved with each of the microphone signals
prior to summation. If those filters are designed with the objec-
tive to extract a broadband signal like speech, it is considered
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as a broadband beamformer. Common beamforming structures
are the Minimum Variance Distortionless Response (MVDR)
beamformer [1], and its Generalized Sidelobe Canceller (GSC)
formulation [2]. Both aim at minimizing the signal power at the
beamformer output, with the constraint to avoid distorting the
target signal. For its simplicity and robustness, the GSC is widely
used [3]–[6]. Another variant is the Generalized Eigenvalue
(GEV) beamformer [7], which trades minimal speech distortions
for maximum SNR at the beamformer output. While those
distortions can be controlled using either the Blind Analytical
Normalization (BAN) or Blind Statistical Normalization (BSN)
postfilters, we introduce the Phase Aware Normalization (PAN)
postfilter, which also accounts for phase distortions.

Beamformers like the MVDR or GSC require a steering
vector to direct the beamformer towards the desired signal, i.e.
the speaker. This direction can be estimated using Direction
Of Arrival (DOA) algorithms like PHAT, MUSIC [8], or DD-
SNR [9]. However, the acoustic path from the speaker to the
microphones is comprised of multiple reflections, caused by
reverberations of the acoustic environment. This path is known
as Acoustic Transfer Function (ATF) [10], [11]. As the DOA only
models the direct path, target leakage limits the beamforming
performance [12]. As an alternative to DOA estimation, a fixed
set of beamforming kernels may be learned in time-domain
directly from the noisy data, i.e. [13], [14].

With recent trends towards mask based beamforming, the
steering vector is no longer required, as the gain mask iden-
tifies the time-frequency bins that contain the desired signal.
This mask is used to obtain the spatial Power Spectral Density
(PSD) matrices of the desired and interfering sound sources.
The PSD matrix of the desired speech signal contains the
ATF of the speaker in its principal eigenvector [6]. Hence,
mask-based beamforming proved to be superior to DOA-based
approaches [15]–[20].

There are a number of concepts for estimating a gain
mask from noisy data. Since the CHiME3 and CHiME4-
challenges [21], magnitude features are widely used to train
a Neural Network (NN) [22]–[27]. However, the spatial in-
formation embedded in the phase of the microphone signals
is neglected. Consequently, such models lack the ability to
separate multiple speakers from a mixture. Alternatively, ap-
proaches like [28]–[30] also incorporate the phase information
into their systems. The CHiME3 challenge was won by [29],
where a Complex Gaussian Mixture Model (CGMM) is used
to model the PSD matrices of the involved sound sources. The
model parameters are estimated with an EM algorithm, and the
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Fig. 1. System overview, showing the microphone signals Zm(k, t) and the
beamformer output Y (k, t) in frequency domain.

posterior probabilities are used as gain masks for the respective
source components. To avoid the source permutation problem,
a template for each PSD matrix is required to initialize the EM
algorithm [31]. Further, the PSD matrices are assumed to be
constant over time. Therefore, this model is limited to stationary
sources.

In this paper, we propose the Eigennet architecture, which
exploits both the magnitude and spatial information contained
in the eigenvectors of the PSD matrix of the noisy speech.
This facilitates a NN which is able to track and separate mul-
tiple sources. We demonstrate the properties of three different
eigenvector-based features, i.e. spatial features (Evs), combined
spatial and magnitude features (EvsMag), and a hybrid variant
(Evd). Similar to existing phase-aware features like IPD [32]
or GCC [33], the eigenvectors contain the phase difference
between all microphone pairs, and hence encode the location
of the sources in the observed signal. Further, we compare those
features against a NN-based mask estimator using magnitude
features, similar to [29], [34], a CGMM-EM based method [29],
and the BeamformIt toolkit [35] as a baseline.

We use two speech corpora to evaluate those systems,
CHiME4 [21], and WSJ0 [36]. While the former provides 6 and
2 channel recordings, the latter consists of monaural recordings,
which we use in conjunction with simulated room acoustics to
obtain 6 channel data of multiple, moving speakers [37]. We
report the performance of all experiments in terms of SNR
improvement and Word Error Rate (WER) using the Google
Speech-to-Text API [38] and the Kaldi-ASR toolkit [39].

II. SYSTEM MODEL

We assume a number of C independent sound sources being
picked up by a microphone array which consists of M micro-
phones. The array may be arranged into an arbitrary geometry,
and the sound sources may be non-stationary, i.e. moving speak-
ers. The spatial and temporal characteristics of the individual
sources are unknown. We arbitrarily denote the first source
c = 1 to be the desired source of interest, and regard the other
sources as unwanted interference. Our speech enhancement
system encompasses a NN to estimate gain masks from the
noisy microphone observations, and a broadband beamformer
to isolate the desired signal. Fig. (1) provides a system overview.
The signal arriving at the microphones is composed of an addi-
tive mixture of C independent sound sources. In the short-time
Fourier transform (STFT) domain, the time-frequency bins
of all M microphones can be stacked into a single M × 1

vector, i.e.

Z(k, t) =
C∑

c=1

Xc(k, t), (1)

where

Z(k, t) =
[
Z1(k, t), . . . , ZM (k, t)

]T
. (2)

The vector Xc(k, t) represents the cth sound source at frequency
bin k = 1, . . . , K and time frame t. For enhanced readability,
the frequency and time frame indices will be omitted where the
context is clear. Each sound source is composed of a monaural
recording Xc(k, t) convolved with an Acoustic Transfer Func-
tion (ATF) denoted by Ac(k, t), i.e.

Xc(k, t) = Ac(k, t)Xc(k, t). (3)

The ATFs model the acoustic path from a sound source to the
microphones, including all reverberations and reflections caused
by the room acoustics [40]. If the source Xc(k, t) is located
in the near field of the array, the ATFs can be modeled by
a finite impulse response (FIR) filter [12]. Depending on the
movement of the speaker, this filter may change over time,
i.e. being non-stationary. Note that the STFT window needs to
be sufficiently long to model the multiplicative filter operation
Ac(k, t)Xc(k, t) without aliasing. Using Eq. (1), we define the
signal of interest to be the first source, i.e.

S(k, t) = X1(k, t), (4)

and the interfering signal as the sum of all other sources, i.e.

N(k, t) =
C∑

c=2

Xc(k, t). (5)

Consequently, the spatial PSD matrix for the desired signal is
given as [41]

ΦSS(k) = E{S(k, t)SH(k, t)}, (6)

and for the interfering signal

ΦNN (k) = E{N(k, t)NH(k, t)}. (7)

III. BEAMFORMING

To isolate the desired source S(k, t) and attenuate the inter-
fering sources N(k, t) at the same time, we use a filter and sum
beamformer [42]. Each microphone signal Zm(k, t) is filtered
with the beamforming weights Wm(k, t), prior to summing all
outputs. The beamforming operation can be written as inner
vector product

Y (k, t) = W H(k)Z(k, t), (8)

with the weight vector

W (k) =
[
W1(k), . . . , WM (k)

]T
. (9)

A. MVDR Beamformer

The well-known MVDR beamformer W MV DR [6], [12]
minimizes the signal energy at the output of the beamformer,
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while maintaining an undistorted response with respect to the
steering vector vS(k), i.e.

W MV DR =
Φ−1

NNvS

vH
S Φ−1

NNvS

. (10)

The steering vector guides the beamformer towards the direction
of the desired signal of interest. Clearly, the ATFs of that source
would be the ideal steering vector. However, they are hard to
estimate from noisy speech signals [12], [40]. Therefore, they
are often replaced by simple time delays, i.e.

vS(k) :=
[
e−jωkτ1 , e−jωkτ2 , . . . , e−jωkτM

]T
, (11)

where ωk = 2π k
2K fs is the discrete frequency variable, and

τm denotes the time delay from the desired source to the mth

microphone [3], [10], [11]. The time delays correspond to the
direction of the source. This direction can be obtained using one
of the Direction Of Arrival (DOA) estimation algorithms cov-
ered in [3], [8]–[10]. However, this approach does not account
for reverberations and multi-path propagations. Therefore it is
of limited use in real-world applications.

If we assume the PSD matrix of the desired source to be
known, the steering vector may be obtained in signal sub-
space [6]. Eigenvalue decomposition (EVD) of the PSD matrix
ΦSS(k) yields:

ΦSS(k) =
M∑

m=1

vSm
vH

Sm
λSm

, (12)

where λSm
and vSm

are the eigenvalues and eigenvectors of
ΦSS , respectively. We denote the eigenvector belonging to the
largest eigenvalue as steering vector, i.e.

vS(k) := vS1
(k) (13)

B. GEV Beamformer

A widely used alternative to the MVDR beamformer is the
GEV beamformer [7], [43], which determines the filter weights
W to maximize the SNR ξ at the beamformer output, i.e.

W GEV = arg max
W

ξ, (14)

where

ξ =
W HΦSSW

W HΦNNW
(15)

is the SNR at the output of the beamformer. (14) can be rewritten
as a generalized eigenvalue problem [43]:

Φ−1
NNΦSSW = ξW . (16)

A solution for Eq. (16) is given by

W GEV = ζΦ−1
NNvS , (17)

where ζ is an arbitrary complex scalar. The beamforming
filter W GEV will not have a distortionless response, i.e.
vH

S W GEV �= 1. Therefore, the Blind Analytical Normalization
(BAN) compensation factor has been proposed in [7]. It is

given as

GBAN =

√
W H

GEV ΦNNΦNNW GEV

W H
GEV ΦNNW GEV

. (18)

While GBAN normalizes the magnitude response of the GEV
beamformer, it does not account for phase distortions. We there-
fore propose the Phase Aware Normalization (PAN) factor: By
comparing Eq. (10) and (17), it can be seen that the MVDR and
GEV beamformers are identical up to another complex scalar
GPAN :

W MV DR = GPANW GEV =
Φ−1

NNvS

vH
S Φ−1

NNvS

. (19)

With Eq. (17), (19) can be rewritten as

GPAN =
ζ∗

W H
GEV ΦNNW GEV

. (20)

Using ||vS ||22
!
= 1, Eq. (17) can be rearranged to ζ =

vH
S ΦNNW GEV , which can be inserted into Eq. (20) to give

the Phase Aware Normalization factor:

GPAN =
W H

GEV ΦNNvS

W H
GEV ΦNNW GEV

. (21)

From Eq. (19) it can be seen that the Phase Aware Normalization
factor will turn the GEV beamformer into the MVDR beam-
former. However, the GEV avoids the inversion of the noise PSD
matrixΦNN by using the Schur decomposition to solve Eq. (16).
This leads to an improved numerical stability, as shown in [24].

C. PSD Matrix Estimation

Let us assume that we have access to an oracle gain mask
p(k, t), which represents the probability 0 ≤ p(k, t) ≤ 1 for
each time-frequency bin whether it contains the desired signal
or not. In this case, the spatial PSD matrix ΦSS(k) can be
approximated using

Φ̂SS(k, t) =
1

L

t+L/2∑

l=t−L/2

Z(k, l)ZH(k, l)p(k, l). (22)

Analogously, the estimate Φ̂NN (k, t) can be found using an-
other gain mask for the interfering signal. Note that the window
length L defines the number of time frames used for estimating
the PSD matrices. This block processing allows to apply the
MVDR or GEV beamformer to a whole block of L frames at
once. For moving sources, a tradeoff has to be made; If L is set
too small, the accuracy of the estimated PSD matrices might be
poor. The matrices might even become singular if the gain mask
is sparse. When using the MVDR beamformer, this will lead to
numerical problems as it requires to invert the noise PSD matrix.
If L is too large, the estimated PSD matrices might fail to adapt
quickly enough to changes in the spatial characteristics of the
moving sources. An alternative to block processing is given by
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recursive estimation, i.e.

Φ̂SS(k, t) = Φ̂SS(k, t − 1)
[
1 − p(k, t)

]

+ Z(k, t)ZH(k, t)p(k, t). (23)

This online processing [44] allows to apply the MVDR or GEV
beamformer to each time frame t. When using this method, the
PSDs have to be initialized using Eq. (22).

IV. EIGENNET ARCHITECTURES

As demonstrated above, the gain mask is sufficient to estimate
the speech and noise PSDs, from which we can construct the
MVDR and the GEV beamformers. Therefore, the estimation
of p(k, t) is the key component of our multi-channel speech
enhancement system.

The vast majority of mask estimators use magnitude spec-
trograms as features to train a NN [22]–[25]. However, the
spatial information embedded in the phase of the complex-
valued inputs Z(k, t) is neglected. Consequently, such models
lack the ability to separate and track multiple speakers from
a mixture. To overcome those limitations, we propose to use
eigenvector features. We observed that the principal eigenvector
of the spatial PSD matrix ΦZZ(k) = E{Z(k, t)ZH(k, t)} will
point towards the dominant signal source in subspace. As speech
signals are sparse, the principal eigenvector will form a cluster
for each stationary source. Dynamic sources can be tracked using
recurrent neural network structures.

A. Feature Preprocessing

For low frequencies, the aperture of the microphone array
is small compared to the wavelength. As a consequence, the
spatial resolution is poor. Therefore, we propose to decorrelate
the noisy inputs Z(k, t) using Principal Component Analysis
(PCA) whitening, i.e.

Z̄(k, t) = UPCA(k)Z(k, t), (24)

with the whitening matrix

UPCA(k) = D− 1
2 EH , (25)

where E and D are the eigenvector and eigenvalue matrices of
the spatial coherence matrix of the ideal isotropic sound field
Γ(k) [40]. Its elements are given as Γi,j(k) =

sin(ωkdi,j/c)
ωkdi,j/c ,

where ωk = 2πkfs, di,j is the distance between the ith and jth

microphone. Further, fs is the sample rate, and c is the speed
of sound at room temperature. Note that whitening also decor-
relates the feature dimensions, leading to faster convergence
during training the NN [45]. To obtain eigenvector features, we
calculate the principal eigenvector vZ̄,1(k) of the spatial PSD
matrix ΦZ̄Z̄(k) = E{Z̄(k, t)Z̄H(k, t)}. In practice, ΦZ̄Z̄(k)
will be a long-term estimate over an entire utterance. For a
short-term estimate, we normalize the whitened features to 1,
which gives an instantaneous eigenvector, i.e.

vZ̄,i(k, t) =
Z̄(k, t)

||Z̄(k, t)||2
e−jφ1(k,t), (26)

TABLE I
FEATURE VARIANTS

where e−jφ1(k,t) normalizes the phase with respect to the first mi-
crophone, which enables the NN to distinguish phase differences
between multiple sources. The phase of the first microphone
is denoted by φ1(k, t). To detect a single, dominant source in
the observed signal, we express the cosine similarity between
vZ̄,i(k, t) and the principal eigenvector vZ̄,1(k) of the spatial
PSD ΦZ̄Z̄(k) as

cos Θ(k, t) = vH
Z̄,i(k, t)vZ̄,1(k). (27)

Using these quantities, we construct four different features, as
shown in Table I. The features have the following proerties:

1) EvsMag Features: The whitened signal Z̄(k, t) contains
both spatial and magnitude information, hence it can be used to
separate multiple sources based on their location and temporal
characteristics. Again, we normalize its phase with respect to
the first microphone. As it consists of M complex numbers per
time-frequency bin, we stack its real and imaginary components
into the 2M sized feature vector xEvsMag(k, t).

2) Evs Features: To test the performance of the spatial
information alone, we use the normalized features vZ̄,i(k, t).
Again, we stack its real and imaginary components into the 2M
sized feature vector xEvs(k, t).

3) Mag Features: To test the performance of the magnitude
information alone, we calculate the vector magnitude using
xMag(k, t) = ||Z̄(k, t)||2. This feature has only 1 element per
time-frequency bin.

4) Evd Features: For scenarios with a single dominant
source, we use the squared cosine similarity between the Evs
features and the principal eigenvector vZ̄,1(k), i.e. xEvd(k, t) =
| cos Θ(k, t)|2. This feature has only 1 element per time-
frequency bin.

B. Eigennet Models

We use Multi-Layer Perceptron (MLP) and Bi-directional
Long Short-Term Memory (BLSTM) units as building blocks of
our NN. Those components have been used with great success
in recent mask-based beamforming tasks [16], [18], [24], [46].

1) Small Model: The small model is used for feature vectors
with 1 element per time-frequency bin, i.e. xMag and xEvd.
As the NN operates on whole STFT frames, it processes K
feature vectors at a time. Fig. 2 shows the two layers of the
small model. The first layer is a BLSTM unit, which consists
of two separate LSTM units, each with K neurons. While the
first LSTM processes the data in forward direction (i.e. one time
frame after another), the second LSTM operates in backward
direction. The output of both LSTMs is then concatenated to
an intermediate vector with 2K elements. The second layer
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Fig. 2. Small model.

Fig. 3. Large model.

consists of three separate, fully-connected MLPs. The first MLP
estimates the mask for the desired source, the second estimates
the mask for the interfering sources, and the third estimates the
mask for time-frequency bins which are not assigned to the other
two classes. The activation function at the topmost layer is a
softmax, so that the sum of each of the three masks is 1 for each
time-frequency bin, i.e.

∑3
i=1 pest(k, t, i)

!
= 1.

2) Large Model: The large model is used with the xEvs(k, t)
and xEvsMag(k, t) features. It encompasses five layers; the first
three reduce the feature vector size from 2M elements per time-
frequency bin down to 1. Note that those layers have very few
weights, as they consist of K independent units with M neurons
each, or fewer. The upper two layers are identical to the small
model. Fig. 3 shows the details of the large model.

C. Labels

Using the separated sources from the signal model in Eq. (4)
and (5), optimal binary masks can be obtained. We use three
masks, one for the desired signal, i.e.

popt(k, l, 1) = ||S(k, t)||2 > max
(
||N(k, t)||2, ε(k)

)
, (28)

one for the interfering signals, i.e.

popt(k, l, 2) = ||N(k, t)||2 > max
(
||S(k, t)||2, ε(k)

)
, (29)

and one for weak signal components, which do not contribute
to any of the PSD matrices:

popt(k, l, 3) = 1 − p(k, l, 1) − p(k, l, 2). (30)

The constant ε(k) controls the amount of energy required for the
signal to be assigned to the desired or interfering class label. As
the sum of all three masks is always 1 for each time-frequency
bin, we can use the cross-entropy as loss function [45] to train
the Eigennet models.

V. EXPERIMENTS USING WSJ0

A. Experimental Setup

To demonstrate the performance of the different Eigennet
models and feature variants, we simulate a typical living room
scenario with two static speakers S1 and S2, two moving speak-
ers D1 and D2, and an isotropic background noise source I.
Fig. 4 illustrates the floorplan of the setup. The red circle denotes

Fig. 4. Shoebox model of a living room showing stationary sound sources
S1 and S2, and dynamic sound sources D1 and D2. The microphone array is
indicated by the red circle (Mic).

TABLE II
EXPERIMENTAL SCENARIOS

a circular microphone array with M = 6 microphones and a
diameter of 86mm. To simulate head movements of the static
speakers S1 and S2, random position changes occur within a
cube of 20cm in size. The dynamic paths D1 and D2 move
randomly within a region of 2m by 4m on either side of the
microphone array, with a speed of 0.5m

s .
Using this environment, we define five scenarios given in

Table II:
1) >Static1 vs. Isotropic (S1-I): This scenario simulates a

stationary speaker against isotropic background noise. Note that
the head movements will cause a varying phase especially at
higher frequencies.

2) Random vs. Isotropic (R-I): The random source denotes a
static speaker with head movements, whose position is randomly
chosen anywhere in the room for each new utterance. This
prevents the Eigennet from learning the position of the speaker,
but rather to distinguish the characteristics of the isotropic
background noise and the speaker.

3) Dynamic1 vs. Isotropic (D1-I): This scenario tests the
tracking capabilities of the Eigennet architecture. A speaker
moving in region D1 has to be tracked in the presence of ambient
background noise.

4) Static1 vs. Static2 + Isotropic (S1-S2I): This scenario
tests the separation capabilites of two simultaneous speakers
embedded in background noise. The second speaker is randomly
chosen from the same WSJ0 subset.

5) Dynamic1 vs. Dynamic2 + Isotropic (D1-D2I): This sce-
nario tests the separation capabilites of two moving speakers
embedded in background noise. The second speaker is randomly
chosen from the same WSJ0 subset.
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B. Data Generation

To generate multi-channel recordings from monaural sources,
we simulate the ATFs in Eq. (3) using the Image Source Method
(ISM) [37], [47]. The living room is modeled as shoebox with a
reflection coefficient of β = 0.85 for each wall, and a reflection
order of 10. This results in a reverberation time of approximately
500 ms. As we have moving sources, we generate a new set of
ATFs every 32 ms. The isotropic background noise is generated
using

Xn(k, t) = U(k, t)Xn(k, t), (31)

with U(k, t) = E(k)Λ(k)0.5 ejϕ(k,t). The matrices Λ(k) and
E(k) are the eigenvalues and eigenvectors of the spatial co-
herence matrix Γ(k) for a spherical sound field [40]. The
M × 1 vector ϕ(k, t) denotes a uniformly distributed phase
between −π, . . . , π. It can easily be seen that the PSD matrix
of Xn(k, t) has the properties of a spherical sound field, i.e.
E{Xn(k)XH

n (k)} = Γ(k)ΦXnXn
(k), where ΦXnXn

(k) is the
power spectrum of the monaural recording Xn(k, t).

C. Training and Testing

For training, we use 12776 utterances from the si_tr_s set of
the WSJ0 [36] corpus for the speech sources in Eq. (3), and
20 hours of 20 different sound categories from YouTube [48]
as isotropic background noise.1 All recordings are sampled at
16 kHz, and converted to the frequency domain with K =
513 bins and 75% overlapping blocks. The sources in Eq. (1) are
mixed with equal volume. For testing, we use 2907 utterances
from the si_et set of the WSJ0 corpus mixed with another 20
hours of Youtube noise of 20 different categories.

Each of the five scenarios in Table II is tested against the four
features introduced in Table I. The resulting 20 experiments
demonstrate the performance of each feature in different envi-
ronments. For each experiment, a separate Eigennet is trained.
Model optimization is done using stochastic gradient descent
with ADAM [49]. We use the weighted cross-entropy between
the optimal binary mask popt and the estimated mask pest of the
respective model as loss function [45], i.e.

L =

∑K
k=1

∑T
t=1 ||Z(k, t)||22Lcce(k, t)

∑K
k=1

∑T
t=1 ||Z(k, t)||22

, (32)

and

Lcce(k, t) = −
3∑

i=1

popt(k, l, i)log(pest(k, l, i)) . (33)

The LSTM units are trained using back-propagation through
time [50]. To regularize the NN, batch normalization is per-
formed along the time axis of the features for each frequency
bin [51]. To avoid overfitting, we use early stopping by observing
the error on the validation set every 20 epochs.

1The noise categories are: highway, TV, office, restaurant, etc.

Fig. 5. Visualization of the Evs feature. (a) spectrogram of the noisy mixture.
(b) optimal binary masks. (c) PCA plot of vZ̄,i(k, t).

D. Performance Evaluation

For each of the resulting gain masks, three different beam-
formers are determined: the MVDR, GEV-BAN and GEV-PAN
(see Section III). The required PSD matrices are obtained using
Eq. (22), where L = 32 blocks. As a baseline, we use the Beam-
formIt toolkit [35]. It performs DOA estimation [8] followed by
a MVDR beamformer. Hence, BeamformIt will fail to separate
multiple speakers, as there is no prior information about the
target speaker’s location. To evaluate the performance of the
enhanced signals Y (k, t), we use the Google Speech-to-Text
API [38] to perform Automatic Speech Recognition (ASR).
Further, we measure the improvement in SNR with:

ΔSNR = 10 log10

∑
K,L |Y (k, t)popt(k, l, 1)|2∑
K,L |Y (k, t)popt(k, l, 2)|2

− 10 log10

∑
K,L ||Z(k, t)popt(k, l, 1)||22∑
K,L ||Z(k, t)popt(k, l, 2)||22

, (34)

where we use the optimal binary mask popt to measure the energy
of the desired and interfering components in the beamformer
output Y (k, t), and the noisy inputs Z(k, t), respectively. This
allows to calculate the ΔSNR without having access to the
beamforming weights W (k, t), as is the case with the Beamfor-
mIt toolkit.

E. Visualization of the Eigenvectors

Fig. 5(a) shows the magnitude spectrogram for a single ut-
terance of the S1-S2I experiment. Panel (b) shows the optimal
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TABLE III
WSJ0, WER IN [%]

TABLE IV
WSJ0, ΔSNR IN [dB]

binary masks popt(k, t, i) for the three sources, colored with
the respective class label i = {1, 2, 3}. Panel (c) shows the first
two principal components of the Evs feature vZ̄,i(k, t), colored
accordingly. It can be seen that the three classes form clusters
based on the location of their respective sources. Clearly, those
features are well suited to separate multiple multiple speakers
from a noisy mixture. Note that this plot shows data points for a
single frequency of ≈550 Hz. To obtain 5000 data points, several
utterances have been concatenated along the time axis.

F. Results

1) ASR Performance: Table III shows the WER obtained by
the Google-ASR system using WSJ0 data. For experiments with
more than one dominant source (i.e. S1-S2I and D1-D2I) the
Mag andEvd features and theBeamformItmethod fail, while
theEvs andEvsMagmethods provide resonable results. This is
to be expected, as spatial features are required to separate multi-
ple sources. Further, it can be seen that combining magnitude and
spatial features (EvsMag) does not increase the performance
significantly. Consequently, the spatial information contributes a
major part to the results. Regarding the beamformers, the GEV-
BAN beamformer gives the best results in terms of WER. As
expected, the MVDR performs poor due to numerical problems.
This has also been reported in [24].

Fig. 6. Estimated masks for the WSJ0 utterance 440e090x. Panel (a) shows
the noisy mixture, (b) the enhanced signal using the EvsMag features and the
GEV-BAN beamformer, (c) optimal binary mask, (d) estimated mask using the
Evd, (e) Mag, (f) Evs, (g) EvsMag.

2) SNR Performance: Table IV shows the SNR improvement
after beamforming. Similar to the WER scores, improvement in
SNR is poor for scenarios with more than one dominant source
and the Mag or Evd features, or the BeamformItmethod. The
GEV-PAN beamformer yields the best scores in this category.

Fig. 6(a) shows the noisy mixture of the utterance440e090x
from the WSJ0 test set, as seen by the first microphone, i.e.
Z1(k, t). The scenario is S1-S2I, where a second speaker and
ambient noise are the interfering signals. Panel (b) shows the
enhanced output Y (k, t) using the EvsMag features and the
GEV-BAN beamformer. It can be seen that the interfering noise
energy (the siren of a fire truck, and another speaker) is signif-
icantly reduced. Panel (c) shows the optimal binary mask for
the desired speech source, i.e. popt(k, t, 1). Panel (d) shows the
estimated mask pest(k, t, 1) using the Evd features, and Panel
(e) shows the estimated mask using the Mag features. It can be
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seen that neither the Evd nor the Mag feature is able to separate
multiple speakers. Panel (f) shows the estimated mask using
Evs features, and Panel (g) shows the estimated mask using
EvsMag features. Both masks closely match the ideal one, i.e.
those features are able to separate multiple speakers.

VI. EXPERIMENTS USING CHIME4

A. Experimental Setup

To test the performance of the Eigennet on real-world record-
ings, we used the CHiME4 corpus [21]. It provides 6-channel
recordings of multiple speakers corrupted by four different types
of ambient noise: pedestrian, street, cafe and bus. The recordings
are sampled at 16 kHz. The ground truth (i.e. the separated
speech and noise signals) is available for all recordings via
a close-talking microphone (channel0). It is used to augment
the database by simulated data, which is obtained by mixing
different noises with clean speech, convolved by delay-only
ATFs (see Eq. (11)). The training set comprises 1600 real and
7138 simulated utterances. The development set consists of 1640
real and 1640 simulated utterances. And the test set is composed
of 1320 real and 1320 simulated utterances. There is also a
2-channel track, where 2 out of the 6 microphones have been
chosen randomly, so that the array geometry is unknown for each
utterance. For more details on the CHiME4 data the interested
reader is referred to [21]. We use a STFT size of 1024 samples
(32 ms) and an overlap of 75% to process the audio data.

B. Training and Testing

For training, we use the 8738 utterances from the train set.
The groundtruth of thereal utterances contains a small amount
of background interference, due to the use of a close-talking mi-
crophone. However, this influence is negligible as we use binary
masks as labels. We test the 2 and 6 channel tracks against the
Evd and EvsMag features introduced in Table I. Optimization
of the Eigennet is identical to the WSJ0 experiments.

C. Performance Evaluation

For each of the resulting gain masks, three different beam-
formers are computed: theMVDR,GEV-BAN andGEV-PAN. We
use the BeamformIt toolkit as baseline [35]. Further, we compare
our models against two state-of-the-art reference systems:

1) Cgmm-em: The first reference system uses a CGMM to
estimate the speech and noise PSD matrices. The noise PSD
matrix is initialized from a patch of noise-only data that precedes
each CHiME4 utterance. The model parameters are estimated
with an EM algorithm, and the posterior probabilities are used
as gain masks for the speech and noise components [29].

2) nn-gev: The second reference system uses a NN with four
fully-connected layers [24]. The first layer is a BLSTM, while
the remaining layers are MLPs. For each of the six microphone
channels, independent masks for speech and noise are estimated.
The resulting masks are combined into a single mask for speech
and noise using the median operator. The NN is trained on
magnitude features similar to xMag(k, t).

TABLE V
CHIME4, 6-CHANNEL, KALDI-WER IN [%]

TABLE VI
CHIME4, 6-CHANNEL, GOOGLE-WER IN [%]

TABLE VII
CHIME4, 6-CHANNEL, ΔSNR IN [dB]

To evaluate the performance of the enhanced signals Y (k, t),
an Automatic Speech Recognition (ASR) baseline system is
provided as part of the CHiME4 challenge [52]. It uses the
Kaldi spech recognition toolkit [39]. Additionally, we report
the WER obtained by Google Speech-to-Text API [38], and the
improvement in SNR using Eq. (34).

D. Results

1) ASR Performance: Tables V and VI show the WER for
the Kaldi and Google ASR systems using CHiME4 data. It can
be seen that the Evd and EvsMag features, and the nn-gev
system show the best performance in combination with theGEV-
BAN beamformer. As there is only one dominant source in the
CHiME4 data, the Evd and EvsMag features show comparable
results.

2) SNR Performance: Table VII shows the SNR improve-
ment after beamforming. Again, the beamformers using theEvd
and EvsMag features, as well as the nn-gev system exhibit a
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Fig. 7. Estimated masks for the CHiME4 utterance F01-22GC010X-BUS.
Panel (a) shows the noisy mixture, (b) the enhanced signal using the EvsMag
features and the GEV-BAN beamformer, (c) optimal binary mask, (d) estimated
mask for the cgmm-em, (e) nn-gev, (f) Evd, (g) EvsMag.

similar performance. Here, the GEV-PAN beamformer provides
the best results.

Fig. 7(a) shows the noisy mixture of the utterance F01-
22GC010X-BUS from the CHiME4 test set, as seen by the
first microphone, i.e. Z1(k, t). Panel (b) shows the enhanced
output Y (k, t) using the EvsMag features and the GEV-BAN
beamformer. It can be seen that the interfering noise energy (bus
noise and a screeching baby) is significantly reduced. Panel (c)
shows the optimal binary mask for the desired speech source, i.e.
popt(k, t, 1). Panel (d) shows the estimated mask pest(k, t, 1) for
the cgmm-em system, which is quite noisy. Panel (e) shows the
estimated mask for the nn-gev system. It looks very clean,
but is wrong at both ends of the utterance. Panel (f) shows
the estimated mask using Evd features, and Panel (g) shows
the estimated mask using EvsMag features. Both masks look
similar.

TABLE VIII
CHIME4 2-CHANNEL, GOOGLE-WER IN [%]

TABLE IX
CHIME4 2-CHANNEL, KALDI-WER IN [%]

TABLE X
CHIME4 2-CHANNEL, ΔSNR IN [dB]

3) 2 Channel Track: Tables VIII to X show the WER and
ΔSNR results for the 2-channel CHiME4 track. For both scores,
the EvsMag features yield the best performance.

VII. CONCLUSION

In this paper, we have introduced our Eigennet architecture
for estimating gain masks from noisy, multi-channel microphone
observations. While many mask estimators use magnitude fea-
tures, the proposed eigenvector features also exploit the spatial
information embedded in the phase of the data. The obtained gain
masks are used to construct the MVDR or GEV beamformer. We
derived the PAN postfilter, which corrects both magnitude and
phase distortions caused by the GEV. We tested our approach
on the WSJ0 and CHiME4 datasets, where we demonstrated the
benefits of using spatial features over magnitude information
alone. We further reported the improvement in SNR, as well
as the WER obtained by the Google-ASR and the Kaldi-ASR
systems. The Eigennet architecture yields competitive results
compared to state-of-the art mask estimators.
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DEEP COMPLEX-VALUED NEURAL BEAMFORMERS
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ABSTRACT

We propose a complex-valued deep neural network (cDNN)
for speech enhancement and source separation. While exist-
ing end-to-end systems use complex-valued gradients to pass
the training error to a real-valued DNN used for gain mask es-
timation, we use the full potential of complex-valued LSTMs,
MLPs and activation functions to estimate complex-valued
beamforming weights directly from complex-valued micro-
phone array data. By doing so, our cDNN is able to locate
and track different moving sources by exploiting the phase
information in the data. In our experiments, we use a typical
living room environment, mixtures of the WallStreet Journal
corpus, and YouTube noise. We compare our cDNN against
the BeamformIt toolkit as a baseline, and a mask-based beam-
former as a state-of-the-art reference system. We observed a
significant improvement in terms of PESQ, STOI and WER.

Index Terms— beamforming, complex-valued deep neu-
ral networks, Wirtinger Calculus

1. INTRODUCTION

Recent contributions to data-driven beamforming propose
a DNN to estimate a spectral gain mask from noisy, multi-
microphone speech signals. This mask is used to obtain the
power spectral density (PSD) matrices of the desired and in-
terfering sound sources. With those PSD estimates, statistical
beamformers such as the Minimum Variance Distortionless
Response (MVDR) beamformer [1] or the Generalized Eigen-
value (GEV) beamformer [2] are used to estimate the desired
signal. DNN-based gain mask estimators have been proposed
in [3, 4, 5]. As those approaches use magnitude spectrograms
as features, they do not exploit the spatial information con-
tained in the phase of the data. In [6, 7], we circumvent this
limitation by using the eigenvectors of the short-time PSD
matrix of the noisy speech as features. This allows for a
significantly smaller DNN to estimate the gain mask, with
comparable performance in both ASR results and perceptual
speech quality [7]. However, mask-based beamforming re-
quires an entire block of audio data at a time. During this

1 Both authors contributed equally.
This work was supported by the Austrian Science Fund (FWF) under the
project number I2706-N31 and NVIDIA for providing GPUs.

period, the signal statistics are assumed to be constant. This
limits the capability to track moving sound sources. An at-
tempt towards online processing has been proposed in [8],
where the PSD matrices are recursively estimated.

With recent trends towards end-to-end ASR systems, the
DNN-based mask estimator, the beamformer and the acoustic
front-end of the ASR system are combined into a fully inter-
connected model. This allows to back-propagate the train-
ing error from the acoustic modelling cost function through
the beamformer and the DNN-based mask estimator [9, 10,
11, 12]. As beamforming involves non-holomorphic func-
tions (i.e. conjugation or absolute value), their gradients do
not exist. A widely adopted solution for this problem is to
split complex-valued functions into their real and imaginary
parts, and treat them like real-valued functions. However, this
results in losing important properties like complex rotation
or symmetry. Using Wirtinger Calculus, it is possible to de-
rive complex-valued gradients from non-holomorphic func-
tions with respect to a real-valued variable [13, 14, 15].

While end-to-end systems make use of the complex-
valued gradient of statistical beamformers, they still use a
real-valued DNN to estimate the gain mask. We aim to
explore the full potential of complex-valued gradients and
propose a fully complex DNN (cDNN) beamformer, with
complex LSTM and MLP layers, as well as complex-valued
activation functions. By doing so, we do not need to rely
on a gain mask, as the cDNN is able to predict complex-
valued beamforming weights directly from complex-valued
microphone signals. Unlike a statistical beamformer, such a
model estimates a set of optimal beamforming weights for
each time-frequency bin. This leverages the source tracking
and separation performance. To demonstrate the capabilities
of our cDNN, we perform simulations involving moving and
static sound sources in a typical living room setup, using
mixtures of the WallStreet Journal corpus (WSJ) [16] and
YouTube noise [17]. We compare the performance of the
cDNN against a baseline using BeamformIt [18] and a refer-
ence system using a mask-based beamformer [6] with online
tracking [8]. We further report performance metrics, i.e.
∆SNR, PESQ [19], STOI [20], as well as WER scores. Com-
pared to the mask-based beamformer, the proposed system
reaches an average relative improvement of 58.47% WER.

2902978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019
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2. COMPLEX-VALUED MULTI LAYER
PERCEPTRONS

A complex-valued MLP (cMLP) is defined analogously to its
real-valued counterpart. i.e.

h(t) = g(Whz(t) + bh), (1)

where z(t) denotes the input, and Wh and bh are the inter-
nal weights and biases, respectively. All variables are de-
fined over C. Based on recent contributions on complex-
valued neural networks [21, 22, 23], we propose the non-
linear complex-valued activation function g(·) as natural ex-
tension of a real-valued tanh unit, i.e.

g(z) = tanh(|z|)� z

|z|
, (2)

where � denotes element-wise multiplication. The function
g(z) is symmetric, with a magnitude bounded by 1.0. The
phase of z is not modified. For comparison, we demon-
strate the behavior of a tanh activation function with non-
complex gradients (i.e. the real and imaginary parts are
stacked and treated as individual values). It is given as
g2(z) = tanh(Re{z}) + i tanh(Im{z}). Figure 1 shows the
magnitude and phase response of g(z) in panel (a) and (b),
and the magnitude and phase response of g2(z) in panel (c)
and (d), respectively. It can be seen that g2(z) is not bounded
to 1.0. It also modifies the phase to a constant value per
quadrant of the complex plane.

Fig. 1: Magnitude and phase of g(z) and g2(z).

3. COMPLEX-VALUED LONG SHORT TERM
MEMORY NETWORKS

In complex-valued LSTMs (cLSTM) the input i(t), forget f (t)

and output o(t) gate are calculated as follows:

i(t) = σ
(

Re
{

Wziz
(t) + Whih

(t−1) + bi

})
, (3a)

f (t) = σ
(

Re
{

Wzfz(t) + Whfh(t−1) + bf

})
, (3b)

o(t) = σ
(

Re
{

Wzoz
(t) + Whoh

(t−1) + bo

})
. (3c)

Similar to real-valued LSTMs [24], the memory cell c(t) is
updated according to

c̃(t) = g(Wzcz
(t) + Whch

(t−1) + bc), and (4a)

c(t) = f (t) � c(t−1) + i(t) � c̃(t). (4b)

The hidden state is determined as

h(t) = o(t) � g(c(t)). (5)

Figure 2 shows the network graph of the resulting cLSTM.
Again, all variables are defined over C. Note that g2(z) can-
not be used in Eq. (5), as its magnitude is greater than one.
This would cause the gradient of h(t) to grow exponentially
when using back-propagation through time. The activations
σ(·) for the gating variables in Eq. (3a) - (3c) are real-valued
sigmoid functions, to ensure that the gating mechanism is not
altering the phase information of the input signal.

cLSTM

Recurrent

Wzi Whi

bi

Wzo Who

bo

Wzf Whf

bf
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output

gate

input

gate
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gate
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h
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o
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i
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f
(t)c

(t)

c
(t-1)

c
(t)
 ̀

 

h
(t-1)

g

g

Fig. 2: Complex LSTM unit with internal connections.

We use Wirtinger Calculus [13, 25, 15] to obtain complex-
valued gradients for each component. It allows us to it-
eratively apply the chain-rule to complex derivatives, i.e.
complex-valued back-propagation. It can also be applied
to stochastic gradient descent optimization algorithms like
ADAM [26]. For further details on complex-valued back-
propagation we refer the interested reader to [11].
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4. DEEP COMPLEX-VALUED NEURAL
BEAMFORMING

The cDNN uses the complex-valued microphone samples
Z(k, t,m) as features, with k = 1, . . . ,K frequency bins and
m = 1, . . . ,M microphones. To speed up the learning pro-
cess, the features are decorrelated using Principal Component
Analysis (PCA) whitening. For each time frame t, the cDNN
processes a matrix of M × K features Z(t), and predicts
a M × K matrix of complex-valued beamforming weights
W (t). The cDNN composed of three cLSTM layers and
three cMLP layers with 2MK neurons between each hidden
layer. The beamforming step is a filter-and-sum operation,
i.e. Y (k, t) = W (k, t)HZ(k, t). Figure 3 provides a system
overview.

Z(k, t, 1)

Z(k, t, 2)

Z(k, t,M)

..
.

w
h
it
en

in
g

cD
N
N

b
ea
m
fo
rm

in
g

M ×K K
Y (k, t)

Fig. 3: System overview.

The signal arriving at the microphones is composed of an ad-
ditive mixture of N sound sources, i.e.

Z(k, t) =
N∑

n=1

Sn(k, t), (6)

where Sn(k, t) represents the nth sound source at frequency
bin k and time frame t. Each sound source is composed of
a monaural recording Xn(k, t) convolved with an Acoustic
Transfer Function (ATF) denoted by An(k, t), i.e.

Sn(k, t) = An(k, t)Xn(k, t). (7)

The ATFs model the acoustic path from a sound source to
the microphones, including all reverberations and reflections
caused by the room acoustics [27]. To simulate the ATFs for
point sources, we use the Image Source Method (ISM) [28].
The living room is modeled as shoebox with a reflection coef-
ficient of β = 0.85 for each wall, and a reflection order of 10.
This results in a reverberation time of approximately 250ms.
For static sources, software libraries such as [29] are read-
ily available. For dynamic sources, we generate a new set of
ATFs every 32ms. We also generate an isotropic background
noise using

Sn(k, t) = U(k, t)Xn(k, t), (8)

with U(k, t) = E(k)Λ(k)0.5 eiϕ(k,t). The matrices Λ(k)
and E(k) are the eigenvalues and eigenvectors of the spatial
coherence matrix Γ(k) for a spherical sound field [30]. The
M × 1 vector ϕ(k, t) denotes a uniformly distributed phase

between −π, . . . , π. It can easily be seen that the PSD matrix
of Sn(k, t) has the properties of a spherical sound field, i.e.
E{Sn(k)SH

n (k)} = Γ(k)ΦXnXn
(k), where ΦXX(k) is the

power spectrum of the monaural recording Xn(k, t).

5. EXPERIMENTAL SETUP

To test the performance of our cDNN, we simulate a typical
living room scenario with two static speakers S1 and S2, a
TV set S3, and two moving speakers D1 and D2. The dy-
namic paths D1 and D2 change randomly within a region of
2m on each side, as indicated in Figure 4. To simulate head
movements of the static sources S1 and S2, random position
changes occur within a cube of 20cm in size. We use a circu-
lar microphone array with M = 6 microphones and a diame-
ter of 86mm, located next to the TV set. Within this environ-
ment, we define the five experiments given in Table 1.

D2D1

S2S1

4m

0m 6m

S3

Fig. 4: Shoebox model of a living room showing stationary
sound sources S1 to S3, and dynamic sound sources D1 and
D2. The microphone array is located next to the TV set.

Experiment # Desired source Interfering source(s)
1 D1 D2

2 D1 isotropic
3 S1 isotropic
4 S1 S3

5 S2 D1, S3

Table 1: Experimental setups.

For each experiment, the cDNN predicts beamform-
ing weights W (k, t) which preserve the desired source
S1(k, t), and cancel out the interfering sources S2...N (k, t) =∑N

n=2 Sn(k, t). The cost function L(k, t) of the cDNN is
designed to maximize the ∆SNR after applying the beam-
forming weights, i.e.

L(k, t) = 10log10
|WHS1|2

|WHS2...N |2
− 10log10

||S1||22
||S2...N ||22

(9)
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for each time-frequency bin1. The mean over all time steps
T and frequency bins K is then used for back-propagation.
Note that the weights W (k, t) do not represent a statistical
beamformer like the MVDR or GEV, but rather an optimal
filter-and-sum beamformer for each time-frequency bin in a
max-SNR fashion. To avoid unbounded weights, we nor-
malize each predicted beamforming vector to unit length, i.e.
|W (k, t)| !

= 1. As a consequence, speech distortions will oc-
cur. However, it is possible to control those distortions using
Blind Statistical Normalization (BSN) [2].

5.1. Training and Testing

For training, we use 12776 utterances from the si tr s set of
the WSJ0 [16] corpus for the speech sources in Eq. (7), and
27 hours of 32 different sound categories from YouTube [17]
as isotropic background noise in Eq. (8). All recordings are
sampled at 16kHz, and converted to frequency domain with
K = 513 bins and 50% overlapping blocks. The sources in
Eq. (6) are mixed with equal volume. For testing, we use 651
utterances from the si et 05 set of the WSJ0 corpus mixed
with another 5 hours of Youtube noise of the same 32 cate-
gories. For each of the five experiments in Table 1, a separate
cDNN and mask-based beamformer is trained.

5.2. Results

We use the BeamformIt toolkit as baseline, and the mask-
based beamformer in [6] with online tracking from [8] as ref-
erence system. For each method and each experiment, we
report the ∆SNR from Eq. (9), the Perceptual Evaluation
of Speech Quality score (PESQ) [19], the Short-Time Objec-
tive Intelligibility measure (STOI), and the WER obtained by
the Google Speech-to-Text API [31]. In particular, the WER
was computed using the clean WSJ0 test set as reference,
for which the Google Speech-to-Text API reports a WER of
6.1%. From Table 2 it can be seen that BeamformIt performs
poorly for experiments with more than one source, i.e. ex-
periments 1, 4 and 5. This is to be expected, as BeamformIt
relies on blind DOA estimation to localize a single source.
The mask-based beamformer with online tracking shows bet-
ter performance for those experiments, which has also been
observed in [8]. However, our cDNN outperforms this ap-
proach significantly, as we are able to estimate the optimal
beamformer weights for each time-frequency bin in a max-
SNR sense. Figure 5 shows an utterance from the test set us-
ing the 1st experiment, where two dynamic sound sources D1

and D2 are constantly moving around the living room. Panel
(a) shows the mixture Z(k, t, 1) for the first microphone, and
panel (b) shows the estimate Y (k, t). It can be seen that the
cDNN predicts beamforming weights according to the occur-
rence of the sound sources, i.e. source signal D1 is preserved,
and D2 is canceled.

1For enhanced readability, the indices k, t have been omitted in Eq. (9).

Method Experiment # ∆SNR PESQ STOI WER
1 - 1.325 0.699 76.7%
2 - 1.222 0.774 17.7%

BeamformIt 3 - 1.222 0.764 17.9%
4 - 1.179 0.632 43.2%
5 - 1.186 0.588 88.3%
1 4.445 1.514 0.834 46.1%
2 4.286 1.576 0.837 32.8%

mask-based BF + 3 4.516 1.751 0.866 18.5%
online tracking 4 8.690 1.439 0.811 45.6%

5 7.011 1.402 0.792 58.3%
1 6.156 1.688 0.825 21.5%
2 8.736 2.263 0.882 9.0%

cDNN 3 9.558 2.551 0.902 6.1%
4 10.306 1.652 0.792 13.4%
5 9.212 1.441 0.758 33.7%

Table 2: Results

Fig. 5: (a) mixture of two dynamic sound sources D1 and D2.
(b) separated source D1 predicted by the cDNN.

6. CONCLUSIONS AND FUTURE WORK

We presented a complex-valued deep neural network (cDNN)
to estimate complex-valued beamforming weights directly
from complex-valued microphone data. Unlike existing ap-
proaches, our cDNN uses fully complex-valued LSTM and
MLP layers, as well as complex-valued activation functions.
Comparisons against BeamformIt and a state-of-the art mask-
based beamforming system showed a significant improve-
ment in terms of ∆SNR, PESQ, STOI and WER. Future
work includes experiments on real multi-channel recordings,
and the inclusion of our model in an end-to-end system.
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Abstract
The acoustic front-end of hands-free communication de-

vices introduces a variety of distortions to the linear echo path
between the loudspeaker and the microphone. While the ampli-
fiers may introduce a memory-less non-linearity, mechanical vi-
brations transmitted from the loudspeaker to the microphone via
the housing of the device introduce non-linarities with memory,
which are much harder to compensate. These distortions signif-
icantly limit the performance of linear Acoustic Echo Cancella-
tion (AEC) algorithms. While there already exists a wide range
of Residual Echo Suppressor (RES) techniques for individual
use cases, our contribution specifically aims at a low-resource
implementation that is also real-time capable. The proposed
approach is based on a small Recurrent Neural Network (RNN)
which adds memory to the residual echo suppressor, enabling it
to compensate both types of non-linear distortions. We evaluate
the performance of our system in terms of Echo Return Loss En-
hancement (ERLE), Signal to Distortion Ratio (SDR) and Word
Error Rate (WER), obtained during realistic double-talk situa-
tions. Further, we compare the postfilter against a state-of-the
art implementation. Finally, we analyze the numerical complex-
ity of the overall system.
Index Terms: Acoustic echo cancellation, residual echo sup-
pression, non-linear echo, recurrent neural networks

1. Introduction
In hands-free speech communication devices, an Acoustic Echo
Canceler (AEC) is an essential building block which models
the acoustic path between loudspeaker output and microphone
input with a linear Finite Impulse Response (FIR) filter. The
AEC subtracts the echo replica from the microphone signal,
enabling echo-free voice communication [1]. Unfortunately,
he task of echo cancellation is complicated by additional non-
linear distortions in the loudspeaker and the amplifier, and also
by mechanical vibrations transmitted from the loudspeaker via
the case of the device to the microphone [2]. These distortions
cannot be modeled by linear echo cancelers. Consequently, the
practically achievable Echo Return Loss Enhancement (ERLE)
is limited, which results in a degraded speech quality and intel-
ligibility. This problem is even more relevant today as speaker-
phones or smart speakers are portable devices with small enclo-
sure dimensions and tiny loudspeakers, which are prone to non-
linear distortions. Despite their size, they produce high sound
pressure levels by using amplifiers which pre-distort the loud-
speaker signal [3]. This introduces even more distortions to the
echo path. Non-linear distortions can be categorized into two
groups:

1) Non-linearities without memory, i.e. harmonic distor-
tions caused by non-linear loudspeaker drivers, or clipping of
the microphone signal [4]. Non-linear systems without mem-

ory can be approximated by polynomials in the form fNL(x) =∑∞
i=0 αi · xi. The parameters αi may be determined using

non-linear system identification, i.e. by using a chirp signal [5].
This is also a standard procedure for measuring the individual
harmonics and the overall Total Harmonic Distortions (THD)
of loudspeakers and amplifiers. Harmonic distortions may be
compensated by incorporating power-filters into the AEC algo-
rithm [6–8], or by using a residual echo suppressor [9–12].

2) Non-linearities with memory, i.e. partial vibrations of the
loudspeaker membrane, or structure-borne sounds and mechan-
ical vibrations [4]. Non-linear systems with memory can be
approximated by Volterra series [13]. As the size of a Volterra
kernels grows exponentially with its order, this concept is of
limited use in real-world applications. Further, tuning the ker-
nels for a given non-linearity is a non-trivial task, as system
identification requires Higher Order Statistics (HOS) and spec-
tral analysis. However, several echo suppressors with Volterra
series have been proposed, e.g.: sparse Volterra kernels [14,15],
or Hammerstein models [16, 17].

Both Volterra series and Multilayer Perceptrons (MLP) are
universal approximators for non-linearities with memory. Con-
sequently, neural networks have been proposed for non-linear
residual echo cancellation [18–23]. However, we found that
many contributions in this field are limited by one or more of
the following aspects: (i) Only memoryless non-linearities are
considered, even though both types always occur in a real-world
scenario [4]. (ii) The neural network features a lot of weights,
making the postfilter computationally more expensive than the
actual AEC itself. (iii) The system is not real-time capable due
to the data flow of the neural network.

In this paper, we consider Recurrent Neural Networks
(RNNs) as postfilter to address these shortcomings. (i) Due
to the recurrent structure of our neural network, non-linearities
with memory can be learned directly from real-world audio ex-
amples. The use of internal memory in form of an LSTM layer
allows for a smaller network compared to an MLP [18, 23]. (ii)
Our approach is real-time capable, due to the LSTM layer oper-
ating only in forward direction of the data stream. It introduces
no additional delay to the overall system, as it operates on one
block of data at a time. (iii) With only two Dense layers and one
LSTM layer with 25 units in its smallest variant, our neural net-
work is considerably smaller than comparable approaches with
1024 or more units. Further, our system can be trained with as
little as 1.75h of echo recordings, which allows for a fast train-
ing process even without a GPU.

2. System Model
We assume a classical, monaural speakerphone with a loud-
speaker and a microphone for hands-free telephony applica-
tions, i.e. Voice over IP (VoIP). The system model is shown
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in Fig. (1). In this setup, the far-end speaker signal is received
via the network (RX), and the near-end speaker signal is trans-
mitted (TX) back over the network. Due to acoustic echoes, the
microphone picks up both the near-end speaker and the acous-
tic echo from the loudspeaker. Hence, an AEC is required. In
Fig. (1), all signals are denoted in the Short Time Fourier Trans-
form (STFT) domain with a frequency index k and a time index
t. The loudspeaker and microphone signals are represented by
X(k, t) and D(k, t), respectively. The echo model, which is
obtained from the AEC filter, is given as Y (k, t). By subtract-
ing the echo model from the microphone signal, we obtain the
residual signal E(k, t). The proposed postfilter operates on the
residual and the microphone signal, and outputs the enhanced
signal Z(k, t).

Acoustic echo
H(k, t)

Near-end
speech

S(k, t)

RX

TX

AEC

Post-
filter

+
-

AMP

AMP

Loudspeaker

Microphone

X(k, t)

E(k, t) Y (k, t)

D(k, t)

Z(k, t)

Figure 1: System Model with signals in the STFT domain.

The Echo Impulse Response (EIR) H(k, t) is modeled as
FIR filter. Usually, it is much longer than the STFT block
length, therefore it is partitioned into L blocks. Using this no-
tation, the microphone signal can be written as

D(k, t) = S(k, t) + fNL

(
X(k, t)

)
+

t∑

l=t−L

X(k, l)H(k, l),

(1)
where S(k, t) denotes near-end speech signal, and fNL(·) de-
notes an unknown non-linear relationship with memory. The
AEC in Fig. (1) estimates the EIR Ĥ(k, t), such that the echo
model is given as

Y (k, t) =

t∑

l=t−L

X(k, l)Ĥ(k, l) (2)

After the subtraction stage, the residual is given as

E = D − Y =
∑

XH̃ + fNL

(
X
)
+ S, (3)

where H̃ = H − Ĥ . The frequency and time indices have
been omitted for readability. Ideally, the filter mismatch H̃ and
the non-linearity fNL(·) are small, so that the residual signal
contains only the near-end speech signal S(k, t).

2.1. AEC Framework

We use a frequency-domain, block-based Acoustic Echo Can-
celer (AEC), which partitions the echo filter into multiple blocks
using a STFT. This reduces the overall system delay of the al-
gorithm to a single STFT block length, allowing for real-time
operation. We chose the state-space block-partitioned AEC im-
plementation from [24], which we found to be both robust and
well-performing in real-world scenarios. We use a block length

of 1024 samples, 50% overlap, and L = 16 blocks in total at
fs = 16kHz to model a tail length of up to 512ms.

In a practical application there is always a mismatch be-
tween the filter estimated by the AEC, and the actual EIR. The
linear echo path may change over time as the near-end speaker
moves in front of the device. The device itself may be carried
around, causing a constantly changing EIR. These changes must
be tracked by the AEC algorithm.

3. RNN postfilter
In a real-world scenario with actual loudspeakers and ampli-
fiers, both non-linearities with and without memory are always
present. These distortions cannot be compensated by the AEC.
Residual echo suppressors have been proposed for both non-
linearities without memory [8–12], and for non-linearities with
memory [14–17]. With the advent of machine learning, the
performance of residual echo suppressors has dramatically in-
creased [18–23].

However, our contribution differs in the following key as-
pects: (i) Due to the recurrent structure of our neural network,
non-linearities with memory can be learned directly from real-
world audio examples, while most contributions only use mem-
oryless non-linearities. (ii) Our approach is real-time capable,
due to the LSTM layer operating only in forward direction of
the data stream. It introduces no additional delay to the over-
all system. (iii) With only three layers and 25 LSTM cells in
its smallest variant, our neural network is considerably smaller
than comparable approaches [18, 23].

Fig. (2) outlines the architecture of our RNN postfilter. It
consists of three layers, and operates on log-differences of the
power of the microphone signal D(k, t) and the echo model
Y (k, t). The first layer is a simple dense layer, which performs
data compression from K frequency bands to M bands. This
is useful to facilitate a small LSTM layer, which is the second
layer of the system and the computationally most complex one.
M can be as low as 25 units, whereas K = 513 in our imple-
mentation. The third layer expands the data back toK bands. It
predicts a gain mask p(k, t), which is multiplied element-wise
to the residual signal E(k, t) to produce the enhanced output,
i.e.:

Z(k, t) = E(k, t)p(k, t), (4)

with p(k, t) ∈ [0, 1].
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Figure 2: RNN architecture with K frequency bins and M
LSTM units.

3.1. Hybrid loss function

To train the RNN postfilter, we consider two use cases during a
conversation:
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• Single-talk: Only the far-end speaker X(k, t) is talking,
the near-end is silent, i.e. S(k, t) = 0.

• Double-talk: Both near- and far-end speakers talk simul-
taneously.

During single-talk, we want to maximize the Echo Return Loss
Enhancement (ERLE), i.e.: the output Z(k, t) is ideally zero.
The ERLE is defined as follows:

LERLE = 10log10

∑
K,T |D(k, t)|2∑
K,T |Z(k, t)|2

(5)

During double-talk, we want to maximize the Signal to Dis-
tortion Ratio (SDR), i.e.: the output Z(k, t) is identical to the
near-end signal S(k, t). The SDR is defined as:

LSDR = 10log10

∑
K,T |S(k, t)|2∑

K,T |S(k, t)− Z(k, t)|2
(6)

To fulfill both constraints, we use a hybrid objective to train the
RNN postfilter. The overall loss function to be minimized by
the RNN is given as:

L = −LERLE − λLSDR, (7)

where the parameter λ allows to adjust the importance of either
the ERLE or SDR constraint during training.

4. Experiments
4.1. Recording Setup

In order to obtain realistic distortions which contain both types
of non-linearities, it is essential to use a real-world setup, i.e. a
speakerphone or smart speaker with a loudspeaker and a micro-
phone in the same case. Otherwise it would be difficult to ac-
curately simulate realistic non-linearities with memory, as well
as changing EIR paths over time. Therefore, we used a small
speakerphone (EasyAcc-MC) with a 3W loudspeaker and an
electret microphone. We disconnected the internal electronics
and used an external amplifier to drive the loudspeaker. The
amplifier and the microphone were plugged into the line-out
and mic-in jack of a sound card, respectively. We measured
the Total Harmonic Distortion (THD) of the speakerphone at
3W, which is about 12%. Therefore, a reasonable amount of
non-linear distortions is present in our setup [2]. To drive the
speakerphone from a Linux-based PC with ALSA [25], we use
the PlayRec Python module [26], which simultaneously plays
and records audio from a sound card. We further implemented
the block-based AEC from [24] in Python, to obtain the relevant
signals for training the RNN postfilter.

The speakerphone was placed in 7 different office rooms in
10 different positions each. The rooms had a RT60 between
250ms and 500ms. For each position, we generated 3 train-
ing examples. Each training example consists of the excitation
signal X(k, t), and the recorded echo response D(k, t). We
use 30s of randomly concatenated utterances from the TIMIT
speech corpus [27] as excitation signal X(k, t). The simulta-
neously recorded microphone signal D(k, t) contains 30s echo
response. In total, 1.75 hours of reverberated samples have been
obtained. All samples were recorded at fs = 16kHz. Fig. (3)
illustrates the recording setup, using the speakerphone. Green
arrows represent the linear echo path (EIR), and red parts depict
potential sources of non-linear distortions.

non-linear echo
path via case

AMP

Loudspeaker
non-linearities

Microphone
non-linearities

linear echo
path

AMP

excitation
signal

echo
response

Figure 3: Recording setup using a small speakerphone.

4.2. Training

We used the recordings from the first 6 rooms for training, and
the rest for evaluating the RNN postfilter. Note that the neural
network does not learn speech or speaker characteristics, but
rather the non-linearities embedded in the microphone signal
D(k, t). Hence, a small training set is sufficient. We train the
RNN as follows:

First, we process each of the 30s long data samples with the
AEC algorithm. The AEC provides the residualE(k, t) and the
echo model Y (k, t), which are required as inputs for the RNN
(see Fig. 2). To train on time-varying EIRs, we reset the AEC
weights at the beginning of each 30s long training example.

To optimize the RNN for both ERLE and SDR, we use each
training example twice: In the first pass, the ERLE from Eq. (5)
is calculated for the single-talk case, i.e. the near-end speaker
S(k, t) = 0. In the second pass, the SDR from Eq. (6) is cal-
culated for the double-talk case. We used randomly selected
utterances from the the si tr s set of the WSJ0 [28] corpus to
simulate the near-end speaker S(k, t), which we mixed into
the microphone signal with a Signal to Echo Ratio (SER) of
−12dB. This corresponds to the SER encountered when driv-
ing the loudspeaker at 3W and speaking into the device from
approximately 0.5m distance. The trade-off parameter λ in Eq.
(7) was set to 1. We trained 7 different versions of the RNN
postfilter, where we parametrized the size of the LSTM layer
from 25 to 250 units, see also Table (1).

4.3. Testing

Testing the RNN postfilter was done with the unused recordings
from the 7th room. ERLE and SDR are evaluated as during
training. We also measured the Word Error Rate (WER) for
the enhanced signal Z(k, t) during double talk. The WER is
obtained by the Google Speech-to-Text API [29]. In particular,
it was measured using clean WSJ0 data set as reference, for
which the Google Speech-to-Text API reports a WER of 6.1%.

4.4. Results

Table 1 reports the ERLE, SDR and WER scores for experi-
ments using a varying LSTM layer size from M = 25 to 250
units. As a baseline, we also evaluated the AEC without the
postfilter. Further, we compare our postfilter to a state-of-the art
reference AEC implementation (Speex-DSP) [30]. Speex also
uses a frequency-domain, block-based echo canceler [31], and
a residual echo-suppressor. We configured the same echo-tail
length of 512ms. It can be seen that Speex slightly outperforms
the baseline in all scores. However, our RNN postfilter yields a
significant improvement in all scores.
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LSTM cells M ERLE SDR WER
25 44.868 11.079 17.08%
50 51.802 12.084 16.41%
75 55.303 12.656 14.87%

100 60.447 12.902 12.56%
150 61.650 13.294 11.72%
200 60.637 13.404 11.33%
250 63.019 13.434 10.64%

Speex-DSP 21.726 6.716 25.16%
no postfilter 19.206 5.454 44.73%

Table 1: ERLE, SDR and WER scores for the RNN postfilter, the
reference system (Speex-DSP) and the AEC without a postfilter
as a basline.

4.5. Performance

Fig. (4) illustrates a 30s example from the test set with M =
100 LSTM cells. Panel (a) shows the far-end and near-end sig-
nals, respectively. Panel (b) shows the residual signal E(k, t).
It can be seen that the AEC needs approximately 10s to adjust
to the EIR. During that time, the error in the residual is quite
large. About 16s into the sample, the near-end speaker S(k, t)
starts talking. Panel (c) shows the enhanced output Z(k, t) of
the RNN postfilter. It can be seen that the enhanced signal only
contains the desired speech signal. Panel (d) shows the ERLE,
measured over time and split into the contribution of both the
AEC and the postfilter, respectively.

Figure 4: Performance of the RNN postfilter for a 30s test ex-
ample: (a) far-end and near-end signals X(k, t) and S(k, t),
respectively. (b) AEC residual E(k, t). (c) enhanced output of
the postfilter Z(k, t). (d) ERLE of the AEC and the postfilter.

4.6. Numerical complexity

In this section we will discuss the numerical complexity of the
overall system. We count the total number of Multiply and Ac-
cumulate (MAC) operations, which can be performed on either
a dedicated DSP or CPU with a vector floating point unit (i.e.:
ARM NEON). The RNN postfilter consists of 3 layers. The first
layer is a dense layer with K inputs and M outputs. Its forward
path is defined as y = Wx+ b, where W is a K ×M weight
matrix and b is a bias vector of size M , and the input x ∈ RK .
Hence, the layer requires (K ·M+M) MAC operations1. In the
same manner, the LSTM layer requires (8M2 + 7M) MACs,
and the third layer requires (M ·K +K) MACs.

The complexity of the state-space block-partitioned AEC
can be assessed using Eq. (26-32) in [24]. For L = 16 blocks
and K = 513 frequency bins, we obtain 143k MACs includ-
ing complex operations. Additionally, there are L+ 3 complex
FFTs and L + 1 complex IFFTs required for zero-padding and
processing the time-domain inputs, adding another 737k MACs
to the algorithm. Table (2) summarizes the numerical complex-
ity for each RNN postfilter and the AEC. It can be seen that
the postfilter adds only a fraction to the overall complexity, es-
pecially for small LSTM layers. At fs = 16kHz and a block
length of 1024 samples with 50% overlap, we process 31.25
blocks per second. In total, the smallest postfilter+AEC requires
25M MACs/s, while the largest postfilter+AEC requires 51M
MACs/s, which is well within the reach of modern embedded
systems.

LSTM cells M MAC operations
25 31k
50 72k
75 123k

100 184k
150 336k
200 527k
250 758k

AEC 880k

Table 2: Numerical complexity per block.

5. Conclusion
In this paper, we proposed a residual echo suppressor which
uses a recurrent neural network to model distortions such as
non-linearities with memory, which are often found in small
speakerphones housing a loudspeaker and a microphone in the
same case. We showed that our approach uses very little re-
sources, while still being real-time capable as it introduces no
additional delay to the echo canceler. We also showed that the
performance in terms of ERLE, SDR and WER is greatly im-
proved compared to a state-of-the art echo canceler and resid-
ual echo suppressor. In particular, the RNN postfilter lowers the
WER by up to 14.52%
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Blind Speech Separation and Dereverberation using
Neural Beamforming

Lukas Pfeifenberger and Franz Pernkopf, Senior Member, IEEE

Abstract—
In this paper, we present the Blind Speech Separation and

Dereverberation (BSSD) network, which performs simultaneous
speaker separation, dereverberation and speaker identification in
a single neural network. Speaker separation is guided by a
set of predefined spatial cues. Dereverberation is performed by
using neural beamforming, and speaker identification is aided by
embedding vectors and triplet mining. We introduce a frequency-
domain model which uses complex-valued neural networks, and
a time-domain variant which performs beamforming in latent
space. Further, we propose a block-online mode to process longer
audio recordings, as they occur in meeting scenarios. We evaluate
our system in terms of Scale Independent Signal to Distortion
Ratio (SI-SDR), Word Error Rate (WER) and Equal Error Rate
(EER).

Index Terms—Multi-channel speech separation, beamforming,
dereverberation, speaker identification, triplet mining

I. INTRODUCTION

SPEAKER separation and speech enhancement is of
paramount significance in many voice applications, such

as hands-free teleconferencing or meeting scenarios. Espe-
cially in human-machine interfaces, where high-performance
Automatic Speech Recognition (ASR) systems are essential,
both speech intelligibility and quality play an important role.
Fueled by the success of deep learning, both speaker separation
and speech enhancement have made major advances over the
last years [1].

When multiple microphones are available, spatial informa-
tion can be exploited as speaker sources are directional. Mask-
based beamforming has been shown to be advantageous for
this task [2], [3]. In particular, a neural network is leveraged to
estimate a time-frequency mask of the desired signal [4], [5],
[6]. This mask is then used to compute the spatial covariance
matrices required to construct a frequency-domain beamformer
[7]. This approach has been further extended into the domain
of complex numbers, where complex-valued neural networks
[8] are used to directly estimate complex beamforming weights
from noisy observations [9], [10].

Simultaneously to the success of neural beamforming,
single-channel speaker separation techniques have also pro-
gressed dramatically. Frequency-domain algorithms such as
Deep Clustering (DC) [11], Permutation Invariant Training
(PIT) [12] and Deep Attractor Network (DAN) [13] rely

Lukas Pfeifenberger and Franz Pernkopf are with the Intelligent Systems
Group at the Signal Processing and Speech Communication Laboratory, Graz
University of Technology, Graz, Austria.

This work was supported by the Austrian Science Fund (FWF) under
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solely on spectral features. Time-domain algorithms such as
Wave-U-Net [14], TasNet [15] and Conv-TasNet [16] delivered
promising results.

Recently, some of these single-channel algorithms have been
combined with a mask-based beamformer. In particular, a neu-
ral network estimates a gain mask of the desired signal, which
is then used to construct a frequency-domain beamformer, i.e.:
Beam-TasNet [17], SpeakerBeam [18], [19], Neural Speech
Separation [20], Multi-Channel Deep Clustering [21], [22],
and Convolutional Beamforming [23]. More recently, end-to-
end multi-channel speech separation has been done entirely
in time domain. By leveraging spatial cues among the multi-
channel signals such as the Inter-channel Time Difference
(ITD) or Inter-channel Phase Difference (IPD), the desired
signal is estimated directly in time domain [24]. We further
extend this approach by addressing the following three issues:

1) Open number of sources: Many source separation algo-
rithms are limited to a pre-defined number of sources which
they can separate [12], [13], [15], [16], [14], [17]. Exceptions
are k-means clustering [11] and Recurrent Selective Attention
Network (RSAN) [25]. We propose an iterative approach, by
leveraging the spatial information encoded within the data.

2) Distant speaker separation: While close-talk speech
separation models yield impressive performance, far-field
speech separation is still a challenging task [26], [27]. Espe-
cially in real-world scenarios, reverberation and echoes cannot
be ignored, as they severely degrade speech intelligibility and
ASR performance [28]. Various deep learning based methods
have been proposed for dereverberation [29], [30], [31], most
of which are based on the Weighted Prediction Error (WPE)
algorithm [32]. As this algorithm is restricted to the frequency
domain, we chose a more general approach which learns the
echo directly from the reverberated data.

3) Speaker Identification: To be useful in real-world ap-
plications, a speaker separation algorithm has to be at least
block-online capable, i.e.; a short block of audio is processed
at a time. This implies a permutation problem at block level,
requiring speaker diarization [33], [34]. Therefore, identifying
the separated speakers in each block of audio is necessary. A
speaker identification algorithm is agnostic to the spoken text,
and only relies on the speaker characteristics embedded in
the waveform. Embedding vectors are used to map utterances
into a feature space where distances correspond to speaker
similarity [35]. Typically, i-Vectors [36] or x-Vectors [37] are
used for this task. Algorithms such as Deep Speaker [38] rely
on contrastive loss or triplet loss to learn embeddings on a very
large set of speakers [39], [40], [41], [42]. We chose the triplet
loss as its performance on small batch sizes is advantageous
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[43].
In this paper, we introduce our Blind Speech Separation and

Dereverberation (BSSD) network, which performs separation,
dereverberation and speaker identification in a single neural
network. We propose a frequency-domain variant (BSSD-FD),
and time-domain variant (BSSD-TD). Our contributions are:
Unsupervised speaker localization; separation of each speaker
using adaptive beamforming; dereverberation of each source;
and speaker diarization using embedding vectors. We evaluate
our system in both offline and block-online mode. Further,
we report the performance in terms of SI-SDR, WER and
EER against similar state-of-the art algorithms for speaker
separation.

II. SYSTEM MODEL

We assume a standard meeting scenario, where multiple
speakers may talk simultaneously in an arbitrary room, i.e. an
office. The position and number C of the speakers is unknown.
We place a circular microphone array with M microphones in
the center of the room, i.e. on a table. Figure 1 provides an
example with three speakers. We assume that each speaker has
a direct line of sight to the microphone array, i.e. the speaker
is not obscured by a corner, or standing in the next room.
Each speaker is assumed to be stationary, except for minor
movements. Further, the room may have a significant amount
of reverberation.

Fig. 1: Meeting room scenario with three independent speak-
ers.

The signal arriving at the microphone array is composed of
an additive mixture of C independent sound sources sc(t). In
time domain, the samples of all M microphones at sampling
time t can be stacked into a single M × 1 vector, i.e.

z(t) =
C∑

c=1

sc(t), (1)

where

z(t) =
[
z1(t), . . . , zM (t)

]T
. (2)

We use bold symbols for vectors, i.e. z(t), and plain symbols
for scalars, i.e. zm(t). The vector sc(t) represents the cth

sound source at sample time t. Each sound source is composed

of a monaural recording sc(t) convolved with a Room Impulse
Response (RIR) denoted by hc(t), i.e.

sc(t) = hc(t) ~ sc(t), (3)

where ~ denotes the convolution operator. The RIRs model the
acoustic path from a sound source to the microphones as FIR
filter, which includes all reverberations and reflections caused
by the room acoustics [44]. Modern office rooms are made
of laminate flooring and concrete walls, which have a low
acoustic absorption coefficient. Consequently, the reverbera-
tion time RT60 may be very large, which significantly affects
the performance of speech separation and speech recognition
algorithms [26], [27], [28].

To cope with this environment, we propose the BSSD
network, which iteratively extracts an unknown number of
speakers from a multi-channel input mixture z(t). During each
iteration, the Direction Of Arrival (DOA) of the loudest speech
source is estimated by a localization module, which correlates
the input mixture against a pre-defined set of DOA bases. The
DOA is subtracted from a spatial speech presence probability
map, so that the second-loudest source is extracted during the
subsequent iteration. The DOA information is then fed into
a Neural Network (NN), which extracts and dereverberates
the corresponding speech source. The network also predicts a
speaker embedding vector for each extracted speech source,
which is used to assign the utterance to a speaker for block-
online processing. This iterative process is repeated until
no new speaker embedding is found. Figure 2 illustrates
two iterations of the BSSD network, which consists of the
following modules: DOA bases, localization, beamforming and
dereverberation, and speaker identification. In the following
chapters, we will introduce each module in detail.

Fig. 2: Overview of the BSSD system, showing two iterations.
During each iteration, the localization module estimates the
DOA of a source from a set of pre-defined DOA bases. The
DOA is then used to extract and dereverberate the correspond-
ing speech source from the multi-channel input mixture z(t).
The neural network also assigns a speaker embedding vector
ei to each enhanced source i.
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III. DOA BASES

As each source in Figure 1 has a direct line of sight towards
the microphone array, it is possible to assign a unique DOA
to each individual source in the mixture. Even if there is a
significant amount of reverberation, there will always be an
anechoic component in the RIR (i.e. the earliest peak) that
corresponds to the DOA [44]. We therefore define a set of D
unique DOA vectors on a unit sphere around the microphone
array, where each impinging sound wave is modeled as plane
wave, i.e.

V (d, k,m) = e−i2πfkτd,m , (4)

where fk is the frequency for index k and τd,m is the time
delay from a point on the sphere to the mth microphone, i.e.

τd,m =

√
(xm − xd)2 + (ym − yd)2 + (zm − zd)2

c
, (5)

where c is the speed of sound. The cartesian coordinates of the
mth microphone are denoted by xm, ym, zm, and xd, yd, zd are
the coordinates of the dth point on the sphere. We define these
points to be equally distributed on the surface of the sphere
using a fibonacci spiral [45], i.e.

φd = g · d,

θd = arcsin
d

D − 1
,

xd = cos θd cosφd,

yd = cos θd sinφd,

zd = sin θd,

(6)

where g = π(3−
√

5) is known as the golden angle [45], and
d = 1 . . . D is the DOA index. We use a circular microphone
array with M channels. Hence, the array is flat and we cannot
distinguish between positive and negative z coordinates. It is
therefore sufficient to only use half a sphere for the DOA
bases. To assign a DOA index to a given RIR i, we utilize
GCC-PHAT [46], i.e.

di = argmax
d

K∑

k=1

|HH
i (k) · V (d, k)|2
|Hi(k)|22

, (7)

where Hi represents the FFT of the RIR hi(t). Note that the
amplitude of the DOA vector V (d, k) is defined as 1 in Eq.
(4). Figure 3 illustrates the DOA locations as black dots, where
D = 100 and M = 6. The color gradient is obtained from Eq.
(7), with a randomly chosen RIR.

IV. SOURCE LOCALIZATION

To estimate the direction of a speech source relative to
the microphone array, we use GCC-PHAT to obtain a spatial
speech presence probability map for the input mixture z(t) and
the DOAs V (d, k). First, we transform the input mixture to
the frequency domain using the Short-Time Fourier Transform
(STFT), i.e.

z(t)→ Z(l, k), (8)

Fig. 3: Unit sphere with D = 100 equi-distant DOA points
and a circular microphone array with M = 6 channels. The
color gradient indicates the location of a single speaker, using
Eq. (7).

where Z(l, k) contains M samples of frequency bin k and
STFT frame index l. Next, we compute the spatial speech
presence probability map γ ∈ [0 . . . 1] as:

γ(l, k, d) =
|ZH(l, k) · V (d, k)|2

|Z(l, k)|22
. (9)

A. Spatial Whitening

To separate speakers based on their location, Eq. (9) utilizes
the IPDs, which are encoded in the phase of the complex-
valued input mixture Z(l, k). However, it is well known that
microphone array recordings are strongly correlated towards
low frequencies [46], [7], [47], [48]. This is due to the fact
that the wavelength of low frequencies is large compared to
the aperture of the microphone array. As a consequence, the
IPDs will be small, and the overall separation performance
is degraded. To mitigate this effect, we decorrelate the noisy
inputs Z(l, k) using Zero-phase Component Analysis (ZCA)
whitening [49] from our previous works [9], [6]. In particular,
we use the whitening matrix

U(k) = EΓ(k)D
− 1

2

Γ (k)EH
Γ (k), (10)

where EΓ and DΓ are M ×M sized eigenvector and eigen-
value matrices of the real-valued spatial coherence matrix of
the ideal isotropic sound field Γ(k) [44]. Its elements are given
as Γi,j(k) =

sin(2πfkdi,j/c)
2πfkdi,j/c

, and di,j is the distance between
the ith and the jth microphone. To avoid a division by zero,
the diagonal elements of DΓ are loaded with a small constant
ε = 10−3. We prefer ZCA whitening over PCA whitening, as
the ZCA preserves the orientation of the distribution of the
data [49]. Using the whitening matrix U(k), we rewrite Eq.
(9) as

γU (l, k, d) =
|ZH(l, k)UH(k) ·U(k)V (d, k)|2
|U(k)Z(l, k)|22 · |U(k)V (d, k)|22

, (11)

where U(k)Z(l, k) can be recognized as the whitened input
mixture, and U(k)V (d, k) as whitened DOA vector. Figure 4
demonstrates the effect of spatial whitening. Panel (a) shows
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shows γ(l, k) for a single speaker and a matching DOA
vector. Panel (b) shows γU (l, k) with whitening. It can be
seen that the separation performance is greatly increased for
low frequencies.

Fig. 4: Effectiveness of spatial whitening at low frequencies.
(a) γ(l, k) from Eq. (9) for a single speaker. (b) γU (l, k) from
Eq. (11) with whitening.

B. Speaker Separation and Diarization

To iteratively estimate the DOA index d of all speech
sources in the mixture Z(l, k), we use the pseudo code in Al-
gorithm 1. First, we create a weighted spatial speech presence
probability map γW (l, k, d), using the energy PZ(l, k) in each
time-frequency bin of the input mixture Z(l, k). Next, we copy
that map into γ′W (l, k, d). Then, we initialize an empty list of
speaker embeddings E . During each iteration, we average over
the frame and frequency axes of γ′W (l, k, d) to determine its
global maximum over the D possible DOAs. The index of the
maximum is denoted as d̂, which is used as input for the BSSD
network, which outputs an estimate of the desired signal y(t)
at the direction of the DOA index d̂, and a speaker embedding
vector e for that output. Then, we compare this newly found
embedding against the previously stored ones in the list E ,
using the distance function distance(E , e). If the distance
is greater than a threshold δ, we append the embedding to
the list, and subtract γW (l, k, d̂) from all DOA indices of the
weighted spatial speech presence probability map γ′W (l, k, :).
This ensures that each speech source is only extracted once 1.
If the threshold δ is not met, the same embedding is already
a member of the list E . This may happen due to reflections
or sidelobes [46] of the beamformer in the BSSD module. In
this case, we stop the iterations and consider all speech sources
within the mixture z(t) to be extracted. We will discuss the
BSSD architecture and the distance function in the following
chapters.

V. BSSD NETWORK - FREQUENCY DOMAIN

Well-established beamformers such as the Minimum Vari-
ance Distortionless Response (MVDR) beamformer [50] or the
Generalized Eigenvalue (GEV) beamformer [51] use the signal
statistics (i.e., the power spectral density matrices) to derive a
set of beamforming weights W (k) ∈ C in frequency domain.
As those weights are static over time, the signal separation

1Note that this algorithm is different to just sorting the DOA indices by
energy, as multiple DOA indices may share the energy from the same speaker,
due to the limited spatial resolution of the beamformer array.

Algorithm 1 Source localization

1: PZ(l, k)← 1
M

∑M
m=1 |Z(l, k,m)|2

2: γW (l, k, d)← γU (l, k, d) · PZ(l, k)
3: γ′W (l, k, d)← γW (l, k, d)
4: E ← []
5: Y ← []
6: while true do
7: d̂← argmax

d

(∑L
l=1

∑K
k=1 γ

′
W (l, k, d)

)

8: y(t), e← BSSD(z(t), d̂)
9: Y.append(y(t))

10: if distance(E , e) > δ̂ then
11: E.append(e)

12: γ′W (l, k, :)← max
(
γ′W (l, k, :)− γW (l, k, d̂), 0

)

13: else
14: break
15: end if
16: end while

performance is limited especially in reverberant conditions
[46]. Therefore, a beamformer is often used in conjunction
with a post-filter [7]. The post-filter acts as a single-channel
gain mask on the output of the beamformer.

In [9], we proposed the Complex-valued Neural Beam-
former (CNBF), which combines the properties of a beam-
former and a post-filter using a neural network. Unlike a
statistical beamformer, the CNBF estimates a set of individual
beamforming weights W (l, k) ∈ C for each time-frequency
bin. Those weights act as a spatio-temporal, complex-valued
gain mask, which allows for a higher flexibility in the design
of the beamformer, i.e. higher suppression rates or derever-
beration. The CNBF uses complex-valued, non-holomorphic
activation functions like vector normalization, phase normal-
ization or conjugation. To back-propagate the complex-valued
gradient, Wirtinger calculus is used [52], [53], [54]. A Ten-
sorflow implementation of the CNBF network can be found
at2.

We extend the CNBF to include dereverberation and a
speaker embedding vector. Figure 5 shows the architecture
of the BSSD-FD network. The left branch performs beam-
forming and dereverberation, and the right branch outputs an
embedding vector per utterance.

A. Speaker Separation

The STFT layer transforms the multi-channel input mixture
to the frequency domain using Eq. (8). The STFT produces
L time frames and K frequency bins per frame. Source
separation is based on the DOA index d̂ from Algorithm 1,
which is a scalar. The Adaption layer uses this input to modify
the IPDs of the multi-channel input mixture in frequency
domain, i.e.

Z̃(l, k) =
(
U(k)V (d̂, k)

)∗ �
(
U(k)Z(l, k)

)
, (12)

2https://github.com/rrbluke/CNBF
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Fig. 5: Layers of the frequency-domain BSSD-FD network.
The left branch performs beamforming and dereverberation,
the right branch assigns an embedding vector to the enhanced
output signal y(t). The symbols next to each layer denote the
dimensionality of the respective output tensor.

where ∗ denotes complex conjugation, and � element-wise
multiplication. The adaption layer performs two tasks: (i) It
whitens the input signal Z(l, k) as shown in Eq. (11). (ii)
It subtracts the phase of the whitened DOA vector V (d̂, k)
from the phase of the whitened input signal. This operation
acts like a steering vector in a conventional beamformer, as
it modifies the IPDs of the input signal to be approximately
zero for signals originating from the direction of V (d̂), i.e. the
desired signal. The unwanted signals (i.e. interfering speakers)
are moved further away from the zero-IPD by the whitening
process. Hence, the NN sees the desired signal always at the
same spatial location, enabling it to distinguish between the
desired and unwanted signal components. Consequently, the
NN extracts the speaker towards the direction of V (d̂). We
refer to Eq. (12) as the Analytic Adaption (AA). Hence, this
system is abbreviated as BSSD-FD-AA.

Instead of modifying the phase of the input with the DOA
vector, it is also possible to modify the input directly with a
set of trainable weights, i.e.

Z̃(l, k) = A(d̂, k)Z(l, k), (13)

where A(d̂, k) is a complex-valued matrix of shape M×M . It
allows to scale, shift and mix the M channels of the complex-
valued inputs Z(l, k) freely. Note that the DOA index d̂ selects
the location from which we want to extract the desired speech
signal. Hence, during training, all possible D DOA locations
must be presented to the NN to train all complex-valued

weights in the tensor A. We refer to Eq. (13) as Statistic
Adaption (SA). Hence, this system is abbreviated as BSSD-
FD-SA.

B. Beamforming and Dereverberation

The structure of the left branch of the NN in Figure 5
resembles a traditional filter-and-sum beamformer, which can
be written as:

Y (l, k) = W T (l, k)Z̃(l, k), (14)

where Y (l, k) denotes the beamformed output in frequency
domain, and W (l, k) are the beamforming filters. The inner
vector product of Eq. (14) is computed before the inverse
STFT layer in Figure 5. The NN estimates the weights W (l, k)
solely from the spatial information in Z̃(l, k), which is ob-
tained by the Norm layer. In particular, this layer normalizes
the magnitude of the M dimensional input vector Z̃(l, k) to
1, and aligns its phase to the first microphone, i.e.

vZ̃(l, k) =
Z̃(l, k) · Z̃∗(l, k,m = 1)

|Z̃(l, k) · Z̃∗(l, k,m = 1)|
. (15)

Then, a bidirectional LSTM layer creates a latent space of
H neurons, followed by a dense with a complex-valued
tanh activation function [9]. A linear layer outputs a set of
unconstrained filter weights W (l, k) ∈ C to calculate the
enhanced output Y (l, k) as shown in Eq. (14). After the inverse
STFT layer, we obtain the enhanced time-domain signal y(t).

By using a neural beamformer, the design goal is not
limited to MVDR constraints or similar concepts [9]. In fact,
we can also include a dereverberation objective by using an
appropriate loss function for the NN. In particular, we use the
negative SI-SDR [55] between the output y(t), and a clean
anechoic reference utterance r(t), i.e.

LSI-SDR = −10log10

( |αr(t)|22
|αr(t)− y(t)|22

)
, (16)

where α = y(t)T r(t)
r(t)T r(t)

. We use r(t) = sc(t) from Eq. (3) as
anechoic reference signal.

C. Speaker Identification

The right branch of the NN in Figure 5 extracts an embed-
ding vector e to identify the speaker in the enhanced output
signal Y (l, k). The embedding vector maps the utterance
into a feature space where distances correspond to speaker
similarity [35]. Therefore, the NN must be agnostic to the
spoken text, and only rely on the speaker characteristics
embedded in the waveform. We use the log-power spectral
density log

(
|Y (l, k)|2

)
as input features. Then, a series of

6 convolutional layers with a filter length of 10, and in-
creasing dilation factors of (1,2,4,8,16,32) frames create a
latent space of L × E dimensional embeddings. We use a
softplus3 activation function and layer normalization after each
convolutional layer. A skip connection is added between every
two convolutional layers. The L time frames are averaged

3The softplus activation function is defined as f(z) = log(1 + ez).
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to obtain a single, E dimensional embedding for the whole
utterance (AvgPool layer). The linear layer at the end of the
stack outputs the unconstrained embedding vector e.

We want to identify an open set of speakers, i.e. we need
to be able to compare two utterances and determine whether
they belong to the same speaker. Therefore we employ the
triplet loss [39], which has been successfully used for speaker
identification and diarization tasks [38], [40], [41], [42]. The
goal of the triplet loss is to ensure that two utterances from
the same speaker have their embeddings close together in the
embedding space, and two examples from different speakers
have their embeddings farther away by some margin β. In
other words, we want the embeddings of the same speaker
to form clusters, and these clusters must be separated by the
margin, i.e.

LTL =
∑

B3

[
|ea − ep|2 − |ea − en|2 + β

]
+
, (17)

where the embedding ea denotes an anchor, ep is an embed-
ding from the same speaker as the anchor (positive example),
and en is an embedding from a different speaker (negative
example). In a batch of B utterances, there can be as much
as B3 triplets. It is therefore crucial to only select a subset
of valid triplets, where the positive example is from the same
speaker as the anchor, and the negative example belongs to
a different speaker. Further, we only need to consider triplets
where the loss LTL is actually greater than zero. To select
relevant triplets, we utilize Hard Triplet Mining [56], where we
select the hardest positive and negative example per anchor. In
particular, we randomly select P utterances from B speakers,
where we determine the largest distance |ea − ep|2 between
an anchor and a positive example within the P utterances
per speaker, and the smallest distance |ea − en|2 between an
anchor and a negative example from the P (B − 1) remaining
utterances. More formally, this procedure can be written as:

LTL-HTM =
1

B · P
B∑

i=1

P∑

a=1

[
β + max

p=1...P

(
|eia − eip|2

)

− min
j=1...B
n=1...P
i 6=j

(
|eia − ejn|2

)]
+
.

(18)
When the batch size P ·B is small, the embeddings may col-
lapse into a single point during training [57]. To avoid this, we
propose to minimize the cross-entropy between embeddings of
different speakers as follows:

LTL-CE =
−1

(B2 −B)P 2

B∑

a=1

B∑

n=1
n 6=a

P∑

i=1

P∑

j=1

log
(
|(ẽia)T ẽjn|2

)
,

(19)
where ẽ = e

|e|2 is the magnitude-normalized embedding vector
e. This regularization ensures that the embeddings ea and
en will be different. The overall cost function for the entire
BSSD-FD architecture is then defined as:

LBSSD-FD = LSI-SDR + λ1LTL-HTM + λ2LTL-CE, (20)

where λ1 and λ2 are weights for the individual terms.

D. Distance Measure

In order to determine whether two embeddings e1 and e2

belong to the same speaker, we use the euclidian distance from
Eq. (17), i.e. |e1 − e2|2. If the distance falls below a certain
threshold δ, we consider the two embeddings to belong to
the same speaker. If it exceeds the threshold, the speakers
are considered different. Hence, two types of errors exist: (i)
A false positive is triggered when two embeddings from two
different speakers are incorrectly classified as belonging to the
same speaker, which we measure using the False Acceptance
Rate (FAR), i.e.

FAR(δ) =
1

(B2 −B)P 2

B∑

a=1

B∑

n=1
n 6=a

P∑

i=1

P∑

j=1

1
(
|eia − ejn|2 < δ

)
,

(21)
where 1(x) denotes an indicator function, i.e.

1(x) =

{
1, if condition x is true.
0, otherwise.

(22)

(ii) A false negative is triggered when two embeddings from
the same speaker are classified as belonging to different
speakers, which we measure using the False Rejection Rate
(FRR), i.e.

FRR(δ) =
1

B(P 2 − P )

B∑

a=1
p=a

P∑

i=1

P∑

j=1
j 6=i

1
(
|eia−ejp|2 > δ

)
. (23)

The FAR is positively correlated to the decision threshold δ,
and the FRR is correlated negatively. The value at which the
FAR and FRR are equal, is known as the Equal Error Rate
(EER). It is determined by:

δ̂ = argmin
δ
|FAR(δ)− FRR(δ)|

EER = FAR(δ̂) = FRR(δ̂),
(24)

where δ̂ is considered the optimal threshold belonging to the
EER.

VI. BSSD NETWORK - TIME DOMAIN

With the recent success of time-domain speech separation
algorithms [14], [15], [16], [24], we also formulate a time-
domain variant of our BSSD network. Figure 6 shows the ar-
chitecture of the BSSD-TD network. Similar to the frequency-
domain variant, the left branch performs beamforming and
dereverberation, and the right branch outputs an embedding
vector per utterance.
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Fig. 6: Layers of the time-domain BSSD-TD network. The left
branch performs beamforming and dereverberation, the right
branch assigns an embedding vector to the enhanced output
signal y(t).

A. Speaker Separation

Analogous to the frequency-domain network, source sepa-
ration is based on the Adaption layer, which uses the DOA
index d̂ from Algorithm 1 to modify the ITD of the input
signal z(t). By rearranging Eq. (12), we can formulate an
identical operation in time-domain, i.e.

Z̃(l, k,m) =
(
UT (k,m)V (d̂, k)

)∗ ·
(
UT (k,m)Z(l, k)

)
,

=

M∑

i=1

UH(k,m)V ∗(d̂, k)U(k,m, i) · Z(l, k, i),

=

M∑

i=1

V ′(d̂, k,m, i) · Z(l, k, i),

(25)
where we can identify the convolutional kernel V ′(d̂, k,m, i)
in frequency domain. We can see from Eq. (4), that the DOA
V (d̂, k) resembles M sinc pulses with a positive time-delay
τd,m, and Eq. (10) shows that the elements of the whitening
matrix U(k,m, i) are real-valued. Therefore, V ′(d̂, k,m, i)
will be a causal IIR filter in time domain [58], which we
truncate to TA samples to obtain the FIR filter v′(d̂, tA,m, i)
by using the inverse FFT. This allows to formulate the time-
domain adaption layer as:

z̃(t,m) =
M∑

i=1

z(t, i) ~ v′(d̂, tA,m, i), (26)

which can be implemented using a single convolution layer.
Similar to the frequency-domain adaption layer, Eq. (26)

synchronizes the ITD to be zero for signals originating from
the direction of V (d̂), i.e. the desired signal. The subsequent
NN sees the desired signal always at the same spatial location,
which makes it easier to distinguish between the desired and
unwanted signal components. Consequently, the NN extracts
the speaker towards the direction of V (d̂). We refer to Eq. (26)
as Analytic Adaption (AA). Hence, this system is abbreviated
as BSSD-TD-AA.

Instead of modifying the ITDs of the input signal with
the DOA vector, it is also possible to replace the fixed
convolutional kernels ṽ(d̂, tA,m, i) with a set of trainable
weights, i.e.

z̃(t,m) =
M∑

i=1

z(t, i) ~ a(d̂, tA,m, i), (27)

where a is a tensor of shape (D,TA,M,M), and TA is the
filter length of the learnable convolution kernels. This allows
to scale, shift and mix the M channels of the input signal
z(t) freely. Note that the DOA index d̂ provides the location
from which we want to extract the desired speech signal.
Hence, during training, all D possible DOA locations must be
presented to the NN to train the weights a. We refer to Eq. (27)
as Statistic Adaption (SA). Hence, this system is abbreviated
as BSSD-TD-SA.

B. Beamforming and Dereverberation

The structure of the left branch of the NN in Figure 6
resembles a time-domain beamformer [46], where the first
convolution layer right after the adaption layer transforms the
time-domain input z̃(t) into a latent space z′(l, h) with L
frames and H filters. The stride of this convolution layer is
set to H

4 , and the activation function is linear.
Similar to the frequency-domain beamformer, filtering is

performed in latent space. The beamforming weights w′(l, h)
are estimated from the spatial information embedded in
z′(l, h), using layer normalization, followed by a bidirectional
LSTM layer, a dense layer with tanh activation, and a linear
layer. The linear layer allows the NN to freely chose the am-
plitude and phase of the beamforming weights. The enhanced
output y′(l, h) is obtained by

y′(l, h) = w′(l, h)� z′(l, h), (28)

where all variables are of shape L×H . Finally, a deconvolution
layer with a linear activation function produces the enhanced
time-domain signal y(t). Analogous to the BSSD-FD archi-
tecture, we use the negative SI-SDR from Eq. (16) between
the output y(t), and a clean anechoic reference utterance r(t).

C. Speaker Identification

The right branch of the NN in Figure 6 extracts an embed-
ding vector e to identify the speaker in the enhanced output
signal y(t). The NN is identical to the BSSD-FD architecture,
except for the input layer which uses the enhanced signal
y′(l, h) as input features. Identically to Eq. (20), the overall
cost function for the entire BSSD-TD architecture is defined
as:
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LBSSD-TD = LSI-SDR + λ1LTL-HTM + λ2LTL-CE. (29)

VII. BLOCK ONLINE PROCESSING

For realtime applications, it is possible to use the BSSD
system in block-online mode. We split the input mixture
z(t) into blocks of equal length. Each block b is iteratively
processed using Algorithm 1. It returns the DOA index d̂,
a list Yb of extracted speakers y(t), and a list Eb of speaker
embeddings e. Figure 7 illustrates the block-online processing
scheme of the BSSD system for C = 2 speakers and 4 blocks.
Note that the speakers may change their position from block
to block, as their respective DOA indices are re-estimated
for each block. The order and the number of speakers which
are extracted may vary from block to block. To solve this
permutation problem, we employ diarization [33], [34], by
using Algorithm 2.

Fig. 7: Block-online processing mode of the BSSD system,
showing a mixture of C = 2 speakers being split into 4 blocks.
Each block is processed separately using Algorithm 1.

Algorithm 2 Diarization in block-online mode.
1: Y ← []
2: E ← []
3: for all blocks b do
4: for c = 1 : length(Eb) do
5: if min(|E − Eb(c)|2) > δ̂ then
6: E.append(Eb(c))
7: else
8: i← argmin(|E − Eb(c)|2))
9: Y(i).append(Yb(c))

10: end if
11: end for
12: end for

First, we initialize empty lists for all speakers Y and all
embeddings E . Then, we iterate over all blocks b, where
Algorithm 1 is executed for each block. It returns a list Yb
of extracted speakers and a list Eb of speaker embeddings for
that block. Next, we iterate over each extracted source c within
that block, and we compare the distance of the embedding
Eb(c) against all embeddings E . If the threshold δ̂ (see Eq.
24) is exceeded, we have found a new speaker. In that case,
this speaker is added to the list of known embeddings E .
Otherwise, we have found an utterance belonging to a known

embedding. In that case, we determine the index i of that
embedding, and append the source Yb(c) to the speaker at
position Y(i). To preserve the time alignment of each extracted
speaker, we append a block of silence to each source in Y
that did not receive an update. This may happen if a speaker
is silent during block b.

A trade-off has to be made when choosing the block length
TB . If it is too large, short utterances followed by periods of
silence might not get detected. If it is too small, the predicted
embeddings may be inaccurate, causing Algorithm 2 to assign
the sources Yb(c) to the wrong speaker. We examine this
behavior in our experiments.

VIII. RIR RECORDINGS

We use both recorded and simulated RIRs to generate
spatialized recordings with Eq. (3). Real RIRs are obtained
through multi-channel room impulse response measurements,
and simulated RIRs are obtained by the Image Source Method
(ISM) [22], [59].

A. Real RIRs

To obtain realistic room impulse responses (RIRs), we use
a circular microphone array with M = 6 channels and a diam-
eter of 92.6mm [60], and a 5W measurement loudspeaker. To
drive the loudspeaker from a Linux-based PC with ALSA [61],
we use the PlayRec Python module [62], which simultaneously
plays and records audio from a sound card. We use an
exponential chirp with a duration of 5s sweeping from 24kHz
down to 20Hz as excitation signal [44]. However, we only use
a bandwidth of 8kHz for our experiments. We recorded 120 6-
channel RIRs in 24 different, fully furnished office rooms with
a reverberation time RT60 ∈ [200 . . . 900]ms. The distance
from the loudspeaker to the microphone array was varied from
1m. . . 3m, and the direction was chosen randomly. Figure 8
shows the recording setup. We augmented the number of RIR
recordings to 720 by virtually rotating the array by 6 × 60◦,
i.e. shifting the microphone channels.

Fig. 8: RIR recording setup using a 5W measurement loud-
speaker and a 6-channel microphone array [60].
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B. Simulated RIRs

To obtain simulated RIRs, we further generated 720 artificial
RIRs for the same array geometry with 6 channels, but with a
shorter reverberation time RT60 ∈ [200 . . . 400]ms, which is
randomly chosen. The room is modeled as a simple rectangular
shoebox with random dimensions ranging from 3m. . . 6m,
where the microphone array and the sound sources are placed
randomly. RIR generation was done using the Image Source
Method [22], [59] using Pyroomacoustics [63].

IX. EXPERIMENTS

A. Experimental Setup

1) Speech mixtures: We use the WSJ0 speech database
which contains 12776 utterances from 101 different speakers
for training, and 5895 utterances from 18 different speakers
for testing. To generate mixtures, we use the wsj0-2mix from
[11], which we extended to 3 and 4 speakers. To generate re-
verberated, multi-channel mixtures from Eq. (3), we convolve
the monaural signals with both the real and simulated RIRs,
as described in Section VIII. All recordings use a sample rate
of fs = 16kHz.

2) DOA bases: We use D = 100 DOA bases, which
are distributed on a sphere, as shown in Figure 3. This
provides sufficient spatial resolution for the scenario described
in Section II. We use a different DOA index dc ∈ [1 . . . D]
for each source sc in the mixture z(t). To achieve this, we
randomly select a RIR hc(t) belonging to a the DOA index dc
using Eq. (7). From the 720 real and simulated RIRs available,
640 are used for training, and 80 for testing.

3) BSSD-FD system: For the BSSD-FD network in Figure
5, we use a FFT length of 1024 samples, and an overlap of
75%. This results in K = 513 frequency bins. Further, we have
M = 6 microphones as determined by the RIR recordings.
The beamforming branch uses H = 500 neurons to create the
beamforming weights W (l, k), and to predict the enhanced
signal Y (l, k). The identification branch uses an embedding
dimension of E = 100 to predict the speaker embeddings e.

4) BSSD-TD system: For the BSSD-TD network in Figure
6, we use a filter length of TA = 100 samples for the filter
kernels in the adaption layer in Eq. (26) and (27). The first con-
volutional layer uses a filter length of 200 samples and a stride
of 50 samples to create a latent space of H = 500 neurons.
The beamforming branch predicts the beamforming weights
w′(l) and the enhanced signal y′(l) in latent space. This signal
is transformed back to time domain using the deconvolution
layer, which uses a filter length of 200 samples, a stride of
50 samples, and overlap-add to produce the enhanced signal
y(t). The identification branch uses an embedding dimension
of E = 100 to predict the speaker embeddings e.

B. Related Systems

To compare our BSSD system against other state-of-the art
speech separation algorithms, we evaluate Conv-TasNet [16]
and PIT with spatial features [22].

1) Conv-TasNet: Conv-TasNet separates 2 speakers in time
domain. It operates on chunks of 4s of audio, where it sepa-
rates the two speakers in a latent space by using a speech mask
∈ [0 . . . 1]. The mask is obtained from a series of convolutions.
The system operates on single-channel inputs. However, we
trained it to perform dereverberation, by providing anechoic
utterances as target signal. We use the implementation of [16].

2) Spatial PIT: Spatial PIT separates 2 speakers in fre-
quency domain. It uses log-spectrograms and the sine and co-
sine of the IPDs of frequency-domain, multi-channel mixtures
to predict a speech mask for each speaker [22]. This mask is
used to construct a frequency-domain beamformer [6]. Note
that there is no explicit dereverberation constraint, but the
target speech mask is obtained from the anechoic reference
signal r(t). Hence, the beamformer will remove late echoes.

C. Training

All four variants of the BSSD network are trained on
mixtures of C = 2 sources, where each mixture z(t) is
truncated to 5s length. The location (i.e. the DOA index d)
of each source is chosen randomly for each example. We use
a batch size of 60 mixtures from the 101 speakers of the WSJ0
training set. To enable efficient triplet mining with Eq. (18),
we use P = 3 different utterances from B = 20 speakers for
the first source sc=1(t) of each mixture. The second source
sc=2(t) is chosen randomly from the remaining 100 speakers
from the WSJ0 training set. We use the clean first source as as
reference utterance, i.e. r(t) = sc=1(t). The ground truth DOA
index d̂ is used to train the network. We use λ1 = 10−2 and
λ2 = 10−4 for the cost function in Eq. (20). This ensures that
the beamforming path is trained faster than the identification
path, as the latter depends on the former. As the combination
of the different RIRs and WSJ0 utterances allows for billions
of combinations, we randomly create new batches for training
and validation for each epoch. Adam is used as optimizer [64],
with a learning rate of 10−3. A Tensorflow implementation of
the BSSD network can be found at4.

D. Testing

We compare the frqeuency-domain (FD) and time-domain
(TD) variants of our BSSD system, as well as the analytic
adaption (AA) and statistic adaption (SA) layers introduced
in Section V and VI. Further, we use the Conv-TasNet and
spatial PIT as baseline systems. We test the BSSD network
both in offline mode in block-online mode.

1) Offline Mode: In offline mode, we use 5s long mix-
tures of C = {1, 2, 3, 4} speakers from the test set. To
test the performance of the speaker separation and speaker
identification modules separately, we use the ground truth
DOA index d̂ as input to the BSSD network. We report the
separation and dereverberation performance in terms of SI-
SDR using Eq. (16). Further, we report the WER using the
Google Speech-to-Text API [65] to perform ASR. Speaker
identification performance is reported in terms of EER on the
enhanced output, using Eq. (24).

4https://github.com/rrbluke/BSSD
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2) Block-online Mode: In block-online mode, we use 20s
long mixtures from the test set, which we divide into Nb
blocks of TB = {1, 2.5, 5}s length. Each block is processed
by Algorithm 1, which outputs the DOA index d̂, a list of
extracted signals Yb, and a list of speaker embeddings Eb for
each block b. Then, Algorithm 2 is used to assign the extracted
utterances of each block to the same speaker. This solves the
speaker permutation problem. We report the SI-SDR, WER
and the Block Error Rate (BER) for the extracted speakers.
The BER indicates the percentage of falsely assigned blocks
due to erroneous embeddings. It is determined by comparing
the speaker embedding of the reference utterance rc(t) against
the extracted chunks yb,c(t) for each speaker c, i.e.

BER =
1

C ·Nb

C∑

c=1

Nb∑

b=1

1
(
|er,c − eb,c|2 > δ̂

)
(30)

X. RESULTS

A. Offline mode

Table I reports SI-SDR, WER and EER for the real RIRs.
For C = 1 speaker, the BSSD models only perform dere-
verberation. Hence, the SI-SDR is the highest for this case.
The low WER of 9.65% indicates that Google-ASR recognizes
reverberant audio quite well. However, all BSSD models could
lower the WER even further. Also, the EER is lowest for one
speaker. This is to be expected, as no interfering components
of other speakers reduce the quality of the speaker embeddings
e. For C = 2 speakers, it can be seen that all BSSD models
outperform Conv-TasNet and spatial PIT, even though both
methods have been trained to perform dereverberation as well.
However, Conv-TasNet only operates on a single channel, and
spatial PIT uses a static beamformer, which performs poorly
in reverberant environments [6]. In these conditions, Conv-
TasNet could only achieve a WER of 80.27%. For C = 3 and
4 speakers, performance drops rapidly. I.e.: the SI-SDR gets
lower, and both the WER and EER rise. The statistic adaption
(SA) clearly outperforms the analytic adaption (AA) variants
for all number of speakers. This is also expected, as the SA
variant allows the network to find an optimal transformation
to separate the speakers both in time- and frequency domain,
while the AA enforces a fixed scheme for spatial whitening
and source localization. When comparing the time-domain
(TD) to the frequency-domain (FD) variants, it can be seen that
the FD models perform slightly better in terms of EER. This
indicates that the speaker embeddings are easier to estimate in
frequency domain, as they are calculated from the enhanced
spectrograms (see Figure 5).

Table II reports SI-SDR, WER and EER for the significantly
shorter simulated RIRs. Consequently, all systems perform
better in all scores. In these almost ideal conditions, Google-
ASR achieved a WER of 3.04% for a single speaker without
any enhancement. However, all BSSD variants could lower
the WER even further. Also, Conv-TasNet and spatial PIT
perform better compared to the real RIRs. However, Conv-
TasNet still could not separate the speakers perfectly. The
static beamformer of spatial PIT performs quite well for the

TABLE I: Speech separation, dereverberation and speaker
identification performance for the real RIRs in offline mode.

model C SI-SDR WER EER
no enhancement 1 - 9.65 % -
Conv-TasNet 2 3.99 dB 80.27 % -
spatial PIT 2 2.26 dB 42.27 % -

BSSD-FD-AA

1 16.91 dB 5.09 % 2.87 %
2 8.65 dB 28.74 % 5.92 %
3 6.75 dB 51.90 % 8.94 %
4 5.61 dB 66.20 % 11.32 %

BSSD-FD-SA

1 14.92 dB 6.10 % 3.02 %
2 10.23 dB 23.70 % 4.22 %
3 8.34 dB 42.49 % 6.20 %
4 7.17 dB 56.43 % 7.22 %

BSSD-TD-AA

1 10.07 dB 9.81 % 4.18 %
2 6.74 dB 45.79 % 9.94 %
3 5.22 dB 71.63 % 15.68 %
4 4.31 dB 84.39 % 21.65 %

BSSD-TD-SA

1 14.40 dB 5.72 % 2.89 %
2 9.33 dB 26.19 % 5.75 %
3 7.92 dB 42.32 % 7.28 %
4 6.84 dB 56.57 % 9.39 %

short simulated RIRs, achieving a WER of 17.1%. Still, all
BSSD variants achieved a lower WER for C = 2 speakers.
Again, the FD variants perform slightly better than the TD
models, and the SA layer outperforms the AA layer.

TABLE II: Speech separation, dereverberation and speaker
identification performance for the simulated RIRs in offline
mode.

model C SI-SDR WER EER
no enhancement 1 - 3.04 % -
Conv-TasNet 2 4.74 dB 55.15 % -
spatial PIT 2 3.06 dB 17.10 % -

BSSD-FD-AA

1 22.72 dB 1.72 % 2.89 %
2 10.93 dB 14.71 % 6.11 %
3 8.62 dB 27.82 % 8.27 %
4 7.25 dB 37.58 % 9.65 %

BSSD-FD-SA

1 22.02 dB 2.72 % 3.07 %
2 12.06 dB 12.80 % 5.25 %
3 9.06 dB 25.39 % 7.37 %
4 7.40 dB 40.36 % 8.99 %

BSSD-TD-AA

1 16.87 dB 2.71 % 3.44 %
2 10.62 dB 15.55 % 7.23 %
3 8.31 dB 30.86 % 10.05 %
4 6.75 dB 46.48 % 14.52 %

BSSD-TD-SA

1 22.75 dB 2.02 % 2.84 %
2 12.82 dB 9.84 % 5.56 %
3 10.23 dB 20.92 % 7.77 %
4 8.57 dB 34.45 % 9.23 %

B. Block-online mode

Table III reports SI-SDR, WER and BER for the real RIRs,
for block lengths of TB = 1s, 2.5s and 5s. We only performed
these experiments on the SA variants of the BSSD network, as
the SA layer consistently outperforms the AA layer. The SI-
SDR and WER are worse compared to offline mode, as many
sources of errors build up throughout the processing chain.
I.e.: Algorithm 1 may produce wrong DOA indices for short
blocks and many speakers. Consequently, speaker separation
is poor, resulting in erroneous speaker embeddings. Further,
both the speaker separation and speaker identification modules
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introduce errors on their own. For the shortest block length of
TB = 1s, there are 20 blocks for 20s of audio. In order to
achieve a perfect BER score, the embeddings for the same
speaker in all 20 blocks must be identical (see Eq. (30)). If
the speaker is silent in one or more blocks, a perfect BER
score cannot be achieved. Clearly, performance is better for
larger block lengths and fewer speakers. For C = 2 speakers
and a block length of TB = 5s, the WER is 34.79% for the
FD variant, and 28.51% for the TD variant. The BER is 10%
for the FD variant, and 4.5% for the TD variant. In contrast to
the experiments in offline mode, all scores are slightly better
for the TD models.

TABLE III: Speech separation and dereverberation perfor-
mance for the real RIRs in block-online mode.

model C TB SI-SDR WER BER

BSSD-FD-SA

2
1.0s 3.80 dB 66.94 % 37.40 %
2.5s 7.05 dB 44.22 % 15.88 %
5.0s 8.64 dB 34.79 % 10.00 %

3
1.0s 3.00 dB 75.68 % 48.90 %
2.5s 5.19 dB 59.94 % 27.13 %
5.0s 6.73 dB 52.98 % 14.75 %

4
1.0s 2.49 dB 78.21 % 64.40 %
2.5s 3.71 dB 71.96 % 43.75 %
5.0s 4.76 dB 68.07 % 35.00 %

BSSD-TD-SA

2
1.0s 4.49 dB 60.67 % 25.30 %
2.5s 7.04 dB 36.24 % 10.75 %
5.0s 8.47 dB 28.51 % 4.50 %

3
1.0s 3.30 dB 74.11 % 39.70 %
2.5s 4.81 dB 63.82 % 23.88 %
5.0s 6.31 dB 48.68 % 22.50 %

4
1.0s 2.70 dB 76.32 % 47.85 %
2.5s 3.93 dB 70.83 % 32.25 %
5.0s 4.86 dB 65.14 % 32.50 %

Table IV reports SI-SDR, WER and BER for the simulated
RIRs, for block lengths of TB = 1s, 2.5s and 5s. All scores
are better compared to the significantly longer real RIRs. For
C = 2 speakers and a block length of TB = 5s, the WER is
19.80% for the FD variant, and 16.75% for the TD variant.
The BER is 3.25% for the FD variant, and 1.25% for the TD
variant. Again, In contrast to the experiments in offline mode,
all scores are slightly better for the TD models.

TABLE IV: Speech separation and dereverberation perfor-
mance for the simulated RIRs in block-online mode.

model C TB SI-SDR WER BER

BSSD-FD-SA

2
1.0s 4.24 dB 58.08 % 27.55 %
2.5s 8.13 dB 27.70 % 7.88 %
5.0s 10.67 dB 19.80 % 3.25 %

3
1.0s 3.49 dB 75.03 % 40.00 %
2.5s 6.46 dB 46.98 % 17.50 %
5.0s 7.91 dB 35.83 % 11.75 %

4
1.0s 2.89 dB 81.74 % 49.40 %
2.5s 5.25 dB 52.42 % 24.63 %
5.0s 6.05 dB 49.52 % 23.75 %

BSSD-TD-SA

2
1.0s 5.82 dB 51.17 % 18.55 %
2.5s 10.94 dB 18.21 % 3.63 %
5.0s 11.91 dB 16.75 % 1.25 %

3
1.0s 4.40 dB 73.55 % 30.50 %
2.5s 7.75 dB 47.37 % 15.25 %
5.0s 9.66 dB 39.12 % 9.75 %

4
1.0s 3.10 dB 81.24 % 37.65 %
2.5s 5.11 dB 60.12 % 26.00 %
5.0s 7.80 dB 52.99 % 10.75 %

C. Performance

Figure 9 shows the performance of the BSSD-TD-SA model
with C = 3 speakers and real RIRs. From panel (a) it can be
seen that there is a significant amount of reverberation in the
input mixture z(t). Panel (b) and (d) show the extracted and
dereverberated signals of male speakers. Panel (c) shows the
extracted and dereverberated signal of a female speaker.

Fig. 9: Performance plot of the BSSD-TD-SA model with C =
3 speakers and real RIRs. (a) STFT plot of the first microphone
of the input mixture z(t). (b-d) STFT plots of the extracted
and dereverberated speakers yc(t).

D. Model complexity

Table V reports the number of trainable parameters per vari-
ant of the BSSD network. The frequency domain (FD) variants
use mostly complex-valued weights, which are counted as
2 real-valued weights. Hence, these models are significantly
larger than the time domain (TD) variants. The size of the
statistic adaption (SA) layer in the time domain network is
comparatively small with 720,000 parameters. However, the
analytic adaption (AA) layer requires additional convolutions
from Eq. (26). Similar to Conv-TasNet, the time domain
variant also has the advantage of a small step size of 50
samples. The number of parameters for speaker identification
is almost the same for all variants.

XI. CONCLUSION

In this paper, we introduced the Blind Speech Separation
and Dereverberation (BSSD) network, which performs si-
multaneous speaker separation, dereverberation and speaker
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TABLE V: Number of parameters for the beamforming and
identification branches of the BSSD network.

model parameters
beamformer

parameters
identification

BSSD-FD-AA 11,064,384 2,664,100
BSSD-FD-SA 14,757,984 2,664,100
BSSD-TD-AA 5,456,700 2,526,500
BSSD-TD-SA 6,176,700 2,526,500

identification in a single neural network. We proposed four
variants of our system, which operate in frequency-domain and
time-domain, and use analytic adaption and statistic adaption
layers to perform blind speaker separation. We have shown that
100 DOA bases provide enough spatial resolution to separate
up to four speakers. Further, we proposed the block-online
mode to process longer audio recordings, as they occur in
meeting scenarios. In our experiments, we could show that the
BSSD network outperforms similar state-of-the art algorithms
for speaker separation in terms of SI-SDR and WER.
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