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Abstract

Let R be a finite commutative ring with unity 1 6= 0. The ring of dual numbers over

the ring R is R[α] = R[x]/(x2), where α denotes x + (x2). We investigate four distinct,

but related, topics concerning polynomial functions on rings of dual numbers.

Firstly, we characterize null polynomials and permutation polynomials on R[α] in terms

of the functions induced by their coordinate polynomials (f1, f2 ∈ R[x], where f =

f1 + αf2) and their formal derivatives on R. We derive explicit formulas for the number

of polynomial functions and the number of polynomial permutations on Zpn [α] for n ≤ p

(p prime).

The second topic regards the connection between the group of unit-valued polyno-

mial functions F(R)× and the group of polynomial permutations on R[α]. Since R is

finite, F(R)× is the group of units in F(R), the ring of polynomial functions with point-

wise addition and multiplication. We show that the group PR(R[α]), consisting of those

polynomial permutations of R[α] represented by polynomials in R[x], is embedded in a

semidirect product of F(R)× by the group P(R) of polynomial permutations on R. This

embedding leads to a normal embedding of the pointwise stabilizer group of R (in the

group of polynomial permutations on the ring R[α]), Stα(R), in this semidirect product.

Also, we count unit-valued polynomial functions on the ring of integers modulo pn and

obtain canonical representations for these functions.

In the third topic, we consider ideals of the polynomial ring R[x] with the property of

being closed under products of formal derivatives of polynomials. For a large class of local

principal ideal rings, we show that the null ideal (consisting of polynomials inducing the

zero function on R) has this property. As a consequence, we prove, for this class of rings,

that the stabilizer group Stα(R) is isomorphic to a certain factor group of the additive

group of the null ideal.

Finally, we investigate, for a positive integer k, the polynomial functions on the ring of

dual numbers of k variables over R, R[α1, . . . , αk], where αi αj = 0 for every i, j. In most

cases, such an investigation can be reduced to the case k = 1. We also show that some

groups of polynomial permutations on R[α1, . . . , αk] are independent of the number of

variables k. In particular, we prove that the pointwise stabilizer group of R in the group

of polynomial permutations on R[α1, . . . , αk], Stα1,...,αk(R), is isomorphic to Stα(R).
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Kurzfassung

Sei R ein endlicher kommutativer Ring mit Einselement 1 6= 0. Der Ring der Dop-

pelzahlen über dem Ring R ist R[α] = R[x]/(x2), wobei α für x + (x2) steht. Wir

untersuchen vier verschiedene, aber zusammenhängende, Themen in Bezug auf Polynom-

funktionen auf Ringen der Doppelzahlen.

Erstens charakterisieren wir Nullpolynome und Permutationspolynome auf R[α] mit

Hilfe der durch ihre Koordinatenpolynome induzierten Funktionen (f1, f2 ∈ R[x], wobei

f = f1α+f2) und ihrer formalen Ableitungen auf R. Wir leiten explizite Formeln für die

Anzahl von Polynomfunktionen und die Anzahl von Polynompermutationen auf Zpn [α]

her in dem Fall, dass n ≤ p (p eine Primzahl).

Das zweite Thema betrifft den Zusammenhang zwischen der Gruppe F(R)× jener Poly-

nomfunktionen, die R auf die Einheiten abbilden, und der Gruppe der Polynompermuta-

tionen auf R[α]. Da R endlich ist, ist F(R)× die Einheitengruppe von F(R), des Rings

der Polynomfunktionen mit punktweiser Addition und Multiplikation. Wir zeigen, dass

die Gruppe PR(R[α]) jener Polynompermutationen von R[α], die als Polynome in R[x]

dargestellt werden können, in einem semidirekten Produkt der Gruppe P(R) der Poly-

nompermutationen auf R mit F(R)× eingebettet ist. Diese Einbettung führt zu einer

normalen Einbettung der punktweisen Stabilisatorgruppe von R (in der Gruppe von

Polynompermutationen auf dem Ring R[α]), Stα(R), in dieses semidirekte Produkt. Wir

zählen ebenfalls die Polynomfunktionen, die auf die Einheiten abbilden, auf dem Ring der

ganzen Zahlen modulo pn und erhalten kanonische Darstellungen für diese Funktionen.

Das dritte Thema handelt von Idealen des Polynomrings R[x] mit der Eigenschaft,

unter Produkten von formalen Ableitungen von Polynomen abgeschlossen zu sein. Wir

zeigen für eine große Klasse lokaler Hauptidealringe, dass das Nullideal von R (beste-

hend aus Polynomen, die auf 0 abbilden), diese Eigenschaft hat. Folglich ist, für Ringe

dieser Klasse, die punktweise Stabilisatorgruppe Stα(R) isomorph zu einer bestimmten

Faktorgruppe der additiven Gruppe des Nullideals von R.

Schlussendlich untersuchen wir, viertens, für eine positive ganze Zahl k die Polynom-

funktionen auf dem Ring der Doppelzahlen in k Variablen über R, R[α1, . . . , αk], wobei

αi αj = 0 für alle i, j. Meist kann eine solche Untersuchung auf den Fall k = 1 re-

duziert werden. Wir zeigen, dass bestimmte Gruppen von Polynompermutationen auf
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R[α1, . . . , αk] von der Zahl der Variablen k unabhängig sind. Insbesondere beweisen wir,

dass die punktweise Stabilisatorgruppe von R in der Gruppe der Polynompermutationen

von R[α1, . . . , αk], Stα1,...,αk(R), zu Stα(R) isomorph ist.
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1 Introduction

1.1 A general overview

Let R be a commutative ring with unity 1 6= 0. A function F : R −→ R is said to

be a polynomial function on R if there is a polynomial f ∈ R[x] such that f(a) = F (a)

for every a ∈ R. In this case, we say that f induces (represents) F . Further, such

a polynomial function is called a polynomial permutation when it is a bijection while

f is called a permutation polynomial on R. We insist here to distinguish between a

polynomial (permutation polynomial) f ∈ R[x] and a polynomial function (polynomial

permutation) F ∈ F(R), because a polynomial (permutation polynomial) f induces a

unique polynomial function (polynomial permutation), whereas a polynomial function

(polynomial permutation) F can be represented by a class of polynomials. To relate a

polynomial f ∈ R[x] to its induced polynomial function F on R, we use [f ]R for F instead

or just [f ] when the ring R is understood. The set F(R) of all polynomial functions is

a monoid with respect to composition, its group of units P(R) consists of polynomial

permutations.

Rédei and Szele have proved that every function on the ring R is polynomial function

if and only R is a finite field [75, 80]. In fact, they do not require R to have a unity,

though when R is a ring with unity 1 6= 0, we notice when R has nonzero zerodivisors

that the function

F (r) =

1 if r 6= 0,

0 if r = 0

is not a polynomial function (otherwise every nonzero zerodivisor is invertible, which

is a contradiction). On the other hand, when R is infinite domain, every non-constant

function that maps infinitely many elements of R into 0 is not a polynomial function; in

particular, the function

F (r) =

0 if r 6= 0,

1 if r = 0

is not a polynomial function (otherwise F is induced by a non-constant polynomial f

with infinitely many roots, which is impossible).
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Polynomial functions and polynomial permutations have been widely studied over dif-

ferent algebraic structures like algebras, groups and lattices (see for example [25, 44, 59,

26]). However, we try here to have only a glimpse on the development of the theory of

polynomial functions and polynomial permutations on finite commutative rings.

Due to Nechaev [63], to explore polynomial functions on finite rings, there are two

essential problems to tackle:

• Representing and counting the elements of F(R).

• Representing and counting the elements of P(R).

Unlikely, these tasks are not always easy. One can see this in the work of Kempner, the

first mathematician who considered polynomial functions on a finite ring that is not a

field [43]. He extensively examined polynomial functions on the ring of integers modulo m,

Zm, and derived formulas for F(Zm) and P(Zm) in terms of his function µ(m). However,

his results and arguments are somewhat lengthy and sophisticated.

Over decades, several authors have been influenced by Kempner’s work (see for example

[17, 41, 81, 62]). They obtained equivalent results and easier proofs and contributed to

the subject as well. In most of these works, the authors reduced the problem to examine

polynomial functions modulo a prime power. For instance, Carlitz [17] obtained necessary

and sufficient conditions for a function to be a polynomial function on Zpn ; and in [41]

Keller and Olson gave canonical representations for polynomial functions by means of

the falling factorial. While Singmaster [81] derived a counting formula for polynomial

functions on Zm independent from Kempner’s function µ(m) (the smallest positive integer

k such that m divides k!) and represented them canonically only in terms of the power

of the indeterminate x.

Likewise, some researchers characterized the polynomial functions on more general

classes of rings like Galois rings and local principal rings [15, 63]. At the end of the last

century, Frisch [29] characterized the polynomial functions on the class of suitable rings

(see Section 2.1). Amazingly, all finite local rings that have been examined previously

are suitable and they all satisfy the following equation when they are not fields

|F(R)|
|P(R)|

=
q2q

q!(q − 1)q
,

where q is the number of elements in the residue field of R. The previous equation has

been proved for any finite local ring that is not a field by Jiang [40]. In an interesting

paper but less well-known, Maxson and van der Merwe [56] determined an upper bond

for |F(R)|. They, also proved this upper bound to be optimal for a class of local rings

satisfying some condition and they noticed that Galois rings are in this class, though they
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overlooked to notice that this class coincides with the class of the so-called “suitable”

discussed above.

Meanwhile, many results have been achieved concerning only the permutation polyno-

mials and their applications especially on finite fields [50, 60]. Nevertheless, we expose

here briefly some aspects of these results with some examples from the literature. The

main aspect is to find new types (classes) of permutation polynomials [18, 49]. Another

aspect is investigating and counting permutation polynomials on a finite field Fq that

also permute the elements of the ring Mn(Fq) of n × n matrices [14, 13]. A third one is

to study the structures of some polynomial permutations groups [61, 87].

1.2 A short summary of the theory of permutation

polynomials and their applications

Apart from the fact that Kempner has counted polynomial permutations on Zpn ,

Nöbauer was the first mathematician who investigated intensively polynomial permuta-

tions and permutation polynomials not only on Zpn but also on other structures from dif-

ferent aspects. His work had a significant effect on other researchers (see for example [84,

31, 29, 89, 36]). We cannot here provide an adequate account of his tremendous contri-

butions on this area, though we offer the readers to consult his book with Lausch [47];

and rather we give a brief outline of his results on polynomial permutations and permu-

tation polynomials on Zpn and their influence on other mathematicians. In [69], Nöbauer

has explicitly spelled out and proved the following criterion: “a polynomial f ∈ Z is a

permutation polynomial on Zpn (n > 1) if and only if

1. f is a permutation polynomial on Zp;

2. f ′(a) 6≡ 0 (mod p) for every a ∈ Z”.

Here, we may indicate that some authors [62, 77] referred to the previous criterion as a

corollary of a more general theorem mentioned in Hardy and Wright’s book [39]. Later, in

less well-known paper, Nöbauer has generalized this criterion to permutation polynomials

of several variables over arbitrary ring [70]. As a consequence of his general result is the

following criterion on permutation polynomials on finite local ring (R,M) “a polynomial

f ∈ R[x] is a permutation polynomial on R if and only if

1. f is a permutation polynomial on R/M ;

2. for all a ∈ R, f ′(a) 6= 0 mod M”.

3



The power of the previous criterion can be seen in [36], when the authors obtained the

following characterization of permutation polynomials on the finite local ring R with the

residue field R/M ∼= Z2, which is a generalization of the main result of [77]:

“a polynomial f =
∑

i≥0 aix
i ∈ R[x] is a permutation polynomial on R if and only if

a1 = 1 mod M , a2 + a4 + · · · = 0 mod M and a3 + a5 + · · · = 0 mod M”.

Nöbauer [65], also considered the structure of the group of polynomial permutations on

Zpn , P(Zpn), and showed that P(Zpn) is isomorphic to the wreath product of a subgroup

of P(Zpn−1) (defined below) by the symmetric group Sp, that is,

P(Zpn) ∼= H o Sp,

where H is the subgroup of P(Zpn−1) consisting of elements that can be uniquely repre-

sented by polynomials of the form

a0 + a1x+ a2px+ · · ·+ an−1p
n−2xn−1,

0 ≤ a0, a1 < pn−1 with a1 6≡ 0 (mod p); and 0 ≤ ai < pn−i−vp(i!) for i > 1, where vp(i!) is

the exponent of p in the prime factorization of i!. The previous wreath product inspired

other researchers to find a more general relation for finite local rings. Later on, Frisch [29]

showed for a finite local ring, when the maximal ideal M satisfies M2 = {0}, that

P(R) ∼= (F∗q n (M,+)) o Sq.

Recently, Görcsös, Horváth and Mészáros [36] succeeded to describe P(R) for an arbi-

trary finite local ring R as the following

P(R) ∼= P(M) o Sq,

where P(M) is a subset of F(R) consisting of polynomial functions that permute the

elements of M . Furthermore, they employed their structure relation to find a general

counting formula for the order of P(R) with the maximal ideal M satisfying the condition

M q = {0}.
The notions of permutation polynomials have been appeared in different areas of alge-

bra over several decades of years. Sometimes they appear as R automorphisms of R[x]

(see for example [34, 38]), and sometimes as automorphisms of combinatorial objects [10,

11]. Also, under some circumstances, they occur as level transitive automorphisms of

binary trees [1]. The utilization of permutation polynomials influenced other areas of

research; many applications of permutation polynomials occurred in computer science

(for example [83, 85, 82]). Another influence of permutation polynomials can be seen in
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the theory of the p-adic dynamical systems [6, 27].

1.3 The null ideal

To count and characterize the polynomial functions on a ring R one needs to investigate

the null ideal NR, in other words, to investigate the ideal of the polynomial ring R[x]

consisting of all polynomials that vanish on R. Because the map φ : R[x] −→ F(R)

defined by φ(f) = F , where F (r) = f(r) for every r ∈ R, is an epimorphism with

kerφ = NR and from this one infers that |F(R)| = [R[x] : NR]. Though, finding this

index is not an easy task. Simplifying such a difficulty requires finding a monic-null

polynomial of minimal degree k, where a polynomial is called null whenever it is an

element of the null ideal NR. The minimal monic-null polynomial on R always exists

since the set

A = {n : n = deg f for some monic f ∈ NR}

is not empty. Indeed, deg
∏

r∈R(x − r) = |R| ∈ A, and it has therefore a minimal

element k. Then one can choose the minimal monic-null polynomial to be any monic-null

polynomial corresponding to the number k in the definition of the set A. This minimal

monic-null polynomial guarantees that every element of F(R) can be represented (not

necessarily uniquely) by a polynomial of degree smaller than k. After that, the rest is to

find the number of all non-monic null polynomials of degree smaller than k say l, since

then

|F(R)| = [R[x] : NR] =
|R|k

l
.

For example, Kempner [43] showed that
∏µ(m)−1

j=0 (x − j) is a minimal-null polynomial

on Zm, where µ(m) stands for the smallest positive integer k such that m divides k!,

the Kempner’s function. Then he surveyed all other null polynomials on Zm of degree

less than µ(m). Latterly, Singmaster [81] managed to represent canonically these null

polynomials as sums of raising factorials.

The problem of finding a generating set for the null ideal NR was of interest to many

researchers. For instance, when R = Zpn , Dickson [22] showed that NZpn = ((xp− x), p)n

for n ≤ p; and Bandiny [9] found a set of generators for NZpn for every n > p. Some others

considered this problem more generally. Gilmer [35] proved that for a zero-dimensional

local ring (R,M) that NR is principal if and only if either R/M is an infinite field or R

is a finite field. Also, he showed that for a finite ring A, NA is a principal ideal if and

only if A is a direct sum of finite fields. A direct consequence of this NZm is principal if

and only if m is square-free. Recently, Rogers and Wickham [78] managed to find a set

of generators of NR for a wide class of principal finite local rings. Further, they reduced

5



the problem to find only the generators of the ideal N(M) consisting of all polynomials

vanishing on the maximal ideal M for any Henselian local ring of finite residue field.

An exciting property of the null ideal is being a full ideal, where an ideal I of R[x]

is a full ideal if and only if it satisfies g ◦ f ∈ I for every g ∈ I and f ∈ R[x] (see for

example [84]). In [71, 72], Nöbauer developed some arithmetical theory on full ideals.

Since every ring can be viewed as an algebra over it self, the null ideal NR can be

considered as a special case of a more-general one; namely, when R is an A-algebra, the

ideal

NA
R = {f ∈ A[x] : f(r) = 0 for every r ∈ R},

of A[x]. Such an ideal appeared implicitly in [14, 13, 12] within investigating scalar

polynomial permutations and polynomial functions of algebra of n × n matrices over

finite fields; and explicitly within investigating polynomial permutations of finite algebra

over a finite field Fq [7, 8]. It is apparent that the ideal NA
R is always a full ideal of A[x].

However, when A = Fq, Ashlock [7] showed that every full ideal I ∈ Fq[x] is the null

ideal N
Fq
R , where R = Fq[x]/I. Also, this general form of the null ideal played an effective

role in the last decade in the theory of integer-valued polynomials (see for example [74,

73, 79]). It should be mentioned that the terminology of null ideal has been used in a

different sense in some contexts with respect to a fixed element rather than the whole

ring R (see for example [28, 30, 76]).

1.4 Polynomial functions on dual numbers over finite

rings

1.4.1 Dual numbers and their polynomial functions

For a commutative ring R, the ring of dual numbers over the ring R is quotient ring

R[x]/(x2), or equivalently, the ring R[α] = {a+bα : a, b ∈ R} with α2 = 0, where α stands

for x+(x2). This ring has a nice feature, because it appears in dissimilar forms. It can be

viewed as the idealization of the ring R by its self, that is, the ring R(+)R is isomorphic

to the ring of dual numbers over R. Also, it can be considered as the ring of all 2 × 2

matrices of the form

(
a b

0 a

)
(equivalently, of the form

(
a 0

b a

)
), where a, b ∈ R. The

ring of dual numbers, R[α], is an R algebra with basis {1R, α}, but, then R is embedded

canonically in R[α] and evidently R[α] is a ring extension of R. This ring extension is

known to be minimal if and only if R is a field [24]. Such an extension has been called

in the literature the trivial extension of the ring R by R (see for example [52]). But, this
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term “trivial” should not give the reader a negative impression about the importance of

dual numbers as this ring has been employed to construct counterexamples in the theory

of rings (see for example [9]). Also, we will see that the ring R[α] has its own figure that

differs from R. It may not have a property that is valid for R (see Propositions 2.2.9

and 5.2.9) or it has a property that may not be valid for R (see Proposition 4.3.20).

In this thesis, we investigate the polynomial functions on the ring R[α] by means of

the polynomial functions on the ring R that are induced by polynomials over R and by

their formal derivatives. Since every finite ring is a direct product of finite local rings,

in most cases, we restrict our investigation to polynomial functions on the ring of dual

numbers over a finite local ring R. However, the behavior of polynomial functions of

dual numbers over finite fields is somewhat different from the general case. Therefore,

on several occasions, we have to distinguish between R being a field and R being a local

ring with non-zero maximal ideal.

To illustrate our approach for inspecting the polynomial functions on dual numbers

over finite ring R, let us consider a polynomial f ∈ R[α][x]. Then f can be expressed

uniquely as f = f1 + α f2 for some f1, f2 ∈ R[x]. If we take the value of f on a + b α,

where a, b ∈ R, we have by Taylor formula and the fact α2 = 0,

f(a+ b α) = f1(a) + (bf ′1(a) + f2(a))α . (1.1)

This shows that the polynomial function [f ]R[α] depends not only on the polynomial

functions [f1]R and [f2]R but also on the polynomial function [f ′1]R. As a result of the

previous discussion, we have the polynomial f is a null polynomial on R[α] if and only if

f,f
′
1, f2 ∈ NR (see also Theorem 2.3.5). Then, the collection of all polynomials f ∈ NR

such that f ′ ∈ NR is an ideal of R[x] which we denote by N ′R. Therefore, more explicitly,

NR[α] = N ′R +NR α .

In Chapter 2, we see that the examination of F(R[α]) can be accomplished by exam-

ining the composition rings (R[x]/N ′R,+, ·, ◦) and (R[x]/NR,+, ·, ◦) instead. To see the

significant difference between R[x]/N ′R and R[x]/NR with respect to the ring R[α], we

consider, R = Zpn , f(x) = x and g(x) = x + pn−1(xp − x). Simple argument shows

that f and g induce the same function on Zpn . However, they induce distinct functions

on Zpn [α], as f(α) = α 6= (1 − pn−1)α = g(α) since α2 = 0. Indeed, f ≡ g mod NR

but f 6≡ g mod N ′R (see Corollary 2.3.7). In fact R[x]/N ′R is the set of all polynomial

functions on R[α] that are represented by polynomials over R whereas it is a evident

that R[x]/NR is the set of polynomial functions on R, F(R). In Proposition 2.3.10, we
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connect the number of elements of F(R[α]) with those of R[x]/N ′R and R[x]/NR, that is,

|F(R[α])| =
[
R[x] : N ′R

][
R[x] : NR

]
.

Also, the number
[
R[x] : N ′R

]
is shown to be the number of all distinct pairs ([f ]R, [f

′]R)

where f ∈ R[x].

Such investigation leads to more outstanding for the polynomial functions on R its self

and answers some questions of interest that have been overlooked in the literature. Here

are some natural questions arise for a given fixed polynomial function F on R and any

polynomial f ∈ R[x] inducing F on R:

1. How many pairs of functions of the form (F, [f ′]R) are there? Or at least can we

interpret this number as the order of an algebraic structure?

2. Does this number depend on the function F?

Although these questions are simple, it seems they have not been tackled before. An-

swering these questions increases our knowledge not only on the polynomial functions

on R[α] but also on those on R. In other words, examining polynomial functions on

R[α] increases our knowledge on the polynomial functions on R. In all circumstances,

this number is shown to be independent of the choice of the polynomial function F . We

describe this number as the order of a group of polynomial permutations on R[α] (see

Corollary 2.7.6 for the case R = Zpn , and Proposition 5.4.14 for the general case). In

particular, when R = Zpn , we find this number explicitly for n ≤ p (Theorem 2.8.8).

The group of polynomial permutations of order that equals the number of pairs of

functions discussed in the previous paragraph consists of all polynomial permutations

that stabilize the elements of R pointwisely which we denote by Stα(R). Therefore, for

the case M 6= {0}, we have

|Stα(R)| = |{(F, [g′]R) : g ∈ R[x] with [g]R = F}|.

The stabilizer group Stα(R) will play an important role through this study, and we will

find out some of its properties. For instance, we represent the elements of the stabilizer

group Stα(R) by polynomials from the set x + NR. Another interesting property of the

stabilizer group Stα(R) is being a normal subgroup of the group PR(R[α]) of polynomial

permutations on R[α] that are induced by polynomials over R. Also, in the case M 6= {0},
we show that |Stα(R)| = [NR : N ′R] (this is another description of the number of pairs of

polynomial functions mentioned previously). Further, for a wide class of finite local rings

which are not fields, we prove that Stα(R) ∼= NR/N
′
R (Chapter 4).
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1.4.2 Unit-valued polynomial functions

The set of polynomial functions F(R) is a commutative ring with identity, where

addition and multiplication defined pointwisely. Its group of units F(R)× consists of all

unit-valued polynomial functions (with respect to the pointwise multiplication “ ·”) since

we consider R to be finite (Chapter 3). A polynomial f ∈ R[x] that induces a unit-valued

polynomial function is called a unit-valued polynomial, equivalently, when f(R) ⊆ R×,

where R× is the group of units of R. Unit-valued polynomials appeared in the literature

within inspecting other mathematical objects. For example, they have been used to

check non-D-rings (see for example [53, 54, 58]), where a commutative ring R is a non-

D-ring whenever there exists a non-constant unit-valued polynomial f ∈ R[x]. Another

example, that we already have seen before in the criterion for permutation polynomials

on finite local rings (see section 1.2). Indeed, the condition on f ′ requires it to be a unit-

valued polynomial on R. Also, Nöbauer studied a related monoid F(Z×pn) (with respect

to composition) consisting of all polynomial functions from Z×pn to Z×pn that are induced

by polynomials over Zpn , namely,

F(Z×pn) = {F : F (Z×pn) = G(Z×pn) ⊆ Z×pn for some G ∈ F(Zpn)}.

Evidently, the restriction of every element of F(Zpn)× to Z×pn is an element of F(Z×pn),

though we claim that |F(Zpn)×| > |F(Z×pn)|. In fact, each element of F(Z×pn) can be

viewed as the restriction of different elements of F(Zpn)× to Z×pn . For this, we recall from

[66, Satz I] that: “every polynomial function on Zpn can be obtained uniquely by the

relation

i+ px 7→ ai + pbi 0 +
e∑
j=1

bi jp
jxj mod pn, 0 ≤ i < p, 0 ≤ x < pn−1

with 0 ≤ ai < p, 0 ≤ bi 0 < pn−1 and 0 ≤ bi j < pn−j−vp(j!) for 1 ≤ j ≤ e, where e is

the largest natural number j such that j + vp(j!) < n”. From the previous relation, one

obtain all the elements of F(Zpn)× by the restriction 1 ≤ ai < p; and as Nöbauer noticed

[67], we obtain all the elements of F(Z×pn) by the restrictions 1 ≤ i < p and 1 ≤ ai < p.

But, then our claim follows easily.

In the thesis, we try to shed light on the interplay between the group of unit-valued

polynomial functions (F(R)×, ·), the group of polynomial permutations (P(R), ◦) and the

group (PR(R[α]), ◦) of polynomial permutations on R[α] consisting of elements that are

induced by polynomial on R rather than R[α]. More precisely, we show that PR(R[α]) is

embedded in a semidirect product of F(R)× by P(R), P(R)nθ F(R)×, where the homo-

morphism θ depends on the right action of P(R) (with respect to composition) on F(R)×
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(Proposition 3.3.8). Furthermore, we link the group of unit-valued polynomial functions

F(R)× to the stabilizer group Stα(R) by embedding Stα(R) in F(R)×. In particular, we

prove that Stα(Fq) ∼= F(Fq)× (Theorem 3.4.5). Moreover, the embedding of Stα(R) in

F(R)× leads to a normal embedding of Stα(R) in P(R) nθ F(R)× (Theorem 3.4.12).

The motivation of the construction of this semidirect product spouts from the elemen-

tary calculations of the values of the polynomials of R[x] on the elements of R[α] and

from the criterion for permutation polynomials (mentioned on page 3). For a simple

explanation, let f, g ∈ R[x] be permutation polynomials on the local ring R. Then, for

a, b ∈ R, we have by applying Equation (1.1) two times,

f ◦ g(a+ bα) = f(g(a)) + bg′(a)f ′(g(a))α.

It is evident that f ◦ g is a permutation polynomial on R since f, g are, but then (f ◦
g)′ = (f ′ ◦ g)g′ is a unit-valued polynomial by the criterion for permutation polynomials.

Therefore, in terms of polynomial functions, we can assign the pair ([f ]R ◦ [g]R, ([f
′]R ◦

[g]R) · [g′]R) to the pairs ([f ]R, [f
′]R) and ([g]R, [g

′]R), where [f ]R, [g]R, [f ]R ◦ [g]R ∈ P(R)

and [f ′]R, [g
′]R, ([f

′]R◦ [g]R)· [g′]R ∈ F(R)×. Inspired by the previous statement, we define

an operation on P(R)×F(R)× by

(G1, F1)(G2, F2) =
(
G1 ◦G2, (F1 ◦G2) · F2

)
,

for each (G1, F1), (G2, F2) ∈ P(R)×F(R)×. We will see in Chapter 3 that this operation

defines the semidirect product of F(R)× by P(R), P(R) nθ F(R)×, mentioned before.

1.4.3 Ideals of polynomials closed under multiplication of formal

derivatives

Beyond addition, multiplication and composition of polynomials, the ring of polynomi-

als R[x] is equipped with another operation that occurs normally, namely the differentia-

tion operation. Being strongly influenced by investigating the group Stα(R), we consider

the following property of an ideal I of R[x]:

given f, g ∈ I then f ′g′ ∈ I as well,

or in terms of words, we consider ideals of polynomial rings closed under products of

formal derivatives (Chapter 4). More precisely, we prove that the null ideal over a wide

class of finite local rings has this property. Furthermore, such a property is proved to

be hold if and only if the map ψ : NR −→ Stα(R) defined by ψ(f) = [x + f(x)] is

an epimorphism with kerφ = N ′R. As a consequence of this, Stα(R) ∼= NR/N
′
R which
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interprets the equalities of Proposition 2.7.2 (2b) and Theorem 5.4.12 (2b) for this class

of rings in terms of group isomorphisms. In this case, we also learn more about the

elements of the group Stα(R) (see Proposition 4.3.8).

1.4.4 Some generalizations

Another tempting objective to achieve is to investigate the polynomial functions on the

ring of dual numbers of k variables, R[α1, . . . , αk], obtained from R by joining α1, . . . , αk

with αi αj = 0 for i, j = 1, . . . , k. It is not hard to notice that R[α1, . . . , αk] coincides

with the ring of dual numbers over R when k = 1, that is, R[α1] ∼= R[α]. We characterize

null polynomials and permutation polynomials on R[α1, . . . , αk] in similar manner like

what we do for R[α]. For example, we show the null ideal on R[α1, . . . , αk] depends on

the ideals NR and N ′R. In general, all examinations can be reduced to the case k = 1

since a polynomial f ∈ R[α1, . . . , αk][x] can be expressed as f = f0 +
∑k

i=1 fi αi, where

f0, f1, . . . , fk ∈ R[x], and since the polynomials f1, . . . , fk admit the same conditions.

Likewise the case k = 1, we define the group PR(R[α1, . . . , αk]) to be the group of all

polynomial permutations on R[α1, . . . , αk] represented by polynomials over R and the

stabilizer group consisting of all polynomial permutations on R[α1, . . . , αk] that fix the

elements of R pointwisely. We show these groups to be independent of the number of

variables k, that is,

PR(R[α1, . . . , αk]) ∼= PR(R[α]) and Stα1,...,αk(R) ∼= Stα(R).

We already had an overview of the content of the thesis. Nevertheless, we summarize

the main points of other chapters. In addition to the introduction chapter, the thesis

contains another four chapters. Chapter 2 is the heart of the thesis in which the ideas

that either have been employed (Chapters 3 and 4) or have been imitated (Chapter 5) in

other chapters.

The main target of Chapter 2 is to investigate the polynomial functions on the ring

of dual numbers over finite rings R[α]. We give some basic properties of R[α] and its

polynomial ring R[α][x], we characterize null polynomials and permutation polynomials

on R[α], we define the stabilizer group Stα(R), and obtain counting formulas for the num-

bers of polynomial functions and polynomial permutations on R[α] in terms of |F(R)|,
|P(R)| and |Stα(R)|. Also, we restrict our investigation to dual numbers over the ring

of integers modulo pn, Zpn [α], to find explicitly, when n ≤ p, the number of elements of

Stα(Zpn), F(Zpn [α]) and P(Zpn [α]). Also, when n ≤ p, we give canonical representations

for the elements of F(Zpn [α]).

We show in chapter 3 that the group PR(R[α]) consisting of polynomial permutations
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on R[α] that are induced by polynomial on R is embedded in a semidirect product of

F(R)× by P(R), P(R)nθF(R)×. Furthermore, we show that the stabilizer group Stα(R)

is embedded normally in P(R) nθ F(R)×.

Chapter 4 is an attempt to find out some of the properties of the null ideal NR in which

we consider a class of finite local rings having null ideal satisfying the following property:

f ′g′ ∈ NR whenever f, g ∈ NR.

In this case, we show that Stα(R) ∼= NR/N
′
R and we infer some facts about the elements

of Stα(R).

Beyond carrying over most of the results of Chapter 2 to the polynomial functions

on R[α1, . . . , αk], Chapter 5 contains some generalizations of some results of Chapter 2

that proved only for R = Zm or for R = Zpn (Proposition 5.4.14 and Theorem 5.4.12 ).

Additionally, we show that the group PR(R[α1, . . . , αk]) of polynomial permutations on

R[α1, . . . , αk] represented by polynomials over R and the stabilizer group Stα1,...,αk(R) do

not depend on the number k.
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2 Polynomial functions on rings of dual

numbers over residue class rings of

the integers

The content of this chapter is the accepted paper [2] in Mathematica Slovaca Journal.

It is a joint work with Hasan Al-Ezeh and Sophie Frisch.

Abstract

The ring of dual numbers over a ring R is R[α] = R[x]/(x2), where α denotes x+ (x2).

For any finite commutative ring R, we characterize null polynomials and permutation

polynomials on R[α] in terms of the functions induced by their coordinate polynomials

(f1, f2 ∈ R[x], where f = f1 + αf2) and their formal derivatives on R. We derive explicit

formulas for the number of polynomial functions and the number of polynomial permu-

tations on Zpn [α] for n ≤ p (p prime).

Keywords. Finite rings, finite commutative rings, dual numbers, polynomials, polynomial

functions, polynomial mappings, polynomial permutations, permutation polynomials, null poly-

nomials

2010 Mathematics Subject Classification: Primary 13F20; Secondary 11T06, 13B25,

12E10, 05A05, 06B10

2.1 Introduction

Let A be a finite commutative ring. A function F : A −→ A is called a polynomial function

on A if there exists a polynomial f =
∑n

k=0 ckx
k ∈ A[x] such that F (a) =

∑n
k=0 cka

k for all

a ∈ A. When a polynomial function F is bijective, it is called a polynomial permutation of A,

and f is called a permutation polynomial on A.

Polynomial functions on A form a monoid (F(A), ◦) with respect to composition. Its group

of units, which we denote by P(A), consists of all polynomial permutations of A. Unless A is a

finite field, not every function on A is a polynomial function and not every permutation of A is
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a polynomial permutation. Apart from their intrinsic interest in algebra, polynomial functions

on finite rings have uses in computer science [16, 37].

For any ring R, the ring of dual numbers over R is defined as R[α] = R[x]/(x2), where x is an

indeterminate and α stands for x+ (x2). Rings of dual numbers are used in coding theory [19,

23].

In this paper, we investigate the polynomial functions and polynomial permutations of rings

of dual numbers over finite rings. Since every finite commutative ring is a direct sum of local

rings, and evaluation of polynomial functions factors through this direct sum decomposition,

we may concentrate on local rings.

Among other things, we derive explicit formulas for |F(Zpn [α])| and |P(Zpn [α])| where n ≤ p.
Here, as in the remainder of this paper, p is a prime number and, for any natural number m,

Zm stands for the ring of integers modulo m, that is, Zm = Z/mZ.

The study of the monoid of polynomial functions and the group of polynomial permutations

on a finite ring R essentially originated with Kempner, who, in 1921, determined their orders

in the case where R is the ring of integers modulo a prime power:

|F(Zpn)| = p
∑n
k=1 µ(p

k) and |P(Zpn)| = p!pp(p− 1)pp
∑n
k=3 µ(p

k) for n > 1, (2.1)

where µ(pk) is the minimal l ∈ N such that pk divides l!, that is, the minimal l ∈ N for which∑
j≥1b

l
pj
c ≥ k. (Here bzc means the largest integer smaller than or equal to z).

Kempner’s proof has been simplified [41, 81, 90] and his formulas shown to hold for more

general classes of local rings [15, 29, 63] when p is replaced by the order of the residue field and n

by the nilpotency of the maximal ideal. The classes of local rings for which Kempner’s formulas

hold mutatis mutandis have been up to now the only finite local rings (R,M) for which explicit

formulas for |F(R)| and |P(R)| are known. (By explicit formula, we mean one that depends

only on readily apparent parameters of the finite local ring, such as the order of the ring and

its residue field, and the nilpotency of the maximal ideal.)

What all the finite local rings (A,M) for which explicit formulas for |F(A)| and |P(A)| are

known have in common is the following property: If m is the nilpotency of the maximal ideal

M of A, and we denote by w(a) the maximal k ≤ m such that a ∈Mk, then, for any a, b ∈ A,

w(ab) = min(w(a) + w(b),m),

that is, A allows a kind of truncated discrete valuation, with values in the additive monoid on

{0, 1, 2, . . . ,m}, whose addition is u⊕ v = min(u+ v,m).

Rings of dual numbers over Zpn , for which we provide explicit formulas for the number

of polynomial functions and the number of polynomial permutations in Theorems 2.8.11 and

2.8.10, do not have this property, except for n = 1, see Proposition 2.2.9.

Statements about the number of polynomial functions and permutations that hold for any

finite commutative ring A are necessarily less explicit in nature than the counting formulas in
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Equation (2.1) on one hand and Theorems 2.8.10 and 2.8.11 on the other hand.

Görcsös, Horváth and Mészáros [36] provide a formula, valid for any finite local commutative

ring satisfies the condition M |A/M | = {0}, expressing the number of polynomial permutations

in terms of the cardinalities of the annihilators of the ideals Mk generated by the k-th powers

of elements of the maximal ideal. We will not make use of this formula, however, but prove

our counting formulas from scratch, in a way that yields additional insight into the structure of

the monoid of polynomial functions and the group of polynomial permutations on rings of dual

numbers. Also for any finite local commutative ring A, Jiang [40] has determined the ratio of

|P(A)| to |F(A)|, see Remark 2.5.8.

Chen [21], Wei and Zhang [89, 88], Liu and Jiang [51], among others [64, 32] have generalized

facts about polynomial functions in one variable to several variables. Starting with polynomial

functions over rings of dual numbers, we get a different kind of generalization to several param-

eters, if we replace R[α] by R[α1, . . . , αn] with αiαj = 0. The second author has shown that

most results of the present paper carry over to this generalization [5].

Beyond number formulas, some structural results about groups of permutation polynomials

on Zpn are known, due to Nöbauer [66, 67] and others [91, 33].

In this paper, we derive structural results about F(R[α]) and P(R[α]) by relating them

to F(R) and P(R), and then use these results to prove explicit formulas for |F(Zpn [α])| and

|P(Zpn [α])| in the case n ≤ p.
Here is an outline of the paper. After establishing some notation in Section 2.2, we character-

ize null polynomials on R[α] in Section 2.3 and permutation polynomials on R[α] in Section 2.4,

for any finite local ring R. Section 2.5 relates the pointwise stabilizer of R in the group of

polynomial permutations on R[α] to functions induced by the formal derivatives of permutation

polynomials. Section 2.6 relates permutation polynomials on Zpn [α] to permutation polyno-

mials on Zpn . Section 2.7 contains counting formulas for the numbers of polynomial functions

and polynomials permutations on Zpn [α] in terms of the order of the pointwise stabilizer of Zpn
in the group of polynomial permutations on Zpn [α]. Section 2.8 contains explicit formulas for

|F(Zpn [α])| and |P(Zpn [α])| for n ≤ p. Section 2.9 gives a canonical representation for polyno-

mial functions on Zpn [α] for n ≤ p. The easy special case where R is a finite field is treated en

passant in sections 2.3 and 2.4.

2.2 Basics

We recall a few facts about rings of dual numbers and polynomial functions, and establish

our notation. Since we are mostly concerned with polynomials over finite rings, we have to

distinguish carefully between polynomials and the functions induced by them. All rings are

assumed to have a unit element and to be commutative.

Throughout this paper, p always stands for a prime number. We use N for the positive integers

(natural numbers), N = {1, 2, 3, . . .}, and N0 = {0, 1, 2, . . .} for the non-negative integers.
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Definition 2.2.1. Let R be a ring and a0, . . . , an ∈ R. The polynomial f =
∑n

i=0 aix
i ∈ R[x]

defines (or induces) a function F : R −→ R by substitution of the variable: F (r) =
∑n

i=0 air
i.

A function arising from a polynomial in this way is called a polynomial function.

If the polynomial function F : R −→ R induced by f ∈ R[x] is bijective, then F is called a

polynomial permutation of R and f is called a permutation polynomial on R.

We will frequently consider polynomials with coefficients in Z inducing functions on Zm for

various m. We put this on a formal footing in the next definition.

Definition 2.2.2. Let S be a commutative ring, R an S-algebra and f ∈ S[x].

1. The polynomial f gives rise to a polynomial function on R, by substitution of the variable

with elements of R. We denote this function by [f ]R, or just by [f ], when R is understood.

2. In the special case where S = Z and R = Zm, we write [f ]m for [f ]Zm.

3. When [f ]R is a permutation on R, we call f a permutation polynomial on R.

4. If f, g ∈ S[x] such that [f ]R = [g]R, we write f , g on R.

Remark 2.2.3.

1. Clearly, , is an equivalence relation on S[x].

2. When R = S, or R is a homomorphic image of S, the equivalence classes of , are in

bijective correspondence with the polynomial functions on R.

3. In particular, when R is finite, the number of different polynomial functions on R equals

the number of equivalence classes of , on R[x].

We now introduce the class of rings whose polynomial functions and polynomial permutations

we will investigate.

Definition 2.2.4. Throughout this paper, if R is a commutative ring, then R[α] denotes the

result of adjoining α with α2 = 0 to R; that is, R[α] is R[x]/(x2), where α = x+ (x2). The ring

R[α] is called the ring of dual numbers of R.

Remark 2.2.5. Note that R is canonically embedded as a subring in R[α] via a 7→ a+ 0α.

For the convenience of the reader, we summarize some easy facts about the arithmetic of

rings of dual numbers.

Proposition 2.2.6. Let R be a commutative ring. Then

1. for a, b, c, d ∈ R, we have

a) (a+ b α)(c+ dα) = ac+ (ad+ bc)α;
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b) (a+ b α) is a unit of R[α] if and only if a is a unit of R. In this case

(a+ b α)−1 = a−1 − a−2b α.

2. R[α] is a local ring if and only if R is a local ring.

3. If R is a local ring with maximal ideal m of nilpotency K, then R[α] is a local ring with

maximal ideal m + αR = {a+ bα : a ∈ m, b ∈ R} of nilpotency K + 1.

4. Let (R,m) be a local ring. The canonical embedding r 7→ r + 0α factors through to an

isomorphism of the residue fields of R and R[α]: R/m ∼= R[α]/(m + αR).

Likewise, we summarize the details of substituting dual numbers for the variable in a poly-

nomial with coefficients in the ring of dual numbers below.

As usual, f ′ denotes the formal derivative of a polynomial f . That is, f ′ =
∑n

k=1 kakx
k−1

for f =
∑n

k=0 akx
k.

Lemma 2.2.7. Let R be a commutative, and let a, b ∈ R.

1. Let f ∈ R[α][x] and f1, f2 ∈ R[x] the unique polynomials in R[x] such that f = f1 +α f2.

Then

f(a+ b α) = f1(a) + (bf ′1(a) + f2(a))α .

2. In the special case when f ∈ R[x], we get

f(a+ b α) = f(a) + bf ′(a)α .

As a consequence of the above lemma, we obtain a necessary condition for a function on R[α]

to be a polynomial function.

Corollary 2.2.8. Let F : R[α] −→ R[α] such that F (a+b α) = c(a,b)+d(a,b) α with c(a,b), d(a,b) ∈
R. If F is a polynomial function on R[α], then c(a,b) depends only on a, that is, c(a,b) = c(a,b1)

for all a, b, b1 ∈ R.

The last proposition of this section goes to show that rings of dual numbers over Zpn (p a

prime) are a class of local rings for which no explicit formulas for the number of polynomial

functions existed previously. By an explicit formula, we mean a formula depending only on the

order of the residue field and the nilpotency of the maximal ideal.

Proposition 2.2.9. For a finite local ring R with maximal ideal m of nilpotency K, consider

the following condition:

“For all a, b ∈ R and all k ∈ N, whenever ab ∈ mk, it follows that a ∈ mi and b ∈ mj for

i, j ∈ N0 with i+ j ≥ min(K, k).”

Then R = Zpn [α] satisfies the condition if and only if n = 1.
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Proof. Since Zpn is a local ring with maximal ideal (p), Zpn [α] is a local ring with maximal ideal

m = {ap+ b α : a, b ∈ Zpn} and K = n+ 1 by Proposition 2.2.6. If n = 1, then the result easily

follows since m2 = (0). If n ≥ 2, then K = n+ 1 > 2, and α2 = 0 ∈ mn+1, but α ∈ m \m2.

Local rings satisfying the condition of Proposition 2.2.9 have been called suitable in a previous

paper by the third author [29]. Previously known explicit formulas for the number of polynomial

functions and the number of polynomial permutations on a finite local ring (R,M) all concern

suitable rings and are the same as Kempner’s formulas (2.1) for R = Zpn , except that p is

replaced by q = |R/M | and n by the nilpotency of M . The previous proposition shows that,

whenever n > 1, Zpn [α] is not a “suitable” ring.

2.3 Null polynomials on R[α]

When one sets out to count the polynomial functions on a finite ring A, one is lead to studying

the ideal of so called null-polynomials – polynomials in A[x] that induce the zero-function on

A –, because residue classes of A[x] modulo this ideal corresponds bijectively to polynomial

functions on A.

In this section, we study null-polynomials for rings of dual numbers A = R[α] as defined in

the previous section (Definition 2.2.4). We relate polynomial functions on R[α] (induced by

polynomials in R[α][x]) to polynomial functions induced on R[α] by polynomials in R[x], and

further to pairs of polynomial functions on R arising from polynomials in R[x] and their formal

derivatives.

Definition 2.3.1. Let R be a commutative ring and A an R-algebra, and notation as in Def-

inition 2.2.2. A polynomial f ∈ R[x] is called a null polynomial on A if [f ]A is the constant

zero function, which we denote by f , 0 on A.

We define NR and N ′R as

1. NR = {f ∈ R[x] : f , 0 on R};

2. N ′R = {f ∈ R[x] : f , 0 on R and f ′ , 0 on R}.

Remark 2.3.2. Clearly, NR, N
′
R are ideals of R[x], and we have |F(R)| = [R[x] : NR].

Example 2.3.3. Let R = Fq be the finite field of q elements. Then

1. NFq = (xq − x)Fq[x];

2. N ′Fq = (xq − x)2Fq[x];

3. [Fq[x] : N ′Fq ] = q2q.
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To see (2), let g ∈ N ′Fq . Then clearly, g(x) = h(x)(xq − x). Hence

g′(x) = h(x)(qxq−1 − 1) + h′(x)(xq − x) = h′(x)(xq − x)− h(x),

and so 0 , g′ , −h on Fq. Thus h is a null polynomial on Fq, and hence divisible by (xq−x).

By means of the ideal N ′R, we will reduce questions about polynomials with coefficients in

R[α] to questions about polynomials with coefficients in R, as exemplified in Proposition 2.3.10

below.

Lemma 2.3.4. Let f ∈ R[x]. Then

1. f is a null polynomial on R[α] if and only if both f and f ′ are null polynomials on R;

2. α f is a null polynomial on R[α] if and only if f is a null polynomial on R.

Proof. Ad (1). By Lemma 2.2.7, for every a, b ∈ R, f(a + b α) = f(a) + bf ′(a)α. Thus by

Definition 2.3.1, f being a null polynomial on R[α] is equivalent to f(a) + bf ′(a)α = 0 for all

a, b ∈ R. This is equivalent to f(a) = 0 and bf ′(a) = 0 for all a, b ∈ R. Setting b = 1, we see

that f(a) = 0 and f ′(a) = 0 for all a ∈ R. Hence f and f ′ are null polynomials on R.

Statement (2) follows from Lemma 2.2.7.

Theorem 2.3.5. Let f ∈ R[α][x], written as f = f1 + α f2 with f1, f2 ∈ R[x].

f is a null polynomial on R[α] if and only if f1, f ′1, and f2 are null polynomials on R.

Proof. By Lemma 2.2.7, for all a, b ∈ R,

f(a+ b α) = f1(a) + (bf ′1(a) + f2(a))α .

This implies the “if” direction. To see “only if”, suppose that f is a null polynomial on R[α].

Then, for all a, b ∈ R,

f1(a) + (bf ′1(a) + f2(a))α = 0.

Clearly, f1 is a null polynomial on R. Substituting 0 for b yields that f2 is a null polynomial on

R and substituting 1 for b yields that f ′1 is a null polynomial on R.

Combining Lemma 2.3.4 with Theorem 2.3.5 gives the following criterion.

Corollary 2.3.6. Let f ∈ R[α][x], written as f = f1 + α f2 with f1, f2 ∈ R[x].

f is a null polynomial on R[α] if and only if f1 and α f2 are null polynomials on R[α].

Also from Theorem 2.3.5, we obtain a criterion that we will frequently use for when two

polynomials induce the same polynomial function on the ring of dual numbers.

Corollary 2.3.7. Let f = f1 + α f2 and g = g1 + α g2, with f1, f2, g1, g2 ∈ R[x].

f , g on R[α] if and only if the following three conditions hold:
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1. [f1]R = [g1]R;

2. [f ′1]R = [g′1]R;

3. [f2]R = [g2]R.

In other words, f , g on R[α] if and only if the following two congruences hold:

1. f1 ≡ g1 mod N ′R;

2. f2 ≡ g2 mod NR.

We use this criterion to exhibit a polynomial with coefficients in R that induces the zero

function on R, but not on R[α].

Example 2.3.8. Let R = Zpn and n < p. Then the polynomial (xp − x)n is a null polynomial

on R, but not on R[α]. Likewise, x+ (xp − x)n induces the identity function on R, but not on

R[α].

To see that x 6, x+ (xp − x)n on R[α], we use Corollary 2.3.7. Note that

(x+ (xp − x)n)′ = 1 + n(xp − x)n−1(pxp−1 − 1) 6≡ 1 = x′ mod NR.

Hence x 6≡ x+ (xp − x)n mod N ′R, although x ≡ x+ (xp − x)n mod NR.

In a more positive vein, Corollary 2.3.7 implies that x , x+ (xp − x)n α on R[α].

Remark 2.3.9. Let R be a finite commutative ring and f1, f2 ∈ R[x]. Then

[f1 + αf2]R[α] 7→ (([f1]R, [f
′
1]R), [f2]R)

establishes a well-defined bijection

ϕ : F(R[α]) −→ {(G,H) ∈ F(R)×F(R) : ∃g ∈ R[x] with G = [g] and H = [g′]} × F(R)

between polynomial functions on R[α] on one hand, and triples of polynomial functions on R

such that the first two entries arise from a polynomial and its derivative, on the other hand.

This mapping is well-defined and injective by Corollary 2.3.7, and it is clearly onto.

Proposition 2.3.10. Let R be a finite commutative ring, and let NR and N ′R be the ideals of

Definition 2.3.1. Then the number of polynomial functions on R[α] is

|F(R[α])| =
[
R[x] : N ′R

][
R[x] : NR

]
.

Moreover, the factors on the right have the following interpretations.

1. [R[x] : N ′R] is the number of pairs of functions (F,E) with F : R −→ R, E : R −→ R,

arising as ([f ], [f ′]) for some f ∈ R[x].
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2. [R[x] : N ′R] is also the number of functions induced on R[α] by polynomials in R[x].

3. [R[x] : NR] is the number of polynomial functions on R.

Proof. Everything follows from Theorem 2.3.5. In detail, consider the map ϕ defined by

ϕ : R[x]×R[x] −→ F(R[α]), ϕ(f1, f2) = [f1 + α f2],

where [f1 + α f2] is the function induced on R[α] by f = f1 + α f2. Since every polynomial

function on R[α] is induced by a polynomial f = f1 +α f2 with f1, f2 ∈ R[x], ϕ is onto. Clearly,

ϕ is a homomorphism of the additive groups on each side. By Theorem 2.3.5, kerϕ = N ′R×NR.

Hence, by the first isomorphism theorem,

ϕ̄ : R[x]/N ′R ×R[x]/NR −→ F(R[α])

defined by ϕ̄(f1 +N ′R, f2 +NR) = [f1 + α f2] is a well defined group isomorphism.

Likewise, for (1) let

A = {(F,E) ∈ F(R)×F(R) : ∃f ∈ R[x] with [f ] = F and [f ′] = E},

and define ψ : R[x] −→ A by ψ(f) = ([f ]R, [f
′]R). Then ψ is a group epimorphism with

kerψ = N ′R and hence [R[x] : N ′R] = |A|.
Finally, (2) follows from Corollary 2.3.7, and (3) is obvious.

Proposition 2.3.10 reduces the question of counting polynomial functions on R[α] to deter-

mining [R[x] : NR] and [R[x] : N ′R], that is, to counting polynomial functions on R and pairs of

polynomial functions on R induced by a polynomial and its derivative. This will allow us to

give explicit formulas for |F(R[α])| in the case where R = Zpn with n ≤ p in section 2.8.

The simple case where R is a finite field we can settle right away by recalling from Exam-

ple 2.3.3 that NFq = (xq − x)Fq[x] and N ′Fq = (xq − x)2Fq[x] and hence [Fq[x] : N ′Fq ] = q2q and

[Fq[x] : NFq ] = q.

Corollary 2.3.11. Let Fq be a field with q elements. Then |F(Fq[α])| = q3q.

The remainder of this section is devoted to null polynomials of minimal degree and canonical

representations of polynomial functions on R[α] that can be derived from them.

Proposition 2.3.12. Let h1 ∈ R[α][x] and h2 ∈ R[x] be monic null polynomials on R[α] and

R, respectively, with deg h1 = d1 and deg h2 = d2.

Then every polynomial function F : R[α] −→ R[α] is induced by a polynomial f = f1 + f2 α

with f1, f2 ∈ R[x] such that deg f1 < d1 and deg f2 < min(d1, d2).

In the special case where F is induced by a polynomial f ∈ R[x] and, also, h1 is in R[x], there

exists a polynomial g ∈ R[x] with deg g < d1, such that [g]R = [f ]R and [g′]R = [f ′]R.
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Proof. Let g ∈ R[α][x] be a polynomial that induces F . By division with remainder by h1, we

get g(x) = q(x)h1(x) + r(x) for some r, q ∈ R[α][x], where deg r < d1 and r(x) induces F .

We represent r as r = r1 + α r2 with r1, r2 ∈ R[x]. Clearly, deg r1, deg r2 < d1. If d2 < d1,

then, we divide r2 by h2 with remainder in R[x] and get f2 ∈ R[x] with deg f2 < d2 and such

that f2 , r2 on R.

By Corollary 2.3.7, α r2 , α f2 on R[α] and hence, f = r1 + α f2 has the desired properties.

In the special case, the existence of g ∈ R[x] with deg g < d1 such that f , g on R[α] follows

by a similar argument. By Corollary 2.3.7, [g]R = [f ]R and [g′]R = [f ′]R.

In what follows, let m,n be positive integers such that m > 1 and p a prime.

Definition 2.3.13. For m ∈ N let µ(m) denote the smallest positive integer k such that m

divides k!. The function µ : N −→ N was introduced by Kempner [42].

When n ≤ p, clearly µ(pn) = np. We use this fact frequently, explicitly and sometimes

implicitly.

Remark 2.3.14. It is easy to see that m divides the product of any µ(m) consecutive integers.

As Kempner [43] remarked, it follows that for any c ∈ Z,

(x− c)µ(m) =

µ(m)−1∏
j=0

(x− c− j)

is a null polynomial on Zm.

Theorem 2.3.15. Let m > 1. Then

1. (x)2µ(m) is a null polynomial on Zm[α];

2. ((x)µ(m))
2 is a null polynomial on Zm[α].

Proof. Set f(x) = (x)2µ(m). In view of Lemma 2.3.4, we must show that f and f ′ are null poly-

nomials on Zm. Clearly, f is a null polynomial on Zm. Now consider f ′(x) =
∑2µ(m)−1

i=0
(x)2µ(m)

x−i .

Each term
(x)2µ(m)

x−i is divisible by a polynomial of the form
∏µ(m)−1
j=0 (x− c− j). Thus

(x)2µ(m)

x−i is

a null polynomial on Zm by Remark 2.3.14. Hence f ′ is a null polynomial on Zm. The proof of

the second statement is similar.

In the case when m = pn, (x)2µ(pn) is a null polynomial on Zpn [α]. When n ≤ p, this says

(x)2np is a null polynomial on Zpn [α], but in this case more is true, namely, (x)µ(pn)+p = (x)(n+1)p

is a null polynomial on Zpn [α].

Proposition 2.3.16. Let n ≤ p. Then (x)(n+1)p is a null polynomial on Zpn [α].

22



Proof. Since n ≤ p, we have µ(pn) = np. Set f(x) = (x)µ(pn)+p. Then clearly, f is a null

polynomial on Zpn . We represent f(x) as a product of n+ 1 polynomials, each of which has p

consecutive integers as roots and is, therefore, a null-polynomial modulo p:

(x)(n+1)p =
n∏
l=0

(l+1)p−1∏
k=lp

(x− k).

Now regarding f ′(x) =
∑(n+1)p−1

i=0
(x)(n+1)p

x−i , it becomes apparent that each term
(x)(n+1)p

x−i is

divisible by a product of n different polynomials of the form
∏p−1
j=0(x − c − j). Hence the

claim.

Combining Theorem 2.3.15 with Proposition 2.3.12 and Remark 2.3.14, we obtain the follow-

ing corollary, which will be needed to establish a canonical form for a polynomial representation

of a polynomial function on Zpn [α] for n ≤ p (see Theorems 2.9.2 and 2.9.4).

Corollary 2.3.17. Let F : Zm[α] −→ Zm[α] be a polynomial function. Then F can be repre-

sented as a polynomial f ∈ Zm[α][x] with deg f ≤ 2µ(m)− 1. Moreover, f can be chosen such

that f = f1 + α f2, with f1, f2 ∈ Zm[x], deg f1 ≤ 2µ(m)− 1 and deg f2 ≤ µ(m)− 1.

When R = Fq is a finite field, we have already remarked in Corollary 2.3.11 that the number

of polynomial functions on Fq[α] is q3q. We can make this more explicit by giving a canonical

representation for the different polynomial functions on Fq[α].

Corollary 2.3.18. Let Fq be a finite field with q elements. Every polynomial function

F : Fq[α] −→ Fq[α] can be represented uniquely as a polynomial

f(x) =

2q−1∑
i=0

aix
i +

q−1∑
j=0

bjx
j α for ai, bj ∈ Fq. (2.2)

Proof. We note that the polynomials (xq − x)2 and (xq − x) satisfy the conditions of Propo-

sition 2.3.12. Thus every polynomial function on Fq[α] is represented by a polynomial as in

Equation (2.2).

Since there are exactly q3q different polynomials of the form (2.2) and also, by Corollary 2.3.11,

q3q different polynomial functions on Fq[α], every function is represented uniquely.

We can also show uniqueness directly, without using Corollary 2.3.11, by demonstrating

that every expression of type (2.2) representing the zero function is the zero polynomial. Let

f ∈ Fq[α][x] be a null polynomial on Fq[α] with f(x) =
∑2q−1

i=0 aix
i +
∑q−1

j=0 bjx
j α.

Then
∑2q−1

i=0 aix
i ∈ N ′Fq and

∑q−1
j=0 bjx

j ∈ NFq by Theorem 2.3.5. Recalling from Ex-

ample 2.3.3 that N ′Fq = (xq − x)2Fq[x] and NFq = (xq − x)Fq[x], we see that ai = 0 for

i = 0, . . . , 2q − 1; and bj = 0 for j = 0, . . . , q − 1.
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2.4 Permutation polynomials on R[α]

We now direct our attention to permutation polynomials on R[α], where R[α] is the ring of

dual numbers over a finite commutative ring R (defined in Definition 2.2.4). As in the previous

section, we first relate properties of polynomials in R[α][x] to properties of polynomials in R[x],

about which more may be known.

Theorem 2.4.1. Let R be a commutative ring. Let f = f1 + α f2, where f1, f2 ∈ R[x]. Then

f is a permutation polynomial on R[α] if and only if the following conditions hold:

1. f1 is a permutation polynomial on R;

2. for all a ∈ R, f ′1(a) is a unit of R.

Proof. (⇒) To see (1), let c ∈ R. Since f is a permutation polynomial on R[α], there exist

a, b ∈ R such that c = f(a+ b α), that is, c = f1(a) + (bf ′1(a) + f2(a))α (by Lemma 2.2.7). In

particular, f1(a) = c, and, therefore, [f1]R is onto and hence a permutation of R.

To see (2), let a ∈ R and suppose that f ′1(a) is not a unit of R. R being finite, it follows that

f ′1(a) is a zerodivisor of R. Let b ∈ R, b 6= 0, such that bf ′1(a) = 0. Then

f(a+ b α) = f1(a) + (bf ′1(a) + f2(a))α = f1(a) + f2(a)α = f(a).

So f is not one-to-one; a contradiction.

(⇐) Assume (1) and (2) hold. It suffices to show that [f ]R[α] is one-to-one. Let a, b, c, d ∈ R
such that f(a+ b α) = f(c+ dα), that is,

f1(a) + (bf ′1(a) + f2(a))α = f1(c) + (df ′1(c) + f2(c))α .

Then f1(a) = f1(c) and hence a = c, by (1). Furthermore, bf ′1(a) = df ′1(a), and, since f ′1(a) is

not a zerodivisor, b = d follows.

The special case of polynomials with coefficients in R is so important that we state it sepa-

rately.

We call a function on R that maps every element of R to a unit of R a unit-valued function

on R.

Corollary 2.4.2. Let R be a commutative ring and f ∈ R[x]. Then f is a permutation poly-

nomial on R[α] if and only if the following two conditions hold:

1. [f ]R is a permutation of R;

2. [f ′]R is unit-valued.

Theorem 2.4.1 shows that whether f = f1 + α f2 ∈ R[α][x] is a permutation polynomial on

R[α] depends only on f1. In particular, f1 + α f2 is a permutation polynomial on R[α] if and

only if f1+α ·0 is a permutation polynomial on R[α]. We rephrase the last remark as a corollary.
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Corollary 2.4.3. Let R be a finite ring. Let f = f1 + α f2, where f1, f2 ∈ R[x]. Then f is a

permutation polynomial on R[α] if and only if f1 is a permutation polynomial on R[α].

Corollary 2.4.4. Let R be a finite ring and R∗ the group of units on R. Let B denote the

number of pairs of functions (H,G) with

H : R −→ R bijective and G : R −→ R∗

that occur as ([g], [g′]) for some g ∈ R[x]. Then the number |P(R[α])| of polynomial permutations

on R[α] is equal to

|P(R[α])| = B · |F(R)|.

Proof. By Corollary 2.3.7 and Remark 2.3.9,

[f1 + αf2]R[α] 7→ ([f1]R, [f
′
1]R, [f2]R)

is a bijection between F(R[α]) and triples of polynomial functions on R such that the first two

entries of the triple arise from one polynomial and its derivative.

By Theorem 2.4.1, the restriction of this bijection to P(R[α]) is surjective onto the set of

those triples ([f1]R, [f
′
1]R, [f2]R) such that [f1]R is bijective and [f ′1]R takes values in R∗.

We now introduce a subgroup of the group of polynomial permutations of a ring of dual

numbers that will play an important role in determining the order of the group.

Definition 2.4.5. Let

Stα(R) = {F ∈ P(R[α]) : F (a) = a for every a ∈ R}.

Stα(R), which is clearly a subgroup of P(R[α]), is called the pointwise stabilizer (or shortly the

stabilizer) of R in the group P(R[α]).

Proposition 2.4.6. Let R be a finite commutative ring. Then

Stα(R) = {F ∈ P(R[α]) : F is induced by x+ h(x), for some h ∈ NR}.

In particular, every element of the stabilizer of R can be realized by a polynomial in R[x].

Proof. It is clear that

Stα(R) ⊇ {F ∈ P(R[α]) : F is induced by x+ h(x), for some h ∈ NR}.

Now, let F ∈ P(R[α]) such that F (a) = a for every a ∈ R. Then F is represented by f1 + f2 α,

where f1, f2 ∈ R[x], and a = F (a) = f1(a) + f2(a)α for every a ∈ R. It follows that f2(a) = 0

for every a ∈ R, i.e., f2 is a null polynomial on R. Thus, f1+f2 α , f1 on R[α] by Lemma 2.2.7,
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that is, F is represented by f1. Therefore, [f1]R = idR (since F is the identity on R) and, so,

f1(x) = x+ h(x) for some h ∈ R[x] that is a null polynomial on R.

Remark 2.4.7. To prevent confusion about the expression for the stabilizer group in Proposi-

tion 2.4.6 we emphasize that, in general, not every polynomial of the form x + h with h ∈ NR

induces a permutation polynomial of R[α], as the following example shows.

Example 2.4.8. Let R = Fq. Consider the polynomial (xq − x) ∈ NFq . Then the polynomial

f(x) = x+ (xq − x) = xq induces the identity on Fq, but f is not a permutation polynomial on

Fq[α], since f(α) = f(0) = 0. Thus f does not induce an element of Stα(Fq).

The remainder of this section is concerned with polynomial permutations of the ring of dual

numbers in the simple case where the base ring is a finite field. We already determined the

number of polynomial functions on the dual ring over a finite field (see Corollary 2.3.11). The

number of polynomial permutations now follows readily from Corollary 2.4.4, since every pair

of functions on a finite field arises as the pair of functions induced by a polynomial and its

derivative.

Lemma 2.4.9. Let Fq be a finite field with q elements. Then for all functions F,G : Fq −→ Fq
there exists a polynomial f ∈ Fq[x] such that

(F,G) = ([f ], [f ′]) and deg f < 2q.

Proof. Let f0, f1 ∈ Fq[x] such that [f0] = F and [f1] = G and set

f(x) = f0(x) + (f ′0(x)− f1(x))(xq − x).

Then [f ] = [f0] = F and [f ′] = [f1] = G. Moreover, by division with remainder by (xq − x), we

can find f0, f1 such that deg f0, deg f1 < q.

Proposition 2.4.10. Let Fq be a finite field with q elements. The number |P(Fq[α])| of poly-

nomial permutations on Fq[α] is given by

|P(Fq[α])| = q!(q − 1)qqq.

Proof. Let B be the set of pairs of functions (H,G) such that

H : Fq −→ Fq bijective and G : Fq −→ Fq \ {0}.

Clearly, |B| = q!(q−1)q. By Lemma 2.4.9, each (H,G) ∈ B arises as ([f ], [f ′]) for some f ∈ Fq[x].

Thus by Corollary 2.4.4, |P(Fq[α])| = |B| · |F(Fq)| = q!(q − 1)qqq.

WhenR is a finite field, then, as we have seen, we do not need the stabilizer group to determine

the number of polynomial permutations on the ring of dual numbers. We will nevertheless
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investigate this group, starting with its order, for comparison purposes, and because it yields

some information on the structure of P(Fq[α]).

Theorem 2.4.11. Let Fq be a finite field with q elements. Then

1. |Stα(Fq)| = |{[f ′]Fq : f ∈ Fq[x], [f ]Fq = idFq and [f ′]Fq is unit-valued}|;

2. |Stα(Fq)| = |{[f ′]Fq : f ∈ Fq[x], [f ]Fq = idFq , deg f < 2q and [f ′]Fq is unit-valued}|;

3. |Stα(Fq)| = (q − 1)q.

Proof. To see (1), set A = {[f ′]Fq : f ∈ Fq[x], [f ]Fq = idFq and [f ′]Fq is unit-valued}. We define

a bijection ϕ from Stα(Fq) to A. Given F ∈ Stα(Fq), there exists a polynomial f ∈ Fq[x]

inducing F on Fq[α] such that [f ]Fq = idFq by Definition 2.4.5. By Theorem 2.4.1, [f ′]Fq is

unit-valued. We set ϕ(F ) = [f ′]Fq . Corollary 2.3.7 shows that ϕ is well-defined and injective,

and Theorem 2.4.1 shows that it is surjective.

(2) follows from (1) and Lemma 2.4.9. Ad (3). By (1), |Stα(Fq)| ≤ |{G : Fq −→ F∗q}| =

(q − 1)q. Now consider a function G : Fq −→ F∗q . By Lemma 2.4.9, there exists a polynomial

h ∈ Fq[x] such that [h]Fq = idFq and [h′]Fq = G. Thus h represents an element of Stα(Fq), and

G maps to this element under the bijection ϕ in the proof of (1). Hence |Stα(Fq)| ≥ (q−1)q.

The equalities of Theorem 2.4.11 actually come from a group isomorphism, as the second

author has shown [4]. By Proposition 2.4.10 and Theorem 2.4.11, we immediately see the

special case for finite fields of a more general result that we will show in the next section (see

Theorem 2.5.7).

Corollary 2.4.12. The number |P(Fq[α])| of polynomial permutations on Fq[α] is given by

|P(Fq[α])| = |P(Fq)||F(Fq)||Stα(Fq)|.

2.5 The stabilizer of R in the group of polynomial

permutations of R[α]

In this section, we express the numbers of polynomial functions and polynomial permutations

on R[α] in terms of the order of Stα(R), the stabilizer of R, that is, the group of those polynomial

permutations of R[α] that fix R pointwise. The group of those polynomial permutations of R[α]

that can be realized by polynomials with coefficients in R will play a role, as it contains the

stabilizer.

Notation 2.5.1. Let PR(R[α]) = {F ∈ P(R[α]) : F = [f ] for some f ∈ R[x]}.

Remark 2.5.2. Proposition 2.4.6 shows that the elements of Stα(R), a priori induced by poly-

nomials in R[α][x], can be realized by polynomials in R[x], that is,

Stα(R) ⊆ PR(R[α]).
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The following well-known, useful characterization of permutation polynomials on finite local

rings has been shown by Nöbauer [70, section III, statement 6, pp. 335] (also for several variables

[70, Theorem 2.3]). It is implicitly shown in the proof of a different result in McDonalds’s

monograph on finite rings [57, pp. 269-272], and explicitly in a paper of Nechaev [63, Theorem 3].

Lemma 2.5.3. [70, Theorem. 2.3] Let R be a finite local ring, not a field, M its maximal ideal,

and f ∈ R[x].

Then f is a permutation polynomial on R if and only if the following conditions hold:

1. f is a permutation polynomial on R/M ;

2. for all a ∈ R, f ′(a) 6= 0 mod M .

Lemma 2.5.4. Let R be a finite commutative ring and F ∈ P(R). Then there exists a polyno-

mial f ∈ R[x] such that [f ]R = F and f ′(r) is a unit of R for every r ∈ R.

Proof. Since every finite commutative ring is a direct sum of local rings, we may assume R

local. When R is a finite field, the statement follows from Lemma 2.4.9, while, when R is a

finite local ring but not a field, it follows from Lemma 2.5.3.

Lemma 2.5.5. PR(R[α]) is a subgroup of P(R[α]); and the map

ϕ : PR(R[α]) −→ P(R) defined by F 7→ F
∣∣
R

(the restriction of F to R)

is a group epimorphism with kerϕ = Stα(R). In particular,

1. every element of P(R) occurs as the restriction to R of some F ∈ PR(R[α])

2. PR(R[α]) contains Stα(R) as a normal subgroup and

PR(R[α])
/
Stα(R) ∼= P(R).

Proof. PR(R[α]) is a finite subset of P(R[α]) that is closed under composition, and hence a

subgroup of P(R[α]). Polynomial permutations of R[α] induced by polynomials in R[x] map R

to itself bijectively. ϕ is, therefore, well defined, and clearly a homomorphism with respect to

composition of functions.

Ad (1) This is evident from Theorem 2.4.1 and Lemma 2.5.4.

Ad (2) Stα(R) is contained in PR(R[α]), by Proposition 2.4.6. Stα(R), the pointwise stabilizer

of R in P(R[α]) is, therefore, equal to the pointwise stabilizer of R in PR(R[α]), which is the

kernel of ϕ.

Recall that a function on R is a unit-valued if it maps R into, R∗, the group of units on R.

Corollary 2.5.6. For any fixed F ∈ P(R),

|Stα(R)| =
∣∣{([f ]R, [f

′]R) : f ∈ R[x], [f ]R = F, and [f ′]R is unit-valued}
∣∣.
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Proof. Let f ∈ R[x] such that [f ]R = F and [f ′]R is unit-valued. Such a polynomial f exists by

Lemma 2.5.4. By Corollary 2.4.2, f induces a permutation of R[α], which we denote by [f ].

Let C be the coset of [f ] with respect to Stα(R). Then |C| = |Stα(R)|. By Lemma 2.5.5 (2),

C consists precisely of those polynomial permutations G ∈ PR(R[α]) with G
∣∣
R

= F .

A bijection ψ between C on one hand and the set of pairs ([g]R, [g
′]R), where g ∈ R[x] such

that [g]R = F and [g′]R is unit-valued on the other hand is given by ψ(G) = ([g]R, [g
′]R),

where g is any polynomial in R[x] which induces G on R[α]. ψ is well-defined and injective by

Corollary 2.3.7 and onto by Corollary 2.4.2.

Theorem 2.5.7. Let R be a finite local ring. Then

|P(R[α])| = |F(R)| · |P(R)| · |Stα(R)|.

Proof. Set

B = {([f ]R, [f
′]R) : f ∈ R[x], [f ]R ∈ P(R), and [f ′]R is unit-valued}.

By Corollary 2.5.6, |B| = |P(R)| · |Stα(R)|.

We define a function ψ : P(R[α]) −→ B × F(R) as follows: if G ∈ P(R[α]) is induced by

g = g1 + α g2, where g1, g2 ∈ R[x], we let ψ(G) = (([g1]R, [g
′
1]R), [g2]R). By Theorem 2.4.1 and

Corollary 2.3.7, ψ is well-defined and one-to-one. The surjectivity of ψ follows by Theorem 2.4.1.

Therefore,

|P(R[α])| = |B ×F(R)| = |P(R)| · |Stα(R)| · |F(R)|.

Remark 2.5.8. Let R be a finite local ring which is not a field, M the maximal ideal of R,

and q = |R/M |. Jiang [40] has shown the following relation between the number of polynomial

functions and the number of polynomial permutations on R:

|P(R)| = q!(q − 1)q

q2q
|F(R)|.

Corollary 2.5.9. Let R be a finite local ring which is not a field. Then

|F(R[α])| = |F(R)|2 · |Stα(R)|.

Proof. The residue fields of R and R[α] are isomorphic by Proposition 2.2.6 (4). Let q denote

the order of this residue field. By Theorem 2.5.7, |P(R[α])| = |F(R)| · |P(R)| · |Stα(R)|. Now

apply Remark 2.5.8 to P(R[α]) and P(R) simultaneously and cancel.
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2.6 Permutation polynomials on Zm[α]
In this section, we characterize permutation polynomials on Zpn [α] in relation to permutation

polynomials on Zpn .

Lemma 2.6.1. [69, Hilfssatz 8] Let n > 1, and f ∈ Z[x]. Then f is a permutation polynomial

on Zpn if and only if the following conditions hold:

1. f is a permutation polynomial on Zp;

2. for all a ∈ Z, f ′(a) 6≡ 0 (mod p).

We now apply the principle of Lemma 2.6.1 to Theorem 2.4.1 and Corollary 2.4.3 in the

special case where R = Zpn .

Theorem 2.6.2. Let f ∈ Z[α][x], f = f1 + αf2 with f1, f2 ∈ Z[x]. Then the following are

equivalent:

1. f is a permutation polynomial on Zpn [α] for all n ≥ 1;

2. f is a permutation polynomial on Zpn [α] for some n ≥ 1;

3. f1 is a permutation polynomial on Zpn [α] for all n ≥ 1;

4. f1 is a permutation polynomial on Zpn [α] for some n ≥ 1;

5. f1 is a permutation polynomial on Zp and for all a ∈ Z, f ′1(a) 6≡ 0 (mod p);

6. f1 is a permutation polynomial on Zpn for all n ≥ 1;

7. f1 is a permutation polynomial on Zpn for some n > 1.

Proof. By Corollary 2.4.3, (1) is equivalent to (3), and (2) is equivalent to (4). By Lemma 2.6.1,

the statements (5), (6) and (7) are equivalent.

By Theorem 2.4.1, (1) is equivalent to (6) together with the fact that f ′1(a) 6≡ 0 (mod p) for

any a ∈ Z. But Lemma 2.6.1 shows that the condition on the derivative of f1 is redundant.

Therefore, (1) is equivalent to (6).

(1) implies (2) a fortiori. Finally, taking into account the fact that a permutation polynomial

on Zpn is also a permutation polynomial on Zp, Theorem 2.4.1 shows that (2) implies (5).

The special case f = f1 yields the following corollary.

Corollary 2.6.3. Let f ∈ Z[x]. Then the following are equivalent:

1. f is a permutation polynomial on Zpn [α] for all n ≥ 1;

2. f is a permutation polynomial on Zpn [α] for some n ≥ 1;
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3. f is a permutation polynomial on Zp and for all a ∈ Z, f ′(a) 6≡ 0 (mod p);

4. f is a permutation polynomial on Zpn for all n ≥ 1;

5. f is a permutation polynomial on Zpn for some n > 1.

We exploit the equivalence of being a permutation polynomial on Zpn [α] and being a per-

mutation polynomial on Zpn (only valid for n > 1) in the following corollary, always keeping

in mind that being a null-polynomial on Zpn is not equivalent to being a null-polynomial on

Zpn [α].

Corollary 2.6.4. Let n > 1, and f, g ∈ Z[x].

1. If f is a permutation polynomial on Zpn and g a null polynomial on Zpn then f + g is a

permutation polynomial on Zpn [α].

2. In particular, if g is a null-polynomial on Zpn, x+ g induces an element of Stα(Zpn).

Proof. Ad (1). Set h = f + g. Then [h]pn = [f ]pn and h is, therefore, a permutation polynomial

on Zpn . Since n > 1, Corollary 2.6.3 applies and h(x) is a permutation polynomial on Zpn [α].

Now (2) follows from (1) and Definition 2.4.5.

The following example illustrates the necessity of the condition n > 1 in Theorem 2.6.2 (7)

and Corollary 2.6.4.

Example 2.6.5. Consider the polynomials f(x) = (p−1)x and g(x) = (p−1)(xp−x). Clearly,

f is a permutation polynomial on both Zp and Zp[α], while g(x) is a null polynomial on Zp.
Now, h(x) = f(x) + g(x) = (p− 1)xp permutes the elements of Zp, but h is not a permutation

polynomial on Zp[α], as h(α) = h(0) = 0.

We can apply the Chinese Remainder Theorem to Theorem 2.6.2 and Corollary 2.6.4 to

obtain statements about permutation polynomials on Zm[α].

Theorem 2.6.6. Let f = f1 + α f2 with f1, f2 ∈ Z[x]. Then f is a permutation polynomial on

Zm[α] if and only if for every prime p dividing m, f1 is a permutation polynomial on Zp and

f ′1 has no zero modulo p.

Corollary 2.6.7. Let m = pn1
1 · · · p

nk
k , where p1, . . . , pk are distinct primes and nj > 1 for

j = 1, . . . , k. Let f, g ∈ Z[x]. If f is a permutation polynomial on Zm and g a null polynomial

on Zm then f+g is a permutation polynomial on Zm[α]. In particular, for every null polynomial

g on Zm, x+ g induces an element of Stα(Zm).
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2.7 The stabilizer of Zpn in the group of polynomial

permutations of Zpn[α]
Recall from Definition 2.4.5 that Stα(Zm) denotes the pointwise stabilizer of Zm in the

group of polynomial permutations on Zm[α]. We have seen in Theorem 2.5.7 the importance of

this subgroup for counting polynomial functions and polynomial permutations on Zm[α]. The

somewhat technical results on Stα(Zm) that we develop in this section will allow us to determine

its order and, from that, to derive explicit formulas for the number of polynomial functions and

permutations on Zpn [α] for n ≤ p in section 2.8.

We have already defined the ideal of null-polynomials and the ideal of polynomials that are

null together with their first derivative in section 2.3 (Definition 2.3.1). For counting purposes,

we now pay special attention to the degrees of the polynomials inducing the null function. We

are interested in the case of R = Zpn for n > 1 (finite fields having been covered already).

Definition 2.7.1. Let

Nm(< k) = {f ∈ Zm[x] : f ∈ NZm and deg f < k},

N ′m(< k) = {f ∈ Zm[x] : f ∈ N ′Zm and deg f < k}.

Recall from Definition 2.2.2 that [f ]m, short for [f ]Zm , denotes the polynomial function

induced by f on Zm.

Proposition 2.7.2. Let m = pn1
1 · · · p

nl
l , where p1, . . . , pl are distinct primes and suppose that

nj > 1 for j = 1, . . . , l. Then

1. |Stα(Zm)| = |{[f ′]m : f ∈ NZm}|.

2. If there exists a monic polynomial in Z[x] of degree k that is a null polynomial on Zm[α],

then

a) |Stα(Zm)| = |{[f ′]m : f ∈ NZm with deg f < k}|;

b) |Stα(Zm)| = [NZm : N ′Zm ] = |Nm(<k)|
|N ′m(<k)| .

Proof. Ad (1). We define a bijection ϕ from Stα(Zm) to the set of functions induced on Zm
by the derivatives of null polynomials on Zm. Given F ∈ Stα(Zm), let h ∈ Z[x] be (such as

we know to exist by Proposition 2.4.6) a null polynomial on Zm such that x + h(x) induces

F . We set ϕ(F ) = [h′]m. Now Corollary 2.3.7 shows ϕ to be well-defined and injective, and

Corollary 2.6.7 shows it to be surjective.

Ad (2a). If g ∈ NZm , then by Proposition 2.3.12, there exists f ∈ Zm[x] with deg f < k such

that [f ]m = [g]m (that is, f ∈ NZm) and [f ′]m = [g′]m.
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Ad (2b). Define ϕ : NZm −→ F(Zm) by ϕ(f) = [f ′]m. Clearly, ϕ is a homomorphism of

additive groups. Furthermore, kerϕ = N ′Zm and Imϕ = {[f ′]m : f ∈ NZm}. By (1),

|Stα(Zm)| = [NZm : N ′Zm ].

For the ratio, we restrict ϕ to the additive subgroup of Zm[x] consisting of polynomials of degree

less than k and get a homomorphism of additive groups defined on Nm(< k), whose image is

still {[f ′]m : f ∈ NZm}, by Corollary 2.3.7, and whose kernel is N ′m(< k). Hence

|Stα(Zm)| = [Nm(< k) : N ′m(< k)].

We now substitute concrete numbers from Theorem 2.3.15 and Proposition 2.3.16 for the k

that stands for the degree of a monic null polynomial on Zm[α] in Proposition 2.7.2 (2). Here,

as in Definition 2.3.13, µ(m) denotes the smallest positive integer whose factorial is divisible by

m.

Corollary 2.7.3. Let m = pn1
1 · · · p

nk
k , where p1, . . . , pk are distinct primes and suppose that

nj > 1 for j = 1, . . . , k. Then

1. |Stα(Zm)| = |{[f ′]m : f ∈ NZm with deg f < 2µ(m)}|;

2. |Stα(Zm)| = |Nm(< 2µ(m))|
|N ′m(< 2µ(m))|

.

Corollary 2.7.4. For a prime number p and a natural number n, where 1 < n ≤ p, we have

1. |Stα(Zpn)| = |{[f ′]pn : f ∈ NZpn with deg f < (n+ 1)p}|;

2. |Stα(Zpn)| = |Npn(< (n+ 1)p)|
|N ′pn(< (n+ 1)p)|

.

Remark 2.7.5. When m = p is a prime, Proposition 2.7.2 and its Corollaries do not apply.

This case has been treated in Theorem 2.4.11.

We now employ Proposition 2.7.2 to show that Corollary 2.5.6 takes a simpler form for polyno-

mial functions on Zpn , when n > 1. (Again, the case n = 1 is exceptional, see Theorem 2.4.11.)

Corollary 2.7.6. Let n > 1. Then for any fixed F ∈ F(Zpn),

|Stα(Zpn)| = |{([f ]pn , [f
′]pn) : f ∈ Z[x] with [f ]pn = F}|.

Proof. Set

A = {([f ]pn , [f
′]pn) : f ∈ Z[x] with [f ]pn = F},

and fix f0 ∈ Z[x] with [f0]pn = F . Then, f − f0 is a null polynomial on Zpn for any f ∈ Z[x]

with ([f ]pn , [f
′]pn) ∈ A.
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We define a bijection

φ : A −→ {[h′]pn : h ∈ NZpn}, φ(([f ]pn , [f
′]pn)) = [(f − f0)′]pn .

Since [(f−f0)′]pn = [f ′]pn−[f ′0]pn , φ is well defined. Also, φ is injective, because, for two different

elements of A, ([f1]pn , [f
′
1]pn) 6= ([f ]pn , [f

′]pn) implies [f ′1]pn 6= [f ′]pn and hence [(f1 − f0)′]pn 6=
[(f − f0)′]pn .

To see that φ is surjective, consider [h′]pn , where h ∈ NZpn . Then [f0 + h]pn = F and,

therefore, ([f0 + h]pn , [f
′
0 + h′]pn) is in A and maps to [h′]pn under φ.

By Proposition 2.7.2 (1),

|Stα(Zpn)| = |{[f ′]pn : f ∈ NZpn}| = |A|.

Remark 2.7.7. Let n = 1 and A = {([f ]pn , [f
′]pn) : f ∈ Z[x] with [f ]pn = F}. Then |A| = pp

by Lemma 2.4.9, but |Stα(Zp)| = (p− 1)p by Theorem 2.4.11. This shows the condition on n in

Corollary 2.7.6 is necessary.

We now give a self-contained proof of Corollary 2.5.9 (not using Jiang’s ratio [40], but emu-

lating the argument in the proof of Theorem 2.5.7), for the case where R = Zpn [α].

Corollary 2.7.8. For any integer n > 1,

|F(Zpn [α])| = |F(Zpn)|2 · |Stα(Zpn)|.

Proof. Set

B =
⋃

F∈F(Zpn )

{([f ]pn , [f
′]pn) : [f ]pn = F and f ∈ Z[x]}.

By Corollary 2.7.6,

|B| = |F(Zpn)| · |Stα(Zpn)|.

We now define a function ψ : F(R[α]) −→ B × F(R) as follows: if G ∈ F(R[α]) is induced

by g = g1 + α g2, where g1, g2 ∈ Zpn [x], we let ψ(G) = (([g1]pn , [g
′
1]pn), [g2]pn).

By Corollary 2.3.7, ψ is well-defined and bijective, and, hence, |F(Zpn [α])| = |B|·|F(Zpn)|.

As |F(Zpn)| is a well-known quantity (quoted in the introduction in Equation (2.1)), all we

now need for an explicit formula for |F(Zpn)| is an expression for |Stα(Zpn)|. We will derive

one for n ≤ p in the next section.

2.8 On the number of polynomial functions on Zpn[α]
In this section, we find explicit counting formulas for the number of polynomial functions and

the number of polynomial permutations on Zpn [α] for n ≤ p. The reason for the assumption
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n ≤ p is that in this case (unlike the case n > p) the ideal of null polynomials on Zpn is equal to

((xp−x), p)n. The equality can be seen by a counting argument [33, Corollary 2.5] — the ideal

((xp − x), p)n is clearly contained in NZpn , and, for n ≤ p, their respective indices in Zpn [x] are

the same — but it can also be derived from other results [91, Theorem 3.3(2)].

This fact allows us to see at a glance if a polynomial is a null polynomial modulo pk (for

any k ≤ n) once we have expanded the polynomial as a Z[x]-linear combination of the powers

(xp − x)m, with coefficients of degree less than p. Our Lemma to this effect, Lemma 2.8.2, is

taken from an earlier paper [33].

Remark 2.8.1. Let R be a commutative ring and h ∈ R[x] monic with deg h = q > 0.

1. Every polynomial f ∈ R[x] can be represented uniquely as

f(x) = f0(x) + f1(x)h(x) + f2(x)h(x)2 + . . .

with fk ∈ R[x] and deg fk < q for all k ≥ 0.

2. Let I an ideal of R. Let f, g ∈ R[x], f =
∑

i aix
i and g =

∑
i bix

i be expanded as in (1)

with fk =
∑q−1

j=0 ajkx
j and gk =

∑q−1
j=0 bjkx

j. Then

∀i ai ≡ bi mod I ⇐⇒ ∀j, k ajk ≡ bjk mod I.

(1) follows easily from repeated division with remainder by h(x) and the fact that quotient and

remainder are unique in polynomial division. (2) follows from the uniqueness of the expansion

applied to polynomials in (R/I)[x].

Lemma 2.8.2. [33, Lemma 2.5] Let p be a prime and f ∈ Z[x] represented as in Remark 2.8.1

with respect to h(x) = xp − x.

f(x) = f0(x) + f1(x)(xp − x) + f2(x)(xp − x)2 + . . .

with fk ∈ Z[x] and deg fk < p for all k ≥ 0.

Let n ≤ p. Then f is a null polynomial on Zpn if and only if fk ∈ pn−kZ[x] for 0 ≤ k ≤ n.

Corollary 2.8.3. Let n ≤ p. Then |Npn(< (n+ 1)p)| = p
n(n+1)p

2 .

Proof. We express f ∈ Z[x] with deg f < (n + 1)p as in Remark 2.8.1, Lemma 2.8.2, f(x) =∑n
k=0 fk(x)(xp − x)k, where fk(x) =

∑p−1
j=0 ajkx

j .

By Lemma 2.8.2 and Remark 2.8.1 (2), |Npn(< (n+ 1)p)| is equal to the number of ways to

chose the ajk from a fixed system of representatives modulo pn, such that ajk ≡ 0 mod p(n−k)

for k ≤ n. This number is
∏n
k=0 p

kp = pp
∑n
k=0 k = p

n(n+1)p
2 .
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Lemma 2.8.4. Let f ∈ Z[x], where f(x) =
∑

k≥0 fk(x)(xp−x)k such that fk(x) =
∑p−1

j=0 ajkx
j.

If we expand f ′ in a similar way, f ′(x) =
∑

k≥0 f̂k(x)(xp−x)k, where f̂k(x) =
∑p−1

j=0 âjkx
j , then

the following relations hold for all k ≥ 0

â0k = (kp+ 1)a1k − (k + 1)a0 k+1

âjk = (kp+ j + 1)aj+1 k + (k + 1)(p− 1)aj k+1 for 1 ≤ j ≤ p− 2

âp−1 k = (k + 1)(p− 1)ap−1 k+1 + (k + 1)pa0 k+1.

(2.3)

Proof. Consider(
fk(x)(xp − x)k

)′
= f ′k(x)(xp − x)k − kfk(x)(xp − x)k−1 + kpxp−1fk(x)(xp − x)k−1. (2.4)

We rewrite the last term of Equation (2.4) by expanding xp−1fk(x) as
∑p−1

j=0 ajkx
p+j−1 and

substituting xj+1 +xj(xp−x) for xp+j , to get integer linear-combinations of terms xj(xp−x)k.

kpxp−1fk(x)(xp − x)k−1 =

p−1∑
j=0

kpajkx
p+j−1(xp − x)k−1 =

=

p−1∑
j=1

kpajkx
p+j−1 + kpa0kx

p−1

 (xp − x)k−1 =

=

p−1∑
j=1

kpajk(x
j + xj−1(xp − x)) + kpa0kx

p−1

 (xp − x)k−1 =

=

p−2∑
j=1

kpajkx
j + (kpap−1 k + kpa0k)x

p−1

 (xp − x)k−1 +

p−2∑
j=0

kpaj+1 kx
j

 (xp − x)k

and, therefore,

(
fk(x)(xp − x)k

)′
=

−ka0k +

p−2∑
j=1

k(p− 1)ajkx
j + (k(p− 1)ap−1 k + kpa0k)x

p−1

 (xp − x)k−1

+

p−2∑
j=0

(kp+ j + 1)aj+1 kx
j

 (xp − x)k. (2.5)

Thus f ′(x) =
∑

k≥0(fk(x)(xp − x)k)′ =
∑

k=0 f̂k(x)(xp − x)k, where

f̂k(x) = (kp+ 1)a1k − (k + 1)a0 k+1 +

p−2∑
j=1

(
(kp+ j + 1)aj+1 k + (k + 1)(p− 1)aj k+1

)
xj

+ ((k + 1)(p− 1)ap−1 k+1 + (k + 1)pa0 k+1)x
p−1.
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Finally, expressing the âjk in terms of the ajk, we get

â0k = (kp+ 1)a1k − (k + 1)a0 k+1,

âjk = (kp+ j + 1)aj+1 k + (k + 1)(p− 1)aj k+1 for 1 ≤ j ≤ p− 2,

âp−1 k = (k + 1)(p− 1)ap−1 k+1 + (k + 1)pa0 k+1 for k ≥ 0.

Let f ∈ Z[x], p a prime and n ≤ p. We are now in a position to tell from the coefficients of

the expansion of f with respect to (xp−x) (as in Remark 2.8.1) whether both f and f ′ are null

polynomials on Zpn .

Theorem 2.8.5. Let n ≤ p and f(x) =
∑m

k=0 fk(x)(xp−x)k ∈ Z[x], where fk(x) =
∑p−1

j=0 ajkx
j.

Then f and f ′ are both null polynomials on Zpn if and only if, for 1 ≤ k < min(p, n+ 1),

aj0 ≡ 0 (mod pn)

ajk ≡ 0 (mod pn−k+1). (2.6)

Proof. (⇒) Suppose f and f ′ are null polynomials on Zpn . Then f ′(x) =
∑m

k=0 f̂k(x)(xp − x)k,

with f̂k(x) =
∑p−1

j=0 âjkx
j , such that, by Lemma 2.8.4, the coefficients ajk and âjk satisfy

Equation (2.3). Since f ′ is a null polynomial on Zpn , Lemma 2.8.2 implies, for j = 0, . . . , p− 1,

âjk ≡ 0 (mod pn−k) for k ≤ n. (2.7)

Again by Lemma 2.8.2, it is clear that

aj0 ≡ 0 (mod pn) for j = 0, 1, . . . , p− 1. (2.8)

For 1 ≤ k < min(p, n + 1), we use induction. To see aj1 ≡ 0 (mod pn), we set k = 0 in

Equation (2.3), and get

â00 = a10 − a0 1,

âj0 = (j + 1)aj+10 + (p− 1)aj 1 for 1 ≤ j ≤ p− 2,

âp−1 0 = (p− 1)ap−1 1 + pa0 1.

(2.9)

From Equations (2.7), (2.8), and (2.9), we conclude that aj1 ≡ 0 (mod pn), j = 0, 1, . . . , p− 1.

Now, for 2 ≤ k + 1 < min(p, n+ 1), we prove the statement for k + 1 under the hypothesis

ajk ≡ 0 (mod pn+1−k) for j = 0, 1, . . . , p− 1. (2.10)
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We rewrite Equation (2.3) as

(k + 1)a0 k+1 = (kp+ 1)a1k − â0k,

(k + 1)(p− 1)aj k+1 = âjk − (kp+ j + 1)aj+1 k for 1 ≤ j ≤ p− 2,

(k + 1)(p− 1)ap−1 k+1 = âp−1 k − (k + 1)pa0 k+1 for k = 0, 1, . . . , n− 1.

(2.11)

Since k + 1 < p and n + 1 − k > n − k, Equations (2.11), (2.7) and the induction hypothesis

(Equation (2.10)) give

aj k+1 ≡ 0 (mod pn−k) for j = 0, 1, . . . , p− 1.

For k ≥ min(p, n + 1), we note that (xp − x)k ∈ N ′Zpn. Hence fk(x)(xp − x)k ∈ N ′Zpn . So,

there are no restrictions on ajk for j = 0, . . . , p− 1.

(⇐) Assume that (2.6) is true. Then, for k ≤ p, ajk ≡ 0 (mod p(n−k)) since n+1−k > n−k.

We use Lemma 2.8.4 and Equation (2.6) to show that âjk ≡ 0 (mod p(n−k)) for 0 ≤ k ≤ p. The

result now follows by Lemma 2.8.2.

Corollary 2.8.6. Let n ≤ p and r = min(n+ 1, p), that is, r =

n+ 1 if n < p

p if n = p
.

Then (xp − x)r is a monic null polynomial on Zpn [α] of minimal degree.

Proof. By Lemma 2.3.4, (xp − x)r is a null polynomial on Zpn [α]. Let h ∈ Z[α][x] be a null

polynomial on Zpn [α] with deg h < rp. By Corollary 2.3.6, it suffices to consider h ∈ Z[x]. We

show that h is not monic. If h = 0 this is evident. If h 6= 0, we expand h as in Lemma 2.8.2:

h(x) = h0(x) + h1(x)(xp − x) + · · ·+ hr−1(x)(xp − x)r−1

with hk(x) =
∑p−1

j=0 ajkx
j ∈ Z[x]. By Theorem 2.8.5, it follows that for 0 ≤ j ≤ p− 1

aj0 ≡ 0 mod pn,

ajk ≡ 0 mod p(n−k+1) for 1 ≤ k < r − 1.

If l is the largest number such that hl(x) 6= 0, then ap−1 l 6= 1, since ap−1 l ≡ 0 mod p(n−l+1).

Thus h cannot be monic.

Recall from Definitions 2.3.1 and 2.7.1 that f ∈ N ′pn(< (n + 1)p) means f and f ′ are null

polynomials on Zpn and deg f < (n+ 1)p.

Corollary 2.8.7. Let n ≤ p. Then |N ′pn(< (n+ 1)p)| =

p
n(n−1)p

2 if n < p

p
(n2−n+2)p

2 if n = p
.
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Proof. We represent every polynomial f ∈ Zpn [x] with deg f < (n + 1)p uniquely, by Re-

mark 2.8.1, as

f(x) =
n∑
k=0

fk(x)(xp − x)k with fk(x) =

p−1∑
j=0

ajkx
j ∈ Zpn [x].

By Theorem 2.8.5, counting the polynomials in N ′pn(< (n + 1)p) amounts to counting the

number of choices for the ajk such that aj0 ≡ 0 mod pn and ajk ≡ 0 mod pn−k+1 for 1 ≤ k <
min(p, n+ 1) and 0 ≤ j ≤ p− 1.

When n < p, there are pk−1 choices for ajk for each pair (j, k) with 1 ≤ k ≤ n and 0 ≤ j ≤
p− 1. Hence the total number of ways of choosing all coefficients, when n < p, is equal to

n∏
k=1

pp(k−1) =
n−1∏
k=0

ppk = pp
∑n−1
k=0 k = p

pn(n−1)
2 .

When n = p, ajn can be chosen in pn ways, and the resulting total is

pnp
n−1∏
k=1

pp(k−1) = pnp
n−2∏
k=0

ppk = pnp+p
∑n−2
k=0 k = p

p(n2−n+2)
2 .

At last, we obtain an explicit formula for the order of Stα(Zpn) for n ≤ p.

Theorem 2.8.8. Let 1 ≤ n ≤ p. Then

|Stα(Zpn)| =


(p− 1)p if n = 1

pnp if 1 < n < p

p(n−1)p if n = p

.

Proof. The case n = 1 is a special case of Theorem 2.4.11 (3). Let 1 < n ≤ p. By Corollary 2.7.4,

|Stα(Zpn)| = |Npn(< (n+ 1)p)|
|N ′pn(< (n+ 1)p)|

.

Now Corollaries 2.8.3 and 2.8.7, respectively, say that

|Npn(< (n+ 1)p)| = p
n(n+1)p

2 and |N ′pn(< (n+ 1)p)| =

p
n(n−1)p

2 if n < p

p
(n2−n+2)p

2 if n = p
.

Example 2.8.9. Let R = Z4. Then |Stα(Z4)| = 4 by Theorem 2.8.8. Now, by Corollary 2.8.6,

the polynomial (x2 − x)2 is a monic null polynomial on Z4[α] of minimal degree. So every
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polynomial function on Z4[α] can be represented by a polynomial of degree less than 4. Consider

the following null polynomials on Z4:

f1 = 0, f2 = 2(x2 − x), f3 = 2(x3 − x), f4 = 2(x3 − x2).

It is evident that [x+ fi]4 = idZ4, and so by Corollary 2.6.4, [x+ fi] ∈ Stα(Z4), where [x+ fi]

denotes the function induced by x+ fi on Z4[α] for i = 1, . . . , 4. Note that [1 + f ′i ]4 6= [1 + f ′j ]4,

however, and hence by Corollary 2.3.7, [x+ fi] 6= [x+ fj ] whenever i 6= j. Therefore Stα(Z4) =

{[x+ fi], i = 1, . . . , 4}. Actually, Stα(Z4) is the Klein 4-group.

Theorem 2.8.8 now allows us to state explicit formulas for the number of polynomial functions

and polynomial permutations on Zpn [α] for n ≤ p. Our formula for |P(Zpn [α])| depends on p

and n. To understand it in terms of the residue field and nilpotency of the maximal ideal of

Zpn [α], recall from Proposition 2.2.6 that the residue field of Zpn [α] is isomorphic to Zp and the

nilpotency of the maximal ideal is n+ 1.

Theorem 2.8.10. Let 1 ≤ n ≤ p. Then the number |P(Zpn [α])| of polynomial permutations on

Zpn [α] is given by

|P(Zpn [α])| =

p!(p− 1)pp(n
2+2n−2)p if n < p

p!(p− 1)pp(n
2+2n−3)p if n = p

.

Proof. The case n = 1 is covered by Proposition 2.4.10. Now, let 1 < n ≤ p. Using that

µ(pk) = kp for k ≤ p, we simplify the formulas for |F(Zpn)| and |P(Zpn)| quoted in the

introduction (Equation (2.1)) accordingly. For 1 < n ≤ p,

|F(Zpn)| = p
n(n+1)p

2 and |P(Zpn)| = p!(p− 1)pp−2pp
n(n+1)p

2 . (2.12)

Substituting the formula from Theorem 2.8.8 for |Stα(Zpn)| and the above expressions for

|F(Zpn)| and |P(Zpn)| in Theorem 2.5.7, we obtain the desired result.

Theorem 2.8.11. Let n ≤ p. The number |F(Zpn [α])| of polynomial functions on Zpn [α] is

given by

|F(Zpn [α])| =

p(n
2+2n)p if n < p

p(n
2+2n−1)p if n = p

.

Proof. The case n = 1 is covered by Corollary 2.3.18. For 1 < n ≤ p, we substitute the

expression from Theorem 2.8.8 for |Stα(Zpn)| and the formula for |F(Zpn)| from Equation (2.1)

(simplified as in Equation (2.12) in the proof of Theorem 2.8.10) in Corollary 2.7.8.

2.9 A canonical form

In this section, we find a canonical representation for the polynomial functions on Zpn [α]

whenever n ≤ p. As before (see Definition 2.3.13), µ(m) stands for the smallest natural number

n such that m divides n!.
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Lemma 2.9.1. [81, Theorem 10] Let F be a polynomial function on Zm. Then F is uniquely

represented by a polynomial f ∈ Z[x] of the form

f(x) =

µ(m)−1∑
i=0

aix
i with 0 ≤ ai <

m

gcd(m, i!)
.

Proposition 2.9.2. Let F : Zm[α] −→ Zm[α] be a polynomial function on Zm[α]. Then F can

be represented by a polynomial f ∈ Z[x] of the form

f(x) =

2µ(m)−1∑
i=0

aix
i +

µ(m)−1∑
j=0

bjx
j α with 0 ≤ ai, bj < m and 0 ≤ bj <

m

gcd(m, j!)

and the bj in such a representation are unique.

Proof. By Corollary 2.3.17, F can be represented by a polynomial g1 + α g2, where

g1(x) =

2µ(m)−1∑
i=0

cix
i and g2(x) =

µ(m)−1∑
j=0

djx
j

with ci, dj ∈ Z. Choosing ai, bj to be the smallest non-negative integers such that ci ≡ ai and

dj ≡ bj mod m, we see that F is represented by

g(x) =

2µ(m)−1∑
i=0

aix
i +

µ(m)−1∑
j=0

bjx
j α

with 0 ≤ ai, bj < m. Now, since Zm[α] is a Z-algebra, substituting elements of Zm[α] for the

variable in g defines a function on Zm[α]. For k, l ∈ Zm, we have

g(k + l α) =

2µ(m)−1∑
i=0

ai(k + l α)i +

µ(m)−1∑
j=0

bjk
j α .

By Corollary 2.3.7, F depends on the function induced by
∑µ(m)−1

j=0 bjx
j on Zm but not on the

function induced by its derivative. So we can replace
∑µ(m)−1

j=0 bjx
j by any polynomial h ∈ Z[x]

such that [
∑µ(m)−1

j=0 bjx
j ]m = [h]m. Hence, by Corollary 2.3.7 and Lemma 2.9.1, bj can be chosen

uniquely such that 0 ≤ bj < m
gcd(m,j!) .

By combining Proposition 2.9.2 with Proposition 2.3.16, we get the following corollary.

Corollary 2.9.3. Let p be a prime number and let n be a positive integer such that n ≤ p.

Let F : Zpn [α] −→ Zpn [α] be a polynomial function on Zpn [α]. Then F can be represented as

a polynomial f(x) =
∑(n+1)p−1

i=0 aix
i +

∑np−1
j=0 bjx

j α with ≤ ai, bj < pn. Moreover, bj can be

chosen uniquely such that 0 ≤ bj < pn

gcd(pn,j!) .
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Finally, we give a canonical representation for polynomial functions on Zpn [α] for n ≤ p.

Theorem 2.9.4. Let n ≤ p. Every polynomial function F on Zpn [α] is uniquely represented by

a polynomial f ∈ Z[x] of the form

f(x) =
m∑
k=0

fk(x)(xp − x)k +

np−1∑
i=0

bix
i α with fk(x) =

p−1∑
j=0

ajkx
j ,

where

1. m = min(n, p− 1);

2. 0 ≤ aj0 < pn and 0 ≤ ajk < pn−k+1 (for j = 0, . . . , p− 1 and k = 1, . . . ,m);

3. 0 ≤ bi < pn

gcd(pn,i!) (for i = 0, . . . , np− 1).

Proof. Let F be a polynomial function on Zpn [α]. By Corollary 2.9.3, we can represent F by

f = g + αh with g, h ∈ Z[x], such that deg g < (n + 1)p − 1 and h(x) =
∑np−1

i=0 bix
i with

0 ≤ bi < pn

gcd(pn,i!) ; and the coefficients bi in such a representation are unique.

By Corollary 2.8.6, (xp−x)m+1 is null on Zpn [α]. Thus we can choose g with deg g < p(m+1)

by Proposition 2.3.12. We expand g as in Lemma 2.8.2, g(x) =
∑m

k=0 gk(x)(xp − x)k, where

gk(x) =
∑p−1

j=0 cjkx
j ∈ Z[x].

By division with remainder, we get cj0 = pnqj0 + aj0 and cjk = pn−k+1qjk + ajk with 0 ≤
aj0 < pn and 0 ≤ ajk < pn−k+1 for j = 0, . . . , p− 1, and k = 1, . . . ,m. By Theorem 2.8.5,

pn(xp − x) , pn−k+1(xp − x)k , 0 on Zpn [α].

Thus, if we set fk(x) =
∑p−1

j=0 ajkx
j for k = 0, . . . ,m, we have, by Corollary 2.3.7,

g(x) =
m∑
k=0

gk(x)(xp − x)k ,
m∑
k=0

fk(x)(xp − x)k on Zpn [α],

and hence we can replace g by
∑m

k=0

∑p−1
j=0 fk(x)(xp − x)k in the representation of the function

F . Therefore F is induced by f = g + αh, where g(x) =
∑m

k=0

∑p−1
j=0 ajkx

j(xp − x)k, with

0 ≤ aj0 < pn, 0 ≤ ajk < pn−k+1 for j = 0, . . . , p − 1, and k = 1, . . . ,m; and h as above. To

count the number of ways of selecting such a polynomial f , we need to count the number of

ways of choosing g and h. First, we do that for g. We note that f0(x) can be determined in

pnp ways, since aj0 < pn for j = 0, . . . , p − 1. While, if 1 ≤ k ≤ m, fk(x) can be selected in

pp(n−k+1) ways, since 0 ≤ ajk < pn−k+1 for j = 0, . . . , p− 1. So, the number of ways to choose

g is

pnp
m∏
k=1

pp(n−k+1) = pnp
m−1∏
k=0

pp(n−k).
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On the other hand, simple calculations show that
∑np−1

i=0 bix
i α can be chosen in p

pn(n+1)
2 ways,

since 0 ≤ bi < pn

gcd(pn,i!) . Thus the number of ways that f can be chosen is

pnp
m−1∏
k=0

pp(n−k) · p
pn(n+1)

2 =

p(n
2+2n)p if n < p

p(n
2+2n−1)p if n = p

.

By Theorem 2.8.11, this last quantity equals |F(Zpn [α])| and, therefore, the representation is

unique.
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3 On the group of unit-valued

polynomial functions

The content of this chapter is the accepted paper [4] in Applicable Algebra in Engineering,

Communication and Computing Journal.

Abstract

Let R be a finite commutative ring. The set F(R) of polynomial functions on R is a finite

commutative ring with pointwise operations. Its group of units F(R)× is just the set of all unit-

valued polynomial functions. We investigate polynomial permutations on R[x]/(x2) = R[α], the

ring of dual numbers over R, and show that the group PR(R[α]), consisting of those polynomial

permutations of R[α] represented by polynomials in R[x], is embedded in a semidirect product

of F(R)× by the group P(R) of polynomial permutations on R. In particular, when R = Fq,
we prove that PFq(Fq[α]) ∼= P(Fq) nθ F(Fq)×. Furthermore, we count unit-valued polynomial

functions on the ring of integers modulo pn and obtain canonical representations for these func-

tions.

Keywords. Finite commutative rings, polynomial functions, polynomial mappings, unit-

valued polynomial functions, permutation polynomials, polynomial permutations, dual num-

bers, semidirect product

3.1 Introduction

Throughout this paper R is a finite commutative ring with unity 1 6= 0. We denote by R×

the group of units of R. A function F : R −→ R is called a polynomial function on R if there

exists a polynomial f ∈ R[x] such that F (r) = f(r) for each r ∈ R. In this case, we say that

f induces (represents) F or F is induced (represented) by f . If F is a bijection, we say that F

is a polynomial permutation on R and f is a permutation polynomial on R (or f permutes R).

When F is the constant zero, f is called a null polynomial on R or shortly, null on R. The set

of all null polynomials is an ideal of R[x], which we denote by NR.

It is evident that the set F(R) of all polynomial functions on R is a monoid with respect to

composition of functions. Its group of invertible elements P(R) consists of polynomial permu-
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tations on R, and is called the group of polynomial permutations on R. Also, F(R) is a ring

with addition and multiplication defined pointwise.

We are interested in the group of units of the pointwise ring structure on F(R), which we

denote by F(R)×. We show a relation between the group F(R)× and the group of those

polynomial permutations on R[x]/(x2) that are represented by polynomials with coefficients in

R. Moreover, when R = Zpn the ring of integers modulo pn we find the order of F(Zpn)× and

give canonical representations for its elements.

3.2 Preliminaries

In this section, we introduce the concepts and notations used frequently in the paper.

Definition 3.2.1. Let A be a ring and f ∈ A[x]. Then:

1. [f ]A denotes the polynomial function induced by f on A;

2. if [f ]A maps A into A×, then f is called a unit-valued polynomial on A, and [f ]A is called

a unit-valued polynomial function on A;

3. when [f ]A is a bijection on A, we call [f ]A a polynomial permutation and f a permutation

polynomial on A.

Throughout this paper for every f ∈ R[x], let f ′ denote its formal derivative.

Unit-valued polynomials and unit-valued polynomial functions have been employed in the

literature to examine other mathematical objects. Loper [55] uses unit-valued polynomials for

distinguishing two classes of commutative rings: D-rings and non-D-rings, where D-rings are

characterized by the fact that every unit-valued polynomial is a constant. For instance, all

semi-local rings (and, in particular, all finite rings) are non-D rings. Unit-valued polynomials

also figure in the characterization of permutation polynomials on finite local rings. We illustrate

this by a well-known fact:

Fact 3.2.2. [63, Theorem 3] Let R be a local ring with maximal ideal M , and let f ∈ R[x].

Then f is a permutation polynomial on R if and only if the following conditions hold:

1. f̄ is a permutation polynomial on the residue field R/M , where f̄ denotes the reduction

of f modulo M ;

2. f ′(a) 6= 0 mod M for every a ∈M .

Indeed, the second condition of the previous fact requires f ′ to be a unit-valued polynomial

on R or, equivalently, [f ′]R to be a unit-valued polynomial function.

Remark 3.2.3. Recall that, in a finite commutative ring R with unity, every element is either

a unit or a zerodivisor, according to whether multiplication by the element is a bijection of R or

not (see for example [48]).
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From now on, let “ · ” denote the pointwise multiplication of functions.

Fact 3.2.4. Let R be a finite commutative ring, and F(R) the set of polynomial functions on R.

Then F(R) is a finite commutative ring with nonzero unity, where addition and multiplication

are defined pointwise. In particular, F(R) is a subring of RR. Moreover, F(R)× is an Abelian

group and;

F(R)× = {F ∈ F(R) : F is a unit-valued polynomial function}.

Proof. It is clear that F(R) forms a finite commutative ring under pointwise operations with

the constant function 1 as its unity 1F(R).

Moreover, since F(R) is a commutative ring, F(R)× is an Abelian group. Now, it is easy to

see that every unit-valued polynomial function is regular, and hence invertible by Remark 3.2.3.

Thus F(R)× contains every unit-valued polynomial function.

For the other inclusion, let F ∈ F(R)×. Then there exists F−1 ∈ F(R)× such that F ·F−1 =

1F(R), that is F (r)F−1(r) = 1 for each r ∈ R. Hence F (r) ∈ R× for each r ∈ R. Therefore F

is a unit-valued polynomial function by Definition 3.2.1.

Remark 3.2.5. When R is an infinite commutative ring, it is still true that F(R) is a com-

mutative ring (infinite) and every element of F(R)× is a unit-valued polynomial function, but

F(R)× may be properly contained in the set of all unit-valued polynomial functions.

The following example illustrates the previous remark.

Example 3.2.6. Let R = {ab : a, b ∈ Z and 2 - b}, that is, R is the localization of Z at 2Z.

Then the polynomial f = 1+2x is a unit-valued polynomial on R, and F = [f ]R is a unit-valued

polynomial function. We claim that F has no inverse in F(R). Assume, on the contrary, that

F is invertible. So there exists F1 ∈ F(R) such that F · F1 = 1F(R), i.e., F (r)F1(r) = 1 for

every r ∈ R. Now, since F1 ∈ F(R), there exists f1 ∈ R[x] such that F1 = [f1]R. Then the

polynomial h(x) = (1+2x)f1(x)−1 is of positive degree. Further, h has infinitely many roots in

R since h(r) = F (r)F1(r)− 1 = 0 for every r ∈ R, which contradicts the fundamental theorem

of algebra.

Definition 3.2.7. For a commutative R, the ring R[x]/(x2) is called the ring of dual numbers

over R. This ring can be viewed as the ring R[α] = {a+ bα : a, b ∈ R,α2 = 0}, where α denotes

the element x+ (x2).

Remark 3.2.8. In the previous definition, R is a subring of R[α]. Therefore every polynomial

g ∈ R[x] induces two functions: one on R[α] and one on R, namely [g]R[α] and its restriction

(to R) [g]R.

The following fact about the polynomials of R[α] can be proved easily.

Fact 3.2.9. Let R be a commutative ring, and a, b ∈ R.
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1. Let g ∈ R[x]. Then g(a+ b α) = g(a) + bg′(a)α.

2. Let g ∈ R[α][x], and g1, g2 ∈ R[x] the unique polynomials in R[x] such that g = g1 + g2 α.

Then

g(a+ b α) = g1(a) + (bg′1(a) + g2(a))α .

Fact 3.2.10. Let g ∈ R[x]. Then g is a null polynomial on R if and only if gα is a null

polynomial on R[α].

Proof. (⇐) Immediate since R is a subring of R[α] and, for r ∈ R, r α = 0 if and only if r = 0.

(⇒) Let a, b ∈ R. Then, by Fact 3.2.9 (1),

g(a+ bα)α = (g(a) + g′(a)bα)α = g(a)α+ 0 = 0α = 0.

Recall from the introduction that P(R[α]) denotes the group of polynomial permutations on

R[α]. It is apparent that P(R[α]), as a subset of F(R[α]), is finite.

We now consider those polynomial permutations on R[α] that are induced by polynomials

with coefficients in R (as opposed to R[α]).

Definition 3.2.11. Let PR(R[α]) = {F ∈ P(R[α]) : F = [f ]R[α] for some f ∈ R[x]}.

From now on, let “ ◦ ” denote the composition of functions (or polynomials) and idR the

identity function on R.

Remark 3.2.12. Let f, g ∈ R[x]. Then their composition g ◦ f induces a function on R, which

is the composition of the functions induced by f and g on R. Similarly, f+g and fg induce two

functions on R, namely the pointwise addition and multiplication, respectively, of the functions

induced by f and g. In terms of our notation this is equivalent to the following:

1. [f ◦ g]R = [f ]R ◦ [g]R;

2. [f + g]R = [f ]R + [g]R;

3. [fg]R = [f ]R · [g]R.

We will use the above equalities frequently in our arguments in the next sections.

Fact 3.2.13. The set PR(R[α]) is a subgroup of P(R[α]).

Proof. Evidently, idR[α] = [x]R[α] ∈ PR(R[α]). Since PR(R[α]) is finite, it suffices to show

that PR(R[α]) is closed under composition. So if F1, F2 ∈ PR(R[α]), then F1, F2 are induced by

f1, f2 ∈ R[x], respectively. Further, F1, F2 ∈ P(R[α]), and hence [f1◦f2]R[α] = F1◦F2 ∈ P(R[α]).

Therefore, by Definition 3.2.11, F1 ◦ F2 ∈ PR(R[α]).
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3.3 The embedding of the group PR(R[α]) in the group

P(R)nθ F(R)×

We will show that the group (PR(R[α]), ◦), which consists of permutations represented

by polynomials from R[x], is embedded in a semidirect product of the group (F(R)×, ·) of

unit-valued polynomial functions on R with respect to pointwise multiplication by the group

(P(R), ◦) of polynomial permutations on R with respect to composition via a homomorphism

θ defined in Lemma 3.3.2 below.

From now on, for a polynomial function L, the notation L−1 sometimes means the inverse

with respect to pointwise multiplication (namely, when L ∈ F(R)×) and sometimes the inverse

with respect to composition (namely, when L ∈ P(R)). No confusion should follow from this

convention since F(R)× ∩ P(R) is empty.

The following lemma is easy and straightforward.

Lemma 3.3.1. Let F, F1 ∈ F(R)×, and G ∈ F(R). Then the following hold:

1. F ◦G ∈ F(R)×;

2. (F · F1) ◦G = (F ◦G) · (F1 ◦G);

3. if F−1 is the inverse of F , then F−1 ◦G is the inverse of F ◦G.

An expert reader will notice that Lemma 3.3.1 defines a group action of P(R) on F(R)× in

which every element of P(R) induces a homomorphism on F(R)×, and what is coming now

is a consequence of that. However, we do not refer to this action explicitly to avoid recalling

additional materials. In fact, our arguments are elementary and depend on direct calculations.

Lemma 3.3.2. Let R be a finite commutative ring, and G ∈ P(R). Then

1. the map θG : F(R)× −→ F(R)× defined by (F )θG = F ◦ G, for all F ∈ F(R)×, is an

automorphism of (F(R)×, ·);

2. the map θ : P(R) −→ Aut(F(R)×) defined by (G)θ = θG is a homomorphism with respect

to composition.

Proof. Ad(1) in view of Lemma 3.3.1 (2) we need only show that θG is a bijection. Let F ∈
F(R)×. Then F ◦G−1 ∈ F(R)× by Lemma 3.3.1 (1), and we have that

(F ◦G−1)θG = (F ◦G−1) ◦G = F ◦ (G−1 ◦G) = F ◦ idR = F.

This shows that θ is a surjection, and hence a bijection, since F(R)× is finite.

Ad(2) if θ : P(R) −→ Aut(F(R)×) is given by (G)θ = θG, then for every G1, G2 ∈ P(R) and

any F ∈ F(R)×, we have

(F )θG1◦G2 = F ◦ (G1 ◦G2) = (F ◦G1) ◦G2 = (F ◦G1)θG2 = ((F )θG1)θG2 = (F )θG1 ◦ θG2 .
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Hence θG1◦G2 = θG1 ◦ θG2 and θ is a homomorphism.

Notation and Remark 3.3.3. Recall that, for two groups H,K and a homomorphism ϕ from

K into Aut(H), the semidirect product of H by K with respect to ϕ is the group of all pairs

(k, h) such that k ∈ K and h ∈ H, with the following operation

(k1, h1)(k2, h2) = (k1k2, (h1)ϕk2h2),

where ϕk2 is the image of k2 in Aut(H) via the homomorphism ϕ. This group is denoted by

K nϕ H.

Proposition 3.3.4. Let R be a finite commutative ring, P(R) the group of polynomial permuta-

tions and F(R)× the group of unit-valued polynomial functions. Let θ : P(R) −→ Aut(F(R)×)

be the homomorphism of Lemma 3.3.2. Then the operation on the group P(R) nθ F(R)× is

defined by

(G1, F1)(G2, F2) =
(
G1 ◦G2, (F1)θG2 · F2

)
=
(
G1 ◦G2, (F1 ◦G2) · F2

)
,

where G1, G2,∈ P(R) and F1, F2 ∈ F(R)×. In particular,

(G,F )−1 = (G−1, F−1 ◦G−1)

for every G ∈ P(R) and F ∈ F(R)×. (Here G−1 is the inverse with respect to composition and

F−1 is the inverse with respect to pointwise multiplication.)

The proof of Proposition 3.3.4 depends essentially on Lemma 3.3.2, and is just the justifica-

tions of the semidirect product properties (see for example [46]).

Remark 3.3.5. Consider the following subsets of P(R) nθ F(R)×:

P(R) = {(G, 1F(R)) : G ∈ P(R)}, and F(R)× = {(idR, F ) : F ∈ F(R)×}.

It is a routine verification to show that P(R) and F(R)× are subgroups of P(R)nθ F(R)× that

are isomorphic to P(R) and F(R)×, respectively, satisfying the following conditions:

1. P(R) nθ F(R)× = P(R) F(R)×;

2. F(R)× � P(R) nθ F(R)×;

3. P(R) ∩ F(R)× = {(idR, 1F(R))}.

This justifies calling P(R) nθ F(R)× the (internal) semidirect product of F(R)× by P(R).

Our next aim is to show that P(R) nθ F(R)× contains an isomorphic copy of the group

PR(R[α]) defined in Definition 3.2.11. For completeness’ sake, we prove the following lemma,

which is a special case of [2, Theorem 4.1].

50



Lemma 3.3.6. Let g ∈ R[x]. Then g permutes R[α] if and only if g permutes R and g′ is a

unit-valued polynomial.

Proof. (⇒) Let c ∈ R. Then c ∈ R[α]. Since g permutes R[α], there exist a, b ∈ R such that

g(a+ bα) = c. Thus g(a) + bg′(a)α = c by Fact 3.2.9 (1). So g(a) = c, and therefore g is onto

on the ring R, and hence a permutation polynomial on R.

Suppose that g′ is not a unit-valued polynomial. Then there exists a ∈ R such that g′(a) is

a zerodivisor of R. Now, if 0 6= b ∈ R such that bg′(a) = 0, then by Fact 3.2.9 (1),

g(a+ bα) = g(a) + bg′(a)α = g(a).

So g does not permute R[α], which is a contradiction.

(⇐) It is enough to show that g is injective. Now, if a, b, c, d ∈ R such that g(a+bα) = g(c+dα),

then by Fact 3.2.9 (1),

g(a) + bg′(a)α = g(c) + dg′(c)α.

Then we have g(a) = g(c) and bg′(a) = dg′(c). Hence a = c since g permutes R. Then, since

g′(a) is a unit of R, b = d follows.

Recall from Definition 3.2.1 that, for a ring A and a polynomial f ∈ A[x], [f ]A stands for the

polynomial function induced by f on A.

Remark 3.3.7. Let F ∈ PR(R[α]). Then there exists f ∈ R[x] such that F = [f ]R[α] by

Definition 3.2.11. Further, by Lemma 3.3.6, ([f ]R, [f
′]R) ∈ P(R)nθ F(R)×. Now define a map

φ : PR(R[α]) −→ P(R) nθ F(R)× by φ(F ) = ([f ]R, [f
′]R).

To show that φ is well-defined, we consider another polynomial g ∈ R[x] such that F = [g]R[α].

Then for every a, b ∈ R we have, by Fact 3.2.9 (1),

[g]R(a) + b[g′]R(a)α = g(a) + bg′(a)α = F (a+ bα) = f(a) + bf ′(a)α = [f ]R(a) + b[f ′]R(a)α .

So substituting b = 1 yields

[g]R(a) + [g′]R(a)α = [f ]R(a) + [f ′]R(a)α for every a ∈ R.

Therefore ([f ]R, [f
′]R) = ([g]R, [g

′]R), and hence φ is well-defined. Also, this shows that the pair

([f ]R, [f
′]R) determines F = [f ]R[α] completely, and, therefore, φ is injective.

Recall from Definition 3.2.11 and Fact 3.2.4 the definitions of the groups (PR(R[α]), ◦) and

(F(R)×, ·), namely

PR(R[α]) = {F ∈ P(R[α]) : F = [f ]R[α] for some f ∈ R[x]}
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and

F(R)× = {F ∈ F(R) : F is a unit-valued polynomial function}.

Proposition 3.3.8. Let R be a finite commutative ring, and θ the homomorphism defined in

Lemma 3.3.2. Then the map

φ : PR(R[α]) −→ P(R) nθ F(R)× defined by φ(F ) = ([f ]R, [f
′]R),

where f ∈ R[x] such that F = [f ]R[α], is an embedding of PR(R[α]) in P(R) nθ F(R)×.

Proof. By Remark 3.3.7, φ is well-defined and injective. So we need only show that φ is a

homomorphism. Let F1 ∈ PR(R[α]) be induced by f1 ∈ R[x]. Then F ◦F1 is induced by f ◦ f1.
Since (f ◦ f1)′ = (f ′ ◦ f1).f ′1, φ maps F ◦ F1 to ([f ◦ f1]R, [(f ′ ◦ f1) · f ′1]R). Therefore, using

Remark 3.2.12 and Proposition 3.3.4,

φ[F ◦ F1] = ([f ◦ f1]R, [f ′ ◦ f1]R · [f ′1]R) =
(
[f ]R ◦ [f1]R, ([f

′]R ◦ [f1]R) · [f ′1]R
)

= ([f ]R, [f
′]R)([f1]R, [f

′
1]R) = φ(F )φ(F1).

3.4 The pointwise stabilizer group of R and the group

P(R)nθ F(R)×

In this section, we show that the group P(R) nθ F(R)× contains a normal subgroup that

is isomorphic to the pointwise stabilizer group of R (see Definition 3.4.1). Moreover, this

stabilizer group can be viewed as a subgroup of the group of unit-valued polynomial functions

F(R)×. In particular, when R = Fq is the finite field of q elements, we prove that F(Fq)× is

isomorphic to this subgroup. We employ this result in the end of this section to prove that

PFq(Fq[α]) ∼= P(Fq) nθ F(Fq)×.

Now we recall the definition of the pointwise stabilizer group of R from [2].

Definition 3.4.1. Let Stα(R) = {F ∈ P(R[α]) : F (r) = r for every r ∈ R}.

It is evident that Stα(R) is closed under composition, and hence a subgroup of P(R[α]), since

it is a non-empty finite set. We call this group the pointwise stabilizer of R.

Recall from the introduction that the ideal NR consists of all null polynomials on R. Thus,

for any g, h ∈ R[x], [g]R = [h]R if and only if g − h ∈ NR.

We need the following proposition from [2]. We include a proof for the readers’ convenience.

Proposition 3.4.2. [2, Proposition 4.6] Let R be a finite commutative ring. Then

Stα(R) = {F ∈ P(R[α]) : F is induced by x+ g(x), for some g ∈ NR}.
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In particular, Stα(R) is subgroup of PR(R[α]).

Proof. Obviously,

Stα(R) ⊇ {F ∈ P(R[α]) : F is induced by x+ g(x), for some g ∈ NR}.

Now if F ∈ Stα(R), then by Definition 3.4.1, F ∈ P(R[α]) such that F (r) = r for each r ∈ R.

Further, F is induced by a polynomial h0 + h1 α, where h0, h1 ∈ R[x]; and so by Fact 3.2.9 (2),

r = F (r) = h0(r) + h1(r)α for every r ∈ R. But then h1(r) = 0 for every r ∈ R, i.e., h1 is null

on R. Hence h1α is null on R[α] by Fact 3.2.10. Thus [h0]R[α] = [h0 + h1α]R[α] = F , that is, F

is induced by h0. Also, h0 ≡ x mod NR, that is, [h0]R = idR, and therefore h0(x) = x + f(x)

for some f ∈ NR. This shows the other inclusion.

The last statement follows from x + NR ⊆ R[x] and the fact that Stα(R) and PR(R[α]) are

subgroups of P(R[α]).

Remark 3.4.3. Let Fq = {a0, . . . , aq−1} be the finite field of q elements. If F : Fq −→ Fq, then

the polynomial f(x) =
∑q−1

i=0 F (ai)
∏q−1
j=0
j 6=i

x−aj
ai−aj ∈ Fq[x] represents F . Such a polynomial is called

Lagrange polynomial and this method of construction is called Lagrange interpolation. Therefore

every function on a finite field is a polynomial function, and hence |F(Fq)| = qq. In particular,

every permutation (bijection) on Fq is a polynomial permutation, and so |P(Fq)| = q!. Further,

every unit-valued function is a unit-valued polynomial function, and thus |F(Fq)×| = (q − 1)q

since F×q = Fq\{0}. Moreover, it is obvious that Lagrange interpolation assigns to every function

on Fq a unique polynomial of degree at most q − 1. Hence every polynomial of degree at most

q − 1 is Lagrange polynomial of a function on Fq since the number of these polynomials is qq,

which is the number of functions on Fq.

Next, we show that Stα(R) is embedded in F(R)×. For this we need the following well-known

fact.

Lemma 3.4.4. For each pair of functions (G,F ) with

G : Fq −→ Fq bijective and F : Fq −→ Fq \ {0}

there exists a polynomial g ∈ Fq[x] such that ([g]Fq , [g
′]Fq) = (G,F ).

Proof. Let f0, f1 ∈ Fq[x] such that [f0]Fq = G and [f1]Fq = F , which we know to exist by

Remark 3.4.3. Then set

g(x) = f0(x) + (f ′0(x)− f1(x))(xq − x).

Thus

g′(x) = (f ′′0 (x)− f ′1(x))(xq − x) + f1(x),
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whence [g]Fq = [f0]Fq = G and [g′]Fq = [f1]Fq = F since (xq − x) is a null polynomial on Fq.

Theorem 3.4.5. Let R be a finite commutative ring. Then the map

ψ : Stα(R) −→ F(R)× defined by ψ(F ) = [f ′]R,

where f ∈ R[x] such that F = [f ]R[α], is an embedding of the pointwise stabilizer of R, Stα(R),

in the group of unit-valued polynomial functions F(R)×.

If R = Fq, then Stα(Fq) ∼= F(Fq)×.

Proof. Let F ∈ Stα(R). Then there exists f ∈ R[x] such that F = [f ]R[α] by Proposition 3.4.2.

Further, [f ]R = idR = [x]R by Definition 3.4.1. To show that ψ is well-defined, let f1 ∈ R[x]

such that F = [f1]R[α]. Then [f ′]R = [f ′1]R by Remark 3.3.7. By Lemma 3.3.6, [f ′]R ∈ F(R)×.

Thus ψ is well-defined. Now, let F1 ∈ Stα(R). Then there exists g ∈ R[x] such that F1 = [g]R[α]

by Proposition 3.4.2. Hence

ψ(F ◦ F1) = [(f ◦ g)′]R = [(f ′ ◦ g) · g′]R = [f ′ ◦ g]R · [g′]R
= ([f ′]R ◦ [g]R) · [g′]R.

By Definition 3.4.1, [g]R = idR, and therefore [f ′]R ◦ [g]R = [f ′]R. This implies that

ψ(F ◦ F1) = [f ′]R · [g′]R = ψ(F ) · ψ(F1),

whence ψ is a homomorphism. Now, if F1 6= F , then [g′]R 6= [f ′]R by Remark 3.3.7 and

hence ψ(F1) 6= ψ(F ). ψ is, therefore, injective and Stα(R) is embedded in F(R)×.

For the case R = Fq, we need only prove that ψ is surjective. Let F ∈ F(Fq)×. Then, by

Lemma 3.4.4, there exists f ∈ Fq[x] such that [f ]Fq = idFq and [f ′]Fq = F . Hence Lemma 3.3.6

yields [f ]Fq [α] ∈ PFq(Fq[α]). Thus [f ]Fq [α] ∈ Stα(Fq) by Definition 3.4.1, and hence ψ([f ]Fq [α]) =

[f ′]Fq = F . Therefore ψ is surjective.

Notation 3.4.6. Let Sα(R) denote the subgroup ψ(Stα(R)) of F(R)×, where ψ is the embedding

of Theorem 3.4.5. Note that the group operation of Stα(R) is composition of functions, while

the group operation on Sα(R) is pointwise multiplication of functions.

Remark 3.4.7. From Remark 3.3.5, we know that

F(R)× ∼= F(R)× = {(idR, F ) : F ∈ F(R)×}� P(R) nθ F(R)×,

and, so, by the embedding ψ of Theorem 3.4.5, we have, with respect to Notation 3.4.6, the

isomorphisms

Stα(R) ∼= Sα(R) ∼= {(idR, F ) : F ∈ Sα(R)}.

This shows that Stα(R) is embedded in P(R) nθ F(R)×.
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On the other hand, if we restrict the homomorphism φ of Proposition 3.3.8 to Stα(R), we

have, by the definitions of φ and Sα(R),

φ(Stα(R)) = {φ([f ]R[α]) : [f ]R[α] ∈ Stα(R) for some f ∈ R[x]}

= {(idR, [f ′]R) : [f ]R[α] ∈ Stα(R) for some f ∈ R[x]}

= {(idR, F ) : F ∈ Sα(R)}.

This shows that the embedding of Stα(R) in P(R) nθ F(R)× via Proposition 3.3.8 is identical

to the embedding using Theorem 3.4.5 and Remark 3.3.5. In other words the following diagram

commutes:

PR(R[α]) P(R) nθ F(R)×

Stα(R) F(R)×

φ(F )=([f ]R,[f
′]R)

ψ(F )=[f ′]R

inclusion (Proposition 3.4.2) embedding (Remark 3.3.5)

where in each case f ∈ R[x] such that F = [f ]R[α].

Notation 3.4.8. We write Sα(R) for the image of Stα(R) in P(R) nθ F(R)× under the ho-

momorphism of the commuting diagram of Remark 3.4.7. That is,

Sα(R) = {(idR, F ) : F ∈ Sα(R)}.

Lemma 3.4.9. Let R be a finite commutative ring and F ∈ P(R). Then there exists a polyno-

mial f ∈ R[x] such that [f ]R = F and [f ′]R is a unit-valued polynomial functions on R.

Proof. Without loss of generality, we may assume that R is local. When R is a finite field, the

statement follows from Lemma 3.4.4. On the other hand, when R is a finite local ring that is

not a field, the result follows from Fact 3.2.2.

Remark 3.4.10.

1. Define a map

Λ: PR(R[α]) −→ P(R) by Λ(F ) = [f ]R, where f ∈ R[x] such that F = [f ]R[α].

Then, by Remark 3.3.7 and Lemma 3.4.9, Λ is a well-defined group epimorphism with

ker Λ = Stα(R), and therefore Stα(R) � PR(R[α]) (see also [2]).

2. Let φ(PR(R[α])) be the isomorphic copy of PR(R[α]) contained in P(R) nθ F(R)× via
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the homomorphism φ of Proposition 3.3.8. Then, by (1) and Remark 3.4.7, Sα(R) �

φ(PR(R[α])).

Lemma 3.4.11. Let Sα(R) be as in Notation 3.4.6, and let F ∈ Sα(R). Then F ◦G ∈ Sα(R)

for every G ∈ P(R).

Proof. Let G ∈ P(R). Using Lemma 3.4.9, choose a polynomial f ∈ R[x] such that [f ]R = G

and [f ′]R = F1 ∈ F(R)×. Then [f ]R[α] ∈ PR(R[α]) by Lemma 3.3.6. Thus, by Proposition 3.3.8,

([f ]R, [f
′]R) = (G,F1) ∈ φ(PR(R[α])), where φ is the homomorphism of Proposition 3.3.8 (see

also, Remark 3.4.10 (2)). We now use the fact that Sα(R) = {(idR, F ) : F ∈ Sα(R)} is a normal

subgroup of φ(PR(R[α])), by Proposition 3.3.4 and the fact that F(R)× is Abelian, we have

(G,F1)
−1(idR, F )(G,F1) = (G−1, F−11 ◦G−1)

(
G, (F ◦G) · F1

)
= (idR, F

−1
1 · (F ◦G) · F1) = (idR, F ◦G).

Thus (idR, F ◦G) ∈ Sα(R), and hence F ◦G ∈ Sα(R).

Theorem 3.4.12. Let R be a finite commutative ring, P(R) nθ F(R)× the semidirect product

constructed in Proposition 3.3.4 and Stα(R) the stabilizer group defined in Definition 3.4.1.

Then the map

φ̃ : Stα(R) −→ P(R) nθ F(R)× defined by φ̃(F ) = (idR, [f
′]R),

where f ∈ R[x] such that F = [f ]R[α], is a normal embedding of Stα(R) in P(R) nθ F(R)×.

Proof. It is evident that φ̃ is the restriction of the embedding φ of Proposition 3.3.8 to Stα(R),

and hence φ̃ is an embedding of Stα(R) in P(R) nθ F(R)×. Then, by Remark 3.4.7 and

Notation 3.4.8,

φ̃(Stα(R)) = φ(Stα(R)) = Sα(R).

So we need only show that Sα(R) � P(R) nθ F(R)×. Let (idR, F ) ∈ Sα(R) and (G,F1) ∈
P(R)nθF(R)×. Then by Proposition 3.3.4, we have, just as in the proof of Lemma 3.4.11, that

(G,F1)
−1(idR, F )(G,F1) = (idR, F ◦G).

Thus (G,F1)
−1(idR, F )(G,F1) ∈ Sα(R) by Lemma 3.4.11.

Recall from Notation 3.4.6 that Sα(R) denotes a subgroup of F(R)×, which is isomorphic to

Stα(R).

Remark 3.4.13. Let G ∈ P(R), and let θG be the automorphism of F(R)× defined by (F )θG =

F ◦G as in Lemma 3.3.2. We prove that the restriction of θG to Sα(R) is an automorphism of

Sα(R) by showing that Sα(R) is invariant under θG.

56



Now, by Lemma 3.4.11, F ◦ G ∈ Sα(R) for every F ∈ Sα(R). Thus the restriction of θG to

Sα(R) is an automorphism, that is, the map θ̃G : Sα(R) −→ Sα(R) defined by (F )θ̃G = F ◦G,

for all F ∈ Sα(R), is an automorphism of Sα(R).

Then, similar to the homomorphism θ : P(R) −→ Aut(F(R)×) of Lemma 3.3.2, we have

the map θ̃ : P(R) −→ Aut(Sα(R)) defined by (G)θ̃ = θ̃G is a homomorphism. This allows us

to define the semidirect product P(R) nθ̃ Sα(R). Further, a routine verification shows that the

operation on P(R)nθ̃Sα(R) is just the operation on P(R)nθF(R)× restricted to P(R)nθ̃Sα(R).

Therefore P(R) nθ̃ Sα(R) is a subgroup of P(R) nθ F(R)×.

From now on, for any set A let |A| denote the number of elements in A.

Proposition 3.4.14. Let R be a finite commutative ring. Let θ and θ̃ be the homomorphisms

of Remark 3.4.13. Then Stα(R) ∼= F(R)× if and only if P(R) nθ̃ Sα(R) ∼= P(R) nθ F(R)×.

Proof. (⇒) Obvious.

(⇐) Assume that P(R) nθ̃ Sα(R) ∼= P(R) nθ F(R)×. Then |Sα(R)| = |F(R)×|, and thus

Sα(R) = F(R)× since Sα(R) is a subgroup of F(R)× by Theorem 3.4.5. Again, by Theo-

rem 3.4.5, Stα(R) ∼= Sα(R) = F(R)×.

In Proposition 3.3.8 we have proved for any finite ring R that the group PR(R[α]) is embedded

in P(R) nθ F(R)×. In the following theorem we show that, for a finite field Fq,

PFq(Fq[α]) ∼= P(Fq) nθ F(Fq)×.

Theorem 3.4.15. Let Fq be the finite field of q elements. Let θ and θ̃ be the homomorphisms

of Remark 3.4.13, respectively. Then

PFq(Fq[α]) ∼= P(Fq) nθ F(Fq)× ∼= P(Fq) nθ̃ Sα(Fq).

Proof. In view of Proposition 3.3.8, Proposition 3.4.14 and Theorem 3.4.5 we need only show

that

|PFq(Fq[α])| ≥ |F(Fq)×||P(Fq)|.

Hence, by Remark 3.4.3, it is sufficient to show that |PFq(Fq[α])| ≥ q!(q − 1)q.

Now consider the pair of functions (G,F ) with

G : Fq −→ Fq bijective and F : Fq −→ Fq \ {0}.

It is obvious that the total number of different pairs of this form is q!(q − 1)q. Moreover, by

Lemma 3.4.4, there exists g ∈ Fq[x] such that (G,F ) = ([g]Fq , [g
′]Fq), and so [g]Fq [α] ∈ PFq(Fq[α])

by Lemma 3.3.6. Then, by Remark 3.3.7, every two different pairs of functions satisfying

the conditions of Lemma 3.4.4 determine two different elements of PFq(Fq[α]). Therefore

|PFq(Fq[α])| ≥ q!(q − 1)q.
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Remark 3.4.16. When q = p (where p is a prime number), Frisch and Krenn [33] showed that

P(Fp) nθ F(Fp)× is a homomorphic image of P(Zp2) with non-trivial kernel, and determined

the number of Sylow p-subgroups of P(Zpn) by means of those of P(Fp) nθ F(Fp)× for every

n ≥ 2.

3.5 The number of unit-valued polynomial functions on

the ring Zpn

Throughout this section let p be a prime number and n be a positive integer. Several authors

considered the number of polynomial functions and polynomial permutations on the ring of

integers modulo pn. However, they neglected to count unit-valued polynomial functions modulo

pn (see for example, [41, 81]). In this section we apply the results of [41] to derive an explicit

formula for the order of the group F(Zpn)×, i.e., the number of unit-valued polynomial functions

modulo pn. In addition to that, we find canonical representations of these functions.

Since Zpn is a homomorphic image of Z, we can represent the polynomial functions on Zpn
by polynomials from Z[x]. To simplify our notation we use the symbol [f ]pn instead of [f ]Zpn

to indicate the function induced by f ∈ Z[x] on Zpn .

Remark 3.5.1.

1. Evidently, an integer represents a unit modulo p if and only if it represents a unit modulo

pn for all n ≥ 1. More generally, for a polynomial f ∈ R[x], [f ]p is a unit-valued

polynomial function on Zp if and only if [f ]pn is a unit-valued polynomial function on Zpn
for every n ≥ 1.

2. Let n > 1. Define a map

φn : F(Zpn) −→ F(Zpn−1) by φn(F ) = [f ]pn−1 , where f ∈ Z[x] such that F = [f ]pn .

Evidently, φn is a well-defined epimorphism of additive groups with

|F(Zpn)| = |F(Zpn−1)|| kerφn|.

Notation 3.5.2. In the remainder of the paper let β(n) denote the smallest positive integer k

such that pn | k!, while vp(n) denotes the largest integer s such that ps | n.

Let (x)0 = 1, and let (x)j = x(x− 1)(x− 2) · · · (x− j + 1) for any positive integer j.

The following lemma from [41] gives the cardinality of kerφn of the epimorphism φn mentioned

in Remark 3.5.1.
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Lemma 3.5.3. [41, Theorem 2] Let n > 1 and let φn be the epimorphism of Remark 3.5.1.

Then | kerφn| = pβ(n).

Lemma 3.5.4. Let n > 1. Then |F(Zpn)×| = pβ(n)|F(Zpn−1)×|.

Proof. Let φn be the epimorphism defined in Remark 3.5.1 (2). Then φ−1n (F(Zpn−1)×) =

F(Zpn)× by Remark 3.5.1 (1). Hence |F(Zpn)×| = |φ−1n (F(Zpn−1)×)|. Now if F ∈ F(Zpn−1)×,

then by Remark 3.5.1, |φ−1n (F )| = | kerφn|. Therefore

|F(Zpn)×| = |φ−1n (F(Zpn−1)×)| = | kerφn||F(Zpn−1)×|.

The result now follows from Lemma 3.5.3.

Keep the notations of Notation 3.5.2. We now state our counting formula for the order of

F(Zpn−1)×.

Theorem 3.5.5. Let n > 1 and let F(Zpn)× be the group of unit-valued polynomial functions

modulo pn. Then

|F(Zpn)×| = (p− 1)pp
∑n
k=2 β(k).

Proof. By applying Lemma 3.5.4 exactly n−1 times, we see that |F(Zpn)×| = |F(Zp)×|p
∑n
k=2 β(k).

But |F(Zp)×| = (p− 1)p by Remark 3.4.3.

We need the following fact from [41].

Lemma 3.5.6. [41, Theorem 1 and Corollary 2.2] If F ∈ F(Zpn), there exists one and only one

polynomial f ∈ Z[x] of the form f =
∑β(n)−1

i=0 ai(x)i with [f ]pn = F , where 0 ≤ ai < pn−vp(i!)

for i = 0, . . . , β(n)− 1.

It follows that, |F(Zpn)| = p
∑n
i=1 β(i).

Keep the notations of Notation 3.5.2. The following theorem gives canonical representations

for the elements of F(Zpn)× as linear combinations of the falling factorials (x)j and those of

the unique representations of the elements of F(Zp)× obtained by Lagrange interpolation (see

Remark 3.4.3).

Theorem 3.5.7. Let l1, . . . , l(p−1)p denote the unique representations of the elements of F(Zp)×

by polynomials of degree less than p obtained by Lagrange interpolation. Let n ≥ 2. Then every

element in F(Zpn)× can be represented uniquely by a polynomial of the form

ls(x) +

β(n)−1∑
i=0

ai(x)i, (3.1)

where 0 ≤ ai < pn−vp(i!) for 0 ≤ i < β(n) with p | ai for i < p; and s = 1, . . . , (p− 1)p.
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Proof. Let A denote the set of all polynomials in Z[x] that satisfy the conditions of equation

(3.1). By Remark 3.5.1 (1), every element of A induces a unit-valued polynomial function on

Zpn. Now, let B denote the set of all polynomials of the form

β(n)−1∑
i=0

ai(x)i, where 0 ≤ ai < pn−vp(i!) for 0 ≤ i < β(n) with p | ai for i < p. (3.2)

Clearly,

|A| = (p− 1)p|B|.

In the light of Equation (3.2) and Lemma 3.5.6,

|B| = |F(Zpn)|
pp

=
p
∑n
i=1 β(i)

pp
= p

∑n
i=2 β(i).

Therefore, by Theorem 3.5.5,

|A| = (p− 1)pp
∑n
i=2 β(i) = |F(Zpn)×|.

To complete the proof, we need only show that [f ]pn 6= [g]pn whenever f, g are distinct elements

of A. For simplicity, write f = ls1 + f1 and g = ls2 + g1, where f1, g1 ∈ B and s1, s2 ∈
{1, . . . , (p − 1)p}. First, we notice that if s1 6= s2, then [f ]p = [ls1 ]p 6= [ls2 ]p = [g]p. Thus

[f ]pn 6= [g]pn if s1 6= s2. Now assume that s1 = s2, and f1 6= g1. Then [f1]pn 6= [g1]pn by

Lemma 3.5.6, and hence

[f ]pn = [ls1 + f1]pn = [ls1 ]pn + [f1]pn 6= [ls1 ]pn + [g1]pn = [ls1 + g1]pn = [g]pn .

Counterexample 3.5.8. Let R = Z4 = {0, 1, 2, 3}. In this case, Z4[α] = {a + bα : a, b ∈ Z4}.
Consider now the polynomial f(x) = (x2−x)2. By Fermat’s little theorem, f is a null polynomial

on Z4; hence every unit-valued polynomial function is induced by a polynomial of degree less

than 4. Next we show that f is null on Z4[α]. So, if a, b ∈ Z4, then

f(a+ bα) =
(
(a+ bα)2 − (a+ bα)

)2
=
(
(a2 + 2abα)− (a+ bα)

)2
=
(
(a2 − a) + (2ab− b)α

)2
= (a2 − a)2 + 2(a2 − a)(2ab− b)α = 0.

Thus f is null on Z4[α]; whence every polynomial function on Z4[α] is represented by a polyno-

mial of degree less than 4. The null polynomials on Z4 of degree less than 4 are

f1 = 0, f2 = 2(x2 − x), f3 = 2(x3 − x) and f4 = 2(x3 − x2).

Then simple calculations shows that 1+f ′1, . . . , 1+f ′4 induce four different unit-valued functions

on Z4. Thus |Stα(Z4)| = 4, but |F(Z4)
×| = 2β(2) = 16 by Theorem 3.5.5. Furthermore, by
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Remark 3.4.10 (1), there is an epimorphism from PZ4(Z4[α]) onto P(Z4) which admits Stα(Z4)

as a kernel. Thus |PZ4(Z4[α])| = |P(Z4)||Stα(Z4)|, and hence

|P(Z4) nθ F(Z4)
×| = |P(Z4)||F(Z4)

×| > |P(Z4)||Stα(Z4)| = |PZ4(Z4[α])|.

This shows that in general the homomorphisms of Proposition 3.3.8 and Theorem 3.4.5 need

not be isomorphisms.

61





4 Ideals of the polynomial ring closed

under products of formal derivative

The content of this chapter is the accepted paper [3]. It will appear in the International

Electronic Journal of Algebra with the title “ On a property of the ideals of the polynomial ring

R[x]”.

Abstract

Let R be a commutative ring with unity 1 6= 0. In this paper we introduce the definition

of the first derivative property on the ideals of the polynomial ring R[x]. In particular, when

R is a finite local ring with principal maximal ideal m 6= {0} of index of nilpotency e, where

1 < e ≤ |R/m| + 1, we show that the null ideal consisting of polynomials inducing the zero

function on R satisfies this property. As an application, when R is a finite local ring with null

ideal satisfying this property, we prove that the stabilizer group of R in the group of polyno-

mial permutations on the ring R[x]/(x2), is isomorphic to a certain factor group of the null ideal.

Keywords. Commutative rings, polynomial ring, null ideal, null polynomials, Henselian ring,

finite local ring, dual numbers, polynomial permutations, permutation polynomials, finite per-

mutation groups

2010 Mathematics Subject Classification: Primary 13F20; Secondary 06B10, 13J15,

11T06, 05A05, 13B25, 20B35

4.1 Introduction

Let R be a commutative ring with unity 1 6= 0, and R[x] be the polynomial ring over R of

one indeterminate x. In addition to the usual operations on polynomials, R[x] has a further

operation, which appears in a normal way, namely the formal derivative of polynomials. Nöbauer

used this operation to define the derivative of ideals with a certain property [68].

Another well known feature of R[x] is that every polynomial f(x) =
∑k

j=0 ajx
j ∈ R[x]

induces a function F : R −→ R, where F (r) =
∑k

j=0 ajr
j for all r ∈ R. In this case F is called a

polynomial function on R. The set of all polynomial functions on R is a monoid via composition

of functions. Moreover, when the function F is a bijection we say F is a polynomial permutation
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while f is a permutation polynomial. Obviously, the set of all polynomial permutations is a

group, which we denote by P(R). Further, P(R) forms the group of units of the monoid of

polynomial functions.

If a polynomial g ∈ R[x] induces the constant zero function over R, that is g(r) = 0 for each

r ∈ R, then g is called a null polynomial over (on) R. The set of all null polynomials on R is

an ideal of R[x], which we denote by NR and we call it the null ideal (on R). The null ideal

NR supplies the ring of polynomials R[x] with an equivalence relation in which two polynomials

g, h ∈ R[x] are equivalent whenever g − h ∈ NR. In other words, two polynomials are related

in this relation if and only if they induce the same function on R. Moreover, every equivalence

class corresponds to one polynomial function on R and vise versa.

This paper considers a property of the ideals of the ring R[x] and its application to the group

of polynomial permutations on finite rings. In particular, for a finite local ring R with null

ideal having this property, we prove some facts about the permutation polynomials on the ring

R[x]/(x2).

The property defined in the paper depends on the formal derivative of polynomials, however

it is completely different from the one considered in [68].

Throughout this paper for a local ring R, let m denote its maximal ideal and let N(m) be

the set of all polynomials over R which vanish on the ideal m. Evidently, N(m) is an ideal in

the polynomial ring R[x] containing NR. For f ∈ R[x] with f(x) =
∑n

i=0 aix
i, let f ′ denote its

formal derivative; i.e., f ′(x) =
∑n

i=1 iaix
i−1.

4.2 The first derivative property and the null ideal

We begin this section with the definition of our property. Then we prove some supplementary

results. Later, we show that the null ideal NR has this property for a wide class of finite local

rings with principal maximal ideals.

Definition 4.2.1. Let R be a commutative ring. An ideal I of R[x] satisfies the first derivative

property if g, h ∈ I implies that g′h′ ∈ I.

For shortness we use the abbreviation FDP for the first derivative property.

Proposition 4.2.2. Let I, J be ideals of R[x]. Then:

1. I2 satisfies FDP;

2. if I, J satisfy FDP, then IJ satisfies FDP.

Proof. We prove (2) and leave (1) to the reader. Let f, g ∈ IJ . Then there exist polynomials

f1, . . . , fn; g1, . . . , gm ∈ I and h1, . . . , hn; k1, . . . , km ∈ J such that f =
n∑
i=1

fihi and g =
m∑
j=1

gjkj .

So f ′ =
n∑
i=1

f ′ihi +
n∑
i=1

fih
′
i and g′ =

m∑
j=1

g′jkj +
m∑
j=1

gjk
′
j . Obviously,

n∑
i=1

fih
′
i,

m∑
j=1

gjk
′
j ∈ I and
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n∑
i=1

f ′ihi,
m∑
j=1

g′jkj ∈ J . On the other hand, by Definition 4.2.1, we have f ′ig
′
j ∈ I for every

1 ≤ i ≤ n; 1 ≤ j ≤ m. Hence

(
n∑
i=1

f ′ihi)(
m∑
j=1

g′jkj) =
∑
i,j

f ′ig
′
jhikj ∈ IJ.

Similarly, (
n∑
i=1

fih
′
i)(

m∑
j=1

gjk
′
j) ∈ IJ . Therefore

f ′g′ = (
n∑
i=1

f ′ihi +
n∑
i=1

fih
′
i)(

m∑
j=1

g′jkj +
m∑
j=1

gjk
′
j) ∈ IJ.

The following result gives a criterion for FDP for finitely generated ideals over R[x].

Proposition 4.2.3. Let I be an ideal of R[x] and suppose that I = (f1, . . . , fn) for some

f1, . . . , fn ∈ R[x]. Then I satisfies FDP if and only if f ′if
′
j ∈ I for all i, j ∈ {1, . . . , n}.

Proof. (⇒) Obvious.

(⇐) Suppose that f ′if
′
j ∈ I for any two generators fi, fj ∈ I. Let g, h ∈ I. Then there exist

g1, . . . , gn;h1, . . . , hn ∈ R[x] such that g(x) =
n∑
i=1

gifi and h(x) =
n∑
i=1

hifi.

We have

g′ =
n∑
i=1

g′ifi +
n∑
i=1

gif
′
i and h′ =

n∑
i=1

h′ifi +
n∑
i=1

hif
′
i .

So

g′h′ = (
n∑
i=1

g′ifi)h
′ + (

n∑
i=1

gif
′
i)(

n∑
i=1

h′ifi) + (
n∑

i,j=1

gihjf
′
if
′
j).

Clearly, g′h′ ∈ I, and hence I satisfies FDP.

Remark 4.2.4. Let R be a local ring with maximal ideal m and residue field Fq, and let λ(x) =∏q
i=1(x− ci), where {c1, . . . , cq} is any complete systems of residue modulo m. It is obvious that

ci − cj is a unit in R whenever i 6= j; hence for every r ∈ R such that r ≡ ci mod m, r − cj is

a unit. Then the following lemma follows.

Lemma 4.2.5. Let r ∈ R. Then λ′(r) is a unit in R.

Remark 4.2.6. It is a celebrated fact that every finite local commutative ring is a Henselian

ring, i.e., a local ring in which Hensel’s lemma holds, (see for example, [57, Theorem. XIII.4]).

This allows us to use some facts about the ideals m, NR, when R is a Henselian ring, from [78]

to improve our related ideas on finite local rings.

Lemma 4.2.7. [78, Corollary 2.11] Let R be a Henselian ring. Then λ(R) = m.

Lemma 4.2.8. [78, Theorem 4.2] Let R be a Henselian ring and λ(x) as in Remark 4.2.4. If

N(m) = (F1(x), . . . , Fn(x)), then NR = (F1(λ(x)), . . . , Fn(λ(x))).
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Recall from the introduction the definitions of the ideals NR, N(m). The following result

shows that, for a Henselian ring R and a finitely generated ideal N(m), either both N(m) and

NR satisfy FDP or neither satisfies FDP.

Theorem 4.2.9. Let R be a Henselian ring and λ(x) as in Remark 4.2.4. If N(m) =

(F1(x), . . . , Fn(x)), then NR satisfies FDP if and only if N(m) satisfies FDP.

Proof. By Lemma 4.2.8, NR = (F1(λ(x)), . . . , Fn(λ(x))).

(⇐) Suppose that N(m) satisfies FDP. Then for every i, j ∈ {1, . . . , n} there exists hi,j ∈
N(m) such that F ′iF

′
j = hi,j . Hence F ′i (λ(x))F ′j(λ(x)) = hi,j(λ(x)) ∈ NR since λ(R) = m by

Lemma 4.2.7.

Now

(Fi(λ(x)))′(Fj(λ(x)))′ = (λ′(x))2F ′i (λ(x))F ′j(λ(x)) = (λ′(x))2hi,j(λ(x)) ∈ NR.

Thus NR satisfies FDP by Proposition 4.2.3.

(⇒) Suppose that NR satisfies FDP. Then for every i, j ∈ {1, . . . , n} we have

(Fi(λ(x)))′(Fj(λ(x)))′ = (λ′(x))2F ′i (λ(x))F ′j(λ(x)) ∈ NR.

Now let r ∈ R be arbitrary. Then, by the definition of NR,

(λ′(r))2F ′i (λ(r))F ′j(λ(r)) = 0.

Hence F ′i (λ(r))F ′j(λ(r)) = 0 since λ′(r) is a unit by Lemma 4.2.5, whence F ′i (λ(x))F ′j(λ(x)) ∈
NR. But, λ(R) = m by Lemma 4.2.7. Therefore F ′iF

′
j ∈ N(m) for every i, j ∈ {1, . . . , n}. Thus

N(m) satisfies FDP by Proposition 4.2.3.

Remark 4.2.10. Notice that we don’t require R to be Noetherian. In fact there exists a

Henselian ring which is non-Noetherian with a finitely generated ideal N(m) (see for exam-

ple, [78, Example 3.2]).

Our aim now is to show that the null ideal NR satisfies FDP for every finite local ring with a

nonzero principal maximal ideal of index of nilpotency less than or equal q + 1, where q is the

cardinality of the residue field Fq. To do so, we need this lemma.

Lemma 4.2.11. [78, Theorem 4.4] Let R be a finite local ring with principal maximal ideal

m = (m) and residue field Fq. Suppose e is the index of nilpotency of m. If e ≤ q, then

N(m) = (x,m)e; if e = q + 1, then N(m) = (x,m)e + (xq −mq−1x).

Theorem 4.2.12. Let R be a finite local ring with principal maximal ideal m = (m) and residue

field Fq. Suppose e is the index of nilpotency of m. If 1 < e ≤ q + 1 then NR satisfies FDP,

provided e ≥ 4 when e = q + 1.
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Proof. In view of Theorem 4.2.9, we need only to prove that N(m) satisfies FDP. Now N(m)

is finitely generated since R is finite, so it is enough to show that g′h′ ∈ N(m) for every

pair of generators g, h of N(m) by Proposition 4.2.3. First assume that 1 < e < q + 1. By

Lemma 4.2.11, N(m) is generated by the set {xe,mxe−1, . . . ,me−1x}. Let g, h be any generators

of N(m). Then g(x) = mjxe−j and h(x) = mixe−i for some 0 ≤ i, j ≤ e − 1. Therefore

g′(x)h′(x) = (e− i)(e− j)mi+jx2e−i−j−2 ∈ N(m) since e ≥ 2, and so N(m) satisfies FDP.

We now consider the case e = q + 1. By Lemma 4.2.11, m is generated by the following set

{xe,mxe−1, . . . ,me−1x, xq −mq−1x}.

Since q ∈ m we have q = rm for some r ∈ R. Let g, h any two generators of N(m). We

distinguish three main cases.

Case 1. g(x) = h(x) = xq −mq−1x. Then

g′(x)h′(x) = (qxq−1 −mq−1)2 = q2x2q−2 − 2qmq−1xq−1 +m2q−2,

whence

g′(x)h′(x) = r2m2x2e−4 − 2rme−1xe−2 +m2e−4.

Evidently, r2m2x2e−4− 2rme−1xe−2 ∈ N(m) since e = q+ 1 ≥ 3. Thus g′h′ ∈ N(m) if and only

if m2e−4 ∈ N(m) if and only if m2e−4 = 0, provided e ≥ 4.

Case 2. g(x) = xq −mq−1x and h(x) = mixe−i for some 0 ≤ i ≤ e− 1. Then

g′(x)h′(x) = (e− i)mixe−i−1(qxq−1 −mq−1) = (e− i)mixe−i−1(rmxe−2 −me−2) =

(e− i)mi+1xe−i−1(rxe−2 −me−3) ∈ N(m) since mi+1xe−i−1 ∈ N(m) and e ≥ 4 > 3.

Case 3. g(x) = mjxe−j and h(x) = mixe−i for some 0 ≤ i, j ≤ e− 1. Then

g′(x)h′(x) = (e− i)(e− j)mi+jx2e−i−j−2 ∈ N(m) since e ≥ 4.

Therefore N(m) satisfies FDP.

Remark 4.2.13.

1. If e = 1, then R = Fq. In this case NFq = (xq − x)Fq[x]. But, NFq does not satisfy FDP.

Because, if we take g(x) = xq − x, then (g′(x))2 = (qxq−1 − 1)2 = 1 6∈ NFq .

2. Consider g(x) = (x2−x)2−2(x2−x) ∈ Z8[x], by Fermat’s Theorem, one can show easily

that g(a) ≡ 0 (mod 8) for every a ∈ Z8, that is, g ∈ NZ8. However, NZ8 does not satisfy

FDP since (g′)2 6∈ NZ8. Indeed, (g′(1))2 = 4 6≡ 0 (mod 8). Note that e = q + 1 = 3 < 4.

Corollary 4.2.14. Let n be a positive integer and p a prime number.
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1. If p > 2, then NZpn satisfies FDP for every 1 < n ≤ p+ 1.

2. If p = 2, then NZ4 satisfies FDP.

Although we defined null ideals for finite rings, the definition is still true for infinite rings.

We consider this fact in the following example.

Example 4.2.15. Let R be a boolean ring (not necessary finite). By definition, f = x2−x ∈ NR.

But, (f ′)2 = (−1)2 = 1 /∈ NR.

Right now we have achieved our first main goal, that is, showing the existence of a wide class

of finite local rings with null ideals having FDP. In the next section, we employ FDP to infer

some facts about a group of polynomial permutations over the ring R[x]/(x2).

4.3 Applications on the polynomial permutations of the

ring R[x]/(x2)

In this section, for a finite local commutative ring R with the null ideal NR satisfying the

first derivative property, we prove some facts about some kind of permutation polynomials on

the ring R[x]/(x2).

Throughout this section all rings are finite.

Recall that R[x]/(x2) is isomorphic to the ring R[α] = {a+ bα : a, b ∈ R}, where α 6∈ R and

α2 = 0. Here are some easily verifiable facts about polynomials over R[α].

Fact 4.3.1. Let h ∈ R[x]. Then h(a+ bα) = h(a) + bh′(a)α for each a, b ∈ R.

Fact 4.3.2. Let g ∈ R[α][x]. Then g = g1 + g2α for some g1, g2 ∈ R[x].

Recall from the introduction that P(R[α]) denotes the group of polynomial permutations on

the ring R[α].

Definition 4.3.3. Let Stα(R) = {F ∈ P(R[α]) : F (r) = r for each r ∈ R}.

Obviously, Stα(R) is a nonempty finite subset of P(R[α]). Further, it is closed under the

composition of functions. Therefore Stα(R) is a subgroup of P(R[α]). The group Stα(R) by

definition stabilizes every element of R; for this we call it the stabilizer group of R in the group

of polynomial permutations of R[α] or more shortly the stabilizer group.

Lemma 4.3.4. Let A be a ring and g, h ∈ A[x]. If g and h induce the same function over A,

then there exists f ∈ NA such that g = h+ f .

Proof. Take f = g − h. Then f ∈ NA.

We need some facts from [2]. However, we prove these facts as the proofs do not depend on

extra materials.
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Lemma 4.3.5. [2, Lemma 3.4] Let h ∈ NR. Then hα induces the zero function over R[α].

Proof. By Fact 4.3.1, h(a+ bα)α = (h(a)+ bh′(a)α)α = h(a)α+0 = 0α = 0 for all a, b ∈ R.

Proposition 4.3.6. [2, Proposition 4.6] Let R be a ring. Then

Stα(R) = {F ∈ P(R[α]) : F is induced by x+ f(x) for some f ∈ NR}.

Proof. It is obvious that

Stα(R) ⊇ {F ∈ P(R[α]) : F is induced by x+ f(x) for some f ∈ NR}.

Now let F ∈ P(R[α]) such that F (r) = r for each r ∈ R. Since F is a polynomial permutation

over R[α], F is induced by a polynomial g ∈ R[α][x]. By Fact 4.3.2, g = g0 + g1 α, where

g0, g1 ∈ R[x]. Now r = F (r) = g(r) = g0(r) + g1(r)α for each r ∈ R. Then g1(r)α = 0,

and so g1(r) = 0 for each r ∈ R, i.e., g1 ∈ NR. Hence, g1α is a null polynomial over R[α] by

Lemma 4.3.5. Thus g0 and g0 + g1α both induce F on R[α], i.e., F is induced by g0. Further,

g0 ≡ x mod NR, i.e., g0 induces the identity on R, and therefore g0(x) = x + h(x) for some

h ∈ NR by Lemma 4.3.4. This shows the other inclusion.

Lemma 4.3.7. Let F ∈ Stα(R). Suppose that x + f(x) induces F , where f ∈ NR. Then the

following statements are equivalent

1. (f ′)2 ∈ NR;

2. x− f(x) induces F−1;

3. F k = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
k times

is induced by x+ kf(x) for every k ∈ N.

Proof. (1)⇒ (2) Let G be the function induced by x− f(x). Then for every r, s ∈ R we have

G ◦ F (r + s α) = G ◦ (r + s α+f(r + s α))

= G ◦ (r + s α+f(r) + sf ′(r)α) (by Fact 4.3.1)

= G ◦ (r + s α+sf ′(r)α) (since f is null)

= (r + s α+sf ′(r)α)− f(r + (s+ sf ′(r))α)

= (r + s α+sf ′(r)α)−
(
f(r) + (s+ sf ′(r))f ′(r)α

)
(by Fact 4.3.1)

= r + s α+sf ′(r)α−sf ′(r)α (since (f ′)2 ∈ NR)

= r + s α .

Thus F−1 = G, whence x− f(x) induces F−1.

(2)⇒ (1) If x− f(x) induces F−1, then one can use the previous calculations to get that for

every r, s ∈ R, r + sα = F−1 ◦ F (r + s α) = r + s α−s(f ′(r))2α.
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Hence s(f ′(r))2α = 0, whence (f ′(r))2s = 0 for every r, s ∈ R. So if s = 1, we have

(f ′(r))2 = 0 for every r ∈ R. Therefore (f ′)2 ∈ NR.

(1)⇒(3) By induction on k.

(3)⇒(1) Let k = 2. Then F 2 is induced by x+ 2f(x), and so that

F 2(r + s α) = r + s α+2f ′(r)s α .

While, by successive calculations,

F 2(r + s α) = F ◦ F (r + s α) = F (r + s α+sf ′(r)α) = r + s α+s(2f ′(r) + (f ′(r))2)α.

Then from the two expression of F 2(r+ s α) follows that s(f ′(r))2 = 0 for every r, s ∈ R. Thus

(f ′(r))2 = 0 for every r ∈ R, and hence (f ′)2 ∈ NR.

In the following proposition, we show that how FDP is useful in describing the behavior of

the elements of the stabilizer group Stα(R) in connection with their polynomial expressions.

Proposition 4.3.8. Let F ∈ Stα(R). Suppose that x+ f(x) induces F , where f ∈ NR. If NR

satisfies FDP, then the following statements hold:

1. x− f(x) induces F−1;

2. F k = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
k times

is induced by x+ kf(x) for every k ∈ N;

3. if G ∈ Stα(R) is induced by x+ g(x), where g ∈ NR, then x+ f(x) + g(x) induces F ◦G.

Proof. Since NR satisfies FDP, we have (f ′)2 ∈ NR, and hence (1) and (2) hold by Lemma 4.3.7.

(3) Let G ∈ Stα(R) be induced by x+ g(x), where g ∈ NR. Then by FDP, f ′g′ ∈ NR. Now

we have for every r, s ∈ R, by Fact 4.3.1 and since f, g ∈ NR,

G ◦ F (r + s α) = G ◦ (r + s α+sf ′(r)α)

= (r + s α+sf ′(r)α) + g(r + s α+sf ′(r)α)

= (r + s α+sf ′(r)α) + (s+ sf ′(r))g′(r)α

= r + s α+sf ′(r)α+sg′(r)α (by FDP).

Therefore G ◦ F is induced by the polynomial x+ f(x) + g(x).

We prove now a special case of [2, Theorem 4.1].

Lemma 4.3.9. Let g ∈ R[x]. Then g is a permutation polynomial on R[α] if and only if g is a

permutation polynomial on R and g′(r) is a unit for every r ∈ R.

Proof. (⇒) Let c ∈ R. Then c ∈ R[α]. Since g is a permutation polynomial over R[α], there

exist a, b ∈ R such that g(a + bα) = c. Thus g(a) + bg′(a)α = c by Fact 4.3.1. So g(a) = c,

whence g is surjective on the ring R. Hence g is a permutation polynomial on R.
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Let a ∈ R and suppose that g′(a) is a non-unit in R. Then g′(a) is a zerodivisor of R. Let

b ∈ R, b 6= 0, such that bg′(a) = 0. Then g(a+ bα) = g(a)+ bg′(a)α = g(a), so g is not injective,

which contradicts to the fact being bijective over R.

(⇐) We need only to prove that g is injective. For this let a, b, c, d ∈ R such that g(a+ bα) =

g(c + dα). Then g(a) + bg′(a)α = g(c) + dg′(c)α by Fact 4.3.1. Thus we have g(a) = g(c) and

bg′(a) = dg′(c). Hence a = c since g is a permutation polynomial on R. So, since g′(a) is a unit

in R, b = d follows.

We recall the following well-known result.

Lemma 4.3.10. [63, Theorem 3] Let R be a local ring with nonzero maximal ideal m, and

g ∈ R[x]. Then g is a permutation polynomial on R if and only if the following conditions hold:

1. g is a permutation polynomial on R/m;

2. g′(r) 6≡ 0 mod m, for all r ∈ R.

Lemma 4.3.11. Let R be a local ring with nonzero maximal ideal m, and g ∈ R[x]. Then g is

a permutation polynomial on R[α] if and only if g is a permutation polynomial on R.

Proof. (⇒) Follows by Lemma 4.3.9.

(⇐) Suppose that g is a permutation polynomial on R. Then for all a ∈ R, g′(a) 6≡ 0 mod m

by Lemma 4.3.10. Thus for all a ∈ R, g′(a) is a unit in R since R is a local ring. Hence g is a

permutation polynomial on R[α] by Lemma 4.3.9.

Corollary 4.3.12. Let R be a local ring with nonzero maximal ideal m and let f ∈ NR. If F

is the function induced by x+ f(x), then F ∈ Stα(R).

In the rest of the paper let N ′R = {f ∈ NR : f ′ ∈ NR}. It is evident that N ′R is an ideal of

R[x] contained in NR.

Lemma 4.3.13. Let g ∈ R[x]. Then g is a null polynomial on R[α] if and only if g ∈ N ′R.

Proof. By Fact 4.3.1, g(a+ bα) = g(a) + bg′(a)α for every a, b ∈ R.

(⇐) Immediately.

(⇒) Since g is null on R[α] we have that g(a) + bg′(a)α = 0 for every a, b ∈ R. This is

equivalent to g(a) = bg′(a) = 0 for every a, b ∈ R. Thus if b = 1, we have g(a) = g′(a) = 0 for

very a ∈ R. Hence g ∈ N ′R.

We are now ready to prove our main result for this section.

Proposition 4.3.14. Let R be a local ring with nonzero maximal ideal m. If NR satisfies FDP,

then

Stα(R) ∼= NR
/
N ′R.
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Proof. Let f ∈ NR, then obviously [x + f(x)] ∈ Stα(R) by Corollary 4.3.12, where [x + f(x)]

denotes the function induced by x + f(x) on R[α]. Now define a function ψ : NR −→ Stα(R)

by ψ(f) = [x+ f(x)]. By Proposition 4.3.6, ψ is surjective. Let g ∈ NR. Then set

F1 = [x+ f(x)], F2 = [x+ g(x)] and F3 = [x+ f(x) + g(x)].

By Proposition 4.3.8, F1 ◦F2 = F3. Therefore ψ(f + g) = ψ(f) ◦ψ(g), whence ψ is a homomor-

phism. Hence NR
/

kerψ ∼= Stα(R) by the first isomorphism theorem.

Now,

kerψ = {f ∈ NR : [x+ f(x)] is the identity permutation on R[α]}.

By Lemma 4.3.13, N ′R ⊆ kerψ. On the other, if f ∈ kerψ, then x + f(x) induces the identity

on R[α]. Hence x + f(x) = x + h(x) for some null polynomial (on R[α]) h ∈ R[α][x] by

Lemma 4.3.4. Thus f = h and f is a null polynomial on R[α]. Since f ∈ R[x] we have f ∈ N ′R
by Lemma 4.3.13. Therefore kerψ ⊆ N ′R.

Remark 4.3.15. In [2], for the case R = Zpn the ring of integers modulo pn, it was only proved

that |Stα(Zpn)| = [NZpn : N ′Zpn ], for every n > 1, and it was unclear whether Stα(Zpn)and

NZpn/N
′
Zpn are isomorphic or not. But, now Proposition 4.3.14 tells us they are isomorphic via

a map induced by the function ψ defined in the above proof, when NR satisfies FDP.

Corollary 4.3.16. Let R be a local ring with nonzero maximal ideal m. The function ψ : NR −→
Stα(R), defined by ψ(f) = [x+ f(x)] for every f ∈ NR, is a homomorphism if and only if NR

satisfies FDP.

Proof. (⇐) Follows by the same argument given in the proof of the previous proposition.

(⇒) Assume that ψ is a homomorphism. Let f, g ∈ NR. Put F1 = [x+ f(x)], F2 = [x+ g(x)]

and F3 = [x + f(x) + g(x)]. Then F1, F2, F3 ∈ Stα(R) by Corollary 4.3.12. We now consider

ψ(f + g) = [x + f(x) + g(x)] = F3. But, since ψ is a homomorphism by assumption, we have

that ψ(f + g) = ψ(f) ◦ ψ(g) = F1 ◦ F2. Thus F1 ◦ F2 = F3. Now, for every a, b ∈ R, we have

F1 ◦ F2(a+ bα) = a+ bα+ b(g′(a) + f ′(b) + f ′(a)g′(a))α,

and F3(a+ bα) = a+ bα+ b(f ′(a) + g′(a))α. Hence bf ′(a)g′(a)α = 0 for every a, b ∈ R, which

implies that f ′(a)g′(a) = 0 for every a ∈ R. Thus f ′g′ ∈ NR, and so NR satisfies FDP.

Remark 4.3.17. The function ψ defined in Corollary 4.3.16 seems natural in the sense that

it sends every polynomial g ∈ NR to the function induced by x + g(x) over R[α], however, we

notice the following.

1. When R = Fq, the function ψ is not defined. For instance, take f(x) = xq − x ∈ NFq ,

but F = [f(x) + x] = [xq] 6∈ Stα(Fq) since F is not a permutation as F (0) = F (α) = 0

(compare this with Remark 4.2.13-(1)).
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2. If R = Z8, the function ψ can be defined by Corollary 4.3.12. But, by Remark 4.2.13-(2),

NZ8 does not satisfy FDP. So ψ is not a homomorphism by Corollary 4.3.16.

Applying Proposition 4.3.14 to Corollary 4.2.14 gives the following result.

Corollary 4.3.18. Let p be a prime number and n a positive integer.

1. If p > 2, then Stα(Zpn) ∼= NZpn
/
N ′Zpn

for every 1 < n ≤ p+ 1.

2. If p = 2, then Stα(Z4) ∼= NZ4

/
N ′Z4

.

We conclude the paper by showing that the null ideal on dual numbers satisfies FDP. For

this we recall the following fact from [2].

Lemma 4.3.19. [2, Theorem 3.5] Let R be a commutative ring and let A = R[α] be the ring

of dual numbers over R. Let f = f1 + f2 α, where f1, f2 ∈ R[x]. Then f ∈ NA if and only if

f1 ∈ N ′R and f2 ∈ NR.

Proposition 4.3.20. Let R be a commutative ring and let A = R[α] be the ring of dual numbers

over R. Then NA satisfies FDP.

Proof. Let f, g ∈ NA. Then f = f1 + f2 α and g = g1 + g2 α for some f1, f2, g1, g2 ∈ R[x]

such that f1, g1 ∈ N ′R and f2, g2 ∈ NR by Fact 4.3.2 and Lemma 4.3.19, respectively. But then

f ′1g
′
1 ∈ N ′R and f ′1g

′
2 + f ′2g

′
1 ∈ NR by the definitions of N ′R and NR. Thus, by Lemma 4.3.19,

f ′g′ = f ′1g
′
1 + (f ′1g

′
2 + f ′2g

′
1)α ∈ NA.
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5 Polynomial functions over dual

numbers of several variables

The content of this chapter is the submitted paper [5].

Abstract

Let k be a positive integer. For a commutative ring R, the ring of dual numbers of k

variables over R is the quotient ring R[x1, . . . , xk]/I, where I is the ideal generated by the

set {xixj : i, j = 1, . . . , k}. This ring can be viewed as R[α1, . . . , αk] with αi αj = 0, where

αi = xi + I for i, j = 1, . . . , k. We investigate the polynomial functions of R[α1, . . . , αk] when-

ever R is a finite commutative ring. We derive counting formulas for the number of polynomial

functions and polynomial permutations on R[α1, . . . , αk] depending on the order of the pointwise

stabilizer of the subring of constants R in the group of polynomial permutations of R[α1, . . . , αk].

Further, we show that the stabilizer group of R is independent of the number of variables k.

Moreover, we prove that a function F on R[α1, . . . , αk] is a polynomial function if and only if a

system of linear equations on R that depends on F has a solution.

Keywords. Finite commutative rings, dual numbers, polynomials, polynomial functions, poly-

nomial permutations, permutation polynomials, null polynomials, finite permutation groups

5.1 Introduction

Let R be a finite commutative ring with unity. Then a function F : R −→ R is said to be

a polynomial function on R if there exists a polynomial f ∈ R[x] such that f(a) = F (a) for

every a ∈ R. In this case, we say that F is the induced function of f on R and f represents

(induces) F . Moreover, if F is a bijection, we say that F is a polynomial permutation and f

is a permutation polynomial. If R is a finite field, it can be shown easily by using Lagrange

interpolation that every function on R is a polynomial function. The situation is different when

R is not a field and it is somewhat more complicated to study the properties of polynomial

functions on such a ring. We denote by F(R) the set of polynomial functions on R, which

is evidently a monoid under the composition of functions. Moreover, its subset of polynomial

permutations forms a group and we denote it by P(R).
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Kempner [43] was the first mathematician who studied polynomial functions on a finite ring

which is not a field. He studied extensively the polynomial functions on Zm, the ring of integers

modulo m. However, his arguments and results were somewhat lengthy and sophisticated.

Therefore, for a long time some researchers [41, 81, 62] followed his work, obtained simpler

proofs and contributed to the subject as well. Meanwhile, some others were interested in the

group of polynomial permutations modulo pn [65, 33]. Other mathematicians have generalized

the concepts of polynomial functions on Zm into other rings, for example, local principal ideal

rings [63] and Galois rings [15]. Later, Frisch [29] characterized the polynomial functions over a

more general class of local rings. Surprisingly, all rings examined in [15, 63, 43] are contained

in this class.

In a recent paper [2], the authors considered the polynomial functions of the ring R[x]/(x2),

the ring of dual numbers over R. In particular, they examined extensively the properties of

the polynomial functions on dual numbers over the integers modulo pn by relating them to the

polynomial functions modulo pn. However, dual numbers are not contained in the class of rings

covered in [29], except for some trivial cases.

It should be mentioned that around forty years ago some mathematicians studied the prop-

erties of polynomial functions on weaker structures such as semi groups [45] and monoids [86].

The importance of studying polynomial functions emanates from their intrinsic applications

in other areas. For example, permutation polynomials modulo pn have been employed widely in

computer science (see for example [83, 85]). Also, they occur as isomorphisms of combinatorial

objects with vertex set Zpn [10, 11]. For this reason, we think that investigating the polynomial

functions on new structures will give a good chance for new applications to come out.

In this paper, we are interested in the polynomial functions of the ring of dual numbers of

several variables over a finite local ring R, that is, the ring R[x1, . . . , xk]/I, where I is the

ideal generated by the set {xixj : i, j ∈ {1, . . . , k}}, alternatively, the ring R[α1, . . . , αk] with

αi αj = 0. We find that the construction of the polynomial functions on such a ring depends

only on the polynomial functions on R. Furthermore, we show that the order of a subgroup

of polynomial permutations on R[α1, . . . , αk] plays an essential role in the counting formulas of

the polynomial functions and the polynomial permutations on R[α1, . . . , αk]. More generally,

we show that the properties of the polynomial functions on R[x]/(x2) discussed in [2] can be

carried over to those on the ring R[α1, . . . , αk].

Here is a summary of the paper. Section 5.2 contains some basics and notations. In Sec-

tion 5.3, we characterize null polynomials and permutation polynomials on R[α1, . . . , αk], and

we develop the ideas needed in section 5.4. Then, in Section 5.4, we consider a group of poly-

nomial permutations on R[α1, . . . , αk] that stabilizes (fixes) the elements of R pointwisely, and

derive some counting formulas in terms of the order of this stabilizer group. Finally, we obtain

necessary and sufficient conditions for polynomial functions on R[α1, . . . , αk] in section 5.5
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5.2 Basics

In this section, we introduce some definitions and facts that appear in the paper frequently.

Throughout this paper, let k be a positive integer, and for f ∈ R[x] let f ′ denote its first formal

derivative.

Definition 5.2.1. Let S be a commutative ring, R an S-algebra and f ∈ S[x]. Then:

1. The polynomial f gives rise to a polynomial function on R. We use the notation [f ]R for

this function. We just write [f ] instead of [f ]R, when there is no confusion.

2. If [f ]R is a permutation on R, then we call f a permutation polynomial on R.

3. If g ∈ S[x] and [f ]R = [g]R, this means that f and g induce the same function on R and

we abbreviate this with f , g on R.

Remark 5.2.2. Clearly, , is an equivalence relation on R[x]. For the case when S = R, there

is a bijective correspondence between the equivalence classes of , and the polynomial functions

on R. In particular, if R is finite, then the number of different polynomial functions on R equals

the number of equivalence classes of , on R[x].

Definition 5.2.3. For a commutative ring R, the ring of dual numbers of k variables over

R is the quotient ring R[x1, . . . , xk]/I, where I is the ideal generated by the set {xixj : i, j ∈
{1, . . . , k}}; that is, the ring

R[α1, . . . , αk] = {r0 +
k∑
i=1

ri αi : r0, ri ∈ R, with αi αj = 0 for i, j = 1, . . . , k};

where αi stands for x+ I, for i = 1, . . . , k.

Remark 5.2.4. Note that R is canonically embedded as a subring in R[α1, . . . , αk]. Further-

more, R[α1, . . . , αk] is an R-algebra with basis {1, α1, . . . , αk}.

The following proposition summarizes some properties of R[α1, . . . , αk], which is straightfor-

ward from Definition 5.2.3.

Proposition 5.2.5. Let R be a commutative ring. Then the following hold.

1. For a0, . . . , ak, b0, . . . , bk ∈ R, we have:

a) (a0 +
k∑
i=1

ai αi)(b0 +
k∑
i=1

bi αi) = a0b0 +
k∑
i=1

(a0bi + b0ai)αi;

b) a0 +
k∑
i=1

ai αi is a unit in R[α1, . . . , αk] if and only if a0 is a unit in R. In this case,

(a0 +
k∑
i=1

ai αi)
−1 = a−10 −

k∑
i=1

a−20 ai αi.
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2. R[α1, . . . , αk] is a local ring if and only if R is a local ring.

3. If R is a local ring with a maximal ideal m of nilpotency n, then R[α1, . . . , αk] is a local

ring whose maximal ideal m +
k∑
i=1

αiR has nilpotency n+ 1.

We use the following lemma frequently.

Lemma 5.2.6. Let R be a commutative ring and a0, . . . , ak ∈ R.

1. If f ∈ R[x], then

f(a0 +
k∑
i=1

ai αi) = f(a0) +
k∑
i=1

aif
′(a0)αi .

2. If f ∈ R[α1, . . . , αk][x], then there exist unique f0, . . . , fk ∈ R[x] such that

f = f0 +
k∑
i=1

fi αi and f(a0 +
k∑
i=1

ai αi) = f0(a0) +
k∑
i=1

(aif
′
0(a0) + fi(a0))αi .

Proof. (1) Follows from Taylor expansion and the fact that αiαj = 0 for i, j = 1, . . . , k.

(2) Let f ∈ R[α1, . . . , αk][x]. Then f(x) =
n∑
j=0

(c0 j +
k∑
i=1

ci j αi)x
j , where ci j ∈ R for i = 0, . . . , k;

j = 0, . . . , n. So set fi =
n∑
j=0

ci jx
j ∈ R[x] for i = 0, . . . , k. Hence f = f0+

k∑
i=1

fi αi. Evidently, the

polynomials f0, . . . , fk are unique since R[α1, . . . , αk] is an R-algebra with basis {1, α1, . . . , αk}.
The other part follows from (1).

The above lemma yields a necessary conditions for a function F : R[α1, . . . , αk] −→ R[α1, . . . , αk]

to be a polynomial function.

Corollary 5.2.7. Let F : R[α1, . . . , αk] −→ R[α1, . . . , αk] be a polynomial function. Let ai, bi, ci, di ∈
R, i = 0, . . . , k, such that

F (a0 +
k∑
i=1

ai αi) = c0 +
k∑
i=1

ci αi, and F (b0 +
k∑
i=1

bi αi) = d0 +
k∑
i=1

di αi .

Then:

1. a0 = b0 implies that c0 = d0;

2. a0 = b0 and ai = bi for some i 6= 0 imply that c0 = d0 and ci = di.

Definition 5.2.8. [29]. Let R be a finite commutative local ring with a maximal ideal m

and L ∈ N minimal with mL = (0). We call R suitable, if for all a, b ∈ R and all l ∈ N,

ab ∈ ml ⇒ a ∈ mi and b ∈ mj with i+ j ≥ min(L, l).
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The following proposition shows that R[α1, . . . , αk] is not in the class of rings covered in [29]

unless R is a finite field.

Proposition 5.2.9. Let R be a finite local ring. Then R[α1, . . . , αk] is suitable if and only if

R is a finite field.

Proof. Since R is a local ring with a maximal ideal m and nilpotency n, R[α1, . . . , αk] is a local

ring with maximal ideal m1 = m +
k∑
i=1

αiR and nilpotency L = n + 1 by Proposition 5.2.5.

Now if R is a field, the result follows easily since m2
1 = (0). If R is not a field, we notice that

L = n + 1 > 2, then α1 ∈ m1 and α1 /∈ mj
1 for j > 1, but α2

1 = 0 ∈ mn+1
1 . Hence R[α1, . . . , αk]

is not suitable, when R is not a field.

5.3 Polynomial functions and permutation polynomials

on R[α1, . . . , αk]

From now on, let R be a finite commutative ring with unity. A polynomial f ∈ R[x] is

called a null polynomial on R if f induces the zero function; in this case we write f , 0 on R.

In this section, we determine when a given polynomial is a null polynomial on R[α1, . . . , αk],

and whether two polynomials induce the same function on R[α1, . . . , αk]. Then we apply these

results to obtain a counting formula, for the number of polynomial functions on R[α1, . . . , αk],

depending on the indices of the ideals NR, N
′
R in R[x] (defined below). Later, we dedicate the

last part of this section to the group of polynomial permutations on R[α1, . . . , αk], characterize

permutation polynomials and provide supplementary results about this group.

Definition 5.3.1. We define NR, N
′
R as:

1. NR = {f ∈ R[x] : f , 0 on R};

2. N ′R = {f ∈ R[x] : f , 0 and f ′ , 0 on R}.

Remark 5.3.2. It is evident that NR and N ′R are ideals of R[x] with N ′R ⊆ NR.

Lemma 5.3.3. Let f ∈ R[x]. Then:

1. f is a null polynomial on R[α1, . . . , αk] if and only if f ∈ N ′R;

2. f αi is a null polynomial on R[α1, . . . , αk] for every 1 ≤ i ≤ k if and only if f ∈ NR.

Proof. (1) By Lemma 5.2.6, for every a0, . . . , ak ∈ R, f(a0 +
k∑
i=1

ai αi) = f(a0) +
k∑
i=1

aif
′(a0)αi.

Thus the fact that f is a null polynomial on R[α1, . . . , αk] is equivalent to

f(a0 +
k∑
i=1

ai αi) = f(a0) +
k∑
i=1

aif
′(a0)αi = 0 for all a0, . . . , ak ∈ R.
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But this is equivalent to f(a0) = 0 and aif
′(a0) = 0 for all a0, ai ∈ R and i = 1, . . . , k, which

implies that f(a0) = 0 and f ′(a0) = 0 for all a0 ∈ R. Hence f and f ′ are null polynomials on

R, which means that f ∈ N ′R.

(2) Follows immediately from Lemma 5.2.6.

Theorem 5.3.4. Let f ∈ R[α1, . . . , αk][x]. We write f = f0+
k∑
i=1

fi αi, where f0, . . . , fk ∈ R[x].

Then f is a null polynomial on R[α1, . . . , αk] if and only if f0 ∈ N ′R and fi ∈ NR for i = 1, . . . , k.

Proof. By Lemma 5.2.6, f(a0+
k∑
i=1

ai αi) = f0(a0)+
k∑
i=1

(aif
′
0(a0)+fi(a0))αi for all a0, . . . , ak ∈ R.

This immediately implies the “if” direction. To see the “only if”, suppose that f is a null

polynomial on R[α1, . . . , αk]. Then

f0(a0) +
k∑
i=1

(aif
′
0(a0) + fi(a0))αi = 0 for all a0, . . . , ak ∈ R.

Clearly, f0 is a null polynomial on R. Substituting first 0, then 1, for ai, i = 1, . . . , k, we find

that fi and f ′0 are null polynomials on R. Therefore f0 ∈ N ′R and fi ∈ NR for i = 1, . . . , k.

Combining Lemma 5.3.3 with Theorem 5.3.4 gives the following criterion.

Corollary 5.3.5. Let f = f0+
k∑
i=1

fi αi, where f0, . . . , fk ∈ R[x]. Then f is a null polynomial on

R[α1, . . . , αk] if and only if f0 and fi αi are null polynomials on R[α1, . . . , αk] for i = 1, . . . , k.

Theorem 5.3.4 implies the following corollary, which determines whether two polynomials

f, g ∈ R[α1, . . . , αk][x] induce the same function on R[α1, . . . , αk].

Corollary 5.3.6. Let f = f0+
k∑
i=1

fi αi and g = g0+
k∑
i=1

gi αi, where f0, . . . , fk, g0, . . . , gk ∈ R[x].

Then f , g on R[α1, . . . , αk] if and only if the following conditions hold:

1. [fi]R = [gi]R for i = 0, . . . , k;

2. [f ′0]R = [g′0]R.

In other words, f , g on R[α1, . . . , αk] if and only if the following congruences hold:

1. fi ≡ gi mod NR for i = 1, . . . , k;

2. f0 ≡ g0 mod N ′R.

Proof. It is sufficient to consider the polynomial h = f−g and notice that f , g onR[α1, . . . , αk]

if and only if h , 0 on R[α1, . . . , αk].

Recall that F(R[α1, . . . , αk]) denotes the set of polynomial functions on R[α1, . . . , αk]. In

the following proposition, we derive a counting formula for F(R[α1, . . . , αk]) depending on the

indices of the ideals NR, N
′
R.
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Proposition 5.3.7. The number of polynomial functions on R[α1, . . . , αk] is given by

|F(R[α1, . . . , αk])| =
[
R[x] : N ′R

][
R[x] : NR

]k
.

Moreover, [R[x] : N ′R] is the number of pairs of functions (F,E) with F : R −→ R, G : R −→
R, arising as ([f ]R, [f

′]R) for some f ∈ R[x], and [R[x] : NR] is the number of polynomial

functions on R.

Proof. Let f = f0 +
k∑
i=1

fi αi and g = g0 +
k∑
i=1

gi αi where f0, . . . , fk, g0, . . . , gk ∈ R[x]. Then by

Corollary 5.3.6, f , g on R[α1, . . . , αk] if and only if f0 ≡ g0 mod N ′R and fi ≡ gi mod NR

for i = 1, . . . , k.

Define ϕ :
k

×
i=0

R[x] −→ F(R[α1, . . . , αk]) by ϕ(f0, . . . , fk) = [f ], where [f ] is the function

induced on R[α1, . . . , αk] by f = f0 +
k∑
i=1

fi αi. Then ϕ is a group epimorphism with kerϕ =

N ′R ×
k

×
i=1

NR by Theorem 5.3.4. Hence

|F(R[α1, . . . , αk])| = [
k×
i=0

R[x] : N ′R ×
k×
i=1

NR] = [R[x] : N ′R][R[x] : NR]k.

Next, we set

A = {(F,E) ∈ F(R)×F(R) : ∃f ∈ R[x] such that f, f ′ induce F,E respectively}.

Define ψ : R[x] −→ A by ψ(f) = ([f ]R, [f
′]R). It is a routine verification to show that ψ is a

group epimorphism with kerψ = N ′R. Hence by the First Isomorphism Theorem of groups, we

get [R[x] : N ′R] = |A|. A similar argument proves that |F(R)| = [R[x] : NR].

The following proposition gives an upper bound for the degree of a representative of a poly-

nomial function on R[α1, . . . , αk].

Proposition 5.3.8. Let h1 ∈ R[α1, . . . , αk][x] and h2 ∈ R[x] be monic null polynomials on

R[α1, . . . , αk] and R, respectively, such that deg h1 = d1 and deg h2 = d2. Then every polynomial

function F : R[α1, . . . , αk] −→ R[α1, . . . , αk] is induced by a polynomial f = f0 +
k∑
i=1

fi αi, where

f0, . . . , fk ∈ R[x] such that deg f0 < d1 and deg fi < d2 for i = 1, . . . , k. Moreover, if F is

induced by a polynomial f ∈ R[x] and h1 ∈ R[x] (rather than in R[α1, . . . , αk][x]), then there

exists a polynomial g ∈ R[x] with deg g < d1, such that [g]R = [f ]R and [g′]R = [f ′]R.

Proof. Suppose that h1 ∈ R[α1, . . . , αk][x] is a monic null polynomial on R[α1, . . . , αk] of degree

d1. Let g ∈ R[α1, . . . , αk][x] be a polynomial that represents F . By the division algorithm, we

have g(x) = q(x)h1(x) + r(x) for some r, q ∈ R[α1, . . . , αk][x], where deg r ≤ d1 − 1. Then
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clearly, r(x) represents F . By Lemma 5.2.6, r = f0 +
k∑
i=1

ri αi for some f0, r1, . . . , rk ∈ R[x],

and it is obvious that deg f0, deg ri ≤ d1 − 1 for i = 1, . . . , k. Now let h2 ∈ R[x] be a monic

null polynomial on R of degree d2. Again, by the division algorithm, we have for i = 1, . . . , k,

ri(x) = qi(x)h2(x)+fi(x) for some fi, qi ∈ R[x], where deg fi ≤ d2−1. Then by Corollary 5.3.6,

ri αi , fi αi on R[α1, . . . , αk]. Thus f = f0 +
k∑
i=1

fi αi is the desired polynomial.

For the second part, the existence of g ∈ R[x] with deg g < d1 such that f , g on R[α1, . . . , αk]

follows by the same argument given in the previous part. By Corollary 5.3.6, [g]R = [f ]R and

[g′]R = [f ′]R.

Remark 5.3.9. Let h(x) =
∏
r∈R

(x − r)2. Then h is a monic polynomial in R[x], and by

Lemma 5.3.3, it is a null polynomial on R[α1, . . . , αk]. This shows that the polynomial mentioned

in the last part of Proposition 5.3.8 always exists.

We devote the rest of this section to the group of polynomial permutations on R[α1, . . . , αk].

Theorem 5.3.10. Let R be a finite ring. Let f = f0 +
k∑
i=1

fi αi, where f0, . . . , fk ∈ R[x]. Then

f is a permutation polynomial on R[α1, . . . , αk] if and only if the following conditions hold:

1. f0 is a permutation polynomial on R;

2. for all a ∈ R, f ′0(a) is a unit in R.

Proof. (⇒) Let c ∈ R. Then c ∈ R[α1, . . . , αk]. Since f is a permutation polynomial on

R[α1, . . . , αk], there exist a0, . . . , ak ∈ R such that f(a0 +
k∑
i=1

ai αi) = c. Thus, by Lemma 5.2.6,

f0(a0) +
k∑
i=1

(aif
′
0(a0) + fi(a0))αi = c.

So f0(a0) = c, therefore f0 is onto, and hence a permutation polynomial on R.

Let a ∈ R and suppose that f ′0(a) is a non-unit in R. Then f ′0(a) is a zerodivisor of R. Let

b ∈ R, b 6= 0, such that bf ′0(a) = 0. Then, by Lemma 5.2.6,

f(a+
k∑
i=1

b αi) = f0(a) +
k∑
i=1

(bf ′0(a) + fi(a))αi = f0(a) +
k∑
i=1

fi(a)αi = f(a).

So f is not one-to-one, which is a contradiction. This proves (2).

(⇐) It is enough to show that f is one-to-one. Let a0, . . . , ak, b0, . . . , bk ∈ R such that

f(a0 +
k∑
i=1

ai αi) = f(b0 +
k∑
i=1

bi αi),
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that is,

f0(a0) +

k∑
i=1

(aif
′
0(a0) + fi(a0))αi = f0(b0) +

k∑
i=1

(bif
′
0(b0) + fi(b0))αi

by Lemma 5.2.6. Then we have f0(a0) = f0(b0) and aif
′
0(a0) + fi(a0) = bif

′
0(b0) + fi(b0) for

i = 1, . . . , k. Hence a0 = b0 since f0 is a permutation polynomial on R. Then, since f ′0(a0) is a

unit in R, ai = bi follows for i = 1, . . . , k.

Theorem 5.3.10 shows that the criterion to be a permutation polynomial on R[α1, . . . , αk]

depends only on f0, and implies the following corollary.

Corollary 5.3.11. Let f = f0+
k∑
i=1

fi αi, where f0, . . . , fk ∈ R[x]. Then the following statements

are equivalent:

1. f is a permutation polynomial on R[α1, . . . , αk];

2. f0 + fi αi is a permutation polynomial on R[αi] for every i ∈ {1, . . . , k};

3. f0 is a permutation polynomial on R[α1, . . . , αk];

4. f0 is a permutation polynomial on R[αi] for every i ∈ {1, . . . , k}.

Recall that, for any finite commutative ring A, P(A) denotes the group of polynomial per-

mutations on A.

Corollary 5.3.12. The group P(R[αi]) is embedded in P(R[α1, . . . , αk]) for every i = 1, . . . , k.

Proof. Fix i ∈ {1, . . . , k} and let F ∈ P(R[αi]). Then F is induced by f = f0 + fi αi for

some f0, fi ∈ R[x]. Furthermore, f0 + fi αi is permutation polynomial on R[α1, . . . , αk] by

Corollary 5.3.11. Define a function ψ : P(R[αi]) −→ P(R[α1, . . . , αk]) by ψ(F ) = [f ]R[α1,...,αk],

where [f ]R[α1,...,αk] denotes the function induced by f on R[α1, . . . , αk]. By Corollary 5.3.6, ψ is

well defined and one-to-one. Now if F1 ∈ P(R[αi]) is induced by g ∈ R[αi][x], then f ◦g induces

F ◦ F1 on R[αi]. Hence,

ψ(F ◦ F1) = [f ◦ g]R[α1,...,αk]

= [f ]R[α1,...,αk] ◦ [g]R[α1,...,αk] since f, g ∈ R[α1, . . . , αk][x]

= ψ(F ) ◦ ψ(F1).

This completes the proof.

Remark 5.3.13. We will show in Proposition 5.3.16 that the condition on the derivative in

Theorem 5.3.10 is redundant, when R is a direct sum of local rings none of which is a field.

Lemma 5.3.14. [63, Theorem 3] Let R be a finite local ring with a maximal ideal M 6= {0} and

suppose that f ∈ R[x]. Then f is a permutation polynomial on R if and only if the following

conditions hold:
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1. f is a permutation polynomial on R/M ;

2. for all a ∈ R, f ′(a) 6= 0 mod M .

Lemma 5.3.15. Let R be a finite ring and suppose that R = ⊕ni=1Ri, where Ri is local for

i = 1, . . . , n. Let f = (f1, . . . , fn) ∈ R[x], where fi ∈ Ri[x]. Then f is a permutation polynomial

on R if and only if fi is a permutation polynomial on Ri for i = 1, . . . , n.

Proof. (⇒) Suppose that f is a permutation polynomial on R and fix an i. Let bi ∈ Ri. Then

(0, . . . , bi, . . . , 0) ∈ R. Thus there exists a = (a1, . . . , ai, . . . , an) ∈ R, where aj ∈ Rj , j = 1, . . . , n

such that f(a) = (f1(a1), . . . , fi(ai), . . . , fn(an)) = (0, . . . , bi, . . . , 0). Hence fi(ai) = bi, and

therefore fi is surjective, whence fi is a permutation polynomial on Ri.

(⇐) Easy and left to the reader.

From now on, let R× denote the group of units of R.

Proposition 5.3.16. Let R be a finite ring which is a direct sum of local rings which are not

fields, and let f = f0 +
k∑
i=1

fi αi, where f0, . . . , fk ∈ R[x]. Then f is a permutation polynomial

on R[α1, . . . , αk] if and only if f0 is a permutation polynomial on R.

Proof. (⇒) Follows by Theorem 5.3.10.

(⇐) Assume that f0 is a permutation polynomial on R. By Theorem 5.3.10, we need only

show that f ′0(r) ∈ R× for every r ∈ R. Write f0 = (g1, . . . , gn), where gi ∈ Ri[x] for i = 1, . . . , n.

Then gi is a permutation polynomial on Ri for i = 1, . . . , n by Lemma 5.3.15. Now let r ∈ R,

so r = (r1, . . . , rn), where ri ∈ Ri. Hence f ′0(r) = (g′1(r1), . . . , g
′
n(rn)) but g′i(ri) ∈ R×i by

Lemma 5.3.14 for i = 1, . . . , n. Therefore f ′0(r) = (g′1(r1), . . . , g
′
n(rn)) ∈ R×, i.e, f ′0(r) is a unit

in R for every r ∈ R. Thus f0 satisfies the conditions of Theorem 5.3.10. Therefore f is a

permutation polynomial on R[α1, . . . , αk].

Corollary 5.3.17. Let R be a finite ring which is a direct sum of local rings which are not

fields. Let f ∈ R[x] be a permutation polynomial on R[α1, . . . , αk]. Then f +h is a permutation

polynomial on R[α1, . . . , αk] for every h ∈ NR. In particular, x+h is a permutation polynomial

on R[α1, . . . , αk] for every h ∈ NR.

Recall that P(R[α1, . . . , αk]) denotes the group of permutation polynomials on R[α1, . . . , αk].

Proposition 5.3.18. Let R be a finite ring. Let B denote the number of pairs of functions

(H,G) with

H : R −→ R bijective and G : R −→ R×

that occur as ([g], [g′]) for some g ∈ R[x]. Then the number of polynomial permutations on

R[α1, . . . , αk] is given by

|P(R[α1, . . . , αk])| = B · |F(R)|k.
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Proof. Let F ∈ P(R[α1, . . . , αk]). Then by definition F is induced by a polynomial f , where by

Lemma 5.2.6 f = f0 +
k∑
i=1

fi αi for f0, . . . , fk ∈ R[x]. By Theorem 5.3.10,

[f0] : R −→ R bijective, [f ′0] : R −→ R× and [fi] is arbitrary in F(R) for i = 1, . . . , k.

The rest follows by Corollary 5.3.6.

In the next section, we show that the number B of Proposition 5.3.18 depends on the order

of a subgroup of P(R[α1, . . . , αk]), which fixes every element of R. However, when R is a finite

field, we can find explicitly this number. For this, we need the following well known lemma.

Lemma 5.3.19. Let Fq be a finite field with q elements. Then for all functions

F,G : Fq −→ Fq,

there exists f ∈ Fq[x] such that

(F,G) = ([f ], [f ′]) and deg f < 2q.

Proof. Let f0, f1 ∈ Fq[x] such that [f0] = F and [f1] = G and set

f(x) = f0(x) + (f ′0(x)− f1(x))(xq − x).

Then

f ′(x) = (f ′′0 (x)− f ′1(x))(xq − x) + f1(x).

Thus [f ] = [f0] = F and [f ′] = [f1] = G since (xq − x) is a null polynomial on Fq. Moreover,

since (xq − x) is a null polynomial on Fq, we can choose f0, f1 such that deg f0, deg f1 < q.

Hence deg f < 2q.

Proposition 5.3.20. Let Fq be a finite field with q elements. The number of polynomial per-

mutations on Fq[α1, . . . , αk] is given by

|P(Fq[α1, . . . , αk])| = q!(q − 1)qqkq.

Proof. Let B be the set of pairs of functions (F,G) such that

F : Fq −→ Fq bijective and G : Fq −→ Fq \ {0}.

By Lemma 5.3.19, each (F,G) ∈ B arises as ([f ], [f ′]) for some f ∈ Fq[x]. Thus by Proposi-

tion 5.3.18, |P(Fq[α1, . . . , αk])| = |B| · |F(Fq)|k. Clearly |B| = q!(q−1)q and |F(Fq)|k = qkq.
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5.4 The stabilizer of R in the group of polynomial

permutations of R[α1, . . . , αk]

The main object of this section is to describe the order of the subgroup of polynomial per-

mutations on R[α1, . . . , αk] that fixes pointwise each element of R, and then to use this order

to find a counting formula for the number of polynomial permutations on R[α1, . . . , αk].

Definition 5.4.1. Let Stα1,...,αk(R) = {F ∈ P(R[α1, . . . , αk]) : F (a) = a for every a ∈ R}.

Evidently, Stα1,...,αk(R) is a subgroup of P(R[α1, . . . , αk]) that stabilizes each element of R

pointwisely.

Lemma 5.4.2. Let f, g ∈ R[x] with f , g on R. There exists h ∈ NR such that f = g + h.

Proof. Let h = f − g. Then h has the desired property.

Proposition 5.4.3. Let R be a finite ring. Then

Stα1,...,αk(R) = {F ∈ P(R[α1, . . . , αk]) : F is induced by x+ h(x), h ∈ NR}.

Proof. It is obvious that

Stα1,...,αk(R) ⊇ {F ∈ P(R[α1, . . . , αk]) : F is induced by x+ h(x), h ∈ NR}.

For the other inclusion, let F ∈ P(R[α1, . . . , αk]) such that F (a) = a for every a ∈ R. Then

F is represented by f0 +
k∑
i=1

fi αi, where f0, . . . , fk ∈ R[x], and a = F (a) = f0(a) +
k∑
i=1

fi(a)αi

for every a ∈ R. It follows that fi(a) = 0 for every a ∈ R, i.e., fi is a null polynomial on

R for i = 1, . . . , k. Thus f0 +
k∑
i=1

fi αi , f0 on R[α1, . . . , αk] by Corollary 5.3.6, that is, F is

represented by f0. Also, f0 , idR on R, where idR is the identity function on R, and therefore

f0(x) = x+ h(x) for some h ∈ NR by Lemma 5.4.2.

We have the following theorem, whenR is a finite field, which describes the order of Stα1,...,αk(Fq).
The proof is almost the same as in [2, Theorem 4.11].

Theorem 5.4.4. Let Fq be a finite field with q elements. Then:

1. |Stα1,...,αk(Fq)| = |{[f ′]Fq : f ∈ NFq and for every a ∈ Fq, f ′(a) 6= −1}|;

2. |Stα1,...,αk(Fq)| = |{[f ′]Fq : f ∈ NFq , deg f < 2q and for every a ∈ Fq, f ′(a) 6= −1}|;

3. |Stα1,...,αk(Fq)| = (q − 1)q.
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Proof. We begin with the proof of (1) and (2). Set

A = {[f ′]Fq : f ∈ NFq and for every a ∈ Fq, f ′(a) 6= −1}.

We define a bijection ϕ from Stα1,...,αk(Fq) to the set A. If F ∈ Stα1,...,αk(Fq), then it is

represented by x + h(x), where h ∈ Fq[x] is a null polynomial on Fq, by Proposition 5.4.3.

Now h′(a) 6= −1 for every a ∈ Fq, by Theorem 5.3.10, whence [h′]Fq ∈ A. Now, set ϕ(F ) =

[h′]Fq . Then Corollary 5.3.6 shows that ϕ is well-defined and injective. To show ϕ is surjective,

let [h′]Fq ∈ A, where h ∈ NFq . Then, by Theorem 5.3.10 and Proposition 5.4.3, F = [x +

h]Fq [α1,...,αk] ∈ Stα1,...,αk(Fq). Thus ϕ(F ) = [h′]Fq . Moreover, by Lemma 5.3.19, h can be chosen

such that deg h < 2q.

Next, we prove (3). By (1),

|Stα1,...,αk(Fq)| ≤ |{G : Fq −→ Fq \ {−1}}| = (q − 1)q.

Now for every function G : Fq −→ Fq \ {−1} there exists a polynomial f ∈ NFq such that

[f ′]Fq = G by Lemma 5.3.19. Thus f(x) + x is a permutation polynomial on Fq[α1, . . . , αk] by

Theorem 5.3.10. Obviously, x+f(x) induces the identity on Fq, and hence [x+f(x)]Fq [α1,...,αk] ∈
Stα1,...,αk(Fq). Therefore every element of the set {G : Fq −→ Fq \ {−1}} corresponds to an

element of Stα1,...,αk(Fq), from which we conclude that |Stα1,...,αk(Fq)| ≥ (q−1)q. This completes

the proof.

Notation 5.4.5. Let

PR(R[α1, . . . , αk]) = {F ∈ P(R[α1, . . . , αk]) : F = [f ]R[α1,...,αk] for some f ∈ R[x]}.

In similar manner, let PR(R[αi]) = {F ∈ P(R[αi]) : F = [f ]R[αi] for some f ∈ R[x]}.

We now show that PR(R[α1, . . . , αk]) is a subgroup of P(R[α1, . . . , αk]).

Proposition 5.4.6. The set PR(R[α1, . . . , αk]) is a subgroup of P(R[α1, . . . , αk]) and

PR(R[α1, . . . , αk]) ∼= PR(R[αi]) for i = 1, . . . , k.

Proof. It is clear that PR(R[α1, . . . , αk]) is closed under composition. Since it is finite, it is a

subgroup of P(R[α1, . . . , αk]). Let F ∈ PR(R[α1, . . . , αk]) and suppose that F is induced by

f ∈ R[x]. Define

ψ : PR(R[α1, . . . , αk]) −→ PR(R[αi]), F 7→ [f ]R[αi].

Then ψ is well defined by Corollary 5.3.6, and evidently it is a homomorphism. By Corol-

lary 5.3.11, ψ is surjective. To show that ψ is one-to-one, let F1 ∈ PR(R[α1, . . . , αk]) be induced

by g ∈ R[x] with F 6= F1. Then either f 6, g on R or f ′ 6, g′ on R by Corollary 5.3.6. Thus

ψ(F ) = [f ]R[αi] 6= ψ(F1) = [g]R[αi].

We will see that Stα1,...,αk(R) is a normal subgroup of PR(R[α1, . . . , αk]). But first we prove

the following fact.
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Proposition 5.4.7. Let R be a finite ring. Then for every F ∈ P(R) there exists a polynomial

f ∈ R[x] such that F is induced by f and f ′(r) ∈ R× for every r ∈ R.

Proof. Set Pu(R) = {F ∈ P(R) : F is induced by f ∈ R[x], f ′ : R −→ R×}. By definition

Pu(R) ⊆ P(R). Let F ∈ P(R). Then F is induced by f ∈ R[x]. Since R is finite, R = ⊕ni=1Ri,

where Ri are local rings. We distinguish two cases. For the first case, we suppose that every

Ri is not a field. Then f is a permutation polynomial on R[α1, . . . , αk] by Proposition 5.3.16.

Hence f ′(a) ∈ R× for every a ∈ R by Theorem 5.3.10. So F ∈ Pu(R). For the second case, we

assume without loss of generality that R1, . . . , Rr are fields and none of Rr+1, . . . , Rn is a field

for some r ≥ 1. Then write f = (f1, . . . , fn) where fi ∈ Ri for i = 1, . . . , n. By Lemma 5.3.15,

fi is a permutation polynomial on Ri, for i = 1, . . . , n. Now a similar argument like the one

given in the first case shows that f ′i(ai) ∈ R
×
i for every ai ∈ Ri for i = r + 1, . . . , n. On the

other hand, there exists gj ∈ Rj [x] such that gj , fj on Rj and g′j(aj) ∈ R
×
j for every aj ∈ Rj ,

j = 1, . . . , r by Lemma 5.3.19. Then take g = (g1, . . . , gr, fr+1, . . . , fn). Thus g , f on R and

g′(r) ∈ R× for every r ∈ R. Therefore g induces F and F ∈ Pu(R).

Proposition 5.4.8. Let R be a finite ring. Then:

1. every element of P(R) occurs as the restriction to R of some F ∈ PR(R[α1, . . . , αk]);

2. PR(R[α1, . . . , αk]) contains Stα1,...,αk(R) as a normal subgroup and

PR(R[α1, . . . , αk])
/
Stα1,...,αk(R) ∼= P(R).

Proof. (1) This is obvious from Proposition 5.4.7.

(2) Stα1,...,αk(R) is contained in PR(R[α1, . . . , αk]), because every element of Stα1,...,αk(R)

can be represented by a polynomial with coefficients in R by Proposition 5.4.3. Let F ∈
PR(R[α1, . . . , αk]) be represented by f ∈ R[x]. Then define ϕ : PR(R[α1, . . . , αk]) −→ P(R) by

ϕ(F ) = [f ]R. Now ϕ is well defined by Corollary 5.3.6, and it is a group homomorphism with

kerϕ = Stα1,...,αk(R). By Proposition 5.4.7, ϕ is surjective.

Corollary 5.4.9. For any fixed F ∈ P(R),

|Stα1,...,αk(R)| =
∣∣{([f ]R, [f

′]R) : f ∈ R[x], [f ] ∈ PR(R[α1, . . . , αk]) and [f ]R = F}
∣∣ .

Proof. Let f ∈ R[x] be a permutation polynomial on R[α1, . . . , αk] with [f ]R = F . Such an f

exists by Lemma 5.4.8 (1). We denote by [f ] the permutation induced by f on R[α1, . . . , αk].

Then the coset of [f ] with respect to Stα1,...,αk(R) has |Stα1,...,αk(R)| elements. By Lemma 5.4.8

(2), this coset consists of all polynomial permutations G ∈ PR(R[α1, . . . , αk]) with [f ]R =

G∣∣R, where G∣∣R is the restriction of the function G to R. Let g ∈ R[x] with [g] = G. By

Corollary 5.3.6, G 6= [f ] if and only if the pair ([f ]R, [f
′]R) does not equal the pair ([g]R, [g

′]R).

Thus we have a bijection between the coset of [f ] with respect to Stα1,...,αk(R) and the set
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of pairs ([g]R, [g
′]R) occurring for g ∈ R[x] such that [g] = G permutes R[α1, . . . , αk] and

[f ]R = [g]R.

When R is a finite ring which is a direct sum of local rings that are not fields, Corollary 5.4.9

is a special case of a general result (see Proposition 5.4.14).

We now employ Corollary 5.4.9 to find the number of permutation polynomials onR[α1, . . . , αk]

in terms of |Stα1,...,αk(R)| in the following theorem.

Theorem 5.4.10. Let R be a finite ring. For any integer k ≥ 1,

|P(R[α1, . . . , αk])| = |F(R)|k · |P(R)| · |Stα1,...,αk(R)|.

Proof. For f ∈ R[x], let [f ] be the function induced by f on R[α1, . . . , αk].

Set B =
⋃

F∈P(R)

{([f ]R, [f
′]R) : f ∈ R[x], [f ] ∈ PR(R[α1, . . . , αk]) and [f ]R = F}.

Then |B| = |P(R)| · |Stα1,...,αk(R)| by Corollary 5.4.9.

Now we define a function Ψ: P(R[α1, . . . , αk]) −→ B×
k

×
i=1

F(R) as follows: ifG ∈ P(R[α1, . . . , αk])

is induced by g = g0+
k∑
i=1

gi αi, where g0, . . . , gk ∈ R[x], we let Ψ(G) = (([g0]R, [g
′
0]R), [g1]R, . . . , [gk]R).

By Theorem 5.3.10 and Corollary 5.3.6, Ψ is well-defined and one-to-one. The surjectivity of Ψ

follows by Proposition 5.4.8 and Theorem 5.3.10. Therefore

|P(R[α1, . . . , αk])| = |B ×
k×
i=1

F(R)| = |P(R)| · |Stα1,...,αk(R)| · |F(R)|k.

Definition 5.4.11. Let NR(< n) = {f ∈ R[x] : f ∈ NR with deg f < n}, and

N ′R(< n) = {f ∈ R[x] : f ∈ N ′R with deg f < n}.

In the following theorem, we obtain several descriptions for the order of the group Stα1,...,αk(R)

whenever R is a direct sum of local rings which are not fields.

Theorem 5.4.12. Let R be a finite ring which is a direct sum of local rings that are not fields.

Then the following hold.

1. |Stα1,...,αk(R)| = |{[f ′]R : f ∈ NR}|.

2. Let h ∈ R[x] be a monic polynomial null polynomial on R[α1, . . . , αk] of degree n. Then:

a) |Stα1,...,αk(R)| = |{[f ′]R : f ∈ NR with deg f < n}|;

b) |Stα1,...,αk(R)| = [NR : N ′R] = |NR(<n)|
|N ′R(<n)|

.
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Proof. (1) We define a bijection ϕ from Stα1,...,αk(R) to the set of different functions induced

on R by the first derivative of the null polynomials on R. By Proposition 5.4.3, every F ∈
Stα1,...,αk(R) is represented by x+f(x), where f ∈ R[x] is a null polynomial on R. We set ϕ(F ) =

[f ′]R. Then Corollary 5.3.6 shows that ϕ is well-defined and injective, and Corollary 5.3.17 shows

that it is surjective.

(2) Such a null polynomial h ∈ R[x] exists by Remark 5.3.9.

(2a) If g ∈ NR, then by Proposition 5.3.8, there exists f ∈ R[x] with deg f < n such that

[f ]R = [g]R and [f ′]R = [g′]R. Evidently, f ∈ NR.

(2b) For the index, define ϕ : NR −→ F(R) by ϕ(f) = [f ′]R. Clearly, ϕ is a homomorphism

of additive groups. Furthermore,

kerϕ = N ′R and Imϕ = {[f ′]R : f ∈ NR},

and hence NR
/
N ′R
∼= {[f ′]R : f ∈ NR}. Therefore |Stα1,...,αk(R)| = [NR : N ′R] by (1).

For the ratio, consider the sets NR(< n) and N ′R(< n) as defined in Definition 5.4.11. The equiv-

alence relation in Definition 5.2.1 restricted to these two additive subgroups and the analogous

proof to the previous part show that

|Stα1,...,αk(R)| = [NR(< n) : N ′R(< n)].

Remark 5.4.13.

1. When R = Fq is a finite field, we have shown in Theorem 5.4.4 (3) that |Stα1,...,αk(Fq)| =
(q − 1)!. But we will see later that

[NFq : N ′Fq ] = [NFq(< 2q) : N ′Fq(< 2q)] = qq.

2. When k = 1, Theorem 5.4.12 is still a generalization of [2, Proposition 7.2].

Proposition 5.4.14. Let R be a finite ring which is a direct sum of local rings that are not

fields. Then for any fixed F ∈ F(R),

|Stα1,...,αk(R)| = |{([g]R, [g
′]R) : g ∈ R[x] with [g]R = F}|.

Proof. Set

A = {([g]R, [g
′]R) : g ∈ R[x] with [g]R = F},

and fix g0 ∈ R[x] with [g0]R = F . Then g − g0 is a null polynomial on R for any g ∈ R[x] with

([g]R, [g
′]R) ∈ A.

We define a bijection

φ : A −→ {[f ′]R : f ∈ NR}, φ(([g]R, [g
′]R)) = [(g − g0)′]R.
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Since [(g − g0)′]R = [g′]R − [g′0]R, φ is well defined. Further, φ is injective, because, for two

distinct elements of A, ([g1]R, [g
′
1]R) 6= ([g]R, [g

′]R) implies [g′1]R 6= [g′]R and hence [(g1−g0)′]R 6=
[(g − g0)′]R.

Now, consider [f ′]R, where f ∈ NR. Then [g0 + f ]R = F and, thus, ([g0 + f ]R, [g
′
0 + f ′]R) is

in A and φ([g0 + f ]R, [g
′
0 + f ′]R) = [f ′]R. Therefore φ is surjective.

By Theorem 5.4.12 (1),

|Stα1,...,αk(R)| = |{[h′]R : h ∈ NR}| = |A|.

The following theorem shows that the stabilizer group Stα1,...,αk(R) does not depend on the

number of variables k.

Theorem 5.4.15. Let R be a finite ring and let k be a positive integer. Then Stα1,...,αk(R) ∼=
Stαi(R) for i = 1, . . . , k.

Proof. Fix i ∈ {1, . . . , k}. Then by the definition of dual numbers (for the case k = 1), R[α1] ∼=
R[αi]. Let F ∈ PR(R[α1, . . . , αk]) and suppose that F is induced by f ∈ R[x]. Define

ψ : PR(R[α1, . . . , αk]) −→ PR(R[αi]), F 7→ [f ]R[αi].

The proof of Proposition 5.4.6 shows that ψ is an isomorphism. If φ denotes the restriction

of ψ to Stα1,...,αk(R), then Stα1,...,αk(R) ∼= φ(Stα1,...,αk(R)). Therefore, we need only show

that φ(Stα1,...,αk(R)) = Stαi(R). Let G ∈ Stαi(R). Then G is induced by x + h(x) for some

h ∈ NR by Proposition 5.4.3 (with k = 1). By Corollary 5.3.11 and Proposition 5.4.3, F =

[x + h(x)]R[α1,...,αk] ∈ Stα1,...,αk(R). But then φ(F ) = ψ(F ) = [x + h(x)]R[αi] = G, hence

G ∈ φ(Stα1,...,αk(R)). This shows that Stαi(R) ⊆ φ(Stα1,...,αk(R)). The other inclusion is

similar.

Lemma 5.4.16. Let R be a finite ring. Then [R[x] : N ′R] = [R[x] : NR][NR : N ′R].

Proof. It is clear that R[x] is an additive abelian group with subgroups NR, N
′
R such that

N ′R < NR. Then by the Second Isomorphism Theorem of groups,

(R[x]
/
N ′R)

/
( NR

/
N ′R) ∼= (R[x]

/
NR),

from which the result follows.

Theorem 5.4.17. Let R be a finite ring. Then

|F(R[α1, . . . , αk])| = [NR : N ′R]|F(R)|k+1.

Moreover, when R is a direct sum of local rings which are not fields, we have

|F(R[α1, . . . , αk])| = |Stα1,...,αk(R)| · |F(R)|k+1.

91



Proof. We have,

|F(R[α1, . . . , αk])| = [R[x] : N ′R]|F(R)|k (By Proposition 5.3.7)

= [NR : N ′R]|F(R)|k+1 (By Lemma 5.4.16).

The second part follows from the above and Theorem 5.4.12 (2b).

We turn now to find explicitly the number of polynomial functions on Fq[α1, . . . , αk]. To do

this, we need the following lemma, and we leave its proof to the reader.

Lemma 5.4.18. Let Fq be a finite field. Then:

1. NFq = (xq − x)Fq[x];

2. N ′Fq = (xq − x)2Fq[x].

Proposition 5.4.19. Let Fq be a finite field. Then |F(Fq[α1, . . . , αk])| = q(k+2)q.

Proof. Set

A = {f : f = f0 +
k∑
i=1

fi αi, where f0, fi ∈ Fq[x],deg f0 < 2q,deg fi < q for i = 1, . . . , k}.

Then it is clear that |A| = q(k+2)q. To complete the proof, we show that if f, g ∈ A with f 6= g,

then [f ] 6= [g], or equivalently if [f ] = [g], then f = g. Suppose that f, g ∈ A, where f0+
k∑
i=1

fi αi

and g0 +
k∑
i=1

gi αi, such that [f ] = [g]. Thus [f − g] is the zero function on Fq[α1, . . . , αk]. Hence

f − g = (f0 − g0) +
k∑
i=1

(fi − gi)αi is a null polynomial on Fq[α1, . . . , αk], whence f0 − g0 ∈ N ′Fq
and fi − gi ∈ NFq for i = 1, . . . , k by Theorem 5.3.4. Then, by Lemma 5.4.18, we have

(xq − x)2 | (f0 − g0) and (xq − x) | (fi − gi) for i = 1, . . . , k. Therefore f0 − g0 = 0, fi − gi = 0

for i = 1, . . . , k since deg(f0 − g0) < 2q and deg(fi − gi) < q for i = 1, . . . , k. Thus f = g.

The following corollary shows that, when R = Fq, [NFq : N ′Fq ] 6= |Stα1,...,αk(Fq)|(see Theo-

rem 5.4.4 and Theorem 5.4.12).

Corollary 5.4.20. Let Fq be a finite field. Then [NFq : N ′Fq ] = [NFq(< 2q) : N ′Fq(< 2q)] = qq.

Proof. By Theorem 5.4.17, |F(Fq[α1, . . . , αk])| = [NFq : N ′Fq ]|F(Fq)|k+1, whence [NFq : N ′Fq ] = qq

by Proposition 5.4.19. On the other hand, Lemma 5.4.18 gives |NFq(< 2q)| = qq and |N ′Fq(<
2q)| = 1. Thus

[NFq(< 2q) : N ′Fq(< 2q)] =
|NFq(< 2q)|
|N ′Fq(< 2q)|

= qq.
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5.5 Necessary and sufficient conditions

In this section, we prove the following theorem that determines whether a given function on

R[α1, . . . , αk] is a polynomial function, and give an algorithm to find a polynomial representation

of a polynomial function by solving only a linear system of equations over R.

Being motivated by [20, Theorem 5], we prove the following theorem.

Theorem 5.5.1. Let R be a finite commutative ring with n elements, and let d1, d2 be as in

Proposition 5.3.8. Let F : R[α1, . . . , αk] −→ R[α1, . . . , αk] be a function and, for 0 ≤ i ≤ k,

bi : R
k+1 −→ R the functions such that

F (r0 +
k∑
i=1

riαi) = b0(r0, . . . , rk) +
k∑
i=1

bi(r0, . . . , rk)αi,

for all (r0, . . . , rk) ∈ Rk+1. Then the following statements are equivalent:

1. F is a polynomial function on R[α1, . . . , αk];

2. F can be represented by a polynomial of degree ≤ d1 − 1;

3. F can be represented by a polynomial

f(x) = f0(x) +

k∑
i=1

fi(x)αi,

where f0(x) =
d1−1∑
l=0

a0 lx
l, fi(x) =

d2−1∑
m=0

aimx
m with a0 l, aim ∈ R for l = 0, . . . , d1 − 1,

i = 1, . . . , k, m = 0, . . . , d2 − 1;

4. The system of linear equations, where rj varies through all elements of R for j = 0, 1, . . . , k,

d1−1∑
l=0

y0 lr
l
0 = b0(r0, . . . , rk)

d1−1∑
l=1

(ly0 lr
l−1
0 )ri +

d2−1∑
m=0

yimr
m
0 = bi(r0, . . . , rk) for i = 1, . . . , k (5.1)

has a solution y0 l = a0 l, yim = aim with a0 l, aim ∈ R for l = 0, . . . , d1 − 1; i = 1, . . . , k;

m = 0, . . . , d2 − 1.

Proof. It is clear that (3)⇒ (2)⇒ (1). The implication (1)⇒ (3) follows by Proposition 5.3.8.

To prove (3) ⇒ (4), suppose that F can be represented by a polynomial f ∈ R[α1, . . . , αk][x],

where f = f0 +
k∑
i=1

fiαi, such that f0(x) =
d1−1∑
l=0

a0 lx
l, fi(x) =

d2−1∑
m=0

aimx
m, where f0, fi ∈ R[x]
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for i = 1, . . . , k. So, for r0, . . . , rk ∈ R, we have since F is induced by f ,

F (r0+

k∑
i=1

ri αi) = f(r0 +

k∑
i=1

ri αi) = f0(r0) +

k∑
i=1

(rif
′
0(r0) + fi(r0))αi (by Lemma 5.2.6)

=

d1−1∑
l=0

a0 lr
l
0 +

k∑
i=1

(

d1−1∑
l=1

ri(la0 lr
l−1
0 ) +

d2−1∑
m=0

aimr
m
0 )αi

= b0(r0, . . . , rk) +
k∑
i=1

bi(r0, . . . , rk)αi (by the definition of F ).

Therefore,

d1−1∑
l=0

a0 lr
l
0 = b0(r0, . . . , rk)

d1−1∑
l=1

(la0 lr
l−1
0 )ri +

d2−1∑
m=0

aimr
m
0 = bi(r0, . . . , rk) for i = 1, . . . , k.

Hence, since each rj varies through all the elements of R, the system of linear equations (5.1)

has a solution y0 l = a0 l, yim = aim, for l = 0, . . . , d1 − 1; m = 0, . . . , d2 − 1; i = 1, . . . , k.

Finally, we can prove (4)⇒ (3) by reversing the previous steps.

Remark 5.5.2. Keep the notation of Theorem 5.5.1.

1. For an element r0 +
k∑
i=1

riαi, there are exactly k + 1 equations in the system of linear

equations (5.1) corresponding to this element.

2. In view of the necessary conditions of Corollary 5.2.7, we expect to get repetitions of

equations in the system (5.1). For example, let us consider the elements r0 +
k∑
i=1

riαi

and r0 +
k∑
i=1

ciαi of R[α1, . . . , αk] with ci 6= ri for some i ≥ 1. Then, for a polynomial

function F , it is necessary that b0(r0, r1, . . . , rk) = b0(r0, c1, . . . , ck). Because, otherwise,

the system (5.1) will contain the following equations

d1−1∑
l=0

y0 lr
l
0 = b0(r0, r1, . . . , rk)

d1−1∑
l=0

y0 lr
l
0 = b0(r0, c1, . . . , ck),

which implies that the system (5.1) has no solution.
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