
Volker ARENDT

Geometry and kinematics of the Theo
Jansen mechanism

Diploma Thesis

to achieve the university degree of

Magister der Naturwissenschaften

Master’s degree programme: Lehramt Geometrie

submitted to

Graz University of Technology

Supervisor

Gfrerrer, Anton, Ao.Univ.-Prof. Mag.rer.nat. Dr.techn.

Institute for Geometry

Graz, June 2019



Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii



Acknowledgments

First and foremost I would like to thank everyone who supported me
directly or indirectly in writing this thesis.

Further I am grateful to Anton Gfrerrer for the scientific supervision of my
work. His impetuses and suggestions made an enormous contribution to
the present thesis.

I would particularly like to thank my family, who supported me financially
and morally and always made it possible for me to pursue my goals and
complete my studies. Special thanks to Sandra who kept me motivated
during this process. I would also like to express my gratitude to Joy and
Paul Reed, who fostered my love for English and thus encouraged me to
write this thesis in English.

iii



Abstract

This thesis aims to analyze the one parametric motion of the Jansen
mechanism. A genetic algorithm is developed and tested to generate
mechanisms close or similar to the Jansen mechanism.

For this purpose the achievements by Theo Jansen are introduced. Later on a
four bar linkage is used as an example to apply the kinematic fundamentals.
The results are transferred to the Jansen mechanism and an instantaneous
center of revolution configuration of the mechanism is illustrated. To visu-
alize the mechanism and calculate its positions a parametrization of the
Jansen mechanism is presented.

The parametrization is further used to synthesize mechanisms of the same
architecture as the Jansen mechanism with a genetic algorithm. The main
focus of this part is on generating a working starting population for the
algorithm. The genetic part of the algorithm is described in great detail.
The results of the algorithm can be categorized into four groups, which are
presented with many figures in the last part of this thesis.
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1. Introduction

1.1. Theo Jansen

Figure 1.1.: Portrait of Theo Jansen , [6, p. 02.08.2018]

1948 born in Scheveningen, Netherlands
1974 – present numerous exhibitions around the globe
1975 stops studying physics to become an artist
1980 flies UFO across Delft, Netherlands
1990 – present develops Animari (beach animals)
2005 wins special prize of the Jury of

Prix Ars Electronica in Linz, Austria [4, p. 503]

Table 1.1.: Biography of Theo Jansen ([3, p. 239])
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1. Introduction

According to his Book [3], Theo Jansen was born in the town Scheveningen
in the Netherlands in 1948. He began studying physics but stopped his
studies to become an artist. Jansen states out that there is always an engineer
and an artist way of working. Since most of the engineers use the same
methods the constructions usually work perfectly, but they all seem to be
similar. As an artist the methods are more versatile and at the beginning
many artists do not know what they will have at the end. Jansen set his life
goal to create a living life form. He recognized, that any living creature is
basically made up of proteins, and therefore he only uses one material in
multiple ways. Even before the year 1990 Jansen had the idea of creating
walking creatures, which he called Quadrupes. These were boxes with four
legs which could theoretically move back and forth. Jansen implemented
these creatures in the computer and at that point the movement of the legs
was random. Jansen created more than 200 Quadrupes and calculated the
walking speed, if there even was any movement, of each creature. He copied
the details of the fastest Quadrupes and used their geometry as a base
for the next generation. Within the fifth generation, the Quadrupes were
actually walking and even galloping at some occasions. Jansen was working
with plastic tubes, which are still used to conduct electricity in Dutch houses
and found out that there are many ways of using these tubes. Jansen spent
a whole year just experimenting and learning how to use the tubes. The
tubes reminded him of proteins which could have different functions.

Jansen gives a unique name to each animal that he creates and they can all
be placed in an phylogenetic tree. In the year 1990 the Animaris Vulgaris
was born to be the first walking animal. The mechanism was not able to
lift a leg and move it forward, but it could turn its ankle, so that the foot
was dragged (see Fig. 1.2). There were actually two cranks that drove the
mechanism, which were mounted with a constant angle of 90◦. Jansen was
working with legs instead of wheels, because they work better in sand. For a
creature to walk without jumping it is necessary that the fixed pivotal points
have a constant distance to the ground. Unfortunately the animal did not
move at all, because the adhesive tape that Jansen was using for connections
at that time, was not strong enough to carry the whole construction.

The next generation of animal was the Animaris Currens Vulgaris, which
was the first animal to stand and walk on its own. Jansen changed from
using tape to using cable ties. In addition, he managed to simplify the leg
mechanism so that it was only driven by a single crank. One night he had
the idea to use a computer program to calculate the length of the bars
needed to achieve his goal (see Fig. 1.3).

3



1. Introduction

Figure 1.2.: Leg of Animaris Vulgaris, [3, p. 41]

Figure 1.3.: Leg of Animaris Currens Vulgaris, [3, p. 51]

4



1. Introduction

1.2. The Jansen mechanism

1.2.1. Evolutionary method

Jansen knew that the locus for a walking mechanism has to have a special
shape without corners. The base should be its longest side, that is where
the foot touches the ground. The upper part can be moved through faster
to reach the beginning of the next step (see Fig. 1.4). Small variations in
the length of each bar of a mechanism can cause big changes in the locus
and the velocity distribution along it, so Jansen decided to approach the
problem using an evolutionary method.

Figure 1.4.: Jansen’s ideal locus of a leg mechanism, [3, p. 55]

1.2.2. Twelve holy numbers

Jansen set up a program to calculate the loci of 1500 legs and compared the
outcome. He then chose the best 100 of these legs and constructed 1500 new
legs, by combining the most convincing ones. With every generation of legs
he came closer to the desired results. After his program had run for a few
months, it returned a set of lengths for the twelve bars of his mechanism.
Theo Jansen called those numbers the twelve holy numbers.

Whenever a foot is lifted, it does not support the animal, so at that moment
there is no use for that foot. Therefore keeping that time as short as possible
was one criterion to consider when creating the new generation of legs. One
other criterion which Jansen used was that the base of the locus is getting
moved through with an approximately constant velocity was as long as
possible . In Figure 1.5 the notation of the bars which Jansen used can be
seen.

5



1. Introduction

The twelve holy numbers are
a = 38, b = 41.5, c = 39.3, d = 40.1, e = 55.8, f = 39.4,
g = 36.7, h = 65.7, i = 49, j = 50, k = 61.9, l = 7.8

and the length of the crank m = 15

Figure 1.5.: Notation of the individual bars of the Jansen mechanism, [3, p. 57]
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2. Kinematical fundamentals

2.1. Transformations in the plane

Definition 1 (Proper isometries). [2, p. 1]
The euclidean plane E2 is the affine plane equipped with an euclidean metric.

A distance-preserving mapping κ for points in the euclidean plane is called
an isometry. If the map also preserves the orientation of any triangle, the
mapping is called a proper isometry.

Theorem 1 (Fundamental theorem of plane kinematics). [7, p. 14-15]
Any proper isometry is either a rotation or a translation (see Fig. 2.1).

A1

A2
B1

B2

P12

Figure 2.1.: Center of revolution of two lines

Translations with translation vector v and rotations (M, ϕ) around a point
M with an angle ϕ are two examples for proper isometries. In general, the
composition of a rotation and a translation do not commute (see Fig.: 2.2).

Any proper isometry κ in the plane can be described as follows:(
x0
y0

)
=

(
dx
dy

)
+ R ·

(
x1
y1

)
= d + R · x1. (2.1)

with

d =

(
dx
dy

)
and R =

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
.

7



2. Kinematical fundamentals

v

v

ϕ

ϕ

M
Figure 2.2.: In general a translation and a revolution are not commutative.

The same transformation can be written as 1
x0
y0

 =

 1 0 0
dx cos(ϕ) − sin(ϕ)
dy sin(ϕ) cos(ϕ)


︸ ︷︷ ︸

M

 1
x1
y1

 =

(
1 0T

d R

)(
1
x1

)
. (2.2)

With 2.2 there exists a unique matrix M for each proper isometry and for
the composition of proper isometries these matrices can be multiplied.

2.2. One parameter motions in the plane

Definition 2 (One parameter motion). [2, p. 4]
A one parameter set of proper isometries in the plane is called a one parameter
planar motion.

The parameter t is interpreted as time. A visualization of a one parameter
planar motion is moving around a sheet of paper on a table. The table is
called the fixed system Σ0 and the paper the moving system Σ1. Any point
X ∈ Σ1 describes a path bX in Σ0 (see Fig. 2.3).

A one parameter motion can be written as

Σ1 \ Σ0 : x0 = d(t) + R(t) · x1. (2.3)

There are two possible ways to interpret 2.3:

1. The equation can be read as two coordinate frames describing one and
the same point X. There is a coordinate frame F0 = {O0, e01, e02} in Σ0

8



2. Kinematical fundamentals

X bX

Σ0

Σ 1

x 0

x 1
ϕ(t)

d(t)

O1 e01

e02 O 1

e 11
e 12

Figure 2.3.: One parameter motion in the plane

and another one F1 = {O1, e11, e12} in Σ1. x0 =

(
x0
y0

)
and x1 =

(
x1
y1

)
are the coordinate columns of a point X with respect to F0 and F1,
respectively.

2. On the other hand, the two vectors x0 =

(
x0
y0

)
and x1 =

(
x1
y1

)
can

also be considered as coordinate columns of two distinct points X0
and X1 with respect to one fixed coordinate frame: X0 is the original
point and X1 the displaced one.

Hereinafter the first interpretation of 2.3 will be used. The only excep-
tion will be when we derive the dependencies of the angles of a four bar
mechanism (see subsection 2.5).

2.3. Velocities of planar motions

An interesting aspect of any one parameter motion is the velocity distribu-
tion of the points X ∈ Σ1 at a particular time instance t.

9



2. Kinematical fundamentals

2.3.1. Velocity vector of a point

For a given one parameter motion as described in 2.3 the velocity vX of any

point X . . . x1 =

(
x1
y1

)
represented with respect to the coordinate frame in

Σ1 can be calculated by deriving 2.3.

vX = ẋ0 = ḋ + Ṙ x1 (2.4)

= ḋ + Ṙ RT︸ ︷︷ ︸
=:W

·(x0 − d) (2.5)

R is an orthogonal matrix and therefore RT = R−1. The matrix W is called
the angular velocity matrix. It is easy to check that

W =

(
0 −ϕ̇
ϕ̇ 0

)
=

(
0 −ω
ω 0

)
, with ω = ϕ̇.

Each component of vX can be calculated explicitly as

ẋ0 = ḋx −ω(y0 − dy) and ẏ0 = ḋy + ω(x0 − dx).

2.3.2. Velocity distribution

The velocity distribution of a planar motion gives information about how the
movement of any two points of the system is connected. By Theorem 1 any
two positions of a system can be mapped onto each other by revolution or
translation. For any planar motion it is possible to consider its instantaneous
properties. Depending on the value of the angular velocity ω and the
translation vector d, there are three possible cases:

1. instantaneous revolution (ω 6= 0)
There exists exactly one point P with vanishing velocity. That point P
can be calculated as

px = dx −
ḋy

ω
and py = dy +

ḋx

ω

with respect to the chosen coordinate frame in Σ0. P is called the
instantaneous center of revolution (ICR). The velocity vectors behave as
in the case of a continuous revolution about the ICR P, with angular
velocity ω = ϕ̇ (see Fig. 2.4).

10



2. Kinematical fundamentals

vx

vy

X

Y

P
Figure 2.4.: Velocity distribution of an instantaneous revolution

2. instantaneous translation (ω = 0 and ḋ 6= 0)

Here we have W =

(
0 0
0 0

)
and from 2.4:

vx = ḋ, ∀X.

All points have the same velocity vector (see Fig. 2.5).
X

vx

Y

vy
Z

vz

Figure 2.5.: Velocity distribution of an instantaneous translation

3. instantaneous standstill (ω = 0 and ḋ = 0)
All velocity vectors are vanishing.

2.4. Mechanisms

Definition 3 (Mechanism).

1. A planar mechanism is built up from several rigid bodies also called
systems Σ0, . . . Σn−1 which are connected by joints.

11



2. Kinematical fundamentals

2. If for a particular mechanism, each of the (n
2) relative motions, Σj \

Σk k, j = 0, . . . , n− 1; k < j of two of the rigid bodies is one para-
metric then we speak of a one parametric mechanism.

3. A mechanism, where each rigid body Σi is connected via joints with
at least two of the other rigid bodies Σj, Σk is called a closed mechanism.

Definition 4 (Revolute joint).
A revolute joint is a connection between two rigid bodies which allows only

rotation about an axis a. (see Fig. 2.6)

Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0Σ0

Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1

aaaaaaaaaaaaaaaaa

Figure 2.6.: Revolute joint

Definition 5 (Theoretical degree of freedom). [2, p. 30-31]
Subsequently we study a planar mechanism with the systems Σ0, . . . Σn−1
and m joints J1, . . . , Jm connecting these systems. Let fi denote the degree of
freedom of the joint Ji; fi = 1, 2. We can think of Σ0 as being fixed whereas
the remaining n− 1 systems Σ1, . . . , Σn−1 move with respect to Σ0. At first
imagine the mechanism without the joints. Each system then has three
degrees of freedom with respect to the fixed system Σ0. If every system
Σi, i = 0, . . . , n− 1 is equipped with a local coordinate frame {Oi; ei1, ei2},
the three degrees of freedom are the coordinates ai, bi of the origin Oi with
respect to the fixed systems coordinate frame {O0; e01, e02} and the angle
ϕi := ∠(e01, ei1). This results in 3 · (n− 1) parameters to describe all possible
positions. By installing the joint Ji, the mechanism loses (3− fi) degrees
of freedom. Hence, by mounting all joints we lose ∑m

i=1 (3− fi) degrees of
freedom. Accordingly the theoretical degree of freedom (DOF) is defined as

f = 3 · (n− 1)−
m

∑
j=1

(
3− f j

)
. (2.6)

martin grübler found the formula for the theoretical degree of freedom in
1883: The formula of grübler only holds in the generic case, since it only

12



2. Kinematical fundamentals

counts conditions and parameters of a mechanism. The actual DOF can
differ from the theoretical DOF.

A one parametric mechanism (see Def. 3.2) depends only on one input
parameter. In this case each of the systems Σj of the mechanisms moves one
parametrically with respect to any of the other systems Σi. By the concept
of instantaneous movement, it is possible to construct the ICR Pij of any of
the (n

2) motions Σj \ Σi, i, j = 0, . . . , n− 1, i < j.

Theorem 2 (Threepole theorem of aronhold-kennedy). [7, p. 120]
Let a one parametric planar mechanism be given and let Σ0, . . . , Σn−1 denote
its systems. Let moreover Pij be the ICR of the motion Σj \ Σi and ωij be the
instantaneous angular velocity of this motion at a chosen time instant t. Then the
following holds for any three mutually distinct systems Σi, Σj, Σk:

The ICRs Pij, Pjk, Pik are collinear and moreover

−−→
PijPjk =

ωik
ωij
· −−−→PikPjk. (2.7)

Remark 1. 1. Equation 2.7 means that the ratio of the three collinear
points Pij, Pjk, Pik is ωik

ωij
.

2. We call the line gijk containing the ICRs Pij, Pjk, Pik pole axis. Obviously,

there exist (n
3) = n·(n−1)·(n−2)

3·2 pole axes for a one parametric planar
mechanism with n systems at any time instant t. The geometrical
configuration established by the (n

2) ICRs Pij and the (n
3) pole axis gijk

at a time instant t is called ICR configuration.

2.5. Example four bar linkage

ICR configuration of a four bar linkage

In [7, p. 119 - 121], a planar four bar linkage is defined by an arbitrary planar
quadrilateral ABCD (see Fig. 2.7): It consists of four systems Σ0, . . . , Σ3 and
four revolute joints J0, . . . , J3. The systems Σ0, . . . , Σ3 are represented by the
quadrilaterals edges AB, AD, BC, CD and the revolute joints J0, . . . , J3 are
centered in the quadrilaterals vertices A, B, C, D. The system Σ0 is called the
(fixed) base of the mechanism. The arm Σ1 of the mechanism gets driven,
which is called crank or rocker, depending on whether a full revolution

13



2. Kinematical fundamentals

of this arm is possible. The second arm Σ2 can also have the function of a
crank or a rocker and the fourth bar is called the coupler Σ3. To check, if
the motion of a four bar linkage is one parametric, we will calculate the
theoretical DOF as in 2.6. A four bar linkage has n = 4 systems and for a
revolute joint fi = 1. The theoretical DOF results in

f = 3 · (4− 1)−
4

∑
j=1

(3− 1) = 1.

Since n = 4, there are (4
2) = 6 ICRs and (4

3) = 4 pole axes. Clearly, four of the
ICRs are the points A, B, C, D: P01 = A, P02 = B, P23 = C and P13 = D. With
these four ICRs the pole axes can be constructed: g012 = AB, g013 = AD,
g023 = BC and g123 = CD. With Theorem 2 the two remaining poles P03 and
P12 can be constructed as P03 = g013 ∩ g023 and P12 = g012 ∩ g123 (see Fig.
2.7).

A = P01

B = P02

C = P23

D = P13

P03

P12

g012

g013

g023

g123

Σ0

Σ1

Σ2

Σ3

Figure 2.7.: ICR configuration of a four bar linkage

Geometrical analysis of the velocities of a four bar linkage

According to [7, p. 23], when the crank AD of the four bar linkage is driven
with a particular instantaneous angular velocity ω01 at the time instant t,

14



2. Kinematical fundamentals

then we also know the velocity vector vD,01 of the point D with respect to
the motion Σ1 \ Σ0 (see Fig. 2.8). With vD,01 given, it is easy to determine the
velocity vector vC,ij of any point X ∈ Σj with respect to the motion Σj \ Σi.
Choose for instance, i = 0, j = 2 and hence C ∈ Σ2, then the construction of
vC,02 can be done as follows:

The velocity vD,13 is zero, as D is the pole P13. Since velocities are additive,
we can calculate

vD,01 + vD,13︸ ︷︷ ︸
=0

= vD,03 ⇒ vD,01 = vD,03.

We use the velocity vD,03 to construct the velocity vC,03. To achieve this, we
have to rotate the vector vD,03 by 90◦ around D to get a point X on the
line AD. We construct a parallel line to CD through the point X to get a
point Y where the parallel intersects BC. By rotating Y around C by 90◦ in
the reverse direction of the previous rotation, we get the vector vC,03 of the
velocity of the point C with respect to the pole P03. By knowing vC,03, we
can calculate

vC,02 + vC,23︸︷︷︸
=0

= vC,03 ⇒ vC,02 = vC,03.

Σ0

Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1Σ1

Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2

Σ3

A = P01

P12

C = P23

P03

B = P02B = P02B = P02B = P02B = P02B = P02B = P02B = P02B = P02B = P02B = P02B = P02B = P02B = P02B = P02B = P02B = P02

D = P13D = P13D = P13D = P13D = P13D = P13D = P13D = P13D = P13D = P13D = P13D = P13D = P13D = P13D = P13D = P13D = P13

vD,01 = vD,03

vC,02 = vC,03

XXXXXXXXXXXXXXXXX

YYYYYYYYYYYYYYYYY

g013

g023

Figure 2.8.: Velocity distribution of a four bar linkage
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2. Kinematical fundamentals

Analysis of a four bar linkage

In order to get a parametrization of a four bar linkage, it is necessary to
know the dependencies of the angles. With respect to the drive angle ϕ1 = t,
the output angle ϕ2(t) of the second arm and the angle of the coupler ϕ3(t)
can be calculated (see Fig. 2.9).

The bar AB with length d is fixed and let BC and AD be the arms of
such a linkage. The driving arm AD has length a and the second arm has
length b. The length of the coupler CD is c. We use a right coordinate frame

F =
{

O, ex, ey
}

with O = A and ex =
−→
AB−−−→
‖AB‖

.

Σ0

Σ1

Σ2

Σ3

a

b

c

dA B

C

D

ex

ey

t
ϕ2

ϕ3

Figure 2.9.: Notations of a four bar linkage
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2. Kinematical fundamentals

Dependencies of the angles of a four bar linkage – calculations

The coordinates of the points A, B, C, D with respect to the coordinate frame
in Σ0 can be calculated with elementary trigonometry for the dimensions
shown in Figure 2.9.

A :
(

xA
yA

)
=

(
0
0

)
(2.8)

B :
(

xB
yB

)
=

(
d
0

)
(2.9)

D :
(

xD
yD

)
=

(
a cos(t)
a sin(t)

)
(2.10)

C :
(

xC
yC

)
=

(
xD + c cos(ϕ3) = xB + b cos(ϕ2)
yD + c sin(ϕ3) = yB + b sin(ϕ2)

)
(2.11)

By substituting 2.9 and 2.10 in the right side of 2.11, we obtain the following
two equations :

a · cos(t)− b · cos(ϕ2) + c · cos(ϕ3) = d. (2.12)
a · sin(t)− b · sin(ϕ2) + c · sin(ϕ3) = 0. (2.13)

ϕ3 can be eliminated by isolating all parts with ϕ3 on the right hand side to
square and add the equations 2.12 and 2.13:

a · cos(t)− b · cos(ϕ2)− d = −c · cos(ϕ3) (2.14)
a · sin(t)− b · sin(ϕ2) = −c · sin(ϕ3). (2.15)

a2 + b2 + d2 − 2ab · (cos(t) cos(ϕ2) + sin(t) sin(ϕ2))

−2d · (a · cos(t)− b cos(ϕ2))− c2 = 0
(2.16)

As an interim result, the equation for ϕ2 can be written as:

A2 · cos(ϕ2) + B2 · sin(ϕ2) + C2 = 0 (2.17)

with:
A2 := 2b(d− a cos(t))
B2 := −2ab sin(t)

C2 := a2 + b2 − c2 + d2 − 2ad cos(t)
(2.18)

To calculate ϕ2, the property sin(ϕ2) = ±
√

1− cos2(ϕ2) of the trigonomet-
ric functions is used in 2.17, which is squared to get rid of the root.

A2 · cos(ϕ2) + C2 = ∓B2 ·
√

1− cos2(ϕ2)

(A2
2 + B2

2) cos2 ϕ2 + 2A2C2 cos(ϕ2)− B2
2 + C2

2 = 0

17



2. Kinematical fundamentals

Hence, we obtain:

cos(ϕ2) =
−2A2C2 ±

√
4A2

2C2
2 − 4(A2

2 + B2
2)(−B2

2 + C2
2)

2(A2
2 + B2

2)

=
−A2C2 ±

√
�
��A2
2C2

2 −�
��A2
2C2

2 + A2
2B2

2 + B4
2 − B2

2C2
2

A2
2 + B2

2

=
−A2C2 ± B2 ·

√
A2

2 + B2
2 − C2

2

A2
2 + B2

2
.

With 2.17 also the sine of ϕ2 can be calculated:

sin(ϕ2) =
−A2 · cos(ϕ2)− C2

B2

=
�
��A2
2C2 ∓ A2��B2 ·

√
A2

2 + B2
2 − C2

2 − C2 · (��A
2
2 + B�2

2)

��B2 · (A2
2 + B2

2)

=
−B2C2 ∓ A2 ·

√
A2

2 + B2
2 − C2

2

A2
2 + B2

2
.

Similar calculations are necessary to get the angle ϕ3 as a function of t. This
means that we have to eliminate ϕ2 from the equations 2.12 and 2.13. By
collecting the terms without ϕ2 on the left hand side we get

a · cos(t) + c · cos(ϕ3)− d = b · cos(ϕ2) (2.19)
a · sin(t) + c · sin(ϕ3) = b · sin(ϕ2). (2.20)

Squaring and adding yields to

A3 · cos(ϕ3) + B3 · sin(ϕ3) + C3 = 0 (2.21)

with

A3 := 2c(a cos(t)− d)
B3 := 2ac sin(t)

C3 := a2 − b2 + c2 + d2 − 2ad cos(t)
(2.22)

By comparing 2.17 with 2.21 it is easy to see that it is the same equation,
except the first one is in the parameter ϕ2 and the second one in the
parameter ϕ3. Therefore the result of 2.17 can also be used for ϕ3.
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2. Kinematical fundamentals

Dependencies of the angles of a four bar linkage – result

The sine and cosine of the angles ϕ2 and ϕ3 can be calculated with the same
formula and different coefficients Ai, Bi, Ci for i = 2, 3 as follows:

cos ϕi =
−AiCi ± Bi ·

√
A2

i + B2
i − C2

i

A2
i + B2

i
(2.23)

sin ϕi =
−BiCi ∓ Ai ·

√
A2

i + B2
i − C2

i

A2
i + B2

i
. (2.24)

For the angle ϕ2 the parameters are

A2 = 2b(d− a cos(t))
B2 = −2ab sin(t)

C2 = a2 + b2 − c2 + d2 − 2ad cos(t)
(2.25)

and for the angle ϕ3 the parameters are

A3 = 2c(a cos(t)− d)
B3 = 2ac sin(t)

C3 = a2 − b2 + c2 + d2 − 2ad cos(t)
(2.26)

A four bar linkage can be assembled in two different ways (a) and (b)
with the same drive angle, and therefore the Equations 2.23 – 2.24 have
an ambiguity in terms of the used signs. One can easily check that the
following combinations are the correct ones for the two assembly modes:

(a) cos ϕ2 =
−A2C2+B2·

√
A2

2+B2
2−C2

2
A2

2+B2
2

, sin ϕ2 =
−B2C2−A2·

√
A2

2+B2
2−C2

2
A2

2+B2
2

cos ϕ3 =
−A3C3−B3·

√
A2

3+B2
3−C2

3
A2

3+B2
3

, sin ϕ3 =
−B3C3+A3·

√
A2

3+B2
3−C2

3
A2

3+B2
3

(b) cos ϕ2 =
−A2C2−B2·

√
A2

2+B2
2−C2

2
A2

2+B2
2

, sin ϕ2 =
−B2C2+A2·

√
A2

2+B2
2−C2

2
A2

2+B2
2

cos ϕ3 =
−A3C3+B3·

√
A2

3+B2
3−C2

3
A2

3+B2
3

, sin ϕ3 =
−B3C3−A3·

√
A2

3+B2
3−C2

3
A2

3+B2
3
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2. Kinematical fundamentals

Parametrization of a four bar linkage

We choose local coordinate frames {Oi; ei1, ei2} in the systems Σi; i =
0, 1, 2, 3 as follows (see Fig. 2.10):

O0 = A; e01 =

−→
AB
−−−→
‖AB‖

(2.27)

O1 = A; e11 =

−→
AD
−−−→
‖AD‖

(2.28)

O2 = B; e21 =

−→
BC
−−−→
‖BC‖

(2.29)

O3 = D; e31 =

−→
DC
−−−→
‖DC‖

(2.30)

A = O0 = O1 B = O2

C

D = O3

e01

e02 e11

e12 e21

e22

e31

e32

t ϕ2ϕ3

Figure 2.10.: Coordinate frames used for the parametrization of a four bar linkage

With respect to these coordinate frames the motions Σ1 \ Σ0, Σ2 \ Σ0 and
Σ3 \ Σ0 are parametrized as follows:

Σ1 \ Σ0 :

 1
x0
y0

 =

1 0 0
0 cos(t) − sin(t)
0 sin(t) cos(t)

 1
x1
y1

 (2.31)
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2. Kinematical fundamentals

Σ2 \ Σ0 :

 1
x0
y0

 =

1 0 0
d cos(ϕ2(t)) − sin(ϕ2(t))
0 sin(ϕ2(t)) cos(ϕ2(t))

 1
x2
y2

 (2.32)

Σ3 \ Σ0 :

 1
x0
y0

 =

 1 0 0
a · cos(t) cos(ϕ3(t)) − sin(ϕ3(t))
a · sin(t) sin(ϕ3(t)) cos(ϕ3(t))

 1
x3
y3

 (2.33)

By means of 2.31, 2.32 and 2.33 the position of any point in Σ1, Σ2 and Σ3
with respect to Σ0 can be computed in dependency of the motion parameter
t (= drive angle).
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3. Analysis of the Jansen
mechanism

3.1. Description of the Jansen mechanism

Theo Jansen’s leg mechanism is illustrated in Fig. 3.1. It consists of n = 8
systems Σ0, . . . , Σ7 and m = 10 revolute joints. We use a different notation
to that of Theo Jansen for his holy numbers, so Table 3.1 gives a comparison
of the distinct notations.

Σ0

Σ1
Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2

Σ3

Σ4 Σ5
Σ6

Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7

A
B

C

D

E

F

G

H
Figure 3.1.: Notation of the systems for the ICR configuration of the Jansen mechanism

The systems Σ0, Σ1, Σ3, Σ4, Σ5 and Σ6 are visualized as bars AB, AD, CD, DF,
BF and EG whereas the remaining two systems Σ2 and Σ7 are represented
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3. Analysis of the Jansen mechanism

Holy numbers systems new notations
a∗ = 38.0 - d1,x
b∗ = 41.5 Σ2 b1
c∗ = 39.3 Σ5 b2 = a3
d∗ = 40.1 Σ2 d3
e∗ = 55.8 Σ2 e
f ∗ = 39.4 Σ6 b3
g∗ = 36.7 Σ7 c3
h∗ = 65.7 Σ7 f
i∗ = 49.0 Σ7 g
j∗ = 50.0 Σ3 c1
k∗ = 61.9 Σ4 c2
l∗ = 7.8 - d1,y

m∗ = 15.0 Σ1 a1 = a2

n∗ =
√

a∗2 + l∗2 ≈ 38.8 Σ0 d1 = d2

Table 3.1.: Notations of the Jansen mechanism and our notations

by the triangles BCE and FGH, respectively. The table 3.2 depicts which
systems are connected by the ten revolute joints.

So each of the points B, D and F is center of two revolute joints, whereas in
A, C, D, E and G only one revolute joint is centered.

By means of grübler’s formula we obtain a theoretical DOF of

f = 3 · (n− 1)−
m

∑
i=1

(3− fi) = 3 · 7−
10

∑
i=1

2 = 1

# system system connected by revolute joint centered in
1 Σ0 Σ1 A
2 Σ0 Σ2 B
3 Σ0 Σ5 B
4 Σ2 Σ3 C
5 Σ1 Σ3 D
6 Σ1 Σ4 D
7 Σ2 Σ6 E
8 Σ4 Σ5 F
9 Σ4 Σ7 F

10 Σ6 Σ7 G

Table 3.2.: List of revolute joints and the connected bars of the Jansen mechanism
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3. Analysis of the Jansen mechanism

Second four bar linkage (Σ0, Σ1, Σ5, Σ4)
P01 = A P05 = B P14 = D P45 = F
g015 = AB g014 = AD g045 = BF g145 = DF
P04 = g014 ∩ g045 P15 = g015 ∩ g145
see Fig. 3.2

Table 3.3.: Construction protocol of the second four bar linkage of the Jansen mechanism.

of Jansen’s mechanism. Subsequently we think of Σ0 as the fixed system
(base) and call Σ7 end effector. The main focus will lie on the path of the foot
tip H with respect to the motion Σ7 \ Σ0 (end effector\base). The flat part of
this path corresponds to the ground contact of the leg.

3.2. ICR configuration of the Jansen mechanism

The example of the ICR configuration of a four bar linkage in 2.5, was
constructed with the dimensions of the Jansen mechanism to serve as the
basis for further constructions. The construction for this first four bar linkage
(Σ0, Σ1, Σ2, Σ3) is documented in Figure 2.7. We will add the next systems in
small groups to complete new four bar linkages, in order to make it easy to
follow the construction. The systems notations can be seen in Figure 3.1.

By adding Σ4 and Σ5 we obtain two additional four bar linkages, namely
(Σ0, Σ1, Σ5, Σ4) and (Σ3, Σ4, Σ2, Σ5). By adding these two systems the num-
ber of poles increases to 15 and there will be 20 pole axes. We will use the
previous construction for the ICR configuration for four bar linkages again
and by doing so it is possible to find all the poles of the entire mechanism.
The pole axes are constructed as in Theorem 2.

We will start with the four bar linkage (Σ0, Σ1, Σ5, Σ4). The pole P01 is
already known, so there will be only five new poles. The poles and pole axes
which belong to each four bar linkage are in green shade and the previously
constructed poles are in red shade (see Fig. 3.2 and Table 3.3).

With the given systems, it is possible to identify the systems (Σ3, Σ4, Σ2, Σ5)
as a four bar linkage. When constructing the ICR configuration of that four
bar linkage, only four poles will be new, the rest are already existing poles.
With these poles we have found all the poles of the mechanism so far (see
Fig. 3.3 and Table 3.4).
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3. Analysis of the Jansen mechanism

A = P01

B = P02 = P05

C = P23

D = P13 = P14

F = P45

P12
P15

P03

P04

g015

g014

g045g145

Σ0

Σ1

Σ4

Σ5

Figure 3.2.: ICR configuration of the second four bar linkage

Third four bar linkage (Σ3, Σ4, Σ2, Σ5)
P34 = D P45 = F P23 = C P25 = B
g234 = CD g235 = BC g245 = BF g345 = CD
P24 = g234 ∩ g245 P35 = g035 ∩ g345
see Fig. 3.3

Table 3.4.: Construction protocol of the third bar linkage of the Jansen mechanism.
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3. Analysis of the Jansen mechanism

A = P01

B = P02 = P05 = P25

C = P23

D = P13 = P14 = P34

F = P45

P35

P24

g234

g235

g245

g345

P12 P15

P04

P03

Σ2

Σ3

Σ4

Σ5

Figure 3.3.: ICR configuration of the third four bar linkage
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3. Analysis of the Jansen mechanism

The points B and D were poles in each of the previous four bar linkages,
which means B = P02 = P05 = P25 and D = P13 = P14 = P34. Looking at
the point B the pole axis g025, which connects the three poles, collapses in
the point B and the pole axis g134 collapses into the point D. The six other
missing pole axes can be constructed as follows: g035 = g023, g124 = g123,
g125 = g012, g034 = g013, g024 = g045 and g135 = g145.

The fourth four bar linkage consists of the systems (Σ2, Σ5, Σ6, Σ7), so the
systems Σ6 and Σ7 are added to the mechanism. Again, we start by looking
at the four bar linkage itself (see Fig. 3.4 and Table 3.5) and then construct
the poles with respect to the other systems.

B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25

E = P26

F = P45 = P57

G = P67

P27

P56

g257

g267

g256

g567

A = P01

C = P23

D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34

P35

P12 P15

P04

P03

P24

Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2

Σ5 Σ6

Σ7

Figure 3.4.: ICR configuration of the fourth four bar linkages used in the Jansen mechanism
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3. Analysis of the Jansen mechanism

Fourth four bar linkage (Σ2, Σ5, Σ6, Σ7)
P25 = B P26 = E P57 = F P67 = G
g256 = BE g257 = BF g267 = EG g567 = FG
P27 = g257 ∩ g267 P56 = g256 ∩ g567
see Fig. 3.4

Table 3.5.: Construction protocol of the fourth four bar linkages of the Jansen mechanism.

Until now, we have found 20 poles and 24 pole axes. In order to get the rest
of the poles, Theorem 2 has to be applied several times. The order of finding
new poles can vary, but the final result is unique.

The foot tip H ∈ Σ7 is of special interest, therefore we are especially looking
for the pole P07. A short way to construct the pole P07 is by constructing
the pole axes g127 = P12 ∪ P27 and g157 = g135. The intersection of these two
pole axes yields the pole P17 = g127 ∩ g157. Now we can construct the pole
axes g027 = g024 and g017 = A ∪ P17 and get the pole P07 by intersecting
these pole axes: P07 = g017 ∩ g027 (see Fig. 3.5). The interested reader can
confirm this and also construct the remaining poles and pole axes as no
detailed protocol of the construction is delivered in this thesis.

By Subsection 2.3.2, the instantaneous movement of any point can be seen as
a revolution regarding its pole. In order to construct the tangential direction
for the movement of H, the pole P07 is connected with H and to get the
tangent the line through H perpendicular to P07H is constructed.

The finished ICR configuration of the Jansen mechanism consists of 28 poles
and 56 pole axes and can be seen in Figure 3.6.

3.3. Geometrical analysis of the velocities of the
Jansen mechanism

We use the methods of constructing the velocities of the joints of the Jansen
mechanism as shown in Fig. 2.8. The dimensions of the four bar linkage
are identical to the top part of the Jansen mechanism, so the previous
result serves as a basis for further constructions. We already know that
vD,01 = vD,03 and with the same argument we get vD,01 = vD,04.
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3. Analysis of the Jansen mechanism

B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25B = P02 = P05 = P25

E = P26

F = P45 = P57

G = P67

H

P07

P17

P27

P56

g127

g017

g027

g157

A = P01

C = P23

D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34D = P13 = P14 = P34

P35

P12
P15

P04

P03

P24

Figure 3.5.: ICR configuration: Construction of pole P07
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Figure 3.6.: ICR configuration of the Jansen mechanism
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3. Analysis of the Jansen mechanism

In Fig. 3.7 we start by constructing the velocity of the point F with respect to
the pole P04. The velocity vD,04 can be transferred to the point F to determine
the velocity vF,04.

vF,04 + vF,47︸︷︷︸
=0

= vF,07 ⇒ vF,04 = vF,07.

The joint in F is a part of Σ7 and we know its velocity vF,07 with respect to
the base Σ0. We can again transfer the angular velocity of F to the foot tip
H and get vH,07 as a result.

To confirm the construction, it is also possible to construct the velocities of
the Jansen mechanism in the other direction, using the Systems Σ2 and Σ6 to
have a connection from the crank to the foot. In Figure 3.7 this is illustrated
in light green.
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Figure 3.7.: Velocity distribution of the Jansen mechanism
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3. Analysis of the Jansen mechanism

3.4. Parametrization of the Jansen mechanism

As we have shown in section 3.1, the DOF of the Jansen mechanism is one,
i.e. the Jansen mechanism is a one parametric mechanism. The crank gets
driven with a constant velocity, therefore the angle ϕ can be interpreted as a
value of time, thus the angle will be called t. Coordinate frames are placed
in the systems of the Jansen mechanism, to calculate the position of each
individual system at any time instance t (see Fig: 3.8). The position of the
system Σ7 \ Σ0 is of special interest.

The first of three four bar linkage is built up with the systems Σ0, Σ1, Σ2, Σ3
and is the same as in the example of a four bar linkage (see Subsection 2.5).
The length of the bars will be written as ai, bi, ci, di with i = 1, 2, 3 as used
in the standard notation. The angles of the first four bar linkage are called
ϕi, the angles of the second four bar linkage ψi and for the third four bar
linkage θi with i = 1, 2, 3.

The position of the coordinate frames in the first four bar linkage can be
calculated as follows:

Σ1 \ Σ0 :

 1
x0
y0

 =

1 0 0
0 cos(t) − sin(t)
0 sin(t) cos(t)


︸ ︷︷ ︸

M0,1

 1
x1
y1


(3.1)

and

Σ2a \ Σ0 :

 1
x0
y0

 =

 1 0 0
d1 cos(ϕ2) − sin(ϕ2)
0 sin(ϕ2) cos(ϕ2)


︸ ︷︷ ︸

M0,2a

 1
x2a
y2a

 ,
(3.2)

with ϕ2 = ϕ2(t). It is not necessary to compute a coordinate frame in the
coupler in order to get all points of the mechanism.

For the first triangle, we will put a coordinate frame in Σ2b. This happens by
rotating in a negative direction with respect to the coordinate frame in Σ2a.
The angle α is constant and can be calculated using the laws of cosines.

Σ2b \ Σ2a :

 1
x2a
y2a

 =

1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)


︸ ︷︷ ︸

M2a,2b

 1
x2b
y2b


(3.3)
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3. Analysis of the Jansen mechanism
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Figure 3.8.: Notation for the parametrization of the Jansen mechanism
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3. Analysis of the Jansen mechanism

The second four bar linkage Σ0, Σ1, Σ5, Σ4 uses the same drive angle t = ψ1,
therefore the position of the coordinate frame in Σ1 is unchanged. The
position of Σ5 is the only one which has to be computed. The system Σ4 is
the connection between the bars Σ1 and Σ5.

Σ5 \ Σ0 :

 1
x0
y0

 =

 1 0 0
d1 cos(ψ2) sin(ψ2)
0 − sin(ψ2) cos(ψ2)


︸ ︷︷ ︸

M0,5

 1
x5
y5

 ,
(3.4)

with ψ2 = ψ2(t).

The third four bar linkage consists of the systems Σ5, Σ6, Σ7a, Σ2b and the
drive angle θ1 is measured between the systems Σ2b and Σ5. θ1 can be
calculated as θ1 = ψ2− ϕ2 + α. The system Σ7a is the coupler in that linkage,
so this angle also has to be computed.

Σ6 \ Σ2b :

 1
x2b
y2b

 =

 1 0 0
d3 cos(θ2) − sin(θ2)
0 sin(θ2) cos(θ2)


︸ ︷︷ ︸

M2b,6

 1
x6
y6


(3.5)

Σ7a \ Σ2b :

 1
x2b
y2b

 =

 1 0 0
a3 · cos(s) cos(θ3) − sin(θ3)
a3 · sin(s) sin(θ3) cos(θ3)


︸ ︷︷ ︸

M2b,7a

 1
x7a
y7a


(3.6)

The last step in order to determine the position of the footpoint is to rotate
the coordinate frame in Σ7a in a negative direction by β degrees, which
is the constant angle of the triangular shaped Σ7 in the corner where the
coordinate frame is placed.

With the known position of system Σ7, the coordinates of the footpoint are 1
x7
y7

 =

 1
i · cos(β)
i · sin(β)


with i is the distance from the origin of that coordinate frame to the foot-
point. The position of the footpoint with respect to the coordinate frame
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3. Analysis of the Jansen mechanism

{O0; e01, e02} is of special interest. This can be achieved by composition of
previous motions as follows:

Σ7 \ Σ0 :

 1
x0
y0

 =
(
M0,2a ·M2a,2b ·M2b,7

)︸ ︷︷ ︸
M0,7

 1
x7
y7

 , (3.7)

The fixed base of the first two for bar linkages of a Jansen mechanism needs
to be at a specific angle to result in a smooth walking motion. For easier
calculation the fixed base was placed parallel to the x-axis. After calculating
the position of all points, they have to be rotated in a clockwise direction
by 11, 6◦ around the origin. The locus of the foot tip is also turned and
therefore the flat part appears to be parallel to the ground.
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Optimization
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4. Optimization of the Jansen
mechanism

This chapter is organized as follows: A brief introduction in genetic al-
gorithms is given in Section 4.1 and in Section 4.2, a genetic algorithm
is presented, that develops Jansen-style mechanisms whose loci meet any
given locus.

4.1. Introduction to genetic algorithms

Theo Jansen found his holy numbers by what he described as an evolu-
tionary method. Precise details about his work are not available, he used
a computer but it seems that at least parts of the selection were done by
hand.

As stated in [5], genetic algorithms (GAs) can be used to solve a great
variety of problems. One application of genetic algorithms is to minimize
a prescribed goal function F(ζ1, . . . , ζn) with parameters ζτ, τ = 1, . . . , n.
In general the parameters have to fulfill constraints which can be a set of
inequalities G1(ζτ) < 0, . . . , Gm(ζτ) < 0. By varying the set of parameters a
genetic algorithm reaches its goal. When the search space of the parameters
ζτ is large or unknown or when the constraints Gσ, σ = 1, . . . , m are nonlin-
ear, genetic algorithms get commonly used. A GA uses the following steps
until predefined criteria are met:

1. Initialization: Create a random population with p inhabitants rκ =
(rκ1, . . . , rκn), κ = 1, . . . , p which satisfy the constraints Gσ(rκ) < 0.
The rκ are also called chromosomes and the rκτ are called genes.

2. Evaluation: Calculate the fitness F(rκ) of each chromosome rκ in terms
of the given objective function. This way the computer can differentiate
between good or bad chromosomes.
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4. Optimization of the Jansen mechanism

3. Selection: Regarding the fitness F(rκ), the algorithm is more likely to
select better chromosomes rκ for reproduction for the next generation.

4. Recombination: The selected chromosomes are called parents. A new
offspring for the next generation is created by crossover. In the process
of crossover the genes of the parents are usually combined randomly
with certain restrictions, to create a new offspring.

5. Mutation: Changing one chromosome by modifying one or more
genes slightly is called mutation. Mutation is done with a much lower
probability than recombination.

6. Replacement: After recombination and mutation the algorithm checks,
if the new chromosomes are still valid under the constraints Gσ. If so,
the fitness F(rκ) of the new chromosomes is calculated and compared
to the fitness of the chromosome of the previous generation. If the
value of the fitness is lower in the new generation, the old chromosome
will be replaced and takes the place in the population for the new
generation, otherwise the old chromosome will stay in the population
for the next generation.

7. Repeat steps 2 - 6 until a predefined goal is reached.

The run time of a genetic algorithm can vary noticeably depending on the
population size or the maximum of generations which are run through.

4.2. Genetic algorithm for synthesizing a
Jansen-style mechanism

In [1], a genetic algorithm was used to find the positioning and the lengths of
the bars of a four bar mechanism with a triangular shaped coupler. The goal
was that the end effector meets defined input points with further restrictions.
We will adapt this algorithm to synthesize Jansen-style mechanisms whose
end effector loci meet the locus of the foot of Jansen’s mechanism. A different
notation to Jansen’s Holy Numbers will be used (see Table 4.1 and Fig. 4.1).

We define s positions
(
uρ, vρ

)
, ρ = 1, . . . , s of the mechanisms foot tip H

which are generated from the parametrization of the Jansen mechanism
derived in Section 3.4. We also define the time instances tρ, for which
the positions of

(
uρ, vρ

)
should be reached. We will generate a Jansen-

style mechanism whose end effector tip approximates the points
(
uρ, vρ

)
while moving. The coordinates of the new mechanism’s foot tip positions
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4. Optimization of the Jansen mechanism

Holy numbers systems new notations
m∗ = 15.0 Σ1 a
b∗ = 41.5 Σ2 b
j∗ = 50.0 Σ3 c

n∗ =
√

a∗2 + l∗2 ≈ 38.8 Σ0 d
c∗ = 39.3 Σ5 e
k∗ = 61.9 Σ4 f
d∗ = 40.1 Σ2 g
e∗ = 55.8 Σ2 h
f ∗ = 39.4 Σ6 i
g∗ = 36.7 Σ7 j
i∗ = 49.0 Σ7 k
h∗ = 65.7 Σ7 l

with
l∗ = 7.8

a∗ = 38.0
Positioning of the mechanism

x∗ = 0 xA
y∗ = 0 yA

γ∗ = arctan(l∗/a∗) = 11.6◦ γ

Table 4.1.: Notations of the Jansen mechanism and the notation for the GA
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Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2Σ2

c, Σ3

f , Σ4

e, Σ5

i, Σ6

Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7Σ7

b

g

h

j

k

l

ααααααααααααααααα

βββββββββββββββββ

A

B

C

D

E

F

G

H

x

y

0

γ

xA

yA

ϕ1

ϕ2

ψ2
δ

θ

path of H with respect to the motion Σ7 \ Σ0 .

Figure 4.1.: Notation of the genes of the Jansen-style mechanism used in the genetic algo-
rithm
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belonging to the time instances tρ will be denoted by
(
ξρ, ηρ

)
. Hence, the

goal function F to be minimized will be

F(ξρ, ηρ) :=
s

∑
ρ=1

((
ξρ − uρ

)2
+
(
ηρ − vρ

)2
)

.

4.2.1. Starting population

This subsection is about the initialization as described in Section 4.1. Initially
we generated the lengths of the bars simply with random numbers until
they met our restriction. It worked out but was not very effective, so we
looked for a way to generate valid lengths straight forward. A quite complex
way was found, but due to clustering in the results this approach had to be
discharged and it was back to the random numbers. The main difference
to [1] is that due to the different architecture of the leg mechanism also
nonlinear constraints are necessary.

We start by creating a population of p chromosomes, where each chromo-
some represents a mechanism. Each chromosome is built up of 15 genes.
The first 12 genes represent the lengths a, b, . . . , l of the mechanism’s bars
and the other three hold the x, y−position of the point A = (xA, yA) and
the angle γ of the bar AB against the x-axis of the coordinate system (see
Fig. 4.1).

To generate a valid starting population we split the whole mechanism into
parts. Once the values of the genes of the first part are known, we can move
on to the next part and use these values for further restrictions and so on.

To restrict the overall size of the mechanism, we only choose values of the
genes in a predefined interval [q0, q1] with exceptions of the genes h and
l. This is because of the way these values are chosen - a greater variety of
mechanisms is possible by canceling these limitations.

Selection of the parameters a, b, c, d, e, f of the starting population

The first six chromosomes hold the values of the lengths of two four bar
linkages.
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4. Optimization of the Jansen mechanism

The first four genes a, b, c, d of each chromosome represent the first four
bar mechanism (Σ0, Σ1, Σ2, Σ3). We want to generate mechanisms, where Σ1
serves as a crank and therefore a full revolution around the point A has
to be possible. The gene a represents the length of the crank Σ1, Σ2 is the
second arm with length b, Σ3 is the coupler with length c and d holds the
length of the base Σ0. To check if a four bar linkage or a triangle is possible
to build, we have to verify that the length of any bar is shorter than the sum
of the lengths of the other bars. According to [2, p. 29], a full revolution
in a joint of a four bar linkage is possible, if the sum of the lengths of one
of the bars, for instance a1, connected in this joint with any other bar is
shorter or equal than the sum of the other two bars. This is equivalent to
a + b ≤ c + d, a + c ≤ b + d, a + d ≤ b + c. These three equations also imply
that the bar a is the shortest of the mechanism.

The second four bar linkage (Σ0, Σ1, Σ5, Σ4) with Σ5 and Σ4 with lengths
e and f also needs to have a crank in A, therefore the requirements are
identical.

In total the following 12 linear constraints are necessary for the two four
bar linkages:

q0 ≤ a and b, . . . , e ≤ q1 (4.1)
a + b− c− d ≤ 0 (4.2)
a− b + c− d ≤ 0 (4.3)
a− b− c + d ≤ 0 (4.4)
a + e− f − d ≤ 0 (4.5)
a− e + f − d ≤ 0 (4.6)
a− e− f + d ≤ 0 (4.7)

When generating the values, they are chosen randomly in the interval [q0, q1]
that the first 6 equations 4.1 hold under any circumstances. This can be
guaranteed by choosing a ∈ [q0, q1] and b, c, d, e, f ∈ [a, q1] Afterward the
equations 4.2 - 4.7 are checked. If the values pass all equations they will
be kept for a mechanism, otherwise the values will be discharged and new
values will be chosen. This method of eventually rejecting all values is called
rejection sampling.

1A full revolution at joint A would also be feasible, if d + a ≤ b + c, d + b ≤ a + c, d +
c ≤ a + b hold, but since the original Jansen mechanism uses a as shortest length of the
first and second four bar linkage, we will use the same approach.
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4. Optimization of the Jansen mechanism

Selection of the parameters g, h of the starting population

The system Σ2 is represented by a triangle with edge lengths b, g, h. The
value of the gene b is given and we randomly choose values for the angle α
(see Fig. 4.1) and the value g, the value of the gene h is calculated afterward.
The angle α is chosen so, that 0 < ϕ2 + ψ2 + α < 2π is true for all input
angles ϕ1. Since α is a constant angle we will have to check the minimum and
maximum of the angle δ = ϕ2 + ψ2 to verify, that the previous inequalities
are valid. The value of g is chosen within the global limitations g ∈ [q0, q1].
With the law of cosine and the values for b, g and α, the value of h can
be calculated. For h the limitations q0 ≤ h ≤ q1 were discharged, since
if the value of b was getting close to q1, it was nearly impossible to find
valid values for α and g that h was also valid. Even though the limits were
discharged, the value of h can not exceed 2 · q1.

Proposition 1. The minimum of δ = ϕ2 + ψ2 is reached with the input angle
ϕ1 = π and the maximum at ϕ1 = 0

Proof. For the extremal positions of δ we have to find the input angles ϕ1
so, that δ̇ = ω25 = 0. By

vC,02 + vC,25 = vC,05

we have

vC,25 = vC,05 − vC,02. (4.8)

As δ is extremal, v25 has to be 0. Hence, due to 4.8

vC,02 = vC,05.

must hold.

We still need to show that vC,25 = 0 when ϕ1 = 0 and ϕ1 = π, i.e.

ϕ1 ∈ {0, 1} ⇒ vC,02 = vC,05. By looking at the ICR configuration of the
mechanism it is easy to see that in these two positions many poles coincide,
which can be verified in Fig. 4.2 and 4.3 and therefore it is obvious to see
that the angular velocities ω02 and ω05 of the motions Σ2 \ Σ0 and Σ5 \ Σ0
are identical.

Remark 2. The angle θ (see Fig 4.1) is given as θ = 2π− δ− α and therefore
we know that

δmin ←→ θmax and δmax ←→ θmin.
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Figure 4.2.: Minimum of the angle θ

Selection of the parameters i, j of the starting population

The third four bar linkage (Σ5, Σ6, Σ7, Σ2) is represented by the parameters
(e, i, j, g). The values of e and g and also the minimum and maximum of the
angle θ are already known. With θ and the law of cosine, we can calculate the
minimum d0 and the maximum d1 of the diagonal EF of the quadrilateral
BEGF: d0 =

√
e2 + g2 − 2eg · cos θmin and d1 =

√
e2 + g2 − 2eg · cos θmax

(see Fig. 4.2 and Fig. 4.3).

We aim to find i and j so that the four bar linkage is constructable and non-
crossed in all positions. The constraints on the parameters are as follows,
see Fig. 4.4:

1. q0 < i, j < q1 (limitations of the length)
2. The triangles (i, j, d0) and (i, j, d1) are constructable
3. µ1 < π − λ1 and µ2 < π − λ2 (non-crossing condition)

1 and 2 yield four linear constraints, whereas 3 results in non-linear ones,
see below. We give a graphical interpretation as we go through the steps
with a coordinate system where the parameters i and j are interpreted as
the coordinate frame. The shaded area of the following graphics represent
all the valid positions of a point with coordinates (i, j) up to each step.
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Figure 4.3.: Maximum of the angle θ
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Figure 4.4.: Restrictions of the third FBL in the GA

Ad 1:
The values of the parameters are only valid within the general limita-
tions [q0, q1]. This results in a square in the first quadrant with corners
(q0/q0), (q1/q0), (q1/q1), (q0/q1), see Fig. 4.5.

Ad 2:
Applying the triangle inequality on the triangles (i, j, d0) and (i, j, d1) results
in six inequalities but due to d0 < d1, only three are essential:

������i + j > d0 i + j > d1 j > −i + d1
i + d0 > j ������i + d1 > j =⇒ j < i + d0
j + d0 > i ������j + d1 > i j > i− d0

In the i, j-plane these three inequalities characterize three half planes (see
Fig. 4.6). The half planes may cut three corners of the square from 1 to
further restrict the possible values of the parameters i and j.

Ad 3:
For the nonlinear part, we check the angles of the triangles from 2 that
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Figure 4.5.: Step 1 of finding parameters i, j

i

j

q0 q1

q0

q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1

d0 d1

d0

d1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
−i+

d
1

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i−

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

j =
i+

d 0

Figure 4.6.: Step 2 of finding parameters i, j
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they stay within their limits. We only have to check these constraints for the
shorter diagonal d0. The crossing of the systems first occurs in the minimal
position of θ, if there is crossing at all. The angle µ1 between d0 and i can be
calculated with the law of cosines as follows:

j2 = i2 + d2
0 − 2 i d0 cos µ1

cos µ1 =
i2 + d2

0 − j2

2 i d0
(4.9)

To avoid crossed states of the quadrilateral BGEF we have to limit the angle
µ1:

µ1 < π − λ1 ⇔ cos µ1 > cos (π − λ1)⇔ cos µ1 > − cos λ1.

Using 4.9 means:

j2 − i2 − 2 i d0 cos λ1 − d2
0 < 0
⇔

j2 −
(

i2 − 2 i d0 cos λ1 + d2
0 cos λ2

1

)
− d2

0 + d2
0 cos λ2

1 < 0

⇔

j2 − (i + d0 cos λ1)
2 + d2

0

(
−1 + cos λ2

1

)
︸ ︷︷ ︸

=− sin λ2
1

< 0

⇔
j2 − (i + d0 cos λ1)

2 − d2
0 sin λ2

1 < 0

The last line represents the interior of a hyperbola centered in (−d0 cos λ1/0),
whose vertices are (−d0 cos λ1/ ± d0 sin λ1) and whose asymptotes are
parallel to the 1

st and 2
nd median, see Fig. 4.7. The hyperbola and its

asymptotes are plotted in blue.

Similar considerations can be done for the second non-crossing condition
µ2 < π − λ2 from 3. This results in i2 − (j + d0 cos λ2)

2 − d2
0 sin λ2

2 < 0 the
interior of a hyperbola (0/ − d0 cos λ2) whose vertices are
(±d0 sin λ2/− d0 cos λ2). The asymptotes are also parallel to the 1

st and 2
nd

median. This hyperbola cuts a part off the lower part of the shaded area in
Fig. 4.8. The hyperbola and its asymptotes are plotted in brown.

With the known borders of the area we can start generating a random
point inside the area, this method is known as rejection sampling. Therefore
we circumscribe an axis parallel rectangle around the calculated area and
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Figure 4.7.: Step 3 of finding parameters i, j

choose a random point inside this rectangle. The coordinates representing
the values for i and j are checked if they are inside the shaded area, in other
words if they are valid (see Fig. 4.8). If so, they will be kept, otherwise the
values will be discharged and new values i, j will be generated.

Selection of the parameters k, l of the starting population

As the foot of the mechanism, the triangle Σ7 represented by the parameters
j, k, l is added. The value of j is already known, therefore only the other
two parameters have to be chosen. At first, the angle β will be chosen in
the interval (0, π). The value of the parameter k is also randomly chosen in
the interval [q0, q1]. With the law of cosine, the value of l is then calculated.
Similar to the gene h, we do not use an upper limitation for l in order to not
restrict the solutions too much.
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Figure 4.8.: Step 4 of finding parameters i, j

Positioning of the mechanism

The xy−position xA, yA of the point A can be randomly chosen. We used
the interval xA, yA ∈ [−2q1, 2q1] as limits, guaranteeing that the mechanism
is somewhere close to the foot tip locus. The boundaries of the interval are
arbitrary. The angle γ of the base is chosen in [0, 2π].

With the positioning of the mechanisms, the initialization is finished and
we can continue with the next step, the evaluation of the mechanisms.

Evaluation

Each mechanism is given a value for the fitness which we aim to minimize.
The fitness is the sum of the squared distances of the foot tip

(
ξρ, ηρ

)
of

the mechanism and the given target points
(
uρ, vρ

)
. Thus, the fitness can be

calculated as
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4. Optimization of the Jansen mechanism

F(a, . . . , l, xA, yA, γ) =
s

∑
ρ=1

[(
ξρ − uρ

)2
+
(
ηρ − vρ

)2
]

(4.10)

with  1
ξρ

ηρ

 = M(tρ) ·

 1
k · cos(β)
k · sin(β)

 , (4.11)

M(tρ) = M0,2a(tρ) ·M2a,2b(tρ) ·M2b,7(tρ) from 3.7 and (4.12)

cos(β) =
j2 + k2 − l2

2jk
, sin(β) =

√
1− cos2(β) (4.13)

4.2.2. Selection, recombination, mutation and replacement

Since our goal is to minimize the distances to our target points, we sort the
population according to its fitness from lowest to highest. Our ambition is to
generate the next population by crossover or mutation of each chromosome
and progressively decrease its fitness.

For each chromosome we generate a disturbance vector V by combining
the best chromosome rbest of the previous generation with two arbitrary
chromosomes r1, r2 of the previous generation. r1 and r2 are selected by
normalized distribution so that better chromosomes are more likely to be
chosen. This method is known as differential evolution and V is calculated
as

V = rbest + M (r1 − r2) ,

with a constant M ∈ [0, 1], which influences to what extend the best Chro-
mosome Xbest is disturbed.

A chromosome gets selected for crossover with a predefined crossover-
probability CP ∈ [0, 1], if selected, we choose the chromosome itself and
the disturbance Vector V as parents. With two point crossover their offspring
is generated as shown in Figure 4.9. The crossover points, where parts of
each parents are selected, are chosen randomly. Therefore the genes and
the length of the part which is selected from V varies. The fitness of the
offspring is then calculated and if it is better than the fitness of its parent,
the new offspring is chosen for the next generation.

Mutation happens independent of crossover and with a lower probability
MP ∈ [0, 1]. For mutation a single gene of the chromosome is selected and
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parent aaaaaaaaaaaaaaaaa ggggggggggggggggg xAxAxAxAxAxAxAxAxAxAxAxAxAxAxAxAxA yAyAyAyAyAyAyAyAyAyAyAyAyAyAyAyAyA γγγγγγγγγγγγγγγγγ

V aVaVaVaVaVaVaVaVaVaVaVaVaVaVaVaVaV hVhVhVhVhVhVhVhVhVhVhVhVhVhVhVhVhV lVlVlVlVlVlVlVlVlVlVlVlVlVlVlVlVlV xA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,V yA,VyA,VyA,VyA,VyA,VyA,VyA,VyA,VyA,VyA,VyA,VyA,VyA,VyA,VyA,VyA,VyA,V γVγVγVγVγVγVγVγVγVγVγVγVγVγVγVγVγV

offspring aaaaaaaaaaaaaaaaa ggggggggggggggggg hVhVhVhVhVhVhVhVhVhVhVhVhVhVhVhVhV lVlVlVlVlVlVlVlVlVlVlVlVlVlVlVlVlV xA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,VxA,V yAyAyAyAyAyAyAyAyAyAyAyAyAyAyAyAyA γγγγγγγγγγγγγγγγγ

Figure 4.9.: Two point crossover

a random real number within a specified range is added ’+’ and subtracted
’-’ from it. The fitness of both new chromosomes (’+’ and ’-’) is calculated
and the fittest of the three chromosomes (’old’, ’+’, ’-’) is selected for the
next generation.

The previous steps are repeated until all chromosomes of one population are
processed and then the whole procedure starts over for the next generation.
Some chromosomes may not be changed at all from one generation to the
next.

4.2.3. End of algorithm

The algorithm stops either when the fitness of a chromosome is lower
than a predefined threshold errmin or the number of generations exceeds a
predefined integer value genmax. The flowchart in Fig. 4.10 shows the main
structure of the algorithm.
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Start

Stop

load target points

Frpc,gc+1 < Frpc,gc

pc < popmax

gc < genmax
AND

Fbest > errmin

generate valid
starting population

gc = 1

pc = 1

select chromosomes
crossover + mutation

rpc,gc+1 = rpc,gcrpc,gc+1 = rpc,gc+1

gc = gc + 1

pc = pc + 1

gencount: gc
popcount: pc
fitness: F
chromosome: r

YES

YES

YES

Figure 4.10.: Flowchart of the genetic algorithm
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The genetic algorithm was tested by varying of different parameters. The
focus was on changing the value M occurring in the disturbance vector V,
the values CP and MP of the probabilities for crossover and mutation , the
size of the population popmax and the maximum of generations genmax
which were run through.

For M, values between 0.1 and 0.4 were tested. Lower values led to very
small improvements but the mechanism kept improving up to high genera-
tions. The shape of the mechanism was not significantly changed during this
process. With higher values for M, the mechanisms improved very much at
the beginning, but stagnated towards the end of the evolution.

The crossover probability was tested for values CP ∈ [0.8, 0.9] and the
mutation probability for values MP ∈ [0.2, 0.4]. The results were for any
combinations of these values not better or worse in any way. Regarding the
population size popsize, 200 mechanisms turned out to be the minimum
number of mechanisms to reach the set goal, but in most tests 250 mecha-
nisms were used. By looking at the graphs of the error reduction (see Figure
5.2), 2000 generations seemed to be a reasonable maximum number. Most
error curves flattened out at that point.

The final results vary in size and shape, so different results are presented
in four categories. Each category is represented in a separate section. In
Section 5.1 mechanisms whose shape is close to the Jansen mechanism are
illustrated. Section 5.2 is devoted to mechanisms with a reverse position
of two bars connected to the crank which will be called inverse mechanisms.
In Section 5.3 mixed mechanisms of the previous categories are presented
and in Section 5.4 an infeasible result is shown, namely the two further
categories of mechanisms.

The error was measured in absolute values and in the scale which was
used, an error of s/2 was aimed for, with s being the number of target points
respectively steps, which was used. The error was also calculated as a
percentage value of the error reduction compared to the best mechanism
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5. Results of the genetic algorithm

of the starting population, but since the first mechanism was arbitrary, that
number was not very significant.

5.1. Results close to the Jansen mechanism

The main goal of the genetic algorithm was to generate mechanisms close
or similar to the Jansen mechanism. For a better understanding, 12 steps of
an animation of the Jansen mechanism can be seen in Fig. 5.1. In the first
step the angle of the crank is at zero degrees compared to the fixed base.
To achieve a full revolution of the crank in 12 steps, the input angle was
successively increased by 30 degrees for the next sub figure.
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Figure 5.1.: Animation of the Jansen mechanism
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Approximately 27 % of all generated mechanisms were close to the looks
of the Jansen mechanism. This means that the two bars, represented by the
genes c and f connected to the crank other than the fixed base are pointing
towards the right when the crank is in the zero position. Also the lowest
triangle with the foot is pointing from the right towards the locus. One
resulting mechanism which was close to the Jansen mechanism is presented
in more detail. At first a few generations will be shown, to see how the
mechanism evolved. Afterwards the result is shown in a large image in
comparison to the Jansen mechanism and also twelve steps of an animation
are plotted. The following parameters were used in all tests:

• Design variables: a . . . l, xA, yA, γ
• Target points: 12 points of the locus of the Jansen mechanism starting

at an input angle of 0◦ and a step size of 30◦.
• Limits of the variables: a, . . . , g and i, . . . , k ∈ [q0, q1] = [10, 70], h, l ∈

[q0, 2q1] = [10, 140], xA, yA ∈ [2q1, 2q1] = [−140, 140], γ ∈ [0, 2π].

For each mechanism which is presented, only the variable parameters are
listed. For the first result, the following parameters were used:

• popsize = 250, genmax = 2000, CP = 0.9, MP = 0.3, M = 0.4 and
the allowed error = s/2 = 12/2 = 6.

In Figure 5.3 the evolution of the mechanism is presented. In the 250th
generation, the mechanism was already close to the final dimensions but as
can be seen in Fig. 5.2 the remaining error was decreased close to the 2000

th

generation.
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starting error reduced by 99.8548 percent

Figure 5.2.: Error reduction of genetic algorithm
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Figure 5.3.: Evolving of a mechanism through generations

This mechanism was chosen mainly because of its looks. The final minimized
error turned out to be error = 6.0984 which just did not reach the goal but
was close enough. The algorithm was implemented in matlab and with
an Intel(R) Core(TM) i5-3317U CPU @ 1.70GHz processor with 8 GB RAM it
took approximately 18.2 Minutes to run through the 2000 generations.

The generated lengths of the bars of the mechanism are written in Table 5.1
and can there be compared to the Jansen mechanism. As seen in the third
column of this table, which holds the differences of length to the Jansen
mechanism, the value of a few genes varies more, which still results in a
similar motion.
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Holy numbers genes difference
m∗ = 15.00 a = 14.45 −0.55
b∗ = 41.50 b = 41.04 −0.46
j∗ = 50.00 c = 44.06 −5.94
n∗ = 38.79 d = 36.59 −2.20
c∗ = 39.30 e = 36.82 −2.48
k∗ = 61.90 f = 57.80 −4.10
d∗ = 40.10 g = 53.20 13.10
e∗ = 55.80 h = 67.65 11.85
f ∗ = 39.40 i = 41.93 2.53
g∗ = 36.70 j = 46.00 9.30
i∗ = 49.00 k = 48.26 −0.74
h∗ = 65.70 l = 72.12 6.42
x∗ = 0.00 xA = 3.01 3.01
y∗ = 0.00 yA = −3.98 −3.98

γ∗ = 11.60◦ γ = 10.47◦ −1.13◦

with
l∗ = 7.8

a∗ = 38.0

Table 5.1.: Best approximated mechanism to Jansen locus

In Figure 5.4 the newly generated mechanism can be compared to the
Jansen mechanism, which is plotted in gray in the background. Due to the
differences in length, the parts on the right hand side of the mechanism look
like they are scaled up. The positioning of the fixed base, which is plotted
in black, turned out to be very close to the one in the Jansen mechanism.
The locus of the Jansen mechanism with the twelve target points is plotted
in gray and the locus of the new mechanism is held in brown.

In Figure 5.5 an animation of the new mechanism is displayed. The step size
of the crank is 30 degrees. The two mechanisms superpose well throughout
the motion. The same animation is shown again in Fig. 5.6, although without
the Jansen mechanism in the background, to exclusively see the motion of
the new mechanism.
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Figure 5.4.: New Jansen-style mechanism in comparison with the Jansen mechanism
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Figure 5.5.: Animation of the new mechanism in comparison to the Jansen mechanism
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Figure 5.6.: Animation of the generated mechanism
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5.1.1. Further results close to the Jansen mechanism
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5.2. Inverse mechanisms

The algorithm also delivered a type of mechanism, which is called inverse
mechanisms. This category is classified and labeled due to an inverse or
reverse look of the mechanism compared to the Jansen mechanism. When
the angle of the crank regarding the fixed base is zero degrees, the two bars
(c and f ) connected to the crank point to the left (see Fig. 5.7). This leads to
a more compact mechanism although its motion when the crank is turned
does not look as natural as the Jansen mechanisms. Another difference
to the Jansen mechanism is that the lower triangle FGH with the foot tip
H points towards the locus from the left. With approximately 44 % of all
generated mechanisms, this type of mechanism made up the biggest group
of the generated mechanisms.

The algorithm took 6.9 minutes to find the following mechanism with these
parameters:

• popsize = 250, genmax = 1000, CP = 0.9, MP = 0.2, M = 0.3 and
the allowed error = s/2 = 12/2 = 6.

The algorithm returned the following values for the length of the bars:

a = 15.86, b = 60.65, c = 41.58, d = 41.17, e = 50.46, f = 26.73, g = 31.61,
h = 88.18, i = 67.81, j = 14.51, k = 58.26, l = 50.55, xA = −0.51, A =
−20.74, γ = −18.9◦

This mechanism has a final error of 7.42, so the algorithm ran through all
1000 generations. On closer inspection, it is obvious to see that the bigger
part of the error derives from the upper part of the locus, which is in general
not as important.

In Figure 5.7 the inverse mechanism can be compared to the Jansen mech-
anism. Figure 5.8 shows the different look of the inverted mechanism
compared to the Jansen mechanism during one full rotation of the crank. In
Figure 5.9 an animation of the inverse mechanism is displayed.
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Figure 5.7.: Inverse mechanism in comparison with the Jansen mechanism
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Figure 5.8.: Animation of the inverse mechanism in comparison to the Jansen mechanism
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5. Results of the genetic algorithm
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Figure 5.9.: Animation of the generated inverse mechanism
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5. Results of the genetic algorithm

5.2.1. Further inverse results

-20 0 20 40 60 80 100 120 140
-100

-80

-60

-40

-20

0

20

40

60

80

100 parameters:
popsize = 250, genmax =
2000, CP = 0.9, MP = 0.3, M =
0.15 and the allowed error =
s/12 = 12/12 = 1.
generations: 2000
remaining error: 12, 74
run time: approx. 17.2 min
length of bars:
a = 17.09, b = 51.72, c = 29.35,
d = 39.79, e = 53.28, f = 34.15,
g = 40.18, h = 87.97, i = 53.49,
j = 41.18, k = 63.37, l = 44.09,
xA = −1.33, yA = −14.99, γ =
2.9◦

-20 0 20 40 60 80 100 120 140
-100

-80

-60

-40

-20

0

20

40

60

80

100 parameters:
popsize = 250, genmax =
2000, CP = 0.8, MP = 0.3, M =
0.2 and the allowed error = s/2 =
12/2 = 6.
generations: 2000
remaining error: 16, 50
run time: approx. 17.8 min
length of bars:
a = 15.20, b = 61.03, c = 47.11,
d = 35.36, e = 64.93, f = 53.93,
g = 47.87, h = 101.62, i = 55.39,
j = 49.20, k = 65.94, l = 28.14,
xA = 4.88, yA = −5.22, γ = 20.2◦

67



5. Results of the genetic algorithm

5.3. Mixed mechanisms

This category of mechanisms is called mixed mechanisms. The main criteria
for a mechanism to belong to this category are that either the bar with
length represented by the genes c or f connected to the crank is pointing to
the left and the other of these two bars is pointing to the right, when the
crank is in the zero degree position. Only in 9 % of all mechanisms, this
kind was developed.

With the following parameters a mechanism was generated:

• popsize = 250, genmax = 2000, CP = 0.9, MP = 0.3, M = 0.12 and
the allowed error = 12/3 = 4.

The values for the length of the bars turned out to be a = 19.90, b = 64.60,
c = 37.21, d = 52.68, e = 32.19, f = 63.58, g = 70.00, h = 114.73, i = 69.91,
j = 33.02, k = 58.40, l = 70.27, xA = −14.20, yA = −7.32, γ = −1, 7◦ and
the error was reduced to 6.1.

In Figure 5.10 the mixed mechanism can be compared to the Jansen mecha-
nism. In Figure 5.11 the animation can be compared to the Jansen mechanism
and in Figure 5.12 an animation of the mixed mechanism is displayed.
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5. Results of the genetic algorithm
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Figure 5.10.: Mixed mechanism in comparison with the Jansen mechanism
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5. Results of the genetic algorithm
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Figure 5.11.: Animation of the mixed mechanism in comparison to the Jansen mechanism
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5. Results of the genetic algorithm
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Figure 5.12.: Animation of the mixed mechanism
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5. Results of the genetic algorithm

5.3.1. Further mixed results
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5. Results of the genetic algorithm

5.4. Infeasible mechanisms

In Figure 5.13 an infeasible result of the algorithm can be seen. Approxi-
mately 20 % of all generated mechanisms turned out to be unusable. The
main criterion for usability was that the foot tip H always has to be the
lowest point of the mechanism. An example was created with the following
parameters:

• popsize = 250, genmax = 2000, CP = 0.8, MP = 0.3, M = 0.2 and
the allowed error = 12/4 = 3.

-20 0 20 40 60 80 100 120
-100

-50

0

50

Figure 5.13.: Infeasible mechanism in comparison with the Jansen mechanism
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6. Conclusion

In hindsight, the genetic algorithm was a good choice to synthesize Jansen-
style mechanisms to a given locus. The development of the starting popula-
tion turned out to be the most challenging part of the algorithm.

The approach in this paper was successful in finding numerous mechanisms
which met our requirements. With the used constraints although, Jansen’s
twelve holy numbers were not reproducible. With identical inputs a great
variety of results was produced, which could be categorized into four groups.
The approximate percentage on how often a specific type of mechanism was
produced can be seen in Figure 6.1.

Jansen-style mechanisms

27%

Inverse mechanisms
44%

Mixed mechanisms

9% Infeasible mechanisms

20%

Figure 6.1.: Percentage of the produced types of mechanisms

In order to find a mechanism for a specific purpose, the algorithm would
have to be run through several times. One very interesting aspect of the
results were the categories of the inverse and mixed mechanism. These had
not been expected. The inverse mechanisms have a more compact shape and
the tip of the foot reaches the locus from the other side. This could eventually
be used for specified applications. Some of the mixed mechanisms turned
out to be low in height in terms of height comparison with the Jansen
mechanism. For some purposes this could be an advantage.
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6. Conclusion

Unfortunately approximately 20 % of the generated mechanisms were
infeasible, meaning that the foot tip of the mechanisms was not the lowest
part of the mechanism. It would have been a lot of work to avoid this
category. Many mechanisms would have to be deleted, since this only is
noticeable until a couple of generations have passed. This effort would have
been out of the scope of this thesis. Inverse or mixed mechanisms could
be eliminated more easily, but since they are an interesting output, these
results were kept in the algorithm.

In roughly 18 % of all run tests the algorithm stopped because the allowed
error was reached. Within these tests only mechanisms of the categories close
the the Jansen mechanism, mixed mechanisms and infeasible mechanisms
were produced. Slightly more than 52 % of all mechanisms close to the
Jansen mechanism were generated before the maximum allowed number of
generations was reached. The inverse mechanisms are the most common
output, but they seem to converge slower.
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