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Abstract

In today’s medical landscape, imaging systems are of exceptional importance. Magnetic Reso-
nance Imaging and Computed Tomography (CT) are heavily used and have improved diagnostic
capabilities in many fields. However, contrast in CT relies on depositing ionizing radiation in
the body, the dose of which should be as low as possible. Image quality per dose has improved
drastically in the past decades, with advances in instrumentation and reconstruction algorithms.

In this work, we continue this trend by introducing a novel regularization scheme, where a
parametrized regularizer is learned on data using maximum likelihood. Our energy-based for-
mulation allows for much improved interpretability when compared to traditional feed-forward
approaches. We can draw samples from our prior as well as the posterior of any given reconstruc-
tion problem, such that domain experts can judge the regularizer. We apply the regularizer to
typical reconstruction tasks such as limited-angle and few-view CT reconstruction. Our model
outperforms traditional reconstruction algorithms by a large margin.

Keywords. Deep Learning, Variational Methods, Data-driven Regularizers, Maximum Likeli-
hood, Computed Tomography
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1
Introduction

If you wish to make an apple pie from scratch, you must
first invent the universe.

Carl Sagan

In the last decade, deep learning [35] has taken over the field of computer vision, where
learning-based approaches have improved image quality in restoration tasks such as denois-
ing [103] or deblurring [70], and accuracy in tasks such as classification [57] or semantic seg-
mentation [21]. In medical imaging, deep learning has traditionally been used as a tool to aid
interpretation of reconstructed images, for instance through automatic segmentation [49] or
classification [63]. However, to increase the visual quality of medical images, learning-based
approaches may also be used at earlier stages such as during data acquisition or image recon-
struction.

Computed Tomography (CT) images have historically been reconstructed using the fast Fil-
tered Back-Projection (FBP) [12]. However, the analytical FBP has been superseded by iterative
algebraic reconstruction algorithms at around the start of the new millenium [86, 98]. This drift
has been driven largely by an increase in computational power and the need for more robust
reconstruction algorithms in the light of reducing the administered ionizing radiation dose. In
general, dose reduction is one of the major concerns in the CT community [17, 102]. It has been
estimated that up to 50 % of ionizing radiation exposure for medical use can be attributed to CT
examinations [71]. Thus, it is important to find reconstruction algorithms that are able to recon-
struct a clinically valuable image from low-dose measurements, which may only contain a subset
of the full-dose scan, or exhibit low Signal-to-Noise Ratio (SNR).

To make the iterative algebraic reconstruction algorithms more robust, prior knowledge
about the solution may be incorporated in the reconstruction problem. Traditional, hand-crafted
priors, such as the Total Variation (TV) prior [85] and extensions such as the Total Generalized
Variation (TGV) [9], typically encode local gradient information of the reconstruction. While
these hand-crafted priors have been used extensively and successfully in image restoration [16,
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2 Chapter 1. Introduction

33, 85] and reconstruction tasks [23, 62, 105], they lack expressiveness compared to state-of-
the-art learning-based approaches [56]. In a similar vein, traditional learning-based approaches
model local image information and therefore are not suited to fully remove the global streak-
ing and smearing artifacts that arise can arise low-dose and limited-angle CT [4]. A popular
approach to combat this issue has emerged recently and is based upon learning the stages of an
iteratively unrolled gradient descent individually [40, 41]. However, although this approach does
consider physical principles, it lacks interpretability due to its feed-forward nature. In contrast,
we propose a novel learned prior utilizing a global receptive field to remove large-scale coherent
artifacts, while staying consistent with the acquired data.

1.1 Contributions and Outline

In this thesis, we introduce a novel regularization scheme, where a regularizer with a global re-
ceptive field is trained generatively on CT images. Our formulation allows to cast the regularizer
in a probabilistic framework, which drastically improves interpretability compared to other deep
learning-based approaches. As an example, we can visualize the prior distribution of our regu-
larizer by showing its modes or drawing samples from it. Further, for any given reconstruction
problem, in addition to computing the Maximum-A-Posteriori (MAP) point estimate, the poste-
rior distribution can be sampled. Therefore, the expected value as well as the variance over the
posterior can be visualized, which is valuable as it relates to uncertainty quantification.

We apply a trained model to a multitude of reconstruction tasks, and compare our approach
quantitatively and qualitatively with more traditional reconstruction algorithms. In addition,
we perform experiments which leverage the possibility of probabilistic interpretation of our
approach, such as prior and posterior sampling. Finally, we challenge our proposed novel ap-
proach by applying our regularizer to reconstruction tasks of different resolutions and out-of-
distribution data. To summarize, we enumerate the contributions in this thesis as follows:

• The design of an architecture that is suitable for usage as a generative prior.

• Data-independent analysis of the learned regularizer by means of exploring modes and
drawing samples, for visualizing and understanding the learned regularizer.

• Application of the learned regularizer to limited-angle and few-view CT reconstruction,
achieving satisfactory results. In addition, we analyze the posterior distribution of a few-
view reconstruction problem.

• Pointing out the limitations of our approach by challenging the learned regularizer on
out-of-distribution data.

This thesis is organized as follows: In Chapter 2, we will introduce the general principle of
tomography and review the physical principles in medical CT . Along the way, we will develop
the signal model for CT that is used throughout this thesis. We end this chapter with a brief
overview of medical CT instrumentation. In Chapter 3, we develop a mathematical formulation
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for the forward problem and discuss approaches for solving the inverse problem. We also re-
view the typical artifacts that arise during reconstruction. In Chapter 4, we discuss different
possibilities for increasing the visual quality of CT reconstructions. This ranges from pre- and
post-processing techniques over domain transform learning to variational reconstruction, which
is the approachwe follow. We discuss the specifics of our proposedmodel and training procedure
and show the corresponding numerical experiments in Chapter 5. Finally, the thesis is concluded
in Chapter 6.





2
Principles of X-Ray Computed Tomography (CT)

I did not think, I investigated.

Wilhelm Röntgen, McClure’s Magazine VI No. 5, 1896

Contents
2.1 Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Physical Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Modernmedicine relies greatly on imaging techniques, where different physical processes are
exploited to give insights into the human body. For instance, Magnetic Resonance Imaging (MRI)
measures proton density with the help of strong magnetic fields, field gradients and radio pulses,
by which an excellent soft-tissue contrast can be achieved. The importance of MRI in medicine
is emphasized by the 2003 Nobel Prize in Physiology or Medicine, which was awarded to Peter
Mansfield and Paul Lauterbur “for their discoveries concerning magnetic resonance imaging”1.

X-Ray CT is of similar importance in modern medicine, where by help of ionizing radiation
cross-sections of the body are imaged with great hard-tissue contrast. In 1979, Allan Cormack
and Godfrey Hounsfield were rewarded the Nobel Prize in Physiology or Medicine “for the devel-
opment of computer assisted tomography”2. Practically, the advantages of CT over MRI are the
reduced costs in both acquisition and operation, as well as faster image acquisition. The main
disadvantage is the usage of ionizing radiation, whose energy fundamentally must be at least
partly deposited in the body to create contrast.

In the following sections, we will outline the principles of X-Ray CT . We will define the to-
mography problem, go over physical principles and instrumentation in CT , and will build the

1see https://www.nobelprize.org/prizes/medicine/2003/summary/, accessed 2021-04-19
2see https://www.nobelprize.org/prizes/medicine/1979/summary/, accessed 2021-04-19
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6 Chapter 2. Principles of X-Ray CT

𝑥1
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𝑥3
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𝑥2

𝑥3

Figure 2.1: Tomography versus projectional imaging: In tomography, the goal is to acquire the
cross sections shown in red, whereas in projectional imaging, a specific direction is integrated
over.

mathematical foundation needed in the next chapters along the way. Since our focus is on re-
construction, we refer the reader to [12, 76] for a more in-depth review of the physics of CT .

2.1 Tomography

In the most general sense, tomography describes the “imaging of cross-sections”. The word is
derived from the Greek words τόμος (tomos, “slice” or “section”) and γράφω (graphō, “to write”
or “to describe”). Specifically, given some volume, we are interested in visualizing distinct slices
with minimal interference of the rest of the volume. This is distinctly different from projectional
methods, where the resulting two-dimensional projection displays information of the volume
integrated over a specific direction. We show an example illustrating the difference between
tomography and projectional imaging in Fig. 2.1.

Besides medical applications, where the body of interest is (a specific part of) the human body,
tomography is widely used in the geosciences, where the body of interest is (a specific part of) the
earth. As an example, in seismic tomography, seismographs across the earth’s surface register
motion of the ground induced by earthquakes. With this information, certain characteristic of
the rock can be reconstructed [75]. In muon tomography, muons from cosmic radiation are used
to image large-scale structures. This has been used to image the reactor after the 2011 Fukushima
Daiichi nuclear disaster, to assess the situation of the remains of the reactor cores [7].
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𝑥1

𝑥2

𝑥3
𝜆

𝑘

𝐸
𝐵

𝐸 = 𝐸0 sin(𝑘⊤𝑥 − 𝑐0𝑡)
𝐵 = 𝐵0 sin(𝑘⊤𝑥 − 𝑐0𝑡)

Figure 2.2: The propagation of an electromagnetic wave: The electric field 𝐸 is perpendicular to
the magnetic field 𝐵. The direction of propagation is referred to as the wave number 𝑘.

2.2 Physical Principles

The underlying physical principle of X-Ray CT and X-Ray projection radiography is attenuation
of electromagnetic radiation by any given medium. The term “X-Ray” itself describes a specific
interval in the electromagnetic spectrum, which is of high enough energy to be classified as
ionizing radiation. Ionizing radiation, as opposed to non-ionizing radiation, is capable of ejecting
electrons from atoms and thereby creating ions. It is the interaction between ionizing radiation,
most often produced by the X-Ray tube, and the atoms of the patient’s body that ultimately yield
the contrast in the X-Ray image.

2.2.1 Electromagnetic Radiation

Classically, electromagnetic radiation describes waves of the electromagnetic field propagating
through space. An electromagnetic wave consists of an electric and a magnetic component,
which are perpendicular to each other. The relationship between the electric and magnetic com-
ponent is described by the famous Maxwell’s equations. We schematically show the propagation
of a linearly polarized electromagnetic wave with wavelength 𝜆 in Fig. 2.2. The wavelength of a
electromagnetic wave is related to its frequency by

𝜈 = c0
𝜆 (2.1)

with the speed of light c0 = 3 × 108ms−1.
The particles associatedwith electromagnetic radiation are referred to as photons. The energy
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Figure 2.3: The electromagnetic spectrum with some frequently distinguished energy ranges.
The slanted line should emphasize that X-Rays and Gamma rays are distinguished by their point
of origin rather than their energy, and that there some overlap in energy.

of a photon associated with a wave of frequency 𝜈 is

𝐸 = ℎ𝜈, (2.2)

where ℎ = 6.626 070 15 × 10−34 J s is Planck’s constant. Electromagnetic waves exist on an energy
spectrum, where different classes are defined. Radio waves, visible light and X-Rays are examples
of electromagnetic radiation, with radio waves having the lowest energy of the three. Formedical
radiography applications, radiation in the range of 25 keV to 500 keV is used.

We show the electromagnetic spectrumwith some important classes in Fig. 2.3. We note that,
although X-Rays and Gamma rays are usually distinct classes in the electromagnetic spectrum,
they are not distinguished by energy but by point of origin. Specifically, X-Rays are defined as
radiation originating from the electron cloud, while gamma rays originate from the nucleus of
an atom.

2.2.2 Interactions of Electromagnetic Radiation with Matter

Ionizing electromagnetic radiation interacts with matter primarily by 1. the photoelectric effect,
2. Compton scattering, and 3. pair production. Typically, pair production is only considered rel-
evant for high energy photons with 𝐸 > 1.022MeV. As previously mentioned, in the medical
imaging domain the highest energies are approximately 500 keV and as such pair production can
largely be neglected. For both the photoelectric effect and Compton scattering, the interaction
of the X-Ray with the atoms happens in the electron shell. The defining difference between the
photoelectric effect and Compton scattering is that in the latter (the energy of) the photon is
not fully absorbed by the atom. In medical imaging, the contrast is mostly due to the photoelec-
tric effect, whereas Compton scattering limits the resolution of the images. We show the three
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Figure 2.4: Illustration of the three principles of interaction between electromagnetic radiation
and matter. The wavelength of the incident ray indicates the relative energies that these effects
are most likely to occur at. Pair Production only happens for 𝐸 > 1.022MeV, and as such can
largely be ignored for medical applications.

interaction mechanisms schematically in Fig. 2.4.

2.2.2.1 Photoelectric Effect

In the photoelectric effect, through interaction of a photon with the coulomb field of the nucleus,
an electron from an inner shell, most often the K-shell, is ejected from the atom. The incident
photon of energy 𝐸𝑝 = ℎ𝜈𝑝 is fully absorbed by the atom, and the electron is ejected with energy

𝐸𝑒− = 𝐸𝑝 − 𝐸𝐵, (2.3)

where 𝐸𝐵 is the binding energy of the electron. The hole of the ejected (usually K-shell) electron is
then filled by an electron in an outer shell. The energy difference between the shells is converted
into electromagnetic radiation (X-Rays), which is characteristic to the atom, as the structure of
the atom dictates the energy delta between the shells.

The resulting characteristic X-Rays may sometimes eject another outer-shell electron, called
theAuger electron, and consequently lead to readjustment of the remaining electrons. The ejected
electrons (photoelectrons and Auger electrons) can then be treated as typical particulate radia-
tion, and interact with the matter around them. In fact, these particles contribute largely to
the biological effects of ionizing radiation. We show an illustration of the photoelectric effect
(without considering Auger electrons) in Fig. 2.4a.

2.2.2.2 Compton Scattering

In contrast to the photoelectric effect, in Compton scattering the energy 𝐸𝑝 = ℎ𝜈𝑝 of the incident
photon is not fully absorbed by the atom. Instead, it loses some energy in the process of ejecting
an outer-shell electron (the Compton electron), and is deflected by the Compton angle 𝜃 . These
concepts are illustrated in Fig. 2.4b. Depending on the Compton angle 𝜃 , the energy 𝐸𝑐 of the
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Compton photon is given by

𝐸𝑐 =
𝐸𝑝

1 + (1 − cos 𝜃) 𝐸𝑝
mec02

(2.4)

where mec02 = 511 keV is the rest energy of an electron. We see that the Compton photon
has the smallest energy when 𝜃 = π rad, i.e. when the photon is reflected back to the incidence
direction. The ejected electron is again free to interact with the surrounding matter.

2.2.2.3 Pair Production

Although not interesting for medical applications, we briefly discuss pair production here for
completeness. Pair production is the primary principle of interaction of high-energy photons
with matter. Specifically, incident photons with 𝐸𝑝 > 1.022MeV, or 𝜆 < 1.2132 pm, may “decay”
into an electron-positron pair when near a nucleus. The requirements are very specific: The
energy for such interactions is bounded from below with 1.022MeV, as this is the rest energy
2mec02 of an electron-positron pair. Further, the decay event must happen near a nucleus, as
otherwise conservation of momentum would necessarily need to be violated. As a result, the
nucleus typically experiences some “recoil” during such events. The electron and positron are
then free to interact with their neighborhood. The most likely fate of the positron is an electron-
positron annihilation event, which can be thought of as the inverse of pair production.

2.2.3 Attenuation of Electromagnetic Radiation in Matter

In the previous sections, we described the primary principles by which electromagnetic radiation
can interact with matter. Here, we want to consider these effects on a macroscopic level. We do
this by introducing probabilistic concepts modeling the effects on a macroscopic level. With
simplified examples, we finally arrive at a signal model in dependence of the quantity of interest,
which is the attenuation coefficient of the imaged body.

2.2.3.1 Probabilities of Interaction

Let us first informally consider the probabilities of the different interactions of electromagnetic
radiation with matter. The photoelectric effect requires interaction with the Coulomb field of
the nucleus of an atom. Consequently, the probability of a photoelectric event is related to the
atomic number 𝑍 of an atom. In a heterogeneous material composed of different elements, we
define the effective atomic number 𝑍eff, which summarizes the compound. The probability of a
photoelectric event is∝ 𝑍 4

eff for the compounds typically found in human tissue. Further affecting
the probability of photoelectric events is the energy of the incident ray, such that in summary

ℙ(PE event) ∝ 𝑍 4
eff

(ℎ𝜈)3 . The binding energy of the inner shell electrons also affects the probability

of photoelectric events, which is exploited in contrast agents.
Compton scattering on the other hand describes an interaction with outer, loosely bound

electrons. The probability of Compton events is mainly dependent on the electron density in the
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Table 2.1: Relative impact of Compton Scattering versus the photoelectric effect for different
photon energies in water. Adapted from [46].

Photon Energy in keV Compton Interactions in % Energy Transfer by CS in %
20 26.4 1.3
40 77.9 19.3
60 93.0 55.0
80 97.0 78.8
100 98.4 89.6
150 99.5 97.4
400 99.9 99.9

material, i.e. ℙ(CS event) ∝ 𝑁𝐴𝑍
𝑊𝑀

. Here, 𝑁𝐴 = 6.022 140 76 × 1023mol−1 is Avogadro’s constant,

and 𝑊𝑀 is the molecular weight in gmol−1. In human tissue, the electron density does not vary
hugely, with it being around 3.1 × 1026 kg−1 [99] for air, water, muscle, fat and bone. Therefore,
the probability of Compton events is largely independent of the atomic number. Also, according
to the Klein-Nishina formula [55], the probability for Compton events in the energy range for
medical applications is close to constant.

We show the relative frequency of occurrence between Compton and photoelectric events
in Table 2.1 (adapted from [46]). It shows that in the energy range that is interesting for medical
applications, except for the lower end, Compton scattering is the dominating modus of interac-
tion in terms of number of occurrences. The share Compton scattering increases with increasing
photon energy, where at 𝐸𝑝 = 60 keV Compton scattering accounts for 93 % of all interactions.
However, since in a Compton scattering event the energy is only partly deposited in the atom, it
accounts for 55 % of the deposited energy at 60 keV. For energies > 60 keV, Compton scattering
also quickly becomes the dominating mode of energy transfer.

2.2.3.2 Monochromatic Narrow Beam and Homogeneous Thin Slab

To build up a signal model, we will consider the following setup: From some source, 𝑁 photons
with the same energy are shot perpendicularly onto a thin, homogeneous slab of thickness Δ𝑥 .
Behind the slab is a “perfect” detector with the same footprint as the incident beam. Clearly,
without the slab we would expect the detector to count 𝑁 photons. The slab however will absorb
some photons by the photoelectric effect, as well as scatter photons by Compton scattering events
such that they are no longer counted by the detector. In general, the detector will count 𝑁 ′ < 𝑁
photons, i.e. the slab has attenuated the photon beam. We show the narrow beam geometry along
with the distinctly different broad beam geometry in Fig. 2.5.

We denote with Δ𝑁 = 𝑁 − 𝑁 ′ the difference between the number of incident and detected
photons. Assuming Δ𝑥 is small, we expect Δ𝑁 to be proportional to both Δ𝑥 and 𝑁 , i.e.

Δ𝑁 = 𝜇𝑁Δ𝑥, (2.5)
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Source
Detector

Δ𝑥
(a) Narrow Beam

Source

Detector

Δ𝑥
(b) Broad Beam

Figure 2.5: The narrow beam geometry a, where the footprint of the detector is as large as the
incident beam, is a simple model for studying attenuation. If the incident beam is broader than
the detector b, it may pick up scattered photons.

where 𝜇 is the (material dependent) proportionality constant, known as the linear attenuation
coefficient. For the sake of simplicity, we treat 𝑁 as a continuous quantity to quickly arrive at the
well known differential equation

d𝑁
𝑁 = −𝜇 d𝑥, (2.6)

such that
𝑁 ′ = 𝑁 exp (−𝜇Δ𝑥), (2.7)

where 𝑁 is the number of photons at Δ𝑥 = 0. In the monochromatic case, this immediately
translates to

𝐼 ′ = 𝐼 exp (−𝜇Δ𝑥), (2.8)

with the intensity of the incident beam 𝐼 .

2.2.3.3 Heterogeneous Slab

If the linear attenuation coefficient is not constant in the slab but varies with 𝑥 , wemodify Eq. (2.6)
to d𝑁

𝑁 = −𝜇(𝑥) d𝑥, (2.9)

such that

𝑁 ′(𝑥) = 𝑁 exp (−∫
𝑥

0
𝜇(𝜒) d𝜒), (2.10)

or, for the intensity

𝐼 ′(𝑥) = 𝐼 exp (−∫
𝑥

0
𝜇(𝜒) d𝜒). (2.11)

This is known as the integral form of the fundamental X-Ray attenuation law and is the basis of
the physical signal models for projected radiography as well as computed tomography.
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2.2.3.4 Polychromatic Photons

As will be discussed later, X-Ray sources in medical imaging are polychromatic. We can extend
the monochromatic narrow beam experiment to the polychromatic case by considering each
energy independently, as the principles apply in general. The model then needs to account for
the fact that the linear attenuation coefficient of human tissue does depend on the energy of the
incident electromagnetic rays. Informally, let 𝑆(𝐸) be the intensity of the incident ray at energy
𝐸 (i.e. the spectrum), and let 𝑆′(𝑥, 𝐸) be the spectrum at position 𝑥 . We can modify the integral
fundamental X-Ray attenuation law to account for the polychromatic photons as

𝑆′(𝑥, 𝐸) = 𝑆(𝐸) exp (∫
𝑥

0
𝜇(𝜒 , 𝐸) d𝜒), (2.12)

and consequently compute the intensity as

𝐼 ′(𝑥) = ∫
𝐸max

0
𝑆(𝜖)𝜖 exp (−∫

𝑥

0
𝜇(𝜒 , 𝜖) d𝜒) d𝜖. (2.13)

At this point we want to note that our goal is to reconstruct the position and energy-
dependent linear attenuation coefficient 𝜇(𝑥, 𝐸). We can measure 𝐼 ′ (at the detector), and
typically 𝑆(𝐸) is known by the setup or by calibration measurements. However, solving Eq. (2.13)
for 𝜇(𝑥, 𝐸) is in general intractable. To alleviate this, most often the concept of the effective
energy is introduced, which is defined as the “the energy that, in a given material, will produce
the same measured intensity from a mono-energetic source as is measured using the actual
poly-energetic source”.

2.2.3.5 Broad Beam

Let us now analyze the broad beam geometry seen in Fig. 2.5b. Clearly, without the slab we
again expect 𝑁 photons to reach the detector, as the other photon bursts will miss the detector
completely. With the slab in place, we have the additional possibility that photons from other
beams will scatter into the detector. As such, generally more photons reach the detector and the
fundamental X-Ray attenuation law no longer holds. In addition, since the scattered photons
have lost some energy in the scattering events, the detected photons are not mono-energetic,
even if the incident beam was. Since the detected energies are shifted to the lower end, this is
often referred to as beam softening.

Concretely, in terms of imaging systems, this is remedied by using collimator systems, such
that the influence of photons from diverging directions is minimized. As such, for the mathemat-
ical analysis of the imaging signals, the narrow beam model is further assumed. However, we
note that this simplification can not be made for determining the dose deposited in the patient
or for calculating appropriate shielding of external personnel.
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Figure 2.6: The X-Ray tube in a shows the cathode assembly with the tungsten filament, where
the electrons • are expelled by thermionic emission, and accelerated towards the anode. At the
anode, bremsstrahlung and characteristic radiation produce a spectrum similar to b, which can
exit the tube through a (filtered) window.

2.3 Instrumentation

In the previous section, we outlined the low-level physical interactions between electromagnetic
radiation andmatter and built amacroscopic signalmodel. In this section, wewill discuss howCT
systems are built in practice. We will again put particular focus on the abstract signal acquisition
process rather than the physics of the X-Ray tube, filters, or detectors, although we discuss the
main principles briefly.

2.3.1 X-Ray Tubes and Filters

In X-Ray CT , the X-Rays are generated by means of an X-Ray tube. On a basic level, the X-Rays
used for diagnosis are the bremsstrahlung of previously accelerated electrons. There are two
stages to this: First, the electrons are freed from some filament (usually Tungsten) in the cathode
assembly bymeans of thermionic emission. Then, they are accelerated towards the anode (usually
a Tungsten-Rhenium alloy on a Molybdenum core) by the tube voltage, which is in the range of
30 kV to 150 kV at its peak. At the anode, the high-energy electrons interact with the bulk matter,
whereby bremsstrahlung and characteristic radiation is produced.

Note that the electromagnetic radiation can almost be considered a by-product in this process,
as ≈ 99% of the energy of the electrons is turned into heat rather than electromagnetic radiation.
For this reason, proper cooling of the anode is essential. To help cooling, in most X-Ray tubes
used for medical applications today, the anode is implemented as a rotating disk such that the
energy of the electrons is dissipated over a larger area. Even with a rotating anode and active
cooling, the focal spot can reach temperatures of up to 2000 °C, hence proper construction is vital.
We show a sketch of an X-Ray tube along with a typical spectrum in Fig. 2.6.

The maximum energy of the bremsstrahlung is determined by the tube voltage, as it bounds
the energy of the electrons from above. However, as seen in Fig. 2.6b, there exists a spectrum of
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lower energy photons that radiate away from the anode. Recall that, fundamentally, the contrast
in X-Ray CT arises from differential attenuation in the body. In other words, rays that are fully
absorbed in the body or traverse the body without any interaction do not have any diagnostic
value, but only contribute to the radiation dose of the patient. Therefore, the spectrum is usually
filtered, such that low energy photons do not reach the patient. Note that the anode itself, the
tube housing, and the cooling oil already largely filter low energy photons. In addition, a metal
sheet can be placed outside the tube. Aluminium is most commonly used for this purpose, and
other materials are described by “aluminium equivalent”, i.e. the thickness of an aluminium sheet
that would yield the same effect.

2.3.2 X-Ray Detectors

In most modern medical X-Ray CT scanners, solid state X-Ray detector lines or arrays are used,
whereby high energy photons are converted into visible light by scintillation. The visible light is
then converted into electric current by means of a photo-diode, and immediately amplified with
a photomultiplier tube. Xenon gas detectors are also used, where thin tubes filled with Xenon
generate a current between the cathode and the anode upon ionization of the gas by X-Rays.
Although generally less efficient than their solid-state counterparts, they have the advantage of
being highly directional, which is required in CT scanners of the third generation.

2.3.3 Scanner Generations

Recall that, in medical applications, our goal is to reconstruct the position and photon energy
dependent linear attenuation coefficient 𝜇(𝑥, 𝐸) in the human body. We do this by measuring the
attenuation along “all” lines between the source and the detector in a given cross section. In this
section we will give an overview of different scanner generations, which achieve the above with
different principles. Up to 7 generations of CT scanners are sometimes distinguished today. We
show a summary of the scanner generations in Table 2.2, and illustrate the first four generations
in Fig. 2.7.

First Generation First-generation scanners have the simplest geometry, which conceptually
corresponds nicely to the mathematical theory of reconstruction discussed later. Specifically,
they consist of a single collimated (i.e. “pencil beam”) source along with a detector, that move
linearly to acquire the attenuation along a line of a given angle. After one such linear scan, the
source-detector assembly is rotated incrementally, and continues to acquire the attenuation as
described before, as illustrated in Fig. 2.7a. Since the source and the detector move along a linear
path (as opposed to, e.g. a fixed detector array), an arbitrary number of rays can be acquired. Anal-
ogously, the angle increment may be chosen arbitrarily small, such that one can freely choose
the number of projections. This geometry further has the obvious benefit of conforming fully to
the narrow beam geometry, i.e. the detected intensity only depends on the tissue along the path
of the ray. The obvious disadvantage of this simple approach is the slow speed, which is why
they are not used in clinical practice today.
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Table 2.2: Overview of different scanner generations.

Scanner Source Detector Coll. Movt. Advantages Disadvantages

1G * {→,↺}2 “Narrow Beam” Slow

2G {→,↺}2 Faster Efficiency

3G {↺}2 Faster Efficiency, $

4G ↺ Less Moving Parts More scattering

HCT 3G/4G 3G/4G 3G/4G Fast 3D Bit more expensive

MRCT {↺}2 Fast 3D Expensive

EBCT None Time Resolution Expensive

*: Narrow Beam (implicitly collimated), H:Helical, MR:Multiple Row, EB:Electron Beam.

Second Generation Second-generation scanners improve upon this by introducing a linear
detector array (Fig. 2.7a), such that one “fan beam” ismeasured simultaneously. Still, the fan beam
is not wide enough to cover the full field of view. Initially, the opening angle of the fan beam was
about 10°, consequently linear motion of the source-detector pair was still needed. The detector
array greatly reduced the acquisition time at the cost of abandoning the narrow beam geometry,
such that detector collimation was needed. By design, detector collimation reduces efficiency,
such that for a given dose and identical projection measurements, a first-generation scanner
would yield a better image. However, the win in reduced acquisition time greatly outweighs the
drawbacks of reduced efficiency.

Third Generation Lots of scanners manufactured today utilize the general principle of third-
generation CT scanners. Compared to second generation scanners, the opening angle of the fan
beam grew to 40°–60° (see Fig. 2.7c). This means that linear motion is no longer necessary, as
the fan beam can cover the full field of view. Similar to the leap from first to second-generation
scanners, the acquisition time is greatly reduced, but again the efficiency of the detectors is
lowered. This is necessarily the case, as without any linear motion the detector array must be
very densely packed to obtain a sufficient number of samples per projection. This requires the
detectors to be very small, leading to some loss in efficiency. Along with the number of detectors
also increases the price of the system.

Fourth Generation In terms of image quality and acquisition time, fourth-generation scan-
ners do not have any advantages over third-generation scanners. The difference lies in construc-
tion: As shown in Fig. 2.7d, fourth-generation scanners utilize a stationary (i.e. non-rotating)
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(a) First-Generation (b) Second-Generation

(c) Third-Generation (d) Fourth-Generation

Figure 2.7: Illustration of the principles of different scanner generations. The different genera-
tions are discussed in detail in the text.

360° detector array, with only the X-Ray source rotating. Since the detectors need to acquire sig-
nals from many positions, they can not be collimated. Along with the possibility for physically
larger detectors, this increases the detection efficiency as compared to third-generation scanners.
However, the interference of scattering events does not allow better image quality. Such systems
may be made more compact by positioning the source outside of the detector ring. To allow
the detectors to “see” the source, the detector ring may experience out-of-plane nutation out of
plane. Another possibility is to introduce gaps between the detectors to allow the X-Rays to pass
through. We proceed by discussing classes of scanners with distinct characteristics, however, we
do not assign a particular generation number.
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Helical CT With the previously discussed scanner generations, exactly one slice of the body
can be reconstructed during one acquisition run. Typically, the slice thickness ranges from 2mm
to 5mm, and in order to acquire three-dimensional datasets, one would have to move the pa-
tient with respect to the detector ring by this distance. Clearly, this has the problem of being
time consuming and prone to motion or misalignment artifacts. The obvious solution to this
problem would be to slide the patient through the tube whilst it is rotating around the patient,
acquiring data continuously. This is exactly the idea of helical CT scanners, which otherwise do
not differ from third or fourth generation scanners. With this, it is possible to acquire full three-
dimensional torso scans in around 30 s. Today, most systems are capable of helical acquisition, as
they are onlymarginally more complicated in terms of hardware, and the reconstruction problem
(whilst seemingly much more complicated) can be solved with simple interpolation techniques.

Multiple Row Detector (Cone Beam) CT It is natural to extend the detector array into the
second dimension to get a detector matrix. Analogously to the detector array, the fan beam is
extended into the third dimensions, such that multiple (these days up to 320) one-dimensional
projections are acquired simultaneously. In some scanners, the array may be as high as it is
wide, resulting in what is called cone beam geometry. If there is adequate distance between the
X-Ray source and the detectors, approximately parallel planes can be imaged simultaneously.
Combining this with helical scanning allows to acquire full three-dimensional datasets to be
acquired in the order of seconds, with reduced dose compared to conventional helical systems.

Electron Beam CT Up until now, all the discussed scanner geometries relied on one X-Ray
source. To get a full data set of one slice, this source (possibly also the detector array) has to be
rotated around the patient. Due to the heavy construction, one rotation of the X-Ray tube along
with the detector array or matrix usually takes around one second (although, as discussed above,
multiple slices may be acquired during this time). This severely limits the ability to image (even a
single slice) with high temporal resolution, e.g. for cardiac imaging or for tracing a contrast agent.
For this purpose, electron beam scanners have been developed. These scanners produce the X-
Rays by an electron beam steered by electromagnets, which hits a stationary tungsten anode
ring. The resulting X-Rays are detected by a stationary detector ring. Since the electron beam
can be steered very quickly (compared to the mechanical rotation of the tube-detector assembly),
single-slice imaging can be done with a temporal resolution of about 50ms.

Dual Source CT Dual (or multiple) energy CT can be easily acquired with traditional scanner
geometries by simply running multiple scans or pulsing different tube voltages. However, this
increases scan time and comes with other technical challenges, such that it is usually not done
in clinical practice. To overcome these issues, dual source CT systems have been introduced,
which operate with two physical tubes that allow different tube voltages. Multi-energy imaging
is desirable because of diagnostic benefits: For instance, the composition of bones in the diagnosis
of osteoporosis can be determined by such studies.
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Gradually he can see the reflections of people and things
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Plato, Republic, VII, Allegory of the Cave
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In the previous chapter we discussed the underlying physical principles as well as how these
principles can concretely be used in implementing scanners. Here, we want to investigate the
mathematics of image acquisition and specifically reconstruction. Recall that in X-Ray CT , the
fundamental measurement is a line integral of the linear attenuation coefficient 𝜇(𝑥, 𝐸). Specifi-
cally, assuming narrow beam geometry, we can relate the measured intensity 𝐼𝑑 at the detector
to the source spectrum 𝑆0(𝐸) with

𝐼𝑑 = ∫
𝐸max

0
𝑆0(𝜖)𝜖 exp (−∫

𝑑

0
𝜇(𝜒 , 𝜖) d𝜒) d𝜖. (3.1)

The above equation is in general intractable because of the energy dependence of the lin-
ear attenuation coefficient. Therefore, the effective energy ̄𝐸 is introduced, see Section 2.2.3.4,
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modifying Eq. (3.1) to

𝐼𝑑 = 𝐼0 exp (−∫
𝑑

0
𝜇(𝜒 , ̄𝐸) d𝜒). (3.2)

Finally, we can rearrange this to yield the line integral of the linear attenuation

𝑔𝑑 = − log (𝐼𝑑𝐼0
) = ∫

𝑑

0
𝜇(𝜒 , ̄𝐸) d𝜒 . (3.3)

In practice, the reference intensity 𝐼0 can be measured for each detector in a calibration step.

3.1 Forward Problem — The Radon Transform

We have seen how ameasurement in CT corresponds to a line integral of 𝜇(𝑥, ̄𝐸) along some path.
However, what we desire is not the line integral, but the function 𝜇(𝑥, ̄𝐸) itself for any point 𝑥 .
Thus, we have to ask the question whether it is possible to reconstruct 𝜇(𝑥, ̄𝐸) given “all” its line
integrals. Fortunately, this question has been answered by Johann Radon approximately 50 years
prior to the first practical experiments with the predecessors of modern CT .

In “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannig-
faltigkeiten” [77], Radon showed that a function 𝑓 ∶ ℝ2 → ℝ is uniquely determined by its inte-
grals along all lines. Specifically, let

Θ = (cos 𝜃sin 𝜃 ) (3.4)

and

Θ = (− sin 𝜃
cos 𝜃 ) . (3.5)

Then, 𝑓 is uniquely determined by

𝐹 ∶ ℝ × [0, 𝜋] → ℝ,

(𝑟 , 𝜃) ↦ ∫
∞

−∞
𝑓 (𝑟Θ + 𝑠 Θ) d𝑠.

(3.6)

This is true under mild assumptions about 𝑓 , which are in general fulfilled in CT . Specifically,
we require

1. 𝑓 continuous,

2. ∫ℝ2

|𝑓 (𝑥)|
‖𝑥‖2

d𝑥 converges, and

3. lim𝑟→∞∫
2𝜋

0
𝑓 (𝑥 + 𝑟Θ) d𝜃 = 0 ∀𝑥 ∈ ℝ2.

Since the human body is finite in extent with finite 𝜇 and the linear attenuation coefficient of air
is 0, the points are trivially fulfilled. In what follows, we assume that the image of 𝑓 is ℝ+.
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Figure 3.1: In a, we show the interpretation of Θ, Θ, 𝑟 , 𝑠. Note that {𝑥 ∈ ℝ2∶ 𝑥⊤Θ = 𝑟} and
{𝑟Θ+ 𝑠 Θ}, 𝑠 ∈ ℝ describe the same line in the plane. In b, the projections 𝐹(𝑟 , 130°) and 𝐹(𝑟 , 20°) of
some function 𝑓 (𝑥) are visualized, with the corresponding vertical lines in the sinogram c. For
visualization purposes, we only show supp(𝑓 ), and the color-bar is shown on the right.

We call 𝐹 the Radon transformed of 𝑓 , and refer to 𝐹(𝑟 , 𝜃′) as a projection at a fixed angle 𝜃′.
To denote the transformation, we write 𝐹(𝑟 , 𝜃) = (ℛ2𝑓 )(𝑟 , 𝜃). Note that we may write Eq. (3.6)
as an integral over the two-dimensional Euclidean space as

(ℛ2𝑓 )(𝑟 , 𝜃) = ∫ℝ2
𝑓 (𝑥)∞{𝜉∈ℝ2 ∶ 𝜉⊤Θ=𝑟}(𝑥) d𝑥, (3.7)

where we used the masking property of the delta distribution

∞ℐ ∶ ℝ2 → {0,∞},

𝑥 ↦ {∞ if 𝑥 ∈ ℐ ,
0 else.

(3.8)

We can draw 𝐹(𝑟 , 𝜃) in rectilinear coordinates to produce a sinogram. In scanner-geometry terms,
we may think of 𝑟 as the linear position of the detector, and we may think of 𝜃 as the angle of
rotation of the gantry with respect to the fixed patient-coordinate system. To illustrate the ideas
that were used above, we show an example in Fig. 3.1.

We want to note that, by construction, we are only considering integrals along parallel rays
in each projection. This is theoretically only fulfilled in first-generations scanners, which are no
longer used in medical applications. However, the following considerations can also be applied
to fan beam geometries by adapting them accordingly. As such, going through the principles of
the simplest geometries is a useful exercise.
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Figure 3.2: Illustration of the SBP algorithm: For every angle 𝜃′ in the sinogram, we smear 𝐹(𝑟 , 𝜃′)
across the image. The red dot indicates the successive build-up of a distinct feature in the recon-
struction process, and the reconstructed image is shown on the right.

3.2 The Inverse Problem

In the previous section, we specified the forward model by fixing the geometry and introduc-
ing some notation. Further, we hinted at the fact that Radon proved that any function can be
uniquely reconstructed given its Radon transform. In this section, we will discuss some con-
crete reconstruction algorithms. Loosely speaking, the reconstruction algorithms can be divided
into two categories: “analytic” and “algebraic”. Analytic reconstruction essentially aims to re-
construct 𝑓 from Eq. (3.6) or Eq. (3.7), while algebraic reconstruction techniques aim to solve
the linear equation systems that arise in practice. In other words, analytic reconstruction solves
the continuous model, while algebraic reconstruction solves the fully discretized model. We will
point out correspondences between the two when they arise.

3.2.1 Simple Back-Projection

Considering the forward operation described in Section 3.1, one possible reconstruction method
is tempting: What happens when we conceptually “reverse” the acquisition process? Specifically,
consider a projection 𝐹(𝑟 , 𝜃′) at some angle 𝜃′ ∈ [0, 𝜋]. As previously described, for a given
𝑟 ′ ∈ ℝ, 𝐹(𝑟 ′, 𝜃′) is given by the integral of the desired function 𝑓 along the line 𝑥⊤Θ′ = 𝑟 ′, where
Θ′ = (cos 𝜃′, sin 𝜃′)⊤. Intuitively, the reverse of this would be to smear 𝐹(𝑟 ′, 𝜃′) along 𝑥⊤Θ′ = 𝑟 ′,
i.e. to “back-project” it. If we do this for all 𝑟 and 𝜃 , we get the back-projected image.

Mathematically, let 𝐹 = ℛ2𝑓 , then the back-projected image 𝑏 ∶ ℝ2 → ℝ is

𝑏(𝑥) = ∫
𝜋

0
𝐹(𝑥⊤Θ, 𝜃) d𝜃. (3.9)

Notice that if supp(𝑓 ) ≠ ∅ it follows that 𝑏(𝑥) > 0 ∀𝑥 . It is immediately clear that this is a
drawback if we consider some 𝑥′ ∉ supp(𝑓 ). We can conclude that 𝑏 is in general not a faithful
reconstruction of 𝑓 . We illustrate Simple Back-Projection (SBP) for a toy example in Fig. 3.2.

Let us examine the problem of SBP in detail. By substituting Eq. (3.7) into Eq. (3.9), we find
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that

𝑏(𝑥) = ∫
𝜋

0 ∫ℝ2
𝑓 (𝜒)∞{𝜉∈ℝ2 ∶ 𝜉⊤Θ=𝑥⊤Θ}(𝜒) d𝜒 d𝜃. (3.10)

We change the order of integration and note the equivalence {𝜉 ∈ ℝ2∶ 𝜉⊤Θ = 𝑥⊤Θ} = {𝜉 ∈
ℝ2∶ (𝜉 − 𝑥)⊤Θ = 0} to yield

𝑏(𝑥) = ∫ℝ2
𝑓 (𝜒) (∫

𝜋

0
∞{𝜉∈ℝ2 ∶ (𝜉−𝑥)⊤Θ=0}(𝜒) d𝜃) d𝜒. (3.11)

Let 𝜙 denote the angle between (𝜉 − 𝑥) and the 𝑥1-axis, then {𝜉 ∈ ℝ2∶ (𝜉 − 𝑥)⊤Θ = 0} = {𝜉 ∈
ℝ2∶ ‖𝜉 − 𝑥‖ cos(𝜙 − 𝜃) = 0}. We now use

∞{0}(𝑔(𝑥)) = ∑
{𝑥𝑖 ∶ 𝑔(𝑥𝑖)=0}

| d𝑔d𝑥 (𝑥𝑖)|
−1

∞{𝑥𝑖}(𝑥), (3.12)

which is a well known identity in 𝛿-calculus [8], and note that, assuming 𝜉 ≠ 𝑥 , ‖𝜉 − 𝑥‖ cos(𝜙 −
𝜃) = 0 ⇔ 𝜙 − 𝜃 = ±𝜋

2 . We therefore obtain

𝑏(𝑥) = ∫ℝ2
𝑓 (𝜒) (∫

𝜋

0

∞{± 𝜋
2 }
(𝜃)

‖𝜒 − 𝑥‖ | sin ±𝜋
2 |

d𝜃) d𝜒. (3.13)

Since the delta distribution integrates to 1 and the denominator is independent of 𝜃 , this is easily
simplified to

𝑏(𝑥) = ∫ℝ2
𝑓 (𝜒) 1

‖𝜒 − 𝑥‖ d𝜒. (3.14)

Clearly, Eq. (3.14) is a convolution. Thus, one may equivalently write

𝑏(𝑥) = 𝑓 (𝑥) ∗ ℎ(𝑥), (3.15)

with the point spread function ℎ(𝑥) = 1
‖𝑥‖ . In general, this blurring makes SBP useless, as too

much diagnostic value is lost and more precise reconstruction algorithms with marginally higher
computational cost exist.

However, one may ask the obvious question: Since we know the blur function, what if we
simply deconvolve 𝑏 with ℎ, which can easily be done in the Fourier domain? In fact, 𝑓 can be
faithfully reconstructed that way, and this is mathematically equivalent with one of the most
popular reconstruction algorithms, namely Filtered Back-Projection (FBP) (although FBP has prac-
tical benefits). In what follows, we will introduce the famous Fourier Slice Theorem, which gives
rise to a family of Fourier-based reconstruction algorithms.
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3.2.2 Fourier Slice Theorem

The Fourier Slice Theorem will allow us to derive an “inverse Radon transform”. Consider the
projection 𝐹(𝑟 , 0) of 𝑓 , i.e.

𝐹(𝑟 , 0) = ∫
∞

−∞
𝑓 (𝑟 , 𝑥2) d𝑥2. (3.16)

The one-dimensional Fourier transform of 𝐹(𝑟 , 0) with respect to 𝑟 is

(ℱ1𝐹)(𝜉 , 0) = ∫
∞

−∞
𝐹(𝜒 , 0) exp (−i2𝜋𝜉𝜒) d𝜒 (3.17)

with the imaginary unit i. Substituting Eq. (3.16) yields

(ℱ1𝐹)(𝜉 , 0) = ∫
∞

−∞ ∫
∞

−∞
𝑓 (𝑥1, 𝑥2) d𝑥2 exp (−i2𝜋𝜉𝑥1) d𝑥1

= ∫ℝ2
𝑓 (𝑥) exp (−i2𝜋(𝜉𝑥1 + 0𝑥2)) d𝑥 = (ℱ2𝑓 )(𝜉 , 0)

(3.18)

In other words, the one-dimensional Fourier transform of the projection of 𝑓 at 𝜃 = 0maps to the
same values as the two-dimensional Fourier transform of 𝑓 along the horizontal components.

If we consider 𝐹(𝑟 , 0) as the projection onto the 𝑥′1 axis of some rotated coordinate system,
the computation above holds. In general, the two-dimensional Fourier transform of a function
𝑓 rotated by some angle 𝛼 is also rotated by 𝛼 with respect to ℱ2𝑓 . Therefore, we proved the
famous Fourier Slice Theorem, which we summarize as follows:

Let 𝑓 ∶ ℝ2 → ℝ, and let ℱ2𝑓 be its two-dimensional Fourier transform. Further, let
𝐹 = ℛ2𝑓 be its two-dimensional Radon transform, with ℱ1𝐹 its one-dimensional Fourier
transform with respect to the affine parameter. Then, (ℱ1𝐹)(⋅, 𝜃) describes the values of
ℱ2𝑓 on the radial line at angle 𝜃 . Thus,

(ℱ1𝐹)(𝜌, 𝜃) = (ℱ2𝑓 )(𝜌Θ). (3.19)

3.2.3 Direct Fourier Inversion

Knowing the Fourier Slice Theorem, another obvious reconstruction algorithm arises: We can
populate the ℱ2𝑓 along radial lines of angle 𝜃 with (ℱ1𝐹)(𝜌, 𝜃), and then reconstruct 𝑓 by

𝑓 = ℱ −12 (ℱ2𝑓 ). (3.20)

This is schematically shown in Fig. 3.3. While straight forward in theory, this approach is usually
not used in practice.

In practice, scanners acquire a finite number of 𝑁 projections {𝐹 (𝑟 , 𝜃1), … , 𝐹 (𝑟 , 𝜃𝑁 )} during
one scanner rotation. These measurements fill the Fourier space in radial lines, such that we
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Figure 3.3: Schematic of the direct Fourier method for inverting the Radon transform. The error
that arises during interpolation in the regridding step is what prevents this method from being
used in practice.

need to interpolate the Cartesian grid prior to performing the inverse Fourier transform. This
process is called regridding and is problematic in practice, since the distance between the radial
streaks increases with the spatial frequency. As such, the interpolation becomes less precise for
higher frequencies, which encode the details in the image. There exist schemes for non-uniform
sampling in the Radon space to alleviate this issue, but they are not widely used and we do not
discuss them here. We refer the interested reader to [65] for further discussion.

3.2.4 Filtered Back-Projection

Fortunately, we can further modify the ideas of the direct Fourier inversion method to yield a
reconstruction scheme that is very useful in practice. We derive the basis equation of FBP by
considering the inverse Fourier transform of the image, i.e.

𝑓 (𝑥) = ∫ℝ2
(ℱ2𝑓 )(𝜉 ) exp (i2𝜋𝑥⊤𝜉 ) d𝜉 . (3.21)

We introduce the polar coordinates 𝜌Θ = 𝜉 , d𝜉 = 𝜌 d𝜌 d𝜃 , such that

𝑓 (𝑥) = ∫
2𝜋

0 ∫
∞

0
(ℱ2𝑓 )(𝜌Θ) exp (i2𝜋𝜌𝑥⊤Θ) 𝜌 d𝜌 d𝜃, (3.22)

and note that we can equivalently scan the plane by (a very rigorous proof can be found in [12])

𝑓 (𝑥) = ∫
𝜋

0 ∫
∞

−∞
(ℱ2𝑓 )(𝜌Θ) exp (i2𝜋𝜌𝑥⊤Θ) |𝜌| d𝜌 d𝜃. (3.23)

With the Projection Slice Theorem Eq. (3.19), we may write

𝑓 (𝑥) = ∫
𝜋

0 ∫
∞

−∞
|𝜌|(ℱ1𝐹)(𝜌, 𝜃) exp (i2𝜋𝜌𝑥⊤Θ) d𝜌 d𝜃, (3.24)
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or by noting that 𝑥⊤Θ is nothing else than the “detector position” 𝑟 ,

𝑓 (𝑥) = ∫
𝜋

0
[∫

∞

−∞
|𝜌|(ℱ1𝐹)(𝜌, 𝜃) exp (i2𝜋𝜌𝑟) d𝜌]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

̃𝐹 (𝑟 ,𝜃)

d𝜃. (3.25)

3.2.4.1 The Filtered Projections

Let us now pay closer attention to the term in the square brackets, which we detail

̃𝐹 (𝑟 , 𝜃) = ∫
∞

−∞
|𝜌|(ℱ1𝐹)(𝜌, 𝜃) exp (i2𝜋𝜌𝑟) d𝜌. (3.26)

This is exactly the one-dimensional inverse Fourier transform, weighted by |𝜌|. In other words,
if we disregard this factor, we would have ̃𝐹 = ℱ −11 ℱ1𝐹 = 𝐹 , which are the original projec-
tions. By the famous convolution theorem, a multiplication in the Fourier domain corresponds
to a convolution in the spatial domain. Therefore, we may interpret |𝜌| as a filter acting on the
projections 𝐹 , i.e. ̃𝐹 are filtered (read: convolved with some filter response) projections.

In the Fourier domain, the influence of |𝜌| is relatively straight-forward: Since the “radius” 𝜌
essentially describes the frequency, we can immediately conclude that a multiplication with |𝜌|
in the Fourier domain is a high-pass filter. On the other hand, since |𝜌| is not square-integrable,
we can not simply calculate its inverse Fourier transform to get the spatial filter. However, we
can detail the spatial filter by a limit process. As an example, we may consider

(ℱ1{ 𝜖2 − (2𝜋𝑟)2

(𝜖2 + (2𝜋𝑟)2)2
})(𝜌) = |𝜌| exp (−𝜖|𝜌|), (3.27)

where lim𝜖→0 |𝜌| exp (−𝜖|𝜌|) = |𝜌|. We show these functions in Fig. 3.4. In summary, in FBP , we
filter the projections by multiplying them with |𝜌| in the frequency domain.

3.2.4.2 The Back-Projection

Let us now consider the outer integral in Eq. (3.25), namely

𝑓 (𝑥) = ∫
𝜋

0
̃𝐹 (𝑥⊤Θ, 𝜃) d𝜃. (3.28)

This is exactly Eq. (3.9), where we replaced the projections 𝐹 with their filtered counterparts ̃𝐹 .
The intuition is the same as discussed in Section 3.2.1. That is, in the image 𝑓 (𝑥)we smear ̃𝐹 (𝑟 , 𝜃)
along the line 𝑥⊤Θ = 𝑟 . Summing this over all 𝜃 ∈ [0, 𝜋] (i.e. carrying out the integration) finally
yields the reconstructed image 𝑓 (𝑥).

Thus, we summarize FBP as a reconstruction algorithm in three steps:
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Figure 3.4: Approximations for spatial convolution filters mimicking a multiplication with |𝜌| in
the Fourier domain.

Let 𝐹 = ℛ2𝑓 be the Radon transform of a function 𝑓 ∶ ℝ2 → 𝑅. Then, the FBP algorithm
for reconstructing 𝑓 is as follows:

1. Calculate the one-dimensional Fourier transform (ℱ1𝐹)(𝜌, 𝜃) of 𝐹(𝑟 , 𝜃).
2. High-pass filter (ℱ1𝐹)(𝜌, 𝜃) with |𝜌| and compute the inverse Fourier transform

̃𝐹 (𝑟 , 𝜃) = ℱ −11 {|𝜌|(ℱ1𝐹)(𝜌, 𝜃)}.

3. Back-project the filtered Radon transform ̃𝐹 onto the image by

𝑓 (𝑥) = ∫
𝜋

0
̃𝐹 (𝑥⊤Θ, 𝜃) d𝜃.

We show reconstruction of our toy example in Fig. 3.5, where we see that the image is faith-
fully reconstructed.

In the discussion about the SBP algorithm, we hinted at the fact that one may also deconvolve
the resulting image with the known blur function. The corresponding reconstruction algorithm
is sometimes referred to as filtered layergram. FBP is mathematically equivalent to this, but it
has a practical advantage: Since the projections can be filtered independently, the reconstruction
may start as soon as the first projection is acquired. Moreover, looking at Fig. 3.4 we see that the
spatial approximations of |𝜌| have a small support. Therefore, in practice it is often advantageous
to completely circumvent all frequency domain calculations by implementing the spatial convo-
lution rater than the Fourier domain multiplication. The spatial kernel may also be calculated by
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Figure 3.5: In the FBP algorithm, the filtered projections ̃𝐹 (𝑟 , 𝜃) are smeared across the image.
The red circles indicate the successive build-up of a distinct feature in the image, and on the
right we show the final reconstruction.

windowing |𝜌|, or by simply choosing an appropriate kernel that may not be motivated by the
frequency domain multiplication [78].

3.3 Algebraic Reconstruction

The reconstruction algorithms that were discussed in the previous sections are fast and derived
in a rigorous framework. While this may seem desired at first glance, it is actually a big weak-
ness: Due to wrong initial assumptions about the model, specifically that the X-Ray source is a
monochromatic zero-width beam, these algorithms introduce typical artifacts in the reconstruc-
tion (see Section 3.4). Accounting for the energy dependence of the linear attenuation coefficient
𝜇 is intractable mathematically and practically, and it is very hard to “inject” prior knowledge
into the analytic reconstruction algorithms.

Algebraic (more specifically, iterative algebraic) methods allow for easy re-weighting of rays,
and allow prior knowledge to be considered in the reconstruction. This comes at the cost of
much more computational expense, which is why typically analytic reconstruction dominated
CT historically. However, the increase in computational power over the recent years has caused
a gradual shift towards iterative methods. In what follows, we want to detail the discretization
of the model, and present typical algorithms for solving the arising linear system of equations.
We discuss linear inverse problems in the general sense, but put particular focus on the practical
problems that arise specifically in CT reconstruction.

3.3.1 Discretized Model

The analytic Fourier-based reconstruction algorithms are very principled in theory. However, in
practice the acquisition system is inherently discrete by design of the detector elements, and we
store and view the reconstructed image on a discretized grid of picture elements. Further, the
integration along a line can not be realized practically, as the X-Ray beam will always have some
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Figure 3.6: The fully discretized model in CT reconstruction, where the weights 𝑎𝑖𝑗 of the forward
operator 𝐴 are given by the area of the intersection of the 𝑖-th beam with the 𝑗-th pixel.

“width” to it.
We represent the discretized image 𝑓 as an 𝑁 -dimensional vector, which corresponds to the

flattened image, i.e. is numbered in row-major order. The projections 𝑝𝑖 through 𝑓 are easily
modeled by introducing a weighting factor for each ray and pixel. There exist many ways of
defining the weighting, such as length of the ray in the pixel (assuming a zero-width ray) or the
area of the intersection of the ray with the pixel. In this case, for any pixel index 𝑗, the weighting
factor 𝑎𝑖𝑗 is, loosely speaking, the cross section of 𝑓𝑗 with the 𝑖-th ray, divided by the total area
of 𝑓𝑗 . We show an example for the area integration framework schematically in Fig. 3.6. The
evaluation of the forward operator is a very costly operation computationally, and much work
has gone into efficiently computing it. As an example, we refer the reader to [39] for a look-up
table-based area integration approach.

With Fig. 3.6, we may now enumerate the equations as

𝑎11𝑓1 + 𝑎12𝑓2 + ⋯ + 𝑎1𝑁 𝑓𝑁 = 𝑝1
𝑎21𝑓1 + 𝑎22𝑓2 + ⋯ + 𝑎2𝑁 𝑓𝑁 = 𝑝2

⋮
𝑎𝑀1𝑓1 + 𝑎𝑀2𝑓2 + ⋯ + 𝑎𝑀𝑁 𝑓𝑁 = 𝑝𝑀 ,

(3.29)

or equivalently
𝑝 = 𝐴𝑓 , (3.30)

with the measurements 𝑝 ∈ ℝ𝑀 , the design or system matrix 𝐴 ∈ ℝ𝑀×𝑁 and the image 𝑓 ∈ ℝ𝑁 .



30 Chapter 3. Image Formation

Table 3.1: Comparison of analytic reconstruction and algebraic reconstruction.

Reconstruction Model Speed Flexibility

Analytic continuous fast None
Algebraic discrete slower High

Throughout this work, we assume that 𝐴 is known, and is appropriate for the problem. We now
note the equivalence with the continuous Radon transform by

𝑝 = 𝐴𝑓
⇕

𝐹 = ℛ2𝑓cont,
(3.31)

i.e. 𝑝 represents the sinogram in the Radon space and 𝑓 holds the image values in the image
domain. The matrix 𝐴 represents the linear map from the image space to the Radon space.

For example, assumewewant to reconstruct an image 𝑓 ∈ ℝ𝑁 where𝑁 = 512×512 = 262 144.
Further, assume acquisition of 𝑀 = 1000 × 500 = 500 000 rays, whereby 𝑁𝐷 = 500 detectors
acquire 𝑁𝑃 = 1000 projection directions. Then, the system matrix 𝐴 ∈ ℝ262 144×500 000 maps the
image 𝑓 to the sinogram 𝑝. We already see a practical problem arising: Storing the systemmatrix
𝐴 naively with 32 bit floating-point numbers would require approximately 524GB of storage.
Fortunately, as seen in Fig. 3.6, the 𝑖-th ray does not intersect most pixels at all. In other words,
most entries 𝑎𝑖𝑗 in 𝐴 are 0, so we call 𝐴 “sparse” and can store it efficiently.

The size and structure of 𝐴 is still a problem. Specifically, it is large without “simple” struc-
ture (to allow special inversion algorithms), such that in general we need iterative methods to
solve Eq. (3.30). However, this allows to easily deal with irregularities in the measurement data,
or to incorporate prior knowledge into the reconstruction problem. We summarize the advan-
tages and disadvantages of algebraic reconstruction over analytic reconstruction in Table 3.1.

3.3.2 Solving the Linear System

Let us consider Eq. (3.30) in more detail. In practice, the system will be overdetermined, since
more projections than pixels are acquired. Further, the measurements are noisy — that is, in
reality we only have access to noisy projection data 𝑝 = 𝐴𝑓 + 𝜈 . A well known solution to
overdetermined, noisy systems is the least-squares solution

𝑓 ∗LS = argmin
𝑓

‖𝐴𝑓 − 𝑝‖22 , (3.32)

which can be easily solved in closed form (disregarding the practical problem of actually calcu-
lating it) as

𝑓 ∗LS = (𝐴⊤𝐴)−1𝐴⊤𝑝 = 𝐴†𝑝. (3.33)
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Here, 𝐴† = (𝐴⊤𝐴)−1𝐴⊤ is the Moore-Penrose pseudo inverse of 𝐴.
In Eq. (3.31), we noted how 𝐴 may be the discretized Radon transform, mapping from image

space into Radon space. The adjoint operation, i.e. mapping from Radon space to image space
is given by 𝐴⊤. Thus, we may interpret 𝑏 = 𝐴⊤𝑝 as the “simple back-projection”. Then it
is clear that (𝐴⊤𝐴)−1 “filters” the back-projected image. In this sense, 𝑓 ∗LS = (𝐴⊤𝐴)−1𝐴⊤𝑝 =
(𝐴⊤𝐴)−1𝑏 may be interpreted as the filtered layergram algorithm. In the continuous discussion,
we mentioned that the order of filtering and back-projection may be reversed. Similarly, in the
discrete setting we may write

𝑓 ∗LS = 𝐴⊤(𝐴𝐴⊤)−1𝑝, (3.34)

where (𝐴𝐴⊤)−1 is the linear frequency ramp filter, and 𝐴⊤ is the back-projection operator.
Although we got valuable insight into the relationship between the continuous and discrete

equations, the direct inversion does not work in practice because of the size of the matrices that
need to be inverted. In general, Eq. (3.30) is solved by iterative methods, which we will discuss
in the following section.

3.3.3 Iterative Reconstruction

Iterative reconstruction techniques aim to solve linear problems of the form Eq. (3.30) without
explicitly calculating the (generalized) inverse of 𝐴. The principle of all iterative reconstruction
techniques can be summarized as follows:

1. Forward Projection: Given the current estimate 𝑓 ∗, compute the “expected” projections ̂𝑝.

2. Correction: Compute the “error” ( ̂𝑝 − 𝑝) between the expected projections and the mea-
sured projections, and properly normalize it.

3. Back-Projection: Distribute the error back across all the pixels 𝑓 ∗𝑖 that contributed to the
difference.

The iterative algorithms that are typically used in CT reconstruction differ in the selection of
pixels or beams that are considered simultaneously. For instance, the forward projection may
consider all pixels simultaneously or one pixel after the other, or we may operate on a ray-by-
ray basis and correct only the pixels that contribute to the projection of the current ray.

3.3.3.1 Kaczmarz Method

Maybe the conceptually simplest algebraic reconstruction algorithm is the Kaczmarz method or
method of projections [48], sometimes also (ambiguously) referred to simply as Algebraic Re-
construction Technique (ART). It is of the ray-based family of reconstruction techniques, where
the corrections are applied on a ray-by-ray basis. Specifically, the Kaczmarz iterations proceed
by orthogonally projecting the images onto the hyperplanes defined by the projections of the
individual rays, one after another.
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Figure 3.7: In a, we show the Kaczmarz iterations to solve a simple linear system, where the
solution converges to 𝑓 ∗ = (3.5, 3.75)⊤. Each iteration is an orthogonal projection onto the
hyperplane corresponding to one row in the system. In b, a tomographic reconstruction is shown,
where after one iteration (lower right) the image is satisfactorily reconstructed.

Mathematically, this reads

𝑓 ← 𝑓 − 𝐴𝑖𝑓 − 𝑝𝑖
‖𝐴𝑖‖22

𝐴⊤𝑖 , ∀𝑖 = 1, … ,𝑀, (3.35)

where 𝐴𝑖 = (𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑁 ) is the 𝑖-th row of 𝐴. Note how in Eq. (3.35) 𝐴𝑖𝑓 “forward projects”
the image 𝑓 , the result of which is then compared to the measured projection 𝑝. The resulting
error is normalized by ‖𝐴𝑖‖22, and subsequently “back projected” by 𝐴⊤𝑖 . In this sense, Eq. (3.35)
describes a cyclic gradient descent with adaptive step size 1

‖𝐴𝑖‖22
.

Typically we say that one iteration of the Kaczmarz algorithm is finished after all rows𝐴𝑖, 𝑖 =
1, … ,𝑀 have been considered once. Note that, since the systems arising in practical CT are
usually strongly overdetermined (i.e.𝑀 ≫ 𝑁 ), most often the algorithm gives satisfactory results
in one iteration. In fact, practically the idea of an iteration is discarded and the “row index” 𝑖
in Eq. (3.35) is often randomized. We show the ART algorithm graphically in Fig. 3.7.

3.3.3.2 Simultaneous Iterative Reconstruction Technique

An obvious modification to the ART algorithm is to consider not one, but all rays simultaneously
during one iteration. The Simultaneous Iterative Reconstruction Technique (SIRT) algorithm
does just that: Instead of updating the image successively to minimize the difference to each
individual projection, it accumulates (and properly normalizes) the updates of all rays during
one iteration. This modifies Eq. (3.35) to

𝑓 ← 𝑓 − 𝐶𝐴⊤𝑅(𝐴𝑓 − 𝑝) (3.36)

where 𝐶, 𝑅 are diagonal matrices containing the inverse of the column- and row sums of 𝐴, that
is 𝑐𝑗𝑗 = (∑𝑖 𝑎𝑖𝑗)−1 and 𝑟𝑖𝑖 = (∑𝑗 𝑎𝑖𝑗)−1. We show the iterations of the SIRT for the same problem
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Figure 3.8: For the toy example in a, after two SIRT iterations we converge to 𝑓 ∗. In a, we show
the first 8 SIRT iterations (𝑓 0 = 0), and the final reconstruction after 100 iterations (highlighted
in red).

as in Fig. 3.7 in Fig. 3.8.

3.3.3.3 Simultaneous Algebraic Reconstruction Technique

Given ART and SIRT , it is natural to consider some “in-between” cases. In Simultaneous Alge-
braic Reconstruction Technique (SART), one considers all rays of a particular projection simul-
taneously. We may write this as

𝑓 ← 𝑓 − 𝐶𝑉𝐴⊤𝑉𝑅(𝐴𝑉 𝑓 − 𝑝), (3.37)

where 𝐴𝑉 ∈ ℝ𝑣×𝑁 contains the rows of 𝐴 that correspond to a certain “view” (i.e. rotation angle),
and 𝐶𝑉 is contains the inverse of the corresponding column sums.

Of course, the field of linear systems is well studied and a plethora of algorithms exist for
solving Eq. (3.30). Other algorithms that are frequently used in CT are the Block Iterative Com-
ponent Averaging (BICAV) [14], Ordered Subset Separable Quadratic Surrogates (OS-SQS) [50,
53], and Conjugate Gradient (CG) [31, 79].

3.4 Artifacts

In this section wewill discuss typical artifacts in CT imaging. In the following discussion, we will
take a broad definition of “artifact”. Specifically, we define an artifact as any difference between
the reconstruction and the measured function. Artifacts may therefore appear because of the
simplifications of the physical model, the fact that we only sample the radon transform, noise in
the measurements, and movement of the patient during acquisition.
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3.4.1 Finite BeamWidth

In the derivation of the analytic reconstruction algorithms, it was always assumed that we can
can integrate 𝑓 along lines of no width. Obviously, with real source-detector pairs this is not the
case. Even if we assume continuous sampling along the affine parameter 𝑟 , we would acquire the
strip integral

(ℛ𝑤2 𝑓 )(𝑟 , 𝜃) = ∫
∞

−∞
𝑤(𝑢)(ℛ2𝑓 )(𝑟 − 𝑢, 𝜃) d𝑢, (3.38)

where 𝑤 ∶ ℝ → ℝ+ is a weight function, sometimes called beam profile. It summarizes the effects
of the finite-width source beam and detector pair.

3.4.1.1 Image Convolution

Shepp and Logan showed that the weighted Radon transform (ℛ𝑤2 𝑓 ) is the Radon transform of
a convolved signal 𝑓 ∗ 𝑘 [89]. Specifically, ℛ𝑤2 𝑓 = ℛ2(𝑓 ∗ 𝑘) where 𝑘 ∶ ℝ2 → ℝ+ is the radial
function

𝑘(𝑥) = − 1
𝜋 ‖𝑥‖𝜕‖𝑥‖ ∫

∞

‖𝑥‖
𝑤(𝑢)𝑢

√𝑢2 − ‖𝑥‖2
d𝑢. (3.39)

Note that, if 𝑤 has bounded support (which is a reasonable assumption in practice), then 𝑘 also
has finite support. The following is an example pair (𝑤, 𝑘):

𝑤(𝑢) = {
1
2𝑑 if − 𝑑 ≤ 𝑢 ≤ 𝑑,
0 else, 𝑘(𝑥) = {

1
2𝜋𝑑

1
√𝑑2−‖𝑥‖

2 if 0 ≤ ‖𝑥‖ ≤ 𝑑,

0 else.
(3.40)

We conclude that, even if we assume continuous sampling of (ℛ𝑤2 𝑓 )(𝑟 , 𝜃) along both (𝑟 , 𝜃) and a
perfect reconstruction algorithm, the finite width acquisition with beam profile 𝑤 allows only to
reconstruct (𝑓 ∗ 𝑘).

3.4.1.2 Partial Volume Effect

The finite-width beammanifests itself also in another typical artifact, which is the partial volume
effect. Let us recall the idealized fundamental X-Ray attenuation law

𝐼𝑑 = 𝐼0 exp (−(ℛ2𝑓 )(𝑟 ′, 𝜃)) , (3.41)

where 𝐼𝑑 is the measured intensity at the detector that corresponds to the alignment (𝑟 ′, 𝜃). With
a finite-width beam, we can modify this as

log 𝐼𝑑
𝐼0

= log (∫
∞

−∞
𝑤(𝑢) exp (−(ℛ2𝑓 )(𝑟 ′ − 𝑢, 𝜃)) d𝑢) , (3.42)

where clearly the measurement depends on 𝑓 in a nonlinear fashion.
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Figure 3.9: Inconsistent projections caused by the partial volume effect. We assume that 𝐼0 =
1 and that the intensity is distributed equally between the sub-pixels on the left. Further, for
simplicity we define the length of the pixels to be 1. We show the grid for visualization purposes
but assume 𝜇 = 0 everywhere outside the central pixel.

By Taylor expansion of Eq. (3.42), we can quantify the error of the linearization as

log 𝐼𝑑
𝐼0

= (ℛ𝑤2 𝑓 )(𝑟 ′, 𝜃) + 𝒪 (∫
∞

−∞
𝑤(𝑢)((ℛ2𝑓 )(𝑟 ′ − 𝑢, 𝜃) − (ℛ2𝑓 )(𝑟 ′, 𝜃))

2
d𝑢) . (3.43)

We see that the error depends on the (weighted) “variance” of ℛ2𝑓 over the width of the beam.
In concrete terms, the error is large if there are objects of drastically different linear attenuation
coefficient within the beam width. In practice this is the case if bone or contrast agents partially
intersect a pixel.

The partial volume effect may also occur “out of plane”, i.e. if bone partially intersects the
current slice from an adjacent slice. This is actually the more benign case, as here we would
simply measure the wrong (i.e. not necessarily the mean of the two) attenuation coefficient at
the affected pixels. If however the effect occurs “in plane”, the projections will be inconsistent,
such that they can not compensate each other properly outside of the pixel. We show the problem
in Fig. 3.9. In such cases, the typical streaking artifacts occur.

3.4.2 View and Ray Sampling

Clearly, the assumption that we know (ℛ𝑤2 𝑓 )(𝑟 , 𝜃) for all 𝑟 ∈ ℝ and 𝜃 ∈ [0, 𝜋] is misguided. In
practice, the measurement process acquires samples from ℛ𝑤2 𝑓 in both the affine and rotational
argument. Assuming Δ𝑟 is the distance between samples in the 𝑟 direction, and similarly Δ𝜃 in
the 𝜃 direction, we have access to the set of measurements

{(ℛ𝑤2 𝑓 )(𝑖𝑟Δ𝑟 , 𝑖𝜃Δ𝜃 )∶ 𝑖𝑟 = −𝑁𝑟 , … , 𝑁𝑟 , 𝑖𝜃 = 0,… , 𝑁𝜃 }. (3.44)
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Figure 3.10: Artifacts in the reconstruction induced by sampling ℛ𝑤2 𝑓 “sparsely”. Note that we
chose Δ𝜃 such that Δ𝜃𝑁𝜃 = 180°.

Note that 𝑁𝑟 is usually not critical, since we assume 𝑓 (𝑥) = 0 for ‖𝑥‖ > 𝑟max and usually 𝑁𝑟Δ𝑟 >
𝑟max.

Although it is possible to analytically calculate the influence of the sampling on the point
spread function, it is beyond the scope of this work. We empirically show FBP reconstructions
of images with varying Δ𝑟 and Δ𝜃 in Fig. 3.10. Clearly, the view sampling results in the typical
oscillations along lines tangent to sharp discontinuities. On the other hand, the ray sampling
essentially low-pass filters the image, and also partial volume effects can be clearly seen.

3.4.3 Noise

To discuss the noise propagation in CT , we first show how it influences the sinogram, and then
propagate this error through the filtered back-projection. Let

�̄� (𝑟 , 𝜃) = 𝑁0 exp (−∫
∞

−∞
𝜇(𝑟Θ + 𝑠 Θ) d𝑠) (3.45)

be the number of detected photons of the detector at position 𝑟 and angle 𝜃 , under the assumption
of a perfect measurement. We denote with 𝑁0 the number of photons expelled by the source,
which we assume to be be a deterministic and known number, although in practice it also follows
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some probability distribution. The line integral of the linear attenuation coefficient is therefore

̄𝑔(𝑟 , 𝜃) = log 𝑁0
�̄� (𝑟 , 𝜃) = log𝑁0 − log �̄� (𝑟 , 𝜃). (3.46)

It is well known that the measured photons 𝑁 actually follow a Poisson distribution, that is

ℙ(𝑁 (𝑟 , 𝜃) = 𝑐) = (�̄� (𝑟 , 𝜃))𝑐 exp (−�̄� (𝑟 , 𝜃))
𝑐! , (3.47)

with variance 𝕍 and expected value 𝔼

𝕍 {𝑁(𝑟 , 𝜃)} = 𝔼 {𝑁 (𝑟 , 𝜃)} = �̄� (𝑟 , 𝜃). (3.48)

If we let 𝑔 denote the measured measurement, then

𝔼 {𝑔(𝑟 , 𝜃)} = 𝔼 {log𝑁0} − 𝔼 {log𝑁 (𝑟 , 𝜃)} . (3.49)

By Taylor expansion and assuming �̄� (𝑟 , 𝜃) ≫,

𝔼 {log𝑁 (𝑟 , 𝜃)} ≈ log 𝔼 {𝑁 (𝑟 , 𝜃)} − 𝕍 {𝑁 (𝑟 , 𝜃)}
2𝔼 {𝑁 (𝑟 , 𝜃)} = log �̄� (𝑟 , 𝜃) − 1

2�̄� (𝑟 , 𝜃) , (3.50)

and therefore by substituting into Eq. (3.49)

𝔼 {𝑔(𝑟 , 𝜃)} ≈ log 𝑁0
�̄� (𝑟 , 𝜃) = ̄𝑔(𝑟 , 𝜃). (3.51)

With this, the variance is

𝕍 {𝑔(𝑟 , 𝜃)} = 𝔼 {(𝑔(𝑟 , 𝜃) − ̄𝑔(𝑟 , 𝜃))2} = 𝔼 {(log 𝑁 (𝑟 , 𝜃)
�̄� (𝑟 , 𝜃))

2
} �̄�≫≈ 1

�̄� (𝑟 , 𝜃) . (3.52)

Therefore, the variance in a measurement of ℛ2𝑓 is inversely proportional to the number of
measured photons.

To study the propagation through the reconstruction, we make the following simplifications:
We consider a radially symmetric object with constant attenuation coefficient, such that ide-
ally all projections from different angles are equivalent. Further, we only consider the cen-
ter of the object, i.e. the reconstruction ̂𝑓 (0, 0). Moreover we assume that all measurements
{𝑔(𝑖𝑟Δ𝑟 , 𝜃𝑖)∶ 𝑖𝑟 = −𝑁𝑟 , … , 𝑁𝑟 , 𝜃𝑖 = 𝜋(1 − 𝑚

𝑀 ), 𝑚 = 𝑀,… , 1} are independent of each other, i.e. there
is no systematic error. Then we can write

̂𝑓 (0, 0) ≈ 𝜋Δ𝑟
𝑀 ∑

𝜃𝑖

𝐾
∑
𝑘=−𝐾

𝑔(0, 𝜃)ℎ(𝑘Δ𝑟 ) (3.53)



38 Chapter 3. Image Formation

where ℎ is the spatial implementation of the |𝜌| high-pass filter. We further assumed that 𝑔(𝑟 , 𝜃)
is sufficiently flat around 𝑟 = 0, such that over the support of ℎ simply substitute 𝑔(0, 𝜃). We
know that 𝕍 {𝑔(0, 𝜃)} ≈ 1

�̄� (0,𝜃) , and by additivity of variances,

𝕍 { ̂𝑓 (0, 0)} ≈ (𝜋Δ𝑟
𝑀 )

2 𝑀
�̄� (0, 𝜃)

𝐾
∑
𝑘=−𝐾

ℎ2(𝑘Δ𝑟 ). (3.54)

With Parseval’s Theorem, we can approximate this as

𝕍 { ̂𝑓 (0, 0)} ≈ 𝜋2Δ𝑟
𝑀�̄� (0, 𝜃) ∫

Ω

−Ω
|𝐻 (𝜔)|2 d𝜔. (3.55)

Although many approximations went into Eq. (3.55), it does give valuable insight into what
influences the noise level in the reconstruction. We see that the variance is small if the detector
spacing Δ𝑟 is small, if we measure a large number 𝑀 of views, and if the expected number of
photons �̄� is large. Further, the noise level is proportional to the power spectral density ∫ |𝐻 |2
of ℎ.

3.4.4 Beam Hardening

When discussing the instrumentation in medical CT , we saw that the X-Rays are produced by
the “continuous” bremsstrahlung and the “discrete” characteristic radiation. A typical spectrum
is shown in Fig. 2.6b. Clearly, except for very low energies, the spectrum is spread considerably
over all energies, up to the tube voltage. We also mentioned that in practice, the spectrum that
“exits” the anode contains has significant power in the low-energy range that is not useful for
diagnosis as it would not be able to pass the body at all. Therefore, the spectrum is usually
filtered by metal sheets to remove these components. Often this is referred to as pre-hardening
the spectrum, since the spectrum is shifted towards higher energies, and is therefore harder.

Beam Hardening describes the same phenomenon, when it happens in the body that we ex-
amine. Recall that the linear attenuation 𝜇 = 𝜇(𝑥, 𝐸) coefficient is a function of the ray energy 𝐸,
that is, we measure

𝐼 (𝑟 , 𝜃) = ∫
∞

0
𝑆(𝜖) exp (−∫

∞

0
𝜇(𝑟Θ + 𝑠 Θ, 𝜖) d𝑠) d𝜖. (3.56)

If we let the incident intensity be

𝐼0 = ∫
∞

0
𝑆(𝜖) d𝜖, (3.57)

then, taking into account the energy dependence of 𝜇, the projection integral needs to bemodified
to

𝐹(𝑟 , 𝜃) = − log ( 1𝐼0 ∫
∞

0
𝑆(𝜖) exp (−∫

∞

0
𝜇(𝑟Θ + 𝑠 Θ, 𝜖) d𝑠) d𝜖) . (3.58)

Typically, soft (low-energy) X-Rays are more easily absorbed by tissue, such that the X-Rays
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are hardened as they pass through the body. The artifacts that arise because of this non-linearity
in the measurements are therefore called beam-hardening artifacts. The manifestation of beam-
hardening artifacts is similar to partial volume artifacts in that, due to the non-linearity, the
projections can not properly cancel each other. This gives rise to streak artifacts, which are
especially apparent if the X-Rays pass through thick bones.

Note that it is possible to correct for beam-hardening artifacts in a homogeneous theoretical
phantom. In fact, since the properties of the linear attenuation coefficient of soft tissue only differ
slightly from that of water, scanners are usually calibrated to a generic water phantom to reduce
the cupping effect. In general however, it is not possible to correct for beam hardening artifacts in
unknown objects where the linear attenuation coefficient might vary considerably. On the other
hand, the energy dependence of the linear attenuation coefficient is also used advantageously in
dual-energy systems.

3.4.5 Scattered Radiation

The CT signal model assumes that we can measure a line integral of the linear attenuation coef-
ficient 𝜇. Physically, this means that we assume that photons travel along a straight line, along
which they might be absorbed by the medium. In other words, we model the photoelectric effect
whilst completely disregarding Compton scattering. It is in fact the case that Compton scattering
in general leads to a deterioration of the reconstructed image.

Scattering events change direction (and energy) of the incident photon, thereby deflecting it
to be detected by an “off-axis” detector. Clearly, the impact of this scattered radiation is largest
in detectors that otherwise would only count very few photons. In fact, scattered radiation can
become dominant in regions with strong attenuating structures such as the pelvis [68]. In terms
of the effect on the reconstructed image, it is similar to beam hardening artifacts in that areas
with high attenuation coefficient are connected by dark streaks.

Scattering artifacts can be reduced by using collimators or anti-scatter grids at the detectors.
However, there may be reasons that by construction such collimation is not possible (e.g. fourth-
generation scanners), and both traditional collimators and anti-scatter grids in general have other
unwanted side-effects [92]. We alsowant to bring attention to the fact that the number of possible
scattering events is obviously proportional to the illuminated volume — that is, in a cone beam
setting we expect the influence of scattered radiation to be a lot larger than in a fan-beam setting.

3.4.6 Patient Motion

Motion of the patient with respect to the measurement apparatus is a problem in a range of
medical (not necessarily only imaging) procedures. At the same time, even a perfectly compliant
patient can not eliminate motion artifacts completely. There are many physiological processes
that involve macroscopic movement, which can not be controlled at will. For instance, humans
are in general not able to control their heartbeat (and the corresponding pulsating blood flow) or
their intestines at will (colon peristalsis). Further, the duration for which patient can hold their
breath is in the range of the duration that is needed for some scans. Inconsistent measurement
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data over time usually manifests itself as “double images” (i.e. ghost images), or coherent streaks
that may extend over the whole image.

Although one may incorporate very simple motion models into the reconstruction prob-
lem [80, 88], the only way to eliminate motion artifacts in a general way is to decrease the
acquisition time. Of course, since quick acquisition is desired for many reasons, it has drasti-
cally decreased over the decades. With modern cone-beam systems, the whole volume can be
acquired in the order of seconds, although imaging the beating heart is only possible with Elec-
trocardiography (ECG) gating. However, as discussed before, electron beam CT is the fastest
method for acquiring slices, which allows to image moving structures in the heart without ECG
gating.

3.4.7 A Note on 3D

In general, the mechanisms discussed above will lead to very similar artifacts in the two-
dimensional and three-dimensional case. The partial-volume effect, scattered radiation, noise
and beam hardening will lead to inconsistent measurements, such that streaking artifacts
appear in the FBP reconstruction. Of course, there exist a whole new class of artifacts that are
specific to the three-dimensional reconstruction, especially when considering volume rendering
techniques. A well known artifact in volume rendering is the staircasing-effect, where the finite
slice thickness leads to a stair-like appearance in regions where there is a strong change along
the slice direction. Another artifact that is specific to helical CT is scalloping [6], where the
intensity of the axial partial volume effect changes with the angle of the measurement. However,
this only appears at very high pitch factors and is usually not a problem in clinical practice.

3.4.7.1 Cone Beam Computed Tomography

As already said, three-dimensional CT is in general subject to the same artifacts as traditional
two-dimensional CT . However, the three-dimensional acquisition modalities may reduce the in-
fluence of some of the discussed sources of artifacts, while new sources arise. In the case of cone
beam CT , the possibility to acquire a volume in the order of seconds can almost completely elim-
inate motion artifacts, but the geometry itself poses a considerable problem for reconstruction.

In the case of “true” three-dimensional reconstruction with real cone beam systems, the prob-
lem lies in the fact that with conventional circular source trajectories, it is not possible to ac-
quire the full radon space [12]. Specifically, the three-dimensional Radon space can only be
filled completely for object points that intersect the plane that is spanned by the source trajec-
tory. Although three-dimensional analogs to the direct Fourier and FBP exist in 3D [24, 37, 58],
these methods assume a fully sampled Radon space. Awell known three-dimensional reconstruc-
tion method that deals with these limitations is the Feldkamp-Davis-Kress (FDK) algorithm [30],
which can be adapted for planar and cylindrical detector arrays, and for helical cone beam scan-
ners. In general, cone beam reconstruction, irrespective of the source path, deteriorates with
increasing cone aperture.
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As already noted, the problem of scattered radiation naturally scales with the illuminated
area. An early method for correcting for scatter in cone-beam CT was by using “primary mod-
ulation” [108], whereby a checkerboard-like source collimator is used such that every other de-
tector in the detector array is shadowed. As the shadowed detectors can only pick up scattered
radiation, they can be used to estimate the level of scattered radiation. Coincidentally, this also
has the effect of essentially halving the patient dosage. We will discuss this and other strategies
of dose reduction in the next section.

3.5 Dose Reduction

From the first clinical CT scans in the mid seventies of the last century, up to now CT has es-
tablished itself as one of the most important imaging modalities in clinical practice. With recent
advances in electronics, general hardware, and reconstruction techniques in clinical CT scanners,
the range of applications of CT is largely no longer limited by the achievable spatial resolution
or patient comfort (i.e. scanning time). Today, the administered patient dose limits the range of
applications. In fact, in 2009 it was estimated that medical CT accounts for almost half of the
ionizing radiation exposure from medical use, which translates to approximately one quarter of
the overall average ionizing radiation exposure [71].

By careful assessment of the situation by the physician, it should be guaranteed that the
benefits of performing a CT scan outweigh the risks associated with it. That is, assuming correct
assessment, every CT scan performed is a net-benefit to the health care system, and the society
that lives along this system. However, that is not to say that no bad consequences exist at all.
Although somewhat controversial (see [102] for a very quick review of the potential flaws of
the methodology), [10] estimates that radiation exposure from clinical CT scans may be directly
responsible for 1.5 % to 2 % of cancers in the forthcoming decades.

In any case, it is clear that the cancer risk associated with clinical CT is not zero. At this time,
with the ability to acquire three-dimensional datasets with sub-millimeter resolution in the order
of seconds, it is clear that reducing the dose in CT should be one of the top priorities of the CT
research community. In this section, we will quickly go over the main mechanisms by which we
can influence the radiation exposure in clinical CT .

3.5.1 Tube Current Reduction

One of the most intuitive ways to control the radiation exposure is to reduce the tube current. It
is clear that the patients size and weight influence the dose that is needed to acquire an image of
fixed diagnostic value. That is, smaller patients generally require less tube current and therefor
less dose to obtain the desired image quality. Historically, the tube current was fixed prior to
the measurements by determining the patients weight and looking up the corresponding tube
current for a given measurement protocol (e.g. colonography).

In most of today’s imaging systems, some form of Automatic Exposure Control (AEC) is im-
plemented. AEC aims to control the tube current during acquisition as a function of the detector
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signal, such that the image quality stays approximately constant. This may include angular mod-
ulation, where the tube current adapts to the potentially changing diameter of the inspected body,
as well as longitudinal modulation, where the tube current adapts to the different attenuation
at different anatomical regions. For instance, the shoulder as well as pelvis area are known to
attenuate the incoming X-Rays stronger than adjacent regions.

Of course, the extent of tube current reduction is limited by the desired Signal-to-Noise Ratio
(SNR). As discussed in Section 3.4.3, the detected photons follow a Poisson distribution. In other
words, since 𝕍 {𝑁(𝑟 , 𝜃)} = �̄� (𝑟 , 𝜃) the SNR “at the detector” (i.e. disregarding the reconstruction)
is informally

SNR ∝ �̄�
√�̄�

= √�̄� . (3.59)

As the SNR is proportional to the square root of the number of incident photons, it is interesting
to consider other means of reducing dose, that may scale better with the number of incident
photons.

3.5.2 Angular Undersampling (Few-View CT)

Another well-studied approach for dose reduction is that of undersampling ℛ2𝑓 in the angular
parameter — that is, by lowering 𝑁𝜃 . Traditionally, with typical analytic reconstruction tech-
niques, this leads to the typical streaking artifacts that significantly inhibit diagnostic value and
extent over the whole image domain. However, with the advances in algebraic reconstruction
and specifically the field of compressed sensing [26] this has become very popular. A natu-
ral extension to angular undersampling in two-dimensional CT is to undersample also in the
cone-aperture direction in a three-dimensional setting. In [17], the authors proposed a practical
multi-slit collimator design, which allows view as well as detector row undersampling.
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All models are wrong, but some are useful.
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In the previous chapters, we discussed the physical principles of Computed Tomography (CT),
went over the image formation, and glimpsed at the differences and advantages or drawbacks of
solving the continuous and discretized models. In this chapter, we will focus on reconstruction
in the discretized model. Specifically, we will first discuss different strategies for guiding the
reconstruction towards plausible solutions given the measurement uncertainties and resulting
artifacts that were discussed previously. Then, we will shift our focus towards developing the
theory behind the specific approach that we follow throughout this thesis.

Recall that, in essence, we aim to (in some sense) solve the linear system

𝑝 = 𝐴𝑓 + 𝜈, (4.1)

where 𝑝 ∈ 𝒫 ⊆ ℝ𝑀 are the projections, 𝑓 ∈ ℱ ⊆ ℝ𝑁 is the underlying target, and 𝐴∶ ℱ →
𝒫 is the linear forward operator that describes the acquisition process. We assume that we
have knowledge about the distribution of the noise 𝜈 ∈ 𝒱 ⊆ ℝ𝑀 , or that it can be modeled
reasonably well up to some precision. For instance, in clinical CT 𝜈 is typically modeled by
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Poisson noise, or may be modeled by spatially heteroskedastic Gaussian noise [94] by utilizing
proper pre-processing.

Although the discretized model is stable with respect to perturbations in the input, the recon-
struction is in general still strongly influenced by 𝜈 and the artifacts discussed in the previous
chapter. The following sections will give an overview of different strategies for mitigating the
influence of noise and other artifacts. Finally, we will discuss our approach in detail.

4.1 Pre-processing

Considering (4.1), a natural idea is to simply perform denoising on 𝑝 in the Radon domain. In
other words, we want to find

̂𝑝den = den𝑝(𝑝) (4.2)

where den𝑝 ∶ 𝒫 → 𝒫 is a denoising algorithm and ̂𝑝den estimates the clean, uncorrupted projec-
tions. The denoised projections may then be treated without any special considerations. That is,
one is completely free to choose any reconstruction algorithm to finally yield the reconstructed
image.

This has many advantages, the most obvious of which is that the noise in the projection do-
main is well understood. This allows to include prior knowledge about the noise distribution
in “specialized” approached to the denoising problems. For instance, for (pre-log) Poisson noise,
it is natural to use adaptive filters [44, 47]. On the other hand, characterizing the noise in the
reconstruction is not as easy, as it strongly depends on the specifics of the reconstruction algo-
rithm. Further, the denoising step is completely independent of the reconstruction following it.
That is, the image may be reconstructed with very fast analytical reconstruction algorithms after
denoising the projections. Along with this, depending on the specifics, the denoising step itself
is usually also very fast with typical approaches. We schematically show pre-processing-based
reconstruction approaches in Fig. 4.1.

Throughout the years, many approaches have been proposed, that approximately follow this
scheme. This ranges from the aforementioned pre-log Poisson denoising approaches over To-
tal Variation (TV) and wavelet-based approaches [45, 52] to feed-forward Convolutional Neural
Networks (CNNs) [34]. Although many of the characteristics of this approach are appealing,
the reconstruction quality is typically lacking when compared to that of model-based iterative
techniques. Further, it is hard to have a profound intuition of the effect of den𝑝 on the final
reconstruction.

4.2 Post-processing

The conceptual opposite of the Radon domain denoising is to perform denoising in the image
domain, i.e. after reconstruction. Here, we do not assume access to the projections 𝑝, but only to
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𝑝
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̂𝑓
• Adaptive Filtering,
• Total Variation,
• feed-forward CNN, …

• FBP,
• SIRT,
• ART, …

Figure 4.1: Schematic of a pre-processing-based reconstruction pipeline: The denoising algo-
rithm den𝑝 yields the denoised sinogram (middle) from the noisy projections (left), which is
subsequently used for reconstruction by any reconstruction algorithm rec to finally yield the re-
constructed image (right).

the preliminary reconstruction ̂𝑓 . With this, we simply let

̂𝑓den = den𝑓 ( ̂𝑓 ) (4.3)

be the final reconstruction, where den𝑓 ∶ ℱ → ℱ is an image-domain denoising algorithm.
As such, image-domain post-processing can easily extend any existing CT workflow, without
requiring access to any of the internals. On the other hand, describing the noise in the image-
domain is a very challenging task and usually inhibits deriving analytically optimal filtering
strategies. Many efforts have beenmade to adapt typical algorithms to this, e.g. Non-Local Means
(NLM) [22, 60, 64] and Block Matching and 3D Filtering (BM3D) [51].

While these traditional methods are good at removing local incoherent noise, low-dose CT
typically exhibits coherent streaking artifacts. Many learning-based approaches have been pro-
posed to combat such artifacts [19, 20, 61, 101, 106]. Although the results are satisfactory, we
emphasize that this discriminative learning setup expects to be applied to images with (at least)
very similar corruptions — that is, it assumes a particular forwardmodel as well as reconstruction
algorithm. If this condition is not fulfilled, the preliminary reconstructions may exhibit artifacts
that the CNN can not remove.

4.3 Domain Transform Learning

Another family of reconstruction techniques has emerged very recently with the increase of
computational power. Let us denote with (𝑝, 𝑓 ) ∈ 𝒫 ×ℱ a pair of independent random variables
with the associated joint distribution𝔇𝐷 = 𝔇𝑝 ×𝔇𝑓 on𝒫 ×ℱ . An intriguing idea is to introduce
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𝑝
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̂𝑓den• Adaptive Filtering,
• Total Variation,
• feed-forward CNN, …
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• SIRT,
• ART, …

Figure 4.2: Schematic of a post-processing-based reconstruction pipeline: The preliminary re-
construction ̂𝑓 is acquired by applying some standard reconstruction algorithm to the noisy
sinogram 𝑝, and subsequently denoised to yield the final reconstruction ̂𝑓den.

an appropriately chosen parametric mapping 𝑟 ∶ 𝒫 × Φ → ℱ , such that

̂𝑓 = 𝑟(𝑝, 𝜙∗), (4.4)

where 𝜙∗ ∈ Φ ⊆ ℝ𝑃 is a parameter vector that is learned from data, for instance by minimizing
the expected ℓ2 reconstruction error over 𝔇𝐷 :

𝜙∗ = argmin
𝜙∈Φ

𝔼(𝑝,𝑓 )∼𝔇𝐷 [‖𝑟(𝑝, 𝜙) − 𝑓 ‖22]. (4.5)

Note that in this approach we do not require any domain knowledge at all. That is, we do
not require knowledge of the forward operator 𝐴 or any other specifics of the acquisitions or
reconstruction process. We only require a dataset 𝒟 that is distributed according to our specific
measurement setup. In this sense, this approach is very general and can as stated be applied to
any reconstruction task. In [107], the authors applied this framework to a range of medical imag-
ing tasks, including CT and Magnetic Resonance Imaging (MRI) using different non-Cartesian
sampling patters.

Although the results look promising, there are several problems with this approach. As
clearly indicated by Eq. (4.5), this approach is discriminative in nature. As such, one is required
to retrain 𝑟 if the forward model changes, e.g. because a new undersampling pattern is discov-
ered to be advantageous. It also assumes access to both sensor-domain data and image-domain
data, and assumes that there exists a known one-to-one association between them. However,
especially in the medical domain, data is in general sparse and one can not assume access to a
high-quality dataset for every possible scanner geometry and sub-sampling strategy. Further,
due to the complete omission of the forward operator 𝐴 in the reconstruction problem, it is clear
that the parametric mapping 𝑟 has to at least approximate it (more specifically, its “inverse”) some-
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how. We want to emphasize that the forward models in medical imaging are usually “global” in
some sense. For instance, if we consider the Filtered Back-Projection (FBP) example in Fig. 3.2,
it is clear that changing one pixel in the sinogram affects the reconstruction along a line over its
whole domain. In MRI , where the sensor data is acquired in the Fourier domain, changes in the
sensor domain change the reconstruction over its whole domain. To account for this fact, the
structure of 𝑟 has to be chosen appropriately. For instance, in the AUTOMAP framework [107], 𝑟
is a neural network that utilizes fully connected layers in the early stages and convolutional lay-
ers in later stages. The idea is to learn an approximate inverse of 𝐴 in the early stages, and refine
the reconstruction by changing the local structure in the later stages. For larger resolutions, this
poses a significant computational burden: The number of parameters for one fully connected
layer in an MRI reconstruction problem of resolution 512 × 512 is 2 × 5124 = 137 438 953 472,
where the factor 2 arises from the complex data. In general it can be concluded that, although ap-
pealing in some aspects, reconstruction by means of Eq. (4.4) is not feasible without restrictions
on the resolution or specialized architecture considerations.

4.4 Variational Reconstruction

Previously, we outlined some approaches to reconstruction and highlighted some advantages as
well as disadvantages. In this section, we will discuss how we aim to solve the reconstruction
problem throughout this thesis. First, we will outline the framework of variational reconstruction.
Then, we will specify our view on the problem and show how we aim to tackle it. In a statistical
framework, we will develop an image-domain prior on full CT -images, such that we can enjoy all
advantages of statistical modeling: Sampling from the prior as well as the posterior, computing
different estimators, and rudimentary uncertainty quantification.

Let us again take a closer look at Eq. (4.1). The system is usually overdetermined, since
more projections are acquired, than there exist pixels in the reconstruction. Further, the noise
𝜈 prevents an exact solution in any case. In general we can hope to reconstruct an image 𝑓 ∗
that is consistent with the projections in the sense that it minimizes the re-projection error with
respect to some metric 𝑑 ∶ 𝒫 × 𝒫 → [0,∞). For instance, for the least-squares estimator, we set
𝑑(𝐴𝑓 , 𝑝) = ‖𝐴𝑓 − 𝑝‖22 and let

𝑓 ∗LS = argmin
𝑓 ∈ℱ

‖𝐴𝑓 − 𝑝‖22 . (4.6)

However, this is in general not satisfactory, as the solution will be guided by the noise 𝜈 and the
reconstructionwill strongly depend on the specifics of the forward operator. Therefore, we desire
a way to incorporate prior knowledge into the solution, to guide it towards more “physically
plausible” solutions.

In inverse problems, regularization is the typical way to transform ill-posed problems into
related well-posed problems. A well-known regularization technique is due to Tikhonov [97],
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who proposed to augment the least-squares objective by

𝑓 ∗TK = argmin
𝑓 ∈ℱ

1
2 ‖𝐴𝑓 − 𝑝‖22 + 𝜆

2 ‖𝑓 ‖22 (4.7)

which hinges on the assumption that ‖𝑓 ‖22 is “small” for plausible solutions. Here, 𝜆 ∈ ℝ+ is
a parameter that controls the trade-off between 𝑓 conforming to the measured data 𝑝 and our
prior assumption. However, penalizing the magnitude of the reconstruction is rarely useful in
imaging, as the solution would be biased towards low intensity images.

We can generalize Eq. (4.7) to the variational problem

𝑓 ∗ = argmin
𝑓 ∈ℱ

{𝐸(𝑓 , 𝑝) ≔ 𝐷(𝑓 , 𝑝) + 𝑅(𝑓 )}, (4.8)

where the energy 𝐸∶ ℱ ×𝒫 → ℝ is composed of a data-fidelity term 𝐷∶ ℱ ×𝒫 → ℝ+ which en-
codes the agreement of the reconstruction with the data, and a regularizer 𝑅∶ ℱ → ℝ which pe-
nalizes solutions that are far from our prior assumptions on 𝑓 . We immediately see that Tikhonov
regularization sets 𝐷(𝑓 , 𝑝) = 1

2 ‖𝐴𝑓 − 𝑝‖22 and 𝑅(𝑓 ) = 𝜆
2 ‖𝑓 ‖

2
2.

4.4.1 Statistical Interpretation

In order to cast variational methods in the rigorous framework of statistical models, we first state
that by Bayes rule, the posterior probability density 𝜋𝑓 ∣𝑝(𝑓 ∗, 𝑝) of a reconstruction 𝑓 ∗ given the
data 𝑝 is

𝜋𝑓 ∣𝑝(𝑓 ∗, 𝑝) =
𝜋𝑝∣𝑓 (𝑓 ∗, 𝑝)𝜋𝑓 (𝑓 ∗)

∫ℱ 𝜋𝑝∣𝑓 (𝜙, 𝑝)𝜋𝑓 (𝜙) d𝜙
, (4.9)

where 𝜋𝑝∣𝑓 is the data likelihood and 𝜋𝑓 is the prior. Similar to before, data likelihood describes
the agreement between a solution 𝑓 ∗ and the measured data 𝑝. Assuming an accurate character-
ization of 𝜈 , this is fully determined by the forward model Eq. (4.1). On the other hand, the prior
𝜋𝑓 should encode knowledge about the solution itself. Note that the denominator of Eq. (4.9) is
intractable for any realistic imaging task. As an example, consider a discrete image of size 4 × 4,
where the pixel values are restricted to be in {0, … , 255}. Then, |ℱ | = 4 294 967 296, which is al-
ready in a computationally prohibitive regime. For an image of size 6 × 6, |ℱ | = 4.973 232 × 1086
already surpasses most estimates of the number of baryons (e.g. protons and neutrons) in the ob-
servable universe. Luckily, in most applications we do not require to calculate exact probabilities
with 𝜋𝑓 ∣𝑝 , but we are mostly interested in finding maxima or sampling from it.

Assuming full knowledge of the (maybe unnormalized) posterior 𝜋𝑓 ∣𝑝 , we are typically in-
terested in finding the solution which maximizes the posterior. This is known as the popular
Maximum-A-Posteriori (MAP) estimator and reads

𝑓 ∗MAP = argmax
𝑓 ∈ℱ

𝜋𝑓 ∣𝑝(𝑓 , 𝑝), (4.10)
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which can be transformed into the negative-log domain as

𝑓 ∗MAP = argmin
𝑓 ∈ℱ

{ − log 𝜋𝑝∣𝑓 (𝑓 , 𝑝) − log 𝜋𝑓 (𝑓 )}. (4.11)

If we interpret Eq. (4.8) in this context, we see that the data-fidelity term 𝐷 models the negative
data log-likelihood − log 𝜋𝑝∣𝑓 , while the regularizer 𝑅 captures the negative log-prior − log 𝜋𝑓 .

4.4.2 Hand-crafted Regularizers

While modeling the data-fidelity is usually straight forward, assuming the precise geometry of
the scanner is known, finding a good regularizer for CT images has been subject to years of
research. If we recall Tikhonov regularization, it is now clear that it is not well-suited for imaging
applications, since it imposes a “small-magnitude” prior onto 𝑓 . Therefore, it is interesting to
consider other possible choices of 𝑅.

A very fruitful idea is that of imposing a “smoothness” prior onto 𝑓 by penalizing the image
gradients. One may initially be tempted to find

𝑓 ∗Q = argmin
𝑓 ∈ℱ

1
2 ‖𝐴𝑓 − 𝑝‖22 + 𝜆

2 ‖D𝑓 ‖2𝐹 , (4.12)

where D∶ ℝ𝑁 → ℝ2×𝑁 is a discrete gradient operator and ‖⋅‖𝐹 is the Frobenius norm, which

for a matrix 𝐵 ∈ ℝ𝑀×𝑁 is defined as ‖𝐵‖𝐹 = √∑
𝑀
𝑚=1∑𝑁

𝑛=1 (𝐵𝑚,𝑛)2. Since 𝜆
2 ‖D𝑓 ‖

2
𝐹 models the

negative log-prior, we can interpret this as assuming that the image gradients of 𝑓 are normally
distributed, with mean 0 and isotropic variance 1

𝜆 . However, this has the effect of smoothing
edges in the image, which is generally not desirable. To preserve sharp discontinuities in the
image, a very popular approach is to penalize the TV . In this case, the regularizer is defined as

𝑅(𝑓 ) = 𝜆 ‖D𝑓 ‖2,1 (4.13)

where ‖⋅‖2,1 denotes the ℓ1 norm of the ℓ2 norm with respect to the columns. That is,

‖D𝑓 ‖2,1 =
𝑁
∑
𝑛=1√

((D𝑓 )1,𝑛)2 + ((D𝑓 )2,𝑛)2. (4.14)

The TV regularizer and variations of it have been used extensively in the medical imaging
domain as well as in problems concerning natural images. For example, in [90], the authors
apply the TV regularizer to a limited-angle fan-beam reconstruction problem and extended this
to a circular cone-beam setup in [91]. A well known drawback of the TV regularizer is the
staircasing effect [93], and many attempts have been made to overcome this [62, 74, 95, 100, 105].
As an example, we want to highlight the Total Generalized Variation (TGV) [9], which explicitly
allows affine image profiles, and has been applied to a sparse-view reconstruction task [74].
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4.4.3 Parametric Regularizers

Although the TV regularizer is very principled, it still left something to desire in terms of recon-
struction quality. The TGV regularizer incorporated second-order statistics of the reconstruc-
tion and has been shown to improve quality of the reconstruction. Therefore, it is convincing
that considering higher-order statistics can improve reconstruction further. However, modeling
these statistics by hand becomes increasingly difficult, and it has been advocated quite early that
proper modeling of (in this case natural) images should be based on learning from data [109].

In this work, we follow the approach of parametrizing our regularizer such that Eq. (4.8)
changes to

𝑓 ∗ = argmin
𝑓 ∈ℱ

{𝐸(𝑓 , 𝑝, 𝜙) ≔ 𝐷(𝑓 , 𝑝) + 𝑅(𝑓 , 𝜙)}, (4.15)

where 𝜙 ∈ Φ ⊂ ℝ𝑃 are the parameters that should be learned from data. Now, the energy
𝐸∶ ℱ × 𝒫 × Φ → ℝ measures the compatibility between a reconstruction 𝑓 ∈ ℱ and the data
𝑝 ∈ 𝒫 given the learned parameters 𝜙. In our approach, the data fidelity term remains unchanged,
but we parametrize the regularizer 𝑅∶ ℱ × Φ → ℝ which encodes prior knowledge on 𝑓 using
the learned parameters 𝜙.

Although typically not used in the medical imaging domain, we want to highlight the prolific
Fields of Experts (FoE) regularizer due to Roth and Black [84]. For an image 𝑓 ∈ ℝ𝑁 , the FoE
regularizer is defined as

𝑅FoE(𝑓 , 𝜙) =
𝑁
∑
𝑛=1

𝐽
∑
𝑗=1

𝜓((𝐾𝑗𝑓 )𝑛, 𝑤𝑗) (4.16)

where the parameters are summarized as 𝜙 = (𝑘𝑗 , 𝑤𝑗)𝐽𝑗=1, with 𝑘𝑗 ∈ ℝ𝑎2 a convolution filter of

size 𝑎 × 𝑎 corresponding to the linear operators 𝐾𝑗 ∈ ℝ𝑁×𝑁 . In more detail, the potential func-
tions 𝜓 ∶ ℝ × ℝ𝑁𝑤 → ℝ are parametrized by the weights 𝑤𝑗 ∈ ℝ𝑁𝑤 , where a typical choice of
parametrization may be to use radial basis functions

𝜓(𝑥, 𝑤) =
𝑁𝑤
∑
𝑘=1

𝑤𝑘 exp(−
𝑥 − 𝜇𝑘
𝜎 ). (4.17)

Here, 𝜇𝑘 are equidistantly spaced within some interval and 𝜎 is chosen a-priori to capture the
range of the filter responses. Clearly, the receptive field of the FoE regularizer is determined by
the filter size 𝑎. This is a drawback for medical imaging applications, where artifacts typically
appear as coherent streaks over a large footprint.

In this section, we have demonstrated the idea of parametric regularizers and gave as an ex-
ample the well known FoEmodel. Before we can apply any parametric regularizer to an inference
task such as Eq. (4.15), we have to first identify the parameters such that the regularizer encodes
useful prior information. In the next sections, we will discuss how we can learn the parameters
for a regularizer in an energy of the form Eq. (4.15).
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4.5 Parameter Identification

Typical regularizers that are used today in the field of medical imaging or natural image restora-
tion have hundreds, thousands, or hundreds-of-thousands parameters. Clearly, is is not feasible
to tune these parameters by hand, and we therefore require ways to learn these parameters from
data. In this section, we want to explore ways of learning the parameters of a regularizer for an
energy of the form of Eq. (4.15).

First, we want to highlight that in our energy formulation, we only parametrize the regular-
izer 𝑅. 𝑅 encodes prior information on 𝑓 , and is independent of any measurements 𝑝. As such,
one may be tempted to think that we can not incorporate some known one-to-one mappings
between 𝑝 and 𝑓 for learning 𝜙. However, there do exist ways to learn the posterior in a super-
vised [5, 69] manner, and we want to discuss these first, although this is not the approach that
we follow in this thesis.

4.5.1 Bilevel Optimization

By means of bilevel optimization, we can learn the parameters of a regularizer in a supervised
manner [59], whereby we solve a higher- and lower-level optimization problem. To be more
precise, let (𝑓GT, 𝜈) ∈ ℱ ×ℝ𝑀 denote a pair of independent random variables distributed according
to 𝔇𝐷 = 𝔇𝑓 × 𝔇𝜈 . The bilevel optimization approach is to minimize the reconstruction error,
where the reconstruction is the minimizer of a lower-level optimization problem, that is

⎧⎪
⎨⎪⎩

𝜙∗BO = argmin
𝜙∈Φ

𝔼(𝑓GT,𝜈)∼𝔇𝐷 [ℒ(𝑓 ∗(𝑓GT, 𝜈), 𝑓GT)],

s.t. 𝑓 ∗(𝑓GT, 𝜈) = argmin
𝑓 ∈ℱ

1
2 ‖𝐴𝑓 − 𝑝‖22 + 𝑅(𝑓 , 𝜙).

(4.18)

Here, ℒ ∶ ℱ × ℱ → ℝ+ is a continuously differentiable loss function and we require 𝑅 to be
twice continuously differentiable. The problem can be solved using Lagrange multiplier theory
and implicit differentiation [87]. Note that the lower-level problem typically has to be solved
with high precision, which can be computationally expensive.

4.5.2 Truncated Optimization

A significant drawback of bilevel optimization approaches is the computational burden associated
with solving the lower level problem. The idea behind truncated optimization [3, 25] is to replace
the minimization with an approximate scheme, e.g. fixed-step gradient descent. That is, we aim
to solve

{
𝜙∗TO = argmin

𝜙∈Φ
𝔼(𝑓GT,𝜈)∼𝔇𝐷 [ℒ(𝑓 ∗T (𝑓GT, 𝜈), 𝑓GT)],

s.t. 𝑓 ∗t+1(𝑓GT, 𝜈) = 𝑓 ∗t (𝑓GT, 𝜈) − 𝜏(𝐴∗(𝐴𝑓 ∗t (𝑓GT, 𝜈) − 𝑝) + ∇1𝑅(𝑓 ∗t (𝑓GT, 𝜈), 𝜙)).
(4.19)
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for t = 0,… ,T − 1 given some initial estimate 𝑓 ∗0 , where 𝐴∗ denotes the adjoint of 𝐴, ∇𝑁 is the
gradient w.r.t. the 𝑁 -th argument, and 𝜏 is an appropriately chosen step size. We see that in this
fixed-step gradient descent scheme, we can directly propagate the gradient of the loss function
through the iterative procedure. It can be shown that under certain conditions, the gradients
w.r.t. the parameters of the bilevel problem and the truncated problem converge [66].

At this point, we want to quickly note that while both the bilevel and truncated approach
learn the posterior, they can still be interpreted in the framework of energy-based models. An in-
teresting idea is to abandon this framework, and parametrize each of the descent steps in Eq. (4.19)
individually. We point the interested reader to [18], where the authors applied this idea to a
sparse-view CT reconstruction problem.

4.5.3 Maximum Likelihood Learning

The strategies that we discussed in the previous sections aim to, in some sense, learn the posterior
distribution directly. While this has some benefits (mainly better discriminative performance),
it also has drawbacks: We again assume that we have access to data-image pairs, and the pos-
terior that we learn is tailored to a specific reconstruction problem. In this section, we want to
detail a fully generative approach, which does not assume access to measurements at all, and is
independent of any particular acquisition setup. We will use this approach to train a full-image
regularizer that operates on multiple scales. We detail the specifics of our setup in Section 5.1.

A very well known statistical parameter fitting framework is that of Maximum Likelihood
(ML), where we aim to fit our model to the data, such that the likelihood of the data under our
model is maximized. Specifically, we interpret CT images 𝑓 ∈ ℱ ⊆ ℝ𝑁 of size 𝑁 = 𝑁𝑣 × 𝑁ℎ as
random variables distributed according to 𝔇𝑓 . To associate a distribution with our regularizer,
we follow the maximum-entropy principle [109], such that the probability density reads as

𝜋𝑀 (𝑓 , 𝜃) = exp(−𝑅(𝑓 , 𝜙))
∫ℱ exp(−𝑅(𝜁 , 𝜙)) d𝜁 . (4.20)

𝜋𝑀 is often called the Gibbs-Boltzmann density of 𝑅, and we denote the induced distribution by
𝔇𝑀 .

To find the maximum likelihood estimate 𝜙∗ML ∈ Φ, we can equivalently minimize the ex-
pected negative-log likelihood 𝔼𝑓 ∼𝔇𝑓 [− log 𝜋𝑀 (𝑓 , 𝜙)], which amounts to

𝜙∗ML = argmin
𝜙∈Φ

{ Γ(𝜙) ≔ 𝔼𝑓 ∼𝔇𝑓 [𝑅(𝑓 , 𝜙)] + log(∫ℱ exp(−𝑅(𝜁 , 𝜙)) d𝜁 ) }. (4.21)

The gradient of the ML objective with respect to 𝜙 is found to be

∇1Γ(𝜙) = 𝔼𝑓 ∼𝔇𝑓 [∇2𝑅(𝑓 , 𝜙)] − ∫ℱ
exp(−𝑅(𝜁 , 𝜙))

∫ℱ exp(−𝑅( ̂𝜁 , 𝜙)) d ̂𝜁⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜋𝑀 (𝜁 ,𝜙)

∇2𝑅(𝜁 , 𝜙) d𝜁 , (4.22)
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where we identify the second term to be the expected gradient under the model distribution, such
that we arrive at

∇1Γ(𝜙) = 𝔼𝑓 +∼𝔇𝑓 [∇2𝑅(𝑓 +, 𝜙)] − 𝔼𝑓 −∼𝔇𝑀 [∇2𝑅(𝑓 −, 𝜙)]. (4.23)

Thus, the gradient of the maximum likelihood objective is the difference between the expected
gradient of CT images and the expected gradient of samples from the model distribution. There-
fore, training with Eq. (4.23) has the effect of decreasing the regularization cost of samples from
the data distribution, while increasing the regularization cost of “hallucinations” produced by
the model. We want to quickly note that this objective also arises in Kullback-Leibler divergence
minimization, where the Kullback-Leibler divergence reads

(𝔇𝑓 ||𝔇𝑀 ) = ∫ℱ 𝜋𝑓 (𝜁 ) log
𝜋𝑓 (𝜁 )

𝜋𝑀 (𝜁 , 𝜙) d𝜁 = −H(𝔇𝑓 ) − 𝔼𝑓 ∼𝔇𝑓 [log 𝜋𝑀 (𝑓 , 𝜙)]. (4.24)

With the entropy H of 𝔇𝑓 independent of 𝜙, we conclude that

argmin
𝜙∈Φ

(𝔇𝑓 ||𝔇𝑀 ) = argmin
𝜙∈Φ

Γ(𝜙). (4.25)

We want to emphasize that this method of parameter identification only relies on 𝔇𝑓 . That
is, we do not require any measurement data during learning, and our model does not depend on
any specific forward operator 𝐴 or noise distribution 𝔇𝜈 . Since we learn an independent prior
(as opposed to the posterior learning from the previous approaches), we also gain the ability to
sample our model, such that we can gain valuable insight into what was learned. This comes at
the price of an increased computational cost of sampling 𝔇𝑀 , where one typically has to resort
to computationally expensive Markov Chain Monte Carlo (MCMC) methods. We will discuss
different samplers that could be used in the imaging domain in the next section.

It has been pointed out by Hinton [43] that estimating the expected gradient with respect
to the induced model distribution 𝔇𝑀 is computationally very challenging and often leads to
high-variance estimates. Therefore, he proposed to change Eq. (4.23) to

∇1Γ(𝜙) ≈ 𝔼𝑓 +∼𝔇𝑓 [∇2𝑅(𝑓 +, 𝜙)] − 𝔼𝑓 −∼𝔇𝑀𝑇 [∇2𝑅(𝑓 −, 𝜙)], (4.26)

where 𝔇𝑀𝑇 is the induced model distribution after applying some MCMC transition operator
(e.g. Gibbs sampling [32]) to 𝔇𝑓 , 𝑇 ∈ ℕ+ times. This approximation, known as the Contrastive
Divergence (CD) objective, removes almost all of the computational complexity associated with
sampling the model if 𝑇 is small, and yet yields a reasonable, although biased [13], approximation
of the gradient.

CD-based training has historically been used extensively in image restoration problems, with
the influential Products of Experts (PoE) [43] and FoE [84] models both being trained in this
framework. Subsequently, these approaches have fallen out of favor for improved discriminative
performance, for instance by using Eq. (4.19). However, recently theML framework has received
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increasing attention, especially for its generative capabilities [27, 72]. New models can rival the
generative performance of Generative Adversarial Networks (GANs) [36], while preserving the
strengths of the probabilistic framework, such as composability, interpretability, and stability
due to the lack of an explicit generator network [28, 73].

In this work, we want to build up on the generative capabilities of this approach. That is, we
aim to construct a multi-scale network which we train with Eq. (4.26), such that we can sample
full-sized images from our model. This is in contrast to, e.g., the FoE regularizer, which, although
also traditionally trained with Eq. (4.26), can only encode local information.

4.5.3.1 Model Sampling

In the previous section, we derived the objective for fitting a parametric regularizer to data, such
that its maximum-entropy distribution maximized the likelihood of the data. The gradient of
this loss function with respect to the parameters 𝜙 of the model, as seen in Eq. (4.23), is com-
posed of two terms: The expected gradient with respect to samples 𝑓 + drawn from the data
distribution 𝔇𝑓 , and the negative expected gradient with respect to samples 𝑓 − drawn from the
induced model distribution 𝔇𝑀 . While the first term is easily approximated given a data set
drawn from 𝔇𝑓 , the second term requires sampling from the model, which is achieved by using
MCMC methods.

There are many approaches to sample from an unnormalized density [11, 5, Chapter 11],
which include Gibbs sampling [32], Metropolis-Hastings sampling [42], HybridMonte Carlo [29],
and LangevinMonte Carlo (LMC) [81]. In this workwe restrict ourselves to samplers that 1. make
use of the local landscape of the density, and 2. simultaneously update all entries in the under-
lying random vector. The reasons for this are of practical nature: Samplers that update en-
tries sequentially, such as Gibbs sampling, are impractical for any reasonably sized image (e.g.
512×512 = 262 144 entries) in terms of computation. Similarly, using the local landscape (i.e. the
gradient) of the density allows for faster convergence of the Markov chains.

We now detail the sampling strategy used in this thesis, which is LMC [38, 72, 82, 83]. LMC
makes use of the gradient of the underlying density during sampling, which improves mixing
time when compared to, e.g. Gibbs sampling. Recall that our objective is to sample from 𝔇𝑀 ,
whose associated density is given by Eq. (4.20), which we repeat as

𝜋𝑀 (𝑓 , 𝜙) = exp(−𝑅(𝑓 , 𝜙))
∫ℱ exp(−𝑅(𝜁 , 𝜙)) d𝜁 .

In the general class of Metropolis-Hastings algorithms, there exists a proposal distribution with
associated density 𝜋𝑃 (𝑓 , 𝑓→) onℱ ×ℱ . A candidate 𝑓→ is drawn from the proposal distribution
and the transition is accepted with probability

𝛼(𝑓 , 𝑓→) = {min {𝜋𝑀 (𝑓→,𝜙)𝜋𝑃 (𝑓→,𝑓 )
𝜋𝑀 (𝑓 ,𝜙)𝜋𝑃 (𝑓 ,𝑓→) , 1} , if 𝜋𝑀 (𝑓 , 𝜙)𝜋𝑃 (𝑓 , 𝑓→) > 0,

1, if 𝜋𝑀 (𝑓 , 𝜙)𝜋𝑃 (𝑓 , 𝑓→) = 0.
(4.27)
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Algorithm 1: MALA and ULA for sampling from an (unnormalized) density.

Input : Initial point 𝑓 0, step size 𝜖, Langevin steps 𝑇
Output :𝑓 𝑇

1 for 𝑡 = 1, … , 𝑇 do
2 Propose 𝑓→ with Eq. (4.29).

3 Compute 𝛼(𝑓 𝑡−1, 𝑓→) by {𝐸𝑞. (4.27) for MALA,
𝛼(𝑓 𝑡−1, 𝑓→) = 1 for ULA.

4 Draw 𝑟 ∼ 𝒰[0, 1].
5 Set 𝑓 𝑡 = {𝑓

→ if 𝑟 < 𝛼,
𝑓 𝑡−1 else.

6 end

This choice of 𝛼 can be shown to be 𝜋𝑀 -invariant, in the sense that

𝜋𝑀 (𝑓 , 𝜙) = ∫ℱ 𝜋𝑀 (𝜉 , 𝜙)𝜋𝑃 (𝜉 , 𝑓 )𝛼(𝜉 , 𝑓 ) d𝜉 (4.28)

and that the transition probabilities converge to 𝜋𝑀 . The proposal density we consider is derived
from Langevin diffusion: Let 𝑓 𝑡−1 be the current state of the chain, then the proposal distribution
takes the form

𝑓 𝑡 ∼ 𝒩 (𝑓 𝑡−1 + 𝜖
2∇1 log 𝜋𝑀 (𝑓 𝑡−1, 𝜙), 𝜖Id𝑁 ), (4.29)

where 𝒩 (𝜇, Σ) denotes the normal distribution on ℝ𝑁 with mean 𝜇 and covariance matrix Σ.
LMC is also known as the Metropolis adjusted Langevin algorithm (MALA) due to the

Metropolis-Hastings step Eq. (4.27). In practice, the Metropolis-Hastings acceptance step is
often simply omitted [27, 73], leading to the unadjusted Langevin algorithm (ULA) which
only approximately maintains 𝜋𝑀 as the invariant distribution. This can be illustrated by the
following example taken from [82]: Assume that 𝔇𝑀 = 𝒩 (0, 1) on ℝ and 𝜖 = 2, from which it
immediately follows that 𝑓 𝑡 ∼ 𝒩 (0, 2), 𝑡 ∈ ℕ+. That is, the chain immediately converges, but
samples are not distributed according to 𝔇𝑀 . We summarize MALA and the unadjusted variant
in Algorithm 1.
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In this chapter, we will detail our model as well as the specifics of the training procedure.
Subsequently, we will put our regularizer to test by considering typical reconstruction problems,
such as limited-angle and few-view Computed Tomography (CT) reconstruction. Additionally,
we will exploit the generative properties of the regularizer. Specifically, we can sample the pos-
terior distribution for any given problem, and likewise visualize the associated prior of our regu-
larizer by drawing samples from it or exploring its modes.

5.1 Model and Training

We start by specifying our model architecture, which is based on [73] and follows a traditional
encoder-scheme. The model is schematically shown in in Fig. 5.1. We reduce the spatial dimen-
sion of the feature space using strided convolutions, where we blur the kernels following [104]

57
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Figure 5.1: Our network follows a typical encoder-structure, where { , , } denote
{relu ∘ conv3,1, relu ∘ conv4,2, conv4,1}, with the subscript specifying the filter size and stride. In
the annotations, the upper value shows the spatial resolution of the feature space, and the lower
value indicates the number of features.

to avoid aliasing artifacts. All convolutions with the exception of the final, linear layer are fol-
lowed by the leaky rectified linear unit activation function, with a leak coefficient of 0.05. We
use 𝑁𝑓 = 48 features in the first layer, resulting in in a total of 12 179 905 parameters.

To train our model, we use the Low Dose CT Image and Projection data-set [67], which
we subsampled to a spatial resolution of 128 × 128. We draw samples from our model using the
unadjusted Langevin algorithm (ULA) as described in Algorithm 1, which is run for 𝑇 = 500 steps.
We further follow the idea of persistent Contrastive Divergence (CD) [96], where we use a replay
buffer holding𝑁RB = 8000 past images with a reinitialization chance of 1 %. Upon reinitialization
of any given sample in the replay buffer, there is an equal chance of reinitialization with uniform
noise or any sample from the training data set. We optimize the Maximum Likelihood (ML)
objective Eq. (4.23) using the Adam [54] optimizer with a learning rate of 5 × 10−4, and set the
first and second order momentum variables to 𝛽1 = 0.9 and 𝛽2 = 0.999 respectively. To stabilize
training, we convolve the data distribution with a Gaussian distribution of standard deviation
𝜎data = 1.5 × 10−2. The training is summarized in Algorithm 2.

For any of the inference tasks we use accelerated proximal gradient descent, as summarized
in Algorithm 3. This algorithm makes use of the proximal operator prox∶ ℱ → ℱ , which for a
function 𝛾 ∶ ℱ → ℝ and 𝜏 ∈ ℝ+ is defined as

prox𝜏 𝛾 ( ̂𝑓 ) = argmin
𝑓 ∈ℱ

{𝜏𝛾 (𝑓 ) + 1
2 ‖𝑓 − ̂𝑓 ‖22 }. (5.1)

We point out how we solve the operator for different tasks in their respective sections. Unless
stated otherwise, we always run Algorithm 3 with 𝛼 = 1 × 10−2 and 𝑁𝑖 = 1 × 103.

5.2 Examining the Regularizer

Before applying our learned regularizer to inference tasks, it is interesting to assess it on a data-
and forward model independent basis. The generativeML learning scheme allows us to interpret
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Algorithm 2: Persistent CD training of an energy based model.

Input :data distribution 𝔇𝑓 , data smoothing variance 𝜎2data, buffer length 𝑁RB,
reinitialization chance 𝑝re, Langevin steps 𝑇 , initial parameters 𝜙, training
epochs 𝑁𝑒 , Langevin step size 𝜖

Output : learned maximum-likelihood parameters 𝜙∗
1 Initialize replay buffer ℬ ← {𝑢1, … , 𝑢𝑁RB

}, 𝑢𝑖 ∼ 𝒰[0, 1]128⋅128
2 for 𝑡 = 1, … , 𝑁𝑒 do
3 Draw 𝑓 + ∼ 𝔇𝑓 , 𝑓 0 ∼ ℬ
4 Smooth data samples with 𝑓 + ← 𝑓 + + 𝜈data, 𝜈data ∼ 𝒩 (0, 𝜎dataId)
5 ℬ ← ℬ ⧵ {𝑓 0}
6 Generate 𝑓 − with Algorithm 1 using 𝑓 0, 𝜖, 𝑇
7 ℬ ← ℬ ∪ {{𝑓

−} if 𝑟 ∼ 𝒰[0, 1] > 𝑝re
{𝑓 +} if ̄𝑟 ∼ 𝒰[0, 1] < 0.5 else {𝑢𝑖} ∼ 𝒰[0, 1]128⋅128 else

8 𝛿𝜙 = ∇𝜙(𝑅(𝑓 +, 𝜙) − 𝑅(𝑓 −, 𝜙))
9 𝜙 ← Adam(𝛿𝜙)

10 end
11 𝜙∗ = 𝜙

the learned regularizer directly as a probability density function on the space of images. The
probability density is the Gibbs-Boltzmann distribution of 𝑅, which reads as

𝜋𝑀 (𝑓 , 𝜃) = exp(−𝑅(𝑓 , 𝜙))
∫ℱ exp(−𝑅(𝜁 , 𝜙)) d𝜁 . (5.2)

Naturally, it is interesting to consider the modes of 𝜋𝑀 , which by the above equation are easily
seen to coincide with the modes of 𝑅. We find 𝑓mode = argmin𝑓 𝑅(𝑓 , 𝜙) using Algorithm 3 with

𝐷(𝑓 , 𝑝) = 0 and 𝑓 0 ∼ 𝒰[0, 1]128⋅128. The proximal operator prox𝛼𝐷(⋅,𝑝) reduces to the identity
mapping.

We show examples of 𝑓mode in Fig. 5.2. To emphasize that these images indeed minimize
our learned regularizer, we show example trajectories during minimization along with the cor-
responding energy in Fig. 5.3. It can be observed that the modes are faithful representations
of the training data set. We further want to emphasize that the regularizer is able to learn and
retain small details, such as the blood vessels in the lung or the shape of the vertebrae.

The analysis above yields a valuable insight into the regularizer, however it misses a great
advantage of the energy-based approach, which is the ability to sample the learned prior (or
posterior, see Section 5.5). To visualize samples from our learned prior, we run the ULA vari-
ant of Algorithm 1, where we again choose 𝑓 0 as uniform noise. We show the results for
𝑡 ∈ {1000, 2000, 5000, 20 000, 39 900} in Fig. 5.4. The samples exhibit significant change even for
very large 𝑡 . In other words, we are able to traverse modes of the learned prior with the sampling
procedure.

In accordance with [73], we find that there is some difference between themodes and samples
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Figure 5.2: Examples of images which locally minimize the learned regularizer 𝑅. The images
were found using Algorithm 3 with 𝐷(𝑓 , 𝑝) = 0 and initializing 𝑓 0 with uniform noise. We note
that the samples closely resemble the training data, and want to emphasize that the model is able
to learn small details in the images, such as blood vessels in the lung.
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Figure 5.3: Trajectories of the images from uniform noise to argmin𝑓 𝑅(𝑓 , 𝜙) along with the
corresponding 𝑅(𝑓 𝑡 , 𝜙) over the iterations in Algorithm 3.
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Algorithm 3: Accelerated Proximal Gradient Descent for minimizing an energy func-
tional.
Input : Initial step size 𝛼 , data 𝑝, initial guess 𝑓 0, parameters 𝜙, iterations 𝑁𝑖
Output :𝑓 ∗ = argmin𝑓 {𝐸(𝑓 , 𝑝, 𝜙) = 𝐷(𝑓 , 𝑝) + 𝑅(𝑓 , 𝜙)}

1 𝑓 1 = 𝑓 0
2 for 𝑡 = 1, … , 𝑁𝑖 do
3 ̄𝑓 = 𝑓 𝑡 + 𝑡

𝑡+3 (𝑓 𝑡 − 𝑓 𝑡−1)
4 𝑔 = ∇1𝑅( ̄𝑓 , 𝜙)
5 while 𝑅(prox𝛼𝐷(⋅,𝑝)( ̄𝑓 − 𝛼𝑔), 𝜙) > 𝑅( ̄𝑓 , 𝜙) + 𝑔⊤(𝑓 𝑡 − ̄𝑓 ) + 1

2𝛼 ‖(𝑓 𝑡 − ̄𝑓 )‖22 do
6 𝛼 ← 𝛼

2
7 end
8 𝑓 𝑡+1 = prox𝛼𝐷(⋅,𝑝)( ̄𝑓 − 𝛼𝑔)
9 𝛼 ← 2𝛼

10 end
11 𝑓 ∗ = 𝑓 𝑁𝑖

Algorithm 4: Conjugate Gradient Method to solve 𝐴𝑓 = 𝑝.
Input :𝐴 ∈ ℝ𝑀×𝑁 , 𝑓 ∈ ℝ𝑁 , 𝑝 ∈ ℝ𝑀 , iterations 𝑇 ∈ ℕ+
Output :𝑓 ∗ = argmin𝑓 ‖𝐴𝑓 − 𝑝‖22

1 𝑟0 = 𝐴𝑓 − 𝑝
2 𝑢 = 𝑟0
3 for 𝑡 = 0, … , 𝑇 − 1 do
4 𝛼 = (𝑟 𝑡 )⊤𝑟 𝑡

𝑢⊤𝐴𝑢
5 𝑓 ← 𝑓 + 𝛼𝑢
6 𝑟 𝑡+1 = 𝑟 𝑡 − 𝛼𝐴𝑢
7 𝑢 ← 𝑟 𝑡+1 + (𝑟 𝑡+1)⊤𝑟 𝑡+1

(𝑟 𝑡 )⊤𝑟 𝑡 𝑢
8 end
9 𝑓 ∗ = 𝑓

from the learned prior. However, the effect of learning an implicit sampler rather than a faithful
density does not seem to be too apparent. That is, the learned modes also largely resemble the
training data set, although the samples are a more faithful representation visually.

5.3 Image-Space Inference

In the previous section, we analyzed the learned prior in a data-independent way by minimizing
or sampling it. Here, we want to shift our focus to inference tasks in a post-processing-like
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𝑡 = 1000 𝑡 = 2000 𝑡 = 5000 𝑡 = 20 000 𝑡 = 39 900
Figure 5.4: Trajectories of the images during Langevin sampling at different time steps. Notice
that that high-level features change significantly even for 𝑡 ≫. In other words, our sampling
procedure is able to traverse different modes of the learned prior.

framework. Specifically, we consider

𝑓 ∗ = argmin
𝑓 ∈ℱ

�̃�(𝑓 , ̃𝑓 ) + 𝑅(𝑓 , 𝜙) (5.3)

where ̃𝑓 ∈ ℱ is a corrupted CT image. To be precise, we let ̃𝑓 = corr(𝑓gt), where corr is an
image-space corruption such as Gaussian noise or information loss, and 𝑓gt is a fully sampled and
uncorrupted CT reconstruction. The data fidelity term �̃� ∶ ℱ × ℱ → ℝ+ is chosen accordingly
and does not consider any forward operator 𝐴.

For additive white Gaussian noise, we have ̃𝑓 = 𝑓gt + 𝜈 , 𝜈 ∼ 𝒩 (0, 𝜎Id) and it is known that

squared ℓ2 data term �̃�(𝑓 , ̃𝑓 ) = �̃�
2 ‖𝑓 − ̃𝑓 ‖22 is optimal. The proximal map prox𝛼�̃�(⋅, ̃𝑓 ) can easily be

solved in closed form as

prox𝛼�̃�(⋅, ̃𝑓 )(𝑓 ) =
𝑓 + 𝛼�̃� ̃𝑓
1 + 𝛼�̃�

. (5.4)

We compare our method to the Fields of Experts (FoE) [84] and the Total Deep Variation
(TDV) [56] models, as well as the Total Variation (TV) regularizer. We find the optimal �̃� using
a grid search approach. We optimize the FoE model using Algorithm 3, and optimize the TV
model with a primal-dual algorithm [15]. The TDV model is applied in an early stopping
framework, as in the original work of [56]. We show quantitative Peak Signal-To-Noise Ratio
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Table 5.1: 𝔼𝑓 ∼𝔇 ̄𝑓 [PSNR(𝑓 ∗, 𝑓 )] over a test distribution 𝔇 ̄𝑓 for denoising.

𝜎 TV FoE TDV Ours

15 30.71 34.97 37.59 35.93
25 29.00 32.44 34.89 33.39
50 27.78 28.45 30.92 30.04
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Figure 5.5: Results for a denoising task for 𝜎 ∈ {15, 25, 50}. Our approach retains significantly
more detail, however it also hallucinates some structures into the image.

(PSNR) values over an independent test set for 𝜎 ∈ {15, 25, 50} in Table 5.1, along with visual
examples in Fig. 5.5.

Although the TDV regularizer beats our approach in the quantitative PSNR analysis, we ob-
serve that our regularizer is able to retain much more details in the reconstruction. A drawback
of our approach is that for high noise levels, where we set �̃� ≪ and as such allow the regulariz-
ers more freedom, it is able to hallucinate some structures into the image that do not appear in
the ground truth reconstruction. However, similar things can be said for the other approaches,
which typically lose small structures in the image, due to their implicit or explicit preference for
piecewise constant solutions.

As the next task, we consider image inpainting. Here, we assume that we know a subset ℐ
of the image domain Ω exactly, whereas we have no information in ̃ℐ = Ω ⧵ ℐ . From this, a
natural choice for the data term is the Dirac distribution

�̃�(𝑓 , ̃𝑓 ) = 𝛿ℐ (𝑓 , ̃𝑓 ) = {∞ if 𝑓 ≠ ̃𝑓 anywhere in ℐ ,
0 else, (5.5)
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Table 5.2: 𝔼𝑓 ∼𝔇 ̄𝑓 [PSNR(𝑓 ∗, 𝑓 )] over a test distribution 𝔇 ̄𝑓 for different inpainting tasks.

Task 𝑝𝑖 TV FoE TDV Ours

Line
0.5 30.06 31.45 11.68 31.62
0.8 23.58 24.20 9.82 23.70
0.9 18.28 19.88 9.40 20.55

Pixel
0.5 34.71 41.46 20.91 40.03
0.8 29.59 33.02 15.22 33.44
0.9 27.43 29.47 12.10 29.42

where the proximal operator decays to the projection

prox𝛼𝛿ℐ (⋅, ̃𝑓 )(𝑓 ) = {
̃𝑓 in ℐ ,

𝑓 else. (5.6)

Specifically, we will consider two cases that differ in the nature of ℐ :

1. Line inpainting: For each horizontal line in Ω, there is a chance 𝑝𝑖 that its pixels are in ̃ℐ .

2. Pixel inpainting: Each pixel in Ω has a chance 𝑝𝑖 to be in ℐ .

We show the PSNR values over an independent test set for 𝑝𝑖 ∈ {0.5, 0.8, 0.9} in Table 5.2, and
show qualitative results in Fig. 5.6. We want to bring attention to the fact that PSNR analysis
becomes more and more meaningless as 𝑝𝑖 increases, since there is more and more ambiguity
and natural reconstructions may be far from the initial image. We find that our approach
leads to the most natural and detailed reconstructions, especially as the percentage of missing
information increases, that is as 𝑝𝑖 → 1. We attribute this to the fact that our regularizer has a
global receptive field and as such can draw correspondences over large distances. Further, we see
that the TDV regularizer, which was trained discriminatively on an additive Gaussian denoising
tasks fails catastrophically at this task, as it tries to smooth image and hallucinates very unnatural
structures into the image.

5.4 Model-Based Reconstruction

In this section, we will apply our learned prior to CT reconstruction tasks. Specifically, we will
focus on limited-angle and few-view CT reconstruction. Recall that our forward model is given
by

𝑝 = 𝐴𝑓 + 𝜈, (5.7)

and we are trying to find

𝑓 ∗ = argmin
𝑓 ∈ℱ

{𝐸(𝑓 , 𝑝, 𝜙) ≔ 𝐷(𝑓 , 𝑝) + 𝑅(𝑓 , 𝜙)}. (5.8)
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Figure 5.6: Results for an inpainting task for 𝑝𝑖 ∈ {0.5, 0.8, 0.9}. The top three rows show a pixel-
wise inpainting problem, and the bottom three rows depict a line-wise inpainting problem. We
find that our approach leads to the most natural and detailed reconstructions visually.

In what follows, we use the ASTRA toolbox [1, 2] to discretize our forward operator 𝐴 using the
scheme detailed in Fig. 3.6. We also use their implementation of the traditional reconstruction
algorithms, namely Simultaneous Algebraic Reconstruction Technique (SART) and Filtered Back-
Projection (FBP). For all experiments, we let 𝜈 be 0.1 % Gaussian noise and use

𝐷(𝑓 , 𝑝) = 𝜆
2 ‖𝐴𝑓 − 𝑝‖22 , (5.9)

where we find 𝜆 using grid-search. We run the SART algorithm for 5000 iterations, and solve the
TV problem using 400 iterations of the primal-dual algorithm [15]. We solve the proximal maps
with Algorithm 4 using 𝑇 = 10 iterations.

Recall that, for Algorithm 3, we need to compute

prox𝛼𝐷(⋅,𝑝)( ̂𝑓 ) = argmin
𝑓 ∈ℱ

{𝜌(𝑓 ) ≔ 𝛼𝜆
2 ‖𝐴𝑓 − 𝑝‖22 + 1

2 ‖𝑓 − ̂𝑓 ‖22 }. (5.10)
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Table 5.3: 𝔼𝑓 ∼𝔇 ̄𝑓 [PSNR(𝑓 ∗, 𝑓 )] over a test distribution 𝔇 ̄𝑓 for limited-angle (𝜃 ∈ [0, 𝜋2 ]) recon-
struction.

Method FBP SART TV Ours

𝔼𝑓 ∼𝔇 ̄𝑓 [PSNR(𝑓 ∗, 𝑓 )] 19.05 27.72 29.67 34.21

FBP SART TV OursReference

FBP SART TV OursReferenceFBP SART TV OursReferenceFBP SART TV OursReferenceFBP SART TV OursReferenceFBP SART TV OursReference

Figure 5.7: Comparison between FBP , SART , TV , and our method for limited-angle (𝜃 ∈ [0, 𝜋2 ])
CT reconstruction. Our model is able to faithfully reconstruct the image, whereas the other
methods are not able to fully remove the limited-angle smearing artifacts.

By construction, we know that argmin𝑓 𝜌(𝑓 ) ∈ ℱ , such that by convexity of 𝜌

𝑓 ∗prox = prox𝛼𝐷(⋅,𝑝)( ̂𝑓 ) ⇔ ∇1𝜌(𝑓 ∗prox) = 0. (5.11)

The condition Eq. (5.11) can be rewritten as

(𝛼𝜆�̄�𝐴 + Id𝑁 )𝑓 ∗prox = 𝛼𝜆�̄�𝑝 + ̂𝑓 , (5.12)

where �̄� is the adjoint of 𝐴. This can be solved using Conjugate Gradient (CG) as described
in Algorithm 4.

We first consider the problem of limited angle CT reconstruction. Here, the sinogram is
acquired only over a range of angles, which typically is considerably smaller than π rad. Specifi-
cally, we sample 270 projections uniformly spaced over [0, 𝜋2 ], with 362 detectors using a detector
spacing of 1 pixel. With our images discretized on a 128 × 128 pixel grid, this results in a forward
operator 𝐴 ∈ ℝ(362⋅270)×(168⋅168). We compare our method to FBP , SART and TV reconstruction
quantitatively in Table 5.3 and show some examples of the reconstruction in Fig. 5.7.

Our model is able to satisfactorily reconstruct the image, whilst the traditional unregularized
reconstruction algorithms fail to faithfully restore the image. This is especially apparent at con-
tours where the projection streaks are not cancelled by other projections, such as in the upper
left or lower right corners in Fig. 5.7. Although TV regularization helps alleviate this somewhat,
the structures still look unnatural and it is not able to fully restore the contours. On the other



5.5. Posterior Sampling 67

Table 5.4: 𝔼𝑓 ∼𝔇 ̄𝑓 [PSNR(𝑓 ∗, 𝑓 )] over a test distribution𝔇 ̄𝑓 for few-view CT reconstruction using
𝑁𝜃 ∈ {20, 30, 50, 100}.

𝑁𝜃 FBP SART TV Ours

100 37.15 43.86 46.77 49.47
50 33.12 37.05 40.21 45.06
30 28.78 33.04 35.33 41.65
20 25.24 30.55 31.77 38.48

hand, the global receptive field of our approach allows to recover an image that is consistent
with the training data. Further, we want to point out that our model does not hallucinate any
unwanted structures into the reconstruction, as the data term only allows changes to the image
that are consistent with the measurement data.

An interesting avenue for dose reduction, which has come to light with the advent of Com-
pressed Sensing (CS)-based methods [26], is to perform angular undersampling [90, 91]. That is,
as discussed in Section 3.4, instead of densely sampling the Radon space in the rotational param-
eter we only acquire a few views, typically in the range of 100. For our experiments, we now
sample𝑁𝜃 views uniformly spaced over [0, 𝜋], with 362 detectors each using a detector spacing of
1 pixel. The expected PSNR values of our method along with traditional reference methods over
a test set for 𝑁𝜃 ∈ {20, 30, 50, 100} are shown in Table 5.4. We further show a visual comparison
in Fig. 5.8.

We again observe that our model is able to reconstruct the image satisfactorily, with small
details such as the blood vessels in the lung visible even for 𝑁𝜃 as low as 20. For such strong
undersampling, we observe that FBP reconstruction introduces very strong streaking artifacts,
which are less apparent in the SART reconstruction at the cost of an oversmoothed reconstruction.
TV regularization is able to restore sharp edges from this, however we find that recovering a
sharp images comes at the cost of losing almost all detail in the image, with only few gray levels
remaining. Our approach is able to eliminate the streaking artifacts whilst also retaining a good
level of detail in the reconstruction. The quantitative analysis in Table 5.4 also shows that our
model outperforms the other reconstruction methods by a large margin.

5.5 Posterior Sampling

In the previous sections, we applied our learned prior to typical CT reconstruction tasks.
There, we treated our regularizer as a point estimator, where the reconstruction is given as
the Maximum-A-Posteriori (MAP) of the Gibbs-Boltzmann distribution of the energy. In other
words, we computed

𝑓 ∗MAP = argmin
𝑓 ∈ℱ

{𝐸(𝑓 , 𝑝, 𝜙) ≔ 𝐷(𝑓 , 𝑝) + 𝑅(𝑓 , 𝜙)}. (5.13)
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Figure 5.8: Comparison between FBP , SART , TV , and ourmethod for few-viewCT reconstruction.
Our model is able to completely remove the streaking artifacts while retaining a satisfactory level
of detail.

However, our formulation allows us to leverage the full posterior distribution. That is, we may
also consider other estimators for the optimal solution, such as the expectation over the posterior

𝑓 ∗E = 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] = ∫ℱ 𝑓 exp(−𝐸(𝑓 , 𝑝, 𝜙))
∫ℱ exp(−𝐸( ̄𝑓 , 𝑝, 𝜙)) d ̄𝑓 d𝑓 , (5.14)

where 𝔇𝐸 is the Gibbs-Boltzmann distribution of 𝐸(𝑓 , 𝑝, 𝜙) given the parameters 𝜙. Clearly, it
is intractable to solve Eq. (5.14) analytically, but we may approximate it using Langevin Monte
Carlo (LMC), or simply visually examine samples from the posterior.

To visualize this, we use the same few-view and limited-angle forward operator as in the
previous section using 𝑁𝜃 = 30 and 𝜃 ∈ [0, 𝜋2 ] respectively. We inject noise into Algorithm 3 after
computing the proximal map in Line 8, where we draw the noise from 𝒩 (0, 𝛼𝛽Id), where 𝛽 is
chosen as 𝛽 = 2 × 10−3. We show a sampling trajectory along with the mean and variance over
all iterations in Fig. 5.9. We observe high variance around small structures such as the vertebrae
and the blood vessels in the lung, and along contours for few-view reconstruction as well as
regions of high ambiguity in the limited-angle reconstruction (c.f. Fig. 5.7).



5.6. A Note on Scale-Non-Invariance and Out-Of-Distribution Application 69

𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]

𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]

𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]𝑓 ∼ 𝔇𝐸 𝔼𝑓 ∼𝔇𝐸 [𝑓 ] 𝕍𝑓 ∼𝔇𝐸 [𝑓 ]

Figure 5.9: Sampling the posterior of a few-view (𝑁𝜃 = 30, top) and limited-angle (𝜃 ∈ [0, 𝜋2 ],
bottom) CT reconstruction problem: The four images on the left show different samples during
the sampling process, the two images on the right show the expected sample and variance of the
posterior distribution respectively.

5.6 A Note on Scale-Non-Invariance and Out-Of-Distribution Ap-
plication

In the architecture of our regularizer, we explicitly consider the image size, as the repeated strided
convolutions directly map from 128×128 to a scalar. This means that our network is explicitly not
invariant with respect to the scale of the image, or in other words, we have learned a prior on CT
images of exactly this resolution. However, since the network is composed only of convolutional
layers (as opposed to fully connected layers), we may apply it to different resolution images.

To examine the behavior in such cases, we consider an image-space denoising task for dif-
ferent resolutions 256 × 256 and 512 × 512. We solve the denoising problem using accelerated
proximal gradient descent for 𝜎 ∈ {25, 50}, and show the results along with a sample of our
model on these resolutions in Fig. 5.10. We see that, even for a denoising task with 𝜎 = 25, the
regularizer is not able to restore the image satisfactorily, as it hallucinates new structures into
the image while the noise is is still apparent. In general, due to the design of our regularizer, we
can not expect it to work on resolutions other than the training resolution.

To study the behavior on out-of-distribution samples, we perform the following denoising
experiment: We let

𝑓𝜅 = rot𝜅(𝑓 ) + 𝜈, (5.15)

where rot𝜅 ∶ ℱ → ℱ is the bilinear rotation operator of angle 𝜅 and 𝜈 ∼ 𝒩 (0, 𝜎Id), 𝜎 = 25.
We determine the optimal �̃� using manual grid search on 𝑓0, and show expected PSNR values
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Figure 5.10: Experiments on different scales: Results for Gaussian denoising and a sample of our
prior on 512 × 512. Since our regularizer is not scale-invariant, the results are not satisfactory.
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Figure 5.11: Performance of the regularizer on out-of-distribution data: For denoising rotated
images, the PSNR quickly decays even for small rotations.

in Fig. 5.11 for 𝜅 ∈ {1°, 2°, 3°, 4°, 5°, 10°, … , 40°}. We can see that the PSNR value quickly decreases
even for small 𝜅. For larger 𝜅, the model introduces unnatural structures in the image visually,
which goes hand in hand with a strong drop in quantitative performance. In general, since our
model is a strong prior only for “upright” CT images, performance quickly degrades even for
small affine transformations on the images drawn from the training distribution.
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Conclusion and Outlook

A theory that explains everything, explains nothing.

Karl Popper
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6.1 Conclusion

In this work, we introduced a novel fully generative approach to learn a regularizer for CT re-
construction. Our energy-based formulation allows us to apply this regularizer to a multitude
of reconstruction task, such as limited-angle or few-view CT , as well as image-space restoration
tasks such as denoising. The learned regularizer is able to outperform traditional reconstruction
algorithms in all tasks, sometimes by a large margin. The advantages of the global receptive field
of our regularizer along with the generative training are especially apparent in limited-angle and
few-view reconstruction tasks. There, the regularizer is able to find solutions that are consistent
with the measured data and exhibit the global structure of the fully-sampled references.

Further, we can cast the energy-based model into a statistical framework, which allows us to
leverage the rich theory of statistical models. Specifically, we can visualize our prior by means of
computing the modes of its Gibbs-Boltzmann distribution, or by drawing samples from it. This
gives valuable insight into what the regularizer has learned, which is critical in the medical do-
main where interpretability is exceptionally important. On the same note, for any reconstruction
task, we may not only compute one point estimate by means of the MAP solution, but we can
draw samples from the posterior. This allows us to also compute the expectation as well as the
variance of the posterior, which can be interpreted as a rudimentary uncertainty quantification.
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6.2 Outlook

The probabilistic interpretation opens an avenue for domain experts to gain insight into what the
regularizer prefers, and if this is helpful at all in the reconstruction task. However, there are some
limitations to this approach: Due to the computational burden of model sampling during training,
such approaches have traditionally not been used. With recent advances in computational power
and efficiency, it is now possible to train models on resolutions close to clinical practice.

The ML training however is not only computationally expensive, but also suffers from in-
stability during training. An interesting question is if the training can be stabilized by injecting
“discriminative” knowledge. For instance, one may be tempted to train a regularizer that is a
capable generative model, while it is simultaneously able to classify the 𝑧-axis position of the
slice. Similarly, it may be interesting to train a network with ML as well as a discriminative loss,
that is obtained by a segmentation task. This simultaneous hybrid training of one model has
recently been shown to boost discriminative performance, and it may be a way to stabilize the
ML training. Stable training would allow us to train larger, more expressive networks, that could
be applied to larger resolutions.

Although our regularizer is a very strong global prior for CT images of a certain size, the
experiments on other scales and out-of-distribution data showed that the performance quickly
degrades for images with other high-level characteristics. Therefor, a possible avenue of future
work is to train a regularizer in a scale-invariant manner, for instance by treating the scale as a
latent variable. Further, our model only contains convolutional layers, which may not be optimal
for such tasks. In light of the global receptive field of our model, it may be interesting to include
attention layers, that are inherently global. We believe that by combining hybrid training with
recent advances in the neural network community, such as attention layers, it is possible to train
highly expressive models. In general, we feel that learning fully generative models to be used
for regularization is a very interesting topic for future research.



A
List of Acronyms

AEC Automatic Exposure Control
ART Algebraic Reconstruction Technique
BICAV Block Iterative Component Averaging
BM3D Block Matching and 3D Filtering
CD Contrastive Divergence
CG Conjugate Gradient
CNN Convolutional Neural Network
CS Compressed Sensing
CT Computed Tomography
ECG Electrocardiography
FBP Filtered Back-Projection
FDK Feldkamp-Davis-Kress
FoE Fields of Experts
GAN Generative Adversarial Network
LMC Langevin Monte Carlo
MALA Metropolis adjusted Langevin algorithm
MAP Maximum-A-Posteriori
MCMC Markov Chain Monte Carlo
ML Maximum Likelihood
MRI Magnetic Resonance Imaging
NLM Non-Local Means
OS-SQS Ordered Subset Separable Quadratic Surrogates
PoE Products of Experts
PSNR Peak Signal-To-Noise Ratio
SART Simultaneous Algebraic Reconstruction Technique
SBP Simple Back-Projection
SIRT Simultaneous Iterative Reconstruction Technique

73



74 Chapter A. List of Acronyms

SNR Signal-to-Noise Ratio
TDV Total Deep Variation
TGV Total Generalized Variation
TV Total Variation
ULA unadjusted Langevin algorithm
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