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Abstract

In modern graphics pipelines many steps, so-called shaders,
are programmable and allow us to create a variety of things
such as light effects, shadows, object manipulation, etc. These
customizable parts run on stream-multiprocessors, which
are available in hundreds on the latest Graphics Processing
Units (GPUs). Other parts are optimized for the pixel lay-
out of connected displays and are directly implemented in
hardware to be even more efficient. To support distorted im-
ages, which are widely used in Virtual Reality (VR) headsets,
an additional rendering step is needed since the rigid hard-
ware rasterizer can not be adapted to that. In this thesis, we
present an altered hardware design for a rasterization unit
to support traditional as well as distorted rendering. This
allows us to embed the otherwise costly distortion algorithm
into efficient dedicated hardware.
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1 Introduction

Rasterization is the process, executed on GPUs where the geometry descrip-
tion of a scene gets converted in pixels on a raster image. Because of their
properties, triangles are used to describe the objects of the scene. They can
be stored individually, using three vertices, or as a triangle-strips where
each new vertex together with the previous two forms a new triangle. Before
a triangle can be rasterized, its vertices have to be projected to the virtual
screen. This is done using a projection matrix in the so-called vertex shader.
Depending on the application an orthogonal or a perspective projection
can be used. The rasterization of the projected triangles is then done using

focal
point

screen

3D triangle

p'
p

Figure 1.1: Illustration of a perspective triangle projection (left) to a virtual 2D screen which
is used for rasterization (right). [1]

different algorithms. Some of the most popular ones are the scanline and
centerline algorithms [2]. Both go through the pixels in a specific order and
test if a pixel is inside or outside of the triangle. This evaluation can be
done using the line equations of each edge of the triangle [2, p.20]. With
increasing resolution, such algorithms were further improved and a tile-
based approach was implemented [3] [4]. It first rasterizes the triangles to
bigger tiles before going through every single pixel. Since this process is

1



1 Introduction

the same for all applications, it is not running on the multiprocessors of
modern GPUs, but on dedicated hardware. This allows to further optimize
the algorithm and increase parallelism, with the main drawback that it can
not be changed later on.

In VR applications the generated raster image has to be distorted at the end
of the graphics pipeline to counteract the lenses in the used headsets. This
distortion represents an additional step in the pipeline, decreases perfor-
mance and increases latency. Since the rasterizer is a fixed hardware part, a
non-linear software pipeline was implemented at the Institute of Computer
Graphics and Vision (ICG) [5]. It skips the hardware rasterizer and does that
step on the shader cores of the GPU. This allowed us, to make modifications
to the rasterization algorithm and to introduce a distortion to the pixel loca-
tion. In other words, the distortion which previously was introduced in an
extra pipeline step can already be satisfied in the rasterization procedure.

After successfully testing the software pipeline a hardware design, using
the same altered rasterization algorithm, was implemented. It was designed
in such a way that it can be configured to enable and disable the distortion
capability and switch between several distortion implementations. This
allows us to compare the increased hardware requirements, performance,
and memory throughput of different designs. Using these results together
with the overall hierarchical structure, some considerations of using the
implemented design in modern GPUs can be made, which probably would
increase their performance significantly.

2



2 Lenses in VR headsets
Vision and perception

Human eye

Visual field
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Figure 2.1: Human field of
view. [6]

The human eyes provide a field of view (FOV) of
about 200− 220◦, where each eye only sees 150◦ [7].
In a VR headset we try to cover most of this area
using one screen per eye. Due to the limited size of
the headset itself, these screens have to be placed
as near as possible to the head. Therefore, using
flat screens, it is only possible to cover a small
fraction of the possible FOV of one eye and the
experience would no longer be as immersive. One
solution would be to use curved displays which
surround each eye. But they are more expensive to
produce and the number of pixels would become
much bigger while keeping the same resolution in front of your eye. To still
be able to use a cheap and relatively small displays, most VR headsets use
lenses that break the light to increase the FOV drastically.

curved displaysmall display display + lens

Figure 2.2: Comparison of achievable FOV using normal screens, screens with lenses, or
curved displays.

The approach does also have an additional advantage; Since it uses a lens
with a radial distortion function, the area in the middle of the screen stays
mostly unaffected by the lens itself. The area on the outside instead has to
be mapped to the border of the screen and therefore also the resolution of

3



2 Lenses in VR headsets

the image will get worse. But since the focus of the displayed scene most
often is in the middle of the screen this is not that bad and we can get an
immersive experience without having to render the scene at a very high
resolution.

Nevertheless, to counteract the lens distortion, the image displayed on the
screen has to be distorted too. Such an inverse distortion, also known as
barrel distortion, can be seen in figure 2.3.

Figure 2.3: Example of a barrel distorted images suited for the left and right eye on a VR
headset. [8]

2.1 Lens distortion models

Typically we distinguish three types of lens distortions:

• Barrel distortion
• Pincushion distortion
• Mustache distortion

The one produced by a typical lens of a VR headset is the pincushion
distortion. The inverse distortion that has to be applied to the image is the
barrel distortion. Several methods try to model this distortion and split it
up into a distortion depending on the distance to a center point (sec. 2.1.1)
and a distortion depending on the angle between the lens and the image
plane (sec. 2.1.2). [10]

4



2 Lenses in VR headsets

Figure 2.4: Pincushion (top) and barrel distortions (bottom). [9]

2.1.1 Radial distortion

The radial distortion only depends on the distance of a point on a plane to
a selected center point (x0, y0) on the same plane. This distance is then used
to change either the x and y coordinate.(

x
y

)
=

([
xd
yd

]
−
[

x0
y0

])
· f (r) (2.1)

r =
√
(xd − x0)

2 + (yd − y0)
2 (2.2)

In term of simplicity we assume that the center of the image plane (0, 0)
corresponds to the chosen center point:(

x
y

)
=

[
xd
yd

]
· f (r) (2.3)

r =
√
(xd)

2 + (yd)
2 (2.4)

Polynomial model

As the name suggests the polynomial model uses a polynomial function
that tries to approximate the distortion of the lens:

f (r) = 1 + k1 · r1 + k2 · r2 + ... + kN · rN (2.5)

5



2 Lenses in VR headsets

Most models also introduce a further reduction of the polynomial and do
only use the even- or odd-order coefficients.

f (r) = 1 + k1 · r2 + k2 · r4 + ... + kN · r2N (2.6)

f (r) = 1 + k1 · r1 + k2 · r3 + ... + kN · r2N−1 (2.7)

Such polynomial models are well suited for relatively small distortions but
require many parameters to fit a heavily distorted system. There is also no
guarantee that an inverse function does exist, therefore we have to rely on
numerical methods to find one. [11]

Division model

A similar approach is explained by Fitzgibbon in [12] and uses a polynomial
function as a division coefficient:

f (r) =
1

1 + k1 · r1 + k2 · r2 + ... + kN · rN (2.8)

f (r) =
1

1 + k1 · r2 + k2 · r4 + ... + kN · r2N (2.9)

f (r) =
1

1 + k1 · r1 + k2 · r3 + ... + kN · r2N−1 (2.10)

Similar to the polynomial model it is mostly used with even coefficients
only, but sometimes also only with the odd ones. All in all, it fits better
to high distorted systems and uses fewer parameters. In many cases, a
single parameter can be sufficient to be able to describe a lens accurately
enough. Nevertheless also here the inverse computation is not analytically
possible.

2.1.2 Tangential distortion

Apart from the radial distortion, the next important one is the tangential
distortion (fig. 2.5), which occurs if the lens is not parallel to the image
plane. [13]

6



2 Lenses in VR headsets

(
x
y

)
=

[
(p1 · (r2 + 2 · (xd)

2) + 2p2 · (xd · yd)) · (1 + p3 · r2 + p4 · r4...)
(p2 · (r2 + 2 · (yd)

2) + 2p1 · (xd · yd)) · (1 + p3 · r2 + p4 · r4...)

]
(2.11)

Figure 2.5: Tangential distortion, caused by non parallel positioning of the lens and the
screen. [14]

2.1.3 Brown–Conrady distortion model

The Brown-Conrady model combines radial and tangential distortion. More
precisely it uses an even-order polynomial-radial distortion as well as the
above-mentioned tangential distortion. It is widely used and referred to by
many VR platforms (ex. Google Cardboard SDK [15], Unreal Engine [16]).
Nevertheless, the tangential part of the model can often be neglected by
assuming perfect matching of the lens-plane and the headset’s screen.

2.2 Used distortion models

In the software pipeline used in this thesis (sec. 3.5.1), the same distortion
model was implemented, which is used by OpenHMD [17] and PanoTools
[18]. Indeed it is a 3-parameter radial model using even and odd coeffi-
cients. Looking at the equation also a 4th parameter can be seen: k0 which
represents a scale factor but does not distort the image.

f (r) = k0 + k1 · r1 + k2 · r2 + k3 · r3 (2.12)

7



2 Lenses in VR headsets

Since the distortion runs on the GPU the radius has to be computed for every
pixel. This requires two multiplications, one addition, and the square root.
Since normalizing a vector is a very common operation on the GPU, Nvidia
has implemented the reverse as well as the normal square root as individual
instruction. This significantly improves performance, as otherwise, the
calculation of the square root can take some time.

On an FPGA instead, we do not have such an acceleration unit and the
square root has to be implemented with logic blocks. To save some area an
approximation of the square root can be used (sec. 2.4.2) or as an alternative
solution: a model, such as the Brown-Conrady distortion, which only uses
even coefficients can be implemented without a square root.
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0.8

1

1.2

1.4

f(
r)

r

Oculus Rift DK2

Oculus Rift CV1

Oculus Rift DK1

Figure 2.6: Distortion functions of the Oculus
Rift DK1, DK2 and CV1 depend-
ing on the radius r.

To be able to compare different dis-
tortion models the parameters for
the Oculus Rift [19] [20], used by
OpenHMD, were used as a base
point. In figure 2.6 we can see that
there was some change in the lenses,
starting with the Development Kit 1

(DK1), which had a relatively high
distortion, to a lower distortion on
the Development Kit 2 (DK2) and
the Consumer Version 1 (CV1).

Comparing the modeled functions
of the DK2 and CV1 another change
can be observed: While the DK2 is
nearly monotone, the CV1’s distor-
tion does decrease at the beginning
and increases after some time. This is also important while comparing dif-
ferent distortion models since some of them can easily model such a lens
(polynomial with all coefficients) while others need many coefficients to
get a similar behavior (polynomial with even coefficients). This can also
be seen in figures 2.7b and 2.7a where even order polynomials are used to
reproduce this distortion. Nevertheless, for many lenses, a model using only
two even-order coefficients is sufficient.

8



2 Lenses in VR headsets

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.6

0.8

1

1.2

1.4

r

f(
r)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

r
r*

f(
r)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-30

-20

-10

0

10

20

30

r

er
ro

r

f(r
1
,r

2
,r

3
)

f(r
2
)

f(r
2
,r

4
)

f(r
2
,r

4
,r

6
)

(a) Oculus Rift CV1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.6

0.8

1

1.2

1.4

r

f(
r)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

r

r*
f(

r)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-30

-20

-10

0

10

20

30

r
er

ro
r

f(r
1
,r

2
,r

3
)

f(r
2
)

f(r
2
,r

4
)

f(r
2
,r

4
,r

6
)

(b) Oculus Rift DK2

Figure 2.7: Comparison of different polynomial lens distortion functions on the example of
the Oculus Rift CV1 and DK2. The red lines represent the base-models which
were approximated using a different number of even-order coefficients.

2.3 Inverse distortion

Another big problem, that has to do with the distortion, is the inverse
distortion. Depending on the used pipeline you either have to distort the
image/the vertices inversely or you have to distort the pixels according
to the forward distortion. In the used graphics pipeline design both have
to be done (sec. 3.5.1), since we have to inversely distort the triangles to
compute their bounding box, while the pixel coordinates have to be forward
distorted.

Sometimes the forward distortion function has not to be known (ex. Google
Cardboard), since the scene is broken up into small triangles which get
distorted individually (sec. 3.3). If such an approach is used, the inverse
model parameters can directly be determined, while the forward distortion

9



2 Lenses in VR headsets

is not of interest.

Nevertheless, often the forward distortion has to be known and we try to
find a model which represents the lens as good as possible. In a second
step, the inverse has to be calculated. For the function to be invertible, it
has to be bijective, which is not correct for polynomial functions. Therefore
an approximation has to be used. Another important characteristic for the
forward-distorted function is, that it has to be monotone. Otherwise, several
radii would overlap each other, which would result in artifacts. But we
have to be careful: not the forward distortion function f (r) itself has to
be monotone, but the resulting coordinates x and y. In other words, the
forward distorted radius r · f (r) has to be monotone.

In our case the parameters for the Oculus Rift DK2 were used, which result
in the following forward distortion function:

f (r) = 0.795 + 0.103 · r− 0.145 · r2 + 0.247 · r3 (2.13)

To get rid of the square root, used to compute r, a polynomial function
with even coefficients was calculated. This was done by an error-minimizing
algorithm in Octave [21]. As can be seen in figure 2.7b a polynomial with r2

and r4 works already very well and differs less than 3 pixels from the original
approximation. The original distortion was represented using OpenHMD’s
parameters for a screen resolution of 1024x1024px.

f (r) = 0.805758802802+ 0.1165743428001 · r2 + 0.0781130808573 · r4 (2.14)

A similar approach, using a minimizing algorithm, can be used to approx-
imate the inverse of r · f (r). Since this function has only to be calculated
on the GPU a polynomial with even and odd coefficients was used as an
approximation. Since the maximum radius is

√
2 only the interval from 0 to

1.41 is considered.

Similar to the forward distortion function only a few coefficients are suf-
ficient enough to get a very good approximation with an error (sum of
squares) of less than 0.001. Also adding more coefficients does not always
help and can cause overfitting [5, p.21]. In our case, a polynomial with 5
coefficient works well for the inverse of the monotone function r · f (r). The
coefficient for r0 was left out on purpose since the function starts at 0 and
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Figure 2.8: The inverse distortion function was approximated using polynomials of varying
degrees. A polynomial with deg( f−1) = 5 does already fit very well and has an
error of less than 0.0001.

does not need an offset. Additionally, we have to divide the resulting inverse
by r to get the inverse polynomial which would result in a coefficient for
r−1 and is not desired.

f (r) = 0.8058...r0 + 0.1166...r2 + 0.0781...r4 (2.15)

r · f (r) = 0.8058...r1 + 0.1166...r3 + 0.0781...r5 (2.16)

f−1 (r · f (r)) = 1.2300...r1 + 0.1131...r2 − 0.6244...r3 (2.17)

+ 0.3427...r4 − 0.0613...r5

f−1(r) =
f−1 (r · f (r))

r
= 1.2300...r0 + 0.1131...r1 − 0.6244...r2 (2.18)

+ 0.3427...r3 − 0.0613...r4

2.4 Distortion properties

One of the most important properties of the distortion function is, that the
resulting/distorted coordinates should still stay monotone. This means that
if one input coordinate (x, y) has a greater radius than another, also the
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resulting radius should be greater.(
x1
y1

)
=

(
xd1
yd1

)
· f
(∣∣∣∣∣∣∣∣xd1

yd1

∣∣∣∣∣∣∣∣) (
x2
y2

)
=

(
xd2
yd2

)
· f
(∣∣∣∣∣∣∣∣xd2

yd2

∣∣∣∣∣∣∣∣) (2.19)∣∣∣∣∣∣∣∣xd1
yd1

∣∣∣∣∣∣∣∣ > ∣∣∣∣∣∣∣∣xd2
yd2

∣∣∣∣∣∣∣∣ ⇒
∣∣∣∣∣∣∣∣x1

y1

∣∣∣∣∣∣∣∣ > ∣∣∣∣∣∣∣∣x2
y2

∣∣∣∣∣∣∣∣ (2.20)

The monotonicity of a function can simply be proven by looking at its first
derivative (fig. 2.9). It should always be positive to be monotone rising. This
is either true for the polynomial with even coefficients (eq. 2.14) as well as
for the polynomial with all coefficients (eq. 2.13).
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Figure 2.9: The monotonicity was proven for the forward and inverse distortion function
by assuring that the derivation does not change its sign.

Until now, this consideration is only true while using floating-point numbers.
To either increase repeatability and prevent artifacts, all coordinates of pixels,
as well as all vertices, are represented in fixed-point. Therefore we have to
check the monotonicity for that too.

12



2 Lenses in VR headsets

2.4.1 Fixed-point distortion

All signed fixed-point coordinates are represented using a 24.8bit fixed-point
number. This means that we have:

• 1 sign bit
• 23 pre-comma bits⇒ 223 − 1 = 8388607
• 8 post-comma bits⇒ 2−8 = 0.00390625

Considering these limitations the size of the triangles is also limited, other-
wise, we would get an overflow. To be able to apply the distortion to any
screen size the coordinates get normalized, with ± screen_size

2 ⇔ ±1. Since
the fixed-point number can be interpreted as an integer, just changing the
way how we represent this integer, can be used to perform a shift operation.
In our case, if we have a screen size of 1024x1024px we would choose a
15.17bit representation.

128.0
screen_size

2

=
0 000 0000 0000 0000 0100 000

↓
0.0000 000024.8

512
= (2.21)

0.25 = 0 00 0000 0000 000
↓

0.0010 0000 0000 0000 015.17 (2.22)

Using this approach no error occurs as long as the coordinate itself can be
exactly represented by the fixed-point representation and no post-comma
value less than 2−8 is present. But in the next step, we have to compute the
radius, which includes a multiplication. The problem with multiplications
is, that the number of post-comma bits sums up. If we then convert it back
to our initial representation we would sacrifice precision.

0 0.00...0012.17 · 0 0.00...0012.17 = 0 00.00...0013.34 = 0.02.17 (2.23)

Depending on the used distortion function several causes for errors are
possible. As mentioned above, one would be the precision loss when mul-
tiplications are used. The second one would be the approximation of the
square root (sec. 2.4.2) and the third one would be the approximation of the
coefficients themselves since they also have to be converted to fixed-point
numbers.
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In the following window, this error can be seen depending on the number of
post-comma bits. Since we normalize the x and y-coordinate to [−1, 1] the
number of pre-comma bits can be fixed to 2 (maximum r2 = 2). As shown
in figure 2.10 the previously used 8 post-comma bits are not enough for the
calculation of the function f (r). It would result in an error of approximately
4 · 10−2 · 512px ≈ 20px. Using more bits decreases the error continually by
the factor 5 when adding two more bits.

For the screen size of 1024x1024px and a tolerated error of 0.25px we can
have a maximum error of 0.25

512 = 4.88 · 10−4 in comparison to the ideal values.
This can be achieved with at least 14 post-comma bits.
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Figure 2.10: Error of the distortion function ( f (r) = k0 + k1 · r2 + k2 · r4) in comparison to
the ideal distortion, using fixed-point numbers of different bit precision.

2.4.2 Square root approximation

Until now only the distortion function (eq. 2.14) without the need for the
computation of a square root was used. The behavior changes drastically
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if we need to approximate the square root to be able to use coefficients for
r1 and r3. There are several algorithms that allow us to approximate the
square root very efficiently and keep the error below 0.1%.

Fast inverse square root

One such method would be an algorithm first used in the source code of the
first-person shooter Quake III Arena [22]. It does make use of the way how
floating-point numbers are stored in combination with a newton iteration
step. The floating-point representation is used since it stores the mantissa
and the exponent separately. By casting it to long and subtract the shifted
from a magic number a first guess for the inverse square root is made, which
then can be used in the newton iteration. [23]

With this approach, an accuracy of 0.175% can be achieved which can be
seen in figure 2.11. By adding a second newton iteration the relative error
could be reduced to 0.0005%.

Listing 2.1: Fast inverse square root algorithm used in Quake III Arena.
01 f l o a t Q_rsqrt ( f l o a t number ) {
02 long i ;
03 f l o a t x2 , y ;
04 const f l o a t t h r e e h a l f s = 1 . 5 F ;
05 x2 = number * 0 . 5 F ;
06 y = number ;
07 i = * ( long * ) &y ; // e v i l f l o a t i n g point b i t l e v e l hacking
08 i = 0 x5 f3759df − ( i >> 1 ) ; // what the fuck ?
09 y = * ( f l o a t * ) &i ;
10 y = y * ( t h r e e h a l f s − ( x2 * y * y ) ) ; // 1 s t i t e r a t i o n
11 // y = y * ( t h r e e h a l f s − ( x2 * y * y ) ) ; // 2nd i t e r a t i o n
12 re turn y ;
13 }

Linear approximation

The fast inverse square root algorithm described above works well and
outperforms several other implementations. Nevertheless to use it for calcu-
lating the non-inverse square root a costly division has to be used. Inspired
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Figure 2.11: Absolute and relative error of the fast inverse square root algorithm using a
single newton iteration.

by the algorithm a new approach was developed which tries to approximate
the square root directly.

Since we still only have to calculate the square root for values between 0
and 2 we could use a polynomial to approximate it in this interval. One
major problem is, that the square root arguments are not evenly distributed.
If we consider a squared screen, 78% of the pixels already have a radius
smaller than 1. This means that the approximation has to be very accurate
for small numbers, but still accurate enough for values above 1.

To surpass this problem of non uniform distribution the floating-point
representation was used as a starting point. In a float value, the mantissa
gets always normalized to a value between 1.0 and 1.999... Therefore the
problem could be split up into the square roots of mantissa and exponent.
This reduces the approximation problem to the range of the mantissa. If the
value is smaller than 1.0 the exponent will be increased and we end up in
the range of 1 to 2 again.

x = xm · 2xe x ∈ [0.0, 2.0] xm ∈ [1.0, 2.0[ xe ∈ [0,−1,−2, ...]
√

x =
√

xm · 2xe =
√

xm ·
√

2xe =
√

xm · 2
xe
2 (2.24)

We would be able to approximate the mantissa, but still would end up with
non-integer exponents

( xe
2

)
. This can be solved by lowering the limit of the
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mantissa to 0.5.

x = xm · 2xe2 x ∈ [0.0, 2.0] xm ∈ [0.5, 2.0[ xe ∈ [0,−2,−4, ...]
√

x =
√

xm · 2xe2 =
√

xm ·
√

2xe2 =
√

xm · 2
xe2
2 =

√
xm · 2xe2�1 (2.25)

What is left, is to choose a suitable approximation for the square root in
the range from 0.5 up to 2.0. A simple approach would be a polynomial
again. But since this would need several multiplications an even simpler
solution was used: a piece-wise linear interpolation consisting of 4 pieces/5

points.
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Figure 2.12: Piece-wise linear interpolated square root from 0.5 to 2.0 and the resulting
relative and absolute error.

start end equation
0.50000000 0.70999146 x · 0.647171021 + 0.384811401
0.70999146 1.00000000 x · 0.543045044 + 0.458740234
1.00000000 1.41999817 x · 0.457458496 + 0.544326782
1.41999817 2.00000000 x · 0.383911133 + 0.648773193

Table 2.1: Coefficients for a piece-wise linear interpolation of the square root from 0.5 to 2.

The 5 points were not chosen with a similar distance to each other, since the
relative error is more important in the end. In addition, if the ideal value
would be chosen for these points the resulting function would be lower than
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the ideal one for all other points. Therefore a small offset was added to each
base-point to equally bring the error to ±0.2% (fig. 2.12).

Using this linear approximation similar accuracy as with the fast inverse
square root can be achieved with an error of 0.175% (fig. 2.13). Using a
resolution of 1024x1024px results in a maximum error of ±1024px

2 · 0.175% =
1.8px. As a nice side-effect only one addition, one multiplication, and one
shift operation are needed.
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Figure 2.13: Error of the fast inverse square root algorithm in comparison with the piece-
wise linear approximation.

2.4.3 Fixed-point distortion with square root

Since the square root approximation does not get better using more bits,
the error will not get lower than 0.2%. This equals to an absolute error of
±512px · 0.2% ≈ ±1px. In figure 2.14 this can be observed with the error
reaching this minimum (2 · 10−3) using at least 14 post-comma bits. To
further decrease it, a different approximation would have to be chosen.
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Figure 2.14: Error of the distortion function ( f (r) = k0 + k1 · r + k2 · r2 + k3 · r3) in com-
parison to the ideal distortion, using fixed-point numbers of different bit
precision.

2.4.4 Monotonicity

As already stated previously the monotonicity of the distortion is very
important to prevent artifacts, which occur if distorted pixels end up non-
monotone regarding to their neighbors. To prove that the pixels’ values are
monotone the gradient in either x and y-direction can be calculated.

Depending on the distortion function this gradient should be monotone
starting from the center. For more complex functions f (r), which are non
monotone, the gradient could also change its sign at a specific radius (fig.
2.15a - left). This does not mean that this function is unusable, but it is
important that the resulting coordinates xd · f (r) and yd · f (r) are monotone
(fig. 2.15a - right) and therefore always bigger than 0.
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Figure 2.15: Gradient of the polynomial distortion functions and the resulting coordinates
xd · f (r) and yd · f (r). The gradient of the resulting coordinates is bigger than 0
for the whole screen which proves monotonicity for the distorted coordinates.
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To be able to discuss the non-linear pipeline created by M. Prettner, M.
Steinberger, A. Weinrauch, etc. at the ICG, the normal GPU pipeline, used
in modern software, has to be understood first.

3.1 Pixel shader

Vertex Processing Geometry
Processing Rasterization Fragment

Processing Pixel Processing

Figure 3.1: GPU pipeline using a pixel shader in a post-processing step for distorting the
framebuffer according to the inverse distortion function of the lens.

One of the simplest approaches is a relatively naive one and can be done
using any GPU. It does render the scene to a texture instead of the frame-
buffer, at a higher resolution than the VR headset. This texture is then
passed over to a pixel shader which uses the provided inverse-distortion
function to render the texture to the frame-buffer.

A higher resolution is needed to not lose quality on the image at the center,
which is the most important part of the screen regarding VR. This comes due
to the fact that objects located in the middle of the screen increase in size.
On the other hand, objects on the border of the screen will get smaller as
can be seen in figure 3.2 and the increased resolution gets "thrown away".
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Figure 3.2: If a picture is distorted using the inverse lens-distortion function, objects in the
middle of the screen grow while objects on the border shrink.

3.2 Foveated rendering

Until now we assumed that the eye of the user is looking at the center of
the screen, but that is not completely correct, since the eye can also move.
This, combined with the property, that the human eye does only have "full
resolution" at its focused point the rendering resolution can be decreased
in the non-focused areas. These areas are also known as peripheral view
or fovea. The area in between is used for blending the two images with
different resolutions. [24]

Figure 3.3: Example of a foveated renderes VR image. [25]

There are two approaches how such a foveation can be implemented. Either
by tracking the eye using a sensor or by simply assuming that the eye will be
focused at the center. It can improve frame times, compared to the previous
approach, by a factor of 1.5 and either become more than two times faster if
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other techniques, such as eye-dominance-guided foveated rendering (EFR),
are used. [26]

3.3 Vertex displacement

Tesselation Control Tesselation
Evaluation

Geometry
Processing Rasterization Fragment

ProcessingVertex Processing

Figure 3.4: GPU pipeline using vertex distortion in the vertex or tesselation shader accord-
ing to the lens-distortion function.

Previously discussed pipelines did not include changes to the geometry
and vertex processing at all. They perform the distortion and blending in a
separate pixel processing step. This additional step is time-consuming and
the increased resolution, needed to fully utilize the possibility of the VR
headsets screen, does sacrifice performance too.

To remove this step the inverse-distortion can be implemented in the vertex
shader instead. This is a relatively lightweight operation since the distortion
has only to be computed for every vertex and not for every pixel. The
resulting image is not completely correct, since a straight line between two
vertices will result in a straight line again, but will not be noticeable if the
triangles are small enough. This can be done by increasing the triangle count
in the tesselation shader. After that, the distortion can be applied to the old
and new vertices in the tesselation evaluation shader. It is heavily used in
mobile devices which can not handle an additional processing step [27].

3.4 Ray-tracing

With new hardware evolving over the years, especially with Nvidia RTX [28],
ray-tracing came back to graphic pipelines. With this specialized hardware
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and accelerated memory structures, it would be possible to do exactly that,
what vertex displacement (sec. 3.3) tries to avoid: distorting every pixel.
This is costly in a rasterization pipeline since every triangle is plotted to
the virtual screen after the other. With ray-tracing, we have the advantage
that we can send a ray for each of these pixels which are counter-checked
with every triangle in the scene. This ray can easily be distorted only once,
using the forward-lens-distortion function similar to the visual-ray from the
user’s eye would be distorted by the VR headsets lens. Therefore no inverse
distortion of the triangle is needed and they remain "straight".

Ray Distortion Traversal &
Intersection ShadingRay Generation

Figure 3.5: GPU raytraced-pipeline which distorts the rays using the forward lens-distortion
function. [29]

Since the ray-tracing performance for high-end modern GPUs is at about
10 GigaRays/s, real-time ray-tracing is already possible [30]. To draw a scene
without any special light effects 1 ray per pixel is needed. This would result
in approximately 0.5 GigaRays/s for a 4k resolution at 60fps. Therefore
more rays can be sent out for one pixel and reflections and shadows become
possible. Using this approach the ray-tracing bandwidth gets saturated
really quick on such high-end cards too.

A much smoother experience, also for lower-end cards, can be achieved
with a lower resolution for the ray-traced effects and a normal rasterization
pipeline at a high resolution. Of course, both have to compute the distorted
scene with the same distortion function.
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3.5 Non-linear distortion pipeline

Inspired by the ray-tracing approach, which distorts the pixel center and
therefore also the ray from the eye to the pixel-center, a non-linear raster-
izer was designed. Due to the fact that the rasterizer is a fixed hardware
component, it can not be changed and a software rasterizer, running on the
shader-cores of the GPU, had to be implemented. It allows us to individually
distort the x and y-coordinate of each pixel on the virtual screen used by
the rasterization algorithm. The rest of the pipeline can be left similar to
a normal graphics pipeline since the distortion does only happen in the
rasterization step [5, p.9].

Compared to the other approaches discussed in this work the sample
resolution has not to be increased and also no tesselation has to take place
for big triangles. This does either reduce the number of triangles as well as
the number of produced fragments that have to be processed using quad-
shading. The second one is a big drawback regarding vertex displacement.

Vertex Processing Geometry
Processing Rasterization Fragment

Processing

Figure 3.6: Non-linear pipeline distorting the pixel coordinates in the rasterization proce-
dure to achieve lens-distortion.

3.5.1 Hierarchical non-linear distortion pipeline

Since the built-in rasterizer can not be used as a non-linear rasterizer,
computing the distortion while rasterizing each triangle can be very costly.
Also algorithms (scanline, centerline [2]) to improve performance can not
simply be adapted to the non-linear behavior. This is due to the fact that
neighboring pixels do not have a common coordinate and the difference
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of distortion can not be easily computed. To still be able to get adequate
performance a hierarchical, tile-based approach was implemented.

Vertex Processing Geometry
Processing

Bin-queue
Formation

Bin to Tile
Rasterization

Tile 
Rasterization

Fragment
Processing

Figure 3.7: Hierarchical, non-linear pipeline distorting the pixel coordinates in the rasteri-
zation procedure to achieve lens-distortion.

Geometry processing and bin-queue formation

After the geometry processing, the vertex displacement method (sec. 3.3) is
used to (inversely-)distort the triangle vertices. Using its bounding box the
non-distorted triangle is queued in the overlapping bins. Each bin represents
a similar-sized part of the screen (ex. 64x64px). This would already be part
of the rasterization step but was moved to the geometry processing instead
because it can be cheaply done at the end of it together with clipping/culling
and converting the triangles attributes to fixed-point representation [5, p.12].
To ensure that no bin is missed, because of inaccuracies of the inverse
distortion, a small margin is added to the bounding box of the distorted
triangle.

Bin-to-tile rasterizer

The newly created software-rasterizer was also split into two parts, where
at first, bigger tiles get rasterized before going over pixel by pixel. This tech-
nique was first implemented by PowerVR and is very famous among mobile
GPUs since their performance and energy usage are much lower compared
to desktop GPUs. But due to the increasing resolution and performance
requirements, from 2014 on also their desktop counterparts switched to
such approaches [3] [4].
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Figure 3.8: Triangle edge
equations which can be
used to determine if a pixel
is in the triangle or not. [2]

In contrast to the bin-queue formation, the tiles get
distorted instead of the triangles. If no distortion
would be applied it would be easy to check whether
the tile lays completely inside, partly inside, or
completely outside the triangle. This can be done
using the edge equation algorithm [2, p.20], which
allows us to determine if a point is inside a triangle,
on each corner of the tile. The parameters for each
edge of a triangle can be computed out of two
vertices (a and b). Evaluating equation 3.3 with
the coordinates of the point p a value e depending
on the distance from the point to the edge can be
determined. If this value is positive the point is on
the left side of the edge, otherwise on the right.

A1 = ay − by B1 = bx − ax (3.1)

C1 =
A1 · (ax + bx) + B1 · (ay + by)

−2
(3.2)

e1 = A1 · px + B1 · py + C1 (3.3)

The evaluation, therefore consists of 3 edge equations that have to be calcu-
lated for all 4 corners. In total this would require 12 evaluations which have
to be compared with zero. Afterwards we can distinguish three cases:

• The tile is full out if all corners are on the right side of one edge.
• The tile is full in if all corners are on the left side of all edges.
• Otherwise the tile is partly in

Since we do not need to distinguish tiles, that are partly inside from full-
inside ones we can simplify the evaluation a little bit. This is possible since
for each slope of an edge, depending on A and B, one corner has to be the
nearest looking from the right side of the edge (fig. 3.9). If this corner is
outside on that edge all others have also to be outside. So we do only have
to evaluate the equation 3 times:
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Listing 3.1: Edge-equation evaluation for a rectangle and its corners.
1 c [ 4 ] . . . 4 corners : x , y
2 eeq [ 3 ] . . . 3 edge equations : A, B ,C
3

4 in [ 3 ] = [ true , true , t rue ]
5 out [ 3 ] = [ f a l s e , f a l s e , f a l s e ]
6 f o r i in [ 0 , 2 ] f o r i in [ 0 , 2 ]
7 f o r j in [ 0 , 3 ] p = n e a r e s t ( c , eeq [ i ] . A, eeq [ i ] . B )
8 e = eval_eeq ( eeq [ i ] , c [ j ] ) e = eval_eeq ( eeq [ i ] , p )
9 l e f t = e >= 0 . 0 i f e < 0 . 0

10 in [ i ] = in [ i ] && l e f t re turn " f u l l out "
11 out [ i ] = out [ i ] || l e f t
12 re turn " f u l l / p a r t l y in "
13 i f a l l _ t r u e ( in )
14 re turn " f u l l in "
15 i f o n e _ f a l s e ( out )
16 re turn " f u l l out "
17 re turn " p a r t l y in "

B < 0

A < 0

B > 0

A > 0

Figure 3.9: Nearest tile corner (red circles) depending on the edge-equation coefficients A
and B.

This simplification can only be made if the tiles bounding rectangle, as well
as the edges of the triangle, are linear. This, of course, is not true for the
distorted case. Therefore the approach with 12 evaluations has to be used,
which still has some corner cases where it does not work since the tiles are
no longer rectangular.

Going linearly from one tile-corner to the next one the error, between the
distorted edge of the tile and the line between the two distorted corners,
gets bigger. It reaches its maximum in the middle of the edge (fig. 3.10a).
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Depending on the edge of the tile this is not a problem, since the linear
tile does cover the distorted edge (right, top). But the other two edges are
distorted in such a way, that up to 2 pixels are lost if only the corners are
considered to determine if a tile intersects a triangle or not. Nevertheless, if
we decrease the tile size to 64 pixels the error becomes approximately 0.5px
(fig. 3.10b). Since the pixels get rasterized at their mid-point (+0.5px) this
can be neglected.
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Figure 3.10: Distance from the real/distorted tile edge to linear tile edge formed by its
corners.

This is not a general limit but is true for the used distortion equation 2.14.
In our case also the tile size is much smaller with 8x8px. But since the
bin-queues are formed conservatively using the triangles bounding box, the
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corners of the bin can also be used to throw away bins using the forward
distortion, as long as they are smaller than 64x64px.

In the end, one small simplification can still be made, since we have to
use the approach with 12 evaluations per tile. Neighboring tiles have two
common corners which do not have to be computed twice. This results in
(tilesx + 1) · (tilesy + 1) corners to be evaluated. In our case, these are 81
corners and 243 evaluations instead of 768.

(
64px
8px

+ 1
)
·
(

64px
8px

+ 1
)
· 3 = (8 + 1) · (8 + 1) · 3 = 243 (3.4)

Tile rasterizer

In the last hierarchical step, each pixel is evaluated for every tile which
still is partly or fully inside the triangle. In that step, the edge-equations
are again evaluated using the distorted pixel coordinate. If the result of
all three equations is positive other parameters can be calculated, such as
depth and barycentric coordinates. The second ones are used to interpolate
vertex attributes across a triangle and can be efficiently computed out of the
edge-equations results e1, e2, e3.

v0

v1

v2

p uv

w

Figure 3.11: Barycentric coordinates u, v, w of a triangle which can be used to interpolate
vertex-attributes depending on the location of the point p inside the triangle.

There is no real documentation of how modern hardware does compute
such attributes, but most likely it is not done in the hardware rasterizer, since
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to be able to get accurate results, floating-point calculations are necessary. A
possible way to efficiently implement the calculations without adding lots of
floating-point units to the rasterizer is to use the already existing ones in the
shader cores. Some data would anyway have to be passed to the fragment
shader running on these cores and it would make much more sense to
pass the triangle id and/or the vertex attributes together with e1, e2, e3 to
a "pre-fragment shader" which then interpolates the attributes using the
floating-point units. In our implementation, this can be done directly in the
rasterizer, since it is a software pipeline running explicitly on the shader
cores. [5, p.23]

Fragment shader

In the last step, each computed fragment is sent to the fragment shader.
Depending on the implementation an early depth test can be performed
before this shader. Such an early depth test would be fully applicable to the
tiled structure, where each tile-processing or even bin-processing unit has
its own small depth buffer. Otherwise, the depth test is done after shading
the fragment.
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The hierarchical non-linear distortion pipeline (fig. 3.7) was fully imple-
mented as a software pipeline. This allows very high flexibility in each
stage of the pipeline, which can be modified to whatever needs that will
come up in the future. Nevertheless, this often comes with a relatively
big performance penalty, since the dedicated acceleration unit, such as the
hardware rasterizer, was optimized for decades [5]. Therefore the idea came
up if it would be possible to change the pipeline in such a way, that it will
work similarly to a "normal" pipeline. This implies that the rasterizer is a
dedicated hardware component that makes use of the great parallelizability
of such a stage.

Vertex Processing Geometry
Processing

Bin-queue
Formation

Bin to Tile
Rasterization

Tile 
Rasterization

Fragment
Processing

Figure 4.1: Hierarchical, non-linear pipeline distorting the pixel coordinates in the hardware
rasterization procedure to achieve lens-distortion.

To be able to compare the needed modifications a design of a normal
hardware rasterizer would be needed. Although there are some hardware
implementations for GPUs [2] [31] [32], that are mostly very big projects
or very small ones. Still, many hints were taken by the recursive, tile-based
design by A.N. Torrentó design [2, p.30]. In the end, an individual design
was created which consists of a base structure and can be configured as
linear or distorted rasterizer.
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4.1 Characteristics

To be able to show the difference in terms of needed area on the FPGA
both, the linear and the distorted design were synthesized for the same
hardware. The design was optimized for a design with one of the newest
16nm architecture by Xilinx: UltraScale+ [33]. Apart from many Controllable
Logic Blocks (CLBs) or Look up Tables (LUTs) and Flip-Flops, there is also a
bunch of specialized hardware which can be used to optimize the design.

4.1.1 BRAM

The Block RAM (BRAM) is a very fast Random Access Memory (RAM)
embedded in between the logic cells of the FPGA. It can be read and written
at the same clock as the flip-flops with no delay, which makes it perfect for
very fast memory access. In some cases, it could also be used as a cache for
an external RAM module. Normally the area is limited and therefore also
the amount of BRAM, which in the best case consists of some MegaBytes.

It is used to store the bin-queues, coming from the software pipeline, as
well as temporary results between the bin-to-tile and the tile-rasterizer. The
BRAM can be accessed using a single-port, simple-dual-Port, or true-dual-
port structure. Using the simple-dual-port structure the memory acts similar
to a unidirectional cache where the first port can be used to write and the
second one to read in each cycle.

4.1.2 DSP

Another important part of an FPGA are the Digital Signal Processing
Units (DSPs), which allow us to accelerate a variety of arithmetic and logic
operations. In the UltraScale+ architecture, so-called DSP48E2 instances are
used, which stands for a 48bit DSP of version 2. It can be configured to
perform several different operations using the input ports A, B, C, and D,
as well as cascaded operation using the additional ports connected to other
slices placed right above and below on the FPGA.
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Figure 4.2: The Xilinx UltraScale+ architecture includes lines of BRAM and DSP cells. They
are interconnected to allow cascading and have a specified port-schema. [34]

In the designed hardware several of such functions were used, with the
most important one being the multiplication functionality. The use of a DSP
can be identified by the synthesizing tool or also placed directly. This does
only work efficiently if also the operands are sized properly. This means that
the operand has to be resized to the corresponding signed-bit-vectors before
using any arithmetic in the Very High Speed Integrated Circuit Hardware
Description Language (VHDL) code.

• One DSP slice:

– 27x18bit multiplication: P = A27 · B18
– 48bit addition: P = A30 : B18 ± C48
– 27x18+48bit multiply-accumulate: P = A27 · B18 + C48

• Two DSP slices:

– 35x27bit multiplication:
P1 = A27 · B34:17 = PCIN
P2 = A27 · B34,16:0 + (PCIN � 17)

– 35x27+48bit multiply-accumulate
– 44x18+48bit multiply-accumulate

There are still many other logic operations (xor, nor, and), shift operations
(bus-shift, barrel-shift) as well as pattern-detection functionalities left which
are described in the FPGAs documentation [35, p.45].
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Figure 4.3: DSP48E2: 48bit DSP structure of version 2 which is used in UltraScale+ FPGAs. it
can be configured to execute multiplication, addition and several logic/pattern-
recognition functions. [35]

DSP48E1

Older FPGAs do also use an older version of DSPs. The major difference
is that the multiplier does only allow 25x18bit multiplications instead of
27x18bit. To be able to run the code on both architectures my design was
optimized for such DSPs too.
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4.2 Structure

The design was created with hierarchical processing in mind (fig. 4.4).
Beginning with a large global memory, which could be a large cache in the
GPU, the bin-to-tile rasterizer modules begin to process one bin at a time.
After retrieving the triangle, the edge equations are calculated as well as a
bitmask, where one bit represents one tile. Both are stored in a smaller local
memory which is then used by the tile rasterizers. They go through every
pixel of a tile and check if it is inside or outside the triangle. If it is inside,
the pixel coordinates as well as some additional data (if needed) are stored
in an even smaller tile memory.

In the following sections, each module is described in more detail. To
simplify it a little bit the screen-, bin- and tile-size were fixed to 1024, 64, and
8 pixels. All of them can be changed individually using VHDL-constants.

Bin-to-tile rasterizer ...

Tile rasterizer ...

Main memory Triangles
Bin queues

Local memory Tile masks
Edge equ.

Evaluate corners

...

Calc edge equ.

Evaluate pixels

Tile memory
Triangle ID

depth
baric. coords ...

Distortion unit

Distortion unit

Bin
assignment

Tile
assignment

Bin memory arbiter

Tile memory arbiter

Figure 4.4: Hierarchical structure of the implemented hardware component, starting with
the main memory as interface to the geometry shader.
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4.2.1 Main memory

The main memory is the interface between the geometry processing, happen-
ing in the programmable stage, and the hardware rasterizer. As described
in section 3.5.1 also the bin-queues are formed in this step. They represent
a list of indices for each bin of the screen. The size of a list is not fixed,
therefore also the offset and the length of each bin are stored separately.
Using such an index allows us to access the data of one triangle from the
main memory, which was already converted to a fixed-point.

At this stage the number of triangles and the maximum number of indices
was limited, to be able to estimate the needed memory. This is necessary
since BRAM is used, which is limited in size. In a more generic system, this
memory would most probably be replaced by cached Graphics Double Data
Rate RAM (GDDR).

triangle[1023]

len0,7len0,0 len0,1 ... ...
len0,8 ...

...... ... ... ... len15,15

triangle[0]

x(v0) x(v1) x(v2) x

...
... ... ... ...

...

...

...

...
...

...

...

off0,7off0,0 off0,1 ... ...
off0,8 off0,15

...... ... ... ... off15,15

...
... ... ... ...
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...
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...id0,0[0] id0,0[1] ... ...
... ...
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... id0,2[0] ... ...
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Triangle data

Bin-queue length

Bin-queue offset
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Figure 4.5: Main memory structure including triangle-data, bin lengths, offsets and indices.

The memory structure can be seen in figure 4.5 and is formed by many
32bit values. In the first memory section up to 1024 triangles can be stored,
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which contain the fixed-point coordinates of each vertex. To be able to
efficiently calculate addresses and safe memory space, eight 32bit numbers
were chosen for one triangle and other vertex attributes (depth, color) were
left apart. This makes a triangle 32Byte in size and the whole chunk 32kB.

Due to the fixed testbench (sec. 4.2), 16 · 16 = 256 bins have to be processed,
which all have their individual bin-queue. The length and the offset are
stored in the succeeding memory chunks and require 2 · 256 · 32bit = 2kB.
The bin-queues themselves and therefore many triangle indices are then
stored with the corresponding offset in a big array which was also limited
to twice the triangle count (2 · 1024 · 32bit = 8kB).

Main memory arbiter

Since not only one bin-to-tile rasterizer module has to access the main
memory at a time, but multiple ones, some kind of arbitration has to take
place. The BRAM modules on the FPGA do have a true-dual-port RAM
module, which allows us to use two ports in parallel. But, since the initial
memory would have to be written by the geometry stage, only one can be
used.

A very simple arbitration algorithm was chosen since no real benefit can be
observed if one bin-to-tile-rasterizer module would be faster than the others.
The first module got the highest priority which decreases down to the last
module with the lowest priority. To be able to detect if a module wants to
access the memory, a request signal is set by each module. The arbiter then
acknowledges the first one. In addition, it will also acknowledge all other
modules which try to read/write to the same address.

A similar approach would be an algorithm using a counter which shifts the
priorities of each module every cycle. Nevertheless, no real performance
difference was observed and the previous approach was used which requires
fewer logic blocks.
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4.2.2 Bin assignment

The bin assignment module is the main controller of the rasterizer. If it
gets enabled it will start distributing the work to the different bin-to-tile
rasterizer units. If one of them is ready it will get the next bin.

4.2.3 Bin-to-tile rasterizer

The bin-to-tile rasterizer waits for the ready signal, which comes from the
bin-assignment module. Together with that signal, it will also get a bin
number. In our case two numbers, for x and y-direction, ranging from 0 to
15. First of all the amount of triangles (lenx,y) of the corresponding bin has
to be retrieved from the main memory. If at least one triangle is present in
the bin-queue, the offset (offx,y) is read. Then each triangle is fetched and
rasterized according to the algorithm described in section 3.5.1.

Calculate edge-equation

To be able to use this algorithm the edge-equations parameters A, B and C
have to be calculated. The parameters of one edge depend on the x and y-
coordinate of two vertices. Using a subtraction A = ay − by and B = bx − ax
can be calculated easily. To avoid a big subtraction logic, the 48bit adder
functionality of the DSP slices can be used. The inputs have to be signed(47
downto 0) which perfectly suits the signed, 32bit, fixed-point representation
used for the coordinates (24.8). The remaining 16 bits can be propagated
using the first bit (sign bit).

Calculating C =
A·(ax+bx)+B·(ay+by)

−2 is a bit harder and requires three addi-
tional adders, two multiplications, and a shift operation at the end.

All of these operations can be done by DSPs to some extend. To be able
to use the 35x27bit multiply functionality using two DSP slices, one of the
inputs has to be 27bit only. This can be achieved by limiting the parameters
A and B to a 19.8 representation, which limits them to a maximum of
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218 − 1 = 262143. Such a limitation could be solved by properly clipping
the triangles which are that big (260 times bigger than the screen).

By tweaking the bit-lengths a little bit and using the multiply-accumulate
functionality, a total of 8 DSPs and one shift-logic have to be used. Four of
those are used to perform the addition and subtraction of the coordinates,
two for multiplication and another two for the multiply-accumulate. There
are still some issues with the used synthesizer, which does not always detect
such multiply-accumulate instances. Therefore it was removed with the
drawback of 9 instead of 8 used DSPs.
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Figure 4.6: Schematic of the edge-equation parameter (A, B, C) calculation. It uses 4 DSPs
in adder configuration, 2 cascaded DSPs as multiplier and another 2 as multiply-
accumulate unit.

Evaluate bin corners

Normally the previously calculated edge-equations would be used to eval-
uate one corner, out of 81, after the other. But, to efficiently optimize the
design, before evaluating the left bottom corner c0,0, all other edge corners
(c8,0, c8,8, c0,8) are evaluated. They can then be used to detect bins that are
completely inside/outside the triangle as described in section 3.5.1. If the
bin intersects the triangle, all other 81 corners can be evaluated.

The formation of the corner coordinates represents the first step of the
evaluation process. As a second step the coordinates have to be distorted (sec.
4.3). Depending on the used algorithm (no-distortion, f (r1, r2, r3), f (r2, r4))
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this can take zero to 4 cycles. Afterwards, the distorted coordinates can be
used to evaluate the edge equations. This can be fully parallelized using
multiple DSPs. In total 3 · 6 = 18 DSPs have to be used, since every equation
needs two 35x27bit multiplications as well as two 48bit additions. Again, to
be able to use the multiplication functionality one of the two 32bit fixed-
point numbers has to be shortened to 27bit. Since we know our maximum
display resolution, the coordinates in the whole design are stored using less
than 27bit, which solves this problem.

For each edge-equation, a bit vector is formed with 81bit containing the
sign of the evaluation. The sign indicates if the corner is on the left (inside
the triangle) or right (outside the triangle) side of the edge.
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[48:0]

DSPs:

eeqC[23:-8]

Figure 4.7: Schematic of the edge-equation evaluation e = A · cx + B · cy + C. Two cascaded
multipliers (2 · 2 DSPs) and two 48bit adders are used for each evaluation unit.

Generate tile mask

In the end, the three bit-vectors can be evaluated and a new 64bit tile-mask
is created, which indicates if a tile is inside (1) or outside (0) the triangle. The
way how to create this new vector is purely logical and does not require any
additional arithmetic, which makes it fit nicely in hardware. The function of
how it is formed can be found in listing 3.1.

This vector, together with the edge-equation parameters, is then stored in a
local memory that is only accessible inside the bin-module (sec. 4.2.4).
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Pipelining

To be able to operate the FPGA at a relatively high frequency the arithmetic
part has to be split up using registers. This makes the evaluation very
slow since every corner takes several cycles to be computed. This can be
prevented by introducing a pipeline, which allows us to use the hardware
more efficiently. In the following figure, this pipeline can be seen using a
3-cycle distortion unit.

In addition, the coordinate distortion can already start while loading the
triangle vertices, since the resulting edge equations are not needed until the
first evaluation. The edge-equation calculation unit is also reused instead
of placing it three times because after loading the triangle the pipeline still
needs 3 cycles until the edge-equation parameters are needed.
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evaluate edge-equations
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WB
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Figure 4.8: Used pipeline in the bin-to-tile rasterizer using a 3-cycle distortion unit.

4.2.4 Local memory

The local memory, which belongs to one bin-to-tile rasterizer, is used to
store temporary results between the two rasterizer stages. So that we do not
have to compute the edge-equation parameters more than one time, they
are directly stored instead of the vertices of the triangle. In addition, also
the tile-mask, indicating which tiles are covered by the triangle is added.

This data combined represents one entry in the memory and has a size
of 3 · 3 · 32bit + 64bit = 352bit. Of course, if the tile or bin size would be
changed, also the entry size would change. To get better alignment in our
case additional 32bit were added, which makes the entry 384bit wide. Since
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the port of the used BRAM is not limited, each entry can be addressed
at once and only one memory access is needed. There is also the option
to remove unnecessary bits (ex. the added 32bit) when implementing the
design for a specific FPGA.

On real hardware, the bus-width would be fixed and the entry would have
to be split up into multiple memory accesses. Similar to the main memory,
also this memory was implemented in BRAM and has to be limited in size,
therefore a maximum of 512 triangles per bin was set, which makes one
memory instance 384bit · 512 = 25kB in size.

Due to the fact, that the memory is just a buffer between several modules
and no external access is needed, the simple-dual port functionality can be
used, which allows us to use one port for writing and the other for reading.
Similar to the main memory arbiter (sec. 4.2.1) a local memory arbiter is
needed which allows accesses from multiple tile-rasterizer units.

trianlge_data[0]

A01 B01 C01

Triangle data
0x00 0x20 0x40 0x60 0x80 0xA0

0x00000

0x00180

0x2FF40

...

A12 B12 C12
A20 B20 C20 tile_mask x

...

trianlge_data[511]

0x000C0

Figure 4.9: Local memory structure including edge-equation parameters of all triangles as
well as the previously computed tile-mask.

4.2.5 Tile assignment

Similar to the bin assignment module, the tile assignment module is respon-
sible to schedule the tile rasterizer modules. It will assign one tile after the
other to a module that is currently free/ready. Implicitly it is also part of
the bin-to-tile rasterizer module which waits for this module to finish. In a

43



4 Hardware implementation

different design, they could operate independently from each other, with
the requirement of more than one local memory per bin-to-tile module. This
could be achieved by using different memory spaces or different caches on
the GPU.

4.2.6 Tile rasterizer

Where the bin-to-tile rasterizer still had to check each corner of a tile to
determine the dependency of the tile and the triangle, the tile rasterizer
does not require such a difficult approach. Each pixel is only depends on
the location of its center-point to the triangle. This of course causes aliasing
problems, which have to be handled by the overlying software using anti-
aliasing methods. The tile rasterizer also gets all needed edge-equation
parameters from the local memory entry. The only thing it has to check
before rasterizing is, if the corresponding bit in the tile-mask is set or not. If
it is not set, the rasterizer will immediately fetch the next triangle or go to
the next tile.

calc. coordinate [0-7,0-7]

distortion unit

evaluate edge-equations

CCx,y

DU

EE

write back WB

EE EE EE EE EE

calc edge-equation [0,1,2] CEx CE0 CE1

load triangle LT LT

check tile-mask CM CE0

EE

LT ack

CM

CC1,0 CC2,0 CC3,0 ... CC7,7CC0,0

DU DU DU DU...DU DU DU

EE EE EE EE ...

WB WB ... WBWB

Figure 4.10: Used pipeline in the tile rasterizer using a 3-cycle distortion unit.

Pipelining

A slightly simpler pipeline can be used, which depends on the distortion
unit again. To improve performance the coordinates are already calculated
and distorted while still loading the triangle. Due to the fact that the loading
can take an arbitrary time, we can only "pre-load" one coordinate. In the
bin-to-tile rasterizer instead, we are able to fill the pipeline 4 cycles earlier.
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4.2.7 Tile memory

As the last step, if the pixel lays inside the triangle, its attributes and
other parameters have to be stored somewhere. Since we already have
a hierarchical design the amount of memory needed is very small and
can be stored locally to the tile. A well-known example would be a local
depth-buffer which allows us to do the early-depth test in the tile buffer
directly. Based on the depth test, other buffers (triangle-id-buffer, barycentric-
coordinate-buffer, etc.) can be updated.

In our implementation, only the triangle-id is written and no depth or
barycentric coordinate is calculated. This comes due to the fact, that floating-
point arithmetic would be needed (sec. 3.5.1), which would need an enor-
mous amount of logic on the FPGA. Additionally, no module was devel-
oped after this stage, since the following part would be the fragment-shader,
which normally is programmable and therefore runs on the shader cores of
the GPU.
To still get some information about the behavior of the rasterizer, a debug
command was implemented which prints the most interesting information.
Apart from the bin-, tile- and pixel-coordinates it prints the distorted coor-
dinates (cx, cy) as well as the result of the edge-equation evaluation and
triangle id.

Listing 4.1: Example debug output of one generated fragment.
Note : TX bx : 4 by : 0 tx : 7 ty : 3 px : 2 py : 2 cx :−2 .002031 e+02 cy :−4 .921250 e+02

e01 : 6 . 2 0 7 4 2 5 e+04 e12 : 1 . 4 8 5 9 8 0 e+03 e20 : 4 . 9 5 9 0 4 3 e+03 in : ’ 1 ’ id : 2 7 . . .
Time : 1615 ns I t e r a t i o n : 1 Process : . . .

4.3 Distortion unit

In the bin-to-tile and the tile rasterizer, an arbitrary distortion unit was
described. This module takes the pixels (linear) coordinates as input and
distorts them in several pipelined stages. The trivial distortion unit takes
the input coordinates and outputs them right away. This takes no time and
would result in traditional linear rasterization as we already know from
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normal GPUs. Apart from the "linear" distortion unit, two other units can
be configured to be used in the hardware design:

• Polynomial distortion using 4 coefficients:
f (r) = k0 + k1 · r1 + k2 · r2 + k3 · r3 (eq. 2.5)

• Even-polynomial distortion using 3 coefficients:
f (r) = k0 + k2 · r2 + k4 · r4 (eq. 2.6)

Both models require some parameters, which for now were taken from the
previously described Oculus Rift DK2 model (eq. 2.13, 2.14).

4.3.1 Polynomial distortion with square root

The first of those models needs the square root to calculate the distortion
function f (r). This can be efficiently achieved using the linear approximation
described in section 2.4.2. We have already introduced a pipelined design in
the previous chapter. This has also an effect on the distortion unit, which has
to be designed to meet the needed timing requirements. As a consequence,
the logic was split up into 4 stages, which implies 4 stages of the pipeline.
Each stage contains part of the required arithmetic functions and terminates
with a set of registers. They were chosen to be synchronous registers, which
allows us to shift them to the corresponding output register of the DSP
slices (fig. 4.3 - P).

coord_x[16:-8]
coord_y[16:-8]

reset
clk

coord_dist_x[16:-8]

DISTORTION_UNIT

DIST
STAGE_1

DIST
STAGE_2coord_small_x_2[1:-16]

coord_small_y_2[1:-16]

sqrt_arg_2[2:-15]

DIST
STAGE_3coord_small_x_3[1:-16]

coord_small_y_3[1:-16]

mantissa_sqrt_3[1:-15]
exp_inv_mod_sqrt_3[4:0]

DIST
STAGE_4coord_small_x_4[1:-16]

coord_small_y_4[1:-16]

f_4[2:-15]
coord_dist_y[16:-8]

clk
reset

coord_x[16:-8]
coord_y[16:-8]

clk
reset

clk
reset clk

reset

Figure 4.11: Schematic of the 4 stage polynomial distortion unit: f (r) = 0.795 + 0.103 · r−
0.145 · r2 + 0.247 · r3.
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First stage
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The first stage directly uses the pro-
vided pixel coordinates and con-
verts them into normalized coordi-
nates. Normally a division would be
needed to normalize the coordinate
according to the screen size but can be prevented by setting the screen size
to a power of 2. This works for our resolution of 1024x1024px, but may not
work for other resolutions. As a workaround, the next bigger power of 2 is
used instead of the resolution. This implies that, if the screen size is not a
power of 2, the distortion parameters are modified accordingly. By allowing
this modification a shift operation, which is much smaller in hardware, can
be used instead of the division.
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Figure 4.12: Schematic: First stage: Coordinate normalization and calculation of the square
roots argument: r2 = x2

n + y2
n

In addition to the normalization also the argument of the square root (r2) is
calculated which is the sum of the square of both coordinates. This can be
efficiently done using two DSPs. The first one will just calculate the square
of the x-coordinate while the second one will use the multiply-accumulate
functionality and adds the result of the first one to the square of the y-
coordinate. In both units no cascade has to be used since the bit-length of
the multiplication stays below 18bit and a 27x18bit multiplier is already
built-in. Since our coordinates normally consist of 25bit for the chosen
resolution, a decreased accuracy would be a consequence of resizing it to
18bit. On the other hand, all coordinates that will ever be input into the
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distortion unit will be generated by the overlying hardware, which will
never produce coordinates with more than 1 post-comma bit (±0.5px).

Second stage
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According to equation 2.25, the
square root can be approximated by
first determining the mantissa and
exponent and calculate the square
root separately. In hardware, the ex-
ponent of a fixed-point number can
be determined by the Most Signifi-
cant Bit (MSB). If we round the ex-
ponent to an even number, the man-
tissa is in the range between 0.5 and 2.0. This allows us to retrieve the square
root of the exponent-part with a single right-shift operation which is very
cheap in hardware. The square root of the mantissa is then approximated
using the piece-wise linear coefficients of table 2.1. Apart from several mul-
tiplexers for the coefficients, one DSP is used for the multiplication and
addition of the linear function.

√
x =
√

xm · 2xe2 =
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xe2
2 =

√
xm · 2xe2�1

Third stage
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The third stage is responsible for
calculating the distortion function
(eq. 2.13) and consists of 6 multi-
plications and 3 additions. The ra-
dius r has first be reconstructed us-
ing the results of the previous stage
(
√

xm, xe2 � 1). By rearranging the
order how the calculations are ex-
ecuted we can avoid computing r2
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and r3. This reduces the complexity to only 3 multiplications and 3 additions.
This again can be executed in 3 DSPs configured in multiply-accumulate
mode.

f (r) = k0 + k1 · r1 + k2 · r2 + k3 · r3 (4.1)

f (r) = k0 + k1 · r1 + r2 ·
(

k2 + r1 · k3

)
(4.2)

f (r) = k0 + r1 ·
(

k1 + r1 ·
(

k2 + r1 · k3

))
(4.3)
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Figure 4.13: Schematic: Third stage: Calculation of the distortion coefficient f4 calculated
according to f (r) = k0 + k1 · r1 + k2 · r2 + k3 · r3

Fourth stage
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In the last distortion stage, the dis-
torted coordinate is finally being
computed. This of course requires
the result of the distortion func-
tion f (r) and the non-distorted co-
ordinates. They have to be passed
through every stage since we have
a pipelined design and the input-
coordinate will already have a new
coordinate assigned. To be more efficient the normalized coordinate is
passed through the modules, which can be multiplied with f (r). The result
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can then be de-normalized to the screen size. Although the smaller coor-
dinate has fewer bits, the output of the DSP multiplier unit will always be
48bit and is very accurate. The de-normalization is only a shift operation in
our case, which can be performed by shifting the routing on the hardware.
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Figure 4.14: Schematic: Fourth stage: Distortion of the original coordinates according to

f (r):
(

x
y

)
· f (r)� log2(1024/2)

4.3.2 Polynomial distortion without square root

The second module uses a polynomial function with even-order coefficients
only. This allows us to discard the square root calculation and use the
squared radius r2 directly. The resulting design is still very similar to the
previously described one, without the need for the second stage:

• Stage 1: (prev. 1)

– Normalize coordinates
– Compute t = x2

– Compute r2 = y2 + t

• Stage 2: (prev. 3)

– Compute the distortion function f (r) = k0 + k2 · r2 + k4 · r4

• Stage 3: (prev. 4)

– Compute distorted normalized coordinates: ( x
y ) · f (r)

– De-normalize coordinates: ( x
y ) · f (r)� log2(1024/2)
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The first and the last stage left unchanged and the second (previously third)
had to be changed to support the new distortion function (eq. 2.14). Since
only 3 coefficients are needed for this type of polynomial function the
complexity reduces further and can be implemented using only two DSPs
in multiply-accumulate mode.

f (r) = k0 + k2 · r2 + k4 · r4 (4.4)

f (r) = k0 + r2 ·
(

k2 + r2 · k3

)
(4.5)
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Figure 4.15: Schematic: Second stage: Calculation of the distortion coefficient f3 calculated
according to f (r) = k0 + k2 · r2 + k4 · r4
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4.4 Example

As an example of how the pipeline works a simple scene including 6 cubes
was created. The scene can be seen in figure 4.16 and was displayed using a
common 3d viewer program. The same file containing the corresponding
72 triangles was also used in the software rasterizer pipeline, which uses
the software rasterizer. The resulting output image looks very similar to the
previous one (fig. 4.17).

Figure 4.16: Scene used as an example, formed by 6 cubes of the same size which were
rotated and moved in the scene.

4.4.1 Software Pipeline

In the same figure 4.17 on the right, the bins with the size of 64 pixels are
drawn. In the geometry step, the corresponding bin-queues were formed
which contain the intersecting triangles. As an example, the bin-queue of
the highlighted bin (bx = 4, by = 4) contains 3 triangles with the index 10,
32 and 33.

One of such triangles (32) is drawn again in figure 4.18 and covers only a
part of the bin. This means, if we evaluate the edge-equation for every corner
of the bin, we can see that it is partly inside whether than full inside/outside.
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tid v0x v0y v1x v1y v2x v2y

10 −189.59 −176.445 −258.715 −92.2695 −201.090 −251.074
32 −201.09 −251.074 −258.715 −92.2695 −436.641 −143.262
33 −201.09 −251.074 −436.641 −143.262 −371.461 −299.902

Table 4.1: Data of the three triangles which intersect the bin at bx = 4 and by = 4.

Figure 4.17: Cubes-scene output of the software pipeline (left) and the bin at bx = 4, by = 4
covered by three triangles of the scene.

To do so, first, the edge-equation parameters have to be calculated according
to equation 3.3. Afterwards the results for the four bin-corners (tab. 4.3)
get compared with zero. Since on any edge, the result is negative for every
corner the bin has to be fully or partly inside the triangle. Additionally,
some results are negative, which means that some corners, in our case three,
are not inside the triangle. This lets us assume that the triangle is not fully,
but partly inside the triangle which matches the graphical representation.

A01 B01 C01
−158.8045 −57.625 −46402.13616

A12 B12 C12
50.9925 −177.926 −3224.61842

A20 B20 C20
107.812 235.551 80820.64685

Table 4.2: Edge equation parameters for triangle 32.
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Figure 4.18: In a first step the 4 bin-corners are checked against the triangle which partly
covers the bin (left). Afterwards the tile mask can be formed which describes
if a tile is covered by the triangle or not (right).

cx,y e01 e01 e01

c0,0 9003.8158 29270.3576 −7080.2811
c8,0 −1159.6722 32533.8776 −180.3131
c0,8 5315.8158 17883.0936 7994.9829
c8,8 −4847.6722 21146.6136 14894.9509

Table 4.3: Edge equation evaluation for the 4 bin corners and triangle 32.

Finally the same can be done for all 81 tile-corners and we would get the
following tile-mask: 0x1F1F3F3F3F7E78C0. A better representation can also
be seen in the right image of figure 4.18, where a 1 in the bit-mask is
represented as a filled circle. In the next step, we iterate over every covered
tile and rasterize each pixel inside it. This requires fewer logic components,
since the evaluation of a pixel does not rely on its corners, but on the center-
point only. Regarding our example, the tile at tx = 4 and ty = 1 was chosen,
which is marked in green (fig. 4.18). The per-pixel evaluation can be seen in
figure 4.19
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Figure 4.19: Tile rasterizer output of tile tx = 4, ty = 1 of bin bx = 4, by = 4. The filled
circles represent generated fragments.

4.4.2 Hardware rasterizer

The previous results were created using the software pipeline described in
[5]. Instead of using the bin-queues in the software rasterizer, they were
stored in a so-called memory file together with the triangle vertices, bin
lengths, and offsets. This memory represents the transfer medium between
stream-multiprocessors and rasterization hardware. Using the build in
VHDL simulator this file is loaded into the BRAM of the simulated FPGA
and the rasterizer immediately begins to rasterizer one bin after the other.

At some point, the previously discussed bin (bx = 4, by = 4) gets rasterized
with the corresponding 3 triangles. This happens at the simulation time of
65.325µs. After approximately 1µs the first triangles (tid = 10) tile-mask was
already written to the local memory and the second triangle (tid = 32) gets
handled. This corresponds to the triangle used in previous calculations. In
figure 4.20a a snapshot of the loaded triangle can be observed. After loading
the vertices of the triangle (S_GET_VERTICES) the three edge equations are
calculated (S_CALC_EDGE_x). The resulting edge-equation parameters can be
seen in the lower 9 wave-lines and correspond to the parameters in table 4.2
with very slight differences resulting from the fixed-point inaccuracies.
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(a) In the first step (S_GET_VERTICES) the triangle data is loaded. Afterwards the edge-equation parameters are
calculated (S_CALC_EDGE_x).

(b) While the edge-equation parameters are calculated the pipeline gets filled with the bin-corers: c8,0,c8,8,c0,8,c0,0.

(c) The corresponding tile mask is calculated after all corners were evaluated and is written to the local memory
(S_WRITE_BACK).

Figure 4.20: Simulation waveforms of the hardware bin-to-tile-rasterizer.
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While calculating, the pipeline is already filled with the coordinates of the
4 bin corners c8,0, c8,8, c0,8, c0,0 (fig. 4.20b). Since the bin is not fully inside
nor outside the triangle, all 81 corners have to be evaluated. Three so-called
corner masks are generated with 81bit each. These masks are then used to
calculate the corresponding tile-mask (fig. 4.20c). The mask and the edge-
equation parameters are stored in the local memory, which is then used by
the tile rasterizer units to evaluate each individual pixel.

The generated simulation output contains a line, according to the format
in listing 4.1, for each generated fragment. Additionally also the fragments
failing the last evaluation in the tile rasterizer were printed for debug
purposes. If we have a look back at the 5th pixel-line of figure 4.19, the
right two pixels are inside the triangle while all others are outside. The
corresponding debug output is shown in listing 4.2.

Listing 4.2: Debug output of the tile rasterizer (5th pixel line).
. . . px : 0 cx :−2 .235 e+2 cy :−2 .435 e+2 e01 : 3 . 1 e+3 e12 : 2 . 8 e+4 e20 :−6 .3 e+2 in : 0 id : 3 2

. . . px : 1 cx :−2 .225 e+2 cy :−2 .435 e+2 e01 : 2 . 9 e+3 e12 : 2 . 8 e+4 e20 :−5 .2 e+2 in : 0 id : 3 2

. . . px : 2 cx :−2 .215 e+2 cy :−2 .435 e+2 e01 : 2 . 8 e+3 e12 : 2 . 8 e+4 e20 :−4 .1 e+2 in : 0 id : 3 2

. . . px : 3 cx :−2 .205 e+2 cy :−2 .435 e+2 e01 : 2 . 6 e+3 e12 : 2 . 8 e+4 e20 :−3 .0 e+2 in : 0 id : 3 2

. . . px : 4 cx :−2 .195 e+2 cy :−2 .435 e+2 e01 : 2 . 4 e+3 e12 : 2 . 8 e+4 e20 :−2 .0 e+2 in : 0 id : 3 2

. . . px : 5 cx :−2 .185 e+2 cy :−2 .435 e+2 e01 : 2 . 3 e+3 e12 : 2 . 8 e+4 e20 :−9 .2 e+1 in : 0 id : 3 2

. . . px : 6 cx :−2 .175 e+2 cy :−2 .435 e+2 e01 : 2 . 1 e+3 e12 : 2 . 9 e+4 e20 : + 1 . 4 e+1 in : 1 id : 3 2

. . . px : 7 cx :−2 .165 e+2 cy :−2 .435 e+2 e01 : 2 . 0 e+3 e12 : 2 . 9 e+4 e20 : + 1 . 2 e+2 in : 1 id : 3 2

Finally, a small program was implemented, which reads each fragment
out of the debug output and draws the corresponding pixel on a frame-
buffer (fig. 4.21b). This allows us to compare the software and the hardware
rasterizer. All in all, it took 444µs to generate a total of 290854 fragments.
This is about 27% of the total pixel count 1024 · 1024. The same scene was
used in combination with the two implemented distortion functions 2.13

and 2.14. Since the cubes are near the center, they get bigger, and also more
fragments have to be produced. Therefore the non-linear rasterizer takes
a little bit longer to get through all bins. The same is true for two other
scenes with a different level of complexity (Cubes: 12 triangles, Suzanne:
968 triangles).
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4 Hardware implementation

Scene Cube Cubes Suzanne
#triangles 2/12 34/84 650/968

time #px time #px time #px
f (1) 217µs 244530px 444µs 290854px 1110µs 154602px

f (r2, r4) 297µs 325218px 524µs 350738px 1238µs 192841px
f (r1, r2, r3) 303µs 325432px 531µs 351412px 1249µs 193078px

Table 4.4: Runtime and fragment-count of different scenes sorted by increasing complexity.

(a) Cube scene.

(b) Cubes scene

(c) Suzanne scene

Figure 4.21: Hardware rasterizer output of the three distortion options: linear/no-distortion
(left), polynomial distortion (center), even order polynomial distortion (right).
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5 Evaluation

The discussed hardware concept was designed with many configurable
parameters, with some of them presented in listing 5.1. Depending on these
parameters many others are derived and influence things like register-sizes
for the coordinates and arithmetic functions. Also, the synthesis tool can
use the restricted data types to further optimize the design and throw
away unnecessary logic. In the next step, some performance measures are
presented which depend on these parameters too. In the end, they can be
used to fit the rasterizer unit(s) to individual requirements such as memory
throughput, performance, area, etc. Some of them were evaluated separately
in the following sections.

Listing 5.1: Hardware configuration parameters.
−− screen , bin and t i l e s i z e in p i x e l s
G_MAX_RES_X := 1024 ; −− used r e s o l u t i o n
G_MAX_RES_Y := 1024 ;
G_BIN_SIZE_X := 6 4 ; −− bin s i z e
G_BIN_SIZE_Y := 6 4 ;
G_TILE_SIZE_X := 8 ; −− t i l e s i z e
G_TILE_SIZE_Y := 8 ; −− max 64 t i l e s per bin

−− d i s t o r t i o n c o n f i g u r a t i o n
G_DIST_SELECTED := G_DIST_EVEN ; −− used d i s t o r t i o n
G_MAIN_MEM_FILE := " suzanne_even .mem" ; −− used memory f i l e

−− memory c o n f i g u r a t i o n
G_MAX_TRIANGLES := 1024 ; −− max # t r i a n g l e s
G_MAX_INDICES_PER_BIN := 5 1 2 ; −− max # t r i a n g l e s per bin
G_MAX_INDICES := 2048 ; −− max indexed t r i a n g l e s

−− hardware r a s t e r i z e r c o n f i g u r a t i o n
G_NUM_BIN_RASTER := 2 ; −− #bin−to−t i l e r a s t e r i z e r
G_NUM_TILE_RASTER := 4 ; −− # t i l e r a s t e r i z e r
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5.1 Memory throughput

One of the major considerations regarding modern graphics cards is the
possible memory bandwidth and the ability to use as much as possible.
In our design, all memory instances (sec. 4.2.1, 4.2.4) are standalone com-
ponents and their interfaces were tuned to fit the stored data. This results
in the main memory using a 256bit interface and multiple local memories
with 384bit interfaces. With the used FPGA system-clock of 100MHz, the
bandwidth is limited to 3.2GB/s and 4.8GB/s for every instance.
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Figure 5.1: The combined memory throughput with four bin-to-tile and four tile rasterizer
in GB/s (bottom). The main memory usage is shown on the top-left and the
individual throughput of all 4 local memories on the top-right.

To get a general overview of how the memory behaves the suzanne-monkey
scene (fig. 4.21c) was rasterized using different rasterizer configurations. The
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number of bin-to-tile rasterizers, as well as the number of tile rasterizers, was
modified and the impact was observed. In table 5.1 the measured memory
bandwidth can be seen. Looking at these numbers we can clearly see that
the main memory usage is relatively low compared to the local memory
bandwidth. This comes due to the fact that the bin-to-tile rasterizers, which
are the only ones using the main memory, have to wait for the tile rasterizers
to finish before they can proceed with the next bin. Therefore the memory
usage is higher if many triangles do not intersects any tiles, which of course
should not happen that often, since then the triangle should not be in the
bin-queues.

#bin-to-tile #tile combined main local 0 local 1

2 2 1.280GB/s 0.034GB/s 0.622GB/s 0.624GB/s
2 4 2.056GB/s 0.055GB/s 1.048GB/s 0.953GB/s
4 2 2.542GB/s 0.067GB/s 0.624GB/s 0.577GB/s +2

4 4 4.064GB/s 0.107GB/s 1.003GB/s 0.901GB/s +2

8 8 9.903GB/s 0.284GB/s 1.376GB/s 1.144GB/s +6

Table 5.1: Memory throughput of main and local BRAM units with different hardware
configurations.

The local memory is heavily used instead and is mostly influenced by the
number of tile rasterizers accessing the edge-equation parameters and tile
masks. By doubling the number of tile rasterizers also the memory usage
nearly doubles from ≈ 0.6GB/s to ≈ 1.0GB/s. It is a bit less than two times
the needed bandwidth since also the bin-to-tile rasterizer has to write to the
memory. By doubling the number of bin-to-tile rasterizers no change can
be observed in the local memory, apart from the increased number of such
memory blocks.

The previously measured values represent an average bandwidth require-
ment, with peaks reaching more than two times that value (fig. 5.2). Due
to the fact that the scene and therefore also the resulting fragments were
equal on every run, the amount of read/written memory has also to be the
same. Therefore, if the runtime decreases the overall memory bandwidth
increases by the same factor. Doubling the number of bin-to-tile rasterizers
for example halves the runtime from 2.85ms to 1.44ms while doubling the
overall bandwidth from 1.280GB/s to 2.542GB/s.
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(a) Two bin-to-tile rasterizer with 2 tile rasterizer.
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(b) Two bin-to-tile rasterizer with 4 tile rasterizer.
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Figure 5.2: Memory throughput of main memory (left) and local memories (right) in GB/s.
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Comparing the used memory structures with the existing ones on actual
GPUs, the local memory could most probably be implemented in one of the
already existing caches. The L2 cache would perfectly fit the required needs
since its size is adequate high as well as the bandwidth. Another possibility
would still be a small dedicated memory which is only accessible within the
rasterizer. In the next step, the L1 cache could then be used as tile memory
(sec. 4.2.7) to provide the fragment data to the fragment shader(s) running
on the multiprocessors.

Looking at the maximum measured bandwidth of ≈ 10GB/s it seems
relatively low due to the fact that some Graphics Double Data Rate RAM
6 (GDDR6) already achieves data-rates up to 20Gbit/s per pin. But such
modules are also working at much higher frequencies while our design
has a relatively low frequency of 100MHz. Assuming an increase of 20 in
frequency (≈ 2000MHz), the required bandwidth would also increase by the
factor of 20 (200GB/s). Such data-rates can either be achieved by combining
multiple pins of multiple GDDR6 modules, using High Bandwidth Memory
(HBM), or by simply using a fast on-chip cache.

5.2 Performance

Apart from memory usage also the performance is a very important mea-
sure regarding GPUs. Normally the performance of a graphics pipeline is
measured in Frames per Second (fps). This does also imply all stages from
vertex to fragment shading and makes it hard to measure on our graphics
pipeline. Instead we are able to measuring the software pipeline’s (sec. 3.5)
performance. For the Suzanne-monkey scene (fig. 4.21c) the performance
numbers in table 5.2 were determined.

In the developed pipeline the first two stages were re-used and the last
three will be implemented directly in hardware. Therefore a runtime of
0.6ms represents a base-line for the linear rasterizer unit. In this context, it
is important to note, that the software pipeline runs on a mobile graphics
card with a base frequency of 1GHz and the hardware implementation does
only run on 100MHz.
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Quadro M2000M RTX 2080Ti
pipeline stage linear distorted linear distorted

init 0.010539ms 0.010507ms 0.003708ms 0.003827ms
geometry 0.018610ms 0.022755ms 0.008374ms 0.010431ms
schedule 0.108057ms 0.126666ms 0.017895ms 0.018251ms

bin-to-tile raster 0.081463ms 0.156639ms 0.046902ms 0.085999ms
tile raster 0.414587ms 0.569379ms 0.063161ms 0.069936ms

rasterization 0.633256ms 0.885947ms 0.140041ms 0.188443ms
1579fps 1129fps 7141fps 5307fps

Table 5.2: Software pipeline performance on Nvidia Quadro M2000M (@1GHz) and RTX
2080Ti (@1.5GHz) rendering the suzanne-monkey scene.

Tile rasterizer units

Being able to increase the number of rasterizer units individually, the
performance can not be expressed as a single number but has to be evaluated
in more detail. First of all the number of tile rasterizers that work on the
same bin in parallel was step-wise increased. These configurations were
tested with the already known scenes (fig. 4.21), which represent a different
level of complexity. The simple cube scene has only two triangles visible,
which results in the fastest runtime of 3.98ms.

1 2 4 8 16
#tile rasterizer

0.0ms

2.0ms

4.0ms

6.0ms

8.0ms

10.0ms

12.0ms
Runtime

suzanne
cubes
cube
ideal

1 2 4 8 16
#tile rasterizer

0x

2x

4x

6x

8x

10x

12x

14x

16x
Speedup

Figure 5.3: Runtime and speedup with varying number of tile rasterizer units.
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With a moderate number of tile rasterizer units, the speedup is nearly ideal
and scales proportionally to that number. Nevertheless, when using more
than 4 units (speedup 3.69x) the gained speedup becomes worse. This is
mainly due to the fact that also the bin-to-tile rasterizer has to rasterize
each triangle which creates a non-parallelizable part. If the tile rasterization
becomes faster, this part becomes more and more dominant and decreases
the possible speedup. This part becomes even bigger if more complex scenes
are used and the speedup comes down to 2.86x using 4 tile rasterizer units.
With the previous observation, the number of tile rasterizers was fixed to
4, since a speedup between 4.09x and 6.67x using 8 units would make the
hardware unnecessarily big.

Bin-to-tile rasterizer units

Changing the number of bins that are handled in parallel can also be used
to speed up the rasterization. In contrast to the tile rasterization, each bin is
completely independent from the others, which makes them nearly 100%
parallelizable. This was also verified with the three scenes, with a speedup
between 7.37x and 7.88x using 8 parallel bin-to-tile rasterizer units.
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Figure 5.4: Runtime and speedup with varying number of bin-to-tile rasterizer units.
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Considering the gained knowledge the bin-to-tile rasterizer unit could
efficiently be integrated into modern GPU designs. As a base-line the newest
Nvidia Ampere Architecture [36] was used. It consists of multiple Graphics
Processing Clusters (GPCs), which can access the L2 cache as well as the
main memory. Each GPC is formed out of a maximum of 12 Streaming
Multiprocessors (SMs) containing 4x32 processing cores, 4 tensor cores,
and one ray-tracing core. Each GPC does also contain a so-called "Raster
Engine", which can interact with all SMs. The amount of GPCs and SMs
differs between the available chips and therefore also the rasterization
performance. As we have already seen, the amount of bin-to-tile rasterizer
units can be freely changed with a nearly 1 : 1 speedup. This would allow
high-end cards, such as the RTX 3090 (7 GPCs), to rasterize up to seven bins
at a time, while lower-end cards (RTX 3070, 4 GPCs) can only rasterize 4
bins.

5.2.1 Comparison with software

Compared to the software pipeline running on a Quadro M2000M, which
needs approximately 0.6ms executing the rasterization on 640 processing
cores with up to 1098MHz, the hardware implementation can be tuned
to match and surpass that performance significantly. With the lowest 1x1
configuration, one bin-to-tile rasterizer, and one tile rasterizer unit, the
suzanne-monkey scene still needs 10.1ms. Bringing the software pipeline to
the same clock of 100MHz (0.6ms→ 6ms) would be 4ms slower. But already
with a 1x2 (5.7ms) or 1x4 (3.5ms) configuration, the hardware pipeline is
faster.

Considering the previously suggested hardware configuration, each GPC
of the used GPU can handle one bin at a time. Since an older, low-end
card was used for testing, which only has one GPC, the single bin-to-tile
rasterizer could be fitted nicely. Nowadays GPUs, such as the RTX 2080Ti,
already have 6 GPCs running at higher clocks which would allow a 6x4
configuration and a runtime well below 1ms.
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Figure 5.5: Nvidia architecture design using multiple SMs per GPC. Each GPC additionally
has its own raster engine, responsible for rasterization. [37]

5.2.2 Linear vs. non-linear design

Comparing the rasterizer with distortion and the rasterizer without distor-
tion is not that easy either. In the software case, the reduced instruction
count/complexity results in better performance (tab. 5.2). Using an advanced
pipeline design in our hardware, this complexity can be hidden and the
performance will stay the same. Nevertheless, due to the distortion, many
objects change their size and more pixels/tiles have to be checked. This does
indeed affect the performance but is hard to measure. The suzanne-monkey
scene, for example, can be rasterized in 1.11ms instead of 1.25ms, but the
pixel count increased from 154620px to 193078px.
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Concerning the produced pixels per µs using the numbers from table 4.4,
this similarity in performance becomes much clearer (tab. 5.3). In addition
also the impact of lots of small triangles (suzanne) in comparison to few,
big triangles (cube) can be seen, which significantly reduces the achievable
throughput.

Scene Cube Cubes Suzanne
#triangles 2/12 34/84 650/968

#px/µs #px/µs #px/µs
f (1) 1126.87 655.08 139.28

f (r2, r4) 1095.01 669.35 155.77
f (r1, r2, r3) 1074.03 661.79 154.59

Table 5.3: Produced pixels per µs for different scenes and distortion algorithms.

5.3 Area

One thing that is very important concerning hardware design, is the needed
area on a chip. There are several methods on how to measure such an area,
with the trivial one in square millimeters. Since often the technology is not
fixed and the "real" area depends a lot on that, Gate Equivalents (GE) as a
manufacturing-technology-independent measure is often used. In modern
Complementary Metal Oxide Semiconductor (CMOS) technology, a two-
input NAND-gate with driving strength 1 equals one GE. All other gates
(OR, AND, NOT, etc.) can then be mapped to a multiple of that measure.

On an FPGA the utilization of the different hardware components (BRAM,
LUT, DSP, etc.) is most often used to compare different designs. This is
also used to characterize our design because anyway, no reference area con-
sumption of traditional rasterizer units is publicly available. The design was
synthesized using different configurations and the output was compared.

The amount of BRAM used for the main memory is independent of the
used distortion method and consists of 16 modules with 36kB. The local
memory requires 10 of such modules and one smaller 18kB module. Each
tile rasterizer also needs a small 18kB memory to store the triangle indices
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for each pixel. This of course is not fixed and could be adapted to also store
other attributes (depth, barycentric coordinates, etc.). All other hardware
parts, such as registers, LUTs and DSPs, depend on the used distortion
method and hardware configuration and are discussed in the following
sections.

configuration f (1) f (r2, r4)
#bin-to-tile #tile LUTs REGs DSPs LUTs REGs DSPs

1 1 1408 982 45 1462 1127 57
1 2 1514 1029 63 1608 1274 81
1 4 1734 1123 99 1902 1567 129
1 8 1952 1311 171 2135 2536 225
1 4 1734 1123 99 1902 1567 129
2 4 3024 2226 198 3414 3500 258
4 4 5992 4432 396 6871 6980 516
8 4 11802 8844 792 13580 13860 1032

avg. / bin-to-tile 1028 915 27 1141 1115 33
avg. / tile 95 47 18 125 171 24

Table 5.4: Hardware requirements with different numbers of bin-to-tile and tile rasterizer
units.

5.3.1 Tile rasterizer units

As expected the area consumption scales proportionally to the number of
tile rasterizers. Especially for the amount of DSPs, we can clearly see, that
with each new tile rasterizer unit 18/24/26 additional DSPs have to be used
to be able to calculate the arithmetic functions. Also, the register count
increases significantly due to the added pipeline stages which have to be
terminated with a register. The amount of LUTs on the other hand does
only grow using the polynomial distortion function with odd and even
coefficients. By only using the even-coefficient polynomial most of the logic
used to calculate the square root can be left out and the distortion can be
implemented using DSPs and registers only.
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Figure 5.6: Hardware requirements depending on the amount of tile rasterizer units per
bin-to-tile rasterizer.
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Figure 5.7: Summary of hardware requirements of the tile rasterizer units using no dis-
tortion (left), even-order polynomial distortion (center) and a full polynomial
distortion (right).

5.3.2 Bin-to-tile rasterizer units

Also, the bin-to-tile rasterizer has to distort tile-corner coordinates and eval-
uate them using the edge equations in addition to the parameter calculation.
This involves a bigger amount of DSPs, LUTs, and registers. Depending on
the number of tile rasterizers this amount becomes more or less significant.
Nevertheless by adding bin-to-tile rasterizers also at least one tile rasterizer
has to be added and therefore also the slope of needed hardware becomes
much steeper (fig. 5.8).

5.3.3 Comparison

Comparing the three designs against each other lets us assume that the
required modifications to the hardware rasterizer are in an acceptable range.
Considering a configuration with four efficiently working tile rasterizers
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Figure 5.8: Hardware requirements depending on the amount of bin-to-tile rasterizer units.
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per bin-to tile rasterizer results in an increase of 30% in complexity. This can
be said because approximately 30% more DSPs have to be used. While the
increase of used LUTs is only 16% and can be left apart since in a normal
design the DSPs would be implemented as logic too and would surpass the
logic implemented in the additional LUTs. The register count on the other
hand increased by 63%, due to the added pipeline stages.

These numbers were calculated using the even-order polynomial function.
Using the full polynomial, additional logic has to be added to calculate the
square root and handle the additional pipeline stage. While the register
count only increased slightly (63% → 74%), since the pipeline increased
only by one stage, the amount of LUTs grows drastically (16%→ 49%). Also,
40% more DSPs have to be used compared to the non-distorted rasterizer.
While the even-order distortion would increase the size of the hardware
by approximately one-third the other would increase hardware costs by
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at least 50% while being more complex and inaccurate due to the needed
approximations.
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Figure 5.10: Increased hardware requirement in comparison to the traditional, linear ras-
terizer. The optimized, non-linear design (even-order polynomial) does use
approximately 30% more hardware with 16% more LUTs, 63% more registers
and 30% more DSPs.
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In conclusion, the implemented non-linear hardware rasterizer was a great
success. Using the highly flexible hierarchical structure, we were able to
combine the benefits of the software pipeline implemented at the ICG [5]
with the advantages of a dedicated hardware acceleration unit.

The non-linear algorithm allows us to remove an additional image-distortion
step at the end of the graphics pipeline while being able to render at
the native screen resolution. This increases performance while keeping
the latency low, which both are very important aspects concerning VR
applications. Compared to a traditional, linear rasterizer the needed chip-
area increases by only 30%, which can be achieved by using a well-fitting,
pipelined distortion function combined with heavy optimizations.

The implemented hierarchical structure would also fit into modern GPU
designs and can be adapted to handle an arbitrary amount of display-tiles
in parallel. The memory interface was developed in such a way, that it
makes use of very fast local memories which are completely independent of
each other. This, in combination with the tile-based rasterization, allows an
additional performance boost in pixel independent operations such as early
depth-testing.
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