
Felix Reisinger

Analysis and Improvement of
Catrobat’s Recommender System

Diploma Thesis

to achieve the university degree of

Magister rerum naturalium

Degree programme: Teacher Training

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Institute for Softwaretechnology

Graz, June 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present diploma thesis.

Date Signature

ii

Abstract

With the ever-growing amount of data of the information age, finding spe-
cific information has become a challenging task. In order to escape the
information overload, users need an effective method of filtering data. An
essential tool for dealing with this problem are recommender systems, as
they help users to find relevant items in a large set of items. Based on
user-specific or non-personalized data, recommender systems predict which
items are suitable for specific users or the general public. One system that
utilizes a recommender system is Catrobat’s sharing platform. Catrobat is a
project with the aim of teaching programming in an easy and intuitive way.
By combining instructions for objects through visual elements, Catrobat’s
software enables users to create their own programs. Users can then upload
the programs that they created to the share website, where uploaded pro-
grams can be browsed and downloaded. The objective of this diploma thesis
is to improve the recommender system of Catrobat’s sharing platform.

Therefore, the first step was to analyze Catrobat’s recommender system
and to identify potential improvements. Subsequently, it was decided to
increase the aggregated diversity and thus also the levels of novelty and
serendipity of Catrobat’s recommender system. With this in mind, two re-
ranking approaches for user-specific recommendations and one re-ranking
approach for non-personalized recommendations were implemented. Two
online experiments were conducted to evaluate the changes made to the
recommender system. In order to avoid biases in the online experiments,
a versatile and easily adaptable method for randomly assigning users to
groups was implemented. In the first online experiment, which evaluated
the two user-specific re-ranking approaches, the data generated by the users
did not suffice to draw reasonable conclusions. On the other hand, for
the second online experiment, which evaluated the non-personalized re-
ranking approach, enough data was collected to make statistically significant

iii

statements. These data reveal that the newly introduced re-ranking of
non-personalized recommendations considerably increased the aggregated
diversity of Catrobat’s recommender system. Moreover, the findings indicate
that the levels of novelty and serendipity of the recommender system likely
increased due to the re-ranking.

iv

Zusammenfassung

Aufgrund der stetig wachsenden Menge an Daten des Informationszeitalters,
kann es eine schwierige Aufgabe sein, bestimmte Informationen zu finden.
Um dem Informationsüberfluss zu entkommen, bedarf es einer effizienten
Methode zur Filterung von Daten. Ein dafür wesentliches Hilfsmittel sind
Empfehlungssysteme, die Benutzern dabei helfen, für sie relevante Objekte
aus einer Vielzahl an Objekten zu finden. Basierend auf benutzerspezifischen
und nicht-personalisierten Daten prognostizieren Empfehlungssysteme Ob-
jekte, die für bestimmte Benutzer, oder für die breite Öffentlichkeit, geeignet
sind. Ein System, das sich Empfehlungssysteme zu Nutze macht, ist Catro-
bats sharing platform. Catrobat ist ein Projekt, welches das Ziel verfolgt,
Programmieren auf eine einfache und intuitive Art zu lehren. Um das zu er-
reichen, ermöglicht es Catrobats Software den Benutzer, Programme durch
das Kombinieren von visuellen Instruktionen für Objekte zu entwickeln.
Benutzer können anschließend ihre entwickelten Programme auf die sharing
platform hochladen, wo diese durchgesehen und heruntergeladen werden
können. Das Ziel dieser Diplomarbeit besteht darin, das Empfehlungssystem
von Catrobats sharing platform zu verbessern.

Dazu wurde im ersten Schritt Catrobats Empfehlungssystem analysiert,
um potenzielle Verbesserungen zu identifizieren. Anschließend wurde die
Entscheidung getroffen, die aggregierte Diversität und dadurch auch die
Stufen der Neuheit und Serendipität von Catrobats Empfehlungssystem
zu erhöhen. Um das zu verwirklichen, wurden drei Umreihungsmethoden
implementiert, davon zwei für die benutzerspezifischen und eine für die
nicht-personalisierten Empfehlungen. Zur Evaluierung der Änderungen
am Empfehlungssystem wurden zwei Online-Experimente durchgeführt.
Damit die Online-Experimente nicht durch bestimmte Faktoren beeinflusst
werden, wurde eine wiederverwendbare und einfach anpassbare Methode
implementiert, mit deren Hilfe Benutzer nach dem Zufallsprinzip Gruppen

v

zugewiesen werden können. In dem ersten Online-Experiment, welches die
beiden benutzerspezifischen Umreihungsmethoden evaluierte, reichten die
von den Benutzern generierten Daten nicht aus, um vernünftige Schlüsse
ziehen zu können. Für das zweite Online-Experiment hingegen war es
möglich, genügend Daten zu sammeln, um statistisch signifikante Aus-
sagen treffen zu können. Diese Daten weisen darauf hin, dass die neu
eingeführte Umreihungsmethode der nicht-personalisierten Empfehlun-
gen die aggregierte Diversität von Catrobats Empfehlungssystem deut-
lich erhöhte. Darüber hinaus deuten die Daten an, dass sich aufgrund
der Umreihungsmethode die Stufen der Neuheit und Serendipität des
Empfehlungssystems erhöht haben.

vi

Contents

Abstract iii

1. Introduction 1

2. Recommender Systems 3
2.1. Definition . 3

2.1.1. Terminology . 3

2.1.2. Origin . 5

2.1.3. Functions . 7

2.1.4. Properties . 12

2.2. Feedback . 17

2.2.1. Explicit Feedback . 17

2.2.2. Implicit Feedback . 19

2.2.3. Discussion . 21

2.3. Recommendation Approaches 21

2.3.1. Non-Personalized Recommendations 21

2.3.2. Memory-Based Collaborative Filtering 23

2.3.3. Model-Based Collaborative Filtering 31

2.3.4. Content-Based Filtering 35

2.3.5. Knowledge-Based Approaches 38

2.3.6. Hybrid Approaches . 45

2.4. Evaluation . 46

2.4.1. Offline Experiments . 48

2.4.2. User Studies . 49

2.4.3. Online Experiments . 50

3. Catrobat 53
3.1. The Catrobat Organization . 53

3.2. Pocket Code . 54

vii

Contents

3.3. Catrobat Programming Language 55

3.4. The Sharing Platform . 56

3.4.1. Remixes . 58

3.5. Recommender System . 59

3.5.1. Like Rating System . 59

3.5.2. User Similarities . 61

3.5.3. Recommendation Process 62

4. Improvement to Catrobat’s Recommender System 69
4.1. Potential Improvements . 69

4.1.1. Prediction Accuracy . 69

4.1.2. Model-Based Algorithms 70

4.1.3. Ramp-Up Problem . 71

4.1.4. Long-Tail Problem . 72

4.2. Discussion and Decision . 74

4.3. Related Work . 80

5. Implementation 81
5.1. User-Specific Re-Ranking Approach I 81

5.2. User-Specific Re-Ranking Approach II 86

5.3. Non-Personalized Re-Ranking Approach 92

5.4. User Groups . 95

6. Evaluation and Results 99
6.1. User-Specific Re-Ranking Approaches 100

6.1.1. Test Scenario I . 100

6.1.2. Results . 101

6.2. Non-Personalized Re-Ranking Approach 104

6.2.1. Test Scenario II . 104

6.2.2. Results . 105

6.3. Discussion . 109

6.3.1. Results of Online Experiment I 109

6.3.2. Results of Online Experiment II 110

7. Conclusions and Future Work 115
7.1. Conclusions . 115

7.2. Future Work . 116

viii

Contents

A. Abbreviations 121

B. Code of the Re-Ranking Approaches 123

C. Code of the User Groups Entity 129

D. Code of the User Similarity Computation 133

Bibliography 137

ix

List of Figures

2.1. Recommendations based on domain-specific feedback 19

2.2. YouTube: Home page recommendations 22

2.3. Illustrative k-means data set . 34

2.4. Trivago: Constraint-based recommendations 41

2.5. Trivago: Constraint-based recommendations - No results . . . 42

3.1. Pocket Code: Main menu . 54

3.2. Catrobat: Visual programming example 55

3.3. Catrobat: Exemplary program 57

3.4. Catrobat: Like rating system . 60

3.5. Representation of likes in database 61

3.6. Representation of user similarities in database 62

4.1. Long-tail problem on Catrobat’s sharing platform 73

4.2. Recommended and most downloaded programs for a logged
in user . 75

4.3. Most downloaded and most viewed programs 78

4.4. Most downloaded and recommended programs for guests . . 79

5.1. Decrease-multiplier: Visualization I 83

5.2. Decrease-multiplier: Alternative formula I 84

5.3. Decrease-multiplier: Alternative formulas II 85

5.4. Re-ranking approach by G. Adomavicius and Y. Kwon (2012) 87

5.5. Decrease-multiplier: Visualization II 94

5.6. Recommended and most downloaded programs after re-
ranking . 96

5.7. Representation of user groups in database 97

6.1. Results of the first online experiment 102

xi

List of Tables

2.1. Rating matrix of users and movies 24

2.2. Relevant information for exemplary item-based collaborative
filtering recommendation . 30

2.3. Exemplary item attributes of wristwatches 36

2.4. Exemplary item attributes of wristwatches in the form of
keywords . 37

2.5. Exemplary item attributes of laptops 39

2.6. Overview of various hybridization methods 47

3.1. Number of users in comparison to number of likes 61

3.2. Exemplary likes of programs 64

3.3. Exemplary user similarities . 64

5.1. Trade-off between precision and accuracy for a re-ranking
approach by G. Adomavicius and Y. Kwon (2012) 88

6.1. First online experiment: User Groups 101

6.2. Results of the first online experiment I 101

6.3. Results of the first online experiment II 104

6.4. Results of the second online experiment I 106

6.5. Results of the second online experiment II 106

6.6. Results of the second online experiment III 107

xiii

List of Codes

3.1. Catrobat: Original recommendation algorithm 66

B.1. Re-ranking of user-specific recommendations I 124

B.2. Re-ranking of user-specific recommendations II 125

B.3. Re-ranking of non-personalized recommendations 127

C.1. Implementation of user groups 129

D.1. User similarities computation 133

xv

1. Introduction

Today’s amount of available data poses a great challenge to users in situa-
tions where decisions are required. Often the user has too many alternatives
to choose from to be able to process each option individually. In other
situations personal experience and knowledge about the domain at hand
might not be sufficient to make a qualified decision between multiple al-
ternatives. Thus, a way of filtering data effectively and presenting relevant
information is required. A popular software tool to assist users in the
process of decision-making, which has received much attention lately, are
recommender systems. Their purpose is to recommend items to users which
are interesting and relevant. Recommender systems are used in many dif-
ferent domains, such as e-commerce, news articles and social networks. An
example of a common use of recommender systems on an online shopping
platform, such as Amazon1, is to recommend products to customers based
on the customers’ taste and purchase history.

The goal of this thesis is to improve the recommender system of Catrobat2,
an open-source project of the Technical University of Graz. Therefore, Catro-
bat’s existing recommender system is analyzed and potential improvements
are discussed. One of the discussed improvements is then implemented
and an online experiment is conducted, in order to study the effects of the
potential improvement on the system. The underlying goal of the online
experiment is to answer the following research questions:

Research Question 1: Can the aggregated diversity of Catrobat’s recommender
system be significantly improved by one of the implemented approaches while
maintaining an acceptable level of accuracy?

1Amazon 2019.
2International Catrobat Association, 2019a.

1

1. Introduction

Research Question 2: How do the implemented approaches impact the novelty
and serendipity levels of Catrobat’s recommender system?

The thesis is structured as follows. Chapter 2 concentrates on recommender
systems. Thereby recommender systems and their properties, as well as
the basic terminology in the context of recommender systems, are defined.
The recommender systems’ functions are then viewed from different per-
spectives. Moreover, different recommendation approaches are presented,
whereby exemplary recommendation processes are showcased. At the end
of chapter 2 various evaluation settings for recommender systems are dis-
cussed. In chapter 3, Catrobat as an organization and as a programming
language is presented. Then Catrobat’s recommender system and it’s envi-
ronment, Catrobat’s sharing platform, are portrayed. Chapter 4 describes
potential improvements to Catrobat’s recommender system. The improve-
ments are then discussed and one potential improvement is chosen in order
to be implemented in the practical part of this thesis. Afterwards related
work is discussed. In chapter 5 the implementations of the practical part of
this thesis are presented. Chapter 6 discusses the evaluation of the imple-
mented changes to Catrobat’s recommender system. Finally, in chapter 7

the findings of this thesis are summarized as well as future work.

2

2. Recommender Systems

This chapter covers various aspects of recommender systems. First of all,
recommender systems are defined. Thereby the basic terminology used and
the origins of recommender systems are outlined. Furthermore, the func-
tions and properties of recommender systems are presented. Then different
kinds of feedback are discussed, which are needed in the recommendation
process. Afterwards common recommendation approaches are presented
and discussed. Finally, different evaluation settings of recommender systems
are presented.

2.1. Definition

In the following section, recommender systems are defined. First and fore-
most, the basic terminology used in the context of recommender systems is
presented. Then the origin of recommender systems is portrayed, followed
by a definition of their functions from the perspective of a provider of rec-
ommender systems and their users. Afterwards properties of recommender
systems are presented.

2.1.1. Terminology

This section deals with the basic terminology, which is used to describe
recommender systems (Ricci, Rokach, and Shapira, 2015).

Recommender system A software tool serving the purpose of presenting
recommendations of items to users.

3

2. Recommender Systems

Recommendation A recommendation is an item or a list of items, which is
recommended to a user by a recommender system.

Recommendation list A recommendation list is a list of items, which con-
sists of recommendations and which is created by a recommender
system.

Item Items are the objects of a system, for example books in a book shop
or movies on a movie streaming platform. Thus, which objects are
represented by items depends on the given recommender system.
Items are usually described by item attributes and can be further
described by their complexity and their value or utility. Exemplary
item attributes for a movie are genre and year of release. Item complexity
is usually (but not exclusively) dependent on how many attributes an
item has. Examples of low-complexity items are movies, books and
news articles. Examples of high-complexity items are smartphones,
laptops, jobs and financial investments. Value or utility describes how
relevant an item is to a user. Different recommender systems use
different ratings to represent how much value or utility an item has
for a user, as discussed in section 2.2.

User A user is a person who uses a system. Users vary in many factors,
such as demographics, interests, experience, behavior, goals, loyalty.
In an online shop, for instance, users are customers. Users who are not
logged in the system are usually referred to as guest users. The term
active user is used to describe a user who receives a recommendation
and is primarily used in explanations of how a recommender system
works.

User model A user model, or user profile, is the representation of a user’s
taste and preferences by the system. Recommender systems are de-
signed to gather information about users in order to be able to create
user models and personalized recommendations (Jannach, Zanker, et
al., 2010). Which information is considered in the user model depends
on how the recommender system is designed and on the domain in
which the recommender system operates.

System provider The system provider is the person, group or company
who provides the recommender system service.

Domain The domain of a recommender system describes the environment
in which it operates (Ricci, Rokach, and Shapira, 2015). An online book
shop, for example, operates in the domain of books.

4

2.1. Definition

Transaction Recorded interactions between the system and the active user
are commonly referred to as transactions (Ricci, Rokach, and Shapira,
2015). They represent important information which can be used by the
recommender system. Which transactions are recorded depends on
the specific system. Examples of frequently recorded transactions are:

• a user views an item
• a user consumes an item
• a user rates an item
• a user registers a user account
• a user logs into a user account.

Conversion A conversion can generally be defined as a desired action by a
user. For example, when a user consumes an item, the process can be
described as conversion.

Conversion rate In general, a conversion rate describes the percentage of
users who take a desired action (Nielsen, 2013). In the context of
recommender systems, the conversion rate is usually defined as the
ratio of how many of the viewed items have been consumed by a user.
It is calculated by dividing the number of visits for a given item set by
the respective number of downloads. For example, if 1,000 books have
been viewed within a given time frame and 100 have been consumed,
then the conversion rate equals 0.1, as shown in equation (2.1) and
equation (2.2).

conversion rate =
100

1000
(2.1)

conversion rate = 0.1 (2.2)

2.1.2. Origin

Recommender systems as a research area came into existence in the early
1990s. The catalyst was the need to deal with the high quantity of data
generated by the rapid growth of the internet. One of the first well-known
recommender systems is Tapestry (Goldberg et al., 1992) that was developed
in 1992. This mailing system introduced collaborative filtering, a method
allowing people to collaborate and to rate items in order to find interesting

5

2. Recommender Systems

ones and get rid of uninteresting ones (see section 2.3.2). The motivation
for the creation of Tapestry was to find a solution to the problem of dealing
with large amounts of electronic mail. While there were already multiple
mail systems that supported filtering, the creators of Tapestry believed
that including human reactions to content-based filtering makes the process
more effective. In the years subsequent to the development of Tapestry, many
recommender systems that use collaborative filtering were developed, such
as Fab (Balabanović and Shoham, 1997) and GroupLens (Resnick, Iacovou,
et al., 1994).

With the ever-growing amount of data and the booming industry of e-
commerce, recommender systems have continued to receive more and
more attention over the years. The fact that recommender systems play an
important role in a variety of different domains led to a widespread adoption
of different recommender systems by many businesses. Since individual
domain characteristics, such as the average amount of items purchased
by a user and unique item features necessitate different recommender
systems to optimally meet the requirements and characteristics of a domain,
recommender systems became an important area of research. Some of the
most prominent domains in which recommender systems are commonly
used are the following (Ricci, Rokach, and Shapira, 2015):

• online shopping
• streaming services
• travel business
• social networks
• advertisements
• news
• dating.

Most domains can be further divided. The domain of streaming services, for
example, can be divided into the sub-domains of music streaming, movie
streaming, live streaming, to name but a few.

An important characteristic of recommender systems is that higher amounts
of data about users and items generally lead to higher quality recommenda-
tions, while higher quality recommendations generally result in more users
and items. Therefore, if there are multiple contenders for a given domain or

6

2.1. Definition

sub-domain, predatory competition is expected as described in Resnick and
Varian, 1997. The article hints that it is likely that there remains only one
provider for each domain or sub-domain who will be highly successful in
the long run.

A classic example of strong competition is the Netflix Prize contest1. In 2006

the Netflix company held a contest with a prize pool of one million dollar
for the winning team. The goal was to develop a recommender system that
could outperform Netflix’s current recommender system named Cinematch
by at least 10% on a given data set. The competition was planned to last until
at least 2011. Over 50,000 contestants in over 40,000 teams from 186 different
countries took part in the challenge2. Every year, in which the goal of at
least 10% improvement in prediction accuracy was not achieved, the current
leading team received $50,000. In 2009, the challenge was successfully
met by the team called BellKor’s Pragmatic Chaos, which utilized a form of
collaborative filtering (Andreas Töscher, 2009). The Netflix Prize contest
has drawn considerable attention to recommender systems as an area of
research.

In 2007, only one year after the start of the Netflix Prize contest, recom-
mender systems gained again in popularity with the first annual conference
on recommender systems, held by the recommender system community
RecSys Community of the Association of Computing Machinery3 (ACM).

2.1.3. Functions

As already described at the beginning of chapter 2, a recommender system
fulfills the purpose of showing items which a user will like and of avoiding
items that a user will not like. This definition can be extended by viewing
the function of recommender systems from two perspectives, firstly from
the perspective of the provider of the system and secondly from the per-
spective of the user of the system. Both the provider and the user want and

1Netflix, 2009a.
2Netflix, 2009b.
3RecSys Community, 2019.

7

2. Recommender Systems

expect certain functionalities as regards the recommender system, which
are discussed in the following two subsections.

System Provider’s View

This subsection lists several functionalities that the provider of a recom-
mender system wants, based on the description in Ricci, Rokach, and
Shapira, 2015, pp. 4–6.

Increase number of items sold The most obvious function of a recom-
mender system is to increase the number of items sold (Ricci, Rokach,
and Shapira, 2015). By showing items to users that the users most
probably like, the chance that users purchase these items will most
likely be higher. Therefore, usually more items are sold with the help
of a recommender system. However, not only commercially oriented
providers profit from an increasing number of items sold but also other
domains (Ricci, Rokach, and Shapira, 2015). An increased number
of items being consumed by users in non-commercial systems also
brings benefits to the provider of the system, for instance by binding
the user to the system as users spend more time on the website.

Sell more diverse items It often proves difficult to show less popular items
to users, since the risk that users dislike less popular items is higher
than the risk that users dislike popular items, which have already
been well received. In many domains it is still necessary to show
less popular items, such as the travel domain where users are recom-
mended different hotels. Only showing popular hotels might have a
detrimental effect due to the limited amount of available rooms per
hotel and the risk of overcrowded destinations (Ricci, Rokach, and
Shapira, 2015).

Increase user satisfaction Recommender systems are not only tools to gen-
erate more conversions. Their purpose is also to increase the overall
user satisfaction with the system. When a user is pleased with the
recommendations, while also having an enjoyable experience with
the human-computer interaction, the user will be satisfied with the
system. The more satisfied the user is with the system, the more likely
the user will use the system again in the future.

8

2.1. Definition

Increase user fidelity User fidelity is an important aspect within the context
of recommender systems. Firstly, a high user fidelity is desirable
because a user who remains loyal to a system consumes more items
in the long run. Secondly, recommender systems need data about
users in order to generate accurate and relevant recommendations.
A user who is loyal to the system generates more data over time,
which enables the recommender system to produce more accurate and
relevant recommendations for the user. This, in turn, will increase the
user’s satisfaction with the system.

Understanding what the user wants Another functionality of recommender
systems is that data about a user’s preferences are either collected, or
generated. This data can be used to gain a better understanding about
what users like and dislike. This information can be taken advantage
of in other areas of the system. For example, such data can help a
business to decide in which area to expand in the future.

User’s View

Not only the provider of a recommender system has certain requirements
and expectations when it comes to the functionalities of recommender
systems. This also applies to the users of the system. This section lists
several functionalities that users expect from recommender systems, and
what motivates users to take advantage of recommender systems. The
functionalities described do not refer to one specific recommender system
or one specific domain. The following list is based on Herlocker, Konstan,
Terveen, et al., 2004, pp. 8–12 and Ricci, Rokach, and Shapira, 2015, pp. 6–
7.

Annotation in context Similar to the functionality of Tapestry (see sec-
tion 2.1.2) recommender systems can annotate items in a given context
(Ricci, Rokach, and Shapira, 2015). For example, on a news website
a recommender system can emphasize specific news articles which a
user is likely to find interesting and relevant, given the user’s long
time preferences. This can help users in the decision-making process.

Find good items Finding good items, where good generally refers to rele-
vant and interesting, and presenting them to the user is one of the

9

2. Recommender Systems

main functionalities of most recommender systems (Ricci, Rokach, and
Shapira, 2015). From the user’s perspective this functionality saves
time, as otherwise the search for good items would have to be done
manually. Furthermore, it is often the case that not enough information
is available for the user to identify good items as such. Alternatively,
in some instances good items cannot be identified as such because of
insufficient domain experience.

Find all good items At first sight this functionality seems counter-intuitive,
since one of the main motivations of recommender systems is to reduce
information overload and to only present a few top items. However,
in some domains, as in the medical or financial domain, it can be
critical to find all relevant and interesting items, instead of only a
chosen few, according to Herlocker, Konstan, Terveen, et al. (2004).
The authors state that in these domains it is important to have a low
false negative rate, which is the rate at which relevant and interesting
items are wrongly classified as not relevant and not interesting by the
recommender system.

Recommend sequence In some domains it is reasonable to recommend a
sequence of items that fit together (Ricci, Rokach, and Shapira, 2015).
For example, on a website that offers online courses, an intermediate
math course can be a relevant and interesting recommendation after
having completed a beginner’s math course. Without the prerequisite
of the completed beginner’s math course, the intermediate math course
might not be a relevant and interesting recommendation. Another
example is the recommendation of a list composed of individual songs
on a music streaming platform. Some songs might only be included
in the list because they fit well with the other songs and would not be
recommended to the user individually (Herlocker, Konstan, Terveen,
et al., 2004).

Just browsing Herlocker, Konstan, Terveen, et al. (2004) found that in some
cases, users use the system simply to browse through items with-
out the intention of making a purchase, because they experience the
browsing activity as pleasant. In such cases the recommender system’s
usability is an important factor, while a high prediction accuracy is
less important than in other cases (Herlocker, Konstan, Terveen, et al.,
2004).

Find credible recommender According to Herlocker, Konstan, Terveen, et

10

2.1. Definition

al. (2004), users do not automatically trust recommender systems. The
authors state that some users test the system’s credibility by searching
for various items they already know and by checking their ratings, if
possible. Others may try to influence the system in a certain way, in
order to see if the recommendations change accordingly (Herlocker,
Konstan, Terveen, et al., 2004). However, it is difficult for recommender
systems to appear trustworthy, since the system’s algorithm might
favor other items than the user expects when testing the system . Some
recommender systems, for example, focus on recommending diverse
and less popular items to users, in order to try to recommend items
which the user does not know yet. If the system does not communicate
its efforts to recommend new and less popular items, users might
lose their trust in the recommender system, because the recommender
system does not recommend popular items which users, who test the
system, expect (Herlocker, Konstan, Terveen, et al., 2004).

Improve profile In order to create user-specific recommendations, the rec-
ommender system needs data about its users. By giving feedback
about items, users can improve their user profile or user model, which
is the system’s representation of user preferences and interests (Ricci,
Rokach, and Shapira, 2015).

Express self The motivation of some users behind rating items is not to
improve the recommendations that they will receive in the future,
but to express themselves, as they find satisfaction in doing so (Ricci,
Rokach, and Shapira, 2015). For these users a high usability of the
item rating process contributes to user satisfaction and loyalty to the
system.

Help others Some users find satisfaction in helping others with their item
ratings (Ricci, Rokach, and Shapira, 2015). This is prevalent in systems
that are not routinely used and in domains, where usually only one
item is consumed, as stated in Ricci, Rokach, and Shapira, 2015. The
authors give the example of rating a bought car on a platform that
sells cars. Rating the item is most probably of little value to a user,
since the user usually stops using the platform after one car has been
bought. However, other users might profit from the rating. Although
not exclusively, the wishes to express oneself and to help others often
go hand in hand (Herlocker, Konstan, Terveen, et al., 2004).

Influence others Given the fact that recommender systems rely on user

11

2. Recommender Systems

feedback to generate recommendations, it is possible to explicitly
influence recommender systems (Ricci, Rokach, and Shapira, 2015).
This is especially frequent in commercially oriented systems, where
stakeholders might try to influence users to buy their products. For
example, on the online shopping platform Amazon4, sellers often buy
positive reviews for their products in order to deceive customers and
make them more likely to buy the seller’s products (Fornaciari and
Poesio, 2014).

2.1.4. Properties

Recommender systems have many different properties that can be used
to describe how a recommender system performs in different areas. The
property most commonly used to portray a recommender system’s perfor-
mance is the prediction accuracy property, which describes how accurately
a recommender system can predict user ratings for items. Nonetheless,
accuracy is not the only property which is essential for the overall user
satisfaction with the recommender system. Which properties are important
in a given recommender system depends on multiple factors, such as the
user’s motivation when using the recommender system and the domain in
which the recommender system operates.

The following list outlines properties that are commonly used to describe
and evaluate recommender systems. The list is based on Ricci, Rokach, and
Shapira, 2015, pp. 280–304.

Prediction Accuracy Basically recommender systems make predictions
about user ratings for items that users have not seen yet, depending on
prior knowledge about the users. Thereby the accuracy of a prediction
can be measured and described. Is is widely assumed that accuracy
plays a major role in how well a recommender system is received by
its users. Therefore, maximizing the accuracy of recommender systems
is a common goal in research. One example of an attempt to maximize
prediction accuracy is the Netflix Prize Competition (see section 2.1.2).

4Amazon 2019.

12

2.1. Definition

Coverage This property can be divided into item space coverage and user space
coverage, as described in Ricci, Rokach, and Shapira, 2015. The authors
define item space coverage as the amount of items that are eligible
for recommendation by the recommender system. In many systems it
may occur that there is a small subset of items, which is very popular,
and which is recommended frequently, while the rest of the item set
receives only very little to no attention. This distribution is often called
long-tail or heavy-tail problem (Ricci, Rokach, and Shapira, 2015). User
space coverage refers to the portion of users who are eligible to receive
recommendations by the recommender system (Ricci, Rokach, and
Shapira, 2015). Given that recommender systems need information
about users in order to predict the users’ tastes, users who have not
provided enough information cannot receive recommendations.

Confidence The quality of recommendations depends on multiple factors,
such as the quantity of available data for users and items. Therefore,
recommendations have different levels of confidence, whereby confi-
dence can be described as trust in the correctness of the recommenda-
tion (Ricci, Rokach, and Shapira, 2015). For example, recommending
an item to a user who has given the bare minimum of information
required to generate a recommendation usually reaches lower confi-
dence levels than recommending an item to a user who has already
used the system for a long time and for whom the system has already
established a refined user model. Similarly, recommending unpopular
items, which have not been rated by many users yet, is riskier than
recommending items which have already been rated by many users.
Hence recommending unpopular items usually results in less confi-
dence in the recommendation, compared to recommending popular
items.

Trust Trust describes a user’s trust in the system recommendation (Ricci,
Rokach, and Shapira, 2015). This property is not to be confused with
confidence, which describes the system’s confidence in the recommen-
dations. One way to manipulate trust is to recommend obvious items
to users, so that the users can relate to the recommendation and verify
that the recommender system works as intended (Ricci, Rokach, and
Shapira, 2015). However, there is a trade-off between showing obvious
recommendations and the goal to recommend different and novel
items. Furthermore, it is assumed that a way to increase a user’s accep-

13

2. Recommender Systems

tance of a recommendation is to disclose the recommender system’s
confidence in the recommendation or the ratings of similar users for
the recommended items (Herlocker, Konstan, and Riedl, 2000).

Novelty In the context of recommender systems, an item can be referred
to as novel, if a user did not know about the item before receiving the
recommendation (Ricci, Rokach, and Shapira, 2015). Novelty can be
an important property of recommender systems. For instance, when
a user’s goal is to discover new holiday resorts on a travel platform,
then the user will especially look for novel items. However, high
novelty levels of recommendations can have a negative impact on user
satisfaction and perceived quality (Ekstrand et al., 2014, Celma and
Herrera, 2008).

Serendipity Recommendations that have a high serendipity score are non-
obvious recommendations, which are surprisingly successful, whereby
successful means, that the user accepted the recommendation (Ricci,
Rokach, and Shapira, 2015). For example, given a recommender system
for an online book store and a user who only purchased books falling
into the fantasy genre in the past, recommendations that feature pop-
ular fantasy books, which the user has not seen yet, will most likely
obtain a high prediction accuracy. However, the recommended books
will hardly surprise the user. On the other hand, books from different
genres, such as thrillers, will obtain a lower prediction accuracy, but
the recommendation will probably surprise the user. Thus, if a thriller
is recommended and the user accepts the recommendation and buys
the book, the recommendation has a high serendipity score.

Diversity A recommendation’s diversity describes how different the indi-
vidual items are compared to each other and is generally defined as
the counterpart of similarity (Ricci, Rokach, and Shapira, 2015). What
levels of diversity are desired usually depends on the domain at hand.
Typically there is a trade-off between diversity and accuracy (Gedim-
inas Adomavicius and Youngok Kwon, 2009). For example, given a
movie streaming platform and a user who rated action movies starring
the actor Liam Neeson very highly in the past, the platform’s recom-
mender system might only recommend action movies starring Liam
Neeson to the user. The recommendation’s accuracy will be very high,
as the user will most probably like the movies. However, the recom-
mendation will be one-sided and there will be a low level of diversity.

14

2.1. Definition

Most likely the user satisfaction would be higher if a broader range of
items was offered, even though the recommendation’s accuracy might
decrease.
In general, diversity in the context of recommender systems can be
divided into aggregated and individual diversity, as described in G.
Adomavicius and Y. Kwon, 2012. The authors state that aggregated
diversity describes how diverse a set of recommended items is from the
perspective of the recommender system. Individual diversity, on the
other hand, describes how diverse a recommendation is from a user’s
perspective (G. Adomavicius and Y. Kwon, 2012). A high individual
diversity does not necessarily cause a high aggregated diversity. For
instance, given a set of 1000 items and a subset of 10 items which
are highly diverse, recommending only the subset of 10 items will
produce recommendations with high individual diversity, but at the
same time the aggregated diversity will be low (G. Adomavicius and
Y. Kwon, 2012).

Utility Recommender systems bring utility to the system provider and the
system’s users. The utility of a recommender system can usually be
measured in multiple ways, depending on the system providers’ and
the user’s goals (Ricci, Rokach, and Shapira, 2015). In e-commerce sys-
tems, for example, the system provider’s goal is usually to maximize
profits, therefore the recommender system’s utility can be measured
by how much it increases profits (Ricci, Rokach, and Shapira, 2015).
For users, utility generally refers to how useful the recommendations,
which they receive, are, which depends on the user’s goals (Ricci,
Rokach, and Shapira, 2015). For example, the novelty and serendipity
of the recommended items can play an important role in the question
of how useful a recommendation is perceived by a user.

Risk Users generally differ in their tendency and willingness to take risks,
which is an important aspect in certain domains, such as the invest-
ment market, according to Ricci, Rokach, and Shapira, 2015. Thus,
some recommender systems might consider with how much risk items
are associated. Usually risk-sensitive recommender systems evaluate
the risk by also considering the utility variance, instead of only the
expected utility (Ricci, Rokach, and Shapira, 2015).

Robustness Robustness is the term used to describe how robust the rec-
ommender system is in case of a malicious attack (Ricci, Rokach, and

15

2. Recommender Systems

Shapira, 2015). A common example of a malicious attack is to influ-
ence which items are recommended by the recommender system. This
attack is widespread in the online shopping domain, where a seller
might create many user accounts in order to rate competing items
negatively, so that customers are more likely to buy the attacker’s
products. Another example of a malicious attack is when a person
tries to flood a website with large amounts of requests, which results
in the website being overloaded and thus unavailable for potential
customers (Ricci, Rokach, and Shapira, 2015). The motivation behind
such so-called denial-of-service attacks can be to temporarily eliminate
competitors or to blackmail the victim of the attack (Ricci, Rokach,
and Shapira, 2015).

Privacy Privacy is a general concern in recommender systems, but most
notably in collaborative filtering recommender systems due to the fact
that the main source of information on which recommendations are
based on in collaborative filtering systems is personal information
about the user (see section 2.3.2 and section 2.3.3) (Ricci, Rokach,
and Shapira, 2015). However, most recommender systems cannot
work properly without utilizing information about users, though it
is important that no private information about a user is disclosed to
other users (Ricci, Rokach, and Shapira, 2015).

Adaptivity Many recommender systems operate in domains in which the
ability to quickly adapt to certain factors is important (Ricci, Rokach,
and Shapira, 2015). For example, recommender systems that operate
in the stock market domain need to be able to quickly recognize new
trends and to respond appropriately. Adaptivity is also essential in
the case that the system’s item set changes often and the system there-
fore needs to work with little information (Ricci, Rokach, and Shapira,
2015). Furthermore, it is important that a recommender system quickly
adapts to changes in a user’s profile and in a user’s preferences, be-
cause otherwise users might get the impression that changes to their
profile and item ratings do not have an impact on their recommenda-
tions and might therefore be judged as wasted effort (Ricci, Rokach,
and Shapira, 2015).

Scalability Scalability describes how scalable a recommender system is in
terms of space and time requirements (Ricci, Rokach, and Shapira,
2015). Space requirements are usually a concern if there are many users

16

2.2. Feedback

or items, which require large amounts of data to be stored (Jannach,
Zanker, et al., 2010). Time requirements are also an important aspect
of recommender systems, given that the time needed to generate a
recommendation generally increases with the number of users and
items (Ricci, Rokach, and Shapira, 2015). Moreover, scalability might be
an issue especially in memory-based recommendation approaches (see
section 2.3.2), in contrast to model-based recommendation approaches,
which work on a compressed set of the available data in order to
increase scalability (see section 2.3.3) (Jannach, Zanker, et al., 2010).

2.2. Feedback

In order for a recommender system to generate personal recommendations,
users need to provide information about themselves, for example by editing
their user profile or by rating items. Without personal information about
users, recommender systems can only recommend items that appeal to
the average user. Therefore, providing information is an important aspect
for a user of recommender systems. However, the user might not always
be aware that feedback is obtained from the user’s actions and behavior.
In these cases, the user is providing so-called implicit feedback (Jannach,
Lerche, and Zanker, 2018). On the other hand, if a user explicitly and
deliberately provides feedback about preferences or about items, the user
gives so-called explicit feedback (Jannach, Lerche, and Zanker, 2018). In the
following sections explicit and implicit feedback are described. Afterwards
a discussion follows.

2.2.1. Explicit Feedback

Explicit feedback, as described in Jannach, Lerche, and Zanker, 2018, is feed-
back that a user provides deliberately, unambiguously and explicitly. The
authors state that an advantage of explicit feedback over implicit feedback
is that it is accurate and there is no need for interpretation. A common
example is to rate items on a scale, typically it is based on a one-to-five-star

17

2. Recommender Systems

scale (Jannach, Lerche, and Zanker, 2018). Providing explicit feedback usu-
ally requires a certain amount of effort on the part of the user. For simple
items the cost is relatively low. However, for multi-criteria items, rating mul-
tiple different criteria can be a time-consuming and complex task (Jannach,
Lerche, and Zanker, 2018). Furthermore, users might not understand how
providing feedback is useful to them or they might simply not care about
the benefit it brings, for example that it improves the user model. Therefore,
explicit feedback is generally sparse (Jannach, Lerche, and Zanker, 2018).

The following list comprises commonly used explicit feedback based on
Jannach, Lerche, and Zanker, 2018:

Rating scales Rating scales often range from one to five. Visually they are
commonly presented as stars or hearts.

Unary feedback Unary feedback only gives one option, for instance the
option to like an item, or to share an item.

Binary feedback Binary feedback offers two options, typically a positive
and a negative one. Examples of binary feedback are thumbs-up and
thumbs-down buttons, or like and dislike buttons.

Negative feedback Negative feedback is used to state that a user does not
like an item. Examples of negative feedback are options to avoid seeing
specific content on social-media platforms and to mark items as not
useful or uninteresting.

Natural language Comment sections and product reviews are often used
as explicit feedback, even though natural language can be ambiguous
in some cases, for example because of the use of sarcasm and irony.

Tags In some systems items can be annotated with certain tags by a user,
which provide feedback about the user’s opinion about the item, for
instance tags such as like and love show that a user’s opinion of an
item is positive.

Domain-specific feedback In some domains users can provide domain-
specific feedback, for example Goodreads’5 Want-to-Read list and Ama-
zon’s6 wish list.

Figure 2.1 shows book recommendations from Goodreads for a logged in

5Goodreads Homepage 2019.
6Amazon 2019.

18

2.2. Feedback

Figure 2.1.: This figure shows recommended books based on Goodreads’ Want-to-Read list
for a logged in user. The picture was created by a screenshot from Goodreads’
recommendations page (Goodreads Recommendations 2019).

user based on Goodreads’ Want-to-Read list7. The user can add books from
the recommendation list to the Want-to-Read list, rate a book on a rating
scale based on one to five stars if the user has already read a presented
book, or provide negative feedback by stating that the user is not interested
in a book.

2.2.2. Implicit Feedback

Implicit feedback is gathered from user behavior and can be interpreted in
order to draw conclusions about a user’s preferences. Common examples
of logged user behavior are viewing an item, conversions, search behavior,
time spent, clicks, scrolls and bookmarks (Ricci, Rokach, and Shapira, 2015).
An advantage of implicit feedback is that there are large amounts of data
available that can be logged and interpreted. Furthermore, it does not

7Goodreads Recommendations 2019.

19

2. Recommender Systems

require any effort on the part of the user since the system can log the
utilized data automatically. Thus, implicit feedback is especially useful in
domains where it takes considerable effort to provide explicit feedback, as
for instance in domains that feature multi-criteria items.

The term positive implicit feedback is used to describe implicit feedback
indicating that a user likes a given item and is gathered from logged user
behavior (Jannach, Lerche, and Zanker, 2018). On the other hand, the term
negative implicit feedback is used to describe implicit feedback indicating
that a user dislikes an item (Jannach, Lerche, and Zanker, 2018). Negative
implicit feedback is mostly found in missing data. A general problem when
interpreting missing data is that it is very difficult to distinguish between
different reasons why the data is missing (Jannach, Lerche, and Zanker,
2018). For example, if a user views an item on the website of an online
shop but does not purchase the item afterwards, it seems that the user
was initially interested in the item but did not like the item upon closer
inspection. Nonetheless, this conclusion cannot be drawn for certain since
there may be many different explanations why the user did not purchase the
item after viewing it, other than the explanation that the user did not like
the item upon closer inspection. For instance, it might be the case that the
user just wanted to browse through the set of items without the intention
to make a purchase, or the case that the user likes the item, but there is
another similar item that the user prefers. However, also positive implicit
feedback is ambiguous, as the user’s motivations for certain actions can
only be guessed. For example, if a user makes a purchase which is unusual,
given the user’s purchase history, it is unclear, whether the user made a
serendipitous purchase, or whether the user purchased the item as a present
or for a family member. Similarly, the fact that a user views an item for
a prolonged period of time does not necessarily mean that the user finds
the item interesting due to the possibility that the user could have been
distracted and therefore did not pay attention to the item (Jannach, Lerche,
and Zanker, 2018).

20

2.3. Recommendation Approaches

2.2.3. Discussion

Explicit and implicit feedback both have advantages and disadvantages.
Explicit feedback is mostly unambiguous and more accurate and is therefore
especially suitable for sectors in which high accuracy and low false positives
rates are important, such as law, investment and the medical field. On the
other hand, implicit feedback is comparatively much easier to gather and
less sparse. It does not require any effort on the part of the user, which
makes it suitable for sectors in which users are less likely to rate items, as
for instance in domains, in which users usually only purchase one item.
Furthermore, implicit feedback does not require the user to disclose private
information, which can be an important factor in certain sectors. Utilizing
both, implicit and explicit feedback simultaneously, as described in Ebadi
and Krzyzak, 2016, will usually yield the best results.

2.3. Recommendation Approaches

Recommender systems are a broad research area and thus many differ-
ent recommendation approaches have been developed over time. The ap-
proaches differ markedly, for instance which data are utilized in the recom-
mendation process and how the data are used to generate recommendations
for users. In the following, common recommendation approaches are pre-
sented, examples are used to illustrate some of these approaches.

2.3.1. Non-Personalized Recommendations

The simplest form of recommendations are non-personalized recommen-
dations, which are recommendations of items, regardless of who receives
them. These types of recommendations are often used for guest users and
users who have not provided enough information about themselves in order
to receive personalized recommendations (Ricci, Rokach, and Shapira, 2015).
Therefore, the general goal of non-personalized recommender systems is
to recommend items that appeal to as many users as possible. This is com-
monly achieved by utilizing implicit and explicit feedback in order to find

21

2. Recommender Systems

Figure 2.2.: This figure shows YouTube’s home page recommendations (YouTube Home-
page 2019). It has been accessed in private mode, with the location set to the
United States. It shows the non-personalized recommendations that YouTube’s
recommender system generates for guest users, which are trending items,
recommends popular channels and videos.

popular or trending items. However, non-personalized recommendations
generally do not rely on explicit feedback, as implicit feedback will suffice.
Figure 2.2 shows an example of non-personalized recommendations on the
video streaming platform YouTube8 to a guest user. The recommendations
consist of trending items and popular channels and video categories. The
cost to implement a non-personalized recommender system is generally
low compared to user-specific recommender systems, hence it is suitable for
smaller systems. Classic examples of non-personalized recommendations
are most popular items, trending items, popular items of certain categories,
new items and random items. Recommending new and random items to the
average user might have a negative impact on the overall user satisfaction
(Ekstrand et al., 2014), however, it might prove helpful if the system’s item
coverage is low.

8YouTube Homepage 2019.

22

2.3. Recommendation Approaches

2.3.2. Memory-Based Collaborative Filtering

Collaborative filtering is a recommendation technique which is utilized to
generate user-specific recommendations. Similar to word-of-mouth recom-
mendations in daily life, collaborative filtering utilizes preferences from
users who share similar tastes in order to find relevant items to recommend
(Jannach, Zanker, et al., 2010). Since the focus lies on a user’s taste in items,
the technique is also applicable in domains where only little information
about users and items is available. There are two kinds of collaborative filter-
ing approaches, memory-based and model-based. Memory-based approaches
use all available data about users and items during the recommendation
process. However, in many systems there are large amounts of users and
items, which can create bottlenecks as regards the performance of the rec-
ommender system (Jannach, Zanker, et al., 2010). Model-based collaborative
filtering approaches, on the other hand, operate on a compressed version of
the data in order to increase performance in case of large data sets (Jannach,
Zanker, et al., 2010). This section focuses on memory-based approaches.
Model-based collaborative filtering approaches are further discussed in
section 2.3.3.

Memory-based collaborative filtering can be divided into two main ap-
proaches, user-based and item-based collaborative filtering. In their basic form
both approaches try to predict a user’s ratings for unseen items in order
to present the items with the highest predicted ratings9. In the user-based
approach this is achieved by finding users that are most similar to the active
user, while the item-based approach focuses on finding items that were
similarly rated as the items that the active user rated highly.

In the following both memory-based approaches of collaborative filtering
are showcased on the basis of an example described in Jannach, Zanker,
et al., 2010, in order to demonstrate the recommendation processes. Table 2.1
shows user ratings between one and five for five different movie items. The
goal is to find recommendations of items for the active user ua based on
the other users’ tastes in items. Formally, a user is defined as an element
u of the set of all users U (u ∈ U, U = u1, u2, ..., un). An item is defined as

9Though in more refined recommender systems, other factors, such as the diversity,
novelty or serendipity of the set of recommended items might be considered as well.

23

2. Recommender Systems

Ghostbusters Titanic Gladiator Inception Casablanca
u1 2 1 2 3

u2 4 3 5 5

u3 5 1 4

u4 2 1 3

u5 5 3 3

ua 4 2

Table 2.1.: This table shows user ratings ranging from 1 to 5 for different movies.

an object i in the set of all items I (i ∈ I, I = i1, i2, ..., im). The rating matrix
R is defined as m × n matrix of individual ratings rux,iy of items iy with
y ∈ {1, 2, ..., m} by users ux with x ∈ {1, 2, ..., n} (Jannach, Zanker, et al.,
2010).

User-Based Approach

User-based collaborative filtering approaches analyze other users’ prefer-
ences in items in order to find users with similar tastes to the active user.
These similar users are sometimes referred to as peer users or nearest neighbors
(Jannach, Zanker, et al., 2010). Therefore, the first step in the exemplary
recommendation process is to find the k-nearest neighbors to the active user,
where k is defined as k = 1 in the showcased example for the sake of sim-
plicity. In order to do so Pearson’s correlation coefficient is commonly used
(Jannach, Zanker, et al., 2010). The formula is described in equation (2.3)
(Jannach, Zanker, et al., 2010). Thereby the similarity sim between two users
a and b can be calculated, whereby ra and rb denote the average user rat-
ings for items of a and b. Given that the average user rating is used in the
calculation of Pearson’s correlation coefficient shown in equation (2.3), the
Pearson correlation coefficient also accounts for the fact that users interpret
the rating scale differently, given that some users tend to rate items generally
higher or lower than other users (Jannach, Zanker, et al., 2010).

sim(a, b) =
∑i∈I(ra,i − ra)(rb,i − rb)√

∑i∈I(ra,i − ra)2
√

∑i∈I(rb,i − rb)2
(2.3)

24

2.3. Recommendation Approaches

Other algorithms which can be used to compute similarities between users
are the Mean Square Difference (Shardanand and Maes, 1995, Ricci, Rokach,
and Shapira, 2015, p. 55), the Spearman Rank Correlation (Ricci, Rokach,
and Shapira, 2015, pp. 55–56) and the Jaccard Distance (Samer, 2017). More
information can be found in Herlocker, Konstan, Borchers, et al., 1999.

Given the rating matrix declared in section 2.3.2 and the ratings shown in
table 2.1, the user similarities between the active user ua and other users ux
(x = 1, 2, ..., 5) can be calculated. For illustration purposes, the similarities
between ua and other users are calculated. Given that the rating matrix in
table 2.1 is sparse, it is specified that a user pair of two different users must
have co-rated at least two of the same items in order to be able to calculate
meaningful similarities. Therefore, meaningful similarities between ua and
other users can be calculated for the user pairs (ua, u1) and (ua, u2). For
the similarity computation of the user pair (ua, u1) the average user rating
of ua is ra = 3 and the average user rating for u1 is r1 = 2. Equation (2.4)
shows the calculation for the user pair (ua, u1) and equation (2.6) shows the
result. It is noted that only ratings for items that both users of the user pair
have rated are used in the formula described in equation (2.3), except for
the calculations of the average ratings, where all of the users’ ratings are
considered. For the user pair (ua, u2) the average user rating of ua is equal
to ra = 3 and the average user rating of u2 is r2 = 4.25. The calculation of
the similarity between the user pair (ua, u2) can be seen in equation (2.5).
The result is shown in equation (2.7).

sim(ua, u1) =
(4− 3) ∗ (1− 2) + (2− 3) ∗ (2− 2)√

(4− 3)2 + (2− 3)2 ∗
√
(1− 2)2 + (2− 2)2

(2.4)

sim(ua, u2) =
(4− 3) ∗ (4− 4.25) + (2− 3) ∗ (3− 4.25)√

(4− 3)2 + (2− 3)2 ∗
√
(4− 4.25)2 + (3− 4.25)2

(2.5)

The Pearson correlation coefficient (shown in equation (2.3)) produces values
between -1 and 1, whereby 1 indicates a strong positive correlation, 0

indicates no correlation and -1 indicates a strong negative correlation. As
shown in equation (2.6), it is indicated that the user pair (ua, u1) correlates
negatively with a value of approximately -0.71. On the other hand, it is

25

2. Recommender Systems

indicated that the user pair (ua, u2) correlates positively with a value of
approximately 0.55, which is shown in equation (2.7). Therefore, the user u2
can be seen as the user that is most similar to the active user ua and thus as
the nearest neighbor of ua.

sim(ua, u1) ≈ −0.71 (2.6)

sim(ua, u2) ≈ 0.55 (2.7)

After the k-nearest neighbors have been found (u2 for k = 1) the next step is
to predict ratings for items that ua has not rated yet. One possible formula to
calculate a prediction pred is shown in equation (2.8). The formula predicts
a rating of a user a for an item i and considers the relative proximity of the
nearest neighbors N and the average rating of the active user ra (Jannach,
Zanker, et al., 2010, pp. 15–16).

pred(a, i) = ra +
∑b∈N sim(a, b) ∗ (rb,i − rb)

∑b∈N sim(a, b)
(2.8)

Thus, a prediction for ua can be made based on ratings of the nearest
neighbor u2 for items, which have been rated by u2 and which have not
been rated by ua yet. Given table 2.1 these items are Inception and Casablanca.
The calculation of the predicted rating for the item Inception can be seen
in equation (2.9). Given that in this case there is only one nearest neighbor
and the ratings for both items by u2 are the same, both items have the same
predicted rating of 3.75 for ua, as shown in equation (2.10).

pred(Ua, Inception) = 3 +
0.55 ∗ (5− 4.25)

0.55
(2.9)

pred(Ua, Inception) = 3.75 (2.10)

26

2.3. Recommendation Approaches

Variations: There is a variety of approaches which aim to enhance the
user-based collaborative filtering recommendation process. Some of these
approaches work better in certain domains. Breese, Heckerman, and Kadie
(1998), for instance, introduce inverse user frequency, which is based on the
idea that items which are highly popular and have been rated by a large
amount of users are worse indicators of user similarities than items that are
less popular. Another example of an improvement is given in Herlocker,
Konstan, Borchers, et al., 1999. This paper claims that there are commonly
user pairs with a high user similarity, although both users have only rated a
very small number of the same items, for example less than five. They found
that predictions based on these similarities between user pairs are poor
and showed that the prediction’s accuracy can be significantly improved by
penalizing similarities that are based on a small number of co-rated items.
Therefore, the authors introduce a significance weight of n/50 which they
applied to a Spearman’s correlation based prediction algorithm, where n is
the number of items rated by both users. For n > 50 they used a significance
weight of 1.

Challenges and Drawbacks: Two major challenges of user-based collabo-
rative filtering, which are described in Sarwar et al., 2001, are sparsity and
scalability. Sparsity refers to sparse rating matrices, which usually pose a
challenge in large systems with large amounts of different items and users.
In such systems, most users have only rated a very small subset of items,
often less than one percent. Thus, in large systems there might be no highly
similar neighbors that recommendations can be based on for every user.
This can result in poor recommendations for users without highly similar
neighbors (Sarwar et al., 2001). The second main challenge described in
Sarwar et al., 2001 is scalability. Given that user-based collaborative filtering
recommender systems operate on the uncompressed set of data of all users
and items, the systems’ performance decreases with an increasing number
of users and items. Therefore, user-based approaches are generally not
suited for large systems with millions of users and items.

Furthermore, collaborative filtering recommendation approaches generally
suffer from the new-user problem, which describes the problem that users
who have not rated many items yet are difficult to be categorized accurately

27

2. Recommender Systems

into a group of similar users (Burke, 2002). As outlined in section 2.3.6, the
combination of a collaborative filtering approach with a knowledge-based
approach can mitigate the new-user problem.

Another issue is that once the recommender system has created a mature
user model for a user, it is generally difficult for the user to change the
model. Burke (2007) illustrates this point with the example that, given a
recommender system that recommends restaurants and a user who rated
steakhouses positively in the past and who recently became vegetarian, the
user will continue to receive recommendations for steakhouses for a long
time until the user model has adapted to the user’s new preferences. This is
referred to as stability vs. plasticity problem by the author.

Another drawback of user-based collaborative filtering recommender sys-
tems with a small or medium amount of users is that there are users who
do not consistently agree with any group of users. These users are called
gray sheep and generally do not receive accurate recommendations from
collaborative filtering systems (Claypool et al., 1999).

Item-Based Approach

Item-based collaborative filtering is a recommendation approach that recom-
mends items to an active user based on the similarities between items that
the active user has already rated and new items. It is based on the idea that
a user’s taste in items remains more or less stable over time. This implies
that users are interested in similar items to the ones that they have already
consumed. One advantage of item similarities over user similarities (as used
in the user-based approach, see section 2.3.2) is that item similarities are
generally more stable over time than user similarities. This is due to the fact
that most users have rated only a small subset of all items, therefore new
ratings can strongly influence existing user similarities. On the other hand,
when there is a large amount of items, usually item similarities are not going
to change drastically when a comparatively small amount of new items is
introduced. Therefore, similarities between items can be calculated offline
and stored from time to time, in order to save time in the recommendation
process (Jannach, Zanker, et al., 2010). Although user similarities can also
be calculated offline, it is generally not practical, since new ratings strongly

28

2.3. Recommendation Approaches

influence existing similarities. Hence item-based collaborative filtering ap-
proaches are generally more scalable than user-based ones (Sarwar et al.,
2001, Linden, Smith, and York, 2003).

For the recommendation process, first similarities between items, which
a user has already rated and other items must be calculated. Otherwise,
in the case that the item similarity calculation has been computed offline,
the similarities only need to be looked up. The standard metric for the
item similarity calculation is cosine similarity (Jannach, Zanker, et al., 2010).
Alternatively, also a version of the Pearson correlation coefficient (similar
to equation (2.3)) can also be used for the similarity calculation. The cosine
similarity, as shown in equation (2.11), where sim is the similarity between
two items i and j and “·” denotes the dot-product of two vectors, views
items as vectors in the m dimensional user space and computes the cosine
of the angular between the two item vectors (Sarwar et al., 2001). The cosine
similarity produces similarity values between 0 and 1. In this case 1 is the
highest possible correlation and 0 the lowest.

sim(i, j) = cos(~i,~j) =
~i ·~j

||~i|| · ||~j||
(2.11)

Given table 2.1, the similarities between the two items Gladiator and Inception
can be calculated as shown in equation (2.12). The result can be seen in
equation (2.13).

sim(Gladiator, Inception) =
2 ∗ 3 + 3 ∗ 5 + 3 ∗ 3√

22 + 32 + 32 ∗
√

32 + 52 + 32
(2.12)

sim(Gladiator, Inception) ≈ 0.98 (2.13)

A drawback of the basic cosine similarity is that it does not take the users’
rating behavior into account. Therefore, the adjusted cosine similarity, for-
mally described in equation (2.14), subtracts the corresponding average user
ratings Ru from each co-rated pair (Sarwar et al., 2001). The similarity values
are represented by values between -1 and 1, similar to the values generated
by Pearson’s correlation coefficient (shown in equation (2.3)).

29

2. Recommender Systems

R Gladiator Inception
u1 2 0 1

u2 4.25 -1.25 0.75

u5 3.67 -0.67 -0.67

Table 2.2.: This table shows the relevant information which is needed in order to compute
similarities between the items Gladiator and Inception by using the adjusted cosine
similarity. R denotes the average user rating.

sim(i, j) =
∑u∈U(Ru,i − Ru)(Ru,j − Ru)√

∑u∈U(Ru,i − Ru)2
√

∑u∈U(Ru,j − Ru)2
(2.14)

In order to calculate the similarities between the items Gladiator and Inception
by using the adjusted cosine similarity and given table 2.1, the average
ratings must be subtracted from the actual ratings of users who have rated
both items. The relevant information to do this is presented in table 2.2.
Equation (2.15) shows the similarity calculation between Gladiator (Gl.) and
Inception (In.) and its result is given in equation (2.16).

sim(Gl., In.) =
0 ∗ 1 + (−1.25) ∗ 0.75 + (−0.67) ∗ (−0.67)√

02 + (−1.25)2 + (−0.67)2 ∗
√

12 + 0.752 + (−0.67)2

(2.15)

sim(Gladiator, Inception) ≈ −0.24 (2.16)

The result shows a negative correlation between the items Gladiator and
Inception. Comparing the result from the basic cosine similarity (shown in
equation (2.13)) with the result from the adjusted cosine similarity (shown
in equation (2.16)) indicates how drastically a similarity between two items
can change by considering average user ratings.

In order to compute predicted ratings for an item i for a user u, at first a set
of k-nearest neighbors (NN) for i needs to be selected (Sarwar et al., 2001).
Afterwards predicted ratings can be calculated according to the formula

30

2.3. Recommendation Approaches

described in equation (2.17), which basically considers and weights how u
rated similar items j ∈ NN to i (Felfernig, Jeran, et al., 2014).

pred(u, i) =
∑j∈NN sim(i, j) ∗ ru,j

∑j∈NN sim(i, j)
(2.17)

Challenges and Drawbacks: A drawback of content-based collaborative
filtering systems is the new-item problem, which describes the problem that
new items, which have not been rated by any user yet, cannot be recom-
mended (Burke, 2002). As described in section 2.3.6, the combination of
content-based recommender system approaches with knowledge-based rec-
ommender systems can mitigate this drawback. Furthermore, similar to
user-based collaborative filtering approaches, users with a unique taste,
which is inconsistent with the taste of other user groups, might not re-
ceive accurate recommendations from a content-based collaborative filtering
recommender system. Moreover, the stability vs. plasticity problem, as
described in section 2.3.2, also applies to content-based collaborative filter-
ing.

2.3.3. Model-Based Collaborative Filtering

The basic idea behind model-based collaborative filtering is to bypass the
performance bottleneck that exists in memory-based collaborative filtering
systems with large amounts of users or items. As described in section 2.3.2
the bottleneck is caused due to the fact that memory-based recommender
systems work on the uncompressed set of available user and item data.
Model-based approaches, on the other hand, try to compress the large
amounts of data into a model, which is then used in the recommendation
process, instead of the whole rating matrix (Thi Do, Van Nguyen, and
Loc Nguyen, 2010). This can be achieved by using statistical and machine
learning methods (Thi Do, Van Nguyen, and Loc Nguyen, 2010). Thus, the
recommender system’s performance increases and the sparsity of the rating
matrix, which poses a challenge in memory-based collaborative filtering
systems, is ignored. Thi Do, Van Nguyen, and Loc Nguyen (2010) describe

31

2. Recommender Systems

four common model-based approaches: clustering, classification, latent class
model and Markov decision process based collaborative filtering. In the following,
the commonly used model-based collaborative filtering method clustering
is presented.

Clustering

Clustering approaches are based on the idea that users can be divided into
groups (clusters) of similar users based on the feedback they provided in
the past. Thus, if new items are to be recommended to a user who is part of
a cluster, not all of the system’s users have to be taken into account in the
recommendation process, but only those who belong to the same cluster
as the active user. In order to generate predictions for an active user, the
average opinion of the cluster that the active user belongs to can be used
to estimate the active user’s opinion of unseen items (Xue et al., 2005). The
process of assigning users to clusters can be done offline, therefore the
recommender system does not operate on the uncompressed set of data
during the recommendation process, but only on a subset of users and
items.

At first a formula for the similarity computation between users needs to
be chosen. Usually users are represented by rating vectors denoted ui =
ri1, ri2, ..., rin. Thi Do, Van Nguyen, and Loc Nguyen (2010) describe three
formulas that can be used: Minkowski distance (equation (2.18)), Euclidian
distance (equation (2.19)) and Manhattan distance (equation (2.20)). The
smaller the result of the similarity calculation, the more similar the users
are. Alternatively Xue et al. (2005) use Pearson’s correlation coefficient (see
section 2.3.2, equation (2.3)).

distanceMinkowski(u1, u2) = q

√
∑

j
(r1j − r2j)q (2.18)

distanceEuclidian(u1, u2) =
√

∑
j
(r1j − r2j)2 (2.19)

32

2.3. Recommendation Approaches

distanceManhattan(u1, u2) = ∑
j
|r1j − r2j| (2.20)

Different clustering algorithms can be used to assign users to clusters based
on their similarity to the other users. A commonly used clustering algorithm
is k-means, which basically includes three steps, as described in Thi Do,
Van Nguyen, and Loc Nguyen, 2010:

1. At first k users are selected randomly. Initially each of them represents
a mean of a cluster. Therefore, there are k clusters and k means.

2. The similarity between each user and each cluster mean is computed.
Formally, the minimal distance between a user ui and the mean mv
of a cluster cv, denoted distance(ui, mv), is searched. Then, each user
is assigned to the cluster whose cluster mean is closest to the user in
terms of similarity. Figure 2.3 illustrates an exemplary k-means data
set.

3. After step 2, new means of all clusters are computed. If either no
mean of any cluster changes, or changes to the means are within a
predefined error margin, which is defined in equation (2.21), where cv
(v = 1, 2, ..., k) describes a cluster with the mean mv, the clustering is
finished. Otherwise return to step 2.

error =
k

∑
v=1

∑
ui∈cv

distance(ui, mv) (2.21)

Challenges and Drawbacks: A challenge in model-based collaborative
filtering systems is the high initial cost of creating the model. Moreover,
for clustering algorithms, sparse rating matrices cause imprecision (Thi Do,
Van Nguyen, and Loc Nguyen, 2010). This issue is addressed in Ungar and
P. Foster, 1998. The stability vs. plasticity problem (described in section 2.3.2)
is another possible drawback.

33

2. Recommender Systems

Figure 2.3.: This figure shows an exemplary k-means data set with k = 3 and three-
dimensional vectors. The axes are labeled with integers. On the bottom right
of the figure the three clusters are described. For this picture a screenshot was
taken from the original source (Wikimedia Commons, 2010).

34

2.3. Recommendation Approaches

2.3.4. Content-Based Filtering

Content-based recommendation approaches recommend items based on
available information about them. In relevant literature, information about
items is referred to as item attributes, item characteristics, item fields, or item
variables (Pazzani and Billsus, 2007). The idea behind content-based recom-
mendation approaches is the assumption that a user’s taste stays the same
over time (Felfernig, Jeran, et al., 2014). Therefore, the inductive reasoning is
that, given the premise that a user liked items with certain characteristics in
the past, the user will also like items with the same or similar characteristics
in the future. Thus, a user model is needed.

Exemplary item attributes of wristwatches can be seen in table 2.3. Usually
item attributes are inserted manually, either by the provider of the item,
who could be the provider of the system, or, for example, a seller on an e-
commerce platform, or by the system’s users. This process is associated with
a certain effort and therefore involves extra costs, which can be reduced by
automating the analysis of the content. An example of such an automation
is a system that automatically searches documents for keywords. A content-
based recommender system can then recommend documents with similar
keywords which users liked in the past (Jannach, Zanker, et al., 2010).

Besides information about items, a user model for the active user is needed
for the recommendation process. The user model is usually developed on
the basis of a user’s purchase history (or conversion history) and a user’s
ratings of items. In this case, the user model’s accuracy increases with the
number of purchases and ratings that a user made in the past. If a user has
no purchase history or has not rated any items, no recommendations can
be made. No information about other user’s purchase history or ratings
is needed, thus content-based recommender systems are able to create
recommendations for a user, even if the user is the only user of the system
(Jannach, Zanker, et al., 2010).

For the recommendation process the recommender system tries to find items
that the active user will like based on the system’s user model for the active
user. In order to do so, one approach is to find similar items to the ones that
the active user liked in the past among the set of items that the active user
has not seen yet. Furthermore, similarities between items must be calculated,

35

2. Recommender Systems

Model Movement Chronograph Case Diameter Band Material
Watch 1 Quartz No 38 mm Leather
Watch 2 Quartz Yes 43 mm Stainless Steel
Watch 3 Automatic No 40 mm Stainless Steel
Watch 4 Quartz No 35 mm Leather
Watch 5 Automatic Yes 45 mm Titanium

Table 2.3.: This table shows various models of wristwatches and their item attributes. The
column Movement describes the power source of the wristwatches. Chronograph is
a boolean field which describes whether the watch features a timer. The column
Case Diameter specifies the case size in mm and Band Material states the material
from which the band is made. These attributes can be used by a content-based
recommender system in order to calculate similarities between items.

which can be achieved by comparing item attributes. For example, given
the items shown in table 2.3 and a user who demonstrated preferences for
watches that are powered by a quartz movement in the past, watches that
the active user has not seen so far which feature a quartz movement can be
assigned a similarity of 1 and watches that feature an automatic movement
can be assigned a similarity of 0 (Jannach, Zanker, et al., 2010). Alternatively,
the similarities can be calculated by viewing items as documents and using
keywords (Felfernig, Jeran, et al., 2014). Table 2.4 shows the same models
of wristwatches as table 2.3, but presents the item attributes in the form
of keywords. The similarities between different items can be calculated by
using the Dice coefficient described in equation (2.22), where the similarity
sim between two items ia and ib is calculated by utilizing keywords (Jannach,
Zanker, et al., 2010). Another common approach is the keyword-based Vector
Space Model, which represents text documents as vectors in an n-dimensional
space, where n denotes the total number of different terms in the whole
document collection and each dimension corresponds to a single term (for
more information see Lops, Gemmis, and Semeraro, 2011 and Jannach,
Zanker, et al., 2010). After the similarities have been calculated, k-nearest
neighbor approaches (similar to section 2.3.2) can be used as a simple
method of finding recommendations based on past user preferences.

sim(ia, ib) =
2 ∗ |keywords(ia) ∩ keywords(ib)|
|keywords(ia)|+ |keywords(ib)|

(2.22)

36

2.3. Recommendation Approaches

Model Keywords
Watch 1 quartz, chronog no, cd 38mm, band leather
Watch 2 quartz, chronog yes, cd 43, band ssteel
Watch 3 automatic, chronog no, cd 40, band ssteel
Watch 4 quartz, chronog no, cd 35, band leather
Watch 5 automatic, chronog yes, cd 45, band titanium

Table 2.4.: This table shows various wristwatch models (items) and keywords that describe
them. The keywords can be used to calculate similarities between the items.

Challenges and Drawbacks: Content-based recommender systems face the
following three drawbacks, as described in Lops, Gemmis, and Semeraro,
2011:

Limited content analysis Content analysis, automated or manually, may
fail to capture certain item nuances. For example, the automated
analysis of a news article may fail to recognize sarcasm, jokes or a
bad choice of words (Lops, Gemmis, and Semeraro, 2011). Also words
often change their meaning in a given context, for example the saying
“out of the frying pan into the fire” has usually nothing to do with an
actual pan or fire.

Over-specialization Content-based recommender systems generally do not
recommend serendipitous and novel items, since recommendations
only consist of items that are similar to the ones that the active user
liked in the past (Lops, Gemmis, and Semeraro, 2011). Therefore, the
recommendation approach is usually not suitable for domains in which
serendipity and novelty are important properties of the recommender
system.

New-user problem Given that a user model is needed in order to find
similar items to the ones which the active user liked in the past, a
certain amount of user ratings or knowledge about user preferences
is needed in order to produce high quality recommendations10 (Lops,

10However, content-based recommender systems can recommend items to a user as
soon as feedback about at least one item has been provided by the user. Although recom-
mendations based on only one purchase or rating might not be the most accurate ones,
content-based recommender systems offer the advantage that they are able to provide
reasonable recommendations with minimal feedback.

37

2. Recommender Systems

Gemmis, and Semeraro, 2011). Thus, the recommendation quality is
generally lower in content-based recommender systems for new users
or for users represented by poor user models.

In addition to the three drawbacks stated in Lops, Gemmis, and Semeraro,
2011, the stability vs. plasticity problem, as described in section 2.3.2, also
poses a challenge for content-based recommender systems.

2.3.5. Knowledge-Based Approaches

Besides collaborative filtering and content-based recommendation tech-
niques, knowledge-based recommendation techniques are another major
area of recommender systems research. Contrary to the other two tech-
niques, with knowledge-based recommendation approaches user ratings
for items are not an essential ingredient for the recommendation process.
Instead, deep knowledge about the item set is used to customize items so
that they match the user’s requirements and preferences. Knowledge-based
recommender systems emphasize a user’s situation and how recommended
items can satisfy a user’s particular needs (Felfernig and Burke, 2008). Typi-
cally, a user states requirements and the recommender system tries to find
adequate items. Requirements can be stated in multiple ways, for example
by asking a user questions about the user’s taste and preferences, by pre-
senting tweakable parameters to the user, or by offering the user options
to choose from. For instance in the car industry a car can be described as
sporty, efficient or family-friendly (Jannach, Zanker, et al., 2010). If there are
no items fulfilling the requirements, the requirements need to be changed
(Jannach, Zanker, et al., 2010). Thus, knowledge-based approaches are ide-
ally suited to operating with complex items, for which users usually have
specific demands and expectations. Laptops, for example, are complex items
with many different characteristics, as shown in table 2.5. Users might look
for specific kinds of laptops, such as laptops that only need to be capable of
running basic office applications, powerful workstations, gaming laptops
that can handle current games at speeds of over 60 frames per second, or
lightweight laptops, primarily for mobile usage. Collaborative filtering and
content-based recommendation techniques are generally ill-suited to meet-
ing such specific user requirements. Another advantage of knowledge-based

38

2.3. Recommendation Approaches

Id Price Size Weight CPU RAM Graphics Storage Battery
l1 449 13.3 1.7 3.7 4 2.4 small long
l2 679 17.3 3.1 5.9 8 5.1 large short
l3 599 14 1.8 5.1 4 2.6 medium long
l4 999 15.6 2.1 7.6 8 7.9 large medium
l5 769 17.3 2.8 6.8 8 6.7 medium short

Table 2.5.: This table shows various laptop models (items) and the item’s attributes (some
less important attributes are left out because of limited space). The item attributes
are presented in the following units: price in dollar, size in inches, weight in
kilograms, CPU and graphics on a scale from 0 to 10, where 10 is the highest
score and 0 the lowest, RAM in gigabytes, and storage and battery in rough
sizes.

recommendation approaches over collaborative filtering and content-based
recommendation techniques is that there is no new-user and new-item prob-
lem in knowledge-based recommender systems, since users express their
preferences during the recommendation process. Thus, there is no need
for existing ratings. Since knowledge-based recommendation approaches
do not rely on past ratings, they also do not face the problem of previous
misleading user ratings. For instance, a user who rated a laptop highly
five years ago is most probably not looking for a model with similar spec-
ifications, as the old model’s hardware is outdated by today’s standards.
Knowledge-based recommendation techniques can be divided into differ-
ent approaches, two of which are constraint-based approaches (Felfernig and
Burke, 2008) and case-based approaches (Burke, 2000, Jannach, Zanker, et al.,
2010), which are presented in the following sections.

Constraint-Based Approach

Constraint-based approaches find suitable items based on a set of constraints
which is explicitly defined by the user, for example in the form of filters
that can be tweaked. An example of such an approach can be seen in
figure 2.4, which shows recommendations based on constraints from the
Trivago website11, which compares hotel prices from different websites in

11Trivago 2019.

39

2. Recommender Systems

order to find hotels for a user, which fulfill the user’s needs at the best
price. If there are no items that meet the defined constraints, usually a
solution is provided how to remove or loosen constraints (Jannach, Zanker,
et al., 2010). Figure 2.5 shows how Trivago’s website reacts if there are no
hotels that comply with the specified constraints. The system recommends
removing filters in order to be able to find items that meet the search criteria.
Alternatively the system suggests viewing the presented options.

The recommendation process can be regarded as constraint satisfaction
problem, according to Jannach, Zanker, et al. (2010). Therefore, a recommender
knowledge base needs to be described (Felfernig and Burke, 2008). This can
be achieved by explicitly defining the following terms, which are explained
with the help of table 2.5. The explanations of the terms are adopted from
Felfernig and Burke, 2008.

Customer properties, denoted by ui ∈ U, describe all possible customer
requirements. Possible customer requirements are for instance:

• u1 : max price = integer
• u2 : min cpu = integer
• u3 : min storage = low, medium, high

Product properties, denoted by pi ∈ P, describe the product assortment, such
as:

• p1 : id = l1
• p2 : price = 449
• p3 : size = 13.3

(In)Compatibility constraints, denoted by compi ∈ COMP, describe relations
between product properties, for example:

• comp1 : a storage greater than large requires a price greater than 300

• comp2 : a weight less than 2 requires a size less than 14

• comp3 : a graphics performance of greater than 5 requires a CPU
performance of greater than 3

Product constraints, denoted by prodi ∈ PROD, restrict instantiations of
variables in P. In order to enumerate the offered set of products, product
constraints are used. They are similar to table 2.5, with the exception that in

40

2.3. Recommendation Approaches

Figure 2.4.: This figure shows constraint-based recommendations of Trivago (Trivago 2019).
The constraints that can be tweaked can be seen on top, such as Price/night. In
addition to the period of travel and the room category, it has been specified
that potential hotels must cost less than 250$ per night, need to have a star
rating of at least 4 and a guest rating of 8 or higher. The hotel must be located
in Japan. Furthermore, two additional filters have been applied (the hotel must
have a pool and be pet-friendly). The recommendations can be seen below the
constraint specification. The website has been accessed in private mode.

41

2. Recommender Systems

Figure 2.5.: This figure shows the content that Trivago’s recommender system (from Trivago
2019) presents if no hotels can be found in accordance with the user’s con-
straints. The user is asked to remove filters or to view Trivago’s suggestions.

42

2.3. Recommendation Approaches

the column id, prodi is used for the enumeration instead of li ∈ L (where L
denotes the set of offered laptops).

Filter constraints, denoted by f ilti ∈ FILT, define how customer require-
ments translate to product properties, for example:

• f ilt1 : the product price must be less than the max price defined by
the customer

• f ilt2 : the size of the product must be equal to the size defined by the
user

• f ilt3 : for a product to be light it must have a weight of less than 2

The recommendation process, as defined in Felfernig and Burke, 2008, is
the process of finding a complete assignment to the variables U and P,
so that all constraints specified in CR ∪ COMP ∪ FILT ∪ PROD, whereby
CR is a set of customer requirements, are satisfied. For example, given the
customer requirements U = (u1 : max price = 600, u2 : min cpu = 5, u3 :
min storage = medium) and products P = (prod1, prod2, prod3, prod4, prod5)
similar to the items described in table 2.5, the complete assignment to the
variable P is P = prod3, whereby prod3 corresponds to the item with the
identifier l3 from table 2.5. A more detailed discussion about constraint
satisfaction problems can be found in Tsang, 1993.

Challenges and Drawbacks: The main drawback of knowledge-based rec-
ommender systems is that it is difficult to acquire deep domain knowledge
and detailed product information and keeping it up-to-date manually, or
by automation. Moreover, the ability of a knowledge-based recommender
system to make suggestions is static, which means that the recommender
system does not learn and increase in quality over time, contrary to collabo-
rative filtering and content-based approaches (Burke, 2002).

Case-Based Approach

Case-based recommendation approaches are based on finding the items
that are most similar to the item the user is looking for. This task usually
requires an understanding of the domain in which the recommender system

43

2. Recommender Systems

operates and deep domain knowledge (Felfernig and Burke, 2008). For
example, given an online shop which sells laptops as shown in table 2.5, a
user might specifically look for a lightweight and mobile laptop. Therefore, a
case-based recommender system with domain knowledge might try to find
laptops with low values in size and weight and high values in battery. This
description fits laptops with the identifiers id = l1 and id = l3. Similar to
constrained-based approaches (see section 2.3.5), in the event that no items
can be recommended on the basis of the user’s requirements, case-based
approaches also support the user in conducting minimal changes to the set
of user requirements in order to be able to find items that meet the user’s
requirements (Felfernig and Burke, 2008).

The similarity of an item i to the requirements r ∈ REQ, as described in Jan-
nach, Zanker, et al., 2010, is called distance similarity. Equation (2.23) shows
how the distance similarity is commonly defined, where wr describes the
importance weight for a user requirement r ∈ REQ and sim(i, r) represents
the distance between the r and the corresponding item attribute value φr(i)
(Jannach, Zanker, et al., 2010).

similarity(i, REQ) =
∑r∈REQ wr ∗ sim(i, r)

∑r∈REQ wr
(2.23)

In order to calculate sim(i, r), three different kinds of item attributes have to
be considered (Jannach, Zanker, et al., 2010). Firstly there are attributes of the
category more-is-better, which refers to item properties, that users generally
want to maximize. Given the items in table 2.5, customers usually want to
maximize CPU, RAM, graphics performance, storage and battery life. The
formula to calculate the similarity between i and r for item attributes of the
category more-is-better is shown in equation (2.24) (Jannach, Zanker, et al.,
2010).

sim(i, r) =
φr(i)−min(r)

max(r)−min(r)
(2.24)

Secondly, there are item attributes, which users generally want to minimize,
which are called less-is-better. Usually customers want to minimize the price
of an item, or the weight of items that have to be carried around a lot, such

44

2.3. Recommendation Approaches

as smartphones or laptops. Equation (2.25) shows the formula to calculate
similarities between less-is-better item attributes (Jannach, Zanker, et al.,
2010).

sim(i, r) =
max(r)− φr(i)

max(r)−min(r)
(2.25)

The third kind of item attributes which have to be considered are item
attributes that should neither be maximized, nor minimized but met as
close as possible, for example in the case that a user is looking for an
item in a specific size. The corresponding similarity formula is shown in
equation (2.26) (Jannach, Zanker, et al., 2010).

sim(i, r) = 1− |φr(i)− r|
max(r)−min(r)

(2.26)

Challenges and Drawbacks: Generally case-based approaches face the
same challenges and drawbacks as constrained-based approaches, as de-
scribed in section 2.3.5.

2.3.6. Hybrid Approaches

Given that different recommendation approaches have different strengths
and shortcomings, hybrid recommendation approaches are based on the
idea that the combination of two or more recommendation approaches can
eliminate or reduce the shortcomings and combine the strengths of the
individual approaches (Burke, 2002). Collaborative filtering, for instance,
relies on the existence of multiple user ratings for an item, as otherwise the
item cannot be recommended with a reasonable accuracy. On the other hand,
collaborative filtering algorithms can recommend serendipitous items based
on latent factors (Ricci, Rokach, and Shapira, 2015). In contrast, content-
based recommendation approaches can recommend items that have not
received any ratings yet, but generally fail to recommend items that are
dissimilar to the items that a user rated in the past. Hence the combination

45

2. Recommender Systems

of a collaborative filtering recommendation approach and a content-based
recommendation approach can be beneficial. Alternatively, knowledge-based
recommendation approaches do not rely on past user ratings at all, thus
they do not suffer from the new-user problem and the new-item problem.
Therefore, knowledge-based recommendation approaches are suitable for
the combination with collaborative filtering and content-based approaches,
according to Burke (2002).

One way to combine two or more recommendation approaches is by first
using the individual recommendation approaches separately and then com-
bining the outcomes by weighting the individual results in order to make
predictions. One example of such an approach is P-Tango (Claypool et al.,
1999), which combines a collaborative filtering and a content-based recom-
mendation approach. After the computation of the individual approaches,
a weighted average is taken in order to compute aggregated scores for
items. The weights are user-specific, since the recommendation quality of
the individual approaches varies depending on the available information
about users and items. An overview of different ways of combining multiple
recommendation approaches is shown in table 2.6. For further informa-
tion on hybrid recommendation approaches, see Burke, 2002 and Jannach,
Zanker, et al., 2010.

2.4. Evaluation

According to Shani and Gunawardana (2011) there are three types of evalua-
tion settings for the evaluation of recommender systems: offline experiments,
user studies and online experiments. In the following these three types are
discussed. Further information about the evaluation of recommender sys-
tems can be found in Shani and Gunawardana, 2011 and Ricci, Rokach, and
Shapira, 2015.

46

2.4. Evaluation

Hybridization
Method Description

Weighting
The scores (or votes) of several recommendation
techniques are combined together to produce a
single recommendation.

Switching The system switches between recommendation
techniques depending on the current situation.

Mixed Recommendations from several different rec-
ommenders are presented at the same time

Feature combination
Features from different recommendation data
sources are thrown together into a single rec-
ommendation algorithm.

Cascade One recommender refines the recommenda-
tions given by another.

Feature
augmentation

Output from one technique is used as an input
feature to another.

Meta-level The model learned by one recommender is used
as input to another.

Table 2.6.: This table describes various ways of combining two or more recommendation
approaches. It is adopted from Burke, 2002 with kind permission of R. Burke.

47

2. Recommender Systems

2.4.1. Offline Experiments

In offline experiments, previously collected data of users, their behavior
and their ratings are used for testing purposes. These tests are based on
the idea that past user behavior can be used to evaluate new recommender
systems or changes in existing recommender systems. It is assumed that
how a user behaved in the past is similar enough to how the user would
have behaved under the circumstances tested by the offline experiment,
as described by Shani and Gunawardana (2011). The authors state that in
light of the low cost of offline experiments and due to the fact that no
real users are involved, they are ideally suited to testing a wide range of
different approaches and filtering out inappropriate ones. As outlined by
Shani and Gunawardana (2011), in this case only a small set of candidate
approaches remain, which can be tested more carefully by user studies and
online experiments. According to the authors, this way different values for
a given parameter can be tested and compared in order to see which values
perform best.

The simulation of user behavior is commonly achieved by utilizing historical
user data. A part of the data is hidden, which is used to simulate knowledge
about a user’s future behavior, while the rest of the historical user data is
used in the recommendation process, as outlined in Shani and Gunawardana,
2011. The authors claim that the recommender system can then be tested
by predicting ratings for items which are part of the hidden historical
user data. For those items the actual user ratings are known and thus the
ratings predicted by the recommender system can be compared to the actual
user ratings from the hidden user data. This way the performance of the
recommender system can be evaluated.

A downside of offline experiments is that the data about past user behavior
obviously stems from the original system, which does not include the
changes to the system that are tested in the offline experiment. Therefore,
it is not possible to draw conclusions about the influence on user behavior
because of the changes made to the system (Shani and Gunawardana,
2011).

48

2.4. Evaluation

2.4.2. User Studies

User studies, as described in Shani and Gunawardana, 2011, are experiments,
for which a set of test subjects are recruited in order to perform certain tasks
while their behavior is observed and recorded. The article states that there
is also the possibility of asking the test subjects questions about desired
information before, during and after the tasks, which can provide further
information, such as the level of user satisfaction or insights into usability
aspects.

In user studies about recommender systems, a typical use case, as described
in Shani and Gunawardana, 2011, is to test different versions of a system.
The article illustrates the point with the example that test subjects might be
asked to navigate through a set of items. In some cases recommendations are
given and in other cases no recommendations are given. Thus, the impact
of recommendations on user behavior can be studied.

A definite advantage of user studies is the opportunity to put questions to
the test subjects, which makes it possible to learn about the test subjects’
motivations directly. This is not feasible with offline and online experiments.
In this case generally only statements about correlations but not about
motivations can be made (Shani and Gunawardana, 2011). On the other
hand, Shani and Gunawardana (2011) state that user studies are costly,
given that test subjects are either volunteers who are not readily available,
or they need to be compensated for their time and effort. Thus, only a
limited amount of tests can be conducted. In the light of the high cost of
user studies, pilot studies may be conducted in order to test a user study
for bugs and malfunctions (Shani and Gunawardana, 2011). Furthermore,
according to Shani and Gunawardana (2011), there is the risk that the test
subjects are biased, which might be higher in the event that test subjects are
volunteers, as people might be more likely to volunteer for studies in which
they are interested in. Hence, as claimed by the authors, it is important that
the test subjects are as similar as possible to the actual system users.

49

2. Recommender Systems

2.4.3. Online Experiments

Online experiments within the context of recommender systems, as por-
trayed in Shani and Gunawardana, 2011, describe the process of comparing
two or more different versions of a system in an online setting with the aim
of finding out which version performs best. To do so, users are assigned
to different groups and a different version of the system is presented to
each group. Usually, the users are randomly assigned to groups in order
to avoid potential biases. After a certain amount of time, the experiment is
completed and the logged data can be evaluated.

Compared to offline experiments and user studies, online experiments reflect
real-world situations most accurately, as real tasks are performed by real
users, who usually do not know that they are participants in an experiment,
as mentioned by Shani and Gunawardana (2011). Therefore, the results
provided by online experiments can be regarded as more trustworthy than
the results obtained through offline experiments and user studies (Shani
and Gunawardana, 2011).

However, online experiments that present poor and unrefined versions of
the system to user groups may lead to a permanent loss of users, which
might not be acceptable in commercial systems (Shani and Gunawardana,
2011). Thus, before a version of the system is presented to real users, offline
experiments and user studies can be conducted in advance to make sure
that the presented version is reasonable and to minimize risk (Shani and
Gunawardana, 2011).

Furthermore, online experiments usually do not involve questionnaires,
which can be used to gain further information about the participants’ moti-
vations. Therefore, as stated in Shani and Gunawardana, 2011, it is important
to keep all other variables, that are not tested in the online experiment, con-
stant. The authors explain that this is necessary because in the event that
multiple variables are changed, it is impossible to attribute differences in
user behavior to certain changes, as the differences may be the result of
any combination of changed variables. For instance, if a change to a rec-
ommender system algorithm is introduced that aims to improve prediction
accuracy and at the same time a change is made to the user interface, it
will not be possible to draw conclusions whether observed changes in user

50

2.4. Evaluation

behavior are the result of the changed algorithm, the changed user interface,
or a combination of both.

51

3. Catrobat

This chapter focuses on different aspects of Catrobat, the organization for
which the practical part of this thesis is carried out. First of all, Catrobat
as an organization is introduced. Then Pocket Code, Catrobat’s mobile ap-
plication is presented. Afterwards an overview of the sharing platform1 is
given, a place where Pocket Code users can share their creations. Finally,
Catrobat’s recommender system and its individual components as well as
the recommendation process are described.

3.1. The Catrobat Organization

The Catrobat organization aims to motivate children and adolescents to
start programming2 and to enhance their computational and problem-
solving skills. The organization was founded in 2010 at the Institute of
Software Technology of the Technical University of Graz and is a non-
profit open-source project with over 480 contributors as of June 2019 (Black
Duck Software, Inc., 2019). Catrobat’s concept is to enable their users to
create, share and modify programs in an easy and intuitive way. This is
achieved by using Catrobat, a visual programming language, named after
the organization, which allows users to write code by using graphical
elements rather than writing traditional text-based code. In June 2019, at
the time of writing this thesis over 88,000 programs3 have been uploaded to
Catrobat’s sharing platform4.

1International Catrobat Association, 2019b.
2International Catrobat Association, 2019a.
3Painsi, 2019.
4International Catrobat Association, 2019b.

53

3. Catrobat

Figure 3.1.: This figure shows Pocket Code’s main menu screen.

3.2. Pocket Code

Pocket Code is the name of the application (app) which is used to program
in the Catrobat programming language. It is available for Android and iOS
and features an integrated development environment (IDE) for the Catrobat
programming language. Figure 3.1 shows the structure of the app’s main
menu. In this menu a user can create a new program or continue working
on an existing one. The Programs-button allows the user to browse through
created and downloaded programs. The Help-button guides the user to a
help and tutorial page. Via the Upload-button users can upload programs
that they have created or modified to Catrobat’s sharing platform, which
is further described in section 3.4. The Explore-button enables the user to
browse through the sharing platform.

54

3.3. Catrobat Programming Language

Figure 3.2.: This figure shows two exemplary scripts in the Catrobat programming language
within the Pocket Code app. The scripts define the object’s behavior. Panda is
the object’s title.

3.3. Catrobat Programming Language

The Catrobat programming language is a visual programming language,
which is heavily influenced by Scratch5, a well-known project of the Lifelong
Kindergarten Group at the MIT Media Lab. Both programming languages
can be used without writing a single line of code and instead only rely
on graphical elements. A Catrobat program usually consists of objects and
bricks. A brick is a single instruction for an object that can be combined with
other bricks. Multiple combined bricks form scripts. Figure 3.2 shows an
example of two scripts which have been combined from multiple bricks.

The brick’s color indicates which brick category it belongs to. In total there
are seven different brick categories.

5Lifelong Kindergarten Group, MIT Media Lab, 2019.

55

3. Catrobat

• Event bricks - Detect events and start scripts.
• Control bricks - Control the logical flow of other bricks.
• Motion bricks - Manipulate the object’s position and physics.
• Sound bricks - Create sounds and let the object speak.
• Looks bricks - Manipulate the object’s looks.
• Pen bricks - Enable drawing on the screen.
• Data bricks - Create and manage variables and lists.

Each script starts with an event brick, which dictates when a script is to
be executed. The first script shown in figure 3.2 starts with the event brick
“When program starts”. Afterwards the object’s position on the screen is set
with the motion brick “Place at ...”. The looks brick “Say ...” lets a speech
bubble appear that shows the string which has been declared in the brick.
The second script in figure 3.2 is executed when the object is tapped and
plays the sound “bite”.

When a program is started, the Pocket Code app transforms the visual
code into Extensible Markup Language (XML), which can be interpreted by
Pocket Code. On the other hand, when a program is opened in the IDE, the
program’s XML code is transformed into the visual Catrobat programming
language. Figure 3.3 shows a running program. In addition to the code
showcased in figure 3.2 a background image was set.

3.4. The Sharing Platform

Catrobat’s sharing platform6, also referred to as community website, is acces-
sible via the Pocket Code app and via a browser. It is mainly used to browse
through programs that other users have uploaded and to upload programs
written in the Catrobat programming language. In order to present a variety
of different programs, multiple program sections exists:

• Featured - Shows a selection of featured programs.
• Newest Programs - Shows the most recently uploaded programs.

6International Catrobat Association, 2019b.

56

3.4. The Sharing Platform

Figure 3.3.: This figure shows a running program. A background image has been set and
the panda object has been positioned in the middle of the screen. A looks brick
has been used to let the object express a thought.

57

3. Catrobat

• Recommended Programs - Shows non-personalized or user-specific
recommendations.

• Most Downloaded - Shows the most downloaded programs of all
times.

• Most Viewed - Shows the most viewed programs of all times.
• Random Programs - Shows random programs.

In order to upload programs, a user account needs to be created either
in the Pocket Code app or directly on the sharing platform. Creating a
user account enables a user to access the user profile, to upload programs
and to manage uploaded programs. There is also a notification system that
notifies the user if one of the user’s uploaded programs receives a comment
from another user. In total, Catrobat’s community platform has over 80,000

registered users and over 88,000 uploaded programs. The majority of the
activity is performed by mobile users.

Technical Details: The sharing platform is an object-oriented project,
which is written in PHP: Hypertext Preprocessor7 (PHP), a scripting lan-
guage. It uses the Symfony framework8. For the database MySQL9 is used.
Doctrine10 is used as an object-relational mapper, whereby a class that is
mapped by doctrine is referred to as entity.

3.4.1. Remixes

A special feature of Catrobat is the possibility of modifying downloaded
programs. When a user downloads a program from the sharing platform
and modifies it, the result is called a remix. In many other domains, like
in Google’s Play Store11, downloading an item and uploading it modified
will be seen as a breach of the terms of service12. However, on Catrobat’s

7PHP Group, 2019.
8Symfony Homepage 2019.
9Oracle Corporation, 2019.

10Doctrine 2019.
11Google LLC, 2019c.
12Google LLC, 2019a.

58

3.5. Recommender System

sharing platform it is not only allowed, but users are encouraged to do so13.
The underlying thought is that having direct access to the code of other
programs and being able to experiment with it is an opportunity to learn.
At the time of writing this thesis, about 25.5% of all Catrobat programs were
remixes14.

3.5. Recommender System

On the sharing platform there are various sections that do not change
based on the condition whether a user is logged in or not, namely Featured,
Newest Programs, Most Downloaded, Most Viewed and Random Programs. The
section Recommended Programs only shows the same programs to guest
users (see section 2.3.1). For logged in users the recommendations are
personalized, hence the section Recommended Programs shows user-specific
recommendations. Catrobat’s recommender system relies on user-based
collaborative filtering, which is described in section 2.3.2.

3.5.1. Like Rating System

As outlined in section section 2.3.2, user-based collaborative filtering needs
user feedback in order to compute how similar users are to one another.
Therefore, Samer (2017) implemented a like rating system, which enables
users to press one of four different like buttons to express that they like a
program on the details page of a program. Figure 3.4 showcases the like
rating system. The different like buttons are Thumbs up, Smile, Love and
Wooow!. However, the recommendation algorithm does not differentiate
between different types of likes. Likes are positive-only, unary feedback,
hence from the perspective of the recommendation algorithm there are only
two options, a user either liked a program or not. If a user liked a program,
the obvious conclusion will be that the user actually liked the program.
On the other hand, if a user has not liked a program, the conclusion that

13International Catrobat Association, 2019c.
14Painsi, 2019.

59

3. Catrobat

Figure 3.4.: This figure showcases the like rating system. The program Galaxy War received
62 likes in total. A thumbs up has been given, which causes Pocket Code to
show the number of people who have chosen the same type of like, in this case
39.

the user does not like the program may be erroneous, since the absence
of positive-only feedback does not imply negative feedback. For example,
a reasonable explanation why a user has not liked a program via the like
rating system, which the user in fact likes, is that the user might simply
have forgotten to use the like rating system. Another reason might be that
the user does not want to make the effort to like the program, since it is
necessary to navigate to the details page of a program in order to use the
like rating system.

In total, nearly 4,500 users have liked at least one program. The average
number of likes of users who liked at least one program is approximately
1.9. Table 3.1 shows how many users liked how many programs.

A like is implemented as an entity, which is basically a class that is mapped

60

3.5. Recommender System

Number of Users Number of Likes
3029 1

711 2

260 3

137 4

91 5

217 6+

Table 3.1.: This table shows how many users have liked certain number of programs.

Figure 3.5.: This figure shows how the like entity is stored in the database. It can be seen
that the program with the identifier 3 has received two likes from two users
with the identifiers 3 and 4. It also shows the types of likes as well as the time,
when the likes were received. In this case both likes were of the thumbs up type.

by doctrine15, as mentioned in section 3.4. It includes information about
who clicked the like button, which program was liked, which type of like
was used and at what time it was received as shown in figure 3.5.

3.5.2. User Similarities

The recommender system utilizes data generated by the like rating system
to compute how similar users are to one another, which is referred to as user
similarities. All users who have liked at least one program are considered
in the calculation of the user similarities. Due to the fact that nearly 4,500

users have liked at least one program at the time of writing this thesis,
computing user similarities between the active user and all other users
every time a new recommendation is generated is not feasible. Therefore, a

15Doctrine 2019.

61

3. Catrobat

Figure 3.6.: This figure shows how user similarities are stored in the database. In this case
there are two user similarities between two user pairs. The user pair with the
identifiers 3 and 4 has a similarity of 0.5, while the user pair with the identifiers
3 and 5 has a similarity of 0.7. Furthermore, the time when the user similarities
have been created is stored.

method of updating all user similarities at regular intervals and of storing
them in the database has been adopted (Samer, 2017, pp. 95–97). The user
similarity between two users is computed by using the Jaccard distance,
which is a similarity metric that is well suited to calculating similarities
between users in case of unary feedback. Thereby the distance between two
users is represented by values between 0 and 1, whereby 0 represents no
similarity and 1 represents the highest possible similarity. It is calculated by
dividing the number of programs which both users like by the total number
of programs which any of both users like. Formally the Jaccard distance J
can be expressed as shown in equation (3.1), where A and B denote the set
of programs that a user ua and a user ub like respectively (Samer, 2017, Liu
et al., 2014).

J(ua, ub) =
|A ∩ B|
|A ∪ B| (3.1)

User similarities are implemented as entities, whereby a user similarity
consists of two user identifiers, a similarity value between 0 and 1 and a
timestamp, which shows when the entity has been created. Their represen-
tation in the database is shown in figure 3.6. The code of the user similarity
calculation is shown in code D.1.

3.5.3. Recommendation Process

This section gives a brief outline of the recommendation process. At first the
non-personalized version of Catrobat’s recommender system is portrayed.

62

3.5. Recommender System

Afterwards an overview of the user-specific recommendation process is
presented. Then the user-specific algorithm is discussed and a heavily
commented version of the original code of the user-specific recommendation
algorithm by Samer (2017) is presented.

Non-Personalized Approach: The non-personalized recommendation ap-
proach is used for guest users. A list of programs is recommended, consist-
ing of the programs with the highest amount of likes in descending order.
It is based on the idea of recommending programs that appeal to a broad
audience.

User-Specific Approach: In general, the process of the user-specific rec-
ommendation approach can be divided into three major steps.

1. Retrieve all relevant likes.
2. Create an array of potential recommendations.
3. Weight and rank the programs of the array of potential recommenda-

tions.

The first step will be to retrieve all relevant likes for the recommendation
process. Relevant likes are all likes received from users whose user similarity
to the active user is greater than zero. For a user similarity between two
users to be greater than zero, at least one program must have been liked by
both users (see section 3.5.2).

The second step will be to create an array which includes all programs
that are potential recommendations. This is done by iterating the likes
retrieved in step one and adding each program to the array of potential
recommendations which is referred to by a like16. Excluded from the array
of potential recommendations are all programs which the user receiving the
recommendation already likes.

In the third and last step the programs of the array of potential recommen-
dations are weighted. The criterion by which the programs are weighted
is aggregated user similarity. Therefore, for each program in the array of

16Note that the like entity stores the information which program was liked, as shown in
figure 3.5

63

3. Catrobat

Program User Like Type
Memory u1 1

Memory u2 3

Memory u3 4

Piano u2 2

Piano u3 1

Compass u3 4

Table 3.2.: This table shows exemplary likes of programs. The columns describe which
programs were liked, the user who liked the program and the type of like.

u1 u2 u3
u1 1 0.5 0.33

u2 1 0.67

u3 1

Table 3.3.: This table shows exemplary user similarities between u1, u2 and u3.

potential recommendations the sum of all user similarities between other
users who liked the program and the active user are aggregated in order to
form weights17. The idea behind using user similarities to weight potential
recommendations is the assumption that users who shared a similar taste
in the past will also share a similar taste in the future. Thus, programs liked
by users with a high user similarity to the active user are given a higher
weight than programs liked by users who only have a low user similarity to
the active user. Then the programs are ranked by total weight in descending
order.

Given three users u1, u2, u3 and likes as shown in table 3.2 and user similar-
ities as seen in table 3.3, an exemplary recommendation can be made for u1
(ua = u1). The example will be showcased on the basis of the aforementioned
three major steps.

1. Retrieve all relevant likes:

17Note that in the original code (shown in code 3.1), the weights are calculated while
iterating the relevant likes, which corresponds to step two. Here it is described in step three
for the sake of simplicity and clarity.

64

3.5. Recommender System

Table 3.3 shows that the user similarities between ua and other users u2 and
u3 are greater than zero. Therefore, all likes shown in table 3.2 are relevant
for the recommendation process.

2. Create an array of potential recommendations:

In this step the likes of users with a user similarity to the active user greater
than zero (formally sim(ua, ux) > 0) are iterated and programs that ua has
not already liked are added to the array of potential recommendations.
Hence the programs Piano and Compass are added to the array. The program
Memory is not added to the array since ua has already liked the program.

3. Rank the programs of the array of potential recommendations:

In order to rank the programs in the array of potential recommendations,
the program’s weights must be calculated. A weight of a program, denoted
by wprogram, is calculated by aggregating all user similarities between the
active user and other users who liked the program.

Equation (3.2) shows the weight calculation of the program Piano and the
result is given in equation (3.3). For the program Compass the total weight is
shown in equation (3.4).

wpiano = 0.5 + 0.33 (3.2)

wpiano = 0.83 (3.3)

wcompass = 0.33 (3.4)

Given that wpiano > wcompass and that the array is ranked by weights in de-
scending order, Piano is ranked before Compass in the final recommendation
list.

In code 3.1 the code of the original recommender system, written by Samer
(2017), is shown. Multiple comments have been added for the sake of
clarity.

65

3. Catrobat

1 publ ic funct ion recommendProgramsOfLikeSimilarUsers ($user , $ f l a v o r)
2 {
3 // Ver i fy t h a t the user i s e l i g i b l e f o r recommendations
4 $min num of l ikes required to al low recommendat ions = 1 ;
5 $ a l l l i k e s o f u s e r = $th i s−>program l ike repos i tory−>
6 findBy ([’ u s e r i d ’ => $user−>get Id ()]) ;
7 i f (count ($ a l l l i k e s o f u s e r)
8 < $min num of l ikes required to al low recommendat ions)
9 {

10 re turn [] ;
11 }
12

13 // Retr ieve r e l e v a n t user s i m i l a r i t i e s
14 $ u s e r s i m i l a r i t y r e l a t i o n s =
15 $ t h i s−>u s e r l i k e s i m i l a r i t y r e l a t i o n r e p o s i t o r y
16 −>getRe la t ionsOfS imi larUsers ($user) ;
17 $ s i m i l a r u s e r s i m i l a r i t y m a p p i n g = [] ;
18 foreach ($ u s e r s i m i l a r i t y r e l a t i o n s as $r)
19 {
20 $ i d o f s i m i l a r u s e r = ($r−>g e t F i r s t U s e r I d () != $user−>get Id ()) ?
21 $r−>g e t F i r s t U s e r I d () : $r−>getSecondUserId () ;
22 $ s i m i l a r u s e r s i m i l a r i t y m a p p i n g [$ i d o f s i m i l a r u s e r] =
23 $r−>g e t S i m i l a r i t y () ;
24 }
25 $ i d s o f s i m i l a r u s e r s = array keys (
26 $ s i m i l a r u s e r s i m i l a r i t y m a p p i n g) ;
27

28 // Retr ieve r e l e v a n t l i k e s of s i m i l a r users
29 $exc luded ids of l iked programs = array unique (array map (
30 func t ion ($ l i k e) {
31 re turn $ l i k e−>getProgramId () ;
32 } , $ a l l l i k e s o f u s e r)) ;
33 $ d i f f e r i n g l i k e s = $t h i s−>program l ike repos i tory−>
34 getLikesOfUsers (
35 $ i d s o f s i m i l a r u s e r s , $user−>get Id () ,
36 $exc luded ids of l iked programs , $ f l a v o r) ;
37

38 // Weights are computed . Therefore , r e l e v a n t l i k e s are i t e r a t e d .
39 // Each l i k e adds a weight to the l i k e d program ’ s t o t a l weight .
40 // The weight added equals the user s i m i l a r i t y between the user
41 // who l i k e d the program and the user r e c e i v i n g the
42 // recommendation .
43 $recommendation weights = [] ;
44 $programs l iked by others = [] ;

66

3.5. Recommender System

45 foreach ($ d i f f e r i n g l i k e s as $ d i f f e r i n g l i k e)
46 {
47 $key = $ d i f f e r i n g l i k e−>getProgramId () ;
48 a s s e r t (! i n a r r a y ($key , $exc luded ids of l iked programs)) ;
49 i f (! a r r a y k e y e x i s t s ($key , $recommendation weights))
50 {
51 $recommendation weights [$key] = 0 . 0 ;
52 $programs l iked by others [$key] = $ d i f f e r i n g l i k e−>
53 getProgram () ;
54 }
55 $recommendation weights [$key] +=
56 $ s i m i l a r u s e r s i m i l a r i t y m a p p i n g [
57 $ d i f f e r i n g l i k e−>getUserId ()] ;
58 }
59

60 // Sor t the recommendations by t o t a l weight in descending order .
61 // Then convert the sor ted recommendations to programs .
62 a r s o r t ($recommendation weights) ;
63 re turn array map (funct ion ($program id) use (
64 $programs l iked by others) {
65 re turn $programs l iked by others [$program id] ;
66 } , a rray keys ($recommendation weights)) ;
67 }

Code 3.1: This extract shows the original code of Catrobat’s recommender system by Samer
(2017).

67

4. Improvement to Catrobat’s
Recommender System

First of all, this chapter presents various potential improvements to Catro-
bat’s recommender system. Subsequently, these approaches are discussed
and one approach will be chosen, which is then implemented in the practical
part of this thesis.

4.1. Potential Improvements

There are various possibilities for improving Catrobat’s recommender sys-
tem. Some possible approaches are described in Samer, 2017, pp. 132–134.
In the following different potential improvements are presented.

4.1.1. Prediction Accuracy

One of the most prominent properties of recommender systems in literature
is prediction accuracy, as demonstrated, for instance, by the Netflix Prize
contest (see section 2.1.2). The prediction accuracy of Catrobat’s recom-
mender system can be described by the conversion rate of the Recommended
Programs section on Catrobat’s sharing platform for logged in users. The
click-through rate, which describes the number of clicks on recommended
programs in relation to the number of visits of Catrobat’s sharing platform,
is also of interest. In Samer’s online experiment, which lasted about two
months, he found that within that time frame, the user group which expe-
rienced the recommender system as it is at the time of writing this thesis,

69

4. Improvement to Catrobat’s Recommender System

visited Catrobat’s sharing platform 8213 times and clicked 1447 times on rec-
ommended programs which results in a click-through rate of approximately
17.62%, as shown in equation (4.1) (Samer, 2017, pp. 118–119).

17.62 ≈ 1447
8213

(4.1)

In Samer, 2017, the conversion-rate is described by the ratio of how many
programs from the section of recommended programs were downloaded by
users after they had visited Catrobat’s sharing platform. Therefore, the con-
version rate can be calculated by dividing the number of conversions by the
number of visits to Catrobat’s sharing platform. The result is approximately
7.05%, which is shown in equation (4.2).

7.05 ≈ 579
8213

(4.2)

A higher accuracy therefore means higher values of the click-through rate
and especially of the conversion rate, as a high click-through rate indicates
that the recommendations are interesting at first sight. On the other hand, a
high conversion rate indicates that users find the recommended programs
still interesting after visiting the details page of the programs.

As described in section 3.5.3, during the recommendation process weights
are assigned to potential recommendations, based on the user similarities
between similar users and the active user. These weights are then used
to rank the recommendations. One possible approach to achieve a higher
prediction accuracy might be to decrease weights of programs that have
been liked by users who only have a small number of co-rated items with
the active user, similar to the description in Herlocker, Konstan, Borchers,
et al., 1999 (see section 2.3.2).

4.1.2. Model-Based Algorithms

Another approach to improving Catrobat’s recommender system is the
transition from memory-based collaborative filtering to model-based collab-
orative filtering. This would have the advantage that the high sparsity of the

70

4.1. Potential Improvements

rating matrix would be reduced which would enable a better scalability of
Catrobat’s recommender system. Given that there are more than 88,000 pro-
grams and over 80,000 registered users on Catrobat’s community platform
at the time of writing this thesis, and in light of the fact that both numbers
are expected to grow in the future, scalability is an important property of
Catrobat’s recommender system. Especially the computation of user simi-
larities requires a large amount of resources due to the fact that Catrobat
has nearly 4,500 users who are eligible for recommendations that form a
total of approximately 10 million similarity calculations for user pairs1. Also,
this number rises exponentially. If the number of users who are eligible for
recommendation doubles, for instance, the number of required similarity
calculation rises fourfold. K-means clustering, as presented in section 2.3.3,
could be used to group similar users into clusters in order to decrease the
amount of data which is needed to compute recommendations.

4.1.3. Ramp-Up Problem

A common weakness of collaborative filtering recommender systems is the
ramp-up problem (Burke, 2002), also referred to as cold-start problem, which
concerns the new-user and new-item problem as described in section 2.3.2
and section 2.3.2 respectively. Basically, the ramp-up problem can be ap-
proached in two ways. One way is to change the existing collaborative
filtering recommendation algorithm. PIP (Ahn, 2008), for instance, utilizes
an alternative approach to classic similarity measurements, such as the
Pearson coefficient (equation (2.3)) and cosine similarity (equation (2.11)), in
order to reduce the effect of the cold-start problem. An overview of different
methods of approaching the new-user problem in collaborative filtering is
portrayed in Son, 2014. The second way is to combine Catrobat’s current
collaborative filtering recommender system with a knowledge-based recom-
mender system, as described in section 2.3.6. However, given the nature of
the items in Catrobat’s recommender system, a knowledge-based recom-
mender system might be difficult to implement. Even though there is much
data about programs available, such as bricks, variables, scenes, graphics

1In total 4,500 users form approximately 20 million user pairs, however, about half of
them are duplicates.

71

4. Improvement to Catrobat’s Recommender System

and sounds, these data can have many different meanings depending on
their usage.

4.1.4. Long-Tail Problem

The long-tail problem within the context of recommender systems describes
the problem that only a small portion of the set of all items is highly popular,
while most items receive only limited attention. It refers to the recommender
system property item-space coverage (see section 2.1.4) and within the
context of Catrobat’s sharing platform to the property diversity. Due to
the fact that Catrobat’s current recommender system creates the weights of
recommendations by aggregating the user similarities between the active
user and similar users (see section 3.5.3), the more likes a program has
received, the higher the program will be ranked in the list of recommended
programs. Of course, niche programs, which have not received many likes,
can also be ranked highly in the list of recommended items, if the user
similarities to users who liked the niche programs are very high. However, it
is likely that programs with many likes have a higher total weight than niche
programs, even in the case that the average ratings of the highly popular
programs are much lower. This leads to the effect that the recommended
programs are highly similar to the most downloaded and most viewed
programs of Catrobat’s sharing platform. Figure 4.2 shows recommended
programs of a logged in user next to the most downloaded programs. It can
be seen that 10 out of 18 recommendations are identical to programs found
in the section of most downloaded programs. The sharing platform is most
frequently visited by mobile devices, where usually only 6 programs are
shown per section, as a consequence of the smaller screen size. In this case 3

out of 6 recommendations can be found in the section of most downloaded
programs. Given the limited space that is available to present programs,
especially on mobile devices, showing such a high number of duplicate
programs can be considered as wasteful.

Generally speaking, programs that are featured in the lists of most down-
loaded and most viewed programs are more likely to be downloaded and
are thus more likely to receive likes from users than other programs. This
results in a higher likelihood for these programs to be recommended. In

72

4.1. Potential Improvements

Figure 4.1.: This figure shows a line chart illustrating the long-tail problem on Catrobat’s
sharing platform. On the y-axis the number of downloads of the 200 most
downloaded programs (that are placed on the x-axis) over a period of one
month (March 15, 2019 to April 15, 2019) is displayed.

turn, programs that are recommended more often are more likely to get
downloaded by users, which forms a positive feedback loop. Therefore,
there are some programs which dominate all of the following three sections
on Catrobat’s sharing platform: Most Downloaded, Most Viewed and Recom-
mended Programs. This causes Catrobat’s recommender system to have a low
aggregated diversity.

Figure 4.1 illustrates the long-tail problem on the home page of Catrobat’s
sharing platform. The figure shows the 200 most downloaded programs
with their respective number of downloads over a period of one month. It
demonstrates that a few programs were downloaded very often, however,
the number of downloads of the majority of the programs was low.

A possible approach to reducing the effect of the long-tail problem on
Catrobat’s recommender system and to increasing aggregated diversity
would be to also consider the average weights of programs in the recom-

73

4. Improvement to Catrobat’s Recommender System

mendation process besides the total weights. Alternatively, to promote less
popular programs, they could be given an advantage in the recommendation
process.

4.2. Discussion and Decision

In the following the different potential improvements presented in section 4.1
are discussed and one of the improvements is chosen for the practical part
of this thesis.

All of the potential improvements would most probably be valuable for
Catrobat’s recommender system and it is difficult to predict which improve-
ment would have the most positive impact. However, given the fact that
Catrobat has recently upgraded its hardware and has no performance or
scalability issues at the time of writing this thesis and that performance
and scalability issues are not expected in the next two years, adopting a
model-based recommender approach might not have sufficient immediate
impact in comparison with other potential improvements. Furthermore,
Catrobat’s current recommender system calculates user similarities offline,
which causes the recommender system to be more scalable than user-based
collaborative filtering approaches usually are.

Constructing a hybrid recommender system in order to reduce the effect of
the ramp-up problem might be another potential improvement to Catrobat’s
recommender system. The most effective addition to the current collab-
orative filtering system is most likely a knowledge-based recommender
system, which could support the collaborative filtering system by generat-
ing recommendations for users who have not provided enough feedback for
reasonable predictions by the current collaborative filtering system. How-
ever, knowledge-based approaches require detailed information about item
attributes. On Catrobat’s community platform users are not required to pro-
vide detailed information about uploaded programs. If users were required
to do so, it could lower the users’ willingness to upload their programs
to the sharing platform. On the other hand, a lot of data about uploaded
programs is available, such as statistics indicating which bricks and files are
used. This data is difficult to interpret though, as the same bricks and media

74

4.2. Discussion and Decision

Figure 4.2.: This figure shows recommended programs and the most downloaded programs
on Catrobat’s sharing platform for a logged in user. The recommendations
have been generated for a user who has liked five programs. The website
(International Catrobat Association, 2019b) was accessed on a 21” display.

75

4. Improvement to Catrobat’s Recommender System

files can be used in many different ways. Especially bricks are difficult to
interpret, as they represent small, commonly used code snippets, which are
by nature versatile in use. An advanced machine learning approach might
be able to automatically retrieve data which is suitable for a knowledge-
based recommender system, however, adopting such an approach would be
beyond the scope of this thesis.

Maximizing prediction accuracy is a common goal in recommender systems,
for example as shown by the Netflix prize competition (see section 2.1.2).
Thus, it can be assumed that Catrobat’s recommender system would im-
prove with higher accuracy levels. However, in McNee, Riedl, and Konstan,
2006 it is argued that a high accuracy alone is not sufficient for high quality
recommendations. Moreover, increasing accuracy often comes with certain
trade-offs, such as lowering a recommender system’s diversity (G. Ado-
mavicius and Y. Kwon, 2012). The exact trade-offs depend on the domain in
which the recommender system operates. Reusing the example introduced
in section 2.1.4, given a movie recommender system and an active user who
rated many action movies starring the actor Liam Neeson highly, recom-
mending action movies starring Liam Neeson, which the active user has not
viewed yet, will most probably ensure a high prediction accuracy, as it is
highly likely that the active user will like the recommendations. However,
there are some shortcomings in such a recommendation. Firstly the chance
that the user would have found the recommended items without the help
of the recommendations is high. Secondly, the set of items is one-sided and
features low levels of diversity, novelty and serendipity. On the other hand,
the trade-offs produced by increasing the prediction accuracy of Catrobat’s
recommender system are difficult to estimate. One possibility is that more
accurate predictions would further decrease aggregated diversity, based on
the assumption that high quality programs are highly popular programs
and that high quality programs are generally accurate predictions. On the
contrary, another possibility is that further increasing the accuracy of Catro-
bat’s recommender system could in fact increase aggregated diversity, as,
for example, the recommender system might improve its ability to identify
accurate recommendations independent of item popularity. These effects
are, however, only assumptions and the exact trade-offs cannot be known for
sure. Therefore, increasing the accuracy of Catrobat’s recommender system,
while trying to minimize unwanted trade-offs could be beneficial to the

76

4.2. Discussion and Decision

system, although it entails a considerable risk as the trade-offs are difficult
to foresee.

The long-tail problem seems to have a high impact on Catrobat’s sharing
platform. The whole platform revolves around the idea that users can share
their programs for others to see, to learn from them and to come up with
new ideas themselves. However, Catrobat’s current recommender system
favors programs which are highly popular. Therefore, new and less popular
programs that have only received a small number of likes rarely make it to
the top of a recommendation list. This raises the question if duplicates in the
sections of most downloaded, most viewed and in recommended programs
should be avoided. Overlaps between the sections of most downloaded and
most viewed programs are to be expected and are shown in figure 4.3, where
it can be seen that 15 out of 18 presented programs are the same. For mobile
users, who usually only see 6 programs on the smaller sized screens, 5 out
of 6 programs are identical. Figure 4.4 shows the section of recommended
programs and most downloaded programs for a guest user, whereby 10 out
of 18 presented programs are identical in the case of a desktop guest user
and 3 out of 6 programs for a mobile guest user. Given that all three sections,
Most Viewed, Most Downloaded and Recommended Programs, are on the same
page, it is extremely questionable whether showing the same program in
all three sections or in two of the same sections is desirable. Especially the
process of recommending the same programs that can be found in one of the
other two sections should be avoided, as users can find these items simply
by scrolling down anyway. Instead the recommendation field could be used
to show programs which users might not find on their own. This would
likely have various positive impacts on Catrobat’s recommender system:

• a higher aggregated diversity of Catrobat’s recommender system
• a higher overall serendipity of recommendations
• a higher overall novelty of recommendations.

An expected drawback is that the prediction accuracy would most likely
decrease, given that less feedback is available for less popular items. How-
ever, G. Adomavicius and Y. Kwon (2012) showed that the trade-off between
accuracy and aggregated diversity can be controlled and that small losses
in accuracy can greatly improve aggregated diversity.

77

4. Improvement to Catrobat’s Recommender System

Figure 4.3.: This figure shows the sections of most downloaded and most viewed programs
of Catrobat’s sharing platform. A very high overlap can be seen. The web-
site was accessed on a 21.5” screen on May 1, 2019 (International Catrobat
Association, 2019b).

78

4.2. Discussion and Decision

Figure 4.4.: This figure shows the sections of most downloaded and recommended pro-
grams of Catrobat’s sharing platform for a guest user. A considerable overlap
can be seen. The website was accessed on a 21.5” screen on May 20, 2019

(International Catrobat Association, 2019b).

79

4. Improvement to Catrobat’s Recommender System

In light of the reasons discussed in this section, reducing the effect of the
long-tail problem and thus increasing the recommender system’s aggregated
diversity and its levels of novelty and serendipity seems to be the most
efficient improvement to Catrobat’s recommender system at the time of
writing this thesis. With this goal in mind, the remaining practical part of
this thesis is focused on changing the recommender system’s algorithm.

4.3. Related Work

This section presents related work whose objective was to increase aggre-
gated diversity in recommender systems.

One approach described in G. Adomavicius and Y. Kwon, 2012 is to re-rank
an existing recommendation list taking into consideration average item
ratings and item popularity. In Karakaya and Aytekin, 2017 two different
approaches are proposed, firstly a graph-based re-ranking approach of an
existing recommendation list and secondly the model generation phase
of a model-based collaborative filtering approach is changed in order to
increase aggregated diversity. Usage context-based collaborative filtering is
introduced in Niemann and Wolpers, 2013, which combines parts of user-
based and item-based collaborative filtering and considers co-occurrences of
item pairs. In Patil and Wagh, 2014 collaborative filtering is used to produce
a recommendation list. Furthermore, a content-based approach is adopted
in order to re-rank the recommendation list based on item attributes. Javari
and Jalili (2014) propose a hybrid model with adjustable levels of diversity
and precision.

80

5. Implementation

This chapter presents the implementations for the practical part of this thesis.
The changes made to the user-specific part of Catrobat’s recommender
system are outlined in section 5.1 and section 5.2; section 5.3 describes the
changes made to the non-personalized part. Furthermore, user groups were
implemented in order to avoid biases in the online experiments. They are
presented in section 5.4.

5.1. User-Specific Re-Ranking Approach I

The first re-ranking approach offers a straightforward solution to the prob-
lem of low aggregated diversity. It is a modification of Samer’s user-based
collaborative filtering approach (Samer, 2017) that is used by Catrobat’s
recommender system at the time of writing this thesis (the original code is
shown in section 3.5.3).

The basic idea is to decrease weights of highly popular programs in the
recommendation list. These programs are not completely eliminated from
the recommendation list, but recommended less frequently and they are
ranked lower. This is achieved by identifying highly popular programs after
the original algorithm created the recommendation list and by multiplying
their total weights by a factor smaller than 1. After the weight has decreased,
the recommendation list is sorted by total weights in descending order.
Therefore, this approach can be seen as a re-ranking approach which is
applied on top of Catrobat’s current recommender system. The number
of programs affected by the weight decrease is 75, which has been chosen
arbitrarily.

81

5. Implementation

Therefore, a metric is necessary to determine the popularity of a program.
Potential metrics are program views, program downloads and program
likes. Furthermore, there are the possibilities of measuring by raw numbers
(for instance 5,000 downloads) or by a program’s rank in a top list (for
instance 23rd most downloaded program). In general, downloads seem
to indicate a stronger interest in programs than views. It appears that a
program that has been downloaded very often relative to its number of
views is more popular than a program that has been viewed very often
relative to its number of downloads. The notion that a program, which has
received a large number of likes compared to its views and downloads,
is a popular one, seems plausible as well. However, using the number of
likes of a program as an indicator of popularity might result in the decrease
of weights of programs that have received many likes, even though their
number of views and downloads is relatively low, which is generally not
desirable. Furthermore, a metric based on a program’s rank in a top list is
used for the sake of simplicity. Thus, program downloads measured by rank
in the list of most downloaded programs seems to be the most suitable way
to determine a program’s popularity within this context.

A mathematical function is necessary in order to calculate the weight de-
crease based on a program’s rank in the list of most downloaded programs.
The formula, which describes the multiplier dm which decreases the weight
of a program p with rank n ∈ {0, 1, ..., 74} in the list of most downloaded
programs can be seen in equation (5.1).

dm(pn) = cosdeg(75− n) (5.1)

The decreased weight dw of a program p is calculated by multiplying the
original total weight of a program weightp by the decrease-multiplier dm,
as shown in equation (5.2).

dwp = weightp ∗ dm(pn) (5.2)

The formula has been chosen because it consistently reduces the weight
from rank to rank, fast in the beginning, then more slowly. For instance,
the difference in weight decrease between the first most popular and the

82

5.1. User-Specific Re-Ranking Approach I

Figure 5.1.: This figure shows a line chart illustrating results (y-axis) of the function that
can be seen at the bottom of the figure for values between 0 and 75 (x-axis),
which is used to calculate the decrease-multiplier.

second most popular program is about 1.68%, while the difference in weight
decrease between the 35th and the 36th most popular program is about
1.11%. Thus, weights of programs at the top of the list of most downloaded
programs are reduced more drastically, for instance the weight of the most
downloaded program is reduced by around 74%. The lower the rank of a
program in the list of most downloaded programs, the lower the decrease
of the program’s weight in the recommendation list. In figure 5.1 the mathe-
matical function f (x) = cosdeg(75− x) is shown for values x ∈ {0, 1, ..., 74}.
It can be seen that the gradient rises quickly for small values of x and then
flattens for higher values of x.

The performance of the modified algorithm is almost identical to the original
version. For one recommendation made to a user the worst case is 75

additional calculations, in the event that all of the 75 most downloaded
programs are part of the recommendation list. The performance of these
additional calculations has been tested by measuring the computing times

83

5. Implementation

Figure 5.2.: This figure shows a line chart illustrating results (y-axis) of the functions that
can be seen at the bottom of the figure for values between 0 and 112 (x-axis),
which can be used to calculate the decrease-multiplier.

of the 75 additional calculations one million times and by calculating the
average computing time on a low-end Ubuntu virtual machine. The result
is less than 0.0002 seconds of additional computation per recommendation
in the worst case and therefore negligible.

Figure 5.2 shows the chosen function in comparison with another function
which was carefully considered. Both functions feature a suitable gradient,
however, the cosine function was preferred since it starts with lower values
and the other function’s gradient flattens too early.

Other notable functions that have been considered are shown in figure 5.3.
Each of these functions could be used as decrease-multiplier, however, the
strong rise in the beginning and the flattening towards the end of the shown
cosine function suit the requirements best.

84

5.1. User-Specific Re-Ranking Approach I

Figure 5.3.: This figure shows a line chart illustrating results (y-axis) of the functions that
can be seen at the bottom of the figure for values between 0 and 75 (x-axis),
which can be used to calculate the decrease-multiplier.

85

5. Implementation

5.2. User-Specific Re-Ranking Approach II

The second implemented algorithm is based on an approach presented in
G. Adomavicius and Y. Kwon, 2012. In this article, the authors propose
a re-ranking technique, which aims to improve the aggregated diversity
of a recommender system while maintaining acceptable levels of accuracy.
Their re-ranking method makes it possible to control the trade-off between
accuracy and aggregated diversity. This section begins by outlining the
re-ranking approach by G. Adomavicius and Y. Kwon (2012). Then the im-
plementation of a similar re-ranking approach for Catrobat’s recommender
system based on the approach in G. Adomavicius and Y. Kwon, 2012 is
presented.

Basically, Adomavicius and Kwon achieve their objectives by considering
item popularity in addition to predicted ratings in the recommendation
process. A rating threshold TH is defined which categorizes a predicted item
rating as high rating if it is above TH and as non-high rating if it is below TH.
For instance, for a rating scale with possible ratings between 1 and 5, a rating
threshold can be defined as TH = 3.5. In a traditional recommendation list,
which is usually sorted by predicted ratings in descending order, items
which have a predicted rating above TH can be re-ranked on the basis of
an alternative ranking approach which yields a higher aggregated diversity
than the standard ranking approach. One such approach would be to rank
items with predicted ratings above TH by popularity in ascending order.
Items with predicted ratings below TH are ranked by the standard ranking
approach. All items with predicted ratings above TH are placed before items
with predicted ratings below TH in the final recommendation list.

However, Adomavicius and Kwon discovered that the resulting decrease in
accuracy might be too high, especially for commercial systems. Therefore,
the authors introduced a second threshold TR ∈ [TH, Tmax], where Tmax
denotes the highest possible rating on the rating scale (for instance Tmax = 5
for possible ratings between 1 and 5), in order to allow users to choose the
level of recommendation accuracy themselves by adjusting TR. Items with a
predicted rating above TR are ranked by the alternative ranking approach
and items with a predicted rating below TR are ranked by the standard
ranking approach. In the final recommendation list, all items with predicted

86

5.2. User-Specific Re-Ranking Approach II

Figure 5.4.: This figure illustrates the re-ranking approach by G. Adomavicius and Y. Kwon,
2012. The picture has been adopted from G. Adomavicius and Y. Kwon, 2012,
© 2012 IEEE, with kind permission of the authors.

ratings above TR are placed before all items with predicted ratings below
TR. Thus, tweaking TR to be higher, increases the accuracy of the set of
items above the threshold, as items with predicted ratings lower than TR
are placed after all programs with predicted ratings above TR in the final
recommendation list. Tweaking TR to be lower increases the aggregated
diversity, as the set of items, which can be ranked by the alternative ranking
approach, is larger. The described re-ranking approach by G. Adomavicius
and Y. Kwon (2012) is illustrated in figure 5.4.

Furthermore, Adomavicius and Kwon define and compare various alterna-
tive ranking approaches. Exemplary results on the MovieLens data set are
shown in table 5.1 (G. Adomavicius and Y. Kwon, 2012). The authors define
precision by the popular precision-in-top-N metric, which is shown in equa-
tion (5.3), where LN(u) = i1, i2, ..., iN denotes a list of recommended items
and R∗(u, ik) ≥ TH denotes a predicted rating above TH from a user u ∈ U
for an item i ∈ I for all k ∈ {1, 2, ..., N}. A correct prediction is denoted
by correct(LN(u)) = {i ∈ LN(u) | R(u, i) ≥ TH}, where R(u, i) describes an
actual user rating.

87

5. Implementation

Precision Loss Diversity Gain in Numbers Multiple in %
-0.1 +800 3.078

-0.05 +594 2.543

-0.025 +411 2.068

-0.01 +270 1.701

-0.005 +189 1.491

-0.001 +93 1.242

Standard: 0.892 385 1.000

Table 5.1.: This table shows the increase in diversity in numbers and percentage compared
to precision loss, as found in G. Adomavicius and Y. Kwon, 2012. Thereby the
standard ranking approach was an item-based collaborative filtering approach
on the MovieLens data set, where the 5 highest ranked items were recommended.
This table is a reproduction of a similar table in G. Adomavicius and Y. Kwon,
2012, © 2012 IEEE, in order to showcase the trade-off between aggregated diver-
sity and precision when items above TR are re-ranked by popularity in ascending
order. More data about the trade-off can be found in G. Adomavicius and Y.
Kwon, 2012.

precision-in-top-N =
∑u∈U |correct(LN(u))|

∑u∈U |LN(u)|
(5.3)

Given that the approach by G. Adomavicius and Y. Kwon (2012) can be
implemented on top of an existing recommendation approach and the
results shown in table 5.1 yield a high improvement in aggregated diversity
for a reasonable trade-off in precision, an algorithm based on the re-ranking
approach in G. Adomavicius and Y. Kwon, 2012 has been implemented.
However, the approach had to be adjusted in order to be compatible with
Catrobat’s recommender system, since positive-only, unary feedback is
used by Catrobat’s recommender system, instead of a rating scale, which is
used in G. Adomavicius and Y. Kwon, 2012. This necessitated choosing an
alternative metric by which the thresholds could be defined. As described in
section 3.5.3, Catrobat’s recommender system uses the similarities of other
users u ∈ U, where U denotes the set of all users, to the active user ua as
basis to weight programs p ∈ P, where P denotes the set of all programs.
This is based on the assumption that generally a user’s taste remain the
same over time. Thus, it is presumed that users who shared a similar taste

88

5.2. User-Specific Re-Ranking Approach II

in the past will also share a similar taste in the future. A high user similarity
between ua and another user u1 therefore indicates a high probability that
ua will like programs that u1 likes and ua has not seen yet. On the other
hand, a low user similarity between ua and another user u2 indicates that
ua and u2 are similar to a certain extend, but the probability that ua will
like programs that u2 likes and ua has not seen yet is much lower than the
probability, that ua will like programs that u1 liked and ua has not seen yet.
Thus, the average user similarity sim(ua, p) between ua and all other users
who like a program p can be used alternatively to total weights to describe
how likely it is that ua will like p. Formally, the average user similarity for
a program is shown in equation (5.4), where M denotes the set of users
who like p and C(M) denotes the number of users in M. The formula
which is used to calculate the average user similarity for ua is shown in
equation (5.5), where N denotes the set of similar users of ua, formally
{n ∈ N | sim(ua, un) > 0}.

sim(ua, p) = ∑m∈M sim(ua, um)

C(M)
(5.4)

sim(ua, un) =
∑n∈N sim(ua, un)

C(N)
(5.5)

However, average user similarities of programs can be highly different
depending on a user’s similarities to other users. Therefore, the thresholds
TH and TR are not defined as static values, as in G. Adomavicius and Y.
Kwon, 2012, but as a multiple of the average user similarity of a user to other
users (sim(ua, un)). For the implementation of the re-ranking approach two
thresholds TH and TR have been defined. They are shown in equation (5.6)
and equation (5.7) respectively.

TH = sim(ua, un) ∗ 1.25 (5.6)

TR = sim(ua, un) ∗ 1.5 (5.7)

89

5. Implementation

The values of the multipliers have been chosen arbitrarily, since testing
multiple different values is beyond the scope of this thesis. However, if
the presented modification to the algorithm proves fruitful in the online
experiment, further experiments regarding the trade-off between accuracy
and aggregated diversity that might result from different values for the
multipliers are advised.

Furthermore, in contrast to the re-ranking method in G. Adomavicius
and Y. Kwon, 2012, TH and TR are both used at the same time. Thus, all
programs with sim(ua, p) ≥ TR are ranked ahead of all programs with
TH ≤ sim(ua, p) < TR, which are in turn ranked ahead of all programs with
sim(ua, p) < TH. This decision has been made because Catrobat’s section
for recommended programs on the sharing platform can be expanded until
the end of the recommendation list is reached. Therefore, it is likely that
some users will expand the section to the point where programs are shown
with sim(ua, p) < TR. Following the re-ranking approach in G. Adomavicius
and Y. Kwon, 2012, items with a predicted rating below TR are ranked
by the standard ranking approach. However, given that highly ranked
Catrobat programs ranked by the standard ranking approach are likely to
be hugely popular and therefore easy to find for a user in the sections of
most downloaded and most viewed programs, it is assumed that programs
with TH ≤ sim(ua, p) < TR, which are ranked by the alternative ranking
approach, are more valuable recommendations for a user than programs
with sim(ua, p) < TR, ranked by the standard ranking approach. Thus, all
programs with TH ≤ sim(ua, p) < TR are ranked by the alternative ranking
approach and placed before all programs with sim(ua, p) < TH in the
recommendation list, which are ranked by the standard ranking approach.
Although ranking more programs by the alternative ranking approach is
likely to further decrease accuracy, it is believed that the expected additional
increase in aggregated diversity is worth the trade-off.

The alternative ranking approach used is to rank programs by their number
of likes in ascending order, since the lower a program’s number of likes
are, the less popular the program is. It has also been considered to use
the program’s rank in the list of most downloaded programs, similarly
as in the implementation of the first re-ranking approach (see section 5.1).
However, it is assumed that a program’s rank in the list of most downloaded

90

5.2. User-Specific Re-Ranking Approach II

programs is less likely to change than a program’s number of likes (and thus
its rank in the list of most liked programs), given that one additional like
reflects a considerable raise in popularity, while, for instance, ten additional
downloads do not indicate growing popularity. This means that if a program
captures the users’ attention, the increase in attention is not reflected as
quickly by the popularity rank of the program in the list of most downloaded
programs as it is in the program’s number of likes.

The re-ranking process of the original recommendation list can be divided
into three major steps:

1. The first step is to assign programs to different lists depending on
their average user similarity sim(ua, p).
If sim(ua, p) ≥ TR, the program is placed in the list Ltop.
Else, if sim(ua, p) ≥ TH, the program is placed in the list Lhigh.
Else, if sim(ua, p) < TH, the program remains in the original recom-
mendation list Lstandard.

2. The next step is to re-rank the lists. Ltop and Lhigh are ranked by the
alternative ranking approach, which is by the programs’ number of
likes in ascending order. Lstandard is ranked by the programs’ total
weights in descending order, which is the standard ranking approach.

3. In the third step the three recommendation lists are merged into one
final recommendation list. Ltop is put before Lhigh, which is placed
before Lstandard.

It is noted that in the special case that the number of programs in Ltop is
less than 12, Ltop is not placed before Lhigh in the final recommendation list,
but both lists are merged and then re-ranked by the alternative ranking
approach. The reason for this is that if the number of programs in Ltop is
very small, the chance that the set consist only of popular programs or a
large number of popular programs is relatively high, which would lead
to recommendations with popular programs relatively near the top of the
recommendation list. With the underlying goal in mind to increase the
recommender system’s aggregated diversity, this is generally not desirable.
The number 12 has been chosen due to the fact that it is double the number
of programs that are usually shown in the section of recommended pro-
grams on Catrobat’s sharing platform when accessed by a mobile device.

91

5. Implementation

Therefore, up to half of the programs in Ltop can be popular ones and the
unexpanded recommendation list still consists only of unpopular programs,
when accessed by a mobile device.

After the re-ranking process is completed, the final recommendation list
usually starts with a large number of unpopular programs. Despite their
unpopularity, it can be assumed that the programs will be received well
by the users, given the high average user similarities of the programs.
Performance-wise the additional computations are negligible. The code of
the re-ranking approach can be found in appendix B (code B.2).

5.3. Non-Personalized Re-Ranking Approach

In the following the implementation of the re-ranking of non-personalized
recommendations is presented. Generally methods of re-ranking non-
personalized recommendation lists are limited, in the light of the fact that
the lists must appeal to the majority of users. As described in section 3.5.3,
Catrobat’s recommender system recommends a list of programs with the
highest number of likes in descending order to guest users, since it is
assumed that these programs appeal to the majority of users. As shown
in figure 4.4, many programs in the section of recommended programs
are identical to programs shown in the section of most downloaded pro-
grams. Given that this overlap is likely to be one of the reasons for the low
aggregated diversity of Catrobat’s recommender system, the focus of the
re-ranking approach presented in this section is on reducing the number
of overlapping programs between the section of most downloaded and
recommended programs on Catrobat’s sharing platform.

The re-ranking approach for non-personalized recommendations is based on
the implementation presented in section 5.1. Basically, the list of programs
with the highest number of likes is used as the recommendation list, but
popular programs are ranked lower than their number of likes would
indicate. A program’s popularity is defined by the program’s rank in the
list of most downloaded programs, equally to the definition provided in
section 5.1. During the ranking process, the number of likes of programs
within the set of the 45 most downloaded programs is modified to make

92

5.3. Non-Personalized Re-Ranking Approach

sure that the recommendation list does not start with programs from the top
of the list of most downloaded programs. To do so, the number of likes of a
popular program is multiplied by a number smaller than 1. The multiplier
is referred to as decrease-multiplier.

The formula for calculating the decrease-multiplier is similar to the one used
in the first re-ranking approach of user-specific programs (presented in equa-
tion (5.1)). It was slightly modified in order to ensure that no programs from
the top of the list of most downloaded programs appear at the beginning of
the recommendation list. Therefore, the weights of programs which are in
the beginning of the list of most downloaded programs had to be further
reduced and the number of programs for which the weights are reduced
is decreased from 75 to 45. Equation (5.8) shows the formula, whereby dm
denotes the decrease-multiplier of a program p with rank n ∈ {0, 1, ..., 44}
in the list of most downloaded programs.

dm(pn) = cosdeg(70− n ∗ 1.5)2 (5.8)

Figure 5.5 shows a graph that performs a comparison between the formula
presented in equation (5.8) and the formula presented in equation (5.1).
There, possible values for the decrease-multipliers are illustrated.

The decreased number of likes dnl of a program p is calculated by multi-
plying the original number of likes of a program nlp by dm, as shown in
equation (5.9).

dnlp = nlp ∗ dm(pn) (5.9)

Therefore, at first the number of likes of all programs within the set of
the 45 most downloaded programs is decreased. In the next step the rec-
ommendation list is ranked by the number of likes in descending order.
Thus, programs within the set of the 45 most downloaded programs are
not excluded from the recommendation list, but ranked significantly lower
than before the implemented changes. However, the number of likes on
the details page of a program is not affected by the decrease during the
re-ranking process.

93

5. Implementation

Figure 5.5.: This figure shows a line chart illustrating results (y-axis) of the functions that
can be seen at the bottom of the figure for values between 0 and 75 (x-axis),
which is used to calculate the decrease-multiplier.

94

5.4. User Groups

Figure 5.6 shows the sections of recommended and most downloaded pro-
grams for guest users on Catrobat’s sharing platform after the changes
have come into effect. It can be seen that only 5 out of 18 programs can be
found in both sections, in comparison with 9 out of 18 programs without
the re-ranking. The programs that can be found in both sections are ranked
on the places 6th, 10th, 11th, 12th and 18th in the recommendation list after
the re-ranking. As shown in figure 4.3, before the re-ranking of the recom-
mendation list, programs that could be found in both sections were ranked
1st, 3rd, 4th, 7th, 8th, 9th, 12th, 15th, 16th, 18th in the recommendation list.
For mobile users, who usually only see the first 6 programs on the smaller
sized screens, only 1 program can be found in both sections, in comparison
with 3 out of 6 programs without the re-ranking.

The impact of the additional computations on the re-ranking process is
negligible. The code of the re-ranking approach is shown in appendix B
(code B.3).

5.4. User Groups

When conducting an online experiment, in which multiple versions of a
system are tested simultaneously, a method of assigning users to different
test groups is needed. There are multiple ways in which users can be
assigned to groups, for instance users can be assigned to groups based on
their location, or the set of users can be divided into equal parts and each
part can then be assigned to a group. However, most of these methods may
result in biased groups. In order to eliminate possible biases, it is common
practice to randomly assign users to groups. Therefore, an entity called User
Test Group has been implemented, which allows to randomly assign users
to groups and to look up to which group a user belongs. As mentioned in
section 3.4, an entity represents a class which is mapped by doctrine.

The representation of the entity in the database can be seen in figure 5.7. It
features three fields: user id, which is used to identify a user by a unique
identifier, group number, which describes to which group a user is assigned
and created at, which indicates the time at which the user was assigned to

95

5. Implementation

Figure 5.6.: This figure shows the sections of recommended programs and most down-
loaded programs for guest users on Catrobat’s sharing platform, whereby the
recommendation list was re-ranked by the approach described in section 5.3.
The website (International Catrobat Association, 2019b) was accessed on a 21”
display.

96

5.4. User Groups

Figure 5.7.: This figure shows the entity User Test Group in the database.

the group. The implementation of the entity can be found in appendix C
(code C.1).

The decision to create a new entity rather than simply creating a new field
for the existing user entity is based on two reasons. First and foremost,
Catrobat is likely to carry out more online experiments in the future, which
might require different designs as those used in the online experiments
conducted in this thesis, for example, additional fields might be needed.
Thus, one reason for the creation of a new entity is that it is easy to modify
according to specific needs. The second reason why a new entity was created
is to decouple the test groups from the user entity in order to reduce the
risk of breaking the existing and future code.

97

6. Evaluation and Results

This chapter discusses the evaluations of the re-ranking approaches pre-
sented in chapter 5. The implemented changes to Catrobat’s recommender
system have been evaluated in two online experiments on Catrobat’s sharing
platform, with the aim of answering the following research questions.

Research Question 1: Can the aggregated diversity of Catrobat’s recommender
system be significantly improved by one of the implemented approaches while
maintaining an acceptable level of accuracy?

The recommender system’s aggregated diversity is measured by the num-
ber of different programs that have been downloaded from the section of
recommended programs. A significant improvement of aggregated diver-
sity is achieved by an improvement of at least 25%. An acceptable level of
accuracy loss is specified as 15% or less, measured by the conversion rate of
recommended programs. The conversion rate is defined as the ratio of how
many of the viewed programs have been downloaded (see section 2.1.1).

Research Question 2: How do the implemented approaches impact the novelty
and serendipity levels of Catrobat’s recommender system?

Novelty is defined as the rate of how many recommended programs had
been unknown to a user until they were viewed. Thus, a novel program is
a program that has not been viewed by a user before. On the other hand,
serendipity is defined as the rate at which programs that had been unknown
to a user before (novel programs) were downloaded. It can be viewed as a
conversion rate for novel programs only.

In order to answer the research question, two online experiments have
been conducted. The first online experiment is outlined in section 6.1. It
is an evaluation of the two user-specific re-ranking approaches, which are
described in section 5.1 and section 5.2. Section 6.2 presents the second

99

6. Evaluation and Results

online experiment, which was conducted in order to evaluate the non-
personalized re-ranking approach that was implemented, as outlined in
section 5.3.

6.1. User-Specific Re-Ranking Approaches

This section starts with an overview of the test scenario of the first online
experiment. Afterwards the observed results are presented.

6.1.1. Test Scenario I

In the first online experiment three different versions of user-specific recom-
mendations are compared on the home page of Catrobat’s sharing platform.
The first version, which is referred to as Version A, is the original version
of the recommender system by Samer (2017), as described in section 3.5.3.
Version A is used as a baseline for the online experiment. Version B refers
to the straightforward re-ranking approach presented in section 5.1. Ver-
sion C refers to the re-ranking approach described in section 5.2, which
considers average user similarities. All three versions of the system (A, B,
C) only differ as to how the recommendations are ranked in the section
of recommended programs on Catrobat’s sharing platform. During the
testing period, users were randomly assigned to one of three groups (1, 2,
3). Depending on the user group that a user was assigned to, the user was
presented a different version of the system. Users were assigned to a group
the first time they logged in during the testing period and the relevant
information was stored in the database with the help of the implemented
user groups, which are described in section 5.4. Which group a user was
assigned to was determined randomly. Once a user had been assigned to
a group, the user remained in the same group until the end of the online
experiment. The online experiment lasted 34 days, from April 30, 2019 to
June 2, 2019. Table 6.1 shows the presented versions of the system for each
user group and the number of users in each group at the end of the testing
period. In total, 491 users took part in the online experiment.

100

6.1. User-Specific Re-Ranking Approaches

User Group Presented Version Number of Users
Group 1 Version A 156

Group 2 Version B 158

Group 3 Version C 177

Table 6.1.: This table shows which versions of the user-specific recommender system were
presented to which user groups.

Criterion Group 1 Group 2 Group 3

Views 1 5 4

Downloads 0 0 2

Conversion Rate 0 0 50

Different Views 1 4 3

Different Downloads 0 0 2

Table 6.2.: This table shows the results of the first online experiment. The results include
the number of views and downloads for each group from the section of recom-
mended programs on Catrobat’s sharing platform, as well as the conversion
rates. Furthermore, the number of different programs that have been viewed or
downloaded during the first online experiment is shown for all three groups.

6.1.2. Results

Table 6.2 shows the results of the online experiment. A visual representation
of the observed number of views and downloads for each group can be
seen in figure 6.1. Within this context, a view corresponded to the action
of clicking on a program in the section of recommended programs on
Catrobat’s sharing platform and thus viewing the details page of a program.
A download was registered when a viewed program was downloaded. In
contrast to the description in Samer, 2017, it was not possible to collect data
about the number of visits of Catrobat’s sharing platform. This was due to
the fact that users were randomly assigned to test groups, which are not
represented in Google Analytics1.

The results shown in table 6.2 and figure 6.1 indicate that recommendations
from Version C performed best, given that 100% of the downloads during
the online experiment were performed by members of Group 3. In terms

1Google LLC, 2019b.

101

6. Evaluation and Results

Figure 6.1.: This figure is a visualization of the results of the first online experiment. It
shows the number of views and downloads of recommended programs of the
different groups of the first online experiment.

102

6.1. User-Specific Re-Ranking Approaches

of views, Version B and Version C both performed similarly. The baseline
version of the system, Version A, performed poorly in terms of views and
downloads. Table 6.2 also shows the number of different programs that
have been viewed or downloaded. It can be seen that Version B and Version
C achieved acceptable levels of diversity. However, insufficient data was
generated by any group in order to be able to draw reasonable conclusions
about the different versions of the recommender system in terms of diversity,
accuracy, novelty and serendipity. Although in percentage the number of
views generated by Group 2 and 3 and the number of downloads generated
by Group 3 are much higher than the numbers generated by Group 1, the
raw numbers only show a slight difference. In fact, one user in either group
would have been able to strongly influence the results, as it is common for a
user to view or download multiple programs over a span of 34 days.

Overall, an unexpectedly small number of views and downloads of user-
specific recommendations took place during the testing period. In particular,
taking into consideration that 491 users took part in the online experiment, it
seems unlikely that only a total of 10 views and 2 downloads of user-specific
recommendations took place within a time frame of 34 days. By comparison,
non-personalized recommendations, which are shown to guest users and
logged in users who are not eligible for user-specific recommendations,
received much more attention with 2329 views and 1234 downloads during
the testing period, as shown in table 6.3. Moreover, table 6.3 shows that
the conversion rate of non-personalized recommendations compared to
user-specific recommendations is much higher. From these numbers 62

views and 18 downloads were created by logged in users who were not
eligible for recommendation, either because they have not liked at least one
program or the user similarities have not been updated since they liked their
first program. Although these numbers are higher than the total views and
downloads of user-specific recommendations, they are still low compared to
the number of views and downloads of non-personalized recommendations
during the online experiment. The low download rate of logged in users
persists if all downloads from the home page of Catrobat’s sharing platform
during the testing period are considered, with 179 downloads from logged
in users, compared to 6572 downloads from guest users.

103

6. Evaluation and Results

Views Downloads Conversion Rate (in %)
User-Specific 10 2 20

Non-Personalized 2329 1234 52.98

Table 6.3.: This table shows a comparison between the activity of guest users and logged in
users during the testing period of the online experiment. Shown are the number
of views and downloads of programs of the section of recommended programs
on Catrobat’s sharing platform, as well as the corresponding approximate con-
version rates in percentage.

6.2. Non-Personalized Re-Ranking Approach

This section describes the test scenario of the second online experiment and
subsequently presents the results.

6.2.1. Test Scenario II

The second online experiment was conducted in order to compare two dif-
ferent versions of non-personalized recommendations on Catrobat’s sharing
platform. Version A is represented by the original version by Samer (2017)
and Version B is represented by the re-ranking approach, which has been
implemented as a part of this thesis. The implementation of Version B is
described in section 5.3. Unfortunately, at the time of writing this thesis, it
was not possible to present Version A to one part of the guest users and
Version B to another part simultaneously. However, given that Version A
is the baseline that Version B is compared to and due to the fact that no
changes have been introduced to Catrobat’s sharing platform recently, his-
torical data was used for the evaluation of Version A. The online experiment
for Version B was performed over a period of approximately 10 days, from
June 4, 2019 to June 13, 2019. The evaluation of Version A was carried out
within an equal time frame, namely from May 25, 2019 to June 3, 2019.

104

6.2. Non-Personalized Re-Ranking Approach

6.2.2. Results

This section presents and discusses the results obtained from the second
online experiment. At first, the accuracy of the results is examined. After-
wards, the aggregated diversity of the two versions of the system, Version A
and Version B, is reviewed.

Table 6.4 shows the number of views and downloads, as well as the ap-
proximate conversion rates in percentage of the section of recommended
programs on Catrobat’s sharing platform during the respective testing pe-
riods. Both versions of the system performed very similar regarding the
number of views and downloads. Surprisingly, no decrease in the conver-
sion rate of Version B was found. In fact, with 56.27% the conversion rate
of Version B is even slightly higher than the conversion rate of Version A,
amounting to 54.99%. Thus, the assumption seems to be reasonable that
there is no significant difference regarding the conversion rates of Version
A and Version B of Catrobat’s recommender system. In order to provide
further evidence for this assumption, a chi-square goodness of fit test based
on the number of downloads was used, taking into consideration the con-
version rates of Version A and Version B. The test considered the expected
number of downloads of Version B and the observed downloads of Version
B. The expected number of downloads of Version B was calculated by ap-
plying the conversion rate of Version A to the number of views of Version B.
To do so, the error rate is defined as α = 0.05. The calculation of the p-value
shows that the probability that the observed differences in the number of
downloads are due to chance is approximately 69.2%. This indicates that
there is no statistically significant difference between the conversion rates of
Version A and Version B. Thus, the conversion rate lies within the predefined
margin of up to -15% of the first research question.

However, the number of views and downloads can also be examined taking
into account the total number of views and downloads from all sections
of the home page of Catrobat’s sharing platform, namely: Featured, Newest
Programs, Recommended Programs, Most Downloaded, Most Viewed and Random
Programs. In doing so, further information about the users’ interest in the
section of recommended programs compared to the other sections of the
home page of Catrobat’s sharing platform can be gained. Table 6.5 shows

105

6. Evaluation and Results

Views Downloads Conversion Rate (in %)
Version A 551 303 54.99

Version B 526 296 56.27

Table 6.4.: This table shows a comparison between the two versions (A, B) of the recom-
mender system during the testing periods. It specifies the views and downloads
of the section of recommended programs on Catrobat’s sharing platform, as well
as the approximate conversion rates in percentage.

Total
Views

Total
Downloads

% of Views
from Rec.

% of Downloads
from Rec.

Version A 6996 1651 7.88 18.35

Version B 8851 1831 5.94 16.17

Table 6.5.: This table shows a comparison between the total number of views and down-
loads of the home page of Catrobat’s sharing platform of Version A and Version
B during the testing periods. It specifies the total number of views and down-
loads of the section of recommended programs on Catrobat’s sharing platform,
as well as the percentage of total views and downloads which were recorded in
the section of recommended programs.

that the views and downloads of recommended programs of Version B
account for approximately 2% less of the total views and downloads during
the online experiment than the respective number of Version A. This demon-
strates that the rate at which programs from the section of recommended
programs were viewed is approximately 24.6% lower in Version B than in
Version A. In order to test whether the described lower rate of views of rec-
ommended programs of Version B was only found at random, a chi-square
goodness of fit test was conducted with α = 0.05. The test revealed that
the probability that the results were found only by chance is lower than
0.1%. This indicates that users showed overall less interest in the section of
recommended programs of Version B compared to Version A, even though
the highly similar conversion rates of both versions of the system indicate
that the recommendations are equally accurate. However, it is noted that the
overall conversion rates of the home page of Catrobat’s sharing platform of
23.6% for Version A and 20.69% for Version B are significantly lower than
the conversion rates of the sections of recommended programs of 54.99%
for Version A and 56.27% for Version B.

106

6.2. Non-Personalized Re-Ranking Approach

Criterion Version A Version B Change (in %)
Number of Different

Viewed Recommendations 56 69 +29.07

Number of Different
Downloaded Recommendations 43 62 +47.6

Views of Top 6 Most
Downloaded Programs 181 21 -87.85

Downloads of Top 6 Most
Downloaded Programs 103 10 -90.06

Views of Top 18 Most
Downloaded Programs 241 86 -62.62

Downloads of Top 18 Most
Downloaded Programs 146 43 -69.85

Programs Only Viewed
from the Section of

Recommended Programs
30 40 +39.67

Programs Only Downloaded
from the Section of

Recommended Programs
16 35 +123.92

Table 6.6.: This table compares various criteria for the evaluation of the second online
experiment between Version A and Version B. The change in percentage has
been calculated taking into consideration the difference in total views and
downloads of recommendations between Version A and Version B.

Moreover, the data indicates that the changes to Catrobat’s non-personalized
recommender system increased the aggregated diversity of the recommen-
dations. This is reflected in the test results shown in table 6.6. The columns
Number of Differently Viewed Recommendations and Number of Differently Down-
loaded Recommendations specify the number of different programs which
have been viewed or downloaded at least once during the testing periods.
Both numbers are higher for Version B and the difference is statistically
significant with a confidence level of over 99% according to a chi-square
goodness of fit test with α = 0.05.

The main motivation for implementing the re-ranking of non-personalized
recommendations was to reduce the overlap between programs in the

107

6. Evaluation and Results

sections of most downloaded programs and the section of recommended
programs. Therefore, the number of views and downloads of the top 6

and top 18 most downloaded programs2 in the section of recommended
programs during the testing periods was observed. As illustrated in table 6.6,
these numbers differ greatly for both system versions. In Version A 181

programs of the set of the top 6 most downloaded programs were viewed
within the section of recommended programs and 103 programs were
downloaded. This accounts for roughly a third of the total number of viewed
and downloaded recommendations of Version A during the testing period.
On the other hand, the observed number of views and downloads of the top
6 most downloaded programs within the section of recommended programs
is significantly lower in Version B, with 21 views and only 10 downloads.
In order to verify whether the values were only found by chance, a chi-
square goodness of fit test was conducted with α = 0.05. The test revealed a
confidence level of over 99%. As shown in table 6.6, the difference persists
if the number of observed most downloaded programs increases from 6 to
18. However, as expected, the difference between the two system versions
has become smaller for the top 18 most downloaded programs, although
the difference is still statistically significant with a confidence level of over
99,99% due to a chi-square goodness of fit test with α = 0.05.

Furthermore, it has been found that the number of programs that have
been viewed or downloaded only within the section of recommended
programs and in no other section of the home page of Catrobat’s sharing
platform is significantly higher in Version B compared to Version A. As
shown in table 6.6 the corresponding number of viewed programs increased
by approximately 39.67% and the corresponding number of downloaded
programs by approximately 123.92% in Version B if compared to Version
A. In order to verify the statistical significance of the data, a chi-square
goodness of fit test based on the number of programs viewed and the
number of programs downloaded only in the section of recommended
programs has been conducted with α = 0.05. The test indicated a confidence
level of over 99.99%. A further discussion of the results obtained from the
second online experiment with regard to the research question is presented

2The numbers 6 and 18 have been chosen according to the corresponding number of
programs that can usually be seen on the mobile and desktop version of Catrobat’s sharing
platform.

108

6.3. Discussion

in section 6.3.

6.3. Discussion

The following is a discussion of the results of the two online experiments
as regards the research questions presented in the beginning of chapter 6.
It starts with the results of the first online experiment, outlined in sec-
tion 6.1.2. Afterwards the results observed in the second online experiment
are discussed, which are presented in section 6.2.2.

6.3.1. Results of Online Experiment I

Unfortunately, the data derived from the first online experiment was not
sufficient to draw reasonable conclusions on any of both research questions.
This is due to the fact that the number of viewed and downloaded programs
of the section of recommended programs by logged in users was unexpect-
edly low during the testing period. Therefore, instead of discussing the
results of the first online experiment with regard to the research questions,
possible explanations for why the number of views and downloads found
was so low are discussed.

One possible explanation why the number of views and downloads from the
section of recommended programs during the first online experiment was
that low is that users simply disliked the recommendations and preferred to
download programs from other sections of the sharing platform. However,
this explanation seems unlikely, given that there was a large overlap between
non-personalized recommendations and user-specific recommendations
of the system Version A. This overlap was based on the fact that non-
personalized recommendations were ranked by the total number of likes
of programs in descending order, while the ranking approach of user-
specific recommendations favored programs with a high number of likes.
Thus, both, the non-personalized recommendations and the user-specific
recommendations of Version A, recommended similar programs. In light

109

6. Evaluation and Results

of this fact, the explanatory approach that users simply disliked the user-
specific recommendations seems unlikely.

Generally speaking, the assumption that most users do not log into their
user account when browsing the sharing platform for programs to download
seems plausible based on the results found in the first online experiment.
This can be due to multiple reasons, which are presented in the following.

• In all likelihood, most of the time users visit the sharing platform
to search for new programs to download. In this scenario it is not
necessary (or optional) for a user to log into a user account.

• Although users need to log into their user accounts in order to upload
their programs, users do not remain logged in when they visit the
sharing platform afterwards.

• It might be that there is not sufficient incentive for users to log into
their user account when browsing the sharing platform. Currently
offered incentives are the ability to comment on a program, to like
a program and to receive notifications when an uploaded program
receives a comment or a like from another user.

However, further studies about user behavior are needed in order to find
evidence for or against the aforementioned assumptions, or to identify
different factors that might explain the low number of views and downloads
of user-specific recommendations.

6.3.2. Results of Online Experiment II

In the second online experiment enough data could collected to issue
statistically significant statements about the two research questions. The
first research question is:

Research Question 1: Can the aggregated diversity of Catrobat’s recommender
system be significantly improved by one of the implemented approaches while
maintaining an acceptable level of accuracy?

Chapter 6 starts with the statement that aggregated diversity is measured by
the number of different downloads of recommended programs. A significant
improvement in aggregated diversity is defined by an increase of at least

110

6.3. Discussion

25%. Accuracy is defined as conversion rate, whereby an acceptable loss is
specified as a decrease of up to 15%.

The online experiment showed that the performance of Version B was
similar to Version A in terms of accuracy. With approximately 55% and
56% for Version A and B respectively, both system versions have highly
similar conversion rates. This strongly indicates that Version B maintained
an acceptable level of accuracy.

Although the conversion rates were highly similar in both versions, the data
in table 6.5 indicates that the number of views of the section of recommended
programs, compared to the total views of programs on Catrobat’s home
page, was lower in Version B than in Version A. This might be due to
the reason that in some instances users preferred to view more popular
programs from other sections instead of the less popular programs in
the section of recommended programs. As their number of views and
downloads suggests, these highly popular programs seem to attract much
user attention. However, from the perspective of Catrobat it seems to be of
little importance from which section of the home page a program is viewed
or downloaded. As long as the overall activity and the respective conversion
rates remain stable or increase, it is believed that a modest redistribution of
views is unproblematic.

Furthermore, the observed data suggests that the changes made to the
non-personalized part of Catrobat’s recommender system increased its
aggregated diversity by a considerable amount. As shown in table 6.6,
the number of different programs downloaded from the section of rec-
ommended programs during the online experiment was 47.6% higher in
Version B than in Version A. This exceeds the defined minimum increase in
aggregated diversity of 25% of the research question by a solid amount. The
increase might be due to various factors. Table 6.6 shows that in Version A
the top 6 most downloaded programs accounted for 103 of the downloads
during the testing period, which is more than a third of the total number
of downloads of Version A during the testing period. It might be the case
that these highly popular programs suppress other programs, in such a way
that they are commonly favored by users over less popular programs. On
the other hand, in Version B the top 6 most downloaded programs were
ranked significantly lower and thus were only downloaded 10 times, which

111

6. Evaluation and Results

is less than 3.5% of the total downloads of Version B. Nonetheless, due
to the fact that no data about the users’ motivation are collected in online
experiments, the exact reason for the increase in aggregated diversity cannot
be ascertained without further studies. However, from the perspective of
the non-personalized recommender system the first research question can
be answered positively.

The second research question is:

Research Question 2: How do the implemented approaches impact the novelty
and serendipity levels of Catrobat’s recommender system?

Novelty was defined as the rate of recommended programs that had been
unknown to a user until they were viewed. Serendipity was defined as the
conversion rate of novel programs, which are programs that were previously
unknown to a user.

The properties novelty and serendipity are usually evaluated for user-
specific recommendations, as it is essential to know which items have
been viewed by a user in the past in order to determine which items will be
perceived as novel by a user. As described in section 6.3.1, it was not possible
to collect sufficient data for the user-specific recommendation approaches
in order to draw reasonable conclusions on the novelty and serendipity
levels of Catrobat’s recommender system. However, recommendations from
non-personalized recommendation approaches also vary in their levels of
novelty and thus serendipity. A statement about these properties can be
made if the following premise regarding programs on Catrobat’s sharing
platform is accepted.

P1: The chance that popular programs are novel or serendipitous recommendations
is lower than the chance that less popular programs are novel or serendipitous
recommendations.

The premise was formulated on the basis of the following reasoning. Version
A of the second online experiment presented the most liked programs in
descending order as recommendations. These recommended programs are
highly similar to programs shown in other sections of Catrobat’s home page,
namely the sections of the most downloaded and most viewed programs.
If a user has already explored one of these sections, the user will already
be familiar with many of the programs that can be found in the section

112

6.3. Discussion

of recommended programs. This might cause low novelty and serendipity
levels.

On the other hand, the re-ranking approach of Version B ranks highly
popular programs significantly lower than they are ranked in Version A. As
a result, a considerable amount of programs that are less popular are ranked
higher in Version B than in Version A. Consequently it is argued that if P1 is
true, the levels of novelty and serendipity are likely to be higher in Version
B than in Version A. This assumption is further backed by the number of
views and downloads of programs that have been viewed or downloaded
only from the section of recommended programs and from no other section
of the home page of Catrobat’s sharing platform during the testing period.
As shown in table 6.6, in Version B, 40 different programs have been viewed
only from the section of recommended programs, compared to 30 different
programs for the baseline Version A. Considering the number of all views
of recommended programs of Version A and B during the testing periods,
this represents an increase of nearly 40%. Regarding the number of different
programs that have only been downloaded from the section of recommended
programs and from no other sections during the testing periods, it is evident
that the number of Version B is more than two times higher than the number
of Version A. Taking into consideration the number of all downloads of
recommended programs during the testing periods, this means an increase
of approximately 123.9%. Although it cannot be known which programs
have already been viewed by guest users, it seems reasonable that programs
that have been viewed or downloaded only in the section of recommended
programs are more likely to be novel views or serendipitous downloads than
programs which have also been viewed or downloaded in other sections
of the home page of the sharing platform. Moreover, on the assumption
that highly popular programs are in general less likely to be novel and
serendipitous recommendations, the number of views and downloads of the
top 6 and top 18 most downloaded programs in table 6.6 further indicates
that Version B has higher levels of novelty and serendipity than the baseline
Version A.

Therefore, on the basis of the data collected in the second online experiment,
the assumption seems reasonable that the implemented re-ranking approach
for the non-personalized part of Catrobat’s recommender system has a
substantial positive impact on its levels of novelty and serendipity.

113

7. Conclusions and Future Work

Finally, the previous chapters are recapitulated and the conclusions that can
be drawn from this diploma thesis are presented in order to summarize the
findings. To sum up, this chapter gives an overview of potential future work
on Catrobat’s recommender system and the like rating system.

7.1. Conclusions

The objective of this diploma thesis was to analyze and improve the rec-
ommender system of Catrobat’s sharing platform. To do so, the necessary
steps were divided into a theoretical and a practical part. The aim of the
theoretical part was to acquire and present knowledge about recommender
systems and their different types. Furthermore, Catrobat as an organization
and as a programming language was introduced and its recommender sys-
tem was analyzed. Based on this analysis, various potential improvements
to the recommender system were identified and outlined. In a discussion, it
was decided to increase the aggregated diversity of Catrobat’s recommender
system.

In the practical part of this thesis, which built on the knowledge gained in
the theoretical part, three different re-ranking approaches were implemented
in addition to the existing recommendation algorithms. Two approaches
were employed for the user-specific part of the recommender system and
one for the non-personalized part. The purpose of these re-ranking ap-
proaches was to increase the aggregated diversity of the recommender
system. Additionally, a versatile and adaptable method of assigning users
to groups based on predefined criteria was implemented, in order to avoid
biases in the process.

115

7. Conclusions and Future Work

Two online experiments were conducted in order to test the impact of the
approaches on the system. Unfortunately, it was not possible to collect
sufficient data to carry out a comprehensive evaluation of the two user-
specific approaches. However, statistically significant data were found for
the evaluation of the non-personalized approach. The data indicated that the
re-ranking approach of non-personalized recommendations was successful
in increasing the aggregated diversity of Catrobat’s recommender system,
without lowering its accuracy. Moreover, it is argued that the aforementioned
approach most probably increased the levels of novelty and serendipity of
Catrobat’s recommender system.

7.2. Future Work

As discussed in chapter 4, there are a number of ways that are likely to fur-
ther improve Catrobat’s recommender system. However, this section focuses
on potential improvements based on the results of the online experiments
and experiences gained in the process.

First and foremost, due to the positive results achieved by the re-ranking
approach for the non-personalized part of the recommender system, it is
suggested that Catrobat should adopt said re-ranking approach.

Nonetheless, the first online experiment showed that the number of users
who log into their user account when browsing the sharing platform is
unexpectedly small. Possible reasons are stated in section 6.3.1. Given that
there are over 88,000 programs on the sharing platform as of June 2019,
user-specific recommendations offer great potential for Catrobat’s users.
Therefore, Catrobat is strongly advised to either create stronger incentives
for users to log into their user account when browsing the sharing platform,
or to introduce changes to the Pocket Code App so that once users are
logged into Pocket Code, they would remain logged in when accessing the
sharing platform. From the perspective of Catrobat’s recommender system,
it is believed that increasing the rate at which users log into their user
account when browsing the sharing platform should be given the highest
priority. In addition, once this issue is resolved, Catrobat is recommended to

116

7.2. Future Work

repeat the evaluation of the two user-specific re-ranking approaches, which
were implemented as part of this thesis.

Furthermore, since the recommendation quality of collaborative filtering
techniques depends heavily on the amount of feedback that users provided,
it might be problematic that most of Catrobat’s users who are eligible
for recommendations only liked one program (as shown in table 3.1). At
the time of writing this thesis, the action of liking a program requires a
user to locate the program on the sharing platform because a program
can only be liked on its details page. Making the like rating feature more
easily accessible could help increase the overall rating activity of users. This
could be achieved by giving an option to like downloaded programs (or the
program’s original source if the program has been modified). This way users
would not need to visit the sharing platform and they would no longer have
to search for the program they want to like themselves, thus the like rating
system could be used with very little effort.

As outlined in section 4.1.2, even though Catrobat’s recommender system
has no critical scaling issues, the computation of user similarities is a
highly resource-intensive process. However, it is questionable whether the
current approach to calculating user similarities offline (as presented in
section 3.5.2) will remain feasible if the number of users who are eligible
for recommendation increases significantly. Therefore, it might be a wise
decision to work on Catrobat’s scalability before it becomes an immediate
problem.

Another issue that is not directly related to the recommender system is the
suboptimal use of space on the home page of Catrobat’s sharing platform.
This thesis aimed to implement measures to avoid the substantial overlap
of programs between the sections of most downloaded and recommended
programs. Although this issue has been taken care of, the large overlap
of programs between the sections of most downloaded and most viewed
programs persists, as illustrated in figure 4.3. Therefore, it is suggested
that either both sections should be combined or one of them should be
eliminated. A possible way of combining both sections would be to consider
the number of views and the number of downloads in the ranking process
by forming the mean. The freed up space could be used in many different

117

7. Conclusions and Future Work

ways, for instance by introducing a section of trending programs or a section
with the purpose of promoting remixes.

118

Appendix

119

Appendix A.

Abbreviations

ACM Association of Computing Machinery

App Application

ID Identifier

IDE Integrated Development Environment

PHP PHP: Hypertext Preprocessor

XML Extensible Markup Language

121

Appendix B.

Code of the Re-Ranking
Approaches

In the practical part of this thesis, three re-ranking approaches have been
applied to Catrobat’s recommender system. The original recommendation
process is presented in section 3.5.3. A version of the original code including
comments is shown in code 3.1.

The first re-ranking approach is described in section 5.1 and the correspond-
ing code is shown in code B.1. Section 5.2 outlines the second re-ranking
approach; the corresponding code can be seen in code B.2. The re-ranking
approach of the non-personalized recommendations can be found in sec-
tion 5.3 and the corresponding code is shown in code B.3.

123

Appendix B. Code of the Re-Ranking Approaches

1 $most downloaded programs = $ th i s−>program repository−>
2 getMostDownloadedPrograms ($f lavor , 75) ;
3 $ids of most downloaded programs = array map (funct ion ($program) {
4 re turn $program−>get Id () ;
5 } , $most downloaded programs) ;
6

7 foreach ($recommendation weights as $key => $weight)
8 {
9 $rank in top downloads = a r r a y s e a r c h ($key ,

10 $ids of most downloaded programs) ;
11 i f ($rank in top downloads !== f a l s e)
12 {
13 $recommendation weights [$key] = $weight * cos (deg2rad (
14 75 − $rank in top downloads)) ;
15 }
16 }
17

18 a r s o r t ($recommendation weights) ;

Code B.1: This extract shows the code of the first re-ranking approach of user-specific
recommendations, as described in section 5.1.

124

1 a r s o r t ($recommendation weights) ;
2

3 $recommendations by id = array keys ($recommendation weights) ;
4

5 $ a v e r a g e u s e r s i m i l a r i t y = array sum (
6 $ s i m i l a r u s e r s i m i l a r i t y m a p p i n g) /
7 count ($ s i m i l a r u s e r s i m i l a r i t y m a p p i n g) ;
8

9 $threshold above average weight = $ a v e r a g e u s e r s i m i l a r i t y * 1 . 2 5 ;
10 $threshold high weight = $ a v e r a g e u s e r s i m i l a r i t y * 1 . 5 ;
11

12 $average recommendation weight = [] ;
13 $above average recommendation = [] ;
14 $top recommendation = [] ;
15

16 foreach ($recommendations by id as $key => $recommendation id)
17 {
18 $average recommendation weight [$recommendation id] =
19 $recommendation weights [$recommendation id] /
20 $number of recommendations [$recommendation id] ;
21

22 switch ($average recommendation weight [$recommendation id])
23 {
24 case $average recommendation weight [$recommendation id] >=
25 $threshold high weight :
26 $top recommendation [$recommendation id] =
27 $ t h i s−>program l ike repos i tory−>tota lLikeCount (
28 $recommendation id) ;
29 break ;
30

31 case $average recommendation weight [$recommendation id] >=
32 $threshold above average weight :
33 $above average recommendation [$recommendation id] =
34 $ t h i s−>program l ike repos i tory−>tota lLikeCount (
35 $recommendation id) ;
36 break ;
37

38 d e f a u l t :
39 // do nothing
40 }
41 }
42

43 i f (count ($top recommendation) >= 12)
44 {

125

Appendix B. Code of the Re-Ranking Approaches

45 a s o r t ($top recommendation) ;
46 s o r t ($above average recommendation) ;
47

48 $recommendations by id = array merge (array keys (
49 $above average recommendation) , $recommendations by id) ;
50 $recommendations by id = array merge (
51 array keys ($top recommendation) , $recommendations by id) ;
52

53 $recommendations by id = array unique ($recommendations by id) ;
54 }
55

56 e l s e i f (count ($above average recommendation) > 0 | |
57 count ($top recommendation) > 0)
58 {
59 $above average recommendation = $above average recommendation +
60 $top recommendation ;
61

62 a s o r t ($above average recommendation) ;
63

64 $recommendations by id = array merge (array keys (
65 $above average recommendation) , $recommendations by id) ;
66

67 $recommendations by id = array unique ($recommendations by id) ;
68 }

Code B.2: This extract shows the code of the second re-ranking approach of user-specific
recommendations, as described in section 5.2.

126

1 $most l iked programs = $t h i s−>program repository−>
2 getMostLikedPrograms ($f lavor , 0 , 0) ;
3

4 $ p r o g r a m s t o t a l l i k e s = [] ;
5 foreach ($most l iked programs as $most liked program)
6 {
7 $program id = $most liked program−>get Id () ;
8 $ p r o g r a m s t o t a l l i k e s [$program id] = $th i s−>
9 program l ike repos i tory−>tota lLikeCount ($program id) ;

10 }
11

12 $most downloaded programs = $ th i s−>program repository−>
13 getMostDownloadedPrograms ($f lavor , 45) ;
14 $ids of most downloaded programs = array map (funct ion ($program)
15 {
16 re turn $program−>get Id () ;
17 } , $most downloaded programs) ;
18

19 foreach ($ p r o g r a m s t o t a l l i k e s as $program id =>
20 $number of l ikes)
21 {
22 $rank in top downloads = a r r a y s e a r c h ($program id ,
23 $ids of most downloaded programs) ;
24 i f ($rank in top downloads !== f a l s e)
25 {
26 $ p r o g r a m s t o t a l l i k e s [$program id] = $number of l ikes *
27 cos (deg2rad (70 − $rank in top downloads * 1 . 5)) * * 2 ;
28 }
29 }
30

31 a r s o r t ($ p r o g r a m s t o t a l l i k e s) ;

Code B.3: This extract shows the code of the re-ranking approach of non-personalized
recommendations, as described in section 5.3.

127

Appendix C.

Code of the User Groups Entity

Code C.1 shows the code of the entity User Test Group. Section 5.4 describes
the entity, which is designed to assign users to certain or random groups
for testing purposes. It has been implemented so that users are not assigned
to groups based on their language or location, hence eliminating possible
biases. The entity has been used in an online experiment for the practical
part of this thesis.

1 [. . .]
2 /* *
3 *
4 * @ORM\E n t i t y
5 * @ORM\HasLi fecyc leCal lbacks
6 * @ORM\Table (name=” u s e r t e s t g r o u p ”)
7 * @UniqueEntity (” $user ”)
8 *
9 */

10

11 c l a s s UserTestGroup
12 {
13 /* *
14 * @ORM\ Id
15 * @ORM\Column (type=” i n t e g e r ” , unique=true , n u l l a b l e = f a l s e)
16 */
17 protec ted $ u s e r i d ;
18

19 /* *
20 * @ORM\Column (type=” i n t e g e r ”)
21 */
22 protec ted $group number ;

129

Appendix C. Code of the User Groups Entity

23

24 /* *
25 * @ORM\Column (type=” datetime ”)
26 */
27 protec ted $ c r e a t e d a t ;
28

29 /* *
30 * @param i n t $ u s e r i d
31 * @param i n t $group number
32 */
33 publ ic funct ion c o n s t r u c t ($user id , $group number)
34 {
35 i f ($ u s e r i d !== n u l l)
36 {
37 $ t h i s−>setUserId ($ u s e r i d) ;
38 $ t h i s−>setGroupNumber ($group number) ;
39 }
40 }
41

42 /* *
43 * @ORM\ P r e P e r s i s t
44 */
45 publ ic funct ion updateTimestamps ()
46 {
47 i f ($ th i s−>getCreatedAt () === n u l l)
48 {
49 $ t h i s−>setCreatedAt (new \DateTime ()) ;
50 }
51 }
52

53 /* *
54 * @param i n t $ u s e r i d
55 */
56 publ ic funct ion setUserId ($ u s e r i d)
57 {
58 $ t h i s−>u s e r i d = $ u s e r i d ;
59 }
60

61 /* *
62 * @return i n t
63 */
64 publ ic funct ion getUserId ()
65 {
66 re turn $ th i s−>u s e r i d ;

130

67 }
68

69 /* *
70 * @param i n t $group number
71 */
72 publ ic funct ion setGroupNumber ($group number)
73 {
74 $ t h i s−>group number = $group number ;
75 }
76

77 /* *
78 * @return i n t
79 */
80 publ ic funct ion getGroupNumber ()
81 {
82 re turn $ th i s−>group number ;
83 }
84

85 /* *
86 * @param \DateTime $ c r e a t e d a t
87 *
88 * @return $ t h i s
89 */
90 publ ic funct ion setCreatedAt (\DateTime $ c r e a t e d a t)
91 {
92 $ t h i s−>c r e a t e d a t = $ c r e a t e d a t ;
93 re turn $ t h i s ;
94 }
95

96 /* *
97 * @return \DateTime
98 */
99 publ ic funct ion getCreatedAt ()

100 {
101 re turn $ th i s−>c r e a t e d a t ;
102 }
103 }

Code C.1: This extract shows the code of the entity User Test Group.

131

Appendix D.

Code of the User Similarity
Computation

User similarities are represented by the Jaccard distance between two users,
as described in section 3.5.2. The formula for the Jaccard distance is shown
in equation (3.1). In the following, the code for the user similarity calculation,
written by Samer (2017), is presented. The user similarities are calculated
offline and updated regularly (Samer, 2017).

1 /* *
2 * @param $array1

3 * @param $array2

4 */
5 p r i v a t e funct ion imitateMerge (&$array1 , &$array2)
6 {
7 foreach ($array2 as $ i)
8 {
9 $array1 [] = $ i ;

10 }
11 }
12

13 /* *
14 *
15 * C o l l a b o r a t i v e F i l t e r i n g by using Jaccard Distance
16 * As in t h i s case we have to deal with TRUE/FALSE r a t i n g s (i . e .
17 * user l i k e d the program OR has not seen/l i k e d i t yet) the
18 * Jaccard d i s t a n c e i s used to measure the s i m i l a r i t y between two
19 * users .
20 *
21 * n . . . t o t a l number of users t h a t have l i k e d at l e a s t one

133

Appendix D. Code of the User Similarity Computation

22 * program
23 * m . . . t o t a l number of l i k e d programs
24 *
25 * @see : ht tp :// i n f o l a b . s tanford . edu/˜ ullman/mmds/ch9 . pdf
26 * (s e c t i o n 9 . 3)
27 * @time complexity : O(n ˆ2 * m)
28 *
29 * @param ProgressBar $progress bar
30 *
31 * @throws \Doctr ine \ORM\ORMException
32 * @throws \Doctr ine \ORM\Optimist icLockException
33 */
34

35 publ ic funct ion computeUserLikeSimi lar i t ies ($progress bar = n u l l)
36 {
37 $users = $th i s−>user manager−>f i n d A l l () ;
38 $ r a t e d u s e r s = array unique (a r r a y f i l t e r ($users , funct ion (
39 $user) {
40 /* *
41 * @var $user User
42 */
43 re turn (count ($ th i s−>program l ike repos i tory−>findBy (
44 [’ u s e r i d ’ => $user−>get Id ()])) > 0) ;
45 })) ;
46

47 $ a l r e a d y a d d e d r e l a t i o n s = [] ;
48 /* *
49 * @var $ f i r s t u s e r User
50 * @var $second user User
51 */
52 foreach ($ r a t e d u s e r s as $ f i r s t u s e r)
53 {
54 i f ($progress bar != n u l l)
55 {
56 $progress bar−>setMessage (’ Computing l i k e s i m i l a r i t y of
57 user (# ’ . $ f i r s t u s e r−>get Id () . ’) ’) ;
58 }
59

60 $ f i r s t u s e r l i k e s = $ th i s−>program l ike repos i tory−>findBy (
61 [’ u s e r i d ’ => $ f i r s t u s e r−>get Id ()]) ;
62

63 $ i d s o f p r o g r a m s l i k e d b y f i r s t u s e r = array map (
64 func t ion ($ l i k e) {
65 /* *

134

66 * @var $ l i k e ProgramLike
67 */
68 re turn $ l i k e−>getProgramId () ;
69 } , $ f i r s t u s e r l i k e s) ;
70

71 foreach ($ r a t e d u s e r s as $second user)
72 {
73 $key = $ f i r s t u s e r−>get Id () . ’ ’ . $second user−>get Id () ;
74 $reverse key = $second user−>get Id () . ’ ’ .
75 $ f i r s t u s e r−>get Id () ;
76 i f (($ f i r s t u s e r−>get Id () == $second user−>get Id ()) | |
77 i n a r r a y ($key , $ a l r e a d y a d d e d r e l a t i o n s)
78 | | i n a r r a y ($reverse key , $ a l r e a d y a d d e d r e l a t i o n s)
79)
80 {
81 continue ;
82 }
83

84 $ a l r e a d y a d d e d r e l a t i o n s [] = $key ;
85 $ s e c o n d u s e r l i k e s = $th i s−>program l ike repos i tory−>
86 findBy ([’ u s e r i d ’ => $second user−>get Id ()]) ;
87

88 $ ids of programs l iked by second user = array map (
89 func t ion ($ l i k e) {
90 /* *
91 * @var $ l i k e ProgramLike
92 */
93 re turn $ l i k e−>getProgramId () ;
94 } , $ s e c o n d u s e r l i k e s) ;
95

96 $ids of same programs l iked by both = array unique (
97 a r r a y i n t e r s e c t ($ i d s o f p r o g r a m s l i k e d b y f i r s t u s e r ,
98 $ ids of programs l iked by second user)) ;
99

100 // make copy of array −> merge with empty array i s f a s t
101 // s h o r t c u t !
102 $temp = array merge ([] ,
103 $ i d s o f p r o g r a m s l i k e d b y f i r s t u s e r) ;
104

105 // t h i s i m i t a t e merge i s way more f a s t e r than using
106 // array merge () with huge arrays !
107 // −> t h i s has a s i g n i f i c a n t impact on performance here !
108 $ t h i s−>imitateMerge ($temp ,
109 $ ids of programs l iked by second user) ;

135

Appendix D. Code of the User Similarity Computation

110 $ i d s o f a l l p r o g r a m s l i k e d b y a n y o f b o t h = array unique (
111 $temp) ;
112

113 $number of same programs liked by both =
114 count ($ ids of same programs l iked by both) ;
115 $number of a l l programs l iked by any of both =
116 count ($ i d s o f a l l p r o g r a m s l i k e d b y a n y o f b o t h) ;
117

118 i f ($number of same programs liked by both == 0)
119 {
120 continue ;
121 }
122

123 $ j a c c a r d s i m i l a r i t y = f l o a t v a l (
124 $number of same programs liked by both) /
125 f l o a t v a l ($number of a l l programs l iked by any of both) ;
126

127 $ s i m i l a r i t y r e l a t i o n = new U s e r L i k e S i m i l a r i t y R e l a t i o n (
128 $ f i r s t u s e r , $second user , $ j a c c a r d s i m i l a r i t y) ;
129

130 $ t h i s−>entity manager−>p e r s i s t ($ s i m i l a r i t y r e l a t i o n) ;
131 $ t h i s−>entity manager−>f l u s h ($ s i m i l a r i t y r e l a t i o n) ;
132 }
133

134 i f ($progress bar != n u l l)
135 {
136 $progress bar−>c l e a r () ;
137 $progress bar−>advance () ;
138 $progress bar−>display () ;
139 }
140 }
141 }

Code D.1: This extract shows the computation of user similarities of Catrobat’s
recommender system.

136

Bibliography

Adomavicius, G. and Y. Kwon (May 2012). “Improving Aggregate Rec-
ommendation Diversity Using Ranking-Based Techniques.” In: IEEE
Transactions on Knowledge and Data Engineering 24.5, pp. 896–911. issn:
1041-4347. doi: 10.1109/TKDE.2011.15 (cit. on pp. 15, 76, 77, 80, 86–90).

Adomavicius, Gediminas and Youngok Kwon (2009). “Towards more diverse
recommendations: Item re-ranking methods for recommender systems.”
In: In Workshop on Information Technologies and Systems (cit. on p. 14).

Ahn, Hyung Jun (Jan. 2008). “A New Similarity Measure for Collaborative
Filtering to Alleviate the New User Cold-starting Problem.” In: Inf. Sci.
178.1, pp. 37–51. issn: 0020-0255. doi: 10.1016/j.ins.2007.07.024.
url: https://doi.org/10.1016/j.ins.2007.07.024 (cit. on p. 71).

Amazon (2019). url: https://www.amazon.com/ (visited on 03/20/2019)
(cit. on pp. 1, 12, 18).

Andreas Töscher Michael Jahrer, Robert M. Bell (2009). The BigChaos Solution
to the Netflix Grand Prize (cit. on p. 7).

Balabanović, Marko and Yoav Shoham (Mar. 1997). “Fab: Content-based,
Collaborative Recommendation.” In: Commun. ACM 40.3, pp. 66–72.
issn: 0001-0782. doi: 10.1145/245108.245124. url: http://doi.acm.
org/10.1145/245108.245124 (cit. on p. 6).

Black Duck Software, Inc. (2019). Openhub Catrobat Project Site. url: https:
//www.openhub.net/p/catrobat (visited on 03/01/2019) (cit. on p. 53).

Breese, John S., David Heckerman, and Carl Kadie (1998). “Empirical Anal-
ysis of Predictive Algorithms for Collaborative Filtering.” In: Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intelligence. UAI’98.
Madison, Wisconsin: Morgan Kaufmann Publishers Inc., pp. 43–52. isbn:
1-55860-555-X. url: http://dl.acm.org/citation.cfm?id=2074094.
2074100 (cit. on p. 27).

Burke, Robin (May 2000). “Knowledge-Based Recommender Systems.” In:
Encyclopedia of library and information systems 69 (cit. on p. 39).

137

https://doi.org/10.1109/TKDE.2011.15
https://doi.org/10.1016/j.ins.2007.07.024
https://doi.org/10.1016/j.ins.2007.07.024
https://www.amazon.com/
https://doi.org/10.1145/245108.245124
http://doi.acm.org/10.1145/245108.245124
http://doi.acm.org/10.1145/245108.245124
https://www.openhub.net/p/catrobat
https://www.openhub.net/p/catrobat
http://dl.acm.org/citation.cfm?id=2074094.2074100
http://dl.acm.org/citation.cfm?id=2074094.2074100

Bibliography

Burke, Robin (Nov. 2002). “Hybrid Recommender Systems: Survey and
Experiments.” In: User Modeling and User-Adapted Interaction 12. doi:
10.1023/A:1021240730564 (cit. on pp. 28, 31, 43, 45–47, 71).

Burke, Robin (2007). “Hybrid Web Recommender Systems.” In: The Adap-
tive Web: Methods and Strategies of Web Personalization. Ed. by Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 377–408. isbn: 978-3-540-72079-9. doi:
10.1007/978-3-540-72079-9_12. url: https://doi.org/10.1007/978-
3-540-72079-9_12 (cit. on p. 28).

Celma, Òscar and Perfecto Herrera (2008). “A New Approach to Evaluating
Novel Recommendations.” In: Proceedings of the 2008 ACM Conference on
Recommender Systems. RecSys ’08. Lausanne, Switzerland: ACM, pp. 179–
186. isbn: 978-1-60558-093-7. doi: 10.1145/1454008.1454038. url: http:
//doi.acm.org/10.1145/1454008.1454038 (cit. on p. 14).

Claypool, Mark et al. (1999). “Combining Content-Based and Collabora-
tive Filters in an Online Newspaper.” In: In Proceedings of ACM SIGIR
Workshop on Recommender Systems (cit. on pp. 28, 46).

Doctrine (2019). url: https://www.doctrine-project.org/index.html
(visited on 03/16/2019) (cit. on pp. 58, 61).

Ebadi, Ashkan and Adam Krzyzak (Jan. 2016). “A hybrid multi-criteria
hotel recommender system using explicit and implicit feedbacks.” In:
International Scholarly and Scientific Research & Innovation. Vol. 10. 8,
pp. 1450–1458 (cit. on p. 21).

Ekstrand, Michael D. et al. (2014). “User Perception of Differences in Rec-
ommender Algorithms.” In: Proceedings of the 8th ACM Conference on
Recommender Systems. RecSys ’14. Foster City, Silicon Valley, California,
USA: ACM, pp. 161–168. isbn: 978-1-4503-2668-1. doi: 10.1145/2645710.
2645737. url: http://doi.acm.org/10.1145/2645710.2645737 (cit. on
pp. 14, 22).

Felfernig, Alexander and Robin Burke (Jan. 2008). “Constraint-based recom-
mender systems: Technologies and research issues.” In: ACM Interna-
tional Conference Proceeding Series, p. 3. doi: 10.1145/1409540.1409544
(cit. on pp. 38–40, 43, 44).

Felfernig, Alexander, Michael Jeran, et al. (Dec. 2014). “Basic Approaches
in Recommendation Systems.” In: Recommendation Systems in Software
Engineering, pp. 15–37. doi: 10.1007/978-3-642-45135-5__2 (cit. on
pp. 31, 35, 36).

138

https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1007/978-3-540-72079-9_12
https://doi.org/10.1145/1454008.1454038
http://doi.acm.org/10.1145/1454008.1454038
http://doi.acm.org/10.1145/1454008.1454038
https://www.doctrine-project.org/index.html
https://doi.org/10.1145/2645710.2645737
https://doi.org/10.1145/2645710.2645737
http://doi.acm.org/10.1145/2645710.2645737
https://doi.org/10.1145/1409540.1409544
https://doi.org/10.1007/978-3-642-45135-5__2

Bibliography

Fornaciari, Tommaso and Massimo Poesio (Apr. 2014). “Identifying fake
Amazon reviews as learning from crowds.” In: Proceedings of the 14th
Conference of the European Chapter of the Association for Computational
Linguistics. Gothenburg, Sweden: Association for Computational Lin-
guistics, pp. 279–287. doi: 10.3115/v1/E14-1030. url: https://www.
aclweb.org/anthology/E14-1030 (cit. on p. 12).

Goldberg, David et al. (Dec. 1992). “Using Collaborative Filtering to Weave
an Information Tapestry.” In: Commun. ACM 35.12, pp. 61–70. issn:
0001-0782. doi: 10.1145/138859.138867. url: http://doi.acm.org/10.
1145/138859.138867 (cit. on p. 5).

Goodreads Homepage (2019). url: https://www.goodreads.com/ (visited on
04/02/2019) (cit. on p. 18).

Goodreads Recommendations (2019). url: https : / / www . goodreads . com /

recommendations (visited on 05/25/2019) (cit. on p. 19).
Google LLC (2019a). Google - Terms of Service. url: https://play.google.

com / intl / en - us _ us / about / play - terms / index . html (visited on
03/04/2019) (cit. on p. 58).

Google LLC (2019b). Google Analytics. url: https://analytics.google.
com/analytics/web/ (visited on 06/04/2019) (cit. on p. 101).

Google LLC (2019c). Google Play Store. url: https://play.google.com/
store (visited on 03/04/2019) (cit. on p. 58).

Herlocker, Jonathan L., Joseph A. Konstan, Al Borchers, et al. (1999). “An
Algorithmic Framework for Performing Collaborative Filtering.” In:
Proceedings of the 22Nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. SIGIR ’99. Berkeley,
California, USA: ACM, pp. 230–237. isbn: 1-58113-096-1. doi: 10.1145/
312624.312682. url: http://doi.acm.org/10.1145/312624.312682
(cit. on pp. 25, 27, 70).

Herlocker, Jonathan L., Joseph A. Konstan, and John Riedl (2000). “Explain-
ing Collaborative Filtering Recommendations.” In: Proceedings of the
2000 ACM Conference on Computer Supported Cooperative Work. CSCW ’00.
Philadelphia, Pennsylvania, USA: ACM, pp. 241–250. isbn: 1-58113-222-
0. doi: 10.1145/358916.358995. url: http://doi.acm.org/10.1145/
358916.358995 (cit. on p. 14).

Herlocker, Jonathan L., Joseph A. Konstan, Loren G. Terveen, et al. (Jan.
2004). “Evaluating Collaborative Filtering Recommender Systems.” In:
ACM Trans. Inf. Syst. 22.1, pp. 5–53. issn: 1046-8188. doi: 10.1145/

139

https://doi.org/10.3115/v1/E14-1030
https://www.aclweb.org/anthology/E14-1030
https://www.aclweb.org/anthology/E14-1030
https://doi.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867
https://www.goodreads.com/
https://www.goodreads.com/recommendations
https://www.goodreads.com/recommendations
https://play.google.com/intl/en-us_us/about/play-terms/index.html
https://play.google.com/intl/en-us_us/about/play-terms/index.html
https://analytics.google.com/analytics/web/
https://analytics.google.com/analytics/web/
https://play.google.com/store
https://play.google.com/store
https://doi.org/10.1145/312624.312682
https://doi.org/10.1145/312624.312682
http://doi.acm.org/10.1145/312624.312682
https://doi.org/10.1145/358916.358995
http://doi.acm.org/10.1145/358916.358995
http://doi.acm.org/10.1145/358916.358995
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772

Bibliography

963770.963772. url: http://doi.acm.org/10.1145/963770.963772
(cit. on pp. 9–11).

International Catrobat Association (2019a). Catrobat - German Project Home
Page. url: https : / / www . catrobat . org / de / #mission (visited on
03/01/2019) (cit. on pp. 1, 53).

International Catrobat Association (2019b). Catrobat - Sharing Platform. url:
https://share.catrob.at/pocketcode/ (visited on 03/04/2019) (cit.
on pp. 53, 56, 75, 78, 79, 96).

International Catrobat Association (2019c). Catrobat - Terms of Service.
url: https://share.catrob.at/pocketcode/termsOfUse (visited on
03/04/2019) (cit. on p. 59).

Jannach, Dietmar, Lukas Lerche, and Markus Zanker (2018). “Recommend-
ing Based on Implicit Feedback.” In: Social Information Access: Systems and
Technologies. Ed. by Peter Brusilovsky and Daqing He. Cham: Springer
International Publishing, pp. 510–569. isbn: 978-3-319-90092-6. doi: 10.
1007/978-3-319-90092-6_14. url: https://doi.org/10.1007/978-3-
319-90092-6_14 (cit. on pp. 17, 18, 20).

Jannach, Dietmar, Markus Zanker, et al. (2010). Recommender Systems - An
Introduction. English. 1st ed. United Kingdom: Cambridge University
Press. isbn: 978-0-521-49336-9 (cit. on pp. 4, 17, 23, 24, 26, 28, 29, 35, 36,
38–40, 44–46).

Javari, Amin and Mahdi Jalili (June 2014). “A probabilistic model to resolve
diversity-accuracy challenge of recommendation systems.” In: Knowledge
and Information Systems. doi: 10.1007/s10115-014-0779-2 (cit. on p. 80).

Karakaya, Mahmut and Tevfik Aytekin (Nov. 2017). “Effective methods for
increasing aggregate diversity in recommender systems.” In: Knowledge
and Information Systems. doi: 10.1007/s10115-017-1135-0 (cit. on p. 80).

Lifelong Kindergarten Group, MIT Media Lab (2019). Scratch. url: https:
//scratch.mit.edu (visited on 03/01/2019) (cit. on p. 55).

Linden, Greg, Brent Smith, and Jeremy York (Jan. 2003). “Amazon.Com
Recommendations: Item-to-Item Collaborative Filtering.” In: IEEE Inter-
net Computing 7.1, pp. 76–80. issn: 1089-7801. doi: 10.1109/MIC.2003.
1167344. url: http://dx.doi.org/10.1109/MIC.2003.1167344 (cit. on
p. 29).

Liu, Haifeng et al. (2014). “A new user similarity model to improve the accu-
racy of collaborative filtering.” In: Knowledge-Based Systems 56, pp. 156–
166. issn: 0950-7051. doi: https://doi.org/10.1016/j.knosys.2013.

140

https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
http://doi.acm.org/10.1145/963770.963772
https://www.catrobat.org/de/#mission
https://share.catrob.at/pocketcode/
https://share.catrob.at/pocketcode/termsOfUse
https://doi.org/10.1007/978-3-319-90092-6_14
https://doi.org/10.1007/978-3-319-90092-6_14
https://doi.org/10.1007/978-3-319-90092-6_14
https://doi.org/10.1007/978-3-319-90092-6_14
https://doi.org/10.1007/s10115-014-0779-2
https://doi.org/10.1007/s10115-017-1135-0
https://scratch.mit.edu
https://scratch.mit.edu
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1109/MIC.2003.1167344
http://dx.doi.org/10.1109/MIC.2003.1167344
https://doi.org/https://doi.org/10.1016/j.knosys.2013.11.006
https://doi.org/https://doi.org/10.1016/j.knosys.2013.11.006
https://doi.org/https://doi.org/10.1016/j.knosys.2013.11.006

Bibliography

11.006. url: http://www.sciencedirect.com/science/article/pii/
S0950705113003560 (cit. on p. 62).

Lops, Pasquale, Marco de Gemmis, and Giovanni Semeraro (Jan. 2011).
“Content-based Recommender Systems: State of the Art and Trends.” In:
Recommender Systems Handbook, pp. 73–105. doi: 10.1007/978-0-387-
85820-3_3 (cit. on pp. 36–38).

McNee, Sean M., John Riedl, and Joseph A. Konstan (2006). “Being Accu-
rate is Not Enough: How Accuracy Metrics Have Hurt Recommender
Systems.” In: CHI ’06 Extended Abstracts on Human Factors in Comput-
ing Systems. CHI EA ’06. Montreal, Quebec, Canada: ACM, pp. 1097–
1101. isbn: 1-59593-298-4. doi: 10.1145/1125451.1125659. url: http:
//doi.acm.org/10.1145/1125451.1125659 (cit. on p. 76).

Netflix, Inc. (2009a). Netflix Prize. url: https://www.netflixprize.com/
(visited on 03/22/2019) (cit. on p. 7).

Netflix, Inc. (2009b). Netflix Prize Leaderboard. url: https://www.netflixprize.
com/leaderboard.html (visited on 03/22/2019) (cit. on p. 7).

Nielsen, Jakob (Nov. 2013). Conversion rate. url: https://www.nngroup.com/
articles/conversion-rates/ (visited on 05/13/2019) (cit. on p. 5).

Niemann, Katja and Martin Wolpers (2013). “A New Collaborative Filter-
ing Approach for Increasing the Aggregate Diversity of Recommender
Systems.” In: Proceedings of the 19th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. KDD ’13. Chicago, Illinois,
USA: ACM, pp. 955–963. isbn: 978-1-4503-2174-7. doi: 10.1145/2487575.
2487656. url: http://doi.acm.org/10.1145/2487575.2487656 (cit. on
p. 80).

Oracle Corporation (2019). MySQL. url: https://www.mysql.com/ (visited
on 03/16/2019) (cit. on p. 58).

Painsi, Robert (Mar. 2019). Catrobat Statistics. url: http://robertpainsi.
github . io / catrobat / statistics / ?period = overall # Catrobat -

Statistics (visited on 03/04/2019) (cit. on pp. 53, 59).
Patil, C. B. and R. B. Wagh (Jan. 2014). “A multi-attributed hybrid re-

ranking technique for diversified recommendations.” In: 2014 IEEE
International Conference on Electronics, Computing and Communication Tech-
nologies (CONECCT), pp. 1–6. doi: 10.1109/CONECCT.2014.6740332
(cit. on p. 80).

Pazzani, Michael J. and Daniel Billsus (2007). “Content-Based Recommen-
dation Systems.” In: The Adaptive Web: Methods and Strategies of Web

141

https://doi.org/https://doi.org/10.1016/j.knosys.2013.11.006
https://doi.org/https://doi.org/10.1016/j.knosys.2013.11.006
https://doi.org/https://doi.org/10.1016/j.knosys.2013.11.006
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1007/978-0-387-85820-3_3
https://doi.org/10.1145/1125451.1125659
http://doi.acm.org/10.1145/1125451.1125659
http://doi.acm.org/10.1145/1125451.1125659
https://www.netflixprize.com/
https://www.netflixprize.com/leaderboard.html
https://www.netflixprize.com/leaderboard.html
https://www.nngroup.com/articles/conversion-rates/
https://www.nngroup.com/articles/conversion-rates/
https://doi.org/10.1145/2487575.2487656
https://doi.org/10.1145/2487575.2487656
http://doi.acm.org/10.1145/2487575.2487656
https://www.mysql.com/
http://robertpainsi.github.io/catrobat/statistics/?period=overall#Catrobat-Statistics
http://robertpainsi.github.io/catrobat/statistics/?period=overall#Catrobat-Statistics
http://robertpainsi.github.io/catrobat/statistics/?period=overall#Catrobat-Statistics
https://doi.org/10.1109/CONECCT.2014.6740332

Bibliography

Personalization. Ed. by Peter Brusilovsky, Alfred Kobsa, and Wolfgang
Nejdl. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 325–341. isbn:
978-3-540-72079-9. doi: 10.1007/978-3-540-72079-9_10. url: https:
//doi.org/10.1007/978-3-540-72079-9_10 (cit. on p. 35).

PHP Group (2019). PHP. url: http://www.php.net/ (visited on 03/16/2019)
(cit. on p. 58).

RecSys Community (2019). ACM Recommender System Conference. url: https:
//recsys.acm.org/ (visited on 03/22/2019) (cit. on p. 7).

Resnick, Paul, Neophytos Iacovou, et al. (1994). “GroupLens: An Open
Architecture for Collaborative Filtering of Netnews.” In: Proceedings of
the 1994 ACM Conference on Computer Supported Cooperative Work. CSCW
’94. Chapel Hill, North Carolina, USA: ACM, pp. 175–186. isbn: 0-89791-
689-1. doi: 10.1145/192844.192905. url: http://doi.acm.org/10.
1145/192844.192905 (cit. on p. 6).

Resnick, Paul and Hal R. Varian (Mar. 1997). “Recommender Systems.” In:
Commun. ACM 40.3, pp. 56–58. issn: 0001-0782. doi: 10.1145/245108.
245121. url: http://doi.acm.org/10.1145/245108.245121 (cit. on
p. 7).

Ricci, Francesco, Lior Rokach, and Bracha Shapira (2015). Recommender
Systems Handbook. 2nd. Springer Publishing Company, Incorporated.
isbn: 9781489976369 (cit. on pp. 3–6, 8–17, 19, 21, 25, 45, 46).

Samer, Ralph (May 2017). “Construction of a Recommender System for
Catrobat’s Collaborative Web Community.” MA thesis. Graz University
of Technology (cit. on pp. 25, 59, 62, 63, 65, 67, 69, 70, 81, 100, 101, 104,
133).

Sarwar, Badrul et al. (2001). “Item-based Collaborative Filtering Recom-
mendation Algorithms.” In: Proceedings of the 10th International Confer-
ence on World Wide Web. WWW ’01. Hong Kong, Hong Kong: ACM,
pp. 285–295. isbn: 1-58113-348-0. doi: 10.1145/371920.372071. url:
http://doi.acm.org/10.1145/371920.372071 (cit. on pp. 27, 29, 30).

Shani, Guy and Asela Gunawardana (Jan. 2011). “Evaluating Recommenda-
tion Systems.” In: Recommender Systems Handbook. Vol. 12, pp. 257–297.
doi: 10.1007/978-0-387-85820-3_8 (cit. on pp. 46, 48–50).

Shardanand, Upendra and Pattie Maes (1995). “Social Information Filtering:
Algorithms for Automating ‘Word of Mouth’.” In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’95.
Denver, Colorado, USA: ACM Press/Addison-Wesley Publishing Co.,

142

https://doi.org/10.1007/978-3-540-72079-9_10
https://doi.org/10.1007/978-3-540-72079-9_10
https://doi.org/10.1007/978-3-540-72079-9_10
http://www.php.net/
https://recsys.acm.org/
https://recsys.acm.org/
https://doi.org/10.1145/192844.192905
http://doi.acm.org/10.1145/192844.192905
http://doi.acm.org/10.1145/192844.192905
https://doi.org/10.1145/245108.245121
https://doi.org/10.1145/245108.245121
http://doi.acm.org/10.1145/245108.245121
https://doi.org/10.1145/371920.372071
http://doi.acm.org/10.1145/371920.372071
https://doi.org/10.1007/978-0-387-85820-3_8

Bibliography

pp. 210–217. isbn: 0-201-84705-1. doi: 10.1145/223904.223931. url:
http://dx.doi.org/10.1145/223904.223931 (cit. on p. 25).

Son, Le (Dec. 2014). “Dealing with the new user cold-start problem in
recommender systems: A comparative review.” In: Information Systems
58. doi: 10.1016/j.is.2014.10.001 (cit. on p. 71).

Symfony Homepage (2019). url: https : / / symfony . com/ (visited on
03/15/2019) (cit. on p. 58).

Thi Do, Minh-Phung, Dung Van Nguyen, and Academic Network of Loc
Nguyen (Aug. 2010). “Model-based approach for Collaborative Filter-
ing.” In: The 6th International Conference on Information Technology for
Education, 2010 (cit. on pp. 31–33).

Trivago (2019). url: https://www.trivago.com/ (visited on 04/17/2019)
(cit. on pp. 39, 41, 42).

Tsang, Edward (Jan. 1993). Foundations of Constraint Satisfaction. isbn: 978-0-
12-701610-8 (cit. on p. 43).

Ungar, Lyle and Dean P. Foster (1998). “Clustering Methods for Collaborative
Filtering.” In: AAAI Technical Report WS-98-08. AAAI Press (cit. on p. 33).

Wikimedia Commons, User: Chire (2010). Iris flower data set, clustered using
k means (left) and true species in the data set (right). Used under public
domain license. url: https://commons.wikimedia.org/wiki/File:
Iris_Flowers_Clustering_kMeans.svg (visited on 06/09/2019) (cit. on
p. 34).

Xue, Gui-Rong et al. (2005). “Scalable Collaborative Filtering Using Cluster-
based Smoothing.” In: Proceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’05. Salvador, Brazil: ACM, pp. 114–121. isbn: 1-59593-034-5. doi:
10.1145/1076034.1076056. url: http://doi.acm.org/10.1145/
1076034.1076056 (cit. on p. 32).

YouTube Homepage (2019). url: https://www.youtube.com/ (visited on
04/03/2019) (cit. on p. 22).

143

https://doi.org/10.1145/223904.223931
http://dx.doi.org/10.1145/223904.223931
https://doi.org/10.1016/j.is.2014.10.001
https://symfony.com/
https://www.trivago.com/
https://commons.wikimedia.org/wiki/File:Iris_Flowers_Clustering_kMeans.svg
https://commons.wikimedia.org/wiki/File:Iris_Flowers_Clustering_kMeans.svg
https://doi.org/10.1145/1076034.1076056
http://doi.acm.org/10.1145/1076034.1076056
http://doi.acm.org/10.1145/1076034.1076056
https://www.youtube.com/

	Abstract
	Introduction
	Recommender Systems
	Definition
	Terminology
	Origin
	Functions
	Properties

	Feedback
	Explicit Feedback
	Implicit Feedback
	Discussion

	Recommendation Approaches
	Non-Personalized Recommendations
	Memory-Based Collaborative Filtering
	Model-Based Collaborative Filtering
	Content-Based Filtering
	Knowledge-Based Approaches
	Hybrid Approaches

	Evaluation
	Offline Experiments
	User Studies
	Online Experiments

	Catrobat
	The Catrobat Organization
	Pocket Code
	Catrobat Programming Language
	The Sharing Platform
	Remixes

	Recommender System
	Like Rating System
	User Similarities
	Recommendation Process

	Improvement to Catrobat's Recommender System
	Potential Improvements
	Prediction Accuracy
	Model-Based Algorithms
	Ramp-Up Problem
	Long-Tail Problem

	Discussion and Decision
	Related Work

	Implementation
	User-Specific Re-Ranking Approach I
	User-Specific Re-Ranking Approach II
	Non-Personalized Re-Ranking Approach
	User Groups

	Evaluation and Results
	User-Specific Re-Ranking Approaches
	Test Scenario I
	Results

	Non-Personalized Re-Ranking Approach
	Test Scenario II
	Results

	Discussion
	Results of Online Experiment I
	Results of Online Experiment II

	Conclusions and Future Work
	Conclusions
	Future Work

	Abbreviations
	Code of the Re-Ranking Approaches
	Code of the User Groups Entity
	Code of the User Similarity Computation
	Bibliography

