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To Vera, Gerlinde, Walter, Andreas and Anna





We are going to die, and that makes us the lucky ones. Most people are never going to die

because they are never going to be born. The potential people who could have been here

in my place but who will in fact never see the light of day outnumber the sand grains of

Arabia. Certainly those unborn ghosts include greater poets than Keats, scientists greater

than Newton. We know this because the set of possible people allowed by our DNA so

massively exceeds the set of actual people. In the teeth of these stupefying odds it is you

and I, in our ordinariness, that are here. We privileged few, who won the lottery of birth

against all odds, how dare we whine at our inevitable return to that prior state from which

the vast majority have never stirred?

Richard Dawkins, Unweaving the Rainbow: Science, Delusion and the Appetite for Wonder

(2000)

v





Abstract

Dynamic memory allocation or dynamic graph management on a single instruction, multi-

ple threads architecture, like the Graphics Processing Unit (GPU), is generally understood

to be a challenging topic. On current GPUs, hundreds of thousands of threads might be

concurrently active, allocating new memory, altering adjacency data, or freeing resources

again. In both cases, sensible solutions must contend with thread contention, synchro-

nization overhead, memory fragmentation and work balancing. Typical implementation

guidelines even caution against the use of dynamic memory on the GPU, as data structure

must rise to the challenge of thousands of concurrently active threads trying to allocate

memory.

In an effort to utilize the parallel compute power of the GPU for more and more

problem domains, one frequently encounters the need for dynamic memory in existing

application domains. This is especially true when considering dynamic graphs, which are

commonly used to analyse the increasing and ever-changing data arising across multiple

fields. This includes communication networks (monitoring mobile phones and their con-

nections to cell towers), social-media networks and web graphs (tracking friend relations

or re-tweets etc.), intelligence networks (modelling agents and their communications), bi-

ological networks (e.g., folding proteins to gain insight into viruses like SARS-CoV-2) and

many more. Since all these problems deal with huge networks, the GPU, as a data parallel

processor, has potential to open up vast performance improvements.

In this thesis, we propose one base design as well as two evolutions to provide a

GPU-autonomous solution to dynamic graph and memory management. aimGraph runs

independent of the CPU after initialization, storing adjacency information on linked edge

blocks, retaining memory locality within one block while still being able to handle the

highly dynamic nature of dynamic graphs. faimGraph evolves this concept by significantly

improving memory efficiency by introducing memory re-use queues and new and improved

update strategies as well as work balancing measures usable by algorithms traversing the

structure. Furthermore, it is the first framework to introduce the concept of dynamic
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vertices additional to dynamic edges. Lastly, we broaden the concept of our memory re-

use queues and GPU memory manager to general purpose memory management in our

final iteration called Ouroboros. By virtualizing the memory re-use queues, we marry the

benefits of memory efficiency and access performance into one final design. Due to its

structural similarities with faimGraph, we also present a variant of faimGraph based on

Ouroboros, called ouroGraph. This design significantly improves memory efficiency and

algorithmic performance at a slightly higher update cost.

Our early design in aimGraph provides higher update rates and much improved initial-

ization performance compared to related work at the time, while also ridding itself of the

shackles of a tight CPU bound. faimGraph itself improves in all aspects on this design,

showing best initialization performance, great edge update performance compared to cu-

STINGER, Hornet and GPMA as well as superior algorithmic performance on PageRank

and static triangle counting. Ouroboros is the most memory efficient memory manager

on the GPU according to an in-depth survey of all memory managers on the GPU, with

its page-based variants even providing best performance over a large range of possible

allocation sizes. Its graph-adaption ouroGraph further improves upon the efficiency of

faimGraph and increases the ease of porting algorithms as well as their performance.



Kurzfassung

Dynamische Speicherverwaltung sowie das Management von dynamischen Graphen auf

der Graphikkarte (GPU), einer ”single-instruction, multiple threads” Architektur, wird

allgemein als herausforderndes Problem angesehen. Auf aktuellen GPUs sind poten-

ziell hunderttausende Threads gleichzeitig aktiv, allokieren neuen Speicher, ändern Adja-

zenzdaten in einem Graphen oder geben Ressourcen wieder frei. In allen Fällen müssen

sich effiziente Lösungen mit Thread-Konflikten, Synchronisationsaufwand, Speicherfrag-

mentierung sowie gerechter Arbeitsaufteilung auseinandersetzen. Typische Implemen-

tierungsrichtlinien warnen sogar vor der Verwendung von dynamischem Speicher auf der

GPU, da Datenstrukturen dem Allkokationsdruck von tausenden Threads gewachsen sein

müssen, welche gleichzeitig Speicher allokieren und wieder freigeben.

In dem Bestreben, die parallele Rechenleistung der GPU für immer mehr Probleme

zu nutzen, stößt man häufig auf den Bedarf an dynamischem Speicher in bestehenden

Anwendungsdomänen. Das gilt insbesondere für dynamische Graphen, die üblicherweise

zur Analyse der zunehmenden und sich ständig ändernden Daten verwendet werden, die

in mehreren Gebieten auftreten. Dies umfasst Kommunikationsnetze (verwalten von

Mobiltelefonen und deren Verbindungen zu Mobilfunkmasten), Social-Media-Netzwerke

und Webgraphen (aufzeichnen von Freundschaftsbeziehungen oder Re-Tweets usw.),

Nachrichtennetzwerke (das Modellieren von Agenten und deren Kommunikation),

biologische Netzwerke (Faltung von Proteinen, um Einblicke in Viren wie SARS-CoV-2

zu erhalten) und vieles mehr. Da all diese Probleme mit großen Netzwerken zu tun

haben, kann die GPU als daten-paralleler Prozessor enorme Leistungsverbesserungen

ermöglichen.

In dieser Arbeit schlagen wir ein Basisdesign sowie zwei Weiterentwicklungen vor,

um eine GPU-autonome Lösung für die dynamische Graphen- und Speicherverwaltung

vorzustellen. aimGraph wird nach der Initialisierung unabhängig von der CPU ausgeführt.

Dabei werden Adjazenzinformationen auf verknüpften Speicherblöcken gespeichert, wobei
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die Speicherlokalität innerhalb eines Blocks beibehalten wird, während die hochdynam-

ische Natur dynamischer Graphen weiterhin bestehen bleiben kann. faimGraph entwickelt

dieses Konzept weiter, indem die Speichereffizienz erheblich verbessert wird. Es wer-

den dabei Queues zur Wiederverwendung von Speicher und neue, verbesserte Aktual-

isierungsstrategien sowie Maßnahmen zur Arbeitsaufteilung eingeführt, die von Algorith-

men verwendet werden können, welche die Struktur traversieren. Darüber hinaus ist es

das erste Framework, welches das Konzept dynamischer Knoten zusätzlich zu dynamischen

Kanten einführt. Zuletzt erweitern wir das Konzept unserer Queues für die Wiederverwen-

dung von Speicher und des GPU-Speichermanagers auf die allgemeine Speicherverwaltung

in unserer letzten Iteration mit dem Namen Ouroboros. Durch die Virtualisierung der

Queues für die Wiederverwendung von Speicher vereinen wir die Vorteile der Speicher-

effizienz und der Zugriffsleistung in einem finalen Design. Aufgrund seiner strukturellen

Ähnlichkeiten mit faimGraph präsentieren wir auch eine Variante von faimGraph basierend

auf Ouroboros, genannt ouroGraph. Dieses Design verbessert die Speichereffizienz und die

algorithmische Leistung bei etwas höheren Aktualisierungskosten erheblich.

Unser erstes Design, aimGraph, bietet höhere Aktualisierungsraten und eine deutlich

verbesserte Initialisierungsleistung im Vergleich zu ähnlichen Projekten zu dieser Zeit und

befreit sich gleichzeitig von den Fesseln einer engen CPU-Bindung. faimGraph selbst

verbessert alle Aspekte dieses Designs und zeigt die beste Initialisierungsleistung, eine

hervorragende Kanten-Update-Leistung im Vergleich zu cuSTINGER, Hornet und GPMA

sowie eine überlegene algorithmische Leistung bei zwei Algorithmen. Ouroboros ist laut

einer eingehenden Untersuchung aller Speichermanager auf der GPU der speichereffizien-

teste Speichermanager. Seine ”page”-basierten Varianten bieten sogar die beste Leis-

tung über einen großen Bereich möglicher Allokationsgrößen. Seine Graphen-Adaption

ouroGraph verbessert die Effizienz von faimGraph weiter und simplifiziert die Portierung

bestehender Algorithmen und erhöht deren Leistung.
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1.1 Motivation

Dynamic graphs are commonly used to model and analyse the large, ever-changing data

arising across multiple fields. This includes communication networks, where vertices model

mobile devices with the connections between them or cell towers, represented by edges;

social-media networks, where vertices may represent people with edges indicating friend

relationships; and intelligence networks, where vertices model agents with edges highlight-

ing their interactions. In combination with the rise of big data, there is an imminent need

for highly efficient, dynamic graph data structures that support millions of vertices and

edges, which can change constantly.

As the modern Graphics Processing Unit (GPU) becomes ever more ubiquitous and

comparatively inexpensive, the GPU seems predestined to deal with this large-scale prob-

lem domain. Leaving aside the cost factor, the turn to massively parallel architectures

like the GPU is also justified by limitations of hardware manufacturing: In the past, it

was expected that every new hardware generation increases its clock speed and transistor

count. Although the transistor count keeps growing exponentially, the clock speed has hit

the so-called power wall [54]. This means that further increases in clock speed are bounded

by the power and thermal limitations of the chips and lead to clock speed stagnation on

modern Central Processing Unit (CPU) architectures. The GPU, on the other hand, has

1
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still some thermal potential left and still sees minor growth in clock speeds in recent gen-

erations. Nonetheless, a significant speed-up is only achieved by exploiting parallelism.

A trend towards rapid increases of core counts can especially be observed on the GPU,

where new generations increase core counts by multiple thousand (e.g., considering the

top range consumer offerings from NVIDIA, the 1080 Ti has 3584 cores, the 2080 Ti has

4352 cores and the newest 3080 doubles that to land at 8704 cores).

In general, the GPU has gained a lot of traction as a general purpose processor. Its

Single-Instruction Multiple Data (SIMD) processing model lends itself to problems with

high data parallelism, which is typical also in graphs, especially as they increase in size. As

graphs are increasing in size, the available data parallelism increases as well. Furthermore,

the throughput-oriented architecture of the GPU also fits the graph domain well. The

GPU utilizes thousands of threads, drawing from comparatively small caches and relying

on much simpler control logic compared to the CPU. Since most graph algorithms are

comprised of simple operations that have to be performed on millions of objects, the GPU

seems like an ideal candidate. Thus, it is not surprising that various static graph libraries

target the GPU [14, 15, 31, 39, 58].

Turning towards dynamic memory management in general, one of the major hurdles

in converting an existing, dynamic algorithm from the single-threaded CPU-side onto the

GPU is concerned with handling of dynamic memory. In a single-threaded environment,

the usage of dynamic memory provides a sensible way of dealing with a highly dynamic

application domain. Solving this same problem in a highly concurrent setting, as on the

GPU, is justifiably hard. Many modern memory managers on CPUs [9, 10, 19] build on

one base design. They have one arena per CPU core to improve CPU cache hit rates, use

a mutex for concurrent allocation as well as deallocation and manage memory in chunks.

A straightforward application of CPU algorithms, designed to deal with orders of

magnitude fewer threads, often does not perform well. Basic solutions typically solve this

problem by either over-allocating memory or performing expensive precomputations to

estimate memory requirements. Such workarounds are not necessary for CPU computing,

as dynamic memory allocation can be done efficiently, since the number of concurrently

active threads rarely exceeds the double digit zone. However, on massively parallel, single

instruction, multiple threads architectures, like the GPU, thousands of concurrently active

threads may access and reallocate resources as well as change their allocation status by

allocating new memory or releasing unused memory back to the system. Existing dy-

namic memory solutions are either limited in scope, e.g., they focus on single allocation

sizes, or use data structures not well suited for concurrent manipulation. Implementa-

tion guidelines typically advise against the use of dynamic memory on the GPU. But

not all applications lend themselves to precomputation of resource requirements or can be

run with CPU interference to use the CPU for memory allocation. Given the allocation

pressure on modern GPUs generated by thousands of active threads, allowing for efficient

memory allocation is challenging. Additionally, keeping memory fragmentation low, as

GPU memory still is a comparatively scarce resource, and avoiding costly CPU round-



1.1. Motivation 3

trips adds to this challenge. The combination of the pressure on modern GPUs generated

by thousands of active GPU threads with the requirement to keep memory fragmentation

low and avoid CPU round-trips poses a significant challenge.

1.1.1 Research Questions

Inspired by these challenges, we formulate a number of research questions that we would

like to answer in this dissertation.

1. Is it possible for a dynamic graph framework to run completely autonomously on

the GPU? Given a massively-parallel architecture like the GPU and its high data

parallelism suitable for large data sets, previous work still requires a tight bond to the

CPU for memory management tasks. Can we design a solution for dynamic graph

management that runs independently and autonomously on the GPU, managing its

own memory to allow for efficient edge updates on different graph types as well as

supporting algorithms running on such a structure?

2. Is it possible to design a dynamic graph framework for the GPU that truly allows

for arbitrary growth and shrinking of both vertices and edges? Previous approaches

treat vertices and edges separately and only allow dynamic changes to adjacency

data, which prohibits the arbitrary use of the entire GPU memory for the complete

graph. Can we keep the GPU-autonomy of the design presented in (1) while also

allowing dynamic changes to both vertices and edges alike. Furthermore, can we

improve memory efficiency by re-using both freed vertices and edge blocks and build

a work balancing scheme usable by algorithms?

3. Is it possible to generalize dynamic memory management on the GPU, currently used

only for specific user data, like vertices and edges, to general purpose memory man-

agement and its management structures? Previous work, especially when focussing

on high performance, require significant portions of static memory for its manage-

ment data, effectively reducing the amount of available memory to the system even

if not needed. An ideal solution would allow for nearly the entire memory to be used

by the application. Can we virtualize the management structures at hand to increase

memory efficiency while still retaining the benefits of high allocation/deallocation

performance and reduced memory fragmentation?

4. Is it possible to use this generalized approach for dynamic graph management as well

to increase memory locality as well as algorithmic performance? A linked structure

implicitly incurs overhead during traversal and limits the options to balance work

efficiently during adjacency traversal as is common in many algorithms. Given this

design, can we build a graph framework on the GPU that stores its adjacency on

power-of-two aligned pages, keeps the dynamic nature of both vertices and edges

while greatly increasing portability and algorithmic performance?
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1.2 Dynamic Graph Management on GPUs

Managing a large number of entities—as required for dynamic graphs—is challenging on

the GPU. The GPU performs best when memory requirements and layout are known be-

forehand to allow appropriate optimizations. Especially, changing memory requirements

are difficult to handle. Typically, memory allocation on the GPU is handled by the CPU,

which disrupts parallel execution on the GPU to give way to sequential allocation on the

CPU. While efficient memory allocation already forms an issue for dynamic GPU execu-

tion, freeing memory is an even bigger challenge: As many small memory deallocations

can yield large overheads, freed memory is often simply not returned to the system. Over

time, such strategies lead to memory fragmentation, reduce the available memory, and

ultimately lead to system failure as it runs out of memory.

Furthermore, unbalanced graphs lead to unbalanced work loads. As the structure of

dynamic graphs continuously changes, load balancing strategies also need to adapt to

achieve high performance. Thus, performing load balancing with performance influencing

factors in mind, like thread divergence on the SIMD cores of the GPU and memory lo-

cality, becomes an even more challenging task for dynamic graphs. Probably due to these

issues, the number of dynamic graph frameworks for the GPU is limited (not including our

own work), namely, cuSTINGER [22], GPMA [46], Hornet [13] as well as hashGraph [3].

Only hashGraph supports fully dynamic graphs; the others consider the graph’s vertices

fixed and only support dynamic edge data and/or updating individual properties of exist-

ing vertices. Each solution comes with its own drawbacks, both cuSTINGER and Hornet

heavily rely on CPU-synchronization for their memory allocation routines, while both

GPMA and hashGraph store its adjacencies not in contiguous memory, potentially de-

creasing algorithmic performance. Especially cuSTINGER and GPMA furthermore can

have excessive memory requirements due to lavish use of memory, leading to worsening

memory management strategies over time or even system failure due to out-of-memory.

1.2.1 Contributions

We present two versions of our dynamic graph management system running autonomously

and independently on the GPU.

Our first foray into dynamic graph management is called aimGraph. aimGraph runs

after an initial allocation from the CPU autonomously on the GPU, storing adjacency

information on fixed-size edge blocks. These edge blocks can be linked together to allow

for larger adjacencies. This design still provides great memory locality on an edge block

while still retaining the dynamic requirements posed by the problem domain. All further

details of this design are discussed in length in Chapter 3.

While this already provides a suitable solution for dynamic graph management on

GPUs, it still leaves some open challenges, as memory management cannot re-use freed up

edge blocks and vertices remain static within this design. We tackle these issues in the first
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evolution of this concept called faimGraph, presenting a fully dynamic GPU framework

for large dynamic graphs, which is completely GPU-autonomous, reclaims and reuses all

freed memory, and reduces fragmentation to a minimum for both vertex and edge data.

To achieve these goals, we introduce an advanced dynamic memory management sys-

tem for the GPU tailored to graphs, which uses efficient queueing structures to reassign

memory directly on the GPU in O(1). Although more complex data management natu-

rally increases memory access times, our framework achieves equal or better performance

throughout both memory management routines and algorithms executing on top of the

graph structure. All intricacies are detailed in Chapter 4.

Lastly, building on our efforts developed for dynamic memory management on the

GPU, called Ouroboros, we present this final design, combining the benefits of contiguous

memory per adjacency and GPU-autonomy, marrying the concepts found in faimGraph

and Ouroboros into one, called ouroGraph. As Ouroboros already leaves the region right

after its memory manager as linearly addressable memory, we can directly integrate all

dynamic graph management functionality as introduced in faimGraph. Adjacency data

is now stored on power-of-two aligned pages, allocated from larger chunks through the

memory manager. This not only drastically increases memory efficiency, especially for

sparse graphs, but it also greatly increases algorithmic performance and in general memory

access performance. This culmination of our work is discussed in detail in Chapter 6.

1.3 Dynamic Memory Management on GPUs

Approaches to handle dynamic memory management on GPUs first showed up around

ten years ago with the introduction of dynamic memory management via the NVIDIA

Toolkit [40]. Since then, various techniques and refinements have been proposed to speed

up the allocation of memory, which has long been considered a challenging issue on a GPU.

Deciding which approach fits which application best can be a challenge. Furthermore,

new architecture features have been introduced (e.g., independent thread scheduling on

the NVIDIA Volta [41] architecture). These enable new programming paradigms and shift

the focus more towards thread-based computation, easing the conversion of an existing

CPU algorithm to a GPU algorithm. These new capabilities might entail a rethinking

of dynamic resource management in an environment with a stronger focus on individual

thread allocation performance compared to allocations at a warp level.

One key problem in dynamic memory management is the question of how to manage

a large number of resources. The two prevalent methods to keep track of large numbers

of dynamic objects are linked-lists and arrays.

Linked-list-based approaches require each of the dynamic objects to offer at least a

next pointer for traversal of objects. As any number of objects can be linked, linked-lists

are only limited by the available memory. Their advantage is that the number of objects

held by the list is only limited by the available memory. However, especially on the GPU,

linked-lists come with many disadvantages, outweighing the advantages significantly. First,
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update operations on a linked-list are inherently sequential, hence modifications with

thousands of threads come with a significant slow-down. Second, the mandatory next

pointer incurs a large overhead when managing small objects. Third, accessing linked-

lists causes scattered memory accesses, deteriorating cache usage on the GPU. Recent

work, as introduced by Ashkiani et al. [2], addresses this problem by introducing elaborate

warp-cooperative work sharing strategies to reduce branch divergence during list traversal.

Array-based methods, on the other hand, are—due to their static size—inherently

limited by the number of objects they can manage at a time, as this is determined at ini-

tialization. These can be efficiently implemented as queues on top of a ring buffer. Using

front and back pointers as well as atomics, efficient access to individual items can be or-

ganized. They provide efficient access to individual items and entail no per-object memory

overhead. Furthermore, only currently re-usable objects store an identifier in the array.

Compared to linked-list-based methods, array-based methods offer vastly greater paral-

lel access capabilities and potentially increased performance. Many applications require

support for dynamic work generation, as the amount of objects produced might depend

on the actual content of the input. In such applications the number of simultaneously

existing dynamic object often has a large variance or is even unpredictable, which requires

significant over allocation of the arrays. Even if the maximum required array size can be

computed for a specific input, the allocated memory might only be utilized for a fraction

of the applications runtime. This means that a potentially large part of the allocated

memory, is underutilized for most of the execution time.

1.3.1 Contributions

To address the aforementioned problems, we introduce Ouroboros: a new, dynamic mem-

ory management system for GPUs, based on novel, virtualized queues. We start with an

array-based queue for memory reuse of a single, configurable page size. We extend this

concept to support multiple, different page sizes by introducing chunks, a larger unit of

memory. Chunks are broken up into pages, managed by one array-based queue per page

size. To reduce the memory overhead, associated with multiple support data structures, we

virtualize the queues, retaining their performance benefits over linked-list based methods.

We make the following contributions:

� To allow for differently sized allocations, we extend a simple, array-based memory

manager [62], increasing the system’s versatility. Splitting memory into equally-

sized chunks that themselves can be subdivided into all desired page sizes, we store

re-usable pages and chunks in queues. Re-usable pages or chunks are referenced in

such queues for re-use. Bulk allocations of pages are handled using an optimized

synchronization primitive [20].

� We propose two virtualized queues, storing the array-based queues themselves on

memory chunks. Both can either manage page indices directly for maximum al-
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location performance or use chunk indices (of chunks with free pages) and reduce

memory requirements further:

– Our array-hierarchy, virtualized queue retains a small chunk pointer array, as a

hierarchy level over the actual queue, significantly reducing the memory over-

head while retaining most of the performance benefits.

– Our linked-chunk, virtualized queue removes the base data structure all together

in favor of pointers to the beginning and end of the virtual queue, accepting a

slight performance penalty in favor of drastically reduced memory overhead

� We integrate Ouroboros into faimGraph [62] to create ouroGraph, demonstrating the

applicability and benefits of our allocator in a real application scenario resulting in

improved initialization and algorithmic performance at comparable update perfor-

mance, while retaining the possibility to have a second dynamic region in the same

space, as done with dynamic vertices in faimGraph.

All details concerning our effort in the area of dynamic memory management can be

found in Chapter 5.

As part of a larger survey on dynamic memory management on GPUs, we also eval-

uate a larger set of benchmarks. This goes back as early as 2010 with XMalloc [25],

continues with ScatterAlloc [53] in 2012, FDGMalloc [59] in 2013, an approach by Vin-

kler and Havran [56], KMA [49] and Halloc [1] in 2014 as well as BulkAllocator [20] and

DynaSOAr [50]. For each of these, we provide a short introduction and in the end, we

thoroughly evaluate all, which are publicly available, on a large test suite. This includes

test on allocation performance (both thread-based and warp-based), performance scaling,

mixed allocation, fragmentation and out-of-memory performance as well as real world

testcases, including a synthetic test and initializing dynamic graphs. Based on these data,

we assess the feasibility of each approach and highlight the intricacies detected. In the

end, we provide recommendations for the best usage scenarios. Overall, Ouroboros shows

best memory utilization and the least memory fragmentation of all approaches. Evaluat-

ing allocation performance, chunk-based variants of Ouroboros perform middle of the pack

due to their two-stage allocation design, with page-based Ouroboros performing best over

a large range of allocation sizes.

1.4 Outline

The structure of this thesis follows the evolution of the base design as introduced with

aimGraph. But first, related work is discussed in detail in Chapter 2. We focus on efforts

on static graph frameworks on GPUs and then discuss current efforts in the direction

of dynamic graph management on GPUs in detail. Furthermore, we present the current

state-of-the-art in dynamic memory management on the GPU, followed by a short detour

into queue designs on the GPU as well as some graph algorithms designed for the GPU.
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The next section in Chapter 3 introduces our first design called aimGraph, where we

highlight the memory layout used as well as update strategies. We evaluate our framework

against cuSTINGER, testing memory initialization/footprint as well as edge update rates.

Continuing on with the first evolution of aimGraph, we present faimGraph in Chapter

4. We detail the basic memory layout, our queue design for memory re-use as well as

our strategy for incorporating dynamic vertices. This is followed by an evaluation against

cuSTINGER, GPMA and Hornet , evaluating memory initialization and footprint, vertex

as well as edge updates and ends on performance measures on two graph algorithms.

Next, we broaden the ideas previously introduced to serve dynamic memory to general

applications, which can be found in Chapter 5. Building on our queue design introduced

in faimGraph, we build a dynamic memory manager on the GPU, called Ouroboros. We

discuss two initial variants of this design and then, with a focus on memory efficiency,

we introduce two more variants, which virtualize the base queue for even more efficient

management. The evaluation is done on all publicly available, general purpose memory

managers on the GPU, including XMalloc, ScatterAlloc, Halloc, RegEff and the native

CUDA-Allocator . It includes testing thread-/warp-based allocation, mixed allocation,

performance scaling, memory fragmentation as well as some real-world examples.

In the penultimate section, which can be found in Chapter 6, we show how one can

utilize Ouroboros in the context of dynamic graph management and present ouroGraph.

Adjacency data is stored on power-of-two aligned pages allocated from chunks, growing

from the top down, while dynamic vertices still grow from the bottom up. In the evalua-

tion, we show comparable update performance compared to faimGraph as well as superior

algorithmic performance, as better memory locality and work balancing can be employed

on contiguous memory as found in ouroGraph.

The last section found in Chapter 7 gathers all the threads together, summarizing the

benefits and drawbacks of each approach and ends on an outlook on the future, detailing

remaining challenges.
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Related work on graph data structures for the GPU can be categorized into static graph

libraries (Section 2.1), dynamic graph libraries (Section 2.2), dynamic memory manage-

ment on GPUS (Section 2.3), and GPU adapted implementations of graph algorithms

(Section 2.4).

2.1 Static Graph Frameworks on GPUs

There exists a variety of static graph data structures on the GPU: nvGraph [39] (NVIDIA

Graph Analytics library) offers implementations of three widely-used algorithms, support-

ing up to two billion edges (using an NVIDIA Tesla M40 with 24 GB). BlazeGraph [31]

offers a high-performance graph database, using its own domain-specific language, DASL,

to implement advanced analytics. BelRed [15] addresses the problem that manual effort

is often required to build graph application on the GPU. They introduce a library of soft-

ware building blocks which can be combined to build graph applications. Gunrock [58] is

a CUDA library for graph processing using highly optimized operators for graph traversal

while achieving a balance between performance and applicability. GasCL [14], a vertex-

centric graph model for the GPU, written in OpenCL, supports the “think-like-a-vertex”

programming model. SEP-Graph [57] presents a novel framework for graph processing

on the GPU, which builds on a hybrid model that can switch between three pairs of pa-

rameters. These include (1) synchronous or asynchronous execution mode, (2) Push or

9
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Pull communication, and (3) Data-driven or Topology-driven traversal of the graph. Each

of these parameters is chosen to achieve the shortest exeuction time. SIMD-X [30] ad-

dresses the issue inherent in many algorithms like breadth-first search, which suffer from

underutilization on GPUs by introducing a new programming model, called the Active-

Compute-Combine (ACC) model, which filters out inactive vertices at runtime and can

remap tasks to CUDA cores for enhanced workload balancing. Brahmakshatriya et al. [11]

introduce an extension to the GraphIt compiler framework, called G2, that builds on the

same specification but can be deployed on both CPUs and GPUs. Developers can write

an algorithm once in this language and can then combine load balancing and other opti-

mizations on the GPU without resorting to writing low-level code. Tigr [38] is a graph

transformation framework that aims to transform existing, irregular (in the sense of power-

law distributed) graphs into more regular graphs that fit the parallel execution model of

the GPU better. CuSha [27] presents two new graph representations that try to over-

come the irregular memory accesses and GPU underutilization common with CSR data

layouts, called G-Shards (autonomous sets of ordered edges) and Concatenated Windows

(building on these shards for even better utilization). While all these libraries achieve

high performance for static graph algorithms, and ideas like building blocks and alterna-

tive programming models are also interesting for dynamic graphs, they do not consider

dynamic changes of graphs. Thus, directly using any of these frameworks for dynamic

graphs would require a complete reallocation of the graph whenever any part of the graph

changes. This is obviously not sustainable as graphs are changing often and therefore

specialized solutions for dynamic graphs are required.

2.2 Dynamic Graph Frameworks on the GPU

Due to the number of challenges of dynamic resource management on GPUs, the list of

available frameworks is understandably comparatively smaller. But starting in 2016 with

the introduction of cuSTINGER [22] by Green and Bader, a handful of frameworks tailored

specifically for the GPU have been introduced, not including the solutions proposed in this

thesis. DCSR [29] as introduced by King et al., which is designed for insertion-only updates

and adapts the CSR format with linked edge blocks, is not discussed in more detail, as it

does not support edge deletions or efficient queries. The order of the introduction follows

the publication date of the individual approach.

2.2.1 cuSTINGER

The first approach specifically designed for dynamic graph management on GPUs is cu-

STINGER [22], introduced in 2016 at HPEC’16. It is a GPU-adaption of STINGER [6]

and its internal memory manager [18]. One adaption made during the transition to the

GPU is a switch in the adjacency storage format from storing edges in an AOS approach

to SOA. Especially for weighted or semantic graphs, this can improve memory access



2.2. Dynamic Graph Frameworks on the GPU 11

performance on the GPU significantly. Furthermore, the list of edge blocks per node is

replaced by a single adjacency array, once again designed to improve performance with

SIMD memory access. Memory is still managed by the CPU by a memory manager, which

groups together multiple adjacency lists into larger blocks to reduce the number of calls

to cudaMalloc(). Additionally, different memory allocation modes can be chosen that

trade off between storage utilization and a reduction in reallocation calls. In general, cu-

STINGER supports three different graph types including simple, weighted and semantic

graphs. Edge insertions try in an initial kernel to insert all updates into the corresponding

adjacencies. Adjacencies that require augmentation are marked on the GPU and then

reallocated on the CPU so that a second kernel launch can finish the insertion procedure.

Edge deletions are simpler, as cuSTINGER does not decrease the size of adjacencies, but

only shuffles edges to the front onto deleted positions.

Although cuSTINGER targets the GPU, its core memory management tasks still heav-

ily require the CPU and many calls to cudaMalloc(). This happens during initialization

as well as during edge insertion procedures. To reduce the probability of these costly

CPU operations, cuSTINGER over-allocates all adjacency structures and as mentioned

before, does not free unused adjacency space. This leads to higher memory fragmentation

and memory waster overall and even potential system failure due to out-of-memory. When

using conservative memory bounds, updating the graph involves significant overhead man-

aged sequentially on the CPU. Additionally, only edge updates are supported within the

system and vertices remain static.

Nonetheless, cuSTINGER showed that it is possibly to utilize the massively-parallel

capabilities of the GPU for dynamic graph management and also showed comparable

performance for static triangle counting compared to an algorithm running on a CSR

data structure.

2.2.2 GPMA

GPMA [46] was introduced by Sha et al. in 2018 and proposes a novel, dynamic data

structure for graph management on GPUs. On a top-level, GPMA supports multiple

streams operating on its data structure to either update edges or perform graph analytics

tasks. The underlying data structure used is derived from a Packed Memory Array [8], as

can be seen in Figure 2.1.

A PMA is a self-balancing tree structure which separates its memory space into leaf

segments with O(logN) length. For each level in the tree, the PMA is designed to keep an

update complexity of O(log2N) by choosing appropriate lower and upper density bounds.

Once a segments falls out of the range of these density bounds, then the PMA tries to com-

pensate by reallocating the elements in the segment’s parent. This operation is propagated

to the top until all segments once again fall into their respective density bounds.

This can be seen in Figure 2.1, where the insertion of node 48 causes the density of

the last segment to breach its upper density bound. As the neighboring segment is also
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GPMA

Leaf Level 1 Level 2 Level 3

segment size 4 8 16 32

density lower bound ρ 0.08 0.19 0.29 0.40

density upper bound τ 0.92 0.88 0.84 0.80

min # entries 1 2 4 8

max # entries 3 6 12 24
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Inserted

Final

2 5 8 13 16 17 23 27 28 31 34 37 42 46 51 62 48

2 5 8 13 16 17 23 27 28 31 34 37 42 46 48 51 62

Figure 2.1: GPMA maintains its graph in a so-called Packed Memory Array (PMA),
which stores its entries in partially contiguous memory. Gaps are left to accommodate
fast updates within the structure. PMA is a self-balancing binary tree structure that
keeps its elements implicitly sorted. For each level in the tree, a lower and upper bound
are chosen to achieve O(log2N) update complexity.

already at max capacity, this is propagated two levels up, which results in the final state

at the bottom of the plot, where the range 16–32 is reallocated. Since this data structure

is inherently sequential due to its rebalancing efforts, Sha et al. introduce two variants

specific for the GPU. GPMA uses a thread-per-update design and a lock-based approach

to guarantee consistency. All affected leaf segments are identified in advance and the

updating threads compete for the locks, so that each updating operation is completed in

a mutually exclusive fashion. Threads failing to acquire a mutex simply retry in the next

iteration. Although this approach certainly works on a parallel processor like the GPU, it
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has a number of drawbacks. Threads traversing the tree structure individually experience

uncoalesced memory accesses; atomic pressure on the locks and the accompanying thread

conflicts lead to retries in subsequent rounds.

To combat these issues, they introduce GPMA+, a lock-free approach. The major

changes to the algorithm include

� The updates are first sorted and their corresponding leaf segments are located

� Updates targeting the same leaf segment are grouped for processing level-by-level

� GPU primitives like warps or blocks or even the whole device are used to compute

the necessary requirements depending on the segment size

This design completely forgoes locks, can achieve much better work balancing and better

memory access patterns due to the grouping of updates focused on one memory region.

Using a trick by inserting guard entries at adjacency boundaries into the PMA, the internal

data structure can even mimic the common CSR storage format.

Overall, GPMA and GPMA+ present two very interesting approaches to dynamic

graph management on GPUs. The major benefit is the bounded update complexity and

inherently maintained sort order. The main drawbacks also stem from the choice of this

particular storage format. Concerning updates, depending on the update pressure on

individual adjacencies, this can lead to frequent rebalancing efforts which move quite a

lot of memory. Furthermore, as the whole graph is managed via a single PMA, if the

storage requirements exceed the capabilities of the current PMA, the whole structure

has to be re-build in a twice as large PMA, incurring significant overhead. Additionally,

the framework does not natively support changes to vertices, neither vertex insertion nor

deletion is available. Lastly, algorithms operating on the graph either have to pre-process

the adjacencies to get contiguous memory as is demonstrated in the paper or deal with

unbalanced work loads due to the holes left in the storage format.

2.2.3 Hornet

Improving upon the initial design of cuSTINGER, Hornet [13] by Busato et al. was

introduced in 2018 at HPEC’18. Figure 2.2 shows an overview of the design for a small,

weighted graph. The main management structures are still held and maintained by the

CPU, but the overall design has been vastly improved, especially concerning memory

efficiency.

Hornet use three building blocks to achieve this design:

� Block Arrays: these store multiple adjacency arrays

� Vectorized Bit Tree: keeps track of the allocation state within a block array to

efficiently find and reclaim empty blocks
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Figure 2.2: Hornet uses two-tiered storage system to store adjacencies. Large block arrays
are allocated that can be split into power-of-two adjacency arrays to store the adjacency
per vertex. Each block array tracks its allocation state via a vectorized bit tree and all
block arrays per adjacency block size are tracked furthermore in a B+ tree.

� B+ Tree: One tree for each size supported by the system, managing the individual

block arrays

Block arrays are equally-sized chunks of memory (similar to chunks or Superblocks later

discussed in Section 2.3) and contain the individual adjacency arrays, each of them equal

to a power of two in size. All adjacency arrays on one block array have the same size (a

power of two); this bounds the memory requirements for a graph as 2 · |E|. As block arrays

might only be partially filled or adjacency arrays are deallocated, a vectorized bit tree is

used to keep track of the allocation state of the individual blocks on each block array. It

ensures that block arrays are fully utilized before new allocations are necessary, reducing
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the overall memory requirements and allowing for efficient finding of empty blocks. These

trees are implemented as vectors of boolean values storing the logical OR of its children,

hence simply inspecting the root already contains the information if a specific block array

has empty blocks left. The block arrays per size are overall managed by a B+ tree to

ensure scalability and efficiency. This results in an array of B+ trees for the whole graph.

Initialization consists of three phases, where first the graph is built on the CPU by

finding corresponding block arrays and temporarily storing the adjacency data in these

already on the CPU. In the last step, the whole block arrays are copied to the GPU for

better memory bandwidth utilization. Updates are handled in batches, which are first pre-

processed, which includes sorting and cross duplicate removal, then all vertices in need of

reallocation get new memory and the current state is copied over and lastly, the new edges

can be inserted or deleted from the graph.

Hornet greatly improves upon cuSTINGER especially considering initialization time

and memory efficiency. Also, especially for larger update batch sizes, performance also

greatly increases as Hornet is able to pre-process all adjacency changes much more effi-

ciently before going for a round-trip to the GPU. Nonetheless, Hornet still requires a tight

bond with the CPU, as all management tasks are still initiated and controlled on the host.

This means that initialization still is quite slow, as most work has to be done by the CPU.

Like cuSTINGER, vertex data is considered static and no update strategies considering

dynamic vertices are present within the framework. Furthermore, especially for sparse

graphs, significant changes to the adjacency still form major overhead as this requires

significant reallocation on the CPU, similar to the initialization stage. But considering

algorithms, performance even improves compared to CSR, likely due to better locality of

vertices with similar degree.

2.2.4 Dynamic Graphs on the GPU

The newest addition in the line of dynamic graph management, not considering our own

work Ouroboros, is called ”Dynamic Graphs on the GPU” [3] by Awad et al., henceforth

referred to as hashGraph in short.

They introduce a dynamic graph management system on GPUs based on

high-performance hash tables for adjacency storage, which sets itself apart from the other

approaches (except our own work, faimGraph and ouroGraph) as it not only supports

edge updates, but also vertex updates. Furthermore, they also establish an evaluation

strategy designed to better highlight real-world use of dynamic graphs. Lastly, they also

integrate their dynamic graph data structure into Gunrock [58].

The identify the storage of the per-vertex adjacencies as the most important factor

in designing a dynamic graph framework. Each vertex manages its own adjacency list,

which could be built as a hash table [2] or even a B-Tree [4]. Due to the focus of this

work on high update and query throughput, hash tables are chosen as the underlying data

structure. The hash table implementation is based on Slab Hash [2] and exists in two
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Figure 2.3: Overview of hashGraph, which uses hash tables to store adjacency data. New
buckets for the hash tables can be allocated using a dynamic memory manager.

variants to support simple and weighted graphs. Vertices are stored in a fixed-size array,

indexed by the vertex index, which can be increased if needed (but frequent reallocation is

minimized by over-allocating this region). Adjacency lists are stored in one hash-table per

vertex, given a static load factor (0.7 as chosen in the paper) and a bucket capacity (15

or 30 depending on the graph type) and the number of edges per adjacency, the number

of buckets per hash table can be computed. Choosing the right load factor is significant

for performance but also memory overhead. During an edge insertion procedure, if a hash

table becomes full, each hash table can also dynamically allocate additional slabs using a

dynamic memory manager.

In the initialization stage, the initial requirements are not allocated individually to

reduce the overhead, but are grouped together and allocated in one bulk allocation. Dur-

ing operation, all operations implement the Warp Cooperative Work Sharing (WCWS)

strategy, where each thread has an independent task assigned but all threads in a warp

cooperatively solve one task after the other. This execution pattern fits the coalesced

memory access requirements of the GPU quite well and results in better update perfor-

mance. Each vertex can provide an adjacency list iterator, which can be used to query if

edges exist (loop over all buckets associated with this vertex, loading one slab at a time
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and moving from slab to slab using the next operator). During edge update operations,

threads on a warp-level cooperate during the update procedure by first determining if mul-

tiple edges share the same source, allowing for grouping of these operations. Edge deletion

only marks deleted edges with a tombstone so as to guarantee uniqueness within the slab

hash. These can later be flushed completely from the data structure and edge insertions

ignore these locations for better performance. This results in memory overhead at the cost

of higher throughput. Vertex updates are also supported, which includes adding a new

vertex and a set of edges connected to it but also deleting all reference to a vertex within

a graph during vertex deletion.

During their evaluation, they focus on updates for both edges and vertices, showing

great performance gains over Hornet and faimGraph, as expected from a hash table. They

also introduce two new workloads for evaluation, a so-called bulk build (inserting all edges

in one batch) and incremental build (starting with an empty graph and inserting edges

incrementally), once again showing great build performance compared to Hornet . Lastly,

they consider static and dynamic versions of triangle counting, where performance for very

large graphs can be similar to Hornet or faimGraph but typically lacks behind as not sort

order can be enforced.

Overall, hashGraph is a exciting new approach to dynamic graph management with

a particular focus on edge update and query performance. It is also able to handle bulk

and incremental builds very well. Potential drawbacks include the memory overhead

associated with the load factor as well as the decision not to re-use deleted edge positions.

Furthermore, the reliance on a dynamic memory manager for slab allocation and a less

than optimal memory layout for typical vertex-based algorithms might also pose some

problems in certain scenarios. Nonetheless, hashGraph especially suits applications in

need of fast insertion, deletion as well as look-ups.

2.3 Dynamic Memory Management on GPUs

The following sections discusses currently presented memory managers on the GPU as well

as a commonly used data structure, see Section 2.3.10, to manage dynamic resources. All of

the memory managers offer some variant of the standard malloc/free interface and operate

on a large block of memory with a configurable size. Each approach is given a shorthand for

better readability, which will be used throughout the thesis. Any performance evaluation

is deferred to Section 5.6.

2.3.1 CUDA Allocator

NVIDIA initially introduced its allocator [40] (henceforth referred to as CUDA-Allocator)

as early as 2010 for GPUs of compute capability 2.0. It implements the standard

malloc/free interface and is accessed on a per-thread level. Newer additions include

nv aligned device malloc, which allocates aligned memory, aligned to a non-zero power
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Name Build
General
Purpose

Re-use
Primitive

Design
Goal

CUDA-Allocator all 3 ?
Reliable

Memory Allocation

XMalloc < 7.0 3
Lists

FIFO-queue
Coalesce Requests

Small Re-use Buffers

ScatterAlloc < 7.0 3
Lists

Bitmaps
Scatter Memory Access

using Hashing

FDGMalloc < 7.0 ∼ Lists
Warp-based Allocations
for Temporary Memory

RegEff < 7.0 3
Circular List

Flags
Register-Efficient

Lightweight Allocations

Halloc < 7.0 3
Head Pointer

Bitmaps
Warp-aggregated Atomics

using Hashing

KMA OpenCL 3
Lock-Free Queue

Bitmap
Two-layer Memory

Manager for OpenCL

DynaSOAr all 7
Hierarchical

Bitmap
Allocate pre-defined
structures in SOA

BulkAllocator ≥ 7.0 3
Per-Size Bin List

Static Binary Tree
Two Allocators based

on Bulksemaphore

Ouroboros all 3
Per-Size

(Virtualized) Queues
(Virtualized) Queues for
Efficient Memory Re-use

Table 2.1: Condensed overview of all published memory managers for the GPU.

of two. There is unfortunately very little information available on the implementation,

which only allows for speculation as to its internal structure. Its major benefit is the

usability regardless of allocation size required and its thread-based allocation model. It

does not natively support any group-based allocation procedures and can also only be

initialized once with a given size (increasing this memory requires destroying the current

context). Performance is generally considered weak, but reliability is key.

2.3.2 XMalloc

XMalloc [25] is the first, non-proprietary, dynamic memory allocator for GPUs, introduced

also in 2010. Its main contribution is the coalescing of allocation requests on the SIMD

width for faster, lock-free FIFO queues.

Large allocations (as well as Superblocks) are served from a heap, which is segmented

into free and allocated Memoryblocks, as can be seen in Figure 2.4. These blocks form

a linked-list, which allows for merging of neighboring blocks. This type of allocation is

relatively slow, as the list of memory blocks has to be traversed in search of a free Mem-
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Figure 2.4: Overview of memory allocation levels in XMalloc. The manageable memory
area is split into Superblocks, which are further split into Basicblocks used for smaller
allocations, as well as larger Memoryblocks. Two fast lock-free FIFO queues are used as
first points of contact for better performance.

oryblock. Small allocations are rounded to a statically determined size and are preferably

allocated from a free list (one per static size) that holds previously allocated memory

areas, called Basicblocks. Basicblocks (referenced from the first level buffer) are allocated

from Superblocks (referenced in the second level buffer). One Superblock is split into 32

Basicblocks. Both buffers are fixed-capacity, lock-free FIFO arrays, implemented with

SIMD-width coalescing. If a free-list is empty, it is refilled from buffered Superblocks.

New Superblocks are only allocated if the second level buffer is also empty. Deallocation

varies on the different levels. Within a Basicblock, just header information is updated,

which might increase internal fragmentation. If a Basicblock is free, it is put into the first
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level buffer again if possible, otherwise returned to the parent Superblock. Superblocks and

MemoryBlocks are freed by merging with neighboring free blocks of memory.

2.3.3 ScatterAlloc

ScatterAlloc [53] was introduced in 2012 and addresses the problem of collisions during

allocation by scattering the allocation requests across its memory regions, favoring alloca-

tion speed over fragmentation. To guarantee correctness and avoid deadlocks, ScatterAlloc

focuses on a mostly lock-free design. It keeps the number of data accesses low to increase

memory-access performance and avoids atomic operations on the same data word when-
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Figure 2.5: Overview of ScatterAlloc, which pre-splits its memory regions into super blocks,
which are further split into fixed-size pages. Allocation state is either directly tracked on
a page or in the page usage table of the super block. A hash function is used for increased
access speed while still guaranteeing locality for allocations within on SM.



2.3. Dynamic Memory Management on GPUs 21

ever possible. Furthermore, ScatterAlloc also attempts to place data words close together

in memory, which are allocated by threads within the same block at the same time.

Memory is split into fixed sized pages; free memory within a page is tracked via a

page usage table. Pages are grouped into super blocks, which store additional meta data

about their current allocation status to speed-up the allocation within a super block. Super

blocks are of a fixed size and are organized in a single-linked list. ScatterAlloc is designed

such that super blocks can either reside in one large region or be allocated individually,

allowing for resizing of the manageable memory area. One can also pass additional memory

to ScatterAlloc, which will then be available at the next kernel launch. Each page can be

split into equally sized chunks, this chunk size is set at the first allocation from a page.

Pages are reusable once all chunks on it have been freed again. A page usage table is used

to track free chunks within a page, whereas each entry in this table consists of the chunk

size, the number of currently allocated chunks and a bit-field with one bit per chunk to

manage the allocation status. The bit-field used is 32 bit long, to support more chunks per

page, a second hierarchy level is introduced on the page itself, which allows for a maximum

split of 1024 chunks on a page.

To quickly find new pages for allocation, hashing is used. This hash function, as can be

seen in Figure 2.5, tries to reduce internal fragmentation and improve cache utilization by

incorporating the multiprocessor ID. In case the current page is already fully used, linear

probing is used. This will still result in local clustering of chunks of the same size. There

also exist two levels of meta data to speed up the search for free chunks. ScatterAlloc keeps

a pointer to the currently active super block. Only once this reaches a certain fill level, the

next super block in the list is investigated. A super block is also subdivided into equally

sized regions. This also increases the search speed, as a region can be quickly reject of no

suitable chunk can be found. Data requests, which do not fit onto a single page, can be

served by allocating multiple, consecutive pages from specially reserved super blocks.

2.3.4 FDGMalloc

FDGMalloc [59] introduces a memory allocator with a focus on explicit warp-level pro-

gramming. Their main goal is reducing branch divergence to increase SIMD scalability.

By introducing a few constraints alongside such as no general free mechanic and the re-

striction of allocations only on a warp level, it reduces its applicability as a general-purpose

memory manager. FDGMalloc organizes their design in a similar fashion to ScatterAlloc

and XMalloc, by utilizing super blocks, which can be split into smaller chunks of memory.

The main difference is that within FDGMalloc, one super block is shared by all threads

within a warp. Voting is used to determine a leader thread, which does all the work, to

reduce the number of simultaneous memory requests. Each warp has its own heap. All

memory requests are organized through the WarpHeader, as can be seen in Figure 2.6. It

contains a pointer to the current super block, as well as a pointer to a list of super blocks

that have been allocated using the CUDA-Allocator . These lists are of fixed size and are
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replaced once full. Each lists keeps track of how many super blocks are already allocated

in SB Counter and each super block tracks the number of allocations in SB Allocated.

Threads within a warp first determine which ones require allocation, this is once again

done using a voting function. The warp header is allocated from the CUDA-Allocator and

pointers are distributed to all participating threads. During allocation, the requested size

is first aligned to a power of two, with the lowest allocation size being 16 B. If the total

requested size per warp is larger than the maximum super block size, then the request is

forwarded to the CUDA-Allocator . Otherwise, the associated super block is used to allo-

cate the memory. If not all requests can be satisfied within this super block, the remaining

WarpHeader

ActiveCount

TotalCount

SuperBlock*

List*

SuperBlock_List SuperBlock_List

Previous*

SB_Counter

ListElements

Previous*

SB_Counter

ListElements

SuperBlock

SB_Allocated

Blocks

SuperBlock

SB_Allocated

Blocks

SuperBlock

SB_Allocated

Blocks

SuperBlock

SB_Allocated

Blocks

SuperBlock

SB_Allocated

Blocks

Figure 2.6: Overview of FDGMalloc, which organizes all allocations on a warp-level in a
so-called WarpHeader. This holds a list of super blocks, from which smaller blocks can
be served to the user during allocation. No general free mechanic is supported, only all
allocation by a warp can be freed simultaneously.
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threads will once again vote on a leader thread and start allocating a new super block,

registering it in the super block list as well. A prefix-sum is used to determine the local

offsets within the requested memory, served as a large block for all participating threads.

Deallocation is only possible collectively on a warp-level, there is no way to free sin-

gle allocations. Furthermore, to make allocated memory available for successive kernel

launches, a pointer to the WarpHeader has to be stored in global memory. This can lead

to traversing all lists a freeing the allocated memory can be done following one of three

strategies:

� Deallocating all memory is done by traversing all lists and freeing all previously

requested memory pointers, leaving an intact WarpHeader with one remaining super

block

� Freeing all memory including the warp header, this is intended to be called at the

end of a kernel to free all memory

� To make the allocated memory available for successive kernel launches, a pointer to

the WarpHeader has to be stored in global memory

All strategies manipulate the ActiveCount, reducing it to zero leads the executing thread

to run one of the three strategies.

All in all, FDGMalloc presents a warp-level optimized approach to dynamic memory

allocation with constraints that do not fit many modern applications, especially focusing

on the independent thread scheduling behavior present on NVIDIA GPUs since Volta.

2.3.5 Register Efficient Memory Allocator for GPUs

Vinkler and Havran [56] propose a dynamic memory allocator based on a circular memory

pool organized as a single-linked list. Variants of this will henceforth be called RegEff .

First, they propose a very simple allocator based on atomically increasing an offset into a

large buffer with a wrap-around once the end has been reached. This can be used for very

simple dynamic memory needs, but is not classed as a general purpose memory manager,

as memory cannot be freed and will be overwritten after a wrap-around. The linked list

approach is simpler compared to XMalloc, as only one level of allocations and no caching

with buffers is used.

Each allocated chunk of memory also carries header information.To not serialize al-

location from a large, initial block in the beginning, RegEff pre-splits the memory into

many chunks, similar to ScatterAlloc, except that these chunks need not be uniform in

size. This splitting procedure generates a structure similar to a binary heap, as can be

seen in Figure 2.7. The memory not used by the heap forms the last chunk.

During allocation, RegEff tries to locate the first free chunk large enough to hold

the allocation, by starting from the current memory offset, which is stored in a shared

variable. Atomic Compare-And-Swap is used to try allocating a chunk. If a free chunk is
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large enough according to a maximum fragmentation constant, it is split into two chunks

during allocation. After successfully creating the header data for the new chunk, the

memory offset is updated to the following chunk.

Deallocation might require merging two neighboring chunks. This entails trying to

allocate the next chunk such that it cannot be used by another thread. After that, the

corresponding header information for the newly merged chunk is updated.

This design is called CircularMalloc (RegEff-C ), and based on this, three further vari-

ants are proposed. Circular Fused Malloc (RegEff-CF ) fuses the two header words into one

if less than 231 allocations are expected. Circular Multi Malloc (RegEff-CM ) and Circular

Manageable Memory
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Figure 2.7: Overview of RegEff , which pre-splits its manageable memory region into a
circular memory pool, organized as a single-linked list and structured like a binary tree.
Allocations can split the next block or take an already fitting block, while deallocation
typically just updates flags, but can also merge neighboring blocks.
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Fused Multi Malloc (RegEff-CFM ) trade fragmentation for speed by introducing an array

of offsets (on for each SM) instead of having just one shared memory offset. This decreases

the number of atomic collisions at an increased rate of fragmentation. Additionally, the

size of the pre-split chunks is changed by dividing by the number of SMs, located by the

array of offsets. These smaller heaps are linked together once again into a single-linked

list.

2.3.6 Halloc: a high-throughput dynamic memory allocator for GPGPU

architectures

Halloc [1] was presented in 2014 at the GPU Technology Conference. The system starts

by allocating slabs of 2-8 MB in its initialization phase, which can then be assigned to

an allocation size at runtime. The core of Halloc is a bitmap heap, which has one bit for

each chunk or block that can be allocated from the system. To allocate a free block, a

hash function, as noted in Figure 2.8, is used to traverse the corresponding bitmap. This

visits all blocks and is fast and scalable, as long as ≤85 % of the blocks are allocated.

Incrementing the counters is done using a warp-aggregated atomic increment. This selects

a leader within a warp and only the leader increments and broadcasts the results to

the threads in their group(up to 32× less atomics). After that, a corresponding slab is

located and a free block is searched for using hashing. If no block was found, a new slab

must be found and the head is moved to this slab. This head replacement can affect

performance severely, hence Halloc assigns slabs to classes. Free slabs can switch between

chunk sizes, sparse slabs (≤2 %) can switch between block sizes within the same chunk and

busy slabs (>60 %) are normally not used during head search, except when no other blocks

are available anymore. Head replacement starts early (fill level > 83.5 %) to reduce this

impact. Deallocation first locates the corresponding slab for a pointer and then updates

all counters. This can result in a slabs moving to a new class for very sparse slabs or in

marking a slab as free, which takes more time.

Allocations larger than 3 KiB are relayed to the CUDA-Allocator , during deallocation,

if no slab is found, it has to be a pointer from the CUDA-Allocator .

2.3.7 KMA: A Dynamic Memory Manager for OpenCL

KMA [49] is the first dynamic memory allocator for OpenCL [28] and is designed as

a two-layer memory manager, providing basic malloc and free functionality as well a

higher layer built for managing dynamic data structures and a prototype of a top layer

data structure inspired by Java’s ArrayList. The low-level memory allocator provides an

abstraction on top of the memory capabilities offered by OpenCL and implements a heap

using an OpenCL read-write buffer. The size of the heap is fixed and cannot be changed

at run-time and has to be initialized first by means of a special kernel which sets up

the initial state and all the required data structures. The structure of the heap can be

see in Figure 2.9. It consists of a state header, keeping track of a number of so-called
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superblocks, which are further split into smaller blocks (splits can be any power of two) to

serve to the user. A bitmap on each Superblock tracks the allocation state of these blocks.

Free Superblocks are tracked via a “free“-list (implemented as a lock-free queue [35]),

merging neighboring blocks is not supported, hence the largest size that can be allocated

is determined by the Superblock size.

To allocate a block, first a corresponding Superblock is located by querying the Su-

perblock hashmap (sb in Figure 2.9). If no appropriate Superblock is found, one is taken

from the free-list and is initialized. Reserving a block on a Superblock can be done with

an atomic operation on the Superblock state, which reserves a block. Lastly, by iterating

ቐ
ℎ 𝑐, 0 = 𝑏 ∙ 𝑐/𝐾 ∙ 𝐾𝑇 + 𝑐 mod 𝐾 mod 𝑁

ℎ 𝑐, 𝑖 = ℎ 𝑐, 0 + 𝑖 + 1 ∙ 𝑖 + 1 𝑏𝑆 mod 𝑠 mod 𝑁

initial chunk to try

#chunks in block (1-8)

T is prime (7, 11, 13)
reduces collisions

allocation counter
(per size)

K=1-8 → better coalescing 
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In practice faster than linear hashing

Visit all blocks with right choice of b, S and s
#chunks in slab
(multiple of b)
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Figure 2.8: Overview of Halloc, which allocates slabs during its initialization phase, which
can be assigned to a certain size at runtime. The current slab is tracked via a head pointer
and replaced once considered busy (reached a fill-level of 85 %). Allocations on a slab are
done using a hash function.
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Figure 2.9: Overview of KMA, which pre-splits its heap into superblocks, which are further
split into power-of-two blocks served to the user. Blocks are located via a look-up using a
hash map. Free superblocks are tracked in free-list implemented as a lock-free queue.

over the bitmap on the Superblock, a free block can be located.

Deallocation reverses this procedure. First, the state variable on the Superblock is

updated, then the bitmap entry is set and lastly, if the Superblock is now completely

empty, it is inserted into the free-list as well.

2.3.8 DynaSOAr: A Parallel Memory Allocator for Object-Oriented

Programming on GPUs with Efficient Memory Access

DynaSOAr [50] deals with the problem inherent with object-oriented programming on the

GPU, which is the suboptimal memory layout once objects are laid out in memory as

an Array of Structures (AOS). They propose a fully-parallel, lock-free dynamic memory
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struct Body {
float pos_x, pos_y;
float vel_x, vel_y;
float force_x, force_y;
float mass;

};
Body bodies[32000];

Array of Structures (AOS)

float Body_pos_x[32000];
float Body_pos_y[32000];
float Body_vel_x[32000];
float Body_vel_y[32000];
float Body_force_x[32000];
float Body_force_y[32000];
float Body_mass[32000];
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Figure 2.10: DynaSOAr deals with the problem inherent between AOS and SOA layouts
for data storage on the GPU. To realize a dynamic setting, which does not work well with
a static split, DynaSOAr uses a clustered storage format with a structure split.

allocator, a DSL-style data layout as well as a do-all operation on this data. This essen-

tially lays objects out in a Structure of Arrays (SOA) layout (see Figure 2.10), drastically

improving memory access performance, trading memory access speed for allocation speed.

A straightforward SOA layout achieves great memory access performance, but is static

in size. DynaSOAr bases its design on the insight that splitting the original layout into

a clustered layout has the same overall cache/vector performance, if the cluster size is at

least the size of a cacheline, i.e., 128 B. Memory fragmentation that might be caused by

the allocation and deallocation of dynamic objects is minimized by utilizing a hierarchical

bitmap. Further improvements include the coalescing of memory requests on a warp-level

to reduce the number of overall allocations.
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Due to this internal data layout and requirement of only pre-defined structures being

managed, it cannot be used as a general-purpose memory manager.

2.3.9 Throughput-oriented GPU Memory Allocation

BulkAllocator [20] introduces the bulk-semaphore, a throughput-oriented synchronization

primitive, as well as two allocators. The bulk semaphore enables pre-emptive batch allo-

cation, combating false-resource starvation and the scalability barrier. Building on three

Bulk SemaphoreOrder N-1

Bulk SemaphoreOrder N-2

Bulk SemaphoreOrder N-3

Tree Buddy Allocator

UnAligned Allocator
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Figure 2.11: Overview of the BulkAllocator , which consists of two allocator designs using
the bulk semaphore, a synchronization primitive for batch-allocation. The Tree Buddy
Allocator (used for larger allocations) is implemented as a static binary tree with one
bulk semaphore per level and the UnAligned Allocator is based around a common CPU
memory manager design, with one memory arena per SM, per-size bin lists secured by a
bulk semaphore and allocates its chunks from the Tree Buddy Allocator.
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counters, threads can determine if the current allocation routines will also satisfy their own

demands. If that is not the case, they can start immediately with a new bulk allocation,

significantly reducing waiting times, especially during high access pressure.

This is a crucial part of both allocators. The Unaligned Allocator (UAlloc), which

closely resembles existing concurrent CPU allocators, is used for all allocations smaller

than 2 KiB. A Tree Buddy Allocator (TBuddy) is used for all allocations larger than that.

The bulk-semaphore is used throughout as the synchronization primitive. TBuddy is mod-

elled as a static binary tree, tracking the state of large memory blocks. Each level in the

tree is secured by a bulk semaphore, each node can be either busy, partial or available.

Node status changes are propagated from node to parent. To ensure consistency, both

node and parent are locked. UAlloc uses one memory arena per SM, handling chunks of

512 KiB which are further sub-divided into 4 KiB bins (static size per bin). Each arena

keeps a per-size bin list of bins with available elements. The first two bins (called tails) in a

chunk keep track of the allocation state of the bins within a chunk. New bins are allocated

from a chunk in the chunk list, new chunks are allocated by using TBuddy. To update the

bin free-list, they use Read-Copy-Update [32] as their synchronization mechanism.

They test allocation sizes between 8 B and 512 KiB, reporting increased performance

over the CUDA-Allocator for all tested allocation sizes except for 2 KiB, 4 KiB, 64 KiB

and 128 KiB. Unfortunately, no public version is available for further testing.

2.3.10 Queues

Many of the aforementioned allocators use queues to store available chunks/pages/bins, for

various sizes, thus efficient queuing is important. Efficient parallel queue management is a

long standing research topic. For example, a parallel array-based queue similar to current

GPU designs has been proposed by Gottlieb [21] in 1983. Parallel CPU-designs have long

focused on non-blocking linked-lists, including the famous Michael-Scott queue [35] and

the Shann-Huang-Chen queue [16]. With larger parallelism, the ordering between elements

enqueued concurrently is practically irrelevant, which can be exploited by putting elements

into the same bucket [24].

Specialized GPU queue designs are scarce. Task-based GPU runtime systems have used

proprietary solutions, mixing linked-lists and array-based queues [51, 52]. Scogland and

Feng proposed a blocking array-based GPU queue [45]. Unfortunately, their queue blocks

on empty states making it impracticable for memory allocation. The BrokerQueue [26]

removes these blocking states by pairing concurrent enqueues and dequeues. Blocking

only happens to ensure ordering between pairs. While link-based queues like Michael-

Scott or Shann-Huang-Chen also work on the GPU, their performance is multiple orders

of magnitude lower than array-based designs [26]. Thus, even Gottlieb’s original work

performs significantly better.

While array-based queues are thus preferable, all previous designs use a fixed size ring-

buffer for efficient access. In conjunction with per-bin size queueing and unpredictable
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memory allocation requirements, statically-sized, array-based queues lose their attractive-

ness for dynamic memory allocation as they significantly increase memory requirements.

With Ouroboros and ouroGraph, we combine the best of both strategies. It is as

efficient as an array-based queue, but is completely built on dynamic memory.

2.4 Graph Algorithms

While a dynamic graph representation is certainly an important goal, algorithmic perfor-

mance on top of the representation is also important. Many standard graph algorithms

have been implemented on the GPU. These include triangle counting [23, 43], which can

be used to find key players in a network based on their local connectivity; PageRank [12],

which measures the importance of web pages according to the links to a page, connected

components [47], single-source shortest path [17], the betweenness centrality [33, 44], graph

clustering and connectivity [7], and community detection [48]. To display the suitability of

our designs for memory-intensive algorithms, we test the performance for PageRank and

static triangle counting (STC), the first exemplifying a simple adjacency traversal while

the second involves significant traversal overhead and edge look-ups leading to irregular

memory access patterns and divergence. Furthermore, both are also available in both

cuSTINGER and Hornet and enable a comparison to these different storage layouts.
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3.1 Introduction

Previous attempts at dynamic graph management on the GPU still required a tight bond

with the CPU for reallocation tasks. This not only introduces additional overhead caused

by synchronization with the CPU, but also the need to split up update procedures into

multiple kernels. If the allocation state for an adjacency did not suffice for the given

number of updates, this adjacency would be marked as in need of reallocation. Then, the

CPU would need to allocate a new block, large enough to manage the new size, copy over

the existing data from the old adjacency and then launch a subsequent kernel to finalize

the insertion. Deallocations would just mark edges as deleted, as freeing memory would be

even more costly regarding performance, but this strategy does not bode well for memory

fragmentation.

This tight link to the CPU and overly complicated update procedure puts severe re-

strictions on algorithms and frameworks using this data structure. This raises the question,

if it might be possible to move the whole data structure as well as all management tasks

directly to the GPU. This way, no synchronization with the host would be required and

update procedures would also be able to finish within one kernel launch. To achieve this,

33
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we present aimGraph, managing adjacencies on fixed-size edge blocks, linked together for

larger adjacencies and managed by a memory manager directly on the GPU. The next

sections detail the ideas behind and design of aimGraph.

3.2 aimGraph

In the following section we sketch the design and general idea behind aimGraph

(autonomous, independent management of dynamic Graphs on the GPU) and focus on

the initial memory setup and layout, the update implementations as well as performance

relevant optimizations. This section is followed by a comparison to cuSTINGER and a

performance evaluation.

3.2.1 Memory Layout

aimGraph initializes the system with a single GPU memory allocation, assigning a large

block of memory (this is currently set to take as much memory as is available on the

device) to the framework. All following allocation calls are handled internally by request-

ing memory from a simple memory manager. This memory manager is initialized from

the CPU with a number of fixed parameters (setting up the edge mode, the block size,

kernel launch parameters) and then placed at the beginning of the large block of memory

previously allocated on the device. It holds a pointer to the beginning and end of the

allocated device memory and also stores all the necessary management data. Using this

CPU-autonomous memory management approach, the framework can facilitate all dy-

namic memory needs directly on the GPU and significantly reduce the run time overhead

by avoiding individual allocation calls from the host. Especially considering changes to a

large number of adjacencies, which would otherwise have to be reallocated sequentially on

device memory
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Figure 3.1: Visualization of the device memory layout as managed by the memory man-
ager, which is placed at the beginning of this region. Vertices are placed aligned right
after the memory manager, followed by the adjacency data stored on edge blocks. The
end of the manageable memory is usable as a stack for temporary data.
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the host, this significantly improves update performance.

Our memory manager follows a similar approach as traditional memory management

in a CPU C/C++ program. Static data is placed at the bottom, the dynamic “heap”

area is placed right after the static data, while the temporary data on the stack grows

from the top down. We consider these three regions in our memory manager on the GPU.

The memory manager holds a global edge block index, which denotes the currently largest

edge block index allocated within the system. To allocate a new edge block, an allocating

thread has to increment this index atomically. Hence, dynamic allocation in the system

can be done lock-free.

3.2.1.1 Static data

Similarly to cuSTINGER, the number of vertices is considered static in our implementa-

tion. Adding or deleting vertices from the graph is not supported1, hence the size of the

static data segment is known at the time of initialization. As previously mentioned, right

at the start of the application, the memory manager and, after that, vertex manage-

ment data structures are placed in device memory. The management data is set up as a

structure of arrays (SOA), each array the size of numberVertices · sizeof(parameter).

The parameters in question are

� memindex: Indicates the start of the adjacency data per vertex via the block index

of the first dynamic edge block. As the edge block size is fixed, a single, 32 bit index

suffices to address all potential edge blocks for any reasonable allocation size2.

� neighbors: Number of neighbors in the adjacency

� capacity: Maximum number of neighbors in the adjacency with the current block

allocation, i.e., neighbors ≤ capacity

� weight: A weight can be assigned to each vertex <optional>

� type: A type can be assigned to each vertex <optional>

� lock: Algorithms can restrict access to individual vertices using this lock

All individual arrays are placed cacheline size aligned and each is at least the size of a

multiple of the general GPU cacheline size of 128 bytes. Each vertex requires at least 4 ·
4 B = 16 B (up to 24 B when using both types and weights).

1Dynamic vertices are first introduced with faimGraph in Section 4
2Given an edge block size of 64 B, 257 GB of useable adjacency storage can be accessed, which can

support in the best case ≥ 235 edges of a simple graph
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3.2.1.2 Dynamic data

The adjacency data after the static vertex segment is managed in blocks, the block size

depends on the application and the size of the edge data. Each block stores adjacency

data and uses the last 4 B to indicate the location of the following edge block. For a

simple adjacency storing just the destination vertex, 64 B suffices for most scenarios, i.e.,

has room for up to 15 edges on one edge block. For semantic graphs, the block size is

larger to accommodate more edges per block. Additionally, different update mechanisms

profit from different edge block sizes, depending on the update strategy and the average

size of the adjacency per vertex an optimal block size for the given graph is chosen.

The initialization works fully in parallel, contrary to cuSTINGER. In a

pre-computation step, an exclusive prefix scan is used to determine the memory

requirements for each vertex, using the parallelism at hand to the maximum extent. The

last element in an edge block is always an index to the next edge block. This makes this

approach a combination of a linked list and an adjacency array and allows for memory

locality for vertices within an array. Depending on the processing model, this enables

coalesced memory access on an edge block. At the same time, this strategy avoids

reallocation of the whole block if augmentation is required, as another edge block can be

allocated by simply updating the index at the end of the last block. This approach also

leaves the possibility to switch to more sophisticated memory management in the future.

3.2.1.3 Temporary data

In the initialization phase, but also for updating the graph and algorithms running on

the graph, additional, temporary data may be required. This can, e.g., be edge updates

(consisting of source and destination vertex data) or an array holding the triangle count

per vertex to calculate the overall triangle count within a graph structure.

This data is managed like a stack. The memory manager holds a stack pointer pointing

to the end of the allocated memory and can deal out shares of this memory to algorithms

or for pushing updates to the graph structure. This way the whole device memory can

be managed without considering a trade-off between the managed memory portion of the

device memory and the temporary data needed. The memory manager just has to check

if temporary data does not protrude into the dynamic data segment.

3.2.2 Initialization

At the start of the application, a graph is parsed into an intermediary CSR (Compressed

Sparse Row) format and in the beginning, a pre-processing kernel is started to calculate the

memory requirements per vertex. This kernel computes in detail the number of neighbors

and from that the capacity and block requirements per vertex in parallel. Using the

block requirements and an exclusive prefix sum scan, the overall memory offsets

for all individual edge block lists can be computed.
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Using all this information, the initialization kernel can be run completely in parallel

without regard for locking, while the CSR format is transferred into the aimGraph format,

only a single instruction is performed by a single (the last) thread, as this one can set the

next free block index in the memory manager, which is required for dynamic memory

allocation for edge updates.

3.2.3 Edge Types

aimGraph supports three different edge types:

� Simple: This mode stores the bare graph structure using just the destination vertex

in the edge data array

� Weights: This mode adds the support for weights for both vertices and edges to

the simple mode

� Semantic: In addition to weights, this mode adds support for type information for

both vertices and edges and also two timestamps per edge, which increases the size

required per edge significantly

This variety of options is implemented using templated classes and methods, as most

functionality is independent of the concrete representation of the edges themselves, just

the modification functionality is realized via overloaded functions. Depending on the

use case, one of these more advanced modes can be selected at the cost of an increased

memory footprint, choosing a larger sized edge type also increases the basic block size to

accommodate a larger number of edges per block.

3.2.4 Edge Insertion

Edge updates in the current setup require a single lock per vertex to combat concurrent

read/writes to the adjacency, neighbors and capacity as shown in Algorithm 1. Access to

the memory manager on the other hand simply requires atomic memory access to get a

new block, if the current capacity cannot accommodate the new update.

This results in a high update rate, if the edge updates do not particularly favor a small

set of vertices over the majority. For edge updates that are close to a uniform random

distribution, inserting 1.000.000 edges can be achieved in a few milliseconds. Depending

on the average size of the adjacency, even when accessing the memory manager heavily to

adjust the size of individual edge block lists, performance still remains high overall.

We provide two implementations, optimized for different adjacency list counts. The

first, which is the standard insertion mode, is shown in listing 1. It completes each

individual update using a single thread. This approach is especially fast for small to

medium sized adjacency lists (less than 50 vertices per adjacency on average).

If the average size per adjacency grows larger, the traversal of the graph structure

becomes the bottleneck. Thus, for larger adjacency list sizes, we use an entire warp (32
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Algorithm 1: Edge insertion using locking

Data: edge update batch
Result: Edges inserted into graph

1 Edge updates put onto stack;
2 while lock acquired do
3 read neighbours & capacity;
4 for vertices v in adjacency do
5 if v == DELETIONMARKER or index ≥ neighbours then
6 remember index;
7 break;

8 if v == edge update then
9 found duplicate, ignore;

10 break;

11 advance in EdgeBlockList;

12 if !edgeInserted and!duplicateFound then
13 get memBlock from memManager;
14 update adjacency, index, capacity & neighbours;

15 else if !duplicateFound then
16 insert element at index;

17 release lock;

threads) for the update. In this case the for-Loop reduces to a loop over blocks and the

memory access pattern within blocks can be optimized to requesting a full cacheline per

warp at once.

3.2.5 Edge Deletion

Edge deletion works in a similar manner to edge insertion, the major difference results

in the fact that there is no need to access the memory manager, as no new memory will

be required. Additionally, we do not return empty blocks to the memory manager, but

simply reuse them when edges are inserted for the same node again. In this way, we can

avoid access to the memory manager completely during deletion.

As with the insertion process, two different implementations are provided, one launch-

ing a single thread per update and the other launching a full warp per update, depending

on the average size of the adjacency. In the following Algorithm 2, we show the deletion

process for the standard launch. When launching a full warp per update, the for-Loop is

again reduced and leads to better memory locality as a whole cacheline is fetched by the

warp.
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Algorithm 2: Edge deletion without locking

Data: edge update batch
Result: Edges deleted from graph

1 Edge updates put onto stack;
2 read capacity;
3 for vertices v in adjacency do
4 if v == edge update then
5 atomically update Adjacency & neighbours;
6 one thread decreases neighbours;
7 break;

8 advance in EdgeBlockList;

3.3 Comparison to cuSTINGER

This section provides a comparison between aimGraph and cuSTINGER by investigating

the respective memory footprints and composition, as well as the time spent initializing

and updating the graph structure and is followed by an evaluation of the performance

differences.

3.3.1 Memory footprint

One of the biggest differences stems from the way memory allocation is performed in

general. cuSTINGER performs individual calls to cudaMalloc() from the CPU to allocate

the management data and all individual edge blocks. Especially for graphs with more than

a million vertices this results in a significant overhead, compared to the single allocation

in aimGraph. Another big difference lies in the memory footprint. cuSTINGER uses

pointers to

� locate attributes

� point to individual edge blocks

� point to data members within an edge block (especially prevalent in semantic mode)

This increases the size of the management data set and also requires a full block (of 64 B)

just to hold member pointers.

aimGraph on the other hand uses an indexing system (reducing the size per

pointer/index from 8 B to 4 B), but also eliminates the member pointers and additional

attribute pointers by combining an efficient indexing scheme and reinterpreting memory

on the fly using casts to achieve the same functionality at a fraction of the memory.
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3.3.2 Initialization

As previously mentioned, aimGraph performs a single device memory allocation and can

perform the whole setup in parallel on the GPU with little overhead. Compared to that,

cuSTINGER needs to allocate each individual edge block array from the CPU, also per-

forming the pre-computation entirely on the CPU and only the actual writing of the

adjacency data per vertex occurs on the GPU in parallel. However, as there is no offset-

indexing scheme, even this launch cannot utilize the GPU to its full potential, leading to

an enormous performance difference in the initialization stage.

3.3.3 Updates

Here once again, the different strategy in allocating memory pays off for aimGraph, as

updates can be achieved in a single kernel launch with a single lock per vertex when

inserting edges and even without a lock in the deletion process.

cuSTINGER, on the other hand, launches at least one kernel, which cannot utilize

the whole GPU due to the lack of locking, but also incurs a heavy penalty if duplicates

are present or reallocation is required. In this case, new space must be allocated using

cudaMalloc() and the whole edge block array of the given vertex is copied over. In

the worst case, five kernel launches are required to deal with all eventualities, leading to

significantly lower update rates.

cuSTINGER holds a slight edge in case no duplicates are in the batch, no reallocation

is necessary and the average size of an adjacency is large (greater than 50), as only few

operations are performed. However, in these cases there is a chance to produce invalid

graphs, as there is no locking or contention resolution mechanism in place. Depending on

the actual behavior of the hardware thread scheduler, this problem may show up more or

less often.

Name Network —V— —E— Initialization Initialization
Type (ms) (ms)

aimGraph cuSTINGER

Luxembourg Road 115k 239k 3.13 110.5
coAuthorsDBLP Citation 299k 1.95M 6.687 289.6

ldoor Matrix 952k 45.57M 53.704 1 053.2
audikw1 Matrix 943k 76.71M 86.713 1 108.6

Germany Road 12M 24.74M 101.68 14 010.7
nlpkkt160 Matrix 8M 221.17M 228.13 out of memory

Table 3.1: Initialization time in ms for aimGraph and cuSTINGER for a selection of
graphs from the 10th DIMACS Graph Implementation Challenge [5].
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3.4 Performance

The performance measurements were conducted using a NVIDIA GTX 780 GPU (3 GB

V-RAM), an Intel Core i7-3770K using 16 GB of DDR3-1600 RAM. Although this is

considered consumer hardware, the goal is to show differences between aimGraph and

cuSTINGER. Performance on more powerful, professional equipment is expected to be

even higher. The graphs used were taken from the 10th DIMACS Graph Implementation

Challenge [5] and a selection used for performance evaluation is highlighted in Table 3.1.

Both frameworks use the same testing methodology, starting with initialization, fol-

lowed by the generation of random edge updates, which were subsequently added to the

graph and then removed again. This is done 10 times and the results are averaged to

produce the overall results. Only the calls to the initialization and update functions were

measured. This whole process is repeated 10 times and averaged again, hence the per-

formance numbers shown display the average time of 10 rounds of initialization and 100

rounds of edge insertions and deletions respectively.

3.4.1 Initialization

As shown in Table 3.1, the different memory setup procedure pays off the most in the

initialization step; the highest advantage is achieved when processing a high number of

vertices with a comparatively low number of edges. In this case, aimGraph is nearly 300

× faster. Even for a low number of vertices with a high degree the speed up achieved

still reaches double digits. This can be attributed to the fact that aimGraph works au-

tonomously on the GPU and can parallelize the setup process. In contrast, cuSTINGER

performs its setup process from the host with individual initialization calls per vertex,

calculating memory requirements and allocating memory from the host directly.

Additionally, aimGraph has a significantly lower memory footprint. Thus, larger

graphs can be kept in memory compared to cuSTINGER, as can be seen for the sparse

matrix network nlpkkt160.

3.4.2 Edge insertion

The first three cases in Figure 3.2 show where aimGraph has a clear performance advan-

tage. This is the case if the degree per vertex is small, as in those cases the over-allocation

strategy of cuSTINGER does not provide enough space for the insertion operations and

both frameworks have to reallocate, which is much faster using aimGraph, as everything

is done on the GPU in one kernel. cuSTINGER has to reallocate from the CPU and also

copy over entire edge blocks.

cuSTINGER has an advantage due to their overallocation policy. cuSTINGER allo-

cates 50 % more to reduce the need for reallocation later on, if there is a comparatively low

number of vertices compared to the number of edges (as seen with the sparse matrices). In

these cases, cuSTINGER achieves the updates in less time than aimGraph, as we actually
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Figure 3.2: Performance measurement for edge insertions, using a batch size of 100.000 and
1.000.000. The last two cases highlight both the inherent drawback of edge block traversal
within aimGraph as well as the huge benefit cuSTINGER derives from overallocation, as
no reallocations have to be performed.

have to perform memory allocations, which involve more complex traversal mechanisms

and locking.

Additionally, as cuSTINGER does not use any form of race condition avoidance, there

might arise some cases that result in an invalid graph structure. Depending on GPU

scheduling, duplicates within batches are not detected and remain in the graph. The

behavior of aimGraph is independent of scheduling, and keeps a more compact mem-

ory layout. Although we employ correctness guaranties and keep memory requirements

significantly lower, cuSTINGER only shows a slight performance advantage.

Another factor, which becomes performance relevant, is the difference in adjacency

traversal. Due to the more modular structure of aimGraph, the traversal of individual

edge lists takes longer compared to the array traversal of cuSTINGER, as the indexing

scheme behind connecting multiple blocks into a contiguous list requires extra cycles.

For testing purposes, reducing the memory over-allocation of cuSTINGER decreases

performance up to 100× or changing the update strategy by first inserting 10 batches of

updates and then removing them also worsens performance for cuSTINGER significantly,

while aimGraph does not see a major effect on its performance. Overall, it can be noted

that cuSTINGER only performs well when it works within its overallocation boundaries

and for larger sized adjacencies. Otherwise its performance drops significantly.
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Figure 3.3: Performance measurement for edge deletions, using batch size 100.000 and
1.000.000

3.4.3 Edge Deletion

In case of deletions, the performance difference is slightly less pronounced compared to the

insertion process as can be seen in Figure 3.3. This is due to the fact that deletions always

work without rearranging the general memory layout and also there exists no possibility

of adding/removing duplicates.

aimGraph uses variant 1 of the deletion procedures for the first four graphs (one thread

per update), as the average adjacency is comparatively small to medium sized (less than

50 vertices per vertex on average). Under these circumstances adjacency traversal is less

important compared to stalling threads. The performance benefit is therefore greatest for

very small adjacencies per vertex and becomes less prominent for larger adjacencies.

The last case uses variant 2, launching warp-sized blocks, as in those cases the adja-

cency traversal is crucial to performance, and once again performance is about 2× faster

compared to cuSTINGER for the tested graphs. The main difference to cuSTINGER is

the single kernel launch (compared to two launches for cuSTINGER) and the more efficient

duplicate checking.
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3.5 Discussion

aimGraph is a memory-efficient streaming graph solution on the GPU that enables very

high update rates without the need to transfer the graph data structure to and from the

host. This solution is purpose-built for the GPU, keeping memory requirements low by

using an indexing structure instead of pointers and managing the device memory on the

device autonomously, without the need for copying and allocating new blocks from the

host. In this way, updating the graph structure can be achieved with a single kernel call

respectively and allows for concurrent initialization and updates.

The current implementation includes support for different semantic modes (including

simple, weighted and semantic graphs) and offers developers different updating strategies,

which can be selected for specific workloads for optimal performance. Furthermore, differ-

ent verification methods are present to test and verify new features and algorithms. Even

on consumer-level GPUs (NVIDIA GTX 780 with 3GB VRAM), the framework can hold

tens of millions of vertices and hundreds of millions of edges in memory (depending on

the semantic mode) and is also able to process 20–100 million insertions per second and

between 50–150 million deletions per second.

Overall, aimGraph offers an efficient and fast dynamic graph implementation with low

memory footprint and autonomous memory management, allowing for different update

mechanisms tailored to different graph properties.
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4.1 Introduction

aimGraph already provides a basis upon which dynamic graph management can operate

autonomously on the GPU. This removes the tight bond with the CPU, which makes

repeated kernel launches and synchronization unnecessary. Compared to cuSTINGER,

it is more memory efficient and especially initialization is vastly improved due to the

ability of aimGraph to utilize the parallel capabilities of the GPU to its full potential.

Additionally, especially for sparser graphs and significant changes to adjacencies, aim-

Graph shows greatly increased update rates over cuSTINGER.

But still, this initial design leaves some aspects of dynamic graph management unad-

dressed and a lot of optimizations on the table. Similar to cuSTINGER, memory cannot

be re-used within the system, which might result in larger overhead during prolonged

use. Edge blocks once allocated to an adjacency stay with that adjacency, which can be

beneficial for deallocation and repeated flux for the same adjacencies. This might also

result in earlier than necessary failure due to out-of-memory, especially if graphs show lots

45
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Figure 4.1: Visualization of the memory layout as employed by faimGraph. A memory
manager is placed at the beginning of the manageable memory area, right after that,
space is left for dynamic vertices. At the other end, two queues are instantiated for the
purpose of page and vertex re-use as well as some configurable area usable as a stack for
temporary data. Growing from the top down towards the vertices are the dynamic pages
used to store adjacency data, which can either be stored in an AOS or SOA layout.

of variance over a large share of its vertices. Furthermore, both systems only consider

adjacency data dynamic but leave the vertices static. But many modern use cases would

greatly profit from the ability to consider the whole topology dynamic, being able to add

or delete vertices in a graph as well as add new connections to them.

Considering these two limitations, we can evolve the initial design by introducing

dynamic vertices as well as memory re-use for both edges and vertices alongside further

improvements. This improved design is detailed in the following sections.
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4.2 faimGraph

In the following section we discuss the design of faimGraph (fully-dynamic, autonomous,

independent management of graphs). The focus is on the core contributions, which are

a tight memory model building on the reuse of memory by utilizing queueing structures,

dynamic changes of vertex and edge data, as well as high performance update implemen-

tations and algorithms running on top of the graph. An overview of the memory layout

used by faimGraph can be see in Figure 4.1.

4.2.1 Memory Management

The central idea of faimGraph is performing all memory management directly on the GPU,

requiring only a single allocation of a large block of memory to avoid round-trips to the

CPU. This block serves all memory requirements for the graph structure itself as well as

for algorithms running on top of the graph. During initialization, faimGraph prepares

this memory, as shown in Figure 4.2, to support dynamic assignment and reassignment

using queueing structures to keep track of unused memory. A memory manager is used to

keep track of individual memory sections and current graph properties, like the number

of vertices/edges and the currently largest vertex and page index in use in the system.

Previously used, now free pages and vertex indices are tracked via queues, as discussed in

Section 4.2.2. The majority of the memory is used by dynamically allocated vertex data

and pages for edge data. Both regions grow from opposite sides of the memory region to

not restrict the possible ratio between vertices and edges.

Temporary data (updates or helper data structures) can be placed in a stack which

is preceded by two queues for reclaiming freed vertices and edge pages or directly after

the vertex region if vertices are static for a procedure. If vertices are static, the stack

region can even be omitted, lowering the overall memory requirements further. Since

the complete addressing scheme uses relative indices, the framework can also be started

with conservative memory bounds, as in most cases reinitialization is trivial. Reinitial-

ization can be done directly from old faimGraph to new faimGraph building on just two

memcpy’s on the device directly. If resources are even more scarce, reinitialization also

can be performed (at a higher cost) from device CSR, host CSR or even host faimGraph.

Reinitialization cost is discussed further in the evaluation, see Section 4.3.

4.2.2 Queues

The core entities for memory reclamation are the index queues used to store freed vertex

indices and pages. Whenever a vertex is deleted or a page is freed, its index is pushed into

the respective index queue. During resource allocation, threads at first attempt to pop

a free element from the queue and only if that fails, increase the vertex or page region.

Using this approach, changes in growth in the graph do not affect the required memory as
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Figure 4.2: The manageable memory area consists of a memory manager unit at the
beginning, followed by dynamic vertices and dynamic pages for edge data. At the end,
a stack can be placed for temporary data and at the very end, two queues are located
dealing with memory re-use for vertices and pages.

much as previous approaches would have, as a graph can grow in specific areas and shrink

back in others. Furthermore, this allows for O(1) allocation of vertices as well as pages.

For efficiency, we use array-based queues, which operate on top of a ring buffer of

indices, as can be seen in Figure 4.3. The queues must support concurrent access from

thousands of threads and efficient queries for empty states. Thus, we use a front and back

pointer as well as a fill counter for each queue, similar to the base queue design in the

Broker queue [26]. Threads at first test the fill counter to determine whether there are

elements in the queue. Only then, they atomically move the pointers to retrieve a queue

element. As the entries in the queues are simple indices, we use Atomic-Compare-And-

Swap (and Atomic-Exchange respectively) to insert or remove elements from the queue

while using an empty flag to avoid read-before-write and write-before-read hazards.

4.2.3 Graph Data

4.2.3.1 Vertex Data

Other approaches, such as aimGraph [60] and cuSTINGER [22] consider vertex data as

static. However, dynamic graphs may require the ability to add or remove vertices from

the graph. Consider the example of load balancing in a communications network, where

one might want to compute some metrics for a certain number of cell towers and all mobile
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track of the freed indices. This queue is array-based, built on top of a ring buffer using a
front and back pointer (index) of static size.
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Figure 4.4: A vertex consists of a memory index (pointing to the first page holding ad-
jacency data), a host identifier, neighbors and capacity detailing the current storage re-
quirements as well as lock usable by algorithms. Depending on the graph type, it can also
hold a weight and type.

devices connected to these towers. If a device moves out of range, we would like to remove

this device from our consideration, vice versa, if another device moves into range, we would

like to add it to the graph representation.

While a static vertex management can follow a SOA approach to enable efficient mem-

ory access to this data on the GPU, such an approach interferes with the concept of

dynamic data distribution between vertex and edge data. One would have to choose a

fixed array size to place these arrays one after the other in memory and increasing this size

would entail a large overhead. Especially if memory is already scarce within the frame-

work, the existing arrays might even have to be retired to host memory and then be copied

back with separate copies into the enlarged regions. Thus, we store vertex data as a dy-

namically growing array-of-structures (AOS ). Furthermore, individual structures in this

array can be freed and reclaimed through the vertex queue, as detailed in Section 4.2.2.

Depending on the graph type, vertices may require different parameters, as can be seen

in Figure 4.4. As the memory management is not bound to a specific vertex size, each

vertex can hold as many parameters as the application requires. Allocation of new vertex

indices can be achieved in O(1). The procedure first queries the vertex queue, thereby

reusing freed indices from previous deallocations. If the queue does not hold any available

indices, we simply increase the dynamic array using an Atomic-Add on the vertex array

size. Deleting a vertex includes deleting all edges referencing this vertex and returning its

index to the vertex queue for later reuse. Depending on the directedness of the graph, this

can be trivial in case of an undirected graph (as all references to the graph are implicitly

known). But this can require significant overhead in case of a directed graph, as potentially

every other vertex might reference the current vertex, in which case the deletion procedure

is much more involved. Furthermore, all currently allocated pages to this vertex have to be
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returned to the page queue, which incurs at least one traversal of the linked data structure

per deleted vertex.

Keeping all vertex data next to another in memory has the advantage that simple

indices can be used to reference vertices. The vertex’s identifier used on the CPU is not

bound to the memory location the vertex is stored at. We report a mapping between the

host identifier and the device identifier back to the CPU after insertion. Additionally, when

storing vertices sequentially, algorithms iterating over vertices show an efficient memory

access pattern and better caching behavior.

4.2.3.2 Edge Data

Allocating individual vertices is reasonable as there is usually no direct commonality be-

tween different vertices and memory requirements can be kept as low as possible. This

strategy makes less sense for edges as there are usually many edges originating from the

same vertex, which will often be iterated sequentially and especially on a SIMT processor

like the GPU, can be accessed much more efficiently next to one another in a coalesced

manner. Thus, edge data is placed on pages of a fixed size and multiple pages form a

linked list of edges for every vertex. The linked list nature allows for dynamic changes to

the size of the adjacency.

This approach can be seen as a combination of a linked list and an adjacency array,

yielding memory locality for edges within a page. At the same time, this strategy avoids re-

allocation of the whole adjacency if augmentation is required, by simply adding/removing

a page to/from the linked list. As part of an efficient memory re-use scheme, a freed page

is deallocated by enqueuing its index into the page queue for later re-use. The page size

itself forms a trade-off between overallocation and efficiency. A smaller page allows for a

tighter bound, closer to the actual number of edges per vertex, while a larger page size

allows for more efficient traversal of the edges as the number of links to traverse is reduced.

At the same time, a too small page size also increases the number of pointers to the next

page (we use the last 4 B on each page). Thus, the most suitable page size is application

dependent and can be chosen to fit different scenarios and will especially vary between

different graph types.

For all our experiments, we chose a page size of 64 B. This one the one hand coin-

cides with the memory alignment of cuSTINGER and provides a good balance between

performance and overallocation per adjacency for simple graphs. On the other hand it is

half of the cacheline size, so warp-based processing also should derive some benefit. For

the adjacency data itself, we support two memory layouts, of which either may achieve

better performance depending on the traversal characteristics of the graph algorithms.

If multiple properties per edge are required, the SOA approach provides better memory

access characteristics, as can be seen in Figure 4.6. On the other hand, as long as page size

stays below or equal to the cacheline size, even an AOS layout will perform well, as can

be seen in Figure 4.5. Also, vector-loads might me utilized to load in multiple properties,



4.2. faimGraph 51

device memory

m
e

m
o

ry
m

an
ag

e
r

ve
rt

ex
 1

ve
rt

ex
 2

p
ag

e 
4

p
ag

e 
3

p
ag

e 
2

p
ag

e 
1

st
ac

k

p
ag

e
q

u
e

u
e

ve
rt

ex
q

u
e

u
e

ve
rt

ex
 3

ve
rt

ex
 4

n
ex

t 
p

ag
e

 
in

d
ex

ed
ge

d
at

a
1

ed
ge

d
at

a
2

ed
ge

d
at

a
3

ed
ge

d
at

a
4

ed
ge

d
at

a
5

destination weight
optional

type
optional

timestamp 1
optional

timestamp 2
optional

page

edgedata

Figure 4.5: Edge data stored in AOS format on a page. Each edge consists off at least
the destination, but can also hold, depending on the graph type, a weight, a type as well
as two timestamps.
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especially for semantic graphs due to a more efficient memory access pattern.
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especially when considering a thread-based access model. Such properties include at least

the destination vertex (simple graphs), weights (weighted graphs) and a type plus two

timestamps (semantic graphs). For simple graphs, AOS and SOA are identical.

4.2.4 Vertex Updates

It is typical for graph structures to refer to vertices by their indices in memory, which

alleviates look-up procedures to locate vertices. This increases the cost of updates as a

mapping procedure is required that maps an arbitrary vertex identifier on the CPU to an

index on the GPU. Moreover, deleting vertices also has to be reflected in the adjacency

data by removing all entries referencing said vertices. While edges are organized as a

linked list of pages that support locking, all vertices are organized in the same pool of

memory and need to be updated in parallel to achieve high performance.

4.2.4.1 Vertex Insertion

Vertex insertion is based on a four step approach to achieve parallel insertion, starting

by sorting the update data batch (line 3), as can be seen in Algorithm 3. The next two

steps are concerned with duplicate checking, while the fourth performs the insertion itself.

Duplicates can occur within a batch of to-be-inserted vertices (line 4) and with vertices

already present in the graph (line 5). Duplicates with the graph are non-trivial to find

due to the mapping between CPU and GPU vertex identifiers. It would be very inefficient

to search the entire GPU vertex structure for each to-be-inserted vertex.

Thus, we propose a reversed duplicate check with the graph vertices. Given that the

batch of to-be-inserted vertices is already sorted, searching in the batch is rather efficient.

Thus, we start one thread for each graph vertex, which looks up its mapping from GPU

to CPU identifier and performs a binary search on the sorted to-be-inserted vertices. If

a duplicate is found, it is simply marked in a helper data structure to not hinder the

Algorithm 3: Vertex Insertion

Data: Vertex Update Batch
Result: Vertices inserted into graph

1 Copy Vertex updates onto stack;
2 if sorting enabled then
3 thrust::sort(vertex updates);

4 d duplicateCheckingInBatch (vertex updates);
5 d reverseDuplicateCheckingInGraph (vertex updates, graph);
6 d vertexInsertion (vertex updates, graph);
7 Copy mapping back to host;
8 if sorting enabled then
9 Copy vertex updates back to host;
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subsequent checking step. Next, duplicate checking within the batch is performed and one

thread for each entry is started. Each thread checks its batch successor and if a duplicate is

found, simply marks it as a duplicate directly in the batch and continues as long as it finds

duplicates in successive order. As the batch is sorted, this leaves only the first element of

multiple duplicates remaining. After both steps, the helper data structure is synchronized

with the vertex update batch, removing duplicates with the graph from the batch as well.

The actual vertex insertion process (line 6) is straightforward: The framework starts by

acquiring a new device index and a new page index for each valid vertex update.

Both first contact the respective queues for previously deleted indices. If a queue is

empty, the memory manager supplies fresh indices from the back of the currently allocated

state. Then, the vertex is set up using the update data and the adjacency page is inserted.

Finally, the new mapping from host identifier to device identifier, i.e., each vertex’s position

in the vertex array, is reported back to the host.

4.2.4.2 Vertex Deletion

As each deletion procedure performs an Atomic-Compare-And-Swap on the host identifier,

only one thread will retrieve a valid identifier and continue the procedure, alleviating the

need for duplicate checking. In contrast to vertex insertion, deleting a vertex not only

alters vertex management data, but also has implications on adjacencies. This results

from the fact that other vertices can reference said vertex by possessing an edge to it.

These references have to be deleted from the graph as well and the holes left by these

deletions have to be compacted in a separate procedure, as can be seen in Algorithm 4.

In case of an undirected graph, these references can be deleted directly in the deletion

procedure (line 4), as each adjacency element has a dual that can directly be found by

simply swapping the source and destination of an edge. The procedure iterates over

the adjacency of the to-be-deleted vertex and for each edge it removes the dual in the

corresponding adjacencies. As no duplicates are present in the adjacencies, this deletion

Algorithm 4: Vertex Deletion

Data: Vertex Update Batch
Result: Vertices deleted from graph

1 Copy Vertex updates onto stack;
2 if sorting enabled then
3 thrust::sort(vertex updates);

4 d vertexDeletion (vertex updates, graph);
5 if graph is directed then
6 d reverseDeleteVertexMentions (vertex updates, graph);

7 d compaction (graph);
8 Copy mapping back to host;
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can even be performed without locking. If, on the other hand, the graph is directed, the

deletion procedure is not as straightforward and we use a multi step approach (line 6).

For a directed graph, arbitrary vertices may reference a to-be-deleted vertex. Thus,

in a first step, we only return the pages allocated for the vertex to the page queue. The

update data batch is once again sorted to speed up the following step (line 3). Once again,

we propose a reversed deletion process similar to the reversed duplicate check, starting a

worker per adjacency and searching each edge in the sorted update batch, which is once

again rather efficient.

After the actual deletion, the framework still has to perform compaction on the ad-

jacencies (line 7). To avoid unnecessary locking during this step, the actual clean up is

performed in a separate kernel by iteratively moving edges from the back to empty posi-

tions in the adjacency (or moving edges to the front consecutively to respect sort order).

Again, using more than a single thread for this operation can increase performance. Fi-

nally, the now free vertex index is returned to the vertex queue and the mapping change

is reported back to the host.

4.2.5 Edge Updates

Edge updates are considered a common operation for dynamic graphs. In faimGraph,

update information is considered to be made available to the framework by either the

CPU-side and successively copied to the GPU or directly in a GPU buffer. The update

procedure runs independently on the GPU in either case. A benefit of this methodology, in

addition to alleviating additional management interventions from the host, is the fact that

users do not need to care about memory management. Similarly to aimGraph, vertex

structures hold a lock and update threads can lock each adjacency list before altering

it to gain exclusive access. However, faimGraph adds support for multiple coordinated

threads to alter adjacencies, which is preferable when scanning larger adjacency sizes.

As coordinated threads need to communicate, we either use cooperative thread blocks

or warps (groups of threads executing on the same SIMD unit). We call this kind of

strategy an update-centric approach, as each update is mapped to an individual worker

(thread/warp/block). Locking strategies work well if

� the update pressure is not particularly high (updates are distributed over the graph

well)

� the average size of the adjacencies is rather small (less than ≈ 25 according to our

experiments)

� and the graph is well balanced

If updates in a batch favor a smaller set of vertices, the overhead introduced by locking

as well as multiple adjacency traversals becomes a serious bottleneck.
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Thus, we propose a new update strategy that avoids locking by coordinating the up-

date efforts beforehand: the vertex-centric approach. It devises an offset scheme to start

a worker per vertex that is affected by updates. In this way, exclusive access to each ad-

jacency is guaranteed and waiting on locks is avoided. Different update implementations

can also be mixed for consecutive update calls to deal with changing requirements.

4.2.5.1 Edge Insertion

Our vertex-centric edge insertion splits the insertion process into three steps. First, an

offset scheme is constructed: We sort the insertion requests according to the source vertex

in-place. A following prefix sum determines the offset of each specific source vertex in the

sorted array and the number of updates that will be performed for a specific adjacency.

Second, duplicate checking is performed, which—if activated—makes sure that edges are

only added to the graph once. To this end, the insertion requests are compared to the

already existing graph and to the other requests in the sorted array. Third, one worker

per affected vertex is started, which adds the edges to the end of the adjacency lists. If

there is still sufficient space on the last page of the adjacency list, the edges are added

to this page, otherwise additional pages are queried first from the page queue. If no freed

pages are currently available, a new page index is supplied by the memory manager. This

significantly reduces the update time and inserting millions of edges can be performed in

a matter of milliseconds.

Furthermore, building on this approach it is also possible to respect sort order when

inserting new vertices. During insertion, as can be seen in Figure 4.7, a combined sweep

over the to-be-inserted and already present edges is then sufficient to insert the data: If

an edge must be inserted before the end of the adjacency list, we simply swap the edge

currently in this slot with the update edge and merge the replaced edge into the insertion

requests, hence the sorting effort is constrained to the update data targeting this specific

vertex. Thus, when the end of the adjacency is reached, the remaining to-be-inserted

edges can be placed at the back. Note that a sorted adjacency does not require separate

duplicate checking, as the entire existing adjacency is scanned during insertion anyway.

Nevertheless, the determining factor for performance remains update pressure and

adjacency traversal. High update pressure and longer traversal lend themselves to the

vertex-centric approach, while, otherwise, update-centric provides better performance.

4.2.5.2 Edge Deletion

Vertex-centric edge deletion starts with the same sorting and prefix sum steps as vertex-

centric edge insertion. Duplicate removal is not necessary for edge deletion, as edges can

only be removed once. When a to-be-removed edge is found, we simply copy the last edge

from the adjacency list over the edge to avoid holes in the list. If, on the other hand,

we want to respect sort order, we instead iteratively shuffle all remaining edges to the

front, overwriting the to-be-deleted elements in the process. Again, the entire operation is
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performed in a single sweep over the edge data. If pages are left empty after the compaction

step, they are returned to the page queue.
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hugetr. germany luxemb. europe del* n23 del* 20 coAuth.
Type Simul. Road Road Road Triang. Triang. Citation
—V— 5.82M 12M 115k 50.91M 8.38M 1.04M 227k
—E— 8.73M 24.74M 239k 108.1M 25.16M 3.14M 815k

avg. deg(V) 1.50 2.06 2.08 2.12 3.00 3.02 3.59

faimGraph
Initialization (ms) 20.21 32.78 1.16 145.16 45.88 6.38 2.47
Initialization (MB) 466.59 925.16 9.18 4078.4 672.01 84.0 20.41
Reinit. 105% (ms) 5.18 9.42 0.36 26.75 9.21 1.41 0.58

Uniform (MB) 467.16 925.17 41.97 4078.4 675.01 103.45 49.97
Random (MB) 467.74 925.18 50.73 4078.4 676.98 114.98 60.06

Sweep (Rounds) all all all all all all all

Queries (ms) 3.28 3.23 2.61 3.21 3.23 3.19 3.26
V. Insertion (ms) 6.75 11.33 1.99 45.68 9.42 2.85 2.09

V. Del. (UD) (ms) 7.07 11.54 1.49 43.94 10.42 2.90 2.29
V. Del. (D) (ms) 8.67 15.75 1.26 69.17 18.95 2.89 2.36

aimGraph
Uniform (MB) 467.83 925.18 49.13 4078.4 678.40 122.17 59.82
Random (MB) 468.22 925.19 61.14 4078.4 678.88 136.88 72.35

Sweep (Rounds) 2481 2367 all 1523 2429 2584 all

cuSTINGER
Initialization (ms) 6177.8 12752 94.48 64124 9286.9 982.69 191.32
Initialization (MB) 844.32 1674.1 16.61 7380.1 1216.1 152.03 36.81

Uniform (MB) 855.76 1675.6 66.86 7380.1 1264.2 216.32 87.97
Random (MB) 847.19 1674.2 69.52 7380.1 1236.7 208.44 89.11

Sweep (Rounds) 1898 1732 all 593 1824 2049 2060

GPMA
Initialization (ms) 121.14 181.23 34.27 782.85 308.22 50.61 55.24
Initialization (MB) 232.92 372.78 4.68 1634.84 562.04 70.25 26.92

Uniform (MB) — 400.94 209.79 1650.84 587.97 90.38 106.16
Random (MB) — 621.70 282.73 1915.54 843.84 294.00 299.92

Sweep (Rounds) 28 49 176 38 136 264 73

Hornet
Initialization (ms) 300.87 434.94 4.20 4410.6 468.20 45.99 10.73
Sweep (Rounds) 5862 1641 all 1447 3314 3998 all

Table 4.1: Performance measurements for cuSTINGER, Hornet, GPMA, aimGraph and
faimGraph, including initialization time and overall timings for a complete test set as
well as memory evaluation on three test cases on the graphs hugetric-00000, germany,
luxembourg, europe, delaunay n23, delaunay 20, coAuthorsCiteseer
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coAuth. rgg n. nlpkkt200 nlpkkt120 nlpkkt240 ldoor audikw1
Type Citation Geom. Matrix Matrix Matrix Matrix Matrix
—V— 299k 1.04M 16.24M 3.5M 27.99M 952k 943k
—E— 1.95M 6.89M 431.9M 93.3M 746.4M 45.57M 76.71M

avg. deg(V) 6.52 6.63 26.59 26.66 26.67 47.87 81.35

faimGraph
Initialization (ms) 2.61 11.60 459.36 100.03 792.88 58.11 102.92
Initialization (MB) 26.44 99.98 2277.3 494.62 3929.8 244.66 355.53
Reinit. 105% (ms) 0.613 2.38 27.23 10.49 36.04 6.10 8.90

Uniform (MB) 54.44 121.97 2349.1 544.83 3980.7 235.30 359.99
Random (MB) 65.03 138.13 2372.6 569.59 3996.3 257.22 382.80

Sweep (Rounds) all all all all all all all

Queries (ms) 3.12 3.21 3.23 3.28 3.24 4.58 5.73
V. Insertion (ms) 2.15 2.87 15.19 4.87 25.63 2.82 2.80

V. Del. (UD) (ms) 2.82 4.01 52.98 22.31 74.27 12.31 29.63
V. Del. (D) (ms) 2.02 4.03 83.15 20.84 144.15 11.87 24.54

aimGraph
Uniform (MB) 65.68 149.99 2430.5 608.64 4038.4 267.66 392.69
Random (MB) 78.11 163.31 2410.1 625.33 4014.8 284.52 411.06

Sweep (Rounds) all 2580 2033 2473 1589 2547 2518

cuSTINGER
Initialization (ms) 254.37 944.55 20907 3848.9 — 966.58 1013.4
Initialization (MB) 47.71 195.34 4292.8 930.19 — 369.99 548.99

Uniform (MB) 100.02 247.44 4295.2 948.15 — 381.70 553.93
Random (MB) 99.78 245.41 4293.6 936.91 — 378.38 551.27

Sweep (Rounds) 2057 2046 1262 1892 — 1999 1951

GPMA
Initialization (ms) 52.92 86.08 — 467.94 — 224.81 387.50
Initialization (MB) 30.87 137.68 — 885.78 — 422.51 702.64

Uniform (MB) 105.84 157.33 — 996.23 — — 731.64
Random (MB) 257.89 286.75 — 1133.00 — — 1110.37

Sweep (Rounds) 68 29 — 60 — 11 19

Hornet
Initialization (ms) 13.18 61.72 53k 755.97 230k 168.59 207.06
Sweep (Rounds) all 2899 4715 5701 3955 6504 3140

Table 4.2: Performance measurements for cuSTINGER, Hornet, GPMA, aimGraph and
faimGraph, including initialization time and overall timings for a complete test set as well
as memory evaluation on three test cases on the graphs coAuthorsDBLP, rgg n 2 20 s0,
nlpkkt200, nlpkkt120, nlpkkt240, ldoor and audikw1
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4.3 Evaluation

In this section, we evaluate the performance of faimGraph and compare it to aimGraph and

the publicly available cuSTINGER, as well as to Hornet and GPMA wherever possible.

The performance measurements were conducted on an NVIDIA Titan Xp (12 GB V-

RAM), and an Intel Core�i7 -7770. The graphs used are listed in Table 4.1 and Table 4.2.

They represent a cross section of different problem domains and were taken from the 10th

DIMACS Graph Implementation Challenge [5].

4.3.1 Memory footprint

One of the biggest differences between faimGraph and previous approaches is memory

consumption and memory footprint over time, as can be seen in Figure 4.8. Although

faimGraph starts with a larger allocation as it manages memory directly on the device, the

actual memory footprint within the framework (especially over time) is lower compared

to previous approaches and all memory allocations are facilitated directly through the

framework without host intervention. Since the cost of reinitialization is negligible in

most cases (due to the relative addressing within the pool which allows the usage of just

two memcpy’s to reinitialize), even the initial allocation can be chosen conservatively. cu-

STINGER performs sequential allocation calls from the CPU to allocate the management

data and all individual edge blocks in the initialization procedure. Especially for graphs
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10000

M
B

faimGraph cuSTINGER GPMA

Figure 4.8: Memory footprint after initialization
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with millions of vertices, this is a significant overhead, compared to the single allocation

in faimGraph.

Furthermore, due to the overhead associated with reallocation, cuSTINGER uses over-

allocation to reduce the run-time cost for edge updates. faimGraph locates all its data

by combining an efficient indexing scheme and reinterpreting memory on the fly. This

way, the same functionality can be achieved with significantly less memory. Table 4.1 and

Table 4.2 note the respective memory footprints within the framework for faimGraph, cu-

STINGER as well as GPMA. The difference is most significant for high numbers of vertices

(e.g.,, europe (14) with 4GB vs 7GB) for cuSTINGER, but also for large adjacencies due

to overallocation (e.g.,, nlpkkt200 (12) with 2 GB vs 4 GB for cuSTINGER or audikw1

with 250 MB vs 420 MB for GPMA) for both cuSTINGER and GPMA. GPMA performs

well for very sparse graphs as it stores no additional vertex properties (e.g., number of

edges per adjacency), but experiences significant overhead for denser graphs as each edge

has to store both source and destination as part of the PMA.

4.3.2 Memory usage evaluation

faimGraph’s memory management scheme allows for reuse of memory over time. This is

especially crucial for long-term use cases, where certain areas of the graph grow and shrink

significantly. Both aimGraph and cuSTINGER hold the maximal allocation state in mem-

ory, meaning that once allocated, memory stays with its vertex. Hence, after prolonged

usage the allocated memory resources do not reflect the actual memory requirements and

may even lead to system failure over time.

To test long term use, we use three different test cases: The Uniform test case performs

successive edge insertions and deletions derived from a uniform distribution. Random

performs the same operations, whereas each round is randomly chosen to be either insertion

or deletion. The memory footprint for these tests is shown in Table 4.1 and Table 4.2.

aimGraph is more efficient in all cases compared to cuSTINGER, requiring between 12%

to 45% less memory. faimGraph reduces the memory consumption further to 27% to 52%

less memory compared to cuSTINGER. The Sweep testcase highlights the behavior for

strongly volatile graphs. Each update round targets a set of 100 vertices with a batchsize

of 1.000.000, where a set of edges is first inserted and then deleted again. Each update

targets a successive set of source vertices. Performance is measured in rounds (how long

can this procedure be repeated before the system goes out of memory). As shown in

Table 4.1 and Table 4.2, faimGraph can run to completion for all graphs as the memory

footprint after each round is mostly equal to the initial state. aimGraph and cuSTINGER

fall significantly behind and only manage to complete all rounds within the 12 GB of

memory for graphs that only require less than 100 MB by itself—the memory that faim-

Graph returns to after every deletion step during the sweep test. For these small graphs,

our tests thus revealed a memory increase of more than two orders of magnitude above

the necessary. This clearly underlines that fully dynamic memory management is essential
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Figure 4.9: Time required to initialize a graph on the GPU.

in highly volatile problem domains.

Using a large semi-continuous array, GPMA should able to re-use freed memory in the

Sweep testcase as well. Unfortunately, since memory is localized, significant rebalancing

might be required and subsequently, performance would be penalized. The current imple-

mentation does not handle duplicates within the update batch, but even correcting for that

unfortunately still accumulates memory and we were not able to trace the source of this

issue. At the time of this evaluation, there was only limited information available about

Hornet , hence no actual memory footprint could be determined. But looking at the Sweep

testcase, it is clear that it provides an improvement over its predecessor cuSTINGER.

4.3.3 Initialization

The autonomous approach to memory management on the GPU pays off during initializa-

tion. faimGraph distributes memory to individual vertices fully in parallel and the single

GPU memory allocation drastically reduces allocation overhead. cuSTINGER performs

sequential iterations over all vertices to allocate its adjacencies. In all tested scenarios (cf.

Table 4.1, Table 4.2 and Figure 4.9), faimGraph is able to outperform all other approaches

by a significant margin. The same is true for reinitialization with increased size, which

is even faster than pure initialization due to our favorable relative indexing setup. The

discrepancy in performance (up to two orders of magnitude) is greatest for graphs with a

large number of vertices, like germany and europe.
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Figure 4.10: Overhead introduced after repeated reinitialization with 105 % of the base
size for a selection of graphs.
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But still in small dense graphs, e.g., ldoor, the speed-up is one order of magnitude.

Performance overhead for reinitialization with 105% of the conservative allocation size is

displayed in Table 4.1 and Table 4.2 as well as in Figure 4.10a and Figure 4.10b.

4.3.4 Edge Updates

Figure 4.11 and Figure 4.13 show the insertion and deletion performance for faimGraph

as well as cuSTINGER, GPMA and Hornet for uniform and focused update distributions.

faimGraph utilizes the conservative memory allocation with 50% additional pages for the

initial allocation in these tests, due to efficient memory re-use none of the cases experienced

reinitialization.

4.3.4.1 Edge Insertion

The clearest performance difference for edge insertion can be observed for graphs with

small to medium sized adjacencies, which can be attributed to two factors: cuSTIN-

GER performs an additional indirection step to follow the data structure and employs

overallocation to reduce the need for reallocation. For larger graphs, the probability for

insertions to hit the same vertex is smaller and thus, reallocation does not happen at all

for cuSTINGER. For smaller graphs, on the other hand, the performance numbers quite

clearly reflect the overhead introduced by reallocation procedures. faimGraph on the other

hand directly interprets memory as required and does not employ overallocation. The

vertex-centric approach is not particularly well suited to uniform updates with low update

pressure. This results from the excessive duplicate checking needed in this case. The sorted

approach performs exceptionally well, especially for small to medium sized adjacencies, as

the benefits derived from sorted adjacencies and updates during the procedure outweigh

the re-sorting effort. Thus, keeping sorted adjacencies actually introduces no to hardly any

overhead. Only for large adjacencies the performance scales negatively with the increased

memory access needed by the sorting procedure.

Increasing the update pressure (focusing the updates on a range of 1000 vertices, which

sweeps over the graph throughout the test), as shown in Figure 4.11b, yields consistently

good results for faimGraph, even with the update-centric approach. Although the locking

overhead is clearly visible in all cases, locking still outperforms cuSTINGER in all cases as

the reallocation procedures are handled more efficiently. Both vertex-centric approaches

outperform the update-centric approach due to reduced overhead while traversing the

adjacency and the removal of locking. faimGraph outperforms cuSTINGER by a factor of

1.1–114× / 1.1–31× for both batch sizes with uniform edge insertion; focussing updates on

a smaller range of vertices yields a speed-up between 25–185×. Similarly, the speed-up of

uniform updates compared to GPMA is 2.5–14× / 1.6–4.2×; with higher update pressure

the difference is 2.1–5.4×. Compared to Hornet , the speed-up achieved for uniform updates

is 1.6–16.5× / 1.1–17.6×, using higher update pressure updates Hornet performs slightly

better in one case, the overall speed-up falls between 0.93–6.48×. In summary, it can be
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Figure 4.11: Edge Insertion with a batch size of 1 000 000
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Figure 4.12: Concurrent edge insertions and deletions for a batch size of 100 000.

noted that cuSTINGER performs well when it works within its overallocation boundaries,

but otherwise drops significantly. GPMA performance is very uniform independent of the

sparsity of the graph, but is slower overall. Hornet performs well if the source vertex

range modified is small, but falls behind significantly for large source vertex ranges in

sparse graphs. The best faimGraph strategy is always faster than cuSTINGER, which

can easily be selected based on the update pressure. Higher update pressure clearly favors

our new vertex-centric approaches.

Lastly, we also tested concurrent edge insertions and deletions within faimGraph, as

can be seen in Figure 4.12. We compare performing edge insertion and deletion after

one another compared to performing them simultaneously. This reduces the overhead

of separate kernel launches but also keeps the memory requirements lower, as deletions

might free up space that can then be occupied by insertions later on. Overall we can see

that performance improves compared to performing edge updates separately. This mode

might be improved even further by some pre-processing but is also in need of additional

semantics (it might happen that an edge is inserted and in the next call removed again,

in the concurrent scenarios the adjacency might or might not have the edge, depending

on the order of the operations).
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Figure 4.13: Edge Deletion with a batch size of 1 000 000.
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4.3.4.2 Edge Deletion

In case of deletions, the performance difference is slightly less pronounced and much more

consistent compared to the insertion process. This is not surprising as edge deletion is

very straight forward in cuSTINGER, as memory is not freed and duplicate checking is not

necessary. faimGraph on the other hand additionally performs compaction and frees not

needed pages, which introduces additional overhead. However, due to the smaller memory

footprint and more efficient implementation, faimGraph still outperforms cuSTINGER in

10 of the 12 test cases for uniform deletion (Figure 4.13a) with a performance difference

between 0.92× - 1.4× / 0.8× - 1.9×. Compared to GPMA, faimGraph is always faster

with a speed-up of 1.9× - 3.6× / 1.4× - 2.9×. The same is true for Hornet, the difference

here is 1.7× - 25× / 1.1× - 25.9×. Sorting again hardly reduces performance compared

to the vertex-centric approach unless large adjacencies need to be moved as in ldoor (4)

and audikw1 (5). For larger graphs, with few updates per vertex, the locking strategy

performs best. For high update pressure (Figure 4.13b), both vertex-centric approaches

perform best in all test cases, clearly outperforming both the update-centric approach as

well as cuSTINGER, with a performance difference between 3× - 6×, this difference is

1.3× - 2.6× compared to GPMA and 0.85× - 9.7× to Hornet.

4.3.5 Vertex Updates

Most other dynamic graph frameworks, such as cuSTINGER, aimGraph, GPMA and

Hornet , are only partially-dynamic. Their SOA approach for vertices makes it difficult

to efficiently update vertices. Contrary, faimGraph’s AOS approach and index queues

allow for fully dynamic vertex insertion as well as deletion. Only very recently, in 2020,

hashGraph [3] by Awad et al. introduced another fully-dynamic framework.

4.3.5.1 Vertex Insertion

Table 4.1 and Table 4.2 show the timings for vertex insertion with a batch size of 100.000.

Figure 4.14 shows update timings for a selection of graphs for batch sizes of 1000, 10 000

and 100 000. The actual insertion process for all tested graphs stays below 1 ms, the overall

timing with duplicate checking stays below 50 ms for all tested graphs. Although our re-

verse duplicate checking increases performance significantly, duplicate checking still forms

the bottleneck for larger graphs. As the duplicate checking involves all graph vertices, the

execution time is proportional to the number of graph vertices. For the tested graphs,

faimGraph can facilitate 2–50 million vertex insertions per second.

4.3.5.2 Vertex Deletion

Vertex deletion is more complicated than vertex insertion, as all references to the vertex

in the graph must also be deleted. Table 4.1 and Table 4.2 show the performance numbers

for vertex deletion in case of undirected graphs (UD) as well as directed graphs (D). In
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Figure 4.14: Vertex Insertion for batchsizes 1000, 10 000 and 100 000.

both cases the same graphs are used, i.e., undirected graphs can be treated as directed

graphs. The performance difference is only due to the different deletion strategies that

can be employed for the two cases. For undirected graphs, the vertex mentions are deleted
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Figure 4.15: Vertex Deletion for undirected graphs for batchsizes 1000, 10 000 and 100 000.

directly in the deletion kernel, which prolongs the vertex deletion stage but does not require

an additional stage afterwards. For directed graphs there is an extra step involved, as it

is not directly obvious where the directed edges might reside in memory. This additional
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Figure 4.16: Vertex Deletion for directed graphs for batchsizes 1000, 10 000 and 100 000.

kernel once again profits from sorting the updates to utilize the reverse search pattern used

to detect now invalid edges. The main difference can be observed for larger and denser

graphs, as the search for references to deleted vertices is more costly as all vertices and
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their adjacencies have to be checked. Overall, the framework is able to handle between

1–50 million vertex deletions per second, performance scales with both the number of

vertices and edges present.

4.4 Algorithms

To evaluate the impact of our memory management data structure on algorithmic perfor-

mance, we implemented triangle counting and PageRank [12] as two challenging algorithms

on top of faimGraph. We compare our implementation to cuSTINGER, which includes

the fast triangle counting by Green et al. [23] and a custom PageRank implementation, as

well as to Hornet . Unfortunately, cuSTINGER’s implementations did not run on recent

hardware, thus we additionally include performance measurements for an NVIDIA GTX

780, as can be seen in Table 4.3 and Table 4.4.

4.4.1 Work-balancing

One of the issues for graph frameworks is varying sparsity over the whole graph. Algo-

rithms traversing these adjacencies may show significant imbalances. Thus, in addition to

näıve implementations of the two algorithms, we introduce a work balancing scheme that,

instead of launching a worker per vertex, calculates an offset scheme to locate individual
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Figure 4.17: Work Balancing timing in relation to the number of pages allocated for each
graph.



72
Chapter 4. faimGraph - High Performance Management of

Fully-Dynamic Graphs under Tight Memory Constraints on the GPU

pages in memory. This information is used to start one worker (thread/warp/block) per

page per vertex. There is a clear correlation between the overhead introduced and the

pages in memory as can be seen in Figure 4.17. However, according to our experiments, the

overhead stays small (between 0.5–3 ms in our tests) and the benefits drastically increase

with more pages in memory.

4.4.2 Static Triangle Counting - STC

The fast triangle counting algorithm [23] employed by cuSTINGER is based on a list

intersection algorithm called Intersect Path. The algorithm operates on two stages of

parallelism. The first stage balances the vertices on the multiprocessors and the second

stage balances the adjacency access using different block sizes. The key search strategy

of the algorithm is that a sorted adjacency allows for efficient binary search to identify

triangles. cuSTINGER includes this implementation for its own data structure and for

CSR.

Our näıve faimGraph implementation starts one worker for each vertex and iterates

over the respective adjacency. It then checks for each pair of vertices in the adjacency,

if this pair is connected. This checking stage is only performed, if the vertex, whose

adjacency is examined, has the largest index in the triple under investigation. If a triangle

is found this way, the triangle count is increased for all three vertices. By assuming a

hugetr. germany luxemb. europe del* n23 del* 20 coAuth.
Type Simu. Road Road Road Triang. Triang. Citat.
—V— 5.82M 12M 115k 50.91M 8.38M 1.04M 227k
—E— 8.73M 24.74M 239k 108.1M 25.16M 3.14M 815k

avg. deg(V) 1.50 2.06 2.08 2.12 3.00 3.02 3.59

STC
faimG. näıve (780) 5.21 5.16 0.077 — 35.56 5.55 21.36
faimG. bal. (780) 7.24 8.37 0.70 — 44.85 6.14 9.08

cuSTINGER (780) 535.27 947.45 9.71 — 983.14 124.41 35.83
CSR (780) 7.42 698.38 7.42 — 771.06 98.59 20.94

faimG. näıve (Xp) 1.53 1.74 0.03 7.60 10.18 1.37 9.19
faimG. bal. (Xp) 2.34 3.26 0.64 14.04 11.34 1.82 3.57

Hornet (Xp) 65.26 99.52 1.63 344.30 170.66 24.78 15.61

PageRank
faimG. näıve (780) 8.39 8.31 0.54 — 14.28 1.97 1.59
faimG. bal. (780) 7.99 16.16 1.09 — 16.42 2.38 1.22

cuSTINGER (780) 26.21 47.96 0.88 — 42.43 6.06 1.94
faimG. näıve (Xp) 3.95 5.31 0.28 18.49 7.07 0.99 1.09
faimG. bal. (Xp) 3.10 4.74 0.30 17.63 4.79 0.65 0.32

Hornet (Xp) 3.76 5.86 0.48 23.60 5.63 0.80 0.28

Table 4.3: Algorithmic performance in ms for cuSTINGER, Hornet and faimGraph (graph
ordering identical to Table 4.1) with a NVIDIA GTX 780 and a NVIDIA TITAN X(p).
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coAuth. rgg n. nlpkkt200 nlpkkt120 nlpkkt240 ldoor audikw1
Type Citat. Geom. Matrix Matrix Matrix Matrix Matrix
—V— 299k 1.04M 16.24M 3.5M 27.99M 952k 943k
—E— 1.95M 6.89M 431.9M 93.3M 746.4M 45.57M 76.71M

avg. deg(V) 6.52 6.63 26.59 26.66 26.67 47.87 81.35

STC
faimG. näıve (780) 35.56 15.67 — 942.35 — 258.4 1055.93
faimG. bal. (780) 11.79 8.18 — 881.48 — 280.02 1001.6

cuSTINGER (780) 45.72 166.21 — 649.07 — 379 1277.1
CSR (780) 26.86 140.75 — 327.43 — 260.03 635.8

faimG. näıve (Xp) 14.56 6.92 1413.9 307.89 2490.4 152.41 742.23
faimG. bal. (Xp) 4.90 7.34 923.98 197.80 1484.71 87.26 402.56

Hornet (Xp) 13.36 44.26 1111.5 308.63 1812.3 235.33 479.63

PageRank
faimG. näıve (780) 1.01 4.04 — 26.51 — 16.18 31.4
faimG. bal. (780) 1.36 4.03 — 16.02 — 11.98 18.90

cuSTINGER (780) 2.62 10.31 — 57.53 — 20.25 30.18
faimG. näıve (Xp) 0.59 2.19 69.32 15.20 121.91 12.87 31.00
faimG. bal. (Xp) 0.31 0.84 18.94 4.21 32.67 2.67 5.07

Hornet (Xp) 0.32 5.26 25.08 5.54 43.29 3.58 5.83

Table 4.4: Algorithmic performance in ms for cuSTINGER, Hornet and faimGraph (graph
ordering identical to Table 4.2) with a NVIDIA GTX 780 and a NVIDIA TITAN X(p).

sorted (in ascending order) adjacency, this approach can even halt the procedure earlier,

as soon as both vertices in the vertex pair under investigation are larger than the source

vertex (in these cases a possible triangle will be entered by one of the other vertices). The

balanced faimGraph implementation works similarly, but starts on worker per page per

vertex, reducing the workload per worker. Performance numbers are recorded in Table 4.3

and Table 4.4. Both cuSTINGER and faimGraph utilize the property that the adjacency

is sorted to make comparison possible. faimGraph is able to significantly outperform cu-

STINGER in all but nlpkkt120 (11), which shows very long adjacencies. faimGraph can

only partially derive an advantage from a sorted adjacency as an efficient search within a

sorted array is only possible within page boundaries. Interestingly, our work balancing also

outperforms the highly compact CSR format (using the fast triangle counting algorithm)

in all but three cases. faimGraph is not well suited for näıve random adjacency access

and thus triangle counting is one of the most challenging use cases for our data structure.

Hence, a straight forward translation of the Intersect Path algorithm to faimGraph would

also not show the same performance results as on a simple array structure. faimGraph

is well suited even for memory intensive algorithms, if the average adjacency size does

not grow incessantly, using work balancing even unbalanced graphs can be handled well.

Overall, in 10 out of 11 cases, faimGraph has a performance lead between 1.25× - 100×
over cuSTINGER, only falling behind in one test case. Compared to Hornet , faimGraph

has a performance lead between 1.19× - 57× in all cases, as can be seen in Figure 4.18a.
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Figure 4.18: Algorithm performance comparing a näıve and balanced version of faimGraph
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4.4.3 PageRank

PageRank [12] is a fairly straightforward algorithm. The algorithm has to traverse the

adjacencies of all vertices and compute the contributions of all relationships for each vertex

in push mode, similar to an SpMV. This means that every edge is touched exactly once,

the same is true for every vertex. The only point of contention remains the PageRank

vector itself. Table 4.3 and Table 4.4 show the direct comparison between cuSTINGER,

Hornet and the two (standard and balanced) faimGraph implementations. As PageRank

has moderate memory access requirements and does not benefit from sorting, faimGraph

is able to outperform cuSTINGER in all cases due to the more efficient memory access

and footprint characteristics. Unbalanced and larger graphs once again profit from work

balancing. Overall, faimGraph is able to outperform cuSTINGER by a factor of 1.5× -

5.5×. The same is true compared to Hornet , but the performance difference is smaller

overall in a range between 0.88× - 6.2×, as can be seen in Figure 4.18b.

4.5 Discussion

faimGraph is a memory-efficient, fully dynamic graph solution with autonomous memory

management directly on the GPU. Based on a queueing scheme, memory is fully reused

within the system, reducing memory requirements by multiple orders of magnitude in

the long run as well as memory fragmentation, permitting edge insertions and deletion

aimGraph faimGraph cuSTINGER Hornet GPMA

Memory Layout Linked edge blocks Linked pages
Contiguous 

memory
Contiguous 

memory
PMA-style memory 

layout

Adjacency Access
Fast on edge block, 

traversal needed
Fast on page, 

traversal needed
Always fast Always fast

Need to handle 
“holes” due to 

storage

Memory Efficiency
Does not reuse 

memory
Reuse pages 

efficiently
Does not reuse 

memory
Reuse memory 

efficiently

Efficient for small 
graphs, leaves 

“holes”

Initialization
Very fast, 

precompute and 
setup in parallel

Very fast, 
precompute and 
setup in parallel

Individual 
allocations from 

CPU

More efficient than 
cuSTINGER but still 

CPU bound
Build complex PMA

Edge Updates
Fast for uniform 

updates on sparse 
graphs

Fast for all updates 
on sparse graphs, 

slows down for 
denser graphs

Fast for small 
allocation state 

changes

Fast for small 
allocation state 

changes

Fast as long as little 
balancing is 

required

Vertex Updates Not supported
Both insertion and 
deletion supported

Not supported Not supported Not supported

Algorithms
Fast for sparse, 
uniform graphs, 
traversal a factor

Fast for sparse and 
unbalanced graphs, 

traversal a factor

Contiguous 
memory, but no 

balancing

Contiguous 
memory, but no 

balancing

Implicitly sorted, 
but traversal is 

challenging

Figure 4.19: Overview comparison of aimGraph, faimGraph, cuSTINGER, Hornet as well
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according to arbitrary patterns. Thus, faimGraph can be safely used in real-world scenarios

without threatening system failures due to out of memory. Furthermore, faimGraph is fully

dynamic, allowing for efficient vertex insertion and deletion at high rates, increasing access

characteristics by efficiently reusing free vertex indices. Our vertex-centric update scheme

allows lock-free edge updates, which increases performance by one order of magnitude

under high update pressure. Edge updates can also respect sort order with little overhead.

faimGraph outperforms the previous state-of-the-art in all tested graphs in terms of

edge update rate (up to 150× higher update rate) as well as initialization time (up to 300×
faster). The framework can hold tens of millions of vertices and hundreds of millions of

edges in memory. It is able to process up to 200 million edge updates and more than 300

million adjacency queries per second for the tested graphs. Vertex updates can also reach

between 1–50 million updates per second. To validate algorithmic performance of our data

structure, we tested triangle counting and PageRank. Although faimGraph uses a more

complicated data structure to allow for memory reclamation, it performs surprisingly well

for the random access heavy triangle counting, outperforming cuSTINGER in all but one

case. For PageRank, faimGraph showed the best performance in all cases.

For the first time, it is possible to perform both in parallel using autonomous memory

management; we even support algorithms to directly manipulate the graph. However,

both operations may still require communication and appropriate synchronization, which

poses new scheduling challenges which we leave as future work. Nevertheless, we believe

that faimGraph is a first big step towards using GPUs for real-world, dynamic graph

processing.
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5.1 Introduction

Dynamic graph management on the GPU, as possible with aimGraph and faimGraph, is

essentially one application of general purpose memory management on the GPU. faim-

Graph, at its core, could already be used to efficiently allocate pages of a fixed size directly

on the GPU, even lacking a graph context. This is possible thanks to the built-in memory

re-use queues, which can hold previously allocated edge blocks or pages to be used by later

allocations. All of this is possible directly on the GPU without any CPU synchronization.

While the core idea is already sound and translates well to general purpose memory

management, typically one requires more than just a single available page size to support

applications with reasonable memory fragmentation. As is common and other designs

already show, such a memory manager should be able to return arbitrary page sizes to the

user. These can be limited in size and aligned to some intermediary steps, but a single

size certainly does not suffice. To solve this issue, an initial step involving the design of

77
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faimGraph could utilize a memory manager in charge of multiple re-use queues, each of

these supplying one page size supported in the system. As most other memory managers

on the GPU, one could choose one large chunk size, which can then be split into smaller

pages servable to the user, with one queue per page size. Leaving aside the access and

chunk/page allocation intricacies, this still would potentially entail significant overhead,

as static allocations required for the queues would have to be present even if not needed

at all times. Especially when supporting a larger range of allocations as well as allocation

sizes, these re-use structures would incur significant static overhead. This restricts the

possible memory allocation size of an application unnecessarily.

In this (r)evolution of the base design, we address these concerns and present a gen-

eral purpose dynamic memory manager for the GPU. Using the memory manager and

queues established with faimGraph and introducing new ideas to virtualize these queues

for memory efficiency, a new concept for dynamic resource management in general as well

as dynamic graph management in particular is born. We provide overall six different

variants of this memory manager with varying degrees of memory efficiency and access

performance that can be customized for specific use cases. In the following sections, we

will discuss the intricacies of this design, called Ouroboros. We will present a more general

approach in describing the pure memory management capabilities, which are usable in

any scenario requiring dynamic resources on the GPU. This includes two base variants

managing either pages directly or chunks with free pages on them. Building on these de-

signs, we present two virtualization techniques to rigorously reduce the memory overhead

while keeping most of the performance benefits. We also evaluate its allocation capabilities

as well as memory efficiency and real-world performance compared to all other publicly

available memory managers on the GPU, including XMalloc, ScatterAlloc, Halloc, Reg-

Eff and the CUDA-Allocator . As its basic structure still lends itself to dynamic graph

management as well, this discussion is deferred to Chapter 6.

5.2 Building Blocks and Background

In the following, we discuss the building blocks essential to Ouroboros and their relevance

to the system.

5.2.1 Memory Management

Dynamic memory management on the GPU presents a number of challenges:

1. The high number of concurrently active threads on a modern GPU can result in

an equally high number of concurrent allocation/deallocation requests. On modern

GPUs, this can be as high as 172 k simultaneously active threads (on the NVIDIA

GV100 architecture).

2. Data structures and access primitives have to be able to deal with such pressure.
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3. Since memory is a scarce resource in the context of GPUs, keeping memory frag-

mentation to a minimum and memory must be used efficiently.

ChunkIndex
Chunk

Metadata

Page

Page

Page

Page

number pages
available pages

bitfield [BITMASK_SIZE]

PageIndex
Chunk

Metadata

Page Page Page Page

Page Page Page Page

number pages
available pages

Queue
Chunk

Metadata

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

In
d

ex

virtual_start
count (countA + countB)

<next_chunk>

memory
manager

linearly
addressable

memory

Queue 
Area
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4. The system should not force a processing model on the user, but allow single threads

to allocate new memory.

Similar to other allocators (including CUDA-Allocator), Ouroboros starts by allocating

a block of memory to be managed on the GPU. The size of this block can be set heuris-

tically to fit a given problem domain, can be provided by the user or even encompass

the whole GPU memory. Should the given allocation be too small, the system has the

option to automatically re-initialize in a larger area of memory. This is possible as all

information about memory resources within Ouroboros is relative, hence no updating of

many references would required in the case of re-initialization. All allocation requests are

handled directly on the GPU, avoiding costly round-trips to the CPU, keeping this GPU-

autonomy established with aimGraph and faimGraph. A memory manager keeps track

of all available resources and offers standard malloc and free functionality for individual

threads. These calls either return/receive pointers directly as is usual but can also operate

directly on smaller indices for more efficient storage overall.

The designated dynamic memory is subdivided into equally-sized chunks, which can be

allocated from the memory manager in O(1) using an atomicAdd() on a global offset. The

size of these chunks can be matched to the specific application (standard size is 8 KiB which

suffices to handle all graphs within the DIMACS10 [5] graph dataset). This determines the

maximum allocation size of the base instance of Ouroboros. To service larger allocations,

multiple instances of Ouroboros with multiples of the base chunk size can be combined.

Alternatively, a second allocator, like the library-provided CUDA-Allocator , which offers

standard malloc and free operations on the GPU, can be used or Ouroboros’s chunks could

be integrated into the page-table system (by a vendor).

5.2.2 Chunks

The dynamic memory region used by the memory manager is split into equally-sized

chunks of memory (larger instances use multiples of this chunk size). Chunks are addressed

by an integer index, enabling efficient re-initialization in a different memory space. Each

chunk consists of a small region for meta data (padded to multiples of the cacheline size

(128 B)) and a large region to hold data (both specific to the actual use case, typically the

meta data easily fits into (128 B, leaving (8064 B for user data for 8 kB chunks). Since each

chunk has the same size, they can be addressed by a plain index. This relative indexing

also enables efficient re-initialization in a different memory space, if needed, as only the

global offset has to be updated in a larger (or smaller) region. Chunks are used in three

different ways, as shown in Figure 5.1:

� ChunkIndex-Chunk stores user data on pages. If pages become free on this chunk,

the chunk index is placed in a queue, a bit-field is used to manage the allocations

on the chunk. The bit-field size depends on the maximum number of pages in which

a chunk can be split. A chunk can be allocated to a different page size or different

chunk type if completely freed.
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Algorithm 5: Basic enqueue and dequeue functionality

1 Function enqueue(index)
2 if atomicAdd(fill count, 1) > size then
3 atomicSub(fill count, 1)
4 return

5 pos← atomicAdd(back, 1) mod size
6 while atomicCAS(q[pos], del, index) 6= del do
7 sleep()

8 Function dequeue(index&)

9 if atomicSub(fill count, 1) ≤ 0 then
10 atomicAdd(fill count, 1)
11 return

12 pos← atomicAdd(front, 1) mod size
13 while index← atomicExch(q[pos], del) = del do
14 sleep()

� PageIndex-Chunk stores user data on pages. Page indices are directly stored in

queues for reuse. It retains a specific page size once set.

� Queue-Chunk is used as index storage for virtualized queues, storing queue

data. It can also be allocated to a different use case once empty. It holds

ChunkSize/sizeof(IndexType) indices.

Chunks used for user data are split into equally-sized pages. The largest page size

is limited by the chunk size, whereas each split halves the page size. The number of

differently-sized pages available in the system determines the number of queues required

for potential reuse of pages, e.g.,, a chunk size of 8 KiB and ten queues allow for allocations

in the range of 16 B–8192 B within one instance of Ouroboros. To reduce fragmentation,

previously allocated, now empty chunks are held in an index queue, which allows the

memory manager to efficiently reuse empty chunks before allocating new chunks. This

way overall fragmentation is reduced.

5.2.3 Queues

We utilize an array-based method for memory reclamation in form of an index queue,

similar to the queue introduced in Section 4.2.2 used within faimGraph. Queues are not

only used for memory reuse, but also to reuse other dynamic objects, which includes

QueueChunks and can be extended to anything else, e.g., dynamic vertex indices in a

dynamic graph context. Algorithm 5 demonstrates the basic enqueue and dequeue func-

tionality of the queues.
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Both first test the fill count to check the viability of the operation (dequeue failing

is a common occurrence). Then, both use atomic functions to either write or read a

queue value. The queues are initialized at the start-up of the system to contain deletion

markers. This ensures that concurrent enqueues and dequeues are possible. The checks

in line 6 and 13 are required, since enqueue might want to write to a spot, which was

already advertised as free by a dequeue operation, but the value has not been read yet.

This is being safeguarded against using an atomic-Compare-And-Swap operation with the

deletion marker. On the other hand, a dequeue operation might want to read a value that

has been advertised as present by an enqueue operation, but the write is not yet visible

in global memory. The sleep functionality called in lines 7 and 14 are implemented using

sleep() for GPUs with CC ≥ 7.0 and a threadfence() for those lower than that. In both

cases the goal is to trigger a rescheduling to potentially allow other threads to finish their

operations or in general free up compute resources for other threads to use.

While this basic queue design works sufficiently well to manage simple, atomic objects

(like indices of vertices or indices of pages in case of a singular page size), this design

needs further attention to also work in the context of batch-based allocation as is the case

with us splitting larger chunks into pages. A necessary part of this approach is a new

synchronization primitive, which is discussed in the next section.

5.2.4 Access primitive

In order to regulate access to enqueues/dequeues, we use an access primitive that keeps

track of the total number of pages in the queue and can be used to drop the fill count

in most cases. As access primitive we use a bulk semaphore [20]. It enables a scalable,

two-stage resource management system, which is based on three counters:

� count (C): Pages currently available

� expected (E): Pages expected to become available

� reserved (R): Pages reserved by waiting threads

It improves upon a simpler counting semaphore, which automates the process of delegating

which threads actually allocate a larger resource to deal out shares to other waiting threads,

by interleaving the allocations more efficiently. This allows potential allocating threads

to start much earlier, leading to improved batch allocation performance. The expected

availability is defined as the value after all expected pages have been added to the existing

pages and all reserved pages have been subtracted. Based on this value, each thread

determines if it can fulfill its allocation request, if it has to allocate a new chunk of pages

first or if it can reserve a page on a chunk that is currently being allocated. The bulk

semaphore implements two functions, outlined in Algorithm 6:

� wait(N,#pages, allocFunc()): try to allocate N pages. If expected availability is

< N , allocate a new chunk with #pages pages using allocFunc(). If the current
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count is large enough, decrement and continue. Otherwise increase the reserved

value and wait for the resources to be allocated.

� signal(N,#pages): free up N pages by increasing count, if #pages > 0 reduce

expected by #pages.

Our implementation packs all three counters into one 64 bit value, resulting in 21

bits per counter. Simple manipulation of counters (as in lines 2, 19 and 22) can be done

with one single atomic operation. Only lines 8 to 16 in Algorithm 6 are implemented

using an atomicCAS operation, since multiple comparisons and assignments have to be

performed atomically. To this end, the value is read from memory, its internal counters are

checked and modified accordingly and the atomic operation is used to compare the value

in memory to the previously read value. Only if they match (no change has happened),

the new value is written to global memory, otherwise the operations are repeated with the

Algorithm 6: Access primitive functions

1 Function Sem::wait(N, #pages, allocChunk())
2 atomic
3 if Sem.C ≥ N then
4 Sem.C ← Sem.C −N
5 return

6 Sem.C ← Sem.C + N

7 while True do
8 atomic
9 if Sem.C + Sem.E − Sem.R < N then

10 Sem.E ← Sem.E + #pages
11 allocChunk()

12 else if Sem.C ≥ N then
13 Sem.C ← Sem.C −N
14 return

15 else
16 Sem.R← Sem.R + N

17 while Sem.C < N and Sem.R < (Sem.C + Sem.E) do
18 sleep

19 atomic
20 Sem.R← Sem.R−N

21 Function Sem::signal(N, #pages)
22 atomic
23 Sem.C ← Sem.C + N
24 Sem.E ← Sem.E −#pages
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new value. As far as we know, this is also the first publicly-available implementation of

the bulk semaphore, which also includes a variant, which also works (though less efficient)

on GPUs prior to the Volta generation with Independent Thread Scheduling (ITS). For a

more detailed explanation as well as an evaluation comparing this to counting semaphores

consult Gelado et al. [20].

5.3 Queues for Memory Management

The most basic tools for memory management are efficient index queues [26, 62]. These are

usually implemented as array-based queues, operating on top of a ring buffer, as already

discussed in Section 5.2.3. Concurrent access and efficient queries for empty states are

realized using a front and back pointer as well as a fill count. While these queues can effi-

ciently manage indivisible objects, they are unsuitable for handling chunks split into pages,

i.e., batch-based allocation. Furthermore, they do not provide an efficient mechanism to

allocate new pages/chunks once the queue is empty. We propose two different evolutions

of this queue, utilizing the bulk semaphore for efficient allocation. This design reduces

fragmentation and always allocates the least amount of memory possible, as previously

deallocated memory is used before new memory is allocated by the memory manager. An

instance of Ouroboros can be configured with queues managing either pages (discussed in

Section 5.3.1) or chunks (containing available pages, discussed in Section 5.3.2), as can be

seen in Figure 5.2. One instance manages one or the other, but Ouroboros can combine

multiple instances of itself with different managing capabilities. Hence, one could choose

one instance of Ouroboros managing pages for smaller allocations (as page-based manage-

ment is faster) and one instance managing chunks for large allocations (which are more

memory efficient but slower, but as large allocations are less likely this is less of an issue).

5.3.1 Queues managing pages

This queue type is the most straightforward evolution of the index queue, as it also stores

page indices directly. The main difference can be found in the access management. The

fill counter is replaced by a bulk semaphore to allow for efficient batch allocation of pages.

This queue offers O(1) allocation (dequeue from the queue), as long as the queue still

holds free pages, and O(1) deallocation (enqueue into the queue), as long as the queue is

not full. Once the queue is empty, the bulk semaphore allows for efficient and interleaved

allocation of new pages from chunks. Algorithm 7 lists the high-level steps needed for

page allocation and deallocation. In the allocation stage, a thread first interacts with the

bulk semaphore, calling wait() (line 11) with the option to allocate a new chunk of pages

(allocChunk() in line 1). If a thread is designated to allocate new pages, the allocation is

first signalled to the bulk semaphore before the pages are added to the queue. If a page is

available (indicated by the bulk semaphore), the corresponding position is determined and
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Figure 5.2: A standard queue can either manage pages directly or chunks with free pages
on them. The access management is either just a bulk semaphore in case of page-based
queues and are augmented by a fill count in case of managing chunks.

the page index read, as detailed in Section 5.2.3. Deallocation works exactly as dequeue()

described in Algorithm 5, replacing the fill count with a bulk semaphore.

This design excels in terms of allocation speed, but bears some minor disadvantages.

Algorithm 7: Allocate / Free page with the page-based queue

1 Function allocChunk(memory manager, #pages)
2 if sem.signal(#pages, #pages) < #spots then
3 memory manager.allocChunk(index)
4 pos← atomicAdd(back, #pages)
5 foreach page in chunk do
6 index← createIndex(chunk, page)
7 while atomicCAS(q[pos], del, index) 6= del do
8 sleep()

9 pos← (pos + 1) mod size

10 Function allocPage(memory manager, index&)

11 sem.wait(1, #pages, allocChunk)
12 pos← atomicAdd(front, 1) mod size
13 while (index← atomicExch(q[pos], del)) = del do
14 sleep()

15 return memory manager.getPage(index)

16 Function freePage(index)
17 if sem.signal(1, 0) < #spots then
18 q.enqueue(index)



86
Chapter 5. Ouroboros - Virtualized Queues

for Dynamic Memory Management on GPUs

One drawback is limited chunk re-usability. Once assigned to a page size, a chunk cannot

be assigned to a different page size or chunk type. Even if all pages of a chunk are free and

thus currently in the queue, chunk reuse would require removing all its page indices from

the queue. Additionally, each free page occupies an entry in the queue. Thus, potentially

larger queue sizes are required to handle large allocation fluctuations. Consequently, the

allocation from the chunk pool takes more time, as all pages are added to the queue by

one thread.

In most cases, neither is a critical issue. Allocation sizes typically fall into a certain

range and do not sweep from small to large, putting the chunk re-usability into perspec-

tive. Furthermore, especially considering our virtualization efforts discussed later, memory

overhead also is not the main concern for many scenarios. Overall, the page-based queue

is the clear performance choice with great user-memory efficiency and acceptable memory

overhead. Ouroboros using this design is henceforth referred to as Ouro-S-P .

5.3.2 Queues managing chunks

One way to overcome the aforementioned issues is to store indices of chunks with free pages

directly in the queue. No matter if one or all pages are free on a chunk, it always occupies

just a single queue spot. On average, this reduces the required queue size substantially.

In the worst case, if only a single free page is left on each chunk, it needs as much space as

the page index queue. Furthermore, allocation of a new chunk results in a single enqueue

into the queue instead of one per page.

Contrary to the aforementioned queue design, both the fill counter and the bulk

semaphore are needed here. The fill counter reflects the number of chunks in the queue

while the bulk semaphore keeps track of the total number of free pages on those chunks.

The allocation procedures, shown in Algorithm 8, differ from the previous, simpler ap-

proach. Allocation follows a two-stage approach. First, the semaphore is queried as

before, but this call only guarantees a successful allocation but does not give more infor-

mation about where to locate the actual page. To locate the actual page, the current front

pointer is loaded and the chunk at this position is queried for a free page, see Algorithm 9.

In case of failure, the current thread advances in the queue to the next chunk and repeats

the query until successful. This query is a simply atomic test on the count variable of

a ChunkIndex-Chunk. Once all pages on a chunk have been allocated, it can be removed

from the queue (line 18 in Algorithm 8). As multiple chunks may become empty simulta-

neously, the front index is advanced to the largest of these; the chunk is removed from

the queue and the fill count is reduced. A re-enqueue (line 15 in Algorithm 8) is needed

as a chunk may be emptied (which means one thread will dequeue it from the queue),

but shortly after, threads free pages on it (which should result in this chunk being added

again) without noticing the prior removal, see line 2–14 in Algorithm 9. In this case it

might fall to one allocating thread to re-enqueue the chunk.

Deallocation usually only signals the arrival of a new page and sets the corresponding
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bit in the chunk’s bit-mask. The first deallocation on a chunk adds the chunk to the

queue (line 28 in Algorithm 8). The last deallocation on a chunk (line 30 in Algorithm 8)

tries to reduce the semaphore value by a full chunk capacity. If successful, it flashes the

bit mask of the chunk using atomicCAS operations. If this succeeds as well, the chunk

is removed from the queue and can be reused as any chunk type. Due to the deletion

Algorithm 8: Allocate / Free page with the chunk-based queue

1 Function allocChunk(memory manager, #pages)
2 memory manager.allocChunk(index)
3 q.enqueue(index)
4 sem.signal(#pages, #pages)

5 Function allocPage(memory manager, index&)

6 sem.wait(1, #pages, allocChunk)
7 pos← front mod size
8 while True do
9 chunk index← q[pos]

10 if chunk index 6= del then
11 chunk ← getChunk(chunk index)
12 mode← chunk.allocPage(index)
13 if mode = SUCCESS then
14 break
15 else if mode = RE ENQUEUE then
16 q.enqueue(chunk index)
17 break

18 else if mode = DEQUEUE then
19 atomicMax(front, pos + 1)
20 atomicExch(q[pos], del)
21 atomicSub(count, 1)
22 break

23 pos← pos + 1 mod size

24 return memory manager.getPage(index)

25 Function freePage(index)
26 chunk ← getChunk(index.chunk)
27 mode← chunk.freePage(index)
28 if mode = FIRST FREE then
29 q.enqueue(index.chunk)
30 else if mode = DEQUEUE then
31 atomicExch(q[chunk.queue pos mod size], del)
32 chunkQueue.enqueue(index.chunk)

33 sem.signal(1, 0)
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Algorithm 9: Allocate page from chunk

1 Function Chunk::allocPage(index)
2 while curr count← atomicSub(count, 1) ≤ 0 do
3 if curr count← atomicAdd(count, 1) < 0 then
4 return CONTINUE TRAV ERSAL
5 else if curr count = 0 then
6 mode← RE ENQUEUE

7 if curr count = 1 then
8 if mode = RE ENQUEUE then
9 mode← SUCCESS

10 else
11 mode← DEQUEUE

12 else
13 if mode 6= RE ENQUEUE then
14 mode← SUCCESS

15 mIndex← 0
16 while True do
17 mask = bitmask[mIndex]
18 while lowestbitset← findFirstSet(mask) do
19 bits← createPattern(lowestbitset)
20 mask ← atomicAnd(mask[mIndex, bits])
21 if checkBitSet(mask, lowestbitset) then
22 return mode

23 mIndex← (mIndex + 1) mod maskSize

marker, the queue location is simply skipped during allocation. A threshold can be set to

keep a certain percentage of chunks in the queue, as allocations from an empty queue are

more expensive as from a queue already holding indices.

The clear focus of this queue type is memory efficiency, as it requires less queue storage

on average. Furthermore, as chunks can easily be removed from the queue, they can also

be used for different purposes within the system again. Comparing performance to the

page-based variant, the two-stage approach will typically perform worse. This is due

to the two-stage access design. An index into the queue for the page-based queue is

automatically the page that is returned to the user. In the worst case scenario, a slight

wait time is introduced by waiting on this spot to become available. With the chunk-based

design, an index into the queue only shows a potential candidate for the second stage

of the allocation. In case the current front will not be advanced fast enough (line 19 in

Algorithm 8) given a high number of concurrent threads, this can lead to queue traversal.

Furthermore, allocation on a chunk also is more involved as a free bit has to be located
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in the bit mask, which once again is not trivial in a highly concurrent environment with

potentially hundreds of threads trying to allocate a page on a chunk.

Overall, chunk-based queues perform well enough and particularly excel at memory

efficiency. Hence, they lend themselves especially for larger instances of Ouroboros, as

described earlier, where smaller, frequent allocations are handled by Ouro-S-P and larger,

less frequent allocations are handled by chunk-based Ouroboros, henceforth referred to as

Ouro-S-C .

5.3.3 Supporting different allocation sizes

Each queue described so far is built to handle pages with the same size. For each page size,

a queue must be instantiated in memory. Since memory is a precious resource, keeping

this overhead low is crucial and a lot of applications (e.g., dynamic graphs) require more

and more of it. Furthermore, the queue capacities may have to be large to hold the desired

number of re-usable items: Consider the example of a dynamic graph where one million

vertices require reallocation, freeing and allocating one million pages. All freed pages

might end up in one queue and all allocated come from another single queue, meaning all

queues require the capacity of one million.

5.4 Virtualized Queues for Memory Management

The aforementioned queues potentially suffer from significant memory overhead. To sup-

port a multitude of different page sizes in systems with significant reuse, the memory

overhead can become prohibitive.

We introduce two variants of our queue-based memory management system, which

reduce these overheads by virtualizing the base queue and thereby only keep the currently

required queue size allocated in memory. Queue data itself is stored on QueueChunks,

allocated directly from the memory manager or from the chunk reuse queue in O(1). Once

all elements on a specific QueueChunk are freed, i.e., dequeued, it is placed in a chunk reuse

queue to be reused later, potentially as a different chunk type, further reducing potential

fragmentation. This reduces the overall memory requirements drastically compared to

the statically sized queues, greatly improving the suitability of this system to even large

use-cases like dynamic graph management.

5.4.1 Virtualized Array-Hierarchy Queue (VAQ)

A VAQ replaces statically allocated queues by a much smaller chunk pointer queue (Fig-

ure 5.3). Entries of the virtual queue are stored on QueueChunks, referenced in the chunk

pointer queue. A chunk size of 8 KiB reduces the static size to 1/2048 of the original

queue plus one allocated QueueChunk to initialize the queue. For enqueue and dequeue

operations on an VAQ , the access management has to check for availability of the ref-

erenced queue slot. Each thread still determines queue positions using atomics on the
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Figure 5.3: The larger, static queue is replaced by a much smaller chunk pointer queue,
where each element points to a QueueChunk holding the actual queue data. Each
QueueChunk holds information regarding the amount of queue storage that is currently
present as well as a virtual starting index, referring to the virtual position in the queue.

front and back index. However, these positions are now virtual positions in the queue.

The QueueChunk , which holds the real position, is determined by dividing the virtual

position by the number of items per QueueChunk modulo the chunk queue size. As this

QueueChunk might not have been placed in the chunk pointer queue yet, threads have to

check if this QueueChunk is already present. This check follows the same procedure as

already introduced in Section 4.2.2 to wait for the index to become valid.

The thread assigned to position 0 on a QueueChunk pre-emptively allocates a new

QueueChunk from the memory manager, initializes it and places it in the next slot of

the chunk pointer queue—we also place one chunk during initialization. The placement

during enqueue is carried out before accessing the queue element at position 0 to avoid
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serialization of chunk pointer enqueues and to reduce waiting time for other threads that

want to access that chunk. Since the top-level chunk pointer array is always present,

different allocating threads don’t have to wait for their own chunk to exist before they

can allocate a new QueueChunk . Interleaving allocations like this further reduces the

waiting time for other threads. Threads waiting on a QueueChunk employ a strategy

of exponential back-off. While threads are waiting for a QueueChunk , i.e., if the chunk

pointer is a deletion marker, they back-off with a progressively larger timeout value for

each failed check (only possible on CC ≥ 7.0, below that calls to sleep() are replaced by

calls to threadfence()). Once the correct QueueChunk has been located, the low-level

enqueue and dequeue operations follow the same principle as detailed in Algorithm 5.

Each QueueChunk has two counters to determine the current fill-level (countA and

countB in Figure 5.3), which are stored in a single variable to allow for simultaneous

atomic manipulation. After an enqueue, both counters are incremented; a dequeue decre-

ments countB. If a QueueChunk has been fully used and emptied, countA = #spots and

countB = 0. Since the dequeues replaced all elements with deletion markers, an emptied

QueueChunk can immediately be returned for re-use to the respective queue in the memory

manager. The major difference to the previous approaches is the top-level QueueChunk

management. While this leads to one indirection and waiting overhead depending on the

queue access pressure, the VAQ greatly reduces static storage requirements.

5.4.2 Virtualized Linked-Chunk Queue (VLQ)

The VLQ (Figure 5.4) replaces the already smaller chunk pointer queue of VAQ with a

linked chunk pointer queue, reducing the static storage requirements to just three pointers

(front, back and old). Removing the static queue also removes the static size limit, as

queues can grow arbitrarily large and shrink to virtually nothing (once again, at least

one QueueChunk remains). Similar to the VAQ , threads determine their virtual enqueue

and dequeue position atomically but now start traversal at either front or back. Each

QueueChunk stores the virtual position of its first slot, such that threads can locate

their QueueChunks and stop traversal.

During enqueue, a thread reads the current back and uses the virtual position to

determine if it is at the correct QueueChunk and if so, performs the enqueue. Otherwise, it

traverses to the next QueueChunk and so on. If the next QueueChunk has not been placed

in the list yet, it spins on the next pointer using exponential back-off, until it is available

and the thread can continue the traversal. The thread with position 0 on a QueueChunk

again pre-emptively allocates the next chunk as in VAQ . Note that we allocate multiple

QueueChunks in parallel before they are placed, as threads can determine whether they

are assigned to a first slot on a chunk from virtual position. Only the placement itself,

i.e.,, setting the next pointer on the previous QueueChunk , is inherently serial.

If countA = #spots after an enqueue, all enqueues on this chunk have been finished

and the back pointer can be moved using Algorithm 10. Due to the potentially high
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Figure 5.4: Compared to VAQ , the chunk pointer queue is replaced with just three point-
ers, pointing to the front and back (as well as trailing) QueueChunks. Each QueueChunk
also has a pointer to the next QueueChunk , additional to the two counts and virtual start-
ing index.

Algorithm 10: Move front/back pointer along

1 Function Chunk::setPointer(ptr)
2 chunk ← this
3 while atomicCAS(ptr, chunk, chunk.next) = chunk do
4 if chunk.next.countA = #spots then
5 chunk ← chunk.next

pressure on the queue, threads are not guaranteed to see their chunks being full in the

correct list order. Hence, only the thread that fills up the QueueChunk to which back
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currently points, moves it along the list to the first non-full chunk. After a successful

swap, the thread continues with the next chunk as it may have filled up earlier (and the

atomic-Compare-and-Swap of another has failed). After a successful swap operation, the

next chunk is checked as well for countA = num spots (see line 4) and the operation is

repeated as long as the next chunk is full. If a swap operation does not succeed, no

further changes are required, as some other thread will perform it later. This reduces the

amount of traversal, as only threads, which read the back pointer before the update have

to traverse. As each QueueChunk holds many queue slots (2048 on 8 KiB chunks), the

traversal is further reduced.

A dequeue operation starts from front and traverses to its assigned QueueChunk

using the virtual position. The low-level dequeue is performed as in the VAQ ; after a

successful dequeue, countB is decremented. If countA = #spots and countB = 0, all

enqueue/dequeue operations on a chunk are completed and the front pointer is moved, as

in Algorithm 10. Additionally, we count the successful moves.

Moving the front pointer does not immediately remove the corresponding

QueueChunks. This is crucial, as other threads may still be reading from this

QueueChunk during traversal, hence immediate re-use might overwrite data still in

use. Hence, removing these QueueChunks too early would potentially prohibit forward

progress for certain threads. While we could use hazard pointers [34], they would

introduce a significant overhead. Instead, we delay the clean-up by introducing the old

pointer, which lags behind the actual front. When moving front, we increment another

variable, old count, and only if it passes a threshold t, old is also moved and the

QueueChunks are submitted for reuse. Thus, we always leave a trail of ≥ t chunks behind

front. t is determined heuristically from the number of potentially concurrently-active

threads, which is limited for each GPU. This results in an estimate of how many threads

might actually depend on an old, invalid front pointer. The old pointer is moved as

front, but the QueueChunks are submitted for re-use.

For all operations (enqueue, enqueueChunk and dequeue), given the on-the-fly linked-

list structure, we have to consider some GPU architecture pitfalls as well. Prior to

CC < 7.0, warps always execute in lock-step, individual threads within a warp might

take different branches, but this just masks the other threads and all threads within a

branch once again execute together. To take an example, if one thread within a warp is

responsible for allocating the next QueueChunk but other threads within the same warp

depend on this QueueChunk , it is important to force the hardware to first allocate the

next chunk before letting the other threads execute. This can be accomplished by building

on warp-synchronization primitives to let threads within a warp determine what kinds of

jobs each one has to do. At the beginning, all active threads are queried and all check, if

at least one of them has to perform work on the current chunk. If this is true at least for

one of them, these threads are prioritized to do their work first, halting the other threads,

as can be seen in Algorithm 11 in lines 5 to 9.
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Algorithm 11: Guarantee warp progress by letting all threads successively over
chunks

1 Function guaranteeWarpProgress(position)
2 activemask ← activemask()

3 work not done← true
4 while true do
5 predicate← checkVirtualStart(position)
6 if any sync(activemask, predicate) then
7 if predicate then

// Execute enqueue/dequeue

8 work not done← false

9 sync warp(activemask)
10 if any sync(activemask, work not done) then
11 if work not done then

// Traverse to next chunk

5.5 Framework

As part of a wider survey, we provide our complete test framework as well as an inter-

face to all tested memory managers in a public repository on GitHub. This includes

CUDA-Allocator , XMalloc, ScatterAlloc, Halloc, RegEff and Ouroboros. FDGMalloc is

also included, but crashes in most test scenarios and also does not allow for general purpose

free and re-use over multiple kernel launches, hence it was omitted for the final evaluation.

All frameworks, except for Ouroboros and the CUDA-Allocator , are configured to generate

code for the pre-Volta architecture, as they rely on warp-synchronous behavior to function

correctly.

Algorithm 12: End-to-end usage example

// MemoryManagerType can be any of the listed memory managers

1 using MM = MemoryManagerType;

// GPU code

2 global void deviceKernel(MM mm)

3 void* ptr = mm.malloc(size);
4 mm.free(ptr);

// CPU code

5 MM mm(SIZE);
6 deviceKernel≪gridSize, blockSize≫(mm);

Algorithm 12 shows a typical usage example. Each memory manager is instantiated

https://github.com/GPUPeople/GPUMemManSurvey
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on the host with a configurable size of the manageable memory. This memory manager

can then be passed to device kernels and offers the standard malloc/free interface. Using

this framework, one can integrate a memory manager into an existing project and simply

swap out one declaration to change between memory managers, allowing for a simple

benchmarking setup. The full test suite (including results for the NVIDIA TITAN V and

NVIDIA RTX 2080Ti) can be found on GitHub.

5.6 Evaluation

All performance measurements were conducted on an NVIDIA TITAN V (12 GB V-RAM)

and an Intel Core i7-7700 with 32 GB of RAM and took around 600 h (roughly 31
2 weeks)

to complete. Additional results on an NVIDIA RTX 2080Ti (11 GB V-RAM) can be

found on GitHub. The framework is CMake-based and runs both on Linux and Windows.

All given results were captured on Linux with gcc 10.2.0 using NVIDIA CUDA 10.2. Not

all tested frameworks also work correctly with independent thread scheduling behavior

introduced with the Volta generation of NVIDIA cards [41]. For these, we pass compute 60

to the compiler to enforce warp-synchronous execution. Considering Ouroboros, S|V A|V L

denote standard, virtualized array-hierarchy and virtualized linked-chunk methods, P |C
define if page or chunk indices are stored. This results in the variants Ouro-S-P , Ouro-S-C ,

Ouro-VA-P , Ouro-VA-C , Ouro-VL-P and Ouro-VL-C .

All frameworks were setup with 8 GB of manageable memory. Only the out-of-memory

testcase was initialized with 2 GB for reduced run times. Variants of RegEff were built

with warp-coalescing turned off, as this did not work for any of the testcases. We use as

a baseline a simple memory manager built on atomics on a shared offset (referred to as

Atomic), but this is no true memory manager due to the lack of deallocation. We use a

consistent color scheme throughout all plots to save on space, this color map can be seen

in Figure 5.5.

5.6.1 Initialization & Register Requirements

Evaluating initialization performance, the CUDA-Allocator only sets its size limit and

hence is clearly fastest (≤ 0.05 ms), followed by Atomic and standard variants of Ouroboros

(∼6 ms). The virtualized variants of Ouroboros take a little bit longer than the standard

variant as the memory has to be flushed with the deletionmarker first, so that each chunk

is instantaneously usable for any kind of purpose. All other approaches are close in ini-

tialization performance (30 ms–40 ms), except for Halloc, which is on about 5.5× slower

CUDA

Halloc

Ouro - C - S Ouro - C - VA Ouro - C- VL

Ouro - P- S Ouro - P - VA Ouro - P- VL

AtomicReg – Eff - C

Reg – Eff - CF

Reg – Eff - CFM

Reg – Eff - CM

ScatterAlloc

XMalloc

Figure 5.5: Color scheme used henceforth for all tested approaches.

https://github.com/GPUPeople/GPUMemManSurvey
https://github.com/GPUPeople/GPUMemManSurvey
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Figure 5.6: Manageable Memory Initialization Timings as well as register requirements
for malloc() and free() respectively.

compared to the average initialization time, as can be seen in Figure 5.6a.

We also evaluate register requirements for malloc and free respectively, as can be seen

in Figure 5.6b. The respective malloc implementation requires more registers than free for

all approaches. The four variants of RegEff , as suggested by the paper title, use the least

amount of registers both for malloc and free, closely followed by the CUDA-Allocator .

Halloc and ScatterAlloc require around 40 registers for malloc and between 20-30 registers

for a call to free. Ouroboros is slightly more resource intensive for the malloc case, with

around 50 registers for the chunk-based approaches and around 40 registers for the page-

based counterparts, while free is similar to Halloc and ScatterAlloc with slightly more than

20 registers. Only XMalloc shows a large discrepancy between malloc (168) and free (24).

5.6.2 Allocation Performance

To evaluate allocation performance, we investigate three different scenarios, all tested on

the range 4 B–8192 B:

� Allocation performance for 10 000 and 100 000 allocating threads or warps

� Allocation performance for mixed sizes (thread-based)

� Performance scaling for varying numbers of threads for powers-of-two between 20 -

220

5.6.2.1 Allocation Performance for Allocation Size

We test 10.000 (as shown in Figure 5.7) and 100.000 (as shown in Figure 5.8 and Figure 5.9)

allocations in the range between 4 B–8192 B. For comparison with the NVIDIA Titan V,

performance on the NVIDIA RTX 2080Ti is shown in Figure 5.10. As the overall pattern

remains remarkably the same, we will showcase results only from the TITAN V for sake

of brevity (full results can be found on GitHub).

https://github.com/GPUPeople/GPUMemManSurvey
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(a) Allocation performance 10K, with ScatterAlloc performing best for small allocations and page-
based Ouroboros being the overall best choice.
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(b) Deallocation performance 10K, best performers are variants of RegEff and ScatterAlloc.

Figure 5.7: Thread-based allocation/deallocation performance for 10 000 allocations (5.7a
and 5.7b) for the range 4 B–8192 B.
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Figure 5.8: [Titan V] Thread-based allocation performance 100K, small allocations fa-
voring ScatterAlloc with page-based Ouroboros performing best overall again.
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Figure 5.9: [Titan V] Thread-based deallocation performance 100K, best performance
shown by ScatterAlloc, Halloc and variants of RegEff .
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(a) [2080Ti] Allocation performance 100K, here page-based Ouroboros is the best choice even for
smaller allocations as well as for large onces.
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(b) [2080Ti] Deallocation performance 100K, best performance achieved by ScatterAlloc, Halloc
and variants of RegEff .

Figure 5.10: Thread-based allocation/deallocation performance for 100.000 allocations
(5.10a and 5.10b on the NVIDIA RTX 2080Ti) for the range 4 B–8192 B, which shows
the same overall pattern as Figure 5.8 and Figure 5.9.
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(a) Allocation performance 10K, with ScatterAlloc improving its lead for small allocations and
Halloc also improving for small allocations.
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(b) Deallocation performance 10K, still ScatterAlloc and variants of RegEff perform best here.

Figure 5.11: Warp-based allocation and deallocation performance for 10 000 allocating
warps (one thread per warp allocating).
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Warp-based allocation and deallocation performance (with one thread per warp allo-

cating) with 10.000 warps can be seen in Figure 5.11. The performance results suggest

that the CUDA-Allocator has some larger, divisible unit that can be split into smaller

sizes. This is clearly visible in the characteristic staircase pattern visible for both alloca-

tions and deallocations. Interestingly, performance of the native CUDA allocator can be

divided into three intervals:

� Allocations ≤ 64B: the time per allocation is constant, indicating a padding to 64 B;

� Allocations between 64 B–1024 B: the allocation time increases with size;

� Allocations larger than 2048 B: allocation is approximately 110–160× faster than a

1024 B allocation, followed again by an increase in time.

Furthermore, it seems it has more than one size for this unit, as there is a clear split in

performance right before 2048 B. CUDA-Allocator also is the only approach with deal-

location performance consistently above 1 ms. CUDA-Allocator is seemingly not directly

re-using freed pages, as there is no difference between the first and any following allocation

after freeing the previously allocated memory.

ScatterAlloc performs best (staying even close to the atomic baseline) until it has to

start searching for contiguous free blocks, resulting in a steep drop in performance at

around 2048 B. Performance for Ouroboros is double-edged. The chunk-based variants are

considerably slower than ScatterAlloc, but outperform the CUDA-Allocator up to its unit

split. The page-based variants are very close in performance to ScatterAlloc for smaller

sizes, but considerably outperform all other approaches for larger sizes. Halloc performs

well until its hand-off to the CUDA-Allocator . RegEff does not perform well with thread-

based allocation methods. This is not helped by the problem that warp-coalescing (which

would allocate one large allocation for all allocation requests within a warp) does not

complete in any of the testcases, as there seem to be problems with deleting parts of this

larger allocation. XMalloc falls in between CUDA-Allocator and Halloc performance-wise,

but is unstable, only being able to finish the testcase for 10.000.

Considering deallocation performance, the results once again show a clear split be-

tween the CUDA-Allocator and all other approaches. Interestingly enough, performance

still follows a staircase pattern and is orders of magnitude slower. XMalloc falls again

in the middle but remains unstable at higher thread counts. The variants of Ouroboros

are next, as they not only alter some state information during free, but also potentially

enqueue pages or chunks into the respective queues. Slightly faster still are ScatterAlloc,

Halloc and the variants of RegEff , which only modify state information and do not have

to maintain an additional data structure. Nonetheless, it is important to note that con-

sidering overall performance, allocation performance clearly dominates as it is typically

orders of magnitude slower than deallocation.

Warp-based allocation changes the picture somewhat, as can be seen in Figure 5.11, in

that Ouroboros slows down a little, while RegEff gains some performance. Interestingly,
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the CUDA-Allocator also sees a change in performance, but mainly reducing the range of

performance fluctuation. Halloc now outperforms page-based Ouroboros for allocations ≤
1024 B and the two Multi -RegEff variants also start strong, but have an issue with repeated

allocations/deallocations, slowing down significantly over time. Overall, the choice still

remains between ScatterAlloc and page-based Ouroboros.

5.6.2.2 Mixed Allocation Performance

This testcase tries to highlight performance numbers during mixed allocation, i.e., if dif-

ferent allocation sizes are allocated during one kernel call. To evaluate this, each thread

requests an allocation from a certain range of available sizes. The lower bound is 4 B, while

the upper bound ranges between 4–8192 B, a value is randomly chosen in this range. Once

again, we look at 10.000 as well as 100.000 allocating threads, allocation performance for

100.000 is shown in Figure 5.12.

Considering smaller allocation ranges, ScatterAlloc clearly performs best once again,

followed by Halloc and page-based Ouroboros. After increasing the range to 4–1024 B, page-

based Ouroboros clearly shows its strength. The CUDA-Allocator shows its characteristic

spike at 2048 B, after which performance increases again. Clearly visible are also the

struggles experienced by the variants of RegEff , which frequently crashes in this kind

of environment. XMalloc is very stable over the range where it still works, but larger

allocation sizes still pose problems.
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Figure 5.12: Mixed allocation performance for 100.000 allocations in the range 4 B to
4 B–8192 B (4 B–4 B, 4 B–8 B, · · · , 4 B–8192 B)
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Figure 5.13: Allocation performance scaling for 16 B, 64 B, 512 B and 8 KiB (5.13a -
5.13d).

5.6.2.3 Performance Scaling

To assess performance scaling, we test the range of 4 B–8192 B and vary the number of

threads between 20 - 220. Four examples are shown in Figure 5.13a to Figure 5.13d.

The CUDA-Allocator shows a similar pattern over the whole range, staying relatively

flat up until 1000 threads and then slowly increase for increasing numbers of threads.

Especially for smaller allocations sizes, its comparatively poor performance is clearly no-

ticeable, only surpassed by certain variants of RegEff . Figure 5.13a and Figure 5.13b still

show Halloc keeping up well with ScatterAlloc, which performs clearly best and stays even

close to the atomic baseline, and page-based Ouroboros, which has a very consistent slope

over all tested sizes. All three remain flat for one order of magnitude longer than the other

approaches. But especially for increasing allocation sizes, as can be seen in Figure 5.13c

and Figure 5.13d, Halloc first and then also ScatterAlloc slows down, while page-based

Ouroboros still shows a very consistent performance profile over the full range. Variants

of RegEff show an unusual pattern as they start decreasing in performance much earlier
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Figure 5.14: Deallocation performance for 16 B, 64 B, 512 B and 8 KiB (5.14a - 5.14d).

compared to the other approaches. This is true even for small thread counts, as can be

seen in Figure 5.13a and Figure 5.13b. Figure 5.13d shows the performance discrepancy

between page-based Ouroboros and all other variants very clearly for larger allocation sizes.

XMalloc shows good performance, especially for very small numbers of threads and also

smaller allocation sizes, but is too unstable for larger number of threads or allocations.

Considering deallocation performance in Figure 5.14a to Figure 5.14d, performance is

much more homogeneous, as there is little difference between different allocation sizes.

The CUDA-Allocator once again is left behind and for smaller allocation sizes, there exist

a small performance gap between Ouroboros and the other approaches, which closes for

larger allocation sizes. This gap can be explained by the additional work to be done by the

queue-based Ouroboros, which, compared to the others, not only updates state variables

but also inserts elements into a queue.
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5.6.3 Fragmentation

We consider two testcases to evaluate fragmentation. We explore fragmentation during

allocations of different sizes and efficient memory usage with an out-of-memory testcase.

5.6.3.1 Fragmentation Range Testcase

To assess fragmentation from outside the allocators, we track the maximum address range

for a number of allocations as well as the maximum address range after 100 iterations

of allocations and deallocations. The former result can be seen in Figure 5.15. CUDA-

Allocator always reports back the maximum possible range, which might suggest that it

starts allocating from both ends of its memory region. The same is true for XMalloc

(which crashes early unfortunately). Ouroboros stays close to the baseline and shows the

best utilization, given its alignment to powers of two. Halloc comes second, followed by

ScatterAlloc and then RegEff .

5.6.3.2 Out-Of-Memory Testcase

This testcase performs allocations until either out-of-memory is reported by the system

or an allocator did not finish within an hour of runtime. Figure 5.16 reports how often

such an allocation with 100.000 threads was possible as a ratio of the maximum number

of iterations possible given the memory size. The alignment of 16 B is clearly visible here,

as all approaches report increased utilization between 4 B up to 16 B. Ouroboros clearly

shows the best utilization, with 98 % or higher for all variants after 16 B. ScatterAlloc
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Figure 5.15: Fragmentation with theoretical baseline, tracking the maximum address range
returned by the allocators for given allocation size with 100.000 allocations.
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Figure 5.16: Out-of-Memory testcase, tracking the number of allocation rounds per size
as a fraction of the theoretical baseline.

comes second, even reaching full utilization halfway through the test case. Halloc cannot

reach full potential for larger sizes, as these are directed towards the CUDA-Allocator .

For smaller sizes, it comes close to 75 %, which is due to marking chunks as busy

early and the reduced memory size due to the split with the CUDA-Allocator . CUDA-

Allocator as well as RegEff do not finish but are reined in by the one hour mark (the

other approaches typically finish each test case in less than a minute), as both approaches

slow down with an increasing number of allocations. XMalloc has problems with stability,

returning various violations if memory is not freed.

5.6.4 Real-World Performance

5.6.4.1 Work Generation

This test case emulates a real-world example of a set of threads producing work. The

memory manager performance can then be compared to the canonical approach of using

a prefix-sum plus allocation from the host.

We test two ranges, 4–64 B (in Figure 5.17) of work generated per thread as well

as 4 B–4096 B (in Figure 5.18). We launch an increasing number of threads and also

compare to the Baseline built on a prefix-sum from CUB. For the smaller range, as in

Figure 5.17, only ScatterAlloc is able to consistently outperform the Baseline, Halloc also

stays very close over this range. Page-based Ouroboros shows similar performance up to a

few thousand threads and then falls slightly behind, with all other approaches considerably

slower. For the larger range, as in Figure 5.18, Halloc slows down, with only ScatterAlloc

and page-based Ouroboros outperforming the Baseline up to tens of thousands of threads.
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Figure 5.20: Write performance to allocated memory compared to the Baseline (Baseline
uses CUB prefix-sum) for the range 16 B–128 B (5.19 for 100 000 allocations.

5.6.4.2 Memory Access Performance

On the GPU, not only allocation speed but also memory access speed is crucial. To evalu-

ate alignment, we test the uniform and mixed case with 217 allocations between 16 B–128 B.

Each thread reads and writes to its assigned memory. As shown in Figure 5.19, Ouroboros

stays closest to the fully coalesced baseline, closely followed by XMalloc, ScatterAlloc and

Halloc. RegEff and the CUDA-Allocator show poor access times.

5.7 Discussion

Ouroboros introduces a novel approach for memory reuse based on array-based queues,

improving upon the strengths of previous approaches. By expanding the data structures

to allow for bulk allocation and virtualizing its base structure, we achieve efficient memory

reuse and high allocation performance. By only keeping the current allocation state in

memory, Ouroboros’s advanced queueing structures significantly trim down the memory

overhead that comes with queue-based memory management.

We propose six configurations of Ouroboros, each managing pages, allocated from

larger chunks of memory. The base queue operates either on pages directly or on chunks
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holding pages, trading allocation speed for memory overhead. They can be realized fully

in memory, virtualizing the queue by storing queues on chunks of memory using a small

pointer array or just keeping pointers to the beginning and end of the queue. Each

virtualization step reduces the inherent memory overhead at the cost of a slight decline in

performance.

As we performed a thorough evaluation of all other memory managers as well, we now

provide a short discussion on the merits of each tested approach.

The CUDA-Allocator offers a reliable option with a small register footprint. It works

for any size and has very consistent performance, showing virtually no difference between

mean and median performance. Unfortunately, its performance is comparatively weak

overall, being consistently outperformed by all approaches for smaller allocations (up to

around 2048 B, where its split is occurring) and only allocations larger than that favor

it against a few other approaches. Furthermore, performance continuously increases with

the amount of allocations and also appears to be dependent on the size of the manageable

memory. Increasing this memory area is possible only by destroying the current context.

XMalloc is held back by its age, as it is not stable and fails most test cases, especially

for larger allocation counts and mixed allocation sizes. It also represents an outlier in

register footprint, which decreases its suitability even further.

ScatterAlloc is a very efficient dynamic memory manager with a clear focus on small

allocations (performs clearly best for allocations ≤ 512 B and is competitive up to 2048 B).

This also makes it the clear choice for any operation largely focused on smaller allocations,

like the smaller synthetic workload case shown in Section 5.6.4.1. Larger allocations lag

behind a bit and memory fragmentation also is not great due to scattering of memory

accesses. Furthermore, increased thread contention affects ScatterAlloc more than others.

ScatterAlloc is also very stable and can increase its manageable memory size at runtime.

It also performs equally well for thread-based and warp-based allocations.

Halloc performs well until the point where it hands off to the CUDA-Allocator , staying

reasonably close to page-based Ouroboros and ScatterAlloc for smaller allocations. It is

clearly optimized towards warp-based allocations (outperforming page-based Ouroboros in

this case), as thread-based performance is third best in the testset, but clearly behind the

first two. It also splits its memory into two sections to accommodate larger allocations

with the CUDA-Allocator and sacrifices some memory for increased performance, but

performs second best when it comes to pure fragmentation.

RegEff comes in four different variants and shines when it comes to resource require-

ments, requiring the least amount of registers of all approaches. Unfortunately, perfor-

mance is a mixed bag, with a large discrepancy between thread-based and warp-based

performance (clearly favoring warp-based) and also very inconsistent performance, leading

to significant differences between mean and median performance. Similar to the CUDA-

Allocator , performance drops for increased saturation of the memory pool and fragmen-

tation also is not great. Furthermore, not all variants are entirely stable and also none of

them do return 16 B aligned memory, leading to issues with vector operations.
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Ouroboros offers six variants of its allocator, which all excel when evaluating memory

usage and fragmentation, but differ when it comes to performance. Its chunk-based vari-

ants outperform the CUDA-Allocator for allocations ≤ 2048 B, but fall behind for larger

allocations due to their two-stage access design. Page-based Ouroboros shows best perfor-

mance overall, especially when considering thread-based allocations. Overall, Ouroboros

favors thread-based allocations. It also shows some difference between mean and median

performance, as re-use is drastically faster than allocating from an empty queue initially.

Multiple instances can be stacked to allow for larger allocation sizes.

Our evaluation leads to the following conclusions:

� Thread-based Allocation

– If an application mainly requires small allocations (≤ 512 B), ScatterAlloc is

the clear choice with Halloc and the page-based Ouroboros staying close.

– Larger allocations (≤ 2048 B) favor Ouroboros, followed by Halloc, CUDA-

Allocator and ScatterAlloc.

– Overall, page-based Ouroboros performs best, followed by ScatterAlloc, Halloc

and the CUDA-Allocator .

� Warp-Based

– ScatterAlloc performs best up to 4096 B

– Halloc also improves its performance, outperforming page-based Ouroboros up

to 1024 B

– Page-based Ouroboros still is the best overall performer over the full tested

range

� If fragmentation and memory utilization is of utmost concern, Ouroboros is the clear

choice with Halloc a distant second.

� If register footprint is most important, then choosing one of the variants of RegEff

might be sensible, but only if warp-level programming is used.

� If changes to the manageable memory size are required, then only ScatterAlloc and

Ouroboros are suitable.

� Only the CUDA-Allocator and Ouroboros currently work on the newer GPU archi-

tectures with independent thread scheduling.

– This may be crucial if support for warp-synchronous execution is dropped in

future versions of CUDA.

– This also currently limits any application using XMalloc, ScatterAlloc, Halloc,

RegEff or FDGMalloc, as it would have to enforce warp-synchronous execution

globally.
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Considering the canonical example of work generation during a kernel, we showed that

most approaches perform better than the canonical prefix-sum for smaller thread counts

while ScatterAlloc, Halloc and page-based Ouroboros are a good choice even for large thread

counts. We also showed that mature approaches like ScatterAlloc and Halloc still perform

comparatively well, but that newer approaches, like Ouroboros, can leverage new hardware

capabilities to both reduce fragmentation and increase performance, as it becomes less

important to scatter memory accesses for increased performance.

Overall, considering our evaluation, performance worries with dynamic memory man-

agement on the GPU are exaggerated, as many approaches provide compelling perfor-

mance with a straightforward usage model similar to CPU programming.
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6.1 Introduction

faimGraph already considers many challenges posed by dynamic graph management and

especially excels at updating the graph structure, be it inserting or deleting edges or even

vertices. Furthermore, by offering two different internal storage formats in AOS and SOA,

it also allows to perfectly adapt to the memory architecture of the GPU depending on the

graph type at hand. Given the locality present on pages, even algorithmic performance

overall is surprisingly good and the GPU-autonomy further strengthens the capabilities of

the system.

Considering all these benefits, there still remain open challenges. For algorithms

traversing the graph structure, the linked nature of the pages introduces additional compli-

cations. On the one hand, already existing algorithms are typically written for contiguous

memory, hence would require manual adaptation to be able to run on the faimGraph data

structure as well. On the other hand, even algorithms devised specifically for the linked

structure have to make some concessions due to the memory layout, e.g., running a bi-

nary search on an adjacency requires some additional thought (and overhead) and once

again, manual intervention. Furthermore, given the fixed page size within the system, a

user always has to trade off memory access performance against memory efficiency. Small

113
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pages keep close to the minimal requirements but incur heavy traversal for denser graphs.

Large pages have the opposite effect, reducing traversal and increasing memory access

performance at the cost of more memory being wasted. Choosing the right page size can

be a challenge, especially for graphs with a larger distribution of adjacency lengths. This

choice also heavily affects update performance for dynamic graphs, once again weighing

higher update cost (and traversal) against memory efficiency as determined by the fixed

page size.

To address these challenges, we present this final design, combining the benefits of

contiguous memory per adjacency and GPU-autonomy, marrying the concepts found in

faimGraph and Ouroboros into one, called ouroGraph. As Ouroboros already leaves the

region right after its memory manager as linearly addressable memory, we can directly

place our dynamic vertices into that region. Adjacency data is now stored on power-

of-two aligned pages, allocated from larger chunks through the memory manager. This

approach presents potential algorithms with one pointer to contiguous memory, identical

to common storage formats like CSR or also both cuSTINGER and Hornet . After a

description of the underlying design, we evaluate ouroGraph against faimGraph on the

one hand, comparing update performance as well as algorithmic performance. Lastly, we

also test graph initialization and edge updates against all other memory managers.

6.2 ouroGraph

A closer look at Ouroboros, see Figure 5.1, reveals certain similarities of the overall memory

layout as found in faimGraph, compare Figure 4.1. At the beginning of the manageable

memory, both designs place a memory manager unit and the queues are placed at the

opposite end. faimGraph splits its memory from the top down into fixed-size pages,

configurable at run-time, while all variants of Ouroboros split into large, fixed-size chunks,

configurable at compile time and split into smaller, power-of-two aligned pages served to

the user. The region after the memory manager, growing towards the pages/chunks, in

both cases remains as linearly addressable memory.

This means that all dynamic graph functionality introduced with faimGraph natively

translates to ouroGraph as well. A visualization of this design can be found in Figure 6.1.

The start of the manageable memory region still houses a memory manager. Right after

that, ouroGraph allows access to this region as linearly addressable memory. This fits the

requirements of a fully-dynamic graph framework well, as dynamic vertices, growing from

the bottom-up, can be placed there. At the opposite end, the queue area can be found,

with multiple queues to serve all available page sizes within the system as well as a vertex

queue for efficient re-use of previously deleted vertices. Right after the queue area, an

optional, fixed-size stack region can be placed for temporary data required for updates or

algorithms. The rest of the memory from the top-down is split at run-time into fixed-size

chunks, which are then further split into power-of-two aligned pages usable as adjacency

storage. This design is GPU-autonomous and fully dynamic, allowing for edge as well as
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vertex updates, using the same update strategies (adapted for contiguous memory) and

algorithms as presented in faimGraph.

The main difference to faimGraph comes from the specific adjacency storage format.

While faimGraph uses fixed-size pages, linked together into a linked list, allowing for fast

changes to the allocation state with good locality on each page, it still has some overhead

in traversal, especially for denser graphs. ouroGraph deals with this issue by presenting

potential graph algorithms with contiguous memory per adjacency. This significantly

reduces the complexity of the update and graph algorithms and furthermore improves

memory locality. It also allows arbitrary scheduling patterns and traversal strategies as

one is not bound by arbitrary page sizes. Updating edges for a graph can be potentially

faster or slower. This is dependent on the number of updates that lead to changes in

the allocation state for ouroGraph, as this incurs higher cost through moving existing

adjacency data instead of just adding or releasing a page to the memory manager, as in

faimGraph. As long as the number of potential allocation state changes stays reasonably

small, the improved access performance does improve performance overall.

As the number of allocation state changes grows, the overhead inherent with copying

over adjacency data from a previous allocation this performance benefit shrinks and might

even result in a slight overhead overall. We opted to not over-allocate the individual

adjacencies (i.e., an adjacency requiring 32 B will get exactly 32 B) as we value memory

efficiency over slightly increased update performance. Nonetheless, other approaches could

be chosen. One potential candidate would allot overhead with exponential falloff, hence

small adjacencies, which are at higher risk of reallocation, would get more potential space

to reduce the occurrence of reallocations while larger adjacencies would get little to no

overhead.

The same consideration applies to shrinking an adjacency once edges have been deleted.

The chosen model once again opts for memory efficiency (i.e., an adjacency changing from

33 B to 32 B would be reallocated) but here other considerations would also be viable (i.e.,

only shrinking after a certain threshold has been passed). Reallocating an adjacency is

done using vectorized loads/stores, but only affect performance for significant changes to a

large number of adjacencies. Overall, this overhead is amortized by increased algorithmic

performance as well as easier porting of existing algorithms and the increased memory

efficiency, allowing the storage of larger graphs in the same initial allocation.

6.2.1 Vertex Updates

Vertices are stored exactly the same as for faimGraph, as detailed in Section 4.2.3.1. Each

vertex has a number of properties (some of the optional depending on the graph type), as

can be seen in Figure 4.4. To allow for vertex insertion without reallocation, the internal

storage format is still AOS and new vertices are allocated by the memory manager either

by re-using a free vertex index or by simply increasing the dynamic array of vertices,

both achievable in O(1). Updating vertices also follows the same procedures as detailed
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in Algorithm 3 for insertion and Algorithm 4 for deletion. Compared to faimGraph, the

individual steps become slightly more efficient, especially considering compacting the graph

and finding vertex references, as no traversal is needed for each adjacency. Furthermore,

the vertex re-use queue can also be virtualized, reducing the memory overhead to a fraction

of the original footprint.

6.2.2 Edge Updates

While ouroGraph still supports both AOS and SOA layouts for the internal storage of

adjacencies, that is the point where the similarities with faimGraph end. Instead of one

fixed page size, linked together using the last 4 B, ouroGraph utilizes power-of-two aligned

pages to store the adjacency data, irrespective of the internal storage format (as can be

seen in Figure 6.1). As discussed already, we chose to assign the exact amount required

for each adjacency without any over-allocation (except the natural overhead introduced

by the alignment to power-of-two pages). This is a conscious choice based on our focus on

memory efficiency.

We still offer all three update strategies as discussed in Section 4.2.5.1, so both update-

centric and vertex-centric modes are possible. There are two differences to the general

algorithm:

1. Since we can determine the final size of the adjacency after duplicate checking, we

can, if necessary, first reallocate and transfer over the current state, and only then

insert the updates. Compare that to faimGraph, where allocations happen on the

fly as new updates are added and page boundaries are exceeded.

2. In case of sorted vertex-centric updates, instead of performing duplicate checking

on-the-fly as in faimGraph, we also do this as a pre-processing step so that we know

the final size of the adjacency and only need one reallocation request.

Edge deletion remains the same, either compacting from the back or respecting sort

order, depending on the mode. If reallocation is required, then the update adjacency is

built right on the new page with correct compaction. But once again, no traversal is

required and at most one new page is allocated and one freed per adjacency.

6.2.3 Algorithms

Algorithms running on top of the graph structure stand to gain the most by the change in

storage format. This entails a much smoother integration of existing work, as no traversal

mechanics have to be implemented. Related work, especially work primarily devised for

static graphs, typically assumes contiguous memory for its adjacencies. Removing the

requirement for traversal semantics can hence lead to an easier porting of existing work

to run on ouroGraph.
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Second, without traversal, work balancing measures can much more effectively utilize

the processing cores at hand and distribute them across the edges in question. faim-

Graph already provides an effort in the direction of work balancing, but this is limited

to balancing over fixed-size pages used for adjacency storage. Considering graphs with a

large distribution of adjacency lengths, this can be too broad of an approach to effectively

reduce the imbalances in work. Furthermore, even when work balancing over pages works

well, long adjacencies still require traversal first to reach the last page within an adjacency.

Especially in denser graphs, although sufficient and balanced utilization might be provided,

there still remains uneven, sequential traversal overhead as some threads take the first

page in an adjacency while others need to reach the last page. This introduces additional

divergence that can be detrimental to overall utilization and work balancing.

Third, basic building blocks like sorting or searching on an adjacency can be challeng-

ing to implement with traversal to resolve. faimGraph tries to counter this by already

providing an update strategy retaining sort order, such that no additional sorting should

be required. Furthermore, it slightly changes semantics during, e.g., binary search, where

at first pages are traversed linearly, always checking just the first index to initially locate

the page potentially holding an index and then the actual binary search is performed just

on this page. Nonetheless, both cases show that additional effort and care has to be taken.

Last, depending on the choice for a fixed page size, the overall memory access pat-

tern might be less than ideal. Especially when considering a size smaller than the 128 B

cacheline size, as connected pages can be anywhere in memory, memory throughput can

potentially suffer.

ouroGraph solves all of these problems by providing contiguous memory to the adja-

cencies, which alleviates traversal, makes porting trivial, usage of building blocks straight-

forward and also potentially results in less memory being transfered up and down from

global memory through the cache hierarchy.

6.3 Evaluation

All performance measurements were conducted on an NVIDIA TITAN V (12 GB V-RAM)

and an Intel Core i7-7700 with 32 GB of RAM.

Additional results on an NVIDIA RTX 2080Ti (11 GB V-RAM) can be found on

GitHub. The framework is CMake-based and runs both on Linux and Windows. All

given results were captured on Linux with gcc 10.2.0 using NVIDIA CUDA 10.2. Not

all tested frameworks also work correctly with independent thread scheduling behavior

introduced with the Volta generation of NVIDIA cards [41]. For these, we pass compute 60

to the compiler to enforce warp-synchronous execution. Considering ouroGraph, S|V A|V L

denote standard, virtualized array-hierarchy and virtualized linked-chunk methods, P |C
define if page or chunk indices are stored. This results in the variants Ouro-S-P , Ouro-S-

C , Ouro-VA-P , Ouro-VA-C , Ouro-VL-P and Ouro-VL-C . In cases which do not show if

pages or chunk were used, the results were the same for both techniques.

https://github.com/GPUPeople/GPUMemManSurvey
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Name vertices edges adj. adj. adj.
mean std. dev. max

luxembourg osm 114599 239332 2.08 0.41 6
coAuthorsCiteseer 227320 1628268 7.16 10.63 1372
coAuthorsDBLP 229067 1955352 6.54 9.82 336

ldoor 952203 46522475 48.86 11.95 77
audikw 1 943695 77651847 82.28 42.45 345

delaunay n20 1048576 6291372 6.0 1.34 23
rgg n 2 20 s0 1048576 13783240 13.14 3.63 36

hugetric-00000 5824554 17467046 3.0 0.03 3
delaunay n23 8388608 50331568 6.0 1.34 28
germany osm 11548845 24738362 2.14 0.53 13

nlpkkt120 3542400 96845792 27.34 3.09 28
nlpkkt200 16240000 448225632 27.6 2.42 28
nlpkkt240 27993600 774472352 27.66 2.22 28

europe osm 50912018 108109320 2.12 0.48 13

Table 6.1: Graph data set used for dynamic graph performance evaluation, taken from
the 10th DIMACS Graph Implementation Challenge [5].

All frameworks were setup with 8 GB of manageable memory. Variants of RegEff were

built with warp-coalescing turned off, as this did not work for any of the testcases. We use

as a baseline a simple memory manager built on atomics on a shared offset (referred to

as Atomic), but this is no true memory manager due to the lack of deallocation. We use a

consistent color scheme throughout all plots to save on space; this color map can be seen

in Figure 6.10.

Specifically evaluating dynamic graph management capabilities, we split this into two

parts: once comparing against faimGraph directly, as can be seen in Section 6.3.1, and

once against all other memory managers in Section 6.3.2.

6.3.1 Evaluation against faimGraph

To evaluate the performance in a real-world scenario, we adapted faimGraph to use

Ouroboros and also the CUDA-Allocator to handle dynamic adjacency data. We will call

the version using Ouroboros ouroGraph and the version using the CUDA-Allocator Cud-

aGraph. Using these allocators, adjacency data is stored on contiguous memory pages,

compared to the linked-list of pages used in faimGraph. This speeds up the adjacency

access and manipulation significantly and further simplifies the framework interface. The

rest of the faimGraph framework remains unchanged. With this setup, we can also com-

pare to other graph framework, like aimGraph [60], cuSTINGER [22], Hornet [13] and

GPMA [46]. faimGraph has its queue initialized to 2 000 000 elements and uses 64 B

pages. The algorithms were only modified to account for different adjacency traversals

between ouroGraph and faimGraph. The used graph data set is listed in Table 6.1 .
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Figure 6.2: Graph Initialization Timing for all variants of ouroGraph as well as faimGraph
and CudaGraph.

6.3.1.1 Initialization

faimGraph and ouroGraph are initialized similarly: both first determine memory require-

ments in parallel and then efficiently write adjacencies. For CudaGraph, the initialization

cannot be sped up similarly as no knowledge about the data layout and underlying struc-

tures is available, which forces us to rely on a separate call to malloc() for each adjacency.

The main difference in the initialization between virtualized ouroGraph and faimGraph is

that ouroGraph flashes the complete memory with deletion markers first. This is neces-

sary such that all chunks can immediately be used as QueueChunks without initialization,

as this empty state is required of a queue. faimGraph, on the other hand, has to perform

extra traversal and linkage of pages during the setup. These differences in the initialization

are directly reflected in performance as shown in Figure 6.2.

Both faimGraph and ouroGraph outperform CudaGraph by an average of 1785×. For

smaller and sparser graphs, faimGraph has the performance edge, as little to no page

traversal is needed and it does not flash the complete memory as ouroGraph does. For

denser and/or larger graphs, the difference shrinks or even reverses, as the included over-

head of ouroGraph gets amortized by its more efficient memory access patterns. Concern-

ing the memory footprint, it is clearly visible that both virtualized variants outperform

standard ouroGraph and faimGraph in all cases, reducing the memory footprint on average

by 23–32× compared to faimGraph. For smaller graphs, faimGraph has a small edge over
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Figure 6.3: Graph Initialization Footprint for all variants of ouroGraph as well as faim-
Graph and CudaGraph.

the non-virtualized ouroGraph, but for larger (and especially sparser) graphs, standard

ouroGraph also clearly outperforms faimGraph. The difference is largest for europe, a

large graph with more than 50 million vertices, but a low adjacency degree. This increases

the memory usage of faimGraph as the 64 B pages are too large for this graph, leaving a

large portion of each page unused. ouroGraph packs each adjacency into nearly contiguous

memory, as a fitting page size can be chosen for each.

6.3.1.2 Edge Updates

We investigate edge updates to gain insight into the real-world performance of the ouro-

Graph variants compared to faimGraph and CudaGraph.

To this end, we perform edge updates with a batch size of 100 000 and (1) randomized

source as well as (2) with higher update pressure by fixing the source to a range of 1000

vertices. Note that faimGraph does not have to alter its initial adjacency data in the

insertion case (pages are appended at the back) and remaining data in the deletion case

(pages are just freed up at the back, remaining pages stay). CudaGraph and ouroGraph

on the other hand copy complete adjacencies if the update results in a larger or smaller

size compared to their current page size. This could be remedied by allowing some over-

allocation on the existing allocations. Nevertheless, ouroGraph offers simplified and more

efficient edge update procedures. The comparison in Figure 6.4–Figure 6.7 shows the clear
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advantage in allocation performance of ouroGraph over CudaGraph.

A comparison to faimGraph necessitates different angles of interpretation, as updating

a graph is multifaceted and allocation performance is only one important factor. For

smaller and sparse graphs, we observe the page-based variants of ouroGraph outperform

faimGraph. This is due to less frequent adjacency copies and/or moving smaller amounts

of data for ouroGraph. Denser and larger graphs reverse this trend when the cost of

copying individual adjacencies outweighs the more elaborate traversal of faimGraph. The

results vary when comparing our approaches to faimGraph. For smaller and sparse graphs,

adjacency copies happen less frequently and/or have to move smaller amounts of data.

For these cases, we see the page-based variants of ouroGraph outperform faimGraph. For

denser and larger graphs this trend reverses when the cost of adjacency copies outweighs

the more elaborate traversal of faimGraph. Chunk-based variants of ouroGraph show less

favorable performance compared to faimGraph, as (randomized) updates cause lots of

chunks with just few pages to be enqueued. CudaGraph performs worst in all cases, being

orders of magnitude slower for larger graphs.
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Figure 6.4: Edge insertion with 100 000 updates with random update source.
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Figure 6.5: Edge deletion with 100 000 updates with random update source.
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Figure 6.6: Edge insertion with 100 000 updates with source focused on a small range
(1000) of vertices to simulate higher update pressure.
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Figure 6.7: Edge deletion with 100 000 updates with source focused on a small range
(1000) of vertices to simulate higher update pressure.
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Figure 6.8: PageRank speedup of ouroGraph over faimGraph, highlighting the benefits of
the contiguous memory layout of ouroGraph.

6.3.1.3 Algorithms

We also evaluate algorithmic performance of ouroGraph and faimGraph using PageRank

and Static Triangle Counting (STC). Presenting an algorithm with contiguous memory

instead of partially-contiguous, linked memory (faimGraph) opens up performance poten-

tial, especially on the GPU. Furthermore, as ouroGraph eliminates the need for traversals,

thread divergence and extra memory accesses are reduced. Lastly, as ouroGraph resem-

bles more popular data structures like Compressed-Sparse-Rows (CSR), it is convenient

to port efficient algorithm implementations. This makes it an ideal candidate to utilize

efficient algorithm implementations of others without the need to convert the adjacency

traversal to a proprietary structure.

PageRank Performance comparison using PageRank (Figure 6.8) clearly brings forward

the benefits of ouroGraph—without thread divergence and page traversal, the GPU can

get perfect memory access on adjacencies. Throughout the test set, performance benefits

of ouroGraph are between 6–100% (50 % on average) with the contiguous adjacencies

compared to the linked pages of faimGraph.

STC With STC we see the same trajectory. ouroGraph can significantly reduce the

amount of excess memory accesses and improve code efficiency. Furthermore, we can bal-
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Figure 6.9: STC speedup of ouroGraph over faimGraph, displaying the benefits from
contiguous memory, also allowing for more efficient binary search on the adjacency.

ance the number of workers per adjacency with greater freedom, as this is not constrained

by the page size. Compared to PageRank, which allows for a comparatively simple setup,

we can significantly reduce the register usage between faimGraph and ouroGraph, as the

algorithm can work with indices alone and does not require larger iterators. The perfor-

mance difference is again significant, see Figure 6.9.

On average, performance is 1.8× higher (ranging from 1.03–2×) comparing ouroGraph

to faimGraph. When starting whole warps per adjacency, we can more efficiently read

in adjacency data and use shuffle instructions to communicate, regardless of adjacency

size. This is limited in faimGraph—due to the fixed page size. Overall, faimGraph is a

better option, only if update performance for large graphs is more important than algo-

rithmic performance. CudaGraph falls short on update performance in all cases, leaving

only good algorithmic performance as a positive. ouroGraph is close to faimGraph’s up-

date performance, but significantly reduces memory requirements and boosts algorithmic

performance. For smaller graphs or more elaborate algorithms, ouroGraph provides an

enticing new approach to dynamic graphs on the GPU.
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Figure 6.10: Color scheme used henceforth for all tested approaches.

6.3.2 Evaluation against other memory managers

Lastly, we also set up a simple graph framework capable of edge updates but not necessarily

dynamic vertices using all memory managers. We test graph initialization performance

for a smaller selection of graphs taken from the DIMACS10 graph data set [5] as well as

updating the adjacencies.

6.3.2.1 Graph Initialization

Each adjacency is aligned to a power of two and the results of a setup from scratch.

Allocating each adjacency individually, performance can be seen in Figure 6.11.

CUDA-Allocator performs worst in all scenarios, followed by the variants of RegEff and

chunk-based ouroGraph. Halloc and page-based ouroGraph perform similarly, once again

beaten by ScatterAlloc, as most graphs are sparse and require many small allocations.

However, it is important to point out that since ouroGraph, given a certain graph to
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Figure 6.11: Dynamic graph initialization comparing the evaluated memory managers,
each adjacency is allocated through the respective system.
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initialize, results in a deterministic allocation state and can easily be setup in parallel

with some precomputation of the requirements instead of this incremental build. This has

been omitted in this case just to evaluate pure allocator performance during initialization.

ouroGraph supports both a build from an existing graph (using precomputation) as well

as an incremental build.

6.3.3 Edge Updates

We also consider updating the graph. As soon as an existing adjacency crosses over a

power-of-two barrier during an allocation change, we allocate a new adjacency, move over

the current data and free the old adjacency. We test multiple scenarios, including uniform

updates as well as updates focused on a range of source vertices, to simulate more update

pressure, which can be seen in Figure 6.12 and Figure 6.13. This testcase also highlights

the ability to support concurrent allocations and deallocations, as each allocation change

requires both allocation and deallocation. Once again, the CUDA-Allocator takes the

most amount of time, followed by RegEff and then chunk-based ouroGraph. Page-based

ouroGraph, Halloc and ScatterAlloc all perform equally well in this case.

One thing that sets ouroGraph apart as a memory manager for the scenario of dynamic

graphs is the linearly addressable region at the beginning of the manageable memory area.

This allows a seamless integration of the dynamic nature of vertices, as introduced in faim-

Graph, also in ouroGraph.
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Figure 6.12: Edge insertion focused on a small range of source vertices with 100 000 updates
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Figure 6.13: Edge deletion focused on a small range of source vertices with 100 000 updates

6.4 Discussion

ouroGraph combines the best of both worlds by incorporating Ouroboros into faimGraph,

resulting in a fully-dynamic graph management system for the GPU with contiguous mem-

ory for its adajcencies. It offers a variety of techniques (page-/chunk-based management

with two virtualization options) for its internal memory management, allowing the user

to cater to a specific application domain. Page-based variants can be chosen for max-

imum performance during updates with outstanding memory efficiency, only bested by

chunk-based variants at slightly reduced performance. Multiple instances of Ouroboros

can be stacked within ouroGraph to allow for even larger adjacency sizes. In this case,

a sensible solution could choose a performance-optimized, virtualized, page-based instan-

tiation for smaller allocations, which occur more frequently and let a memory-optimized,

virtualized, chunk-based variant deal with the few, large adjacencies found in some sparse

graphs. Furthermore, work balancing for algorithms can be implemented on a much more

fine-granular and adaptive level, as no page boundaries interrupt individual adjacencies.

Future work should continue at this exact point, as current work balancing measures

still remain comparatively simple (though overall effective) and the possibilities are endless

for more sophisticated work balancing measures. Secondly, currently ouroGraph always

favors memory efficiency over update speed, which could potentially be solved by sensible

or even adaptive thresholds for some additional storage per adjacency to reduce the effect

of frequent reallocation of an adjacency close to a page boundary.
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Overall, ouroGraph improves upon faimGraph primarily in the areas of memory effi-

ciency (improving by 23×–32× for the virtualized variants) as well as algorithmic per-

formance (showing speed-ups in the range of 50 %–80 % on PageRank and STC ), while

staying competitive in the realm of edge updates even with a conservative bound on mem-

ory for each adjacency.
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Conclusion

7.1 Conclusion

Dynamic graph and memory management on massively-parallel architectures like the GPU

are topics that garnered interest in recent years. The ever increasing size of networks

in highly dynamic application areas like communication, social-media and many more

sparked the creation of a handful of dynamic graph management solutions. Recent hard-

ware developments on modern GPUs (e.g., Independent Thread Scheduling and support

for blocking algorithms) also rejuvenated interest in dynamic memory management on

GPUs. As the GPU is becoming ever more popular as a general purpose processor due

to limitations in hardware manufacturing as well as its suitability for problems with high

data parallelism, we set out to provide viable solutions to both these domains.

Is it possible for a dynamic graph framework to run completely autonomously on the

GPU? We answered this question with our first foray into the area of dynamic mem-

ory management culminating in aimGraph, a dynamic graph framework, running au-

tonomously and independently on the GPU. It manages dynamic adjacency data in linked

edge blocks, which can be allocated directly on the GPU from a simple memory man-

ager. This design provides the best of both worlds for sparse graphs in terms of retaining

memory locality within an edge block while still allowing efficient, dynamic changes to

the adjacency size. Our tests showed that aimGraph is capable of millions of updates per

second, outperforming cuSTINGER, especially in initialization performance.

Is it possible to design a dynamic graph framework for the GPU that truly allows for

arbitrary growth and shrinking of both vertices and edges? The first evolution of our initial

concept manifests itself in faimGraph, our fully-dynamic graph management solution on

GPUs. It improves upon aimGraph in all aspects, introducing memory re-use queues for

more efficient memory usage, different storage formats as well as intricate update strategies

and work balancing for algorithms. Additionally, it was the first dynamic graph structure

to also allow changes to vertices, enabling insertion and deletion of vertices using similar

re-use structures as for the adjacency data. It outperforms cuSTINGER, Hornet and

131
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GPMA in terms of initialization, update rates and algorithmic performance.

Is it possible to generalize dynamic memory management on the GPU, currently used

only for specific user data, like vertices and edges, to general purpose memory management

and its management structures? Inspired by the concepts of GPU-autonomy and memory

re-use on the GPU, we broadened the scope and crafted a general purpose memory manager

for GPUs, called Ouroboros. At its core, it uses once again a memory manager and queues

on the GPU directly to manage the available memory. As memory efficiency is always our

focus, we virtualized the basic re-use queues in two variants and store the actual queue

content on dynamic chunks re-usable within the system, minimizing the memory overhead

common with array-based queues. As part of an extensive survey of the current state of

dynamic memory managers on the GPU, we showed that variants of Ouroboros clearly

perform best regarding memory efficiency and fragmentation and page-based variants of

Ouroboros even perform best over large allocation ranges.

Is it possible to use this generalized approach for dynamic graph management as well to

increase memory locality as well as algorithmic performance? Lastly, we incorporated all

dynamic graph functionality introduced in faimGraph into Ouroboros, called ouroGraph.

It fuses the best of both approaches, storing adjacency data on power-of-two aligned

pages and allows for dynamic changes to vertices as well. Based on this approach, memory

efficiency and algorithmic performance get a sizeable boost and porting existing algorithms

to ouroGraph also was simplified at comparable or slightly lower update performance.

Overall, we believe that our efforts in the areas of dynamic graph and memory man-

agement provide an initial big step towards feasible solutions for highly dynamic problems

on the GPU. Our evaluation suggest that our solutions excel in memory efficiency and

also show great performance when accessing memory, updating vertices or adjacencies or

running algorithms. By making all of our efforts open source, we hope to inspire further

work in the areas of dynamic graph and memory management and thereby increase the

utility of the GPU for many more problem domains.

7.2 Future Work

There still remain many interesting areas to explore in the future. In terms of dynamic

graph management specifically, most frameworks can already harness the parallel capa-

bilities of one GPU, but automatically scaling to multiple GPUs still is a manual task.

Especially when considering problems like locality over multiple GPUs and how to dis-

tribute both the graph and the workload remains a challenging proposition. In a dynamic

environment, such a framework would also have to consider the challenges presented by

dynamic changes, as some nodes in such a configuration could end up with ever increasing

shares of the graph. As we already provide a vertex mapping system, transferring adja-

cencies between GPUs could already be integrated seamlessly, but many considerations,

including where to place data to reduce access overhead and memory locality, have to be

focused on.
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Furthermore, all existing work considers algorithms and graph management tasks to

be disjunct during execution, occurring only one after the other. Similarly for multiple

algorithms running on the graph, these typically also execute one after the other and

concurrent execution already can be a challenging issue for efficient task scheduling. This is

especially true when considering that these algorithms come with very different properties.

Some might finish quickly, i.e., PageRank, while others might be more involved and exhibit

longer runtimes. Running multiple algorithms can certainly be more efficient to fully

utilize the parallel capacities of a GPU, but in this case already, prioritization might

be an essential component, as some algorithms provide crucial insight while others are

not time critical. Additionally, especially when algorithms take a significant amount of

time to complete, there might be little time to interject updates to the graph structure.

Changes to the graph could also originate from an algorithm, adding an additional layer of

complexity. Providing support for concurrent graph management and algorithm execution

for truly dynamic scenarios represent a significant challenge to be solved in the future.

Regarding dynamic memory management, our page-based queue shows the best perfor-

mance overall, but limits chunk reusability at this point in time. The problem stems from

the fact that each page can be stored in any location within the queue and these positions

are not trivial to find and invalidate in case of taking out a full chunk from the queue.

Future efforts could investigate possibilities for queue compaction, which would need to

find a way to invalidate indices in a queue without interrupting concurrent execution.

7.2.1 NVIDIA API & Hardware Features

Considering the recent API introduction of group-based mechanics, adding group-

based allocation strategies would be a vital addition to our efforts. Our current efforts

in aimGraph, faimGraph as well as Ouroboros put an emphasis on thread-based com-

putation. This strategy has paid off as more hardware support from NVIDIA through

Independent Thread Scheduling has greatly increased performance for such workloads.

Scheduling branches instead of warps furthermore helps performance in case of travers-

ing adjacencies of greatly varying degrees. Nonetheless, many applications still perform

best executed by multiple, cooperating threads. This is true for denser graphs especially

(all our experiments for graph-based processing typically switch to warp-based processing

after a certain average adjacency threshold) but fine-grained worker size selection could

also result in performance benefits for power-law graphs. In terms of memory manage-

ment, it would reduce the pressure on the memory manager during allocation. Building

on the Cooperative Groups API, this flexibility can be neatly integrated into all previously

mentioned frameworks.

All graph frameworks currently do not leverage shared memory in any major extent.

When processing updates with multiple threads, especially if sort order is maintained, do-

ing these operations in shared memory cooperatively and only load/store to global memory
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once could greatly improve performance as well. Recent API introductions even allow for

staging the loading of global memory into shared memory, opening up the possibility to

interleave memory transfers and computations even more efficiently.

Building on Independent Thread Scheduling, we already utilize the ability to gather cur-

rently active threads and let them cooperate at a certain section of the program. Ouroboros

uses these features already for its synchronization primitive as well as for the queues, result-

ing in potentially more memory access locality in memory. Incorporating these techniques

into faimGraph (and aimGraph) could also result in increased performance, especially

when accessing the re-use queues.

Lastly, integrating Ouroboros into the vendor-provided page-table system could open

up access to system memory through page faults. This could vastly increase the amount of

memory available to the system and thereby allow for the storage and management of even

larger graphs, at least partly, on the GPU. This could also lead to a possible solution in case

vertices can be assumed static, where no large, initial allocation is required but all chunk

allocations can be served by the page-table system, reducing the initial static requirements.

Furthermore, the recent introduction of virtual memory could also be leveraged to decrease

the initial memory footprint of the system. In this case, one could reserve a large range of

addresses up front but only map memory blocks to these addresses on demand. This way,

instead of always having to trade-off between the initial size and potential reinitializations,

all of this could be handled at run-time.
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B
Plots

B.1 Memory Manager Survey

This appendix holds all results captured during the evaluation of dynamic memory man-

agers on the GPU, and those results can also be found in the GitHub repository. All

performance measurements were conducted on an NVIDIA TITAN V (12 GB V-RAM)

and an Intel Core i7-7700 with 32 GB of RAM and took around 600 h (roughly 31
2 weeks)

to complete. We also tested on an NVIDIA RTX 2080Ti (11 GB V-RAM) and an Intel

Core i7-7700 with 32 GB of RAM and took also around 600 h (roughly 31
2 weeks) to com-

plete (these results can be found in the repository (GitHub)). Figures tagged with [Titan

V] were run on the TITAN V and [2080Ti] denotes results gathered on the 2080Ti. All

plots use a consistent color scheme, which can be seen in Figure 5.5.

B.1.1 Results on NVIDIA TITAN V

� Figure B.1 shows initialization performance as well as register requirements for mal-

loc and free.

� Figure B.2 shows thread-based allocation and deallocation performance for 10.000

and 100.000 allocating threads, both mean and median performance is shown.

� Figure B.3 shows warp-based allocation and deallocation performance for 10.000 and

100.000 allocating warps, both mean and median performance is shown. Per warp,

only one thread allocates or deallocates memory.

� Figure B.4 shows thread-based, mixed allocation and deallocation performance for

10.000 and 100.000 allocating threads, both mean and median performance is shown.

Allocation stem from a range between 4 B to 4 B–8192 B.

� Figure B.5 shows allocation performance scaling for threads in the range 20 to 220

and the byte range between 4 B–8192 B.
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Figure B.1: Initialization performance as well as register requirements for malloc and free

� Figure B.6 shows allocation performance scaling for threads in the range 20 to 220

and the byte range between 4 B–8192 B.

� Figure B.7 shows various plots, including initial and static fragmentation, out-of-

memory performance, two synthetic work generation testcases for the ranges 4 B–

64 B and 4 B–4096 B as well as memory access performance over the range 16 B–128 B

as well as for mixed allocations in the range 4 B–64 B.

� Figure B.8 shows dynamic graph initialization as well as edge updates to the graph.

100.000 updates are applied to the graph, either uniformly distributed on the graph

or focused on a source range of 1.000 vertices.
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Figure B.2: Thread-based allocation and deallocation performance for 10.000 and 100.000
threads
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(d) Deallocation performance 10K - median
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(h) Deallocation performance 100K - median

Figure B.3: Warp-based allocation and deallocation performance for 10.000 and 100.000
threads.



B.1. Memory Manager Survey 147

0.001

0.01

0.1

1

10

100

1000

10000

4 8 16 32 64 128 256 512 1024 2048 4096 8192

m
s

Bytes

(a) Allocation performance 10K - mean

0.001

0.01

0.1

1

10

100

1000

4 8 16 32 64 128 256 512 1024 2048 4096 8192

m
s

Bytes

(b) Allocation performance 10K - median



148 Chapter B. Plots

0.001

0.01

0.1

1

10

100

1000

10000

4 8 16 32 64 128 256 512 1024 2048 4096 8192

m
s

Bytes

(c) Deallocation performance 10K - mean

0.001

0.01

0.1

1

10

100

1000

4 8 16 32 64 128 256 512 1024 2048 4096 8192

m
s

Bytes

(d) Deallocation performance 10K - median



B.1. Memory Manager Survey 149

0.01

0.1

1

10

100

1000

10000

100000

4 8 16 32 64 128 256 512 1024 2048 4096 8192

m
s

Bytes

(e) Allocation performance 100K - mean

0.01

0.1

1

10

100

1000

10000

4 8 16 32 64 128 256 512 1024 2048 4096 8192

m
s

Bytes

(f) Allocation performance 100K - median



150 Chapter B. Plots

0.001

0.01

0.1

1

10

100

1000

10000

100000

4 8 16 32 64 128 256 512 1024 2048 4096 8192

m
s

Bytes

(g) Deallocation performance 100K - mean

0.001

0.01

0.1

1

10

100

1000

10000

4 8 16 32 64 128 256 512 1024 2048 4096 8192

m
s

Bytes

(h) Deallocation performance 100K - median

Figure B.4: Mixed allocation and deallocation performance for 10.000 and 100.000 threads
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Figure B.5: Scaling performance for allocation in range 4 B–8192 B
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Figure B.6: Scaling performance for deallocation in range 4 B–8192 B
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Figure B.7: Fragmentation after one round and static fragmentation after 100 rounds of
allocating a specific size and out-of-memory testcase and two synthetic workload test for
4 B–64 B and 4 B–4096 B of work generated per thread.
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