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Abstract 

With shrinking technology nodes and the usage of higher frequencies the influence of 

parasitic components on the circuit performance and thus its importance during analog circuit 

design continuously increases.  

Additionally, with the complex and expensive small node processes in combination with tight 

functional constraints it is necessary to obtain the best performance possible of the used IC 

area. Therefore, critical circuits are required to be optimized in order to satisfy the strict 

constraints.  

 

This leads to the requirement of tools and methods to cope with this challenge and the need 

of state of the art simulators and optimization tools. 

Currently, optimizers solely for the schematic level are available. Those are applied to 

improve the performance of various circuits. The issue thereby is, that only the circuit level 

and no parasitic influences are considered. Due to the structure of the physical layers of the 

IC, parasitic capacitors and resistors exist which heavily influence the performance of RF 

circuits. Therefore, there is a need to include these influences in the optimization algorithm in 

order to get valid results.  

 

To extend the optimization also to the physical design of the circuit, the existing ADE 

optimizer is applied. During each optimization cycle a pre-run script is executed which 

performs a full circuit extraction and feeds the results in the netlist used for the simulation. 

This provides the possibility to approximate the theoretically possible best circuit 

performance and to ideally utilize the required IC area. 

 

The method is verified by optimizing a divide-by-two circuit operating in the GHz range. The 

results showed the limits of the schematic only optimization due the significant influences of 

the parasitics at high frequencies. 

 

In this thesis, the physical design optimization was proven to yield the best output 

performance and its practical applicability was demonstrated. Even though, the 

computational resources required for the optimization increase, it is reasonable to enhance 

the performance of critical RF circuits. 
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1 Introduction 

Analog IC design is a complex task that requires extensive design expertise and holds 

numerous challenges. For instance, that the physical design of the circuit introduces 

significant performance differences in comparison to the schematic only simulation due the 

parasitic components. Therefore, the IC designers require tools which facilitate the circuit 

design, like the optimization or the extraction of the circuit. 

 

At the beginning of this chapter, the fundamental challenge of design optimization is 

explained. This topic is addressed in the thesis. Secondly, insights on the different parasitic 

components and how they influence the circuit are provided. Finally, the aim of this thesis 

and the required steps are described. 

1.1 Problem Description 

The general analog circuit design flow shown in Figure 1 displays the complete route from 

the IC specifications to the finished and verified physical design which is fabricated.  

At the beginning, the specifications of the IC are defined and depending on these, proper 

technologies are analyzed. The best fitting process technology is chosen and the different 

circuit topologies are compared. After the topologies for the various top-level blocks are 

fixed, the design of the sub cells can be performed. Therefore, the circuit must be designed, 

the device parameters set accordingly and verified through simulations. In order to find the 

best device parameters, circuit optimizers are applied. 

After the schematic was successfully verified, the corresponding physical representation is 

generated. The layout view introduces parasitic components and thus must be extracted and 

simulated to analyze how the circuit performance is affected. Dependent on the results of the 

final verification step, a circuit and hence layout redesign is required. 

Analog circuit design lacks automated tools to explore the solution space and thus a 

significant effort from the designer is necessary since all steps must be performed manually. 

[Lourenço et al. 2015] 
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Figure 1: Analog circuit design flow 

 

One challenge is, that the real circuit performance is only visible at the end of the completed 

design flow and hence redesigns create substantial additional work. It could be worthwhile to 

optimize the design including the layout, after having an good initial schematic optimized 

design. Therefore, instead of running the circuit optimization on the schematic level, 

excluding the parasitic influences introduced by the layout, it is beneficial to directly optimize 

the physical design. This assures to select the best device parameters to satisfy the circuit 

specification. Additionally, the verification step is already part of the device sizing and hence 

potential performance issues are detected earlier in the flow. 

That enables more robust circuit design and avoids complex and time-consuming circuit 

redesigns. Therefore, the project expenses are limited and the required time to market is 

reduced.  
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1.2 Parasitic Components 

If the physical design of a circuit is created and produced on silicon in the end, its 

performance is significantly influenced in comparison with the schematic only simulation. 

This is caused by the impact of all the parasitic components as resistors, capacitors or 

inductances which exist due the physical layer structure of the IC. It is impossible to 

completely avoid them, but there are measures in the layout possible to minimize their effect 

on the critical nets.  

Therefore, for critical circuits it is of high importance that the designer is aware of this and 

takes these components into consideration during the design. An issue is, that the concrete 

parasitics are only visible after the first layout is created and if a performance issue is then 

found a complete redesign and new layout is necessary. 

 

A transistor is built up of different layers of materials. Due to that, multiple parasitic 

capacitors, which can be seen in Figure 2, are formed. These occur since there are different 

voltages on two from each other insulated conductors. An example is the capacitor between 

gate and source CGS. It is formed from the polysilicon which is set to the gate voltage and  

n-plus well which is on ground, or another terminal voltage. They are insulated from each 

other by the gate silicon oxide layer. This means that there are two conducting materials on 

different voltage levels separated by an insulator. This follows, that a capacity is formed 

which will influence the circuit behavior. Another example is the gate capacity which is the 

determining factor for the input capacity of the transistor. [Pandit et al. 2014] 

 

n+ n+

Csb Cdb

Cgd

s g d

n channel

p substrate

Cgs Cgb

  

Figure 2: Parasitic NMOS capacitors 

 

Since none of the used materials is an ideal conductor, each connection has a certain 

resistance which is not considered in the schematic. These can range from few milli Ohm to 

multiple Ohms depending on the used layer. 

file://///wbi.nxp.com/Users4/nxp53782/Data/Jakob/MasterThesis/Visio/nmos_caps.vsdx
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In general, the resistance is dependent on the material specific electrical resistivity ρ and its 

shape. For the layer structure of the IC the resistance can be calculated as seen in equation 

(1) whereby the l is its length and A the area. 

 

𝑹 =
𝝆 𝒍

𝑨
=
𝝆 𝒍

𝒉 𝒘
 (1) 

 

The semiconductor fabrication plants define the metal resistances as sheet resistances Rs 

since the height of the metal is fixed. This enables the user to simply multiply Rs with the 

length divided by the width of the metal connection to gain its resistance. 

 

𝑹 =
𝝆 

𝒉 

𝒍

𝒘
= 𝑹𝑺

𝒍

𝒘
 (2) 

 

The typical sheet resistances of the different materials of a 1 µm CMOS process is shown in 

Table 1. If assumed that a metal wire is 8 µm long and has a width of 1 µm, its resistance is 

56 mΩ. Depending of the used technology, the materials, the layer heights and thus their 

resistances are different. [Söser et al. 2008] 

 
Table 1: Sheet resistances 

Material Sheet resistances [ Ω / □ ] 

 Min. Typ. Max. 

Metal 0.05 0.07 0.1 

Polysilicon 15 20 30 

Silicide 2 3 6 

Diffusion (n+, p+) 10 25 100 

N - Well 1 k 2 k 5 k 

 

As it can be seen, the resistances of the interconnects can be important even though these 

are from a very large process. Therefore, it can be imagined that their influence increases 

with shrinking technology nodes. 

 

For long minimal width metal connections its resistance can be significant and therefore it is 

necessary to verify the resistance of critical paths. Especially polysilicon which is used for the 

gate connection of the transistors has a high resistance. Therefore, it is recommended to 

change to metal1 or higher for longer connections. 
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Until now a simple connection of two devices on the same metal layer was analyzed. In 

reality, there will be connections to lower or upper level metals and to the devices in the 

substrate. Due the connections of different metal layers there are contacts required, whereby 

their resistances are a significant part of the complete wire connection. 

 

A simplified example for the total wiring resistance in shown in Figure 3 where two devices 

are connected with a single first level metal stripe. The area is the height h times the width w. 

The total resistance of the connection consists of the two contact resistances and the sheet 

resistance of the metal. Since the contact resistances are a significant part it is 

recommended to use several contacts to minimize the total resistance.  

 

Device
A

Metal

Device
B

Contact

h
w

l

 

Figure 3: Example for metal resistance of wiring 

 

For most circuits it is sufficient to extract the resistors and capacitors to verify the circuit 

performance. The parasitic inductances can also be extracted, but are typically not 

necessary since the simulation time increases significantly. However, for very high 

frequencies their influence on the circuit performance increases and  thus it is recommended 

to consider them. 

[Lampaert et al. 1991] 
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1.3 Aim of the Thesis 

The goal of this master thesis is to build an automated physical design optimization flow 

which is generally applicable and user friendly. As it can be seen in Figure 4 it consists of the 

four main blocks, namely simulation, evaluation, calculation of the next point and netlisting. 

The calculation of the next point for a local optimization uses a mathematical algorithm, 

which can be gradient or direct search based to create the new parameter set to fulfill the 

requirements. ADE provides two different algorithms for each type. Afterwards, the 

calculated parameters are used either to update the schematic or to update the PCell layout 

depending on the applied method. 

 

Netlist

Testbench

Simulation

Results Evaluation

Finished

Point Calculation

Update Schematic

Update Layout

Extraction

Method

Current Values

Yes

Schematic Layout

Initial Layout
Extraction

Initial

No

Mismatch

Report

Best Result

Start Point

Constraints & 
Weights

Nominal Values

Variables

 

Figure 4: Optimization flow 
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If the schematic mode is selected only the netlist is updated which is then used for the further 

simulation. Since only some device parameters change and the devices as well as their 

connections stay the same it is possible to use variables to avoid renetlisting and to gain an 

additional speedup.  

 

For the layout mode, a new layout view with the current parameter set is generated and 

afterwards used for the extraction of the parasitic components. The resulting extracted view 

is then applied for the netlisting and fed in the testbench. 

This method needs more resources but has the great advantage that the parasitics are also 

considered. This allows to simulate the whole circuit with the calculated parameters to get 

precise results including all parasitic influences.  

 

The initial mode is similar to the schematic mode, but with the difference that the parasitic 

capacitors of the initial layout are included in the netlist. This enables to have a first 

approximation of the parasitic influences in the simulations, even if only a first manually 

created layout exists. 

 

The output of the netlisting phase contains all devices and their connectivity. The testbench 

models the environment in which the circuit is embedded and enables the verification of the 

design. 

 

During the simulation phase, the existing testbench and netlist are used to perform the user-

defined simulations. For the simulation various tools are available. In this thesis Mica was 

applied. 

 

The output of the simulation is then used by the evaluation which compares the current 

obtained results with the desired nominal values from the specification. The specification is 

dependent on the user input regarding the output constraints and weights. 

If the goal is reached the process ends and the results will be displayed. Elsewise, the next 

point is calculated and the whole circle starts again. 

 

This complete automated flow must be set up and a case study on a high frequency divider 

is performed. This circuit was programmed as PCell to enable the physical design 

optimization. To increase the user friendliness a GUI to start the complete flow was created. 

Instead of running all tools manually one after another the user only has to define all 

necessary information in the GUI and afterwards the whole automated flow can be started.  
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At first a literature research was conducted to gain knowledge about the current state of the 

art and background knowledge. In addition, the current way of analog design optimization at 

NXP was analyzed. The next step was to set up the complete optimization flow with the 

current way of working for a specific design. This allowed to get specific insights of the used 

tools which were necessary for the automatization afterwards. 

 

The PCell requires a Skill script which generates the cell for the given input parameter. Skill 

is the Virtuoso® design environment extension language which can be used to program 

various tools, procedures and complete PCells. 

To build PCell circuits of higher complexity a library with basic components is essential. An 

example for such a low-level cell is a simple inverter which was built using ROD to generate 

the corresponding layout visible in Figure 5. 

 

 

Figure 5: ROD PCell example 

 

The next step was the automatization of the complete flow requiring a GUI for the user input. 

The GUI allows a broad usage range since all necessary parameters can be defined. The 

GUI provides individual tabs for each step of the optimizing flow. This allows its usage for 

various designs as shown in Figure 6. 
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Figure 6: Virtuoso GUI example 

 

After the completion of the whole automated flow it was combined in a cadenv package to 

allow simple setup and the usage in different projects. A cadenv package is an installation 

package which is under revision control and can be installed in the different project 

environments by the designers in NXP. 

In addition, a documentation of the flow and its usage with examples was provided. 
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2 Optimization 

Optimization is used in a wide range of fields to get the best result possible of certain 

outputs. This can mean to minimize the input while maximizing the output or to minimize the 

total risk related with an investment. 

 

In this thesis different optimization algorithms are used to size circuit devices in such a way 

to get the best output performance possible. 

2.1 Introduction  

Optimization can be described as the action of making the best or most effective use of a 

situation or resource. [Oxforddictionaries] 

 In practice this is performed my minimizing a cost function in order to get the best overall 

result. A single objective optimization problem can be expressed in the following form, 

whereby f0 is the objective respectively cost function. 

 

𝑚𝑖𝑛
 
𝑓0(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑖(𝑥) <  𝑏𝑖       𝑖 = 1,… ,𝑚 

(3) 

 

The optimization variable of the problem is the vector x=(x1, … , xn), fi are the constraints 

functions and the constants b1, … ,bm are the limits of the constraints. The goal is to find the 

vector x* which is the solution of the optimization problem since the objective value is the 

smallest of all valid vectors x. This means the value x* needs to satisfy the following equation 

for any vector z where the constraints are below their boundaries. 

 

𝑓0(𝑧) >  𝑓0(𝑥
∗)    𝑤ℎ𝑖𝑙𝑒    𝑓𝑖(𝑧) <  𝑏1, … . , 𝑓𝑚(𝑧) <  𝑏𝑚 (4) 

 

The optimization problem represents the challenge of selecting the best vector x from all 

available candidates so that the cost function f0 is minimized. 

[Boyd and Vandenberghe 2009] 

 

An example for such a problem would be a portfolio optimization. There are a set of n assets 

available and the best way to invest in them is searched. In this case the variable xi is the 

investment in the i-th asset, which means that the vector x describes the overall allocation of 
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all assets. The constraints fi can be the expected profit, the total budget to invest, or the 

maximal investment per asset for risk diversification. The cost function would be the total risk 

of the investment. The goal is to find the perfect investment per asset to gain the maximal 

profit while minimizing the risk. 

 

Many problems contain multi objectives which must be optimized, e.g. the power 

consumption and the speed of a circuit. Since the two objectives will conflict with each other, 

a trade-off between both must be found. Such a point would be a Pareto optimum where 

none of the objective functions can be improved without degrading another one. There can 

be multiple Pareto optima which in a set are the so called Pareto front. [Xing Tan and Mao 

2005] 

 

The objective function or cost function maps an associated cost to a function value. This 

function is needed to compare two points with each other and to decide which one to prefer. 

In general, we want to minimize the cost function and find the parameter set which fulfills this 

constraint. A simple cost function could be the mean squared error between the desired 

values d(x) and the function value f(x). [Thiel and Smith 2002] 

 

∑(𝑑𝑖 − 𝑓𝑖(𝑥))
2

𝑚

𝑖=1

 
(5) 

 

The desired values d are defined by the user in ADE as example that the bias current should 

be smaller than 2mA. The function values are gathered via simulation of the circuit with a 

certain parameter set. Depending on the output, the next parameter set is calculated which is 

used for the subsequent simulation. The goal is to find the parameter set which minimizes 

the cost function and therefore provides the best circuit performance. 

 

The difference between a local and a global minimum is displayed in Figure 7 which shows a 

function with a local and global minimum. A function has a local minimum when its value is 

smaller than or equal to the value of nearby points. But the function value can be larger than 

a distant point. The point where the function value is smaller than, or equal all feasible points 

is called a global minimum. [Hassoun 1995] 
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Figure 7: Local and global minimum 

 

The global minimum is always the desired optimization result since it provides the overall 

best circuit performance. However, running a full global optimization including the correct 

parasitics for each optimization cycle can be resource demanding and take several days to 

finish. Therefor a local optimization is often used for a faster although not ideal result.  

2.2 Local Optimization Algorithms 

The big benefits of local optimization are that they are less resource intensive and faster than 

a global optimization and hence can manage large scale problems. A tradeoff between the 

invested effort and proximity of the result to the global optimum must be chosen. For critical 

circuits it is recommended to perform a global optimization to certainly have the best result in 

the end.  

 

Local optimization has several downsides beside not searching the global minimum which 

must to be considered. A good start point based on the circuit knowledge and initial 

simulation results is crucial for a valid result. Since only the nearest minimum is searched the 

start point has a high influence on the output. Additionally, the selected algorithm can have a 

major influence on the result.  

 

Local Minimum 
 Global Minimum 
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2.2.1 Gradient Based Algorithms 

These local optimization algorithms need gradient information of the function and thus it must 

be differentiable. As a consequence, the function must be continuous for its complete 

domain. Whereby only continuity is not enough that the function is differentiable. A function is 

differentiable if the following constraint (6) is satisfied for each point x0 of the domain 

definition. [Hunter 2014] 

 

𝑙𝑖𝑚
𝑥→𝑥0

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
 

(6) 

 

This implies that for each point x the function has a distinct tangent line which is not vertical.  

 

Gradient based algorithms calculate the gradient and change the variables in order to go in 

the negative direction of the gradient. This is the direction of the steepest decent and will 

lead to a minimum. 

Conjugate - Gradient Method  

The conjugate gradient method is a popular iterative algorithm used for solving large linear 

systems. This method relies on the simple gradient descent algorithm which calculates the 

gradient and follows its negative direction to find the minimum. This can be seen in equation 

(7) which shows the calculation of the next point xk+1 that is dependent of the step size αk and 

the direction which is the gradient of the function. The step size can either be fixed or be 

determined by a line search. 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘  ∇𝑓(𝑥𝑘) (7) 

 

This method has the disadvantage to oscillate across a valley since the direction of the 

gradient changes if it is crossed. This leads to that the path to the minimum is a zig-zag 

which is not ideal, even though the minimum is found. To avoid this issue a so-called friction 

term pk which is depending on the previous values is added to the calculation of the next 

point. 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘  𝑝𝑘 (8) 
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This ensures that the required iterations are limited and the minimum of the function is found 

faster. 

[Ruszczynski 2006] 

Broyden - Fletcher- Goldfarb - Shanno Algorithm 

BFGS is an iterative quasi-Newton method which avoids computing the hessian matrix but 

approximates it instead. If the performance space is close to quadratic this algorithm is more 

efficient than the conjugate gradient method.  

 

The basis of this algorithm is the Newton's method which uses a second order Taylor 

expansion to calculate the minimum as it can be seen in equation (9)  

 

𝑓(𝑥) = 𝑓(𝑥𝑛 + ∆𝑥) ≈ 𝑓(𝑥𝑛) + 𝑓
′(𝑥𝑛)∆𝑥 +

1

2
𝑓′′(𝑥𝑛)∆𝑥

2 

0 =
𝑑

𝑑∆𝑥
(𝑓(𝑥𝑛) + 𝑓

′(𝑥𝑛)∆𝑥 +
1

2
𝑓′′(𝑥𝑛)∆𝑥

2) = 𝑓′(𝑥𝑛) + 𝑓
′′(𝑥𝑛)∆𝑥 

∆𝑥 = −
𝑓′(𝑥𝑛)

𝑓′′(𝑥𝑛)
 

(9) 

 

The next point is calculated according the formula displayed in equation (10) whereby 𝑓′(𝑥𝑛) 

is the gradient and 𝑓′′(𝑥𝑛) the hessian matrix of 𝑥𝑛. 

[Snyman and Wilke 2018] 

 

𝑥𝑘+1 = 𝑥𝑘 + ∆𝑥 = 𝑥𝑘 −
𝑓′(𝑥𝑛)

𝑓′′(𝑥𝑛)
 

(10) 

 

The issue thereby is that it requires the gradient and the inverse hessian matrix which leads 

to a high computation effort. This is solved by the BFGS algorithm which uses an 

approximated version of the hessian matrix. That avoids the full calculation of the matrix and 

provides a significant speedup and less resource requirements. 

The hessian matrix is enhanced every step with the current information in order to have a 

good approximation. 

[Krumke 2004] 
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2.2.2 Derivative Free Algorithms 

Derivate free algorithms do not require a gradient and are numerical local optimization 

methods. Therefore, the cost function can be discontinuous and not differentiable. 

Hooke and Jeeve 

Instead of calculating a completely new point each time, this algorithm continues in the 

direction of the last result until no further improvement can be seen. This means that this 

algorithm is not memoryless like other algorithms e.g. the steepest decent method. 

Therefore, since the past information as the steps n-1 and n are used properly it may speed 

up the convergence. [Koziel and Yang 2011] 

 

The algorithm consists of two phases: the exploratory and the pattern move. In the 

exploratory phase each variable is changed by a fixed step size in either positive or negative 

direction depending if the cost function improves or not. Only if it improves the variable value 

is set and the new point is the combination of all variable values. If no improvement of the 

cost function can be found the step size is reduced and the exploration starts again. 

If a new point is obtained instead of starting with a new exploration around it, the pattern 

move phase is started. Therefore, the point is changed in the same direction and with the 

same step size as before as long the cost function decreases. If no further improvement can 

be found the exploratory phase starts again around the current point. 

The algorithm continues this way until the step size is smaller than a specified boundary and 

then the last point is set as the output result. 

[Quarteroni et al. 2007] 

Brent-Powell Algorithm 

This algorithm is recommended if the function is not differentiable and it is known that the 

starting point is already near an optimum. That is because this method searches only in a 

fine grid around the starting point. [Cadence 2018a]  
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2.3 Global Optimization 

The goal of global optimization is to find a global minimum of the cost function and thus the 

best result possible. Therefore, the parameter set where all constraints are satisfied and the 

cost function is minimal must be found. There are various algorithm types available which are 

bases on different mathematical approaches. 

 

Global optimization is used in a wide field like science, engineering, management and 

business. In all these fields there are problems where the output should be maximized while 

the cost should be minimized with regards of certain constraints. 

Simulated Annealing 

This algorithm comes from the observation in metallurgy that if certain metals are heated 

above their recrystallisation temperature and then naturally cooled down that the atoms do 

not form the strongest configuration possible. That this configuration is formed a certain 

cooling rate is required that the total system energy is minimized. 

 

The basic idea of this algorithm is to select a neighboring point randomly and if the cost 

function value is smaller it is selected as new point. If it is larger than the current one, it is 

only selected if the Metropolis rule is satisfied. The rule can be seen in equation (11) 

whereby ΔE is the change in energy which is in this case the change of the cost function 

value. In analogy to metallurgy is T the temperature which means the larger the temperature 

the larger is the probability that a point is selected where the cost function increases. The 

right side of the equation is a random number between zero and one. 

 

𝑒−
∆𝐸
𝑇 > 𝑅(0,1) (11) 

 

During the optimization, the temperature is reduced which can be made by different 

approaches. For example, by continuously reducing the temperature after each cycle. 

[Keikha 2011] 

[Allstot et al. 2003] 
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Evolutionary Algorithms 

The biological evolution is the basic principle of these algorithms such as reproduction, 

mutation, recombination and selection. It is a population bases derivative free method. 

As it can be seen in Figure 8 the algorithm starts with an initial population which is ideally 

wide spread over the domain. These are then evaluated which means that for each member 

of the population their cost is calculated. The results are then used for the fitness assignment 

where for each candidate their fitness is determined. Dependent of the fitness results the 

best candidates are selected which are then used to reproduce. There either two parent 

candidates are combined, or one candidate is mutated to create a new offspring. The new 

population is then again evaluated and the whole circle starts again. This iterative process 

continues until a good enough candidate is found. [Vikhar 2016] 

 

Initial 
population Evaluation Fitness 

assignment

SelectionReproduction

 

Figure 8: Evolutionary algorithms basic flow 
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3 Tools and Current Way of Working 

In this chapter the current way of working and all the therefore needed tools are explained. 

As reference design for the different tools a simple inverter shown in Figure 9 is used to 

minimize the runtime and overall resource consumption. 

 

 

Figure 9: Inverter schematic 

3.1 Current Way of Working 

As already shown in Figure 1 the current design flow is that the circuit is designed, simulated 

and optimized at first. Afterwards the layout is built and finally an extraction is performed 

which is used to verify the design. Depending on the results of the simulation which includes 

all parasitic components a redesign is necessary or not. This can lead to time consuming 

updates, since the complete flow needs to be executed again. 

 

To avoid the possible redesigns and to get a better circuit performance it would be 

advantageous if the parasitics could be already considered during the optimization. Until now 

this is done in the way shown in Figure 10. At the beginning the initial layout and schematic 

are created and an extraction of the layout is performed. The gained parasitic capacitors are 

then added in to the schematic which is then used for all further simulations and additionally 

is optimized. This enables that the parasitic capacitors of the initial layout are included in the 

simulations and therefor provide a more realistic result. However, these parasitics are only 

valid for the initial layout. As soon the device parameters are changed in the optimization 
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they are out-of-date. Therefore, they can only be used to approximate the parasitic influence. 

A full extraction, simulation and verification of the final design is necessary. 

 

Initial Schematic 
& Layout

Start

Layout Extraction

Schematic 
Optimization

End

Parasitic Caps To 
Schematic

 

Figure 10: Initial optimization method 

 

Figure 11 shows the initial inverter schematic which is updated with the parasitic capacitors 

of the initial layout. There are capacitors between all nets which influence the circuit 

performance even though they are in the atto Farad range or smaller. Their influence is 

especially important if the circuit needs to operate at a high frequency, as it can be seen later 

on in the example of the frequency divider in chapter 6. 

 

 

Figure 11: Initial schematic updated with parasitic capacitors 
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At the time being, this is a completely manual flow whereby the designer needs to perform all 

steps one after each other. The larger the circuit becomes the more time is required for the 

extraction and the placement of the capacitors in the schematic. To reduce the time 

consumption, the initial optimization type was added to the automated optimization flow, 

which performs the extraction of the initial layout and adds the capacitors to the netlist. The 

designer needs to keep in mind that only the parasitic capacitors are considered and none of 

the resistors or inductors. Therefor the performance results will change after a full extraction. 

Additionally, the values of the capacitors are fixed and only valid for the initial layout of the 

circuit. This leads to that an optimization will not find the best performance possible, since 

the real parasitics are changing in each cycle according the current parameters. And 

because the extraction is only performed once at the beginning they are not valid for the 

other parameter sets. This can lead to, that the optimization algorithm keeps increasing one 

device parameter to improve the performance, but since the parasitics are also increasing it 

can lead to a worse output. Therefore, the optimization will show a large parameter as the 

result, but ideally it would be smaller in order to limit the parasitic influence. 

 

The usage of the initial parasitic capacitors is an easy and quick way to add a feeling of the 

parasitic influences to the simulations. It can only be used to approximate their impact and 

thus it would be advantageous to extract the parasitics in each optimization cycle. This 

ensures that the final result is the best one achievable and that the performance is also 

reached after the layout is build.  
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3.2 Testbench 

In order to simulate a circuit, the corresponding testbench which represents the environment 

of the DUT is essential. As it can be seen in Figure 12, it contains the DUT cell and it models 

the surroundings of it. This means that it contains all the power supplies and circuits 

connected to the in- and outputs of the DUT which model the impedances the cell needs to 

load. The testbench itself has no in-, or outputs to it since it is the top level. It can use several 

different variables which can be changed during the simulations. For example, the frequency 

of the input signal could be chosen to be a variable and be swept in the simulation. Another 

possibility would be to create corners for the highest and the lowest input frequency to verify 

the function of the circuit at all corners. 

[Kundert and Zinke 2004] 

 

Testbench

DUT

DC

vdd

gnd

AC

Input

gnd  

Figure 12: Testbench and DUT relation 

 

If the in-/outputs of the cell are not properly modeled the simulation results will significantly 

deviate from the actual results. Therefore, it is necessary that the DUT in the testbench sees 

the same environment as later on the chip. For example, the input of the cell will not be an 

ideal square signal with instantaneous change between the two voltage levels, but instead 

with certain rise and fall times. In addition, the input source will have a certain impedance 

which will influence the DUT. Such factors must be considered during the testbench creation 

to get valid results. 
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Figure 13 displays the testbench for the inverter. In this case the DUT is the middle cell and 

the two others provide the in-output of the cell. The global input signal is generated by a 

pulse source and the supply is connected to a DC source. The two additional inverters are 

used to ensure that the DUT is in a realistic environment. This means that the input signal is 

not ideal and that the output needs to drive a load. 

 

 

Figure 13: Inverter testbench 

 

To increase the accuracy of the simulation it is recommended to use the extracted layout 

view instead of the schematic whenever possible. This will add the parasitic components to 

the netlist and therefore improve the accuracy. The only drawback is that the circuit must be 

manually extracted and the simulation time will increase, since there are more devices in the 

netlist. To minimize the required time and to get a first approximation of the parasitic 

influences a capacitor only extraction is recommended.  

 

That the extracted view instead of the schematic is taken a config view can be used which 

defines what view to use for each instance in the hierarchy. This enables the user to choose 

the extracted view for specific cells and the schematic for the other cells. 

Another possibility is to add the name of the extracted view to the Switch View List of the 

environment options of ADE as it can be seen in Figure 14. The crucial difference to the 

config view is that it gets used for each cell where the defined view av_extracted exists. 

 

 

Figure 14: ADE environment options 
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3.3 Virtuoso Analog Design Environment (ADE) 

The most used tool within NXP in analog circuit design regarding simulation is Virtuoso 

Analog Design Environment GXL/XL. It provides all the tools required for development, 

analysis and validation of a design. This includes different simulation setups, corner case 

evaluation and parameter sweeps. In addition, ADE provides an optimizer which can be used 

to improve the circuit performance. Furthermore, ADE enables the usage of different 

simulators and the possibility to manipulate the simulation flow with e.g. a pre-run script 

which is executed between the netlisting and the simulation step. [Cadence 2014] 

 

Currently the optimizer of ADE XL is only used on the schematic level and therefore does not 

include any parasitic effects at all or only the ones from manually placed initial parasitic 

layout components. The netlist is once created from the schematic and used for all 

performed simulations. Device parameters which are changed during the optimization are 

treated as variables to avoid renetlisting in each cycle, which enables a speedup. 

 

The ADE main window shown in Figure 15 is used to define the simulation settings, run 

options, parameters and the output expressions which will be optimized. An optimization can 

either be performed local or global. The local optimization performs less cycles since it only 

searches around the starting point for the minimum. This leads to the issue that only optima 

around the starting point will be found and not the global optimum. The advantage is that it is 

faster and less resource intensive. The local optimization requires a good reference point for 

the parameters. It is recommended to use the initial one from circuit designer. 

 

 

Figure 15: ADE main window 
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3.3.1 ADE Settings 

ADE can be used for a lot of different simulations and circuit analyzations. Therefore, it 

provides various settings the user must define in order to get the correct output. 

Run Mode 

The run mode defines which kind of simulation should be performed. There is the default 

option Single Run, Sweeps and Corners which runs everything as defined by the user, but 

doesn’t start any additional analyses.  

The used modes in this thesis are Local Optimization and Global Optimization which use the 

simulation to gain the results of the equations which are feed in the optimizing algorithm in 

order to fulfill their constraints. There are four local optimization algorithms available from 

which the user can choose one to get the best result for the current optimization problem. 

[Cadence 2018c] 

Parameter 

There are certain device parameters of the DUT defined, which will be changed during the 

optimization in order to satisfy all constraints. Each parameter has a certain range in which it 

can be set and a step size in which it can change. That is necessary to limit the optimizer, so 

it does not select parameters which are too small or too large to be layouted. In addition, it 

limits the possible values for this parameter and therefore the overall possible parameter 

sets. 

Output Expressions 

To define what should be optimized and in which manner the output expressions are used. In 

general, they allow the user to define various equations which define certain cell 

specifications. It is possible to set and use variables in addition to the circuit data. 

For an optimization it is required that at least one equation has some specifications defined 

which represent the desired value. This could be that the output of the equation must be 

smaller or larger than a fixed value or that it must be inside a specific range.  

In addition, it is possible to state weights for the equations if some are more important than 

others. By default all are set to one, but the user can increase the weight if needed. This is 

beneficial if there are main constraints which must be satisfies that the circuit works properly 

and side constraints which should also be optimized, but which are meaningless if the circuit 

function fails. In this case the main constraints would get a high weight to ensure that they 

are always fulfilled. 
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Simulation Settings 

These settings define the simulation type e.g. transient and all the corresponding options. In 

addition, it is possible to choose which simulator should be used and to set the environment 

options.  

For the optimization flow created in this thesis the user can choose between a transient and 

a DC operation point simulation. Mica is used for all simulations and the environment options 

are set accordingly. The user can define the stop and switch view which is used by ADE to 

enable the usage of extracted views as described in chapter 3.2. 

Variables 

To enable that the user can easily change settings in the testbench it is necessary to define 

variables which can be quickly changed or also be modified during the simulations. It is 

possible to set a variable for a device parameter input, e.g. the frequency of the input source 

and define them in ADE as a global variable. 

In the simulation settings it is possible to choose variables which should be swept in order to 

see their influence on the output. If an optimization is performed it is possible to treat a 

variable the same way as a device parameter and change it to satisfy the output constraints. 

 

Corners 

For the verification of the circuit at all process corners ADE provides the possibility to select 

corners for which the simulation is run. These depend on the process specific information of 

the semiconductor fabrication plants and define how the circuit behaves for all process 

corners. They are defined for typical, slow or fast NFET and PFET devices. This means that 

the corner ff means that all NFET as well the PFET devices are assumed to be fast. This 

could be caused that during the fabrication the gate oxide is at its lower fabrication boundary 

and the devices have a low threshold. [Razavi 2017] 

Furthermore, the user can create additional corners for temperature, or for certain variables. 

This can be used to verify the functionality of the circuit for the complete required 

temperature range or e.g. for the input frequency range. 
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3.3.2 ADE Optimization Flow 

By default, ADE performs the optimization as shown in Figure 16, where it starts at the 

calculation of the current point. Then the corresponding variables are fed in the netlist which 

is afterwards included in the testbench. That is used for the simulation and the generated 

output values are evaluated against the nominal values. If all constraints are satisfied the 

optimization stops and the results are displayed. Else the next point is calculated and the 

whole circle starts again. 

 

Netlist

Testbench

Simulation

Results Evaluation
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Point Calculation

Current Values
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No

Mismatch

Report

Best Result

Start Point

Constrains & 
Weights

Nominal Values

Variables

Schematic

 
Figure 16: ADE original optimization flow 

 

The calculation of the next parameter set is dependent on the chosen optimization algorithm. 

For a global optimization the parameters for a large set of simulations are created at the 

beginning and simulated in parallel depending on the available resources. Most of the local 

optimization algorithms also provide the feature to start multiple simulations at the same time 

instead of going through this circle sequentially. This enables that the optimization finishes 

faster but with the cost that more computational resources are required. 
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Since ADE is running through this circle several times and each time a simulation is 

performed it is recommended to use the conditional evaluation mode which is displayed in 

Figure 17. It makes sure that no unnecessary simulations are run and therefore enables a 

speed up. The simulations are split in two groups. The first one passes and the second one 

fails at the reference point. For each new point first the second group is simulated to check if 

an improvement was achieved. If this is the case the first group is also simulated to verify 

that it still passes.  

If the second group fails, the current point is worse or equally than the reference point and 

can be discarded. Therefore, the first group is not simulated since the point will not be used. 

[Cadence 2018b] 

 

Divide simulations into two groups:

1. Pass at reference point

2. Fail at reference point

For each new point simulate group 2 first 
and compare it with the reference point

Better?

Simulate group 1 Do not simulate group 1

It is clear this point is not better than reference 
point

Yes No

 
Figure 17: Conditional Evaluation Flow 
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3.3.3 ADE Optimization Manipulation 

The standard optimizing flow always uses the same netlist and only updates the device 

parameter which change. This is possible since only the schematic is optimized and the 

parasitics are not considered. To include the parasitics and to always have the correct values 

for the set parameters it is necessary to update the netlist before the simulations are 

performed. 

 

ADE offers the possibility to define a pre-run script which is executed before each simulation 

is executed. It must contain Ocean code which can perform various operations. In this case 

the script will be used to include the parasitic influences in the netlist. This is done according 

to the flow displayed in Figure 18. At first the current device parameters are collected and 

with them the PCell is placed. From the schematic view a CDL and from the layout view a 

GDS is generated. These are then used to start a LVS-QRC check which creates the 

required data to run QRC to generate the extracted view. Afterwards the netlist is created 

and used to update the existing one with the correct parasitics values. This ensures that 

each simulation includes the latest parasitics. 

 

Get current 
parameter

Start
Pre-run

End
Pre-run

Place PCell

Create
GDS Create CDL

Update input.scs

Create Netlist

Run QRC

Run LVS-QRC

 
Figure 18: Pre-run script flow 
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For the graphical usage of ADE, the script can be defined by right clicking the test where it 

should be attached and selecting Pre-Run Script as it can be seen in Figure 19. Afterwards a 

GUI opens up where the location of the file can be set. Before each simulation of this test is 

started the specified script is executed. 

 

 
 

Figure 19: Defining a Pre-Run Script graphical 

 

If the ADE session is created via a script the command axlSetPreRunScript can be used to 

define the location and axlSetPreRunScriptEnabled to enable the usage of the pre-run script. 
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3.4 Parameterized Cell 

The extension language for Cadence is Skill which is based on Lisp. It provides a large set of 

sub routines which can be used for various purposes. Skill can be used to create custom 

tools which can be integrated in the Cadence programs, or to create PCells of different 

complexity. Furthermore, it can be used to manipulate the Open Access data structure and to 

add custom menus to the programs of the cadence design tool suite. [Nguyen 2008] 

 

That a layout is automatically generated from the input parameters it is required that the 

circuit is a PCell programmed in Skill. Figure 20 shows a simple MOS transistor where the 

type and the metal connections can be specified. Therefore, the shape, used metal layers 

and arrangement of the transistor is dependent of the user input. 

 

 

Figure 20: PCell example NMOS RF transistor 

 

The advantage of PCells is that if the circuit parameters change there is hardly any time 

required to update the layout. Furthermore, the parameter and thus the layout can be 

changed automatically and the parasitics can be extracted for the optimization flow. In 

addition, if the PCell is created in a proper way it is DRC and LVS clean for its complete input 
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parameter range. The LVS check verifies that the same devices are placed in the schematic 

and the physical layout as well that they are connected correctly. DRC is used to check if the 

layout complies with all design rules defined by the semiconductor fabrication plant. These 

define the maximum and minimum ratios for the different available layers and are used to 

ensure that the IC can be produced. [Langner and Scheible 2017] 

3.4.1 PCell Structure 

PCells can be built up to the level of complete IP blocks like e.g.: a full ADC. Therefore, it is 

recommended to start with low level PCells, as the transistor shown above, then move on to 

simple logic blocks as an AND gate to then move up to circuits of higher complexities. This 

enables reusability of low level blocks and a structured approach. 

In Figure 21 an example of a PCell hierarchy is displayed. The designer chooses the 

parameters of the master PCell and the lower level cells are built accordingly since the 

appropriate parameters are passed to each sub level cell. All lower level cells could also be 

used on their own as a master PCell. The bottommost level of the hierarchy are the CMOS 

transistors and other basic devices. 

 

Master PCell

Sub Pcell 1 Sub Pcell n

Inst 1 Inst n Inst 1 Inst n
 

Figure 21: PCell hierarchy example 
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The code for a PCell follows a certain structure which is indicated in Figure 22. At The top 

the cell is defined which should be generated. The library, cell and view name as well type 

are defined and used in the pcDefinePCell statement to create the cell view in the database. 

Additionally, as another part the input parameters are set which are in this case called P1 

and P2. These are visible to the outside and can be chosen in order to configurate the 

devices as required. They can have different data types like string, integer or boolean. 

The main part of the code is the function body where it is defined what is performed and in 

which manner. The complete generation of the cell must be programmed here. The 

parameters which were defined can be used inside the code to build the cell accordingly. All 

other local variables must be added to the let statement, which are in this case var1 till var3. 

[Tayenjam et al. 2017] 

 
let((LibName CellName ViewName) 

 

LibName   =   "NXP_lib" 

CellName  =   "NXP_cell_1" 

ViewName  =   "layout" 

 

pcDefinePCell( list(ddGetObj(LibName) CellName ViewName) 

( 

  (P1        1.0    ) 

  (P2        2.0    )  
) 

;--------------------------------------------------------------

-----------------  

let((var1 var2 var3) 

   

  ;Body 

   

));end let & pcDefinePCell 

dbSave(dbOpenCellViewByType(LibName CellName ViewName)) 

dbPurge(dbOpenCellViewByType(LibName CellName ViewName)) 

); end let 

Figure 22: PCell code structure 

 

The code must be executed once in order to generate the cell view. This is done in skill with 

a load() statement which takes the file path as its input. If the cell is then placed and the 

parameters are changed only the function body is executed to update the cell accordingly. 
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3.5 Quantus QRC Extraction Solution 

In this thesis the Quantus extraction solution from cadence is applied for all extractions since 

it provides high accuracy and is certified for the used foundry process. 

To verify the design including all parasitic components it is necessary to perform an 

extraction of the layout. The output can be an extracted view as shown in Figure 23, or 

alternatively the parasitics are written to a DSPF file which can be included in the simulation. 

Both outputs include all devices of the design and in addition all extracted parasitic 

components. For this example, an RC extraction of the inverter layout was performed. The 

extracted view shows the poly and metal layers and for each found device their symbol with 

the according parameters. 

 

        

Figure 23: Extracted view of the inverter 

 

MOS 
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3.5.1 Extraction Types 

Quantus QRC provides the extraction of resistors, capacitors and inductances. Whereby 

resistors or capacitors can be extracted alone (R/C only), together (RC) or joint with the 

inductances (LRC). 

 

The capacitors are calculated with a field solver which simulates the electrostatic field among 

the wires. This is required since the capacitance is the coefficient relating the electric 

potential and the electric charge. In order to limit the computational resources and simulation 

time, state of the art optimizers use on one side technology pre-characterization which is 

performed once per technology. It provides look-up tables for various test structures which 

were simulated with 2- or 3-D field solvers to obtain accurate results. On the other side a 

pattern matching approach is applied that chops the signal path into small pieces. The 

resulting pieces are then matched with the lookup tables to get their capacitance. Therefore, 

the challenge is to create a lookup table which on one hand includes enough test structures 

to be accurate and on the other hand not too much since the complexity of the pattern-

matching procedure increases significantly with the number of test structures.  

[Yu and Wang 2014] 

 

For long wires in the nanometer regime it is necessary to also extract inductances in order to 

get a realistic simulation result. Therefore, the inductance calculation technique partial 

element equivalent circuit is applied. This method solves the issue that in modern 

interconnect structures are no dc paths which form a well-defined loop. It is assumed that the 

induced current returns at infinity which avoids the necessity of a return loop. 

Therefore, the partial inductance of each line element can be calculated with the aid of field 

solvers and then be combined in the partial inductance matrix L. This matrix then is 

combined with the RC matrix and is simulated to determine the current loop. 

[Wong et al. 2005] 

 

RC or C extractions are performed after the layout is finished to verify the performance of the 

design. LRC extractions are usually only performed for critical and high frequency designs 

since they increase the extraction and simulation time significantly. 
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3.5.2 QRC Usage 

That QRC can be started a certain data set is required which can be created via LVS-QRC. 

This means that the user needs to run this check beforehand in order that the data is 

created. Therefore, a normal LVS check can be started but with the option Create Quantus 

QRC Input Data enabled in the Output settings as it can be seen in Figure 24. If you use the 

default directory for the QRCDataDir QRC automatically finds it and uses the data from 

there. 

 

 

Figure 24: LVS-QRC option 

 
QRC can be started as shown in Figure 25. This will open up the GUI where the cell and 

technology information are defined. These are needed to set up the main GUI. 

If QRC is started from the layout view which should be extracted the default options can be 

used. 

 

 

Figure 25: Start menu of QRC 

 

Afterwards the QRC main GUI opens up, where all the different settings can be defined and 

the extraction can be started. 

The GUI allows to set various settings regarding all parts of the extraction flow like extraction 

options or filtering options. The important settings are also available in the automated 

optimization flow where they can be chosen by the user as it can be seen in chapter 5.2. 

 



 
36 

4 Divide-by-two Circuit 

The divide-by-two circuit is deployed in the PLL and is necessary to lower the VCO 

frequency so that it can be used by other circuits, such as the programmable divider. Hence, 

it is a critical circuit which needs to operate accurately at high frequencies.  

 

Figure 26 shows the structure of a PLL which applies a divide-by-two circuit to pre-scale the 

VCO output in order that the programmable frequency divider can function properly. It must 

be considered that the reference frequency must also be halved to get the correct output 

frequency.  

Especially if the VCO output frequency is near the maximum speed of the technology it is 

required to pre-scale its output. Therefore divide-by-two circuits are used since they can 

operate at the higher frequencies than dividers with other division factors. 

[Razavi 1998]  

 

PD LPF VCO

÷ 2÷ M

fREF fout

 

Figure 26: PLL structure 

 

The PLL synchronizes its output signal fout with the input signal fref. Therefore, the input of the 

VCO is adjusted so that the signals are equal in frequency and phase. This is accomplished 

since the phase detector generates a signal proportional to the phase error and the low pass 

filter removes its AC component. This signal is then fed in the VCO which changes its output 

frequency accordingly. By adding a programmable divider in the loop and the usage of an 

accurate crystal oscillator as reference the output can be chosen as a specified higher 

frequency. [Chen 2003] 
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4.1 Schematic 

The divide-by-two circuit is build according to the Razavi topology which consists of two 

identical D-Latches in a master-slave configuration. The input signal which should be divided 

by two is required to be mirror-inverted. This means if one is high the other one must be low 

and vice versa. 

 

The two latches are periodically and complementary switching between the sense and the 

latch mode. In the sense mode the input signal is taken and set on the output. In the latch 

mode the current output is kept. The latches change their modes with the level of the input 

(v*_vi). While one latch is in write mode the other one is in latch mode and vice versa. Since 

it takes two cycles to pass the input data from one latch to the other a division by two is 

achieved.  
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Figure 27: Divide-by-two circuit structure 

 

The symbol of the divider is used to instantiate it into other circuits. It shows all the 

input/output pins and the parameters of the cell. On the top and bottom are the supplies of 

the circuit, on the left the two mirror-inverted inputs and on the right the four outputs. There 

are four outputs since the two signals from master to slave are also connected to the outside. 

 

 

Figure 28: Divide-by-two circuit PCell symbol 
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The complete schematic is displayed in Figure 29 where the two identical master and slave 

latches are evident. This structure is chosen to avoid the usage of PMOS devices in the 

critical signal path since they would limit the maximal speed of the circuit significantly.  

 

Each latch consists of four NMOS and two PMOS devices. The output of the master is the 

input of the slave. The output of the slave is connected to the input of the master but with the 

positive to the negative and vice versa. Hence there is a negative feedback loop which 

causes the output to toggle. 

[Joshi et al. 2012] 

 

 

Figure 29: Divide-by-two circuit PCell schematic 
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4.2 Function 

To explore the function in more detail the used latch of the slave is examined which can be 

seen in Figure 30. The master latch has the same structure but with slightly different 

parameters. The functionality is the same and thus only the slave is analyzed. 

Each latch consists out of two write and two sense NMOS as well of two PMOS transistors. 

The slave latch has at its clock input vn_vi connected and at the two signal inputs qn2_vo 

and qp2_vo. Its output is connected to the pins dn2_vo and dp2_vo.  

 

 

Figure 30: Divide-by-two circuit schematic right half 

 

The PMOS are pull-up devices which are enabled if their input at the gate is at low level. If 

they are off, the circuit is set in the sensing mode where its output follows the input signals 

and otherwise it is in the latch mode. 

The sense devices are used to scan the input in the sense mode and change the output 

voltage according the signal input. The write devices form a regenerative loop which 

discharge the output in the latch mode. 

 

If the clock input changes from high to low the PMOS transistors drive a current on the cross 

coupled NMOS latch pair and output voltage rises asymmetrically according to the voltages 

at the gates of the NMOS sense devices. 

If the clock input changes from low to high the PMOS transistors are closed and the NMOS 

write transistors discharge the output voltages.  
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This latch topology does not disable its output devices when changing from sense to latch 

mode. Even though this would cause a timing problem in general digital circuits it does not 

harm the divider function. That can be explained by the following two facts. First, since 

NMOS transistors are applied as the signal input devices they can only change their state 

when their input goes from low to high. Second, the latch can only change its output from low 

to high if it is in latch mode since elsewise the PMOS pull-up transistors are disabled. Hence, 

if it is in sense mode it cannot overwrite the value in the connected latch which is latch mode. 

 

The waveforms of the divide-by-two circuit are displayed in Figure 31. On top is the clock 

input signal and its inverse signal which should be divided. Below are the output signals of 

the slave and the master illustrated once as the two complementary signals and once as the 

contained information. Clearly, the input frequency is divided by the factor of two also if the 

output signal is slightly degraded. The cause therefore is, that the PMOS devices provide a 

path from supply to ground if they are on and hence degrade the logic level. In addition, this 

results in a static power consumption. 

Further, both outputs of the latch are low if it is in sense mode. One is pulled down by an 

input device and the other one maintains the state from the previous cycle. 

[Razavi et al. 1995] 

 

 

Figure 31: Divide-by-two circuit input vs output signals 

vp_vi 

vn_vi 

dn2_vo 

dp2_vo 

d2_vo 

qn2_vo 

qp2_vo 

q2_vo 



 
41 

4.3 Layout 

The layout is built highly symmetrical to enable good matching between the devices to 

achieve the best performance. Since it is a PCell it can be easily built up for different 

parameters. 

On top the PMOS transistors are located which are all together in one N-well which is 

connected with a guarding around the devices as it can be seen in Figure 32. The distance 

from the end of the devices to the guard ring is calculated in order to be able to place the 

contacts with equal distance. 

Below are the NMOS transistors of the master latch on the left and the ones of the slave on 

the right side. They are separated by a PP guard ring to minimize their influence on each 

other. The write/sense parts are placed in a common centroid structure to ensure good 

matching.  

 

 

Figure 32: Divide-by-two circuit PCell layout 

 

The PCell is LVS and DRC error clean and can be extracted. If the input parameters change 

the layout is automatically rebuilt according them. 
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The PCell takes the transistor characteristics as its input parameters as it is visible in 

Figure 33. The width and the number of fingers for the different transistors of the latches can 

be defined. The width of the NMOS transistors can be chosen differently for the left and right 

side. The option Customize Layout can be used to adjust the layout such as the number of 

substrate contacts. If the cell is simulated on schematic level and its parameters should be 

passed to the lower level cells the option Use pPar for W,L, and fold must be used. pPar 

allows to set a parameter value to one of the parent cell. This ensures that the parameters 

from the top cell are correctly passed to the lower level cells during the netlisting step. 

 

 

Figure 33: Divide-by-two circuit PCell parameter 

 

That the layout can be built successfully some restrictions are necessary which are shown in 

Table 2. These define the maximum input values and verify that the different input 

parameters align with each other. This is required so that the layout can be built 

symmetrically. 

 
Table 2: Divide-by-two circuit parameter restrictions 

Constraint 

PMOS NF > 3 

PMOS NF > NMOS Write NF 

NMOS Write NF >= NMOS Sense NF 

PMOS NF < 25 

Max Width < 100u 

Max Contacts < 11 
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5 Physical Design Optimization 

Until now the circuit optimization was only performed on schematic level where no parasitic 

devices are included. However, the circuit performance is significantly influenced by the 

parasitic components introduced via the physical design. Therefore, it would be beneficial to 

consider the parasitic influences during the optimization. This enables to avoid a redesign 

which could be required after the extraction and validation of the circuit. 

 

In this chapter the physical optimization flow and the therefore created GUI is explained. 

Further, the data created during the execution and the optimization output are described. 

5.1 Introduction 

The user-friendly GUI allows the designer to effortless setup an optimization of any circuit 

whereby the steps displayed in Figure 34 will be executed. 

At the beginning, it is necessary to collect all required data and options from the user via the 

GUI explained in chapter 5.2. Afterwards, the ADE view is created and configurated 

according the collected user input. In addition, the directories and files for the parasitics 

extraction etc. must be created. That is performed by several skill, or ocean procedures. 

After everything is set up an initial optimization cycle is performed to verify that the settings 

are correct and the results are valid. In the next step the ADE optimization session will be 

started. Depending on the circuit complexity, optimization type and the specification 

boundaries the session runs a few minutes to hours. Once the optimization has finished the 

output is collected, verified and displayed to the user. 
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Figure 34: Automatization flow 
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The main GUI can be opened via the NXP menu in the CIW. Therefore, the needed code 

must be loaded which is done via a cadenv package. 

The creation and configuration of the ADE session, as well the initial optimization run is done 

within one ocean procedure which is located in a sperate ocean script. This procedure gets 

called as soon as the user clicks on the run button in order to start the optimization flow. 

 

The default optimization flow of ADE is displayed in Figure 35 where it is visible that there is 

an optimization cycle which is performed until the constraints are satisfied. It consists of the 

calculation of the current parameters and variables which are fed in the netlist and testbench. 

These are simulated and the results are evaluated against the constraints. If all are satisfied 

the optimal result has been found and it is reported. Elsewise the cycle continues and the 

next parameter point is calculated.  
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Figure 35: Default ADE optimization flow 

 

In order to include the parasitic influences into the optimization it is necessary to add an extra 

step between the netlist/testbench updates and the simulation. This is the extraction of the 

parasitic components of the circuit with the current parameters, which are then fed back to 

the netlist to include them in the simulation. The method to enable this extra step is the 

usage of a pre-run script. ADE provides the possibility to define an ocean pre-run script 

which is executed between the testbench update and the simulation as shown in Figure 35. 
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The flow of the pre-run script is shown in Figure 36. The first step is to collect the current 

parameters and next to instantiate the DUT PCell with them. This is used for the GDS and 

CDL creation afterwards. They are required for the LVS-QRC check in the following step. 

Then it is possible to run a QRC extraction in order to obtain the parasitics. These are used 

to update the input.scs file which is applied for the simulation. 
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Figure 36: Pre-run flow 

 

In order to keep the setup the same as it would be done directly in ADE for only schematic 

level, it is necessary to probe certain sub level voltages. This is required if voltages on nets 

of sub blocks are used in the equation. Through the extraction the hierarchy and net names 

are lost and therefore the simulator would not find the chosen net. To avoid this issue, it is 

required to bring the nets to the top level with a net name the simulator recognizes.  

This is implemented by changing the sublevel nets in the equations to specific automated 

generated names during the ADE setup. These names are then used to create the according 

pin in the flattened layout and schematic in the pre-run script. That way the same names are 

used in the equations and the netlist of the extracted view. This provides that the simulator 

finds all nets and can calculate all equations. 

For the latest version the usage of sub level currents in the equations is not supported since 

it would be required to add additional terminals to the views.  
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5.2 Graphical User Interface 

The main GUI is required so that all the data and options for the optimization etc. can be 

specified by the user. Therefore, the GUI consists of several tabs were each one is dedicated 

to one part of the optimization flow. In addition, it allows to save the current state and to load 

a previously saved state. This enables the user to save all options and use them again at 

another time.  

Further, the GUI provides the possibility to load options from an existing ADE view. Since 

there were already some simulations performed beforehand to prove the feasibility of the 

circuit, all the equations etc. are already defined in an ADE view. Therefore, it is possible to 

simply load these into the main GUI via the Load ADE button. 

The help button can be used to quickly open the user guide of the automated optimization 

GUI. Additionally, each major part of the GUI has a question mark button which opens a 

popup containing a brief description of the according options. 

 

Figure 37  displays the first tab Testbench, which is used to define the testbench, the DUT 

and the equations which are optimized. The user can use the drop-down list which contains 

all available libraries to define the required one. That updates the cell list with the cells which 

are part of this library. If the cell is selected the view list is updated as well. As soon library, 

cell and view are chosen the DUT can be defined as one of the sub cells of the testbench. 

The equations are essential for the optimization since they define what should be optimized 

and in which manner. To simply define them the possibility to use the cadence calculator is 

available. Each equation needs a name and a target which must be defined after the 

calculator was closed. The name is used for the display of the simulation results and should 

be set to describe the equation (e.g.: risetimeVout). The target sets the boundaries which are 

used during the optimization. It can define if the result of the equation should be smaller or 

larger than a certain value or be in a range between two specified values. Additionally, a 

weight can be stated if the equations have different priorities in which they should be 

satisfied. If none is specified the default value of one is used. 
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Figure 37: Optimization GUI Testbench Tab 

 

If the Open Calculator button is pressed, the built in cadence calculator opens which can be 

seen in Figure 38. This allows the designer to easily define all equations in the well know 

manner.  

 

If a signal type is selected the testbench schematic is opened so that the user can define the 

voltage, or current which should be probed. The equations can be defined in the normal 

manner and be sent to the stack afterwards. 

After all equations were defined the user needs to simply close the calculator. This triggers 

that the schematic is closed and the equations are loaded into the main GUI. There the last 

step is that the name, range and weight of the equation must be defined. 
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Figure 38: Optimization GUI Calculator Usage 

 

The Parameter tab displayed in Figure 39 is used to set the device parameters which are 

modified during the optimization in order to satisfy the targets of the equations. Therefore, 

the name, range, step size and start value of the device parameter must be defined. To 

easily do so, the hierarchy tree is used to collect and define the parameters. It can be 

opened by clicking on the Collect Parameter button. 

Defined parameters can be changed by clicking on them and either pressing the Remove 

button or, by updating the values and pressing Update. 

  

Signal type Send to stack 
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Figure 39: Optimization GUI parameter tab 

 

Figure 40 shows the Choose Parameter Form, which consists of a field with the hierarchy 

tree on the left and the parameters of the selected cell on the right side. The tree is built of 

the testbench until a PCell is found. The parameters of this PCell can be used for the 

definition. For the selected parameter the range, step size and starting value must be defined 

at the bottom of the GUI. The Submit to Main Gui button is used to send the definition to the 

main GUI and the field in the parameter tab is updated. 

 

If a parameter should be matched with the ones from other devices this is possible by 

enabling Match with others. First a parameter must be selected and all the information 

defined. Afterwards the Match with others field has to be enabled and the other cell views 

can be selected while holding the CRTL key. Lastly, the Submit to Main Gui button must be 

used to send the matched parameters to the main GUI. 

If device parameters are matched ADE always changes them in the same way. This would 

be required if different transistors of the circuit must match in the physical design. 
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Figure 40: Choose parameter GUI 

 

All options regarding the simulation are defined in the Simulation tab presented in  

Figure 41. The analysis as well the regarding options are selected at the top and the global 

variables are defined at the bottom.  

 

The analysis type can be chosen to be a transient or DC operating point simulation. For the 

transient simulation the start, stop, initial- and max-step value must be defined. Further, the 

maximal number of jobs and parallel processes can be set, if the simulations should be 

performed in parallel. Max Jobs defines the maximum jobs started in the ADE session and Nr 

Parallel Procs the number of parallel processors per job. 

 

The global variables of the simulation must be defined at the bottom fields, by specifying 

name and value and clicking on Submit. If a variable should be swept the Sweep field must 

be enabled and the range as well as the start value must be chosen. This way it is possible 

to change variables during the optimization to satisfy the constraints. 

  

Hierarchy 
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Figure 41: Optimization GUI simulation tab 

 

To define settings related to the optimization the Optimization tab shown in Figure 42 is 

used. The optimization Type can be set to either Schematic, Initial or Layout. Dependent of 

the selection is a full, none or only an initial extraction performed. 

For the Schematic only type just the schematic is considered like in the normal ADE 

optimization. If initial is chosen, the initial layout is extracted and the parasitic capacitors are 

added to the netlist which is simulated. This allows to include an approximated influence of 

the parasitics since they heavily impact the circuit performance. However, these parasitics 

are kept constant if even the devices and therefor the real parasitics change. The advantage 

of this type is that the layout doesn’t need to be a PCell and that it is less time consuming 

than the layout type. 

For the layout type the PCell is placed in each optimization cycle with the current parameter 

set, then extracted and included into the netlist which is simulated. This ensures that always 

the correct parasitics are used. Therefore, is it required that the DUT is a PCell. Even though 

it is more resource intensive it leads to the best results since no additional extraction and 

verification is necessary afterwards. 
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The field Run in Background defines if everything is executed in the current CIW, or in a new 

virtuoso which is started in the background. Therefore, the CIW is either blocked, or 

everything is performed in the new background CIW which requires additional resources. 

The optimization mode can be chosen between a local and a global optimization. For the 

local optimization one algorithm out of the four available ones must be selected. 

In addition, the evaluation mode must be chosen. The conditional mode avoids running 

unnecessary simulations and therefore provides a speed up. The full mode performs each 

simulation and hence requires more resources. 

The optimization must have at least one stop criterion, whereby three are available. The first 

one is reached if all specifications are met. The second one allows to define a time and the 

third one a simulation point limit after which the optimization is stopped. 

The corner model file contains all available process corners and is by default set to the one 

of the installed cadenv package. The Choose Corners button can be used to define the 

corners which should be used for the simulation. It opens the form shown in Figure 43.  

 

 

Figure 42: Optimization GUI optimization tab 
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The Choose Corners Form shows all available corners on the left and the selected ones on 

the right side. To select a corner from the available ones it is necessary to highlight it by 

clicking on it and use the “>” button. To deselect a corner the same can be performed using 

the “<” button. 

There is the possibility to add variables to certain corners. Therefore the “+” button can be 

used since it makes the fields on the bottom visible. Then the user can specify the variable 

and its value(s). To add it to one or more corners the user needs to highlight them in the right 

field and press the Add button. They will be added to the corners as it can be seen for the 

variable fo in Figure 43. That enables the designer to specify custom corners like minimal 

and maximal temperature, supply voltage etc. 

 

 

Figure 43: Choose Corner Form 

 

If the Layout or Initial optimization type from Figure 42 is selected the QRC/PVS and 

Netlisting tab can be used to define the according settings. 

 

All options regarding the QRC extraction and the for it needed PVS LVS check are defined in 

the QRC/PVS tab which is visible in Figure 44. 

The extraction type determines if only the resistances, or capacitors or both should be 

extracted from the layout. Depending on the selection different extraction and filtering options 

for QRC can be set. The rule set specifies the extraction rules which should be used. 
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The Technology Library File defines the used process technology and is used from the 

installed cadenv package by default. It is required from QRC for the technology information 

which is used for the extraction of the parasitic components. 

In the LVS QRC Rulefile the PVS LVS settings including the QRC files creation are set. By 

default it is used from the cadenv package. The performed LVS check depends on this file 

since it specifies which rules to use. 

 

 

Figure 44: Optimization GUI QRC/PVS tab 

 

The netlister is applied to create the netlist of the exacted layout view, which is then used for 

the simulation. Therefore, the settings can be defined in the Netlisting tab displayed in  

Figure 45. The selected options are directly fed in the si netlister tool. 

 

The Switch and Stop Views are used to set the environment options of the ADE setup. This 

means there it can be defined if specific views of the cells placed in the testbench should be 

used for the netlisting and hence for the simulation. Therefore, the usage of the extracted 

view can be chosen by adding av_extracted at the beginning of the switch views. 
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The temporary cell is needed to create the extracted view and the for it needed schematic 

and layout view. In this cell a schematic and layout view with the current device parameters 

is created for each optimization cycle. These are then used for the generation of the 

extracted view which is then netlisted with the settings defined above.  

 

 

Figure 45: Optimization GUI optimization tab 

 

After the options in all tabs are specified the optimization can be started via the Run button 

on the bottom of the GUI. Afterwards the results are displayed as described in chapter 5.4. If 

something is not set up correctly and the optimization cannot be performed an error message 

will open. 
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5.3 Created Data 

The run directory of the automated optimization is located at the following location. 

 

$WORK/rundirAutomatedOptimization/<runName> 

 

The directory structure of the run directory is displayed in Figure 46 where it is visible that 

each run has a separate sub run directory. Its name includes the start date and time as well 

as the optimization type. Inside are the log and temporal files created. Depending on the run 

options there are more or less files and folders created. The results are stored in the file 

optResultsTop3.txt and the log of the background virtuoso is in backgroundVirt.log. 

 

 

Figure 46: Optimization run directory content 

 

The run directory contains two sub directories with the same name but with either .0 or _full 

added. The first one is for the initial simulation and only if this one succeeds the full 

simulation will be started in the second directory. The initial simulation performs only one 

optimization cycle and stops afterwards. It is used to verify that everything was set up 

correctly. 

Runs } 
} Initial run 

} Full run 

} Global run directory 



 
57 

If a schematic only optimization was selected there are no further sub directories than the 

specific run directory. For an initial or layout optimization there is a run directory for each 

performed simulation, whereby the number at the end is continuously increasing. That is 

required due to the usage of the pre-run script since it needs to execute several steps which 

need their own data and run directories. For example, the Netlisting step creates the netlist, 

its run data and log file in the folder Netlist. 

 

The folder currentParameter contains text files with the current parameter sets, which are 

needed since only the changes of parameters from one cycle to another cycle are reported. 

Therefore, in order to place the PCell it is required to know the previous parameters as well. 

5.4 Output 

After the optimization finished successfully the results are displayed in the Optimization 

Results form shown in Figure 47. The three best results with the according parameters are 

presented in a descending order. 

For each result the name, value, status and set target is shown. This allows a quick overview 

if the specifications where satisfied or not. 

 

 

Figure 47: Optimization results GUI 



 
58 

In the testbench cell the view adexl_auto is created which was used for the optimization. 

After the run has finished it can be opened to get the detailed results and to plot the signals. 

Therefore, the latest history results must be loaded in ADE as shown in Figure 48. 

 

 

Figure 48: Loading of optimization results 

 

After the latest history was loaded it is shown in the ADE results windows as displayed in 

Figure 49. The results are placed in a decreasing order with the best one on top. 

For further information it is possible to right click the results and open the used netlist, or the 

created log file. 

 

 

Figure 49: ADE results window 

Results 
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6 Case Study: Divide-by-two Circuit 

To verify the optimization flow and the thereout gained improvements a case study on the 

divide-by-two circuit is conducted. Therefore, the three available optimization modes 

schematic, initial and layout are performed. Their output results are analyzed and compared 

with each other to illustrate the pros and cons of each method. 

6.1 Testbench 

The testbench of the divide-by-two circuit consists of the simplified VCO, the divider itself 

with its biasing and the buffer etc. with its supply as visible in Figure 50. The VCO and the 

bias are simplified to reduce the simulation time and computational resources. 

 

 

Figure 50: Divide-by-two circuit testbench 

 

The divider is the DUT which parameters are changed to satisfy the performance constraints. 

The VCO generates its input which is a mirror-inverted 32GHz sinusoidal signal. The output 

signal of the divider is connected to the buffer stage which is its load. The input frequency 

must be divided by a factor of two so that the circuit performs its desired operation. If that is 

not ensured for all corners a redesign is necessary. 
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6.2 Constraints  

The device parameters which are adjusted by the optimization algorithm must stay inside of 

certain boundaries so that the physical design of the circuit is feasible. Therefore, the 

parameter constraints in Table 3 are defined. The first is the bias current of the divider which 

can be swept between 1.0 mA and 2.0 mA. This parameter is special insofar that it can be 

also found in the output constraints below. This is due the fact, that it must be selected that a 

correct circuit behavior is given but should also be minimized to lower the power 

consumption.  

The other parameters are from the PCell of the circuit and define the widths of the 

transistors. Their boundaries ensure that the devices have a good matching and can be built 

in a symmetrical manner. 

Additionally, the start point of each parameter is set which is required for the optimization 

algorithms as reference point. As mentioned in chapter 2 it is recommended to choose the 

start point as good as possible in terms of the circuit performance. Therefore, the circuit 

knowledge and the results of previous simulations must be applied. 

 
Table 3: Divide-by-two circuit parameter constraints 

Parameter Constraint Start Point 

idivm 1m < x < 2.0m 1.375 mA 

WN_writeL 2.8µ < x < 4.8µ 3.5 µm 

WN_writeR 2.8µ < x < 4.8µ 3.5 µm 

WN_senseL 1.4µ < x < 2.4µ 1.5 µm 

WN_senseR 1.4µ < x < 2.4µ 1.5 µm 

WP 3.5µ < x < 5.5µ 4.0 µm 

 

The actual desired results of the optimization are defined with the output constraints. These 

set certain boundaries for the equations defined by the designer. 

The FreqPeak equations on the top must be exactly one which defines that the circuit is in its 

operational range and the basic function is given. Therefore, they are defined to be in the 

range of 0.99999 and 1.00001. 

VCM_masterdiv and Icc_masterdiv define the supply voltage and current respectively which 

are used to limit the power consumption of the circuit. 

The equations for dp and qp at the bottom are used to ensure that the signals are not 

distorted in order that the differential information can be calculated. Only the positive output 

of d and q is considered, since the negative is affected by the same influences and in the 

same manner as the positive.  
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Table 4: Divide-by-two circuit output constraints 
Name  Constraint Weight 

dm_FreqPeak 0.99999 < x < 1.00001 100 

qm_FreqPeak 0.99999 < x < 1.00001 100 

vcodiv_FreqPeak 0.99999 < x < 1.00001 100 

vcodiv_MagPeak 0.55 < x < 0.7 V 30 

VCM_masterdiv < 1.2 V 50 

Icc_masterdiv < 1.5m 30 

dp_Vpeakmax 0.9 < x < 1.0 V 50 

dp_Vpeakmin < 50 mA 80 

qp_Vpeakmax 0.9 < x < 1.0 V 50 

qp_Vpeakmin < 50 mA 80 

 

In Addition, each output has a weight assigned which defines how big its influence on the 

combined result is. That is necessary since if the first three FreqPeak equations are not 

satisfied the circuit is not dividing by two but by another factor. If that is the case all other 

constraints are meaningless since the main function is not given. Therefore, these equations 

have the highest weight what ensures that they are always satisfied. All other outputs have 

lower weights defined according to their importance. 

 

All simulations are performed for the ss as well the tt process corners to ensure that the 

divider functions properly even for the slowest MOS devices possible.  

 

The challenge of the constraint definition is on one side to define enough equations to assure 

the proper circuit function but on the other side not too much to limit the simulation time and 

the required computational resources. 

The same is true for the parameter constraints since they have a substantial influence on the 

optimization algorithm. It is recommended to analyze the circuit beforehand and only sweep 

reasonable parameters. Further, parameters which severely change the output (e.g.: 

multiples of a transistor) should be avoided since most local optimizers will struggle to find 

the best result. 
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6.2.1 Reference Point 

The reference point for the simulations is chosen according to the parameters displayed in 

Table 5. The device parameters are known to provide a reasonable performance and 

therefore can be used as a starting point for the optimization. 

 
Table 5: Divide-by-two circuit reference point parameters 

Parameter Value 

idivm 1.375 mA 

WN_writeL 3.5 µm 

WN_writeR 3.5 µm 

WN_senseL 1.5 µm 

WN_senseR 1.5 µm 

WP 4.0 µm 

 

The output results for the starting point are visible in Table 6. The circuit performs the 

division by two as the FreqPeak equations are exactly one. However, there are further 

improvements necessary since three constraints are not satisfied. The total performance 

error is 11.71% and should be minimized ideally to zero percent. 

 
Table 6: Divide-by-two circuit reference point output results 

Name  Status Results ss Results tt 

dm_FreqPeak Pass 1 1 

qm_FreqPeak Pass 1 1 

vcodiv_FreqPeak Pass 1 1 

vcodiv_MagPeak Near 710.8 mV 745.9 mV 

VCM_masterdiv Pass 1.125 V 1.05 V 

Icc_masterdiv Pass 1.375 mA 1. 375 mA 

dp_Vpeakmax Pass 973.8 mV 940.2 mV 

dp_Vpeakmin Fail 76.33 mV 60.41 mV 

qp_Vpeakmax Fail 1.17 V 1.104 V 

qp_Vpeakmin Pass -38.69 mV -37.13 mV 

Error [%]  7.98 % 3.73 % 
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6.3 Schematic only Optimization 

During the schematic optimization the widths of the transistors are modified in order to satisfy 

the output constraints. However, a closer look at the netlist reveals that multiple parameters 

of the standard MOS transistors are changed. This is due their dependency of the width 

and/or fold of the transistor. An example would be the two parameters as and ad which are 

the area of the source and drain. They are dependent on the width and fold of the transistor. 

The same is true for ps and pd which are the perimeter of drain and source. nrd and nrs is 

set as the source/drain resistance square which defines the resistance of the drain/source 

area and they are also dependent of width and fold. 

sa, sb and sd are STI parameters which define different STI spacings which can be seen in 

Figure 51. sa is the space from the poly of the left side to the end of the active area and sb is 

the one on the right side. sd is the spacing between the poly stripes. The sub source and 

drain areas as and ds 1-2 add up to the overall areas mentioned above. 

 

sa sb

sdsd

L

as1 ad1 ad2as2

W/fold

 

Figure 51: STI parameter 

 

The areas of source and drain are not only dependent to the width and fold of the transistor 

but also to the STI parameters. Equation (12) shows the detailed formula for the two areas 

and their dependences of other parameters. There are three cases which depend on the fold 

of the transistor. The first case is if the fold is one, where the area is the product of the width 

and sa. Dependent if the fold is even or odd two different cases apply. The formulas show 

that for an even fold there is one more source as drain connection and the same number for 

an odd fold. 
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 (12) 

 

The parameters from above are needed for the transistor model since they define the exact 

geometry of the device. For example, the area or perimeter of the source is crucial for the 

capacitance to nearby nodes. 

 

A global optimization was performed which required two hours of simulation time while 

applying five processes in parallel. This shows that this method is relatively fast and feasible 

for initial simulations to gather more insights of the circuit. The total amount of 706 points 

were simulated and which lead to the device parameters displayed in Table 7. It is visible 

that the layout size increased significantly since all parameters other than WN_writeL 

increased. 

These results where to be expected since if a transistor is increased it is possible to drive 

more current and can work at higher frequencies. However, with the transistor size also its 

parasitic components increase what could cause a severe issue since they will worsen the 

performance. Since they are not considered during the optimization the extraction performed 

in 6.3.1 is necessary to verify the physical design. 

 
Table 7: Divide-by-two circuit schematic optimization parameter results 

Parameter Value Change 

idivm 1.4 mA 1.82% 

WN_writeL 2.82 µm -19.43% 

WN_writeR 4.69 µm 34.00% 

WN_senseL 2.27 µm 51.33% 

WN_senseR 1.72 µm 14.67% 

WP 5.4 µm 35.00% 

 

If the circuit is built with the device parameters from above and supplied with a bias current of 

1.4 mA the performance results shown in Table 8 are achieved. As mentioned this the ideal 

schematic only result. 

It can be seen that all output constraints are satisfied and thus the circuit works properly. 

Therefore, the total performance error is zero percent.  
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Table 8: Divide-by-two circuit schematic optimization output results 
Name  Status Results ss Results tt 

dm_FreqPeak Pass 1 1 

qm_FreqPeak Pass 1 1 

vcodiv_FreqPeak Pass 1 1 

vcodiv_MagPeak Pass 629.6 mV 678.8 mV 

VCM_masterdiv Pass 1.06 V 983.1 mV 

Icc_masterdiv Pass 1.4 mA 1.4 mA 

dp_Vpeakmax Pass 933 mV 901.1 mV 

dp_Vpeakmin Pass -3.533 mV 5.695 mV 

qp_Vpeakmax Pass 998.7 mV 952.8 mV 

qp_Vpeakmin Pass -31.9 mV -38.64 mV 

Error [%]  0.00 % 0.00 % 

 

Figure 52 shows the graphical verification of the output trough the waveform results. On top 

the input signal is visible which should be divided by the factor of two. 

On the bottom the outputs d and q are displayed which have exactly the double periodic time 

and thus half of the frequency. The outputs are no ideal sinusoidal signals but sufficient for 

the connected buffer and regenerative circuits. 

 

 

Figure 52: Function verification through waveform results - schematic 
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As expected from the resulted parameters, in Figure 53 it is visible that the layout of the 

divide-by-two circuit clearly increased compared with the starting point. The required area of 

the divider increased by +10.17 % compared with the starting point. 

A good matching of the transistors as well their symmetrical placement can be achieved. 

 

 

Figure 53: Layout of the best schematic optimization result vs start point 

6.3.1 Extraction and Simulation 

To verify the results of the schematic only optimization it is required to perform an extraction 

of the physical design with the resulted device parameters. Therefore, the layout view is 

created and the parasitic resistors and capacitors are extracted. Afterwards a simulation is 

set up which uses the extracted view instead of the schematic of the DUT. 

The resulting output is displayed in Table 9 where it is visible that the circuit function is not 

provided at the slow process corner. In general, the circuit performance is not sufficient since 

nearly all constraints are failing. Therefore, a redesign is required in order that the circuit 

works correctly for both corners. 

This would need a new analysis of the circuit to generate a new parameter set. That is then 

used to create a new layout view which is then again extracted and simulated. Since the 

creation of the layout is usually done manually this provokes a major expenditure of time. 

  

Start point Best schematic optimization result 
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Table 9: Divide-by-two circuit extracted output results 
Name  Status Results ss Results tt 

dm_FreqPeak Fail 0 1 

qm_FreqPeak Fail 2 1 

vcodiv_FreqPeak Fail 0 1 

vcodiv_MagPeak Fail 45.79 mV 457.4 mV 

VCM_masterdiv Pass 1.1 V 1.014 V 

Icc_masterdiv Pass 1.4 mA 1.4 mA 

dp_Vpeakmax Fail 583.9 mV 753.5 mV 

dp_Vpeakmin Fail 75.63 mV 33.59 mV 

qp_Vpeakmax Fail 788.3 mV 760.1 mV 

qp_Vpeakmin Fail 476.4 mV 216.2 mV 

Error [%]  167.89% 44.82 % 

 

The results above show the significant influence of the parasitic components and the limits of 

the schematic only optimization. Therefore, it is necessary to include the parasitic influences 

or at least an approximation of them in the simulations. 

6.4 Initial Layout Optimization 

To avoid the redesign issue elaborated in the previous chapter and to limit the required 

resources at the same time an initial layout optimization can be used. 

Therefore, the capacitors of the initial layout are extracted and added to the netlist. This 

gives the advantage that the layout is not required to be a PCell and it is generally 

applicable. 

Figure 53 displays the master latch of the divider which is updated with the capacitors of the 

initial layout. It is visible that several capacitors are added to the schematic and even though 

each on its own has a small capacitance their general influence on the circuit is significant. 

 

Figure 54: Divide-by-two circuit master latch with initial capacitors 
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This enables to include an approximated influence of the parasitic components into the 

simulations without drastically increasing the netlist and thus simulation complexity. 

However, exclusively the parasitic capacitors are considered and they are only valid for the 

initial layout. That has the consequence, that the physical design needs a complete 

extraction and validation after the initial optimization finished and the layout was built. 

A global optimization which took around eighteen hours while applying ten processes in 

parallel was performed. In total 5815 simulations where carried out to gain the parameter 

results displayed in Table 10. In contrast to the schematic only optimization not all 

parameters increased, but some decreased in size due the approximated influence of the 

parasitic components. 

 
Table 10: Divide-by-two circuit initial layout optimization parameter results 

Parameter Value Change 

idivm 1.68 mA 22.18% 

WN_writeL 2.8 µm -20.00% 

WN_writeR 3.36 µm -4.00% 

WN_senseL 1.74 µm 16.00% 

WN_senseR 1.8 µm 20.00% 

WP 3.85 µm -3.75% 

 

The results of the simulation are visible in Table 11 where it is apparent that not all 

constraints could be satisfied. A total error of 1.98 % is remaining. All constraints are nearly 

reached, except the bias current since it has a high influence on the circuit but a low weight. 

 
Table 11: Divide-by-two circuit initial layout optimization output results 

Name  Status Results ss Results tt 

dm_FreqPeak Pass 1 1 

qm_FreqPeak Pass 1 1 

vcodiv_FreqPeak Pass 1 1 

vcodiv_MagPeak Near 658.1 mV 708.5 mV 

VCM_masterdiv Near 1.215 V 1.13 V 

Icc_masterdiv Fail 1.68 mA 1.68 mA 

dp_Vpeakmax Near 930 mV 897.1 mV 

dp_Vpeakmin Pass 32.26 mV 24.3 mV 

qp_Vpeakmax Pass 990.4 mV 956 mV 

qp_Vpeakmin Pass 45.63 mV 9.415 mV 

Error [%]  0.99 % 0.99 % 
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6.4.1 Extraction and Simulation 

In order to verify the obtained results an RC extraction of the divide-by-two circuit with the 

parameters of the initial optimization is performed. The resulting output is displayed in Table 

12 where it can be seen that still nearly all constraints are satisfied. 

 
Table 12: Divide-by-two circuit initial extraction results 

Name  Status Results ss Results tt 

dm_FreqPeak Pass 1 1 

qm_FreqPeak Pass 1 1 

vcodiv_FreqPeak Pass 1 1 

vcodiv_MagPeak Near 655.1 mV 708 mV 

VCM_masterdiv Near 1.235 V 1.15 V 

Icc_masterdiv Fail 1.68 mA 1.68 mA 

dp_Vpeakmax Near 923.9 mV 892.2 mV 

dp_Vpeakmin Pass 29.92 mV 22.28 mV 

qp_Vpeakmax Pass 986.8 mV 953.8 mV 

qp_Vpeakmin Fail 73.76 mV 31.01 mV 

Error [%]  1.11 % 1.05 % 

 

In comparison with the schematic only optimization, the influence of the full extraction is far 

less significant. This is because the parasitic capacitors are already part of the netlist and 

provide a good approximation. Especially, since the circuit architecture is fixed and only the 

widths of the transistors are modified the initial optimization is particularly feasible. 

 

The initial optimization type offers a good tradeoff between simulation resources and the 

output accuracy. Therefore, its usage is recommended for cells with moderate significance to 

gain improved parameters for the physical design. 

Additionally, it can be used to generate a good starting point for a local layout optimization of 

critical circuits. This avoids the necessity of a global layout optimization which is time and 

resource demanding. 

  



 
70 

6.5 Layout Optimization 

In order to completely avoid possible redesigns and to get the highest accuracy possible a 

local optimization of the physical design of the layout view is performed. Therefore, the PCell 

is each cycle placed with the current parameters and extracted. The resulting netlist is used 

for the simulations and thus includes the parasitic influences.  

A total of 242 points were completely simulated in a duration of approximately twenty-four 

hours. Figure 13 displays the resulting device parameters of the divide-by-two circuit. It can 

be seen, that in comparison with the initial optimization no parameter decreased, but all 

increased or stayed the same. This can be explained, since if the transistor is to small it 

cannot drive the connected load which is increased since all parasitic capacitors and 

resistors are considered during the simulation. 

 
Table 13: Divide-by-two circuit layout optimization parameter results 

Parameter Value Change 

idivm 1.68 mA 22.18% 

WN_writeL 3.5 µm 0.00% 

WN_writeR 4.092 µm 16.91% 

WN_senseL 2.14 µm 42.67% 

WN_senseR 1.95 µm 30.00% 

WP 4.21 µm 5.25% 

 

In Figure 14 the simulation results of the divide-by-two circuit applying the parameters from 

above are visible. The total error is reduced down to 1.37%. All constraints except the bias 

current and dp_Vpeakmax are satisfied. The maximum peak of the dp signal is very close at 

the constraint boundary so it can be accepted. Only the biasing is twelve percent above the 

selected limit. But as it is a secondary constraint and has the lowest weight of all constraints 

the result is valid.  

 

Since the RC parasitics are already considered during the optimization process no further 

extraction and validation of the physical design for the selected constraints is necessary. It 

would only lead to the same results. The acquired parameter can be used for further 

simulations and corner analyses which were not possible to be part of the optimization since 

of their complexity. 
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Table 14: Divide-by-two circuit layout optimization output results 
Name  Status Results ss Results tt 

dm_FreqPeak Pass 1 1 

qm_FreqPeak Pass 1 1 

vcodiv_FreqPeak Pass 1 1 

vcodiv_MagPeak Pass 626.8 mV 673.2 mV 

VCM_masterdiv Pass 1.191 V 1.107 V 

Icc_masterdiv Fail 1.68 mA 1.68 mA 

dp_Vpeakmax Near 900.4 mV 865.3 mV 

dp_Vpeakmin Pass 44.27 mV 33.09 mV 

qp_Vpeakmax Pass 953.1 mV 916.8 mV 

qp_Vpeakmin Pass 26.07 mV -513 µV 

Error [%]   0.54% 0.83 % 

 

In Figure 55 the waveform results of the input and output of the divide-by-two circuit applying 

the results of the layout optimization are visible. It is apparent that the input signal is divided 

by the factor of two and that the output signal is of good grade. This means the signal is not 

distorted and can be used by the connected circuits. 

 

 

Figure 55: Function verification through waveform results - layout 
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The change in the required area of the physical design is displayed in Figure 56. An area 

increase of 3.43 % is necessary which is applicable since the total size of the circuit is rather 

small.  

 

 

Figure 56: Layout of the best layout optimization result vs start point 

 

The optimization of the physical design which includes the parasitic influences in the 

optimization is proven to provide the best results. Especially for small but critical circuits it is 

recommended to apply this optimization type since the accuracy is unmatched by the others 

and it limits the required circuit validation. 

However, it requires high computational resources and simulation time. A global simulation 

will take several days so it must be verified if it is reasonable. If a local optimization can be 

applied the investment pays off since the circuit can be increased significantly and the 

simulation time is limited. 

Start point Best layout optimization result 
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7 Conclusion and Outlook 

Physical design always introduces parasitic components which significantly influence the 

circuit performance. There can be measures taken in order to reduce them, but they can 

never be eliminated because of the layer structure of the IC. Therefore, it is essential to 

consider them during the circuit design. 

Instead of spending unnecessarily extended design effort on the schematic level it is 

beneficial to include the physical design, as it contains all parasitic components. This 

however, requires at least an initial layout but provides more accurate simulation results. 

The ideal flow would replace manual creation of the layout by the application of ROD to 

generate a PCell. That can be used for a physical design optimization which includes all 

parasitic effects and provides the best output performance possible. If the DUT is not yet 

programmed in Skill or is not that critical, an initial simulation is recommended. It 

approximates the parasitic influences by including the parasitic capacitors of the initial layout 

into the simulation. 

To enable a general employment of the automated physical optimization flow a cadenv 

package is created. This installation package allows the designers to easily set up the 

optimization flow for different project environments. 

 

Additional features could be implemented in the future, like the possibility to probe sublevel 

currents to enable their usage in the output equations which are optimized. Further, the 

optimization flow could be directly integrated in ADE or a similar simulation environment. This 

would enable the employment of the simulation setups created by the designers. Without the 

need to start any other tool it would be possible to configure and run a layout optimization.  

Because of the potential of the physical design optimization, especially for critical RF circuits 

and the user friendliness of the GUI, it is to be assumed that it will be applied in the future for 

critical circuit designs. 
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