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Abstract

In order to facilitate the transition towards future carbon neutral energy
systems, intelligent energy management systems (ems) may be employed to
ensure reliable and efficient energy provision despite the volatile availability
of most renewable energy carriers.

A frequently used control strategy within these ems is model predictive control
(mpc) in combination with hybrid linear prediction models. Although this
notion of hybrid linear prediction models facilitates the derivation of rather
simple, yet accurate system models for a variety of different classes of energy
systems, it severely complicates the consideration of temperature-dependent
behavior of components within heating and cooling systems given the
inherent bilinearity of thermal energy transfer by convection. Therefore,
based on recent advancements in this field [17], this thesis proposes a novel
approach to compose hybrid linear prediction models of components within
heating and cooling systems that facilitate the consideration of temperature-
dependent behavior.

The proposed general component models were integrated into an existing
optimization-based ems framework and subsequently validated by means of
numerical simulations as part of a representative case study. The obtained
simulation results indicate that the proposed prediction models and their
respective implementations result in reasonable ems behavior. Furthermore,
the usage of the proposed prediction models was shown to increase the
available control flexibility for optimizing the operation of the investigated
energy system, which is expected to entail a higher system efficiency if the
developed ems would be deployed. However, the use of the novel prediction
models significantly increases the computational complexity of the control
optimization problem by introducing a considerable amount of auxiliary
binary optimization variables. As a result, high solving times were observed

iii



as part of the conducted case study, a circumstance that may potentially
limit the applicability of the proposed methods and models.
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Kurzfassung

Die vermehrte Integration von erneuerbaren Energiequellen in die En-
ergiesysteme der Zukunft kann durch den Einsatz von intelligenten Energie-
managementsystemen (ems) unterstützt werden. Mithilfe dieser ems kann
ein zuverlässiger und effizienter Anlagen-/Systembetrieb trotz der typis-
cherweise schwankenden Verfügbarkeit von erneuerbaren Energieträgern
sichergestellt werden.

Eine innerhalb von ems häufig eingesetzte Regelungsstrategie ist die mod-
ellprädiktive Regelung. Die hierfür benötigten Modelle der zu regelnden En-
ergiesysteme werden, aus Gründen der numerischen Komplexität, häufig als
hybride lineare Modelle formuliert. Dieser Umstand erschwert die präzise
Modellierung des temperaturabhängigen Verhaltens von Heizsystemkom-
ponenten, da das physikalische Phänomen der Wärmeübertragung durch
Konvektion nur durch bilineare Gleichungen akkurat beschrieben werden
kann.

Aufbauend auf aktuellen Forschungsarbeiten und Fortschritten im Bere-
ich der hybriden linearen Modellierung von Heizsystemen [17], werden
in dieser Arbeit neue Methoden zur hybriden linearen Modellierung ver-
schiedenster Komponenten von Heizsystemen präsentiert. Die entwickelten
Modelle sollen einerseits das temperaturabhängige Verhalten der Kompo-
nenten ausreichend genau abbilden, andererseits simpel genug sein um als
Prädiktionsmodelle in modelprädiktiven Regelungen verwendet werden zu
können.

Im Rahmen der vorgestellten Arbeit, wurden die entwickelten Modelle in
ein bestehendes ems Software-Framework integriert, und im Zuge einer
repräsentativen Fallstudie analysiert. Die Funktionsfähigkeit und Anwend-
barkeit der entwickelten Modelle und Methoden konnten anhand der erhal-
tenen Ergebnisse validiert werden. Darüber hinaus konnte gezeigt werden,
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dass die Berücksichtigungen des temperaturabhängigen Verhaltens der mod-
ellierten Komponenten, die Möglichkeiten/Freiheitsgrade eines ems bei der
Betriebsoptimierung von Heizsystemen erhöhen kann. Diese zusätzliche
Flexibilität sollte eine gesteigerte Betriebseffizienz nach sich ziehen, sollte
das im Rahmen der Fallstudie entwickelte ems tatsächlich im Realbetrieb
eingesetzt werden.

Ein Nachteil der verwendeten Prädiktionsmodelle ist jedoch der merklich
erhöhte Rechenaufwand für die modellprädiktive Regelung. Dieser Um-
stand kann je nach Anwendung die tatsächlich erreichte Effizienzsteigerung
verringern, oder sogar die Anwendung der vorgestellten Methoden und
Modelle an sich verhindern.
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flow rate ṁ and a variable temperature T is approximated as
a mixture of at most N mass streams with mass flow rates ṁi
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1. Introduction

The last decades have shown an increased global strive to decarbonize the
global means of energy production. This was motivated by legally binding
obligations defined in international treaties such as the Kyoto Protocol [24]
or the Paris Agreement [25] in order to contain the detrimental consequences
of global warming and climate change.

Nevertheless, within the European Union (eu) thermal energy for heating
and cooling, which accounts for 50 % of the total final energy demand, is
still mainly provided either directly or indirectly through the combustion
of fossil fuels [7]. Among the renewable sources, only biomass is signif-
icantly utilized making up 12 % of the total energy demand. Alternative
renewable energy sources (res) and technologies, such as solar thermal energy
or heat pumps, have so far only been marginally employed, accounting
for a combined share of about 1 %. Following from this, it is apparent that
the provision of thermal energy contributes significantly to the emission of
greenhouse gases and pollutants, as well as to the depletion of fossil fuel
resources within the eu.

This limited penetration of thermal energy systems by means of res is espe-
cially noteworthy when compared to the electrical power industry where
the share of res is more than twice as high. In modern electrical energy sys-
tems, the transmission and distribution of energy between various spatially
distributed and far apart energy producers and consumers is facilitated
by a synchronous grid. Diverging voltage specifications and requirements
of different producers, consumers and the transmission grid itself may be
efficiently resolved by utilizing specific converters and transformers. This
facilitates the integration of many different forms of power producers into
the overall electrical energy system.
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1. Introduction

In stark contrast to that, thermal energy is typically generated individually
for each process and application at the site of demand, or in small-sized
local grids in the context of district heating. Different components, processes
and applications typically require thermal energy in specific temperature
ranges that often cannot be directly supplied by res. This is due to the fact,
that most res provide thermal energy at a lower energy density, i.e. typically
at lower temperature differences, compared to conventional energy sources.
Unlike varying voltage requirements in electrical systems, these diverging
temperature requirements significantly complicate the usage of res within
thermal energy systems. Considering that, depending on the application,
reconciling varying temperature specifications among different producers
and consumers may require significant additional (conventional) primary
energy input for auxiliary heating and cooling.

Another general property of res that impedes their large-scale integration
into any form of energy systems, is the fact that they are mostly non-
dispatchable, meaning that their availability is significantly influenced by
ambient conditions and temporal fluctuations. It is important to note, that
these fluctuations generally do not occur in tandem with variations of the
energy demand. Hence, system/grid stability, i.e. stable energy provision
that meets the instantaneous demand, may be compromised by large-scale
integration of res. To illustrate this, consider e.g. solar thermal energy whose
availability rises with increased solar irradiance which, in turn, typically
correlates with a lowered energy demand for space heating. From the
above it is apparent that, if energy is generated only locally as opposed to
generated decentralized and distributed over a grid, these locally occurring
fluctuations may have an increased adverse effect on the stability of the
energy system and hence impair the increased utilization of res.

In order to maintain the stability and also to increase the overall efficiency
of energy systems that ought to comprise a significant share of res, suitably
large energy storage capabilities to smoothen the non-concurrent fluctu-
ations of energy demand and availability, need to be installed. However,
efficient large-scale energy storage is technically difficult and typically asso-
ciated with significantly increased capital expenditure and operational costs
[28]. Furthermore, it may itself pose several environmental problems (see
e.g. [13]).
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1.1. Energy Management Systems for Multi-Energy Systems

The variety of challenges and requirements entailed by a large-scale integra-
tion of res into existing energy systems may restrain many system operators
from utilizing them. This is especially the case for thermal energy systems,
where one has to consider the fact that thermal energy is typically generated
at the site of demand. As a result, many thermal energy systems are embed-
ded within processes and plants which are not primarily concerned with
the production of thermal energy, but rather with the production of certain
goods or services. Therefore, the significant initial economic investment,
the considerable amortization period and the increased system complexity
entailed by the integration of renewable energy sources/technologies may
seem unfavorable. Especially considering that the resulting decrease of the
environmental footprint of a respective plant, or the expected lower costs
for primary energy feedstock, may be of only secondary concern to the
plant operators, whose primary concern will typically always be maximized
quality of service or product quality.

1.1. Energy Management Systems for
Multi-Energy Systems

The operational obstacles and drawbacks associated with the increased
integration of res may be significantly mitigated by utilizing intelligent
computer systems that support the monitoring, control and operation of a
considered energy systems. As a result, several high-level control systems —
referred to as energy management systems (ems) — are currently being, or have
been, developed and deployed to autonomously monitor and control the
energy resource allocation within stand-alone energy provisioning plants or
energy systems that are embedded within a plant or process.

The main objective of such an ems is to devise a plan of operation defining
the instantaneous and future utilization of all individual system components
based on current and expected future conditions. In mathematical literature
this task of devising a good operation strategy is fittingly referred to as the
unit commitment problem. Naturally, the solution to the unit commitment
problem ought to operate the respective energy system as securely, reliably
and efficiently as possible. Therefore, it must ensure the stable supply of

3



1. Introduction

energy demand whilst minimizing operational costs, emissions of pollutants
and green house gases, and adhering to defined operational and regulatory
limitations. Considering this set of requirements, the task of deriving a
suitable solution to the unit commitment problem may quickly become very
challenging depending on the complexity of the investigated energy system
and the defined specific operational goals and constraints. This latter point is
especially noteworthy considering that besides increased system complexity
entailed by the integration of res, modern (thermal) energy systems are
increasingly interconnected with other energy systems and sectors.

This coupling of the energy sectors is expected to continuously increase
over the next years, due to the increased deployment of technologies such
as air source heat pumps, which efficiently transform electrical into thermal
energy, or the utilization of industrial waste heat for residential and com-
mercial space heating. Resulting from this, future ems will have to consider
the increased flexibility entailed by the coupling of different energy sectors
in order to maximize the overall efficiency of the combined energy system
as a whole.

In the following text these interconnected energy systems, which inherently
may comprise multiple forms of primary energy, will be generally referred
to as multi-energy systems (mes). Within a generic mes, energy generation
and consumption may not be entirely separable into separate system com-
ponents. Consider e.g. the aforementioned air source heat pump which at
the same time consumes electrical energy and generates thermal energy. In
order to encompass all entities that may generate and/or consume energy
of one form or another they will here be referred to as prosumers1.

To illustrate this newly defined class of systems by means of an example,
consider a modern urban district where, apart from connections to the main
electrical grid, electricity is generated by local photovoltaic (pv) systems on
the roofs of the buildings within the district. Thermal energy for space
heating and domestic hot water might be partially provided by utilizing
waste heat of a neighboring industrial plant along with auxiliary heat pumps
or gas boilers which are located within the district compound to function
as dispatchable energy supply backup systems. Additionally, in order to
handle the differences between concurrent energy demand and renewable

1Pro(ducer) + (Con)sumer
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1.1. Energy Management Systems for Multi-Energy Systems

energy availability, and to efficiently accommodate for peaks in the energy
demand or generation profiles, such a mes would also include several means
of energy storage such as e.g. batteries and thermal energy storages (tes).

This example, whilst illustrating some of the available possibilities to inte-
grate renewable energy sources and technologies into local thermal-electric
energy systems, also exemplifies the significant increase in system complex-
ity entailed by the resulting decentralized, multi-agent energy generation.
As a consequence of this increased complexity of mes, to this day only few
ems for mes have been designed and deployed. Nevertheless, in light of
the potential benefits entailed by considering mes, a substantial amount
of recent research is concerned with expanding previously developed ems

strategies for single-energy systems to the general case of mes.

Whilst for the case of single-energy systems, especially electrical energy
systems, many potential management strategies have been proposed (see
chapter 2 for a brief review of developed and in-use methods), when consid-
ering mes all proposed energy management strategies use so-called model
predictive control (mpc) to determine the current and future unit commitment
of the investigated mes. Within mpc, the future behavior of an investigated
system is analyzed generally based on a discrete-time system model, re-
ferred to as the prediction model, at a finite set of discrete future time instances
separated by a respective time interval, referred to as the sampling period.
The predicted system behavior is then evaluated based on a set of defined
performance metrics, typically referred to as costs. Based on these costs an
optimization problem is constructed, whereby the optimal series of system
actuations over a given time horizon, referred to as prediction horizon, is
determined by solving said optimization problem. In addition, operational
constraints and heuristics, if not already considered by means of costs, may
be included into the optimization problem by means of constraints on the
considered optimization variables.

The finesse of mpc is rooted in the fact that optimization occurs in regular
“short” time intervals, namely the sampling period, where only the first
time step of each computed solution of the optimization problem — the
time series of optimal actuations — is executed before the prediction and
optimization process is repeated for the advanced prediction horizon. Hence,
this procedure is also often fittingly referred to as receding horizon control.
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1. Introduction

The consideration of potential changes of current and expected conditions,
performance metrics as well as operational constraints in every optimization
cycle naturally renders this control strategy adaptive. This circumstance may
be considered as one of the main motivations for employing mpc in ems for
mes, considering that the behavior of any mes that contains a considerable
amount of renewable energy carriers is significantly influenced by varying
environmental conditions, the resulting resource availabilities, and the ever-
changing energy demand, that may be hard to accurately predict over a
long period of time.

1.1.1. Choice of the Class of Prediction Models

The accuracy of the chosen prediction model significantly influences the
derived plan of operation: Only physical phenomena that are represented
within the prediction model can be considered as part of the behavioral
analysis of the mes. However, increased model accuracy generally tends
to entail increased model complexity, which in turn results in an increase
of computational effort necessary to derive a suitable solution to the opti-
mization problem. Considering that within mpc the defined optimization
problem needs to be solved frequently, a trade-off between prediction model
accuracy and optimization problem complexity usually has to be made.
Important considerations in that regard are e.g. the desired sampling period,
i.a. depending on the volatility of the expected conditions, and the desired
length of the prediction horizon, given that both parameters significantly
affect the stability and performance of the resulting controller.

One common method for reducing the complexity of the optimization prob-
lem is to represent the dynamics of the the investigated system, as well as all
constraints and costs, by means of linear expressions of continuous-valued
variables. This measure allows for the utilization of highly efficient numer-
ical solvers, which have been specifically developed over the last decades
for the resulting family of optimization problems, which are referred to as
linear programs (lp).

In the context of modeling mes, however, the additional inclusion of binary
system variables, representing discrete-valued system states and decisions
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1.1. Energy Management Systems for Multi-Energy Systems

such as switching equipment on or off, is typically considered necessary
to obtain descriptive prediction models. The resulting prediction models
comprise both continuous and integer variables and are referred to as
hybrid linear models. The associated mpc optimization problem is typically
posed as a mixed-integer linear program (milp). Similarly to lp, a variety of
commercial and freely available numerical solvers that offer reasonable
performance for small- to medium-scale problems have been specifically
developed for milp. Nevertheless, it is important to note that the numerical
complexity of an optimization problem generally may increase exponentially
with the number of included binary optimization variables. Therefore, it is
generally preferable to limit the consideration of auxiliary binary variables
to only the most significant cases.

The utilization of generic hybrid non-linear prediction models would entail
that optimization problems categorized as mixed-integer non-linear programs
(minlp) would have to be solved. Although these days designated solvers
for minlp may be available, they usually require “long” solving times to
even obtain a suitable pseudo-optimal solution, given i.a. the problem of
emerging local minima and the dependency of solutions on the initial
guesses. This circumstance usually precludes the usage of hybrid non-linear
prediction models for mpc applications.

1.1.2. The Bilinearity of Convective Energy Transfer

Most prosumers in mes, namely most energy converters and energy con-
sumers, can be represented by means of hybrid linear prediction models
without much loss of accuracy. One reason for this being the rather long
sampling periods used in mpc-driven ems which are usually significantly
higher than the time constants of the considered prosumers. Thus, most pro-
sumer dynamics can typically be sufficiently well approximated by constant
gains or first order linear systems, reducing the computational complexity
of the associated optimization problem. Besides, one might add that in the
context of hybrid linear systems, non-linear prosumer dynamics can be
approximated as piece-wise affine functions by introducing additional binary
variables and mixed-integer linear constraints.
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However, one noteworthy problem when deriving hybrid linear prediction
models for mes — and in that regard specifically hydronic heating and cool-
ing systems — is the representation of energy transfer between prosumers
by means of convection, and the associated representation of thermal energy
storage by means of sensible heat storages, which are the most common
form of tes within hydronic systems. In hydronic heating and cooling
systems, prosumers are connected by a pipe network. A fluid, generally re-
ferred to as the heat-transfer medium and typically water-based, is circulated
to transfer thermal energy between them by means of convection1.

The indicated modeling problem stems from the circumstance that the rate
of energy transferred by a stream of heated or cooled heat-transfer medium
to a prosumer may be approximated in steady-state by:

Ėconv ≈ ṁ ·
[
cp (Tf) · Tf − cp (Tr) · Tr

]
. (1.1)

Here, Ėconv denotes the temporal change of the inner energy of a prosumer
due to energy transferred by convection. It is defined through the mass flow
rate ṁ into (feed path) and out of (return path) the considered prosumer,
the isobaric specific heat cp, as well as the temperature of the heat-transfer
medium in the feed (Tf) and respective return (Tr) path.

From the perspective of an ems, whose objective is to allocate a certain
amount of consumed/produced thermal energy to each respective prosumer,
one finds (1.1) to be bilinear. Both temperature and mass flow rate would
generally be considered as degrees of freedom and, as such, optimization
variables within an optimization-based ems.

The straight-forward approach to address the apparent conflict with respect
to the notion of hybrid linear prediction models is to simply define one
of the variables, mass flow rate or temperature, to have a constant value.
Naturally, for the case of hydronic systems where the mass flow rate is
typically directly modulated by a mass flow controller, and considering that
the typical operating temperatures of the utilized equipment are usually well

1Please note that in this thesis, contrary to nomenclature found in some classical
textbooks on heat and mass transfer, the term convection will strictly refer to energy transfer
by bulk motion of matter only, as opposed to heat transfer from a surface to a moving fluid
or gas.
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defined, the usual choice would be to fix both feed and return temperatures
to their respective desired constant operating point for each prosumer.

The resulting linearization of (1.1) entails significant drawbacks, most no-
tably the apparent decrease in prediction model accuracy and flexibility,
i.e. flexibility for the ems to optimize the operation of a considered system.
While some flexibility still exists by changing the temperature levels differ-
ently for each optimization step, it is not clear how the temperatures should
then be chosen. One would have to rely either on heuristics or on an outer
optimization loop that varies the temperature levels, thus greatly increasing
the computational complexity.

To illustrate the potential adverse ramifications of this circumstance, con-
sider a heating system that comprises a solar thermal collector. The energy
output of the collector — and, hence its efficiency — is known to depend on
the temperature difference between the collector and the ambient surround-
ings [11]. An increased temperature difference entails higher thermal energy
losses and, thus, reduces the efficiency of the collector. With the introduced
linearization, the collector inlet and outlet temperatures are always assumed
to be constant. A resulting plan of operation may not utilize the solar ther-
mal collector in the most efficient way, given that its energy yield cannot
be maximized by adjusting the inlet or outlet temperature in accordance
with the current or expected environmental conditions — specifically solar
irradiance and ambient temperature —, nor the operational conditions, i.e.
the temperature range currently accepted by the other prosumers within
the system.

In addition to not being able to account for temperature-dependent efficien-
cies of equipment, another issue concerns the fact that different prosumers
may require thermal energy at different temperature levels to work effi-
ciently, or even to work at all. This circumstance cannot be considered within
the prediction model of a mes where different prosumers are connected to
the same tes or thermal energy source, given that through the presented lin-
earization the feed and return temperatures of every prosumer are assumed
stationary and, hence necessarily equal for all connected prosumers.

In a practical application this issue might present itself if e.g. a solar thermal
collector and the generator of an absorption chiller are connected to a central
sensible heat storage. While a solar thermal collector is most efficient at
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lower inlet and outlet temperatures, an absorption chiller typically requires
thermal energy at higher temperatures to function most efficiently. As a
result, the choice of inlet and outlet temperatures of the tes presents a
general compromise between the different temperature specifications of the
connected prosumers. This problem has to be resolved at the design stage
and will, in general, inherently limit the performance of the ems.

Besides these issues regarding optimizing the utilization of individual
prosumers, it is important to note that the typically chosen prediction
models to represent sensible heat storages, given the notion of constant
temperatures, are very simple. The most common model is a simple first-
order integrator with a linear loss term [27]. Within these simplified models
the degree of temperature stratification within a sensible heat storage is
only crudely approximated. However, this parameter is of fundamental
importance for the efficiency of heating and cooling systems, especially
when prosumers with significantly different temperature specifications are
connected to the same tes.

To mitigate the illustrated issues a different approach to modeling energy
transfer by convection and sensible heat storage is necessary. If temperature
— not mass flow rate — is designated to be the stationary quantity, different
discrete temperature levels would have to be distinguished within a sensible
heat storage. As a result, energy transfer by convection could be represented
as a superposition of mass streams at these discrete temperature levels. In
this modeling context, however, there are several complicated questions that
need to be resolved i.a.:

1. How is the temperature distribution within a sensible heat storage
defined by means of discrete stationary temperature levels such that
the stored energy is accurately represented?

2. How is this distribution reflected in the temperature of the in- and
outflowing mass streams that charge respectively discharge a sensible
heat storage?

3. How can temperature-dependent energy and exergy losses be consid-
ered?

4. If energy transfer is defined by a combination of mass streams at dis-
crete temperature levels, how can prosumers be modeled accordingly
such that their temperature-dependent behavior is represented well?
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1.2. Thesis Objectives

Motivated by the preceding remarks, the main objective of this thesis is to
integrate a recently developed advanced hybrid linear prediction model of
sensible heat storages ([17] and [31]) into an existing modular ems frame-
work1. Within the framework, mpc with hybrid linear prediction models is
utilized to devise adequate operation strategies for mes, considering poten-
tially both economic and environmental aspects. Energy transfer by means
of convection is for now represented as simple directed energy flows, i.e.
the feed and return mass streams are assumed to have constant, fixed tem-
peratures within the prediction horizon. In contrast to the simple integrator
model, the newly proposed tes model distinguishes several distinct layers
of constant temperature but varying height to better approximate the actual
temperature distribution of the medium within a sensible heat storage.
Consequently, this requires an associated re-design of the representation of
connections between prosumers exchanging thermal energy by means of
convection, and the extension of existing prosumer prediction models to
represent prosumer behavior at varying temperature levels.

The integration of the new thermal storage model and the enhanced method
for representing convective energy transfer will inevitably increase the
computational complexity of the mpc optimization problem. However, it is
anticipated that through these adaptations, future ems that use the frame-
work will facilitate a more efficient operation of mes that comprise hydronic
subsystems and, hence justify the expected increase in computational com-
plexity. This expectation is based on the following premises: First, the
accuracy of the utilized prediction models of sensible heat storages is im-
proved to better approximate their actual real-world behavior, including
the physical phenomena of temperature-dependent ambient losses and ex-
ergy losses through axial conduction. Consequently, the consideration of
these phenomena may allow an ems to potentially make better decisions
about when and how to charge a storage with regards to when the stored
energy actually might be needed, and the losses that occur in the meantime.
Second, the integration of the proposed method of representing convective
energy transfer into the prediction model of a mes, i.e. the prediction models

1Developed at BEST – Bioenergy and Sustainable Technologies GmbH Graz, Austria.
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of the individual prosumers, is expected to facilitate the consideration of
temperature-dependent efficiencies (or performance factors) of each individ-
ual prosumer. Therefore, it may be possible to assess the most efficient, both
current and future, operating temperature of each prosumer. Based on this
assessment, the derived plan of operation for an investigated mes may be
adjusted accordingly, such that the overall system efficiency is maximized.

Besides the discussed expansion of the existing framework, an informative
case study based on actual plant data was conducted as part of this work. Its
main objectives are the verification of the adapted framework, specifically
the adapted prosumer prediction models, and the evaluation of the poten-
tial performance improvements and drawbacks entailed by the conducted
framework adaptations.

1.3. Document Organization

The remainder of this document comprises a presentation of the conducted
theoretical work and the numerical simulations which were conducted to
validate the adapted prediction models and to evaluate the resulting changes
in the ems performance. It is organized as follows:

Chapter 2 contains a brief general overview over the past development of,
and research into ems, as well as an overview over the usually employed op-
erating principles and control strategies. After that, the ems framework that
this thesis is built upon will be generally discussed. Specific emphasis will
be placed on the used mpc strategy, namely the chosen class of prediction
models and performance metrics. Next, the proposed novel hybrid linear
prediction model to represent sensible heat storages, and the associated
method of representing energy transfer by bulk motion of matter, which are
the theoretical basis of this thesis, will be outlined.

Chapter 3 is concerned with the derivation of enhanced prosumer prediction
models, which incorporate the mentioned novel method of representing en-
ergy transfer by convection. First, a brief review of the relevant fundamental
thermodynamic principles of mass and energy balance and the resulting
general physical model of a generic prosumer within a hydronic system
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is given. Second, the developed enhancements of the existing prosumer
prediction models, which were developed based on the notion of fixed feed
and return temperatures, to now consider varying temperatures and, hence
temperature-dependent prosumer behavior will be presented. Third, the
integration of the enhanced prosumer models, as well as the integration of
the proposed novel model of sensible heat storages into the ems framework,
will be discussed.

The functionality of the developed prediction models and the resulting
ems is analyzed in Chapter 4 by means of a representative case study. This
case study is concerned with the design of an ems for an industrial winery
where heating and cooling are partially provisioned by means of a newly
integrated solar thermal collector array and an absorption chiller.

After an analysis and a discussion of the obtained results. The overall
potential and drawbacks of the presented prediction model enhancements
are discussed in Chapter 5. Finally, to conclude the presented thesis, a brief
outlook for possible improvements and necessary future work is given.

1.4. Notation

As is practice in most control theory literature bold lower case letters (e.g.
x or b) will denote vectors, whilst bold capital letters will be employed to
represent matrices (e.g. A). Individual values of a discrete-time series will
be denoted by an appropriate time index subscript. Parentheses are used to
denote functions defined over continuous-valued variables. Time derivatives
will be denoted by a dot over the respective function/variable identifier.
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The following chapter summarizes the necessary background information
to further define the context of this thesis and to subsequently easily follow
the further course of this work.

For this purpose a summary of the general development of ems and a brief
review of common operating principles of modern ems, specifically their
utilized control strategies are presented.

Subsequently, the existing control framework that this thesis expands upon
is presented and discussed with respect to its general design, facilitated
functionalities and underlying operating principles. The main focus in that
regard is on the specifics of the utilized control strategy and the associated
system representation, namely mpc with hybrid linear prediction models.
Considering this notion of hybrid linear prediction models, the bilinear
phenomenon of energy transfer by convection (bulk motion of matter) is
represented by means of the method that was illustrated in the previous
chapter, where the feed and return temperatures of a prosumer are assumed
stationary over the whole prediction horizon. This representation of energy
transfer by convection naturally affects how thermal energy storage, specifi-
cally sensible heat storage, may be modeled. In the presented framework
sensible heat storages are represented by means of first-order integrator
models with linear losses depending on their state of charge (soc).

Albeit being quite simple, there are various drawbacks associated with this
representation of thermal energy transfer and sensible heat storage. There-
fore, alternative hybrid linear representations of the two phenomena that
are proposed in literature are presented within this chapter, and analyzed
with respect to their usability for prosumer prediction models in mpc-driven
ems. In particular, the thermal energy storage model proposed by Muschick
et al. [17] will be examined in detail. It is this model that was analyzed
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and integrated into the existing ems framework during the course of this
thesis.

2.1. Energy Management Systems

The term “energy management system” is frequently used in different
contexts and with different implications, depending on the scope of the
specific application or the individual field of application or research. As
a result, there is no universal definition of the specific objectives, working
principles or necessarily provided functionalities of an ems.

In the context of electrical power systems an attempt in generally defining
the physical appearance and scope of an ems may be found in the IEC 61970

standard [10]. This standard defines an ems as:

“A computer system comprising a software platform provid-
ing basic support services and a set of applications providing
the functionality needed for the effective operation of electrical
generation and transmission facilities so as to assure adequate
security of energy supply at minimum cost.”.

The apparent focus on electrical energy systems in the above definition may
stem from the historic prevalence of these systems in both research into and
actual deployment of ems. This prevalence followed from the relatively early
integration of small-scale power plants and res into the existing, formerly
rather centralized, wide-area electric power grids. Today, electrical energy
systems are generally characterized by distributed (decentralized) energy
generation by a great number of different producers, utilizing various forms
of primary energy. This circumstance naturally entails a significant increase
in system complexity. As a result, a concerted research effort was and still
is undertaken to address the resulting issues regarding e.g. the reliability
of energy provision or grid stability by means of sophisticated control
systems, i.e. ems. Besides, an increasing amount of research nowadays
is concerned with utilizing the increased system flexibility, entailed by
distributed multi-agent energy generation, within the developed ems to
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increase the efficiency of the considered electrical energy systems with
respect to not only economic, but also environmental criteria.

Within this context, a distinct novel area of research emerged concerned
with so-called smart grids where the main research objective is to facilitate
the optimal operation of distributed electric energy systems by intelligent,
computer-supported coordination and allocation of the available resources.
An important prerequisite for the success of this planning effort, however,
is the availability of reliable real-time information on the current and future
consumer demand, storage capabilities and environmental conditions. The
efficient and reliable acquisition and provision of this data forms a distinct
sub-field of smart grid related research. Subsequently, control systems
process the provided data and coordinate adequate power transmission.
Besides that, they may also directly set power production or consumption
incentives, by e.g. adapting the bid and ask price of electrical energy in
real-time, for the purpose of load balancing and load shifting.

Given the immense system complexity of modern wide-area electric syn-
chronous grids, a hierarchical perspective emerged, whereby the focus is
on the optimal operation of smaller and localized groups of consumers and
distributed electrical energy resources, which are referred to as microgrids.
Within each microgrid configuration, the operational goal is to meet local
demand by optimal utilization of locally available, typically partially renew-
able, energy resources and energy storage capabilities. Resulting from this,
each microgrid may be viewed as an individually controllable and at least
partially autonomous entity with clearly defined spatial boundaries and a
defined interface to the wide-area synchronous grid (macrogrid). In many
microgrid applications this interface allows for bidirectional energy flow,
i.e. energy may be purchased from the wide-area synchronous grid, whilst
potential generation surpluses may be sold. Consequently, this hierarchical
configuration may simplify the task of managing and optimizing entire,
heavily interconnected electrical energy systems, given the reduced system
size and the typically substantial degree of autonomy of the individual
microgrids.

From the above discussion, it is evident that the necessary functionalities
that have to be provided by an ems vary greatly with the scope of the
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individual application. They range from complete wide-area grids, to micro-
grids or even systems as small as individual industrial plants or residential
dwellings with e.g. a locally installed pv system. Whilst ems for the electrical
power grid as a whole are concerned mainly with stability and reliability of
power transmission, ems for microgrids or smaller applications are specifi-
cally attuned to the types and numbers of included prosumers in order to
optimize their respective operation, the available infrastructure regarding
data acquisition and information exchange, and the type of available inter-
faces to the macrogrid. Resulting from this variety of application-specific
objectives and requirements, most actually deployed ems are tailor-made
for a specific application.

Instead of considering only purely electrical energy systems, an increasing
amount of recent research is also concerned with a more holistic perspective
that focuses on the operational optimization of mes. There, different forms
of energy and the coupling of different energy sectors are specifically con-
sidered, as opposed to treating every energy sector individually [12]. The
coupling of different energy sectors is assumed to continuously increase
over the next years and decades, considering i.a. the increasing electrifica-
tion of the transport sector and the increasing deployment of technologies
such as electrically powered heat pumps. Hence, the extensions of the de-
veloped methods for optimizing the operation of electrical energy systems
to consider mes instead, may prove to be useful for reducing the overall op-
erational costs and emissions of the energy industry. This conjecture may be
especially valid for the case of thermal energy systems, in light of the large
contribution of the heating sector to the total final energy consumption and
to the emission of greenhouse gases. Besides, many modern thermal energy
systems are already significantly coupled with the electrical sector by means
of, among others, electrically powered space heating or domestic hot water
provision. Thus, an independent treatment of operational optimization of
thermal systems often may be rather meaningless.

In the context of ems for microgrids, a large amount of research articles has
been published concerning theoretical groundwork and practical implemen-
tations for both stand-alone/island and grid-connected microgrid systems.
As a result, there exist several comprehensive literature reviews (see e.g.
[30] or [19]), which summarize and compare the utilized control strategies,
uncertainty quantification methods, i.e. the assessment of volatile future
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demand and environmental conditions as well as the actual implementation
and deployment with respect to the utilized software tools and general
infrastructure. These reviews indicate that most ems are based on a central-
ized controller utilizing an optimization-based approach. The optimization
problems are typically either posed as linear programs (lp) or mixed-integer
linear programs (milp). Besides that, genetic algorithms, fuzzy control and
artificial intelligence methods are repeatedly utilized.

Most reviewed ems use externally provided or self-generated forecasts to
determine uncertain quantities. These forecasts are usually treated deter-
ministically, i.e. the forecasted quantity is assumed to occur as predicted
over the investigated future time horizon. Nevertheless, some ems employ
stochastic methods to assess the stochastic properties of said forecasts in
order to yield more robust operating strategies that perform well even
considering the generally inevitably occurring forecast errors. The most
common methods to consider these stochastic properties are Monte-Carlo
analysis and bounded uncertainty methods.

In the context of ems for mes only a limited amount of research articles re-
lated to actual implementations is yet available. Among those, all developed
ems employ an optimization-based approach based on milp, where each
mes is represented by linear dynamics and constraints of both continuous
and discrete variables.

2.2. Research Object: Existing Energy
Management Framework

The ems framework that is considered in this work has been designed in
a modular fashion to allow for quick and cost effective deployment for
a variety of mes applications [16]. In contrast to application-specific ems,
the developed framework aims to provide a general solution for regional
small- to medium-scale energy systems such as urban districts, industrial
plants or individual residential or office buildings. First initial tests and
simulations of the framework, for a case study of a thermal-electric energy
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supply system for a modern urban district, have shown a potential decrease
of operational costs by 3 % – 6 %.

The framework is designed to allow for the design of ems for both already
existing and operating, as well as newly set up mes. Hence, the developed
ems have to be agnostic to the specific type of installed infrastructure with
respect to process monitoring and process control. The performance of any
ems developed with the framework will be affected and limited by the
available dynamics and accuracy of the actually installed process control
systems, and further by the low-level controllers of the individual system
components/prosumers. Thus, knowledge about these limitations should be
included at the ems design stage within the respective prosumer prediction
models to obtain overall satisfactory performance.

In order to provide the adaptability to a variety of different mes applications
and the possibility to adjust an operating ems to potential plant modifi-
cations, a mpc strategy is utilized within the framework. Consequently, a
dynamic model of the respective mes is directly used when devising its
respective plan or operation. Therefore, physical modifications of the mes,
as well as time-varying constraints and performance metrics can be incor-
porated by providing updated dynamic prediction models, hence adjusting
the associated optimization problem respectively. In contrast to tailor-made
systems, no expensive and time-consuming re-designs of the ems would be
required. Moreover, mpc-driven controllers, in contrast to e.g. approaches
based on artificial intelligence, generally require no, or at least very limited,
process training data or running-in phases to yield satisfactory controller
results, resulting in a generally short time to deployment.

Likewise to other ems for mes solutions, the optimization problem associ-
ated with the controller is restricted to be a milp in the presented framework.
In spite of the entailed benefit of using efficient solvers for the mpc opti-
mization problem, the restriction to milp, however, naturally entails the fact
that the dynamic models used to represent a mes can only comprise linear
expressions of continuous and integer variables. Besides, plant heuristics
and other information can only be included into the optimization problem
by means of linear constraints or linear costs. As previously illustrated in
Chapter1, this circumstance might compromise the accuracy of the result-
ing prediction models and, hence impair the performance of the devised
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controller. For further information regarding the general concept of mpc

and the implications of inaccurate system models the interested reader is
referred to Appendix A Section A.1 and A.2.

The mentioned modularity of the presented framework stems from the fact
that the prediction model of each mes is constructed through a combination
of models representing individual prosumers and connections. Hence, the
prediction model of any specific mes can be easily extended to include newly
installed equipment or changes in the system’s layout, such as modifications
of the piping within a hydronic system. Furthermore, each connection
and prosumer entity may be associated with individual constraints and
an individual cost value. The global cost function of the mpc optimization
problem is then defined by the sum of all individual cost values.

Prediction models for most typical components within a general mes, such as
e.g. boilers, heat pumps, pv and solar thermal collectors, controllable sources,
different energy storages and various loads, are already implemented within
the presented framework. Consequently, the optimization problem can be
automatically synthesized from only a set of provided prosumer parameters
and schematics that illustrate the layout of the system, parametrize the
pre-defined models and define the connections between them. Hence, an
ems for a given mes application may be synthesized and deployed by a
system operator with little to no required knowledge of control engineering
or optimization.

For further insights into the discussed framework, the following sections
will discuss the utilized mathematical representation of the prosumers and
connections, their associated cost values and constraints as well as the
handling of uncertain model parameters, e.g. future energy demands, by
means of forecasts.

2.2.1. Prosumer Models

In the context of the presented framework, a prosumer is defined as any
component or piece of equipment within a mes that converts, produces,
consumes, stores or determines the specific distribution — or flow — of
energy or mass. Individual examples for the defined categories in the context
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of hydronic heating systems are e.g. biomass boilers, biomass sources/
reservoirs, heat radiators for space heating, tes, and valves which distribute
mass streams of heat-transfer medium among different prosumers.

In the discussed framework, as is the case in most optimization-based ems,
the mathematical models of the prosumers are generally kept as simple
as possible, representing only the most fundamental physical phenomena
and dynamics. This is necessary to minimize the computational complexity
of the resulting optimization problem, considering that depending on the
application a mes may comprise a large number of interacting prosumers.
In addition, prediction horizons typically range from a few hours to several
days, with sampling periods ranging from 15 min – 60 min. Therefore,
optimization problems that comprise several thousand continuous and
several hundred binary decision variables that need to be solved within a
few minutes are not uncommon.

As a result, energy converters, e.g. gas boilers, are for the most part repre-
sented by a static linear function using a constant efficiency/performance
coefficient linking the amount of primary energy used with the amount
of end-use energy provided. This simplification is typically a reasonably
accurate approximation for the behavior of most energy converters, consid-
ering the relatively small time constants of most converters compared to the
sampling periods employed. However, with this simplified model it is not
possible to assess noteworthy (non-linear) effects, such as load-dependent
efficiency/performance, or varying behavior occurring during startup and
shutdown phases of equipment.

To mitigate this issue the mixed-logic dynamic (mld) system framework [3]
is adopted. This framework establishes a systematic procedure for repre-
senting a broad class of hybrid linear systems in a single model, combining
both system parts described by continuous and system parts described by
integer variables. The central idea of this holistic modeling approach is to
reformulate logic and mixed-logic propositions, which are a common way
of defining binary/integer system variables or discrete operating events, as
mixed-integer linear constraints of continuous and binary auxiliary variables.
Among others, this framework facilitates the consideration of non-linear
functions that can be approximated by piece-wise affine functions or switched
affine system dynamics in a single hybrid linear system model. It is evident
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that the mld framework lends itself naturally to be used for deriving predic-
tion models used in mpc, given that the emerging mixed-integer constraints
can simply be integrated into the mpc optimization problem.

With regards to computational complexity, the mld framework is a helpful
tool when seeking to represent some relevant non-linearities within hybrid
linear prediction models, considering that otherwise generally mixed-integer
non-linear programs (minlp) would have to be solved. However, in general
the introduction of auxiliary binary variables may increase the optimization
problem complexity exponentially and, thus, should be limited to only the
most relevant cases. Given its facilitated functionalities, it is fair to assume
that the mld framework is a main factor for the general prevalence of
milp within optimization-based ems, as indicated by the large number of
citations of [3] in related ems research articles. For further insights into the
mld framework, specifically on how exactly propositional logic statements
may be reformulated as equivalent mixed-integer constraints, the interested
reader is referred to Appendix A Section A.3.

With the adoption of the mld framework the dynamic prediction model of
each prosumer is defined by the following set of general model equations
and constraints:

xk+1 = Axk + Buuk + Bδδk + Bzzk + Bwwk , (2.1)
yk = Cxk + Duuk + Dδδk + Dzzk + Dwwk , (2.2)

Exxk + Eδδk + Ezzk + Ewwk ≤ g , (2.3)

with the subscript k denoting the discrete time step, x ∈ RNxc ×ZNxd denot-
ing the state of the prosumer, u ∈ RNuc ×ZNud representing the continuous-
and integer-valued control inputs, δ ∈ ZNδ and z ∈ RNz denoting integer-
and respectively continuous-valued auxiliary variables that arise through
the deployment of the mld framework, and y ∈ RNyc ×ZNyd denoting the
outputs of the prosumer. Additionally, in contrast to the canonical mld

system representation, known disturbances such as environmental condi-
tions are considered in the above system representation and are denoted
by w ∈ RNw . The matrices A, Bu etc. are constant matrices of appropriate
dimensions.

Besides being defined by the model (2.1) – (2.3), each prosumer has a number
of defined ports. Each port represents a unique set of internal state, output,
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input or known disturbance variables. Together they represent interfaces for
physical or logical interactions between prosumers, most prominently input
and output interactions by means of mass or energy transfer. The specifics
of these interactions are defined by so-called connections.

2.2.2. Connections

Representing physical interactions between prosumers mathematically means
linking their internal variables by appropriate expressions or constraints.
In the context of mes, these interactions mainly concern the transfer of
one form of energy, or the mass transfer of a certain medium. They are
represented in the ems as connections between ports.

Every connection joins a single source port with a single sink port and con-
sequently establishes a mathematical link between the prosumer variables
associated with the respective ports. Both ports are required to be of the
same type, meaning that the associated prosumer variables represent the
same physical quantity, i.e. the same form of energy, or mass flow of the
same material. The link between the associated variables is expressed by
equality constraints, which enforce the underlying physical principles of
mass and energy balance.

An ideal connection representing mass or energy transfer without losses
can be expressed by simply enforcing equality between the variables of the
source and sink port at each point in time during the whole length of the
prediction horizon Np:

ysource + usink
!
= 0 . (2.4)

Here, ysource and usink denote the exemplary sets of output variables as-
sociated with the source port, and respectively input variables associated
with the sink port. The adopted sign convention for variables is that mass
or energy flow into a prosumer is said to be negative, whilst outflows are
considered to be positive (producer viewpoint).

Besides ideal connections, potential losses of mass or energy along the
connection may be considered by introducing a loss coefficient γ ∈ (0, 1]
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in (2.4):

γ · ysource + usink
!
= 0 . (2.5)

Consequently, losses are always assumed to be directly proportional to the
value of the port variables, i.e. most commonly to the rate of energy or mass
transfer. For γ = 1, the above equation represents a lossless connection as
defined by (2.4).

In addition to enforcing mass or energy balance, practical limitations of
the rate at which energy or mass can be transferred over a channel can be
considered. This can be easily achieved by enforcing additional inequality
constraints, e.g.:

ymin
source ≤ ysource ≤ ymax

source . (2.6)

Here, ymin
source and ymax

source denote limits which the channel imposes on each
element of ysource and, as a result of (2.4) or (2.5), likewise on each element
of usink. These limits may very well be defined time-varying, for which
the specific time instance of the considered variables yk, source needs to be
considered in the above constraint.

The presented mathematical representation of energy and mass transfer
might be troublesome in the context of hydronic systems. Considering the
inherent bilinearity of energy transfer by convection, limits on the maximum
or minimal pumping power within the piping network of a hydronic system,
and thus on the amount of fluid that can be circulated between prosumers,
cannot be meaningfully translated into limits on the minimal or maximal
energy that may be transferred between connected prosumers. Conversely,
mass flow of the heat-transfer medium alone does not represent energy
transfer without knowledge about the temperature difference between the
feed and return mass streams.

Additionally, the thermal energy losses that occur along a pipe are mainly a
result of thermal conduction, and hence strongly related to the difference
between the temperature of the medium inside the pipe and the ambient
temperature. Considering the general case where the temperature of the
heat-transfer medium within a pipe is not stationary, the resulting energy
losses cannot be meaningfully represented by means of (2.5), given that
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the occurring losses are dependent on the temperature of the heat-transfer
medium, as opposed to the amount of transferred energy or mass.

Last, in the operation of hydronic systems one has to consider the fact
that different prosumers may have different temperature specifications,
i.e. they can only produce and consume thermal energy within defined
temperature ranges. Therefore, energy transfer between prosumers should
only be possible within a certain temperature range. Given the bilinearity
of energy transfer by convection, however, this circumstance can neither
be expressed by constraints on either mass flow rate nor amount or rate of
transferred thermal energy.

To circumvent these issues and to describe convection within the hybrid lin-
ear modeling framework, thermal energy transfer between two prosumers
in a hydronic system is assumed to always occur at a predefined constant
temperature. Resulting from this, the transferred energy between two pro-
sumers is linearly dependent on the mass flow rate only, whereby energy
balance follows naturally from enforcing mass balance between source and
sink ports. In this simplified context, non-ideal connections between pro-
sumers may be considered by employing (2.5) to define static, proportional
energy losses that occur when transferring energy between prosumers.

However, there are significant issues with this approach. First, the defined
losses would be defined proportional to the amount of transferred energy,
which does not represent the actual physical phenomenon of energy losses
due to conduction well. Second, a reduced amount of energy inflow at
the sink port would imply a lowered mass flow rate of the heat-transfer
medium at the sink compared to the rate of outflow at the the source port.
This implication is physically wrong within a hydronic systems as it violates
the notion of mass balance. Hence, within an ems for hydronic systems that
is entrusted with defining mass flow rate references for the low-level flow
controllers of circulation pumps, the output energy at the source ought to
be used to determine the appropriate pump actuation, as otherwise the
resulting pump actuation would be computed inadequately and would
always be too low.
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2.2.3. Forecasts

Forecasts are used to determine uncertain known disturbances, such as
weather conditions or the expected volatile future energy demand and yield
of prosumers. Whilst forecasts for the former are obtained from external
weather service providers in the presented framework, the latter quantities
are typically determined using a generalization of the methods illustrated in
[18] respectively [26]. Although [18] only examines the prediction of thermal
energy demand for a variety of different loads, and [26] only further extends
the devised method for the prediction of solar thermal collector yield, the
proposed method is easily adapted towards other types of prosumers with
a volatile demand or yield of any form of energy.

The main concept, that is proposed and verified in both publications, is
to determine the future energy demand and yield based on an adapted
multi-linear regression method. Energy demand or yield, which are the
dependent variable, are predicted on an hourly basis depending on the
values of a set of independent variables, with the peculiarity that for each
hour of the day a new set of linear regression coefficients is computed. At its
simplest, the linear regression only consists of a constant, so these different
sets represent different values for each hour of the day, and thus daily
patterns. For the example of pv panels, changing coefficients can represent
periodic shading from neighboring buildings. Both articles furthermore
propose to optionally distinguish between different days of the week, or
whether a given day is a holiday or a workday, by considering different
sets of individual coefficients for those cases. The computed regression
coefficients are continuously updated with the most recent measurements,
whereby only a certain number of past data points are considered when
recomputing the coefficients. As a result, the method neglects measurements
that are too far in the past, which renders the proposed method adaptive
towards changing prosumer behavior.

In order to forecast thermal energy demand, both articles recommend to
consider only the ambient temperature as the independent variable, given
that it can be shown to exhibit high correlation with respect to the actual
thermal energy demand of various loads. The expected values of the ambient
temperature at a specific location are provided by weather service providers
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and are assumed to be reasonably accurate over the investigated forecast
horizon and thus treated deterministically.

To forecast the energy yield from solar thermal collectors, the global solar
irradiance, along with the temperature difference between the collector
and the ambient surrounding and the square of said difference, are con-
sidered as independent variables. Expected future values of both global
solar irradiance and ambient temperature are again provided by weather
service providers. Notably, the mean collector temperature is an operational
parameter that is determined by the temperatures of the in- and outflowing
heat-transfer medium during stationary operation. The presented choice
of the independent variable is in accordance with the steady-state energy
balance of a solar thermal collector, which is defined in the EN12975:2006

standard [11] as:

Ėsolar = Acoll ·
(

ηo · Ig − k1 · (T̄fl − Tamb)− k2 · (T̄fl − Tamb)
2
)

. (2.7)

Here, Ėsolar refers to the thermal energy output/yield of the collector, Acoll
is the active collector area, ηo denotes the so-called optical efficiency of the
collector, Ig is the global solar irradiance, whilst T̄fl and Tamb denote the
mean collector respectively ambient temperature. The loss coefficients k1
and k2 are necessarily positive and are used to assess the thermal energy
losses within the collector by means of thermal conduction and radiation.
By utilizing the proposed forecasting method one actually estimates the
product of Acoll and ηo, as well as Acoll an the respective loss coefficients.
Thus, the prior knowledge that all three coefficients, given their physical
implications, have to be positive should to be incorporated within the
forecasting algorithm to ensure physical meaningfulness of the computed
linear regression coefficients.

Although T̄fl is generally considered to be an operational parameter, it
is assumed to always be constant in the context of the presented ems

framework, since the mean collector temperature of a solar thermal collector
is assumed to be equal to the average of the feed and return temperatures,
and these are defined to be constant. As a result of this circumstance, the
forecast of the energy yield of a solar thermal collector may be treated
independently from the operational optimization of the energy system it
is integrated in. Hence, the expected yield may be computed prior and
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independently of the current optimization cycle and subsequently simply
treated as a known disturbance within the prediction model of the solar
thermal collector. The mass flow rates at the inlet and outlet of the collector
are then computed by the ems as those control reference values that lead
the forecasted thermal energy yield to be transferred out of the collector.

In [18] the presented method is verified with data sets for 7 different thermal
loads and is shown to produce satisfactory forecast results over a 24 h fore-
cast horizon. The solar thermal collector yield prediction is evaluated in [26]
for two representative days in summer and spring. Here, the results indicate
notable forecast errors for the spring day, given the typically increased
fluctuations in weather conditions e.g. the cloud coverage. However, the
method still produces reasonable forecast results for the total thermal energy
yield over the investigated time horizon and as such still is considered to be
suitable for the use within the presented ems framework.

It is important to note that the presented methods rely on accurate weather
forecasts, descriptive training data (typically for at least 30 d – 60 d, depend-
ing on whether days of the week and/or holidays ought to be distinguished)
and a reasonable choice of independent variables, which is notably not
addressed in the articles for the case of non-thermal prosumers. However,
if these requirements are met for a given application, the discussed fore-
cast methods are shown to provide sufficiently accurate demand and yield
forecasts over forecast horizons of up to 24 h.

2.2.4. Cost Function

Similar to the overall prediction model of the investigated mes, the associated
cost function is constructed in a modular fashion based on individual
prosumer and connection contributions. Therefore, each prosumer and
connection is associated with a time-varying cost value.

Costs may be defined based on actual economic transactions, most promi-
nently through purchases or sales of energy or fuel, or related to the emis-
sions of green house gases in the context of emissions trading. Additionally,
behavioral costs may be defined to penalize prosumer/connection operating
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points, or modes of operation that entail increased wear and tear of the uti-
lized equipment, entail unnecessary emissions of pollutants or greenhouse
gases, or that diverge from a defined operating point reference. In some
instances these behavioral costs are also referred to as soft constraints, given
that instead of imposing hard limits on the admissible range of operational
parameters, they rather serve as an incentive to the optimizer to limit the
divergence of said parameters from their respective admissible range, so as
to reduce the associated costs. However, one should note that the specific
economic implications, i.e. the implied actual operational costs, of these be-
havioral penalties are often very vague or cannot be meaningfully assessed.
Instead, they are usually thought of as interactive means to fine-tune the
ems such that the design engineers’ intuition about how an ems should
ideally behave for a given mes application may be incorporated into the op-
timization problem, and, hence manifest itself within the resulting derived
plan of operation.

Currently the developed framework recognizes six separate ways of express-
ing the above considerations. The time-dependent cost value cost associated
with each individual prosumer or connection is defined as the combination
of contributions from all respective internal variables ν. Hence, the cost
value of a specific prosumer or connection e with Ne internal variables, is
defined as follows:

costk, e =
Ne

∑
i=1

λval
k, νi
· νk, i · ∆tk + λabs

k, νi
· |νk, i| · ∆tk

+ λval∆
k, νi
· νk, i − νk−1, i

∆tk
+ λabs∆

k, νi
·
∣∣∣∣νk, i − νk−1, i

∆tk

∣∣∣∣
+ λzone

k, νi
·
∣∣νk, i − sk, νi

∣∣ · ∆tk + λref
k, νi
·
∣∣νk, i − rk, νi

∣∣ · ∆tk ,

with smin
k, νi
≤ sk, νi ≤ smax

k, νi
.

(2.8)

Here, each contribution of an internal variable νi at time instance k is
computed based on the current value of the variable, its rate of change, its
difference to a predefined range of values sνi defined by the limits smin

νi
and

smax
νi

, and its deviation from a given reference value rνi . Each contribution
is quantified by a known/chosen, potentially time-varying, cost coefficient
or price λνi and naturally depends on the sampling period denoted by ∆t,
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which may be itself defined to be time-varying to allow for the consideration
of a varying prediction horizon resolution, i.e. by defining a high sampling
rate for time instances in the near future and a lower sampling rate for time
instances at the end of the prediction horizon. Notably, the absolute value
of the internal variables is considered in (2.8), which, given the non-linearity
of the absolute value operator, cannot be directly integrated into the cost
function of a milp. To circumvent this issue, additional slack variables have
to be introduced along with additional constraints to represent the absolute
value of a variable by means of linear expressions (see [1] for additional
information).

The scalar global cost function J of the ems optimization problem is given
by the combination of all individual prosumer and connection cost values,
summed up over the entire prediction horizon Np:

J = ∑
e

k0+Np

∑
k=k0+1

costk, e . (2.9)

As a result, the cost function may be easily adapted and extended if changes
of the mes set-up, e.g. additionally incorporated prosumers, should be
considered. Furthermore, by not only considering cost contributions based
on economic expenses, such as fuel costs, but rather assigning costs to the
potential emissions of pollutants or greenhouse gases, it is possible to adjust
the operating strategy devised by an ems such that a compromise between
the most efficient economic and most environmental-friendly operation can
be made according to the specifics of the individual application.

2.2.5. Constraints

In addition to costs, time-varying constraints may be defined for each in-
ternal prosumer or connection variable. Within the presented framework
constraints may be imposed in order to limit the value or the rate of change
of any generic continuous- or integer-valued internal variable ν. Internal bi-
nary variables νbin that represent whether prosumers are currently switched
on or off can be constrained to enforce minimum on- and off-times.
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The value of an internal variable ν may be limited by incorporating the
following constraints into the optimization problem:

νmin
k ≤ νk ≤ νmax

k . (2.10)

Besides, the rate of change of a variable may be restricted within certain
limits as follows:

ν∆, min
k ≤ νk − νk−1

∆tk
≤ ν∆, max

k . (2.11)

Potential constraints on the minimum on- and off-times of internal binary
variables may be enforced by:

−νk, bin + νk−1, bin −
k

∑
m=k−Kon

νm, bin

Kon
≤ 0 (2.12)

νk, bin − νk−1, bin −
k

∑
m=k−Koff

1− νm, bin

Koff
≤ 0 . (2.13)

Here, the defined minimal on- (Kon) and off-times (Koff) are expressed by
means of the number of discrete time steps they encompass. Past values of
the respective binary variable have to be considered in the above constraint
to ensure compliance with the defined minimal on- and off-times also at the
beginning of the prediction horizon. Therefore, these relevant past values
have to be continuously recorded and have to be initialized prior to starting
the mpc algorithm.

This concludes the overview over the operating principles of the discussed
ems framework. To illustrate how the prediction model of an actual hy-
dronic system, along with the associated optimization problem, can be
formulated within the presented framework, the fictitious example of a sim-
plified domestic biomass heating system will be discussed in the following
section.

2.2.6. Example: Simple Heating System

In the following example the modeling and control of the exemplary heating
system illustrated in Figure 2.1, as it would be realized within the presented
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Figure 2.1.: Schematic layout of the investigated heating system.

ems framework, will be discussed. The heating system comprises a biomass
boiler with an attached biomass source, a sensible heat storage to serve as a
tes, and a single thermal load that represents the thermal energy demand
of a residential building.

The modeling commences by defining a set of ports for each prosumer. In the
discussed example, these ports describe the mass transfer of either biomass
or the heat-transfer medium, which is assumed to be water. Individual
ports of a specific prosumer are identified by an associated port number as
indicated in the schematic system layout.

Prior to defining the prosumer prediction models and connection constraints,
the following general specifications and parameters are defined.

1. The biomass source is assumed to be inexhaustible and the current
and future biomass feedstock price is assumed known.

2. The biomass boiler can be switched on and off. If switched on, it is
assumed to operate at a constant efficiency independent of its power
output. If switched off the power output is zero. Besides, operational
limits regarding the minimum and maximum power output of the
boiler are considered.

3. The tes, a sensible heat storage, has a known volume and is assumed
to be very well insulated, i.e. no thermal losses due to temperature
differences between the medium in the storage and the ambient sur-
roundings are considered.
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4. The future energy demand of the thermal load is assumed to be
known a priori or is provided by accurate forecasts that can be treated
deterministically.

5. The heating system is set to operate at a constant feed temperature of
70 ◦C and a constant return temperature of 30 ◦C (see Figure 2.1).

6. All connections are assumed to be ideal, i.e. energy losses are not con-
sidered. However, the maximal rate at which water can be transferred
over each individual connection is assumed to be restricted. These
limits are inferred from the maximum power of the circulation pumps.

With these specifications, the prediction models of the individual prosumers
and the necessary connection constraints may be defined as follows:

Example 2.1. Considering that the biomass source is inexhaustible, it
can be represented by a single output variable ysrc, 1, which represents
the mass flow rate of the outflowing biomass at port 1. The outflow
of biomass is naturally associated with an economic cost, which is
represented within the cost value of the biomass source as follows:

costk, src = λval
k, ysrc, 1

· yk, src, 1 · ∆tk . (2.14)

The feedstock cost at each time instance k is given by the instantaneous
biomass price λval

k, ysrc, 1
(defined per unit of mass) and the sampling period

∆tk.

The biomass boiler is characterized by a constant conversion efficiency
ηboil which links the consumed primary chemical energy — biomass —
with the provided end-use — thermal — energy. Hence, the output of
the boiler yboil, the provided thermal output power, may be defined:

yk, boil = uk, on off · ηboil · uk, boil, 1 · εbm . (2.15)

Here, uon off ∈ {0, 1} is a binary input variable representing whether
the boiler is switched on (uon off = 1) or off (uon off = 0). The mass flow
rate of the inflowing biomass stream at port 1, with known heating
value εbm, is denoted by uboil, 1. The fact that the output power of the
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boiler is constrained to be between a defined lower ymin
boil and upper ymax

boil
bound can be expressed by enforcing:

ymin
boil

εbm · ηboil
≤ uk, boil, 1 ≤

ymax
boil

εbm · ηboil
. (2.16)

In its current form (2.15) cannot be used as a linear prediction model of
the biomass boiler, considering the multiplication of the two input — and
hence decision — variables uon off and uboil, 1. However, this issue can
be resolved by using a formalism described within the mld framework,
which expresses the multiplication of a binary and a continuous-valued
variable by means of an auxiliary continuous-valued variable and four
mixed-integer constraints (see Table A.3 in Appendix A). Thus, the aux-
iliary variable zboil is introduced along with the following inequalities:

zk, boil ≤
ymax

boil
εbm · ηboil

· uk, on off ,

zk, boil ≥
ymin

boil
εbm · ηboil

· uk, on off ,

zk, boil ≤ uk, boil, 1 −
ymin

boil
εbm · ηboil

(1− uk, on off) ,

zk, boil ≥ uk, boil, 1 −
ymax

boil
εbm · ηboil

(1− uk, on off) .

(2.17)

With the defined auxiliary variable, (2.15) may be rewritten as:

yk, boil = zk, boil · ηboil · εbm , (2.18)

which now is a linear expression for the provided thermal power of the
biomass boiler.

The provided thermal energy is necessarily absorbed by the in- and
outflowing mass streams of heat-transfer medium. In the presented
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framework this circumstance of energy balance is represented by enforc-
ing the following equality constraint:

yk, boil
!
= uk, boil, 2 · cp (Tboil, 2) · Tboil, 2 + uk, boil, 3 · cp (Tboil, 3) · Tboil, 3 .

(2.19)
Here, uboil, 2 and uboil, 3 refer to the mass flow rate of the out- and
inflowing mass streams at the respective temperatures of Tboil, 2 and
Tboil, 3. The feed and return temperatures of the boiler are known, namely
Tboil, 2 = 70 ◦C and Tboil, 3 = 30 ◦C. Considering that the feed and return
path of the boiler are inherently connected, the mass flow rates of
the heat-transfer medium have to be equal in both paths. Hence, the
following equality constraint has to be met:

uk, boil, 2 + uk, boil, 3
!
= 0 . (2.20)

With this last constraint the modeling of the biomass boiler is completed,
whereby its prediction model is given by (2.18) subject to the constraints
defined in (2.16) – (2.17) and (2.19) – (2.20).

In the presented ems framework a tes is represented by a first-order
integrator model with linear losses that depend on the soc of the tes.
Therefore, the sensible heat storage within the investigated heating
system is described by the following discrete-time state equation:

xk+1, TES = αTES · xk, TES −

4
∑

i=1
uk, TES, i · cp (TTES, i) · TTES, i · ∆tk

Hmax
TES

. (2.21)

Here, xTES denotes the state, i.e. soc, of the sensible heat storage, αTES ∈
(0, 1] represents the soc-dependent losses, and uTES, i denotes the mass
flow rate of the in- respectively outflowing mass stream of heat-transfer
medium at the i-th port of the tes at a corresponding temperature of
TTES, i. The maximum energy that may be stored within the tes is defined
by means of the maximum enthalpy Hmax

TES . Given the low compressibility
of water, it is approximated based on the volume of the storage VTES
and the difference between the two defined temperature levels (70 ◦C
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and 30 ◦C):

Hmax
TES = VTES · ρ ·

[
cp(70 ◦C) · 70 ◦C− cp(30 ◦C) · 30 ◦C

]
, (2.22)

where ρ denotes the density of the medium within the storage, which for
simplicity is assumed constant and independent of temperature in the
discussed example. Considering that the losses of the tes are assumed
to be negligible in the discussed example, the loss factor αTES is set to
one.

The soc of a tes, given its definition, is naturally restricted to be between
zero and one. This restriction is included by adding the constraint:

0 ≤ xk, TES ≤ 1 . (2.23)

The thermal load is defined by its known power demand wk, load. It
is provisioned by means of the in- and outflowing mass streams of
heat-transfer medium. Hence, similarly to (2.19) the following equality
constraint is defined:

wk, load
!
= uk, load, 1 · cp (Tload, 1) · Tload, 1 + uk, load, 2 · cp (Tload, 2) · Tload, 2 .

(2.24)

Here, uload, 1 and uload, 2 refer again to the out- and inflowing mass
streams of heat-transfer medium with the respective temperatures of
Tload, 1 and Tload, 2 at the respective ports 1 and 2. Given that the two ports
of the load are inherently connected, the following equality constraint is
defined to enforce mass balance between them:

uk, load, 1 + uk, load, 2
!
= 0 . (2.25)

With all prosumer prediction models defined, the connections between
prosumer ports need to be considered by means of introducing the
associated connection constraints.

Considering that all connections are defined to be lossless, the following
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equality constraints are defined in accordance with (2.4):

yk, src 1
+ uk, boil, 1

!
= 0 ,

uk, boil, 2 + uk, TES, 2
!
= 0 ,

uk, boil, 3 + uk, TES, 1
!
= 0 ,

uk, TES, 3 + uk, load, 2
!
= 0 ,

uk, TES, 4 + uk, load, 1
!
= 0 .

(2.26)

Given that all hydronic connections are assumed to impose a known
constant maximum limit on the admissible mass flow rates, the following
inequalities have to be met:

0 ≤uk, boil, 2 ≤ umax
boil, 2 ,

0 ≤uk, TES, 3 ≤ umax
TES, 3 .

(2.27)

Here, the connection limits are denoted by umax
boil, 2 for the connection

between the boiler and the tes, and umax
TES, 3 for the connection between

the tes and the thermal load.

Consequently, the model predictive ems controller may be synthesized,
with the associated optimization problem defined as follows:

min
ysrc, 1

J =
k0+Np

∑
k=k0+1

λval
k, ysrc, 1

· yk, src, 1 · ∆tk ,

subject to (2.16) – (2.21), (2.23) – (2.27) ∀ k ∈ {k0 + 1, . . . , k0 + Np} ,

xk0

!
= x(t) .

(2.28)
Notably, the defined cost function J is only dependent on the biomass
source output, given that it is the only system variable for which a
non-zero cost value is defined. To initialize each new optimization cycle
the current prosumer state x(t) is determined from measurements and
defined equal to the first considered state of the discrete-time prediction
model xk0 .
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For this most basic example of a hydronic heating system each consid-
ered time step within the prediction horizon introduces 13 continuous-
valued variables and one binary variable into the optimization problem.
Therefore, for a typical prediction time horizon of 24 h with a constant
sampling period of 15 min, the resulting optimization problem would
comprise 1,235 continuous and 95 binary optimization variables, which,
depending on the available hardware and solver algorithms, may al-
ready prove to be an optimization problem that entails non-negligible
solving times.

The above example illustrates how the prediction model of a hydronic
heating system and a corresponding mpc controller may be synthesized
in the presented framework. In order to model the inherently bilinear
phenomenon of energy transfer by convection, constant temperature values
were defined for each connection within the hydronic part of the system.
Notably, this measure facilitated the usage of very simple prediction models
for the utilized equipment, namely the use of the presented integrator
model (2.21) to represent a sensible heat storage.

As a result, it is not possible to asses temperature-dependent prosumer
behavior within in the ems optimization problem. This is due to the fact,
that the modulation of the feed and return temperatures according to the
instantaneous prosumer utilization or operation mode of the heating system
is not possible. Besides, the chosen model to represent the tes entails several
issues. These issues, along with alternative representations of thermal energy
transfer and storage within a hydronic system, aiming to circumvent these
issues, will be discussed in the following section.

2.3. Hybrid Linear Representations of Energy
Transfer by Convection and Sensible Heat
Storage

Under the assumption of constant feed and return temperatures, energy
transfer by convection within hydronic systems can be reasonably well ap-
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proximated as a simple linear phenomenon. Therefore, many optimization-
based strategies that concern the optimal operation or design of hydronic
systems or components thereof assume constant heat-transfer medium
temperatures when representing energy transfer by convection.

Following from this measure, thermal energy transfer may be modeled
by means of generalized energy flows, as opposed to mass flows at a
particular temperature. Hence, the thermal energy output or demand of
different prosumers can be combined to obtain the aggregated system
output or demand. This measure may potentially significantly simplify the
representation of the investigated system. Naturally, this is only possible
if the feed and return temperatures are defined equally for all prosumers.
Instead of using the mass flow rates of the in- and outflowing heat-transfer
medium as control variables within the prediction models of prosumers
(see Example 2.1), one could reformulate the derived prediction models to
consider instead generalized energy flows as it is illustrated in the appendix
of [16].

Represented by means of generalized energy flows, the representation of
thermal energy transfer by convection is in fact equivalent to the representa-
tion of electrical energy transfer or any other generic form of energy transfer
that can be expressed by means of linear equations. Hence, one may be able
to define general models for certain generic classes of prosumers, i.e. energy
converters or storages, independently of the specific form of considered
primary or end-use energy. Considering the aforementioned historic preva-
lence of electrical systems in the development of ems, one might therefore
be enticed to model a tes similarly to the most prominent component for
electrical energy storage, a battery. The energy stored within a battery is typ-
ically approximated by simply integrating the electric power contributions
of all charging and discharging currents. Besides, a dis-/charging efficiency
term and a linear loss term are typically considered to account for i.a. the
internal resistance and self-discharge behavior of a generic battery.

Representing a high-temperature sensible heat storage in a similar fashion
may result in the following first-order linear system:

Ḣ = αH + Ḣf − Ḣr . (2.29)
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Here, the stored thermal energy is expressed by means of the enthalpy
H of the medium within the storage. The rate of change of the stored
energy is described by linear losses, which are defined by means of the
loss coefficient α and are proportional to the instantaneous enthalpy of the
storage, as well as the overall in- and outflow of enthalpy denoted by Ḣf ≥ 0
respectively Ḣr ≥ 0. Notably, (2.29) is somewhat similar to (2.21) when
taking the utilized sign convention that is adopted in the ems framework
into account. The sole difference between the two storage models is that
within the ems framework the generalized enthalpy flows Ḣf and Ḣr are
approximated by mass flows at a defined temperature, and that the stored
energy is represented with respect to the soc, i.e. as a relative value with
respect to a defined maximum and minimal value of energy that can be
stored within the storage.

When representing specifically a fluid storage tank by (2.29) the inherent
physical implications are that either the medium within the storage is ideally
mixed or that there are two distinct and separable temperature layers present
within the storage, i.e. the storage is ideally stratified. In other words, this
means that the medium within the tank is either at a constant temperature
or that there are two vertically separable volumes of matter, each with a
constant though different temperature.

In the latter case, all inflowing mass streams are assumed to have a temper-
ature equal to one of the layers and are assumed to directly enter the layer
with the corresponding temperature, regardless of the specific location at
which a specific inflow may actually enter the storage tank. For the case
of a water-based heat-transfer medium, stratification occurs naturally con-
sidering the temperature-dependent density of water, e.g. in Example 2.1
the colder 30 ◦C layer was inherently assumed to be located at the bottom
of the tes. It is important to note, however, that in real-world applications
a certain degree of mixing and conduction between the layers cannot be
avoided. Resulting from this, a certain transition zone (thermocline) with
a continuous temperature gradient will always form naturally within a
sensible heat storage, and hence potentially reduce the amount of usable
energy within the storage. In light of this first modeling inaccuracy of the
simplified model, there are additional issues entailed by using (2.29) to
represent a sensible heat storage.
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First, from an application perspective where prosumers with significantly
different nominal temperature operating points, e.g. a biomass boiler and a
solar thermal collector, are connected to the the same sensible heat storage
the presented two layer model may be completely inadequate, given that
there may be no output temperature that both prosumers could provide at
reasonable efficiencies. Therefore, the use of the discussed simple integrator
model is restricted to applications where the connected prosumers have
similar temperature operating points, as otherwise the performance of the
ems might be severely impaired by e.g. continuously operating various
prosumers at inefficient temperature operating points that are predefined
through the chosen feed and return temperature within the prediction
model of the sensible heat storage.

Second, consider the actually stored energy within a cylindrical sensible heat
storage, which can be reasonably well approximated as follows, assuming
that the medium within the storage is incompressible:

H =
∫ L

0
A · ρ · cp · (T(l)− T0) dl . (2.30)

Here, the physical dimension of the tank are defined by L and A, denoting
the height and the cross section area of the tank. Assuming that the medium
within the tank is homogeneous and isotherm along the horizontal axis,
the internal energy within the tank may be computed by integrating the
height-dependent temperature T(l) of the medium within the storage along
the vertical axis1.

The issue arising from (2.30) concerns the definition of the soc, i.e. the
main parameter that may be assessed to define minimum and maximum
constraints on the amount of stored energy, with respect to the chosen
reference temperature. In a typical practical application, the maximum
energy that can be stored within a sensible heat storage would be defined
with respect to the maximum temperature that thermal energy generating
prosumers would be able to provide. A storage would be considered full if
the medium inside would be homogeneously at this maximum temperature.
In contrast to that, considering the non-zero thermal losses that occur in all

1In general both cp and ρ will be temperature-dependent and, hence also dependent
on l, however, this dependence is neglected in the above equation for simplicity.
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practical applications, the storage would be considered empty if the medium
within the storage would be homogeneously at ambient temperature. Hence,
T0 would have to be defined to be equal to the ambient temperature.

However, considering that thermal prosumers within hydronic systems
usually have certain minimal temperature specifications, e.g. a space heater
may only accept thermal energy that is provisioned at a significantly higher
temperature than a defined reference room temperature, a storage might
be defined to have high internal energy (with respect to T0 being equal
to the ambient temperature), but from the perspective of the connected
prosumers there may be little to none usable energy stored within. In order
to address this issue one might redefine T0 to be equal to the minimal
return temperature of the connected consumers, e.g. 30 ◦C in the previously
discussed example, where now an soc of zero would represent the case
where the temperature of the internal medium is homogeneously at this
minimal return temperature. Although being a more useful definition from
the perspective of a connected consumer, it would potentially exclude
the representation of the aforementioned state of complete cool-down to
ambient temperature of a sensible heat storage. Additionally, if one considers
that the ambient temperature is typically lower than the defined return
temperature of consumers in heating applications, an actual sensible heat
storage that would have cooled down to ambient temperature would still
be defined to have an soc of zero, given that a soc is inherently defined to
be greater or equal to zero. Hence, the necessary initial energy to bring the
storage to a certain non-zero soc would be wrongly computed within the
ems.

Considering these issues entailed by the presented integrator model when
representing an actual sensible heat storage, alternative prediction models to
represent sensible heat storages within hydronic systems have been devised.
One method, proposed in [23], is to model a single physical thermal energy
storage, within which both high and medium temperature thermal energy
ought to be stored, by two separate integrator models for each considered
temperature level. This allows for modeling sensible heat storages that are
connected to prosumers that provide thermal energy at high temperature
e.g. biomass boilers and those that generate thermal energy at a lower
temperature e.g. solar thermal collectors. Naturally, this method can be
easily extended if thermal energy storage ought to be considered at multiple
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temperature levels, by modeling each considered temperature level by means
of an individual separate integrator model.

However, within the proposed approach, interactions between the individual
models that would reflect on the occurring conduction or mixing between
the adjacent high and medium temperature zones, and hence the formation
of a thermocline are not considered. Furthermore, each individual model is
defined to have fixed physical dimensions, i.e. a fixed storage volume, hence
instantaneously available capacity in one of the considered temperature
zones cannot be used to store thermal energy at other temperature levels,
as it would be the case in the actual single physical storage. Thus, for
applications that are characterized by sudden and persisting changes of
the system temperature operating points, i.e. thermal energy at medium
temperature might be predominantly demanded for an extended period of
time, whilst during other time periods thermal energy might be demanded
exclusively at a high temperature, the presented fixed size, multi-model
approach might prove to be limiting the potential benefits entailed by the
deployment of an ems.

Considering that each storage is modeled separately by an individual first-
order system, energy transfer by means of convection can still be represented
by mass streams at fixed temperatures, with each prosumer being connected
to the storage that represents its nominal temperature operating point.
However, by connecting each prosumer to several of the individual storage
models and using a different prediction model depending on the storage
that energy currently is drawn from or fed into, it would be possible to
potentially consider varying temperature operating points of prosumers.

Another approach is proposed in [22], where a sensible heat storage is
modeled by layers of constant mass and volume but considering varying
layer temperatures. Given the notion of varying temperature, the authors
propose to define energy transfer by means of convection to occur at a
constant mass flow rate, i.e. an auxiliary binary variable is introduced
to represent the activation of a pump which operates at a defined fixed
pumping power. The resulting multiplication of a binary (pump activation)
and continuous-valued (layer temperature) variable can then be transformed
into a linear expression and several mixed-linear inequalities using the mld

framework (see e.g. (2.18) and (2.17) or Table A.3 in Appendix A). By the
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same token, the authors illustrate that it is in fact possible to discretize the
rate of mass flow by introducing additional auxiliary binary variables, hence
several discrete operating points of a pump may be considered.

The main problem with this approach is the potential introduction of a
large number of binary variables, if the rate of mass flow ought to be dis-
cretized with a sufficiently high resolution. As previously mentioned, the
introduction of binary variables within prediction models generally severely
increase the computational complexity of the associated optimization prob-
lem, and hence may entail significantly increased solving times. However,
the illustrated approach allows to represent the occurring physical phenom-
ena of ambient energy losses and axial conduction, that physically manifest
themselves in temperature changes of the medium within the storage, in a
physically accurate sense.

Besides the two mentioned approaches, a novel hybrid linear model of
sensible heat storages for the use as prediction models in mpc-driven ems

has recently been proposed by Muschick et al. [17]. Considering that said
novel model was in fact implemented into the previously discussed ems

framework as part of this thesis, the following section will discuss the main
aspects of said proposed model in further detail.

2.3.1. The Multi-Layer Thermal Storage Model with
Constant Temperature Levels

In the following, the thermal storage model proposed in [17] where it is
referred to as the multi-layer buffer model with constant temperature levels and
the associated representation of thermal energy transfer by convection will
be discussed. In addition to the chosen representation of energy transfer
(charge and discharge of the thermal storage), the representation of the
physical phenomena of ambient energy losses and axial conduction will be
illustrated.

The main concept of the proposed model is, as the name suggests, to rep-
resent the medium within a sensible heat storage by means of N (vertical)
layers of varying volume but with constant temperature. Hence, the model
implies ideal stratification of the physical storage with several distinct
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temperature zones. The considered layers within the model are vertically
ordered according to the density of the medium at the respective prede-
fined layer temperatures. Each inflowing mass stream is defined to have a
temperature that is equal to one of the layer temperatures and is defined
to directly enter only said layer. Hence, temperature-dependent buoyancy
of the different layers does not have to be considered specifically, as would
be the case if the layer temperatures would be assumed varying as e.g. in
[22]. However, mixing effects due to natural convection are therefore not
considered, i.e. neglected, within the proposed model.

In order to accurately represent the complete loss of internal energy due
to ambient energy losses, one of the layer temperatures and the reference
temperature T0 are defined to be equal to the ambient temperature. The
layer at ambient temperature does therefore not contribute to the amount of
energy stored inside of the storage.

For the following explanations, the considered thermal storage tank is
assumed to be cylindrical, as illustrated in Figure 2.2. Following from this
assumption, the volume of each layer is sufficiently defined by its respective
height. Therefore, the layer heights are considered as states within the state-
space model representation of the thermal storage tank. One fundamental
assumption that is made in the following is that the sum of all layer heights
stays constant, namely equal to the height of the storage tank L. Hence,
for each outflow there ought to occur an equivalent inflow of fluid, which
may be enforced by defining mass balance constraints for the set of inlets
and outlets of the storage. Additionally, the density of the medium within
the storage needs to be considered constant over the entire temperature
range, and the medium inside the storage is assumed to be incompressible,
which typically is a valid assumption for most liquids. As a consequence of
these assumptions, the height of the layer with ambient temperature can be
neglected within the state-space representation of the storage, given that its
height can always be computed through the other system states.

For simplicity it is further assumed that the medium within the storage is
of equivalent chemical composition as the heat-transfer medium within the
hydronic system that the storage is integrated in. Therefore, direct mass
exchange between prosumers and the storage tank occurs such that no
internal heat exchangers or similar components have to be considered.
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Figure 2.2.: Schematic of the multi-layer constant temperature representation of a cylindrical
sensible heat storage.

Energy Transfer

Within the multi-layer constant temperature context, energy transfer by
convection is represented such that every in- and outflowing stream of heat-
transfer medium is represented by a superposition of at most N parallel
mass streams whose respective temperatures are constant and equal to one
of the defined layer temperatures. This is depicted in Figure 2.3 for the
example of a generic mass stream with mass flow rate ṁ and temperature
T. Following from this representation, the rate of change of the energy Ėms
transferred by the mass stream by means of convection may be approximated
as follows:

Ėms ≈ ṁ · cp(T) · T
!
=

N

∑
i=1

ṁi · cp (Ti) · Ti . (2.31)
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Figure 2.3.: Illustration of the proposed approximation method to represent energy transfer
by convection. A mass stream with mass flow rate ṁ and a variable temperature
T is approximated as a mixture of at most N mass streams with mass flow
rates ṁi at pre-defined, constant temperatures Ti, i = 1, . . . , N.

Here, ṁi denotes the mass flow rate of the i-th parallel mass stream, which
is defined to have the respective temperature Ti of the i-th layer of the
sensible heat storage model. Naturally, the following condition regarding
the individual mass flow rates of the introduced N fictitious parallel mass
streams ought to hold:

ṁ !
=

N

∑
i=1

ṁi . (2.32)

In contrast to the previously discussed fixed temperature representation of
energy transfer by convection, the proposed representation (2.31) facilitates
the representation of mass streams with varying temperatures by means
of adjusting the respective mass flow rates ṁi of the parallel, constant
temperature mass streams. The actual temperature T of the original mass
stream is preserved as the mixed/aggregated temperature Tm of the N
parallel mass streams:

T !
= Tm :=

N
∑

i=1
ṁi · Ti

N
∑

i=1
ṁi

. (2.33)

However, only temperature values within the range spanned by the extreme
layer temperatures of the storage model can be represented by the illustrated
method.
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As mentioned before, each mass stream entering the storage is defined to
only increase the size of the associated layer of equal temperature, regardless
of the actual location where the mass stream enters the storage. Consequen-
tially, the height changes of the layers within the storage resulting from
inflowing mass streams may be expressed as follows:

ḣin, l =
1

ρ · A ·
Ni

∑
j=1

ṁfj, l ∀ l ∈ {2, . . . , N} . (2.34)

Here, the rate of change of the height of the l-th layer due to inflows of
heat-transfer medium ḣin, l is defined by all respective mass streams ṁfj, l
entering the respective layer through one of the Ni inlets of the storage. In
the above equation A denotes the inner cross section area of the storage and
ρ denotes the mean heat-transfer medium density. The height change of the
first layer is not specifically considered, given the previously illustrated fact
that its height can be determined from all other layer heights.

In contrast to the inflowing mass streams, the representation of outflowing
mass streams is more involved in the multi-layer context, considering that
for a specific outlet energy/mass may only be drawn from the specific
layer that currently is located at the same height as said outlet. In order to
express this restriction, N binary indicator variables at(l, k) are introduced
for each of the No outlets of the storage to represent whether the l-th layer
is currently accessible at the k-th outlet. With regards to the heights of all
layers which are not at ambient temperature — the states of the multi-layer
storage prediction model — these indicator variables are defined by the
following mixed-logical proposition:

at(l, k) ⇐⇒
[

L−
N

∑
i=l+1

hi > ho, k

]
∧
[

L−
N

∑
i=l

hn ≤ ho, k

]
∀ l ∈ {2, . . . , N} ,

at(1, k) ⇐⇒
[

L−
N

∑
i=2

hi > ho, k

]
.

(2.35)
Here, hi and ho, k denote the height of the i-th layer and respectively the
height of the k-th outlet, as indicated in Figure 2.2.
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In the article, the introduction of N additional auxiliary binary variables
ab(l, k) for each outlet is proposed, which are defined as follows:

ab(l, k) ⇐⇒
[

L−
N

∑
i=l+1

hi > ho, k

]
∀ l ∈ {1, . . . , N − 1} . (2.36)

The introduced auxiliary variables indicate whether the upper boundary of
the l-th layer exceeds, i.e. is above, the height of the k-th outlet. Naturally
for the top-most layer, whose upper boundary coincides with the top of the
storage, this would always be the case, hence:

ab(N, k) = true ∀ k ∈ {1, . . . , No} . (2.37)

With the introduced auxiliary variables it is possible to transform the mixed-
logical propositions (2.35) into strictly logical propositions, namely:

at(l, k) ⇐⇒ ab(l, k) ∧ ¬ab(l − 1, k) ∀ l ∈ {2, . . . , N} , (2.38)

or, for the case of the bottom layer:

at(1, k) ⇐⇒ ab(1, k) . (2.39)

With the discussed propositions that define the introduced binary variables,
the restriction that each outlet may only draw from the layer that currently
resides at the same height as the respective outlet, may be expressed by
enforcing the following constraint for each outlet:

ṁrk, l ≤ at(l, k) · ṁmax
rk, l . (2.40)

Here, ṁrk, l denotes the mass flow rate of the mass stream exiting the k-th
outlet and drawing from the l-th layer. The variable ṁmax

rk
in the above

equations denotes a chosen upper bound for the maximum mass flow
rate that may pass through said outlet. In the above equation the binary
variable at(l, k) is interpreted as either 1 or 0 depending on whether its
value is true or false. Hence, the mass streams through the outlets of the
storage are restricted to draw only from the layer currently residing at the
respective outlet, as all other at(l, k) variables are naturally false, and hence
through 2.40 define all other mass streams drawing from different layers to
be zero.
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With the illustrated outlet constraints, height changes of the storage layers
due to outflowing mass streams may be computed similarly to (2.34) as
follows:

ḣout, l = −
1

ρ · A ·
No

∑
k=1

ṁrk, l ∀ l ∈ {2, . . . , N} . (2.41)

Ambient losses

For sensible heat storage tanks, losses of internal energy are assumed
to mainly occur by means of conduction through the outer shell of the
storage. Hence, in accordance with Fourier’s Law of Conduction, the occurring
thermal energy losses Q̇loss, l for the l-th layer of the storage model may be
approximated by:

Q̇loss, l = κins · Al · (Tl − Tamb) . (2.42)

Here, κins is defined as the mean thermal conductance of the casing and
insulation layer of the storage, Al is the area of the outer surface of the
storage that is in contact with the respective l-th layer, whilst Tl and Tamb
represent the temperature of the l-th layer and the ambient surroundings
respectively. Therefore, ambient thermal energy losses by conduction are
directly dependent on the specific geometry of a considered sensible heat
storage. This approximation of the occurring thermal energy losses by (2.42)
is only valid if the sensible heat storage is in fact sufficiently well insulated,
considering the inherent assumption that the outer surface of the insulation
layer of the storage is actually at ambient temperature.

Given the assumed cylindrical shape of the storage, it is evident that one
has to distinguish between thermal energy losses through the side and the
top and bottom faces of the storage. Whilst losses through the side of the
storage occur continuously and are directly proportional to the respective
height of a layer, losses through the top and bottom occur only for the
layer that currently is in contact with the top respectively the bottom of the
storage.

In order to account for the latter phenomenon, similarly to the previously
discussed phenomenon of storage discharge by means of outflowing mass
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streams, two binary indicator variables are introduced for each layer, except
for the layer with ambient temperature for which per definition no ambi-
ent thermal energy losses occur. The introduced binary variables indicate
whether an individual layer is currently in contact with any of the two face
sides of the storage. This measure allows to model the occurring ambient
energy losses for each layer as follows:

Q̇loss, l = Q̇side, l + Q̇top, l + Q̇bot, l

= κins · (Tl − Tamb) ·

 2 · π
ln (ro)− ln (ri)

· ḣl︸ ︷︷ ︸
side

+ adjt(l) · A︸ ︷︷ ︸
top

+ adjb(l) · A︸ ︷︷ ︸
bottom

 .

(2.43)
Here, the total ambient losses for the l-th layer Q̇loss, l are determined by a
combination of terms describing the losses through the side and the face
sides of the storage. The energy losses through the side are computed based
on the current height of the l-th layer hl and the inner and outer radii of
the storage, which are denoted by ri respectively ro. Energy losses through
the face sides of the storage are defined directly proportional to the cross
section area of the storage denoted by A, whereby the introduced binary
indicator variables, adjt(l) for the top and adjb(l) for the bottom, express
whether the l-th layer is currently in contact with one of the face sides.

In the above the inherent assumption is made that the insulating layer of
the storage is of equal thickness and composition at both the wall and at
the face sides. Hence, only a single general mean thermal conductance κins
needs to be defined/determined.

The introduced binary indicator variables are defined by the following
propositions:

adjt(l) ⇐⇒
[

N

∑
i=l+1

hi = 0

]
∀ l ∈ {2, . . . , N} ,

adjb(l) ⇐⇒
[

L−
N

∑
i=l

hi = 0

]
∀ l ∈ {2, . . . , N} .

(2.44)
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With the energy losses quantitatively defined for each layer, the occurring
thermal energy losses, that physically would manifest themselves in a tem-
perature decrease of the medium within the storage, have to be translated
into the multi-layer constant temperature context. In said context, energy
losses for a specific layer have to be expressed by decreasing the respective
height and hence the volume of the layer. However, considering that the
sum of all layer heights is set to remain constant, every height decrease of
a particular layer has to result in a equivalent height increase of another
layer. Therefore, thermal losses of a particular layer are considered by an
associated height decrease and a equal height increase of that adjacent
layer whose temperature is closer to the ambient temperature, and hence its
specific usable energy is lower.

To denote the index of the layer that is adjacent to the l-th layer, the indicator
τl is introduced and defined as follows:

τl :=

{
−1 Tl > Tamb

1 Tl < Tamb
, (2.45)

The height change of the l-th layer due to ambient thermal energy losses
ḣamb, l can then be computed as the ratio between the total ambient losses
per layer and the energy difference between the l-th and its adjacent layer
per unit height:

ḣamb, l = −
Q̇loss, l

ρ · A ·
(
cp (Tl) · Tl − cp

(
Tl+τl

)
· Tl+τl

) ∀ l ∈ {2, . . . , N} ,

ḣadj, l+τl
= −ḣamb, l ∀ l + τl ∈ {2, . . . , N} . (2.46)

Axial Conduction

The term axial conduction, in the context of sensible heat storages, refers to
the physical phenomenon where if two layers of liquid, each with uniform
though different temperature, are brought into contact, the layer with the
higher temperature will overtime transfer thermal energy by means of con-
duction to the layer of lower temperature, hence increasing its respective
temperature and forming the aforementioned thermocline. This process
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continues naturally until both layers reach a uniform equilibrium tempera-
ture, whereupon no further energy transfer between the layers occurs. Thus,
in the context of sensible heat storages this phenomenon does not entail a
decrease of internal energy, but rather a potential decrease in usable energy
(exergy). For the considered storage, the phenomenon of axial conduction
can be shown to be reasonably well described by the following partial
differential equation (see e.g. [31]):

∂T
∂t

=
λ

cp · ρ
· ∂2T

∂z2 . (2.47)

Here, T denotes the height- and time-dependent temperature, λ the thermal
conductivity and cp the isobaric specific heat of the medium within the
storage1.

Equation (2.47) supports the intuition that the effects of axial conduction, i.e.
the smoothing of the vertical temperature profile T(z) within the storage,
are particularly pronounced if T(z) contains sharp changes, e.g. as they
would occur in a well stratified storage. Considering that in the context of
the presented modeling approach layer temperatures are set constant, the
following proceedings will discuss how the phenomenon of axial conduction
described by (2.47) may be captured by means of layer height variations.

To derive a representation/approximation of axial conduction in the multi-
layer constant temperature context, consider the medium within the storage
to be uniformly spatially discretized in z-direction with a step width of
∆z, resulting in equal-sized cells/slabs of volume. The enthalpy Hc stored
within such a cell of constant volume Vc = ∆z · A is then defined by:

Ḣc = ∆z · A · ρ · cp · Ṫc . (2.48)

Here, Tc denotes the temperature of the medium within the cell, which is
assumed to be uniform within the enclosed volume Vc. In the multi-layer
constant temperature context, this change in enthalpy needs to be expressed
by means of varying layer heights. This may be achieved by means of the
following equation:

Ḣl ≈ ḣl · A · ρ · cp · (Tl − T0) , (2.49)

1Considering the assumption that the medium within the buffer is incompressible, the
isobaric specific heat is in fact equal to the isochoric specific heat.
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where Ḣl denotes the temporal change of the enthalpy of a considered layer,
ḣl denotes the equivalent change in layer height, and Tl denotes the constant
layer temperature.

The temporal change of the temperature Ṫc within each cell, due to axial
conduction, can be approximated by utilizing the central difference formula
to rewrite the second spatial derivative in (2.47) s.t.:

Ṫc =
λ

cp · ρ
· Tc−1 − 2Tc + Tc+1

∆z2 . (2.50)

Here, Tc−1 and Tc+1 denote the temperatures of the adjacent lower respec-
tively adjacent upper cell. An appropriate approximation of the central
difference formula in the context of layers with varying heights, i.e. space is
not discretized uniformly, is proposed in the article as follows:

∂2Tl
∂z2 ≈

1
hl
·
(

Tl−1 − Tl
1
2 (hl−1 + hl)

− Tl − Tl+1
1
2 (hl + hl+1)

)
. (2.51)

Here, the second partial derivative of the temperature of the l-th layer
with respect to z is defined by the temperatures of the adjacent layers and
their respective layer heights. Consequently, inserting (2.51) into (2.47) and
subsequently into (2.48), and equating (2.48) and (2.49) yields:

ḣl · A · ρ · cp · (Tl − T0) ≈ 2λA
(

Tl−1 − Tl
hl−1 + hl

− Tl − Tl−1

hl+1 + hl

)
. (2.52)

Notably, the above equation is non-linear with respect to the layer heights,
following the natural intuition that a smaller adjacent layer would entail
a faster energy transfer. The resulting inverse proportionality cannot be
included into the state-space representation of the multi-layer constant
temperature storage model, given the previously stated notion of hybrid
linear models.

The classical approach to circumvent this issue of non-linearity would be
to linearize the inverse proportionality by means of a tangent through an
operating point x0 s.t.:

1
x
≈ 1

x0
− 1

x2
0
(x− x0) . (2.53)
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However, depending on the chosen x0, the above linearization may be-
come negative for large values of x which would compromise the stability
of the multi-layer storage model as it would have the effect of growing
extreme temperature layers as opposed to shrinking them. This stability
issue, however, could be resolved by setting x0 = L

2 and hence preventing
negative values, considering that x — the sum of two layer heights — is
naturally limited between 0 and L. However, as pointed out in the article,
any linearization will result in a non-linear expression if the differential
equations ought to be discretized in time, which is necessary if the discussed
model ought to be utilized as a prediction model for mpc. Thus, the inverse
proportionality may only be approximated by a constant which will result
in at least an accurate approximation of the steady-state of the phenomenon
of axial conduction.

Following from the above remarks, axial conduction evidently cannot be
accurately represented within the context of modeling a sensible heat storage
by means of multiple layers at constant temperatures. Therefore, if one
requires a prediction model that accurately represents the phenomenon
of axial conduction within a sensible heat storage (e.g. when modeling
large seasonal tes), the proposed model may not be suitable. However,
the authors of the article propose the following method in order to at
least approximately capture the occurring exergy losses caused by axial
conduction.

As mentioned previously, the phenomenon of axial conduction manifests it-
self in the fact that overtime layers of extreme temperature within a stratified
storage scenario will transfer energy by means of conduction to layers of
lower temperature. Representing this fact in the multi-layer constant temper-
ature context implies that layers of higher temperature will decrease in size,
whilst adjacent layers of lower temperature will increase in size. However,
in contrast to the representation of ambient losses, the phenomenon of axial
conduction will not result in a decrease of enthalpy, hence requiring the
consideration of layer triplets as opposed to pairs. Within such a layer triplet
configuration the two outer layers will reduce in size whilst the central one
will increase by the same amount. This behavior is somewhat coherent with
the steady-state of the axial conduction process, where the medium within
the storage would be at a uniform temperature preserving all previously
contained enthalpy. With regards to the proposed triplet perspective, this
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final steady-state is represented, depending on the initially stored energy
within the storage and the defined layer temperatures, either accurately by
a single layer occupying the whole volume of the storage, or approximately
by two adjacent layers whose relative size would match the initially stored
energy within the storage.

For the proposed method, the following constraints need to be enforced for
each designated layer triplet.

ḣl−1 + ḣl + ḣl+1
!
= 0 , (2.54)

ḣl−1 · (Tl−1 − T0) + ḣl · (Tl − T0) + ḣl+1 · (Tl+1 − T0)
!
= 0 . (2.55)

Here, an exemplary layer triplet is considered with the l-th storage layer
in the center and the adjacent layers at the top respectively at the bottom.
The constraints (2.54) and (2.55) imply the preservation of the energy stored
within the buffer and the preservation of the combined layer height.

By reformulating the above constraints, the respective height changes of the
layers might be expressed as follows:

ḣl = −ḣl−1 − ḣl+1 , (2.56)

ḣl+1 =
Tl − Tl−1

Tl+1 − Tl
· ḣl−1 . (2.57)

The height change of the top layer of the triplet, that occurs given the
occurring energy transfer from the top layer to the central layer, may be
defined in accordance with Fourier’s Law of Conduction s.t.:

ḣl+1 = −κl+1, l · A · (Tl+1 − Tl) , (2.58)

where κl+1, l symbolizes the thermal conductance between the top and
central layer. This thermal conductance, however, would be generally defined
as inversely proportional to the layer heights hl+1 and hl. Given that this
inverse proportionality cannot be expressed by means of hybrid linear
equations, κl+1, l may be set equal to:

κl+1, l =
λ

L/N
. (2.59)
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where L denotes the height of the storage and N is the number of considered
storage layers. Depending on the typical layer configuration within, and
operation of a respective storage, κl+1, l may be chosen differently or individ-
ually for each layer pair as to approximate the actual temporal progression
of axial conduction better.

It is evident from (2.56) and (2.57) that energy transfer within a triplet
configuration may only occur whilst the two extreme layers have a height
greater than zero. If one of the extreme layers reaches zero height, a different
layer might come into contact with the central layer driving its continuing
height increase or the former central layer may turn into an extreme layer
of a different triplet configuration. Similarly to the previous discussions on
representing the ambient losses occurring at the face sides of the storage,
this circumstance can be represented by a set of discrete states, hence binary
indicator variables are introduced which represent whether a distinct layer
triplet configuration is currently active within the storage. Considering the
high number of binary variables that would have to to be introduced if all
viable triplet combinations would be considered, the inherent redundancy
within the choice of triplet combinations can be used to reduce the amount
of introduced binary variables. Hence, within the article, the authors restrict
the considered triplet combinations by considering only consecutive pairs
of layers making up the top and central layer, with the next lower layer of
non-zero height forming the bottom layer of an active triplet.

For each triplet constructed in this way, the respective binary indicator
variable tri(c + 1, c, b), indicates whether the height of the top (c + 1) and
bottom (b) layer are non-zero. Therefore it is defined by the following
mixed-logic propositional statement:

tri(c + 1, c, b) ⇐⇒ [hc+1 > 0] ∧ [hb > 0] ∧
c−1∧

i=b+1

[hi = 0] . (2.60)

By integrating these indicator variables into (2.58) and using (2.56) as well as
(2.57), the phenomenon of axial conduction is represented in the multi-layer
constant temperature context for each triplet, by means of the following
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height changes:

ḣtop, tri(c+1, c, b) = −tri(c + 1, c, b) · λ

L/N
· A · (Tc+1 − Tc) ,

ḣmid, tri(c+1, c, b) = −ḣtop, tri(c+1, c, b) − ḣbot, tri(c+1, c, b) ,

ḣbot, tri(c+1, c, b) = ḣtop, tri(c+1, c, b) ·
Tc+1 − Tc

Tc − Tb
.

(2.61)

Given that each layer may be part of several triplet configurations, the
following combined height changes for each layer are defined:

ḣcond, N =
N−2

∑
i=1

ḣtop, tri(N, N−1, i) ,

ḣcond, N−1 =
N−3

∑
i=1

ḣtop, tri(N−1, N−2, i) +
N−2

∑
i=1

ḣmid, tri(N, N−1, i) ,

ḣcond, l =
l−2

∑
i=1

ḣtop, tri(l, l−1, i) +
l−1

∑
i=1

ḣmid, tri(l+1, l, i) +
N

∑
i=l+1

ḣbot, tri(i+1, i, l)

∀ l ∈ {3, . . . , N − 2} ,

ḣcond, 2 = ḣmid, tri(3, 2, 1) +
N

∑
i=3

ḣbot, tri(i+1, i, 2) ,

ḣcond, 1 =
N

∑
i=2

ḣbot, tri(i+1, i, 1) .

(2.62)
Although it is not possible to accurately represent axial conduction within
the multi-layer constant temperature context by means of the above equa-
tions, they do entail a similar steady-state behavior. Therefore, by utilizing
the presented layer triplet method, indications as to the occurring loss of
exergy are present within the storage prediction model and may thus be as-
sessed within the ems optimization problem when determining the optimal
plan of operation for the considered storage and the mes that the storage is
integrated in.
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2.3.2. Complete Model

With the discussed representations of the dominant physical phenomena
of energy transfer by convection, ambient losses and axial conduction, the
complete multi-layer constant temperature thermal storage prediction model
can be assembled. The height changes of the layers within the storage are
determined by the combined contributions of the individual physical effects,
resulting in the following state-space model:

ḣl = ḣin, l + ḣout, l + ḣamb, l + ḣadj, l + ḣcond, l ∀ l ∈ {2, . . . , N} . (2.63)

The following chapter is concerned with the implications of the introduced
method of representing convective energy transfer by means of a set of
parallel mass streams at fixed temperatures. Specifically, the effects of ap-
plying this method to the existing prosumers models, and how the added
flexibility may be used to improve the performance of an ems by considering
temperature-dependent prosumer behavior, will be discussed.

Second, the most important aspects regarding the actual implementation
of the presented tes model into the existing framework will be briefly
summarized.
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The physical analysis and modeling of hydronic systems typically com-
mences by formulating fundamental energy and mass balance equations for
all individual components of the investigated system, and subsequently link-
ing those equations to describe interactions (energy/mass transfer) between
the components.

For each component, these balance equations describe how and by which
means energy or mass is consumed from, and provided back to, the en-
vironment of the component. Hence, they provide an abstraction of the
inner-workings of a component by means of energy interactions with its
environment. Considering that in ems only these kind of interactions are
of interest when modeling prosumers, energy and mass balance equations
serve as the starting point when deriving prediction models for specific
prosumers.

In the following, the fundamental energy and mass balance equations for
a generic prosumer in a hydronic system will be derived. To do this, a
generic prosumer will be treated as a so-called control volume or open system,
a thermodynamic term that simply describes a closed volume of space
at whose boundaries energy and mass transfer occurs. In the context of
hydronic systems, the derived balance equations can be significantly sim-
plified under a few basic assumptions. The simplified equations allow the
interpretation that the energy interactions of a prosumer with its environ-
ment in a hydronic system are driven by energy transfer by convection,
which is described by (1.1) — the equation whose bilinearity motivated the
deliberations presented in this thesis.
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Subsequently, the derived balance equations will be reformulated to con-
sider the previously introduced notion of representing mass streams at
varying temperatures, by means of sets of parallel mass streams at fixed
temperatures. Based on this, simple prediction models for common classes
of prosumers in hydronic systems will be derived that utilize this notion of
varying temperature to capture temperature-dependent prosumer behavior.
The considered prosumer classes are namely, generic consumers, generic
producer, solar thermal collectors and heat pumps. Additionally, the repre-
sentation of flow diverters in the form of valves (switches) and multi-port
tee pieces (distributors) as well as the updated representation of connections
will be briefly discussed.

Last, the main aspects concerning the integration of the previously discussed
multi-layer constant temperature model of sensible heat storages into the
ems framework will be summarized.

3.1. Control Volume Analysis

The following analysis of the energy and mass balance equations of a generic
control volume will serve as the foundation for the subsequent derivation
of prosumer prediction models. This analysis will be conducted for the
simplified control volume depicted in Figure 3.1. Notably, the depicted
control volume — bounded by the dashed line — comprises only one
inlet, and one outlet, with the mass stream through each being assumed to
be strictly one-dimensional. Although shown for this simplified example,
the following deliberations can be easily extended to more sophisticated
configurations and applications that involve e.g. multi-dimensional mass
flow through multiple inlets and outlets. However, this general derivation is
omitted here, as to not obstruct the important fundamental assertions by
mathematical intricacies. Nevertheless, the developed insights may serve
as a general starting point when deriving generic models for prosumers
within hydronic systems.

For the depicted control volume the first law of thermodynamics — the energy
conservation principle — defines the rate of change of the energy contained
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Figure 3.1.: Considered control volume with a single inlet and outlet, and one-dimensional
mass streams.

within the control volume Ecv, as follows:

Ėcv = −Q̇− Ẇ + Ėf − Ėr . (3.1)

The terms Q̇ and Ẇ refer to the net rate of energy transfer by heat re-
spectively work along the boundary of the control volume. Besides energy
transfer by means of heat or work, energy transfer by means of bulk motion
of matter of the entering and exiting mass streams needs to be considered.
The resulting contributions of this form of energy transfer to the total inter-
nal, kinetic or potential energy of the control volume are comprised in the
terms Ėf for the inflowing (feed path), and in Ėr for the outflowing mass
stream respectively.1

By introducing the specific internal energy u [J kg−1] of a medium, the trans-
fer of kinetic, potential and internal energy entailed by a one-dimensional

1The sign convention adopted in the above and the remainder of this section is in
accordance with the arrows indicated in Figure3.1. Work done by and heat transfer from
the control volume are defined to be positive, whilst work done to and heat transfer into
the control volume are defined to be negative.
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stream of mass crossing a control volume boundary can be expressed as
follows:

Ėms = ṁms ·
(

ums +
V2

ms
2

+ gms · zms

)
. (3.2)

In the above equation, the energy transfer Ėms, entailed by a stream of
matter crossing the boundary of the control volume at a mass flow rate of
ṁms, is expressed by means of the associated changes of internal, kinetic and
potential energy. The change in internal energy is defined with respect to the
specific internal energy of the conveyed medium ums. The change in kinetic
energy is defined by the normal velocity Vms of the mass stream, which
is defined with respect to the orientation of the control volume boundary.
The change in potential energy is defined by the gravitational acceleration
gms and the height zms at which the mass stream enters or exits the control
volume.

Using (3.2) to describe the transfer of energy entailed by the in- and outflow-
ing mass streams, Ėr respectively Ėf, within the energy balance equation
(3.1) of the considered control volume, results in the following:

Ėcv = −Q̇− Ẇ + ṁf ·
(

uf +
V2

f
2

+ gf · zf

)
− ṁr ·

(
ur +

V2
r

2
+ gr · zr

)
.

(3.3)

Considering the fact that mass flowing over the boundary of a control
volume is always associated with so-called flow work, due to the pressure
of the entering and exiting medium, the rate of energy transfer by work Ẇ
can be expressed with respect to the mass flow rate at the inlet and outlet
s.t.:

Ẇ = Ẇcv + ṁr · pr · vr − ṁf · pf · vf . (3.4)

In (3.4) the term Ẇcv comprises the combined net energy transfer by work
along the boundary of the control volume with the exception of energy
transfer by flow work, which is defined by the mass flow rate ṁ, the specific
volume v and the pressure p of the medium at the inlet and at the outlet
respectively. By introducing the specific enthalpy h:

h = u + p · v , (3.5)
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and substituting (3.4) and (3.5) into (3.3), the following expression for Ecv is
obtained:

Ėcv = −Q̇− Ẇcv + ṁf ·
(

hf +
V2

f
2

+ gf · zf

)
− ṁr ·

(
hr +

V2
r

2
+ gr · zr

)
.

(3.6)

The above equation (3.6) is typically referred to as as the one-dimensional flow
form of the control volume energy rate balance in literature (see e.g. [15]). For
simplicity (3.6) has been defined as if h, g, V and z are uniform quantities
within the respective mass streams crossing the control volume boundary,
which for most hydronic systems is considered a sufficient approximation
of the actual physical reality.

Besides the principle of energy conservation, the rate of change of the mass
contained within the control volume ṁcv is defined by the principle of mass
conservation which states that:

ṁcv = ṁf − ṁr . (3.7)

With the balance equations (3.6) and (3.7) it is possible to quantitatively
express energy conversion within, and mass and energy transfer between
components of a hydronic system. These balancing equations are applicable
to every generic prosumer with one inlet and one outlet, whereas the specific
behavior or physical properties of each prosumer are comprised within the
respective work and heat terms Ẇcv respectively Q̇.

Considering the large sampling times which usually occur within an opti-
mization-based ems, it is typically sufficient to reduce the above equations
to their steady-state forms. These are widely employed for the general
thermodynamic analysis of components within a hydronic system, where
the main focus of the analysis is on periods of steady operation, as opposed
to transient startup and shutdown periods. For a control volume, steady-
state operation infers that the mass within the control volume does not vary
with time. Additionally, the mass flow rates and all rates of energy transfer
by means of heat or work are similarly set constant with time. The balance
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equations (3.7) and (3.6) can, thus, be simplified:

ṁf = ṁr = ṁ , (3.8)

Q̇ + Ẇcv = ṁ ·
(
(hf − hr) +

(
V2

f
2
− V2

r
2

)
+ g · (zf − zr)

)
. (3.9)

Notably, (3.9) allows the natural interpretation that in steady-state operation
the net energy transferred along the boundary of the control volume by
means of heat and work is completely provided, respectively absorbed, by
the entering and exiting mass streams. Considering the fact that within a
hydronic system the main means of energy transfer between components is
the circulation of the heated or cooled heat-transfer medium, the differences
in kinetic and potential energy between the mass streams at the inlet and at
the outlet of prosumers are negligible for most applications. Thus, (3.9) may
be further simplified to:

Q̇ + Ẇcv = ṁ · (hf − hr) , (3.10)

where now all energy transfer by means of heat or work along the boundary
of the control volume is enabled only by the difference in specific enthalpy,
and as such mainly by the difference in temperature and pressure of the
mass streams of heat-transfer medium at the inlet and outlet.

In hydronic systems the heat-transfer medium at the inlet and outlet of
any component is typically of equal chemical composition. Furthermore, by
assuming that the heat-transfer medium within a given hydronic system
is a subcooled liquid, the heat-transfer medium may be idealized to be
incompressible, i.e. its specific volume v is assumed to be constant. Using
the isobaric specific heat, defined as:

cp =

(
∂h
∂T

)
p

, (3.11)

the difference in specific enthalpy between the mass stream at the inlet and
outlet in (3.10) may therefore be rewritten as:

Ėconv = Q̇ + Ẇcv = ṁ ·
(∫ Tf

Tr

cp dT + v (pr − pf)

)
. (3.12)
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Here, the energy transferred as a result of the difference in temperature and
pressure of the heat-transfer medium at the inlet and outlet is denoted by
Econv. The temperature of the heat-transfer medium at the inlet is denoted
by Tf respectively Tr for the outlet.

Notably, if the pressure difference between the inlet and outlet can be
assumed to be negligible, the above equation (3.12) is further simplified1

s.t.:

Ėconv = ṁ
(∫ Tf

Tr

cp dT
)

. (3.13)

To even further simplify (3.13), one may consider that in the context of
incompressible media [15]:

“Over limited temperature intervals the variation of c can be
small. In such instances the specific heat c can be treated as
constant without serious loss of accuracy.”.

Thus, depending on the considered temperature range and the chemical
composition of the heat-transfer medium, one may either assume the specific
heat to be constant or use the relevant endpoints of the isobaric specific heat
as to simplify (3.13) s.t.:

Ėconv = ṁ ·
[
cp(Tf) · Tf − cp(Tr) · Tr

]
. (3.14)

Notably, (3.14) is equal to (1.1) and represents the typical approximation for
energy transfer by bulk motion of matter within a hydronic system.

1For the sake of completeness, please note that by representing the heat-transfer
medium by means of the incompressible substance model, which is one of the fundamental
assumptions for the derivation of (3.13), there is no need to emphasize the use of the
isobaric specific heat cp, considering that both isobaric and isochoric specific heat cv,
defined as:

cv =

(
∂u
∂T

)
v

,

are equal, and may thus be represented by a general indicator such as c. The specific
denotation by cp was preferred in this text over a more general denotation, considering
that then (3.12) and potentially (3.13) are also valid for the steady-state energy transfer by
bulk motion of matter if the respective heat-transfer medium were to be modeled as an
ideal gas.

67



3. Modeling Prosumers Within Hydronic Systems

Based on the derived approximation, the following section will elaborate
on how the previously illustrated method of representing a general mass
stream with varying temperature by means of a superposition of parallel
mass streams at constant temperatures (see equations (2.32) and (2.31)) may
be used to extend the existing thermal prosumer prediction models within
the discussed ems framework, in order to be able to consider temperature-
dependent prosumer behavior within the ems.

3.2. Multi-Flow Constant Temperature Prediction
Models

Including the proposed multi-flow constant temperature representation of a
mass stream into the derived, simplified mass and energy balance equations
( (3.8) and (3.14) ) yields:

Nf

∑
i=1

ṁf, i =
Nr

∑
i=1

ṁr, i , (3.15)

Ėconv ≈
Nf

∑
i=1

ṁf, i · cp (Tf, i) · Tf, i −
Nr

∑
i=1

ṁr, i · cp (Tr, i) · Tr, i . (3.16)

Here, the one-dimensional mass stream at the single inlet and single outlet
is each represented by Nf respectively Nr parallel mass streams ṁf, i respec-
tively ṁr, i, which each are defined to have a constant temperature of Tf, i
respectively Tr, i. Naturally, the following constraints, according to (2.32),
need to be imposed to ensure sensible approximation results:

ṁf
!
=

Nf

∑
i=1

ṁf, i , ṁr
!
=

Nr

∑
i=1

ṁr, i . (3.17)

In the following, this multi-flow constant temperature approximation of
energy transfer by convection (3.16) for the one-dimensional flow, single
inlet, single outlet control volume will be used as the foundation for deriving
enhanced prediction models for prosumers within hydronic systems that
will be integrated into the previously presented ems framework.
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3.2.1. General Prosumer Modeling Considerations

The following deliberations are valid for all kinds of prosumers. They con-
cern: First, the choice of the number of considered parallel mass streams
with fixed temperatures to represent a mass stream with varying temper-
ature at the inlet or outlet of a prosumer. Second, the choice of the mass
flow rates of the considered parallel mass streams, given that they are gen-
erally not uniquely determined by the temperature of the mass stream they
represent. Last, considering that the heat-transfer medium inlet and outlet
of prosumers are inherently connected, mass balance needs to be enforced
between them, ı.e. between the associated ports.

Temperature operating ranges

Most common prosumers within hydronic systems have defined tempera-
ture operating ranges, given by minimum and maximum bounds on the
respective admissible temperatures at their inlets and outlets. Consider
the case, where a prosumer is connected to a sensible heat storage that is
represented by means of N layers of constant temperature. With respect to
(3.16), it is evident that the set of Nf = N respectively Nr = N parallel mass
streams {ṁ1, . . . , ṁN} at the considered layer temperatures {T1, . . . , TN},
that is defined for each in- and outflowing mass stream of a prosumer, thus,
may be potentially unnecessarily large. This circumstance is noteworthy
considering that each mass flow rate ṁi is a control/optimization variable
of the ems optimization problem, hence increasing the computational com-
plexity of the optimization problem. Following from this, only the minimal
set of parallel mass streams useful in representing the defined temperature
operating range of each respective prosumer inlet and outlet should be
considered within the final prediction model of the prosumer.

To illustrate this by means of an example, consider an absorption chiller
where the admissible temperature range at the inlet of its generator is de-
fined to be 70 ◦C – 90 ◦C. The temperature of the mass stream at the outlet
is internally controlled to always be at 50 ◦C. The generator is connected
to a sensible heat storage which is represented by N = 6 layers at the tem-
peratures of Tl ∈ {15 ◦C, 30 ◦C, 45 ◦C, 60 ◦C, 75 ◦C, 90 ◦C}. Consequentially,
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it would be sensible to consider only a set of parallel mass streams at the
latter three temperatures, respectively at the third and fourth temperature,
to represent the actual mass stream entering respectively exiting the inlet
and outlet of the generator. For the usual case that a prosumer is connected
to a tes, the choice of considered temperatures at the inlets and outlets is,
thus, dependent on the set of defined layer temperatures. Hence, the num-
ber of layers and the respective temperatures need to be carefully chosen
considering the specifications of the connected prosumers in order to ensure
that the whole temperature operating range of each connected prosumer
can be represented as accurately as necessary.

Handling the ambiguity of the choice of mass flow rates of the parallel
mass streams

Besides this limitation of the number of considered parallel mass streams,
another important aspect concerns the ambiguity within the specific choice
of the individual mass flow rates ṁi when representing a mass stream of
mass flow rate ṁ and temperature T.

According to (2.32), the sum of all mass flow rates ṁi is restricted to be
equal to the mass flow rate ṁ of the represented mass stream. However,
with respect to (2.33), it is evident that the mass flow rates ṁi are generally
not uniquely determined by the temperature T of the represented mass
stream. It is generally advantageous to assign non-zero values to only the
mass flow rates ṁi of those mass streams whose temperature Ti just exceeds,
respectively is just inferior to, the actual temperature T of the original mass
stream. This gives the best approximation of the transported energy, given
that the isobaric specific heat cp at temperature T is better approximated
by values at temperatures close to it. More importantly, this eliminates
the possibility for the solver to choose physically implausible values for
the mass flow rates. For example, consider a boiler delivering a certain
amount of thermal energy Ė at a temperature Thot to a tes. Its feed stream
could be represented by two mass streams at temperatures close to Thot,
but it also could by represented by two mass streams of greatly differing
temperatures, one very hot and one close to the temperature at the inlet
of the boiler. As a result, however, a temperature layer at low temperature
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and a temperature layer at very high temperature within the storage would
increase in height. The actual temperature distribution in the storage would,
hence, be represented very inaccurately resulting in i.a. faulty estimates of
the occurring thermal energy losses and the contained exergy within the
storage. Such non-physical behavior could be the result of optimization if
no restrictions are imposed.

The necessary restrictions can be applied within an optimization problem
by enforcing so-called special order set of type 2 (sos2) constraints on the set
of considered mass flow rates at each prosumer inlet and outlet. These sos2

constraints are defined for a given ordered set of optimization variables and
enforce that only two consecutive elements of said set can be non-zero. With
respect to the considered mass flow rates, these ordered sets are obtained
by sorting the mass flow rates ṁi by their respective temperature Ti. The
imposed sos2 constraints then only allow for two consecutive mass flow
rates, i.e. mass streams with adjacent temperatures, to be non-zero at any
time.

Fluid circulation and mass balance

Considering that within a hydronic system a heat-transfer medium is cir-
culated among prosumers, and that typically most prosumers do not have
the capability to store mass, mass balance for the set of inlets and outlets
of each prosumer has to be enforced at each time step. Hence, within the
prediction model of a generic prosumer with Ni inlets and No outlets the
following constraint needs to be enforced:

Ni

∑
m=1

Nf, m

∑
i=1

ṁfm, i
!
= −

No

∑
m=1

Nr, m

∑
i=1

ṁrm, i . (3.18)

Here, Nf, m and Nr, m refer to the number of considered parallel mass streams
to represent the mass stream entering the m-th inlet respectively outlet.
Contrary to the sign convection used within the preceding derivations, here,
inflowing mass streams are set to be negative as they were defined to be
within the previously discussed ems framework.
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Aside from these general remarks on integrating the multi-flow constant
temperature method into the prosumer prediction models of the existing
ems framework, the following sections will discuss prediction models for
specific types of prosumers, as well as the representation of connections
between them in further detail.

3.2.2. Generic Consumers

Generic thermal energy consumers within hydronic systems, such as heat
radiators, are typically modeled to have only a single inlet and a single
outlet. Their individual dynamics are typically negligible in light of the
utilized large sampling periods, rather they are assumed to be completely
specified by only their instantaneous thermal energy demand, which is
assumed to be known or provided by means of forecasts.

Consumers are therefore represented by equality constraints ensuring ad-
equate energy provision that meets their instantaneous demand Ėgc by
means of the in- and outflowing mass stream of heat-transfer medium. With
the multi-flow constant temperature approach to modeling general mass
streams, these equality constraints can be formulated as follows:

Ėgc
!
= −ηgc ·

(
Nf

∑
i=1

ṁf, i · cp (Tf, i) · Tf, i +
Nr

∑
i=1

ṁr, i · cp (Tr, i) · Tr, i

)
. (3.19)

In the above equation, ηgc ∈ (0, 1] denotes a general efficiency coefficient
that defines the amount of primary (thermal) energy that has to be absorbed
from the in- and outflowing mass stream to yield the end-use energy de-
mand Ėgc, which, given the established sign convention within the existing
ems framework, is positive for heating, respectively negative for cooling,
applications.

From (3.19) it is apparent, that for the more general case of a consumer with
multiple inlets and outlets, additional sum terms for each additional inlet
and outlet have to be included in (3.19). For the case that a specific consumer
may be able to use multiple forms of primary energy to meet its overall
end-use energy demand, additional energy input terms, e.g. representing
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electrical energy, along with potentially an energy form specific efficiency
have to be added to the right side of (3.19).

In the event that the efficiency of energy conversion ηgc is dependent on
the inlet temperature, individual efficiency coefficients can be introduced
for each energy transfer contribution by one of the considered parallel inlet
mass streams. Hence, (3.19) may be reformulated s.t.:

Ėgc
!
= −

Nf

∑
i=1

ηgc, in, Tf, i · ṁf, i · cp (Tf, i)−
Nr

∑
i=1

ṁr, i · cp (Tr, i) · Tr, i . (3.20)

Here, ηgc, in, Tf, i ∈ (0, 1] represents the individual efficiency factor defined
for each considered inlet mass stream temperature Tf, i.

Similarly to the above, if applicable for a given consumer, one may also
define individual efficiency factors depending on the temperature of the
outlet mass streams s.t.:

Ėgc
!
= −

Nf

∑
i=1

ṁf, i · cp (Tf, i) · Tf, i −
Nr

∑
i=1

ηgc, out, Tr, i · ṁr, i · cp (Tr, i) · Tr, i . (3.21)

Here, contrary to the remarks on inlet temperature-dependent efficiencies,
ηgc, out, Tr, i ≥ 1, considering that the outflowing energy is subtracted from
the inflowing energy to yield the net absorbed energy of the consumer.

The treatment of the circumstance where the efficiency of a consumer is
not dependent on either the inlet nor the outlet temperature, but rather
on the temperature difference between them, requires the introduction of
continuous-valued auxiliary variables to represent the mass flow rates of the
heat-transfer medium at each inlet–outlet temperature combination. Consid-
ering the particular relevance of this circumstance for the representation of
solar thermal collectors, its mathematical representation in the multi-flow
constant temperature context will be discussed in Section 3.2.4.

For most thermal energy consumers the admissible inlet temperature ranges
are defined within the data sheet of the consumer or known to the system
operator. Therefore, the set of considered inlet temperatures ought to be
defined to span the whole defined range with as many intermediate temper-
ature points as necessary depending on the required modeling accuracy. For
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the case that a consumer is connected to a tes, the temperatures must match
those of the layers in the tes. If the outlet temperature of a respective con-
sumer can be modulated, the same reasoning as for the inlet temperatures
applies to the outlet temperatures.

If the nominal ranges are undefined, they may be chosen with respect to the
typical temperature setpoint of the consumer, e.g. 20 ◦C for a space-heating
consumer. The considered inlet temperatures ought to be higher, the return
temperatures ought to be lower than the defined setpoint for heating, and
vice versa for cooling.

If the inlet and outlet temperature ranges intersect, additional limits on the
sign of the inlet and outlet mass flow rates must be enforced. Otherwise a
consumer could use energy from the return stream and pump it into the
feed stream, which would make no physical sense.

3.2.3. Generic Producers

Producers are modeled similar to consumers. However, instead of a known/
forecast demand, producers are defined by their controllable output power:

Ėgp = ugp · ymax
gp

!
=

Nf

∑
i=1

ṁf, i · cp (Tf, i) · Tf, i +
Nr

∑
i=1

ṁr, i · cp (Tr, i) · Tr, i . (3.22)

Here, the power output of the producer Ėgp is defined by the control variable
ugp ∈ [0, 1] and with respect to the maximum producer output power ymax

gp .
The instantaneous output power is then set equal to the thermal energy that
is transferred by means of the in- and outflowing mass streams.

Minimal output power specifications can be included by introducing auxil-
iary variables, one binary, one real-valued, and corresponding constraints
as illustrated in equations (2.16) - (2.18).

In order to provide the desired output power, a generic producer consumes
primary energy Ėgp, in in a defined form, hence requiring:

−ηgp ·
(

Nf

∑
i=1

ṁf, i · cp (Tf, i) · Tf, i +
Nr

∑
i=1

ṁr, i · cp (Tr, i) · Tr, i

)
!
= Ėgp, in . (3.23)
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In the above equations, ηgp represents a general conversion efficiency with
which primary energy Egp, in is converted into end-use thermal energy Egp.
Naturally, for generic producers that generate thermal energy for heating
applications ηgp ≤ −1, respectively ηgp ≥ 1 for producers that provision
thermal energy for the purpose of cooling.

Similarly to the previous remarks on modeling generic consumers, temperature-
dependent conversion efficiencies may be considered by introducing individ-
ual conversion efficiencies for each considered inlet or outlet temperature.

Inlet temperature-dependent conversion efficiencies may be expressed as
follows for generic producers that generate thermal energy for heating
applications:

Nf

∑
i=1

ηgp, in, Tf, i · ṁf, i · cp (Tf, i) · Tf, i +
Nr

∑
i=1

ṁr, i · cp (Tr, i) · Tr, i
!
= −Ėgp, in . (3.24)

Here, the introduced individual conversion efficiencies ηgp, in, Tf, i ∈ (0, 1]
allow to represent inlet temperature-dependent producer efficiencies. Con-
versely, for generic producers that operate as chillers inlet temperature-
dependent conversion efficiencies may be represented as follows:

Nf

∑
i=1

ηgp, in, Tf, i · ṁf, i · cp (Tf, i) · Tf, i +
Nr

∑
i=1

ṁr, i · cp (Tr, i) · Tr, i
!
= Ėgp, in . (3.25)

Here, the individual factors ηgp, in, Tf, i ought to be defined greater or equal
to 1.

Outlet temperature-dependent conversion efficiencies of generic prosumers
may be similarly represented by:

Nf

∑
i=1

ṁf, i · cp (Tf, i) · Tf, i +
Nr

∑
i=1

ηgp, out, Tr, i · ṁr, i · cp (Tr, i) · Tr, i
!
= −Ėgp, in ,

(3.26)
with ηgp, out, Tr, i ≥ 1 for heaters, whereby a higher value of ηgp, out, Tr, i indi-
cates a lower conversion efficiency, i.e. a higher consumption of primary
energy. Conversely, for chillers:

Nf

∑
i=1

ṁf, i · cp (Tf, i) · Tf, i +
Nr

∑
i=1

ηgp, out, Tr, i · ṁr, i · cp (Tr, i) · Tr, i
!
= Ėgp, in , (3.27)
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with ηgp, out, Tr, i ∈ (0, 1], a lower value of ηgp, out, Tr, i results in a lowered
conversion efficiency.

For most generic producers the temperature operating ranges at each inlet
and outlet are well defined in the data sheet of a respective prosumer. Hence,
as illustrated for the case of a generic consumer, the considered mass stream
temperatures ought to be chosen such that the whole operating range at the
inlet and outlet may be accurately represented, or as accurate as the defined
layer temperatures allow if the producer is connected to a tes.

3.2.4. Solar Thermal Collectors

Prior to the introduction of the multi-flow constant temperature approach,
solar thermal collectors were considered as static thermal energy producers
within the previously presented ems framework. Considering the notion of
constant inlet and outlet temperatures and, hence constant mean collector
temperature, the expected future thermal energy yield of a solar thermal
collector was forecasted independently of the actual operation of the hy-
dronic system it was integrated in, but rather solely based on the expected
ambient temperature and solar irradiance (see 2.2.3).

In the multi-flow constant temperature context this separation is no longer
possible, considering that the inlet and outlet temperature of a collector
may now be modulated and, hence affect the resulting thermal energy
yield. However, contrary to a generic producer, the energy output of a
solar collector is heavily dependent on outer conditions, namely solar ir-
radiance and ambient temperature, and, hence cannot be freely controlled.
To account for this interdependence between the yield of a solar thermal
collector, and controllable operation conditions and outer disturbances, the
following procedure to determine its expected yield is proposed: First, the
expected thermal energy yield for each possible mean collector temperature
T̄fl, defined by possible inlet–outlet temperature combinations, is forecast
by means of the forecasting method described in 2.2.3. Naturally, only com-
binations that result in a net energy yield, i.e. where the outlet temperature
is greater than the inlet temperature, are considered.
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Tf Tr T̄fl

30 ◦C 45 ◦C 37.5 ◦C
30 ◦C 60 ◦C 45.0 ◦C
30 ◦C 75 ◦C 52.5 ◦C
45 ◦C 60 ◦C 52.5 ◦C
45 ◦C 75 ◦C 60.0 ◦C
60 ◦C 75 ◦C 67.5 ◦C

Table 3.1.: Inlet–outlet temperature combinations and the resulting mean collector tempera-
tures.

To illustrate this, consider a solar collector whose inlet and outlet mass
stream is approximated by parallel mass streams with temperatures Tf, i ∈
{30 ◦C, 45 ◦C, 60 ◦C} respectively Tr, i ∈ {45 ◦C, 60 ◦C, 75 ◦C}. The consid-
ered inlet–outlet combinations for these sets, along with the resulting mean
collector temperatures T̄fl, are shown in Table 3.1. The expected yield is
forecast for each of the different mean collector temperatures (taking into
account the meteorological forecasts of ambient temperature and solar irra-
diance) using (2.7). The actual yield can then be determined by the optimizer
by attributing weights to the individual inlet–outlet temperature pairs and
the corresponding yield Ėsolar, p. They are represented by auxiliary continu-
ous variables zp for each pair p = 1, . . . , Npair of inlet–outlet temperatures,
Tf, p and Tr, p, where Npair denotes the number of considered inlet–outlet
pairs. These weights have to sum up to one at each time instance if the solar
collector is operational, i.e. if a mass stream is pumped through it. Other-
wise, more than or not all of the available energy would be transported out
of the solar collector. The latter mode of operation of the collector, so-called
yield shedding, must be a conscious decision and should be handled outside
of the solar collector model by means of a auxiliary modeled controllable
thermal energy sink.

The energy yield of the solar collector Ėsolar, thus, simply is:

Ėsolar =
Npair

∑
p=1

zp · Ėsolar, p ,
Npair

∑
p=1

zp = δsolar . (3.28)
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Here, δsolar is an auxiliary binary variable which represents whether the
solar collector is operational, δsolar = 1, or not, δsolar = 0.

Each inlet–outlet temperature pair is uniquely linked to a mass flow rate
via the corresponding predicted solar gain:

ṁp = zp ·
Ėsolar, p

cp(Tr, p) · Tr, p − cp(Tf, p) · Tf, p
(3.29)

The combined collector yield Ėsolar needs to be transferred out of the col-
lector by means of the actual in- and outflowing mass streams, hence
requiring:

Ėsolar
!
=

Nf

∑
i=1

ṁf, i · cp (Tf, i) · Tf, i +
Nr

∑
i=1

ṁr, i · cp (Tr, i) · Tr, i . (3.30)

As the final step, the inlet- and outlet mass flow rates need to be determined
from the pair mass flows rates ṁp. Therefore, the following constraints need
to be met:

ṁf, i
!
= − ∑

p∈PTf, i

ṁp , ṁr, i
!
= ∑

p∈PTr, i

ṁp . (3.31)

Here, the sets PTf, i , respectively PTr, i , comprise the indices of all inlet-outlet
temperature pairs that consider the inlet temperature Tf, i respectively the
outlet temperature Tr, i.

In the vast majority of real-world applications a solar thermal collector is
connected to a tes either directly or by means of a heat exchanger. Hence,
the choice of considered inlet and outlet temperatures is typically dependent
on the considered storage layer temperatures. In general, the considered
outlet temperatures should be chosen depending on the application, i.e.
whether the solar collector is expected to provide medium and/or high
temperature thermal energy, and depending on operation limits defined in
the data sheet of a particular collector. The considered inlet temperatures
then may follow by considering all layer temperatures of lower temperature
than the highest considered outlet temperature.
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3.2.5. Heat Pumps

Heat pumps are characterized by the fact that they reverse the spontaneous/
natural direction of thermal energy transfer by conduction. They absorb
thermal energy from a colder body (the source) and discharge it on a hotter
body (the sink). According to the second law of thermodynamics, this inversion
of the natural direction of thermal energy transfer requires an additional
input of energy, typically by means of work.

With that said, a general heat pump may be modeled similar to a generic
producer, where a coefficient of performance (cop) is defined instead of an
efficiency factor η. It relates the net amount of thermal energy Ėhp, sink
transferred to the thermal sink with the net amount of energy transferred
by work Ẇhp, in into the heat pump:

cop =

∣∣∣∣∣ Ėhp, sink

Ẇhp, in

∣∣∣∣∣ . (3.32)

Hence, an energy balance equation similar to (3.22) may be constructed for
a generic heat pump:

Ėhp, sink = uhp · ymax
hp

!
=

Nf

∑
i=1

ṁf, i · cp (Tf, i) · Tf, i +
Nr

∑
i=1

ṁr, i · cp (Tr, i) · Tr, i .

(3.33)
The maximum thermal output power of the heat pump ymax

hp is again set to
be negative for cooling applications. The control input of the heat pump
is restricted, uhp ∈ [0, 1]. The necessary input energy for the heat pump
operation can be defined with respect to the cop:

Ėhp, sink
!
= −cop · Ẇhp, in . (3.34)

In reality, the cop of a heat pump is not a constant, but instead heavily
dependent on operational and environmental conditions. For example,
the efficiency of any heat pump is significantly influenced by the chosen
temperature operating point. An increased temperature difference between
the thermal source and sink will typically lower the cop.
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A well-known example for this is the vapor-compression air source heat
pump, which is commonly installed in residential and commercial buildings
to provide space heating and cooling. This type of heat pump uses the
ambient air as its thermal source (heating) respectively sink (cooling), thus
its cop inherently varies significantly with the time of day and time of year.
Hence, for modern air source heat pump space heating applications it is
not uncommon to observe a varying cop in the range of 2 – 6 in a single
heating-season, depending on the outside temperature and the thermal
energy demand.

This temperature dependency has to be considered specifically for each
investigated heat pump, as it varies depending on the utilized heat pump
technology and the properties of the thermal source (temperature, humidity
for air source heat pumps, etc. ). However, once the dependence of the cop

on the inlet and outlet temperature is known, it may be considered in a
similar way as varying efficiencies in the case of the generic producer or the
solar thermal collector.

Absorption Chiller

A water-fired absorption heat pump (absorption chiller for short) needs to
be modeled in a slightly different way. The energy here is not provided by
means of work such as electric energy, but a high temperature fluid, hence
heat. Therefore, in- and outflowing mass streams need to be considered as
opposed to simple energy flows.

Absorption chillers are typically used for cooling applications. A high tem-
perature fluid (the heat source) provides the necessary energy to regenerate
an absorption solution that is used to cool a refrigerant. The combined ab-
sorbed thermal energy is dissipated by a third loop of heat-transfer medium
whose temperature is typically stabilized by a controllable heat sink, e.g.
a cooling tower. For the hydronic system comprising the three loops the
overall energy balance of the absorption chiller can be stated as follows:

Ėgen + Ėevp + Ėabs
!
= 0 . (3.35)
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Here, Ėgen < 0 denotes the thermal energy that is absorbed from the high
temperature loop (generator), Ėevp < 0 denotes the thermal energy absorbed
from the refrigerant loop (evaporator) and Ėabs > 0 denotes the thermal
energy that is transferred out of the chiller by means of the cooling loop
(absorber).The latter usually has a temperature neither high enough for
heating, nor low enough for cooling, and is thus considered waste heat.

The efficiency of the absorption chiller is again expressed via the cop, which
relates the amount of obtained thermal energy for cooling at the evaporator
with the thermal energy absorbed in the generator:

cop =

∣∣∣∣∣ Ėevp

Ėgen

∣∣∣∣∣ . (3.36)

Conversely to the cop of heat pumps used for space heating that use the
ambient surroundings as their thermal source, for the absorption heat pump
it is typically smaller than one, e.g. 0.7, considering that the required high
temperature thermal input energy Ėgen usually has to be generated by
a thermal energy producer within the hydronic system and the thermal
energy in the cooling loop is as aforementioned considered waste heat.

The amount of absorbed thermal energy in the generator and the evapo-
rator, and thus the cop, is typically found to strongly depend on the inlet
temperature of the high temperature mass stream feeding the generator. The
outlet temperature of the refrigerant at the evaporator is typically controlled
internally, hence it may be assumed to be constant. Likewise, the inlet and
outlet temperature at the absorber may be assumed constant since they can
be controlled by the connected thermal energy sink. This last assumptions
is necessary to sufficiently simplify available general models describing the
behavior of an absorption chiller in order to use them as prediction models
within an mpc-driven ems.

Given the above assumptions, an absorption chiller can be represented by
only considering the generator inlet temperature as the dominant modulable
variable that defines the operation of the absorption chiller. The relationship
between the generator inlet temperature and the thermal energy absorbed at
the generator and evaporator, given a defined evaporator outlet and absorber
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inlet temperature, is typically found in the data sheet of an absorption
chiller.

Therefore, a simplified absorption chiller prediction model may be con-
structed, where the temperature dependence of the absorbed energy at the
generator Ėgen may be expressed as:

Ėgen = δchiller ·
Nf, gen

∑
i=1

Ėgen, Tf, gen, i ·
ṁf, gen, i

ṁgen, nom

!
=

Nf, gen

∑
i=1

ṁf, gen, i · cp
(
Tf, gen, i

)
· Tf, gen, i +

Nr, gen

∑
i=1

ṁr, gen, i · cp
(
Tr, gen, i

)
· Tr, gen, i .

(3.37)
Here, Ėgen, Tf, gen, i denotes the nominal absorbed thermal power at a generator
inlet temperature of Tf, gen, i that is defined within the data sheet of an
absorption chiller. Furthermore, the nominal mass flow rate through the
generator, which is also typically defined within the data sheet of an actual
absorption chiller, is denoted by ṁgen, nom. The return temperature is fixed,
considering that Ėgen is defined by the generator inlet temperature only,
but might lie between the defined return mass stream temperatures Tr, gen, i.
Therefore, the sum is still formulated for the return mass streams, such
that the mass flow rates will automatically adjust so that the appropriate
temperature will be represented.

A binary variable δchiller representing whether the absorption chiller is on
or off is introduced as well. It is necessary because the mass flow rates
ṁf, gen, i cannot simply be reduced to zero. In order to ensure that the actual
generator mass flow rate does not deviate too much from its nominal
value, which otherwise would entail significant model errors, the following
constraint is defined:

ṁmin
gen ≤ −

Nf, gen

∑
i=1

ṁf, gen, i ≤ ṁmax
gen . (3.38)

Here, the admissible deviation is expressed by means of an absolute lower
and upper bound, denoted by ṁmin

gen respectively ṁmax
gen .

Many actual absorption chillers are controlled by means of an internal
two-point controller, whereby the mass flow rate at the generator is not
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modulated, but rather the associated pump is either switched on or switched
off. In this case the above constraint may also be defined as an equality
constraint, enforcing the combined mass flow rate through the generator to
be equal to the rated nominal mass flow rate.

The absorbed thermal power Ėevp at the evaporator may be expressed with
respect to the generator inlet temperature s.t.:

Ėevp = δchiller ·
Nf, gen

∑
i=1

Ėevp, Tf, gen, i ·
ṁf, gen, i

ṁgen, nom

!
=

Nf, evp

∑
i=1

ṁf, evp, i · cp
(
Tf, evp, i

)
· Tf, evp, i +

Nr, evp

∑
i=1

ṁr, evp, i · cp
(
Tr, evp, i

)
· Tr, evp, i .

(3.39)
As previously discussed, the absorbed thermal power at the evaporator is
defined by the generator inlet temperature. The generator inlet temperature-
dependent absorbed energy at the evaporator is denoted by Ėevp, Tf, gen, i .
Specific values for it are typically defined within the data sheet of an
absorption chiller. The total amount of absorbed power at the evaporator
Ėevp is defined by the weighted sum of these data sheet values. Although,
the temperature at the outlet of the evaporator is usually assumed constant,
given that it is typically internally controlled, a sum over several ṁf, evp, i
is considered in the above equation, given that the layer temperatures of a
storage that may be connected to the evaporator may not necessarily match
this constant temperature.

Last, the energy transferred to the cooling loop Ėabs, which is defined
through (3.35), has to be expressed by means of associated in- and outflow-
ing mass streams:

Ėabs
!
= ṁabs ·

(
−cp (Tf, abs) · Tf, abs + cp (Tr, abs) · Tr, abs

)
. (3.40)

Considering that both the inlet (Tf, abs) and the outlet temperature (Tr, abs) of
the absorber are assumed to be constant, only the mass flow rate ṁabs > 0
has to be determined such that the absorbed energy at the evaporator and
the generator is transferred out of the chiller through the cooling loop, to be
subsequently dissipated at a connected thermal energy sink.
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The internal electrical energy consumption of the chiller (necessary to power
the internal circulation pumps) is not explicitly considered in the presented
prediction model. It is usually constant if the chiller is switched on, however,
its contribution to the overall energy balance is negligible. If the cost of the
consumed electricity should be considered, an auxiliary continuous variable
describing this power consumption has to be introduced. It may then be
defined as a constant, nominal power consumption value multiplied by the
binary variable δchiller.

3.2.6. Distributors and Switches

In practical hydronic system applications, valves and fittings, such as tee-
pieces, are used to distribute a mass stream of heat-transfer medium from
one prosumer to other prosumers. Many valves are nowadays remotely
controllable by a central process control system, and therefore need to
be included in the prediction model of a hydronic system. Two distinct
prosumers, switches and distributors, are used to represent valves and fittings
in the ems.

Distributors redistribute mass streams from Ni inlets among No outlets.
They are represented mathematically by the following constraints for the
combined set of considered distributor temperatures T :

Ni

∑
i=1

ṁfi, ji +
No

∑
o=1

ṁro, ko
!
= 0 , for every Tc ∈ T with Tfi, ji = Tro, ko = Tc .

(3.41)
The above equality constraints enforce that all the mass streams entering the
distributor at a certain temperature Tc through any of the inlets, must be
redirected onto a set of equivalent outflowing mass streams with equal tem-
perature. The set of considered temperatures T comprises all temperatures
for which at least one inlet or outlet mass stream enters, respectively exits,
the distributor. Therefore, if for any mass stream entering the distributor
at a given temperature there is no exiting mass stream defined with equal
temperature or vice versa, the above constraints enforces the mass flow rate
of said mass stream to be zero at all times. Such a distributor only makes
physical sense if all outlets have an intersection of considered parallel mass
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stream temperatures, and if all inlet temperatures are part of the combined
set of all outlet temperatures.

A switch connects one mass stream to one of several other mass streams. The
direction is irrelevant: it can, thus, be either an input selector or an output
selector. For the example of a switch with a single inlet and No outlets this
gives:

−ṁf, i
!
=

No

∑
o=1

ṁro, jo , for every i = 1, . . . , Nf, andTf, i = Tro, jo . (3.42)

In order to enforce that mass streams exit the switch through exclusively
one outlet, special ordered sets of type 1 (sos1) constraints have to be defined.
These constraints indicate to the optimizer that only one element out of a
set of optimization variables, or linear expressions of optimization variables,
may be non-zero. Hence, for the discussed single inlet, multiple outlets
switch, the following sos1 constraints need to be defined:

sos1

{ Nr1

∑
i=1

ṁr1, i , . . . ,
NrMo

∑
i=1

ṁrNo , i

} . (3.43)

Here Nro denotes the number of considered parallel mass streams at the
o-th outlet. Only a single sum can then be greater than zero.

For the multiple inlets, single outlet case, the constraints may be defined in
a similar way, but for the combined mass flow rates at the inlets instead of
the outlets.

3.2.7. Connections

Within the multi-flow constant temperature context, mass balance between
the source and the sink port of a connection generally does not infer energy
balance. Thus, the representation of connections within hydronic systems
needs to be adapted with respect to the model presented in Chapter2 Section
2.2.2. For the case of ideal connections, it is no longer sufficient that both
source and sink port are of the same type, i.e. describing a mass stream
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of the same heat-transfer medium, but rather they must, now, describe the
medium at the same temperatures as well. Therefore, an ideal connection
may be expressed by the following constraint within the multi-flow constant
temperature context:

ṁf, i + ṁr, j
!
= 0 for every Tc ∈ T with Tf, i = Tr, j = Tc . (3.44)

The set T comprises the considered temperatures of the parallel mass
streams at both the source and the sink of the connections. Any parallel
mass streams that are considered at either the source or sink, for which
no counterpart at equal temperature is defined on the other side of the
connection will, thus, be set to zero. Therefore, valid connections may only
be defined between source and sink ports whose considered temperature
sets have a non-empty intersection.

With the consideration of multiple temperatures, temperature-dependent
thermal losses that occur along a connection may now be modeled. In order
to represent these losses, the mass flow rates of the considered parallel
source mass streams entering the connection at a given temperature are not
set equal to the mass flow rates of parallel sink mass streams of equivalent
temperature. Instead, each parallel source mass stream is split up among
the sink mass stream at equal and the sink mass stream at the adjacent
temperature that is closer to the ambient temperature. By varying the relative
magnitude of the mass flow rates of the two sink mass stream contributions,
temperature-dependent losses may be represented for each source mass
stream. Naturally, it is only possible to represent thermal energy losses if for
each temperature considered at the source there actually is an equivalent
temperature, as well as an adjacent temperature considered at the sink.
Otherwise, depending on their temperature, thermal energy losses may not
be represented for all source mass streams.

If the discussed requirement is met for a given connection, each source mass
stream may be split into two fictitious sink mass streams, which can be
mathematically expressed as follows:

−αc · ṁf, i = ṁr, j, i
(−1 + αc) · ṁf, i = ṁr, j+τs, i

for every Tc ∈ T with Tf, i = Tr, j = Tc .

(3.45)
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Here, the mass flow rate ṁr, j, i represents the contribution of the i-th source
mass stream to the j-th sink mass stream. The index of the adjacent sink
temperature is determined through τs, which is defined to be -1 if the
respective Tc is greater than the ambient temperature and 1 if Tc is smaller
than the ambient temperature, assuming that the temperatures of the mass
streams at the sink are ordered in an ascending manner. The loss factor
αc is naturally constrained to αc ∈ [0, 1] and should depend on the feed
temperature Tf, i = Tc, the ambient temperature Tamb and the adjacent
temperature Tr, j+τs . The combined mass flow rates of the sink mass streams
are defined as follows:

ṁr, j
!
= ∑

i∈Pj

ṁr, j, i , (3.46)

where the set Pj comprises all source mass stream indices i that contribute
to the j-th sink mass stream.

For a given source mass stream temperature Tc, the obtained thermal energy
losses Ėloss, c should be proportional to the temperature difference to the
surroundings

Ėloss, c = kloss · (Tc − Tamb) , (3.47)

where kloss is a design parameter which represents the surface area of the
pipe and its thermal conductivity. This expression, however, in contrast to
(3.45) does not depend on the mass flow rate ṁf, i. Hence, the actual goal of
obtaining thermal losses proportional to the mixed temperature

Ėloss = kloss

(
∑Nf

i=1 ṁf, i · Tf, i

∑Nf
i=1 ṁf, i

− Tamb

)
, (3.48)

and independent of the overall mass flow rate is still not possible with this
approach.

As a result of this, the coefficients αc need to be chosen carefully and
individually for every mass stream of every connection, considering that
for each parallel source mass stream the respective temperature difference
to the adjacent temperature may be different. Additionally, one has to
note that depending on the physical parameters of the connection and
the defined adjacent temperature, the actually occurring thermal energy
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losses may exceed the losses that can be represented according to the above
method. In that case one may resolve said issue by choosing, if possible, a
different temperature then the next adjacent sink temperature within the
constraint (3.45).

3.3. Integration of the Multi-Layer Thermal
Storage Model with Constant Temperature
Levels

Besides the presented multi-flow constant temperature prediction models,
the multi-layer constant temperature thermal storage prediction model
presented in 2.3.1 needs to be integrated into the existing ems framework.

In order to use the presented continuous-time model within the ems frame-
work, it first needs to be discretized, considering that the use of mpc infers
the use of discrete time system models. However, this discretization is not
trivial considering the discrete states of the model, namely whether a given
layer currently resides at a given outlet, which layer currently is in contact
with the face sides of the storage and the instantaneously viable triplet con-
figurations that are all represented by associated binary indicator variables.
In light of the typically used sampling periods employed within actual ems

applications for hydronic systems, and depending on the physical dimen-
sions of the modeled tes, multiple discrete state changes may frequently
occur within a single discrete time step. Therefore, between two discrete
time instances multiple layers may be available at a respective outlet, several
layers may lose thermal energy trough any of the face sides of the storage
and some triplet configurations may become viable as others diminish. In
order to prevent infeasibilities of the ems optimization problem, the impli-
cations of these occurring state switches need to be accurately considered
within the discrete time model of the multi-layer sensible heat storage. To
achieve this, the presented definitions of the introduced binary indicator
variables will have to be adapted to the discrete-time case. Consequently,
additional continuous- and binary-valued auxiliary variables and mixed-
integer constraints need to be introduced to consider the occurring state
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changes between two adjacent time instances. For further information on
the specifics of the proposed discretization scheme and the resulting modi-
fied mixed-propositional logic statements, defining the respective indicator
variables of the multi-layer storage model, the interested reader is redirected
to the article [17].

In order to integrate the arising mixed-logical continuous propositions
into the mpc optimization problem, the given propositions need to be
expressed by means of mixed-integer linear inequalities which then can
be posed as constraints. To efficiently realize this transformation, several
methods are proposed in literature, some of which are briefly summarized
in Appendix A Section A.3 or discussed in more detail in e.g. [14]. The
different methods diverge in the number of auxiliary continuous and binary
variables as well as the number of additional mixed-integer constraints that
are introduced to represent different logic and mixed-logic propositions.
Therefore, the chosen method may significantly affect the complexity of
the resulting milp. This is due to first, the varying number of introduced
binary variables which potentially may increase the optimization problem
complexity exponentially. Second, different mixed-integer constraints, that
are used to represent particular propositions, may entail different solution
spaces during integer relaxation, which is typically part of optimization
algorithms for milp. As a rule of thumb, larger solution spaces may slow
down optimization, and hence entail larger solving times.

During the course of this thesis an approach based on the conjunctive normal
form (cnf) of a propositional logic statement was utilized. This approach
may be summarized as follows: First, each continuous operating event that
is part of a mixed-logical propositional statement is represented by means
of an auxiliary binary variable. By then substituting the events by means of
the auxiliary binary variables a Boolean function is obtained. Subsequently,
this function is then expressed by means of its equivalent cnf, which can
be computed by several methods or utilizing readily available free online
tools (e.g. [8]). The resulting cnf then by definition is a logical disjunction
of so-called maxterms, which themselves are disjunctions of binary variables
and possibly their respective negations. Therefore, a cnf may be easily
transformed into a set of mixed-integer constraints by simply enforcing that
the sum of all variables within each maxterm is greater or equal to one.
Given the simplicity of this approach, any logical or mixed-logical expression
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may be expressed by means of equivalent mixed-integer constraints in an
automated way. However, depending on the considered propositions, the
illustrated method may potentially not result in the minimal amount of
introduced binary variables or the most compact solution space.

By employing the proposed discretization scheme and utilizing the illus-
trated cnf method to express propositions by means of constraints, a usable
prediction model for the multi-layer sensible heat storage with constant
temperatures is obtained. The last issue that remains to be addressed, before
the model may be utilized within the existing ems framework, is model
initialization and correction, i.e. how the individual layer heights are initial-
ized and corrected based on available measurements. Typically the state of a
sensible heat storage is determined by means of measuring the temperature
within the storage, i.e. one or several temperature sensors are mounted along
the vertical axes of the storage. To obtain an equivalent set of layer heights
from these measurements, the available measurements are first interpolated
(e.g. as proposed in [29]) to obtain a continuous vertical temperature profile.
Based on said profile, the internal energy or exergy of the storage can be
computed and the layer heights of the associated model chosen such that,
either the internal energy or exergy is preserved. Naturally for more than
two considered layers within the storage model, the individual layer heights
are not uniquely defined by the total internal energy or exergy. To determine
the appropriate layer heights of the prediction model the iterative method
proposed in [31] is utilized. Within this method the computed exergy, rather
than the internal energy, is used as the layer heights defining quantity, as
it leads to more realistic results. This method was implemented into the
existing ems framework and is utilized to compute the initial layer heights,
and to subsequently correct prediction errors of the future storage state by
means of the most recent temperature measurements.

Last, one main noteworthy difference between the proposed prediction
model and the one that was implemented in the ems framework has to
be discussed to understand the following discussion of the conducted
case study. Within the proposed multi-layer constant temperature thermal
storage prediction model, the authors define that one of the considered layer
temperatures has to be equal to the ambient temperature. However, this
definition may prove to be bothersome in an actual ems application, where
the temperature of the ambient surroundings of a tes may significantly
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vary with respect to the time of year or even the time of day. The treatment
of this physical reality is not considered within the article, and hence
unclear, given that layer temperatures are set to be constant over time, and
hence may not be frequently redefined. Within the chosen implementation
of the proposed multi-layer constant temperature prediction model no
layer is defined with specifically ambient temperature, rather each storage
model is defined to have at least one layer with a temperature exceeding,
and one with a temperature inferior to the expected value range of the
ambient temperature. This implies that ambient losses may occur for every
considered layer, whereby the resulting height reductions of each layer entail
height increases of the adjacent layers whose temperature is closer to the
current ambient temperature.

With the discussed prediction models implemented in the considered ems

framework, a representative case study was conducted to verify and analyze
the made framework modifications with respect to physical sanity of the
results and potential ems performance benefits. The next chapter will discuss
the set-up of this case study as well as the obtained results.
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The following case study concerns the design of an ems for an industrial
winery whose, formerly strictly conventional, means of thermal energy
generation have recently been extended with a renewable source in the form
of a solar thermal collector array and an absorption chiller which can use
high temperature thermal energy — e.g. from the solar thermal collector
array — to provide thermal energy for cooling purposes.

The objective of the ems is to intelligently incorporate the newly added
components. Its operational targets are to maintain process stability whilst
shifting the provision of energy from the formerly utilized conventional
energy carriers, namely liquefied petroleum gas (lpg) and electrical power,
towards the installed renewable means of thermal energy generation. The
operational strategy devised by the ems is expected to reduce the operational
costs, considering that solar thermal energy after initial installation costs
is considered free of charge, as well as reduce the overall emissions of
greenhouse gases associated with the operation of the plant.

Unfortunately, only very limited actual process data was made available
by the operators of the plant during the period in which this thesis was
conducted. Hence, several assumptions regarding e.g. the typical demand
profiles of the thermal loads or their specific parameters and operating
specifications had to be made to parameterize the prediction models. In
spite of those assumptions, the conducted case study should nevertheless
facilitate the validation of the enhanced and newly integrated prediction
models, as well as allow for evaluating the potential performance benefits
and drawbacks entailed by the usage of the respective models in an ems.
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4.1. Plant Set-Up

The investigated plant comprises two distinct geographical production sec-
tors, which will be referred to as West Wing and East Wing. A schematic
layout of the energy provision system in both production sectors indicating
the installed prosumers, the available interfaces to external energy sources,
the available connections between the sectors and the individual prosumers,
as well as the considered heat-transfer medium temperatures for modeling
the hydronic subsystem of the plant is depicted in Figure 4.1. Every con-
nection between components is defined to be uni-directional, whereby the
considered direction of energy or mass flow is indicated by an arrow.

Each individual production sector is concerned with heating and cooling
processes and, hence each comprises a distinct high temperature (HT) and
low temperature (LT) sensible heat storage. These are connected to the
respective thermal loads and available thermal energy producers in each
sector. Notably, the thermal load denoted by the label Pipe Cleaning can be
fed by either one of the two high temperature tes.

From the perspective of the ems, one high temperature (Vats) and two
distinct low temperature thermal energy loads (Vats and Office) are distin-
guished in the East Wing. In the West Wing four high temperature (Barrels,
Office, DHW and Maintenance) and two distinct low temperature thermal
energy consumer (Barrels and Office) are distinguished. The prosumer de-
noted by Dryer represents an adsorption dryer, hence it is defined as a
consumer of both high and low temperature thermal energy. Thermal loads
for heating and cooling that are identified by means of the same label in each
production sector, describe the same physical system component, whose
thermal energy demand for heating and cooling, however, can be assumed
independent, and, hence be considered by means of two distinct consumer
models for the sake of simplicity.

As illustrated in the schematic, each thermal load is defined with individual
temperature specifications, hence a varying number of inlet and outlet
temperatures are considered within their respective prediction models.
These specifications are inferred from the functionality of the individual
components for the operation of the plant, which will be discussed in the
following.
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High temperature thermal energy is provided either by a lpg boiler or the
newly installed solar thermal collector array, which consists of 20 individual
evacuated-tube collectors. Whilst the lpg boiler is defined to provision ther-
mal energy at high temperatures, the solar collector array may also provide
thermal energy at a medium temperature level. Both energy producers
are connected to both high temperature tes in the two production sectors
by means of a controllable three-way valve. Hence, at each specific time
instance each thermal energy producer may only charge one of the storages.
These considered valves are modeled by means of Switch prosumers which
are depicted by a multiplexer symbol in the illustrated plant layout.

Distributor prosumers are used to aggregate inflowing energy and mass
streams that stem from different prosumers in order to subsequently redirect
them between several outflowing streams. In the illustrated plant layout,
they are not specifically shown but are used wherever several mass streams
or energy flows, stemming from different prosumers, enter the port of
a specific prosumer. Likewise, they are used for mass streams or energy
flows that exit a specific prosumer port and are distributed among several
receiving ports.

In contrast to high temperature thermal energy for heating, low temperature
thermal energy for cooling is generated individually by separate producers
within each production sector. In the East Wing, cooling is exclusively
provided by the newly installed absorption chiller, whereas in the West
Wing an electrically powered compression chiller is utilized. In order to
provide low temperature thermal energy, the generator of the absorption
chiller needs to be connected to a high temperature thermal energy source.
Thus, the generator is connected to the high temperature tes in the East
Wing. The waste heat of the absorption chiller is fed to a connected cooling
tower, whose feed and return temperature are set constant in accordance
with the typical operating point of the absorption chiller.

The energy demand of the plant as a whole — and of each respective
production sector — varies greatly with respect to the time of year, given
that the production of wine inherently depicts strong seasonal dependencies
with respect to the individual production steps that occur subsequently
after the time of grape harvest. For a better intuition and understanding of
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the following proceedings, the operation of the plant over the course of a
typical yearly production cycle is sketched in the following.

The production cycle of a new wine vintage commences with the grape
harvest, which typically begins in early September and may last until
mid-October. During that time period, the harvested grapes are gradually
transported from the vineyards to the neighboring plant, where they are
processed and subsequently stored in large vats, located in the East Wing.
During this first storage phase, the process of alcoholic fermentation is
initiated. To ensure a controlled progression of the fermentation and subse-
quently a high quality of the resulting end product, the temperature of the
vats needs to be stabilized at 30 ◦C. Alcoholic fermentation is an exothermic
process, therefore heating and/or cooling of the vats may be necessary
depending on the ambient temperature and the stage of the fermentation
process.

By mid-November the process of alcoholic fermentation is considered to
be completed and the grapes are transferred into the West Wing, where
they are put into wooden barrels for further storage. During the first few
weeks of this second storage period malolactic fermentation commences,
which requires the stabilization of the room temperature of the warehouse
containing the barrels to a value of 17 ◦C. After mid-December the process
of malolactic fermentation fades out and the temperature of the warehouse
is controlled to be around 15 ◦C for the remainder of the storage period.

Whilst the temperature stabilization and control of the wine-making process
requires the main share of the used thermal energy, additional thermal
energy is required for the climatization of the office areas within both
production sectors. For the office in the East Wing only thermal energy
for cooling during the summer and early autumn months is required. In
addition, thermal energy is also required for domestic hot water (dhw)
provision within the sanitary facilities (West Wing), the humidity control
of storage cellars (West Wing), as well as maintenance tasks, namely pipe
cleaning (both sectors) and the operation of a steam cleaner (West Wing).
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4.2. Test Data

Considering the lack of informative actual process data, fictional test data
sets to validate the designed ems controller were constructed based on
the available plant and process information. These data sets concern those
quantities that are typically assumed known or forecast within the existing
ems framework, namely weather data, load profiles of the thermal loads
and the yield profile of the solar thermal collector.

In order to obtain accurate past weather data for the known location of
the plant, the Photovoltaic Geographical Information System (pvgis) [6] devel-
oped by the European Commission Joint Research Centre was utilized. The
pvgis provides free to use web applications that allow to obtain accurate
weather, solar irradiance and solar system energy production data for most
geographical locations on earth based on satellite measurements. Since the
investigated plant is located in southern Europe, the weather data was
extracted from the pvgis-SARAH database, which provides weather data
on an hourly basis and with a high spatial resolution for the time period
from the year 2005 until the year 2016. In addition, the pvgis applications
allow to consider potential shading effects by the surrounding horizon, and
furthermore to consider the orientation of the investigated collector array
within the provided data sets for the solar irradiance. Both effects were
considered within the obtained test data set for this case study in order to
obtain the best possible approximation of the actual weather conditions and
consequently the solar thermal energy yield at the location of the plant.

Based on the obtained weather data, the expected thermal energy yield
during the time for which weather data is available, was estimated by (2.7).
The effective collector area, the optical efficiency and the loss coefficients
of the collector were defined according to the data sheet of the installed
collectors. These parameters of the considered evacuated-tube solar thermal
collector array are shown in Table 4.1.

For simplicity, the mean collector temperature was defined constant over the
entire time range, namely T̄fl = 55 ◦C, which is roughly the median value of
all considered mean collector temperature values within the given set-up
(see Figure 4.1).
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Ncoll Acoll ηo k1 k2 α β

20 3.26 m2 76.7 % 1.6 W K−1 m−2 0.006 W K−2 m−2 0◦ 0◦

Table 4.1.: Parameters of the considered solar thermal collector array. The collectors are
mounted flat on an even surface, hence the slope α and azimuth β are 0◦. The
total collector array size is obtained by multiplying the area of a single collector
Acoll by the total number of installed collectors Ncoll.

Load profiles for the individual thermal loads were constructed based on the
ambient temperature data and the limited process data that was available.
These known process data quantities are: a rough approximation of the
aggregated monthly thermal energy demand for heating and cooling of the
overall plant; the approximate distribution of the thermal energy demand
among the different processes within the plant with respect to the time of
year; and: some typical temperature set-points of the involved processes.
Considering that some thermal loads, namely domestic hot water provision
and thermal energy for maintenance tasks, are not expected to correlate in
any meaningfully way with the outside ambient temperature, their respec-
tive load profiles were constructed based on randomly distributed usage
intervals during the typical usage period, and with an educated guess on
the usage frequency of said prosumers.

The resulting profiles of the energy demand of the thermal loads and the
yield of the solar collector for the years 2015 and 2016 are depicted in
Appendix B in Figure B.1 to Figure B.8.

4.3. Simulation

Based on the constructed test data set, a numerical simulation was con-
ducted to validate the functionality of an ems that uses the newly integrated
prediction models. In order to obtain representative and informative results
the simulation was conducted over the course of one representative day
that displayed considerable and varying thermal energy demand, for both
heating and cooling, in both production sectors by a large number of active
prosumers, as well as noticeable solar thermal collector yield. This test
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scenario should showcase the potential of the new ems by requiring it to
consider the varying utilization of different prosumers and the occurring
high thermal energy yield of the solar thermal collector array to subse-
quently plan the dispatch of the available backup energy generation and
the charge and discharge of the available energy storage units accordingly.
As a result, the considered tes are expected to display fluctuating soc,
given that the demand for thermal energy is likely not coherent with the
availability of solar thermal energy. Considering the underlying multi-layer
model representation of the tes, this circumstance is expected to potentially
result in various changes of the discrete state of the model which naturally
complicates the ems optimization problem. This complexity will likely re-
sult in higher optimization problem solving times, thus, providing a good
indication of the implications of the increased model complexity on running
times.

Given the above considerations, October 3
rd, 2016 was chosen for the nu-

merical simulation. The expected load profiles of the considered consumers
and the expected solar collector energy yield on that and the adjacent days
are depicted in Figure B.9 until Figure B.16.

The conducted numerical simulation was set up as follows: First, consider-
ing that the respective load profiles were artificially constructed based on
obtained past weather data, as opposed to given by actual measurement
data, the expected thermal demand for each thermal load over the respective
prediction horizon was not forecasted. Instead, the computed load profiles
were treated deterministically, i.e. the thermal energy demand of each load
was set to follow the artificially generated demand profile.

Second, the expected solar thermal collector yield necessarily had to be
forecasted, considering that multiple inlet and outlet temperatures are
considered within the prediction model, and hence the solar collector yield
depends on the operation of the plant. In order to obtain reasonable forecast
results, the computed solar thermal collector yield, weather and mean
collector temperature data for the past 90 days were used to initialize
and train the multi-linear regression forecasting algorithm by means of
computing the respective hourly regression coefficients for each day of
the week. With the respective regression coefficients computed, inlet-outlet
temperature-dependent solar yield forecasts were obtained as part of the
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prediction phase of the ems according to the method presented in Chapter 3

Section 3.2.4.

Third, the following parameters for the controllable thermal energy gener-
ators within the plant were defined. The lpg boiler is defined through its
maximum and minimal power output of 100 kW respectively 10 kW, and its
constant conversion efficiency of η = 0.85. The thermal energy output of the
electrically powered compression chiller is bound between 57 kW and 5 kW.
The cop of the chiller is defined to be a constant cop = 2.5, i.e. the thermal
energy provided for cooling is 2.5 times higher than the consumed electrical
energy of the compressor. Similarly, the cop of an absorption chiller defines
how much energy for cooling is provided — absorbed at the evaporator
— per unit of absorbed high temperature thermal energy at the generator.
Both, the amount of absorbed energy at the generator and at the evaporator
depend on the temperature of the mass stream at the inlet of the generator.
For the specific chiller installed in the plant this dependency is depicted in
Figure 4.2. It is expressed by means of absorption coefficients, i.e. with respect
to the rated standard operation values for the generator energy input and
the evaporator cooling capacity. This nominal absorbed thermal energy at
the generator is defined to be 40.1 kW respectively 24 kW at the evapora-
tor. The resulting temperature-dependent cop of the absorption chiller is
depicted in Figure 4.3. In addition, the data sheet of the absorption chiller
defines the nominal generator mass flow rate to be constant at 1.9 kg s−1

during active operation of the chiller.

Figure 4.2.: Absorption coefficient vs. generator inlet temperature for the considered ab-
sorption chiller.

101



4. Validation: Industrial Winery

Figure 4.3.: cop vs. generator inlet temperature for the considered absorption chiller.

Last, all four sensible heat storages are modeled with an equal volume of
3 m3 and a height of 2.5 m. Both high and low temperature storages are de-
fined with equal layer temperatures, namely Thot = {90 ◦C, 70 ◦C, 50 ◦C, 15 ◦C}
and Tcold = {25 ◦C, 15 ◦C, 7 ◦C}, and are initialized with the same initial layer
heights. Each storage has two inlets/outlets, whereby one pair of inlets and
outlets is defined to be located at a height of 0.125 m, i.e. at 5 % of the height
of the storage, and the second pair of taps is located at 2.375 m, i.e. at 95 %
of the height of the storage.

Considering the rather small size of the thermal storages with respect to the
load profiles or the nominal output power of the connected prosumers, and
the overall quite complex plant set-up (mainly made complex by the consid-
eration of four individual multi-layer sensible heat storages), a rather short
prediction horizon of 6 h, whereby the first hour is partitioned in 15 min
and the remaining prediction horizon in 30 min intervals, was chosen for
the simulation. In light of this short prediction horizon and the mentioned
high complexity of the plant set-up — and hence of the associated optimiza-
tion problem —, the physical phenomena of axial conduction and ambient
thermal energy losses are not considered within the prediction models of
the tes, given their expected negligible effects. All connections are assumed
to be ideal, i.e. lossless.

Given the fact that the control optimization problem in the given case study
is a milp, the acceptable relative tolerance between the optimal solution that
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is obtained with relaxation of the integrality constraint of all considered
integer optimization variables and the best found integer solution, the so-
called MIP gap parameter needs to be defined. In the presented case study
this parameter was set to 1 %, hence the utilized milp solver may terminate
the search for a better solution as soon as it finds a valid integer solution
with an associated cost function value that deviates less than 1 % from the
optimal solution of the integrality-relaxed problem.

In order to solve the optimization problem, the commercial solver software
Gurobi [9] was utilized. The numerical simulation script, as well as the
discussed ems framework are implemented in the Julia [4] programming
language, a rather novel, high-level mathematical programming language
that offers good performance and, through the native JuMP [5] package,
facilitates the optimization problem definition as well as integration of
external numerical solver software such as Gurobi.

With the above discussed parameters defined, the simulation was carried out
on a Lenovo T430 Laptop with an integrated Intel i5-3320 processor, 8 GB of
ram and running Windows 10. The obtained simulation results are depicted
in Figure B.17 to Figure B.27. The solving time and the MIP gap associated
with each solution are depicted in Figure B.28 respectively Figure B.29. To
conclude the case study, the remainder of this chapter will present and
illustrate the most prominent of the obtained results.

4.4. Simulation Results

The obtained simulation results display several noteworthy features related
to the novel prediction models that were used within the designed ems. The
following discussion of the simulated ems controller behavior will proceed
in a chronological manner, starting from the first considered simulation time
step at the stroke of midnight.

Initially all thermal storages are initialized to be rather empty (see Fig-
ure B.17 to Figure B.20), i.e. they contain little usable energy from the
perspective of most of the connected prosumers (with the exception of
thermal energy for cooling of the vats or the office facilities, which may
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be provisioned at both 7 ◦C and 12 ◦C). Therefore, considering the present
thermal energy demand to heat the vats in the East Wing (see Figure B.10)
and the natural lack of solar irradiance at night, the lpg boiler is switched
on continuously on a low setting of on average 14 kW during the early
morning hours until roughly 7:15 a.m. to feed the high temperature storage
located in the East Wing (see Figure B.25 and Figure B.26).

In the West Wing there is no thermal energy demand until 6 a.m. after which
some thermal energy for space heating and domestic hot water provisioning
is required (see Figure B.13). Given the predictive capabilities of the utilized
ems, however, no thermal energy from the lpg boiler is fed into the high
temperature storage in the West Wing, as the controller anticipates that the
current energy within the storage should suffice for the expected demand,
until additional thermal energy from the solar collector array is available at
a later time of day.

After 7:15 a.m. thermal energy from the solar thermal collectors is first made
available (see Figure B.21). It is approximately equally distributed between
both high temperature tes until 11:15 a.m. (see Figure B.22). Notably, the
high temperature tes in the East Wing is initially fed with predominantly
medium temperature thermal energy, given that the solar collector may
operate most efficiently in this way and provide the highest instantaneous
thermal energy yield. Conversely, the tes in the West Wing is generally
fed with slightly higher temperature thermal energy, given the continuing
prosumer energy demand in the West Wing sector and considering that the
prosumers in the West Wing consume exclusively high temperature thermal
energy.

After 11:15 a.m. the thermal energy output of the solar collector is almost
continuously fed into the tes in the East Wing at the highest possible outlet
temperature of 90 ◦C. This decision by the ems is likely motivated by the
approaching considerable thermal energy demand for cooling in the East
Wing, that, given the operating principle of the utilized absorption chiller,
in turn entails a high demand for high temperature thermal energy. To
meet this large energy demand for cooling, the lpg boiler is switched on
at 14:15 p.m. to provide additional high temperature thermal energy to the
generator of the absorption chiller. One noteworthy feature of the obtained
absorption chiller operation reference concerns the chosen generator inlet
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temperature. Whilst initially the absorption chiller is operated at its most
efficient operating point, after 16 p.m. the chiller is operated at its lowest
possible temperature setting which, with respect to Figure 4.3, results in a
lowered cop of the chiller. This behavior may be explained by the fact that
after 16 p.m. the thermal energy demand for cooling in the East Wing sector
continuously decreases, and that there is a lot of remaining thermal energy
within the high temperature storage at 70 ◦C.

The thermal energy demand for cooling of the prosumers in the West Wing,
that arises in the afternoon hours and remains considerably high until late
at night, is provisioned by the installed compression chiller (see Figure B.27),
and is, hence, independent of any other energy demand within the plant.

The solving time necessary to obtain a suitable solution to the control
optimization problem at each time step is illustrated in Figure B.28. Evi-
dently, the solving time varies greatly (by almost three orders of magnitude)
between different optimization iterations, ranging from a few seconds to
violating the maximum admissible solving time of 15 min. As one may
expect, the solving time steeply increases as soon as the thermal energy
demand for cooling in the East Wing comes into scope of the prediction
horizon, given the implied coupling of the two tes in the East Wing by
means of the absorption chiller, and hence the entailed increased system
complexity. Similarly, with the decrease of this energy demand in the late
afternoon a notable decrease in solving time is observable.

The MIP gap associated with each solution of the optimization problem is
depicted in Figure B.29. Naturally, for the time step where the maximum
admissible solving time was violated (13:45 p.m.) a MIP gap higher than
the defined upper bound of 1 % is observed.

The following chapter will summarize and discuss the key insights that
may be drawn from the obtained results of the presented case study, with
respect to the ems performance benefits and the potential drawbacks that
are entailed by the usage of the enhanced prosumer prediction models.
Additionally, a brief outlook on necessary future research and development
regarding hybrid linear prediction models of prosumers within hydronic
system will be given.
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The obtained case study results clearly illustrate important benefits that may
be obtained by using the presented enhanced prosumer prediction models
in mpc-driven ems. Most notably, by considering the temperature-dependent
efficiencies/performance of different prosumers in their respective predic-
tion models, the overall plan of operation that is derived by an employed
ems may steer the considered plant in a more energy efficient fashion.

In the presented results this circumstance is exemplary observable in the de-
vised operation strategy for the solar thermal collector, where initially lower
temperature thermal energy is provided by the collector to charge both high
temperature thermal energy storages at the highest possible energy effi-
ciency. At a later point, the solar thermal collector is then utilized at a more
inefficient operating point in order to supply the arising high temperature
thermal energy demands. This adaptation of the instantaneous behavior of
the solar thermal collector, depending on the expected conditions and uti-
lization of the other prosumers within the system, is beneficial to the overall
system efficiency that is entailed by the derived plan of operation. In general,
this efficiency increase will be particularly pronounced for prosumers that
exhibit a stronger varying temperature-dependent efficiency/performance
such as for example flat plate solar thermal collectors, whose respective
loss coefficients k1 and k2 are much higher than those of evacuated-tube
collectors, which were considered as part of the presented case study.

However, in order to truly quantify these performance benefits for a range
of different real-world applications, extensive practical tests of ems that
utilize the newly integrated prediction models need to be conducted. These
test would also be necessary to assess the model deviation of especially the
proposed multi-layer sensible heat thermal storage prediction model and
the entailed, potentially adverse, effects on the ems performance. However,
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with respect to the previously utilized prediction models, the proposed
enhanced models are expected to significantly better approximate the actual
prosumer behavior.

Besides practical validations, extensive additional simulation studies to
ensure the practicability of the proposed methods are advised. Especially
the range of occurring solving times needs to be investigated, given its
potential adverse effects on the stability of a designed controller.

The significantly increased solving times, that are entailed by the usage of the
proposed prediction models, namely the multi-layer thermal storage model
given the large amount of introduced auxiliary binary variables, are the main
drawback of the presented models/methods. The negative consequences
of this increased number of binary system variables is expected to be
especially notable when hydronic systems with relatively small tes are to
be controlled, considering the likely increased frequency of discrete state
changes within the associated multi-layer prediction model. Therefore, the
proposed prediction model enhancements are expected to be particularly
beneficial for plants and applications that comprise a small number of rather
large tes, and whose system dimensions justify the increased necessary
computing power to solve the control optimization problem.

As a last point, recently significant advancements have been made in the
field of optimization algorithm research [2]. Resulting from this, many com-
mercial providers of optimization algorithm software have released novel
algorithms that are particularly focused on bilinear problems. Therefore,
in the near future it may be no longer necessary to explicitly linearize the
phenomenon of energy transfer by convection within the prediction models
of prosumers. Following from this, one may then be able to compose generic
prosumer prediction models where the specific temperature-dependent
behavior of prosumers may be explicitly represented, rather than approxi-
mated by the methods that were illustrated in this thesis. However, in the
case that these novel bilinear optimization algorithms will, at least initially,
fail to provide the necessary performance, it is hoped for that the meth-
ods and ideas illustrated in this thesis will prove useful and beneficial to
other researchers and engineers that are concerned with the development
of mpc-driven ems for mes.
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Appendix A.

Model Predictive Control

Model predictive control (mpc) is an optimization-based control strategy that
has been increasingly employed since the 1980s and nowadays is considered
the quasi-standard solution for advanced process control, especially for
chemical and petrochemical plants and processes [20], i.e. processes that
are typically characterized by rather slow dynamics. However, in light of
the continuing advancements in computer technology and optimization
algorithms the scope of potential applications for mpc is ever increasing.
Therefore, nowadays mpc is used not only for systems with rather slow
dynamics, but also for the real-time control of very agile systems and
applications, such as vehicle powertrains or path planning for self-driving
cars, or very large and complex systems such as electrical power grids.

A.1. Main Concept

The fundamental control concept of mpc is that based on a discrete-time
dynamic model of the plant (prediction model), the expected future behavior
of the plant is forecast/predicted over a finite time horizon (prediction horizon)
based on the generalized set of control inputs and taking into account
known disturbances (e.g. environmental conditions). Considering the notion
of discrete-time models, the future plant behavior is, hence, simulated for
a number of specific time instances, whereby the time difference between
consecutive instances is referred to as the sampling period, which does not
necessarily has to be constant. Based on the predicted plant behavior, an
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optimization problem is constructed. It is defined by a scalar so-called cost
function, which describes metrics to evaluate the predicted generalized plant
behavior. These metrics, also referred to as costs, are typically defined in
such a way that a less favorable plant behavior results in higher costs. A
typical example of this case would be the consideration of a term describing
the absolute divergence of the output of a system from a defined future
reference within the cost function. Generally, the solution of the optimization
problem is, thus, defined to be the future set of control inputs (actuations)
that minimize the defined cost function, i.e. that result in the desired plant
behavior, subject to potential constraints concerning e.g. the plants state or
the range of admissible values for the control inputs.

Following the solving of the optimization problem and, thus, the compu-
tation of the optimal control input series, the first element of the derived
control input series is executed as soon as the previous sampling period
is expired. Upon said time instance at which the first computed time step
becomes active, the current state of the plant is measured or estimated
before the prediction and optimization cycle is repeated considering the
updated instantaneous plant state, and potential changes in the expected
environmental conditions or changes of applicable constraints. Naturally,
given the time passed since the previous prediction and optimization cycle,
the considered prediction horizon has to be advanced by one time step. In
light of this circumstance, the illustrate method is fittingly referred to as
the receding horizon principle. Consequently, mpc is inherently an adaptive
control strategy, meaning that the current control actions are determined
considering changing present and expected conditions and events.

To further illustrate the operating principles behind mpc and in order to
better understand the entailed implications with respect to general controller
design and implementation, the example of a general single input, single
output plant, whose output is sought to track a known control reference is
discussed. Preliminary to utilizing any mpc strategy a time-discrete dynamic
model of the plant has to be derived, which is assumed to be of the form:

xk+1 = f (xk, uk, wk) , (A.1)
yk+1 = g (xk, uk, wk) . (A.2)

Here, the discrete-time state of the plant at time index k is denoted by xk, uk
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denotes the considered scalar control input, yk is the associated scalar plant
output and wk comprises all external disturbances that are known.

Utilizing a mpc strategy to determine the future time series of control
inputs that would make the output of the plant track the defined reference
would then entail the following steps: First, the generalized plant output is
predicted over the prediction horizon, i.e. the following Np future time steps,
depending on the future series of control inputs and the expected values
of the known disturbances. Second, the scalar cost function J is defined
with respect to the state, output, input and the known disturbances of the
plant, in order to define the objectives and the performance metrics of the
controller. Considering that in the discussed general example the goal is for
the output of the plant to track a defined control reference r, a reasonable
definition of J may be given by:

J =
k0+Np

∑
k=k0+1

Qk · (yk − rk)
2 + Rk · u2

k . (A.3)

Here, k0 denotes the current time instance and Qk and Rk are chosen, poten-
tially time-varying, positive weighting coefficients. With respect to (A.3), it
is clear that the value of J increases with the future divergence of the output
of the plant from the defined reference. Additionally, the value of the cost
function is defined to increase with the square of the value of the future
control input variable itself.

The first term of J is intuitive and represents the defined reference tracking
objective of the controller. However, the second term is motivated by the
fact, that besides optimal tracking behavior, one is typically interested in
achieving reference tracking with the lowest possible amount of control
input actuation. This is due to the fact, that in many control system applica-
tions increased actuation is considered to increase equipment wear and tear
and/or entails increased cost of operation. Therefore, users and engineers
may prefer controllers with potentially slightly lower tracking accuracy
but low control actuation over a controller with slightly better tracking
behavior though high control actuation. Note, that this implicit limitation of
the range of control input values is not directly connected to control input
limitations that typically occur in practical applications. These explicit input
restrictions should be incorporated in the optimization problem by means
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of constraints, rather than through the illustrated optimization incentives
which are sometimes referred to as soft constraints.

Within the proposed cost function two controller performance metrics are
defined, i.e. reference tracking behavior and low control actuation. Hence,
the resulting time series of future control inputs may be understood as a
trade-off between those metrics. In order to individually specify how this
trade-off ought to be made, the defined weighting factors Q and R may be
chosen according to the application and preferences of the control systems
engineer. Furthermore, their respective time dependence allows for defining
them individually for each time step, such that e.g. one can emphasize
accurate reference tracking at the end of the prediction horizon, whereas
divergences in the near future are to some degree more tolerable.

Generally, many more arbitrary complex terms may be added to a cost
function depending on the investigated plant and the defined controller
objectives. The illustrated example only serves to convey the general proce-
dure and intuition when constructing the cost function of a model predictive
controller.

With the cost function defined, the resulting control optimization problem
for the discussed example may be posed as follows:

min
uk0+1 , ... , uk0+Np

J ,

subject to umin ≤ uk ≤ umax ∀ k ∈ {k0 + 1, . . . , k0 + Np} ,
ymin ≤ yk ≤ ymax ∀ k ∈ {k0 + 1, . . . , k0 + Np} ,

xk0

!
= x (t0) ,

uk0

!
= u (t0) ,

yk0

!
= y (t0) .

(A.4)

Here, exemplary constraints on the minimal and respectively maximal
value of the input and output of the system are enforced. However, any
generic constraint on the state, input or output variables of the system may
be defined. The last three equality constraints illustrate the update of the
current state, input and output of the system that is carried out at the start
of each optimization cycle.

114



A.1. Main Concept

The constructed optimization problem is subsequently solved, typically
using specific computer algorithms referred to as solvers. The obtained
solution, i.e. the series of future control inputs u? =

[
u?

k0+1 , . . . , u?
k0+Np

]
,

may then be considered optimal over the considered prediction horizon
with respect to the chosen cost function and the defined constraints.

At time instance k0 + 1 the first entry of u? may then be applied to the plant.
Afterwards, based on the determined state xk0+1 and the system output
yk0+1 the optimization cycle is repeated for the updated prediction horizon[
k0 + 2 , . . . , k0 + Np + 1

]
.

Although the obtained series of future control inputs may be defined to be
optimal over the prediction horizon with respect to the defined cost function,
it is important to emphasize that this notion of optimality does not inevitably
entail satisfying controller performance. Satisfying controller behavior for a
given application may only be archived if: First, the respective cost function
and constraints describe meaningful metrics with which the system behavior
can actually be sufficiently evaluated. Second, the defined restrictions allow
for feasible solutions of the optimization problem. Besides, considering that
it is rather intricate to prove the stability of a model predictive controller
careful choice and evaluation of the mpc parameters, i.e. mainly sampling
period and length of prediction horizon, is necessary before a controller
may be finally deployed. In addition, it may be necessary to define adequate
recovery strategies for the case that no feasible solution is found within an
optimization iteration, or for the case that optimization solving times exceed
the sampling periods at times.

Last, expanding on these brief general remarks on controller performance
and stability, the implications of system model accuracy will be briefly
discussed here. With respect to the illustrated cost function (A.3) it is appar-
ent, that the accuracy of the utilized prediction model directly affects the
solution of the optimization problem, given that the future system output,
which is predicted based on the defined model, is directly considered within
the cost function. Therefore, only the effects of properties that are captured
within the defined prediction model on the output of the system may be
assessed when predicting the future plant behavior. Hence, the series of
future control inputs is solely determined by the optimizer based on the
plant information that is comprised within the defined prediction model and
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the enforced constraints. The so derived series of control inputs may prove
to be insufficient or potentially completely inadequate if important aspects
of the plant dynamics are not captured within the prediction model.

In contrast to decreasing controller performance entailed by insufficient
plant prediction models, overly accurate models, i.e. representing non-
essential dynamics that are rather irrelevant to the system behavior, may
result in complex optimization problems that take a long time to be solved.
These potentially increased solving times may entail a necessary increase
of the utilized sampling period or a decrease of the chosen prediction
horizon, which in turn may both impair the controller performance or
stability given the coarser time discretization or shorter system behavior
prediction. Considering the above remarks, a trade-off between considered
model complexity, chosen sampling time and length of prediction horizon
usually needs to be made.

Besides refraining from modeling non-essential plant dynamics, optimizer
solving times may potentially also be decreased by restricting the utilized
prediction model and cost function to be of a particular system, respectively
function, class, such as e.g. linear prediction models and linear cost func-
tions. For this example, the resulting control optimization problem would
be classified as a linear program (lp), for which specialized and efficient opti-
mization algorithms have been designed. For other classes of optimization
problems different solvers exist that differ in their respective solving times
and availability, i.e. whether they are open-source or only commercially
available. However, as a general rule of thumb the more restrictive an op-
timization problem class is, e.g. lp are more restrictive than mixed-integer
linear programs (milp), the more efficient state-of-the-art numerical solvers
may potentially solve the respective optimization problems. Therefore, de-
pending on the application, slight prediction model inaccuracies entailed
by a more restrictive class of systems and the resulting system approxima-
tions, may be preferable for the benefit of reduced solving times and, hence,
potentially decreased sampling periods or increased prediction horizons.
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A.2. MPC with hybrid linear prediction models

The main control strategy that is utilized and discussed within this thesis is
mpc with hybrid linear prediction models. The term hybrid signifies that both
continuous- and discrete-valued system variables are considered within the
respective prediction models. Whilst linear systems of continuous-valued
system variables are typically defined by means of differential or difference
equations, depending on whether a physical system is described in con-
tinuous or in discrete time, the evolution of discrete-valued systems has
to be represented differently, e.g. by means of finite state machines. Com-
bining these two very different classes of systems in a common framework
is non-trivial, and hence several modeling frameworks have been devised
that each focus on different specific subclasses of hybrid systems and the
occurring interactions between the continuous- and the discrete-valued
system parts. This strive towards a unifying modeling framework should
not be understood as a purely academic curiosity without real practical
relevance. In fact considering the past increased integration of computer
technology, i.e. inherently discrete-valued systems, into basically every as-
pect of modern-day infrastructure, including any generic industrial plant
and process, a common modeling framework may be inevitably necessary
when seeking to adequately model those systems to subsequently control
them. Additionally, many processes or machines comprise inherent discrete
logic, e.g. a continuous-valued system that is affected by discrete-valued
states such as the position of a switch/selector such as the gear lever of
a car. A detailed and comprehensive description of these systems is only
possible within a modeling framework that considers both continuous- and
discrete-valued system components and the interactions between them. In
fact, practical examples exist where the lack of proper consideration of these
interactions was shown to result in control system instabilities and even
complete system failures [21].

A rather famous hybrid system modeling framework that repeatedly is
mentioned within this thesis is the mixed logic dynamical (mld) system
framework, which was first introduced in [3]. Within this framework the
dynamics of a system are described by linear dynamic equations subject to
mixed-integer linear constraints. Discrete-valued system components are
represented by binary system variables, and are typically defined by means
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of logical propositions of other binary variables and operating events, i.e.
events that are defined with respect to (in)equality conditions of continuous-
valued system variables and represent whether said condition is met or
not. In order to integrate these discrete-valued system components into the
linear dynamic system, the mld framework describes systematic methods
to reformulate the defining logic propositions into equivalent mixed-integer
constraints, to hence obtain a holistic hybrid system representation.

Although model simulation may be complicated by the fact that mixed-
integer constraints have to be considered, i.e. that model simulation implies
the use of optimization algorithms that solve for integer feasibility, the
presented modeling framework lends itself naturally to be used within
optimization-based control strategies such as mpc, where the arising con-
straints may simply be integrated into the control optimization problem.
Considering that many energy systems have a substantial amount of in-
herent logic and hence discrete-valued subsystems, mpc with linear hybrid
prediction models — that can be derived using the mld framework — is
frequently used as the control strategy of choice within ems.

The main question that needs to be answered, however, is how exactly
discrete-valued system components can be represented by means of equiv-
alent mixed-integer constraints such that both continuous- and discrete-
valued system parts are subsumed within a single equivalent mld model.
This reformulation process is non-trivial. Therefore, the following section is
dedicated to briefly illustrate and discuss common methods that facilitate
this translation. The following summary of common methods is based on
[14], where the interested reader may find a more concise treatment of the
topic and specifically the methods only summarized here.

A.3. Reformulating Logic Relations as Constraints

Discrete operating events or states of a system can be represented by means
of binary system variables. To illustrate this, one may assign binary indicator
variables to represent the truth value of statements which define a state
“the boiler is on” or an event “the boiler’s power consumption exceeds
5 kW”. Compound statements can be constructed by combining individual
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statements through operators, which in the context of Boolean algebra are
referred to as connectives. The set of typically distinguished connectives is
shown in Table A.1. The compound statement “the boiler is on and its power

Symbol Connective

¬ logical “not”
∧ logical “and”
∨ logical “or”
⊕ logical “exclusive or”
=⇒ logical implication
⇐⇒ logical equivalence

Table A.1.: Commonly considered logical connectives.

consumption exceeds 5 kW” can thus be expressed as follows

X1 ∧ X2 , (A.5)

where X1 and X2 represent the individual atomic statements.

In the context of propositional calculus the introduced variables X1 and X2
are referred to as literals or Boolean variables. Each of these variables naturally
has only two possible values, namely true, i.e. the statement is true, and
false, i.e. the statement is false. Therefore, one may introduce the binary
variables δ1 and δ2 to represent the literals X1 and X2, where a value of
δi = 1 is equivalent to Xi = true and δi = 0 is equivalent to Xi = false.
The logic proposition (A.5) can, hence, be restated as follows:

[δ1 = 1] ∧ [δ2 = 1] . (A.6)

In order to enforce that this compound statement renders true, one can
simply define the following integer linear equality constraint:

δ1 + δ2
!
= 2 . (A.7)

As a matter of fact, every compound statement that connects two literals
by one of the connectives shown in Table A.1 can be similarly enforced by
equivalent integer linear constraints. These constraints are illustrated in Ta-
ble A.2. This observation suggests that one may be able to represent arbitrary
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Logic Relation Integer (In)equality

¬X1 δ1
!
= 0

X1 ∧ X2 δ1 + δ2
!
= 2

X1 ∨ X2 δ1 + δ2 ≥ 1

X1 ⊕ X2 δ1 + δ2
!
= 1

X1 =⇒ X2 δ1 − δ2 ≤ 0

X1 ⇐⇒ X2 δ1 − δ2
!
= 0

Table A.2.: Elementary logic propositions and their equivalent representation by means of
integer in-/equality constraints.

complex propositional statements by means of integer linear constraints.
Therefore, the next subsection will summarize three general methods that
may be utilized to facilitate the translation of arbitrary complex proposi-
tional statements into equivalent integer linear in- respectively equality
constraints.

A.3.1. Translating Generic Logical Propositions into
Equivalent Integer Linear Constraints

Generic relations between Boolean variables may be expressed by means of
a Boolean formula F:

F (X1, . . . , Xn) , (A.8)

where F defines an arbitrary combination of the literals X1 to Xn by means
of any of the connectives shown in Table A.1. Several different methods
exist to enforce the compound statement defined by F to render true, i.e. to
enforce the Boolean relation:

F (X1, . . . , Xn) = true , (A.9)

through equivalent integer linear constraints. The most simple and straight-
forward approach is to separate the Boolean relation (A.9) into elementary
compound statements as shown in Table A.2. Subsequently, each elementary
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compound statement may be substituted by an auxiliary binary variable and
the rules of Table A.2 to reformulate elementary compound statements as in-
teger linear constraints can be applied recursively. Although this method is
very simple and may be performed automatically, it potentially introduces a
large number of binary variables that, when integrated into an optimization
problem, may significantly increase its computational complexity.

A common method that does not require the introduction of auxiliary binary
variables is based on the conjunctive normal form (cnf) representation of a
Boolean formula. A cnf is a product of sums, i.e. a logical disjunction of
so-called maxterms which are conjunctions of literals and negated literals.
As a matter of fact, every Boolean formula can be expressed by means of an
equivalent cnf, hence this method of representation does not restrict the
kinds of Boolean formulas that can be considered. Enforcing that a Boolean
formula is true, if the formula is stated in its equivalent cnf can be achieved
as follows: Consider the generic cnf

N∧
j=1

∨
i∈Pj

Xi ∨
∨

i∈Nj

¬Xi

 , (A.10)

where N denotes the number of maxterms and the sets Pj and Nj contain
the indices of positive respectively negated literals Xi that are part of the
j-th maxterm. Naturally, each maxterm may only comprise either the literal
itself or its negation, as otherwise the respective maxterm would always
render true. In order to enforce that a cnf evaluates to true, the following
integer constraint for each maxterm has to be met:

∑
i∈Pj

δi + ∑
i∈Nj

(1− δi) ≥ 1 ∀ j = 1, . . . , N , (A.11)

where the binary variables δi represent the literals Xi.

The presented cnf method does not introduce any auxiliary binary variables
and thus should be generally preferred over the aforementioned substitu-
tion method. However, the integer constraints that are derived as part of
the illustrated cnf method potentially do not describe the most compact
solution space if the used integrality constraint of the binary variables were
to be relaxed, i.e. the associated variables were to be treated as continuous
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variables that are bounded within the interval [0, 1]. The term compact hereby
refers to the smallest achievable solution space, that is obtained during the
relaxation of the binary variables, which still contains all feasible binary
variable solutions that render the respective Boolean formula true. A larger
solution space potentially entails larger optimization problem solving times,
considering that integrality relaxation and subsequent lp solving is a key
component of many optimization algorithms for milp.

To address this issue another reformulation method for logic propositions
that does not introduce any auxiliary binary variables and that entails a
compact solutions space is discussed in [14]. This method relies on comput-
ing the convex hull that contains all feasible binary variable solutions, and
subsequently expressing the space encompassed by the convex hull as a
multi-dimensional polyhedron. The face sides of the obtained polyhedron
may then each be expressed by equivalent mixed-integer linear constraints
that appropriately define the compact solution space for a given Boolean
relation. However, for the modeling tasks that had to be solved as part
of this thesis, experimental tests showed no benefits when utilizing this
method. Therefore, only the cnf method was utilized.

A.3.2. Translating Generic Mixed Continuous-Logic
Propositions into Equivalent Mixed-Integer Linear
Constraints

Besides purely logical propositions, when modeling hybrid systems, one
is typically also confronted with representing the interaction between the
continuous and discrete worlds, namely discrete events that are triggered
by continues dynamics, or more accurately binary variables that represent
whether linear in-/equality conditions of continuous variables are met or
not. As for the purely logical case, the mld framework provides methods to
represent these interactions by means of mixed-integer linear constraints.

The most fundamental interaction between continuous- and discrete-valued
variables may be of the form:

X ⇐⇒ [ f (x) ≤ 0] . (A.12)
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Here, the Boolean variable X evaluates to true if and only if the linear
function of the continuous variables x, f (x), is smaller than or equal to
zero. This mixed continuous-logic proposition can be expressed by means
of mixed-integer constraints as follows:

f (x) ≤ M−M · δ ,
f (x) ≥ ε + (m− ε) · δ .

(A.13)

This reformulation of (A.12) is commonly referred to as the big-M formu-
lation. The identifiers M and m define a upper, respectively lower, bound
on the image of the linear function f : Rn 7→ R for a bounded domain
x ∈ X ⊂ Rn:

M := max
x∈X

f (x) ,

m := min
x∈X

f (x) .
(A.14)

The identifier ε in (A.13) denotes a small tolerance value, typically the
machine constant, such that the constraint needs not to be formulated as a
strict inequality.

Other mixed-integer linear constraints representing fundamental mixed
logic-continuous propositions are given in Table A.3.

In order to express compound statements, the state of each operating event
(continuous in-/equality condition) can be represented by an auxiliary literal
by means of (A.13). As a result, a compound proposition of only Boolean
variables is obtained which can be reformulated into equivalent (mixed-
)integer linear constraints of binary variables, by means of the previously
discussed methods.
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Mixed Continuous-Logic Relation Mixed-Integer Inequalities

[ f (x) ≤ 0] =⇒ X f (x) ≥ ε + (m− ε) · δ
X =⇒ [ f (x) ≤ 0] f (x) ≤ M−M · δ

X ⇐⇒ [ f (x) ≤ 0]
f (x) ≤ M−M · δ
f (x) ≥ ε + (m− ε) · δ

If X then z = f (x) else z = 0

z ≤ M · δ
−z ≤ −m · δ

z ≤ f (x)−m · (1− δ)

−z ≤ − f (x) + M · (1− δ)

Table A.3.: Elementary mixed logic-continuous relations and their equivalent representa-
tion by means of mixed-integer inequalities. The conditional on the lower left
corresponds to a product of a binary and a continuous variable z = δ · f (x).
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Case-Study

B.1. Load Profiles

In the following figures the computed load and yield profiles for the pro-
sumers are depicted for the years 2015 and 2016. They are educated guesses
and based on descriptions of the underlying processes as well as informa-
tion on the yearly demand, but not on measurements with a high temporal
resolution. The considered prosumers are grouped into several categories,
whose aggregated thermal energy demand for heating and cooling is shown.
Thermal energy demand for cooling is represented by negative values to
clearly distinguish between thermal energy demand for heating and cool-
ing.
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Figure B.1.: Combined thermal energy demand profiles of all considered prosumers.

Figure B.2.: Thermal energy demand profile for heating and cooling of the vats. The vats
are filled with grape juice after the harvest season and are to be heated to
initiate the fermentation process. This process is exothermic, and hence also
some thermal energy for cooling is required in order to control the temperature
inside of the vats, thus ensuring a good tasting end product.
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Figure B.3.: Thermal energy demand profile for heating and cooling of the barrels. The
fresh wine from the vats is transferred to the barrels and must be kept at a
constant temperature during winter (heating) and summer (cooling).

Figure B.4.: Thermal energy demand profile for climatization of the office facilities in the
East Wing. Only energy for space cooling during summer is required.
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Figure B.5.: Thermal energy demand profile for climatization of the office facilities, and
domestic hot water provision in the West Wing. Conversely to the facilities in
the East Wing, the office facilities in the West Wing also require thermal energy
for space heating in winter.

Figure B.6.: Thermal energy demand profile for maintenance tasks and storage cellar
humidity stabilization in the West Wing.

128



B.1. Load Profiles

Figure B.7.: Thermal energy demand profile for pipe cleaning.

Figure B.8.: Computed thermal energy yield of the installed solar thermal collector array
for a mean collector temperature of T̄fl = 55 ◦C. The yield was computed
according to (2.7), and with the parameters given in Table 4.1.
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B.1.1. Simulation Profiles

From the yearly load and yield profiles, October 3
rd was used for the actual

simulation study. The following figures show the energy demand and yield
during this day, along with the adjacent days, in closer detail.

Figure B.9.: Combined thermal energy demand of all considered prosumers between Octo-
ber 2

nd and October 4
rd of 2016.
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Figure B.10.: Thermal energy demand profile for heating and cooling of the vats between
October 2

nd and October 4
rd of 2016.

Figure B.11.: Thermal energy demand profile for heating and cooling of the barrels between
October 2

nd and October 4
rd of 2016.
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Figure B.12.: Thermal energy demand profile for climatization of the East Wing between
October 2

nd and October 4
rd of 2016.

Figure B.13.: Thermal energy demand profile for climatization and domestic hot water
provision in the West Wing between October 2

nd and October 4
rd of 2016.
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Figure B.14.: Thermal energy demand profile for maintenance tasks and storage cellar
humidity stabilization in the West Wing between October 2

nd and October 4
rd

of 2016.

Figure B.15.: Thermal energy demand profile for pipe cleaning between October 2
nd and

October 4
rd of 2016.
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Figure B.16.: Expected thermal energy yield of the installed solar thermal collector array for
a mean collector temperature of T̄fl = 55 ◦C between October 2

nd and October
4

rd of 2016.

B.2. Simulation Results

In the following, the simulation results for the conducted case study are
depicted. Given the high complexity of the considered plant, the following
collection of simulation results is not complete, i.e. only the temporal evolu-
tion of the most relevant prosumer variables are shown. These include: the
layer heights of the sensible heat storages; the output power of the thermal
energy producers; the generator inlet temperature of the absorption chiller;
and the mass flow rates through the solar collector and the lpg boiler with
the associated production sector origin of the respective mass streams.
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B.2.1. Thermal Energy Storages

The following four figures (B.17 to B.20) depict the variation of the layer
heights of the sensible heat storages over time. The individual layer heights
are depicted in a stacked manner, representing the vertical cross section
of the storage. The dashed lines in the figures represent the height of the
considered inlet/outlet pairs.

Initially both high temperature tes are rather empty, i.e. the relative height
of the two high temperature layers is small compared to the height of the
lower temperature layers. Considering that solar energy is not available
at night, both storages are discharged in the early morning hours. Given
the significant thermal energy demand in the East Wing, the lpg boiler is
switched on and feeds the East Wing tes. This results in a depletion of the
lowest layer of the storage. The layer at 50 ◦C at the same time continuously
increases in size due to the return flow of the connected and active thermal
loads.

Whilst the storage in the West Wing is almost exclusively discharged, the
storage in the East Wing is charged with a significant amount of high
temperature thermal energy from noon on. At around 15 p.m. the two top
layers, hence occupy the entire usable volume of the storage. This energy,
however, is completely consumed by the end of the day. At midnight of
October 3

rd both storages contain little usable energy, with the dominant
temperature in the storage being 50 ◦C.
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Figure B.17.: Layer heights over time within the high temperature sensible heat storage
(East HT) of the East Wing.

Figure B.18.: Layer heights over time within the high temperature sensible heat storage
(West HT) of the West Wing.
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Similarly to the high temperature tes, the low temperature tes are rather
empty at the beginning of October 3

rd. The initial temperature distribution
remains unchanged in the early morning hours, considering that no thermal
energy demand for cooling occurs in either of the two production sectors.

The tes in the West Wing is charged from around 8 a.m. on by the compres-
sion chiller, thus the height of the lowest layer increases gradually following
the output power profile of the compression chiller (see Figure B.27). With
increasing thermal energy demand after noon the storage is discharged
again up until 8 p.m. after which the provided output power of the com-
pression chiller exceeds the thermal energy demand again, thus charging
the storage.

The tes in the East Wing remains rather empty the entire time, with small
variations depending on whether the output power of the absorption chiller
(see Figure B.23) exceeds the thermal energy demand, such as around 4 p.m.
At the end of the day, the storage is completely empty, with the top most
layer occupying the entire usable volume of the storage.

Figure B.19.: Layer heights over time within the low temperature sensible heat storage
(East LT) of the East Wing.
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Figure B.20.: Layer heights over time within the low temperature sensible heat storage
(West LT) of the West Wing.
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B.2.2. Thermal Energy Generators

In the following figures, B.21 to B.27, the most important results for the
thermal energy producers are depicted.

Solar Thermal Collector

The thermal energy yield of the solar collector is depicted in Figure B.21.
The dashed lines represent the forecasted thermal energy yields for all
considered inlet and outlet temperature combinations. The solid line is the
actual thermal energy yield that was chosen by the ems controller by means
of selecting the corresponding inlet and outlet temperature.

Figure B.21.: Thermal energy yield of the solar collector array.

Figure B.22 depicts the associated mass flow rates at the different considered
temperatures at the inlet and outlet of the collector. A yellow background
indicates that the source, respectively sink, of the in- and outflowing mass
streams of the collector is the high temperature storage in the East Wing,
whilst a light blue background indicates that the mass stream stems from,
respectively enters, the high temperature storage in the West Wing. Inlet
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and outlet mass streams can be distinguished by remembering that outlet
mass streams are defined to have positive mass flow rates, whilst inflowing
mass streams are set to have negative mass flow rates.

Figure B.22.: Mass flow rates of the considered parallel mass streams at the inlet and outlet
of the solar thermal collector array.

Absorption Chiller

The absorbed thermal energy at the generator and the evaporator of the
absorption chiller are depicted in Figure B.23. The associated generator inlet
temperature is illustrated in Figure B.24.
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Figure B.23.: Absorbed thermal energy at the generator and evaporator of the absorption
chiller.

Figure B.24.: Mixed temperature of the parallel mass streams entering the generator inlet
of the absorption chiller.

141



Appendix B. Additional Information on the Case-Study

LPG Boiler

The output power of the lpg boiler is depicted in Figure B.25. The associated
mass flow rates of the parallel mass streams at the inlet respectively outlet
of the boiler are depicted in Figure B.26.

Figure B.25.: Thermal energy output of the lpg boiler.
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Figure B.26.: Mass flow rates of the considered parallel mass streams at the inlet and outlet
of the lpg boiler.
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Compression Chiller

The output power of the compression chiller is depicted in Figure B.27.

Figure B.27.: Thermal energy output of the compression chiller.

B.2.3. Optimization Parameters

Solving Time

The necessary time to solve each optimization problem in each mpc iteration
is depicted in Figure B.28. The solving time is illustrated with respect to the
first time step of the considered prediction horizon (x-axis). The dashed line
indicates the maximal admissible solving time of 15 min.
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Figure B.28.: Solving times of the control optimization problem.
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MIP Gap

The MIP gap associated with each obtained solution is illustrated in Fig-
ure B.29, whereby the dashed line indicates the defined maximum admissi-
ble MIP gap of 1 %. The optimization ran into a timeout just before 14 : 00
o’clock and was stopped, which led to a higher MIP gap than allowed.

Figure B.29.: Relative deviation of each obtained solution to the optimization problem from
the integer integrality relaxed solution (MIP gap).

146



Bibliography

[1] url: http://lpsolve.sourceforge.net/5.1/absolute.htm (visited
on 09/01/2020) (cit. on p. 31).

[2] Tobias Achterberg and Ali Towle. Gurobi Webinar: Non-Convex Quadratic
Optimization. url: https://www.gurobi.com/resource/non-convex-
quadratic-optimization/ (cit. on p. 108).

[3] Alberto Bemporad and Manfred Morari. “Control of systems integrat-
ing logic, dynamics, and constraints.” In: Automatica 35.3 (Mar. 1999),
pp. 407–427. doi: 10.1016/s0005-1098(98)00178-2 (cit. on pp. 22, 23,
117).

[4] Jeff Bezanson et al. “Julia: A fresh approach to numerical computing.”
In: SIAM review 59.1 (2017), pp. 65–98. url: https://doi.org/10.
1137/141000671 (cit. on p. 103).

[5] Iain Dunning, Joey Huchette, and Miles Lubin. “JuMP: A Modeling
Language for Mathematical Optimization.” In: SIAM Review 59.2
(2017), pp. 295–320. doi: 10.1137/15M1020575 (cit. on p. 103).

[6] European Commission Joint Research Centre. Photovoltaic Geographical
Information System. Version 5.1. 2001. url: https://ec.europa.eu/
jrc/en/pvgis (cit. on p. 98).

[7] Tobias Fleiter et al. Profile of heating and cooling demand in 2015. Research
rep. Version D 3.1. Heat Roadmap Europe, 2017. url: https : / /

heatroadmap.eu/wp-content/uploads/2018/09/3.1-Profile-of-

the-heating-and-cooling-demand-in-the-base-year-in-the-14-

MSs-in-the-EU28-2.pdf (cit. on p. 1).

[8] Christian Gottschall. Logic calculator. Apr. 9, 2020. url: https://www.
erpelstolz.at/gateway/formular- uk- zentral.html (visited on
09/01/2020) (cit. on p. 89).

147

http://lpsolve.sourceforge.net/5.1/absolute.htm
https://www.gurobi.com/resource/non-convex-quadratic-optimization/
https://www.gurobi.com/resource/non-convex-quadratic-optimization/
https://doi.org/10.1016/s0005-1098(98)00178-2
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/15M1020575
https://ec.europa.eu/jrc/en/pvgis
https://ec.europa.eu/jrc/en/pvgis
https://heatroadmap.eu/wp-content/uploads/2018/09/3.1-Profile-of-the-heating-and-cooling-demand-in-the-base-year-in-the-14-MSs-in-the-EU28-2.pdf
https://heatroadmap.eu/wp-content/uploads/2018/09/3.1-Profile-of-the-heating-and-cooling-demand-in-the-base-year-in-the-14-MSs-in-the-EU28-2.pdf
https://heatroadmap.eu/wp-content/uploads/2018/09/3.1-Profile-of-the-heating-and-cooling-demand-in-the-base-year-in-the-14-MSs-in-the-EU28-2.pdf
https://heatroadmap.eu/wp-content/uploads/2018/09/3.1-Profile-of-the-heating-and-cooling-demand-in-the-base-year-in-the-14-MSs-in-the-EU28-2.pdf
https://www.erpelstolz.at/gateway/formular-uk-zentral.html
https://www.erpelstolz.at/gateway/formular-uk-zentral.html


Bibliography

[9] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2020.
url: http://www.gurobi.com (cit. on p. 103).

[10] IEC 61970: Energy management system application program interface (EMS-
API). Tech. rep. International Electrotechnical Commission, Dec. 7,
2005 (cit. on p. 16).

[11] Peter Kovacs. A guide to the standard EN 12975. Tech. rep. Version De-
liverable D2.3. QAiST - IEE/08/593/SI2.529236, 2012. url: http :

//www.estif.org/fileadmin/estif/content/projects/QAiST/

QAiST_results/QAiST%20D2.3%20Guide%20to%20EN%2012975.pdf

(cit. on pp. 9, 28).

[12] Pierluigi Mancarella. “MES (multi-energy systems): An overview of
concepts and evaluation models.” In: Energy 65 (Feb. 2014), pp. 1–17.
doi: 10.1016/j.energy.2013.10.041 (cit. on p. 18).

[13] M.C. McManus. “Environmental consequences of the use of batteries
in low carbon systems: The impact of battery production.” In: Applied
Energy 93 (May 2012), pp. 288–295. doi: 10.1016/j.apenergy.2011.
12.062. url: https://www.sciencedirect.com/science/article/
pii/S0306261911008580 (cit. on p. 2).

[14] Domenico Mignone. “Control and estimation of hybrid systems with
mathematical optimization.” en. PhD thesis. 2002. doi: 10.3929/ETHZ-
A-004279802 (cit. on pp. 89, 118, 122).

[15] Michael Moran. Principles of Engineering Thermodynamics. Vol. 7. Singa-
pore: Wiley, 2012. isbn: 9780470918012 (cit. on pp. 65, 67).

[16] A. Moser et al. “A MILP-based modular energy management system
for urban multi-energy systems: Performance and sensitivity anal-
ysis.” In: Applied Energy 261 (Mar. 2020), p. 114342. doi: 10.1016/
j.apenergy.2019.114342. url: https://www.sciencedirect.com/
science/article/pii/S030626191932029X (cit. on pp. 19, 40).

[17] Daniel Muschick et al. “A multi-layer model of stratified thermal
storages for MILP-based energy management systems.” In: Not yet
published (2021) (cit. on pp. iii, v, 11, 15, 45, 89).

148

http://www.gurobi.com
http://www.estif.org/fileadmin/estif/content/projects/QAiST/QAiST_results/QAiST%20D2.3%20Guide%20to%20EN%2012975.pdf
http://www.estif.org/fileadmin/estif/content/projects/QAiST/QAiST_results/QAiST%20D2.3%20Guide%20to%20EN%2012975.pdf
http://www.estif.org/fileadmin/estif/content/projects/QAiST/QAiST_results/QAiST%20D2.3%20Guide%20to%20EN%2012975.pdf
https://doi.org/10.1016/j.energy.2013.10.041
https://doi.org/10.1016/j.apenergy.2011.12.062
https://doi.org/10.1016/j.apenergy.2011.12.062
https://www.sciencedirect.com/science/article/pii/S0306261911008580
https://www.sciencedirect.com/science/article/pii/S0306261911008580
https://doi.org/10.3929/ETHZ-A-004279802
https://doi.org/10.3929/ETHZ-A-004279802
https://doi.org/10.1016/j.apenergy.2019.114342
https://doi.org/10.1016/j.apenergy.2019.114342
https://www.sciencedirect.com/science/article/pii/S030626191932029X
https://www.sciencedirect.com/science/article/pii/S030626191932029X


Bibliography
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