Master Thesis

Data Driven Gesture Analysis

Jorg Simon

Graz, 2019

Institute of Interactive Systems and Data Science
Graz University of Technology

TU

Grazm

Supervisor/First reviewer: Dipl.-Ing. Dr. techn. Eduardo Veas

Abstract (English)

In this thesis, we present a system to recognise natural appearing gestures using a self build smartglove
prototype. We explain the nature of gestures and the anatomy of the human arm and go into the theory of
gesture recognition. A user study is used as a basis of a data-driven approach to gesture recognition, where
all possible features from human activity recognition are generated, and automatic methods to select a good
set of features are explored. We extend this approach even further with a novel algorithm for selecting
sensors for a specific target system. Recursive Sensor Elimination (RSE) selects sensors recursively using
a heuristic function to find the best configuration for a given subset of gestures. We explain the use cases,
the detail of the RSE algorithm and first experimental results. It shows the problems when someone tries
to apply the insights of this work to consumer hardware in the form of a smartwatch experiment and which
design decision have to be made. Within this experiment, it presents a possible method to augment IMU
time series data if the labels are not corrupted by speeding up or slowing down the time series and adding
some noise. With this, it is possible to train a simple system to allow steering f.e. a slide set with your
watch.

ii

Abstract (German)

In dieser Arbeit stelle ich ein System fiir die Erkennung natiirlich vorkommender Gesten vor, welche
sich eines selbst gebauten Smart-Glove Prototyp bedient. Ich gehe auf den Hintergrund von Gesten, die
Anatomie der menschlichen Hand und die Theorie von Gestenerkennung ein. Ich stelle eine Studie vor,
welche ich mit Kollegen durchgefiihrt habe und zeige einen eigenen Daten-Getriebenen Ansatz welcher
wettbewerbsfihig mit den Resultaten der Studie ist. Ich erweitere diesen Ansatz, um einzelne Sensoren
im Handschuh auf ihre Niitzlichkeit fiir die Erkennung zu quantifizieren. Der neu eingefiihrte Recursive
Sensor Elimination (RSE) Algorithmus ermoglicht es, Sensoren fiir ein gewisses Set von Gesten zu selek-
tieren und so das Hardwaredesign datengetrieben weiter zu filhren. Man kann dann einen Smart-Glove
mit dem reduzierten Sensorset schoner und billiger bauen. Zu guter letzt schaue ich mir die Machbarkeit
von Gestenerkennung auf einer Smart Watch an und gehe auf die Einschinkungen ein, wenn man die
Erkentnisse der Smart-Glove Studie auf im Konsum erhéltlicher Hardware portieren mochte. In diesem
Rahmen stelle ich auch eine Methode fiir die Erschaffung kiinstlicher Trainingsdaten fiir IMUs vor. Ich
zeige, dass es moglich ist mit Machine Learning ein simples System zu trainieren um eine Prdsentation zu
steuern. Dank einer entwickelten Datenaugmentierung kann das auch mit vergleichsweise wenig Aufwand
im Datensammeln funktionieren.

iii

iv

Acknowledgement

I want to thank especially Prof. Stefanie Lindstaed who brought me to the Know-Center ages ago and
supported me and continues to support me trough my carrier there. On the same level I want to thank
Dr. Eduardo who is not only a really good Boss and brilliant researcher, but also a very supportive and
empathic person. He pushed me to finish this work a lot, and I want to say thanks for the drive you did
build up in me. Granit Luzhnica was the one who, with the help of Eduardo, started the journy to the
Smart-Glove together with me. He did the first modelling with the dataset and our exchange on this topic
and on the topic on machine learning and wearables is always enlighting. I want to thank Vedran Sabol for
his support in the team, and his diplomatic feeling. I want to thank Christoffer Ojeling who is now making
his career at Google, who brought a lot of clever ideas into the project, and did the hardware assembly. I
was always fun discussing with him. I also want to thank all my friends and family and everyone who did
provide input and critique but especially I want to thank my wife to support me writing that thesis beside
work and was also my first private editor. You are all awesome!

Jorg Simon
Graz, 2019

vi

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either literally or
by content from the used sources.

Graz,

Place, Date Signature

Eidesstattliche Erklarung

Ich erkldire an Eides statt, dass ich die vorliegende Arbeit selbststindig verfasst, andere als die angegebe-
nen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wortlich und inhaltlich entnommene
Stellen als solche kenntlich gemacht habe.

Graz, am

Ort, Datum Unterschrift

vii

viii

Contents

List of Figures [xil
List of Tables il
1. Introduction il
1.1. Problem Definition and Solutions o m
1.2. Contributions e

2. Anatomy of the Human Arm and Gestures
2.1. Anatomy of the Human Arm
2.2, GESHUIES . . .« o o o e e e e e

3. Gesture Recognition 4}
3.1. Camera Based Gesture Recognition 18]
3.2. Wearable Based Gesture Recognition O
3.3. Human Activity Recognition (HAR) Based Gesture Recognition]
3.4. Feature Engineering - Digital Signal Processing 2]
3.4.1. Splitting Gravitation Force and Linear Force

3.4.2. Absolute Energy Signal 4

3.4.3. Fourier Transformation 14

3.4.4. Wavelet Transformation, 14

3.5. Feature Engineering - Extracting Features from Windows 14
3.5.1. Statistical Features over the Window

3.52. ZeroCrosSing o v v v i e

353, Peakso 116]

354, Total Energy e LL6]

3.5.5. Fourier Transformation Based Features 116

3.5.6. Pairwise Features 116

3.6. Feature Selection o vt 7
3.7. Machine Learning Models 18
3.7.1. LinearModels 20

3.7.2. Support Vector Machines 21l

3.7.3. NaiveBayes 22]

3.7.4. Gaussian Processes e e 22

3.7.5. Clustering and Distance-based Methods 22]

3.7.6. Linear Discriminant Analysis,

377, DecisioNTIEe . . o v v v v v e e e e e 23

3.78. Ensamble Methods 23

379. Bagging e 24]

3.7.10. Boosting 24]

iX

Contents

3.8. System Perspective
3.8.1. Inertial Measurement Unit
3.8.2. Accelerometer e e e e e e e e e
3.83. GYIOSCOPE o v i e
3.8.4. Magnetometer e e e e e e e
3.8.5. Flex Sensors e e e
3.8.6. Force Sensitive Resistors

4. The Gesture Glove Experiment

The Hardware of the Custom Smartglove and Data Collection Software
Data Collection Experiment e
Collected Data e
4.3.1. Preprocessing-Labels o
4.3.2. Preprocessing - Outlier Removal
4.3.3. Descriptionof BasicData o
434, Timingof Gestures o e e e e
4.3.5. Correlationsinthe RawData
43.6. RawTime Series e
Feature Engineering
4.4.1. Window Length and Step-Size
4.4.2. Annotation of the Sliding Windows
4.4.3. Window Features from the Original Paper
4.4.4. Extended Window Features
Train and Test-Set Split
Modelling and Feature Selection in the Original Paper.
4.6.1. Performance on Continous SensorData
Data-Driven Modelling and Feature Selection
4.7.1. Extended Features - Initial Feature Selection and Modelling with Filters
4.7.2. Extended Features - Model Based Feature Elimination
Sensor Selection
4.8.1. The Recursive Sensor Elimination Algorithm
4.8.2. Recursive Sensor Elimination Results for all Gestures
4.8.3. Usecase: Development of a Task-Specific Gesture Glove
4.8.4. Results on Task Specific Gesture Sets
49. Resultsonthe TestSet e

4.1.
4.2.
4.3.

4.4.

4.5.
4.6.
4.17.

4.8.

4.10.

Conclusion

5. The SmartWatch Experiment
The Hardware and Data Collection Software
Experiment / Data Collection

5.1.
5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.

Data

Data Augmentation e e e e e
Feature Engineering e

Models . .

Full Stack ML, a Working System

Conclusion

6. Discussion of the work

A. Data of the Glove

B. Data of the Smart Watch

Bibliography

63|

HESEREERE

e 8 H d

List of Figures

2.2.
2.1.

3.1.
3.2

3.3.
3.4.
3.6.
3.7.

3.8.

4.2.
4.1.
4.3.

44.
4.5.
4.6.
4.7.

4.8.
4.9.

Example of two gestures inourdataset
Joints and DOF of the human hand based on [Cobos et al., [2010]. The blue arrows show
the reference frame. Black lines show a joint or bone inside the hand model. The purple
circles show the possible movement for a joint from the reference frame. This circle is also
the degree of freedom (DOF) of that joint. For clarity only the degrees of freedom of the
thumb (4 DOF) and the degrees of freedom for one finger (5 DOF) is shown, the other
fingers have the same DOF. This model has intotal 24 DOF.

Knowledge Discovery and Data Mining Process (KDDM)
Comparison of what decision boundaries a model can learn given data. The image is taken
from scikit-learn.org L e e
Typical gravitational forces on a hanging arm with a smartwatch
Variance and bias as a function of model capacity/model complexity
Effect of 12/Ridge on the weights. Image taken from the scikit-learn HP.
Comparison of the Area the Regularisation wants to push the weights to. Image taken from
WikimediaCommons o
Three-Layer Architecture for a BSN as described in [Fortino et al.[[2015]

31 gestures used in this work. Additional explanationinthetext.
A schematic view on the smartglove. 1. Each fingertip has an IMU on the top and a force
resistor on the bottom. 2. Each finger has two flexion sensors to measure the flexion of two
parts of the finger. 3. The thumb has three flexion sensors, the additional one measures
the opposition of the thumb to the hand. 4. On the top of the palm, we placed an IMU,
a magnetometer and an analogue multiplexer. 5. On the wrist, we placed a flexion sensor
and additionally an IMU at a position where a smartwatch would usually be placed. 6. All
the sensors are connected to an Arduino DUE board. The board is held by an armband with
a velcro fastener Christoffer Ojeling did the main assembly and C programming with input
of Eduardo Veas, Granit Luzhincaandme.
Text . . . e
The overall process of the study
Schematic of the data collection process.
An example of a LabelGroup. (1) is an automatic label (always 3s), (2) is the manual label
shorter than the automatic label. A manual label consists of a dynamic (3) and a static (4)
part. The static part is optional. The dynamic part is always before the static part and not
optional. e e e e
Showing the process from raw data to preprocessed data with valid labels
Valuerange of all accelerometer sensors used for user AB73 with (a) and without (b) out-
liersremoved e

X1

List of Figures

4.10.

4.11.
4.12.
4.13.

4.14.

4.15.

4.16.
4.17.

4.18.

4.19.
4.20.

4.21.
4.22.
4.23.

4.24.
4.25.

4.26.
4.27.

5.1.
5.2.
5.3.
54.
5.5.
5.6.

5.7.
5.8.

5.9.

Al
A2.
A3.
A4

B.1.

Outliers detected for sensors with LOF outside the thresholds (Thresholds are defined in
Table[.2). A red circle is around an outlier. A black circle is a datapoint.
The timing histograms for the different label types computed over all gestures and users.
Timing of static labels.
The timings of different gestures from the manual label type. Gesture (a) is the one with
the shortest average in the dataset, (b) the one with the longes. (c) is the most uniform
gesture, while (d) is the one with most variance.
A heatmap with the k-s test statistic of each channel in comparison with each other com-
puted over all users. White means the sensor has nothing in common, black it is the same
distribution. e
Heatmap with the k-s test statistic of each channel in comparison with each other. White
means the sensor has nothing in common, black it is the same distribution.
Distributions of different sensor values of user MS55.
Value distribution of the magnetometer sensor within labelled data (a) and within the zero
class (b). e e e
Time series for the flexion channel at the thumb and the y-axis gyroscope at the wrist for
the Calling gesture among 3 participants.
Experiment timeline for a single repetition and sliding windows construction.
Average amplitudes (over all signals) of the first FFT coefficients (excluding the zeroth
coefficient) for all 200 frame windows.
ROC curve for weighted average of all classes.
Confusion matrix from the extra tree classifier on the validationset.
Performance of the RSE algorithm on different datasets and select(s) heursitics. The accu-
racy is the f] score on the validationset.
Different results of RSE for subsets of gestures.
Confusion matrix of the extra tree for the full dataset. We can see a systematic error of
misclassification of the gesture “One (1)” and the zeroclass.
Different agreements of the RSE algorithm with the absolute selection heuristic on the left,
the relative in the right, and the total agreement in the middle.

Apple Watch Extension for sending sensordata.
Screen of the labelling function of the application.
Data from one recording SesSion. oL o e e
Some zoomed in data of the next gesture.,
One next gesture indetail. L
Data augmentation of a kitten. These random transformations still allow the image to be
clearly identified as an image of a kitten. Image taken from the fast.ai documentation. . . .
Example of the timing augmentation algorithm.
Visualisation of the feature transformations per feature. X axis is the sliding windows
which are in temporal relationship. The colour of the line corresponds to the label at that
window point. Redisthe zeroclass.
Debug output of the recognition L .

Valuerange of all accelerometer sensors for differentusers
Value Distribution of different Sensors foruser AB73
Time Series of 10 users among 10 channels for the gesture walking
Comparison of Value Distributions within labels or within the zeroclass

Data from a session where the watch stored data from a previous recording. In this case
you have some left over recordings on the first connection.

37
39

Xii

List of Tables

2.1.

4.1.
4.2.

43.
4.4.
45.

4.6.
4.7.

4.8.
4.09.

4.10.

5.1.

Al

B.1.

Typical Range of Motion (ROM)

List of 31 interaction-oriented hand gestures.
Lower and higher threshold expressed in quantiles for data assumed to be an outlier for
the different sensors. Contamination expresses how many outliers LOF found within the
threshold, reduced data tells how much of the original data is then seen as an outlier.
Number of time steps and recording time for each participant.
Comparison over the timings of a gesture over allusers
Statistics of the timings of gestures when using the manual annotation type for each users,
andallusersinthe lastrow.
Confusion matrix of classification using dual labelling in test set. Note that zero values (no
misclassification) have been removed from the table for better readability.
J1 scores in percent of algorithms with different feature set sizes.
Algorithms on differently reduced datasets.
Evolution of the sensor selection starting with the 765 RFE-CV dataset. A765 corresponds
to the absolute algorithm and R765 to the relative. s: step number, #f: number of features,
#S: number of sensors, M:model,f1,: F1 in the validationset.
Overview of the accuracies on the test set of the best classifiers on different feature sizes. .

The winning classifier which can also be transferred into CoreML.

All k2 test statistics and p-values of all user/sensor type combination when performing a
normal test. e

Best configurations of SVMs for the smartwatchdemo

xiii

Xiv

Chapter

Introduction

Research in Human-Computer Interaction (HCI) always strived for systems where you do not need much
energy to find out how to perform a specific interaction, coined in the phrase ”don’t make me think” from
the same-titled book by Steve Krug [Krugl |2005]]. A common hypothesis is, that naturally appearing be-
haviours like gesturen interaction are a way to achieve that goal.

Natural interactions (like in|Latoschik| [2005])) through speech and gestures, however, were for a long time
not traceable for real systems, as the effort to create such a system limited the tools to particular use cases
in the lab. Speech and even gestures are just too complex to be programmed by a classical deterministic
algorithm; instead, you need a system which can recognise patterns in data from the interaction/the user
and react based on the detected pattern. To perform the interactions based on recognised patterns in data is
often called data-driven interactions. Achievements in the field of machine learning, digital signal process-
ing and sensor technology, together with the shrinking of technology f.e. in the form of smartphones, are
enablers of such systems of data-driven interactions so that they may become more mainstream.

Gesture recognition is the automatic recognition of a computer system of a gesture performed by a person,
often for interaction with a computer system. The basis of this thesis is a project about gesture recognition
published in the |proceedings of 3DUI’ 16| [Luzhnica et al.,[2016]. This project was done by Granit Luzh-
nica, Christoffer Ojeling and me under supervision of Eduardo Veas. In it, a custom smartglove is built
with many sensors to capture physical motion. In a user study participants repeatedly perform 31 gestures
with this glove. With a sliding window approach, specific evaluation and a hand-selected set of features,
these 31 gestures (plus a zero class) are recognised with 98.6% accuracy (f1-measure).

1.1. Problem Definition and Solutions

In|Luzhnica et al.|[2016]] there is no in-depth description of the smartglove. The paper explains the number
of sensors used and shows that this number was grater than in other similar smartgloves at that time, but it
does not describe why exactly the sensors are placed at certain positions. Also, it does not explain the raw
data gathered from the user study or explain which steps for data quality are done before feature engineer-
ing and modelling. This work complements the paper by providing this missing documentation.

The validation and test split are done by selecting a random subset of the data in [Luzhnica et al.|[2016].
Since there are overlaps in the windows, this means the training data has ”seen” some of the validation and
test data. Do our reported numbers still hold? Also, in the paper, we hand-select features based on our
expert knowledge. Are there other, better combinations of features? In this work, a different validation and
test split are used, which guarantees that there are no overlaps between train, validation and test set. With

1 http://www.digitaltrends.com/computing/gesture-control-g-a-thalmic-labs-aaron-grant/

http://www.digitaltrends.com/computing/gesture-control-q-a-thalmic-labs-aaron-grant/

Chapter 1. Introduction

this different split still, similar accuracies are achieved. Feature engineering is also done differently, by
creating all kind of features taken from the literature and using algorithmic approaches to select a proper
subset of the features which still give good accuracy. I refer to this approach as a data-driven approach
to feature engineering. More features than in [Luzhnica et al.| [2016] do not impact the accuracy of the
recognition. I build a system with way fewer features with similar accuracy.

An important issue on building a custom sensor glove is the hardware design. Prototyping hardware is
a long and costly effort. There is a tradeoff in building an easy to build system and a system with good
accuracy when using data-driven interactions. It is often not clear on what position, how many and which
sensors are needed for a specific recognition model. However, modifying a design later because of missing
components/sensors is problematic since you have to redo the whole electronics development processﬂ I
extend the data-driven approach to feature engineering to make a greedy sensor selection. If the original
prototype is one with all sensors and the data collection is one with all gestures this approach can give a
set of possible configurations to choose from, which reaches a good tradeoff between model accuracy and
sensors needed.

Gesture recognition with a smartglove has one big drawback: There are not many existing smartgloves
used outside research. Can the methods of gesture recognition described in|Luzhnica et al.|[2016] and the
extensions be used in some commonly available hardware? Smartwatches are mainstream now. The com-
pany IDorecasts 237M wearables by 2020, of which 82M should be smartwatches. Every smartwatch
has similar sensors for motion to our smartglove. In this work, I present a demo system that uses the same
methodology to gesture recognition used for the glove. I describe the different constraints of implementing
such a system.

The motion sensor of a smartwatch is usually an inertial measurement unit (IMU) with six degrees of
freedom (6 DOF), which is similar to the ones we use in the glove. They are not the same so gathering a
new training set is needed. Data augmentation is a method to create additional data by transforming the
original data without invalidating the labels. I present a method for data augmentation of IMUs which is
suitable for the gesture recognition task.

1.2. Contributions

The domain of this work is gesture recognition using physical motion sensors. I base the work on the
project/paper we did in|Luzhnica et al.[[2016]]. To this work I complement in this thesis the following:

e Provide more exact documentation of the smartglove (and the placement of sensors) than in|Luzhnica
et al.|[2016]

e Explore the raw data of the study and explain data cleaning
e Validate the results of |Luzhnica et al.[[2016] with a different validation and test split

e Compare the feature engineering by manually selecting features in |Luzhnica et al. [2016] to a data-
driven approach of generating many features and use feature selection

I also add the following new aspects to the domain of gesture recognition.

e Provide an approach to sensor selection so a prototype with many sensors can be used to produce a
product with the right amount of sensors for the use case

e Demonstrate that it is possible to use the approaches from them smartglove to make an application
for a smartwatch

e Implement a data augmentation technique for inertial measurement units for gesture recognition.

Zhttps://predictabledesigns.com/how-to-develop-and-prototype-a-new-product/
3https://www.idc.com/getdoc. jsp?containerId=prUs41100116

https://predictabledesigns.com/how-to-develop-and-prototype-a-new-product/
https://www.idc.com/getdoc.jsp?containerId=prUS41100116

Chapter

Anatomy of the Human Arm and Gestures

Parts of the contents of this chapter have been published in
the |proceedings of 3DUI’" 16| [Luzhnica et al.,|2016|].

In this thesis, we look at data-driven gesture recognition. Gestures are performed with the human arm, and
its freedom in movement and anatomy have essential impacts on gesture recognition. Using models of the
human arm and grammar to detect gestures is a traditional way for gesture recognition [Garg et al., 2009].
For the data-driven approach, it is crucial that all movements are captured and possible are redundantly
captured by different means of sensors. In the following section, we look into the anatomy of the human
arm and its degree of movement. We argue that a data-driven approach based on the dynamics of the arm
needs to capture more degrees of freedom that exist on the arm in reality. We then explain what this work
understands for a gesture.

2.1. Anatomy of the Human Arm

The human arm is widely used as a communication tool. Most explicitly in sign language, but also an
important part of non-verbal communication [Mehrabian, [1972]]. Medically the human arm is a limb of the
upper body of a human. It consists of the upper arm, the lower arm and the hand. For user use case we will
concentrate on the lower arm and the hand. The arm is also an important tool allowing us to build and use
tools for daily life. This movement is constraint by the anatomy of the arm.

The human hand consists of 29 bones including the radius and the ulna bone. There are at least 123
named ligaments which define the range of motion in the multitude of joints. Three major nerves supply
the 18 muscles in the forearm and the 17 muscles in the palm.

There are five main articulations in the human hand. The wrist or radiocarpal joint which connects the
forearm to the hand, the intercarpal and mediocarpal articulations, the metacarpophalangeal articulations
where the digits meet the palm and the interphalangeal articulations which are the hinge joints between the
bones of the digits.

The movement of the hand can be broken down into many small motions the happen in the articulations
mentioned above. Table[2.T|provides an overview of the typical range of motion of the major joints [Grifka
and Kuster, 2011; Waldeyer et al., |2012[]. Another good source to get an overview is a presentation on the
human hand']

Based on the insights of anatomy |Cobos et al.| [2010|] developed a mathematical model to capture the
kinematics of the hand. It accurately describes the degrees of freedom of the human hand. The full model

Thttp://www.mccc.edu/ ~behrensb/documents/Structurefunctionofthehandbib. pdf

http://www.mccc.edu/~behrensb/documents/Structurefunctionofthehandbjb.pdf

Chapter 2. Anatomy of the Human Arm and Gestures

Joint Movement with ROM in degrees

Forearm Pronation (inwards turn) 70°
Supination (outwards turn) 85°
Extension 70°

. Flexion 70°

Wrist . - - 5
Radial (rotation towards the radial bone) 20
Ulnar (rotation towards the ulnar bone) 35°
Palmar Adduction, Contact

.. Palmar Abduction, 45°

Thumb basal joint Radial Adduction, Contact
Palmar Abduction, 60°

Thumb interphalangeal Hyperextension 15°H

joint Flexion 80°

Thumb metacarpophalangeal | Hyperextension 10°

joint Flexion 55°

Distal interphalangeal Hyperextension 0°

finger joint Flexion 80°

Proximal interphalangeal Hyperextension 0°

finger joint Flexion 100°

Metacarpophalangel Hyperextension 0°-45°H

finger joint Flexion 90°

Table 2.1.: Typical Range of Motion (ROM)

has 24 DOF (figure[2.T)). Also, it shows that a model with only 9 DOF can simulate a correct hand move-
ment with an error of 5% and one with 6 DOF shows a 10% error. This model does not include the 4 DOF
of the wrist movement. Using sensors which can capture the physical movement, it must be possible to
recover the correct physical movement of the hand, a process called inverse kinematics. To fully capture
physical movement it makes sense to have sensors which can at least capture this amount of degrees of
freedom. The goal of the prototype of the smartglove is to have more sensors than needed and perform
sensor selection. The smartglove has 2 DOF per finger in flexion sensors and an IMU with 6 DOF on the
fingertip. It has 3 DOF in flexion sensors for the thumb and also a 6 DOF IMU. Additionally, it has a
6 DOF IMU on the palm and the wrist, a 3 DOF magnetometer and two more flexion sensors on the wrist.
All these sensors make a sensor setup which can capture 52 DOF of movement. The smartwatch on the
other side only captures 6 DOF and none of the finger or thumb based degrees of freedom are captured by
the watch.

At the beginning of our study in [Luzhnica et al., 2016]], various data gloves had already been available
commercially. All of them emphasise flexion sensors in fingers, and thus focus on hand postures. In con-
trast, our glove contains both flextion and motions sensors (gyroscope + accelerometer) on each finger,
thus focussing more on hand motion, i.e. the dynamic aspects of gestures. The MiMu GloveE] is used to
produce music by some means of gesture detection. It employs one IMU at the wrist, 4 bend sensors at the
fingers and vibrators at the underarm to provide haptic feedback.. It is not clear if the IMU is 6 DOF or
9 DOF . The MiMu glove thos has 10 — 13 DOF'. Fifth Dimensional Technologief] offers three gloves that
are equipped with bend sensors and abduction sensors between fingers. These SDT Data Gloves has 5,14
of 16 DOF. CyberGlove Systems E] offers CyberGlove II equipped with two bend sensors on each finger,
four abduction sensors, sensors measuring thumb crossover, palm arch, wrist flexion and wrist abduction,
giving 18 DOF . Virtual Labsﬂ offers a range of data glove products (VMG Lite, VMG 10, VMG30, VMG
30 Plus), all of them equipped with bend sensors on the fingers, 9 DOF orientation sensors for hand and
wrist, as well as tactile feedback vibrators. This gives up to 32 DOF'.

2.2. Gestures

2.2. Gestures

Intuitively many people would define gestures as an embodied means of communication, consisting mainly
of arm movements. In an extreme form, this leads to sign languages, which can form complete sentences

(see Birk et al.| [1997]; Huang and Huang| [1998]]; Oz and Leu| [2011]]; [Takahashi and Kishino| [[1991]).

Several gloves for auto-translating sign language exist as prototypes’

Differentiating between gestures and gesticulation is important. A gesticulation is a form of a freehand
movement supporting other expressions like your current speech. Gesticulation is highly personal, mean-
ing the same motion can mean different things for other humans or in other context of speech [Wexelblat,

1993

A gesture can be a specific posture of the hand conveying a
meaning. An example is a thumbs up gesture which can mean
approval. A gesture can also be a hand posture combined with
arm movement where the exact path of the movement is im-
portant. These gestures are often used for direct manipulation.
An example would be a pointing gesture (see figure 2.2). Many
works list gestures and categorise them into a taxonomy like
[Bohm et al.| [1992]; [Koons et al| [1993]; Pavlovic et al|[1997];

Wobbrock et al [2009]. Many of these gestures are artificial
gestures for control. It is possible only to use artificial ges-

tures for interaction with a computer. A study looking at in-
venting custom gestures showed, however,
that a user can only remember a very small number (about two)
of such artificial gestures. Therefore, we are looking at ges-
tures that are widely known, even though there may be cultural
differences regarding their popularity and meaning. Addition-
ally, there should be a plausible relationship between the gesture
and the resulting interaction between human and computer. We
build our set of gestures on the list of 22 natural gestures de-
scribed in [Glomb et al/ [2012]. We added the following: The
numbers one to five, as they would be useful to select items; popular touch-based swipe gestures such as
swipe left, right, up and down, as these would be useful for navigation. Finally, we added lateral grasp
(Grasp 2) and palmar grasp (Grasp 1) gestures, as we think that grasping objects would be useful in inter-
action with 3D virtual objects.

Figure 2.2.: Example of two gestures in
our dataset

f.e. http://enabletalk.com/prototype.html

http://enabletalk.com/prototype.html

Chapter 2. Anatomy of the Human Arm and Gestures

Figure 2.1.: Joints and DOF of the human hand based on [Cobos et al., 2010]. The blue arrows show the
reference frame. Black lines show a joint or bone inside the hand model. The purple circles
show the possible movement for a joint from the reference frame. This circle is also the degree
of freedom (DOF) of that joint. For clarity only the degrees of freedom of the thumb (4 DOF)
and the degrees of freedom for one finger (5 DOF) is shown, the other fingers have the same
DOF. This model has in total 24 DOF.

Chapter

Gesture Recognition

Parts of the contents of this chapter have been published in
the |proceedings of 3DUI’" 16| [Luzhnica et al.,|2016|].

Gesture recognition defines the process of automatically recognising if a human performs a gesture through
a computer system. The methods are often dependent on the sensors to capture the gestures. Gesture
recognition has gained interest as basis for gesture-based interaction in a wide range of use cases, such
as crisis management [Wachs et al., [2011], TV remote controlling [Ren and O’Neill, 2013]], interacting
with computers [Kenn et al.l[2007; [Kumar et al.,|2012]], gaming interfaces [[Kulshreshth and LaViolal [2015}
Martins et al.l 2008 Wachs et al.|, 2011;[Zhang et al.l 2009]], augmented reality applications [Kavakli et al.|
2007 [Tsai et al.| 2015 [Weissmann and Salomon), 1999} Xul 2006], hands-free interaction in-car driving
[Molchanov et al., [20135]], providing virtual training for car driving [Xu, 2006] or detecting a driver’s fa-
tigue [Lee et al.,2015]). In the medical area, robot nurses are envisioned to detect a surgeon’s hand gestures
and to assist with the necessary surgical instrument [Wachs et al.,|2011]]. In another type of use case, com-
puter systems detect gestures to understand user activities. For instance, robots have been envisioned to
analyse gestures to track task completion to be able to seamlessly take over with the next steps [[Coupeté
et al., 2015; |Roitberg et al., 2015]. Sometimes, it is useful to only observe and document the gestures, as
in the case of assembly lines to document the work for quality assurance [Stiefmeier et al., 2008]]. The
goal to detect assembly line tasks is an area of active research [Koskim”aki et al.l [2013} Ou et al., 2006
Ward et al.|[2006; Zappi et al., 2007]. Gesture recognition has also been explored in the context of logging
activities of daily life: In [Sen et al., 2015]], the authors explore the possibility to detect eating habits via
recognising the gestures for eating and drinking (bringing the hand to the mouth). In [Shoaib et al., 2015],
activity logging based on both smartwatch and smartphone sensing is used to detect drinking too much
coffee or not eating.

Different devices and sensors can be used to capture a gesture and perform gesture recognition. Depth
cameras and ordinary cameras are state of the art. Controllers specific for virtual reality (VR) allow
gesture-based interactions. There exist more exotic controllers like the infrared-based leapmotiorﬂo con-
trol a computer. Smartgloves are even less common but offer advantages when you need to move freely
and still want the ability to express complex gestures. There exists a smartglove used to analyse combat
sports [Navas et al.,2012]. Company’s like ProGloveﬂalready provide gloves for industrial settings, letting
workers scan their tools and materials with NFC/RFID to document work. The MiMu Gloveﬂ:an produce
music using gesture recognition. The Keyglove Systenﬂ,lses several force sensors to detect touches on the
glove to simulate a keyboard. In the medical field, smartgloves are explored to help in the rehabilita-
tion of tremor [Kazi et al.l 2010, arthritis [[O’Flynn et al., 2013] or to guide blind people [Bernieri et al.,
2015} [Ugulino and Fuks, 2015]]. Another prominent use is the translation of sign language into spoken

'https://www.leapmotion.com
Zhttp://www.proglove.de
3http://mimugloves.com
4http://www.keyglove.net/

https://www.leapmotion.com
http://www.proglove.de
http://mimugloves.com
http://www.keyglove.net/

Chapter 3. Gesture Recognition

words, allowing deaf-mute people to communicate more easily (see |Praveen et al.|[2014] or the Enabletalk
ProjeclE]). This widespread interest means that augmenting gloves with technology and use their data for
private or professional activities is not science fiction, but a new trend that is currently happening.

A less explored tool for gesture recognition is the smartwatch. While there exist initiatives like Google’s
project Soli, which might finally be allowed on the market this year, the sensors generally are not perfectly
fit for very expressive gesture recognition. Research usually adds other hardware to the watch like a depth
camera to allow gestures performed hovering over the watch [Han et al.l [2015] or write text [[Van Vlaen-
deren et al., [2015[]. Still, a lot of interesting movements can be recognised [Xu et al., [2015[], and while
all the other hardware options are not mainstream, smartwatches and the, from the sensor perspective,
similarly capable fitness trackers, are.

3.1. Camera Based Gesture Recognition

Typically a camera is mounted in the environment to record human hands. The system extracts features
from the individual frames of the recording. Sometimes there is a filtering process involved which removes
unwanted objects like, f.e. heads from the image or video [Dardas and Georganas| |2011]]. There are two
options to proceed: Traditionally the system is composed of modules. A modular system first predicts
postures [Chen et al., [2007; |Dardas and Georganas|,[2011]] and then a grammar of sequences of postures is
constructed to recognise gestures [Garg et al., [2009]]. For instance, in |Dardas and Georganas|[2011]], the
authors first detect and track hands and then recognise ten postures with an accuracy of 96% in camera
images with a multi-class support vector machine (SVM).

Similarly, in (Chen et al.| [2007] a single webcam is used as a source, from which the authors extract
Haar-like features and use AdaBoost to discriminate between four postures: two fingers, palm, fist, little
finger. The authors achieve an accuracy of over 90%. In|Birk et al.|[[1997]], the authors achieve an accuracy
of 99% by using principle component analysis (PCA) and a Euclidian distance based classifier to recognise
25 international hand alphabet postures from images of the gestures. An alternative vision based approach
is to use coloured gloves in which different parts of the hand are marked with different colours, making it
much easier to track gestures [Hasan and Mishra, |2012f]. Using a depth camera is also an option.

More recent systems learn the gestures end-to-end. |Yin and Davis| [2014] uses a Microsoft Kinect, and
Hierarchical Hidden Markov Models (HHMMs) to model gestures end to end. End to end modelling has
recently become more popular with deep learning. First works on deep learning in gesture recognition still
used some preprocessing. [Lin et al.|[2014] first learns to transform the skin colour to a neutral colour and
translates the hand into a neutral position. The system then uses a convolutional neural network (CNNs) to
perform gesture recognition with 95.5% accuracy using seven gestures from seven subjects. [Huang et al.
[2015] uses a 3D CNN to learn American sign language with a Microsoft Kinect. Nufiez et al.|[2018]] uses
a convolutional neural network combined with a long short-term memory network (CNN+LSTM) over a
video stream to perform human activity recognition (HAR) and gesture recognition. They analyse different
gesture datasets and achieve accuracies between 79% — 86% using datasets of around 20 — 30 gestures.
Yang et al. [2018]] allows social robots to track gestures in real time by first extracting a region of interest
(ROI) with the OpenCV library and then performing gesture recognition with a CNN. [Perera et al.| [2019]
shows that on a dataset of 13 gestures used to control unmanned aerial vehicle (UAVs) like drones it is
possible to achieve 91.9% accuracy using a CNN. Using an event-based camera and an implementation
of a CNN for spiking neural networks |Amir et al.|[2017] could implement a system which reaches 96.5%
out-of-sample accuracy with 11 gestures from 29 subjects.

Shttp://enabletalk.com/prototype.html

http://enabletalk.com/prototype.html

3.2. Wearable Based Gesture Recognition

3.2. Wearable Based Gesture Recognition

The majority of wearable sensor systems for gesture detection are gloves equipped with sensors. In most
research endeavours, gloves are custom-built. In|Murakami and Taguchi|[[1991]], a recurrent neural network
(RNN) is used to recognise the following Japanese sign language gestures: father, mother, brother, sister,
memorise, forget, like, hate, skilled and unskilled. The gestures are 42 postures representing Japanese letter
alphabet with an accuracy of 96%. The data were generated using a VPLDataGlove. In Xu| [2006]], the
authors use a feed-forward neural network capable of distinguishing between 15 gestures with an accuracy
of 98%. They record the data with a CyberGloveﬁWith 18 sensors. More recently, a feed-forward neural
network was used to construct a hand gesture recognition system for interacting with robots [Neto et al.,
2013]]. Using data from CyberGlove II (providing 22 joint-angle measurements), the authors were able
to recognise 10 different artificial gestures with an accuracy of 99.8% and 30 gestures with an accuracy
of 96.3%. In this work, a first step is segmenting the data stream into segments of different size so that
each segment contains exactly one gesture. These segments are then used for the classifier. In Zhang et al.
[2009], data from electromyography (EMG) sensors and a wrist-worn accelerometer were used to build a
system that recognises 18 gestures with an accuracy of 91.7%. The defined gestures were used to play a
virtual rubric’s cube game. In Romaszewski et al.|[2014], authors used a list of 22 natural hand gestures.
The gestures originally stem from |Glomb et al.|[2012]]. While analysing the data, the authors first resam-
pled and interpolated the data. They then used LDA to discriminate between the resampled segments with
an accuracy of 92.8%. This changing of segments shows that there is a clear separability between those
gestures. However, in a live recognition system, this resampling and interpolation is not possible unless the
start and end time of the gesture that needs to be recognised can be detected.

Recently, there has been growing research interest in gesture recognition based on consumer good technol-
ogy like smartwatches (e.g., [Han et al., 2015; [Van Vlaenderen et al., |2015; [Xu et al.| 2015} [Zhao et al.,
2013])). In|Xu et al.|[2015]], the authors report the classification of 37 interaction oriented gestures, i.e. ges-
tures that are intended to be used for controlling other devices (turning the arm, simulating a click, pinch
to zoom, etc..). The gestures are detected based on smartwatch sensor data only and with an accuracy
of 98% by using the Naive Bayes algorithm. The authors report different numbers in a subsequent demo
paper, namely 27 gestures with 96% accuracy using Logistic Regression or Decision Trees [Zhao et al.,
2015]]. However, the data in the latter paper were collected only by a single participant, and the participant
performed gestures from a fixed arm position.

When comparing camera and wearable based approaches, vision-based systems are more sensitive to the
environment. Lighting conditions, scene and background details are issues that affect such systems [[Wachs
et al.,2011]. In the case of cameras, there might also be privacy issues; and different countries have differ-
ent regulations concerning video recordings in non-private environments. Wearable sensor-based systems,
primarily glove based ones, can be uncommfortable [Wachs et al.l [2011] or even pose a hygienic prob-
lem [Kiruthika et al.;,2014]]. On the other hand, wearable technologies provide, in principle, the possibility
for higher privacy as the data are a priori more anonymous than pictures or videos. When it comes to
accuracy, many authors report very high accuracies (in the higher 90s) for the selected set of gestures using
either technique [Birk et al.,|1997; Dardas and Georganas, [2011; Neto et al., 2013} Xu} 2006].

3.3. Human Activity Recognition (HAR) Based Gesture Recognition

In the paper of |[Luzhnica et al.|[2016] and this thesis, we take a wearable sensors approach. In contrast to
some other works, we emphasise capturing the dynamics of the gestures, and present gesture recognition
using a custom data glove. Our work also differs from previous research since we take a sliding window
approach in combination with dual labelling in the test set. A sliding window is a technique for data prepro-
cessing in which information is extracted (statistics, aggregates, features, etc...) over a “sliding window”
that contains a fixed number of samples. To the best of our knowledge, this paper was the first using a slid-
ing window approach for gesture recognition. However, this approach is very common in human activity

Ohttp://www.cyberglovesystens.com/

http://www.cyberglovesystems.com/

Chapter 3. Gesture Recognition

recognition (HAR) [Koskimaki et al., 2009} [Krishnan and Cookl, 2014} |Ortiz Laguna et al., 201 1].

knowledge

patterns /
features / §

data mining

cleaned data

AR

Data

ftem 1
transformation

Item 2
selected data tem 3

Preprocessing

data sources

Data Selection

Figure 3.1.: Knowledge Discovery and Data Mining Process (KDDM)

There are several descriptions of the steps on how to build any recognition system with machine learn-
ing. The most general process is the process of knowledge discovery and data mining (KDDM). The
KDDM process (see figure[3.T)) describes the data perspective of the process [Fayyad et al.,[1996].

In the first step, a data set is selected from various sources. We want to use a model with more phys-
ical motion sensors than needed. Such a dataset is not available, so we build our own in a user study
described later. To have a comparison to the smartglove, the smartwatch data is collected similarly to the
original user study.

The data we collect comes in the form of time series. Time series data is data where instances are data
points at a specific time. These data points are multi-dimensional vectors with each data point correspond-
ing to channels at that specific time [Zhou and De la Torre, 2012]. Framed differently, a data point has
the particular sensor values sampled at that specific time point. This form of the dataset also means that
instances in the dataset are not independent of each other, which is often a basis for the classification. Time
series data is captured in our case in a data matrix D € R(%") with ny being the number of data points
captured in time and m, being the number of channels captured by the sensors. The subscript d denotes that
these are the raw data dimensions, instead of the dataset after feature engineering. Additionally a vector
¥ € R(":1) exist which annotates each timestep with the dependent variable like the class type.

X(04,00) *(0g,14) <+ X(0g,mq)
X(14,00) X(1g:1a) <o+ Xgmg)

D eRM™) — X24.00) X2ala) 00 *2ama) G.D
X(ng00) Xlng,1q) -+ Xngmy)

The next step is to perform preprocessing on the data to get clean data. Preprocessing means removing
data which does not meat certain quality criteria, performing outlier detection [Breunig et al., 2000} [Liu

10

| 3.3. Human Activity Recognition (HAR) Based Gesture Recognition

2012] and filling missing values [Barnard and Meng| [1999].. All this needs to be done with the dataset
from the study and the dataset from the smartwatch. Since it is possible to interrupt the data collection at
the user study with the smart glove it is especially important to see if the labels are valid and if not remove
that data. In the smartwatch case there can be artefacts of earlier recordings and timing issues which need
to be removed.

Machine learning models often need the data in a certain form so they can find patterns. For our task

Figure 3.2.: Comparison of what decision boundaries a model can learn given data. The image is taken
from scikit-learn.org

to recognise gestures, the model is a classification model. Given data, it predicts which kind of class (ges-
ture) the data is from. It does so by learning a decision boundary separating instances of the different
classes in data. Linear methods (see Chapter 4.3.4 or [Crammer et al| [2006]; [2011];
[2004].) need the data to be linearly separateable. The machine learning model can find these
linear hyperplanes in the data, but it can not transform the data itself except for methods which employ
kernels [Boser et al.|[1992;[Rasmussen and Williams}, 2005} [Vapnik and Lerner, [1963]] to do part of the fea-
ture engineering. Clustering methods need data of classes to be within a certain distance or density. Some
methods like linear discriminant analysis (LDA) and principal component analysis (PCA) have problems
if channels of the data are linearly dependent on each other or if data is highly redundant. The transforma-
tion of the clean data is called feature engineering and feature selection. The process is a different dataset
consisting of features. Figure [3.2]shows the different decision boundaries a classifier can learn given data
with two features.

In our specific case, we employ feature engineering which is used in Human Activity Recognition (HAR).
Human Activity Recognition defines the process of automatically recognising activities performed by a
human being. Examples of such activities are differentiating the type of transportation (walking, running,
cycling, driving a car) [[Cardoso et al.}[2016]], home behaviour analysis [Vepakomma et al.,[2015]] or detect-
ing work tasks [Koskimaki et all, [2009]. A widespread approach in HAR is to transform the time-based
dataset into an instance based dataset using a sliding window approach [Koskimaki et al.} 2009; Krishnan|
|and Cookl, |2014[; |Ortiz Laguna et al.l, |201 1[]. The dataset matrix D € R4 is transformed to a feature
matrix D' € RU™"/) where n,, is the number of windows over the data and m; the number of features.
This transformation is done by taking a specific consecutive number of time steps/instances (the window
size) and extracting features from this data. Then the window advances to the next set of instances (the
step size or stride). Commonly the window does advance a smaller amount of time steps than the window
size, so the windows overlap. Some publications state the percentage of overlapping instead of the stride
number [Koskimaki et all, [2009]. An example is that in a matrix with 1000 timesteps and 6 channels a
sliding window of size 200 timesteps is used to extract 55 features, the windows overlap 50%, so the stride
is 100 timesteps. This transforms the matrix D € R(1000:0) (o the feature matrix D’ € R(1055) This process
is depicted in equation [3.2] We see that a sliding window approach often reduces the number of instances
available for the algorithm drastically and at the same time increases the number of features. In HAR there
exist a large number of possible features to extract which I explain in the next section.

11

Chapter 3. Gesture Recognition

With the sliding window also the vector ¥ € R("!) needs to be transformed. The same window size
and stride is used to transform the vector into)7 e Rw:1) or)7 € R™2)_In this transformation a window
can have a mixture of values of the dependent variable y. One now needs to decide how to deal with this.
In human activity recognition time steps often correspond to one specific class or the zero class (the class
corresponding to an unknown activity), but there is not overlap of classes for one time steps. If the window
is small enough this means the a window can only be of one class, the zero class or a mixture of the zero
class. In case)7 e R0 3 strategy can be to always take the dominant class as the dependen variable. The
case of)7 € R™2) s called dual labeling and allows a second aptional class which is also right. A strategy
is to only allow one class if only one class is present in the window or both possible classes if the window
captures a mixture of those classes.

X04,04) *(04,14) -+ X(04,my) X(04,07) X(0u,17) -+ X(0,,my)
X(14,00) Mlasla) - X(lgma) X(1,,07) X(1y1p) <o+ X(1y,myp)
DRVMD=| X0, X2uds) - Fegma) | = DER™I=1 xo.00 T o ¥mp)
%("mod) Xnada) = X(naymag) Xnw,07) Xnw,ly) -+ X(nymp)

(3.2)

The feature extraction over a sliding window allowes us to tread each datapoint in the feature matrix D’ as
an indpendent sample to classify. With overlapping windows some of the data is seen by several windows.
This is not seen as a problem for modelling (see f.e. [Koskimaki et al.|[2009]]) but care should be taken
that when splitting validation and test set no overlapping data is used. Another positive aspect is that by
ignoring the exact values of the time series but only using features over a window a lot of the noise in the
time series is automatically removed.

3.4. Feature Engineering - Digital Signal Processing

In machine learning, feature engineering is the heart of the process. Depending on the classification model
used, the data must be in a certain form. Linear methods (see [Bishop| [2006] Chapter 4.3.4 or |(Crammer
et al.| [2000]; Xu| [2011]]; Zhang| [2004].) need the data to be linearly separateable. The machine learning
model can find these linear hyperplanes in the data, but it can not transform the data itself except for meth-
ods which employ kernels [Boser et al.| {1992; Rasmussen and Williams},2005; |Vapnik and Lerner, |1963|] to
do part of the feature engineering. Clustering methods need data of classes to be within a certain distance
or density. Some methods like linear discriminant analysis (LDA) and principal component analysis (PCA)
have problems if channels of the data are linearly dependent on each other or if data is highly redundant.

For this, the features are extracted from the data. Additionally to that the signal often has to be trans-
formed into alternative representations of the same signal (Fourier and wavelet transformations) or into a
different signal which better represents an aspect of the signal (linear and gravitation force). These funda-
mental transformations are part of the process of digital signal processing and complement the later feature
extraction.

3.4.1. Splitting Gravitation Force and Linear Force

It is possible to predict the pose of a hand just by knowing the direction of gravitation in space of the
accelerometer. If the arm is hanging down the accelerometer would have an x value in the range of —5 to
—15m/s%, ay value O to —5m/s* and a z value 6 to — 1 /s? in case of a smartwatch sensor. Linear force, on
the other hand, can be harnessed for a gesture where the movement mainly defines the gesture, like waving.

12

3.4. Feature Engineering - Digital Signal Processing

A raw accelerometer does not differentiate between grav-
itation and movement force, although some modern sys-
tem also do the splitting on the sensor using some digi-
tal signal processing (DSP) electronics. Splitting this sig-
nal with one axis sensor alone is extremely hard. When
using many sensors, this splitting if feasible by a pro-
cess called sensor fusion. When this term is used within
the context of signal processing, sensor fusion can be
used to manipulate signals directly. Incorporating dif-
ferent sensor information in machine learning is also of-
ten called sensor fusion. We mainly use this term for
digital signal processing. In sensor fusion, the differ-
ent characteristics of one sensor are used to correct the
other one. Splitting linear and gravitational force in
an inertial measurement unit (IMU) is a common form
of sensor fusion for digital signal processing. Some
modern smartwatches also give you the signal already
split.

Figure 3.3.: Typical gravitational forces
In most cases however, you need to do the splitting yourself. on a hanging arm with a
The best accuracy usually is achieved by an extended Kalman smartwatch
filter (see chapter 15 in[Russell and Norvig| [2010] or the orig-
inal linear algorithm in [1960]). It needs to be an extended one since the movements are highly
non-linear in case of gesture recognition. An easier way is to use a complementary filter. A complementary
filter uses a combination of gyroscope and accelerometer information to compute the current orientation
angle [1975]]. From that, you can calculate the gravitation component of each sensor axis. An
excellent basis for implementing such sensor fusions is the project FSensotﬂ The basic formula of a com-
plementary filter is pretty easy and can be seen in equation[3.3]

On = 0% (01 + DAL + (1 —) %@ 3.3)

Here ¢ is the angel or heading of the sensor. The @ is the angular velocity of the gyroscope in deg /s, which
gets us the angle by multiplying it with A¢ as the time between two samples. A fraction of the accelerom-
eters readings d corrects this angle. The d means the accelerometer data expressed as the direction cosine.
The result of the complementary filter is the current orientation angle. To split the force, this angle must be
projected back on the axes and multiplied by the gravitation unit g to get the gravitation force. The linear
force is simply the difference between the raw accelerometer signal and the gravitation signal.

o =cosa= X = o
VI vi+vi4v?
B cosh= & e}
VI vz vz 402 (3.4)
Y cose = % &
vl \/Vitvy 2
d=[o, B,

The complementary filter needs a hyperparameter o which defines how the accelerometer influences the
angle. The gyroscope has low noise but drifts over time. The accelerometer has much noise but low drift.

"https://github.com/KalebKE/FSensor

13

https://github.com/KalebKE/FSensor

Chapter 3. Gesture Recognition

By mixing the sensors, these effects are removed. A usual value of o reaching this effectis 0.98. A concrete
implementation of the complementary filter might look like equation

¢, = 0.98 % (¢, + gyr Datax Ar) +0.02 % (accData) (3.5)

3.4.2. Absolute Energy Signal

The absolute energy within is the sum of squares of the directed impulses of movement within the window.

It is an orientation independent measure of the activity within the signal [Fortino et al., 2015]. If gestures

are different already by their amount of movement, this transformation can yield features which can help

to find that. The transformation is simple to use the raw accelerometer and transform each time-step by
f 2202

X=X +yr+z

3.4.3. Fourier Transformation

A Fourier transformation decomposes a signal as a combination of several periodical signals/frequencies.
In human activity recognition, this is used for several tasks like detecting assembly tasks [[Koskimaki et al.
2009 or detecting daily live achievements [Leutheuser et al., [2013|.

We use the implementation of numpy to calculate the Fourier transformation. Numpy uses Equation [3.6]
based on|Cooley and Tukey|[[1965]] for the discrete Fourier transformation (DFT) as basis of its implemen-
tation.

n—1
k
A= Zamexp{Znim} k=0,...,n—1 (3.6)
n

m=0

3.4.4. Wavelet Transformation

The wavelet transformation (WT) has similarities to the Fourier transformation. It transforms a signal to a
time-frequency domain. Compared to the Fourier transformation it can handle non-stationary characteris-
tics of a signal like an impulse. The WT can transform the signal to a time-frequency domain, conserve the
signal energy in the transformed domain, compress the signal and with it de-noise it. It is reversible and
can handle non-stationary signals with periodic/quasi-periodic impulse trains. The WT exists as a contin-
uous wavelet transform (CWT) shown in equation and a discrete wavelet transform (DWT) shown in
equation[3.8] The DWT is a transformation in which a subset of wavelet basis functions form an orthogonal
basis and can be seen as a sampling of the CWT. After the transformation, like in the Fourier transforma-
tion, a typical feature engineering/feature selection step is to keep the most significant coefficients for the
transformation. The wavelet transformation is a good feature transformation for accelerometer data [Suh
et al.,{1999].

1 [=D
CWT(ab) = - [v (D 3.7)
DWT (j,k)= L/w x()y* (277t — kbo)dt (3.8)
\/2j —oo

3.5. Feature Engineering - Extracting Features from Windows

There exists a multitude of possible feature transformations for working with physical motion sensors in
the human activity recognition literature. A window slides over the data performing the extraction. Before
this sliding of the window, an algorithm splits the accelerometer signal into linear and gravitation force. It
comes either as a preprocessing step over the whole signal (i.e. in the smartglove) or directly from the hard-
ware (i.e. the smartwatch). For the smartglove, before the sliding window is applied, the absolute energy
signal is computed. The frequency representation (Fourier transform) and time-frequency representation

14

3.5. Feature Engineering - Extracting Features from Windows

(wavelet transform) are computed per window.

There exist several representations of the signal channels in a window. From all this data specific data
points are now extracted for the later modelling. These points are used to describe the physical activity in
a way a machine learning model can understand. In all following equations, the wg,x and wepq stands for a
current start and the end row of the sliding window over the data, and each extraction is evaluated over all
possible sliding windows.

3.5.1. Statistical Features over the Window

In approaches using a sliding window it is very common to take statistical features from the data and com-
puted features within the window. For acceleration this is f.e. done by |Abdic et al.| [2016]; |[Fortino et al.
[2015]); [Koskimaki et al.|[2009]]. Usually at least the minimal value within a window, the maximal value,
the range or amplitute (maxminal - minimal), the mean, the median, standart error and the variance are
present. This work uses the formulae in equation[3.9]

range(x, Wstart, Wend) = Max (X, Wstart, Wend) — Min (X, Wstart, Wend)

Wend
Y Xi
I=Wstart

Wend — Wstart 3.9

std (x w w,) \/ Z;’vi‘:gs[axl (x,' —mean(x, Wstart, Wen d))2
s Wstart; Wend) =

mean(X, Wstart, Wend) =

Wend — Wstart

Beside these standart statistical features, some research reports using extended statistical measures like the
skewness and kurtosis (i.e. in gait detection from |Camps et al.|[2018]]). We include these measures com-
puted over each window (see equation[3.10). All of these statistics make not only sense in the time domain,
but are also useful features in the frequency domain (see Fourier transformation[3.5.3)), often taken over the
amplitudes of f.e. the acceleration values (see f.e. [Sama et al.|[2018]]).

M= mean(x7 Wstart s Wend)76 = std(x, Wstart, Wend)a

N = Wend — Wstart

Xi—H
Skew(x7 Wstartawend) = N (')3 (3.10)
i=Wstart
) 1 Wend Xi—u
kurtosis(x, Wstart, Wend) = — * ()4
N 1=W,
start

3.5.2. Zero Crossing

The number of zero crossing in an accelerometer or gyroscope signal is the number of times the signal
changes its sign per sensor. Fortino et al.|[2015]] uses this to detect handshakes.

Eyt Isign(x) — sign(xi 1)
2

: {1 ifx>0
sign(x) =

zero_crossing(x, Wsiart, Wend) =

@3.11)

—1 ifx<0

15

Chapter 3. Gesture Recognition

3.5.3. Peaks

Detecting the peaks was used as a feature for detecting different work tasks in Ward et al.| [2006]. F.e.
manual screwing gives fewer peaks than hammering or holding an electric drill. There are many ways to
do a peak detection. The most common method is to compare if the current point is higher than a point
in the future and in the past (p = x; > x;—1 Ax; > x;4+1). This method assumes a clear signal or a good
smoothing. I use the implementation of scipy’s peak detection with a CWT based on the algorithm from
Du et al.|[2006].

3.5.4. Total Energy

The total energy is the sum of the absolute acceleration force within a window and acts as an index of
the activity within the signal [Fortino et al.l 2015]. If gestures are different already by their amount of
movement, this transformation can yield features which can help to find that.

Wend
energy(x, Wart; Wend) = Y, X +Yi +2 (3.12)

I=Wstart

3.5.5. Fourier Transformation Based Features

After the channels of a window are transformed into their corresponding frequency representations, features
are extracted from them. Like with any other representation of the channels it makes sense to extract all
the statistical features from it. The sum of the smaller frequencies is used for recognition of assembly tasks
in [Koskimaki et al.|[2009]]. Taking a set of n amplitutes is also a common procedure. Typically, either the
n first or the n largest (by amplitude) coefficients are used [[Morchen, 2003]]. Another important feature is
the spectral centroid. The spectral centroid (C) denotes the centre of the frequencies and is computed by
taking the (weighted) mean of a Fourier transformation. Another common derived feature of the Fourier
transformation is the bandwidth. The bandwidth (B) is the difference between the higher bound and lower
bound of frequencies, expressed in Hertz. Spectral centroid and bandwidth are used in [Leutheuser et al.
[2013] to classify daily life activities. The (Power) Spectral Entropy (H) denotes the amount of entropy
in the frequency spectrum. It is used in Bao and Intille|[2004] to classify several daily live activities. The
equation [3.13]end equations in[3.14]are used to extract those features.

Yoo f(n)a(n)

C= YT a(n) a(n) = amplitute at pin n (3.13)
S(m) = |X (m)[?
_ S(m)
Pom) = 550)
(3.14)

B = max(A) — min(A)

3.5.6. Pairwise Features

A common praxis it not only to calculate features per source channel but already in the feature engineering
compute features which represent interactions in the channel. The total energy is already a specific example
of the interactions between all three accelerometer axis channels. Besides these specific ones there exist
more generic approaches by computing features of pairs of channels.

16

3.6. Feature Selection

The angle £ between two signals is often used as a measure of the similarity of those signals. An an-
gle of 0 means both signals are the same, and an angle of Il means the two signals are as different as
possible. We also use the angle in the frequency domain. The angle between consecutive windows has
been used in Bieber et al.|[2014]]. Another common feature is the correlation between two channels. I use
the Spearman rank order correlation coefficient p from |[Zwillinger and Kokoskal [2000] for the correlation
between two channels. Also computing the difference in the means d of the series is a possible feature [[Suh
et al.,{1999].

L(V1,Va) = arccos(V) e V,)

(x;i—X P —y = -
b= Y (xi 2)()’1 y) -, X; EV1,yi €V 3.15)
\/Zi(xi—f) Yi(vi—y)
d=%—7, X € V1,yi € V2

3.6. Feature Selection

The basis of a data-driven approach to gesture recognition is not only to find patterns in data but also to
select the right features for this. In the data-driven approach, algorithms help in finding the correct features
in a huge search space. This approach is called feature selection [Guyon and Elisseeff] 2003]]. Too many
features are not only slow, very often the accuracy of the systems are even slower, as the algorithm is more
likely to find spurious correlations or overfit to the dataset. This is also called the curse of dimensionality.

There exist various techniques for feature selection and it has been applied in various domains. There
are two classes for feature selection: Filters compute metrics directly from the features and sometimes
the dependent variable. An example for this is removing features which are constant or have a low vari-
ance [[Van Hulse et al.,[2012]. Another example is interpreting each feature dimension as a random variable
(often entropy is approximated for this feature [Kozachenko and Leonenko) |1987; |Kraskov et al., 2004])
and then compute the mutual information for f~ANOVA to the dependent variable y to each feature as a
selection criterium [Van Hulse et al., [2012].

Compared to filters, wrappers are a more powerful model-based method. Instead of using simple met-
rics a wrapper trains a machine learning model and uses aspects of that model to perform feature selection.
A support vector machine (SVM) can rank features by calculating a distance to its hyperplane [Chang and
Linl [2008]], Lasso and Elastic Net regularization compute a weight for each feature [Baraniuk} 2007]). If
this weight goes to zero, the feature is removed. Trained only once these methods often just remove a small
amount of features or hurt performance. An often used approach is to iteratively train a model and then
use the ranking of the model to remove the lowest x percent of features. The iteration is stopped according
to a criterium like a threshold on change in accuracy. This process is called recursive feature elimination
(RFE) [[Guyon and Elisseeft} 2003}, |Guyon et al.,2002]. Another approach is always evaluating which one
feature to add best to the current best configuration, and then use this configuration as the new basis for the
search. This is called best first search for feature selection [Xu et al., [1988].

Recursive feature elimination together with a support vector machine (RFE+SVM) is used in |Yan and
Zhang|[2015] to find a good set of features for breath analysis. They introduce a correlation bias reduction
method (CBR) to further improve the results. [Park et al|[2018] uses RFE+SVM to investigate features
for monitoring long term or short term stress with heart rate variability (HRV) measures using a electro-
cardiogram (ECGQG) sensor. This improves the accuracy of detection to 93.11% and allows to discuss the
influence of HRV features on the detection. Mustapha et al.| [2018]] uses a multiclass SVM together with
RFE to detect 9 different cracks in steel or healthy steel with an accuracy of over 95% using a network of
piezoelectric (PZT) wafers.

17

Chapter 3. Gesture Recognition

3.7. Machine Learning Models

The next step after feature engineering and selection is creating a model using machine learning. Ma-
chine learning means a system which improves with experience E over some task 7 with a performance
measure P [Mitchell, |1997]]. A recommended introduction is the visual guide to machine learnin In
gesture recognition with a sliding window, this experience E is the features of a window and the assigned
class. The task T is to learn a mapping from the features to the categorical variable y. Learning the
mapping to dependent categorical variable is also called classification. The performance measure P de-
pends on the way the mapping is learned. An example is the cost function J(®) from logistic regression

J(o)=-1 [m vy log (hm (x@)) + (1 —y(i)> log (1 — he (x(")))}. For the person interpreting the al-
gorithm usually additional performance metrics are displayed like the accuracy of the system in per cent.

The models considered for gesture recognition are models for classification. The model learns a map-
ping from features which can be of different data types (categorical, discrete, continuous) to a categorical
variable. So instead of learning a function which best fits the data (regression) it must learn decision bound-
aries which best separate the data into their classes (classification). Most classification algorithms are, in
their basic form, only suited to separate between two classes. This work wants to separate 31 gesture and
the zero class. To do that there are two options:

Learning n classifiers of the same type all learning to map to one specific class vs all the other classes.
At prediction time the classifier with the highest confidence is chosen to perform the mapping. This strat-
egy is called one vs rest.

The other strategy is to learn @ classifiers where each learns to separate two classes, and all com-
binations are covered. At prediction time a majority vote is performed among the classifiers. This method
is called one vs one [Aly, 2005; Bishop, |2006]. In the case of classifying 31 gestures and the zero class,
the one vs one strategy means that you need to learn 465 instead of 31 classifiers, which is much slower.
However, this is still the chosen approach. The problem in the one vs rest classification is that the rest class
is dramatically higher than the one class to predict, which is a hard problem for the classifiers, resulting in
bad performance.

The performance metric for a model depends on how the model learns the mapping. For the person in-
terpreting the model there exists a standard set of metrics to interpret the result of the model. These metrics
are standard metrics in statistics. The most common metric is the metric of the overall accuracy of the
system defined by m%. In most cases of activity recognition and for gesture recognition this is
a poor metric. There are two reasons: If all the classes are balanced, but there are many of them, like 31,
the algorithm can have a high accuracy for perfectly detecting 25 of them and ignoring 6 of them which
would lead to 80% accuracy. Even more problematic is that in activity and gesture recognition there exists
a big imbalance between classes. Whenever the user is not performing an activity, the class is recorded
as the zero class. This class is dominant and appears a magnitute more often in these datasets than the
other classes. If the algorithms conservatively detect everything as zero class and sometimes detect some
gestures right, it yields an accuracy of 80 — 90% of a still unusable system.

There exist several metrics which address this problem. A true positive is a correctly predicited class [Rijs-
bergen, [1979]. A true negative is the correct prediction that an example is an example of the other class. By
sepearating the accuracy into precision, which is the accuracy to be right if a decision is made (%m)
true positives
o everything classified for that specific class
f1F=2- % measure which is a statistical accuracy measure which accounts better to class
imbalances derived from |Rijsbergen| [1979] effectiveness measure. Another option is the receiver operat-
ing characteristic (ROC) curve, which plots true positives on the y axis and true negatives on the x axis for

binary classification. For multi class, the individual classifiers must be binarised. By changing the confi-

and the ability to find all instances of the classes (

) one can compute the

8http: //www.r2d3.us/visual-intro-to-machine-learning-part-1/

18

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

3.7. Machine Learning Models

dence threshold of binary classification, the algorithm can be biased towards finding more true positives or
finding in total more of the example of the class by making more errors. The area under the curve (AUC)
of the ROC curve is often used as a performance measure. For a multiclass problem, these AUC curves
of each classifier are avaraged. Macro avaraging gives equal weight to each class, so it is important to use
micro avaraging which incoporates the class weights for activity and gesture recognition problems.

Machine learning models learn a set of parameters to perform the mapping. In linear models, they learn
a set of weights ; to find a linear combination of data siutable for task 7. There exists another set of
parameters which change the behaviour of the algorithm but are not learned by the algorithm itself. To
differentiate from the parameters of the model they are called hyperparameters. Hyperparameters are the
maximal depth of a decision tree, the type of kernel or other parameters I explain in the following section.
Hyperparameters most often influence how complex a model can be, often also called the capacity of the
model, and which basic assumption the model has. Therefore the hyperparameter tuning has a huge influ-
ence on the performance of the learned models. A support vector machine without hyperparameter tuning
taken from scikit-learn [Pedregosa et al., 2011]] performs very poorly on the smartwatch dataset. With
tuning the contamination parameter C and the kernel, it gives almost perfect accuracy on the validation set
(99%).

F'y

underfitting
zone

overfitting
zone

generalization
Error

bias variance

P capacity
optimal capacity

Figure 3.4.: Variance and bias as a function of model capacity/model complexity

The complexity of a model defines its ability to fit data. In case it can not fit data there are two main
causes for that. Either the model takes some things too much for granted. F.e. it can just always choose one
class of two classes because this one class is overrepresented. This problem is called bias. The other option
is that the algorithm is complex enough to learn data by heart. It can isolate single datapoints and say what
they are. Complex models often lead to 100% accuracy on the training data but terrible results on unseen
data. The problem is called overfitting, and for the model, we say it has too much variance. Another good
way to explain the bias vs variance problem is dart throwing (from Domingos|[2012]).

Most of the hyperparameters allow you to tune the so called bias / variance tradeoff. Common options
are to not train the model too long (early stopping), making the model simple, penalising the parameters
of the model to not become too complex by regularisation or using more data [Chokkanathan and Ko-
teeswaran), 2018} [Domingos| [2012].

There exist very many models even for classification alone. In his work “Do we Need Hundreds of Classi-
fiers to Solve Real World Classification Problems*Fernandez-Delgado et al.|[2014] compares 179 different
classification algorithms over 121 datasets. The paper concludes that the Random Forrest (RF) is the best
one yielding supperior results in almost all cases. In competitions with machine learning howeveﬂnost of

19

Chapter 3. Gesture Recognition

Low High
Variance Variance

High
Bias
Low ‘ l l/\\
Bias
overfitting underfitting Good balance
(a) Bias and variance in dart throwing from (b) Good vs. bad fit

[Domingos, |2012]

the time other algorithms win. The reason is that the paper only uses the default hyperparameters for mod-
elling, showing again the importance of hyperparameters. In this work hyperparameter tunig is especially
explored in the smartwatch case. Another insight is that there are too many classifiers to evaluate all in
this work. This work concentrates on the classifiers available in scikit-learn [Pedregosa et al.,[2011] which
implements all the common classifiers.

3.7.1. Linear Models

Linear Models are models who learn a linear combination of the inputs to predict a dependent variable in the
form of $(w,x) = wo+wix; + ...+ wy,x,. This is the form for regression. The learning is done by minimis-
ing a cost function. For classification in a two class case the learned line must separate classes. The combi-
nation is changed by adding a sigmoid function and mapping to the categorical variable y binarised to either

0 or 1. The linear combination is changed to the hypothesis function /g, (x) = m The cost

function changes then to J(6) = —1 [Z;’;ly(i) log (he (x“))) + (l —y(i)) log (1 — hg (x(")»} [Bishop|
2006]. This classifier is called logistic regression (LR). If the model is not learned by looking at all the
data at once, but always by a set of sampled batches of data, the algorithm is called stochastic gradient
decent classifier (SGD classifier) [Xu, [2011; Zhang| 2004]. Another linear model is the passive aggressive
model, which uses closed form solutions. They are optimised for large datasets [Crammer et al., 2006].

If the values of the weights ®; become high, the model can
form very complex hyperplanes. The solution to this is to add
aregularisation term to the basic logistic regression (LR) clas-
sifier. Regularisation of the parameters is adding the param-
eters themselves to the cost function. Since the target of the 100] N
optimisation is getting the cost function to a minimum value,

it now needs to balance the accuracy of the mapping with
the values of the parameters, thus penalising the model for
complexity. Several options exist for this penalising [Fried-
man), |1989; [Friedman et al., |2010; [Ful [1998; Rifkin and Lip- e
pert, 2007; [Zou and Hastie, [2005[]. In the Ridge case, the alpha

sum of squares of the weights is added +o||w||3. This term

is also called the ¢, regularisation term [Rifkin and Lippert, Figure 3.6.: Effect of 12/Ridge on the
2007]. In the Lasso case, the absolute value of the weights weights. Image taken from the
is added +at||w||!. This term is also called the ¢ regularisa- scikit-learn HP.

Ridge coefficients as a function of the regularization

weights

—-1004

9https://www.kaggle.org

20

https://www.kaggle.org

3.7. Machine Learning Models

tion term [Bishop}, 20065 Friedman et al.,[2010; [Ful [1998; jean

Kim et al., [2007]]. The elastic net adds a weighting between those two options +op||wl|; + M [wll3. In
all cases, the hyperparameter o determines how complex the model can become and is an important pa-
rameter to tune. In the case of the elastic net, the hyperparameter p determines which type of regularisation
to use. For this work, which makes a data driven approach to feature engineering, the Lasso and Elastic
Net regulisers are of special interest as the £ regularisation tends to set specific weights ® to zero if there
is a good setting of the hyperparameters o. Setting a weight to zero is the same as removing that feature
from the dataset and thus can be used for feature selection [Zou and Hastiel [2005]]. In this work, the effect

of ¢/ regularisation is used for the feature selection algorithm.

wy wy 0+,
L'-norm L?-norm
2T P
2 N .
. N / D
4 N wy / \ wy
N + t
N , . /
I N
N2 -

(a) Constrain Areas of Ridge and Lasso

(b) Constrain Areas of Elastic Net

Figure 3.7.: Comparison of the Area the Regularisation wants to push the weights to. Image taken from
Wikimedia Commons

logistic regression, together with decision trees, have been applied to smartwatch gesture recognition in the
demo paper of |Zhao et al.|[2015]].

3.7.2. Support Vector Machines

SVMs [Boser et al.| [1992; [Vapnik and Lerner, [1963] are classifiers which behave similar to linear or lo-
gistic regression. In contrast to logistic regression it optimises a different cost function which forces the
linear decision boundary to have a maximal margin between the two classes instead of any linear decision
boundary which satisfies the criterium of splitting the data. It does so by choosing points which define a
vector on the outside boundary of the data distributions (so-called support vectors, hence the name) and
puts the decision boundary in a place in the middle of those two vectors of each class. With this approach
alone the SVM would not converge if the data is not completely separateable similar to the famous percep-
tron algorithm. However a hyperparameter C controls the amount of contamination between classes which
is an important parameter for overfitting.

There exists a set of variants of a SVM. The general iterative algorithm to find the decision boundary
stays the same. The difference is how the data is treated. In case of a linear SVM, data is just treated as
a point in feature space similar to LR. Another option is to use kernels [Bishopl 20065 Boser et al., {1992,
transformations which sit on the features, to transform the space even more. A kernel is basically a func-
tion which exists for each data point, and computes f.e. the distance to each other datapoint. Since it is
a function, this mapping can be arbitrarily complex. The Radial Basis Function (RBF) is the best known
kernel, and uses a Gaussian distribution to transform the data at each data point. Depending on the data
function which is used, a SVM is either called linear SVM or SVM(RBF) or any other kernel. Each kernel
exposes its own set of hyperparameters.

I use the scikit-learn provided implementations of the SVM algorithm. They are the C-Support Vector
Classification (SVC), Nu-Support Vector Classification (NuSVC) and LinearSVC algorithms [Pedregosa
et al., 2011]]. SVC and NuSVC are general SVM algorithms, where you can use different kernels. The
LinearSVC is a version which is optimised for the linear kernel. A standard SVM algorithm like the SVC
uses the C penalty parameter to decide the tradeoff between finding a perfectly separating hyperplane for
the data and between maximising the margin while allowing some data points outside the decision area. A
value of C = 0 means that all data must be perfectly separated or the algorithm might not converge. Higher

21

Chapter 3. Gesture Recognition

values allow to find probably more generalisable hyperplanes on the cost of some misclassification on the
training data. A SVM does classification by calculating the distance of a point to the hyperplane, and then
basically looking at the sign of this distance. Points on one side have a positive, on the other side a negative
sign. That also means that a SVM has no direct method for classifying multiple classes at once, as it is
the case in our experiments. SVMs can deal with that in two ways: Either by building one classifier which
detects if a point is a part of its class or of any other class (one vs. rest, or ovr” in scikit learn) or by
building a set of pairwise classifiers for each tuple combination of classes present (one vs. one or ’ovo” in
scikit learn).

SVM have been shown to work well in HAR and gesture recognition. In|Dardas and Georganas| [2011]]
SVMs are used on images to detect gestures. In HAR a good feature representation SVM-RBF has shown
to give very good result in Parkinson’s disease walk detection (see |Camps et al.| [2018]]). Tuning the pa-
rameter C and choosing a good kernel (RBM) is a vital task to get a SVM to work on the smartwatch.

3.7.3. Naive Bayes

Naive bayes is a simple classifier which tries to predict the probability of a class from its feature p (Cg|x1,. .., x,).
However, naive bayes assumes that there is no dependence between the features, and therefor can approx-
imate the likelihood of each feature with p (x;|xi11,...,%,,Cx) = p(x;|Cy) (see f.e. [Russell and Norvig,
2010]). It can then compute the class probability using equation

PG 30) o€ p(Cats o 2)
~ p(C) p (x1]C0) p (21Ce) p (33]C) -

— () Tricy)

i=1

(3.16)

In our case the data is continuous, so the parameter estimation p (x = v|Cy) is computed by a Gaussion
distribution (see equation [3.17).

(v—u.)?

1)

px=v|C) = e % (3.17)
\/ 2767

Naive Bayes is used in smartwatch based gesture recognition for detecting 37 interaction based gestures
(turning the arm, simulating a click, pinch to zoom, etc..) with an accuracy of 98% by |Xu et al.|[2015]].

3.7.4. Gaussian Processes

Gaussian processes in machine learning (see Rasmussen and Williams| [2005]) are a method to fit function
data. There are infinite many functions possible to go trough a set of points in training data. A Gaussian
process models this infinite possible amount of functions in form of kernels. It assumes that the parameters
of these kernels are Gaussian distributed. It learns the Gaussian parameters from the data, and assigns
inference by sampling from the distributions and giving a probability back.

3.7.5. Clustering and Distance-based Methods

There exist several methods which perform a clustering by measuring the distance of each point and finding
the center of those points (Nearest Centroid classifier [[Tibshirani et al., | 2002]). The algorithm assumes one
cluster per class. Classification is then done by assigning the point with the smallest distance. Another op-
tion is to save the whole labeled training dataset and look at a set of datapoints around the point to classify
and take a majority voting. This model is the Nearest Neighbours [|[Coomans and Massart, |1982;|Cover and
Hart, |1967]] model.

The Nearest Neighbours model is also called k-Nearest Neighbours (kNN) for its important hyperparame-
ter k, which decides on how many neighbours are considered for the classification. If you choose too little

22

3.7. Machine Learning Models

the algorithm might overfit to complex decision boundaries as outliers define an own region for its class. If
you choose too many you might bias the algorithm towards major classes.

A very imporant hyperparameter for both, Nearest Centroid and Nearest Neighbour is the distance function.
The default of this hyperparameter is to use the euclidean distance. For image based gesture recognition
this is reported to work well [Birk et al.l|{1997]]. However, if the clusters are skewed distributions this might
lead to a very bad performance. In this case the machalanobis distance [Chandra et al., |1936; Mclachlan,
1999] is a better choise. Other options are taking the humming or edit distance.

In the smartglove case the dataset is very large. The kNN model needs the whole data to perform in-
ference. With all features this algorithm performs too slow to be used in that case. It starts to work with
datasets below 1000 features. The Nearest Centroid classifier works with every feature size.

3.7.6. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a classifier which learns a linear decision boundary by projecting
data onto hyperplanes similar to PCA (see the comparison from [Martinez and Kak|[2001]] or explanations
in Bishop| [2006]), but takes the class centers into account when doing the factoring. It was originally
developed by |Fisher| [[1936]. This can also be used for dimensionallity reduction. It is similar to ANOVA
but ANOVA maps categorical independent variables to a continuous dependent variable while LDA maps
continuous indipendent variables to a categorical dependent variable. LDA makes the assumption that the
covariances of the individual classes are the same and full rank. A generalisation of the algorithm is the
quadratic discriminant analysis (QDA) which does not make that assumption and can learn a quadratic
decision boundary.

In gesture analysis LDA was used with a smartglove in [Romaszewski et al.|[2014] to detect 22 natural
gestures from |Glomb et al.| [2012]] by resampling and interpolating the data and then perform LDA on it.
They achieve an accuracy of 92.8%.

3.7.7. Decision Tree

A decision tree is a classifier which uses information theoretic metrics (f.e. the information gain) to split
the data at a certain threshold into two branches [Bishopl [2006; |[Hastie et al., 2009; |[Russell and Norvig,
2010]. It iteratively does this until the data is entirely separated, leading to pairwise linear decision bound-
aries. To avoid overfitting leaves which only have a few data points inside are removed and merged with
their neighbours, a process called pruning. There exist different variants of decision trees using different
metrics for the splitting, like C4.5, MARS and CART.

Decision trees, together with logistic regression, have been applied to smartwatch gesture recognition in
the demo paper of |[Zhao et al.|[2015]].

3.7.8. Ensamble Methods

Ensamble methods are methods where many models are combined to predict the final outcome [Rokach,
2005; |Russell and Norvig, 2010]. This combination is often a majority vote. This is based on Con-
dorcet’s Jury Theorem from Marquis de Condorcet, 1784. The theorem states that if an individual ju-
ror is more likely to be right than wrong, increasing the number of jurors can only help. More for-
mally given N jurors with the avarage probability p of being right, the total probability u is defined as

u=yv (Wfi‘),,) (p)i(1—p)V=. If p>0.5than g > p and u= 1 if p > 0.5 and N — inf. This is
used f.e. in bagging algorithms like a random forrest. Instead of voting, avaraging the models or doing a

weighted avarage is used in many boosting algorithms.

23

Chapter 3. Gesture Recognition

3.7.9. Bagging

Bagging is a non-iterative ensamble method where many models are learned in parallel. Bagging stands for
Boodstrapped AGGregatING. Instead of using one dataset in Bagging several datasets are created. Each
dataset is of the same size as the original and created by sampling from the original dataset with replace-
ment. A variant of that is to clone the original dataset several times instead of sampling, but weighting
the features different in each clone, a process called wagging. Then the model is trained on each of the
generated datasets [Breiman, |1996; Rokach), 2005].

The most famous model is the random forrest (RF). A random forrest is an extension to a decision tree.
Instead of training one tree you train many trees each trained on its own dataset generated by bagging.
In the version of random forrests only a subset of features are selected for each dataset for the sampling
process to assure different trees. The prediction is done by majority voting [Breiman, |2001; Ho, |1995]].

If there are very many features it is likely that many of them are highly correlated. In this case a ran-
dom decision of features does not change the difference of each dataset a lot, resulting that the random
forrests behave more like the same tree trained on the same data [Hastie et al., 2009].

Extremly randomised trees (Extra Trees) from |Geurts et al.|[2006] deal with this problem by adding splits
in the tree which are completely random. They perform good on large and/or noisy datasets [Lawson et al.,
2017]. The effect on a large amount of features is well observable in the smartglove case. With all the
generated features the Extra Tree is the best classifier, it is also the best classifier globally. After a lot of
features are removed by feature and sensor selection the random forrest is the best classfier given that data.

3.7.10. Boosting

Boosting is an iterative ensamble method [Bishopl 2006; |[Freund et al., |1999; Rokach, 2005} |Schapire,
2003]. The idea is to iteratively first learn a set of several simple classifiers (also called weak learners in
the boosting literature) and combine them to one decision. In each iteration, a simple classifier is learned
to make an easy decision on the features.

AdaBoost [Freund and Schapire, [1997] is a classifier where a set of weak learners (you can choose which
they are) solve easier problems than the original problem and then are combined to a final model. In each
iteration, a learner learns to sparate some classes in an easy way. After that the data is re-weighted, with
the wrongly classified data boosted to have a higher weight, so the new weak learner needs to emphasise
a decision boundary which separates these. All these classifiers are then combined in the end according to
weights proportional to the weight change of their reweighting step. AdaBoost is applied to camera based
gesture recognition in [[Chen et al.,2007] after transforming the image with Haar wavelets.

GradientBoost is like AdaBoost a variant of a boosting algorithm. That means that iteratively a set of
weak classifiers are learned (with gradient boost often decision trees) and after learning the data is re-
weighted, so the next weak learner (f.e. tree) learns a different separation. The result is a weighted avarage
of those weak classifiers. In Gradient Boosting the data is changed so the next weak learner /(x) tries to
classify the data in the error/residual of the first learner h(x) =y — Fy,(x) [[Friedman, 2002].

3.8. System Perspective

So far I described the process of gesture recognition from the data perspective based on the KDDM process
and human activity recognition. Another view is to view the system with its components. This work takes
a wearable approach to gesture recognition in the form of a smartglove and in the form of a smartwatch.
Body sensor networks (BSN) [Fortino et al., 2015]] describe systems with sensors and some central pro-
cessing which collects the data and performs feature extraction. The analysis layer uses models described
above to perform predictions. In the dissemination layer, the predictions are used for interaction.

24

3.8. System Perspective

In the case of the smartglove there is a sensing layer and data collection on the glove. The data streams
to a computer and the modelling is done offline. The demo system with the smartwatch describes a more
complete BSN system. The sensors of the smartwatch are sent to a phone. The phone uses models which
are created similarly as the gesture recognition models of the smartglove to perform predictions on the
sensor stream in batches as they arrive. These predictions are then sent to a system to steer a slideshow.

The central elements not described in the process so far are the [pissemination Layer
sensors used for capturing physical motion and the dissemination
layer. The dissemination layer is explained in more detail in the ’
smartwatch experiment. The sensors are described in this section A

Event Propagation ‘

now. Analysis Layer

A smartglove is a glove with control electronics and sensors. It ’ Decision Fusion ‘

is the sensors which allow the glove to recognise its environment. 4
From a data perspective, the glove is a whole device capturing a ‘ Feature Fusion |
(complex) movement and each sensor data stream is a channel (or *

several channels depending on the definition) of that movement. ‘
From these channels then features are generated. I now want to
list the sensors used in this work.

Feature Selection |

Sensing Layer

‘ Feature Extraction ‘

Y

Sampling Management |

3.8.1. Inertial Measurement Unit

IMU stands for inertial measurement [Woodman, 2007]] unit and ‘
is a combination of several individual (inertial) sensors like ac-
celerometers, gyroscopes or magnetometers. Depending on how
many and in which axis these individual sensors are placed we Figure 3.8.: Three-Layer Architecture
speak of different degrees of freedom (DOF). An often used IMU for a BSN as described
has 6 DOF because it has three accelerometers, each in one axis in[Fortino et al] [2013]
(x,y,z) capturing linear acceleration and three gyroscopes, each in

one axis (X,y,z) capturing rotational speed. The measurement is usually done with a low-cost Micro Electro
Mechanical System (MEMS) [Jurman et al., 2007|]. IMUs can be employed to create an inertial navigation
system (INS) which navigates an object in a 3D space like in dead reckoning. The error of MEMS-based
IMUs propagates over time, which means that you can be about 150m offset of where you calculated to be
in 60s if you are unlucky [Woodman, 2007]]. An interesting property is that the IMU measures the move-
ment with different sensors. Therefore the errors of the individual sensors (noise and drift) can be reduced
using sensor fusion with methods like a nonlinear Kalman filter, a Madgwick algorithm or a complementary
ﬁlteﬂ The combined / sensor fused data of an IMU represents movement in a 3D space (depending on the
usage of the magnetometer the coordinate system is fixed differently). There are several options to present
movement in 3D space: Using the direction cosine matrix (DCM), Euler angles or quarternions [Jurman
et al.,2007]. .

3.8.2. Accelerometer

An accelerometer is a sensor measuring proper acceleration, that is the gravitational force among axes
in m/s>. Fe. a resting accelerometer that is placed with the x-axes upwards will measure 1g upwards
(approximately 9.81/s%) on the x-axis and about 0 on the other axes. An accelerometer sensor measures
on one axis only. If you want another axis you add another accelerometer placed accordingly, although
this is often built into one electronics chip. Most consumer good devices contain accelerometers that are
Micro Electro Mechanical System (MEMS). They are made of a movable plate that is fixed to a reference
frame through a suspension system [Cai, [2014; [Lyshevski, |2002]. A common problem for accelerometers

Ohttp://www.starlino.com/imu_guide.html

25

http://www.starlino.com/imu_guide.html

Chapter 3. Gesture Recognition

is noise, especially when lying still. A moving average filter is a good first step to lower this noise (see
Chapter 15 Moving Average Filters in [Smith} [1997]).

3.8.3. Gyroscope

A gyroscope measures how fast an object rotates in 3 coordinate planes, that is the XY, YZ, and the
ZX plane. The measurements are usually in degree per second (deg /s) per plane. Many manufacturing
variations of gyroscopes exist, although MEMS gyroscopes are the most used in consumer goods or hobby
electronics, and use a micro-vibrating element as a pendulum. Gyroscopes are less prone to noise, but
therefore have a problem with drift. This complementary nature of gyroscope and accelerometer is used in
the complementary filter for IMUs [[Woodman, 2007]].

3.8.4. Magnetometer

A magnetometer measures the strength and direction of the surrounding magnetic field. The measure is
done in degrees (deg) for each axis. Most smartphone users know it as a compass or sometimes as a
metal detector. In smartphones and hobby electronics solid state technology is used to create miniature
Hall-effect magnetometers, which produce a voltage proportional to the magnetic field [Woodman, [2007]].

3.8.5. Flex Sensors

Flex sensors are also called flexion sensors or bend sensors. They measure the deflection caused by bend-
ing the sensor, in form or output voltage. If the sensor is fixed to one angle (like a finger joint in our case)
you can approximate with the measurement the angle of the joint.

The usual ways to create flexion sensors are conductive ink based, fibre optic based, or conductive fabric
based. In our experiment, we used conductive ink-based flexion sensors. They are relatively cost-effective
compared to fibre optic, and clearly more reliable than conductive fabric based, and very popular in hobby
electronics. They come with a start resistance, and on bending the resistance can increase up to 10x the
start resistance [Dunne et al., [2007].

3.8.6. Force Sensitive Resistors

A Force Sensitive Resistor (FSR) is sometimes also called a pressure sensor. It actually changes its internal
resistance based on the pressure applied to the sensor. On pressure, a conductive film comes into contact
with an area with many conductors. The more pressure, the more contact, lowering the resistance. FSRs
usually have a very high resting resistance (about 1MQ), and only after some force starts with about 100kQ2
to a lower value. More detail on the workings of FSRs can be found in|Burdea| [[1996].

26

Chapter

The Gesture Glove Experiment

Parts of the contents of this chapter have been published in
the |proceedings of 3DUI’" 16| [Luzhnica et al.,|2016|].

The idea for the smartglove was to produce a system which allows recognising 31 natural gestures plus the
zero class. We are interested in a general-purpose gesture alphabet with which to control computers and
communicate with them. Essentially, it would be possible to develop a completely novel gesture language
for such a purpose. A study looking at inventing custom gestures [Jego et al., [2013] showed however, that
a user could only remember a very small number (about two) of such gestures. Therefore, we are looking
at gestures that are widely known, even though there may be cultural differences regarding their popularity
and meaning. Additionally, there should be a plausible relationship between the gesture and an interaction
between human and computer.

These criteria result in the following 31 hand gestures (see table {.1] and figure {.I). Our gesture set
was initially based on the list of 22 natural gestures described in|Glomb et al.|[2012]]. We added the follow-
ing: The numbers one to five, as they would be useful to select items; popular touch-based swipe gestures
such as swipe left, right, up and down, as these would be useful for navigation. Finally, we added lateral
grasp (Grasp 2) and palmar grasp (Grasp 1) gestures, as we think that grasping objects would be useful in
interaction with 3D virtual objects.

4.1. The Hardware of the Custom Smartglove and Data Collection
Software

The mentioned gestures vary a lot in their dynamics: Some gestures contain a
lot of complex motions (e.g continue) whereas some are very close to a pos-
ture (e.g. numbers one, two, ...).

The smartglove emphasises motion detection of the fingers (which implies
that we would have motion sensors on the fingers); as well as hand postures
(which implies that we would use bend sensors). The glove is depicted in
Figure 4.2

We placed two flexion sensors on each finger. The upper sensor measures the
bending (which translates to angle) of the finger relative to the hand, whereas
the lower sensor measures the bending between the middle segment and the
base segment of the finger. Another flexion sensor is placed between the
thumb and index finger in order to measure the distance/angle between them.
Two more flexion sensors (in opposite directions) are placed on the wrist in
order to be able to measure wrist flexion/extension. Overall, this gives 13 flex-

(b) Bottom View

Figure 4.2.

27

Chapter 4. The Gesture Glove Experiment

Gesture Description

(1) One Number one by extending index finger

(2) Two Number two by extending index and middle finger

(3) Three Number three by extending index, middle and ring finger

(4) Four Number four by extending all fingers except thumb

(5) Five Number five by extending all fingers

Thumbs up Thump stretched pointing up, other fingers form fist

Thumbs down | Thump stretched pointing down, other fingers form fist

Point to self Pointing at self with thumb

Shoot Hand in form of a gun and then vibrate

Scissor Stimulating scissors with two fingers

Cutthroat Using index finger

Continue Waving like circular motion with the flat hand

Knocking Forming a fist and moving the fist up and down

Waving Shaking the flat hand left and right

Come here Flat hand with palm upwards: Simultaneous flexing the all fingers but the thumb

Go away Hand with palm downwards, all fingers but thumb flexed. Simultaneously stretching them

Push away Flat hand with palm pointing forwards, then moving the whole hand forward

Never mind Flat hand with palm pointing left above the head, then moving the whole hand left

Talking Thumb and 4 fingers pointing forward. Then moving 4 fingers up and down

Calling Hand is a fist, but thumb and small finger are extended

Walking Hand is a fist, but making a walking motion with the index and middle finger

Shoulder pat patting with the open hand on a virtual shoulder

Point Pointing in front with index finger

Swipe left Stretched hand with palm pointing left, flexing it completely to the right first, then flexing
it to the left, in a circular motion

Swipe right swiping with palm pointing right, and left to right motion

Swipe up swiping with palm pointing up, and bottom to top motion

Down swiping with palm pointing down, and top to bottom motion

Turn Hand rotation

Zoom Reverse pinch using index finger and thumb

Grasp 1 Palmar grasp (in the experiment we used a glass)

Grasp 2 Lateral grasp (in the experiment we used a pen)

Table 4.1.: List of 31 interaction-oriented hand gestures.

ion sensors. Additionally, each fingertip is equipped with a pressure sensor

(5 pressure sensors). Furthermore, 7 IMUs with 6 DOF are placed, one at the top of each finger, one on
the back of the hand and one on the wrist. The wrist IMU is placed exactly at the position where a watch
would be. This placement allows the data recorded with the glove also to be treated as if it came from a
smartwatch by simply ignoring the input from other sensors. Finally, a magnetometer is placed on the back
of the hand.

This setup gives us a smartglove with 52 DOF which is more than other gloves had at the time of building
the glove and more than needed for capturing the kinematics of a hand (see chapter 2] for reference).

From a modelling perspective, it makes sense to know the value ranges and noise of a sensor. Often
models trained with one type of noise are not easily transferred to another. Also, it makes sense to have
full documentation of the hardware setup of the smartglove. This documentation describes the technical
aspects of the sensors, the central data collection unit in the form of an Arduino DUE and how sensors and
the Arduino are connected.

Flexion sensors are probably the most used sensors for smartgloves (see [Alapati and Yeole| [2017]). Also
all gloves described in this thesis use them. We use a standard conductive ink-based 2.2” (so 5.8cm) flex-
ion sensor. These sensors are relatively cheap compared to the other options (fibre optic and conductive
thread/polymer based). Also, they are less ergonomic, especially compared to conductive thread. They are

28

4.1. The Hardware of the Custom Smartglove and Data Collection Software

(a) One (b) Two (c) Three (d) Four
(e) Five (f) Calling (g) Come here (h) Continue

(i) Cut throat (j) Down (k) Go away (1) Go away

(m) Grasp 2 (n) Knockmg (o) Never mind (p) Point
(q) Point to self (r) Scissor (s) Shoot (t) Shoulder pad

E

(y) Talking (z) Thumbs down (aa) Thumbs up (ab) Turn

e

(u) Shove away (v) Swipe left (w) Swipe right

p e

(ac) Walking (ad) Waving (ae) Zoom

Figure 4.1.: 31 gestures used in this work. Additional explanation in the text.

longlived, and the accuracy suffices for the prototype. The internal pull-up resistor of an Arduino is enough
for connection.

For the IMU we used the MPU-6050 chip with a GY-512 breakout board. This chip is a 6 DOF IMU
with a digital motion processor (DMS) on one small chip. It operates at a voltage of 2.3 to 3.4V and sends
its data over />C. The DMS is not sufficiently documented for hobby users. Some used reverse engineering
to control it properly, others (as we did) just used the raw values of the sensors. The chips sensitivity for
the sensors can be set by the developer, and ranges from +/ —2g, +/ —4g, +/ — 8g, or +/ — 16g for the
accelerometer and 4+/ — 2500 /s, +/ —5000 /s, +/ — 10000 /s, or +/ — 2000 ¢ /s for the gyroscope. We
used the default setting which is the lowest of each (+/ —2g, +/ —2500 /s). Some resources, like the

29

Chapter 4. The Gesture Glove Experiment

b Fowcc‘ '
Rcs is'l-or
FLex

Sensov
[UTLU Mvz/#\Fﬁxov
@ H"’(j nelometev

@] ARDUING

| A

{ }L*‘o jO ch Fe

Bo2vel

[WIKRES

Figure 4.3.: A schematic view on the smartglove.

1. Each fingertip has an IMU on the top and a force resistor on the bottom. 2. Each finger has
two flexion sensors to measure the flexion of two parts of the finger. 3. The thumb has three
flexion sensors, the additional one measures the opposition of the thumb to the hand. 4. On the
top of the palm, we placed an IMU, a magnetometer and an analogue multiplexer. 5. On the
wrist, we placed a flexion sensor and additionally an IMU at a position where a smartwatch
would usually be placed. 6. All the sensors are connected to an Arduino DUE board. The
board is held by an armband with a velcro fastener

Christoffer Ojeling did the main assembly and C programming with input of Eduardo Veas,
Granit Luzhinca and me.

30

4.1. The Hardware of the Custom Smartglove and Data Collection Software

manufacturers home pageﬂ the data sheetEbr Arduino tutorialsﬂ:xit.

We use the HMC5883L magnetometer. This magnetometer operates with 3.3V. It communicates over
the I>C protocol. The measuring rate is +1.3 — 8Gs gauss.

The pressure sensor is the interlink force sensitive resistor FSR 402 Short. It has a diameter of 0.58mm, and
a sensitivity of 0.2N — 20N and is therefore optimised for human touch control. In our first experiments,
the angle of the touch had a big influence. Therefore we put sugru glue over them so the force of touch
is applied more evenly. The resistance range is well suited to work with the internal pull-up resistor of an
Arduino DUE.

All sensors with an I2C protocol are connected directly to the Arduino DUE. However, the Arduino DUE
only has 12 analogue inputs, and we have 17 devices. Therefore we use a 16 channel analogue multiplexer
from SparkFun (CD74HC4067). Five digital pins are connected to control the multiplexer which acts as a
rotary switch for the analogue signals. The multiplexer connects to all the flexion sensors. An implication
is that in each sending circle the Arduino has to sample the sensors for each transmission.

On the forearm, a plastic box is fastened with velcro. The box is the casing for an Arduino DUE. The
Arduino DUE is used to control the electronics and sensors, and collect the data. The device operates on
3.3V compared to the 5V of popular AVR based boards like the Rasperry Pi. Care must be taken to provide
the correct voltage as too much voltage damages the board. Connecting the Arduino DUE per USB is
enough to power the board. The Arduino DUE is based on the Atmel SAM3X8E ARM Cortex-M3 CPU
which has 32 bit. The board’s clock is set to 84 Mhz. It was the only 32 bit ARM Arduino at the time we
built the glove. The Arduino DUE has 54 digital 1O pins, of which 12 can be used with PWM. There are
12 analogue inputs. The ADC and PWM resolution is supported up to 12 bit. The Arduino DUE also has
some other electronics we do not use. The board has two USB connections. One goes directly to the CPU,
the other, the programming USB goes to the ATMEL 16U2 which acts as a USB-to-Serial converter.

We used the serial connection protocol over USB (the same you use to program the Arduino) to collect
the data. Every 0.012s one loop through the sensors was finished and sent back to the connected computer.
A C program on the Arduino initialises the sensors on startup and in the loop instructs the multiplexer to
switch between the flexion sensors and take the current value. Also, it reads all the pressure sensors over
analogue ins and the data of all IMUs and the magnetometer over I°C. One loop through all the sensors
takes 12 milliseconds. Every 12 milliseconds (83.3H7) the data is sent over USB serial connection to a
PC if connected. Since the frequency of human movements is low and mostly under 20Hz [[Camps et al.,
2018]], this is more than sufficient.

Additionally, Christoffer built scripts to control the glove from the PC. The calibrate_analog.py python
script calibrates the gyroscope of the glove and the min. and max. values of the flexion sensors. It is advised
to call that always before an experiment and save the resulting offset.txt files. Two visualisation scripts al-
low seeing either the centre of the gyroscopes or a simple 3D joints visualisation of the hand. Finally, there
is one basis script to test the data collection, and one script for the data collection we used in our experiment.

The finished version of the glove is shown in figure[4.2] a schematic view in figure [d.3] Our custom smart-
glove is a hardware prototype and as such it has some limitations, mainly regarding usability. For long-term
wearing, the glove should for instance be made of more comfortable material, be made of smaller and not
visible electronic components, should be available in different sizes, and be wirelessly connected to the
computing unit.

Yhttp://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/
2https://www.cdiweb.com/datasheets/invensense/MPUf6050_Datasheet_\/3%204.pdf
3http://playground.arduino.cc/Main/MPU-6050

31

http://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/
https://www.cdiweb.com/datasheets/invensense/MPU-6050_DataSheet_V3%204.pdf
http://playground.arduino.cc/Main/MPU-6050

Chapter 4. The Gesture Glove Experiment

4.2. Data Collection Experiment

):

~7)
(a) Countdown to perform a ges- (b) Participant performs the “One
ture (1) gesture while the progressbar

is on the screen

Figure 4.4.

We collected sensory data annotated with gesture names in the
subsequently described data collection experiment. 27 peo-
ple participated in the experiment. On some we had to in-
terrupt in the middle because of hardware problems or tim-
ing of the participant or discarded the data for technical rea-
sons: The accelerometer sensitivity was very low and there-
fore much clipping occured. Clipping means that, due to
measurement errors, there were long times of maximum ac-
celeration. For subsequent experiments, the acceleration sen-
sitivity settings were changed to allow higher (but less pre-
cise) acceleration readings. We recorded the whole experi-
ment with 24 people. After data cleaning, two more peo-
ple had to be excluded from the study. In total, we collected
data from 22 healthy adults: 12 males and 8 females. Par-
ticipants were aged between 24 and 40 years. In the origi-
nal paper of [Cuzhnica et al| [2016], we were more conser-
vative in the exclusion, using 18 people for the data analy-
sis.

The overall process for one participant is shown in figure @3} (1)
Before starting with the data recording, the purpose of the exper-
iment was explained. (2) For each participant, we collected de-
mographic data and data about the hand. Participants were asked
to remain seated during the experiment in an office chair. In front
of them (on the desk), a monitor was placed. (3) We helped with
putting on the data glove and connected the system to the com-
puter. (4) We explained the process and let the user try out one
set of repetitions of gestures without recording (5 and 6). Then the
data collection started (7).

e
(,,%m

Figure 4.5.: The overall process of
the study

A schematic of the data collection is shown in figure f.6] Every gesture was performed several times
by every participant (5 or 10 times depending on the willingness of the participant) in a row. The gesture
name and the video of the actor performing the gesture (steps 1 and 2) were shown only for the first rep-
etition of the gesture, whereas the counter, progress bar and labelling (steps 3-7) were the same in every
repetition. Figure 4] shows one participant while performing the “One” gesture.

For each gesture, the following steps were performed in the given sequence (see figure [4.6):

32

4.2. Data Collection Experiment

. The name of the gesture was shown on the screen for 2s, then a video was displayed; it showed an
actor performing the gesture (without a glove; 6s-7s)

. A counter was shown on the screen alarming the participants that the recording was about to start
(3s).

. The participant was asked (audio and text on screen) to start performing the gesture. A progress bar
was displayed on the screen, indicating the time the participant had to finish the gesture (3s). The
appearance of the progress bar started the time window called “automatic labelling”.

. When the participant started the gesture, the experiment observer pressed a button on the keyboard.
This button press indicated the start point of the time window called “dynamic labelling”. When
the participant ended the gesture, the experiment observer released the button. This was the end
point of the time window called “dynamic labelling”. In case that the gesture contained a stationary
state/posture, the experimenter noted the start time and end time of the stationary part as well (by
pressing and holding another button until it was over)

. When the progress bar ended, the time window called “automatic labelling” was closed.

. Depending on the participant each gesture was repeated 5 or 6 times.

. While we did not assume any specific learning effects we were worried about the effects of tiring of
the arm during the experiments. It could be that, if a gesture is always the last after a 30min or 1h

session, it is performed differently than at the start. Therefore the process is repeated for each of the
31 gestures in random order.

Figure 4.6.: Schematic of the data collection process.

33

Chapter 4. The Gesture Glove Experiment

4.3. Collected Data

During the experiment participants also did wear EMG sensors in the form of a Myo armband. In|Luzhnica
et al. [2016] and also in this thesis we do not cover this data. At data collection the glove records the data
of each of its sensors. With the 52 DOF of direct movement, the 3 DOF of the magnetometer and the
five pressure sensors the glove records 64 channels. The glove loops through the sensors every 12ms and
reads the current values and sends this array to a computer, resulting in a sampling rate of 83,3Hz. This
array is then written into a .csv file. In the experiment the data was saved in the following way automati-
cally: For each participant, a folder with the participant code was created. In that folder a file in the format
CODE_TYPE_TIMESTAMP.csv was created, with CODE being the participant code, TYPE being either gesture,
myo or labels, timestamp being in the format Year Month_Day_Hour_Minute_Second. An example would
be PS42_glove_2015.08_13.15.06_08.csv.

The type glove means it has all the channels from the glove, myo has all the channels from the myo
and labels have a start and end index for glove and myo for each time a label was recorded in a row. If you
combine all the raw data (without the myo data) into one big python pickle we have around 3.4 GB of raw
data.

If an experiment was interrupted in between because there was a short break needed or a problem with
a sensor, it could be picked up at a later time. In this case, several of the above files exist in the user’s
folder, with a different starting timestamp. A first step is to create one dataset suitable for exploration out
of these user recording sessions and individual files.

4.3.1. Preprocessing - Labels

The raw .csv files from the data collection have no index in the time domain, and if the experiment is
interrupted, the index starts at O for the new file. By multiplying the file index with a time delta of 0.012s
and adding this to the starting time of recording, encoded in the file name, we recover the time domain of
the labels.

The labels in the label file are start and end indices of rows in the data collection files. Columns for
labels extend the data matrix. Then each row in the data matrix is annotated with the corresponding labels.
We differentiate between four different types of labels. Depending on the way a label is created (automat-
ically or manual) and if it annotated a dynamic or static part of the gesture, the label has a different type.
The label types we have are the following:

e Automatic: the user is asked by the program of the experiment to perform the gesture after a count-
down within three seconds. The start and the end index of this window is tagged automatically by
the data collection software with the label_automatic type

e Manual: The manual label is the combination of the dynamic and the static label, and recorded as
the label manual type

e Dynamic: When the user performs a gesture an experimenter manually pressed the 1 key on the
keyboard when the dynamic part of a gesture has taken place. The dynamic part is defined as the part
where arm and/or fingers move. The start and the end index of this manual labelling is recorded in
the label_dynamic type.

e Static: When the dynamic part ends, often a static part is added to a gesture. The static part is when
the arm rests in a pose forming the symbolic shape the gesture represents (like thumbs up). If that
part is present, the experimenter manually labels that part by pressing the 2 key on the keyboard. The
start and end frame are recorded into the label_static type.

The label types for a structure are visible in figure If the experimenter made an error or if any other
reason lead a violation of this structure, we excluded the label from the data.

34

4.3. Collected Data

4

-600

00-00:00 00-00:01 ® ‘2, 00-00:02 00:00:03

Figure 4.7.: An example of a LabelGroup. (1) is an automatic label (always 3s), (2) is the manual label
shorter than the automatic label. A manual label consists of a dynamic (3) and a static (4) part.
The static part is optional. The dynamic part is always before the static part and not optional.

We validate labels in a two-way process: We use the data already annotated with labels to find consec-
utive rows with label information. From these consecutive rows, the label’s structure is recreated and each
group of labels saved as a LabelGroup object. If that does not work, the label is discarded. 1.9616% of
the labels in the dataset are thrown away this way. Additionally, the structure of the label is checked by
recreating the structure directly from the labels file. This is also saved in a LabelGroup object. 1.1902% of
the labels in the labels file do not meet that criterium, but they are mostly the same who are also removed
the other way. At least the two lists of LabelGroup are compared if they annotate the same time sequences.
If they do not agree the corresponding labels are thrown away. For most users, no correction is needed. For
a few users up to 4% of the LabelGroups need to be removed. In total, another 0.9155% of LabelGroups
need to be removed over the complete data.

raw data concalenate files * Dbasic data
add labels
recreate time domain
find consecutive rows in data
combine groups of automatic,
manual, dynamic and static to ong
LabelGroup
validate timings LJ compute offsets from index + start-
basic data time from the labels file to label in
with time domain
LabelGroup combine groups of automatic,
annotations manual, dynamic and static to one
basic data from Data LabelGroup
with valid [i validate timings
- 1]

annotations agreement Ga8lo 0ot

LabelGroup

annotations

from
Labelsfile

Figure 4.8.: Showing the process from raw data to preprocessed data with valid labels

4.3.2. Preprocessing - Outlier Removal

For later modelling, it makes sense to look at data quality. One possible way to look at that is to check
if some values are outliers. We know from experiments that sometimes the sensors gave an error, which
resulted in the return of a very large positive or negative number. For our dataset, we want to remove this

35

Chapter 4. The Gesture Glove Experiment

erroneous values. Additionally, inspecting the distribution of values for sensors and channels gives us an
insight into how well a classifier can differentiate between classes, and also might hint at dangers of over-
fitting. F.e. if the distributions of values for a gesture do not overlap for a sensor, a simple thresholding
algorithm can directly be used as a classifier.

Before visualising the sensors, we must check if they are normally distributed or not, to see if a box-
plot visualisation makes sense or if we need something different. All sensors are not normally distributed.
The test statistics for testing for normal distribution for the sensor values are reported in the Appendix, Ta-
ble [A.1] Because the value distribution is non-normal, scatterplots are used for the outliers visualisation
and violin plots for visualising the distributions of the sensor values.

values of all accelerometer channels from AB73 wvalues of all accelerometer channels from AB73

30000 2000

20000

1000
10000

-10000
-1000
-20000

30000 ~2000

0 0

(a) with outliers (b) without outliers

Figure 4.9.: Valuerange of all accelerometer sensors used for user AB73 with (a) and without (b) outliers
removed

When visualising the distribution of values for different sensors outliers are clearly visible (f.e. figure [d.9).
For the removal, the whole dataset at once is used. This way we get between 10 — 60 million sensor val-
ues depending on the sensor. Often used methods like Local Outlier Factor [Breunig et al., 2000] (LOF)
or Isolation Forrests [Liu et al., 2008} 2012]] cannot cope with that amount of data. Although the Isolation
Forrest algorithm claims to have linear memory requirements through subsampling when building the trees,
the algorithm did not run on a computer of 32 GB. Also when trying it on a 61 GB machine on Amazon
web services (AWS) the algorithm did not do anything for 1h, so the experiment was discarded. The LOF
paper does not say anything on memory consumption. While the Isolation Forrest threw a python memory
exception on the 32 GB machine, the LOF did not terminate, and we ended the experiments after a few
hours. Because of that, the strategy for outlier removal was modified in the following way:

1. The data is permutated, and then divided into batches of 500.000 samples per batch.
2. On each batch LOF is performed.
3. We then count the number of outliers at the upper and lower 1,5% quantile.

4. Then the fraction of outliers vs. inliers is computed. If there are more than 0.5% outliers we assume
the sensor has outliers in the area of the upper and lower 1.5% quantile, else we declare the sensor
outlier free.

5. We then manually tune the lower and upper quantile to reach a level where LOF says about 50% are
outliers. We then treat all this data as outliers for the future.

An exception of the above is the flexion sensor. There exists a clear group of outliers at the end and the
start of the spectrum (see figure d.10¢] (b) for reference) which is most likely a form of clipping. However,
they are grouped enough that the LOF does not assume them outliers. Therefore, for the flexion sensor,
the last rule is ignored, and a threshold including these extreme values is set even if LOF does say they
are not outliers. The results are individual thresholds per sensors expressed in lower and higher quantiles
as a cutoff value. All chosen thresholds are lower than the +1.5% quantiles. A visualisation of the outlier

36

4.3. Collected Data

removal is shown in figure [f.10] for each sensor type. The resulting quantiles, the contamination and the
amount of reduced data is shown in table The effect of the outlier removal can easily be seen in
figure 4.9 where the image with all the data is dominated by the outliers, while you see a distinct pattern
after outlier removal. A selection of distributions of the accelerometer sensor from randomly selected users
is in the appendix, figure[A.T] A complete comparison of the distributions of the sensors for one user is in
the appendix, figure[A.2] There is no visualisation of the distributions of the sensors done over all users as
this needed to long to compute.

stats ‘ flexion accelerometer gyroscope pressure magnetometer
lower quantile | 0.588948% 0.03% 0.05% 0.03% 0.03%
higher quantile | 99.56215% 99.98% 99.95% 99.95% 00.05%
contamination | 2.84388% 57.05% 67.1737% 43.33% 62.2364%

reduced data 1.0268% 0.0499914% 0.0999844% 0.0533914% 0.0786372%

Table 4.2.: Lower and higher threshold expressed in quantiles for data assumed to be an outlier for the
different sensors. Contamination expresses how many outliers LOF found within the threshold,
reduced data tells how much of the original data is then seen as an outlier.

Local Outlier Factor (LOF) Local Outlier Factor (LOF)
ocal uthier Factor

30000

20000

10000
2000

1500

—-10000

1000
—20000

500

-30000

06 08 10 12 14
(a) Outliers detected for the accelerometer sen-

sor (b) Outliers detected for the flexion sensor

Local Qutlier Factor (LOF) Local Qutlier Factor (LOF)

G 1 GRS O 3500

30000

20000

10000

~10000

—20000

-30000

08 LE) 10 1z 14 06 08 10 12 14

(¢) Outliers detected for the gyroscope sensor (d) Outliers detected for the pressure sensor

Local Qutlier Factor (LOF)

70

500

250

—250

-500

=750

-1000

06 08 10 12 14
(e) Outliers detected for the magnetometer sen-

Sor

Figure 4.10.: Outliers detected for sensors with LOF outside the thresholds (Thresholds are defined in
Table @ A red circle is around an outlier. A black circle is a data point.

37

Chapter 4. The Gesture Glove Experiment

For visualisation, the outlier data is removed. In modelling the outlier data is filled by an average of the
neighbouring values. Filling the outliers with the average makes sense as we have time series data and the
individual points do depend on each other.

4.3.3. Description of Basic Data

After data cleaning, we have 22 users with clean data. A user has on average 126.742 samples of recording.
This number of samples corresponds to an average recording time of 25min and 21s (this is the recording
time, but not the duration of the experiment, which includes additional steps). Table[4.3]shows the number
of time steps and the recording time of each participant. For the hardware unit, we combine the accelerom-
eter and gyroscope to one IMU. Counted this way the glove has 25 sensors. The data consists of data of
five different sensor types (accelerometer, gyroscope, magnetometer, flexion, pressure). All these sensors
produce 62 channels of data per time point. The data is sampled with 83.3Hz, so each record from a
consecutive recording is 0.0012s apart.

User Code | Samples | Recording Time
AB73 183008 | 0:36:36.096
AF82 105835 | 0:21:10.020
AL29 184276 | 0:36:51.312
AW18 103159 | 0:20:37.908
CB23 105331 | 0:21:03.972
CB24 106082 | 0:21:12.984
CFs8 119296 | 0:23:51.552
DG12 104551 | 0:20:54.612
DH42 110435 | 0:22:05.220
DL24 181278 | 0:36:15.336
JL61 112566 | 0:22:30.792
JQ28 191596 | 0:38:19.152
JS52 187429 | 0:37:29.148
MF20 103021 | 0:20:36.252
MSS55 108852 | 0:21:46.224
PC29 120138 | 0:24:01.656
PM32 180668 | 0:36:08.016
PS42 105795 | 0:21:09.540
RR45 105651 | 0:21:07.812
RW32 105821 | 0:21:09.852
SF1 103205 | 0:20:38.460
YW13 187082 | 0:37:24.984

Table 4.3.: Number of time steps and recording time for each participant.

4.3.4. Timing of Gestures

For deciding on the length of the sliding window, it makes sense to know how long a gesture can be in the
dataset. Therefore we computed the statistics of the gesture types. Since the automatic label is fixed to 3s
this statistic is not included.

The manual label type is the label type used for modelling. The separation between dynamic and static
is too complex, but the manual label type is more exact than the automatic label type. The average gesture
takes a bit more than a second for a manual gesture. Table [4.4] shows the statistics and figure shows
the according histograms. Another interesting comparison is the different timings for the manual label type
for all user. Table[d.5]|shows this comparison. In figure [4.12] we show all gestures sorted from the shortest

38

4.3. Collected Data

00 0s 10 15 20 25 00 [H] 10 15 20 25 00 [H] 10 15 20 25
Time in seconds Time in seconds Time in seconds

(a) Timing of manual labels. (b) Timing of dynamic labels. (c) Timing of static labels.

Figure 4.11.: The timing histograms for the different label types computed over all gestures and users.

Metric | Manual | Dynamic | Static
min | 0.024s 0.072s 0.024s
max | 2.616s 2.46s 2.28s

mean | 1.147s6 0.831s 0.968s
var | 0.144s 0.228s 0.162s

Table 4.4.: Comparison over the timings of a gesture over all users

on average to the longest for the manual label type. We can see that the variances are generally not so high.
Also, the min and max values are different, but not too extreme. What is more, is that within the bounds
some users tend for longer or less long gestures as we can see from the mean + kurtosis combination.

25 1 ¢
(I r

201 g v 0 }

Time in seconds

-
o
e |t -
-
-
-
1_F
I —
1T
LT
I
|
11
Tt
1T
T

] +
T+ * T T r T T r— T 7T T r T T T 1T 1T T T T T T T 7T
s = ohl [
EfE SESREEEEYLTESER SE LS B PEE RN D
223 8Ew 2 EFELFRpS 82y 222353 ARG
B RO s E o NEE s 2508 5y FYEgEEsE g BE
5 %G 12558 & EZzF gl ogevYe 2 G 8
w8 $904 ¢ 5 2 3 E §:i°=

- = n E = E o2
e

i
'IQ'_
=
a

Figure 4.12.: Timing of static labels.

If we search the gestures for the one with the shortest and longest average manual gesture, we find that the
Shoot gesture is the one performed fastest by the participants (0.75s on average) and the Grasp 1 is the one
with the longest average timing (1.69s on average). If we search for the most uniformly performed gesture
in terms of the gesture with the smallest variance in the timing it is the Down gesture which takes 0.82s on
average but with a variance of only 0.03s. The most differently long performed gesture, on the other hand,
is the Grasp 2 gesture with an average of 1.49s and a variance of 0.18s. Figure [d.13|shows the histograms
of these gestures.

39

Chapter 4. The Gesture Glove Experiment

Table 4.5.: Statistics of the timings of gestures when using the manual annotation type for each users, and

1bls min max mean variance skewness kurtosis user
307.0 0492 2016 1.090124 0.081020 0.977200 0.959664 AB73
153.0 0.564 2.160 1.071294 0.074505 0.933502 1.332054 AF82
308.0 0.276 2.088 1.080935 0.083344 0.464313 0.639929 AL29
152.0 0.612 2.244 1.237974 0.116471 0.607737 -0.313408 AWI18
152.0 0.552 2496 1.417184 0.101046 0.268666 0.712247 CB23
154.0 0480 1.872 1.031922 0.067122 0.731036 0.679540 CB24
158.0 0.504 1.932 1.100127 0.104537 0.650358 -0.092005 CF58
154.0 2.028 0.123974 0.856840 0.754349 DGI2
153.0 0.288 2460 1.007216 0.165798 1.022538 1.678622 DHA42
301.0 0.204 2.256 1.289741 DL24
157.0 0.588 2.340 1.048968 0.072654 1.142722 2.578293 JL61
294.0 0276 2448 1.277224 0.192333 0.248830 -0.284948 JQ28
293.0 0.204 2400 1.284491 0.130125 0.229425 0.123738 JS52
153.0 0.828 2.424 0.142954 0.101736 -0.769278 MF20
149.0 0492 1.788 0.938819 0.056836 0.785940 0.270476 MSS55
156.0 0.324 1.456769 0.155767 0.211470 0.151588 PC29
308.0 0.396 1.608 1.048714 0.097028 0.125705 PM32
152.0 0.372 2436 0.907658 0.128420 PS42
153.0 0.276 2.148 0.988941 0.124843 0.499671 0.200059 RR45
146.0 0.228 2.220 1.184466 0.197616 0.464832 -0.507275 RW32
1540 0.684 2.184 1.300597 0.094621 0.272054 -0.308279 SF1
307.0 0.300 2.148 0.973134 0.081594 1.000358 2.087748 YWI13
44140 0.180 2.616 1.146843 0.143565 0.645843 0.276898 all users

all users in the last row.

40

4.3. Collected Data

16

i
=]

14

=
=)

12

=]
=)

Lo

= =z
T o8 T oe
& &
06
o4
0.4
0.2
0.2
00 — oo — —
0.0 0s 10 15 2.0 0.0 0s 10 15 20 25 3.0
Time in seconds Time in seconds
(a) Timing of the Shoot gesture (b) Timing of the Grasp 1 gesture
35
30 08
25
06
220 z
2 2
&1s & 04
10
0.2
0.5
00 — oo —
0.2 0.4 06 0.8 10 12 14 16 0.0 05 10 15 20 25 30
Time in seconds Time in seconds
(c) Timing of the Down gesture (d) Timing of the Grasp 2 gesture

Figure 4.13.: The timings of different gestures from the manual label type. Gesture (a) is the one with the
shortest average in the dataset, (b) the one with the longes. (c) is the most uniform gesture,
while (d) is the one with most variance.

4.3.5. Correlations in the Raw Data

It takes too much time to look at visualisations of all 63 channels’ values distribution by hand and make
the comparison in your head. Instead, we must go to statistical tests. We first test each channel for a nor-
mal distribution using the test from D’ Agostino and Pearson [D’ Agostino and Pearson, 1973} D’ Agostinol,
1971]]. These results are too many to be shown in the thesis but can be checked in the notebook ’Distribu-
tion of values for channels and sensors’. With large data, even slight variations have that this test fail. So
we define alpha to be 1e — 7 for rejecting the null hypothesis. No channel is normal-distributed.

Since we know the data is non-normally distributed, we need to take another test to compare the individual
channels. We use the Kolmogorov-Smirnov (k-s) test which can compare two sample-based distributions.
If we plot the heatmap of the average correlation of distributions of the different channels (average cor-
relation in the form of the Kolmogorov-Smirnov test statistic) we find that the channels on average have
little in common. However, there are patterns that, within one sensor group, the channels are indeed corre-
lated. The correlation of the channels computed over all users is in figuref.14] Additionally in figure [d.15]
the user with the least correlation and the strongest correlation is shown. We can see that the differences
between the users are there, but the pattern of what correlates with what does not change. If we look at
the heatmap channel 10 and 11 (both flexion sensors) should be very similar, as should be 21 and 22 (both
accelerometers) but the pairs themselves should be very different. Let’s visualize the distribution for user
MSS55 of those four channels as histograms (see figure [#.16) to check if they are similar.

A common problem in any activity detection or gesture detection problem is the detection of the zero class
vs the gestures. Usually, the zero class is far larger than the classes with actions in it. That also means
that a good separation is key to a good performing algorithm. It is therefore interesting to see if there is
a difference in the raw data between the zero class and the gestures. The zero class has a less large value
range and less variety. An example for the magnetometer sensor can be seen in figure the whole
comparison is in appendix, figure[A.4]

41

Chapter 4. The Gesture Glove Experiment

0- - =10
3- [
B - : = :
9~ : z = :
12 - - 0.8
]5_
18_
21 -
24 -
57 - 0.6
n -
%E_
39 - 0.4
42_
45 -
o 032
54_
57 -
B0 - . H - =
T T T e R e e R R R S R T R R i 0.0

i
9121518 2124273033 363942 454351 54 57 60

ﬁ_
L —
U"_

Figure 4.14.: A heatmap with the k-s test statistic of each channel in comparison with each other com-
puted over all users. White means the sensor has nothing in common, black it is the same
distribution.

o~ -10 0- -10
3- 3-,
7] 6
9 9
12 - -08 12 - -o8
15 - 15 -
18 - 18 -
21 - 21 -
2 - 4 -
3 06 Pl 0.6
0 - 0 -
g 0.4 B 0.4
42 _. 42 _.
45 - 45 -
.- 02 & 02
5 - 5 -,
57 - 57 - E
B0 - = B0 - :
i 00 i 0.0
18

a-
[
o -
-
-
H-

2124273033363942 454851 5457 60

] S T T T--
1821242730 333639424548 51 5457 60

a-
[
-
-
-
R-

(a) k-s heatmap of user with least similar sensor value (b) k-s heatmap of user with most similar sensor
distributions (user MS55). value distributions (user CB23).

Figure 4.15.: Heatmap with the k-s test statistic of each channel in comparison with each other. White
means the sensor has nothing in common, black it is the same distribution.

42

4.3. Collected Data

0.020

0.015

Density

0.010

0.005

0.000
1700 1800 1900 2000 2100 2200 2300 2400
Sensor value

(a) Distribution of sensor 10 (flexion)

0.0040
0.0035
0.0030

2 0.0025

2
0.0020

&

0.0015

0.0010

0.0005 Jﬁ
0.0000 I

—10000-7500 —5000 —2500 0O 2500 5000 7500 10000
Sensor value

(c) Distribution of sensor 21 (accelerometer)

0.016
0.014
0.012

2z 0010

@

é 0.008
0.006
0.004
0.002

0.000
1700 1750 1800 1850 1900 1950 2000 2050
Sensor value

(b) Distribution of sensor 11 (flexion)
0.0025

0.0020

0.0005 J
0.0000 I M‘

—15000-10000 —5000 O 5000 10000 15000
Sensor value

(d) Distribution of sensor 22 (accelerometer)

Figure 4.16.: Distributions of different sensor values of user MS55.

values of all values within any manual label for magnetometer for all different users

50

T

-1000

L

°

sensor value

SSRGS

participant \n

values ofg&l values outside manual label for magnetometer for all different users

500

ZSD«)L
I
% -250
i =500

~750

-1000

R
participant ID

Figure 4.17.: Value distribution of the magnetometer sensor within labelled data (a) and within the zero

class (b).

43

Chapter 4. The Gesture Glove Experiment

4.3.6. Raw Time Series

For feature engineering and modelling, we, of course, do not deal with independent values but with time
series. It is interesting if there is a visible structure in the raw time series for a gesture. For inspecting that
we create diagrams the following way:

1. For a specific gesture and a specific user let’s find all repetitions of a gesture.
2. We compute an average signal plus a standard deviation signal out of these repetitions.

3. The average signal is plotted as a thick blue signal. The standard deviation is coloured as a transparent
blue area around the average signal.

4. Then also all the original signals are plotted on top as thin lines.

5. If it is not over the whole time series we colour the time of the gesture within the plot as a red bar at
the bottom.

calling

0 Thumb _base 58 _Wrist_Gyro_Y

Figure 4.18.: Time series for the flexion channel at the thumb and the y-axis gyroscope at the wrist for the
Calling gesture among 3 participants.

There are too many channels and users to look into all of them. Instead, we sample some user, channel
and gesture combinations. We see the gesture Calling, performed by three different users (rows) for the
first flexion sensor of the thumb and the gyroscope on the wrist on the yz-plane in figure We can
see structure in these plots. A larger grid of ten random channels and ten random users is shown in the

appendix, figure[A.3]

4.4. Feature Engineering

For modelling, redundant information can hurt the machine learning as it might put too much weight on
that information. A goal of feature engineering and feature selection is to remove redundancy. Redundant
features, if they originate from two different sensors, are useful in feature selection since it allows the algo-
rithm to choose between the sensors. In contrast to the thesis, we did not do sensor selection in [Luzhnica
et al.|[2016]. Also, in this thesis, the plan is to make a data-driven approach to find the right features instead
of the expert-driven approach in |[Luzhnica et al.|[2016]. Therefore the approaches to feature engineering
are not the same.

44

4.4. Feature Engineering

In|Luzhnica et al.| [2016]] we remove the gravity component from the acceleration and only keep the linear
acceleration in the dataset. The value of the gravitation alone to detect the posture was not yet clear at
that time. The gravity component was removed using a complementary filter [Higgins, |1975]], which typi-
cally gives satisfying results and is computationally less expensive and less complex to implement than a
Kalman Filter [Kalman) [1960]]. In addition, to get axis independent values from the accelerometer and gy-
roscope sensors, we computed the absolute energy signal (energy = 1/x% + y2 + z2) for each of our IMUs.
Magnetometer values were discarded as their values provide information related to the absolute location of
the hand whereas gesture recognition should work regardless of the hand’s location. Furthermore, all data
dimensions are normalised with zero mean and a standard deviation of 1.

4.4.1. Window Length and Step-Size

As a basic unit for classification we use sliding windows, i.e. [

data windows of fixed sample size that constitute snapshots of

the continuous data stream. Features are computed per win-

dow. Sliding windows are a well-established method of feature ‘e — Labe"ngﬂ
extraction used in many domains (speech to text [Sejnowski e

and Rosenberg| 1987, activity recognition [Koskimaki et al., AT

2009}, [Krishnan and Cookl, 2014}, [Ortiz Laguna et all, 2011]], L

etc..). Their advantage is that the extracted features can be used Sliding windows ., Windowss
with almost any algorithm [Dietterichl [2002]. They typically rorirrritollol

have two hyperparameters: size and step. For parameter se-

lection, we cross-validated the data with several window sizes @ @
(140, 160, 180, 200 samples, where 1 second contains 85-87 o
samples). We used steps of 20, 30, 40 and 50 samples and e wé
again used cross-validation to select a value for this parame- Progressbar
ter. The best configuration is the one with a window length of
200 frames, step size of 20 and 15 Fast Fourier Transforma-
tion (FFT) coefficients with an average cross-validation (across
all compared algorithms) score of 95.6%. Using only five FFT
components and changing the step size to 50 does change the
accuracy only minimally to 95.3%. This configuration is computationally less expensive. For the thesis,
we do not do this hyperparameter search for the sliding window and step size again, but take the window
size of 200 and step size of 50. Expressed in time, that means the window is 2.6s long and makes a step for
0.6s.

Window 1

Figure 4.19.: Experiment timeline for a
single repetition and slid-
ing windows construction.

4.4.2. Annotation of the Sliding Windows

As for the labels, when training the model and for validation, in |Luzhnica et al.| [2016]] we consider one
window to have a gesture label only if the window contains the whole gesture. Otherwise, we label it as
idle class.

For testing, we simulated a system where sensors stream continuously. When sliding windows are moved
over the continuous sensor signals, then there are windows with no gesture in it (window 1 in figure |4.19)),
with partial gestures in it (windows 1 and 5 in figure .19), and windows with full gestures in it (windows
2 and 3 in figure4.19). For model training and validation only windows with no or full gestures were used,
while for evaluation of the selected algorithm in realistic settings, the algorithm was also evaluated on
windows that contain a partial gesture. Moreover, there is no balancing (neither in the training nor the test
data set) but class weighting is used when training to prevent bias towards the larger classes. This configu-
ration of the test set corresponds to the data that would be available in a real-world continuous sensor data
stream. For windows that contain a partial gesture, we assume the algorithm prediction is correct when the
classification outcome is either the idle class or the correct gesture class that is partially in the window. We
refer to this strategy as dual labelling in the test set.

45

Chapter 4. The Gesture Glove Experiment

4.4.3. Window Features from the Original Paper

As data dimensions we understand the following: (x, y, z, energy) values of gyroscope, (x, y, z, energy)
values of accelerometer, values of pressure sensors, values of bending sensors. For each data dimension,
we used the following descriptive statistic as features: minimum, maximum, range, average, standard de-
viation and signal energy from the sliding windows. Minimum and maximum values of the flexion sensors
should contribute to capturing the static part (posture) of the gesture. On the other hand, the derived values
from the norm value of the gyroscope and the accelerometer should capture orientation independent mo-
tions aspects, as the norm is just the intensity of the accelerometer or gyroscope in any direction.

For the gyroscope and accelerometer values, we also used the spectrum features, namely the amplitude
of Fast Fourier Transform (FFT) coefficients for the signal in the given window. For FFT, one has to decide
which and how many coefficients are used. Typically, either the n first or the n largest (by amplitude) coef-
ficients are used [Morchenl, [2003]). Figure[zf_m] shows that in our case, on average, the amplitudes of FFT
coefficients decrease monotonically. This monotonous decrease means that the first coefficients are the
largest ones, which in turn means that the lower frequencies are dominant. Therefore, using the amplitudes
of the first n coefficients is a good way to proceed. For selecting a suitable number of first FFT coefficients,
we use again cross-validation to choose amongst the following options: n € {5,6,10, 15}.

: In total, we extract 78 statistical features from flex-
" ion sensors, 30 statistical features from pressure sen-
sors, 336 statistical features and n x 56 FFT features
for IMUs, where n is the number of first FFF compo-
nents used for the window. It is worth pointing out
that the majority of the features comes from motion sen-
sors (IMUs). Altogether, this gives 724 features us-
ing 5 FFT components and 1284 when using 15 of
them.

NN R NN NSNS ARNAANNARRARANARARRRAS

To avoid correlated features, we calculated correlations be-
Figure 4.20.: Average amplitudes (over all tween features and automatically removed the features that
signals) of the first FFT coef- highly correlate with each other (with the absolute Pearson
ficients (excluding the zeroth correlation index more or equal to 0.99). Finally, extracted
coefficient) for all 200 frame features are normalised with zero mean and a standard devia-

windows. tion of 1.

4.4.4. Extended Window Features

In this thesis, we kept the size of the windows and step size from our original work in |Luzhnica et al.
[2016]. Contrary to that the training set also contains windows with partial gestures.

We split linear force from the accelerometer using a complementary filter [Higgins| [1975]], but keep the
raw accelerometer signal which contains the gravitation aspect. We also compute the direction cosine from
the gyroscope, which is a normalised representation of the current angle. Like we did in |Luzhnica et al.
[2016] we add the energy signal for accelerometer and gyroscope. By adding these channels, we generate
four more channels (three for linear acceleration, one for energy) for each accelerometer sensor and three
more channels for each gyroscope. We have seven IMUs sensors giving 49 additional channels, so 112
channels.

For each window, all channels are transformed into a frequency domain using the FFT and into a fre-
quency/time domain using the wavelet transform (CTW). Applying these two transformations transforms
112 signals in the window for extraction into 273 signals as the basis for extraction. From each signal, the
12 statistical features described in section [3.4] are extracted. From the raw 112 signals we perform peak

46

4.5. Train and Test-Set Split

detection using wavelets and extract four peak features (number of peaks, minimal peak, maximal peak,
mean peak value). For the 112 signals in the frequency domain, we additionally extract the spectral cen-
troid, the bandwidth, the power spectral entropy, the first five coefficients of the transform and the sum of
those coefficients, giving nine further features. For the frequency/time domain signals, a sum for each bin
of the CWT transform is returned additionally to the 12 statistics. We fix the transformation to 10 pins, so
we add ten extra features from these signals. This gives 112 (3% 12+4+9+ 10), so 6.608 features from
each signal.

We also add features for pairs of channels. The angle of a pair of channels, the Spearmen correlation
and p-value and the difference in the mean signal are computed for the raw signal and after transforming
both signals into the frequency domain. Additional the cross-correlation shift is computed as a feature,
giving nine features for each pair. We compute these features only for the first and second row of pairs of
the flexion sensors. As each row has five channels, we have 2 (;) pairs of data (so 20 pairs). With nine
features for each pair, this gives additional 180 features. In total we have 6.788 features.

The work of this thesis is a data-driven approach, and one might immediately see that not all features are
generated. Especially one could return all 200 FFT coefficients and compute all channels’ combinations.
Adding all FFT coefficients would add 195 features to each channel so that it would add 21.840 features.

Adding all combinations would mean to add (léz) x9, 50 55.944 features. There are two problems with this:

First, our training dataset has about 70.000 entries. With really generating all features we would have
84.392 features, so more features than instances in the training data. Many algorithms assume that the
number of features is less than the number of instances, and an own set of modelling would have to be
chosen for this problem.

Second, a practical reason exists. With the 6.788 feature transformation it already takes 25h on a 31GB
Ram, Intel 17 k7700 4x4.3 GHz machine, and with errors the first conversions took days. Also working with
the initial models took hours. Therefore we limit this work to compute as many features as computationally
feasible given the resources instead of all features. We drop the additional FFT features as they are already
shown to not add too much to the resulting classifier in our work in|Luzhnica et al.| [2016] and in Mdrchen
[2003]]. We drop the pairwise features too as they are a different type of features and we concentrate on the
single channel features. We mainly add some of those to see the effect of sensor selection on the pairwise
features.

4.5. Train and Test-Set Split

It is common praxis in the machine learning community to split the train, test and validation set by selecting
a random subset of the data. According to the blog post by Rachel T homas{ﬂ this is however only a good
praxis if the data is truly identically and independently distributed (i.i.d.). If data is time-series data, the
data of each sample is dependent on the data of the past sample, and the samples are not i.i.d. anymore.
Using sliding windows is a way to lessen that effect. However, since our windows overlap if we select
randomly we have the danger that our training set contains a lot of data which is very similar to data in the
validation and test set.

We use the random split into train and test set in our work in |Luzhnica et al. [2016]] with 80% train and
20% test set. The validation results are achieved with 5-fold cross validation.

In this thesis we do not use the random splitting provided by scikit-learn. Instead, we split the sets by
hand by using the following strategy: For the test set, we choose one random user (CF58) and save it for
the test set. For the validation set, we iterate all users and select one random time the user performs one
gesture. Then we move all windows capturing that gesture into the validation set. Additionally, we delete
all the windows before and after without a label, so there are no overlapping sequences. Since gestures
are performed with a different speed for each user, we then compute the average amount of labels used to

47

Chapter 4. The Gesture Glove Experiment

capture the gestures from a user and move a section of the zero class of that user into the validation set.
This selection of the zero class means that the validation set is balanced also among the zero class. We
also delete that section of the zero class from the training data. With that method we have it guaranteed,
that there is no window which has an overlapping window in any other set. The training set resembles the
realistic case of a new participant using the glove.

4.6. Modelling and Feature Selection in the Original Paper

In|Luzhnica et al.| [2016] we look into several different models for the gesture recognition. As previously
mentioned, similar to activity recognition solutions, we emphasise the motion sensors and follow a similar
approach (sliding windows) as is frequently used in activity detection. Therefore, we chose classifica-
tion algorithms that have proven to provide robust performance on activity recognition using wearable
sensors [Koskimaki et al.,2009; Krishnan and Cook, [2014; |Ward et al., | 2006; [Ward, [2006]], namely:

e K Nearest Neighbours (KNN)

e Linear Discriminant Analysis Classifier (LDAC)

e Support Vector Machines (SVM) with a linear kernel
e Logistic Regression (LR)

According to the survey presented in Bulling et al.|[2014]], discriminative classification algorithms are very
useful in identifying features that mostly contribute to discriminations between activities using wearable
sensors. Therefore, our discriminative classification algorithms (in our case SVM and LR) should work
very well in case extracted features of windows capture the gesture well. LDAC is suitable, when after
transforming the data in a linear manner with LDA, there exist linear decision boundaries between the
classes. On the other hand, KNN uses the notion of distance in feature space, and it can perform well even
when linear separability is not possible.

Considering the number of features we have (724 when using 5 FFT components, 1284 when using 15
of them), we were concerned about overfitting. Therefore, we employed dimensionality reduction tech-
niques prior to training. We used Principal Component Analysis (PCA) which applies an orthogonal linear
transformation of the data, in an unsupervised manner, resulting in a maximised variance of data in the
transformed space. On the other hand, we also used the supervised linear transformations, namely Lin-
ear Discriminant Analysis (LDA) and also its state-of-the-art alternative Spectral Regression Discriminant
Analysis (SRDA) [Cai et al.,[2008]]. The latter methods utilise class labels for minimising the within-class
variance and maximising between-class variance (in the transformed space). An extensive analysis on how
the used algorithms and dimensionality reduction work, including the mathematics behind it, can be found
in Bishop| [2006]. In our cross-validation process, the classifiers have been trained in both ways: without
any dimensionality reduction and with prior dimensionality reduction transformations.

For each window and step-size, we prepared the dataset as follows: We selected only those windows
from the complete dataset that are “unambiguous windows”, i.e. windows that contain either no gesture,
or a full gesture (see figure where window 1 contains no gesture, windows 2 and 5 contain a partial
gesture and are not part of the training data set, and windows 3 and 4 contain a full gesture). The rationale
was that the classifier should only learn the full gestures, not parts of gestures.

Moreover, the classes in our data are unbalanced as the majority of the windows are labelled as “idle
class” (no gesture). The following procedure achieved balancing: First, we calculate the average number
of windows per gesture which we will denote by k. Then we removed, before splitting to train and test set,
all idle class windows except k random number of idle class windows from the data set.

The corresponding training data set was then 80% randomly chosen windows, and the test data set the

Yhttps://www.fast.ai/2017/11/13/validation-sets/

48

https://www.fast.ai/2017/11/13/validation-sets/

4.6. Modelling and Feature Selection in the Original Paper

remaining 20%.

We used the following procedure to select the winner combination of configuration (parameters) and algo-
rithm:

First, we compute the performance of each combination “configuration/algorithm” by 5-fold cross vali-
dation over the training data set. Then, for each configuration, we compute the average performance over
all algorithms to select the winner configuration. The winner algorithm would then be the best-performing
algorithm for this configuration. The rationale for this procedure was that we wanted to have the configu-
ration to be as robust as possible concerning an algorithm to avoid overfitting, i.e. we did not want to select
a configuration that only works for a single algorithm.

The best configuration is the one with a window length of 200 frames, step-size of 20 and 15 FFT co-
efficients with an average cross-validation (across all compared algorithms) score of 95.6%. Another con-
figuration with less computationally intensive parameters, namely window length of 200 frames, window
steps for the sliding windows of 50 and only 5 FFT coefficients had an average cross-validation score of
95.3%. Considering that the score difference is minimal whereas the computation efficiency is higher, we
selected the latter configuration. For this configuration, the best performing algorithm was LDA+LR with
a cross-validation f] score of 99.8%. Here, initially, LDA was used to perform dimensionality reduction
to 32 components and then a logistic regression algorithm was trained and tested on the dimensionally
reduced data.

Removing FFT calculations during the gesture extraction can speed up processing the data stream. Re-
moving the FFT components from all accelerometer and gyroscope dimensions results in a recognition fj
score (when considering dual labelling of the ambiguous windows in the test set) of 98.2%.

4.6.1. Performance on Continous Sensor Data

As our results reveal, we achieve a high classification accuracy in general. As presented in figure [d.21] the
prediction confidence is also high. It is important to stress that our results were achieved by including in
the test set the windows that contain partial gestures. In a live gesture recognition system, there is no way
of excluding them. More specifically, in a live scenario, we need to get a sliding window over a stream of
data, as visualised in ﬁgure@} and since we don’t know when a gesture starts and when it ends, we can’t
know beforehand whether a partial gesture is in a window.

As realistic algorithm performance, we consider its performance on the following dataset: All windows
are used in the test data set, which includes those with a partial gesture window. A partial gesture window
is the one that contains only a portion of a gesture (see window 2 and 3 in figure f.19). Moreover, there is
no balancing (neither in the training nor test data set) but class-weighting is used when training to prevent
bias towards the larger classes. This corresponds to the data that would be available in a real-world contin-
uous sensor data stream. For windows that contain a partial gesture, we assume the algorithm prediction is
correct when the classification outcome is either the idle class or the correct gesture class that is partially
in the window. We refer to this strategy as dual labelling in the test set.

On this test set, the LDA+LR algorithm with a window size of 200, a step size of 50, and with only
the first 5 FFT coefficients in the feature set, performs with a 98.5% f} score. The confusion matrix is
given in table[4.6] and the receiver operating characteristic (ROC) curve is visualised in figure [d.21] Here,
from 9581 windows, 9440 were classified correctly. From the correctly classified windows, 1618 contained
full gestures, 2802 partial gestures and 5020 contained no gesture at all (belonged to the idle class). On the
other hand, 141 windows were misclassified from which 6 contained full gestures, 106 partial gestures and
29 came from the idle class.

49

Chapter 4. The Gesture Glove Experiment

Nothp,

K""Cking
Come here
Coiny,
Push awgy,

w
Neve,. ming

ol ¢
Contipy,,

|
V‘Hg

o
)

H
s
2
H
g
1

<| py;
Po"'t to Selfr
- C"m"naz

5
£
H

g
3

| Shooe
- S(‘l'ssor

@ One
=) By,

Nothing
(1) One
(2) Two
(3) Three
(4) Four
(5) Five
Thumbs up
Thumbs down
Point to self
Shoot
Scissor
Cutthroat
Continue
Knocking
Waving
Come here
Go away
Push away
Never mind
Talking
Calling
Walking
Shoulder pat
Point
Swipe left
Swipe right
Swipe up
Down
Turn
Zoom
Grasp 1
Grasp 2

=y
S
=1

i
= 1o
S
3

108
116
117
89
126
110
96 1
123
133
111
93
111
80
107
128
110

112
103
95
108
107

95

misclassification) have been removed from the table for better readability.

138 1
117

Table 4.6.: Confusion matrix of classification using dual labelling in test set. Note that zero values (no

In the test set, we used the dual labelling strategy which delivers an accuracy of 98.5% (see tablgd.6|and

figure 4.21)). We argue that dual labelling is acceptable for a live system: In the end, it is just a matter of
how fast the recognition system realises that the gesture is being performed. In case it predicts the correct

gesture class (the one that is partially contained in the window), then we can recognise the gesture even
before it is completed. Otherwise, if the classifier predicts it to be an idle class window, then the next
window (or previous one) will be a window with the full gesture in it and will be classified correctly.

1.0

0.8}

o©

)]
:
\

True Positive Rate
o
H
\
\
\

0.2} .

0.4 0.6

0.0
False Positive Rate

Figure 4.21.: ROC curve for weighted average of all classes.

50

4.7. Data-Driven Modelling and Feature Selection

4.7. Data-Driven Modelling and Feature Selection

In comparison to our work in [Luzhnica et al|[2016], we use a data-driven approach here. We reuse the
results from window size and step size, but instead of a maximum of 1.284 features, we start with 6.788 and
use algorithmic approaches (filters and wrappers in feature selection, see Russell and Norvig|[[2010]) to re-
duce the number of features and later sensors. Feature selection must not be confused with dimensionality
reduction like PCA which we used in|Luzhnica et al.|[2016] to reduce the data to 32 dimensions. You still
need all the features and dimensions to compute this reduction, i.e. compute a data-point for prediction.
With the feature and sensor selection (similar to our results for the FFT coefficients) the features do not
even need to be computed.

Another difference is the training, test and validation set. We use partial windows already in training
and validation. Also, the partial windows are annotated with their class. If that works, the classification
system can recognise gestures as soon as a window hits the gesture. Given a step size of 50 instances, which
corresponds to 0.6s, this means that a gesture can be recognised in less than 0.6s. We did not balance the
training dataset but used class weights. We did, however, balance the validation set. We did not use random
sampling for cross-validation or testing but use the strategy described in section for our split.

Like in [Luzhnica et al.| [2016] we scale the data to a unit of 1 and centre it. However, here we use the
RobustScaler from scikit-learn [Pedregosa et al. 2011]] to do the scaling. The robust scaler uses the
interquartile range to do the scaling, which is more robust on non-uniformly distributed data.

4.7.1. Extended Features - Initial Feature Selection and Modelling with Filters

A first step in the data-driven approach is to get the number of features down to a number suitable for
modelling. The question arises what a good number of features is. If all features are uncorrelated, a good
number of features is to have just one less than data points, so N — 1 features. That all features are un-
correlated is rarely the case, and in our case already the data channels themselves have some correlational
structure. If the features are correlated a good number of features is V/N [Hua et al., 2004]. We have a bit
more than 70.000 instances in our dataset so a good number would be around 300 features (1/70000 ~ 264).

We start with filter methods. Filters are, as the name suggests, methods to select only those features
which adhere to certain criteria and filter out the rest. After each filter step, we try to fit the most common
scikit-learn classifiers to the data and report the validation sets f; score. In this step, we still have many
features, and only a few models can deal with this well. We report all models we tried and which models
worked with the whole dataset.

We initially remove all constant features using the VarianceThreshold. This reduces the dimension-
ality from 6.788 to 6.368. After that we reduce the size to 60% of the 6.368 using a SelectPercentile
filter. This filter is parameterised by a selection criterium which is either 2, f-ANOVA or the mutual in-
formation MI(X;Y). We choose the f~ANOVA and mutual information criterium for the selection.

Even here, SelectPercentile can not work with the complete data. We, therefore, subsample the data
in a stratified manner. Stratified manner means that we subsample but keep the relative class size to each
other constant. With 2.500 samples (so a 2.500 x 6.368 data matrix) SelectPercentile works well, and
we generate two candidate datasets with 3.821 features.

We try to fit all the classifier models from scikit-learn [Pedregosa et al., [2011]. These are: Three dif-
ferent SVMs which mainly have a different kernel and contamination parameter (L-SVM, SVC+RBFE,
NuSVM+RBF), Gaussian Processes with and without restarts (GP and R-GP), Logistic Regression (LR)
and LR with ¢; regularization (L1-LR), Passive-Aggressive (PA), Stochastic Gradient Descent with a hinge
loss (SGD), LDA, QDA, Nearest Centroid (NC), k-Nearest Neighbours (kNN), Radius Neighbours (RN),
Naive Bayes with a Gaussian kernel (NB(G)), Decision Trees (DT), Random Forests (RF), Extra Trees
(ET), Bagging with kNN models (B-kNN), Bagging with SVC models (B-SVC), Ada Boost (AB) and

51

Chapter 4. The Gesture Glove Experiment

Gradient Boost (GBo). The details of all these models are presented in section [3.7]

As discussed in section bagging is a method to re-
duce variance and overfitting, and extra trees are espe-
cially well suited for dealing with high dimensionality
and redundant and noisy features. In line with these
results on all of these high dimensional datasets (6.368
and two times 3.821 dimensions aka. features) the ex-
tra tree is the best performing algorithm, with a valida-
tion error of 96.32% on the 6.368 feature set, 96.17% on
the f~-ANOVA feature set, and 96.72% on the MI feature
set.

Many of the algorithms did not work on these datasets. Also,
on average, the algorithms perform better with the two re-
duced (f~ANOVA and mutual information) datasets than with
the full dataset (52,16% vs 65,63% with the f~ANOVA and
55,01% with the MI dataset). In the f~-ANOVA case, the clas-
sifiers scored better on average, while the best classifier was
trained with the mutual information metric. It is again an Ex-
tra Tree with 96.72% f; score on the validation set. Given
the long running-times, we did not do hyperparameter tuning
for the individual algorithms. The results are summarised in

table .71

Figure 4.22.: Confusion matrix from the
extra tree classifier on the
validation set.

70kx6k f-Anova 70kx3k | MI 70kx3k

algo. | fi validation f1 validation f1 validation
PA 30.50 80.99 46.91
SGD 7.66 55.95 7.03
LDA 94.94 93.99 94.05
QDA 62.29 60.88 55.35
NC 8.12 11.59 5.95
GNB 21.47 56.90 38.86
DT - 92.34 92.80
RF 96.01 95.68 96.43
ET 96.32 96.17 96.72
AB - 11.85 16.04
mean 52,16 65,63 55,01

L-SVM, SVC+4+RBF, NuSVM+RBF, kNN, B-

kNN, B-SVC, GBo, Interupt after 1h
GP, R-GP, Memory Error
LR, L1-LR, Kernel died

Table 4.7.: f scores in percent of algorithms with different feature set sizes.

4.7.2. Extended Features - Model Based Feature Elimination

With about three thousand features it is possible to use Recursive Feature Elimination (RFE) and Recur-
sive Feature Elimination Cross Validated (RFE-CV). These methods continuously fit any algorithm which
can give the importance of features after fitting and use this importance to remove features which do not
contribute enough to the final score. It then repeats the process until the score of the model reaches some
threshold. Common choices for such algorithms are SVMs [Ma et al., 2017} |Park et al.| [2018; [Yan and

52

4.8. Sensor Selection

Zhang| [2015]], Random Forests [Degenhardt et al.| 2017; Fernandez-Lozano et al., 2015}, |(Gregorutti et al.,
2017;|Ma et al.l [2017] or Lasso [Fernandez-Lozano et al., 2015; [Spencer et al., [2017]]. We use the Lasso
(¢1) regularisation for this. Depending on the usage of the concrete algorithm (RFE vs RFE-CV) and the
strength of the ¢, regularisation for the Lasso (we vary o with 0.01, 0.1, 0.5, 0.9) this gives different results
in the range of 192 to 1910 features. After these reductions, we fit the models again. The accuracy of
moderately sized feature sets (765 and 383) are better on average (with 70,68% and 69,43% respectively)
than the extreme versions with 1910 or the two 192 sets. This different accuracy for different feature set
sizes means we are a bit above the theoretic amount of correlated features (which is around 300 in our
case), but still in the range of this number. It is interesting however, that for algorithms that mainly reduce
variance, like random forests and extra trees, the number of features has little impact (all accuracies are
above 95%) until it reaches the 192 feature case where they still perform well with 94% and 93.21% f;
score on the validation set.

Type | RFE RFE-CV
al| 0.1 0.01 0.1 0.05 0.9
#Feat. | 1910 765 383 192 192

Alg. | fval fi1 val f1 val f1 val f1 val

PA | 39.04% | 92.13% | 85.08% | 47.43% | 19.43%
SGD | 6.97% | 92.32% | 86.44% | 38.70% | 07.03%
LDA | 93.36% | 91.85% | 86.05% | 76.20% | 67.69%
QDA | 60.59% | 91.59% | 95.47% | 87.20% | 75.86%

NC | 584% | 24.26% | 31.04% | 11.02% | 06.81%
kNN - 93.99% | 86.42% | 59.18% | 30.28%
G.NB | 37.71% | 67.54% | 66.65% | 61.38% | 39.93%

DT | 92.14% | 93.44% | 92.84% | 91.25% | 89.61%

RF | 96.12% | 95.51% | 95.51% | 94.57% | 93.36%

ET | 96.14% | 95.60% | 95.09% | 94.00% | 93.21%

AB | 16.36% | 06.42% | 08.10% | 10.01% | 11.99%

GB — 03.51% | 04.46% | 03.33% —%
mean | 54,43% | 70,68% | 69,43% | 59,94% | 48,65%

Table 4.8.: Algorithms on differently reduced datasets.

4.8. Sensor Selection

It is interesting to see how well the glove would do if you leave out some sensors. If this is easily done, it
enables a better use of prototypes for hardware developement. You first build a prototype with too many
sensors and record data for all envisioned use cases for this hardware. Then you find a minimal configura-
tion which yields the wanted performance for a chosen use case. Given a cost for each sensor and costs of
integration for each sensor, it is possible to optimise for the expenses directly. Then you can build a next
prototype iteration with the correct hardware. Much work raises the issue of expensive sensor setups like
in home monitoring [Spencer et al., [2017]], home surveillance of elder people [Fiorini et al.l [2017]], wear-
able sensors for ergonomics [Maman et al.l [2017]] or sensor configurations for surgical robots [Gomez-de
Gabriel and Harwinl, 2015]].

So why is this hard? Can we not just try all configurations? It takes days to evaluate all models with
this dataset. Even with a Hadoop cluster, it takes minutes. Depending on how you count we have 25 sen-
sors. To assess all combinations 22 trials are needed, which is about 33 million trails. If we assume we
have a well-performing cluster and evaluating the models for a trail takes two minutes, we would wait 126
years for the result. If there are very few sensors and evaluation is easy one can search for solutions per
hand. |Lee et al.| [2017] evaluate eight IMUs to asses if a construction worker has a good posture. They

53

Chapter 4. The Gesture Glove Experiment

compare a calculated angle of the IMU to how straight a worker stands and analyse the correlation of this
measure to the target. Instead of a combination of sensors, only the one best performing sensor is found by
their approach. |(Gomez-de Gabriel and Harwin| [[2015]] evaluate sensor configurations for surgical robots.
They consider the costs of the sensors and compare the sensor configurations manually by performing
usability studies done with surgeons in a virtual environment. Another strategy is to make an extensive
meta-study on all sensor configurations tried so far like Chambers et al.|[2015]] did for physical movement
sensors like IMUs (in the paper it is called microsensors) for sport specific movements. This approach
gives expert knowledge and is helpful, but it can not be used to evaluate the design of a new system.

In wireless sensor network research, sensor selection is defined as the selection of sensors to spread in-
formation or energy through the network of sensor nodes, but this is only a temporal selection [[Chang
and Tassiulas| 2000; Pradhan et al., [2002; [Woodcock and Strahler, [1987]]. In this work, sensor selection is
finding a subset of sensors which still allow a system to perform at a specified accuracy for a given target.
The given target is the set of gestures to recognise. While it is, of course, possible to use sensor selection
to rebuild the glove still allowing the 31 gestures, it is also possible to select a subset of the gestures, often
with an application in mind, and run the sensor selection with that.

An option to make sensor selection is by using a greedy approach coupled with some way to rank the
sensors. A possibility to rank the sensors is using the ¢; regularisation, which for linear models is usually
called Lasso. Using the Lasso for feature selection is very common. It is used to improve the accuracy
and using fewer features in many tasks like for glucose monitoring devices [Zanon et al. [2013] or to find
features for physical fatigue at the workspace using wearable sensors in Maman et al.| [2017]. This work
also explains which sensors are selected with the feature selection. It does not explicitly model a sensor
selection model but uses feature selection until only a few sensors are left. This is possible due to the low
number of sensors (5 shimmer IMUs and a heart rate belt).

Like us, |Spencer et al.|[2017]] uses Lasso to perform feature selection. The system in|Spencer et al.|[2017]]
is built by first starting with an empty set of sensors and performing the best first search algorithm. It tries
if the system gets better if any of the five sampled sensors improve the accuracy of the system. The best set
is then saved as a solution, and the process is repeated until a threshold is reached or the system does not
improve. Based on this collected sets of sensors the system then ranks the sensors by comparing all sets
and removing the sensor which did least improve the accuracy.

Our system does directly start with a full configuration of sensors and recursively removes the one which
has the lowest impact or lowest costs. The target of [Spencer et al.|[2017]] is a regression task. Our system
is a classification system, which also allows us to easily try out subsets of the classification and perform
sensor selection there. Additionally, our approach allows us to build in the costs of the sensors into the
algorithm, and directly optimise for the total costs of the system.

4.8.1. The Recursive Sensor Elimination Algorithm

We present a greedy algorithm for sensor selection, based on the recursive feature algorithm. We call the
basic algorithm recursive sensor elimination (RSE) and also present its extensions.

First the algorithm needs a mapping function fts from features to sensors. Let fts(D') — §, fmap be a map-
ping function which maps the columns in the feature matrix D’ onto the sensors the feature is generated
from, 5'be a vector tracking how many features are active for a sensor, and fi,ap be a map of sensor indices
to feature indices. If the column vector fa € D' is a vector of a feature created from sensor s, than the
function fts(D') — §, fmap increments the count of 5" at » and adds the feature number a to fip as position
b. In case a feature is generated from two sensors, the feature is added twice at the appropriate positions.

Given ¥, finap We need a heuristic function which tells which sensor is the most promising to remove.
We call this heuristic function select(5) — s, which selects a sensor to remove. This heuristic function has

54

4.8. Sensor Selection

a huge impact on the algorithm. In the basis version of the algorithm select(5) — s, finds the sensor with
the lowest amount of features which is larger than zero, as we mark removed sensors with a 0 in the array 5.
select(s) — s, sp = min(s > 0). We use the function eliminate(sp, fmap,D’) — D" to remove the features
of sensor s, from the data matrix D’.

Also let C be a set of classifiers ¢ suitable for the task, findbest(C,D',y, D}, y,) > c,a. be the function
to find the best classifier given the current configuration and a. be the corresponding accuracy at the vali-
dation set. Let rfe(D’,y,model) — D" be a recursive feature elimination using a model which removes not
important features for the classification of the variable y from D’ and produces a new feature matrix D" .
The model can be anything which gives a ranking of features. We choose the Lasso regression with its /;
regularisation as it directly tries to remove the features as part of the optimisation algorithm by optimising
the cost function Y- log (1 +exp (—y; (W'x;+b))) +ox X1 [w;| (where ¥, |w;| is the ¢, penalty)
where y is a dependent variable of binary value, and several one vs. rest classifiers need to be trained.

As a result, we want a list of sensor configurations together with their accuracies. One element of this
list is the tuple sy, acc,c with 5, being a binary vector indicating if a sensor is used or not, acc being
an accuracy measure (i.e. f] in our case) and c being the classifier which achieves the accuracy for that
configuration. We call this list L.. The basis RSE now works the following way:

Algorithm 1 Calculate L, with RSE(D',y, D.,,y,,C,0)

if num of features in D’ = 0 then
exit
end if
5, fmap = fts(D') {map features to sensors}
sp = select(5) {select sensor to remove }
D" = eliminate(sy, fmap,D') {remove features of sensor s, from feature matrix }
D" = eliminate(sp, fmap,D’) {remove features of sensor s, from feature matrix }
¢ = findbest(C,D" ,y,D,,,y,) {remove features of sensor s;, from feature matrix }
5p = 5 # 0 {binarieze 5}
put sh,ac,c into L,
D" — rfe(D”,y,El)
if num of sensors not removed in § = 0 then
exit
end if
RSE(D",y,D.,,yy,,C,L.) {recursively call RSE}

For our function fts(D') — §, fmap We traced which feature belongs to which sensor and part of the hand by
encoding it in the feature header. During feature extraction, whenever a feature is generated, a header is
also generated in the form x, ._x¢_o_s with x,. being the original channel number, fr being a feature index
in the 59 features we provide, o the original header and s a suffix describing the new feature. An example
of such a generated feature header would be 16_14_Wrist_extension_fft_min, which is the feature from
channel 16, which is the wrist extension flexion sensor. The feature is transformation 14, which is the
minimum amplitude of the FFT coefficients. Because of this coding scheme, after features are removed, it
is possible to map back the remaining features to the original channels and sensors.

In this thesis we compare three possible choices for a heuristic function select(s). Choice (a) is select-
ing the sensor from s with the lowest amount of features. Some sensors create more features than others.
An IMU with 6 DOF generates six times as many features as the flexion sensor. Therefore a choice (b) for
the function select(s) is to normalise each number of features by the original number a sensor can spawn
and then remove the sensor with the lowest relative amount of features. We call these two heuristics “abs”
for absolute and “rel” for relative removal.

55

Chapter 4. The Gesture Glove Experiment

4.8.2. Recursive Sensor Elimination Results for all Gestures

We perform sensor selection with some of the
datasets produced by the recursive feature elim-
ination (1910, 765, 192). On each step of
the sensor selection, we save away the result-
ing configuration of sensors, the number of fea- 0.94
tures and the best performing classifier with
the accuracy on the validation set. Note that
for two of these configurations there is al-

accuracy

= rel 1910

ready some sensor removed by feature selection - rel 765
. — rel 192
alone. —— abs 1910
086 abs 765
The 765 dataset has both, the best and worst T s
evolution of accuracy, depending on the strat- 5 = - 1o 5 0

number of sensars

egy. The 1910 and 192 both behave very sim-
ilarly. The trends in accuracy for the different
datasets give the interesting observation that the Figure 4.23.: Performance of the RSE algorithm on

number of features to start with does not have a different datasets and select(s) heur-
high impact on the performance of the RSE algo- sitics. The accuracy is the fj score on
rithm. the validation set.

When comparing “abs” vs “rel” on the datasets we

can see that the absolute strategy works better from an accuracy point of view, especially in the middle
segment with 15 to 4 sensors. They do however remove different sensors. In all cases, the magnetometer
and pressure sensors are removed first. Then “abs” favours IMUs over flexion sensors, while “rel” favours
the reverse. For an engineer, both might make sense.

When the algorithm runs a list L, is generated at each iteration, containing a configuration for the model.
For an engineer, it makes sense not only to see a resulting accuracy and number of sensors but the particu-
lar configurations. We created an example visualisation for this in table [4.9] showing the configurations in
consecutive steps of five iterations.

A765
s #f #S
M f1,

R765
s #f #S
Mfl,

Table 4.9.: Evolution of the sensor selection starting with the 765 RFE-CV dataset. A765 corresponds to
the absolute algorithm and R765 to the relative. s: step number, #f: number of features, #S:
number of sensors, M:model,f1,: F1 in the validation set.

56

4.9. Results on the Test Set

We can make the following observations: The index finger is the most important finger for predicting
gestures. If the algorithm retains flexion, it keeps the whole index finger (in the relative case). Since many
gestures need a moving part and the flexion of the index finger can not capture that, the algorithm keeps
one of the wrist flexion sensors to have information about that. If it keeps the IMUs (absolute case) it also
keeps the IMU of the index finger. The magnetometer is always the first sensor removed. Then most of
the pressure sensors are removed. Pressure sensors are never within the last remaining sensors. If flexion
or IMUs are removed depends on the configuration of the algorithm. While it seems logical that you do
a relative weighting of the features compared to the number of features per sensor, with all features the
results were better with the absolute feature removal. In every step, the relative feature removal removes
more or the same amount of features as the absolute.

4.8.3. Usecase: Development of a Task-Specific Gesture Glove

We started the glove experiment with an alphabet of natural, interaction-oriented gestures in mind. For a
specific use case often only a subset of these gestures is needed. In|[Luzhnica and Veas|[2018]], three ges-
tures from the gesture glove are examined for controlling an interface to read text over the skin of a hand
(skin reading). The gestures are swipe left, swipe right and swipe up to navigate between words and allow
repetition. An own glove for skin reading is developed, and we can give an answer on how to augment the
glove with hardware best to allow this three gesture control.

Having three of the four usual swipe gestures, it makes sense to examine the configurations for a glove
detecting all four swipe gestures. An example would be to control any music player to start (up) or stop
(down) the music playback and to advance to the next or previous song.

Another interesting use case is controlling a slide set with gestures. The requirements are to navigate
the next and previous slide, pause the presentation and resume, and to start and stop interactive elements
within the slide like videos. We can use the swipe left and right for navigation, the down and up gesture
to pause and resume the presentation, and then two more gestures to start and stop interactive elements.
We did not find any immediate natural gesture for this interaction, but some seem logical. Thumbs up and
thumbs down, and go away and come here both seem like good choices. We have the hypothesis that the
swipe gestures are better recognised with IMUs than with flexion sensors. Thumbs up and down is also
a gesture which seems more defined by IMUs in comparison to go away and come here, so a decision
between these gestures could lead to different costs for a given accuracy.

In total, we have four sets of gestures for use cases. The first (skin reading) and second (audio player
control) are both subsets of the third and fourth set, which are two alternatives to compare among. We
denote the sets as s1,57,53 and s4.

4.8.4. Results on Task Specific Gesture Sets

The results of RSE on our gesture sets for the use cases s1,57,53 and s4 are shown in figure We can
see that the f; scores for the subsets of gestures are all higher than for all 31 gestures. This not surprising,
as the task to differentiate 3, 4 or 6 relative distinct gestures is easier. In all cases, accuracies are around
97 —99% as long as there are more than 10 sensors. Also in all cases, as also in the case of all 31 gestures,
the accuracy only decreased slightly until the tipping point of around 7 — 5 sensors. This tipping point
means that an optimal configuration seems to have more than 7 — 5 sensors.

4.9. Results on the Test Set

Our final test set consists of one unseen user. We compute the results for this user for the winning combina-
tions of all the variations of feature size and selected sensors of the data-driven analysis. For all experiments
with all 31 gestures, there exist a systematic error of confusing the “One (1)” gesture with the zero class
and vice versa. An example of this systematic error is seen in the confusion matrix in figure .25] If one

57

Chapter 4. The Gesture Glove Experiment

0.9%0 _ ,/'\
0985

0980

o
)
~
o

accuracy
accuracy

0959 — rel1910 — rel 1910
rel 765 0970 rel 765
— rel 192 — el 192
— abs 1910 —— abs 1910
093 abs 765 na6s abs 765

— abs 192 — abs 192
082 0950 ans

FL) 20 15 10 5 o 5 20 15 10 5 o

number of sensars number of sensors
(a) Results from set s (b) Results from set s,
0.990 09907 S——
0.988
pags 0.986
- .. 0984
B i
5 0980 5 0982
8 — rel 1910 L — el 1910
rel 765 0280 rel 765
09751 — rel192 0978 4 — rel 192
—— abs 1910 —— abs 1910
abs 765 0576 abs 765
0570 1 — aps 192 0974 | — abs192
F] 20 15 10 H 0 % 0 15 10 5 0
number of sensors number of sensors
(c) Results from set s3 (d) Results from set s4

Figure 4.24.: Different results of RSE for subsets of gestures.

ignores this particular error, the accuracies on the test set are in a similar range to the validation set since
the zero class is not confused with other gestures than the “One (1)” gesture. This effect can be seen if
we use the macro average metric for multi-class classification. In macro average, every class has the same
importance, and so one systematic error does not have a significant impact. In the micro average case
the relative amount of the class is used. Since the zero class and the “One (1)” gesture are switched, this
completely dominates the result, and the system degenerates. A summary of all the results with different
feature sizes can be seen in table £, 101

macro avarage micro avarage
dataset precision recall fl-score | precision recall fl-score
6368 full 0.93 0.94 0.91 0.37 0.37 0.37
3.821 f-~ANOVA 0.93 0.94 0.92 0.37 0.37 0.37
3.821 MI 0.93 0.94 0.92 0.37 0.37 0.37
RFE/1910 oo = 0.1 0.93 0.94 0.92 0.37 0.37 0.37
RFE-CV/765 .= 0.01 0.93 0.94 0.92 0.37 0.37 0.37
RFE-CV/383 o= 0.1 0.92 0.93 0.91 0.37 0.37 0.37
RFE-CV/192 a0 = 0.5 0.92 0.93 0.90 0.37 0.37 0.37
RFE-CV/192 .= 0.9 0.91 0.91 0.89 0.36 0.36 0.36

Table 4.10.: Overview of the accuracies on the test set of the best classifiers on different feature sizes.

The same behaviour can be observed with the sensor selection over all 31 gestures. When using the macro
average, the results are in line with the validation set result. But the same systematic error results in a
worse micro average result. The curve of the two heuristics over the different sensor configurations is in

figure [#.26] (a).

A more problematic result is the evaluation on the test set of the sensor selection with only a subset of
gestures. We can see the results in figure [#.26] (b). It exhibits similar behaviour than the other models on

58

4.9. Results on the Test Set

- 50

True label

VELDPP PP
Predicted label

Figure 4.25.: Confusion matrix of the extra tree for the full dataset. We can see a systematic error of
misclassification of the gesture “One (1)” and the zero class.

59

Chapter 4. The Gesture Glove Experiment

the test set. However, this is not the reason of one confusion/one systematic error anymore. In this case, the
zero class is even more dominant, and the system confuses all classes with the zero class. The macro and
micro accuracy drop, with macro only being in the range of 60 — 70% anymore compared with over 95%
on validation. This does not invalidate the general algorithm of the RSE but shows that we need a different
strategy in modelling in general for these subsets which are working well against the zero class.

07

0.9 T : — — - —
AWV e
—— rel 1910 micro 06 —— setl 1919 abs micro
0.8 rel 1910 macro setl 1919 abs macro
rel 765 micro 05 setl 765 abs micro
= 07— rel 765 macro = — setl 765 abs macro
@ rel 192 micro @ 04 setl 192 abs micro
= s
o o6 rel 192 macro a3 setl 192 abs macro
" rel 1910 micro % 03 setl 1919 rel micro
05 rel 1910 macro setl 1919 rel macro
rel 765 micro setl 765 rel micro
0.4 rel 765 macro 02 SEt] T65 el MacrD o
— o1
0.3
25 20 15 10 5 0 25 20 15 10 5 0
number of sensors number of sensors

(a) Chart of the results of the sensor selection algorithm (b) Chart of the results of the sensor selection algorithm
for all 31 gestures on the test set for both, macro and for the gesture set s; on the test set for both, macro
micro averaging the f] score. and micro averaging the f score.

Figure 4.26.

4.10. Conclusion

In this thesis, the hardware setup and data-collection software of the smartglove is described in depth to
provide a future reference. Also, the loading of the dataset and explanation of the raw data, the effect of
data cleaning and outlier removal is explained in detail. All of these aspects help, if a person wants to
explore this work further.

We split the data into a different training, validation and test set which is more theoretically sound than
in our previous work in Luzhnica et al.| [2016]. We can show that on the validation set similar accuracies
and results are achieved as in the randomly subsampled validation set in the previous work, and with that
validate the old strategy.

From theory, we found that about 300 features (1/70.000) would be a good number for our dataset. We ex-
plored with different algorithmic methods the space of 6.368 to 192 and showed that on average classifiers
perform best in the region of 765 — 383 which is a bit higher than the theoretical number of features but in
range.

On the other hand, we show that mainly variance reducing methods like random forests, extra trees and
bagging, in general, perform well on large datasets and are not negatively impacted by feature sets over
765 features. Both ensemble methods, extra trees and random forests are our best performing classifiers in
all experiments.

In future work it would be interesting to do a more in-depth analysis of the resulting features. We do
this to some extent for the smartwatch experiment. However, visualising the features after PCA, LDA or
especially t-SNE after each transformation might shed some additional light on the experiments presented
in this work.

The results for the classifiers on the test set with an own user show a strange error. For 30 classes the
performance in the system is splendid. However, the classifiers systematically confuse the “One (1)” ges-
ture with the zero class, bringing the micro-average, which incorporates class weights, to only 37%. The

60

4.10. Conclusion

reason for the confusion can be a not yet found error in the scripts or the training strategy and missing dual
labelling. Andrew Ng states in his great machine learning course that the distributions of validation set and
test set should be the same. In our case the validation set is balanced, and the test set not. Even more the
applied strategy on modelling gets problem if the zero class get’s very dominant in case of the use case
specific gestures subsets s1,s7,s3 and s4, where the accuracy on the test set drops dramatically. Training
the sensor selection without partial windows would be a first next step to investigate into this problem.

Instead of training only with windows with the full gesture or with all partial gestures it would be in-
teresting to see the effect of thresholding the partial windows (f.e. include into training all with more than
50% of a gesture) and dual labelling.

In our work in [Luzhnica et al.|[2016] additional error analysis is done, especially on systematic confu-
sions. It would be an exciting future work to do this analysis for the different configurations of feature
sets. While with feature and sensor selection we brought the computational cost in some cases into a lower
amount than in the paper, we did not discuss computational costs in detail in this thesis.

0500 0500

0415

5

0450

0425

0400

0375

agreement on sensor in %
By 8 8 &
agreement on sensar in %
agreement on sensor in %

0350

0325 0325
2 2 15 10 5 0 = 20 15 10 5 0 = 2 15 10 5 0
number of sensors number of sensors number of sensors

(a) Agreement of absolute selection (b) Total agreement of selection (c) Agreement of relative selection
over full dataset over full dataset over full dataset

0s

7

agreement on sensor in %
agreement on sensor in %
agreement on sensor in %

s
s

P 2 15 10 5 [% 20 15 10 5 0 E3 20 15 10 5 0
number of sensors number of sensors number of sensors

(d) Agreement of absolute selection (e) Total agreement of selection (f) Agreement of relative selection
over gestures §| over gestures s over gestures §|

Figure 4.27.: Different agreements of the RSE algorithm with the absolute selection heuristic on the left,
the relative in the right, and the total agreement in the middle.

With RSE we present a novel algorithm for sensor selection. While the basic algorithm is shown in this
thesis several dimensions to explore the idea further exist.

Incorporating costs into the select(5) heuristic allows to better model the intent to optimise the system
towards a specific use case. Costs can be hardware costs, costs for building the system, assumed main-
tenance costs or even energy costs. In some case having more sensors increases the costs by additional
control electronics, in others single sensors might be more expensive. This means that costs can become
highly non-convex but more interesting to model.

An important question is the quality of the RSE algorithm. One proposal is to use the agreement of one
particular version of the algorithm over different datasets as a quality criterion. Agreement is defined by
how often the algorithm selects the same sensor along with the slightly different feature sets. First experi-
ments of this effect are shown in figure and might hint that the relative algorithm is of higher quality
in that sense than the absolute algorithm. Measuring not the sensor, but the agreement on where to place
the sensor (f.e. on the index finger) might help shed light on the importance of the placement of sensors vs
the sensors type. Further exploration is needed in this area.

61

Chapter 4. The Gesture Glove Experiment

The RSE uses repetitive application of the ¢; regulariser in the form of Lasso. This choice means we
assume a linear dependency between the features. In our work, however, we show that bagging trees are
the best methods, which does not imply a linear dependency. RFE has already been extended to not only
work with Lasso or SVMs but also with random forests or LDA. It would be interesting, if this affects our
algorithm.

Additionally to that, RSE is very aggressive at the moment. If in one iteration RFE eliminates one sen-
sor by feature removal alone, RSE additionally removes the weakest sensor. Also, the number of features
is reduced by both methods, RFE and sensor removal, in each step. This potential double removal might
mean we go too fast towards the assumed minimum. Some extensions might make the algorithm more
stable:

Only removing a sensor when the select(s) of RFE did not yet select one, or the other way around, al-
ways stopping RFE before all features of a sensor would be selected, and then use select(5).

Also, it would make sense to make sensor removal the only driver for changing the feature dimension
at first and always start with the full feature set without the features of the removed sensor in each iteration.

Instead of looking at the number of remaining absolute or relative features (weighted by some cost), it
might be interesting to sum the remaining importance of the features from the model as a heuristic for
removal.

For linear dependencies, one could envision that all features spawned by a single sensor are addition-
ally multiplied by a sensor weight. If this weight is used with the ¢; regularisation, this would lead to
sensor selection while optimising the cost function. Performing the selection while training it would allow
models where training is a heavy burden like DeepLearning to benefit from the sensor selection.

Given the positive results with two sensors and six gestures for controlling a slide set, it is interesting
if such a system is possible on a smartwatch. This is explored in the following experiment.

62

Chapter

The SmartWatch Experiment

The next experiment in this thesis is one with a smartwatch. The aim is to reuse the results from the feature
engineering and modelling with the smartglove for a smartwatch. One might ask the question, what can
you do with the sensor of a more common wearable, namely the one 6 DOF IMUEbf a smartwatch?

The idea was to create a simple system with four gestures used to steer f.e. a slide show. We choose
to use the gestures “slide left” and “slide right” to map to the next and previous slide action. “Thumbs
down” pauses a presentation, and “thumbs up” resumes a paused presentation.

5.1. The Hardware and Data Collection Software

The Apple Watch Series 3 has a 6 DOF accelerometer. The very thin MEMS sensor is produced by STMi-
croelectronics and later by Bosh. The details are not disclosed to the public, and as a developer you only
interface with the CoreMotion API. On the positive side, this API already does Sensor Fusion for you and
gives values in the right SI system to the developer.

For experimenting, we did write a labelling software. An Apple Watch

Extension starts and stops the recording of the sensor. For debugging it @
also shows the accelerometer and heading values. The interface is shown
in Figure @ Heading: 0.;::;09
Gravity:

. . (x:0.33,y:0.33,z:...
The problem here is that Apple does not allow continuous sens- Attitute
ing per default. Only workout apps are allowed to do that. So (p:0.33,1:0.33,y:...
the App starts a workout whenever you hit record, and stops e
it in the RecordingManager class. In the background, it col- Start

lects CoreMotion data from the watch. In the MotionManager
class we manually fix the position of the watch to be on the
left arm. We then start a recording of the IMU data with ba-
sic sensor fusion. While the API has an option to fix the ref- Figure 5.1.: Apple Watch Ex-

erence frame into world coordinates, it can only do this if a tension for sending
magnetometer sensor is available. Because of this, this option sensor data.

is only available on the iPhone. @ We set the recording to 50

Hz.

The Apple Watch restricts the communication of the watch to the iPhone to the WatchKit (WC) APL. While

lactually most smartwatches have no magnetometer inside, including the Apple watch, so only 6 DOF exist.

63

Chapter 5. The SmartWatch Experiment

not explicitly mentioned, this API seems to only stream constantly if the Extension is active, which means
the screen of the watch is facing up and is lighted. Else, from our experiments, it does only occasionally
send a package. Because of that, we collect the CoreMotion data in a queue and whenever we can we send
the data to the iPhone. For analysis this does not create timing problems as the timestamp of CoreMotion
objects is generated by a hardware clock when the sensor is read. However, the timestamp is in nanosec-
onds from the last restart of the Apple Watch. To synchronise with the iPhone, we therefore send the
iPhone’s time on the first roundtrip and compute an offset. The CoreMotion objects themselves are not
serialisable, so we extract a row out of each of them and send a batch of data in the form of a matrix. By
sending quantities of data as a matrix, we also space when transmitting the data.

11:01 > mm
{ Back Logger Share
start next stop next
start prev stop prev
start init stop init
start pause stop pause
start Ibl stop Ibl
Received Log empty log

Lorem ipsum dolor sit er elit lamet, consectetaur cillium
adipisicing pecu, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud gxesgitation ullamco laboris nisi ut aliquip ex
ea commogo r, seluat. Duis aute irure dolor in
reprehendgrit 1 f rolubtate velit esse cillum dolore eu
fugiat nulla\par.=.ur/Excepteur sint occaecat cupidatat
non proident, in culpa qui officia deserunt mollit
anim id est laborum. Nam liber te conscient to factor tum
poen legum odioque civiuda.

Figure 5.2.: Screen of the labelling function of the application.

On the iPhone, an iOs application acts as a server for receiving the data. It can do two things with the
data: First, it can collect it and add labels to it. Second, it can run inference and send the detections to a

64

5.2. Experiment / Data Collection

server. We will now explain the collection part of the application.

The interface of the labelling app is quite simple and can be seen in figure An area ((1) in the fig-
ure) displays the received data directly as text/matrix. This area acts as a way to debug if you are correctly
receiving data. In the upper area of the application ((2) in the figure) buttons for annotations are present.
Starting and stopping an annotation is done with these buttons. If an annotation is started the timestamp
of the button press is recorded with the annotation at device time. Because we also record the offset be-
tween the two devices we can later recover the temporal relationship. It is possible to annotate anything
with a text entry ((3) in the figure). When enough data is collected, one can use the functionality of a
UIActivityViewController to share data in the form of a CSV file. We found this a practical and easy
way, as it works with large files over the wifi. F.e. it finds your laptop over AirDrop, and you can from
there use the files for further modelling.

We receive the collected data on the laptop and use scikit-learn and python to do the modelling. We
then convert the models in CoreML models which we deploy back into the application. We have a debug
mode where the application makes inference on the received app data and sends the data to a server. We go
into these parts in the later sections of this chapter.

5.2. Experiment / Data Collection

The dataset is collected from one person only. While the results from the smartglove hint that such systems
work among many people, nothing can be said about how well the system would generalise to different
persons.

We recorded sessions with me performing the four gestures “slide left”, “slide right”, “thumbs up” and
“thumbs down”. In contrast to the experiment we did with the glove I was standing most of the time and
gesticulating while making a fictional presentation, and performing the gestures. I did hold the labelling
app in my other hand so this might bias the results a bit. I also had one session where I was sitting, and
one where I was going around. These are all influences we did not have in the gesture glove study but are
present in the real world use. In total, I recorded 45 minutes 15 seconds of data.

5.3. Data

Since there are fewer channels, it is also easier to visualise the data. The idea to look for templates in the
raw time series was developed in this experiment and just then applied for the smartglove. We also needed
that to find and fix potential timing errors, since the clock of the Apple watch is relative to its last reboot
and because of the unstable scheduling of the transmission.

Because of initial problems with data collection (f.e. the nanoseconds timestamp format of the Apple
watch) a lot of data was invalid. The visualisation techniques used here were used to remove invalid data
from later feature engineering and modelling. In the end, we had 135.475 datapoints with 988 labels with
valid data.

Figure shows data from one session of recording where I repeatedly performed all four gestures. Since
there is no magnetometer on the watch, the magnetometer channel is always just a constant value. Also
since the watch cannot fix the coordinate reference space, there is no heading. The small lines at the bottom
of a plot are always a labelled section.

It seems that, if we stop the recording app first and then the watch extension (sometimes even if we do
stop the watch extension first), there are leftovers on the next recording session. It seems that the watch
has its own store for sensor data which is sometimes not flushed. A picture of that effect in the appendix in

figure[B.1]

65

Chapter 5.

The SmartWatch Experiment

session.png session.png

heading

-1.00

-1.02

-1.06

-1.08

-1.10

—— heading

08 1227

08 1428

08 1229

gravity

08 14:30

08 14:31

10{ —

05

oo

-0.5

b -

il

Il

T
08 14:27

T
0814238

T
081429

user acceleration

T
08 1430

T
08 14:31

-0.25

=050

-0.75

-1.00

T
08 14:27

T
0814238

T
081429

magnetic field

T
08 1430

T
08 14:31

0.00

—x

-y

—_—

-004

081426

08 1227

08 14:28

08 12:29

rotation rate

08 14:30

08 14:31

Wwo{— *
i
759 = 2
50

25

08 12:27

08 14:28

08 12:29

attitute

08 14:30

08 14:31

It
_ .illll I

|
|_“

]

08 1227

Figure 5.3.: Data from one recording session.

08 1428

08 1229

08 14:30

08 14:31

66

5.4. Data Augmentation

If we look into detail of a gesture like f.e. the “swipe right” gesture (see figure and figure [5.5) we
can see patterns that seem relative distinct. Still, similarish patterns exist while gesticulation in speaking
as we see in figure[5.3] It is interesting to see if the feature engineering can pick this information up. For
tuning the window size, we again looked at how much time a gesture takes. I need on average 1.999705s
for the “thumbs up”, 2.116329s for the “thumbs down”, 1.980159 for the “swipe right” and 2.052116s for
the “swipe left”. Given a sampling rate of 50Hz, this is about 100 records as a minimum sliding window
length to capture the whole gesture. We decided to use a sliding window of 128 frames per window and a
step size of 20 frames (so a step every 0.4 seconds or in a live system a decision every 0.4 seconds). The
decision of 128 is also somewhat a technical one. The implementation of the fast FFT on iOS can only
handle power of two sized data arrays, so it is a decision between using a window size of 128 or one of 256
timesteps.

5.4. Data Augmentation

I only recorded 45min of data. Transforming that to windows every 0.4 seconds only yields about 6000
data points, which is not a lot, if you also make at least a validation set out of it (we do not make a test set
as this is meant to be a live system, so the test is meant to be a real test).

A common praxis from DeepLearning is to use data augmentation. Data augmentation is any transfor-
mation of the data which produces different data but does not alter the label. In images these are transfor-
mations like flipping the image, changing the brightness or similar. The transformations which are allowed
always have to do with the domain. F.e. if you flip the image of a cat horizontally it is still a natural
appearing cat, if you flip it vertically, while it is still a cat, it is not a natural appearing shape (unless the cat
falls). An example of data augmentation for a cat can be seen in figure[5.6

Camps et al.| [2018]] discusses the problem that this is not necessarily easy with sequence data. Their
data augmentation consists of a random shift and 3D rotation in space. They associate a probability of
how dirty that signal is and learn that together with the labels. So what are transformations of IMU data
that do not hurt the labels? Our observation is that making a gesture faster or slower within some limits it
is still the same gesture (a fast “thumbs up” and a slow “thumbs up” is still all a “thumbs up”). Another
transformation is to add a tiny bit of additional Gaussian noise to the signal. All sensors are noisy and
adding a bit might help the algorithm to not overfit on that.

If we change the speed of a gesture, the easiest augmentation is to divide the values among the new pins
evenly. For good data augmentation, you want arbitrary speed changes, so you should allow making some-
thing f.e. 1.124 times as fast. To allow that we made an algorithm based on the following idea: We want to
change the speed, but not the path travelled, so having an original signal x and an augmented signal X the
constraint holds that x, % subjectto [[x= [[%.

Augmenting the gesture by slowing it down: For making it f.e. 1.3 times slower you need 1.3 times
more values rounded up. Then each value must be divided by 1.3 and then distributed over 1.3 fields. That
is, taking the full value divided by 1.3 for one field, and 0.3 of the value divided by 1.3 for the next field.
That field is then filled with 0.7 of the next value divided by 1.3 and so on. There is a reduction factor
for each value and a distribution factor which is used to distribute the value over the array. A pseudocode
implementation can be seen in algorithm 2]

Augmenting the gesture by speeding it up: For speeding up, fewer pins in the signal need to be used.
Into these pins, you sum up a fraction of the next pins. If you would like to make the signal 1.3x faster, you
would sum into the first pin the full value of the first pin of the source signal and 0.3 of the second value.
Then you would take 0.7x the second value of the source signal for the second pin and sum 0.3x the third
value of the source to it, and go on analogous. Algorithm [3|show a pseudocode implementation of that.

In figure we show a test of transforming some artificial signal with the suggested algorithm. A ran-

67

Chapter 5. The SmartWatch Experiment

-1.00

-1.02

-1.04

-1.06

-1.08

-110

10

05

heading
—— heading
21:41:43 21:41:48 21:41:53 21:41:58 21:42:03 21:42:08 2142113 21:42:18
gravity
— x
i
—: e
214143 21:41:48 21:41:53 21:41:58 21:42:03 21:42:08 21:42:13 214218

user acceleration

21.42:08

214213

214218

21413 2alae 2Lalsz 2L4LsE 214203
magnetic field
—x
—
—:
214143 214148 21:41:53 21:41:58 21:42:03 21:42:08 21:42:13 21:42:18

rotation rate

214143 214148

214153

214158

21:42:03

attitute

21:42:08

214213

214218

21:41:43 21:41:48

21:41:53

21:41:58

21:42:03

21:42.08

21:42.13

21:42.18

Figure 5.4.: Some zoomed in data of the next gesture.

68

5.4. Data Augmentation

-1.00

=102

-1.04

-1.06

-1.08

-110

06

04

02

00

-02

heading
—— heading
185142 185143 185144 18:51:45 18:51:46 18:51:47 18:51:48 18:51:49 18:51:50 185151 185152
gravity
—_— K
Y
— I
18 5i 42 18 5i 43 18 5‘1 44 18'5‘1'45 18'5I1'4E 18'5'1'47].8'5'1'43].8'5'1'49 18 Si'SU 18 Si 51 18 5i 52

user acceleration

T
185146

T T T T
18:51-47 18:51-50 1851:51 185152

18:51:42
magnetic field
—x
—z
18:51.42 18:51.43 18:51:44 18:51:45 18:51:46 18:51:47 18:51:48 18:51:50 18:51:51 18:51.52

rotation rate

18:51-42 18:51-43

18:51-44

18:51:45

18:51-46

18:51-47 18:51-48 18:51:52

18:51:51
attitute
— roll
pitch
— aw
. \J Tf b‘
L~ a U
18:51.42 18:51.43 18:51:44 18:51:45 18:51:46 18:51:47 18:51:48 18:51:49 18:51:50 18:51:51 18:51.52

Figure 5.5.: One next gesture in detail.

69

Chapter 5. The SmartWatch Experiment

Figure 5.6.: Data augmentation of a kitten. These random transformations still allow the image to be clearly
identified as an image of a kitten. Image taken from the fast.ai documentation.

Algorithm 2 Calculate £ = slowdown(x)

Require: nf = new frequency in herz (f.e. 50), o f = old frequency in herz, s = current signal
rf < nf/of {reduction factor}
df < nf/of {init distribution factor}
ns < np.zeros(len(s) x [nf/of])
si,di 0
while si < len(s) — 1 do
ifdf >0 then
df «—df—1
ns(di) = ns(di) +s(si)/rf
di+di+1
else
ns(di) = ns(di) + (s(si)/rf) «df
ns(di) = ns(di) + (s(si+ 1) /rf) « (1 —df)
di+di+1
si—si+1
df < rf —(1—df)
end if
end while

70

5.5. Feature Engineering

Algorithm 3 Calculate £ = speedup(x)

Require: nf = new frequency in herz (f.e. 50), of = old frequency in herz, s = current signal
sf < of /nf {sum fraction}
ns < np.zeros(len(s) x [nf/of])
si,di <0
while di < len(ns) — 1 do
if sf > 0 then
sfsf—1
ns(di) = ns(di) + s(si)
Si<—si+1
else
ns(di) = ns(di) + s(si) *sf
ns(di+1) =ns(di+ 1) +s(si) * (1 —sf)
di<di+1
Si<—si+1
sf < (of Inf) — (1—sf)
end if
end while

domish signal (signal = sin7« [1...n] is stretched by 2.1 times and transformed back.

Adding noise to a signal is relatively easy. The only art is to estimate the ¢ parameter of the noise. From
the visualisation and the value ranges of the data we can assume that a ¢ of 0.1 will not hurt the signals.

le-14 e1a le-14

oL
Abodb Lk o L L e

0 b a0 60 80 100 120 [50 100 150 200 250 300 0 20 £ &0 80 100 120

(a) Original signal over 120 time (b) Signal streched to 288 time (c) Signal transformed back
points points

Figure 5.7.: Example of the timing augmentation algorithm.

5.5. Feature Engineering

We used a similar feature engineering to the smartglove. Since there is no linear algebra library like numpy,
all the math for the transformations are written by hand in swift. Currently, the swift team works hard on
math optimisations so this small library might be obsolete soon.

Since we needed to implement many things by hand, we skipped the features which we found too much
effort to implement and test. These features to drop are the wavelet transform and the wavelet-based peak
detection. Also, the FFT implementation of the accelerate framework of iOS is used. The accelerate frame-
work can only handle certain window sizes for the FFT transformation (windows with a size which is the
power of 2). We kept all the statistical features and the FFT features (statistics, spectral centroid, spectral
entropy, first five coefficients and the sum of them and the bandwidth of the frequency) and dropped the
CWT and the peak features.

We visualised the transformed features by stacking the windows after each other in a time series and

71

Chapter 5. The SmartWatch Experiment

colouring the line according to the label of the window. Since we generated over 300 images, this would
be too much even for the appendix. We must ask the reader to check out the github repository for that and
he might need to re-run the experiments. However two examples of a visualisation of the transformation
are shown in figure[5.8]

| em e

(=]

0 500 1000 1500 2000 2500
Rt T ST
Wy
o 0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

M'h'"h‘.‘lNMWWM‘M

1000 1500 2000 2500

Figure 5.8.: Visualisation of the feature transformations per feature. X axis is the sliding windows which
are in temporal relationship. The colour of the line corresponds to the label at that window
point. Red is the zero class.

In total 357 features are generated from the IMU. While the IMU is a 6 DOF sensor, bear in mind that
Apple already did a bit of the feature engineering in the form of digital signal processing for us: Besides
the six raw channels we also get the linear acceleration and the roll pitch and yaw in a reference frame
relative to the first reading of the watch. All these channels are used as input to generate the features.

As a basis we have 135.475 instances with 988 instances being labelled. Using a sliding window of
128 frames (2.46s) and a stride of 48 frames (a bit less than a second) this results in 2774 windows to
analyse. However, since the lowest class has 198 windows, we subsample the other classes to the same
amount with cluster centroids subsampling [Zhang and Mani, 2003]|. So the final dataset has a dimension
of (198 %5) x 357.

5.6. Models

The models for the smartwatch are validated with cross-validation over random subsampling of the win-
dows. One reason is that the dataset is very small. There is no test set, as the performance of the system is
tested by running it in a demo mode.

For training the models, another new aspect comes into play: Not all models are possible to be trans-
ferred to CoreML. Fe. the best classifier on the smartglove was extra trees, the winner in

72

5.7. Full Stack ML, a Working System

[2016] was Logistic Regression. Both are not available in CoreML. You would need to re-implement the al-
gorithm for iOS to use them (at least the inference part) and transfer the weights by hand. Re-implementing
the inference part is too much effort, so we did not do that, but constrain us to algorithms which can be
transferred to CoreML. On the other hand, since the data set is way smaller we do more parameter tuning,
especially for the SVM which can achieve good performances with the correct set of parameters.

We grid search the different multiclass decision boundaries (one vs one, one vs rest) the different kernels
(RBF, polynomial, linear sigmoid) and its hyperparameters (y € [0.001, 100], poly € [2,4],c € [0.001, 100] ornu €
[le—100,1]). In total, we searched 239 different configurations for the SVM. SVC worked better than
NuSVM or LinearSVM. The most important parameter for SVC is to allow high contamination with the
parameter c. While all different kernels and decision functions for SVC appear in the top 20 best perform-

ing SVMs, all had a ¢ parameter over 50. A table with the parameters of the best 20 SVM configurations
sorted by validation accuracy is in the appendix, table

While the default parameters most of the time performed badly, a tuned SVM can achieve accuracies
with over 95% on the validation set. In the end we choose an SVC with the following parameters:
C=50.004999999999995, class_weight="balanced’, decision_function_shape="ovo’, gamma="auto’, ker-
nel="rbf’, shrinking=True. It gives 99% accuracy when used on all the data. The details are in table[5.1}

precision recall fl-score support

1 1.00 0.96 0.98 207
2 0.98 0.99 0.99 197
3 0.98 1.00 0.99 189
4 1.00 1.00 1.00 207
total 0.99 0.99 0.99 800

Table 5.1.: The winning classifier which can also be transferred into CoreML.

5.7. Full Stack ML, a Working System

The iPhone application contains a debug/demo model which
uses the exported SVM and the handcrafted feature engineer-
ing. The idea is to have a full working system as a demo.
While we could transfer the model itself to iOS by the python
tool coremltools.converters.sklearn, this is not possi-
ble for the feature engineering. Most models transferred by it
CoreML seem to be DeepLearning models which do the fea- prev
ture engineering in the algorithm themselves. In the case Next
of classical ML, feature engineering is a vital part. Not be-
ing able to transfer the feature engineering part automatically
therefor is a major weakness of the CoreML tools. Swift lacks
a good linear algebra library. There is the Apple accelerate
framework which is built on Objective-C and C but can accel-
erate the linear algebra computation on the GPU or the Neural
Engine of the iPhone if it has one. We build a wrapper for the
methods we need and re-implemented the feature engineering. To test it, we created some synthetic signal
and ran the feature engineering in python and in swift in an own swift notebook. We corrected the imple-
mentations until they gave the same output. The module Math.swift has the important math operations
needed for feature engineering. The module TransformToFeature implements the feature transformation
for one window. The class Classifier collects the data from the WC session. It then waits until there are at
least 128 frames of data. Then it transforms the current window into features every 0.4 seconds and makes
a classification. The system is performant enough to do that on an iPhone 7 (also tested on an iPhone Xs).

12:27

)
1

¢ Back

Figure 5.9.: Debug output of the recogni-
tion

73

Chapter 5. The SmartWatch Experiment

We only report a label if the label is different from the last classification or if 2s passed, to avoid outputting
too many labels in the debug mode.

An example can be seen in figure [5.9] If configured we can send this change in detection to a server.
We are working on a server application running on a laptop to control a slide set when such a request is
sent. This server is work in progress.

5.8. Conclusion

From the experience of using the debug/demo mode of the application, the recognition is by far not as good
as the 0.99% of the SVM would suggest. We still need to figure out why that is that way. Without keeping
a rigorous statistic it is more like 70% percent.

Training the system with different strategies for the partial windows is also worth an investigation for
the smartwatch experiment. Also collecting more data, and try the same train, validation and test split
would be interesting.

We wanted to use a full stack system which does the recognition of the gesture on the device, not on a
server, so you can f.e. control you slideshow anywhere where you can open any network connection to you
laptop. This is possible by transferring the models using the CoreML toolchain. However, not all models
which are state of the art are supported. Also in classical ML the feature engineering is a vital part, and
there is no easy method to transfer the feature engineering. Different to the smartglove is the data collec-
tion, as it relies on other technologies. We build a labeling app for that. We also showed a way to augment
data from an IMU to get more data, which helped in training the models. With this method your are able
to triple the data size.

Still there is a set of open issues with the system: First of all while the performance on the validation
set is very good, the system does not perform as well while using it live. It is to be investigated why this is
the case. Especially, when you do such a simple set, that you can handcraft very simple thresholds and per-
form very well, if the system does not perform almost perfectly there is no sense in doing it with machine
learning.

It would be interesting to try the data augmentation on the smartglove, and extend it to sensors which
report absolut values like the pressure and flexion sensor. This should be easier, as the stretching and
shrinking could be done with interpolation.

Another interesting thing would be to find a way to transfer the data set from the smart glove’s IMU on
the wrist (and maybe the other data as a prior) so this can be used for the training of the watch. Two main
changes would be needed: Firstly, the value ranges must be adopted to the different recordings. Secondly,
the smartglove’s data is sampled with 83.3Hz and the smartwatch is sampled with 50Hz. Resampling the
method could f.e. be done by first approximating the function with cubic splines and then sampling from
this representation again.

Even more interesting would be to encoporate other datasets and use DeepLearning to train an IMU natural
movement model and then see if this model can be transferred to help with inference.

Overall this experiment showed that you can use the techniques from the smartglove also on a more com-
monly used wearable.

74

Chapter

Discussion of the work

This work gives an introduction into the theory of gesture recognition, its technology, its methods and its
use cases. It sheds light on what a basic gesture is and on the anatomy of the human arm and its kinematics
and needed degrees of freedom.

The work assumes that the dynamics of the hand can be captured by sliding windows and feature ex-
traction from human activity recognition (HAR) research. It gives an extensive overview of the features
used in HAR and applies them to this problem. This work also gives an overview of the state of the art
classification algorithms in machine learning.

It presents two experiments, one with a custom built smartglove based on earlier work done in |Luzh-
nica et al.|[2016] and another one as a demo system with a consumer wearable, a smartwatch.

The thesis gives more detailed documentation of the electronics, data collection software and collected
data than is possible in the page limited paper of Luzhnica et al.| [2016]. It demonstrates the effect on
outlier detection and data cleaning and gives more detailed statistics on the dataset.

We explore a data-driven approach towards gesture recognition in this work. It shows that by generat-
ing all kind of known features and using automatic tools to select the needed ones, it is possible to train
very competitive models. It explains a theoretical optimal size of features and explores algorithmically
different feature sizes and the impact on recognition.

Splitting training, validation and test data is done differently in this work. It shows that with a differ-
ent validation split similar performances are reached than presented in|Luzhnica et al.|[2016]. It also shows
with the unbalanced zero class in the test set that the special training with partial windows in the training
set performs worse than in the original work with only full windows in training and dual labelling.

It shows the constraints of porting a system to a consumer device by creating a demo application for
the smartwatch and smartphone, and which design decision (like limiting the choice of classification algo-
rithm) have to be made. For this system it presents a data augmentation method for IMUs where labels are
not corrupted by changing the timing of the time series and adding small amount of noise.

We present for the first time the RSE algorithm, an algorithm to perform sensor selection for a target
system. We describe use cases and possible heuristics for the selection and show first insights on how the
algorithm performs.

75

76

Appendix

Data of the Glove

values of all channels from AB73 values of all channels from AW18 values of all channels from CB23 values of all channels from CB24

,,,,,,
nnnnnnnnnnnnnn

uuuuuuuuuuu
nnnnnnnnn

Figure A.1.: Valuerange of all accelerometer sensors for different users

values of all accelerometer channels from AB73 values of all gyroscope channels from AB73 200 values of all flex sensor channels from AB73
2000 3000 2200
2000
1000 2000
1000
1800
0 0
—1000 1600
1000
-2000 1400
2000 3000 1200
-4000
[[o
wvalues of all sensor channels from AB73 values of all pressure sensor channels from AB73
400 2900
0 2800
]
2700
-200
2600
-a00
2500
-600
0 0

Figure A.2.: Value Distribution of different Sensors for user AB73

Table A.1.: All k2 test statistics and p-values of all user/sensor type combination when performing a normal

test.

First user Second sensor N min max k2 p
AB73 acceleromter 3843168 -2636 2518 8.444566e+05 0.0
AF82 acceleromter 2222535 -2439 2336 2.197433e+06 0.0
AL29 acceleromter 3869796 -2372 2497 6.599598e+06 0.0
AW18 acceleromter 2166339 -2787 2601 3.664112e+05 0.0

Continued on next page

77

Appendix A. Data of the Glove

Table A.1 — Continued from previous page

First user Second sensor N min max k2 P
CB23 acceleromter 2211951 -2313 2566 1.668757¢+05 0.0
CB24 acceleromter 2227722 -2367 2426 1.270681e+05 0.0
CF58 acceleromter 2505216 -2783 2513 8.868839e+05 0.0
DG12 acceleromter 2195571 -3074 2545 3.843390e+05 0.0
DH42 acceleromter 2319135 -2654 2451 1.001795e+06 0.0
DL24 acceleromter 3806838 -2614 2707 8.133829e+05 0.0
JL61 acceleromter 2363886 2711 2562 9.164507¢+05 0.0
JQ28 acceleromter 4023516 -2617 2541 1.253615e+06 0.0
JS52 acceleromter 3936009 -2839 2729 5.544492e¢+05 0.0
MFE20 acceleromter 2163441 -2461 2384 5.990880e+05 0.0
MS55 acceleromter 2285892 -2850 2582 1.140166e+06 0.0
PC29 acceleromter 2522898 -14286 10800 2.358820e+05 0.0
PM32 acceleromter 3794028 -3364 2772 4.439832e¢+05 0.0
PS42 acceleromter 2221695 -2241 2373 2.555001e+06 0.0
RR45 acceleromter 2218671 -3019 2689 1.065922e+06 0.0
RW32 acceleromter 2222241 -3198 2647 1.944557e+05 0.0
SF1 acceleromter 2167305 -8986 9240 2.183389¢+05 0.0
YW13 acceleromter 3928722 -2922 2551 5.617225e+05 0.0
AB73 flexation 2379104 1114 2391 1.072472e+05 0.0
AF82 flexation 1375855 1136 2354 3.100936e+04 0.0
AL29 flexation 2395588 1142 2347 7.334131e+04 0.0
AW18 flexation 1341067 1075 2387 4.440907e+04 0.0
CB23 flexation 1369303 1026 2342 1.062614e+05 0.0
CB24 flexation 1379066 1101 2391 3.545334e+04 0.0
CF58 flexation 1550848 1097 2399 5.034919e+04 0.0
DG12 flexation 1359163 1082 2352 3.654121e+04 0.0
DHA42 flexation 1435655 1113 2365 2.052000e+04 0.0
DL24 flexation 2356614 1071 2315 1.555223e+05 0.0
JLO61 flexation 1463358 1144 2385 3.242145e+04 0.0
JQ28 flexation 2490748 1053 2932 5.733102e+05 0.0
JS52 flexation 2436577 1081 2388 9.361195e+04 0.0
MFE20 flexation 1339273 1082 2372 3.808368e+04 0.0
MS55 flexation 1415076 1145 2379 1.815430e+04 0.0
PC29 flexation 1561794 23 2350 5.143577¢+05 0.0
PM32 flexation 2348684 1129 2355 5.122904e+04 0.0
PS42 flexation 1375335 1096 2344 4.353182e¢+04 0.0
RR45 flexation 1373463 1115 2404 6.889147¢+03 0.0
RW32 flexation 1375673 1098 2385 4.279792e+04 0.0
SF1 flexation 1341665 27 2365 4.481073e+05 0.0
YW13 flexation 2432066 1085 2301 1.186358e+05 0.0
AB73 gyroscope 3843168 -11103 11352 1.096027e+06 0.0
AF82 gyroscope 2222535 -11075 12317 7.397091e+05 0.0
AL29 gyroscope 3869796 -10113 11555 1.309652e+06 0.0
AW18 gyroscope 2166339 -11926 14597 8.752041e+05 0.0
CB23 gyroscope 2211951 -9273 10433 6.245442¢+05 0.0
CB24 gyroscope 2227722 -11223 13308 9.891769e+05 0.0
CF58 gyroscope 2505216 -11673 14507 1.189913e+06 0.0
DGI12 gyroscope 2195571 -12672 14081 7.289906e+05 0.0
DHA42 gyroscope 2319135 -10943 11868 7.902876e+05 0.0
DL24 gyroscope 3806838 -11918 12613 9.612428e+05 0.0
JLO61 gyroscope 2363886 -12260 13750 8.667529e+05 0.0

Continued on next page

78

Table A.1 — Continued from previous page

First user Second sensor N min max k2 P
JQ28 gyroscope 4023516 -12645 14789 1.441606e+06 0.0
JS52 gyroscope 3936009 -10089 12097 1.125299e+06 0.0
MF20 gyroscope 2163441 -9134 10614 8.029807e+05 0.0
MS55 gyroscope 2285892 -11756 13370 7.655694e+05 0.0
PC29 gyroscope 2522898 -14031 18776 1.264157e+06 0.0
PM32 gyroscope 3794028 -13077 14657 1.237140e+06 0.0
PS42 gyroscope 2221695 -8394 11860 1.175412e+06 0.0
RR45 gyroscope 2218671 -12636 14814 9.845657e+05 0.0
RW32 gyroscope 2222241 -11333 14239 8.636745e+05 0.0
SF1 gyroscope 2167305 -9593 11149 9.150341e+05 0.0
YWI13 gyroscope 3928722 -12754 13966 1.288589e+06 0.0
AB73 pressure 915040 453 2953 1.179727e+06 0.0
AF82 pressure 529175 1267 2952 1.388097e+05 0.0
AL29 pressure 921380 706 2955 2.320638e+05 0.0
AW18 pressure 515795 620 2948 4.545777e+05 0.0
CB23 pressure 526655 113 2947 7.638754e+05 0.0
CB24 pressure 530410 703 3013 5.656773e+05 0.0
CF58 pressure 596480 413 2952 7.013277e+05 0.0
DGI12 pressure 522755 537 2944 6.541262e+04 0.0
DH42 pressure 552175 278 2954 2.031838e+05 0.0
DL24 pressure 906390 446 2941 1.325338e+06 0.0
JL61 pressure 562830 909 2953 5.145988e+05 0.0
JQ28 pressure 957980 498 2947 7.386344e+05 0.0
JS52 pressure 937145 804 2956 9.001867e+05 0.0
MF20 pressure 515105 501 2947 5.066696e+05 0.0
MS55 pressure 544260 615 2952 3.323270e+05 0.0
PC29 pressure 600690 194 2948 6.733048e+05 0.0
PM32 pressure 903340 573 2945 9.271505e+05 0.0
PS42 pressure 528975 907 2945 1.932210e+05 0.0
RR45 pressure 528255 218 2944 6.310491e+04 0.0
RW32 pressure 529105 471 2954 3.719549e+05 0.0
SF1 pressure 516025 383 3014 7.990293e+05 0.0
YW13 pressure 935410 439 2942 9.932568e+04 0.0

79

Appendix A. Data of the Glove

4 g
~Thumy,
! Acce;
(2

T

i et N o e it N O | ===
= = [=
i i | Nl i e E |

S—y |] | s

R e P

I

I

H Dl el e £

Figure A.3.: Time Series of 10 users among 10 channels for the gesture walking

80

values ofg&l values outside manual label for magnetometer for all different users

values of all values within any manual label for magnetometer for all different users

750 500
500 250
50
5 E 0
g [R
§ g 250
£ 250 o
w0 -500
_750 750
1000 -1000
2D B AR L Shnbride B AS 40 Y G i A o "s,l'\lq“b"ﬁ‘h"b"\r‘l‘h"\‘Ql\"ﬁl‘v‘w‘ “\,Isl l~"’;
SO S CHOPHS S OSSO SRS
participant ID participant ID

wvalues of all values within any manual label for flexation for all different users values of all values outside manual label for flexation for all different users

3000 e
=00 2500
) 20001 g 200
H]
= 1500 2 150
: :
3 1000 % 1000
500 500
0 0
\I“'é" I k"*l;?’:&‘i?’lx"lw‘%l‘%é‘;“;":ﬁél’“;{ e P s b 8 0 L b B S 60,0, L e
e O N S A OISR SIS
participant ID participant ID

values of all values within any manual label for acceleromter for all different users va\ueszégoaoll values outside manual label for acceleromter for all different users

30000 15000
20000 10000
L 10000 F 5000
b R RGBT
g 2
@ —10000 § -5000
—10000
—-20000
-15000
-30000
L e e LA S B e e e e B LA —20000
o B B B b By RV AD (2D) L A o — T
D i OSSO
perticpentid participant ID

values of all values outside manual label for gyroscope for all different users

values of all values within any manual label for gyroscope for all different users

10000
20000 7500
5000
g 10000 M
E 2 =00
E E
2 0 £ ¢
5
-2500
-10000 -5000
—7500
—20000 LA N S S S S S S S B S S S S S B S S S B
'\3.9"»\%93“‘.?’{\‘\"@@u,"(;“o,“'-ﬁW“bn"i};"'-(” CPAn B0 A0 W) b Ay oD b 4D 6D) D 4 e
FEISPFELFNTO UL HEFIE FESFCFE PTG LEOFPELHS
participant 1D participant ID

values of all values within any manual label for pressure for all different users values of all values outside manual label for pressure for all different users

3000
3000 T
200 2500 ‘
u 2000 & 2000
3 H
g 1500 5 1500
H 2
H]
1000 1000
500
500
o
2.6 q@;,;a,vm_;b.o'\,uh\.pg\{g‘;».g w‘p,ﬁ,%\.;‘: : ‘w‘ I-bln,‘u ‘%I'\rll‘%"\ ‘%I’\’IE‘%‘EI'LI‘L‘%‘ ; I”:
& o S D = A Pl
SRS SRR Es B e S e U SR SR A
participant ID participant ID

Figure A.4.: Comparison of Value Distributions within labels or within the zero class

82

Appendix

Data of the Smart Watch

algorithm ¢ decision function g kernel p total-valid
238 SVC 100.0 ovr auto sigmoid - 0973654
237 SVC 50.0 ovr auto sigmoid - 0973654
236 SVC 50.0 ovr auto rbf - 0973654
235 SVC 100.0 ovo auto sigmoid - 0973654
234 SVC 50.0 ovo auto sigmoid - 0.973654
233 SVC 50.0 ovo auto rbf - 0973654
232 SVC 50.0 ovr 0.01 sigmoid - 0972324
231 SVC 50.0 ovo 0.01 sigmoid - 0972324
230 SVC 100.0 ovr auto poly 2.0 0.970994
229 SVC 100.0 ovo auto poly 2.0 0.970994
226 SVC 50.0 ovo 0.01 poly 4.0 0.970966
225 SVC 50.0 ovo 0.01 poly 3.0 0.970966
228 SVC 50.0 ovr 0.01 poly 4.0 0.970966
227 SVC 50.0 ovr 0.01 poly 3.0 0.970966
224 SVC 100.0 ovr auto rbf - 0.969664
223 SVC 50.0 ovr auto poly 20 0.969664
222 SVC 100.0 ovo auto rbf - 0.969664
221 SVC 50.0 ovo auto poly 2.0 0.969664
216 SVC 100.0 ovo 0.01 poly 4.0 0.969637
213 SVC 50.0 ovo 0.01 poly 2.0 0.969637

Table B.1.: Best configurations of SVMs for the smartwatch demo

83

Appendix B. Data of the Smart Watch

heading

-1.00

-1.02

-1.06

-1.08

= heading g

-1.10

T T T T T T T T T
03 18:48 03 18:49 03 18:50 031851 03 18:52 031853 03 18:54 03 18:55 03 18:56

il {utt |“
=

gravity

] —y

03 18:48 03 18:49 03 18:50 031851 03 18:52 0318:53 03 18:54 03 18:55, 03 18:56

user acceleration

=025

-0.50

-0.75 T e

03 18:48 03 18:49 03 18:50 031851 03 18:52 0318:53 03 18:54 03 18:55, 03 18:56

magnetic field

—_—x

004 —y

—z

0.02

03 18:48 03 1649 03 1850 031851 031852 031853 03 18:54 031855 0318:56

rotation rate

0.0

—_—x

754 ¥

—_z

50

25

attitute

03 18:48 03 18:49 03 18:50 031851 03 18:52 0318:53 03 18:54 03 18:55, 03 18:56
3] — i
— pitch

B [l

- Il

-2

03 18:48 03 1849 03 18:50 031851 03 18:52 031853 03 18:54 03 18:55 03 18:56

Figure B.1.: Data from a session where the watch stored data from a previous recording. In this case you
have some left over recordings on the first connection

84

Bibliography

Irman Abdic, Lex Fridman, Daniel McDuff, Erik Marchi, Bryan Reimer, and Bj””orn Schuller. 2016.
Driver frustration detection from audio and video in the wild. In KT 2016: Advances in Artificial Intel-
ligence: 39th Annual German Conference on Al, Klagenfurt, Austria, September 26-30, 2016, Proceed-
ings, Vol. 9904. Springer, 237. (Cited on page[I3])

Sreejan Alapati and Shivraj Yeole. 2017. A Review on Applications of Flex Sensors. International Journal
of Emerging Technology and Advanced Engineering 7 (07 2017), 97-100. (Cited on page[28])

Mohamed Aly. 2005. Survey on Multiclass Classification Methods. (2005). (Cited on page[I8])

A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. D. Nolfo, T. Nayak, A. Andreopoulos, G. Garreau,
M. Mendoza, J. Kusnitz, M. Debole, S. Esser, T. Delbruck, M. Flickner, and D. Modha. 2017. A Low
Power, Fully Event-Based Gesture Recognition System. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 7388-7397. DOI:http://dx.doi.org/10.1109/CVPR.2017.781

(Cited on page|§])

Ling Bao and StephenS. Intille. 2004. Activity Recognition from User-Annotated Acceleration Data.
In Pervasive Computing, Alois Ferscha and Friedemann Mattern (Eds.). Lecture Notes in Com-
puter Science, Vol. 3001. Springer Berlin Heidelberg, 1-17. DOI:http://dx.doi.org/10.1007/
978-3-540-24646-6_1 (Cited on page[16])

R. G. Baraniuk. 2007. Compressive Sensing [Lecture Notes]. IEEE Signal Processing Magazine 24, 4
(July 2007), 118-121. DOT:http://dx.doi.org/10.1109/MSP.2007.4286571 (Cited on page[T7})

John Barnard and Xiao-Li Meng. 1999. Applications of multiple imputation in medical studies: from AIDS
to NHANES. Statistical Methods in Medical Research 8, 1 (1999), 17-36. DOI:http://dx.doi.org/
10.1177/096228029900800103 PMID: 10347858. (Cited on page|[IT])

G. Bernieri, L. Faramondi, and F. Pascucci. 2015. A low cost smart glove for visually impaired people
mobility. In Control and Automation (MED), 2015 23th Mediterranean Conference on. 130—135. DOI:
http://dx.doi.org/10.1109/MED.2015.7158740 (Cited on page[7])

Gerald Bieber, Thomas Kirste, and Michael Gaede. 2014. Low Sampling Rate for Physical Activ-
ity Recognition. In Proceedings of the 7th International Conference on PErvasive Technologies Re-
lated to Assistive Environments (PETRA "14). ACM, New York, NY, USA, Article 15, 8 pages. DOI:
http://dx.doi.org/10.1145/2674396.2674446 (Cited on page[[7])

Henrik Birk, Thomas B. Moeslund, and Claus B. Madsen. 1997. Real-Time Recognition of Hand Alphabet
Gestures Using Principal Component Analysis. In In 10th Scandinavian Conference on Image Analysis.

(Cited on pages[5] [8l 0] and[23])

Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag, Berlin, Heidelberg. (Cited on pages|[I1] [12] [I8] 20| 21} 23] 24] and[48])

K. Bohm, K. Hubner, and W. Vaanaen. 1992. GIVEN: Gesture driven Interactions in Virtual Environments.
A Toolkit Approach to 3D Interactions. In Proceedings Interfaces to Real and Virtual Worlds. 243-254.
(Cited on page[5})

85

http://dx.doi.org/10.1109/CVPR.2017.781
http://dx.doi.org/10.1007/978-3-540-24646-6_1
http://dx.doi.org/10.1007/978-3-540-24646-6_1
http://dx.doi.org/10.1109/MSP.2007.4286571
http://dx.doi.org/10.1177/096228029900800103
http://dx.doi.org/10.1177/096228029900800103
http://dx.doi.org/10.1109/MED.2015.7158740
http://dx.doi.org/10.1145/2674396.2674446

Bibliography

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. 1992. A Training Algorithm for Opti-
mal Margin Classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning The-
ory (COLT ’92). ACM, New York, NY, USA, 144-152. DOI:http://dx.doi.org/10.1145/130385.

130401] (Cited on pages|[[1}[12] and[21])

Leo Breiman. 1996. Bagging Predictors. Machine Learning 24, 2 (01 Aug 1996), 123-140. DOI:http:
//dx.doi.org/10.1023/A:1018054314350, (Cited on page[24])

Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (01 Oct 2001), 5-32. DOI:http://dx.
doi.org/10.1023/A:1010933404324 (Cited on page@)

Markus Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. 2000. LOF: Identifying Density-
Based Local Outliers. In PROCEEDINGS OF THE 2000 ACM SIGMOD INTERNATIONAL CONFER-
ENCE ON MANAGEMENT OF DATA. ACM, 93-104. (Cited on pages[I0Jand[36])

Andreas Bulling, UIf Blanke, and Bernt Schiele. 2014. A Tutorial on Human Activity Recognition Using
Body-worn Inertial Sensors. ACM Comput. Surv. 46, 3, Article 33 (Jan. 2014), 33 pages. DOI:http:
//dx.doi.org/10.1145/2499621 (Cited on page[48])

Grigore C. Burdea. 1996. Force and Touch Feedback for Virtual Reality. John Wiley & Sons, Inc., New
York, NY, USA. (Cited on page[26])

Deng Cai, Student Member, Xiaofei He, Jiawei Han, and Senior Member. 2008. SRDA: An Efficient Algo-
rithm for Large-Scale Discriminant Analysis. IEEE Transactions on Knowledge and Data Engineering
(2008), 1-12. (Cited on page[8])

Y. Cai. 2014. Ambient Diagnostics. CRC Press. https://books.google.at/books?1d=xzvSBQAAQBAJ
(Cited on page[23])

Juli Camps, Albert Sam, Mario Martn, Daniel Rodrguez-Martn, Carlos Prez-Lpez, Joan M.
Moreno Arostegui, Joan Cabestany, Andreu Catal, Sheila Alcaine, Berta Mestre, Anna Prats, Maria C.
Crespo-Maraver, Timothy J. Counihan, Patrick Browne, Leo R. Quinlan, Gearid Laighin, Dean
Sweeney, Hadas Lewy, Gabriel Vainstein, Alberto Costa, Roberta Annicchiarico, ngels Bays, and Ale-
jandro Rodrguez-Molinero. 2018. Deep Learning for Freezing of Gait Detection in Parkinsons Disease
Patients in Their Homes Using a Waist-worn Inertial Measurement Unit. Know.-Based Syst. 139, C (Jan.
2018), 119-131. DOI:http://dx.doi.org/10.1016/7j.knosys.2017.10.017 (Cited on pages[I5]

22 [31] and[67])

N. Cardoso, J. Madureira, and N. Pereira. 2016. Smartphone-based transport mode detection for elderly
care. In 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services
(Healthcom). 1-6. (Cited on page[T1])

Ryan Chambers, Tim J. Gabbett, Michael H. Cole, and Adam Beard. 2015. The Use of Wearable Mi-
crosensors to Quantify Sport-Specific Movements. Sports Medicine 45, 7 (01 Jul 2015), 1065-1081.
DOI:http://dx.doi.org/10.1007/s40279-015-0332-9 (Cited on page[54})

Mahalanobis Prasanta Chandra and others. 1936. On the generalised distance in statistics. In Proceedings
of the National Institute of Sciences of India, Vol. 2. 49-55. (Cited on page[23])

Jae-Hwan Chang and L. Tassiulas. 2000. Energy conserving routing in wireless ad-hoc networks. In Pro-
ceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat. No.OOCH37064), Vol. 1. 22-31
vol.1. DOI:http://dx.doi.org/10.1109/INFCOM.2000.832170 (Cited on page[54])

Yin-Wen Chang and Chih-Jen Lin. 2008. Feature Ranking Using Linear SVM. In Proceedings of the
Workshop on the Causation and Prediction Challenge at WCCI 2008 (Proceedings of Machine Learning
Research), Isabelle Guyon, Constantin Aliferis, Greg Cooper, André Elisseeff, Jean-Philippe Pellet, Pe-
ter Spirtes, and Alexander Statnikov (Eds.), Vol. 3. PMLR, Hong Kong, 53-64. http://proceedings.
mlr.press/v3/chang08a.html| (Cited on page[I7])

86

http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1023/A:1018054314350
http://dx.doi.org/10.1023/A:1018054314350
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1145/2499621
http://dx.doi.org/10.1145/2499621
https://books.google.at/books?id=xzvSBQAAQBAJ
http://dx.doi.org/10.1016/j.knosys.2017.10.017
http://dx.doi.org/10.1007/s40279-015-0332-9
http://dx.doi.org/10.1109/INFCOM.2000.832170
http://proceedings.mlr.press/v3/chang08a.html
http://proceedings.mlr.press/v3/chang08a.html

Bibliography

Qing Chen, Nicolas D. Georganas, and E.M. Petriu. 2007. Real-time Vision-based Hand Gesture Recog-
nition Using Haar-like Features. In Instrumentation and Measurement Technology Conference Proceed-
ings, 2007. IMTC 2007. IEEE. 1-6. DOI:http://dx.doi.org/10.1109/IMTC.2007.379068 (Cited

on pages [§|and [24])

K Chokkanathan and S Koteeswaran. 2018. A Study on Machine Learning: Elements, Characteristics
and Algorithms. International Journal of Engineering and Technology(UAE) 7 (04 2018), 31-35. DOI:
http://dx.doi.org/10.14419/ijet.v712.19.13793 (Cited on page[I9])

Salvador Cobos, Manuel Ferre, M. Angel Sanchez-Uran, Javier Ortego, and Rafael Aracil. 2010. Hu-
man hand descriptions and gesture recognition for object manipulation. Computer Methods in Biome-
chanics and Biomedical Engineering 13, 3 (2010), 305-317. DOI:http://dx.doi.org/10.1080/
10255840903208171) PMID: 20146129. (Cited on pages [xi [3] and[6])

James W. Cooley and John W. Tukey. 1965. An Algorithm for the Machine Calculation of Com-
plex Fourier Series. Math. Comput. 19 (1965), 297-301. DOI:http://dx.doi.org/10.1090/
S0025-5718-1965-0178586-1 (Cited on page@)

D. Coomans and D.L. Massart. 1982. Alternative k-nearest neighbour rules in supervised pattern recog-
nition: Part 1. k-Nearest neighbour classification by using alternative voting rules. Analytica Chimica
Acta 136 (1982), 15 - 27. DOI:http://dx.doi.org/https://doi.org/10.1016/S0003-2670(01)
95359-0 (Cited on page[22])

Eva Coupeté, Fabien Moutarde, and Sotiris Manitsaris. 2015. Gesture Recognition Using a Depth Camera
for Human Robot Collaboration on Assembly Line. Procedia Manufacturing 3 (2015), 518 — 525. DOI:
http://dx.doi.org/10.1016/7.promfg.2015.07.216 6th International Conference on Applied
Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences, { AHFE} 2015. (Cited

on page([7})

T. Cover and P. Hart. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information
Theory 13, 1 (January 1967), 21-27. DOI:http://dx.doi.org/10.1109/TIT.1967.1053964] (Cited

on page[22])

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. 2006. Online
Passive-Aggressive Algorithms. J. Mach. Learn. Res. 7 (Dec. 2006), 551-585. http://dl.acm.org/
citation.cfm?id=1248547.1248566/ (Cited on pages[IT][12] and[20])

Ralph D’ Agostino and E. S. Pearson. 1973. Tests for Departure from Normality. Empirical Results for the
Distributions of b, and +/b{. Biometrika 60, 3 (1973), 613—622. http://www.jstor.org/stable/
2335012 (Cited on page[41])

Ralph B. D’Agostino. 1971. An Omnibus Test of Normality for Moderate and Large Size Samples.
Biometrika 58,2 (1971), 341-348. http://www. jstor.org/stable/2334522 (Cited on page[d1])

N.H. Dardas and Nicolas D. Georganas. 2011. Real-Time Hand Gesture Detection and Recognition Using
Bag-of-Features and Support Vector Machine Techniques. Instrumentation and Measurement, IEEE
Transactions on 60, 11 (Nov 2011), 3592-3607. DOI:http://dx.doi.org/10.1109/TIM.2011.
2161140 (Cited on pages[8] [0 and[22])

Frauke Degenhardt, Stephan Seifert, and Silke Szymczak. 2017. Evaluation of variable selection methods
for random forests and omics data sets. Briefings in Bioinformatics 20, 2 (10 2017), 492-503. DOI:
http://dx.doi.org/10.1093/bib/bbx124 (Cited on page[53])

ThomasG. Dietterich. 2002. Machine Learning for Sequential Data: A Review. In Structural, Syntactic,
and Statistical Pattern Recognition, Terry Caelli, Adnan Amin, RobertP.W. Duin, Dick de Ridder, and
Mohamed Kamel (Eds.). Lecture Notes in Computer Science, Vol. 2396. Springer Berlin Heidelberg,
15-30. DOI:http://dx.doi.org/10.1007/3-540-70659-3_2 (Cited on page[d3])

Pedro M Domingos. 2012. A few useful things to know about machine learning. Commun. ACM 55, 10
(2012), 78-87. (Cited on pages[19)and [20])

87

http://dx.doi.org/10.1109/IMTC.2007.379068
http://dx.doi.org/10.14419/ijet.v7i2.19.13793
http://dx.doi.org/10.1080/10255840903208171
http://dx.doi.org/10.1080/10255840903208171
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/https://doi.org/10.1016/S0003-2670(01)95359-0
http://dx.doi.org/https://doi.org/10.1016/S0003-2670(01)95359-0
http://dx.doi.org/10.1016/j.promfg.2015.07.216
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dl.acm.org/citation.cfm?id=1248547.1248566
http://dl.acm.org/citation.cfm?id=1248547.1248566
http://www.jstor.org/stable/2335012
http://www.jstor.org/stable/2335012
http://www.jstor.org/stable/2334522
http://dx.doi.org/10.1109/TIM.2011.2161140
http://dx.doi.org/10.1109/TIM.2011.2161140
http://dx.doi.org/10.1093/bib/bbx124
http://dx.doi.org/10.1007/3-540-70659-3_2

Bibliography

Pan Du, Simon M. Lin, and Warren A. Kibbe. 2006. Improved peak detection in mass spectrum by in-
corporating continuous wavelet transform-based pattern matching. Bioinformatics 22, 17 (07 2006),
2059-2065. DOI:http://dx.doi.org/10.1093/bioinformatics/bt1355 (Cited on page[l€])

L. E. Dunne, B. Smyth, and B. Caulfield. 2007. A Comparative Evaluation of Bend Sensors for Wearable
Applications. In 2007 11th IEEE International Symposium on Wearable Computers. 121-122. DOI:
http://dx.doi.org/10.1109/ISWC.2007.4373797 (Cited on page[26])

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. 1996. Knowledge Discovery and Data
Mining: Towards a Unifying Framework. In Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining (KDD’96). AAAI Press, 82-88. |http://dl.acm.org/
citation.cfm?id=3001460.3001477 (Cited on page[I0])

Manuel Fernidndez-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. 2014. Do we Need
Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learn-
ing Research 15 (2014), 3133-3181. http://Jmlr.org/papers/vl5/delgadolda.html| (Cited on

page[19))

Carlos Fernandez-Lozano, Jose A. Seoane, Marcos Gestal, Tom R. Gaunt, Julian Dorado, and Colin Camp-
bell. 2015. Texture classification using feature selection and kernel-based techniques. Soft Computing
19, 9 (01 Sep 2015), 2469-2480. DOI:http://dx.doi.org/10.1007/s00500-014-1573-5 (Cited

on page[53])

Laura Fiorini, Filippo Cavallo, Paolo Dario, Alexandra Eavis, and Praminda Caleb-Solly. 2017. Unsuper-
vised Machine Learning for Developing Personalised Behaviour Models Using Activity Data. Sensors
17,5 (2017). DOI:http://dx.doi.org/10.3390/s17051034 (Cited on page[53})

R. A. Fisher. 1936. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS.
Annals of Eugenics 7, 2 (1936), 179-188. DOI:http://dx.doi.org/10.1111/7.1469-1809.1936.
tb02137.x (Cited on page[23])

Giancarlo Fortino, Stefano Galzarano, Raffaele Gravina, and Wenfeng Li. 2015. A framework for collabo-
rative computing and multi-sensor data fusion in body sensor networks. Information Fusion 22 (2015),
50 — 70. DOI:http://dx.doi.org/https://doi.org/10.1016/7.inffus.2014.03.005 (Cited

on pages [xi}, [[4] [I5] [T6] 4] and 253])

Yoav Freund, Robert Schapire, and Naoki Abe. 1999. A short introduction to boosting. Journal-Japanese
Society For Artificial Intelligence 14, 771-780 (1999), 1612. (Cited on page [24])

Yoav Freund and Robert E Schapire. 1997. A Decision-Theoretic Generalization of On-Line Learning and
an Application to Boosting. J. Comput. System Sci. 55, 1 (1997), 119 — 139. DOI:http://dx.doi.
org/https://doi.org/10.1006/jcss.1997.1504 (Cited on page[24])

Jerome Friedman. 1989. Regularized Discriminant Analysis. Journal of The American Statistical Associa-
tion - J AMER STATIST ASSN 84 (03 1989), 165-175. DOI :http://dx.doi.org/10.1080/01621459.
1989.10478752| (Cited on page[20])

Jerome Friedman. 2002. Stochastic gradient boosting. Computational statistics & data analysis 38, 4
(2002), 367-378. (Cited on page[24])

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. 2010. Regularized Paths for Generalized Linear
Models Via Coordinate Descent. Journal of Statistical Software 33 (02 2010). DOI:http://dx.doi.
0rg/10.1163/e7.9789004178922.1-328.7 (Cited on pages[20]and[21})

Wenjiang J. Fu. 1998. Penalized Regressions: The Bridge versus the Lasso. Journal of Computational
and Graphical Statistics 7, 3 (1998), 397—416. DOI:http://dx.doi.org/10.1080/10618600.1998.
10474784] (Cited on pages[20]and [21])

Pragati Garg, Naveen Aggarwal, and Sanjeev Sofat. 2009. Vision based hand gesture recognition. World
Academy of Science, Engineering and Technology 49, 1 (2009), 972-977. (Cited on pages[3]and[§])

88

http://dx.doi.org/10.1093/bioinformatics/btl355
http://dx.doi.org/10.1109/ISWC.2007.4373797
http://dl.acm.org/citation.cfm?id=3001460.3001477
http://dl.acm.org/citation.cfm?id=3001460.3001477
http://jmlr.org/papers/v15/delgado14a.html
http://dx.doi.org/10.1007/s00500-014-1573-5
http://dx.doi.org/10.3390/s17051034
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2014.03.005
http://dx.doi.org/https://doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/https://doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1080/01621459.1989.10478752
http://dx.doi.org/10.1080/01621459.1989.10478752
http://dx.doi.org/10.1163/ej.9789004178922.i-328.7
http://dx.doi.org/10.1163/ej.9789004178922.i-328.7
http://dx.doi.org/10.1080/10618600.1998.10474784
http://dx.doi.org/10.1080/10618600.1998.10474784

Bibliography

Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely Randomized Trees. Mach. Learn. 63,
1 (April 2006), 3-42. DOI:http://dx.doi.org/10.1007/s10994-006-6226-1 (Cited on page)

Przemys Glomb, Michal Romaszewski, Sebastian Opozda, and Arkadiusz Sochan. 2012. Choosing and
Modeling the Hand Gesture Database for a Natural User Interface. In Proceedings of the 9th Inter-
national Conference on Gesture and Sign Language in Human-Computer Interaction and Embodied
Communication (GW’11). Springer-Verlag, Berlin, Heidelberg, 24-35. DOI:http://dx.doi.org/10.
1007/978-3-642-34182-3_3| (Cited on pages[5} [0 23] and27])

Baptiste Gregorutti, Bertrand Michel, and Philippe Saint-Pierre. 2017. Correlation and variable importance
in random forests. Statistics and Computing 27, 3 (01 May 2017), 659-678. DOI:http://dx.doi.org/
10.1007/s11222-016-9646-1 (Cited on page@)

J. Grifka and M. Kuster. 2011. Orthopddie und Unfallchirurgie. Springer Berlin Heidelberg. |https:
//books.google.at/books?id=2kofUfrqiB4C (Cited on page[3])

Isabelle Guyon and André Elisseeff. 2003. An introduction to variable and feature selection. Journal of
machine learning research 3, Mar (2003), 1157-1182. (Cited on page[I7])

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. 2002. Gene Selection for Cancer
Classification using Support Vector Machines. Machine Learning 46, 1 (01 Jan 2002), 389-422. DOI:
http://dx.doi.org/10.1023/A:1012487302797 (Cited on page[I7})

Jestis M. Gémez-de Gabriel and William Harwin. 2015. Evaluation of Sensor Configurations for Robotic
Surgical Instruments. Sensors 15, 10 (2015), 27341-27358. DOI:http://dx.doi.org/10.3390/
s151027341] (Cited on pages[53|and[54])

Jaehyun Han, Sunggeun Ahn, and Geehyuk Lee. 2015. Transture: Continuing a Touch Gesture on a
Small Screen into the Air. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’15). ACM, New York, NY, USA, 1295-1300. DOI:
http://dx.doi.org/10.1145/2702613.2732849 (Cited on pages[8and[9])

Mokhtar M Hasan and Pramod K Mishra. 2012. Hand gesture modeling and recognition using geometric
features: a review. Canadian Journal on Image Processing and Computer Vision 3, 1 (2012), 12-26.
(Cited on page[8])

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. 2009. The elements of statistical learning:
data mining, inference, and prediction, 2nd Edition. Springer. http://www.worldcat.org/oclc/
300478243| (Cited on pages[23|and [24])

W.T. Higgins. 1975. A Comparison of Complementary and Kalman Filtering. Aerospace and Electronic
Systems, IEEE Transactions on AES-11, 3 (May 1975), 321-325. DOI:http://dx.doi.org/10.1109/
TAES.1975.308081 (Cited on pages[I3] @5} and[46])

Tin Kam Ho. 1995. Random Decision Forests. In Proceedings of the Third International Conference
on Document Analysis and Recognition (Volume 1) - Volume 1 (ICDAR ’95). IEEE Computer Society,
Washington, DC, USA, 278-. http://dl.acm.org/citation.cfm?id=844379.844681 (Cited on

page[24])
Jianping Hua, Zixiang Xiong, James Lowey, Edward Suh, and Edward R. Dougherty. 2004. Optimal

number of features as a function of sample size for various classification rules. Bioinformatics 21, 8
(11 2004), 1509-1515. DOI:http://dx.doi.org/10.1093/bioinformatics/btil71l| (Cited on

page[S1l)
Chung-Lin Huang and Wen-Yi Huang. 1998. Sign Language Recognition Using Model-based Tracking

and a 3D Hopfield Neural Network. Mach. Vision Appl. 10, 5-6 (April 1998), 292-307. DOI:http:
//dx.doi.org/10.1007/s001380050080/ (Cited on page[3})

Jie Huang, Wengang Zhou, Houqiang Li, and Weiping Li. 2015. Sign Language Recognition using 3D con-
volutional neural networks. In 2015 IEEE International Conference on Multimedia and Expo (ICME).
1-6. DOI:http://dx.doi.org/10.1109/ICME.2015.7177428 (Cited on page[§])

89

http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1007/978-3-642-34182-3_3
http://dx.doi.org/10.1007/978-3-642-34182-3_3
http://dx.doi.org/10.1007/s11222-016-9646-1
http://dx.doi.org/10.1007/s11222-016-9646-1
https://books.google.at/books?id=2kofUfrqiB4C
https://books.google.at/books?id=2kofUfrqiB4C
http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.3390/s151027341
http://dx.doi.org/10.3390/s151027341
http://dx.doi.org/10.1145/2702613.2732849
http://www.worldcat.org/oclc/300478243
http://www.worldcat.org/oclc/300478243
http://dx.doi.org/10.1109/TAES.1975.308081
http://dx.doi.org/10.1109/TAES.1975.308081
http://dl.acm.org/citation.cfm?id=844379.844681
http://dx.doi.org/10.1093/bioinformatics/bti171
http://dx.doi.org/10.1007/s001380050080
http://dx.doi.org/10.1007/s001380050080
http://dx.doi.org/10.1109/ICME.2015.7177428

Bibliography

Seung jean Kim, Kwangmoo Koh, Michael Lustig, Stephen Boyd, and Dimitry Gorinevsky. 2007. An
interior-point method for large-scale 11-regularized logistic regression. Journal of Machine Learning
Research 2007 (2007). (Cited on page)

J.-F. Jego, A. Paljic, and P. Fuchs. 2013. User-defined gestural interaction: A study on gesture memoriza-
tion. In 3D User Interfaces (3DUI), 2013 IEEE Symposium on. 7-10. DOI:http://dx.doi.org/10.
1109/3DUI.2013.6550189 (Cited on pages[5|and27})

David Jurman, Marko Jankovec, Roman Kamnik, and Marko Topi¢. 2007. Calibration and data fusion
solution for the miniature attitude and heading reference system. Sensors and Actuators A: Physical 138,
2 (2007), 411 — 420. DOI:http://dx.doi.org/https://doi.org/10.1016/7.sna.2007.05.008

(Cited on page[25])

Rudolph Emil Kalman. 1960. A new approach to linear filtering and prediction problems. Journal of Fluids
Engineering 82, 1 (1960), 35-45. (Cited on pages[I3]and@3])

Manolya Kavakli, Meredith Taylor, and Anatoly Trapeznikov. 2007. Designing in Virtual Reality (DesIRe):
A Gesture-based Interface. In Proceedings of the 2Nd International Conference on Digital Interactive
Media in Entertainment and Arts (DIMEA 07). ACM, New York, NY, USA, 131-136. DOI:http:
//dx.doi.org/10.1145/1306813.1306842 (Cited on pagel[7])

S. Kazi, A. As’Arry, M. Z. Md. Zain, M. Mailah, and M. Hussein. 2010. Experimental Implementation of
Smart Glove Incorporating Piezoelectric Actuator for Hand Tremor Control. WSEAS Trans. Sys. Ctrl.
5, 6 (June 2010), 443-453. http://dl.acm.org/citation.cfm?1d=1853907.1853914 (Cited on

page[7})

Holger Kenn, Friedrich Van Megen, and Robert Sugar. 2007. A glove-based gesture interface for wearable
computing applications. In Applied Wearable Computing (IFAWC), 2007 4th International Forum on.
1-10. (Cited on page[7])

Engineering Coimbatore Kiruthika, Engineering Coimbatore, and Navin Kumar. 2014. Survey on Hand
Gesture Recognition. International Journal of Engineering Research and Technology 3, 2 (2014), 943—
946. (Cited on page[9])

David B. Koons, Carlton J. Sparrell, and Kristinn R. Thorisson. 1993. Intelligent Multimedia Interfaces.
American Association for Artificial Intelligence, Menlo Park, CA, USA, Chapter Integrating Simulta-
neous Input from Speech, Gaze, and Hand Gestures, 257-276. http://dl.acm.org/citation.cfm?
1d=162477.162508 (Cited on page[3])

H. Koskimaki, V. Huikari, P. Siirtola, P. Laurinen, and J. Roning. 2009. Activity recognition using a wrist-
worn inertial measurement unit: A case study for industrial assembly lines. In 2009 17th Mediterranean

Conference on Control and Automation. 401-405. (Cited on pages [10} [[T] [12] [14} [T3] [16] 5] and 48])

Heli Koskim”aki, Ville Huikari, Pekka Siirtola, and Juha R”oning. 2013. Behavior modeling in industrial
assembly lines using a wrist-worn inertial measurement unit. Journal of Ambient Intelligence and Hu-
manized Computing 4,2 (2013), 187-194. DOI:http://dx.doi.org/10.1007/s12652-011-0061-3
(Cited on page[7})

L. F. Kozachenko and N. N. Leonenko. 1987. A statistical estimate for the entropy of a random vector.
Problemy Peredachi Informatsii 23, 2 (1987), 9-16. (Cited on page[I7])

Alexander Kraskov, Harald Stogbauer, and Peter Grassberger. 2004. Estimating mutual information. Phys.
Rev. E 69 (Jun 2004), 066138. Issue 6. DOI:http://dx.doi.org/10.1103/PhysRevE.69.066138
(Cited on page[T7])

Narayanan C. Krishnan and Diane J. Cook. 2014. Activity Recognition on Streaming Sensor Data. Perva-
sive Mob. Comput. 10 (Feb. 2014), 138-154. DOI:http://dx.doi.org/10.1016/7.pmc3.2012.07.
003 (Cited on pages 5] and [48])

Steve Krug. 2005. Don’T Make Me Think: A Common Sense Approach to the Web (2Nd Edition). New
Riders Publishing, Thousand Oaks, CA, USA. (Cited on page E})

90

http://dx.doi.org/10.1109/3DUI.2013.6550189
http://dx.doi.org/10.1109/3DUI.2013.6550189
http://dx.doi.org/https://doi.org/10.1016/j.sna.2007.05.008
http://dx.doi.org/10.1145/1306813.1306842
http://dx.doi.org/10.1145/1306813.1306842
http://dl.acm.org/citation.cfm?id=1853907.1853914
http://dl.acm.org/citation.cfm?id=162477.162508
http://dl.acm.org/citation.cfm?id=162477.162508
http://dx.doi.org/10.1007/s12652-011-0061-3
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1016/j.pmcj.2012.07.003
http://dx.doi.org/10.1016/j.pmcj.2012.07.003

Bibliography

Arun Kulshreshth and Joseph J. LaViola, Jr. 2015. Exploring 3D User Interface Technologies for Improving
the Gaming Experience. In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY, USA, 125-134. DOI:http://dx.doi.org/10.
1145/2702123.2702138 (Cited on page[7])

Piyush Kumar, Jyoti Verma, and Shitala Prasad. 2012. Hand data glove: A wearable real-time device for
human-computer interaction. International Journal of Advanced Science and Technology 43 (2012).

(Cited on page[7})
Marc Erich Latoschik. 2005. A User Interface Framework for Multimodal VR Interactions. In Proceedings

of the 7th International Conference on Multimodal Interfaces (ICMI ’05). ACM, New York, NY, USA,
76-83. DOI:http://dx.doi.org/10.1145/1088463.1088479 (Cited on page[l])

Ed Lawson, Denson Smith, Donald Sofge, Paul Elmore, and Frederick Petry. 2017. Decision forests for
machine learning classification of large, noisy seafloor feature sets. Computers & Geosciences 99 (2017),
116 — 124. DOI:http://dx.doi.org/https://doi.org/10.1016/3.cageo.2016.10.013 (Cited

on page[24])

Boon-Giin Lee, Boon-Leng Lee, and Wan-Young Chung. 2015. Wristband-Type Driver Vigilance Mon-
itoring System Using Smartwatch. Sensors Journal, IEEE 15, 10 (Oct 2015), 5624-5633. DOI:
http://dx.doi.org/10.1109/JSEN.2015.2447012 (Cited on page[7})

Wonil Lee, Edmund Seto, Ken-Yu Lin, and Giovanni C. Migliaccio. 2017. An evaluation of wearable
sensors and their placements for analyzing construction worker’s trunk posture in laboratory conditions.
Applied Ergonomics 65 (2017), 424 — 436. DOI:http://dx.doi.org/https://doi.org/10.1016/
j.apergo.2017.03.016 (Cited on page[53})

Heike Leutheuser, Dominik Schuldhaus, and Bjoern M. Eskofier. 2013. Hierarchical, Multi-Sensor Based
Classification of Daily Life Activities: Comparison with State-of-the-Art Algorithms Using a Bench-
mark Dataset. PLoS ONE 8, 10 (10 2013), ¢75196. DOI:http://dx.doi.org/10.1371/journal.
pone. 0075196 (Cited on pages[14and[16])

H. Lin, M. Hsu, and W. Chen. 2014. Human hand gesture recognition using a convolution neural network.
In 2014 IEEE International Conference on Automation Science and Engineering (CASE). 1038-1043.
DOT:fhttp://dx.doi.org/10.1109/CoASE.2014.6899454 (Cited on page[8})

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In Proceedings of the 2008 Eighth
IEEE International Conference on Data Mining (ICDM ’08). IEEE Computer Society, Washington, DC,
USA, 413-422. DOI:http://dx.doi.org/10.1109/ICDM.2008.17 (Cited on page[36])

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2012. Isolation-Based Anomaly Detection. ACM Trans.
Knowl. Discov. Data 6, 1, Article 3 (March 2012), 39 pages. DOI:http://dx.doi.org/10.1145/
2133360.2133363 (Cited on pages[I0|and [36])

G. Luzhnica, J. Simon, E. Lex, and V. Pammer. 2016. A sliding window approach to natural hand gesture
recognition using a custom data glove. In 2016 IEEE Symposium on 3D User Interfaces (3DUI). 81-90.
DOI:http://dx.doi.org/10.1109/3DUI.2016.7460035 (Cited on pages[I}[2lBlE[71[01[27 3234
(4} [5] [46| 7] (48] 511 [604 [T} [72} and [75})

Granit Luzhnica and Eduardo Veas. 2018. Investigating Interactions for Text Recognition Using a Vibrotac-
tile Wearable Display. In 23rd International Conference on Intelligent User Interfaces (IUI ’18). ACM,
New York, NY, USA, 453-465. DOI:http://dx.doi.org/10.1145/3172944.3172951| (Cited on

page[57)
S.E. Lyshevski. 2002. MEMS and NEMS: Systems, Devices, and Structures. CRC Press. |https://books.
google.at/books?id=2L876Po9v0oC (Cited on page[23])

Lei Ma, Tengyu Fu, Thomas Blaschke, Manchun Li, Dirk Tiede, Zhenjin Zhou, Xiaoxue Ma, and Deliang
Chen. 2017. Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of
Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers.
ISPRS International Journal of Geo-Information 6, 2 (2017). DOI:http://dx.doi.org/10.3390/
13916020051 (Cited on pages[52]and [53])

91

http://dx.doi.org/10.1145/2702123.2702138
http://dx.doi.org/10.1145/2702123.2702138
http://dx.doi.org/10.1145/1088463.1088479
http://dx.doi.org/https://doi.org/10.1016/j.cageo.2016.10.013
http://dx.doi.org/10.1109/JSEN.2015.2447012
http://dx.doi.org/https://doi.org/10.1016/j.apergo.2017.03.016
http://dx.doi.org/https://doi.org/10.1016/j.apergo.2017.03.016
http://dx.doi.org/10.1371/journal.pone.0075196
http://dx.doi.org/10.1371/journal.pone.0075196
http://dx.doi.org/10.1109/CoASE.2014.6899454
http://dx.doi.org/10.1109/ICDM.2008.17
http://dx.doi.org/10.1145/2133360.2133363
http://dx.doi.org/10.1145/2133360.2133363
http://dx.doi.org/10.1109/3DUI.2016.7460035
http://dx.doi.org/10.1145/3172944.3172951
https://books.google.at/books?id=2L876Po9vOoC
https://books.google.at/books?id=2L876Po9vOoC
http://dx.doi.org/10.3390/ijgi6020051
http://dx.doi.org/10.3390/ijgi6020051

Bibliography

Zahra Sedighi Maman, Mohammad Ali Alamdar Yazdi, Lora A. Cavuoto, and Fadel M. Megahed. 2017. A
data-driven approach to modeling physical fatigue in the workplace using wearable sensors. Applied Er-
gonomics 65 (2017), 515 — 529. DOI:http://dx.doi.org/https://doi.org/10.1016/7.apergo.
2017.02.001] (Cited on pages[53|and[54])

A. M. Martinez and A. C. Kak. 2001. PCA versus LDA. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 23,2 (Feb 2001), 228-233. DOI:http://dx.doi.org/10.1109/34.908974 (Cited

on page[23])

Tiago Martins, Christa Sommerer, Laurent Mignonneau, and Nuno Correia. 2008. Gauntlet: a wearable
interface for ubiquitous gaming. In MobileHCI *08: Proceedings of the 10th international conference on
Human computer interaction with mobile devices and services. ACM Request Permissions, New York,
New York, USA, 367. (Cited on page[7])

G Mclachlan. 1999. Mahalanobis Distance. Resonance 4 (06 1999), 20-26. DOI:http://dx.doi.org/
10.1007/BF02834632| (Cited on page[23])

A. Mehrabian. 1972. Nonverbal Communication. Aldine Publishing Company. https://books.google.
at/books?1d=Xt-YALu9CGwC| (Cited on page[3])

Tom M. Mitchell. 1997. Machine learning. McGraw-Hill. http://www.worldcat.org/oclc/61321007
(Cited on page[T8])

Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Kari Pulli. 2015. Multi-sensor system for driver’s
hand-gesture recognition. In IEEE Conference on Automatic Face and Gesture Recognition. 1-8. (Cited

on page|[7])

Fabian Morchen. 2003. Time series feature extraction for data mining using DWT and DFT. Technical
Report. Math and Computer Science Department, Philipps University, Marburg, Germany. (Cited on

pages[I6] 46l and 7))
Kouichi Murakami and Hitomi Taguchi. 1991. Gesture Recognition Using Recurrent Neural Networks. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI °91). ACM, New
York, NY, USA, 237-242. DOI:http://dx.doi.org/10.1145/108844.108900 (Cited on page[9])

Samir Mustapha, Ali Braytee, and Lin Ye. 2018. Multisource Data Fusion for Classification of Surface
Cracks in Steel Pipes. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineer-
ing Systems 1, 2 (24 Jan 2018), 021007-021007—-11. DOI:http://dx.doi.org/10.1115/1.4038862
(Cited on page[17])

V. X. Navas, J. Destefano, B. J. Koo, E. Doty, and D. Westerfeld. 2012. Smart glove. In Systems, Appli-
cations and Technology Conference (LISAT), 2012 IEEE Long Island. 1-4. DOI:http://dx.doi.org/
10.1109/LISAT.2012.6223202| (Cited on page[7])

P. Neto, D. Pereira, J. Norberto Pires, and A.P. Moreira. 2013. Real-time and continuous hand gesture spot-
ting: An approach based on artificial neural networks. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on. 178-183. DOI:http://dx.doi.org/10.1109/ICRA.2013.6630573
(Cited on page[9])

Juan C. Niiiez, Raul Cabido, Juan J. Pantrigo, Antonio S. Montemayor, and José F. Vélez. 2018. Convo-
lutional Neural Networks and Long Short-Term Memory for skeleton-based human activity and hand
gesture recognition. Pattern Recognition 76 (2018), 80 — 94. DOI:http://dx.doi.org/https:
//doi.org/10.1016/j.patcog.2017.10.033 (Cited on page[8])

B. O’Flynn, J. T. Sanchez, P. Angove, J. Connolly, J. Condell, K. Curran, and P. Gardiner. 2013. Novel
smart sensor glove for arthritis rehabiliation. In 2013 IEEE International Conference on Body Sensor
Networks. 1-6. DOI:http://dx.doi.org/10.1109/BSN.2013.6575482 (Cited on page[7})

Javier Ortiz Laguna, AngelGarcia Olaya, and Daniel Borrajo. 2011. A Dynamic Sliding Window Approach
for Activity Recognition. In User Modeling, Adaption and Personalization, JosephA. Konstan, Ricardo
Conejo, JoséL. Marzo, and Nuria Oliver (Eds.). Lecture Notes in Computer Science, Vol. 6787. Springer

92

http://dx.doi.org/https://doi.org/10.1016/j.apergo.2017.02.001
http://dx.doi.org/https://doi.org/10.1016/j.apergo.2017.02.001
http://dx.doi.org/10.1109/34.908974
http://dx.doi.org/10.1007/BF02834632
http://dx.doi.org/10.1007/BF02834632
https://books.google.at/books?id=Xt-YALu9CGwC
https://books.google.at/books?id=Xt-YALu9CGwC
http://www.worldcat.org/oclc/61321007
http://dx.doi.org/10.1145/108844.108900
http://dx.doi.org/10.1115/1.4038862
http://dx.doi.org/10.1109/LISAT.2012.6223202
http://dx.doi.org/10.1109/LISAT.2012.6223202
http://dx.doi.org/10.1109/ICRA.2013.6630573
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2017.10.033
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2017.10.033
http://dx.doi.org/10.1109/BSN.2013.6575482

Bibliography

Berlin Heidelberg, 219-230. DOI:http://dx.doi.org/10.1007/978-3-642-22362-4_19| (Cited
on pages[I0} [T1] and #3])

Jiazhi Ou, Yanxin Shi, Jeffrey Wong, Susan R. Fussell, and Jie Yang. 2006. Combining Audio and Video
to Predict Helpers’ Focus of Attention in Multiparty Remote Collaboration on Physical Tasks. In Pro-
ceedings of the 8th International Conference on Multimodal Interfaces (ICMI '06). ACM, New York,
NY, USA, 217-224. DOI:http://dx.doi.org/10.1145/1180995.1181040/ (Cited on page)

Cemil Oz and Ming C. Leu. 2011. American Sign Language Word Recognition with a Sensory Glove
Using Artificial Neural Networks. Eng. Appl. Artif. Intell. 24, 7 (Oct. 2011), 1204-1213. DOI:http:
//dx.doi.org/10.1016/7.engappai.2011.06.015 (Cited on page[d])

Dajeong Park, Miran Lee, Sunghee E. Park, Joon-Kyung Seong, and Inchan Youn. 2018. Determination of
Optimal Heart Rate Variability Features Based on SVM-Recursive Feature Elimination for Cumulative
Stress Monitoring Using ECG Sensor. Sensors 18, 7 (2018). DOI:http://dx.doi.org/10.3390/
s18072387 (Cited on pages[I7]and[52])

V. I. Pavlovic, R. Sharma, and T. S. Huang. 1997. Visual interpretation of hand gestures for human-
computer interaction: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 19,7
(July 1997), 677-695. DOI:http://dx.doi.org/10.1109/34.598226 (Cited on page[3])

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825-2830. (Cited on pages and[51])

Asanka G. Perera, Yee Wei Law, and Javaan S. Chahl. 2019. UAV-GESTURE: A Dataset for UAV Control
and Gesture Recognition. CoRR abs/1901.02602 (2019). http://arxiv.org/abs/1901.02602| (Cited
on page[§])

S. S. Pradhan, J. Kusuma, and K. Ramchandran. 2002. Distributed compression in a dense microsensor
network. IEEE Signal Processing Magazine 19, 2 (March 2002), 51-60. DOI:http://dx.doi.org/
10.1109/79.985684] (Cited on page[54])

N. Praveen, N. Karanth, and M. S. Megha. 2014. Sign language interpreter using a smart glove. In Advances
in Electronics, Computers and Communications (ICAECC), 2014 International Conference on. 1-5.
DOI:http://dx.doi.org/10.1109/ICAECC.2014.7002401] (Cited on page[§])

Carl Edward Rasmussen and Christopher K. 1. Williams. 2005. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press. (Cited on pages and[22])

Gang Ren and Eamonn O’Neill. 2013. Freehand Gestural Text Entry for Interactive TV. In Proceedings of
the 11th European Conference on Interactive TV and Video (EuroITV ’13). ACM, New York, NY, USA,
121-130. DOI:http://dx.doi.org/10.1145/2465958.2465966 (Cited on page[7})

Ryan Rifkin and Ross Lippert. 2007. Notes on Regularized Least Squares. (05 2007). (Cited on page[20])

C.J. Van Rijsbergen. 1979. Information Retrieval (2nd ed.). Butterworth-Heinemann, Newton, MA, USA.
(Cited on page[I8])

Alina Roitberg, Nikhil Somani, Alexander Perzylo, Markus Rickert, and Alois Knoll. 2015. Multimodal
Human Activity Recognition for Industrial Manufacturing Processes in Robotic Workcells. In Proceed-
ings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15). ACM, New
York, NY, USA, 259-266. DOI:http://dx.doi.org/10.1145/2818346.2820738 (Cited on page)

Lior Rokach. 2005. Ensemble Methods for Classifiers. Springer US, Boston, MA, 957-980. DOI:http:
//dx.doi.org/10.1007/0-387-25465-X_45 (Cited on pages[23|and[24})

M. Romaszewski, P. Glomb, and P. Gawron. 2014. Natural hand gestures for human identification in
a Human-Computer Interface. In Image Processing Theory, Tools and Applications (IPTA), 2014 4th
International Conference on. 1-6. DOI:http://dx.doi.org/10.1109/IPTA.2014.7001997 (Cited

on pages [0 and [23])

93

http://dx.doi.org/10.1007/978-3-642-22362-4_19
http://dx.doi.org/10.1145/1180995.1181040
http://dx.doi.org/10.1016/j.engappai.2011.06.015
http://dx.doi.org/10.1016/j.engappai.2011.06.015
http://dx.doi.org/10.3390/s18072387
http://dx.doi.org/10.3390/s18072387
http://dx.doi.org/10.1109/34.598226
http://arxiv.org/abs/1901.02602
http://dx.doi.org/10.1109/79.985684
http://dx.doi.org/10.1109/79.985684
http://dx.doi.org/10.1109/ICAECC.2014.7002401
http://dx.doi.org/10.1145/2465958.2465966
http://dx.doi.org/10.1145/2818346.2820738
http://dx.doi.org/10.1007/0-387-25465-X_45
http://dx.doi.org/10.1007/0-387-25465-X_45
http://dx.doi.org/10.1109/IPTA.2014.7001997

Bibliography

Stuart J. Russell and Peter Norvig. 2010. Artificial intelligence : a modern approach. Prentice Hall, Upper
Saddle River, N.J. (Cited on pages and[51])

Albert Sama, Daniel Rodriguez-Martin, Carlos Pérez-Lopez, Andreu Catala, Sheila Alcaine, Berta Mestre,
Anna Prats, M. Cruz Crespo, and Angels Bayés. 2018. Determining the optimal features in freezing of
gait detection through a single waist accelerometer in home environments. Pattern Recognition Letters
105 (2018), 135—-143. DOI:http://dx.doi.org/https://doi.org/10.1016/j.patrec.2017.05.
009 Machine Learning and Applications in Artificial Intelligence. (Cited on page[T3])

Robert E Schapire. 2003. The boosting approach to machine learning: An overview. In Nonlinear estima-
tion and classification. Springer, 149-171. (Cited on page [24])

Terrence J. Sejnowski and Charles R. Rosenberg. 1987. Parallel Networks that Learn to Pronounce English
Text. (1987). (Cited on page[3])

Sougata Sen, Vigneshwaran Subbaraju, Archan Misra, Rajesh Krishna Balan, and Youngki Lee. 2015. The
case for smartwatch-based diet monitoring. In Pervasive Computing and Communication Workshops
(PerCom Workshops), 2015 IEEE International Conference on. 585-590. DOI:http://dx.doi.org/
10.1109/PERCOMW.2015.7134103 (Cited on page[7])

Muhammad Shoaib, Stephan Bosch, Hans Scholten, Paul J.M. Havinga, and Ozlem Durmaz Incel. 2015.
Towards detection of bad habits by fusing smartphone and smartwatch sensors. In Pervasive Computing
and Communication Workshops (PerCom Workshops), 2015 IEEE International Conference on. 591—
596. DOI:http://dx.doi.org/10.1109/PERCOMW.2015.7134104] (Cited on page[7})

Steven W. Smith. 1997. The Scientist and Engineer’s Guide to Digital Signal Processing. California
Technical Publishing, San Diego, CA, USA. (Cited on page[26])

Bruce Spencer, Feras Al-Obeidat, and Omar Alfandi. 2017. Accurately forecasting temperatures in smart
buildings using fewer sensors. Personal and Ubiquitous Computing (16 Dec 2017). DOI:http://dx.
doi.org/10.1007/s00779-017-1103-4] (Cited on pages[53|and[54])

T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz, and P. Lukowicz. 2008. Wearable Activity Tracking in
Car Manufacturing. Pervasive Computing, IEEE 7, 2 (April 2008), 42-50. DOI:http://dx.doi.org/
10.1109/MPRV.2008.40 (Cited on page[7])

Jae Hong Suh, Soundar R.T. Kumara, and Shreesh P. Mysore. 1999. Machinery Fault Diagnosis and
Prognosis: Application of Advanced Signal Processing Techniques. CIRP Annals - Manufactur-
ing Technology 48, 1 (1999), 317 — 320. DOI:http://dx.doi.org/https://doi.org/10.1016/
S0007-8506(07) 63192-8 (Cited on pages[I4]and[T7])

Tomoichi Takahashi and Fumio Kishino. 1991. Hand Gesture Coding Based on Experiments Using a Hand
Gesture Interface Device. SIGCHI Bull. 23, 2 (March 1991), 67-74. DOI:http://dx.doi.org/10.
1145/122488.122499 (Cited on page[j])

Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu. 2002. Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy
of Sciences 99, 10 (2002), 6567-6572. DOI:http://dx.doi.org/10.1073/pnas.082099299 (Cited

on page[22])

Tsung-Han Tsai, Chih-Chi Huang, and Kung-Long Zhang. 2015. Embedded virtual mouse system by
using hand gesture recognition. In Consumer Electronics - Taiwan (ICCE-TW), 2015 IEEE International
Conference on. 352-353. DOI:http://dx.doi.org/10.1109/ICCE-TW.2015.7216939 (Cited on

page[7})

Wallace Ugulino and Hugo Fuks. 2015. Landmark Identification with Wearables for Supporting Spa-
tial Awareness by Blind Persons. In Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing (UbiComp ’15). ACM, New York, NY, USA, 63-74. DOI:
http://dx.doi.org/10.1145/2750858.2807541] (Cited on page)

94

http://dx.doi.org/https://doi.org/10.1016/j.patrec.2017.05.009
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2017.05.009
http://dx.doi.org/10.1109/PERCOMW.2015.7134103
http://dx.doi.org/10.1109/PERCOMW.2015.7134103
http://dx.doi.org/10.1109/PERCOMW.2015.7134104
http://dx.doi.org/10.1007/s00779-017-1103-4
http://dx.doi.org/10.1007/s00779-017-1103-4
http://dx.doi.org/10.1109/MPRV.2008.40
http://dx.doi.org/10.1109/MPRV.2008.40
http://dx.doi.org/https://doi.org/10.1016/S0007-8506(07)63192-8
http://dx.doi.org/https://doi.org/10.1016/S0007-8506(07)63192-8
http://dx.doi.org/10.1145/122488.122499
http://dx.doi.org/10.1145/122488.122499
http://dx.doi.org/10.1073/pnas.082099299
http://dx.doi.org/10.1109/ICCE-TW.2015.7216939
http://dx.doi.org/10.1145/2750858.2807541

Bibliography

Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano, and Randall Wald. 2012. Threshold-based
feature selection techniques for high-dimensional bioinformatics data. Network Modeling Analysis in
Health Informatics and Bioinformatics 1, 1 (01 Jun 2012), 47-61. DOI:http://dx.doi.org/10.
1007/s13721-012-0006-6 (Cited on page[I7])

Wouter Van Vlaenderen, Jens Brulmans, Jo Vermeulen, and Johannes Schoning. 2015. WatchMe: A Novel
Input Method Combining a Smartwatch and Bimanual Interaction. In Proceedings of the 33rd Annual
ACM Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’15). ACM,
New York, NY, USA, 2091-2095. DOI:http://dx.doi.org/10.1145/2702613.2732789 (Cited on

pages[8|and[9])
V. Vapnik and A. Lerner. 1963. Pattern Recognition using Generalized Portrait Method. Automation and
Remote Control 24 (1963). (Cited on pages|[T1] [12] and[21])

P. Vepakomma, D. De, S. K. Das, and S. Bhansali. 2015. A-Wristocracy: Deep learning on wrist-worn sens-
ing for recognition of user complex activities. In 2015 IEEE 12th International Conference on Wearable
and Implantable Body Sensor Networks (BSN). 1-6. DOI:http://dx.doi.org/10.1109/BSN.2015.
7299406 (Cited on page[TT})

Juan Pablo Wachs, Mathias Kolsch, Helman Stern, and Yael Edan. 2011. Vision-based Hand-gesture Ap-
plications. Commun. ACM 54, 2 (Feb. 2011), 60-71. DOI:http://dx.doi.org/10.1145/1897816.
1897838 (Cited on pages[7]and[9])

A. Waldeyer, F. Anderhuber, F. Pera, and J. Streicher. 2012. Waldeyer - Anatomie des Menschen: Lehrbuch
und Atlas in einem Band ; [44 Tabellen]. De Gruyter. https://books.google.at/books?id=
QCtOygAACAAJ| (Cited on page[3])

J.A. Ward, P. Lukowicz, G. Troster, and T.E. Starner. 2006. Activity Recognition of Assembly Tasks
Using Body-Worn Microphones and Accelerometers. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 28, 10 (Oct 2006), 1553—-1567. DOI:http://dx.doi.org/10.1109/TPAMI.2006.

197, (Cited on pages[7}[16] and[48])

Jamie A. Ward. 2006. Activity monitoring: Continuous recognition and performance evaluation. Ph.D.
Dissertation. Swiss Federal Institute of Technology (ETH) Ziirich. DOI:http://dx.doi.org/10.
3929/ethz-a-005228941 (Cited on page[48])

J. Weissmann and R. Salomon. 1999. Gesture recognition for virtual reality applications using data gloves
and neural networks. In Neural Networks, 1999. IICNN ’99. International Joint Conference on, Vol. 3.
2043-2046 vol.3. (Cited on page[7])

Alan Wexelblat. 1995. An Approach to Natural Gesture in Virtual Environments. ACM Trans. Comput.-
Hum. Interact. 2, 3 (Sept. 1995), 179-200. DOI:http://dx.doi.org/10.1145/210079.210080
(Cited on page[d])

Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009. User-defined Gestures for
Surface Computing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’09). ACM, New York, NY, USA, 1083-1092. DOI:http://dx.doi.orqg/10.1145/1518701.
1518866/ (Cited on page[5})

Curtis E. Woodcock and Alan H. Strahler. 1987. The factor of scale in remote sensing. Remote Sens-
ing of Environment 21, 3 (1987), 311 —332. DOI:http://dx.doi.org/https://doi.org/10.1016/
0034-4257(87) 90015-0/ (Cited on page[54])

Oliver J. Woodman. 2007. An introduction to inertial navigation. Technical Report UCAM-CL-TR-
696. University of Cambridge, Computer Laboratory. http://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-696.pdf| (Cited on pages[23]and[26])

Chao Xu, Parth H. Pathak, and Prasant Mohapatra. 2015. Finger-writing with Smartwatch: A Case for Fin-
ger and Hand Gesture Recognition Using Smartwatch. In Proceedings of the 16th International Work-
shop on Mobile Computing Systems and Applications (HotMobile '15). ACM, New York, NY, USA,
9-14. DOI:http://dx.doi.org/10.1145/2699343.2699350 (Cited on pages[8] [0l and[22])

95

http://dx.doi.org/10.1007/s13721-012-0006-6
http://dx.doi.org/10.1007/s13721-012-0006-6
http://dx.doi.org/10.1145/2702613.2732789
http://dx.doi.org/10.1109/BSN.2015.7299406
http://dx.doi.org/10.1109/BSN.2015.7299406
http://dx.doi.org/10.1145/1897816.1897838
http://dx.doi.org/10.1145/1897816.1897838
https://books.google.at/books?id=QCtOygAACAAJ
https://books.google.at/books?id=QCtOygAACAAJ
http://dx.doi.org/10.1109/TPAMI.2006.197
http://dx.doi.org/10.1109/TPAMI.2006.197
http://dx.doi.org/10.3929/ethz-a-005228941
http://dx.doi.org/10.3929/ethz-a-005228941
http://dx.doi.org/10.1145/210079.210080
http://dx.doi.org/10.1145/1518701.1518866
http://dx.doi.org/10.1145/1518701.1518866
http://dx.doi.org/https://doi.org/10.1016/0034-4257(87)90015-0
http://dx.doi.org/https://doi.org/10.1016/0034-4257(87)90015-0
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.pdf
http://dx.doi.org/10.1145/2699343.2699350

Bibliography

Deyou Xu. 2006. A Neural Network Approach for Hand Gesture Recognition in Virtual Reality Driving
Training System of SPG. In Pattern Recognition, 2006. ICPR 2006. 18th International Conference on,
Vol. 3. 519-522. (Cited on pages[7]and[9])

Lei Xu, Pingfan Yan, and Tong Chang. 1988. Best first strategy for feature selection. In [1988 Proceedings]
9th International Conference on Pattern Recognition. 706—708 vol.2. DOI:http://dx.doi.org/10.
1109/ICPR.1988.28334] (Cited on page[I7})

Wei Xu. 2011. Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient De-
scent. CoRR abs/1107.2490 (2011). http://arxiv.org/abs/1107.2490/ (Cited on pages [TT] [I2]

and[20])

Ke Yan and David Zhang. 2015. Feature selection and analysis on correlated gas sensor data with recursive
feature elimination. Sensors and Actuators B: Chemical 212 (2015), 353 —363. DOI:http://dx.doi.
org/https://doi.org/10.1016/7.snb.2015.02.025 (Cited on pages[I7]and[52])

J. Yang, W. Sheng, and G. Yang. 2018. Dynamic Gesture Recognition Algorithm based on ROI and CNN
for Social Robots. In 2018 13th World Congress on Intelligent Control and Automation (WCICA). 389—
394. DOI:http://dx.doi.org/10.1109/WCICA.2018.8630497 (Cited on page[d])

Y. Yin and R. Davis. 2014. Real-time continuous gesture recognition for natural human-computer in-
teraction. In 2014 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
113-120. DOI:http://dx.doi.org/10.1109/VLHCC.2014.6883032| (Cited on page[§])

Mattia Zanon, Giovanni Sparacino, Andrea Facchinetti, Mark Talary, Andreas Caduff, and Claudio Co-
belli. 2013. Regularised Model Identification Improves Accuracy of Multisensor Systems for Noninva-
sive Continuous Glucose Monitoring in Diabetes Management. J. Applied Mathematics 2013 (2013),
793869:1-793869:10. DOI:http://dx.doi.org/10.1155/2013/793869 (Cited on page[54])

P. Zappi, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and G. Troster. 2007. Activity recognition from
on-body sensors by classifier fusion: sensor scalability and robustness. In Intelligent Sensors, Sensor
Networks and Information, 2007. ISSNIP 2007. 3rd International Conference on. 281-286. DOI :http:
//dx.doi.org/10.1109/ISSNIP.2007.4496857 (Cited on page[7})

J. Zhang and 1. Mani. 2003. KNN Approach to Unbalanced Data Distributions: A Case Study Involv-
ing Information Extraction. In Proceedings of the ICML’2003 Workshop on Learning from Imbalanced
Datasets. (Cited on page[72})

Tong Zhang. 2004. Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent
Algorithms. In ICML 2004: PROCEEDINGS OF THE TWENTY-FIRST INTERNATIONAL CONFER-
ENCE ON MACHINE LEARNING. OMNIPRESS. 919-926. (Cited on pages and[20])

Xu Zhang, Xiang Chen, Wen-hui Wang, Ji-hai Yang, Vuokko Lantz, and Kong-qiao Wang. 2009. Hand
Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors. In Pro-
ceedings of the 14th International Conference on Intelligent User Interfaces (IUI 09). ACM, New
York, NY, USA, 401-406. DOI:http://dx.doi.org/10.1145/1502650.1502708 (Cited on pages
and[})

Yixin Zhao, Parth H. Pathak, Chao Xu, and Prasant Mohapatra. 2015. Demo: Finger and Hand Gesture
Recognition Using Smartwatch. In Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys '15). ACM, New York, NY, USA, 471-471. DOI:http:
//dx.doi.org/10.1145/2742647.2745922 (Cited on pages[9] [21] and 23])

F. Zhou and F. De la Torre. 2012. Generalized time warping for multi-modal alignment of human motion.
In 2012 IEEE Conference on Computer Vision and Pattern Recognition. 1282—1289. DOI:http://dx.
doi.org/10.1109/CVPR.2012.6247812 (Cited on page[I0})

Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the Elastic Net. Journal of the
Royal Statistical Society, Series B 67 (2005), 301-320. (Cited on pages[20]and 21])

Dan Zwillinger and Stephen Kokoska. 2000. CRC Standard Probability and Statistics Tables and Formulae.
CRC Press. DOI:http://dx.doi.org/10.1201/b16923 (Cited on page[I7})

96

http://dx.doi.org/10.1109/ICPR.1988.28334
http://dx.doi.org/10.1109/ICPR.1988.28334
http://arxiv.org/abs/1107.2490
http://dx.doi.org/https://doi.org/10.1016/j.snb.2015.02.025
http://dx.doi.org/https://doi.org/10.1016/j.snb.2015.02.025
http://dx.doi.org/10.1109/WCICA.2018.8630497
http://dx.doi.org/10.1109/VLHCC.2014.6883032
http://dx.doi.org/10.1155/2013/793869
http://dx.doi.org/10.1109/ISSNIP.2007.4496857
http://dx.doi.org/10.1109/ISSNIP.2007.4496857
http://dx.doi.org/10.1145/1502650.1502708
http://dx.doi.org/10.1145/2742647.2745922
http://dx.doi.org/10.1145/2742647.2745922
http://dx.doi.org/10.1109/CVPR.2012.6247812
http://dx.doi.org/10.1109/CVPR.2012.6247812
http://dx.doi.org/10.1201/b16923

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Definition and Solutions
	1.2 Contributions

	2 Anatomy of the Human Arm and Gestures
	2.1 Anatomy of the Human Arm
	2.2 Gestures

	3 Gesture Recognition
	3.1 Camera Based Gesture Recognition
	3.2 Wearable Based Gesture Recognition
	3.3 Human Activity Recognition (HAR) Based Gesture Recognition
	3.4 Feature Engineering - Digital Signal Processing
	3.4.1 Splitting Gravitation Force and Linear Force
	3.4.2 Absolute Energy Signal
	3.4.3 Fourier Transformation
	3.4.4 Wavelet Transformation

	3.5 Feature Engineering - Extracting Features from Windows
	3.5.1 Statistical Features over the Window
	3.5.2 Zero Crossing
	3.5.3 Peaks
	3.5.4 Total Energy
	3.5.5 Fourier Transformation Based Features
	3.5.6 Pairwise Features

	3.6 Feature Selection
	3.7 Machine Learning Models
	3.7.1 Linear Models
	3.7.2 Support Vector Machines
	3.7.3 Naive Bayes
	3.7.4 Gaussian Processes
	3.7.5 Clustering and Distance-based Methods
	3.7.6 Linear Discriminant Analysis
	3.7.7 Decision Tree
	3.7.8 Ensamble Methods
	3.7.9 Bagging
	3.7.10 Boosting

	3.8 System Perspective
	3.8.1 Inertial Measurement Unit
	3.8.2 Accelerometer
	3.8.3 Gyroscope
	3.8.4 Magnetometer
	3.8.5 Flex Sensors
	3.8.6 Force Sensitive Resistors

	4 The Gesture Glove Experiment
	4.1 The Hardware of the Custom Smartglove and Data Collection Software
	4.2 Data Collection Experiment
	4.3 Collected Data
	4.3.1 Preprocessing - Labels
	4.3.2 Preprocessing - Outlier Removal
	4.3.3 Description of Basic Data
	4.3.4 Timing of Gestures
	4.3.5 Correlations in the Raw Data
	4.3.6 Raw Time Series

	4.4 Feature Engineering
	4.4.1 Window Length and Step-Size
	4.4.2 Annotation of the Sliding Windows
	4.4.3 Window Features from the Original Paper
	4.4.4 Extended Window Features

	4.5 Train and Test-Set Split
	4.6 Modelling and Feature Selection in the Original Paper
	4.6.1 Performance on Continous Sensor Data

	4.7 Data-Driven Modelling and Feature Selection
	4.7.1 Extended Features - Initial Feature Selection and Modelling with Filters
	4.7.2 Extended Features - Model Based Feature Elimination

	4.8 Sensor Selection
	4.8.1 The Recursive Sensor Elimination Algorithm
	4.8.2 Recursive Sensor Elimination Results for all Gestures
	4.8.3 Usecase: Development of a Task-Specific Gesture Glove
	4.8.4 Results on Task Specific Gesture Sets

	4.9 Results on the Test Set
	4.10 Conclusion

	5 The SmartWatch Experiment
	5.1 The Hardware and Data Collection Software
	5.2 Experiment / Data Collection
	5.3 Data
	5.4 Data Augmentation
	5.5 Feature Engineering
	5.6 Models
	5.7 Full Stack ML, a Working System
	5.8 Conclusion

	6 Discussion of the work
	A Data of the Glove
	B Data of the Smart Watch
	Bibliography

