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English Abstract The heart is a fascinating and vital organ that has sparked interest

among scholars as early as the antique. Its reliable functionality under drastically varying

circumstances has not ceased to amaze scientists up to this day. Modern computational

power allows unprecedented insights into the electromechanical cardiac functionality, but

the topic remains a challenging field across many engineering disciplines, including mechan-

ics, fluid structure interactions, as well as electrophysiology, despite considerable progress

over the past decade. Still, no matter how sophisticated such high-fidelity models be-

come, correct parameter selection is indispensable when trying to explain phenomena and

pathologies, often encountered in the clinic. The study of parameter selection for said

models also bears significance for academic purposes to better understand how the heart

works.

This thesis builds on works of the past few years, dealing with physiological faithfully

and mathematically sound ways to estimate parameters of existing and well-established

partial differential equations. These equations have shown the ability to model measure-

ments, encountered in simulations, but we also show some examples of models directly

fitted onto real world measurements, such as endocardial electrical measurements during

catheter ablation therapy.

Our underlying model assumption is the anisotropic eikonal equation, which has proven

to be an efficient yet simple enough tool to model the electrical activation throughout the

heart. While the eikonal equation still offers some computational hurdles with respect to

inverse problems, we show how we can facilitate it to fit several of the most important

electrophysiological parameters.

All of the presented methods and their results show that they may provide a good

additional computational tool and guide for decision making of cardiologists in the future.

German Abstract Das Herz ist ein faszinierendes und essenzielles Organ, welches das

Interesse von Wissenschaftlern seit der Antike erweckt hat. Die zuverlässige Funktionswei-

se des Herzmuskels, selbst unter sich stark ändernden Bedingungen, versetzt Forscher noch

heute in Staunen. Modernste Technologien und daran gekoppelte Rechenleistung erlaubt

noch nie dagewesene Einblicke in die elektromechanische Funktionalität des Herzens, stellt

aber hohe Anforderung an diverse mathematische und Ingenieursdisziplinen, einschließlich

Mechanik, Fluid-Struktur-Kopplung und Elektrophysiologie. Doch egal wie präzise und ge-

nau die Lösungsmethoden für die genannten Systeme werden, ihre Parameterschätzung ist

unentbehrlich um auf täglicher Basis diagnostizierte Pathologien zu erklären. Erkentnis-

se über Parameter und deren Zusammenhänge bergen auch hohes Potenzial für weitere

akademische Studien um das Herz besser zu verstehen.

Die vorliegende Arbeit baut auf Publikationen vergangener Jahre auf die sich mit phy-

siologisch getreuen und mathematisch fundierten Methoden zur Parameterschätzung der

im Feld etablierten partiellen Differentialgleichungen beschäftigen. Die genannten Glei-

chungen zeigten die Fähigkeit sowohl simulierte, als auch reale Messungen zu replizieren,

so wie endokardiale, elektrische Messungen während elektrophysiologischer Untersuchun-



gen.

Unsere Modellannahme ist die anisotrope Eikonal Gleichung, welche sich als effizientes

und naturgetreues Werkzeug zur Simulierung der elektrischen Herzaktivität bewiesen hat.

Obwohl die Eikonal Gleichung trotzdem gewisse Herausforderungen an inverse Probleme

stellt, zeigen wir, wie sie effektiv zur Schätzung wichtiger elektrophysiologischer Parameter

genutzt werden kann.

Die hier vorgestellten Methoden und Ergebnisse gewähren einen Einblick in die

Möglichkeiten potenzieller, zukünftiger Werkzeuge der Kardiologen zur Analyse des

Herzens.
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Foreword
The medical discipline of cardiac electrophysiological modeling receives a lot of attention

and funding, and will continue to do so. As an interdisciplinary field, settled somewhere

between mathematical, physiological, chemical, and electrical sciences, it bears a lot of

potential for improvements through cooperations in order to strive to diminish ailments

that have only come to humankind’s attention in the past few decades. These revelations

have been fueled by the rise of computer aided diagnostic medicine, more particularly the

field of cardiology for maladies regarding the heart. Such treatments and diagnostic devices

are being constantly improved and highly benefit from the advances in computational

sciences, bringing them closer to be usable in clinics around the world.

One of the main drawbacks of such interdisciplinary fields is that it requires at least a

basic understand in possibly several fields. In order to better understand the underlying

fundamentals, a few later discussed pioneering translational works already shed light at

multiple aspects in great detail. This thesis starts with introductory knowledge on both

ends (mathematical and physiological) that is aimed to provide a foundational under-

standing of the later used concepts. The ultimate goal of identifying electrophysiological

parameters will then be achieved by proposed methods based on these foundations. In

these later chapters, you will find the collected knowledge and research output of my

colleagues and me over the past four and a half years, along with several conducted exper-

iments that showcase their capabilities. I hope this thesis can, similarly to other works,

act both as a translational study to showcase the origin of physiological models, their

mathematical (approximative) models, and finally how we can use all of this knowledge

and apply it to the inverse problem: Tuning selected parameters of physiological plausible

models to best describe measured cardiac electrical activations. While the work heavily

leans on mathematical concepts, it is also aimed at researchers and interested individuals

of all disciplines, trying to get a head start into the necessary concepts and understandings

to start modeling in cardiac electrophysiology.

I hope you enjoy reading the present work and can find something of interest to you.
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1 Introduction & Motivation

Cardiac related diseases and genetic disorders are among the leading causes of death

in modern developed countries [106]. Yearly, approximately 17.9 million people world-

wide die as a consequence of cardiovascular diseases. This necessitates many studies to

further understand the inner processes of the heart. While it is common to diagnose

heart-related arrhythmias (such as Atrial Fibrillation (AF)) by finding certain shapes and

patterns in the Electrocardiogram (ECG) [38], further insights into the inner workings

of the healthy and pathological heart would benefit endeavors in cardiac related disease

treatment and surgical interventions, as well as drug-development. Research institutes

across the world have already picked up on the importance for personalization of cardiac

models. However, the approaches vary greatly over applications, practical usages and

theoretical foundations. An important foundation for proper personalization of cardiac

models already lies in the underlying assumptions and physics related insights of how

electrical activation spreads throughout the heart. This topic is now commonly referred

to as “Cardiac Electrophysiology”. In order to properly model a heartbeat, it is paramount

to understand its origin and defining physiology. Pioneering works [51, 78], suggest how the

underlying physics can be digitally reproduced using mathematical models. We will shortly

summarize some of the touched concepts in Chapter 3 to show how the emergent electrical

propagation on a macroscopic level is a consequence of many microscopic interactions. An

important property of the emergent behavior is the electrical anisotropy of the tissue as

a consequence of the fiber alignment inside the heart [32], which has a prominent role

both on its mechanical and electrical function. From an electrophysiological viewpoint,

electrical conduction along the fiber direction is generally higher than along cross-fiber

direction [29], but also defines the direction in which the maximum mechanical force will

be exerted.

With these mathematical models, we can try to digitally recreate encountered physical

phenomena (in particular the mentioned electrical activation of the heart in this work) and

compare it with data observed and measured in the real world. A modern term commonly

used in this regard is “digital twinning”, i.e. creating a digital replica called “digital twin”,

that tries to emulate real world processes [35], such as cardiac electrophysiology. While the

forward problem (simulating electrical activation for given electrical parameters) has seen

some serious advances [87, 88, 95], fully automated functional twinning — through inverse

procedures using sparse measurements — is still in its infancy. The desired computational

models/twins of cardiac electrophysiology show high promise not only as clinical research

3
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tools, but also as a modality for assisting diagnoses [3] and treatment planning [98]. The

full clinical utility could be achieved by personalization of the models to a given patient’s

electrophysiology based on non- or minimally invasive acquired routine clinical data, such

as the ECG. In this context, personalization procedures are also required to be sufficiently

fast and automated to be compatible with clinical workflows and time scales.

Meeting such demanding time constraints can be challenging and requires us to strike

a balance between high-fidelity modeling of physical processes and desired performance.

The aforementioned mathematical models, necessary to approximate electrophysiological

behavior in the heart, can be efficiently described in one or multiple Partial Differential

Equation (PDE) formulations. Such PDE models can benefit from modern General Pur-

pose Graphics Processing Unit (GPGPU) architecture to gain unprecedented speedups on

single machine architectures [89, 122].

The main equation considered throughout this work is the anisotropic eikonal equa-

tion, which has been shown to efficiently model cardiac electrical propagation at lower

resolutions than its alternatives, the mono- and bidomain equations [33]. An additional

benefit of the eikonal equation is that we need not solve a parabolic PDE (i.e. in time and

space), but only a first order, albeit non-linear PDE. The non-linearity of the equation

will require several mathematical considerations, all of which are discussed in Chapter 2.

There are however several complicating factors that prevent us from using a single,

simple anisotropic eikonal model to simulate the electrical behavior throughout the whole

heart: From a macroscopic viewpoint, the heart is activated from the sinoatrial node,

located in the Right Atrium (RA) and first propagated through Left Atrium (LA) and

RA, before being slightly delayed at the atrioventricular node. The delayed ventricular

activation then starts from the atrioventricular node rapidly through the His-Purkinje

system (HPS) system, where the right and left bundle activate their respective ventricles.

The tissue itself propagates the electrical activation to the still unexcited tissue, but at

a much slower pace. Figure 1.1 depicts a schematic representation how this propagation

looks like on a cross-section of the heart.

This complicated propagation is usually broken down into several stages, some of

which are coupled between different systems (e.g. ventricular activation and the HPS

propagation). Similarly, we also consider here the different problems in separate methods

that model the different parts of the heart: Section 4.6 focuses on the atrial activation,

while in Sections 4.5 and 4.7, we consider the ventricular activation.

All of these considerations help us in posing the forward problem in an efficient model

that is still true to nature. As indicated by the title of this thesis, this is only an objective

to make ends meet from a computational point of view for the personalization of cardiac

modeling. Having efficient models that can be evaluated in the timeframe of minutes or

less are important when considering the inverse problem of digital twinning. Inverse PDE

problems are often posed as minimization problems given noisy data, which can not be di-

rectly incorporated into Dirichlet boundary conditions in the original PDE formulation as

they inherently may violate the given PDE. In these cases, we need to evaluate the model
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Sinoatrial Node

Atrioventricular Node

Bachmann’s Bundle

His-Purkinje System

Figure 1.1: Schematic representation of the electrical propagation throughout the heart.
The sinoatrial node marks the point of (healthy) electrical initiation, while the atrioven-
tricular node is the pathway to the ventricular activation. In the ventricles, electrical
propagation is mediated through the HPS.

multiple times to iteratively match the model’s output to the mentioned data and mea-

surements in e.g. a least squares sense. In addition this topic is further complicated by the

fact that already the forward problem of solving a PDE often constitutes an optimization

problem.

When approaching the topic of optimization from a practical point of view, i.e. com-

puting the inverse problem for already given PDE solvers, the difficulty of implementing

optimization on top of the existing framework is one of the main factors. This usually

favors derivative-free optimization at a first glance (e.g. evolutionary algorithms), as such

black-box optimization procedures require little to no change to existing software imple-

mentations to be used in optimization. However, they tend to not scale very well with the

number of dimensions/parameters. The problem of exponential growth of the parameter

space is commonly referred to as the curse of dimensionality [14] and while it not only

applies derivative-free optimization, it tends to have a major impact on these optimization

methods [27]. In contrast, first order based methods compute not only the solution of a

method, but also its (sub)gradient w.r.t. a chosen loss function. The gradient holds a lot of

information on the loss function and can be used to represent its linearized approximation

around the current point. It has been shown that gradient based optimization schemes can

often achieve quadratic convergence for convex problems [13, p. 294], whereas evolution-

ary algorithms include a lot of randomness that makes the analysis of their convergence

rate difficult. Gradient based optimization algorithms are therefore arguably among the

most famous methods for Machine Learning (ML)-related optimization [79]. Throughout
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this work, we will employ many first order gradient methods that performed well in all

experiments and were able to minimize a given cost functional (at least locally) to solve

the inverse problem of cardiac electrophysiology.

We consider multiple different methodologies in this thesis, all rooted in similar physio-

logical foundations, to model the problem of cardiac electrophysiology. The methodologies

between the different works vary in several aspects:

• Different domains are considered (e.g. manifolds, Section 4.6.2)

• The formulation of the problem in terms of the anisotropic eikonal equation, or

alternatively its Hamilton–Jacobi formulation (Section 4.7)

• The considered forward model can also rely on ML methods, rather than the tradi-

tional Finite Element Method (FEM) formulation (Section 4.6.3)

All in all, the collected works in this thesis should give a broad overview, how the

problem of cardiac electrophysiology can be, on the one hand, posed as an effective, quickly

solvable model, and, on the other hand, how we can use the model assumption to compute

the gradient w.r.t. a meaningful loss function and subsequently optimize this loss to achieve

a personalized model rooted in real-world physics.

1.1 Structure of the Work

The remainder of the work is organized up as follows: We start in Chapter 2 by defining the

most important used mathematical functions, spaces and their properties, used through-

out this work. The content of this chapter is focused around building a foundational

understanding of all mathematical models involved in this thesis.

Chapter 3 will deal with the physiological phenomena that make up a heart beat: We

describe the chemistry and underlying physiology, first at the level of cells and use the

insights of this research that allows to abstract this model, first into a series of discrete

circuits and later into PDEs. It will explain the chain of how the electrical impulse is

generated from chemical processes at cell level and how these impulses are measured at

ECG level. All of these descriptions are accompanied by mathematical formulations that

we will later rely on.

In Chapter 4, we review already existing works also targeting the inverse problems

in cardiac electrophysiology. We then present a collection of our published methods and

discuss model assumptions together with the results on different experiments either from

generated models (in-silico), or measured in live patients (in-vivo).

Chapter 5 contains some final insights that are the results of the accumulated published

works. These include how the presented works might be further built upon, but also

what the results may mean for the future of personalized healthcare, including remaining

challenges.
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1.2 Discussed Publications

This a list of publications which include me as an author, all of which are discussed or at

least touched in this thesis. The full list of publications is available in Chapter B.

[59] T. Grandits, K. Gillette, A. Neic, J. Bayer, E. Vigmond, T. Pock, and

G. Plank. An inverse Eikonal method for identifying ventricular activa-

tion sequences from epicardial activation maps. Journal of Computational

Physics, 419:109700, October 2020, http://www.sciencedirect.com/science/

article/pii/S0021999120304745

This first work investigated how we can directly use a solver for the anisotropic eikonal

equation and implement custom backpropagation to fit the conduction velocity tensors

and onset timing to an observed activation on a subset of the domain. We then tested

this method called FIMIN for the problem of transmural propagation from epicardial

measurements. Discussed in Section 4.5.

[61] T. Grandits, S. Pezzuto, J. M. Lubrecht, T. Pock, G. Plank, and R. Krause.

PIEMAP: Personalized Inverse Eikonal Model from Cardiac Electro-Anatomical

Maps. In E. Puyol Anton, M. Pop, M. Sermesant, V. Campello, A. Lalande,

K. Lekadir, A. Suinesiaputra, O. Camara, and A. Young, editors, Statistical At-

lases and Computational Models of the Heart. M&Ms and EMIDEC Challenges,

Lecture Notes in Computer Science, pages 76–86, Cham, 2021. Springer Interna-

tional Publishing

[83] J. M. Lubrecht, T. Grandits, A. Gharaviri, U. Schotten, T. Pock, G. Plank,

R. Krause, A. Auricchio, G. Conte, and S. Pezzuto. Automatic reconstruc-

tion of the left atrium activation from sparse intracardiac contact recordings

by inverse estimate of fibre structure and anisotropic conduction in a patient-

specific model. EP Europace, 23(Supplement 1):i63–i70, March 2021, https:

//doi.org/10.1093/europace/euaa392

Modern clinical hardware can generate Electro-Anatomical Maps (EAMs) on the fly during

clinical interventions. In such a scenario, a surface model with sparse measurements is built

that could be used for an inverse algorithm, such as the previously mentioned work [59].

However, the setup is different, as the generated surface model can be represented as a

Riemannian manifold on which we are trying to find both the Local Activation Times

(LATs), conduction velocities and fibers. In [61], we defined an inverse model called

PIEMAP for EAMs, that estimated all of the mentioned quantities at once. We further

http://www.sciencedirect.com/science/article/pii/S0021999120304745
http://www.sciencedirect.com/science/article/pii/S0021999120304745
https://doi.org/10.1093/europace/euaa392
https://doi.org/10.1093/europace/euaa392
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tested this method then on several patient-recorded EAMs, as reported in [83]. Discussed

in Section 4.6.2.

[60] T. Grandits, S. Pezzuto, F. S. Costabal, P. Perdikaris, T. Pock, G. Plank, and

R. Krause. Learning Atrial Fiber Orientations and Conductivity Tensors from

Intracardiac Maps Using Physics-Informed Neural Networks. In D. B. Ennis,

L. E. Perotti, and V. Y. Wang, editors, Functional Imaging and Modeling of the

Heart, Lecture Notes in Computer Science, pages 650–658, Cham, 2021. Springer

International Publishing

A very recent approach to both forward and inverse PDE modeling involves Physics In-

formed Neural Networks (PINNs), which try to estimate the solution of PDEs by learning

an Artificial Neural Network (ANN) mapping from coordinates to the sought quantity.

We build on this technology by applying the inverse methods of [61] and comparing their

quality. Discussed in Section 4.6.3

[58] T. Grandits, A. Effland, T. Pock, R. Krause, G. Plank, and S. Pezzuto.

GEASI: Geodesic-based Earliest Activation Sites Identification in cardiac mod-

els. International Journal for Numerical Methods in Biomedical Engineering

(accepted for publication), February 2021, http://arxiv.org/abs/2102.09962.

arXiv: 2102.09962

The Earliest Activation Sites (EASs) of the eikonal equation (points of electrical initi-

ation inside the heart) are not trivial to find using classical optimization schemes. In

this work, we investigate how we can reformulate the problem to arrive at a formulation

which is continuous w.r.t. the EASs. The resulting method, called GEASI, is discussed in

Section 4.7.

http://arxiv.org/abs/2102.09962


2 Mathematical Preliminaries
[. . .], but in fact mathematicians are like theologians: we regard existence as the

prime attribute of what we study. But unlike theologians, we need not always rely

upon faith alone. (Lawrence C. Evans [49])

Contents
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2.7 Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Partial Differential Equations (PDEs) . . . . . . . . . . . . . . . 23

2.9 Finite Element Method (FEM) . . . . . . . . . . . . . . . . . . . 29

2.10 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

This chapter introduces all of the necessary mathematical preliminaries, needed through-

out the whole thesis. As the different works rely on different fields of mathematics, this

chapter encompasses the combined needed theories, still irrespective of the underlying

physics which will be discussed in Chapter 3.

2.1 Notation

The discrete set of integers betweens 1 and N is given by JNK := {1, . . . , N}.
The notation |·| has multiple meanings depending on the context:

• |x| , x ∈ R denotes the absolute value of x

• For a finite countable set, e.g. JNK, |N | defines the cardinality of said set

• Finally, for continuous domains Ω ⊂ Rn, |Ω| =
∫

Ω 1 denotes the size of the domain

through means of the Lebesgue measure.

Similarly, δ holds multiple meanings in this thesis according to the context:

9
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• δC(x) for a (convex) set C denotes the indicator function, i.e. δC(x) =

{
0 if x ∈ C
1 else

• δi,j for two integers, i, j ∈ N denotes the Kronecker-delta, i.e. δi,j =

{
1 if i = j

0 else

• In the context of geodesics, for two points on a domain x,y ∈ Ω ⊂ Rn, δ(x,y) is

used to describe the geodesic distance between x and y.

The notation xi refers to the i-th scalar entry of a vector x ∈ Rn, whereas Ai,j for

1 ≤ i ≤ n, 1 ≤ j ≤ m and a matrix A ∈ Rn×m denotes the scalar entry at the i-th row

and j-th column.

The partial derivatives of a function u : C1(Rn,R) are sometimes denoted as ux1
:=

∂u(x)
∂x1

. A dot over a function (e.g. u̇) signals the derivative w.r.t. a time variable t,

i.e. u̇ := ∂u(t)
∂t = ut, and similarly for vectors u̇ = (∂u1

∂t , . . . ,
∂un
∂t )>. Furthermore, the

most commonly used partial derivatives of order 1 and 2, used throughout this work, are

the gradient ∇u(x) =
(
∂u(x)
∂x1

, . . . ∂u(x)
∂xn

)>
and the Hessian matrix

∇2u(x) :=



ux1,x1 . . . ux1,xn

. . .

uxn,x1 . . . uxn,xn


 ,

respectively. This definition are special cases of the multi-index definition ∇α of partial

derivatives found in [49, p. 701]: α = (α1, . . . , αn), |α| =
∑

i αi, for each αi being a

nonnegative integer, such that

∇αf(x) :=
∂|α|f(x)

∂xα1
1 . . . ∂xαnn

.

Note that the Hessian is not to be confused with the Laplacian, i.e. ∇2u(x) 6= ∆u(x) =

∇ · ∇u(x). The Jacobi matrix of a mapping u : Rn ⊃ U → Rm w.r.t. parameters x is

given by (Jx,u)i,j = ∂ui(x)
∂xj

. In the case of real values functions, i.e. u : U → R, the Jacobi

matrix is equal to the transposed gradient Jx,u = ∇xu
>.

Additionally, for two functions f and g, we say that f = o(g) as x → x0, iff

limx→x0

|f(x)|
|g(x)| = 0. Similarly, f(x) = O(g(x)) if lim supx→x0

|f(x)|
g(x) <∞.

2.2 Functional Analysis

Throughout this thesis, we usually assume the underlying space of functions to be a real-

numbered inner product space, with the following properties [34]:

Definition 2.1 (Inner Product Space). Let V be a vector space over R. Then the inner

product v : V× V→ R is a function defined such that for every α, β ∈ R and x,y, z ∈ V,
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the following conditions hold:

(a) v(αx+βy, z) = αv(x, z)+βv(y, z) (which implies v(0,y) = v(0x,y) = 0v(x,y) = 0)

(b) v(x,x) ≥ 0

(c) v(x,y) = v(y,x)

(d) v(x,x) = 0⇔ x = 0

The inner product in this thesis will always be denoted as one of the following v(x,y) =

〈x,y〉 = x>y = x · y. From this definition of the inner product, we can immediately

conclude the definition of (induced) norms ||x|| =
√
〈x,x〉 where for x,y ∈ V the following

holds:

(a) ||x + y|| ≤ ||x||+ ||y|| for x,y ∈ V (Triangle inequality)

(b) ||αx|| = |α| ||x|| for α ∈ R and x ∈ V (Homogeneity)

(c) ||x|| = 0⇔ x = 0 (Definiteness)

We will most commonly use the p-norms throughout this work (x ∈ Rn), defined as

||x||p := (|xi|p)1/p , (2.1)

with the particularly important cases

• ||x||1 =
∑n

i=1 |xi|
• ||x||∞ = maxi=1,...,n |xi|.

Definition 2.2 (Dual Norms). Consider a norm ||·|| on Rn. The associated dual norm

||·||∗ is given by

||y||∗ := sup
x
{〈x,y〉 | ||x|| ≤ 1} . (2.2)

Note that for p ≥ 1, the dual norm of ||·||p is given by ||·||p,∗ = ||·||q for 1
p + 1

q = 1 [13].

An inner product space is said to be a Hilbert space, if it is complete, i.e. every Cauchy

sequence in V converges to an element of V [125]. We define the L2 space as the space of

square integrable functions

||f || =
(∫
|f |2 dx

)1/2

<∞ (2.3)

2.3 Matrices & Metrics

Consider the real square matrix A ∈ Rn×n. rank(A) is equal to its number of linearly

independent rows. The vectors vi ∈ Cn \ {0} are called eigenvectors, if there exists

σi ∈ C, such that:

Avi = σivi (2.4)
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In this case, σi is called the eigenvalue associated to the corresponding eigenvector vi. For

A ∈ Rn×n there exist exactly n eigenvalues and eigenvectors. Note that if A is symmetric,

we can additionally prove orthogonality of the eigenvectors (〈vi,vj〉 = 0) and that all

eigenvalues are real for matrices of full rank (rank(A) = n) with n distinct eigenvalues,

i.e. A> = A ⇒ σi ∈ R. Consider the two distinct eigenvectors vi and vj of A with the

associated eigenvalues of σi and σj respectively:

〈Avi,vj〉 =
〈
vi, A

>vj

〉
= 〈vi, Avj〉

σi 〈vi,vj〉 = σj 〈vi,vj〉
(σi − σj) 〈vi,vj〉 = 0

which, if we assume σi 6= σj , is only the case for 〈vi,vj〉 = 0.

Avi = σivi

〈Avi, Avi〉 = v∗iA
>Avi = σ2

i ||vi||2

σ2
i =
〈Avi, Avi〉
||vi||2

,

which is a real positive number as the norm on complex numbers vi ∈ Cn is given by

||vi|| =
√

v∗i vi =

√
∑

j

∣∣∣(vi)j
∣∣∣
2

. If A is symmetric therefore, it can then be expressed in

terms of its eigendecomposition as:

A =


v1 v2 . . . vn




︸ ︷︷ ︸
U

diag (σ1, . . . , σn)︸ ︷︷ ︸
Σ




v1

v2

...

vn




︸ ︷︷ ︸
U>

(2.5)

A special case of square matrices, heavily used later on, are symmetric positive definite

matrices A ∈ Sn++ ⊂ Rn×n, defined as:

Sn++ =
{
A |A = A> ∧ x>Ax > 0,∀x ∈ Rn \ {0}

}
, (2.6)

and similarly, the set of symmetric positive semi-definite matrices

S̄n++ =
{
A |A = A> ∧ x>Ax ≥ 0,∀x ∈ Rn \ {0}

}
. (2.7)
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We can express (2.6) in terms of the eigenvalues shown in (2.5):

x>Ax = x>UΣU>x︸︷︷︸
x̃

= x̃>Σx̃ =
n∑

i=1

σix̃
2
i > 0,

(2.8)

since Σ is a diagonal matrix. From (2.8) we can see that A ∈ Sn++ iff all eigenvalues of A

are strictly positive, i.e. Σ is a strictly positive diagonal matrix.

This special class of matrices can be used to induce a new metric in a vector space:

〈x,x〉A = x>Ax ≥ 0

||x||A =
√
〈x,x〉A ≥ 0

(2.9)

which complies with all introduced conditions for a vector space in Section 2.2. A common

representation, also found later in this work, is the ellipsoid visualizing the level line

||x||D = 1, like can be seen in Figure 2.1. This ellipsoid can also be interpreted as being

spanned by its eigenvalues in the directions of the eigenvectors. Note that the dual norm

||·||A,∗ is the norm in the inverse metric ||·||A−1 .

Figure 2.1: Common representation of a tensor D ∈ S3
++. The ellipsoid represents the

contour line that satisfies ||x||D = 1, while the arrows show the eigenvectors scaled with
their respective eigenvalue.

2.4 Continuous Functions

Before we consider non-continuous functions and their properties, we shortly review the

definition of continuous and continuously differentiable functions. Many of the defini-

tions are given for functions f : Rn → R, as it is the most considered class of functions

throughout this thesis. The class of continuous functions is given through the definition

Definition 2.3 (Continuous Functions [36]). We call a function f : U → R continuous

(f ∈ C0) if the limit

lim
x→ξ

f(x)
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exists and coincides with f(ξ) for all points ξ ∈ U .

Using Definition 2.3, we can define a function to be continuously differentiable f ∈ C1,

if all of its partial derivatives ∂f
∂xi

exist and are continuous. Similarly, we can define k-times

continuously differentiable functions f ∈ Ck as functions for which all partial derivatives

of up to order k exist and are continuous. In general, it holds that Ck ⊂ Cn for n > k.

Throughout this work, Ck(Rn, R) denotes the space of k times continuously differentiable

functions f : Rn → R.

2.5 Non-continuous Functions

Continuous and continuously differentiable functions are very important to consider, but

later introduced problems, such as the eikonal equation, require weaker definitions of

continuity. We start by defining semi-continuous functions [43] using the upper and lower

semi-continuous envelopes:

{
u∗(x) = lim supr→0 {u(y) : y ∈ U, ||y − x|| ≤ r}
u∗(x) = lim infr→0 {u(y) : y ∈ U, ||y − x|| ≤ r}

(2.10)

Definition 2.4. A function u is called upper semi-continuous if u = u∗ and lower

semi-continuous if u = u∗. If a function is simultaneously both upper- and lower semi-

continuous, it is also continuous and vice versa.

This definition of semi-continuity can be used to define sub- and superdifferentials:

Definition 2.5. The set of super- and subdifferentials (∇+u and ∇−u respectively) at a

point x ∈ U are defined as




∇+u(x) :=

{
p ∈ Rn : lim supy→x

u(y)−u(x)−〈p,y−x〉
||y−x|| ≤ 0

}

∇−u(x) :=
{

p ∈ Rn : lim infy→x
u(y)−u(x)−〈p,y−x〉

||y−x|| ≥ 0
} (2.11)

In more colloquial terms, we say that the superdifferentials ∇+u(x) is the set of sup-

porting hyperplanes above a function at x. ∇−u(x) similarly is the set of supporting

hyperplanes below the function at x. In regions of continuous differentiability, it holds

that ∇+u(x) = ∇−u(x) = {∇u(x)}, i.e. both super- and subdifferential are well defined

and equal to the unique gradient.

Remark 2.1. Definition 2.5 defines super- and subdifferentials only locally around points

as the supporting hyperplanes above and below the functions respectively. Later formu-

lations in Section 2.10 require the supporting hyperplane to bound the function from

above/below on the whole domain x ∈ U (see [102]), which we will denote with ∂. We
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only consider the locally supporting hyperplanes for now, as we later need them to define

viscosity solutions in Section 2.8.1.

Example 2.1. [The ||·||1 Cone] Consider the l1-norm cone in 2D (x ∈ R2), given by

f(x) = ||x||1 = |x1| + |x2|. f is continuously differentiable on the whole domain except

for x1 = 0 ∨ x2 = 0 (i.e. almost everywhere). For the absolute function |x| we can define

the subdifferential at x = 0 according to (2.11) as

∇− |x| = sgn(x) =





1 if x > 0

−1 if x < 0

[−1, 1] else

This allows us then to define the subdifferential ∇−f as:

∇−f(x) =

{(
p1 ∈ sgn(x1)

p2 ∈ sgn(x2)

)}

�

For functions that are not continuously differentiable everywhere, we can introduce a

weaker definition of continuity: Lipschitz continuous functions are themselves continuous,

but not continuously differentiable [19]. The space of Lipschitz continuous functions is a

special case of the more general Hölder spaces:

Definition 2.6. Ck,α is the space of k times differentiable functions (called Hölder space)

for which the norm

||f ||Ck,α = ||f ||Ck + max
|β|=k

∣∣∣∇βf
∣∣∣
C0,α

is finite. ||f ||C0,α is defined as

||f ||C0,α = sup
x 6=y∈Ω2

|f(x)− f(y)|
||x− y||α .

In particular, the space C0,1 fulfilling

||f(x)− f(y)|| ≤ L̄ ||x− y||

is called the space of Lipschitz continuous functions. We refer to the constant L̄ as the

Lipschitz constant of the function f .

In this context, it is often helpful to extend our concept of classical derivatives with

weak derivatives.
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Definition 2.7 (Weak Derivatives [1]). Let u be in the space of locally integrable functions

L1
loc(Ω) for Ω ⊂ Rn. ∇αu = vα is then the α-th weak derivative of u if it satisfies

∫

Ω
u(x)∇αφ(x) dx = (−1)|α|

∫

Ω
vα(x)φ(x) dx,

for φ ∈ C∞(Ω) with compact support in Ω. If such a vα exists, it is unique up to sets of

Lebesgue measure zero.

We continue by also introducing Sobolev norms,

Definition 2.8 (Sobolev Norm [1]). The Sobolev norm is defined as the functional ||·||m,p,
for m being a positive integer and 1 ≤ p <∞, as

||f ||m,p =


∑

|α|≤k

∫

Ω
|∇αf(x)|p dx




1/p

.

With the help of Definitions 2.7 and 2.8, we can define the Sobolev space Wm,p.

Definition 2.9 (Sobolev Space). We call the space Wm,p

Wm,p(Ω) = {f ∈ Lp(Ω) : ∇αf ∈ Lp(Ω) for 0 ≤ |α| ≤ m} , (2.12)

a Sobolev space where ∇α is the weak partial derivative according to Definition 2.7.

Throughout this thesis, we will only look at the space Wm,2. Colloquially, we say f

is differentiable almost everywhere, i.e. regions with non-continuous gradients have zero

Lebesgue measure. Note that Wm,2 has been shown to be equal to the Hilbert space

Hm [1].

2.6 Ordinary Differential Equations

This work will only shortly focus on Ordinary Differential Equations (ODEs), which is

why we only introduce the most important definition and properties. All of the introduced

concepts of this section are based on and described in much more detail in [28].

Definition 2.10. Consider a time-interval I ⊂ R and the domain of our time-evolving

state variables x ∈ U ⊂ Rn, together with a continuous function f ∈ C0(I × U,Rn). A

system of ODEs can then be written in its general form as

ẋ = f(t,x) (2.13)

where t ∈ I.
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As we will later see in Section 3.1, such ODEs are commonly encountered in many

biological processes, describing the behavior of such a system over time.

Example 2.2. [Population Growth] Consider the growth of a population x ∈ R with a

growth factor r ∈ R, limited by the availability of resources to size k ∈ R. This problem

can be formulated using the model

ẋ =
dx

dt
= rx

(
1− x

k

)

This equation, though seemingly simple at first, can model many phenomena, such as

modern human population growth, or also the uncontrolled spread of infections during a

pandemic. We can solve the above ODE using separation of variables to explicitly express

x(t):

r dt =
(
x
(

1− x

k

))−1
dx =

(
x−1 + k−1

(
1− x

k

)−1
)

dx

rt = ln(x)− ln
(
k
(

1− x

k

))
+ c1

c exp(rt) =
x

k
(
1− x

k

)

x =
k

1 +
(
k−x0
x0

)
exp(−rt)

where x(0) = x0 denotes the initial value. If we choose r = k = 1 and x0 = 0.5, we will

end up with the well known C∞ sigmoid function

x(t) =
1

1 + exp(−t) , (2.14)

visualized in Figure 2.2, which is commonly encountered in many later considered ML

applications [60, 100, 109]. �

For the assumptions made in Definition 2.10, we can also define existence and unique-

ness of a solution that smoothly depends on our choice of initial values in the case f ∈ C0,1.

The proof requires us first to define successive approximations to (2.13), given by the re-

cursive formulas

φ0(t) = x0

φk+1(t) = x0 +
∫ t
t0
f(s, φk(s)) ds (k = 0, 1, 2, . . . ; |t− t0| ≤ α),

for the initial times and values, t0 and x0 ∈ U respectively.

Theorem 2.1 (Picard–Lindelöf [31]). Consider a function f ∈ C0,1([t0, t]× U,Rn), used

in the initial value problem (2.13), which is Lipschitz in the second argument. Then the
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Figure 2.2: The sigmoid function, given by (2.14) is commonly encountered in many ML
applications.

successive approximations φk exist on |t− t0| ≤ α as continuous functions and converge

uniformly on this interval to the unique solution φ of (2.13) such that φ(t0) = x0.

In many practical applications we rely on numerical solutions of (2.13), with an ar-

guably prominent example being the explicit forward explicit Euler scheme given by [20]:

{
xi+1 = xi + hf(ti,xi)

ti+1 = ti + h
(2.15)

for a small enough step size h > 0. Note that if we assume f(ti,xi) = −∇xg(xi) to be

the negative gradient of a function, Equation (2.15) will yield the famous gradient descent

scheme, employed in many optimization methods.

The forward Euler scheme is actually a special case of Runge–Kutta methods which

can be more generally formulated using Butcher tableaus [20]. In general, Runge–Kutta

methods enable the formulation of higher order solution steps that consequently decrease

the order of the resulting approximation error. We later use the second order explicit

midpoint scheme in Section 4.7, which is given by:

{
xi+1 = xi + hf(ti + h

2 ,xi + h
2f(ti,xi))

ti+1 = ti + h
(2.16)

2.7 Differential Geometry

Differential geometry (and its extension, Riemannian geometry) is a vast field of research

that can not be hoped to be captured in a small section. We will later use concepts of

differential geometry in multiple areas of this work, especially in Sections 4.6.2 and 4.7.

The short introduction of used concepts are a very compact representation of thorough

explanations and definitions found in the works [24, 81, 91], where the definition of all
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concepts mostly follow [24]. Note that differentiability in this section refers to the class

C∞.

Definition 2.11 (Differentiable Manifold [24]). A differentiable manifold of dimension n

is a set M and a family of injective mappings xα : Rn ⊃ Uα →M such that:

1.
⋃
α xα(Uα) = M

2. For any pair α, β with xα(Uα) ∩ xβ(Uβ) = W , the sets x−1
α (W ) and x−1

β (W ) are

open sets in Rn and the mappings x−1
β ◦ xα are differentiable

3. The family {(Uα,xα)} is maximal relative to the conditions 1 and 2

We call the pair (Uα,xα) with p ∈ xα(Uα) a parameterization of M at p. xα is sometimes

referred as the mapping.

A visual representation of Definition 2.11 can be found in Figure 2.3. An important

Figure 2.3: Visualization of the definition of a differentiable manifold, in accordance with
Definition 2.11. The manifold is formed by the union of multiple differentiable mappings,
between which we can change smoothly on W . Similar to [24, p. 3]

concept that we will use in many instances is the tangent space TpM , associated to the

manifold M at point p ∈ M . For this purpose, we start by considering a differentiable

curve α : (−ε, ε)→ Rn with α(0) = p, given by

α(t) = (x1(t), . . . , xn(t)), t ∈ (−ε, ε), (x1, . . . , xn) ∈ Rn,

and define the initial direction as v = ∂α
∂t (0). When additionally considering a differen-

tiable function f , defined in a neighborhood of p, we can restrict f to the curve α and
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express the directional derivative with respect to v ∈ Rn as:

∂(f ◦ α)

∂t

∣∣∣∣
t=0

=

〈
∇xf,

∂α

∂t

〉∣∣∣∣
t=0

=

(
n∑

i=1

∂xi
∂t

(0)
∂

∂xi

)
f. (2.17)

Note that from the above equation we can see that the directional derivative with respect

to v is an operator on differentiable functions that depends uniquely on v. This is an

important property for defining tangent vectors on manifolds:

Definition 2.12 (Tangent Vectors & Spaces). Consider a differentiable manifold M with

a differentiable curve on it α : (−ε, ε) → M . For α(0) = p ∈ M and D being the set of

functions differentiable functions at p, the tangent vector to the curve α at t = 0 is given

by the function ∂α
∂t (0) : D → R, for which

∂α

∂t
(0)f =

∂ (f ◦ α)

∂t

∣∣∣∣
t=0

, f ∈ D

A tangent vector at p is therefore a tangent vector at t = 0 for some curve α : (−ε, ε)→M

for α(0) = p. The set of all tangent vectors of M at p is called the tangent space, indicated

by TpM .

Combining Definition 2.12 and (2.17), we can express the tangent vector at p as

∂α

∂t
(0) =

n∑

i=1

∂xi
∂t

(0)

(
∂

∂xi

)

0

. (2.18)

We can see from (2.18) that
(

∂
∂xi

)
0

is the tangent vector at p of the chosen curve. An-

other important consequence is that TpM forms a vector space of dimension n with the

associated basis {(
∂

∂x1

)

0

, . . . ,

(
∂

∂xn

)

0

}
, (2.19)

depending on the parameterization x : U →M , hence the name tangent space. We again

present a visualization of the concept in Figure 2.4

Definition 2.13 (Riemannian Metrics and Manifolds [24, 91]). A Riemannian metric on

a differentiable manifold M (Definition 2.11) is a correspondence which smoothly assigns

to each point p ∈ M an inner product 〈·, ·〉g on the tangent space TpM . A differentiable

manifold with a given Riemannian metric is called a Riemannian manifold.

Note that the Definition 2.13 requires g ∈ Sn++ to be a symmetric positive tensor

(Section 2.3), where its coefficients in a local parameterization are given as

gi,j = 〈∂i, ∂j〉 (1 ≤ i, j ≤ n) (2.20)
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Figure 2.4: Visual representation of a tangent space on M . The two axis aligned curves,
intersecting at q are mapped to M via x. ∂

∂x1
and ∂

∂x2
lie in the tangent space at x(q).

Similar to [24, p. 8]

While we already introduced differentiable curves on manifolds that we later need

for the theory of geodesics, we will instead rely on the equivalent, but slightly different

Hamilton–Jacobi formulation in Section 2.8 to define geodesics. There is however one

concept, also later exploited, that relies on differential geometry: The exponential map

and its inverse, the logarithmic map.

Definition 2.14 (Exponential & logarithmic map). Consider a (uniquely defined) geodesic

γpV : R ⊃ I → M starting at a point p ∈ M (t = 0) and initially moving in the direction

V ∈ TpM . In a neighborhood U ⊂ TpM , the exponential map expp : V →M given by

expp(V ) = γpV (1)

is well defined. Conversely, its inverse, the logarithmic map, is given by logp : M → V .

Computing exponential and logarithmic maps can be a challenging task, as potentially

it could require the computation of all geodesics on discrete meshes. In [113] however,

a method is given to efficiently compute said logarithmic map on manifolds by means of

parallel transportation of vectors using the Levi–Civita connection (not presented here).

We will conclude this section with a simple example demonstrating all of the introduced

concepts:

Example 2.3. [Hills and Valleys] Consider the 2-dimensional submanifold embedded into

M ⊂ R3 given by the local parameterization f : R2 ⊃ Ω→M :

f(ξ, η) =
(
ξ, η, − cos 2ξ + 2 sin η

)>

for Ω = [0, 11]2. The inverse mapping is simply given by f−1(x, y, z) = (x, y)>, so we can

see that f is a bijective mapping. The Jacobi matrix for the local parameterization f is
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given by

Jf,(ξ,η) =




1 0

0 1

2 sin 2ξ 2 cos η




where ∇ξf = (1, 0, 2 sin 2ξ)> ∈ Tf(·,ξ)M and ∇ηf = (0, 1, 2 cos η)> ∈ Tf(η,·)M are two

orthogonal tangent space directions. The Riemannian metric for this manifold — inducing

the inner-product on the manifold 〈·, ·〉g in its parametric ξ, η space — is given by g(x) =

J>f,xJf,x:

g (ξ, η) =

(
1 + 4 sin2 2ξ 4 sin 2ξ cos η

4 sin 2ξ cos η 1 + 4 cos2 η

)

The induced inner-product gives us access to measuring lengths on the manifold using the

induced norm ||·||g(ξ,η).

Consider now two curves γ1 : [0, 1] → Ω and γ2 : [0, 1] → M , such that they are

assumed “equal” in their opposite mapping, i.e.

∀t1 ∈ [0, 1] ∃t2 ∈ [0, 1] : f(γ1(t1)) = γ2(t2)

∀t2 ∈ [0, 1] ∃t1 ∈ [0, 1] : γ1(t1) = f−1(γ2(t2))

Through the Riemannian metric, we know that ||γ̇1(t1)||g(γ1(t1)) = ||γ̇2(t2)|| for t1 and t2
according to the above equation. Assume now additionally that γ2 is the geodesic path

between two points p0 = γ2(0) and p1 = γ2(1). The geodesic distance δ(p0,p1) can then

be expressed in the local parameterization as:

δ(p0,p1) =

∫ 1

0
||γ̇2(t2)||dt =

∫ 1

0
||γ̇1(t1)||g(γ1(t1)) dt

Inversely, for φ(ξ, η) := δ(p0, f(ξ, η)), the PDE

||∇φ||g−1 = 1 in Ω

is satisfied almost everywhere. Figure 2.5 shows the geodesic path in both the 2D domain

Ω and on the 3D manifold M .

�

Remark 2.2. Example 2.3 already foreshadows the strong links between the anisotropic

eikonal equation and Riemannian manifold theory. This fact will later be used in Sec-

tion 4.7 to introduce an inverse method that uses theorems of Riemannian geometry. Note

however that in all methods, there is no specification of a possible underlying manifold in

Rn+1 dimensions and instead we only rely on the knowledge the Riemannian metric tensor

D(p) := g−1(p).
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Figure 2.5: Visualization of the manifold example in Example 2.3. The left figure shows
how the induced Riemannian metric allows us to view the problem as a simple 2D plane
with an induced norm, representing an anisotropic and heterogeneous velocity, whereas
the right figure shows the actual underlying Riemannian manifold on which all paths and
distances are Euclidean.

2.8 Partial Differential Equations (PDEs)

This section will shortly introduce the notion of PDEs and heavily relies on the definitions

and notations from [49] for this purpose. We will however only consider PDEs of order up

to 2, as higher order PDEs are not considered in the proposed methods.

Definition 2.15. Considering an open subset U ⊂ Rn, the expression

F (∇2u(x),∇u(x), u(x),x) = 0 x ∈ U, (2.21)

for a function F : Rn×n × Rn × R × U → R is a general formulation of a second-order

partial differential equation, where u : U → R is the unknown.

Note that first order PDEs are just a special case of this definition for a proper choice

of F . A special subclass of such PDEs are called linear in case they can be written as

〈
a2(x),∇2u(x)a3(x)

〉
+ 〈a1(x),∇u(x)〉+ b(x)u(x) = f(x),

for given functions ai : U → Rn for i ∈ {1, 2, 3} and b : U → R.

A PDE problem, as per Definition 2.15 is well-posed if the problem has a unique
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solution that continuously depends on the data given by the boundary conditions. We call

solutions to (2.21) that are (for our definition) once or twice continuously differentiable

(equal to the order of the problem) classical solutions to the problem.

In particular, we will later consider Poisson’s equation

{
∆u = f in U

u = g on ∂U
(2.22)

for f : U → R, ∆u =
∑

i∈JnK
∂2u
∂x2
i

and a given boundary function g : ∂U → R. We know

that in the case g ∈ C(∂U,R), there exists at most one solution u ∈ C2(U,R) ∩ C(U,R)

of the boundary value problem [49, Chapter 2, p. 28]. Note that under certain regularity

conditions, we could additionally show that u ∈ C∞ [49, p. 28].

2.8.1 The Eikonal Equation

The other heavily employed PDE throughout this work is the anisotropic eikonal equation,

a first order non-linear PDE given by:

{
||∇u||D =

√
〈D∇u,∇u〉 = 1 in U

u = g on Γ ⊂ ∂U
(2.23)

for a boundary function g : ∂U ⊃ Γ → R and a norm-inducing metric D ∈ Sn++. The

solution of (2.23) can be intuitively interpreted as calculating the time it takes to travel

through a medium with heterogeneous, anisotropic velocity D to each point in U from the

prescribed boundary Γ. Studying and solving (2.23) in a classical sense is in practice not

feasible for many examples though:

Example 2.4. Consider the 1D-problem U = [−1, 1], ||∇u|| − 1 = |ux| − 1 = F (∇u) with

the boundary conditions u(−1) = u(1) = 0. This problem allows infinitely many piecewise

linear, weakly differentiable solutions, however no solution in the classical sense can be

found for this problem. �

We can see that for the problem in Example 2.4, we can find no solutions in the classical

sense to (2.23). It is still important to study problems of this kind, which is why we need

to introduce the more permissive notion of generalized/weak solutions:

Theorem 2.2 (Generalized/Weak solutions). A weak solution u of (2.21) is Lipschitz

continuous (u ∈ C0,1(U)) on the closure U , assumes the prescribed boundary values at ∂U

and satisfies (2.21) almost everywhere.

Note that the strong similarity between Theorem 2.2 and Definition 2.7 shows that

the presented Theorem could also be expressed using weak derivatives. With this new

definition, we can now find weak solutions of our previous example:
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Figure 2.6: Three different functions u1 through u3 that are weak solutions of Example 2.4.

Example 2.4. [cont.] Consider now the three functions u1(x) = |x| − 1, u2(x) = 1− |x|
and

u3(x) =





x− 1 if x < −0.5

−x if |x| < 0.5

x− 1 else

visualized in Figure 2.6. Clearly all three of these function are weak solutions to the

considered problem, meaning they satisfy |ux|− 1 in all but singular points (almost every-

where).

We presented several weak solutions to the problem, but it is immediately obvious

this notion of solution is too weak and non-unique for the problem at hand. The desired

special class of solutions we are interested in are called viscosity solutions, a subclass of

weak solutions [19, Chapter 3], [43]. We will use here the super-/subdifferentials ∇±u(x)

again (see Definition 2.5):

Definition 2.16. A function u ∈ C0,1(U) is a first order only viscosity subsolution

of (2.21) if

F (p, u(x),x) ≤ 0 ∀x ∈ U,p ∈ ∇+u(x) (2.24)

and similarly, a viscosity supersolution can be defined as

F (p, u(x),x) ≥ 0 ∀x ∈ U,p ∈ ∇−u(x) (2.25)

We then say that u is a viscosity solution if both (2.24) and (2.25) hold, i.e. u is both

a viscosity sub- and supersolution.
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With the notion of viscosity solutions, we can revisit Example 2.4 (again):

Example 2.4. [cont.] We test now u1 through u3 to see if they are in fact viscosity

solutions. In fact, we only need to test the non-differentiable points, since {∇} = ∇+ = ∇−
for points where the continuous derivative exists. We can see that∇−u3(0.5) = ∇−u2(0) =

[−1, 1], for which both F (0 ∈ ∇−u2(0), u, 0) = |0| − 1 � 0 and F (0 ∈ ∇−u3(0.5), u, 0.5) =

|0| − 1 � 0 violate the viscosity supersolution condition. In contrast ∇−u1(0) = ∅ and

∇+u1(0) = [−1, 1], which satisfies F (p ∈ ∇+u2(0), u, 0) ≤ 0. Hence u1 is the sought

viscosity solution to our problem.

Non-differentiability of the eikonal solution will also later appear in Chapter 4, similar

to Example 2.4. We often refer to these areas of non-differentiability as front-collisions. In

more mathematical terms, this simply refers to areas that are equidistant to the boundary

according to the distance measure D, induced on the domain U . From here on out, every

time we refer to an eikonal solution, we in fact refer to the viscosity solution of the problem.
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Figure 2.7: Method of vanishing viscosity, from which the name viscosity solutions origi-
nates, for the problem presented in Example 2.4. Instead of directly solving |ux| − 1 = 0,
we solve u2

x − 1 = εuxx. As ε→ 0, we converge to the desired viscosity solution.

Remark 2.3. An alternative approach to introduce these solutions is by considering the

original problem, coupled with a vanishing viscosity term F (∇u(x), u(x),x) = −ε∆u(x)

[49]. As the viscosity vanishes (ε → 0), we also arrive at the solution u1 to the problem,

hence the name “viscosity solution”. The solutions of Example 2.4 using this method as

ε→ 0 can be seen in Figure 2.7.

We now consider a popular initial-value problem called the Hamilton–Jacobi equation:

ut +H(∇u) = 0 in Rn × (0,∞)

u = g on Rn × {t = 0} (2.26)



2.8. Partial Differential Equations (PDEs) 27

With u : Rn × [0,∞) being the unknown again u = u(x, t) and ∇u = ∇xu. H : Rn → R
being the Hamiltonian and for a given initial function g : Rn → R. Using a change of

variable ∇u = p, the associated characteristic equation to (2.26) then becomes

{
ẋ = ∇pH(p,x)

ṗ = −∇xH(p,x).
(2.27)

Additionally, we introduce the corresponding Lagrangian function L : Rn × Rn → R
L = L(γ̇(t), γ(t)) = L(v,x), which in the case of the eikonal equation becomes

L(v,x) = ||v||D−1(x) . (2.28)

Using this definition, we can define the length of an arbitrary curve over time [0, T ] for

T > 0 as:

L(γ) :=

∫ T

0
L(γ̇(t), γ(t)) dt. (2.29)

Most commonly, we are interested in fixed curves starting from x ∈ Rn at time t = 0

and ending in y ∈ Rn at t = T . The set of admissible curves fulfilling this criterion can

described by the set:

A :=
{
γ ∈ C0,1([0, t];Rn)|γ(0) = x, γ(t) = y

}
.

This admits the notion of length-minimizing paths γ̂, called geodesics:

γ̂ = arg min
γ∈A

L(γ). (2.30)

The associated length of the geodesic path δ(x,y) := L(γ̂) is called geodesic distance.

These geodesics in our induced metric D have several interesting properties:

• They solve the Euler–Lagrange system of equations for all times t ∈ [0, T ], given by

− ∂

∂t
∇vL(v(t), γ̂(t)) +∇γ̂L(v(t), γ̂(t)) = 0 (2.31)

• Under the assumption that D ∈ C1(Rn, Sn++), the distance δ also ensures the prop-

erties of a norm introduced in Section 2.2, most importantly the triangle inequality

(δ(x, z) ≤ δ(x,y) + δ(y, z)).

• Curves γ that solve the Euler–Lagrange system of equations, but are no minimizers

of (2.30) are sometimes called critical points.

2.8.2 Discretization

Up until now, we considered that a classical or viscosity solution for a given PDE in (2.21)

can be found analytically. Many practical applications however require that we find an
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approximative solution to the problem for any given domain, especially in use-cases where

the domains originate from real world measurements and objects (e.g. 3D scans, structural

analysis, machine designs). In this scenario, it is infeasible to construct analytical solutions

for each of these cases.

For this purpose, we revisit a commonly encountered definition of the directional

derivative of f : Rn → R in direction v ∈ Rn:

〈∇f(x),v〉 = lim
h→0

f(x + hv)− f(x)

h
(2.32)

From (2.32), we can see that a straight-forward approximation of 〈∇f(x),v〉 f can be

achieved by computing

〈∇f(x),v〉 =
f(x + hv)− f(x)

h
+O(h) ≈ f(x + hv)− f(x)

h
, (2.33)

for a small enough h. Note that the full gradient ∇f(x) can be retrieved using (2.32) as:

∇f(x) = (〈∇f(x), e1〉 , . . . , 〈∇f(x), en〉)>

for x ∈ Rn and ei ∈ Rn being the canonical basis vectors.

Consider now a rectangular domain [a, b]n with evenly distributed points xi1,...,in inside

(i.e. an uniform grid), each of which has a distance of h to its next neighbors as shown in

Figure 2.8 for n = 2. We can see that we can apply (2.33) naturally in this formulation

to approximate ∇f , by taking the pointwise differences

∇f(xi1,...,in) =
1

h






f(xi1+1,...,in)

...

f(xi1,...,in+1)


−



f(xi1,...,in)

...

f(xi1,...,in)





 , (2.34)

where we need to enforce boundary conditions on the boundary.

This method is called the Finite Difference Methods (FDMs) [90] and allows to produce

efficient computational models, especially for rectangular domains. Note that the chosen

discretization in (2.33) and (2.34) is just one of many possibilities on how to discretize the

FDs. The chosen discretization is only first order accurate (O(h1) in (2.33)), but many

more schemes have been proposed with higher order accuracy [50], which require to look

at a bigger neighborhood around the current point.

While computationally efficient, the FDM is still not an optimal tool for arbitrary

domains and needs additional conditions to be used with curved boundaries for instance.

Another very popular method is the FEM, discussed in the following section.
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Figure 2.8: Visualization of a typically employed uniform grid to efficiently compute FDs
in 2D. The sampled points xi,j are equidistant to each other and the gradient of a quantity
defined at each point can be approximated taking the difference along the row and column.
Note that more general formulations allow for different spacings for each dimension or in
certain regions of the domain.

2.9 Finite Element Method (FEM)

Undoubtedly, FEMs are one of the major cornerstones of modern modeling and simula-

tion in many engineering disciplines. We briefly introduced the classical solution of PDE

problems in Section 2.8, discussed that finding classical solutions for general domains and

discretizations is a non-trivial task and showed the FDM as one solution in Section 2.8.2.

To obtain solutions for more complicated domains — ill-suited for the FDM —, we de-

compose the domain into a smaller subset of elements (hence the name finite elements)

on each of which an analytical solution can be obtained with a certain degree of conti-

nuity assured on the global solution (piecewise polynomial). We already introduced our

three used concepts of classical, weak and viscosity solutions in Section 2.8. However, we

did not specifically mention how to efficiently compute weak solutions to PDE problems.

This is the point where FEMs come in handy. This section is heavily based on the books

[18, 49, 82].

Definition 2.17. Consider the following three building blocks of finite elements:

1. The element domain ΩE ⊂ Rn is given as a bounded closed set with nonempty

interior and piecewise smooth boundary

2. The finite-dimensional space of basis functions (sometimes also called shape func-

tions) P on ΩE

3. The set of nodal variables N = {N1, N2, . . . , Nk} is a basis for the dual space P ′

The triplet (ΩE ,P,N ) is then called a Finite Element (FE).
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More precisely, the basis {φ1, φ2, . . . , φk} of P is dual to N , for which the Kronecker

property Ni(φj) = δi,j holds. Condition 3 of Definition 2.17, can be rewritten in a form

that is easier to verify [18]:

Definition 2.18. Let P be a d-dimensional vector space let {N1, . . . , Nd} be a subset of

the dual space P ′. Then condition 3 of Definition 2.17 is equivalent to: Given v ∈ P with

Niv = 0 for i = 1, . . . , d, then v = 0.

Example 2.5. [Lagrange P1 element in R2] Consider the domain

ΩE =
{

(x, y)>|x > 0 ∧ y > 0 ∧ x+ y ≤ 1
}

, with P being the set of linear

polynomials and N = {N1, N2, N3} as the nodal basis, where N1(v) = v(0, 0),

N2(v) = v(1, 0) and N3(v) = v(0, 1). We call (ΩE ,P,N ) in this case the Lagrange P1

element in 2D with the associated nodal basis φ1(x, y) = 1 − x − y, φ2(x, y) = x and

φ3(x, y) = y.

While the first two conditions of Definition 2.17 are easily verified, we can check the

validity of the last condition by using the Definition 2.18. v ∈ P1 implies v = a+ bx+ cy,

whereas Ni(v) = 0 implies v = 0 and thus N is a valid basis for P. �

We will heavily make use the element presented in Example 2.5. Note that the origin

of the nodal bases functions are sometimes called Degrees of Freedoms (DOFs). However,

the definition in Example 2.5 only describes the uniform, axis-oriented triangle located at

the origin. Consider a domain composed of several FEs forming the domain Ω =
⋃
i ΩEi .

Defining a FE for e.g. every possible triangle of a triangular mesh can quickly become

an intractable task, or would require the definition of a general element with spatially

varying DOFs. We instead use a method to generalize chosen reference elements to general

elements of the same type on the domain: Consider the reference element Ω̃E with the

nodal bases N = {Ñ1, . . . Ñd} and given DOFs ṽi ∈ Ω̃E . Each point in the reference

element x̃ ∈ Ω̃E can be defined as x̃ =
∑

i Ñi(x̃)ṽi. Now consider a general element with

a point inside x ∈ ΩE . We can express said point as a function of its corresponding point

on the reference element x̃, i.e. x : Ω̃E → ΩE . As both elements use the same polynomial

basis P, the corresponding function is given by

x(x̃) =
d∑

i=1

Ñi(x̃)vi,

for vi ∈ ΩE being the DOFs of the real element. For details on why this is possible, we

refer to [18]. This mapping allows us to define the Jacobi matrix Jx,x̃ of the reference to

the real coordinate system as [82]:

Jx,x̃ =




∂x1
∂x̃1

. . . ∂xn
∂x̃1

...
. . .

...
∂x1
∂x̃n

. . . ∂xn
∂x̃n


 =

d∑

i=1

vi ⊗∇x̃Ñi (2.35)
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This allows us to easily map functions, or derivative of functions from the reference element

to the real element, or vice versa:

(
J−1
x,x̃

)>
∇x̃f =




∂x̃1
∂x1

. . . ∂x̃n
∂x1

...
. . .

...
∂x̃1
∂xn

. . . ∂x̃n
∂xn







∂f
∂x̃1
...
∂f
∂x̃n


 =




∂f
∂x1
...
∂f
∂xn


 = ∇xf (2.36)

This mapping for a P1 element in 2D is visualized in Figure 2.9. Note that the inverse

x̃1 x̃2

x̃3

x1
x2

x3

J

J−1

Figure 2.9: Using Jx,x̃, we can map points from a defined reference element to a real
element in the mesh. In the special case of Lagrange P1 elements, J is a piecewise constant
function across the domain/mesh.

in (2.36) exists for non-degenerate elements, which are the only type considered in this

thesis.

Besides the presented Lagrangian P1 FE space, a plethora of different FEs have been

presented and promoted. We conclude the discussion about different element types with

Figure 2.10 showing the infamous periodic table of finite elements, which can be found

at http://www-users.math.umn.edu/~arnold/femtable/, showing the wide range of

possible element discretizations. Note that this work will solely rely on Lagrangian P1

FEs (triangles or tetrahedra) for all instances where we need to use FEM.

http://www-users.math.umn.edu/~arnold/femtable/
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Using these FEs, we can build a linear solution both to perform L2-projections of

known functions on the mesh, as well as solve PDEs in a weak sense. For this purpose,

we seek to compute the nodal values ui, associated to each nodal basis Ni (i = 1, . . . , n)

such that it solves an equation in a weak, or variational sense. Consider for this purpose

a function f : L2(Ω)→ R to be approximated, such that

f(x) ≈ uh(x) =
∑

j

Nj(x)uj

where uh is a sought continuous, piecewise polynomial function. Our objective is then to

find

min
uh∈Vh

1

2

∫

Ω
(uh(x)− f(x))2 dx, (2.37)

where Vh is the space of continuous, piecewise polynomial functions. The weak/variational

formulation of this problem then reads

∫

Ω
f(x)v(x) dx =

∫

Ω
uh(x)v(x) dx

∫

Ω
f(x)Ni(x) dx =

∫

Ω

∑

j

Nj(x)ujNi(x) dx for i = 1, . . . , n

where the transition from v to the basis functions Ni follows from the fact that if the

problem is satisfied for each Ni, then it is also satisfied for their linear combination re-

flected by v. By introducing the (sparse) mass matrix Mi,j =
∫

ΩNi(x)Nj(x) dx and

bi =
∫

ΩNi(x)f(x), we can rewrite the problem as:

Mu = b. (2.38)

The integrals
∫

Ω f(x) can be approximated using a Gauss-quadrature rule, which reads

as
∑

iwif(xi) for specified points xi ∈ Ω and associated weights wi ∈ R. In practice, all

integrals are actually evaluated only on the reference element and the areas and values are

mapped to each point using the Jacobi matrix in (2.36). The determinant of the Jacobi

matrix gives information on the change of the integral between the two domains.

Similarly, we can formulate linear PDEs also as a linear system to be solved, just as

we did for the L2-projection in (2.38): We will demonstrate this on Poisson’s equation

in (2.22):

Example 2.6. [Poisson’s equation] Recall Poisson’s equation:

−∆u = f, in Ω

〈∇u,n〉 = 0, on ∂Ω

We reformulate the problem in variational sense using the previously discussed concepts
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and by applying Green’s formula/identity:

∫

Ω
f(x)v(x) dx = −

∫

Ω
∆u(x)v(x) dx

=

∫

Ω
〈∇u(x),∇v(x)〉 dx−

∫

∂Ω
〈n(x),∇u(x)〉 v(x) dx

=

∫

Ω
〈∇u(x),∇v(x)〉 dx

which similar to (2.9) can be defined by the use of our nodal basis functions:

∫

Ω
f(x)Ni(x) dx =

∫

Ω
〈∇uh(x),∇Ni(x)〉dx for i = 1, . . . , n

=

∫

Ω

〈
∇
∑

j

Nj(x)uj ,∇Ni(x)

〉
dx

=
∑

j

uj

∫

Ω
〈∇Nj(x),∇Ni(x)〉 dx

By defining the stiffness matrix Ai,j =
∫

Ω 〈∇Ni(x),∇Nj(x)〉 dx and bi =
∫

Ω f(x)Ni(x),

we can again write the problem simply as

Au = b (2.39)

�

Remark 2.4. Since the nodal basis function Ni have compact support, the resulting mass

and stiffness matrices M and A will generally be very sparse. Rather than evaluating the

integrals over the whole domain, it is therefore beneficial to integrate element-wise, where

only elements are to be considered that are in the support of the nodal basis function.

Note that the use of the term projection for (2.37) slightly differs from the later used

definition in Section 2.10, but is commonly encountered when talking about FEM.

2.10 Optimization

Up until this point, we only considered well-posed linear problems of the type:

Ax = b (2.40)

where A ∈ Rn×n is assumed to be a square and invertible matrix (i.e. rank(A) = n) and

x,b ∈ Rn are the unknown and given vectors respectively. Such problems can be viewed

as the optimal solutions to minimization problems of the type

min
x

1

2
〈x, Ax〉 − 〈b,x〉 , (2.41)
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and can either be explicitly solved by computing the inverse A−1 e.g. through means of

the QR-decomposition, or with an iterative solver such as conjugate gradient method [69].

However, consider the case where we are interested in solving (2.40), even though A

is either a non-square matrix (i.e. the system is over- oder undertermined) or does not

have full rank. We can achieve this by replacing the original problem with a minimization

problem

min
x

1

2
||Ax− b||22 . (2.42)

In order to better understand how we could efficiently solve (2.42) and what properties

this equation has, it is therefore worth studying optimization problems in general.

2.10.1 Convex Optimization Problems

We now consider more general constrained optimization problems of the form

min
u
f(u) s.t. u ∈ C (2.43)

for a convex set C ⊂ Rn. In order to define convex sets, we define them through the

definition of affine sets [13, p. 3]

Definition 2.19 (Affine and Convex Sets). Given a subset S ⊆ Rn is called affine if for

any two points x,y ∈ S and λ ∈ R, their affine combination is contained in S, i.e.:

λx + (1− λ)y ∈ S. (2.44)

A set C ⊆ Rn is called convex, if for any two points x,y ∈ C and λ ∈ [0, 1], it holds that

λx + (1− λ)y ∈ C. (2.45)

From Definition 2.19, we can see that all affine sets are also convex. Note that Rn is

a convex set. Commonly encountered convex sets in this thesis include unit norm-balls

||·|| ≤ 1, the set of symmetric positive definite matrices Sn++ in (2.6) (depending on their

parameterization) and the simplex in n dimensions

{
n+1∑

i=1

λivi

∣∣∣∣∣
n+1∑

i=1

λi = 1 ∧ λi ≥ 0, i = 1, . . . , n

}
, (2.46)

defined by its vertices/corners vi ∈ Rn.

In its general form, it is difficult to associate any properties of how difficult (2.43) is

to solve, but we can further analyze the problem if we introduce the notion of convex

functions. The considerations on how to optimize such general functions are thoroughly
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discussed in [13, 102], on which this section is based on. We use several different, yet equal

properties that define a convex function f :

Definition 2.20 (Convex Functions). For a function f : Rn ⊃ U → R, the following

statements regarding convexity are equivalent

(a) f is a convex function

(b) The epigraph of f , given by epi(f) = {(x, y)|f(x) ≤ y,x ∈ U, y ∈ R}, is a convex set

(c) ∀λ ∈ [0, 1],∀x,y ∈ U : f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

(d) If additionally f ∈ C1, then ∀x,y ∈ U : f(x) ≥ f(y) + 〈∇f(y),x− y〉
(e) If additionally f ∈ C2, then the Hessian ∇2f(x) is positive semi-definite on U ,

i.e. ∀x ∈ U : ∇2f ∈ S̄n++ (see (2.7))

Note that (c) is a special case of Jensen’s inequality for convex functions

f

(
k∑

i=1

λixi

)
≤

k∑

i=1

λif(xi), (2.47)

for x1, . . . ,xk ∈ U and
∑

i λi = 1 ∧ λi ≥ 0.

When solving (2.43), we want to find the global minimizer x∗, such that

∀x ∈ C : f(x∗) ≤ f(x).

However, in practice (at least for non-convex problems) we are often content with finding

a local minimizer x∗, for which

∀x ∈ Nε : f(x∗) ≤ f(x),

where Nε is a local neighborhood around a point x. In gradient based optimization,

this condition is equal to the optimality condition (sometimes called Fermat’s theorem of

stationary point) that we often employ for f ∈ C1

0 = ∇f(x∗). (2.48)

For weakly differentiable functions, we have to extend our previous definition of subdiffer-

entials in (2.11) to support the function f on the whole domain U [102, p. 300 ff]:

∂f(x) = {v ∈ Rn | f(z) ≥ f(x) + 〈v, z− x〉 ∀z ∈ U} (2.49)

Note that this global subdifferential is distinctively denoted by ∂ instead of ∇−.

The optimality condition for weakly differentiable functions f ∈ H1 (see Definition 2.9)

then becomes:

0 ∈ ∂f(x∗). (2.50)
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Note that for convex functions, (2.48) and (2.50) ensure that x∗ is a global minimizer.

We previously already defined Lipschitz continuous functions in Definition 2.6, but in

the context of convex functions it is beneficial to also look at functions with Lipschitz

continuous gradients [13, p. 110 ff]:

Definition 2.21 (Lipschitz continuous gradients). Let L ≥ 0. The function f ∈ C1(Rn,R)

is said to have Lipschitz continuous gradient with parameter L, if it satisfies

||∇f(x)−∇f(y)|| ≤ L ||x− y|| ∀x,y ∈ Rn. (2.51)

Definition 2.21 resembles Definition 2.6 on the gradients of the function and is par-

ticularly of importance for convex optimization. Note that if a function has a Lipschitz

continuous gradient of L1, then the function also has a Lipschitz continuous gradient of

L2 if L2 ≥ L1. We are mostly interested in the smallest possible L, either over the whole

domain, or for a restricted neighborhood Nε around the current point. We will call the

former L global Lipschitz constant of the gradient, while the latter will be called the local

Lipschitz constant of the gradient. Lipschitz continuous gradients are particularly useful

for convex functions:

Theorem 2.3. For a convex function f , the following statements are equivalent:

1. f has a Lipschitz continuous gradient L

2. If additionally f ∈ C1, then f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L
2 ||x− y||2 (Descent

Lemma)

3. f(λx + (1− λy)) ≥ λf(x) + (1− λ)f(y)− L
2 λ(1− λ) ||x− y||2 for λ ∈ [0, 1].

Especially the descent lemma is very useful as this is used later in Chapter 4 for both

the Lipschitz backtracking and the (F)ISTA algorithm [12].

A common method to optimize (2.43) for a function f ∈ C1 with no constraints is the

well known gradient/steepest descent algorithm, which starts from an initial parameter

guess x0 ∈ Rn and updates the parameters in each iterations as follows:

xk+1 = xk − tk∇xf(xk), (2.52)

for tk > 0. This solution strategy is a consequence of using the previously mentioned

Euler-forward scheme in (2.15). The descent lemma confirms that the negative gradient

direction is a descent direction pε = −ε∇xf for which

〈p,∇xf〉 < 0.
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It is therefore used to decrease the function, i.e. f(xk+1) ≤ f(xk) for a small enough step

size tk (see [13, p. 196 ff]). In Chapter 4 we will often set tk = L−1 – a consequence of

applying the descent lemma around a point xk:

x = xk −
1

L
∇f(xk) = arg min

x
f(xk) + 〈∇f(xk),x− xk〉+

L

2
||x− xk||22 (2.53)

The similar subgradient descent algorithm can also be used to optimize function that

are merely Lipschitz continuous, i.e. f ∈ C0,1. In this case, we replace the gradient ∇f
in (2.52) with an element of the subdifferential p ∈ ∂f from (2.49). Note however that we

lose the guarantee that the subgradient is a descent direction [13, p. 196].

2.10.2 Non-smooth Optimization

An alternative approach to optimize such non-smooth functions is to use the proximal

operator, or mapping:

Definition 2.22 (Proximal Mapping). Consider a function f ∈ Rn → R, then the proxi-

mal mapping of the function f is given by:

x = (I + τ∂f)−1 (x̃) = prox
τf

(x̃) = arg min
x

τf(x) +
1

2
||x− x̃||22 (2.54)

Note that x in Definition 2.22 exists and is additionally uniquely defined if f is a proper

closed and convex function. A property of proximal mappings that we will use regularly

throughout this work is the linear separability.

Theorem 2.4. Consider a function f : Rn1 × . . .× Rnd → R, given by

f(x1, . . . ,xd) =
d∑

i=1

fi(xi),

then the proximal mapping can be expressed as

prox
τf

(x1, . . . ,xd) = prox
τf1

(x1)× . . .× prox
τfd

(xd)

i.e. the proximal mappings can be applied independently to each component xi.

Example 2.7. [Proximal Mapping of the l1 norm (proxτ ||·||1)] Consider the non-smooth

l1 norm, f(·) = ||·||1 =
∑ |·|. We can then calculate the proximal mapping proxτf and its

gradient as

prox
τf

(x̃) = arg min
x

τf(x) +
1

2
||x− x̃||22

0 ∈ τ∂f(x) + x− x̃.
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Since the problem is linearly separable, we can solve the problem for each vector component

independently. Specifically, we have to solve for the three cases:

xi > 0 : 0 = τ + xi − x̃i
xi = x̃i − τ ⇒ x̃i > τ

xi < 0 : 0 = −τ + xi − x̃i
xi = x̃i + τ ⇒ x̃i > −τ

xi = 0 : 0 ∈ τ [−1, 1]− x̃i
x̃i ∈ [−τ, τ ]

The resulting function

(
prox
τf

(x)

)

i

= sgn(xi) max(0, |xi| − τ) =





xi − τ if xi > τ

xi + τ if xi < −τ
0 else

, (2.55)

visualized in Figure 2.11 is usually referred to as the softshrinkage function and commonly

used in many optimization algorithms. �
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Figure 2.11: The softhsrinkage function proxτ |·|1(x)

An useful class of functions are the convex conjugates f∗ to a given function f [13,

Chapter 4]:

Definition 2.23 (Convex Conjugates). Let f : U → (−∞,∞]. We call the function

f∗ : U → [−∞,∞] given by

f∗(y) = sup
x∈U
{〈y,x〉 − f(x)} (2.56)

the convex conjugate of f .
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A commonly encountered convex conjugate is that of norms, which is the indicator

function on the unit-ball of their dual norm:

Lemma 1. Consider an arbitrary norm f(x) = ||x|| for x ∈ U . The convex conjugate f∗

is then given by

f∗(y) = δ||·||∗≤1(y) =

{
0 if ||y||∗ ≤ 1

∞ else
(2.57)

where ||·||∗ is the dual norm of ||·||.

With Definition 2.23, we can define the later very useful Moreau decomposition [13,

p. 160 ff]:

Theorem 2.5 (Moreau Decomposition). Consider a closed convex function f : U →
(−∞,∞] and its convex conjugate f∗. Then it holds for x ∈ U that

prox
τf

(x) + τ prox
1
τ
f∗

(x/τ) = x. (2.58)

A special subclass of the previously introduced proximal mappings are projections.

Consider now the indicator function on a convex set C

δC(x) =

{
0 if x ∈ C
∞ else

.

The proximal mapping of such a function can be described as any of the following formu-

lations [13, p. 146 ff]

prox
τδC

(x̃) = prox
δC

(x̃) = arg min
x

δC(x) +
1

2
||x− x̃||22 = arg min

x∈C

1

2
||x− x̃||22 = proj

C
(x̃),

(2.59)

where we usually use the last equality. For a closed and convex, non-empty set C ⊂ U ,

the projection projC(x) for x ∈ U exists and is unique [12, p. 147]. Note that (2.59)

is sometimes also called the orthogonal projection, since the closest projection in the

Euclidean sense to a convex set C is the projection orthogonal to the surface of C (⊥xC).

This can also be used to reconsider the previously introduced gradient descent algorithm

in (2.52) and (2.53) in a constrained optimization setting:

arg minx f(xk) + 〈∇f(xk),x− xk〉+ L
2 ||x− xk||22 + δC(x)

(I + 1
L∂δC)(x) = xk − 1

L∇f(xk)

x = projC
(
xk − 1

L∇f(xk)
) (2.60)

The optimization step in (2.60) is called projected gradient descent.
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Example 2.8. [Sn++ projection] We can apply the concept of projections, to project any

symmetric square matrix Rn×n onto Sn++. Our optimization problem is

proj
Sn++

(D̂) = arg min
D∈Sn++

∣∣∣
∣∣∣D − D̂

∣∣∣
∣∣∣
2

F
(2.61)

for any D̂ ∈ Rn×n. Recall the eigenvalue decomposition D = UΣU> and D̂ = V Σ̂V > and

associated properties presented in Section 2.3, where Σ ∈ Rn×n since D ∈ Sn++.

∣∣∣
∣∣∣D − D̂

∣∣∣
∣∣∣
2

F
=
∣∣∣
∣∣∣UΣU> − D̂

∣∣∣
∣∣∣
2

F

=
∣∣∣
∣∣∣Σ− U>D̂U

∣∣∣
∣∣∣
2

F
=

∣∣∣∣∣

∣∣∣∣∣Σ− U
>V Σ̂V >U︸ ︷︷ ︸

A

∣∣∣∣∣

∣∣∣∣∣

2

F

=
∑

i (σi −Aii)2 +
∑

i 6=j A
2
ij

Note that the minimum is achieved if the second term of the sum is zero, which holds true

if U>V = I. Since we know that D ∈ Sn++ if σi ≥ 0 for i ∈ JnK (see (2.8)), the projection

can be written as:

proj
Sn++

(D̂) = V diag(max{σ̂1, ε}, . . . ,max{σ̂n, ε})V >, (2.62)

for ε > 0. This projection will later be used in Section 4.5 to ensure that our tensor field

resulting from the optimization is still a valid vector space. �

2.10.3 Inverse Problems

Many optimization and especially inverse problems are not well-posed. Well-posed prob-

lems according to Hadamard [64], have the properties that

• A solution exists.

• The solution is unique.

• The solution continuously depends on the input parameters.

Problems that are not well-posed, i.e. they do not fullfil all of the three mentioned prop-

erties, are called ill-posed. Solving ill-posed problems can be a challenging task, as the

latter two properties (non-uniqueness and sensitivity to noise) can yield highly different

results for different initializations and levels of noise. A common approach to overcome

this difficulty is the variational formulation of optimization problem, where an additional

term — often called the regularizing function R — is employed as prior knowledge to

discard unlikely solutions and smooth the minimization functional. Specifically, in many

considered variational problems, the objective function f will take the following form

f(x,b) := D(x,b) + λR(x), (2.63)
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where we refer to D as the data term, computing the mismatch between the solution and

given data and R as the regularizing function, imposing prior knowledge on the solution.

The proper choice of R has been a long debated topic in multiple fields for inverse

problems. Throughout this work, we used an arguably very popular choice that has

been successfully used in many inverse problems, such as image denoising: The Huber

regularization [107], a smoothed Total Variation (TV) function (in its discrete formR(u) =∑
i ||(∇xu)i||H,α), where ||·||H,α is given by:

Hα(x) = ||x||H,α =

{
1

2α ||x||
2 if ||x|| < α

||x|| − 1
2α else

(2.64)

A plot of the Huber-norm can be seen in Figure 2.12.
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Figure 2.12: Visualization of the Huber norm of (2.64) for 2 and 1 dimensions (left and
right) respectively for α = 0.05.

Note that for this particular choice of H, it holds that ||·||H,0 = ||·||2.

Example 2.9. [Proximal Mapping of Hα(·)] To compute the proximal mapping

prox
τHα(·)

(x̃) = arg min
x

1

2
||x− x̃||22 + τHα(x),
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we distinguish the optimality condition of the two cases again:

||x|| < α : 0 = x− x̃ + τ
α

x = x̃
1+ τ

α
⇒
∣∣∣∣x̃/

(
1 + τ

α

)∣∣∣∣ < α

||x|| ≥ α : 0 ∈ x− x̃ + τ∂Hα(x)

0 ∈ x− x̃ + τ∂ ||x||2

To compute the proximal mapping of the Euclidean norm, we use the Moreau decompo-

sition from (2.58). We know that ||·||2 = ||·||2,∗ and the proximal mapping of the convex

conjugate of a norm is its projection onto the 1-ball of its dual norm (see Definition 2.2

and Lemma 1). This means for the convex conjugate Euclidean norm

prox
τ ||·||∗

(x) = proj
||·||≤1

(x) =
x

max(1, ||x||) ,

and thus

prox
τ ||·||

(x) = x− τ proj
1
τ
||·||≤1

(x/τ) = x− τ x/τ

max(1, ||x|| /τ)
=

(
1− τ

max(τ, ||x||)

)
x.

So the resulting proximal mapping of the Huber norm is

prox
τHα(·)

(x) =

{
x̂ if ||x̂|| < α

x− τx
max(τ,||x||) else

(2.65)

for x̂ = x/(1 + τ
α). The proximal mapping of the first component

(
proxτHα(x)

)
1

is visu-

alized in Figure 2.13. �

Such norms come in handy as regularizing functions for our inverse problems in vari-

ational formulation. A typical problem may consist of a least squares data term together

with a regularization that keeps the parameters’ norm low:

min
x

∣∣∣
∣∣∣f̃(x)− b

∣∣∣
∣∣∣
2

2︸ ︷︷ ︸
D(x,b)

+λ ||x||1︸ ︷︷ ︸
R(x)

, (2.66)

In case f̃ is a linear function, we refer to the class of problems in (2.66) as Least Abso-

lute Shrinkage and Selection Operator (LASSO) problems [117]. Such class of problems

are often optimized using Iterative Shrinkage and Thresholding Algorithm (ISTA) algo-

rithms [12]. These optimization algorithms assume that there is a smooth part of the

minimization problem f (D in this case), and a non-smooth part g (R in this case), for

which the proximal mapping proxλg can be easily calculated. Using the optimality con-

dition for (2.66) and quadratically bounding f using the descent lemma in (2.51), we can
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Figure 2.13: Visualization of the proximal mapping in (2.65) of the Huber norm for 2 and
1 dimensions (left and right) respectively. For the visualization we chose α = 0.1 and
τ = 0.5 and show only the first component on the right. Note the similarity with the
previously mentioned softshrinkage in (2.55), with the limit case α → 0 giving the same
proximal mapping in 1D.

rewrite and solve the optimization problem as:

arg min
x

f(y) + 〈∇f(y),x− y〉+
L

2
||x− y||22 + λg(x)

0 ∈ ∇f(y) + L(x− y) + λ∂g(x)

y − 1

L
∇f(y) ∈

(
I +

λ

L
∂

)
x

x = prox
λ
L
g

(
y − 1

L
∇f(y)

)
(2.67)

In [12], the authors additionally introduced an over-relaxation step to increase the speed of

such ISTA algorithms, which they called Fast Iterative Shrinkage and Thresholding Algo-

rithm (FISTA). We will later use the Huber norm and its proximal mapping in Sections 4.5

and 4.6.2 for similar scenarios, but with non-linear functions f̃ .

A problem yet not addressed though is the use of linear operators K ∈ Rn × Rn in g,

i.e. problems of the type

min
x
f(x) + g(Kx).
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One such subclass of these problems is the TV-L2 denoising [107] problem

min
1

2
||x− x̂||22 + λ

∑

i

||(∇x)i||2 . (2.68)

Here, we want to minimize the mismatch between x and x̂, while at the same time keep the

solution x smooth across the domain. The TV prior is very famous in many applications

beyond imaging and we have shown in our works [59–61] that it can be effectively used

in our inverse PDE problems to discard solutions with too much variation. In particular,

we show in [61] different TV weights (λ in (2.68)) influence the solution of the ill-posed

problem, with higher values resulting in smoother conduction velocity tensors across the

domain.

To solve such class of problems, we note that for convex functions, we can rewrite the

problem using the convex conjugate g∗ and Lagrangian multipliers p into a convex-concave

saddle point problem:

min
x
g(q) + f(x) s.t.:q = Kx

⇔min
x,q

max
p

g(q) + f(x) + 〈Kx− q,p〉

⇔min
x,q

max
p

g(q) + f(x) + 〈Kx,p〉 − 〈q,p〉

⇔min
x

max
p

(
−max

q
−g(q) + 〈q,p〉

)

︸ ︷︷ ︸
−g∗(p)

+f(x) + 〈Kx,p〉

⇔min
x

max
p

f(x) + 〈Kx,p〉 − g∗(p),

(2.69)

where we use the definition of the convex conjugate from Definition 2.23. An efficient

method to solve (2.69) is then given by the famous Primal-Dual algorithm [25]:





xi+1 = proxτf (xi − τK∗pi)
x̄i+1 = xi+1 + θ

(
xi+1 − xi

)

pi+1 = proxσg∗
(
pk + σKx̄i+1

)
(2.70)

for appropriately chosen parameters τ, σ, θ, such that τσ ||K||22 ≤ 1 and θ ∈ [0, 1].

The final concept of this section is closely linked to the proximal mapping in Defini-

tion 2.22 [13, p. 163]:

Definition 2.24. Given a closed convex function f : U → (−∞,∞] and µ > 0, the

Moreau envelope of f is given by

Mµ
f (x) = min

y∈U
f(y) +

1

2µ
||x− y||2 (2.71)
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M is a smooth variant of the possibly non-smooth function f , where the smoothness

can be varied by adjusting µ. For a known proximal mapping of f , M can be directly

formulated as

Mµ
f (x) = f(prox

µf
(x)) +

1

2µ

∣∣∣∣∣

∣∣∣∣∣x− prox
µf

(x)

∣∣∣∣∣

∣∣∣∣∣

2

, (2.72)

but more importantly, its gradient is given by:

∇xM
µ
f (x) =

1

µ
(x− prox

µf
(x)). (2.73)

This way we can optimize a smoothed version of f if its proximal mapping is known.

Example 2.10. [Constraint Smoothing] This example is a regularized variant of the

problem presented in [26, p. 29 ff]. Consider for K ∈ Rn×m, A ∈ Rk×m,y ∈ Rm,b ∈ Rn,

and a convex set C, the following optimization problem:

min
y
f(y) = min

y

1

2
||Ky − b||22 +

γ

2
||Ay||22 + δC(y),

which is a convex problem that could be solved e.g. using projected gradient descent. An

alternative approach consists in smoothing the problem by means of the Moreau envelope:

M τ
f (ȳ) := min

y

1

2
||Ky − b||22 +

γ

2
||Ay||22 + δC(y) +

1

2
||y − ȳ||2B ,

for B ∈ Sm++. By choosing B = 1
τ I−K>K − γA>A, we can explicitly compute M τ

f (ȳ) =

f(ŷ) with

ŷ = proj
τC

(
ȳ − τK>(Kȳ − b)− τγA>Aȳ

)
.

Note that B ∈ Sm++ requires that τ <
(∣∣∣∣K>K

∣∣∣∣+ γ
∣∣∣∣A>A

∣∣∣∣)−1
, where the exact value

again influences the smoothness of the Moreau envelope, similar to µ in (2.72). The

gradient of the Moreau envelope M τ
f is given by

∇M τ
f (y) =

1

τ
(y − ŷ) , (2.74)

which can be readily used in an unconstrained optimization algorithm like Limited memory

Broyden Fletcher Goldfarb Shanno (L-BFGS) [21]. �

Note that both in Sections 4.5 and 4.7 we will employ the Moreau envelope of Ex-

ample 2.10 to use the very efficient L-BFGS algorithm to optimize constrained inverse

problems.



3 Physiological Foundations
If people do not believe that mathematics is simple, it is only because they do

not realize how complicated life is. (John v. Neumann)
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This section will take the mathematical and more general definitions introduced in

Chapter 2 and use it to define the physiological foundations of how electrical signals in

the heart are generated and propagated. In Section 3.1, we will show how microscopic

phenomena and properties at cell level, lead to the electrical excitation of cells and how

this behavior can be mathematically modelled. We will show how these models work

in each individual cell, but also how they jointly make up the activation patterns on a

spatial level. In all of our previous works, we readily used the eikonal equation as a

compromise between model fidelity and computational efficiency. Here, we also show how

from chemical processes at the cell levels and their interactions with each other, we arrive

in the end at the eikonal approximation. This is based on and is only a short summary of

all processes described in [78] and [51] among others.

Section 3.2 will give some insights on the actual ECG setup, necessary to better un-

derstand how the electrical activation of the heart is captured using ECGs.

Section 3.3 will conclude this chapter with the underlying physics of the ECG procedure

and how it can be replicated in-silico using lead field theory.

3.1 From chemical elements to electrical activation

It has been suspected for a long time that the cell membrane separated the different ionic

concentrations, but the breakthrough was finally achieved in 1952 by Hodgkin and Huxley,

when new measurement techniques (the space clamp technique) allowed to measure the

transmembrane voltage ex-vivo for the very first time in a single giant squid axon [70]. This

led to a series of fives articles and earned Hodgkin and Huxley the nobel prize. Already

in this series of articles, they formulated an equivalent electrical circuit to describe the

47
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electrical behavior of a cell over the duration of an action potential. We call this model

from today’s point-of-view the Hodgkin-Huxley model, predecessor to many subsequently

developed models up until this day [86].

The two main driving forces between intra- and extracellular space are the chemical

gradient (according to Fick’s first law) and the electrical gradient. If both of these forces

have the same magnitude in the opposite direction, the flow of chemicals will stop and

the concentrations will enter a steady or equilibrium state. The associated measurable

electrical gradient in this equilibrium state is called the equilibrium, reversal or Nernst

potential. In cells in particular, the cell wall is only permeable to positive ions as shown

in Figure 3.1. An important property of cardiac cells in particular is their excitability: In

Figure 3.1: Consider a vessel divided by a membrane into two compartments, only
permeable to positive ions. From an initial ionizable solution in compartment 1 (a), the
positive ions will diffuse into compartment 2 through the chemical gradient and through
the separation of positive and negative ions, induce an electrical gradient (b). This flow
will stop once we reach the equilibrium state where the chemical and electrical gradient
have the same magnitude in opposite directions (c). Figure from [71].

the resting state, the membrane remains at its so-called resting potential until an external

stimulus current is applied. If this current exceeds a certain threshold and is applied long

enough, the cell will initiate its characteristic action potential cycle during. This process is

outlined in Figure 3.2. During the process of an action potential, the flux of chemicals will

rapidly change between channels before returning to the resting state. This is modelled

using one or multiple gating variables per ion channel.

The circuit diagram of the Hodgkin–Huxley model can be seen in Figure 3.3, where

the driving ionic currents of the cell identified were potassium (K), sodium (Na) and

calcium (Ca). With each conductance (e.g. gK), there is a gating variable associated that

mimics the ionic channel behavior. The exact equations and values for each of these gating

variables are not summarized here, but can be found in greater detail in [78] and [51].

Remark 3.1. The important property (from an evolutionary point of view) of this elec-

trical propagation through the heart is not of electrophysiological, but rather mechanical
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Figure 3.2: Cardiac cells are excitable, meaning that an external stimulus current can
initiate an action potential cycle. If the external stimulus (bottom) is only shortly applied,
or does not exceed a needed threshold, the transmembrane voltage will quickly return to
its resting potential (left). In contrast, if we exceed the needed thresholds, the cell will
enter the characteristic action potential cycle in which the voltage will remain high, even
if the external stimulus is removed. Figure from [71].

nature: The electrical activation forces a contraction of the heart muscle to pump blood

throughout the body. This is achieved by the filament structure and the Ca concentration

in the cells. As outlined in Table 3.1, the resting state intracellular Ca-concentration is

very low, but will rapidly increase as the tissue is excited. The result of this high intra-

cellular Ca concentration causes the so-called myofilament structure to pull on the thin

filaments [78, chapter 18]. This causes the muscles to contract, before returning to the

resting state with low intracellular Ca-concentration, relaxing the muscle.

While the Hodgkin-Huxley model is already an efficient, yet accurate simplification of

the real underlying chemical processes, further simplifications can be made. Successive

research introduced simpler models that approximate the same emergent behavior, using

only one collective gating variable h and inward/outward current [86]. The constituting

relation can be expressed as

dVm
dt

= Iin(Vm, h) + Iout(Vm) + Istim(t), (3.1)

where Vm, Iin, Iout and Istim are the transmembrane voltage, intracellular, extracellular
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and stimulus current respectively, defined as:

C(Vm) = V 2
m(1− Vm)

Iin(Vm, h) =
hC(Vm)

τin

Iout(Vm) = − Vm
τout

dh

dt
=

{
1−h
τopen

if Vm < Vgate
−h
τclose

else

The constants τin/out/open/close and Vgate control the overall shape of the resulting action

potential. By choosing t ∈ [0, 1000]ms, τclose = 150, τopen = 120, τout = 6, τin = 0.3

and Vgate = 0.13 and injecting a small Istim, we can generate the characteristic action

potential of a single cell with an Action Potential Duration (APD) of ≈ 200ms, visualized

in Figure 3.4. Note that here our action potential is rescaled to Vm ∈ [K0,K1] by using

V̄m = K0 +Vm(K1−K0) with the chosen resting and plateau potential K0 = −85mV and

K1 = 30mV respectively, as already proposed in [86]. This model can be very useful in

cases where we are only interested in the transmembrane voltage and in-/outward currents,

but it can not be used to analyze individual ionic currents.

Element Extracellular
concentration [mM]

Intracellular
concentration [mM]

Nernst potential [mV]

Na+ 145 15 60

Cl− 100 5 -80

K+ 4.5 160 -95

Ca2+ 1.8 10−4 130

Table 3.1: Intra- and extracellular concentration and Nernst potential values for ventric-
ular myocytes in the resting state. Values from [51, p. 25]

Up until this point, we considered only single cells and their membrane voltage to

be completely isolated from the outside world except for the stimulus current. In reality

however, the emergent behavior of the electrical activation of the heart is a consequence of

its resistive interconnections, referred to as gap junctions [78], and networks that propagate

the electrical activation in an ordered fashion between cells. A straight-forward extension

to our exemplary single-cell electrical circuit in Figure 3.3, is to consider a chain/cable of

cells, such as is visualized in Figure 3.5. Each chain is a small differential element of the

single-cell electrical circuit of Figure 3.3. In this scenario, the so-called axial currents Ie and

Ii propagate along the cable, introducing space and thus replace our initially considered

ODE with a PDE. By a clever change of variables, we can reformulate the cable equation

as the 1D-PDE
Vm

∂t
=
∂2Vm

∂x2
+ f(Vm, t), (3.2)
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Figure 3.3: Electrical circuit diagram of a single cell membrane, similar to the one pre-
sented in [70]: The transmembrane voltage Vm is generated by Nernst potentials, respon-
sible for a separation of chemical elements leading to the characteristic action potential
inside a cell. The identified main drivers of the resulting action potential were potassium
(K), calcium (Ca) and sodium (Na). Though more complex models have been devel-
oped [84], this model remains a good approximation with only three ion species involved.
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Figure 3.4: Approximation of the transmembrane action potential using a simplified state
model with only one gating variable [86].

for some f . For more information on how this is done, we refer to [78, p. 251 ff].

When considering the behavior of multiple interconnected cells through (3.2) for a

cable containing only homogeneous cells, it is useful to define traveling waves. Traveling

waves here denote propagation in excitable systems that travel at constant velocity with a

fixed shape and are categorized into traveling fronts that shift from one to another stable

state, or traveling pulses, which will return to the original state after a fixed amount
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Figure 3.5: When considering a 1D compound of ionic electrical circuits, visualized in
Figure 3.3, we can consider discrete differential chain of these components. As lim∆x→0,
we end up with (3.2).

of time. Here, we only consider traveling fronts, which are bistable excitations, moving

smoothly between two resting states:

∂V

∂t
=
∂2V

∂x2
+ f(V ) (3.3)

where f is zero at three different positions between 0 and 1, i.e. f(0) = f(α) = f(1) = 0

for 0 < α < 1. We can see that (3.3) is a special case of the cable equation in (3.2). A

special class of solutions — that we are mostly interested in — take the form

V (x, t) = U(x+ ct) = U(ξ) (3.4)

with a physiological, currently unknown constant speed c depending on f(V ). This func-

tion assumes a fixed waveform U that moves with constant speed c across the domain and

is simply shifted over time, but retains its shape. Reintroducing this waveform into the

original bistable equation (3.3), we end up with:

Uξξ − cUξ + f(U) = 0. (3.5)

This reduces our PDE in (3.3) again to an ODE. We only require that limξ→±∞ f(U(ξ)) =

0.

Consider now a specific function f(U) = −d2
1(U − U0)(U − U1)(U − U2) with U0 <

U1 < U2. When guessing that W = −d2(U − U0)(U − U2) and substituting into (3.5), we

see that it must hold that

d2
2(2U − U0 − U2)− cd2 − d2

1(U − U1) = 0.
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By additionally assuming d2 = d1/
√

2 and c = d1√
2

(U2 − 2U1 + U0), we conclude [78]

U(ξ) =
U0 + U2

2
+
U2 − U0

2
tanh

(
d1√

2

U2 − U0

2

)
(3.6)

This goes to show that assuming reasonable analytical functions, we can end up with very

nice closed-form solutions for traveling waves. The closed solution of the waveform in (3.6)

can be later seen in Section 4.7, Figure 4.23. We will also use (3.6) in the mentioned section

to compute the transmembrane voltages on the domain Ω from an eikonal solution.

Extending the presented 1D theory to multiple dimensions is straight-forward for pla-

nar waves traveling only in one direction n, where (3.4) becomes

u(x, t) = U

(〈n,x〉 − c(n)t

g(n)

)
, (3.7)

where c(n) and g(n) are the directionally dependant speed and space constant, respec-

tively. In contrast, for waves with curvature, we can extend (3.2) to

∂u

∂t
= div(D∇u) + kf(u), (3.8)

for the conduction velocity tensor D ∈ Sn++ and a time constant k. The problem in (3.8)

is hard to study, which is why we now instead consider a moving coordinate system

x = X(ξ, t), such that the main component ξ1 is normal to the level surface of u at time

t. Consider now a level set function

S(x, t) =

{
> 0 if wave has already passed x

< 0 else
(3.9)

With the help of this level set function, it is shown in [78] that 0 = 〈∇S,Xt〉 + St must

hold and hence we can rewrite (3.8) as

∂S

∂t
= ||∇S||D + λ ||∇S||div

( ∇S
||∇S||

)
(3.10)

Neglecting the curvature, we end up with

∂S

∂t
= ||∇S||D (3.11)

Since S(x, t) is a function of the level surface at time t, we can deduce that the velocity

in normal direction n of the current surface S(x, t) = Rt(x) must fullfil

〈Rt,n〉D−1 = 1 = ||∇φ||D =
√
〈D∇φ,∇φ〉 , (3.12)

where φ is now our desired quantity of earliest arrival time. Equation (3.12) shows how
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from this level set definition, we arrive at the eikonal solution, which, instead of solving a

PDE over time, only computes the solution to the non-linear PDE in (3.12). The approach

to use an indicator function, following the motion of an interface, is commonly known as

the level set method [93] and was used in [112, 118] to derive the well known Fast Marching

Method (FMM). In practice, dropping the time as a variable makes the computations both

efficient and allows for lower spatial resolution of the computational domain [33] (1mm

in the context of the heart), which makes it especially useful for gradient-based inverse

problems. This equation is heavily employed and relied upon throughout the whole thesis

and will appear in all proposed methods in one form or another. Recall from Section 2.8.1

that in this work we only consider viscosity solutions of the problem in (3.12), where we

mostly use the computationally efficient Fast Iterative Method (FIM) presented in [53].

Remark 3.2. Note that the presented derivation on how to arrive at the eikonal equation

follows the train of thought in [78, p. 300 ff], but there are multiple paths to arrive to

this conclusion. Another popular way, not shown here, is to derive the bidomain equation

from the ionic model, simplify it to the monodomain model and derive the eikonal equation

from the monodomain model. We refrained from using the derivation over the monodomain

model, since we only marginally used the bi- and monodomain equations throughout this

work.

3.2 Anatomy & ECG

From a macroscopic anatomical view, the heart is divided up into atria that receive the

blood from the body and lungs, and ventricles that pump the blood through this system.

The cardiovascular system can be seen in this context as an electrically driven, coordinated

pump: Oxygen-deprived blood arrives at the RA and is subsequently pumped through the

Right Ventricle (RV) over the pulmonary arteries to the lungs (more precisely the alveola).

Oxygen-satured blood from the lungs in contrast is received from the pulmonary veins in

the LA and pumped over the aorta from the left ventricle throughout the body. In this

thesis however, we are more interested in the controlling electrical waves that synchronize

the mechanical action, as already briefly outlined in Chapter 1: From a macroscopic view,

the heart is activated from the sinoatrial node, located in the RA and first propagated

through LA and RA, before being slightly delayed at the atrioventricular node. The

delayed ventricular activation then starts from the atrioventricular node rapidly through

the HPS system, where the right and left bundle activate their respective ventricles. The

tissue itself propagates the electrical activation to the still unexcited tissue, but at a much

slower pace. Figure 3.6 depicts both mentioned views on cardiac anatomy.

Note that the mentioned sequence of electrical, coordinated activations is what can be

monitored on an ECG, which measures electrical activation on the skin, as a consequence

of cardiac activation. The ECG is one of the favored tools for cardiologists to diagnose

cardiovascular diseases, since common electrophysiological diseases, such as AF and Left
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Bundle Branch Block (LBBB), can be directly observed with minimal cost and harm to

the patient. One of the arguably most popular ECG measurement technique is the 12-lead

ECG, commonly encountered in the clinics. In the setup of a 12-lead ECG, 9 electrodes are

used to get 12 timeseries recordings by taking linear combinations between them: Three

limb electrodes with potentials ΦL,ΦR,ΦF for left-, right arm and foot respectively, are

used together with six precordial leads V 1 through V 6. In order to get the 12-lead ECG

recordings, we use the following equations (see [51] for more details):

Figure 3.6: Anatomy of the heart from two different perspectives: Left shows the pathways
that dictate the blood flow, while right shows the electrical pathways from the sinoatrial
node throughout the heart. Figures from [51].

The Einthoven limb leads are defined as:

VI = ΦL − ΦR

VII = ΦF − ΦR

VIII = ΦF − ΦL(= VII − VI by Kirchhoff’s Law)

The augmented Goldberger leads are then given by:

VaVL = ΦL −
ΦF + ΦR

2

VaVF = ΦF −
ΦL + ΦR

2

VaVR = ΦR −
ΦL + ΦF

2

Finally, for the precordial leads, we need to define the Wilson central terminal as:

ΦWCT =
ΦR + ΦL + ΦF

3
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With this, V1 through V6 are given by:

Vi = ΦVi − ΦWCT

for i ∈ J6K. In Figure 3.7, the exemplary placement of the 9 electrodes can be seen.

Right Arm

Left Arm

Lead I

Left Foot

V1 V2

V3 V4 V5 V6

Figure 3.7: Here we show how the 9 electrodes of a 12-lead ECG are placed on the torso,
and how to derive the exemplary Lead I from them. Note that the measured 12 leads are
constructed as linear combinations of the 9 measurement electrodes, further detailed in
the text.

Remark 3.3. The leads V1 through V6 are also sometimes called unipolar leads, which can

lead to the mislead thinking of them being compared to an external ground. While ΦWCT

remains mostly constant over the duration of the recording, it is important for the lead field

theory, introduced in Section 3.3 that this point can be defined as a linear combination of

other points present on the domain.

The prominent activation observed on the ECG is usually seen to be divided into

5 parts: P, Q, R, S and T. The P-wave marks the atrial activation, while the QRS-

complex is witnessed during the activation of Left Ventricle (LV) and RV. The T-wave is

a consequence of the repolarization, i.e. the action potential drop-off after the APD, of

the whole heart before the next cycle begins. Figure 3.8 outlines a schematic of an ECG,

similar to how it is encountered in clinics on Lead I. There exist other forms of electrical

recordings of cardiac activity, such as the Vector ECG or body potential surface maps,

not further detailed in this work (for more information, see [51, 78]).
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The introduced leads help clinicians in diagnosing disturbances of activation and repo-

larization patterns, as ECG leads record the time-dependant projection of dipoles within

the heart onto the lead axes. The next section will introduce the link between electrical

activity at the cellular level from Section 3.1 and current flow in the surrounding torso

and associated potential differences, crucial for computing the ECG.

Figure 3.8: Schematic representation of the ECG from [116]

3.3 Lead Fields

In what follows, we shortly summarize the heart dipole theory from [116, p. 21 ff], [51] to

set the necessary foundation and later end up with the lead field equation. The lead field is

the main connection between the electrical activation inside each cell and the consequent

potentials measured between multiple electrodes. All of the resulting lead field equations

will then be readily used in Section 4.7 to compute the electrical activation observed on

leads of a minimal torso model. Maxwell’s equation will serve as a starting point for this

purpose, where we refer to [46] for more details on the origin and nature of these equations.

Consider a torso domain Ω, with the heart ΩH ⊂ Ω inside the torso. We start with

the general Maxwell equation for volume conductors, for an electrical and magnetic field

E and B respectively:

∇× E(x) +
∂B(x)

∂t
= 0,

where × denotes the curl operator in this context. The torso is assumed to be quasi-

constant, i.e. the change of the magnetic field is assumed to be negligible. From this it

follows

∇× E(x) = 0.

We rewrite this equation in terms of the potentials φ(x):

E(x) = −∇φ(x)

The current inside such a conductor can be written as

I = GE = −G∇φ
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which, in the absence of sources, becomes

∇ · I = 0 = ∇ ·G∇φ (3.13)

A reasonable assumption is that the body is surrounded by air or other insulating media.

We conclude from this that

n(x) · I(x) = 0 = n(x) ·G(x)∇φ(x)

for x ∈ ∂Ω with n being the surface normal. The PDE torso model with no cardiac sources

is thus given by {
∇ · (G∇φ) = 0 in Ω

n · (G∇φ) = 0 on ∂Ω
. (3.14)

This combined torso model is already includes a lot of the necessary foundations,

but neglects the cardiac sources inside the heart as a consequence of chemical fluxes, as

previously discussed in Section 3.1. To further extend this model recall from Section 3.1

that the cellular domain is separated into intra- and extracellular spaces [116, p. 26 ff].

The currents Ii and Ie of the two domains are then

{
Ii = −Gi∇φi in Ωi

Ie = −Ge∇φe in Ωe,
(3.15)

where Gi, Ge are the conductivity tensors and φi, φe are the potentials for the intra- and

extracellular space respectively. Further, we can define

{
∇ ·Gi∇φi = βIion + ∂qi

∂t in Ωi

∇ ·Ge∇φe = −βIion + ∂qe
∂t in Ωe,

(3.16)

where qi, qe are the accumulations of charges in the intracellular and extracellular domain

respectively, for which ∂qi
∂t + ∂qi

∂t = 0 holds. The voltage were are interested in (that defines

the cardiac sources) is the transmembrane voltage, given by Vm = φi − φe. Combining

and expressing (3.16) using Vm, we get

∇ · (Gi +Ge)︸ ︷︷ ︸
G

∇φe = −∇ ·Gi∇Vm (3.17)

We can see now that (3.14) uses the so-called bulk conductivity given by G = Gi + Ge
and the observable extracellular potentials φe. The right term of (3.17) now describes the

formerly missing cardiac sources.

While (3.17) is a useful formulation and allows us to compute potential field throughout

the whole domain, it is sometimes far more useful to compute the potentials only at certain

points using the “Integral Formulation”. Here, the measured potential difference between
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two points is given by

V (t)− Vref =

∫

Ω
(−Gi(x)∇Vm(x, t)) · ∇Z(x) dx, (3.18)

for a given lead field Z that describes the measured potential difference direction between

electrodes placed on the torso, inside our domain. The remaining question is how to

compute the lead field Z. As pointed out in [85], Z can be computed by simulating an

unit current through the torso domain from the positive to the negative electrode during

no activity of the heart:

This means that the current field, Z at a point in the heart, resulting from the

introduction of a unit current into the lead, has the same direction and intensity

as the Burger lead vector of that lead with respect to electromotive forces located at

that point. ([85])

Intuitively, we pose this observation as the PDE problem

∇ · (G∇Z) =





−1 at positive electrode

1 at negative electrode

0 else

, (3.19)

though it is important to note that this problem needs certain setups of the electrodes

to avoid being ill-posed. Section 4.7.2.2 will shortly remark on this problem. Figure 3.9

shows how the computed lead field for lead I on a simple torso model with lungs and ribs

using (3.19) looks like. The white streamlines between the electrodes are computed using

∇Z.
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Figure 3.9: Visualization of the lead field for lead I from Figure 3.8, computed using (3.19)
on a torso model. The visualized streamlines (white) show how the lead field ∇Z is
orientated inside the heart (red) between two electrodes and helps us in understanding
which electrical propagation ∇Vm will be visible by the lead. From (3.18), we can see that
the ECG amplitude is maximized for propagation in the streamline direction, while being
low for propagation normal to the streamlines (i.e. 〈∇Vm,∇Z〉 = 0).
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This chapter will introduce list and further explain all methods that were developed in

the past few years. First, we will look at work of other research groups in Section 4.1,

whereas the later chapters will present our proposed methods. Note that this chapter

will concentrate on the actual method, since preliminaries, such as most of the needed

equations and physiological foundations have already been introduced and explained in

Chapters 2 and 3. Some concepts will be revisited as is seen fit to improve the flow of

reading.

4.1 Related Methods

As already outlined in Chapter 3, the electrical propagation on a macroscopic level is

anisotropic as a consequence from the fiber alignment inside the heart [32]. Early studies

by Streeter et al.already revealed that the heart muscle has a complex, yet rather smooth

fiber orientation in transmural direction [115]. Such a-priori knowledge was used in e.g. [9]

to define a mathematical model that mimics this behavior and can be applied to arbitrary

heart geometries acquired through e.g. Magnetic Resonance Imaging (MRI). Along the

same lines, much scientific effort was focused on the generation of the Purkinje-network

that dominates most of the cardiac activation in the ventricles [71]. Many procedures have

been therefore developed to estimate the Purkinje network mostly from EAMs [7, 94, 119].

61
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E.g. in [94], fractal laws were applied to generate Purkinje networks from these measure-

ments. In contrast, in the classical Electrocardiographic Imaging (ECGi) problem, one

seeks to infer an epicardial LAT map from the ECG [48, 67, 72, 120]. Modern approaches

extended this idea to also infer e.g. transmembrane voltages [68, 124]. This poses several

challenges, as in usual clinical setups, the electrical potential is only measured at very

few points. To overcome this hurdle, special measurement technology, the Body Potential

Surface Map (BPSM) vest has been developed, consisting of a matrix array of measure-

ment nodes distributed over the whole torso. This offers a lot of spatial information on

the electrical activation on the whole torso, potentially alleviating the ill-posedness of the

inverse procedures [63]. The transfer from the epicardial to the torso activation is assumed

to be linear and can be therefore efficiently modelled. However, the problem is still ill-

posed since even the resolution of the BPSM can not match the required the resolution

at the epicardium. Additionally, the measurements are also corrupted by noise, requiring

additional regularization to obtain reasonable results. But even if one is to solve the ECGi

problem perfectly, the epicardial activation gives only a glimpse on the total activation

inside the heart, since much of the complexity already appears in the endocardial and

transmural activation (see Section 3.2).

One additional problem that needs to be solved are the model assumptions and the

associated computational costs. High-fidelity models already pose a difficult optimization

problem just to model the forward problem, i.e. the problem of computing activation maps,

ECGs or similar, given the parameters. To achieve a e.g. least squares fit to given data on

top (compare Section 2.10), the model has to be solved several times and its gradient have

to be computed for many of the considered optimization methods. Several possibilities

have been developed to tackle the problem of complex forward models: Surrogate models

can be used to replace the original difficult problem with a much simpler, yet related

problem [41]. Alternatively, this simplification can also be posed in form of a reduced

order model [126]. In contrast, many works concentrate on modeling and personalizing

only certain parts of the activation like the Purkinje-network, see e.g. the before-mentioned

work [94].

The parameterization and subsequent optimization of the considered models can be

achieved in several ways: Fiber and front velocities/angles can be locally estimated from

LAT measurements, acquired through contact recording. The two main drawbacks of

these methods is the necessity of having contact recordings and the susceptibility to noise.

Noisy measurements either need to be discarded by finely tuned heuristics or manually,

as there is no inherent global consistency mechanism that could help in identifying noisy

measurements. Anisotropic conductivity in these techniques can be deduced from front

velocity and prior knowledge on fiber structure (rule-based or atlas-based), or by combining

multiple activation maps [103]. In contrast, one can also use the assumed PDE model

and enforce the model assumptions on the measurements. This can either be enforced

pointwise, yielding for instance PDE-constrained optimization [8], or act as a penalization

term [109]
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Like in many other fields, also ML methods can be investigated. Despite popular

belief, the roots of ML inspired-techniques, especially involving Neural-networks, reach

back to the 60s [105]. In recent years however, they managed to revolutionize many fields

like computer vision, dynamic systems and robotics [74]. This shift in paradigm was not

only possible because the methods improved, but lends a big portion of its success to

the increased computational power which was given to researchers around the globe by

highly multi parallel computational devices at relatively low cost, like Graphics Process-

ing Units (GPUs) (further outlined in Section 4.4). This change has already affected the

field of medical imaging [66], but also starts to trickle into the world of parameterized

PDE models: Raissi et al. presented in [100] a new method to utilize neural networks to

solve PDE equations by means of introducing the PDE equations as a “soft constraint”.

This kind of PDE-penalizing optimization is not new and has already been done in other

works (e.g. [121]), but the novelty of the approach comes from the parameterized model:

PINNs use a neural network as their underlying model from which they can apply back-

propagation techniques, commonly found in machine learning frameworks, to directly fit

the neural network to the PDE. The presenting problem is highly non-linear and non-

convex, depending on the chosen network architecture and is therefore solved using the

current state-of-the-art solver for machine learning problems, namely Adaptive Moment

Estimation (ADAM) [79]. In Section 4.6.2, we compare our model presented in [61] to

optimize conductivities in atrial-endocardial maps, to a PINN approach called Eikonal-

Net [109]. Several beneficial modeling assumptions were made in [61] that helped the

optimization in better finding the conduction velocity tensors. These assumptions were

carried over to EikonalNet in our paper [60], where we use a PINN to model and optimize

the same problem. The comparison to PIEMAP showed that in the synthetic/in-silico

test-case, PIEMAP performed better, but the PINN approach has also some advantages:

The main benefits are, first that we do not need to specifically choose the initiation sites

of the eikonal solution, and secondly that the model does not strictly enforce the eikonal

equation, which can be a mixed blessing (see Section 4.6.3 for more details).

In this work, we will use the (comparably) computationally efficient anisotropic eikonal

method as a baseline physical model for electrical propagation. The equation itself was

already extensively discussed in Section 2.8.1. It has been shown to be a good compromise

between physiological accuracy and computational cost [33] and thus meets our require-

ments for modeling the inverse problem. Multiple methods have been developed to effi-

ciently solve the eikonal equation: In the case of the isotropic eikonal equation, e.g. D = cI,

the FMM has a very favorable computational complexity of O(n log n) [112, 118]. The

original FIM on grids presented in [73] has a worse computational complexity, but has been

shown to converge faster in many practical examples as it can heavily exploit parallelism,

commonly found on modern machines, especially GPUs. At the date of writing, arguably

one of the most popular methods are the extensions of the original FIM [52, 53] that

extended the algorithm to the anisotropic eikonal equation and mesh domains. In [52],

the method was first extended to general triangulated surfaces which we will later employ
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in our algorithm PIEMAP in Section 4.6.2. The extension to tetrahedral meshes in [53]

provided a good framework for many methods presented in this thesis in this chapter. The

exact update steps of the latter method will be discussed in detail in Section 4.3 and will

later be used in Section 4.5 for the gradient computation.

Recall the anisotropic eikonal equation of Section 2.8.1:

{
||∇u||D =

√
〈D∇u,∇u〉 = 1 in U

u = g on Γ ⊂ ∂U
((2.23) revisited)

where we require D ∈ Sn++

Sn++ =
{
A|A = A> ∧ x>Ax > 0,∀x ∈ Rn \ 0

}
. ((2.6) revisited)

Upon inspecting (2.23) we can immediately identify the two main parameters of the inverse

problem: The conductivity tensor D and the EASs, defined by their location, timing, as

well as their number (i.e. the Dirichlet boundary conditions). The problem of fitting these

parameters to clinical data has already been considered in the literature for the conduction

velocities in our works [59, 61] and others [8, 114]. However, the optimization of EASs

received limited attention so far with only a few works dealing with activation onsets [75]

or locations [80]. The simultaneous optimization of EASs (especially their number) and

conduction velocity has been analyzed only very recently in [56, 59, 96].

4.2 Methodological Foundations

As already discussed in Section 3.1, the eikonal equation has strong links to cardiac ac-

tivation under minor simplifying assumptions. The tensor D of (2.23) directly encodes

the squared conduction velocity tensor. As conduction velocities in the ventricular my-

ocardium are known to be orthotropic with typical velocity ratios around vf : vs : vn ≈
0.6 : 0.4 : 0.2m/s [33], the anisotropic version of the eikonal equation will be used in all

scenarios. Many formulations and other works [9, 115] consider the physiological concepts

of fibers, sheet and normal direction as well as their respective velocities. Since we require

D ∈ Sn++ it turns out that the conductivity tensor encodes these properties in its eigenval-

ues and eigenvectors. In the presented formulation, D can be defined through the fiber,

sheet and normal direction as:

D(x) := v2
f (x) f(x)⊗ f(x) + v2

s(x) s(x)⊗ s(x) + v2
n(x) n(x)⊗ n(x), (4.1)

Here, D encodes the squared conduction velocities along the tissue’s eigenaxes where

f(x), s(x) and n(x) are the fiber, sheet and normal vectors respectively and vf (x), vs(x)

and vn(x) encode their respective propagation velocities. Equation (4.1) is in reality a
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simple reformulation of the eigendecomposition of D in (2.5)

D =



f1 s1 n1

f2 s2 n2

f3 s3 n3




︸ ︷︷ ︸
U

diag
(
v2
f , v

2
s , v

2
n

)
︸ ︷︷ ︸

Σ



f1 f2 f3

s1 s2 s3

n1 n2 n3




︸ ︷︷ ︸
U>

(4.2)

In order to solve (2.23), many commonly encountered methods, such as the FIM in [53]

rely on solving the Hamilton–Jacobi formulation, briefly touched in Section 2.8.1.

{
ẋ = ∇pH(p,x)

ṗ = −∇xH(p,x).
((2.27) revisited)

Before we start with the proposed methods, we will shortly summarize the FIM.

4.3 Solving the Anisotropic Eikonal Equation - The Fast

Iterative Method (FIM)

The FIM is an efficient method to solve the anisotropic eikonal equation and variants

have been presented for grids [73], triangular [52] and tetrahedral [53] domains. We will

consider here the tetrahedral variant. At its heart is the local update rule, computing

a vertex value by computing the travel time from the opposite face of the three other

vertex values inside a tetrahedron. For this purpose, the 3D-domain Ω is approximated

using Lagrangian P1 elements. For practial purposes, we define M = {V, T} to be the

mesh, consisting of a discrete set of vertices V =
⋃
i vi ∈ R3, combined with a discrete

set of tetrahedra T =
⋃
j Tj , consisting of four vertices each Tj = (vj1 ,vj2 ,vj3 ,vj4). Note

that in the algorithm, D is assumed to be piecewise constant (P0), i.e. there is exactly

one constant diffusion Tensor Dj associated with each Tj . For convenience the minimum

arrival time associated to a vertex vi is written as φ(vi) = φi.

An especially useful practical feature of Lagrangian P1 elements is that each point in

the simplexes spanning the domain can be uniquely described by its barycentric coordi-

nates ∆k, which apparently are equal to its basis functional evaluation (see Section 2.9 for

more details).

∆k =

{
(λ1, . . . , λk)

>

∣∣∣∣∣
k∑

i=1

λi = 1 ∧ λi ≥ 0

}
((2.46) revisited)

Note that simlarly any point on the triangle spanned by v1,v2,v3 opposite of a vertex

can be described using three-dimensional barycentric coordinates.

The local update rule inside one tetrahedron, which defines the travel time from any
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point on the face x1,2,3 to the vertex v4, is then given by

φ4 − φ5 =

∣∣∣∣∣

∣∣∣∣∣v4 −
3∑

i=1

λivi

∣∣∣∣∣

∣∣∣∣∣
2,D−1

j

= ||e∆||2,D−1
j

=
√

e>∆D
−1
j e∆ > 0,

which is associated length with the linear curve through the element. In order to update

a single node v4, given all other vertex values inside a single tetrahedron φ1, φ2, φ3, we

want to find the point x1,2,3 that minimizes the travel time from the face, to the vertex

v4 in the metric Dj . This can be formulated as the minimization problem:

φI4(φ1, φ2, φ3) = min
λ

3∑

i=1

λiφi +
√

e>∆D
−1
j e∆ , s.t. λ ∈ ∆3 (4.3)

The computation is visualized in Figure 4.1. If we set λ3 = 1 − λ1 − λ2 and solve

v1 v2

v3

v4

x1,2,3

e∆

Figure 4.1: Local update of the FIM solver within one tetrahedron. The update is com-
puted using the linear distance formulation e∆ from the point x1,2,3 on the face between
nodes v1,v2,v3 to the point v4 to be computed.

Equation (4.3) w.r.t. one λi, while the other barycentric coordinate is called λk, then the

optimal solution to the unconstrained problem is the solution to the quadratic problem

λi1,2 =
−p1,2 ± c

√
p1,1p2,2−p2

1,2

p1,1−c2

p1,1

(4.4)
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with

w1 = v3 − v1; w2 = v3 − v2; w3 = v4 − v3

z1 = wi −
w>2 D

−1 (w2(φ1 − φ3)− (φ2 − φ3)w1)

w>j D
−1 (w2(φ1 − φ3)− (φ2 − φ3)w1)

wj

z2 = w3 −
w>3 D

−1 (w2(φ1 − φ3)− (φ2 − φ3)w1)

w>j D
−1 (w2(φ1 − φ3)− (φ2 − φ3)w1)

wj

c = φi − φ3 −
w>i D

−1 (w2(φ1 − φ3)− (φ2 − φ3)w1)

w>j D
−1 (w2(φ1 − φ3)− (φ2 − φ3)w1)

pa,b = z>aD
−1zb

(4.5)

Once we found λi, computing λk for k 6= i becomes:

λk = −
(w3 + λiwi)

>D−1
j (w2(φ1 − φ3)− (φ2 − φ3)w1)

w>j D
−1
j (w2(φ1 − φ3)− (φ2 − φ3)w1)

(4.6)

The derivation that arrives at this conclusion is given in Section A.2. The actual minimal

solution of λ1 and λ2 in Equation (4.3) is a constrained quadratic minimization problem,

for which special cases may arise when solving it unconstrained according to Equation (4.4)

as Fu et al. already stated:

If no root exists, or if λ1 or λ2 falls outside the range of [0, 1] (that is, the

characteristic direction does not reside within the tetrahedron), we then apply the

2D local solver used in [52] to the faces ∆1,2,4 , ∆1,3,4 and ∆2,3,4 and select the

minimal solution from among the three. ([53])

where the mentioned root refers to the root term in Equation (4.4). The referenced solution

for the 2D-case behaves similarly (see [59] for more details). v4 is in most cases part of

multiple tetrahedra and the minimum arrival time φ4 is therefore the minimum arrival

time over all tetrahedra Tj that v4 is a vertex of (v4 ∈ Tj):

φ4 = min
j
φ∗4(φ1, φ2, φ3) s.t. v1,v2,v3,v4 ∈ Tj (4.7)

To globally compute the eikonal solution, FIM initializes all vertices with starting

times to their value and adds their neighbors to the Active List (AL), while all other

arrival times are set to ∞. The AL keeps track of all points to be updated according to

Equation (4.7) in the next iteration. Converged points are removed from the active list,

while points are added that received an update. If one or more of φ1, φ2 and φ3 are not

yet computed (meaning their value is still ∞ from the initialization), (4.3) and (4.7) still

work if we define 0 · ∞ = 0 for this sake. Once the value φ4 has been updated, all points

sharing a tetrahedron with v4 are recomputed using (4.7) and are added to the AL if their

activation time decreased. The convergence property of the FIM algorithm removes a
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point from the AL if the change between two subsequent iterations, k and k+1, is smaller

than ε:
∣∣∣φk4(x)− φk+1

4 (x)
∣∣∣ < ε. FIM can be efficiently computed on Single Instruction

Multiple Data (SIMD) architectures, such as GPUs, thanks to the easy parallelization

of the updates of all points in the AL. Relaxing constraints on ε can be used to reduce

computational costs at the expense of precision, or to avoid small rounding errors due

to limited floating point precision. An outline of the computations done by the FIM are

given in Algorithm 4.1. Note that this special variant of the algorithm also keeps track of

all intermediate updates, later used in Section 4.5.

Algorithm 4.1: Fast Iterative Method (FIM) [53]

Input : Diffusion Tensors D, Starting Points S, Mesh M with Neighborhood
Operator N Initiation Timings Function g(v)

Output: First arrival times φ, FIM Updates FIMU

∀v0 ∈ V (S) : φ(v0) := g(v0)
∀v ∈ V (M) \ S : φ(v) :=∞
AL =

⋃
∀v0∈V (S)

N (v0)

FIMU = ∅
while AL 6= ∅ do

for vi ∈ AL do
vj ,vk,vl ∈ N (vi)
φnew,i := φ4(φj , φk, φl) // Compute local eikonal solution (Equation (4.7))

φold,i := φ(vi)
φ(vi) := φnew,i

FIMU = FIMU ∪ (φnew,i,v4, λ)
// If point has converged

if |φnew,i − φold| < ε then
AL = AL \ v4 // Remove converged from AL

// Check if neighboring points are converged

for ∀vn ∈ N (vi) do
vj ,vk,vl ∈ N (vi)
φnew,n := φ4(φj , φk, φl) // Equation (4.7)

if |φnew,n − φ(vn)| ≥ ε ∧ φnew < φ(vn) then
AL = AL ∪ vn // Add to AL if not converged

end

end

end

end

end

Remark 4.1. Note that the formulation of computing the travel time, i.e. the distances

in the metric, internally relies again on the Hamilton–Jacobi formalism (see Sections 2.8

and 4.7). Thus, the update rule uses the inverse metric D−1.
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4.4 Runtime

An important consideration for clinical applicability when talking about algorithms, is

their runtime. In practice, it would desirable to have inverse methods that can estimate

parameters within less than a few hours to meet clinical demands, but this is in practice

very difficult to achieve as we need to solve the underlying PDEs and ODEs several times.

However, one factor that we can exploit is the rise of modern hardware architectures of the

past decade, particularly GPUs. GPGPU computing has equipped individual researchers,

with computing capabilities, formerly only known to whole research groups or institutions

in the form of High Performance Computing (HPC) clusters. Figure 4.2 shows how the

theoretical Floating Point Operations per Second (FLOPs/s) of single user GPUs have

grown. Though GPUs only efficiently work on a small subset of problems that can effi-

ciently exploit their SIMD architecture (a drawback that does not apply to many HPC

architectures), especially many modern ML frameworks are fueled and are now available

to a broad user base thanks to the advent of GPU computing. Most of the proposed

methods in this chapter work on the said GPU architectures and thus benefit from the

constant development and evolution of modern GPU hardware. This allowed us to run all
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Figure 4.2: Growth of the theortically achievable FLOPs/s for various consumer GPUs
over the course of the years.

of the proposed methods on a single desktop machine, rather than an HPC cluster, though

incorporating multiple machines could yield potential speedups. All of the results in this

chapter were therefore computed on a desktop machine with an Intel Core i7-5820K CPU

with 6 cores of each 3.30GHz, 32GB of working memory and a NVidia RTX 2080 GPU.

The runtimes of all methods and experiments differ greatly and are listed individually in

the result section of each.
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4.5 FIMIN: A direct approach at solver-based gradient

computation

In [59], we introduced a gradient-based optimization, based on the FIM in [53], further

detailed in Section 4.3.

Computing φ(x) given g(x) and D(x) is called the forward anisotropic eikonal problem.

In contrast, computing g(x) and/or D(x) from data φ(x) observed on a subdomain ΩO

is called the inverse anisotropic eikonal problem. Except for very restricted cases, the

general inverse eikonal problem is considered ill-posed.

To find D and g, we start with a common optimization approach

min
D,g

∫

ΩO

(
φ(x)− φ̂(x)

)2
dx

s.t. D(x) ∈ Sn++, ||∇φ(x)||2,D−1(x) = 1 ∀x ∈ Ω

φ(x0) = g(x0) ∀x0 ∈ S

(4.8)

where ΩO refers to the observation domain and φ̂(x) are the observed arrival times in ΩO.

Equation (4.8) states that we want to minimize the squared distance of computed arrival

times φ(x) − φ̂(x) over the observable domain ΩO, assuming that activation times φ(x)

are compatible with the anisotropic eikonal condition in (2.23) and that D(x) is in the set

of symmetric positive definite matrices on the whole domain Ω

4.5.1 Inverse Problem - Gradient Computation

For the inverse solution of the eikonal equation, where the unknown values for g(x) and

S are solved from a known solution φ(x), the gradient of FIM is required. Additionally,

the local update rules Equation (4.3) and Equation (4.4) for each point must be further

considered. In order to derive the gradient w.r.t. an optimizable variable ϑ, we define all

nodal values φi(ϑ) and diffusion tensors Dj(ϑ) as functions of ϑ. Given the optimal choice

of λ1 and λ2, the derivative of (4.3) w.r.t. ϑ and a diffusion tensor function D(x, ϑ) = Dj

of the tetrahedron x ∈ Tj becomes:

∂φ4

∂ϑ
(φ1, φ2, φ3) =





∑3
i=1

(
∂λi
∂ϑ φi + λi

∂φi
∂ϑ

)
+ 1

2
√

e>∆Dje∆

(
2
∂e>∆
∂ϑ Dje∆ + e>∆

∂Dj
∂ϑ e∆

)
if λ ∈ ∆3

∑2
i=1

(
∂λi
∂ϑ φi + λi

∂φi
∂ϑ

)
+ 1

2
√

e>∆Dje∆

(
2
∂e>∆
∂ϑ Dje∆ + e>∆

∂Dj
∂ϑ e∆

)
if λ ∈ ∆2

∂λi
∂ϑ φi + 1

2
√

e>∆Dje∆

(
2
∂e>∆
∂ϑ Dje∆ + e>∆

∂Dj
∂ϑ e∆

)
else

(4.9)

with ∂e∆
∂ϑ = v4 −

∑3
i=1

∂λi
∂ϑ vi. In order to derive Equation (4.4), we may need to derive

each variable of the quadratic problem, assuming dependency of each variable on ϑ. The

exact derivations of each of the variables can be found in Section A.3.



4.5. FIMIN: A direct approach at solver-based gradient computation 71

The derivation (∂φi)/(∂ϑ) is recursively acquired by applying the chain rule (i.e. back-

propagation) along the path of updates we computed in the forward FIM solution, until

we computed all necessary updates. For the case that the solution of Equation (4.7) of

several tetrahedra share the same arrival time, there is no single unique solution for ∂λi
∂ϑ .

Recall for this purpose the superdifferential

∇+φ(x) :=

{
p ∈ Rn : lim sup

y→x

φ(y)− φ(x)− 〈p,y − x〉
||y − x|| ≤ 0

}
((2.11) revisited)

Our optimization uses the superdifferential ∇+φ in these cases, which can be interpreted

as the supporting hyperplane above the minimum functions in (4.7). These superdifferen-

tials become relevant inside elements where multiple wavefronts arrive at the same time

(Compare Example 2.4). Since any choice of superdifferential p ∈ ∇+φ is feasible for the

optimization (see Section 2.10), we choose a random superdifferential.

The FIM algorithm is a Gauss-Seidel method, meaning that nodes will be updated

multiple times until the final, minimum arrival time is calculated. Up until now, we only

considered this final value, which is sufficient for the forward problem. However, for the

differentiation of φ4 in Equation (4.9), non-trivial cases may occur that might require the

results of previous updates of φ4. Consider a simple example 2D-mesh with 3 triangles

and 4 nodes v1 through v4 and their respective arrival times φ1 through φ4, visualized in

Figure 4.3. On the left side, the update directions (similar to e∆ in Equation (4.3), but in

2D) are marked as arrows for the first update of each node. On the right side of Figure 4.1,

we now assume that φ2 receives an update from φ4, which happens if the characteristic

directions do not coincide with the edges and faces of the mesh. This update of φ2 will

result in possibly additional updates of φ3, φ4 and subsequently φ2, until convergence

according to
∣∣∣φk4(x)− φk+1

4 (x)
∣∣∣ < ε is reached. If we assume D ∈ S2

++ for all triangles,

then the update directions can never form a full circle, since for any update direction

it holds that ∀ei,j 6= 0 : ||ei,j ||2,D > 0. To derive ∂φ2

∂ϑ properly, we need to distinguish

between different updates of φ2. Let φki denote the k-th update of φi and f(φi, φj) =

Equation (4.3) (FIM Update). Then (assuming φ1
0 = 0):

φ2
2 = f(φ1

3, φ
1
4) = f(f(φ1

1, φ
1
2), f(φ1

2, φ
1
3)) = f(f(φ1

1, f(0, φ1
1)), f(f(0, φ1

1), φ1
3)) (4.10)

To this end, we use a forward method of differentiation, beginning from the starting points

x0 ∈ S and applying the gradient in the same update order as the original computation of

φj to compute
∂φj
∂ϑ . This way, all φj-values reflect the exact values and differentials at any

given iteration of the algorithm. Instead of computing the forward solution a second time,

we remember 250 Gauss-Seidel iterations for this purpose by using ring-buffers, which was

sufficient for all experiments conducted. To avoid duplicate evaluation, we remember the

values of λi from (4.3) for each point and the vertices vj as well as their values φj at

the time of the minimal evaluation. The backpropagation starts at the starting points

v0 and applies the chain rule along the path of updates we computed in the forward
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FIM solution. Remembering the Gauss-Seidel updates increases the required memory,

but in return speeds up the computation. This however may lead to very high memory

consumption for large meshes, in which case an implementation that computes the forward

solution and all derivatives jointly would be preferrable.

v0

v1
v2

v3
v4

First update of each node

v0

v1
v2

v3
v4

Current update direction

Last update direction

Subset of nodes is updated a second time

Figure 4.3: Visualization of an exemplary update sequence of the FIM algorithm that
demonstrates the necessity to distinguish between nodal values of different iterations.
The arrows visualize the update directions similar to e∆ in Equation (4.3). the High
anisotropies may lead to multiple updates of nodes with an update direction that is de-
pendant on itself. For such cases, we need to remember the earlier computations of the
same node. Note that the update directions can never form a full circle if all diffusion
tensors are symmetric and positive definite.

4.5.2 Optimization

Moving from the continuous optimization problem in (4.8) to the discrete domain, we

define our main optimization problem using an arbitrary given function φ̂ on a measurable

discrete surface ΩO:

min
D,g

1

2

∑

v∈ΩO

(
φ(v)− φ̂(v)

)2
+ γR (D,g)

s.t. D(x) ∈ Sn++, φ(x) = FIM(D,g,M, S)(x)

(4.11)

where φ(y) and φ̂ are the vector of nodal vertex values φi from the current model and

reference respectively and R is a regularizing function, penalizing unlikely solutions. We

refer to the sum as the Sum of Squared Errors (SSE).

To properly derive all final points ∂φi
∂ϑ , we apply all saved updates FIMU in their original

order and derive each updated value using Equation (4.9). The computation takes only

a fraction of the original time of the FIM algorithm, since a lot of computations in the

original FIM algorithm are dedicated to checking if the values of vertices have converged.

An outline of the procedure is given in Algorithm 4.2.

All that is left for our optimization in Equation (4.11) to work, is to define a proper
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regularization functionR. The proper choice ofR has been a long debated topic in multiple

fields for inverse problems, but we used an arguably very popular choice for regularzing

the diffusion tensors D, that has been successfully used in many inverse problems, such

as image denoising: The Huber regularization [107], a smoothed Total-Variation function,

(R(D,g) = ||∇D||H,α), where ||·||H,α denotes the Huber norm defined as:

||x||H,α =

{
1
2 ||x||

2 if ||x|| ≤ α
α
(
||x|| − 1

2α
)

else

To compute∇D we use Gauss’ theorem since D is defined as a piecewise constant function.

Details how we approximated this gradient are given in Section A.4.

Several algorithms are suitable to optimize our objective function in (4.11), but the

number of iteration steps within a given amount of time is severely limited by the size

of the mesh and the number of parameters. The original problem in Equation (4.11) can

be reformulated as the non-linear least squares problem, given the parameter set y ∈ C,

where C is a convex constraint set:

min
y∈C

1

2

∣∣∣
∣∣∣φ(y)− φ̂

∣∣∣
∣∣∣
2

2,ΩO

+
γ

2

|T |∑

j=1

∣∣∣
∣∣∣(∇Dy)j

∣∣∣
∣∣∣
H,α

= min
y∈C

1

2
||r(y)||22,ΩO

+
γ

2

|T |∑

j=1

∣∣∣
∣∣∣(∇Dy)j

∣∣∣
∣∣∣
H,α

(4.12)

with γ being the regularization weight. Only errors on the measurement domain ΩO

contribute to the norm ||·||22,ΩO
=
∑

v∈ΩO
(·)2. D is our linear diffusion tensor assembly

operator, creating the tensors D from the elements in the parameter vector y. We define

the gradients on the diffusion tensors as the sum of variation of the tensor’s elements:

(D(y))j =



a d e

d b f

e f c




∣∣∣
∣∣∣(∇D(y))j

∣∣∣
∣∣∣ =

∑

ξ∈{a,...,f}

||∇ξ||

where j denotes the diffusion tensor Dj of Tj and each element is a function of y.

We use a constrained Gauss-Newton method to optimize Equation (4.12), by linearizing

the function around the current value yk using a first order Taylor series expansion and

discarding higher order terms:

min
y∈C

1

2
||r(y)||2+

γ

2

|T |∑

j=1

∣∣∣
∣∣∣(∇D(y))j

∣∣∣
∣∣∣
H,α
≈ min

y∈C

1

2
||r(yk) + J(yk) (y − yk)||2+

γ

2

|T |∑

j=1

∣∣∣
∣∣∣(∇D(y))j

∣∣∣
∣∣∣
H,α

(4.13)

where J(yk) denotes the Jacobian matrix of r at the point yk.

The size of the Jacobian easily exceeds the available memory, but since only few of

the activation times are dependant on single variables and diffusion tensors, the Jacobian

matrix can be represented in a memory-efficient sparse matrix format.
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Algorithm 4.2: Computing FIM Gradients

Input : Diffusion Tensor Operator D(y), Starting Points S, Mesh M
Activation Times φ
Differential Operator ∂D
FIM Updates (Equation (4.7)) FIMU

Output: Activation Times Derivation ∂φ
∂D

∀vj ∈M \ S : φj :=∞
∀vj ∈M :

∂φj
∂yi

:= 0

for φu,vn, λ ∈ FIMU do
φn := φu // Reapply Update
∂φn
∂D := f( ∂D∂yi ,D(y), φ, ∂φ∂yi , λ) // Calculate f = Equation (4.9)

end

Algorithm 4.3: FIMIN

Input : Initial Parameter set y0 ∈ RK
Diffusion Tensor Operator D(y)
Convex Constraint Set C
Differential Operator ∂D

∂y

Desired Activation Map φ̂
Output: Optimized Parameter Set yn
while not converged do

r(yk) = φ (D(yk))− φ̂ // Compute Residuals

i ∈ V (M) : Ji,j(yk) = ∂φi
∂yj

// Build Jacobian using Algorithm 4.2

ŷk+1 = min
y∈C

1
2 ||r(yk) + J(yk) (y − yk)||22,ΩO

+ γ
2

∑|T |
j=1

∣∣∣
∣∣∣(∇Dy)j

∣∣∣
∣∣∣
H,α

// Constr. Gauss-Newton

yk+1 = yk − β (yk − ŷk+1)
end

Algorithm 4.2 is also applicable to optimize the activation timings g if the opera-

tor D(y) is swapped with g(y). The constrained Gauss-Newton optimization problem

in Equation (4.13) is a convex problem, which we solve by using a bounded L-BFGS

method [21]. In Algorithm 4.3, the activation times derivation and the constrained Gauss-

Newton method are combined to iteratively adapt the parameter set to the minimize

Equation (4.11). The step-size parameter β is found by using the Armijo backtracking

line search [4].

The L-BFGS method is limited to box constraint sets Cb, but, as shown in Exam-

ple 2.10, the problem can also be solved for any convex constraint C with an unconstrained

optimization algorithm by defining the Moreau-enveloped problem of Equation (4.13). We
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define in this case:

f(ȳ) := min
y

1

2
||Ky − b||22,ΩO

+ δC(y) +
1

2
||y − ȳ||22,M +

γ

2
||Ay||22 (4.14)

where δC(x) is the indicator function on C and M = 1
τ I − K>K − γA>A. The Huber

regularization can not be used for the regularization term γ
2 ||Ay||22 without any modifica-

tions. For this purpose, we approximate the Huber H function locally around the current

point yk by defining

||x||Hk,α =





1
2 ||x||

2 if ||xk|| ≤ α
α
(
||x||2
||xk|| −

1
2α
)

else

Our total regularization operator is therefore A = Hk∇D. M ∈ Sn++ is ensured by

τ <
(∣∣∣∣K>K

∣∣∣∣+ γ
∣∣∣∣A>A

∣∣∣∣)−1
(see (2.10)). The optimal choice of y in (4.14), yields a

proximal point algorithm returning a feasible point:

ŷ = proj
τC

(
ȳ − τK>(Kȳ − b)ΩO

− τγA>Aȳ
)

where projτC is the projection operator on the convex set C. The gradient direction of

this Moreau-envelope is:

∇f(ȳ) = τ−1 (ȳ − ŷ)

By setting K = J(yk) and b = J(yk)yk − r(yk), we can use (4.14) together with a

proper step-size backtracking to optimize the original problem in Equation (4.13) for

convex constraints C. More details about the Moreau-enveloped problem can be found in

Section 2.10 and [26, p. 29 ff].

4.5.3 Benchmarks

Performance of the proposed optimization method was evaluated by solving a series of

benchmark problems of increasing complexity. Fully characterized reference solutions φ̂

for ventricular activation sequences for a given domain Ω were generated by defining an

orthotropic diffusion tensor D̂ and initial activation Ŝ with initial timings g. Data observed

at the outer surface of the domain (ΩO ⊂ Ω) were used then as inputs for the inverse

FIMIN-based optimization. Starting from various default assumptions we attempted to

identify either the eigenvalues vf , vs and vn of the velocity tensor D, as well as initiation

timings φ(v0) on S, or both.

Two setups were considered. First, a simple computationally inexpensive 2D tissue

sheet was generated that allowed for sufficiently short simulation cycles useful in iden-

tifying fundamental algorithmic issues and devising strategies of how to address these.

Secondly, an anatomically accurate human biventricular (BiV) model with physiologi-

cally realistic activation sequences was utilized to evaluate the method’s ability to identify
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the parameters governing the ventricular activation sequence from limited observations

recorded from the epicardial surface.

4.5.3.1 2D tissue sheet

A simple 2D sheet of size 2×2cm2 was discretized at 1mm resolution, yielding a small grid,

which was triangulated using Delaunay triangulation into 722 triangles (see Figure 4.4 A)).

In [33] it was shown that, using an eikonal model, a spatial resolution of 1mm is capable of

capturing the most important features of wavefronts for anisotropy ratios found in cardiac

applications. An arbitrary, but smooth, diffusion tensor field D̂ with EAS at the tissue’s

center was used for generating a reference activation sequence φ̂ by solving Equation (4.11)

using FIM for triangular domains. Data along the boundary of the domain ΩO were used

to identify D(x) by optimizing according to Equation (4.11).

4.5.3.2 Human biventricular model

A human biventricular (BiV) anatomy model was reconstructed from an end diastolic 3D

balanced steady state free precession (SSFP) cardiac magnetic resonance imaging acqui-

sition in a sagittal orientation with whole-heart coverage and an isotropic resolution of

1.3 mm. Details on the model building process have been reported previously elsewhere

[6, 39],but are briefly summarized here. A tetrahedral finite element mesh was generated

[99] from a segmented image stack at an average resolution of 880µm (Figure 4.5 A, top

panel). Fiber architecture was incorporated assuming a linear rotation of fiber angles

from −60◦ at the epicardium to +60◦ at the endocardium using a rule-based method[9]

(Figure 4.5 A, bottom panel). This resulted in a BiV model consisting of ∼ 5 · 105 nodes

and ∼ 2.6 · 106 tetrahedral elements. To ease computational load, the original model was

downsampled to an approximate resolution of about 1.3mm with ∼ 1.1 · 105 nodes and

∼ 5.8 · 105 tetrahedral elements.

Reference Solutions

The forward model for generating the ventricular activation sequence was based on the

following considerations. Both anatomical [40, 92] and experimental [47] mapping studies

that utilize ex vivo human hearts provide evidence that the electrical activation of the

ventricles is initiated by the HPS [65] with EAS occuring at PVJs. Purkinje ventricular

junctions (PVJs) within a healthy human LV can be approximated by a tri-fascicular

conduction system [104] consisting of three major fascicles located high on the anterior

paraseptal wall, xLV,a, in a central area at the septal endocardium, xLV,s, and in a posterior

paraseptal area at about one third of the LV long axis above the apex, xLV,p. Similarly,

in the RV fascicles were assumed to be located low on the the septal endocardium, xRV,s,

at the base of the pulmonary trunk, xLV,p, and at an area high on the anterior wall near

the junction of the right atrium, xRV,a. Spread of activation from EAS occurs at much

higher CVs within the subendocardial layer than in the bulk myocardial wall due to the
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fast-conducting properties of the Purkinje network [45] or by a more abundant expression

of sodium channels in subendocardial myocytes [101]. Tissue patches surrounding EAS

are asummed to activate instantaneously.

Size, location, and timings of the EAS determining S and g are therefore key deter-

minants shaping the activation sequence of the LV, as well as the prescribed orthotropic

CVs within the domain. Thus, two different activation sequence models were used that

both approximated the HPS with different degrees of fidelity: a topologically realistic

model of the HPS with a larger number of PVJs (BiV-HPS), and a simpler trifascicular

model (BiV-3F) comprising of only the three main fascicles in LV and RV. The BiV-HPS

topolgy was obtained by starting with a manually delimited, scanner-based rabbit HPS

and transferring it to the human mesh with universal ventricular coordinates[10]. Sizes

and locations of EAS in S are indicated in Figure 4.5 B-C. The six distinct EAS, xLV,a,

xLV,s, xLV,p, xRV,a, xRV,s, xRV,p, consisted of ∼ 230 discrete nodes.

Reference solutions for BiV-HPS and BiV-3F model were generated using a set of

default parameters that produce physiological activation patterns in line with measure-

ments in humans [47]. In both cases, CVs were chosen homogeneously with vf = 0.6 m/s,

vs = 0.4 m/s, vn = 0.2 m/s, respectively, except for a subendocardial layer where a higher

isotropic CV was prescribed with vf = vs = vn = 1.5 m/s. In the BiV-HPS model, en-

docardial activation is governed by the topology of the HPS network, subendocardial and

myocardial definitions of CV within the orthotropic diffusion tensor D, and transduction

delays across PVJs when thin essentially 1D fibers of the HPS network initiate propagation

in the large mass of the ventricular myocardium [17]. Initiation timings of PVJs therefore

ranged from 0.58 ms up to 38.76 ms. Activation of the BiV-3F model was initiated by

prescribing EAS timings, in the LV at t0 = 0 ms, 7 ms and 3 ms to xLV,s, xLV,a and xLV,p

fascicle, respectively, and in the RV at t0 = 1 ms, 9 ms and 15 ms to xRV,s, xRV,a and

xRV,p fascicle, respectively.

Optimization

Unlike for the 2D sheet, no attempts were made to identify eigenvectors and eigenval-

ues of D for all elements in the mesh as the high dimensionality of this problem would

render the optimization prohibitively expensive. Rather, we subdivided the mesh into

N partitions and identified in each partition i a set of CVs vfi , vsi , vni . That is, the

eigenvectors fj , sj ,nj of all Dj were considered given in each tetrahedral element j and

optimization was performed only w.r.t. to the CVs in one partition i, i.e. the optimized

CVs in a tetrahedron j vj,fi , vj,si , vj,ni were identical for all tetrahedra in partition i. The

velocity tensor D in tetrahedra j of partition i is given then as

Dj (vfi , vsi , vni) = v2
fi

fj ⊗ fj + v2
si sj ⊗ sj + v2

ni nj ⊗ nj

where Dj belongs exactly to one partition i. In addition, to limit the amount of
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anisotropy introduced during optimization, constraints were imposed on the admissible

minimum and maximum CVs chosen as vmin = 0.10m/s and vmax = 1.75m/s. This

limited the maximum possible anisotropy ratio
(
vmax
vmin

)
to ≤ 17.5. Additionally, the Huber

regularization for this example is calculated on the conduction velocities, i.e. we regularize

∇vf/s/ni . The optimization problem for the BiV model is therefore

min
vfi ,vsi ,vni ,g

1

2

∣∣∣
∣∣∣φ(vfi , vsi , vni ,g)− φ̂

∣∣∣
∣∣∣
2

2,ΩO

+
γ

2

|T |∑

j=1

||∇Dj (vfi , vsi , vni)||H

s.t. D ∈ Sn++, φ(x) = FIM(D(vfi , vsi , vni),M, S(g))(x),

vmin < vi < vmax

(4.15)

The epicardial surface ΩO of the BiV model was spanned by ≈ 1.4 · 104 discrete nodes.

Optimization of the initiation timings φ(x0) of PVJs in the BiV-3F was performed for

each discrete node separately.

The partitioning between BiV-3F and BiV-HPS models differed. In the BiV-3F model

only N = 2 partitions were used, the endocardium and the remainder of the heart, whereas

in the BiV-HPS model N = 100 partitions of equal size were used that were randomly

located throughout the domain Ω. Partitioning in the BiV-HPS case was performed by

converting the tetrahedral mesh into an unweighted dual-graph, where an edge is equal

to a face connecting two tetrahedra, and applying then the min-edge-cut algorithm as

implemented in the METIS library [76].

4.5.3.3 Robustness

Real world measurements are limited in terms of spatio-temporal resolution and afflicted

by uncertainties. With regard to measuring epicardial activation patterns, spatial location

of recording sites, electrogram fractionation and associated difficulties in reliably deriving a

marker representing the instant of local activation, and noise are the main sources of error.

To probe the robustness of the FIMIN algorithm against these errors, the BiV benchmarks

were repeated in presence of measurement errors and with undersampled data. Original

reference data φ̂ were perturbed in two different ways:

1. Undersampled data were generated by selecting a subset of observed points on ΩO,

Ω̂O ⊂ ΩO. The remainder of points on ΩO were generated from Ω̂O by inverse

distance weighting.

2. Measurement errors were introduced by perturbing observed data by adding a normal

distributed random noise with zero mean and σ standard deviation:

∀v ∈ Ω̂O : φ̃(v) = φ̂(v) +N (0, σ) . (4.16)

where σ was chosen at the order of typically used temporal sampling intervals up to 8 ms.
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4.5.4 Results

4.5.4.1 2D-Sheet

To demonstrate the general applicability of the FIMIN algorithm, we allowed the maxi-

mum degree of freedom by optimizing each element of every D seperately with no con-

straints other than D being required to be a metric (see Equation (4.11)). Data at the

observation domain were generated by initiating a wavefront at the tissue center with D

defined by the eigenvectors illustrated in Figure 4.4 A and a homogeneous set of CVs

vf and vs given as 0.6 and 0.34 m/s. To provide a more realistic and continuous sce-

nario, D was slightly smoothed to ease optimization. Additionally, the 2D experiments

also considered the eigenaxes of D to be unknown and optimizable. We optimized D

by using the FIMIN Algorithm 4.3 and completely random initial CVs within the range

vf,0, vs,0 ∈ [0.15, 0.98]m/s. The initial random D and the corresponding initial activation

sequence without optimization is shown in Figure 4.4 B. Optimization with the FIMIN,

without any regularization (γ = 0) yielded an optimal, zero energy solution, but with a

highly anisotropic and non-smooth D (Figure 4.4 C). This can be attributed to the fact

that FIM gradients track the wavefront and compute the influence of changing D on each

vertex of the domain along the geodasic paths from an initial starting point. Since the

gradient is propagated along the geodesic paths and there is no cost associated with errors

outside ΩO, many geodesic paths collapsed into a single path. Diffusion tensors that did

not fall on any geodesic path were not updated as no gradients were propagated across

them. Such highly anisotropic and non-smooth Ds are a rather unlikely solution to the

problem, even though they may perfectly approximate the target function φ̂ on ΩO.

As shown in Figure 4.4 D, already with a low value of γ = 5 · 10−3 the resulting D

provides a much smoother solution closer to the original diffusion tensor field (compare

Figure 4.4 C and D).

The 2D toy example demonstrated that the ill-posedness of the problem could not be

overcome without a good regularization of the objective function. While still not perfect,

the regularized solution in Figure 4.4D provides a less complex and much more likely D

than the unregularized optimal solution in Figure 4.4C and demonstrates the viability of

our approach. We tried two other, probably more physiological plausible, 2D experiments

that can be seen in Section A.1, Figures A.11 and A.12.

4.5.4.2 Biventricular Models

In the BiV anatomy model with a given fiber and sheet architecture (Figure 4.5A) reference

activation sequences were generated with the BiV-3F and BiV-HPS configuration (see

Figure 4.5B-C), respectively. Using FIMIN we attempted to identify the timings φ(x0) and

velocities vf , vs and vn in each of the N partitions of the myocardium from measurements

of φ, taken at the epicardial surface Ω0 only. Eigenvectors of the D, f(x), s(x) and n(x),

were considered given.
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Figure 4.4: A) 2D benchmark setup showing domain Ω, EAS x0 in the sheet’s center, the
reference activation map φ̃, diffusion tensor field D̂(x) and the measurement domain Ω0.
Note that the velocity colormap is slightly different for each of the diffusion tensor field
due to high variation of fiber velocities between experiments. B) Initial solution before
optimization. C) Solution for optimizing Equation (4.11) with no regularization (γ = 0).
The SSE of activation times is practically 0, but the resulting D is highly anisotropic and
non-smooth. Many geodesic paths (grey lines) collapse into one. D) Solution for optimizing
Equation (4.11) with γ = 5 · 10−3. The energy is still very low, but the regularization
yields a smoother D and avoids high anisotropies. Geodesic paths are spread over more
points and the contour lines are very close to the desired solution.

FIMIN was initialized assuming that activation is initiated at all EAS at the same time,

i.e. φ(x0) = 0ms was chosen. The initial velocities for all partitions were set to 0.93 m/s,

0.66 m/s and 0.54 m/s for vf,i, vs,i and vn,i respectively. Note that these initial velocities

differed significantly from those used for computing the reference solution in terms of both

magnitudes as well as the ratios between them. Further, no distinction was made between

the orthotropic myocardium (0.6, 0.4 and 0.2 m/s for vf , vs and vn, respectively) and the

much faster conducting isotropic subendocardial layer (1.5 m/s).

Optimizing Equation (4.15) w.r.t. velocities vf,i, vs,i and vn,i and EAS timings φ(x0)

proved to successfully reduce the error on both epicardium Ω0 and myocardium Ω. A
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Figure 4.5: Biventricular benchmark setups showing domains Ω, earliest activation sites x0

(EAS), diffusion tensor field D̂(x) and the domain boundary Ω0 from which observed data
are recorded. A) Biventricular anatomy highlighting endocardial and epicardial surface
(top panel) and fiber arrangement (bottom panel). B) and C) show trifascicular (3F)
and HPS initiated activation sequence, driven by EAS activating at prescribed φ(x0) (top
panels).

comparison of activation isochrones of initial and optimized model to the reference model

is shown in Figure 4.6 for both 3F and HPS model. The activation sequence φHPS(x)

is significantly more complex than φ3F(x). Owing to the larger number and the smaller

sizes of EAS’s in the HPS model wave fronts amalgamated inside the myocardial wall well

before breaking through at the epicardium. Thus, the number of epicardial breakthrough

sites was much smaller than the number of endocardial initiation sites, as evident by

comparing endocardial and epicardial isochrone patterns in the HPS case (see Figure 4.6).

This rendered the estimation of timings φ(x0) and velocities vf,i, vs,i and vn,i a challenging

task. Similar to the 2D example in Section 4.5.4.1, the proper choice of γ in Equation (4.11)

played an equally important role in keeping the optimization from overfitting onto the

epicardial data ΩO.

In Figure 4.7, the comparison of the isochrones of our optimized model (black), versus

the reference model (white) at a fixed time is shown, for both the 3F and HPS model and

the epi-, as well as the endocardium. The overlap of both isochrones on the epicardium

show that FIMIN is able to effectively adjust the conduction velocity parameters to min-

imize the distance of the activation times of the model and reference on the epicardium

to a high - and on the endocardium to a lesser, but still significant - degree. The online

version of the paper also includes a video, showing this comparison over time using the
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initial, as well as the optimized model, accessible by clicking on either of the figures in

Figure 4.7.
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Figure 4.6: Top panels: Shown are endocardial and epicardial activation isochrones of
φ3F from a posterior and anterior viewpoint for the reference φ̂3F (A), the solution φ3F

using initial (B) and optimized (C) parameters. Additionally we show the result when
optimizing against φ̃3F from Equation (4.16) with the strongest tested perturbation (D)
(see Section 4.5.4.3, Table 4.1, bottom right cell). Bottom panels: The same comparison
is shown for φHPS.

The effect of optimization on reducing the variation of errors ∆φ = φ̂− φ(y) is shown

in Figure 4.8, considering only ∆φ in the range [−20, 20] ms. After optimization, errors

on ΩO were significantly reduced, following a normal distribution with µ∆ = −1.3ms,

σ∆ = ±2.6ms and µ∆ = 0.7ms, σ∆ = ±3.7ms for 3F and HPS, respectively. Over the

domain Ω, hidden to the optimization function, the overall behavior was comparable, with

errors also converging close to a zero mean, albeit with a slightly skewed distribution.

These results suggest that the hidden SSE function can be optimized over the whole

ventricular domain Ω using data observed on the epicardium ΩO only.

Optimization results with regard to conduction velocities are shown in Figure 4.8.

For the less complex activation sequence φ3F where Ω was partitioned into two veloc-

ity domains only – myocardium and subendocardial layer – the optimized CV triplets of

0.68/0.29/0.18 m/s and 1.69/1.68/1.25 m/s were close to the true values of 0.6/0.4/0.2 m/s

and 1.5/1.5/1.5 m/s (compare Section 4.5.4.2). In contrast, for the more complex acti-

vation sequence φHPS, where 100 partitions were used, a higher variability in optimized

conduction velocities was witnessed, as shown in Figure 4.9. The optimized velocity dis-
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3F Epi
File: res/videos/tri_epi_opt.mp4

3F Endo
File: res/videos/tri_endo_opt.mp4

HPS Epi
File: res/videos/purk_epi_opt.mp4

HPS Endo
File: res/videos/purk_endo_opt.mp4

Figure 4.7: Comparison of the isochrones at a certain time for the optimized model (black),
versus the reference model (white). Clicking the images will open a video showing the
comparisons over time of the initial and the optimized model (online version only).

tributions were centered around the reference velocities, but outliers existed, particularly

in the distribution of vf .

A comparison between true and optimized EAS timings φ(x0) is given in Figure 4.10.

For both sequences φ3F and φHPS true and optimized EAS timings largely overlap, but the

distribution of optimized timings is more spread out which is a consequence of optimizing

each discrete node of the EAS regions independently. Moreover, an apparent bias towards

later timings is observed which was particularly pronounced for the φ3F sequence.

The observed spread in both CVs and EAS timings could be mitigated by increasing

the value of γ in Equation (4.15), leading to a more narrow velocity distribution. However,

errors in φ at the epicardium ΩO were compensated by the optimization by shifting the

initiation timings φ(x0) which were not subjected to regularization (data not shown).

res/videos/tri_epi_opt.mp4
res/videos/tri_endo_opt.mp4
res/videos/purk_epi_opt.mp4
res/videos/purk_endo_opt.mp4
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Figure 4.8: Effect of optimization on the distributions of errors ∆φ in (a) 3F and (b)
HPS model. Blue traces show ∆φ on the epicardium ΩO only, whereas red traces consider
the whole domain Ω. The error distributions on Ω can be very well approximated by
a normal distribution, albeit slightly skewed. Means and standard deviations were (a)
µ∆ = −1.3ms, σ∆ = ±2.6ms and (b) µ∆ = 0.7ms, σ∆ = ±3.7ms for 3F and HPS model,
respectively.
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Figure 4.9: Distribution of optimized velocities vf , vs and vn of the HPS model. The bars
represent the actual, narrow distributions, which can be attributed to splitting the mesh
into 100 partitions. The lines show the envelope of the corresponding bars with the same
color. Reference velocities were 0.6/0.4/0.2m

s for vf , vs and vn, respectively.

4.5.4.3 Robustness

To gauge the potential of the FIMIN algorithm under real world conditions, input data

on ΩO were perturbed by reducing spatial sampling and adding noise, as detailed in

Section 4.5.3.3. A qualitative comparison in terms of activation isochrones between BiV-

3F and BiV-HPS models with maximum perturbation (
|Ω̂O|
|Ω̂| = 0.7%, σ = 8ms) relative

to the reference and unperturbed optimization is also shown in Figure 4.6. While minor
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Figure 4.10: Distribution of reference φ̂(x0) in blue versus opimized φ(x0) EAS timings in
red.

deviations were visible in the BiV-3F case, there was a high level of agreement in isochronal

patterns suggesting that the overall structure of the BiV-3F model was captured despite

coarse spatial sampling and high noise levels.

In the BiV-HPS case, discrepancies were more pronounced as details of the fine-grained

HPS-mediated break-through patterns were lost. Nonetheless, even under these severely

perturbed conditions the model approximated the overall epicardial activation patterns

with sufficient accuracy for real world applications.

As shown in Figure 4.8 for the noise-free model, the optimization reduces the errors

of activation times and usually converges to a normal distribution with near-zero mean.

Noisy and undersampled input data followed a similiar normal distribution of error (data

not shown) as shown in the noise-free model Figure 4.8. Deterioration due to noise and

undersampling, can therefore be characterized by computing mean and standard deviation

of total errors relative to the known reference solution. Results for all scenarios considered

are summarized in Table 4.1. As evident from inspection of data in Table 4.1, relative to

the optimal case in absence of noise and undersampling (upper left corner in Table 4.1 with

Ω̂O = ΩO and σ = 0ms), errors increased with increasing noise and decreasing spatial

sampling, but the chosen regularization kept the FIMIN algorithm from overfitting to the

epicardial activation times.

4.5.5 Discussion

This study reports on the development of a novel FIMIN algorithm for solving an inverse

eikonal problem. Conceptually, the method attempts to identify the key factors governing

the ventricular activation sequence – location and timing of EAS and the velocity tensor

field D – from sparse and noisy activation data φ̂ sampled from the epicardial surface.

The overall feasibility and limitations of the method were investigated in silico. An

anatomically accurate human BiV model was used to generate high fidelity reference ac-
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3F-Model HPS-Model

|Ω̂O|
σ

0 ms 4 ms 8 ms 0 ms 4 ms 8 ms

Ω̂O = ΩO −0.1± 2.8 1.7± 3.0 0.4± 4.2 1.0± 3.5 1.5± 3.6 0.5± 3.6

1 · 103 −1.2± 3.7 −0.3± 2.8 −0.9± 3.8 4.0± 5.4 3.5± 5.4 1.8± 6.4

1 · 102 1.2± 3.9 −1.55± 4.4 −1.2± 3.5 5.3± 6.9 4.8± 6.5 2.1± 7.2

Table 4.1: Shown are the means and standard deviations of total errors ∆φ in ms over the
whole domain Ω between reference and optimized solutions for varying degrees of noise σ
and spatial undersampling Ω̂O. Initial errors of 3F and HPS model were µ∆ = −1.4ms,
σ∆ = ±11.3ms and µ∆ = −23.0ms, σ∆ = ±8.3ms for 3F and HPS model, respectively.

tivation sequences φ(x) as ground truth solutions – either the simplified φ3F sequence

initatiated by a trifascicular HPS, or, the φHPS sequence driven by a topologically more

realistic HPS network – by solving the anisotropic eikonal equation. Using activation times

sampled from the forward solution over the epicardial surface and assuming the location

of EAS’s were known, the corresponding inverse problem was solved using the FIMIN

algorithm to identify the governing input parameters of the forward model that optimally

fit the epicardial activation map.

Using the epicardial activation map at full resolution we first demonstrated that a

reconstruction of activation sequence in 3D is, in principle, feasible under the assumption

of known location of EAS. The robustness of the method under closer to real world condi-

tions was evaluated by reducing the spatial resolution of the observed epicardial activation

map and by adding noise. Our results suggest that the FIMIN algorithm is able to recover

the full 3D activation sequence even under these more realistic conditions with spatial

resolutions that are achievable with currently used clinical mapping systems. Contrasting

the uncertainties in clinical data with the accuracy achieved in reconstructing φ(x) sug-

gests that the FIMIN method may be suitable for the patient-specific parameterization of

activation models in future clinical applications.

4.5.6 Identifying the ventricular activation sequence

The identification of the ventricular activation sequence φ(x) from measurements taken

from the body surface – as in a standard inverse electrocardiographic imaging problem –

or from the outer epicardial surface of the ventricles – as suggested in this study – consti-

tutes a severely ill-posed problem. Any attempt to address this kind of problem depends

therefore critically on the use of a-priori knowledge to constrain the problem and appro-

priate regularization techniques to enforce the constraints. Conceptually, the ventricular

activation sequence φ(x) is governed by three factors only, the location of EAS, their tim-

ings, φ(x0), and the conduction properties of the tissue as encoded in the velocity tensor

field D(x). This problem, in its most general interpretation, can be considered extremely

high dimensional. In this study, three simplifying assumptions were made to reduce the
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dimensionality of the problem and to keep the FIMIN-based optimization tractable: i) the

location of EAS’s were assumed to be known; ii) the eigenaxes of D(x) were prescribed

on a per-rule basis [9] informed by anatomical studies [47], only the tensor eigenvalues

representing anisotropic velocities were considered unknown; and, iii) the spatial variation

of the eigenvalues of D(x) was regularized by partitioning the ventricles into N domains

and enforcing velocity triplets vf,i, vs,i and vn,i to be constant throughout a partition i.

Under these assumptions FIMIN was able to find parameter sets comprising φ(x0) and

vf,i, vs,i and vn,i which approximated φ(x) quite well at the epicardial surface ΩO where

activation maps predicted by the FIMIN model φ were compared to observations φ̂, but

also over the entire myocardial volume Ω where data on φ̂ were hidden to the optimization.

In general, results tended to be more accurate for the φ3F than for the φHPS sequence

due to the more direct relationship between EAS and epicardial breakthrough sites, as

well as the lower complexity of the optimization model. In the φHPS case there was a

larger number of EAS’s in each ventricle. These initiated numerous wavefronts at the

endocardium which merged within the ventricular myocardium, thus yielding a reduced

number of epicardial breakthrough sites.

A notable deviation of optimized CVs from the reference CVs was wittnessed in the

BiV-HPS case which can be attibuted to a number of factors. First, the high number of

EAS’s is likely to lead to a multimodal problem where the errors ∆φ can be compensated

by both changes in initiation timings as well as changes of the CVs. Second, the gradient

of velocities is not uniformly distributed over the domain, favoring optimization of the

partitions closer to the epicardium as their gradient tends to have a higher magnitude.

The Huber regularization mitigates this behavior up to a certain degree, but increasing γ

amplifies the first mentioned problem, favoring the optimization of initiation timings over

conduction velocities. Partitioning the mesh into regions of constant conduction velocities

significantly reduced the computation load, but the regularity of conduction velocities

across the whole domain is more effectively driven by our choice of γ.

This activation time which was earlier relative to the actual PVJ activation times

in the reference model (see Figure 4.10). Thus the initial activation sequence leads the

reference sequence throughout the entire domain Ω, i.e. ∆φ < 0. Both optimized BiV-3F

and BiV-HPS models yielded a normal distribution of errors on ΩO, which is a common

effect when optimizing using the SSE function. In the case of not perfectly optimizable

functions, the SSE function will lead to a normal distribution of errors with zero mean, as

can be seen in Figure 4.8.

Finding the correct velocities by optimization was complicated by the fact that initia-

tion timings φ(x0) were also assumed to be unknown. This biased the optimized solution

towards later initiation timings φ(x0) (see Figure 4.10) which were compensated by higher

conduction velocities (see Figure 4.9).
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4.5.7 Robustness

In view of potential applications of FIMIN in an experimental or clinical context, the

robustness with regard to spatial resolution and distortions due to noise is of pivotal

importance as current modalities for measuring φ(x) suffer from a number of limitations.

With regard to spatial undersampling and noise FIMIN-based reconstructions of φ(x)

were shown to be surprisingly robust. Reconstructed isochronal patterns appeared low-

pass filtered when compared to unperturbed reconstructions, but the overall structure of

the solution was retained, even under the most severe conditions where only 100 epicardial

data points were used and the noise added to arrival times was normally distributed with a

standard deviation of 8ms. The undersampling corresponded to approximately 0.7% of the

available epicardial points, with an average spacing of 14.2mm between the measurement

points.

In general, it can be observed from Table 4.1 that the final error after the optimization

is mostly dependant on the undersampling (vertical) rather than the noise added to the

observed data (horizontal). This can be attributed mainly to our cost function: We chose

a mean-squared-error function in our problem formulation (see Equation (4.11)), which

is an appropiate assumption to mitigate the effects of Gaussian noise. Although mean

and standard deviation vary between most of the experiments in horizontal direction of

Table 4.1, the final mean-squared error is very similar for all of these experiments.

Robustness of FIMIN-based reconstructions of the activation sequence must be viewed

in the context of data uncertainty of measured activation maps. In general, a highly ac-

curate observation of φ(x) at the organ scale throughout Ω is not feasible with currently

available technology. Owing to the physics of propagating depolarization wavefronts which

is governed by fast transients (< 1ms) that translate into steep wavefronts (< 1mm), map-

ping technologies for an accurate registration of φ(x) would be required that offered the

ability to measure wavefront arrival times with sub-millimeter and sub-millisecond reso-

lution throughout the entire ventricular myocardium. Such measurements are massively

invasive and only applicable in an experimental setting, but even the most advanced map-

ping techniques do not meet these requirements. Optical mapping techniques provide

better spatial resolution, at least in theory, but are affected by a number of significant

artifacts related to signal distortion due to integration effects mediated by photon scat-

tering [15]. Further, optical measurements are confined to superficial tissue layers as they

are not able to record, in a reliable fashion, any information from the depth of the tissue.

While panoramic imaging systems exist, the typical field of view of mapping systems is

limited and cannot cover the entire epicardial surface ΩO. Finally, while cardiac tissue

is often considered a functional syncytium, it is a discrete structure which inevitably re-

sults in wavefront fractionation, even in perfectly healthy tissue. These deviations from a

continuum are reflected in signal fractionation which often renders the determination of

arrival times ambiguous.
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4.5.8 Relation to inverse ECG imaging problems

The FIMIN method for relating epicardial arrival times to the ventricular activation se-

quence is a non-standard ECGi problem. Instandard ECGi problems electrical potentials

in the form of electrocardiograms or body surface potential maps are used as observa-

tions to infer different aspects of the ventricular activation sequence. In physical terms,

inverse ECGi yields information on transmembrane voltages [68, 124], extracellular po-

tentials [11, 108] or local activation/recovery times [48, 67, 72, 120]. which are, typically,

reconstructed on the epicardial surface, but methods for endocardial or transmural re-

constructions also exist. That is, the observations used as input in this study are often

considered the solution in ECGi problems. As such the FIMIN is not directly applicable to

ECGi problems without further extensions as the FIMIN, in its current form, accepts acti-

vation times from the epicardial surface as inputs, but not electrical potentials. However,

coupling of FIM-based activation models with forward predictions of electrical potentials

at the body surface can be done very efficiently, as has been shown by us [87] and others

[95, 128]. In particular, eikonal solvers in combination with appropriate source models and

a lead-field approach [54, 97] as used in [95] can be solved in a computationally highly effi-

cient manner. Such methods yield body surface potentials which are essentially equivalent

to ground truth solutions computed with an expensive fullblown bidomain formulation

[97]. To construct an ECGi method based on the FIMIN one could use a FIM-based for-

ward model [87, 95] to compute transmembrane voltage maps throughout the myocardium,

Vm(x, t). In the simplest case a fixed action potential shape U(t) may be used and shifted

by the computed activation times φ(x) to compute the source term Vm(x, t) = U(t−φ(x)).

This extension will be used later in Section 4.7.2.2 to solve the inverse ECG problem and

could be employed here in a similar fashion.

4.5.9 Importance of ε

Initial experiments with the 2D sheet model demonstrated that appropriately choosing ε

for Algorithm 4.1 is of pivotal importance. This can be exemplified in a simple perturbation

experiment with the BiV model from Section 4.5.3.2, with a single CV triplet (vf , vs, vn)

for the whole domain. Increasing ε decreased the runtime to compute the FIM solution,

but the resulting surfaces of the inverse optimization problem and the obtained gradients

were significantly less smooth as compared to using a smaller ε (see Figure 4.11). In this

example, only a weakly anisotropic D was used with the optimal choice of CVs being

vf = v1 = 1 and vs = v2 = 1.5. It is worth noting that this effect was amplified by

increasing anisotropy ratio v1
v2

(not shown).

4.5.10 Computational Costs

Computational costs of the FIMIN algorithm were significant. For instance, finding the

optimal parameters in the BiV-HPS model last for ≈ 16 hours. The BiV models consisted
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Figure 4.11: Energy landscapes for different values of ε in the FIM Algorithm. Contour
lines visualize the cost function from Equation (4.11) we seek to minimize, with the global
minimum being located at v1 = 1 and v2 = 1.5. Arrows indicate the normalized gradient
descent direction obtained by using Algorithm 4.2. Smaller ε yields a smoother energy
landscape which benefits optimization.

of ∼ 1.1 · 105 nodes and ∼ 5.7 · 105 tetrahedral elements. The FIM and the computation

of the Jacobian in Algorithm 4.2 were implemented in C++, while the remainder of the

optimization used Python/Numpy. As a stopping criterion for the FIMIN a maximum

number of iterations of 1000 or a slowdown in the rate of convergence was used. Prolonged

execution times could be attributed to the increasing anisotropy of the optimized model

as well as to the small value of ε that was needed for the FIM algorithm to efficiently

optimize the FIM function. The two major contributors to overall execution time were

the FIM algorithm and the Jacobian computation.

Increasing ε, lowering the maximum number of iterations or further decreasing spatial

resolution are viable ways to achieve shorter execution cycles. However, these measures

are likely to increase errors due to lower precision or premature convergence. Constraining

the maximum permissible anisotropy by regularization could also be beneficial, but this

has not been investigated in this study. Finally, further speedups may be gained from

optimized implementations. For instance, the computationally expensive parts of the

FIM algorithm are well suited for a SIMD-architectures such as a GPU, albeit the size of

the model and, consequently, its Jacobian would require a GPU with a large memory or

a multi-GPU implementation.

4.5.11 Limitations

Owing to the severe degree of ill-posedness of the problem, a number of simplifying mod-

eling assumptions were made that may restrict the applicability of FIMIN to real world

clinical problems. First and most importantly, epicardial activation maps were used as

inputs. While the acquisition of such maps is clinically feasible with minimally invasive
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techniques, such procedures are non-standard. To be of wider utility, non-invasive input

data such potential maps from the body surface should be considered within a more stan-

dard inverse ECG imaging setting [30]. Secondly, the location of the various EAS were

assumed to be known. There is currently no straight-forward way, in which the location of

the EAS could be integrated as an optimizable parameter into the optimization problem in

Equation (4.11), using only epicardial data. While endocardial mapping studies to reveal

EAS are performed routinely in the clinic, the acquisition of endocardial maps relies on an

invasive procedure. From an applied point of view, the location of EAS should therefore

be considered unknown and must be identified with FIMIN as part of the optimization

procedure. Clinically acquired endocardial activation maps are valuable for validation,

but should not be used for inferring location of EAS a priori.

Another potential drawback is the choice of the number of partitions in which the

conduction velocity is kept constant for the 3D-cases. This reduces complexity and there-

fore expressibility of the model. To model local heterogeneity of conduction velocities,

like found in scarred regions, current methods utilize technologies relying on image-based

modalities, e.g. [3]. If these are available, the partitions could be adapted to include the

scarred regions in single partitions.

In the absence of this data, the partition size would need to be chosen smaller than the

region of interest, to have a chance of finding the regions by the model alone. Excessively

chosen partitions will not be able to express the desired local heterogeneity of conduc-

tion velocities, but rather average the found conduction velocity over the area/volume.

In contrast, small partition sizes will lead to longer computational times, more needed

optimization iterations and prohibitively large Jacobian-matrices for the Gauss-Newton

updates. While the latter, memory drawback can be mitigated by using sparse matrix

formats, the two former problems can only be addressed by by efficient parallelization,

either on a cluster, or an efficient GPU implementation.

4.6 Endocardial contact mapping

In Section 4.5, we considered the heart domain Ω to be a subset of R3 with positive

Lebesgue measure. In the following two works in Sections 4.6.2 and 4.6.3 [60, 61], we con-

sider the problem of EAMs, created during catheter ablation therapy. Catheter ablation

therapy is a common procedure to treat many arrythmias of the atria, such as AF. In most

cases of ablation, a surgeon inserts a catheter in the patient’s upper thigh into the inferior

vena cava, to gain access to the RA. As there is no visual contact with the catheter, this is

a fully digitally guided procedure, sometimes assisted with Computer Tomography (CT).

Modern tools not only allow the localization of the catheter, but will also progressively

build a model of the atria – the EAM. Additionally, when in contact with the endocar-

dial atrial wall, the probe will measure electrical activation to generate an activation map

projected onto the EAM. visualizes the rough outline of the procedure.
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The target is now to identify electrical pathways of high, or low conductivity, which can

result in AF. From a modeling point of view, the generated mesh represents a manifold

M ⊂ R3 to which the electrical propagation is bound. This means, we use a slightly

altered version of (2.23), which is

{
||∇Mφ||D =

√
〈D∇Mφ,∇Mφ〉 = 1 in Ω

φ = g on Γ ⊂ ∂Ω
(4.17)

The theory behind the computation of ∇M was outlined in Section 2.7 . Note that by

choosing D to have zero velocity in the direction normal to the manifold, we get the

equality

√
D∇Mφ =

√
D∇φ

⇒ ||∇Mφ||D = ||∇φ||D
(4.18)

which we will use in Section 4.6.3. The following two works in Sections 4.6.2 and 4.6.3

will use this formulation and problem setup to solve the inverse problem of identifying D

from sparsely given φ. A variant of the FIM to solve eikonal on triangulated surfaces was

presented in [52], which was used to generate the ground-truth in-silico models. Note that

the tensor D ∈ S̄3
++ in the problem (4.17) is 3-dimensional. We employed for both of the

mentioned works two modifications to the original problem

1. to always ensure that D ∈ S̄3
++

2. to reduce the dimensionality of the problem by recasting the original problem (4.17)

into a 2D-problem.

The exact methods to achieve both modifications will thoroughly discussed in the next

section.

4.6.1 Representation of the conductivity tensor

In principle, after accounting for symmetry, D(x) has 6 component to be identified for

every x ∈ Ω. Since the dynamic of the wave propagation is bound to the 2-D mani-

fold, however, the component normal to the surface does not influence the solution. We

therefore define D(x) as follows:

D(x) = P (x)

(
D̃(x) 0

0ᵀ 0

)
P (x)ᵀ, (4.19)

where D̃(x) ∈ S2
++ and P (x) is a rotation from the canonical base in R3 to a local base

{v1(x),v2(x),n(x)}. The local base at x ∈ Ω is such that n(x) is the normal vector to

the surface and the orthogonal vectors v1(x), v2(x) span the tangent space. In such way,

the dimension of the parameter space is reduced from 6 to only 3. Any basis v1(x) in the
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tangent space is valid, but we want to have a smooth basis that minimizes the variation

across the manifold:

min
v1

∫

Ω
||∇Mv1(x)||22 dx s.t. ||v1(x)|| = 1, (4.20)

In PIEMAP, Section 4.6.2, we minimized (4.20) directly, whereas for Section 4.6.3, we

used the vector heat method [113] that computes the parallel transport of a single given

vector. The need for this smooth basis is explained by the use of TV regularization on

the parameters that define the conduction velocity on the manifold:

TVε,λ(·)λ
∫

Ω
Hε(∇M·) dx (4.21)

Where for Hα, we recall the Huber function given by:

Hα(x) =

{
1

2α ||x||
2 , if ||x|| < α,

||x|| − 1
2α, else

((2.64) revisited)

As already mentionted, the conductivity tensor D was defined through a parameter

vector in a way that ensures its symmetry, positive-definiteness, and zero velocity orthog-

onal to the atrial surface M ⊂ R3 in all cases (see (4.18)). We therefore consider the

parameter vector d(x) = [d1(x), d2(x), d3(x)]> and define D through d as follows:

D(x) := eP (x)D2(d(x))P (x)> , D2(d(x)) :=

[
d1(x) d2(x)

d2(x) d3(x)

]
(4.22)

where P (x) ∈ R3×2 is a matrix whose columns contain the two orthonormal vectors v1 v2

in the tangent plane at x ∈ M. This choice corresponds to the Log-Euclidean metric of

the space S3
++ [5], where the matrix exponential is computed from the eigendecomposition

of D2. In particular, the admissible parameter set d ∈ R3 is mapped through (4.22) to

S̄3
++. This space offers beneficial properties for interpolating tensors and also showed quick

convergence results in our experiments. The main benefit however is the fact that without

any projection, our function always fulfills D(d) ∈ S̄n++. For more detailed explanations

about the Log-Euclidean space, we refer to [5].

The fiber direction is defined as the direction of fastest propagation, that is the eigen-

vector associated to the largest eigenvalue of D. By the definition of matrix exponential,

this direction is also the maximum eigenvector of PD2P
>.

4.6.2 PIEMAP: Personalized Inverse Eikonal Model from cardiac

Electro-Anatomical Maps

Here we briefly summarize our method presented in [61]. PIEMAP also computes the

gradient by solving the eikonal equation using the FIM and deriving its result. Unlike
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Figure 4.12: Smooth generated manifold bases using the vector heat method for both
considered models. These bases are used to provide a smooth 2D map across the manifold
and are a useful foundation for computing TV in 2D.

Section 4.5 however, we use here a simplified version of the FIM and employ automatic

differentation.

4.6.2.1 Methods

Forward Problem As already mentioned, in [52] an efficient method (FIM) is given

to solve (4.17). However, to exploit common ML frameworks and to ease implementa-

tion, we consider that the Active List in Algorithm 4.1 always encompasses all vertices.

Additionally, we exchange the minima functions in (4.3) and (4.7) with softminima func-

tions smin, commonly found in many ML applications to make the function continuously

differentiable:

sminκ(x) = −1

κ
log

(∑

i

exp(−κxi)
)
.

The resulting fixed-point iteration scheme φk+1 = F (φk) can then be shortly and concisely

summarized by the update step:

φk+1
i =





0, if xi ∈ Γ0,

sminκTj∈ωi sminκy∈ei,j

{
φ(y) +

√〈
D−1
j (y − xi),y − xi

〉 }
, otherwise.

(4.23)

where ωi is the patch of triangles Tj connected to the vertex xi, ei,j is the edge of the

triangle Tj opposite to the vertex xi, Dj = D|Tj . This means, differently from the classic

FIM method [52], we concurrently update all the nodes, that is the map F is applied in

parallel to each node and not just on a small portion of “active” nodes. The switch to

the soft-minimum sminκ also ensures a limited degree of smoothness of the function and

avoids discontinuities in the gradient computation.
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PIEMAP and inverse problem PIEMAP implements an inverse problem in which

the optimal conductivity tensor field D for (4.17) is selected such that the mismatch be-

tween recorded activation times φ̂(x) and the simulated activation times FIMD(x) on the

measurement domain Γ ⊂ M is minimized in the least-squares sense. The inverse prob-

lem, therefore, consists in finding the vector field d ∈ R3, which minimizes the following

objective function:

min
d

1

2

∫

Γ

(
FIMD(d)(x)− û(x)

)2
dx

︸ ︷︷ ︸
U(d)

+λ

∫

Ω
Hε(∇Md) dx

︸ ︷︷ ︸
TVε,λ(d)

, (4.24)

where TVε,λ(d) is the already mentioned smooth total variation (TV) regularization term

(Section 4.6) which alleviates the ill-posedness of the problem. The computed 2D-basis

of the manifold, computed by minimizing (4.20), is shown in Figure 4.13. We use these

bases for all experiments in this section. The need and background for the local bases was

Figure 4.13: Generated local bases on the atria manifold models.

more closely discussed in Section 4.6.1. The optimal choice of regularization parameter λ

is obtained by using a cross-validation approach.

Forward-Backward Splitting and Numerical Solution The computational com-

plexity of solving Equation (4.24) is dominated by the time for computing FIMD and

∇dFIMD. The implementation of FIMD in TensorFlow allows for an efficient computa-

tion of ∇dFIMD via backpropagation on a GPU. While the minimization of the residual

U(d) is usually achieved very quickly, at least when φ̂ is a (possibly corrupted) solution

of (4.17), the TV term tends to increase the number of needed iterations for conver-

gence. In order to increase the convergence rate, we apply the principle of the FISTA [12],

quadratically bounding the non-linear, non-convex function U around the current point

dk by appling the descent lemma from Theorem 2.3:

U(d) ≤ U(dk) + 〈∇dU(dk), (d− dk)〉+
L

2
||d− dk||22 =: G(d). (4.25)
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Recall that the bounding function G(d) is convex, hence has a unique minimum d̄ = dk−
L−1∇dU(dk), as was already discussed in Section 2.10 and Definition 2.21 in particular.

As TVε,λ(d) is also convex, we obtain the following convex minimization problem:

min
d

L

2
‖d− d̄‖22 + TVε,λ(d).

We recast the problem into a convex-concave saddle-point problem:

min
d

max
p

L

2

∣∣∣∣d− d̄
∣∣∣∣2

2
+ 〈∇Md,p〉 − TV∗ε,λ(p) (4.26)

where TV∗ε,λ denotes the convex conjugate of our smoothed TV. The problem can now be

solved using the Primal-Dual algorithm [25] given by:





di+1 = proxτG(di − τ∇∗Mpi)

dΘ = di+1 + θ
(
di+1 − di

)

pi+1 = proxσTV∗ε,λ

(
pi + σ∇MdΘ

)
((2.70) revisited)

with

d̂ = prox
τU

(d̃) =
(
d̃ + τLd̄

)
/ (τL+ 1)

p̂ = prox
σTV∗ε,λ

(p)⇔ p̂j =





p̄j
||p̄j ||/λ if ||p̄j || > 1

p̄j else

for p̄j =
pj

σε/λ+1 , θ = 1 and τσ ||∇M||22 ≤ 1. The parameter L in Equation (4.25), usually

challenging to evaluate, is computed through a Lipschitz backtracking algorithm [12].

4.6.2.2 Experiments

For the evaluation of PIEMAP, we first assessed its effectiveness on reconstructing known

conduction velocity and fibers on a realistic human LA model, also in the presence of white

noise and heterogeneity. The LA model was generated from MRI data of a patient, with

the fibers semi-automatically assigned as described previously [55]. Fiber and transverse

velocity were set to 0.6 m
s and 0.4 m

s respectively for the entire LA, except for the low

conducting region, where we used 0.2 m
s for both fiber and transverse velocity. We tested

PIEMAP both in the case of fully anisotropic and in the case of isotropic conduction. In

the latter case, in particular, we compared PIEMAP to existing methods for the evaluation

of conduction velocity, namely a local method [23] and EikonalNet [109], a PINN method.

In a second set of experiments, we eventually applied PIEMAP to clinically acquired data,

in the form of high-density EAM.

All examples were optimized for 2000 iterations, with each iteration taking about 1.8
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seconds, totalling into a run-time of approximately 1 hour for one optimization.

Numerical assessment All the experiments were performed on a human, cardiac mag-

netic resonance derived LA model, with semi-automatically placed fiber directions based

on histological studies. The Ground-Truth (GT) solution was computed with a single

earliest activation site using (4.17), and with a low-conducting area being close to the left

atrial appendage. Different levels of independent and identically distributed (i.i.d.) Gaus-

sian noise with standard deviation σN were tested. The measurement domain was a set

of 884 points uniformly distributed across the atrium. All models are compared to a local

approach that computes front velocity and direction from a triangulation of the measure-

ment point cloud. We compare the local approach with our method for the 3D in-silico LA

model. The reconstruction root-mean-square error (RMSE) with respect to GT was evalu-

ated in terms of conduction velocity (m/s), propagation direction and, only for PIEMAP,

fiber-angle error. To evaluate the results, we compute the front direction and fiber direc-

tion unit vectors, denoted as e and f respectively. The front and fiber angle-errors are

then defined as αe = arccos 〈e, eGT〉 ∈ [0, 180◦) and αf arccos |〈f , fGT〉| ∈ [0, 90◦). The

velocity errors in propagation direction are then v cos (αx)− vGT for computed velocity v

and exact velocity vGT, both in the front and fiber direction.

Table 4.2: Comparison of the front-velocity/front-angle error of PIEMAP with the local
approach [23] and EikonalNet [109], assuming different noise levels for the in-silico models.
Errors in m

s /degree. In the last column, we compare the fiber velocity error and fiber angle
error.

Error in Propagation Direction Fiber Error

PIEMAP Local Method EikonalNet PIEMAP

σ
N

/P
S

N
R 0ms/∞ dB 0.20/10.58 0.20/22.95 0.53/9.20 0.25/38.34

0.1ms/64.1 dB 0.19/10.61 0.20/23.17 0.40/9.10 0.25/38.46

1ms/43.9 dB 0.20/11.03 0.21/23.57 0.49/14.60 0.25/38.59

5ms/29.9 dB 0.25/19.94 0.29/30.20 1.24/49.40 0.26/40.14

Results are reported in Table 4.2. All methods correctly captured the low conduction

region. PIEMAP compared favourably to the local method at all noise levels in terms of

absolute conduction velocity. EikonalNet shows a slightly more accurate front angle error,

which is counteracted by the considerably high front velocity error, both compared to our

and the local method.

Overall, PIEMAP had the benefit over EikonalNet that the GT was generated with

the anisotropic eikonal model, and thus it is in theory possible to reproduce the data

exactly with a zero noise level. In the local method no model assumption is made.

Interestingly, the error in front direction for the local method could be linked to the

fact that, in the presence of anisotropic conduction, propagation direction and ∇Mφ dif-

fer. For instance, a circular propagation from the source x0 satisfies (2.23) with φ(x) =
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√
〈D−1(x− x0), (x− x0)〉 , thus ∇Mφ differs from x− x0, which is the propagation direc-

tion. In the local method, ∇Mφ is used to establish such direction. In EikonalNet, results

were less robust to noise. A plausible explanation is that training Neural Networks does

not always yield the same results, as multiple local minima might be present. Therefore,

error can be slightly lower or higher depending on the initial conditions. In terms of com-

putational time, PIEMAP was comparable to EikonalNet, but significantly slower than

the local method.

Figure 4.14: Results of our method on the noise-less LA-model with known ground-truth
fiber orientation and velocity (A). The scarred region is correctly activated at a later time
by a combination of reducing fiber-velocity, as well as aligning fibers along the contour
lines (B/C). The activation map can faithfully capture the observed measurement points
u(x ∈ Γ), marked as colored dots (C) and matches the GT-model’s activation closely (not
shown). Fiber alignment of our model (B) shows mostly errors around the mitrial valves,
the scarred region and pulmonary veins (D), as well as regions of high curvature. Best
viewed online.

Regarding the reconstruction of fiber directions (see Figure 4.14), we observed a very

good performance for the fiber and cross-fiber velocity, and a reasonable reconstruction

for the direction. In particular, reconstruction in fiber direction was poor around the

boundaries (mitral ring and pulmonary veins, where fibers run parallel to the opening)

and in the scarred region, which attribute the most to the fiber angle error in Table 4.2.

The distribution of fiber angle errors is a slightly left-skewed uniform distribution (not

shown), indicating that the chosen smooth basis along with a simple TV prior can provide
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resonable results with respect to the activation timings. Still, it may not be sufficient to

account for the partly complicated fiber orientation, especially in areas of high-curvature

of the mesh or sudden changes of fiber orientation on the endocardium as an effect of the

volumetric structure of the atria, such as is the case for the mitrial valve. Physiological

priors will need to be considered in the future for this purpose.

Application to real clinical data In a patient candidate to ablation therapy, a high-

density activation map along with a 3D patient-specific atrial model was acquired with

an EAM system (Catheter: Pentaray R© System: CARTO R© 3 System, Biosense Webster).

The recordings encompassed roughly 850 “beats” of 2.5 sec including both the electrode

position in 3D space and the unipolar electrogram (1 kHz). Recordings that were deemed

to be untrustworthy due to 1) insufficient contact, 2) sliding of the electrode in 3D space

>1 cm, 3) correspondence to a inconsistent surface P-wave, 4) minimal unipolar amplitude,

were excluded automatically from the study. To avoid degenerated triangles with acute

angles, sometimes created by the EAM recordings, we used PyMesh1 to postprocess the

mesh. A further manual pre-processing of the signals was eventually performed for a

correct detection of the local activation time (steepest negative deflection in the unipolar

signal) in the last beat and compared to local bipolar signals for confirmation. Distribution

of points was uneven across the LA, as many points were located around the pulmonary

veins.

Of the remaining valid 565 beats, randomly chosen 80% (452 points) were used to

optimize Equation (4.24), while the remaining 20% were used as a cross-validation set

to find the optimal regularization parameter λ. Figure 4.15 shows the fiber velocity,

orientation and activation map after the optimization. The cross-validation error over

several values of λ is shown in Figure 4.16, which lead us to the used value of λ. The

best cross-validation error lead to a relatively smooth fiber velocity field, with velocities

ranging up to 1.5m
s in the initiation region, probably a consequence of choosing only one

mesh node as an initiation site when in reality the initiation site is larger or composed of

multiple sites. A speed-up of propagation near the atrial wall can often be witnessed and

is compensated in our model by an overall higher fiber-velocity.

4.6.2.3 Extended Evaluation on Clinical Data

We additionally tested our approach PIEMAP on more clinically acquired data in [83].

More specifically, we tested on 9 different patient EAMs acquired during clinical interven-

tion. Information on the statistics of the recordings can be found in Table 4.3.

The numerical results of of the patient recordings are presented in Table 4.4. With the

exception of patients 4 and 6, we received a very high correlation with the measurement

points that we optimized for. Similarly to the experiments in Section 4.6.2.2, we used a

randomly drawn validation set of 20% that we also tested the correlation on (rightmost

1https://github.com/PyMesh/PyMesh

https://github.com/PyMesh/PyMesh
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Figure 4.15: Anterior (A/C) and posterior view (B/D) of PIEMAP’s results on a patient’s
left atria. The panels A and B show the found fiber direction and fiber velocity, while the
panels C and D show the activation map along with the actual measured points on top,
similar to Figure 4.14.

column) and gained similarly high correlation. We additionally validated PIEMAP on

small spatial regions (clusters) that were left out from the optimization. We distinguished

between early, middle and late clusters according to their LAT. The results for these

validations are also visible in Table 4.4: Discarding early clusters tends to have a very

negative impact on the optimization and subsequently the correlation at these regions,

while late clusters showed a high correlation for all but the two cases with low coverage.

Figure 4.17 shows a qualitative evaluation of PIEMAP, with the reconstructed LAT

map, conduction velocities and fiber orientation estimation for patients 3, 5, and 7. The

computed optimal conduction velocity distribution is shown on the bottom and is centered

around 0.6m/s. More information on all details of the evaluations can be found in the

original paper [83].

4.6.3 Anisotropic Eikonal Net

We already extensively discussed in Section 2.9 how commonly encountered PDEs can be

solved using the FEM, as was done in Section 4.6.2. A very recent alternative approach

from [100] involves the shortly mentioned PINN, combining a PDE-constrained optimiza-
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Figure 4.16: Influence on the final cross-validation error when varying over λ for the opti-
mization on the EAM recordings. The black contours are the isochrones of the modelled
activation. Shown are the results of three different λ values: The left result is the least
regularized with λ = 1.1 · 10−5, while the result on the right side is heavily regularized
with λ = 1.1 · 10−3. A compromise is the figure in the middle with λ = 8.3 · 10−5, but
finding the physiologically most plausible value for λ is a non-trivial task since we do not
know the true distribution of velocities and activations in the atria.

tion with neural-network like structures. Consider a fully connected neural network in

with the cartesian coordinates as inputs (in the case of EAMs 3D, x, y, z), used to calcu-

late the value of the PDE function φ : Ω → R. The resulting neural network thus tries

to approximate the function φNN : R3 → R. The classical ML paradigm would suggest to

learn this function directly from data using a data fidelity term D and a regularizing term

R, but typically fails to do so in the absence of a massive amount of data. In contrast, in

PINNs, we compute the gradient ∇φ by using standard means of backpropagation, used

in computing gradients of ANNs, and use ∇φ in an additional loss term, mimicking the

desired PDE. This special loss term is in practice evaluated at a discrete set of collocation

points. The benefits of such a method were already extensively discussed and demon-

strated in [100]: The amount of data needed to effectively optimize a PDE function with

high-fidelity is massively reduced since collocation points can be chosen at will on the do-

main Ω and theoretically without any need of data. While the FEM heavily depends both
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Table 4.3: EAM characteristics of the 9 patients that PIEMAP was tested on. The final
valid recordings were manually acquired by discarding unreliable measurements. Overall
coverage was good with the exception of patients 4 and 7. Table from [83].

Table 4.4: Results of applying PIEMAP to the 9 patient cases. Table from [83]. Note
that error is actually in [ms].

on the choice of a mesh and the polynomial basis for their solution, PINNs and the order

of their solution solely depends on the neural network structure. Note however that the

choice of the loss functional for PDEs of order n necessitates that the activation functions

are at least in Hn+1, i.e. n + 1 times weakly differentiable, since the optimization can

only be efficiently implemented using first order gradient based methods. Boundary con-

ditions can be weakly imposed and additional inverse loss terms allow to effectively build

an inverse PDE problem solver, demonstrated in this section, based on our paper [60].

4.6.3.1 Methods

Anisotropic eikonal model for cardiac activation The eikonal equation is not ex-

plicitly solved, hence there is no need to enforce boundary conditions. We rather consider
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Figure 4.17: Reconstructed LAT maps (second row), conduction velocities and fiber
orientations (third row) using PIEMAP on the data of patients 3, 5, and 7 (from left to
right). The top row shows the compliance with the LAT map from the Carto software.
Figure from [83].

the model residual:

Rm[φ](x) :=
√

max {D(x)∇φ(x) · ∇φ(x), ε} − 1, (4.27)

for a sufficiently small ε > 0 to avoid infeasible gradients, as a metric of point-wise model

discrepancy for a given pair of activation φ and conductivity tensor D.

Physics-informed neural network In the considered experiments, we are given a set

of points, each composed by a location xi and a recorded activation time φ̂i : ΓM → R for

ΓM ⊂M representing the EAM locations and timings of the recordings. The objective is

therefore to identify a conductivity tensor field D such that the corresponding activation

map φ, as resulting from (4.17), will closely reproduce the observed data. The tensor D

can then be reconstructed by means of using d.

For this purpose, we approximate both the activation map φ(x) and the conduc-

tivity vector d(x) with a feed-forward neural network NNn,m,θ : Rn → Rm with n in-

puts to m outputs and characterized by a vector θ containing weights and biases, as

was initially promoted in [100]. The used architecture of the networks is shown in Fig-

ure 4.18. Specifically, we have φ(x) ≈ φNN(x,θφ) = NN3,1,θφ(x) and d(x) ≈ dNN(x,θd) =
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dmax · tanh
(
NN3,3,θd(x)

)
, where tanh is meant component-wise, and dmax is an upper

limit for the components of dNN, meant to avoid over- and underflows in the numerical

calculations. This construction of φ and d enables us to use standard ML methods and

frameworks to efficiently calculate the gradients ∇φ and ∇d, used in the chosen PDE

model (4.27) and inverse regularization. The usage of these first order gradients in the

optimization necessitates at least second order weakly differentiable activation functions

in the neurons, achieved by the use of tanh functions.

Similar to the original PINN algorithms in [100], we define a loss function to train our

model as the sum of a data fidelity, a PDE model fidelity term and two regularization

terms:

L(θφ,θd) :=

∫

ΓM

(
φNN(x)− φ̂(x)

)2
dx + αm

∫

M

(
Rm[φNN](x)

)2
dx

+ αθ
(
‖θφ‖2 + ‖θd‖2

)
+ αd

∫

M
Hε

(
∇dNN(x)

)
dx,

(4.28)

for the three weighting parameters αm, αd, αθ. Regularization is both applied to the

weights of the networks as well as on the inverse parameter estimation. The latter regu-

larization term is, similar to PIEMAP in Section 4.6.2, an Huber-type, approximated TV

regularization for the conductivity vector parameters d. Recall that by construction, D

has zero velocity in directions normal to the manifold (see Sec. 4.6) and thus allows us to

neglect the additional normal penalization used in [109].

x

x

∇φ

∇d

(
φ− φ̂

)2
φ

(√
D∇φ · ∇φ− 1

)2

Hδ(∇d)

d D

P

dmax

Figure 4.18: Structural view of the proposed PINN architecture, containing the two NNs
φNN and dNN. Nodes containing a curve indicate a tanh activation function. The final
layer of φNN is a linear layer. D is computed using (4.22). ∇φ and ∇d can be obtained by
means of backpropagation (reverse arrows). The bold rectangular boxes show the three
major loss terms from (4.28): Data fidelity, eikonal (PDE) and TV loss (top to bottom).
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Numerical implementation The domain M is discretized using a triangular mesh,

usually obtained directly from the mapping system, along with point-wise evaluations of

the activation times, that is ΓM = {x1, . . . ,xN}. In all experiments, the integrals were

approximated using a point-wise evaluation for both domains: On the vertices for the

approximation of M and on the discrete measurements for ΓM.

For the optimization, we experimentally selected the hyper-parameters as αm = 104

for the model atria and αm = 103 for the EAM. The other two hyperparameters are the

same for both experiments: αθ = 10−4, αd = 10−3. The two neural networks for φ and

d had 7 and 5 hidden fully connected layers respectively. All hidden layers consisted

of 20 neurons for φNN and 5 neurons for dNN, with the weights being initialized using

Xavier initialization. This choice of neural network architecture was inspired by the work

in [109]. We opted for adding a regression layer to φNN, since this allows us to model

arbitrary ranges of φ. Optimization is performed by first using the ADAM [79] optimizer

for 104 epochs with a learning rate of 10−3, followed by a L-BFGS optimization [21]

until convergence to a local minimum is achieved. Each experiment took no longer than

1.5 hours on the machine described in Section 4.4.

4.6.3.2 Numerical experiments

Herein, we consider, similarly to PIEMAP (see Section 4.6.2.2), two experiments: a syn-

thetic example, with ground-truth on a realistic anatomy of the left atrium, and an example

with patient-specific geometry and data. The first example is optimized and tested against

different levels of i.i.d. normal noise: φ̃(x) = φ̂(x) + N (0, σN ). We measure the perfor-

mance of the synthetic model in terms of the root-mean-square error (RMSE) over the

whole surface here denoted as RMSES . Errors directly on the measurement points, em-

ployed in the optimization, are used to compute RMSEO. In the patient specific example,

we randomly split ΓM into ΓO, used for optimization/training, and ΓT , for testing.

The results of our method on the in-silico model atria, and a comparison to PIEMAP

[61], are presented in Tab. 4.5. Both methods are comparable in terms of RMSE, with

both methods achieving less than 5ms of RMSE for all levels of noise. Additionally, we

tested the presented PINN on an EAM, achieving a RMSE of the activation times on the

test set of RMSET ≈ 5.59 ms. The RMSE on the measurements used in the optimization

was only slightly lower at RMSEO ≈ 4.82 ms, indicating that αm was chosen in a proper

range to avoid overfitting to the data. In the patient-specific test (not shown in the table),

our method was able to outperform PIEMAP, which reported RMSET ≈ 6.89ms and

RMSEO ≈ 1.18ms on test and optimization/training set respectively, showing a slight

overfit to the data used in the optimization.

Figure 4.19 shows the qualitative results of using this method on the two chosen models

(the model atria in the noise-less case). We can nicely fit the activation encountered at

the surface and create an eikonal-like activation. The initiation sites are automatically

deduced by the PINN algorithm with only soft eikonal and data constraints. The smooth
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Table 4.5: Evaluation of the presented PINN approach compared to PIEMAP [61] for
different levels of noise (given in standard deviation and signal-to-noise ratio) on the in-
silico model atria. The result of the noiseless scenario (∞ dB) is visualized in Figure 4.19
on the left side.

RMSES/RMSEO PINN RMSES/RMSEO PIEMAP

σ
N

/
P

S
N

R 0 ms/∞ dB 2.20/1.38 1.04/0.83

0.1 ms/64.1 dB 4.28/2.08 1.02/0.83

1 ms/43.9 dB 3.32/1.39 1.09/0.83

5 ms/29.9 dB 3.76/1.85 1.90/0.84

0 32 64 96 128 160

Activation Times φ [ms]

0 26 52 78 104 130

Activation Times φ [ms]

Figure 4.19: Results of the PINN method on an in-silico (left) and an in-vivo (right) EAM
model with the overlayed measurements as points and fibers as arrows. The underlying
contour lines and colors on the mesh itself represents the activation of the PINN, sampled
at each vertex.

basis generated with the vector heat method, together with the TV regularization give us

a smooth, fiber field.

4.7 Identifying cardiac initiation sites through geodesics -

GEASI

In [58], we address the central question of identifying EASs. In a healthy (human) heart,

the spontaneous electric activity of the sino-atrial node initiates an electric wave that

first spreads across the atria, and then propagates through the ventricles via the atrio-

ventricular node/His bundle/Purkinje network pathway. In patient-specific models, the

EASs determine many physiological phenomena such as the Purkinje entry points. For

these phenomena, a proper manual quantification is in practice infeasible, especially in the

presence of pathological conditions such as bundle branch block, ventricular tachycardia or
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premature ventricular contractions. Thus, inter-patient variability of electrical activation

necessitates automatic individual parameter identification. The identification of earliest

activation sites, possibly from non-invasive or minimally-invasive recordings, is therefore

of clinical relevance for a correct diagnosis and optimal treatment.

Indeed, a grand challenge in cardiac modeling for personalized health care is the afore-

mentioned individualization of the model parameters for given patient data, which may

include standard imaging, ECG, or invasive mapping. A particularly suitable model

that exposes EASs is the eikonal equation, which was originally exploited as a conve-

nient approximation of the monodomain and bidomain models [32, 77] and is nowadays

more often utilized for its computational efficiency [87]. In this work, we present a novel

gradient-based approach for localizing the EASs termed GEASI (Geodesic-based Earliest

Activation Sites Identification). We start from the anisotropic eikonal equation as a com-

mon model for cardiac electrophysiology [33], in which the EASs define boundary condi-

tions at specific sites. The anisotropy arises from the fiber alignment inside the heart [32].

The main goal of our approach is the minimization of a given objective functional depend-

ing on the solution of the anisotropic eikonal equation as a function of the EASs. Here,

a feasible optimization strategy involves the Hamilton–Jacobi formalism, which promotes

a tractable derivative with respect to the EASs [37]. Note that this derivative is geomet-

rically related to the tangent of the geodesic at the EASs. In this respect, a geodesic

connects an EAS such as a Purkinje entry point to an observation through a path of min-

imum distance in a predefined metric. Finally, we exploit the aforementioned methods to

introduce GEASI, which in its core employs a quadratic mismatch between the eikonal

solution and the measurements in the objective functional.

We emphasize that our method is not limited to this quadratic objective functional

and can straightforwardly be extended to other scenarios. In this work, we additionally

investigate two such extensions: the topological gradient and the fitting of an eikonal

solution to a target ECG.

The topological gradient allows for an estimation of the optimal number of EASs. In

detail, the concept of topological gradient can be readily introduced via the Hamilton–

Jacobi theory. Here, we consider a splitting of a single EAS into a pair of two EASs

symmetrically arranged at infinitesimal distance along a given direction in a dipole-like

fashion. Thus, the topological gradient provides a criterion to decide if an EAS should be

split. In particular, this approach promotes a simple model as a starting point with too

little complexity to represent the measurement data and increase the number of source

sites until the encountered activations are properly approximated.

In combination with the bidomain equation and the lead field theory, the eikonal

model also results in an almost-real-time ECG simulator [95] with remarkable physiological

accuracy [33]. Efficient combinations with other methods exist to use solutions of the

eikonal equation to compute surface ECGs and BPSMs [95], [87], making these methods

a very powerful computational tool. We here employ the existing approach [95] to solve

the inverse ECG problem, i.e. we introduce a method to localize EASs purely from ECG
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data. Numerical experiments in Section 4.7.4 demonstrate that the proposed approach is

capable of finding the optimal EASs even in high-fidelity cardiac models.

4.7.1 The GEASI Method

This section introduces the GEASI method, which encompasses the following ingredients.

In Section 4.7.1.1, we review the anisotropic eikonal equation and its associated Hamilton–

Jacobi formulation. Subsequently, in Section 4.7.1.2 we analyze a general objective func-

tion involving the solution of the anisotropic eikonal equation from a functional-analytical

perspective. Section 4.7.1.3 deals with the gradient computation of the distance function,

which is later exploited in the aforementioned objective functional. Finally, all introduced

concepts are combined in Section 4.7.1.4 to define GEASI.

4.7.1.1 Eikonal equation

We again consider the computational domain Ω ⊂ Rd for d ≥ 2, which in most cases

represents the myocardium. Further, let E be the subset of N pairs {(xi, ti)Ni=1} ∈ UN :=

ΩN×(Tmin, Tmax)N for a priori given Tmin < Tmax and fixed N . Throughout this work, E is

a set of EASs, where N is the number of EASs, xi and ti are the location and timing of the

i-th site, respectively. Let φE : Ω → R be the unique solution of the anisotropic eikonal

equation with prescribed values on E , which is commonly referred to as the activation

map. Hence, φE defines a slight modification of our original anisotropic eikonal equation

in (2.23): 



√
D(x)∇φE(x) · ∇φE(x) = 1, x ∈ Ω \ {x1, . . . ,xN},

φE(xi) = ti, (xi, ti) ∈ E ,
(4.29)

where we additionally assume now D ∈ C1(Ω, Sd++). Recall that Sd++ is defined as the set

of positive definite and symmetric d× d-matrices, which gives rise to the definition of the

norm ‖p‖D :=
√
Dp · p for p ∈ Rd. Note that the assumptions already guarantee that

λ∗I ≺ D(x) ≺ λ∗I

for all x ∈ Ω and finite bounds 0 < λ∗ ≤ λ∗ < ∞. We already extensively discussed

in Section 2.8.1 that (4.29) admits a unique viscosity solution according to the theory of

Hamilton–Jacobi equations [37]. Here we recall from Section 2.8.1 the definitions geodesics,

geodesic distances and length functional associated to the Hamilton–Jacobi. The Lipschitz

continuous solution of the eikonal equation φE ∈ C0,1(Ω) is of the form

φE(x) = min
(y,t)∈E

{t+ δ(x,y)} (4.30)
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where δ(x,y) denotes the geodesic distance

δ(x,y) = inf
γ̂∈H1([0,1],Ω)

{L(γ̂) : γ̂(0) = x, γ̂(1) = y} ((2.30) revisited)

given the length functional

L(γ) :=

∫ 1

0
‖γ̇(t)‖D−1(γ(t)) dt. ((2.28) revisited)

Thus, the induced Riemannian metric for two tangent vectors v,w is

〈v,w〉γ(t) := D−1 (γ(t)) v ·w. (4.31)

We note that the infimum γ in (2.30) is actually attained, and by the geodesic equation

we can even deduce γ ∈ C0,1([0, 1],Ω) (see e.g. [16]). Indeed, in the definition (2.30), we

first note that ‖p‖D−1(x) ≤ λ−1
∗ ‖p‖2 for all p ∈ Rd and x ∈ Ω. Then, for any segment

[x,y] fully contained in Ω we have that δ(x,y) ≤ λ−1
∗ ‖x − y‖2 since the segment is a

geodesic path in the Euclidean norm. Figure 4.20 illustrates a single geodesic path in red

on a domain with a continuously varying conduction velocity and isotropic conduction.
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Figure 4.20: Left: fixed velocity field c in Ω. Right: contour plot of the associated
anisotropic eikonal equation with anisotropic conduction D(x) = c(x)2I along with the
geodesic path joining the EAS x1 with an arbitrary point.

When N > 1, all pairs (xi, ti), (xj , tj) ∈ E must satisfy the subsequent compatibility
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condition

|ti − tj | ≤ δ(xi,xj) (4.32)

in order to ensure the existence of a solution. It is worth noting that this condition

is not too restrictive. In view of (4.30), which underpins our numerical solution of the

eikonal equation, non-compatible data are simply discarded. Interestingly, this is also

physiologically sound: a stimulus applied in the depolarized region cannot trigger another

propagation.

The Hamilton–Jacobi formulation is essential for computing perturbations of E , which

is conducted in the following subsection.

4.7.1.2 Objective functional

The overall objective of GEASI is the minimization of a given functional J : C0,1(Ω)→ R
depending on the activation map φE with respect to E , i.e.

mN := min
E∈UN

J (φE). (4.33)

For instance, the objective could describe the minimization of a mismatch (in the least-

squares sense) between the simulated activation and the activation detected from epicar-

dial, as well as endocardial mapping (see Section 4.7.4). The objective functional can also

involve the activation map implicitly: In Section 4.7.4.3, we utilize the mismatch between

the recorded and simulated 12-lead surface ECG as a metric for optimization.

In what follows, we prove the existence of minimizers for (4.33) for varying N . To this

end, we define for E = {(xi, ti)Ni=1}

ΦN (x,x1, . . . ,xN , t1, . . . , tN ) := φE(x). (4.34)

Lemma 2. ΦN ∈ C0,1(Ω× UN ) is a bounded function of its arguments.

Proof. Using (4.30), we immediately see that

ΦN (x,x1, . . . ,xN , t1, . . . , tN ) = min
i=1,...,N

{ti + δ(xi,x)} .

The Lipschitz continuity of δ as well as the compactness of Ω× UN imply the statement.

We note that Rademacher’s theorem ensures the differentiability of ΦN almost every-

where. Non-differentiability with respect to x occurs for instance at x = xi, but also in

the presence of front collisions. An immediate consequence of this lem is the following

Theorem 4.1 (Existence). If J is uniformly continuous, then the problem (4.33) admits

at least one minimum.
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Proof. The previous lem and the uniform continuity of J imply the existence of at least

one minimum.

Proposition 1. Under the hypotheses of Theorem 4.1, mN is a non-increasing function

of N . Moreover, if there exists N such that mN+1 = mN , then mN+n = mN for all n ≥ 1.

Proof. The first claim immediately follows from the definition of mN and set inclusion

arguments. To prove the second claim, we assume that mN+1 = mN for some N and

mN+2 < mN+1. However, the choice xN+1 = xN+2 and tN+1 = tN+2 results in a contra-

diction.

Corollary 1. If N is bounded from above by Nmax, then minN≤Nmax mN has at least one

minimum.

Remark 4.2. 1. From a practical point of view, this corollary ensures that by adding

new EASs, we either improve the objective function or we keep the same level of

accuracy. This is also seen in the experiments in Section 4.7.4, where coalescence of

two or more sites is observed if introducing too many EASs.

2. The minimum in (4.33) is in general not unique as it depends on the choice of J and

on the order of the EASs. In principle, by permuting EASs we obtain the same value

of the minimum. In particular, this symmetry induces a periodic partition of the set

UN . Each partition is associated with a specific choice of the order of the EASs.

From a numerical point of view, this may constitute a problem for methods based

on random sampling. For deterministic steepest descent algorithms, the problem is

mitigated by the fact that we rarely cross the boundary between two partitions, e.g.,

by swapping points, unless the two points coincide.

3. In general, we cannot take N unbounded with no further hypotheses on J . Suppose

for instance that J is minimized by φ(x) = c for some constant c ∈ R. Then,

infN∈NmN attains no minimum. Indeed, we cannot represent a constant function

with (4.30) if E is only countable. However, we can approximate the constant with

arbitrary precision with a sufficiently large number N of EASs.

4.7.1.3 Exponential Map

In what follows, we compute the Riemannian exponential map to derive an expression

for the variation of the distance function. In particular, we discuss the relation of the

derivatives of ΦN and the geodesic path.

We briefly recall fundamental concepts in Riemannian geometry. Given x ∈ Ω and

a tangent vector v ∈ V for a sufficiently small neighborhood V around the origin of the

tangent space at x, the exponential map Expx : V → Ω is given by Expx(v) = γ(1), where

γ ∈ C0,1([0, 1],Ω) is a geodesic path with v := γ̇(0). The logarithmic map Logx : Ω→ V is

the inverse of the exponential map Exp−1
x . In other words, the logarithmic map of y ∈ Ω
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identifies the tangent vector γ̇(0) of a geodesic path γ emanating from x and ending at y.

Proposition 2 (Variation of the distance function). Let x,y ∈ V, where V ⊂ Ω̊ is

sufficiently small such that all points inside are connected by unique geodesics. Then the

variation of δ(x,y) with respect to y with w = Logx(y) reads as

∇xδ(x,y) = − D−1(y)w

‖w‖D−1(y)
. (4.35)

Proof. Suppose that γ is a geodesic with respect to the Riemannian metric in (4.31)

realizing the distance δ(y,x), i.e. γ(0) = y, γ(1) = x and

δ(x,y) =

∫ 1

0
‖γ̇(t)‖D−1(γ(t)) dt.

Let γ̃ : [0, 1]× (−R,R)→ Ω̊ for small R > 0 be a smooth variation of γ such that γ̃(t, 0) =

γ(t) for all t ∈ [0, 1]. The first variation formula [91, Chapter 10] with c = ‖γ̇(t)‖D−1(γ(t))

for t ∈ [0, 1] implies

∇xδ(x,y)(γ̃) =
1

c

(
−
∫ 1

0
〈γ̈(t), ∂2γ̃(t, 0)〉γ(t) dt−

k∑

i=1

〈∆γ̇(ti), ∂2γ̃(ti, 0)〉γ(ti)

+ 〈γ̇(1), ∂2γ̃(1, 0)〉γ(1) − 〈γ̇(0), ∂2γ̃(0, 0)〉γ(0)

)
. (4.36)

Here, 0 < t1 < · · · < tk < 1 are possible discontinuities of the geodesic curve and ∆γ̇(ti) =

γ̇(t+i ) − γ̇(t−i ), where γ̇(t−i ) and γ̇(t+i ) denote the one-sided derivatives from the left and

the right, respectively. The derivative of γ̃ with respect to the second argument is denoted

by ∂2γ̃. Since γ is assumed to be geodesic and smooth, the first two summands in (4.36)

vanish.

By adjusting γ̃ such that ∂2γ̃(1, 0) = 0 and observing that γ̇(0) = Logx(y) we have

proven

∇xδ(x,y)(γ̃) = −D
−1(γ(0))γ̇(0)

‖γ̇(0)‖D−1(γ(0))
· ∂2γ̃(0, 0),

which readily implies (4.35).

In Proposition 2, we assumed uniqueness and smoothness of the geodesic curve, which

is in general not ensured. In practice, the influence of geodesics violating these assumptions

is negligible and thus in GEASI only consider (4.35) for all computations.

As before, let φE be the solution of the eikonal equation with given E = {(xi, ti)Ni=1}.
We define the region of influence as Ri := {x ∈ Ω : φE(x) = ti + δ(x,xi)}. Furthermore,
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the derivatives of ΦN with respect to xi and ti at x ∈ R̊i read as

∇xiΦN (x,x1, . . . ,xN , t1, . . . , tN ) = ∇xiδ(xi,x),

∂tiΦN (x,x1, . . . ,xN , t1, . . . , tN ) = 1,

where we note that function is not differentiable on the boundary of the regions of interest.

To compute the exponential map, we solve for each i = 1, . . . , N the following initial value

problem {
γ̇i(t) = −D(γi(t))∇φ{(xi,ti)}(γi(t)),
γi(0) = x

(4.37)

for x ∈ Ω. The regularity and boundedness of D and φ{(xi,ti)} already imply the existence

of solutions. Then, we define the piecewise geodesic path γ as γ(t) = γi(t) if γ(t) ∈ Ri.
Furthermore,

t = arg min
t>0

{γ(t) ∈ Bζ(xi) for i = 1, . . . , N} (4.38)

is finite due to the assumptions regarding D for a small ζ > 0. The inclusion of the ζ-balls

essentially circumvent problems related to the non-differentiability of γi in the proximity

of (xi, ti).

We note that by construction γ is a unit-speed geodesic for the length

functional ((2.28) revisited). In this case, we define the exponential map in the direction

tγ̇(0) as Expx(tγ̇(0)) = γ(t), and the logarithm Logx(γ(t)) = tγ̇(0) as its inverse. Note

the the logarithm can efficiently be computed by tracking backward the geodesic from

γ(t) to x.

Remark 4.3. We note that points can belong to multiple regions of influence, at which

the derivative of φE might not be defined. However, due to the general functional-analytic

setting the Lebesgue measure of these points is negligible.

4.7.1.4 GEASI Algorithm

In this section, we introduce the GEASI Algorithm to solve (4.33) using a gradient-based

approach. Here, we restrict to the specific functional

J (φ) :=

∫

Γ

1

2
(φ(x)− φ̂(x))2 dx,

where Γ ⊂ Ω is a subdomain of Ω with a positive Lebesgue measure and φ̂ ∈ L2(Γ,R) is

a fixed square-integrable function. In numerical experiments, φ̂ reflects the measurements

on a known subdomain Γ, for which the quadratic mismatch on Γ between φ and φ̂ with

respect to the EASs is minimized. Examples of Γ include finite sets of points mimicking

a contact recording map, the full endocardium/epicardium, or subregions of them.

According to Sections 4.7.1.2 and 4.7.1.3, the optimization problem for N = 1 simply
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reads

min
(x1,t1)∈U1

∫

Γ

1

2
(t1 + δ(x1,x)− φ̂(x))2 dx. (4.39)

To employ a gradient-based approach, we see that following Proposition 2 the gradient of

J with respect to x1 simply reads as

∇x1J (φ{(x1,t1)}) = −
∫

Γ
r(x,x1, t1)

D−1(x1)γ̇x1→x(0)

||γ̇x1→x(0)||D−1(x1)

dx, (4.40)

where γx1→x(t) is the geodesic path from x1 to x and r(x,x1, t1) = t1 + δ(x1,x) − φ̂(x)

is the residual. Optimizing multiple points simultaneously yields an average direction

weighted by the residuals r on Γ. Figure 4.21 depicts how the velocity field shown in

Figure 4.20 translates to a descent direction to optimize (4.39).
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Figure 4.21: Visualization of the optimization problem in (4.39). Geodesics (white) origi-
nating from the single EAS x1 to distinct points on Γ (left) and corresponding gradients
computed with (4.35) (middle). The highlighted direction (red) coincides with the gradi-
ent in (4.40). Right: by iteratively applying a gradient-based scheme we determine the
optimal (x1, t1).

The extension to multiple EASs works similarly. A convenient formulation consists

in splitting Γ into subdomains Γi := Ri ∩ Γ, each composed of those points activated by

the EAS xi (note that the set of points belonging to multiple regions Γi has Lebesgue

measure 0). Then, the objective function reads as follows

min
{(xi,ti)Ni=1}∈UN

N∑

i=1

∫

Γi

1

2
(ti + δ(xi,x)− φ̂(x))2 dx. (4.41)

Clearly, the optimization procedure for a single EAS readily translates to the case of

multiple sites.

We found that similar to Section 4.5, a Gauss–Newton optimization proved beneficial

to reduce the overall number of required optimization iterations, resulting in the following
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update rule

E(k+1) = arg min
{(xi,ti)Ni=1}∈UN

N∑

i=1

1

2

∣∣∣∣∣

∣∣∣∣∣∇xi,tiJ (φE(k))

(
xi − x

(k)
i

ti − t(k)
i

)
+ φE(k)(x)− φ̂(x)

∣∣∣∣∣

∣∣∣∣∣

2

L2(Γ)

. (4.42)

Here, E(k) = {(x(k)
i , t

(k)
i )Ni=1} are the solutions of the previous iteration. To overcome

local minima of the optimization problem (4.33) caused by non-unique solutions (see Re-

mark 4.2) we additionally use an over-relaxation [26] with fixed βa = 1√
2

. The resulting

Algorithm 4.4 iteratively linearizes and solves the problem using the computed gradient

from δ to match a given measured activation. We remark that the gradient properly re-

flects infinitesimal changes of activation times on Ri for each xi, but it is not capable of

accurately capturing higher order effects like the change of Ri. The experiments showed

that rather than directly using E(k+1) from (4.42) as the new solution, it is beneficial to

take a step-size βs < 1 and compute the convex combination of old and new solution

according to this step size. For all experiments, we used βs = 1
2 . For further details of the

numerical realization we refer the reader to Section 4.7.3.

Algorithm 4.4: GEASI

Input : initial x
(0)
i and t

(0)
i defining E(0) = {(x(0)

i , t
(0)
i )Ni=1},

target activation φ̂(x) for x ∈ Γ, conduction velocity tensor D
Output: optimal EASs x∗i and times t∗i
for k = 1, . . . ,K do

Ẽ(k) = E(k) + βa(E(k) − E(k−1))

solve the eikonal equation (4.29) for Ẽ(k) = {(x̃(k)
i , t̃

(k)
i )Ni=1}

compute all geodesics γxi→x(t) for x ∈ Γ by solving (4.37)
compute Ē(k+1) using (4.42) (with Ẽ(k))

E(k+1) = Ẽ(k) + βs

(
Ē(k+1) − Ẽ(k)

)

end

4.7.2 Extensions of GEASI

GEASI is a versatile optimization algorithm, which can be extended in several aspects.

In this section, we focus on two such possible extensions. First, the topological gradient

estimation allows for an accurate estimation of the number of EASs. Second, we modify

the original objective function of GEASI to fit a given ECG.
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4.7.2.1 Variable number of EASs: Topological Gradient

So far, we assumed the number of EASs N to be fixed. Since the optimal number of

EASs is in general unknown, we subsequently propose a method to approximate the opti-

mal N . As a possible approach to estimate N (which is not conducted in this work) one

could start with a large number and successively remove distinct EASs that violate the

constraint (4.32). However, this approach suffers from some major drawbacks:

• several local minima can occur leading to a strong dependency on the initial guess,

• enforcing (4.32) results in some numerical issues, e.g. dimension changes of the op-

timization problem and order of EAS removal.

In contrast, starting with a few (or even a single) EASs and subsequently introducing new

EASs overcomes the above issues since according to Proposition 1 adding new sites does

not increase the objective functional. In what follows, we briefly recall the topological

gradient, which is used to compute the infinitesimal expansion of splitting a single EAS.

This expansion is exploited to estimate the energy decrease of adding a new site.

Consider the case of a single EAS, i.e. N = 1. The topological gradient is defined as

the effect on the solution of the associated eikonal equation if splitting a single EAS x1

into two new sites x1 + εn and x1− εn in the direction of n ∈ Sd−1. We can directly infer

from (4.30) that

φEε(x) = min
{
t1 + δ(x1 − εn,x), t1 + δ(x1 + εn,x)

}

for Eε = {(x1 + εn, t1), (x1 − εn, t1)}, where ε > 0 is sufficiently small. This topological

operation divides the domain into two subdomains Ω−ε := {x ∈ Ω : δ(x1 − εn,x) <

δ(x1 + εn,x)} and Ω+
ε = Ω \ Ω−ε . We can now expand φε with respect to ε as follows

φEε(x) = t1 + δ(x1,x) + εmin{−∇x1δ(x1,x) · n,∇x1δ(x1,x) · n}+ o(ε)

= Φ1(x,x1, t1)− ε |∇x1δ(x1,x) · n|+ o(ε),

where Φ1 was defined in (4.34) and we used (4.35). In this case, we call the quantity

j(x,x1,n) := |∇x1δ(x1,x) · n| . (4.43)

the topological gradient. A visual example of the topological gradient is provided in Fig-

ure 4.22. We note that adding new optimal sites always decreases the objective functional

unless ∇x1δ(x1,x) · n = 0. Therefore, we shall define a criterion for adding a split. The

decrease in energy of splitting a single site can be estimated as follows:

νS,ε := min
n∈Sd−1

∫

Γ
(Φ1(x,x1, t1)− φ̂(x))2 − (Φ1(x,x1, t1) + εj(x,x1,n)− φ̂(x))2 dx. (4.44)
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Likewise, the effect of moving a source point in direction n is given by

νM,ε := min
n∈Sd−1

∫

Γ
(Φ1(x,x1, t1)− φ̂(x))2

− (Φ1(x,x1, t1) + ε∇x1δ(x1,x) · n− φ̂(x))2 dx.

The ratio
νM,ε
νS,ε

has proven to be a robust score for adding new sites, which is verified in

the numerical experiments. In particular, if the ratio is below a certain threshold, then a

new EAS is introduced.

x1

n n

δ(x1,x)

Early Late

∇x1
δ(x1,x) · n

< 0 0 > 0

|∇x1δ(x1,x) · n|

0 > 0

Figure 4.22: Left: geodesics (white) joining multiple points with x1. Contour plots of
x 7→ ∇x1δ(x1,x) · n (middle) and x 7→ j(x,x1,n) (right) for fixed n ∈ Sd−1. Moving a
single EAS in the direction n alters the activation times δ(x1,x) as shown. In contrast,
splitting in the same direction n is similar to simultaneously moving a source point in
both directions, and keeping only the shorter geodesic (right).

4.7.2.2 Optimization using the ECG

The ECG is the observed signature of the electric activity of the heart, which is measured

at selected locations on the chest. Being routinely acquired and non-invasive, the ECG is

the ideal candidate for inferring cardiac activation in a clinical framework. Here, we will

introduce a method to reconstruct the EASs directly from ECG measurements. To this

end, we exploit the methods presented in [87, 95] to efficiently compute the ECG from

activation maps of the eikonal equation. Finally, the quadratic mismatch of the computed

and measured ECG is minimized, which yields optimal EASs.

From a modeling perspective, we denote ΩT ⊂ Rd \ Ω as the whole body domain

excluding the heart cavity Ω ⊂ Rd. The heart surface Γ := ΩT ∩Ω is the interface between

torso and heart, that is the boundary between the active myocardium and the rest of the

body (for instance, endocardium plus epicardium). In this setting, Σ := ∂ΩT \ Γ is the
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chest, on which the aforementioned electrical signal is recorded. We denote by T ⊂ R the

considered time interval. A more detailed outline on the theory of lead fields was given in

Section 3.3

An equation for the torso potential can be derived from bidomain theory for the cardiac

tissue and the balance of currents in the body (see e.g. [51]). The resulting system of

equations reads as follows:





−∇ · (G∇ue) = ∇ · (Gi∇Vm), in Ω× T,
−∇ · (GT∇uT ) = 0, in ΩT × T,
−GT∇uT · n = 0, in Σ× T,

ue(x
−, t) = uT (x+, t), (x, t) ∈ Γ× T,

GT (x+)∇uT (x+, t) · n
−G(x−)∇ue(x−, t) · n = Gi(x

−)∇Vm(x−, t) · n, (x, t) ∈ Γ× T,

(4.45)

where the following quantities occur:

- ue : Ω× T→ R is the extracellular potential in the heart,

- Vm : Ω× T→ R is the transmembrane potential,

- uT : ΩT × T→ R is the potential in the torso,

- GT : ΩT → Sd++ is the electric conductivity of the torso,

- Gi : Ω→ Sd++ is the intracellular conductivity,

- Ge : Ω→ Sd++ is the extracellular conductivity, and

- G = Gi + Ge is the bulk conductivity of the heart.

The normal vector n at x ∈ Γ points outwards, i.e. from the heart surface towards the

torso, and is the outer normal vector for x ∈ Σ. The points x± associated with x ∈ Γ are

obtained by taking the limit x±ε = x± εn for ε→ 0.

The well-posedness of (4.45) follows from standard arguments for elliptic PDEs

(see [57]). However, some care is required for the discontinuity across the heart-torso

interface Γ. Let Ω̃ = Ω ∪ ΩT ∪ Γ be the domain modeling the whole torso (including the

heart), and

G̃ =

{
G, in Ω,

GT , in ΩT ,
ũ =

{
ue, in Ω× T,
uT , in ΩT × T.

Following [51], we assume that

1. Ω,ΩT ⊂ Rd are Lipschitz domains,

2. Gi,Ge ∈ C1(Ω, Sd++) and G̃ ∈ L∞(Ω̃, Sd++),

3. Vm(·, t) ∈W 2,p(Ω) for all t ∈ T with p > d.
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Proposition 3. Under the above assumptions, the weak formulation of (4.45) given by

find ũ ∈ H1(Ω̃) s.t.

∫

Ω̃
G̃∇ũ · ∇v dx = −

∫

Ω
Gi∇Vm · ∇v dx ∀v ∈ H1(Ω̃) (4.46)

is well-defined. In particular, there exists a unique solution up to an additive constant (the

reference potential).

The proof directly follows from the Lax–Milgram theorem [57] by noting that Vm(·, t) ∈
W 2,p(Ω) and ũ(·, t) ∈ W 1,p(Ω̃) for p > d and all t ∈ T. In such a manner, all the lead

fields between all necessary electrode pairs of a clinically acquired ECG can be computed.

Solving (4.45) is numerically costly for the standard 12-lead ECG, since we only eval-

uate uT at selected locations. Note that the system must be solved for every t ∈ T. Thus,

we adopt the integral representation, introduced in Section 3.3:

Vl(t) =

∫

Ω
Gi(x)∇Vm(x, t) · ∇Zl(x) dx, ((3.18) revisited)

where Zl : Ω̃→ R are the lead fields, outlined in Section 3.3.

Next, we compute the torso potential uT in (4.45) from the solution of the anisotropic

eikonal equation (4.29). To this end, we assign the transmembrane potential Ṽm accord-

ingly to a fixed waveform U : R→ R shifted by the activation time φE as follows

Ṽm(x, t, E) = U(t− φE(x)).

In Section 3.1, we discussed the origins of the electrical activation in the heart and have

shown that for traveling front, the bistable equation results in a parameterizable continuous

waveform. Assuming an additional repolarization, we can define the waveform in terms of

physiological parameters:

U(ξ) = K0 +
K1 −K0

2

[
tanh

(
2
ξ

τ1

)
− tanh

(
2
ξ −APD

τ2

)]
, ((3.6) revisited)

which is visualized in Figure 4.23.

Furthermore, the conduction velocity tensor D in the anisotropic eikonal equation in

(4.29) is linked to the electric conductivity as follows:

D =
α2

β
GeG

−1Gi,

where β is the surface-to-volume ratio and α is a rescaling factor either experimentally esti-

mated or obtained by solving the monodomain equation in a cable propagation setup [95].

Note that in all conducted experiments we assumed an equal anisotropy ratio Gi = λGe,

from which D = α2

β
λ

1+λGi follows. All parameters adopted in this study are provided in

Table 4.6.
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Figure 4.23: Membrane voltage waveform as a function of time, equivalent to (3.6) with
parameters from Table 4.6. The continuous formulation allows for an analytical derivation
in (4.47).

Parameter Description Value Unit

t time [0, T ] ms

λ equal anisotropy ratio 3

GT torso conductivity 0.2 mS
mm

α conduction velocity scaling 20 mm(ms mS−1/2)−1

β surface-to-volume ratio 103 mm−1

K0 resting potential −85 mV

K1 plateau potential 30 mV

τ1 depolarization time-scale 1 ms

τ2 repolarization time-scale 50 ms

APD action potential duration 200 ms

Table 4.6: Parameters to compute the ECG from the eikonal solution φE .

We emphasize that φE ∈ C0,1(Ω) only implies Ṽm(·, t, E) ∈ W 1,p(Ω) and not

Ṽm(·, t, E) ∈ W 2,p(Ω) as required for t ∈ T and E ∈ UN . However, the aforementioned

theory is still valid in this case with some major modifications that are beyond the scope

of this work. Again, we refer to [51] and the references therein for further details.

In what follows, we intend to compute the sensitivities of the ECG with respect to

the parameter set E ∈ UN . In the problem, only the activation map φE appearing in the

definition of Ṽm depends on the parameters in E . Note that the chain rule straightforwardly

implies

∇E Ṽm = −∂U
∂ξ
∇EφE .

The use of the aforementioned smooth waveform allows for a continuous analytical deriva-

tive ∂U
∂ξ . Details on the derivation of the term ∇EφE were already given in Section 4.7.1.3.
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Then, the derivative ∇EVl is computed from (3.19) and reads as

∇EVl(t, E) =

∫

Ω

(
Gi(x)∇2

E,xṼm(x, t, E)
)
∇Zl(x) dx. (4.47)

Finally, in this model the set of EASs E is computed from the measured ECG V̂l : I → R
as follows:

min
E∈UN

1

2

L∑

l=1

∫

T

(
Vl(t, E)− V̂l(t)

)2
dt, (4.48)

which is solved using the Gauss–Newton algorithm in a similar fashion to Algorithm 4.4.

In particular, the update of the set E reads as follows

E(k+1) = arg min
{(xi,ti)Ni=1}∈UN

L∑

l=1

N∑

i=1

1

2

∣∣∣
∣∣∣∇xi,tiJ (E(k))(xi − x

(k)
i , ti − t(k)

i )> + Vl(t, E(k))− V̂ (t)
∣∣∣
∣∣∣
2

L2(T)
(4.49)

with the modified objective functional

J (E) =
1

2

L∑

l=1

∫

T

(
Vl(t, E)− V̂l(t)

)2
dt.

The numerical integration in (4.49) is realized using the trapezoidal rule.

Remark 4.4. There are several numerical issues related to the optimization:

1. The waveform (3.6) is a rough approximation of a physiological action potential

modelled the electrophysiology of a cell. The function U and the scaling parameter α

may be simultaneously approximated from a generic ionic model by solving a 1-D

propagation in a (possibly very long) cable with uniform coefficients. Alternatively,

it is possible to show that (U,U ′, α) solves a nonlinear eigenvalue problem involving

the ionic model [77].

2. The approximation Ṽm is not suitable to model the repolarization of the heart which

is responsible for the T-wave. The reason is that the polarity of the T-wave, in

general in accordance with the polarity of the QRS complex, can only arise from a

heterogeneity in the action potential. Such heterogeneity might be introduced here,

but it would be hard to reproduce the smoothing effect due to diffusion currents.

Finally, the eikonal model is not suitable for the repolarization because, opposed to

the depolarization phase, the repolarization front is of the same order of the size of

the domain, impeding a proper perturbation analysis. In this work, the repolarization

time is φE(x) + APD, hence it satisfies the same equation as φE , but with a shifted

time.
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3. Equation (4.47) requires higher order derivatives of Ṽm and subsequently φE . While

we computed the derivative ∇E Ṽm as previously discussed, the computation of ∇xṼm
is numerically achieved on the reference element.

4. It is important to mention that the gradient computation for the minimization

of (4.48) is usually much more costly compared to optimizing the problem in the

eikonal formulation from (4.39), since the size of Γ is much smaller compared to Ω.

However, to compute ∇xi,tiJ we need the activation times and their derivatives

in Ω, which necessitates the computation of the geodesics from each point of our

domain to the EAS xi. The computational complexity is significantly larger than

the complexity for (4.39). Further strategies to reduce additional computational

costs are presented in Section 4.7.5.

4.7.3 Discretization

In this section, we elaborate on the discretization aspects for Algorithm 4.4, which encom-

passes the steps: over-relaxation of E(k+1), solving the eikonal equation, computation of

the geodesics and update of E(k+1).

4.7.3.1 Solving the Eikonal Equation

The discrete function space for the eikonal equation is the space of volumetric Lagrange P1-

finite elements defined on triangular (d = 2) and tetrahedral (d = 3) meshes discretizing Ω,

respectively. Moreover, the discrete measurements in Γ are degrees of freedom (DOFs) of

the mesh.

Typically, finite element solvers require the initiation sites to coincide with DOFs

of the mesh. However, since the original problem (4.33) expresses xi as a continuous

quantity, we identify the DOFs of the actual element containing the activation site. Then,

these DOFs are added to the Dirichlet boundary ΓD with fixed activation times given

by ti + ||x− xi||D−1(xi)
for x ∈ ΓD due to structural assumptions regarding the P1-finite

element space. For the rare case of two or more initiation sites residing in the same

element, we use the properties of (4.30) and (4.32) to compute the activation times.

4.7.3.2 Computation of Geodesics

In this work, we employ Heun’s method (second order explicit Runge–Kutta scheme) to

solve (4.37), which proved to be stable and efficient in numerical experiments. Due to

the convergence of the ODE system to a stable node xi we terminate the iteration if the

`2-norm of two consecutive iterations is below 10−10. In practice, the ODE system is

solved independently on each region of interest Ri incorporating the whole set E . Since

the gradient of the eikonal solution for the chosen discretization is a P0-finite element

function (i.e. piecewise constant), we advocate a standard L2-projection onto the P1-finite

element space [82]. Note that this projection can be realized by solving a linear system
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involving the mass matrix in P1. Since the boundary of Ω is in general curved, we project

the geodesics back onto ∂Ω if they are outside of the domain after each update.

As remarked in Section 4.7.1.3, the gradient of the eikonal solution is discontinuous

around each xi. To enforce regular gradients at each xi after the L2-projection of the

previous eikonal solution φ̃E , we recompute the points with vanishing gradient by the

subsequent variational problem with Tikhonov regularization for c ∈ JdK and balancing

parameter λ > 0 as follows:




[∇φE(y1)]c
...

[∇φE(yd+1)]c


 = arg min

n∈Rd+1

1

2
〈Ψ(xi),n〉2 +

λ

2

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
n−




[∇φ̃E(y1)]c
...

[∇φ̃E(yd+1)]c




∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

2

.

Here, Ψ = (ψ1, . . . , ψd+1)> and {yj}d+1
j=1 are the collections of P1-basis functions and

degrees of freedom associated with the element containing xi, respectively. Figure 4.24

depicts the effect of this regularization on the solution around xi.
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Figure 4.24: Left: zoom of family of geodesics emanating from a single EAS without
special handling. Note that before the L2-projection of ∇φE geodesics are not guaranteed
to reach the EAS. Right: after the L2-projection all geodesic curves actually reach the
EAS.

The gradient computation in (4.35) is also sensitive to the choice of the step sizes

of (4.37), which we choose as 5 · 10−2h with h being the average element size. As already

described in Section 4.7.1.3, we compute the geodesic direction not directly at xi, but

rather in a small ζ-neighborhood with ζ = 0.5h as advocated in (4.38). Numerically, the

convergence of geodesics to this neighborhood is not ensured and non-converged geodesics

(rarely occurring) do not affect the optimization.

4.7.3.3 Update of E(k+1)

Next, we optimize (4.42), where we have to ensure E ∈ UN . The constraint xi ∈ Ω

is mesh-dependant and allows for no general analytical solution, potentially limiting the
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available optimization implementations. To overcome this hurdle, we again use the Moreau

envelope of Example 2.10 in a proximal point algorithm enforcing E ∈ UN . The integration

is realized using an exact simplex quadrature rule.

The metric of the Moreau envelope for (4.42) is given by Mi,E(k) := 1
τ I − J>

i,E(k)Ji,E(k)

for τ < ‖J>
i,E(k)Ji,E(k)‖−1, where Ji,E(k) := ∇(xi,ti)J (x

(k)
i , t

(k)
i ). Thus, the Moreau envelope

reads as

f(E) := min
E∈UN

N∑

i=1

1

2

∣∣∣∣∣

∣∣∣∣∣Ji,E(k)

(
xi − x

(k)
i

ti − t(k)
i

)
+ rE(k)(x)

∣∣∣∣∣

∣∣∣∣∣

2

L2(Γ)

+
1

2

∣∣∣∣∣

∣∣∣∣∣

(
xi − xi

ti − ti

)∣∣∣∣∣

∣∣∣∣∣

2

M
i,E(k)

(4.50)

with E = {(xi, ti)Ni=1} and E = {(xi, ti)Ni=1}, and rE(k)(x) = φE(k)(x) − φ̂(x). As already

discussed in Example 2.10, this particular choice of the metric [26] allows for an explicit

solution to (4.50) given the projection onto UN . This method is usually referred to as

ISTA [44]. In summary, the iteration step of the proximal point algorithm reads as

Ê =





(
proj
U1

((
xi

ti

)
−
∫

Γ
τJ>

i,E(k)

(
Ji,E(k)

(
xi − x

(k)
i

ti − t(k)
i

)
+ rE(k)(x)

)
dx

))N

i=1



 .

Thus, the resulting optimal set is Ê = {(x̂i, t̂i)Ni=1}. Note that the convexity of the pro-

jection depends on the convexity of the domain. In practice, hardly any cardiac mesh is

convex, but nevertheless the proposed method generated reliable results for sufficiently

small step sizes. The gradient direction of the Moreau-envelope is

∇fxi,ti(E) = τ−1

(
xi − x̂i

ti − t̂i

)

In this case, the unconstrained problem is solved using L-BFGS [21].

4.7.4 Numerical Results

Next, we present numerical results for various methods discussed above, where we focus

on four setups to test GEASI on theoretical and cardiac problems:

1 The square domain presented in Figure 4.20 with a periodic conduction velocity

field, where the measurement domain Γ coincides with the boundary of the surface.

2 On a simplified 2D left ventricle (LV)-slice geometry with a transmural fiber ro-

tation. Fiber and transverse velocities were set 0.6 and 0.4 m
s , respectively. The

measurement domain Γ is the outer ring of the domain, i.e. an epicardial slice.

3 On a clinically sampled, endocardial electrical mapping, measured during cardiac

resynchronization therapy (CRT). The measurements were projected onto a patient-
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specific LV heart geometry and acquired by MRI. We mapped fiber orientations into

the model using the approach described in [9]. Fiber, transverse and cross conduction

velocities were set 0.6, 0.4 and 0.2 m
s , respectively.

4 A full biventricular, trifascicular LV/RV human heart geometry with 1000 measure-

ment points Γ distributed evenly along the epicardium. Fiber orientations were

mapped as before. To account for the non-existent Purkinje fiber tree, an additional

fast-conducting isotropic endocardial layer with a propagation velocity of 1.5 m
s is

used.

Further numerical specifications of the aforementioned setups are listed in Table 4.7. A

DOFs Size [cmd]
h

Runtime [h]
Topological

ECG
[mm] gradient

1 502 2 · 2 0.4 1/2 ( ECG) X X

2 7980 2 · 2 0.11 1/2 ( ECG) X X

3 1.5 · 104 10.7 · 8.9 · 9.5 1.9 2.5 X

4 1.08 · 105 10.3 · 8.1 · 12.6 0.66 3.5/18 ( ECG) X

Table 4.7: Selected parameters for each setup. The size refers to the bounding box of the
setups and h is the average element spacing. Tested extensions are indicated by check
marks. The ECG runtimes are separately denoted behind the dash as the experiments are
more computationally demanding.

summary of the example setups is provided in Figure 4.25.

In this work, we use a custom C++ implementation of the FIM to solve (4.29). Note

however that the method is independent of the chosen eikonal solver and may benefit from

higher order or smoother solutions of different solvers. A minimal working example for

the method can be found on GitHub2, but is limited to the isotropic eikonal equation on

structured grids using the Fast Marching Method [112, 118] without FEM. The ECG and

geodesic computations (see (3.18) and (4.37), respectively) and its Jacobian computation

are calculated using the Tensorflow framework3, making use of available GPUs and en-

abling automatic derivation of Vl with respect to Ṽm. All computations were performed on

a single desktop machine with an Intel Core i7-5820K CPU using 6 cores of each 3.30GHz,

32GB of working memory and a NVidia RTX 2080 GPU.

4.7.4.1 Activation Time Optimization

In Figure 4.26, we present the results of GEASI for the 2D experiments: In the first

iterations of the square example, the EASs are moved to the center of the domain to

promote a good overall fit during optimization. As the sites approach the center, fine

2https://github.com/thomgrand/geasi_grid_demo
3https://www.tensorflow.org/

https://github.com/thomgrand/geasi_grid_demo
https://www.tensorflow.org/
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Figure 4.25: Activation times for all setups considered along with fiber orientations
(if available). The isotropic conduction velocity of 1 is presented in Figure 4.20 and

exhibits no fiber orientation due to isotropy. Note that 3 was measured in-vivo and thus
no ground truth is available.

details on the boundary can be fitted by minimizing the mismatch defining the optimal

points. The idealized LV model additionally requires a non-convex projection since the

fiber alignment favors movements on the endocardial wall. The optimization still works

for this case, even though the problem in (4.50) becomes non-convex.

Next, we concentrate on 3D experiments in Figures 4.27 and 4.28, for which we alter

the number of initiation points for both models. Even though we can not ensure that

the activation of the clinically acquired CRT patient can be described by the eikonal

model with the simple rule-based fiber orientation, the results on the CRT masurements

provide an overall low root-mean-square error (RMSE) between modelled and measured

activation times. In the presence of a single EAS, the fit is (expectedly) sub-optimal since

the activation requires a more complex activation pattern. With three or more EASs,

we get a much better fit, evenly distributed throughout the ventricles, but additional
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Figure 4.26: Results of GEASI for both 2D experiments. We located the exact initiation
sites with only a few iterations, both for the heterogeneous velocity case (left) and in the
presence of non-convex projections for the idealized LV model (right).

initiation sites are moved from the septum to the LV. These initiation sites seem to be

an unrealistic consequence of the simplified modeling of fiber directions. We can achieve

even better results by sucessively increasing the number of initiation sites, but this only

reveals the nature of the ill-posed problem: By increasing the complexity of our model,

we can more closely approximate the presented activation map (cf. Proposition 1).

The trifascicular model has a higher resolution in comparison to the CRT model with

an added fast conducting sub-endocardial layer, which is utilized in all longer geodesics

from the measurements to the initiation sites. For this reason, it is important to properly

project the geodesics in each iteration on the endocardium in a fast way. For further

details of the actual implementation we refer the reader to Section 4.7.5. As a result,

when using less EASs than in the ground truth we already achieve convincing numerical

results, which is visualized in Figure 4.28. If we incorporate 6 initiation sites, we get a

very good fit, even though one of the activation sites is deactivated before convergence due

to (4.32). The three septal points are jointly modelled by two EASs accounting for the

deactivated point. Adding points beyond the given ones did not yield any improvement

as they are deactivated by other points during the optimization (not shown).

4.7.4.2 Topological Gradient

We also tried to estimate the correct number of EASs by using topological gradients (see

Section 4.7.2.1), where we analyzed all 2D setups and the CRT patient. In this case,
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1 EAS 3 EAS 5 EAS

30 40 50 60 70 80 90 100

Activation Times φE [ms]

16.69 6.85 1.99

Figure 4.27: Results for the CRT experiment with varying number N of EASs along with
the RMSE (in ms) shown above each experiment. The color-coded spheres indicate the
observed activation times, while the white circles represent the optimized EAS positions.
The white trailing paths show the optimization path over the iterations. Increasing N
lowers the overall RMSE, but may result in physiologically unlikely EAS (e.g. top of the
left ventricle for N = 5).

a splitting can only occur if the ratio
νM,ε
νS,ε

is below 10−1 (2D)/2.5 · 10−1 (3D) and the

maximum Euclidean distance of the position of two consecutive iterates among all EASs

is smaller than 10−2h (with h being the average element spacing).

The minimizer of (4.44) is chosen by evaluating 360 (2D)/5625 (3D) directions, which

are evenly distributed on the hypersphere. We additionally ensure that the splitting

direction is feasible (i.e. it does not point outside the domain) by projecting the samples

onto the mesh. To avoid two coalescing EASs inside one element after a split, the points

are moved apart by 2h from the original site.

In Figure 4.29, we collected the results for all 2D experiments using this method and

plot the ratio
νM,ε
νS,ε

over the iterations. The first EAS is moved towards the center of the

ground truth EASs, and subsequently several splits occur that closely match the ground

truth sites. A similar behavior can be observed in the idealized LV model.
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1 EAS 3 EAS 6 EAS

10 20 30 40 50 60 70 80

Activation Times φE [ms]

9.04 (Γ)/9.44 (Ω) 7.42 (Γ)/7.18 (Ω) 0.57 (Γ)/0.67 (Ω)

Figure 4.28: Results for the trifascicular experiment along with the RMSE (in ms) shown
above the experiments for both Γ and Ω. The color-coded spheres indicate the observed
activation times. The white and green circles represent the optimized and target EAS,
respectively. The overall RMSE activation error is very low if using the correct number of
initiation sites (N = 6), but we already obtain a good fit with fewer sites.

For the CRT patient in Figure 4.30, neither the ground truth EASs nor the fiber

distribution and velocities in Ω are known. In total, the algorithm introduced 8 splits

(i.e. N = 9), of which 4 are deactivated during optimization since they violate (4.32).

Only those final EASs are shown in the right plot of Figure 4.30. Moreover, we can see

that three main clusters are identified, where one initiation cluster is located at the upper

part of the anterior septum. The optimization in this region is further complicated by

the very thin wall of the 3D mesh, which likely causes the high number of splits. We

highlight that constant (in time) split ratios are caused by temporarily deactivated EASs

violating (4.32). To conclude, we get a tremendous fit with the presented measurement

points despite the aforementioned model assumptions. Moreover, the topological gradient

could be successfully applied to all 2D models leading to the correct estimate for the

number of EASs and also matching the correct sites. The corresponding results in 3D

provide a very low overall RMSE on the measurements.
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Figure 4.29: Results of the 2D experiments for the topological gradient. Top row: op-
timization paths starting with a single EAS. Bottom row: plots of

νM,ε
νS,ε

for each EAS

depending on the iterations, where an EAS is split if this ratio is below the dotted red
line. The location (top) and iteration (bottom) of the splits are marked by 1© and 2©.
Note that an EAS only splits if all parameters have converged (see Section 4.7.4.2).

4.7.4.3 ECG

In what follows, we present numerical results for the ECG optimization for both 2D

experiments as well as the trifascicular model in a simplified fashion as a proof-of-concept.

The ECG requires an additional full torso domain ΩT and the computation of the lead

fields. For all experiments in this paper, we submerge all three in-silico experiments

(i.e. 1 , 2 , 3 ) into a non-equilateral cube-torso without any additional organs and an

overall torso conductivity of 0.2 S
m . The size of the cube-torso is proportional to the
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Figure 4.30: Results for the topological gradient extension on the CRT experiment with
a visualization analogous to Figure 4.29.

bounding-box of Ω. The computed lead fields are shown in Figure 4.31. In all cases, we

generated a noiseless target ECG from the reference model setup with parameters and

initiation sites already presented in Section 4.7.4. We optimize our model with random

initialization with respect to this target ECG. Note that we do not focus on the generated

ECGs’ absolute potentials, since this heavily depends on the actual torso setup. Instead,

we rather focus on the overall morphology of the ECGs.

To compute the lead fields in (3.19), our cube-torso is sampled using a structured

regular grid of 100d equidistant points, and the problem is solved with a finite difference

scheme. The lead fields are computed prior to the optimization since they remain constant.

The ECG signals for the 3D models are mean-filtered with a small kernel of size ≈ 2 ms

to improve accuracy.

Optimization solely based on the ECG is frequently very challenging. However, with a

proper initialization (xi, ti), good fits for the ECGs can be computed. Figure 4.32 shows

the optimization paths, as well as initial, target and optimized ECGs using the modified

GEASI algorithm presented in Section 4.7.2.2 for the 2D examples, which are computed

in approximately 2.5 hours each. The two potentials are a result of the two axis-aligned

lead-fields (see Figure 4.31).

In the numerical experiments, it turned out that that the overall step size βs has to be

chosen smaller compared to the activation timing problem. The morphology of the initial

ECG and the optimized ECG differ by a large margin, making the fitting non-trivial. As

a result, in both the square domain and the idealized LV experiment we are able to closely

match the actual sites from which the target ECG was generated (Figure 4.32, second

row).

The trifascicular model in Figure 4.33 is computationally demanding since in each

iteration step a computation of all geodesics is required, i.e. we need to solve ≈ 105 ODEs

per iteration (for further details we refer to Section 4.7.5). As each initial EAS is randomly
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Figure 4.31: Setup for the ECG experiments showing the torso domain ΩT . The heart
domain Ω is indicated by black lines for the 2D experiments and gray silhouettes for 3D.
The streamlines visualize the lead fields. Note that the lead field for axis Z (green) is only
present in the 3D experiments.

chosen, the initial ECG significantly differs from the target. Note that the 3D cube torso

exhibits three axis-aligned leads. Since lead-X and lead-Z have the most prominent peaks,

they have the largest effect on the resulting L2-error. After the optimization, these peaks

were fitted by the algorithm by shifting most of the initiation sites to the LV and one to

the anterior wall and septal region. The added difficulty with an activation featuring that

many EASs is also apparent from the computed paths (white lines) which strongly vary

during optimization. After termination, 4 of 6 sites are close to the ground truth sites

defining the target ECG.

4.7.5 Runtime

The majority of the computational time is spent for solving the geodesics in (4.37), per-

formed in parallel on the GPU. We highlight that the number of geodesics is proportional
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Figure 4.32: Results of the 2D ECG optimization. Top row: temporal change of the
positions of the EASs along with the ground truth. Bottom row: initial, final and target
ECG for fitting.

to the size of Γ in the original version (Algorithm 4.4) and proportional to Ω in the modi-

fied version (Section 4.7.2.2). The computation of all geodesics in both cases is performed

in parallel on a GPU and therefore scales well with the mesh size. The bulk of computa-

tional time inside the ODE solver is spent on the projection of each ODE solution back

onto the mesh and nearest neighbor computation. For the nearest neighbor computation,

we implemented a custom KD-Tree implementation (publicly available on GitHub4). For

4https://github.com/thomgrand/tf_kdtree

https://github.com/thomgrand/tf_kdtree
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Figure 4.33: Results of the ECG optimization on the trifascicular model. Top row: opti-
mized positions of EASs (white circles) along with temporal changes over the iterations
(white lines). The green circles represent the target position from which the ground truth
was generated. Bottom row: initial, final and target ECG.

the projection operator, we extract the surface of the mesh, prior to the computation using

the truncated signed distance function from VTK5. The K-nearest neighbor elements of

the current positions of the geodesics are then queried to calculate the analytical projec-

tion onto all reference elements. The projection to all nearest neighbors is the minimum

distance projection onto the mesh Ω.

Solving the eikonal equation in (4.29) as well as the Gauss–Newton optimization in

(4.39) only requires a minor portion of the computational time. As already mentioned, the

5https://vtk.org/

https://vtk.org/
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activation time optimization is much faster compared to the remaining computations. In

total, the experiments were finished within about 100 iterations only taking approximately

30 minutes and 90 minutes for 2D and 3D experiments, respectively. The experiments for

the topological gradient behaves similarly regarding computational time. In contrast, the

3D optimization in the ECG problem requires approximately 12 hours.

To further decrease runtime, several approaches are possible: A custom GPU im-

plementation to solve (4.37) along with the projection could significantly speed-up the

optimization. Additionally, we often witnessed a collapse of many geodesic paths, espe-

cially in the trifascicular model, making subsequent computations redundant. An adaptive

sampling from the measurement domain Γ combined with a proper upsampling technique

could increase performance at the cost of precision.
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Figure 4.34: Convergence of the geodesic ODE in (4.37) for the trifascicular model over
the iterations with a single EAS in the septum. The majority of the geodesics converge
before 2000 iterations.

To improve performance for the 3D ECG optimization, we analyzed the convergence

of the ODEs. Figure 4.34 shows a probability density function (PDF) of convergence

of the geodesics γ over the number of required iterations using the trifascicular model

with a single initiation site in the septum. Convergence in this case is defined as the

first time two subsequent ODE iterations of (4.37) have a change of less than 10−10,

i.e. ||γ(tk+1)− γ(tk)|| < 10−10. We see that many of the computed geodesics converge

very quickly, while points with a high geodesic distance need significantly more iterations

before convergence. Our vectorized/parallel implementation to solve (4.37) exploits this

fact to only include non-converged geodesics.





5 Discussion & Conclusion
I would rather have questions that can’t be answered, than answers that can’t be

questioned. (Richard P. Feynman)

In this thesis, we set out to tackle a few of the many challenges in inverse cardiac electro-

physiology.

As Chapter 4 showcased, we utilized many of the theories introduced in Chapters 2

and 3 and applied them to model the problem and subsequently pose the inverse problem

of identifying cardiac conduction velocities or EASs from a variety of measurements. From

a modeling point of view, there are many similarities between the approaches: We assume

the eikonal model as an underlying model of electrical propagation, usually solved using the

FIM. An optimization problem was then formulated, usually using some form of quadratic

l2 loss on known data/measurements and subsequently solved using a first order gradient

method. Locally varying parameter sets were additionally often regularized using TV, or

a smooth variant thereof.

Still, the different presented methods vary greatly in application (digital twinning vs.

clinical aid), abstraction level (LAT vs. ECG), dimensionality of the problem (manifolds

vs. 3D meshes), optimized parameters (conduction velocity tensor vs. EAS), choice of

inverse model (direct, ANN, Hamilton–jacobi formalism, . . .) and used optimization ap-

proaches (FISTA, gradient descent, Gauss Newton, . . .). A lot of this goes to show that

the problem can be viewed from various angles that need to be handled differently. An

important step in this work was to identify the key parameter set necessary for electrical

activation in the heart and define it in a way that allowed for an efficient optimization

given the respective data. The identified main set of parameters comes from the anisotropic

eikonal equation in its most general formulation: The conduction velocity tensor and the

Dirichlet boundary conditions, often referred to as EAS. Both of these parameter sets can

be efficiently optimized if a LAT map is known, but the extension of optimizing against an

actual ECG (see Section 4.7.2.2) remains difficult. The chosen model to compute ECGs

from eikonal activation maps was a compromise between high-fidelity and computational

efficiency [95]. A major challenge is the fact that the timeseries signal of an ECG is by

nature very sparse in information, considering the signal remains at the baseline for a

major portion of a heartbeat, whereas the major information of ventricular activation is

contained in the very short QRS-complex. The employed l2-norm compares the timeseries

point-wise and is thus not able to efficiently model e.g. simple shifts of the depolarization.

Additionally, second order derivatives are required for gradient based optimization of the

137
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loss functional. Further research in this field should focus on the choice of a proper, yet

efficient loss functional to compare two ECGs.

As already outlined in Chapter 1, there is a plethora of applications of such a technol-

ogy, such as automated digital twinning of a patient’s heart. When building such models

from physical assumptions that have been shown to represent (or at least approximate)

encountered phenomena, we are always guaranteed to uphold a certain degree of physi-

cal fidelity. In contrast to many recent ML-orientated blackbox approaches, this has the

potential to let us gain more insights into the inner workings and underlying machinery,

as well as testing hypotheses. This trend is also followed by the recent advent of PINNs,

which fuse ML methods with classical PDE modeling.

Two major difficulties arise in such optimizations, as we have used throughout this

thesis: Firstly, fitting the actual data to the model in most cases can be difficult, since we

require a certain underlying physical model. When dealing with real measurements, they

are on the one hand noisy, but, on the other hand, they possibly do not fully adhere to the

chosen physical model. Secondly, in many of the presented cases the problem is actually

ill-posed, meaning there are infinitely many choices of parameters that could potentially

model the encountered data. We usually combat this problem by means of regularization,

but most studies at the date of writing are still concerned with fitting the data and do

either not use any kind of regularization at all, or simple heuristics are chosen according

to the experiments. Since there is no consensus (yet), what a proper regularization for

inverse problems of cardiac electrophysiology should be in this case, we relied on general

regularization strategies and functions for inverse problems, i.e. TV in most cases.

In some cases, it is also not advisable to perfectly fit a given ECG as there can be a

lot of variation and noise present in the signal. This raises the concern that probabilistic

models would be better suited to model not just a single beat, but the beat distribution

of a given patient. In theory, this could also help in better modeling arrhythmias, as

some of them (e.g. premature ventricular contraction) do not alter the morphology of each

beat. Additionally, such probabilistic models could also quantify uncertainties of both the

parameters and the resulting ECG, giving some confidence on how much the input and

output of the model can be trusted.

5.1 Eikonal Equation

In this work, we rely on the anisotropic eikonal equation, but other versions thereof are also

applicable. More specifically, several eikonal frameworks to model physical and medical

processes have been proposed over the last three decades, which can be derived from either

the monodomain or the bidomain equation using a perturbation argument [51]. The most

common equation inferred from a first order approximation of the monodomain equation is

the anisotropic eikonal equation (4.29). The eikonal model originating from the bidomain

model is slightly different and is based on a Finsler-type metric [2].

Second-order approximations lead to the curvature-eikonal, diffusion-eikonal and
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viscous-eikonal equations. In the curvature-eikonal model [77], the front velocity is

corrected by the curvature of the wavefront in the metric induced by the conduction

velocity tensor. In contrast, in the diffusion-eikonal equation [32] a diffusion term is

added to the right-hand side of (4.29). Finally, in the viscous-eikonal model [80], a

squared eikonal equation is considered, which is corrected by a diffusion term.

Higher-order approximations have also been proposed, but are rarely used in prac-

tice [42]. The effect of higher-order terms is more pronounced in front collisions, at the

boundary of the domain and in narrow channels, e.g. scarred tissue. In practice, however,

deviations from the standard eikonal model are minimal and the standard model is there-

fore widely accepted for personalization of cardiac models. This goes to show that the

eikonal model is a valid choice for inverse problems in cardiac electrophysiology.

5.2 ECG

The ECG results of GEASI in Section 4.7 demonstrated that inverse eikonal problems

can be used to fit a model to a given ECG. However, one main problem that we faced

is getting stuck in local minima. While the l2-error is relatively low in these minima,

the morphology of the optimized and the target ECG differ a lot. One of the main

reasons for this problem could result from the usage of the l2-error, which is not robust

to transformations of the timeseries, such as time shifts [127]. Better error measures

for this type of optimization include dynamic time warping [110] and the Wasserstein

distance [22, 123]. Finally, different optimization algorithms that are less susceptible to

local minima, such as the ones used in many ML applications (e.g. ADAM [79]), could

further help to overcome this issue.

While computational capabilities have reached new heights for cardiac modeling, as

was proven by the advent of real time electrophysiological solvers in the past years [87, 95],

the inverse electrophysiological problem remains challenging. With the initial outset at the

start of the ILearnHeart project, the target was to model a specific heartbeat of a patient.

We achieved this goal in different levels of accuracy in the presented and published works.

In order to advance to a fully automatic parameterization procedure (or digital twinning),

further research is needed both in the area of constructing robust measures to compare

ECGs, as well as an improved formulation of the inverse problem. This holds especially

true for regularization strategies based on prior knowledge about contributing physiology

(that is so far only available in few studies) and needs proper mathematical models. From

the results of this thesis, I conclude and predict that the automated digital twinning for

cardiac electrophysiology is within our grasp and only misses few, yet essential parts that

can further help in combating the ill-posedness of the problem.
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A FIMIN

A.1 Additional 2D Experiments
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Figure A.11: This experiment uses curvature in horizontal direction, as well as a fiber
velocity gradient along vertical direction. We are able to reconstruct the curvature of the
DTF and some parts of the velocity gradients. The upper part of the domain has slightly
too high fiber velocities, compensated by overall lower fiber velocity across the domain.

This section contains additional 2D experiments that demonstrate the results to be

expected from the method presented in this paper. Figure A.11 is uses simple curvature
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of fiber, together with a velocity gradient in vertical direction, while Figure A.12 tries to

reflect the joining of fibers in the heart’s apex. Both examples can be reconstructed well

from only boundary data, were the mismatch of activatoin times is close to zero, but there

is some deviation in velocities and fiber direction, due to ill-posedness of the problem.
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Figure A.12: This experiment replicates a projection from below of the heart’s apex: The
fibers join in a circular fashion in the middle of the domain, fiber velocities are constant.
Both fiber velocity and direction can be roughly reconstructed.

A.2 Optimal Choice of λ

This section will show how we arrive at the optimal choice of λ in Equation (4.3). The

used notation is a combination of the notations in [111] and [52], on which we based our

solution to the problem. We start with our optimization problem, posed in Equation (4.3):
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φ4 = min
λ1,λ2

λ1φ1 + λ2φ2 + (1− λ1 − λ2)φ3 +
√

e>∆Dje∆ , s.t. λi ∈ [0, 1] (A.1)

e∆ = v4 −
3∑

i=1

λivi = v4 − v3︸ ︷︷ ︸
w3

+λ1 (v3 − v1)︸ ︷︷ ︸
w1

+λ2 (v3 − v2)︸ ︷︷ ︸
w2

= λ1w1 + λ2w2 + w3

(A.2)

where vi ∈ R3 are the vertices (corners) of our Tetrahedron. The wave propagation is

calculated from the triangle formed by (v1,v2,v3) to the vertex v4.

φ4 = min
λ1,λ2

λ1φ1 + λ2φ2 + (1− λ1 − λ2)φ3 +
√

e>∆Dje∆

= min
λ1,λ2

λ1 (φ1 − φ3) + λ2 (φ2 − φ3) + φ3 + ||λ1w1 + λ2w2 + w3||2,D
(A.3)

We state the unconstrained optimality condition as:

∇φ4 =


φ1 − φ3 + 1

||e∆||e
>
∆Djw1

φ2 − φ3 + 1
||e∆||e

>
∆Djw2


 = 0

0 =

(
(φ2 − φ3) ||e∆||+ φ2−φ3

φ1−φ3
e>∆Djw1

(φ2 − φ3) ||e5,4||+ e>∆Djw2

) (A.4)

Subtract 1 from 2:

0 = e>∆Dj

(
w2 −w1

φ2 − φ3

φ1 − φ3

)

0 = (λ1w1 + λ2w2 + w3)>Dj

(
w2 −w1

φ2 − φ3

φ1 − φ3

) (A.5)

For shorter notation, we write ri,j = w>i Dwj . Since we require D ∈ Sn++ (see (2.6)),

ri,j = rj,i ∧ ri,j > 0. Assume we want to find one of the lambda-variables, which we call

λi, while the other λ will be called λk. We then have:



158

0 = λ1


r1,2 −

φ2 − φ3

φ1 − φ3
r1,1

︸ ︷︷ ︸
A1


+ λ2


r2,2 −

φ2 − φ3

φ1 − φ3
r2,1

︸ ︷︷ ︸
A2


+ r3,2 −

φ2 − φ3

φ1 − φ3
r3,1

︸ ︷︷ ︸
B

λk = − B
Aj
− λi

Ai
Aj

(A.6)

If either A1 = 0 or A2 = 0 are zero, the choice of λ1 or λ2 (respectively) is arbitrary. The

solution for the variable with Ai 6= 0 is then λi = − B
Ai

. For the general case A1 6= 0 and

A2 6= 0 we reintroduce the solution of λk into the original minimization problem to find

the optimal λi:

λi = arg min
λ

λ (φi − φ3) + λk (φj − φ3) + φ3 + ||λwi + λkwj + w3||2,D

arg min
λ

λ (φi − φ3) +

(
− B
Aj
− λAi

Aj

)
(φj − φ3) + φ3 +

∣∣∣∣
∣∣∣∣λwi +

(
− B
Aj
− λAi

Aj

)
wj + w3

∣∣∣∣
∣∣∣∣
2,D

arg min
λ

λ

(
φi − φ3 −

Ai
Aj

(φj − φ3)

)
− B

Aj
(φj − φ3) + φ3 +

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
λ

(
wi −

Ai
Aj

wj

)

︸ ︷︷ ︸
z1

+ w3 −
B

Aj
wj

︸ ︷︷ ︸
z2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2,D

(A.7)

and solve the problem using the optimality condition again

0 =

(
φi − φ3 −

Ai
Aj

(φj − φ3)

)
+

1

||λz1 + z2||2,D
z>1 D (λz1 + z2)

=

(
φi − φ3 −

Ai
Aj

(φj − φ3)

)
||λz1 + z2||2,D + λz>1 Dz1 + z>1 Dz2

(A.8)

We again write for a shorter notation pi,j = z>i Dzj

−
(
φi − φ3 −

Ai
Aj

(φj − φ3)

)
||λz1 + z2||2,D = λp1,1 + p1,2

(
φi − φ3 −

Ai
Aj

(φj − φ3)

)2

︸ ︷︷ ︸
t

(
λ2p1,1 + 2λp1,2 + p2,2

)
= λ2p2

1,1 + 2λp1,1p1,2 + p2
1,2

λ2
(
p1,1t− p2

1,1

)
+ λ (2p1,2t− 2p1,1p1,2) + p2,2t− p2

1,2 = 0

(A.9)

The solution to the quadratic problem is
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λ1,2 =

− (2p1,2t− 2p1,1p1,2)±
√

4 (p1,2t− p1,1p1,2)2 − 4
(
p1,1t− p2

1,1

)(
p2,2t− p2

1,2

)

2
(
p1,1t− p2

1,1

)

=
− (t− p1,1) p1,2 ±

√
p1,2t2 − p1,1p2

1,2t− p1,1p2,2t2 + p2
1,1p2,2t

(t− p1,1) p1,1

=

−p1,2 ±
√

1
(t−p1,1)2 t (t− p1,1)

(
p2

1,2 − p1,1p2,2

)

p1,1

=
−p1,2 ±

√
t
p1,1p2,2−p2

1,2

p1,1−t

p1,1

=
−p1,2 ± k

√
p1,1p2,2−p2

1,2

p1,1−t

p1,1

(A.10)

with k =
√
t .

Both solutions need to be checked and the value that minimizes φ4 in Equation (A.1)

is taken. λk is then easily obtained using Equation (A.6).

Special cases may arise when solving Equation (A.10) unconstrained as Fu et al.already

stated:

If no root exists, or if λ1 or λ2 falls outside the range of [0, 1] (that is, the

characteristic direction does not reside within the tetrahedron), we then apply the

2D local solver used in [52] to the faces ∆1,2,4 , ∆1,3,4 and ∆2,3,4 and select the

minimal solution from among the three. ([53])

The referenced 2D solver finds the optimal λ for the wave propagation in triangles

through solving the following optimization problem:

φ3 = min
λ
λφ1 + (1− λ)φ2 + φ3 +

√
e>4,3Dje4,3 , s.t. λ ∈ [0, 1] (A.11)

with

e4,3 = v3 − (λv1 + (1− λ)v2) = v3 − v1 + λ (v2 − v1) (A.12)

The derivation is similar to the presented 3D-case.
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A.3 Gradient of λ

The optimization is kept as general as possible, by assuming that all variables, except the

coordinates of the vertices, are dependant on our exemplary variable ϑ. If we remember

the minimizing sign in Equation (A.10), we can state the solution of λ as:

λ =
−p1,2(ϑ) + c k(ϑ)

√
p1,1(ϑ)p2,2(ϑ)−p1,2(ϑ)2

p1,1(ϑ)−t(ϑ)

p1,1(ϑ)
s.t. c ∈ {−1, 1} (A.13)

In order to derive λ, we recall the definitions of all former temporary shorthand no-

tations and their gradients. Additionally, some of the longer terms also receive their

shorthand notation:

wi = v3 − vi
∂wi

∂ϑ
= 0

ri,j(ϑ) = w>i D(ϑ)wj
∂ri,j(ϑ)

∂ϑ
= w>i

∂D(ϑ)

∂ϑ
wj

ki(ϑ) = φi(ϑ)− φ3(ϑ)
∂ki(ϑ)

∂ϑ
=
∂φi
∂ϑ
− ∂φ3

∂ϑ

(A.14)

Ai(ϑ) = k1(ϑ)ri,2(ϑ)− k2(ϑ)ri,1(ϑ)

∂Ai
∂ϑ

=
∂k1

∂ϑ
ri,2(ϑ) + k1(ϑ)

∂ri,2
∂ϑ
− ∂k2

∂ϑ
ri,1(ϑ)− k2(ϑ)

∂ri,1
∂ϑ

B = k1(ϑ)r3,2(ϑ)− k2(ϑ)r3,1(ϑ)

∂B

∂ϑ
=
∂k1

∂ϑ
r3,2(ϑ) + k1(ϑ)

∂r3,2(ϑ)

∂ϑ
− ∂k2

∂ϑ
r3,1(ϑ)− k2(ϑ)

∂r3,1(ϑ)

∂ϑ

k(ϑ) = ki(ϑ)− Ai(ϑ)

Aj(ϑ)
kj(ϑ)

∂k

∂ϑ
=
∂ki
∂ϑ
−
(
∂Ai
∂ϑ Aj(ϑ)−Ai(ϑ)

∂Aj
∂ϑ

Aj(ϑ)2
kj(ϑ) +

Ai(ϑ)

Aj(ϑ)

∂kj
∂ϑ

)

t(ϑ) = k(ϑ)2

∂t

∂ϑ
= 2k

∂k

∂ϑ

(A.15)
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z1(ϑ) = wi −
Ai(ϑ)

Aj(ϑ)
wj

∂z1

∂ϑ
= wi −

(
∂Ai
∂ϑ Aj(ϑ)−Ai(ϑ)

∂Aj
∂ϑ

Aj(ϑ)2

)
wj

z2(ϑ) = w3 −
B(ϑ)

Aj(ϑ)
wj

∂z2

∂ϑ
= w3 −

(
∂B
∂ϑAj(ϑ)−B(ϑ)

∂Aj
∂ϑ

Aj(ϑ)2

)
wj

pi,j(ϑ) = z>i (ϑ)D(ϑ)zj(ϑ)

∂pi,j
∂ϑ

=
∂z>i
∂ϑ

D(ϑ)zj(ϑ) + z>i (ϑ)
∂D

∂ϑ
zj(ϑ) + z>i (ϑ)D(ϑ)

∂zj
∂ϑ

(A.16)

Additionally we introduce a shorthand notation for the fraction of the square root in

(A.13):

u(ϑ) = p1,1p2,2 − p2
1,2

∂u

∂ϑ
=
∂p1,1

∂ϑ
p2,2(ϑ) + p1,1(ϑ)

∂p2,2

∂ϑ
− 2p1,2

∂p1,2

∂ϑ

v(ϑ) = p1,1 − t
∂v

∂ϑ
=
∂p1,1

∂ϑ
− ∂t

∂ϑ

(A.17)

Deriving Equation (A.13) using the derivation of all shorthand variables yields the

gradient of λ:

λ(ϑ) =
p1,2(ϑ)+c k(ϑ)

√
u(ϑ)
v(ϑ)

p1,1(ϑ)

∂λ
∂ϑ = 1

p1,1(ϑ)2

[(
∂p1,2

∂ϑ + c

(
∂k
∂ϑ

√
u(ϑ)
v(ϑ) + 1

2

√
v(ϑ)
u(ϑ)

∂u
∂ϑ
v(ϑ)−u(ϑ) ∂v

∂ϑ
v(ϑ)2

))
p1,1(ϑ)

−
(
p1,2(ϑ) + c k(ϑ)

√
u(ϑ)
v(ϑ)

)
∂p1,1

∂ϑ

]
(A.18)

A.4 Gradient-Approximation of the Diffusion Tensors

We want to find ∇D given D on an unstructured grid. We know that for any closed

domain ω ⊂ Ω, it holds that

∫

ω
∇D(x) dx =

∫

∂ω
D(x) dx
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Assume our domain of interest ω encompasses exactly one element j. Since we assume

constancy of gradient of diffusion tensors ∀x ∈ ω : ∇D(x) = ∇Dj inside one element, we

can say that

|ω| ∇Dj =

∫

∂ω
D(x) dx

Our elements are not arbitrary domains, but are either triangles (d = 3) or tetrahedra

(d = 4), with a finite set of linear lines/faces ∂ωi:

|ω| ∇Dj =
d∑

i=1

∫

∂ωi

D(x) dx

In order to compute the integral on the r.h.s., we need to define a proper function that

approximates D(x) on the faces. For our experiments, we computed the mean of elements

sharing the face.

There are many sophisticated solutions to this problem, but we used the simple as-

sumption that D(x) is the constant mean on each face/line of all elements bordering the

line/face. We use a von-Neumann boundary condition with zero flux outside of our domain

for all surface faces ωi ∈ ∂Ω.
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