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Kurzfassung

Firmwareupdates werden immer wichtiger für Internet of Things (IoT) Applikationen.
Aufgrund der beschränkten Energieressourcen und der limitierten Bandbreite der Draht-
losverbindung ist es notwendig, die Menge an gesendeten Daten zur Durchführung von
Firmwareupdates zu reduzieren. Die Menge an Änderungen im Code ist üblicherweise
gering, bezogen auf die Firmwaregröße. Daher kann die Datenmenge deutlich verringert
werden wenn man nur die Änderungen im Code überträgt.

Das Ziel dieser Arbeit ist die Entwicklung einer effizienten und zuverlässigen Over-
The-Air-Updatelösung, welche in Umgebungen mit beschränkten Ressourcen integriert
werden kann. Es existieren bereits zahlreiche Algorithmen zur effizienten Kodierung von
Änderungen der Firmware in ein Delta-Image. Die erreichbare Kompressionsrate solcher
Delta-Algorithmen ist jedoch nicht ausreichend, da kleine Änderungen im Code meistens
große Änderungen in der generierten Firmware verursachen. Im vorgestellten Konzept
wird ein Ansatz zur Erhöhung der Ähnlichkeit verschiedener Firmwareversionen präsen-
tiert. Erreicht wird dies durch eine Reduktion der Verschiebungen von Programmsektio-
nen innerhalb der Firmware, welche durch Codeänderungen ausgelöst werden. Ein weiteres
Problem bei Firmwareupdates in IoT Umgebungen sind die limitierten Ressourcen, welche
am Sensor verfügbar sind. Dieser muss in der Lage sein sich selbstständig zu aktualisieren,
ohne die Verwendung von zusätzlicher Hardware. Des Weiteren dürfen unvorhergesehene
Ereignisse den Sensor nicht in einen undefinierten Zustand bringen. Diese Arbeit präsen-
tiert ein Konzept, welches sicherstellt, dass am Sensor zu jedem Zeitpunkt zumindest eine
valide Firmware verfügbar ist.

Die Evaluierung im Zuge dieser Arbeit wurde mit Firmware durchgeführt, welche in
einer produktiven IoT Umgebung im Einsatz ist. Das präsentierte Konzept zur Erhöhung
der Ähnlichkeit verschiedener Firmwareversionen verbessert die Kompressionsrate existie-
render Delta-Algorithmen um 88%. Das präsentierte Updatesystem stellt sicher, dass End-
geräte durch Fehlerfälle nicht unbenutzbar werden.
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Abstract

Firmware updates are becoming more and more important in Internet of Things envi-
ronments. Due to energy constraints and low-bandwidth wireless links, it is necessary
to reduce the amount of transmitted data required to perform firmware updates. Since
changes are usually small in terms of code size, transmitting only the changed parts of the
firmware reduces the amount of data significantly.

The goal of this thesis is to develop an efficient and reliable Over-The-Air update
solution that can be integrated into resource-constrained environments. There are already
numerous algorithms that efficiently encode the changed parts of a firmware into a delta
image. Nevertheless, the achievable compression rate with these delta algorithms is not
sufficient for real world scenarios, because small changes in code often cause big changes
in the generated firmware image. This thesis presents an approach that increases the
similarity of different firmware versions by mitigating the effects of relocated program
sections due to code changes. Despite the high efficiency requirements, the available
resources of end devices are usually very limited. Sensors must be capable of updating
themselves without any additional hardware. Furthermore, unexpected events should not
cause the end devices to remain in an undefined state. This thesis also presents a concept
for processing updates that ensures the presence of at least one valid firmware on the
sensors at any point during operation.

In this thesis, an evaluation was done using firmware that is used in real environments.
The presented similarity improvements concept increases the average compression rate of
existing delta algorithms by 88%. The presented update system additionally ensures that
end devices can recover from failures.
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Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) is a rapidly growing industry field. The number of connected
devices is growing exponentially, which means engineers have to face new challenges every
day [AFGM+15, AIM10]:

• Requirements often change and new features may become necessary when products
are already out in the field.

• When security weaknesses of IoT devices are exposed, they need to be fixed as
quickly as possible.

• Time to market is a critical factor in the industry nowadays. The resulting shorter
development cycles lead to more undiscovered bugs at the time of rollout.

The product’s role, capabilities and functionality are mainly defined by the software run-
ning on the Embedded System (ES). This means that the possibility of updating this
software while the device is in use at the customer’s site would be a great benefit of the
product and would provide much more flexibility [JS14]. IoT environments often consist
of thousands of devices, which may not be physically reachable once deployed out in the
field. Thus, approaches like standard serial programming, which requires a wired connec-
tion, are not suitable [MH13]. A solution capable of wirelessly updating many devices at
once is required.

1.2 Goals

Existing optimization approaches are mainly focused on efficient and reliable image distri-
bution in multi-hop Wireless Sensor Networks (WSNs). The goal of this thesis is to design
an Over The Air Update (OTA) solution that is used in star topology networks, such as
LoRa [All15], which reduces the complexity of the distribution challenges. However, reduc-
ing the transmission data needed to perform updates is a very important requirement for
all types of WSNs, especially for LoRa networks. Sensor nodes often have limited power
sources (for example, battery powered). The goal of this thesis is to develop an efficient
and reliable OTA solution that can be deployed in a wide range of IoT environments,
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CHAPTER 1. INTRODUCTION 11

which use resource-constrained devices and lossy, low-bandwidth network technologies for
communication. For efficient delta image generation, the so-called Delta-Generator with
Offset (DGO) algorithm [Ast19] should be integrated in the proposed OTA solution.

1.3 Problem Statement

There are several issues related with the defined goals that have to be solved within this
thesis:

• Resource Constrained Devices: Sensors used in IoT applications mostly have
limited energy resources. To provide a sufficient sensor lifetime, low-power MCUs,
which have limited memory and computational power, have to be used. In order to
keep the cost per device to a minimum, firmware updates should be possible without
any additional hardware. Existing solutions use external memory or even separate
hardware components to process firmware updates.

• Reliability: Once deployed in the field, sensors are often physically inaccessible.
The possibility of the target device ending up in an undefined state after updates
have been performed, has to be avoided. The sensor should be able to recover from
invalid update data and unexpected events like a reboot during updates.

• Efficiency: Transmitting data causes high energy consumption for sensors. When
firmware updates require a large amount of data to be transmitted, the lifetime
of the sensor may be drastically reduced. The used wireless network technologies
can only transmit a limited amount of data in a certain time, due to regulatory
restrictions and low bandwidth. The distribution time for firmware updates should
be kept to a minimum, additionally the network should be able to continue its normal
operation mode while update data is distributed. Furthermore, the downtime of a
sensor should be minimized during update in order to prevent a quality of service
degradation.

• Flexibility: The OTA solution should provide the possibility of replacing every
component of the firmware image that requires changes. Furthermore, the solution
should be as platform independent as possible and should not be restricted to usage
by a specific Operating System (OS). The solution should also be deployable on
Microcontroller Units (MCUs) which do not use any OS.

1.4 Outline

Chapter 2 presents existing solutions for OTA. They are grouped into four basic ap-
proaches: Native Approach, Modular Design, Virtual Machines and Incremental Updates.
Chapter 3 describes the structure and the concept of the presented OTA solution. At the
beginning, an overview of the whole update system is provided. The following sections then
describe the different components, such as similarity improvements, delta image encoding
and target device processing. Chapter 4 provides further details on the implementation of
the presented update components. Chapter 5 evaluates the OTA solution. Initially, the
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developed simulation framework is presented, then the efficiency of the developed simi-
larity improvements approach is evaluated in the rest of the chapter. Finally, Chapter 6
concludes this thesis.



Chapter 2

Related Work

A lot of research was already done regarding Over The Air Updates (OTAs). The primary
focus in these publications was laid on how to minimize the necessary data required for
processing updates on the target nodes and how to efficiently distribute the update data
in the Wireless Sensor Network (WSN). Published dissemination protocols mainly focus
on multi-hop sensor networks where code distribution is more complex compared to star-
topology based sensor networks. The OTA solution presented in this thesis is intended
for usage in Long Range Wide Area Network (LoRaWAN), a star-topology based sensor
network. The focus in this chapter will be mainly laid on reducing the number of bytes
to transfer for performing updates (efficient encoding) and existing software designs for
resource constrained sensors, which contribute to efficient encoding. Existing solutions
can be grouped into four basic approaches as shown in figure 2.1.

The most primitive solution is the Native approach. When a firmware update is
desired, the whole image containing the new firmware is transmitted to the sensor and
replaced with the old firmware. A more sophisticated approach is the Modular Design.
The sensor firmware is grouped into a replaceable part containing the application code
and a non-replaceable part containing system software such as OS, dynamic loader and
other software parts, which do not need to be updated. Another approach is the usage of
Virtual Machines (VMs) on resource constrained sensor devices. In this approach, the non-
replaceable part is extended with a VM or agent system on top of the OS. This enables to
execute more compact and higher abstracted code (bytecode) on the sensor node. When
application updates are desired, only the bytecode containing the changed application
logic needs to be transmitted to the sensor node. Incremental updates make use of the
fact that under normal conditions, only small parts of the code actually change. In this
approach, only the changes between the new and old firmware version are transmitted
to the sensor node. After transmission, the sensor node reconstructs the new firmware
version using the transmitted diff file and the old firmware-version, which already resides
on the sensor node.

Sections 2.1 to 2.4 provide insights into existing solutions using the four basic ap-
proaches illustrated in figure 2.1. Some of these solutions also are mixing the approaches
shown in figure 2.1. Section 2.5 compares the existing solutions with each other.

13
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Figure 2.1: Basic Approaches for performing OTA in IoT Environments.

2.1 Native Updates

Updating sensor nodes by distributing the whole image is a simple but yet very flexible
way to perform Over The Air Updates. The number of solutions where native updates
are performed, is very scarce. This is not surprising due to the bad performance and
efficiency compared to more sophisticated approaches as described in section 2.5. The first
solution presented in this section is XNP [Incar, Manar]. XNP is the network programming
implementation provided by the TinyOS 1.1 release [LMP+05]. It is the first solution that
enables OTAs for devices equipped with TinyOS. Due to the missing support of multi-
hop distribution in XNP, Deluge was introduced for TinyOS [HC04]. Deluge enables to
disseminate the firmware update packets in multi-hop sensor networks. Another native
update solution is Stream [PKB07]. Stream reduces the amount of update traffic by
preinstalling the reprogramming protocol on the sensor nodes before they are used out
in the field. In fact, Stream could also be seen as Modular Design approach because the
reprogramming protocol is non-replaceable, which reduces the update size compared to
Deluge. Another possibility to further reduce the update size is to apply code compression
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on the transmitted image [TDV08]. All solutions presented in this section are part of Tiny
OS or developed as extension for it. In the found solutions, the preparation mechanism for
images to be distributed is always pretty similar as shown in figure 2.2, only the encoding
step may differ in the existing solutions.

Firmware Source 
Code (C, nesC, …)

Compiler Linker

Packet Encoder OTA Data

Assembly Code 
(Relocatable)

Final Executable 
(Machine Code)

Figure 2.2: Firmware-Update Data Generation for the Native Approach.

2.1.1 Crossbow Network Programming (XNP)

XNP enables Wireless In-Network reprogramming for multiple target devices by sending
the whole image using broadcast messages [Incar, Manar]. Following reprogramming steps
are performed:

• Download Phase

• Query Phase

• Reprogramming Phase

In the Download Phase, the update data is sent from the base station to the sensors via
broadcast messages. The sensor stores the received data on the EEPROM. The Download
Phase is initialized from the base station by sending a ”download start message” multiple
times. The sensors can accept the update by sending back an acknowledge frame to the
base station. In the Query Phase asks the base station the sensors if any packets are
missing. Each sensor scans the EEPROM and requests retransmission in case parts are
missing. Other sensors, which listen to the retransmission, can also use the packets for
filling holes. In the Reprogramming Phase the sensor first checks the new firmware in
the EEPROM for correctness. When the firmware is valid, control to the bootloader is
transferred. The bootloader then copies the code from the EEPROM to the program
memory and reboots the system.

2.1.2 Deluge

Deluge [HC04] is the standard reprogramming protocol included in TinyOS. Same as
XNP, it also transmits the whole image for performing updates. The main improvement
compared to XNP is the support of distributing firmware updates in multihop networks.
Deluge consists of several software modules, which are shown in Figure 2.3. Deluge uses
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Figure 2.3: Code Structure of Deluge.

Drip [TC05] in order to disseminate command messages to the entire network for start-
ing/stopping the distribution process of the image. Drip is based upon Trickle, a protocol
for maintaining code updates in WSNs [LPCS04]. In Trickle, the sensors stay up-to-date
by occasionally broadcasting a code summary to the neighbour nodes. In Deluge, this
protocol is extended in order to support distribution of large data objects. Data objects
(i.e., code image) are distributed by using a three way handshaking mechanism to ensure
the complete delivery:

• Advertisement (ADV)

• Request (REQ)

• Code Transfer (DATA)

Several other solutions like MNP [KW05] and Freshet [KPB+08] use a similar ADV-REQ-
DATA handshake mechanism for code distribution. In Deluge, distributed code images
(data objects) are divided into a set of fixed-size pages. Furthermore, each page consists of
a number of packets that are transmitted. Deluge uses a Volume and Block Manager for
handling erase, read and write operations on the external and internal flash memory. The
Reprogrammer Guard is responsible for ensuring that the sensor is capable of rebuilding
and loading the received new image.

Due to the design of Deluge, the energy efficiency in real world applications where
nodes are mainly battery powered, is suboptimal. Deluge is designed to operate over
always-on links, the performance for distributing code over low-power links is very poor
as shown in MobileDeluge [ZNV+14]. MobileDeluge was designed to overcome the above
weaknesses of Deluge. At first, one-hop network reprogramming is processed instead of
multi-hop. In order to reach all nodes in the WSN, the base-station is mobile. The mobile
base communicates with the currently reachable nodes on a different channel in order to
avoid interference with other nodes. The nodes in range and the mobile base also disable
the low-power mode in order to allow a fast and efficient transmission of the new code
image.
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2.1.3 Stream

Stream [PKB07] was developed in order to reduce the transferred code size compared to
Deluge by pre-installing the reprogramming protocol on the node before it’s used out in
the field. This is achieved by splitting the software into two images:

• Stream Reprogramming-Support (Stream-RS)

• Stream Application-Support (Stream-AS)

The Flash memory is segmented into multiple images, Stream-RS and Stream-AS are
stored in two different image areas. These two images are compiled and linked completely
independent from each other. When changes to the Stream-AS image are applied, no
modifications to the Stream-RS image have to be done. The Stream-RS image contains
the reprogramming protocol and is pre-installed on each node before deployment. Stream-
RS builds on Deluge, it uses a three-way-handshake for hop-by-hop code dissemination.
In Stream, the replaceable image contains Stream-AS, TinyOS and the application logic.
Stream-AS is generic and can be added to any existing, Tiny-OS based application by
just inserting two lines of code. The Stream-AS logic is responsible for switching to the
Stream-RS image when any code update related message is sent to the sensor.

2.2 Loadable Modules (Modular Design)

Modular design solutions enable to replace only modules that have been actually modified
instead of replacing the whole application when updates are performed. The firmware is
grouped into a replaceable part and a non-replaceable part. The replaceable part consists
of several modules that can be exchanged independent from each other when updates
are performed. The non-replaceable part contains the core logic, such as the Operating
System (OS), dynamic loader and other core components. The replacement of loadable
modules is handled by the core logic. Solutions like Contiki [DGV04], FlexCup [MGL+06]
and Elon [DLW+10] use runtime relocation in order to dynamically load modules into
the existing application. Modules, transmitted for updates, contain relocatable code and
additional metadata required for relocation. The system core dynamically links the trans-
mitted modules into the running application using the transmitted relocatable code and
the metadata. A lot of modular design solutions require to send a lot of metadata (re-
location entries, symbol tables, etc.) for updating desired modules. In SOS [HKS+05]
the amount of metadata is reduced by generating position independent binaries for each
module. Another drawback in solutions like Contiki, SOS and Flexcup is the extensive
usage of the flash memory. To address this issue, Elon places and executes the loadable
modules in RAM. Some concepts in modular design solutions are also used for incremental
updates. R2 [DLC+13] and R3diff [DMH+13] use relocatable code in order to improve the
similarity between different firmware versions (further described in Section 2.4).

2.3 Virtual Machines

Interpretable code executed on Virtual Machines (VMs) is usually much more compact
than corresponding native code. Thus, running virtual machines on sensor nodes would
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reduce the energy cost for processing OTAs significantly. [CPS07] provides an overview of
existing virtual machine solutions that are deployable on resource constrained devices. In
this paper, the existing VM solutions are classified into two different types: Middleware
level VMs (Mate [LC02], VM* [KP05b], ...) and system level VMs (TinyVM [Sol00],
Squawk [SCC+06]). Middleware level VMs follow the classical model of VMs that are
positioned between OS and application layer in the software stack (as shown in Figure
2.1). System level VMs substitute the entire OS. Even though processing OTAs on VMs
is very efficient in terms of transmission cost, they have several drawbacks which makes
them probably a bad choice in most WSNs. The execution of VM code is less efficient
than native code. The energy consumption will always be higher in sensors equipped with
a VM compared to sensors that execute efficient native code.

2.4 Incremental Updates

In this section, several approaches for performing incremental updates will be introduced.
Incremental updates make use of already existing firmware running on the target device
(sensor). Instead of transmitting the whole image, only the delta between the old firmware,
already available on the target device, and the desired new firmware is transmitted.

Incremental 
Updates

Delta Image 
Generation

Memory 
Organization

Image 
Reconstruction

Delta Image 
Distribution

Similarity 
Improvements

Delta Encoding

SensorHost, Server

Figure 2.4: Components for applying Incremental Updates.

Figure 2.4 provides an overview which components are required for incremental up-
dates. These components are further described in following subsections. Existing solutions
for generating delta images are presented in [Ast19]. Similarity improvements are modi-
fying the generated firmware in order to further reduce the resulting delta size. Existing
solutions are presented in Section 2.4.1. After receiving the delta image, the sensor-node
reconstructs the new firmware version using the transmitted delta image and the old
version, which is already available on the sensor. The memory organization and the re-
construction process are highly dependent on the steps performed at the server. In Section
2.4.2, existing memory layouts and corresponding solutions for image reconstruction are
further explained.
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2.4.1 Improving Similarity

An efficient delta generation algorithm reduces the amount of bytes to be transmitted for
performing OTAs significantly. However, a lot of existing solutions still claim that the
resulting delta size is much bigger than expected in most cases. Even small changes in
code often result in large delta size. This is caused by address shifts in the final executable
code. Adress shifts are caused by relocated sections on Flash or RAM. A lot of instructions
inside a firmware are vulnerable to address shifts. This was analyzed in Reijers [RL03]. The
analysis showed that 16% of all instructions inside their example firmware were vulnerable
to address shifts. This means that address shifts shouldn’t be ignored when incremental
updates are executed on resource constrained devices. The impact of address shifts on
the resulting delta size can be reduced by applying similarity improvements between the
version to update and the old version, which is executed on the target sensor. Table 2.1
compares existing solutions for improving similarity between different firmware versions.
All the existing solutions can be grouped into four approaches:

• Slop Regions: Inserts spacings between sections.

• Indirection Table: Redirects function calls by using a fixed positioned table.

• Relocatable Code: Replaces addresses inside instructions with a constant value.
Resolves addresses directly on the sensor by using the transmitted metadata, which
contains the relocation entries.

• Assembly Modifications: Modifying executable assembly code in order to reduce
address shifts.

Following subsections will provide a more detailed overview of these approaches including
their advantages and drawbacks.

Indirection Table

Indirection tables are used for mitigating the effects of function shifts on the resulting
delta image size. This approach is used in solutions like Zephyr [PBM09] and Hermes
[PB12]. The concept behind indirection tables is shown in Figure 2.5. On the left side,
the effects of function shifts on instructions is shown, fun1 and fun2 are relocated in the
new version. Every call instruction in the new version, which points to one of the relocated
functions, has a changed target address. A single relocated function can cause dozens of
address changes when the function is called from multiple locations in code. In order
to reduce these address changes, the call instructions are redirected using an indirection
table. For each function inside the firmware, a fixed positioned entry in the indirection
table is created. Each entry in the indirection table must be kept on the same memory
location for the whole lifetime of the sensor. Each call target address is replaced by its
corresponding indirection table entry. This is shown in Figure 2.5 on the right side: Call
instructions pointing to fun1 will be redirected to loc1, call instructions pointing to fun2
will be redirected to loc2.

Due to the fact that usually functions are called from multiple locations inside a
firmware, using indirection tables lead to smaller delta size. When functions are relo-
cated, only the corresponding target addresses inside the indirection table need to be
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Name Year Compared To Approach

Reijers [RL03] 2003 None Slop Regions
Relocatable Code

XDelta [KP05a] 2005 None Slop Regions

Zephyr [PBM09] 2009 Stream, RSync Indirection Table

Hermes [PB12] 2012 Deluge, Stream, RSync,
Zephyr

Indirection Table

Qdiff [SAH12] 2012 Deluge, Stream, RSync,
Zephyr, Hermes, Elon

Slop Regions

R2 [DLC+13] 2013 Zephyr, Hermes, RMTD Relocatable Code

R3diff [DMH+13] 2013 Stream, Zephyr, Hermes, R2 Relocatable Code

Delta Generator
[KB16b]

2016 R3diff Slop Regions

Trampoline
[ZAZC16]

2016 RSync, Zephyr Assembly Modifications

LiRep [QHQ16] 2016 Deluge, Hermes Assembly Modifications

Table 2.1: Comparison of different Solutions for Similarity Improvements between different
Firmware Versions.
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Figure 2.5: Improving Similarity of different Firmware Versions using Indirection Tables.

changed. In Zephyr [PBM09], the indirection of call instructions are applied in the linking
stage. This means that no modifications in the source code are necessary. The indirection
table approach presented in Zephyr has several drawbacks: Each call indirection creates
execution overhead (e.g., 8 clock cycles on the AVR platform) for the MCU. This over-
head accumulates for each function call that is executed on the running program. Another
drawback is that only call instructions are handled by indirection tables. For example the
effects of data shifts in the program memory or shifts of constants on flash wouldn’t be
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mitigated using indirection tables.

Hermes [PB12] is a solution that is built upon Zephyr including various improvements
in order to eliminate the drawbacks mentioned before. Data shifts in the program memory
are avoided in Hermes by organizing global variables into fixed positioned structs. This
is achieved by applying software modifications before compilation stage. Another im-
provement compared to Zephyr is the removal of indirections before execution of the new
firmware version. In Hermes, the bootloader is responsible for loading the reconstructed
new image from external memory into the internal flash. The reconstructed new image is
kept on external flash including its indirection table. During the image loading procedure,
the bootloader eliminates all indirections by using the exact function address from the
indirection table. Although Hermes includes several optimizations compared to Zephyr,
there are still several problems arising with this approach: Hermes still only handles shifts
on call instructions. Shifts on flash may have also effects on other instructions like relative
jumps, accesses to constants and others. Another problem is the elimination of indirec-
tions by the bootloader, which requires the ability to locate call instructions inside the
new firmware. This is not simple because the instruction-sets of most MCUs have varying
length. The elimination of indirections is not further described in Hermes. The bootloader
maybe has a simple disassembler implemented in order to locate call instructions.

Slop Regions

Using slop regions, is an approach in order to minimize shifts of sections in code. Indirec-
tion table approaches try to mitigate the effects of function shifts, slop region approaches
try to avoid them by inserting placeholders between sections in code. The basic idea of
slop regions is shown in Figure 2.6. Different change cases of the initial program are illus-
trated: Modification of existing sections, insertion of new sections and removal of existing
sections. In the upper half of Figure 2.6, no slop regions are inserted between the sections.
Each change case causes shifts of sections, which results in address changes for several
call instructions. For example when section fun1 is modified and it’s size increases by
50 bytes, all sections placed below fun1 are shifted down by 50 bytes respectively. These
shifts of sections can be avoided by adding slop regions between the code sections in the
initial program. This is shown in the lower half of Figure 2.6. Modified sections can either
grow or decrease in size. In case of increasing size, the modified section grows into the
following slop region. The size of the slop region decreases accordingly in order to preserve
the location of all sections placed below. When the size of a modified section decreases,
the following slop region increases it’s size accordingly. New sections are either placed into
existing slop regions or at the end of the memory when no slop region has sufficient space.
Removed sections are simply replaced by slop regions.

Solutions that use slop regions for similarity improvements of different firmware ver-
sions have two major drawbacks:

• Inefficient usage of memory (memory fragmentation).

• Size of modified section increases beyond the slop region below.

Memory fragmentation cannot be prevented when slop regions are used. In the worst case,
the new firmware doesn’t fit into the memory anymore. In this case, the sections must be
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rearranged and new slop regions must be created between the rearranged sections. This
would lead to a large delta image because the sections get relocated and lots of address
shifts occur. The second drawback, mentioned above, is solved by most solutions that
use slop regions. In Reijers [RL03], sections get relocated when a modified section grows
beyond the slop region. The effects of address shifts on the resulting delta size are reduced
by adding an additional delta command called patch-list. In XDelta [KP05a], modified
sections are relocated when they grow beyond the slop regions. This approach ensures that
all sections below the modified sections retain their previous position. In XDelta, address
shifts are not prevented for modified sections that become relocated, but still, the number
of address shifts is very low compared to Reijers where all sections get relocated that are
positioned below modified sections that grow beyond the slop space. Another approach
that uses slop regions is Qdiff [SAH12]. In this solution, the part of the modified section
that doesn’t have sufficient space inside the following slop region is placed at the end of the
memory. A call instruction is inserted into the modified section, which retains the same
position. This call instruction points to the relocated part at the end of the memory. Qdiff
is thus modifying the assembly in order to improve similarity. This approach is similar
to the solution presented in Trampoline [ZAZC16]. Qdiff also changes the layout of the
global variables in RAM (.bss and .data sections). This layout-change prevents shifts
inside the Random-Access Memory (RAM) when variables are added or removed. Besides
the inefficient usage of memory, slop regions efficiently improve the similarity of different
firmware versions. Some publications claim that fragmented memory increases the energy
consumption of MCUs. In [OK16] an analysis regarding this claim was done. The results
show that fragmented memory in fact requires more energy, but not unacceptably more.
A realistic scenario in this analysis shows an increase of only 1.4% compared to non-
fragmented memory.

Relocatable Code

The idea of relocatable code is to make all references to symbols the same. The purpose
of symbols is to resolve the position of functions, global variables, constants on flash
and others. In R2 [DLC+13], the target addresses of all instructions, which are resolved
using symbols and relocation entries, are set to a constant value. This is shown in Figure
2.7 where the target addresses of fun1 and fun2 are replaced with 0x000 inside the call
instructions. Relocatable code has a big advantage when used for incremental updates:
Rearrangement of sections in code has no impact on the delta size because all absolute
addresses are replaced by a constant and thus won’t change in different firmware versions.
Relocatable code is a common technique used in dynamic linking and loading solutions
(described in section 2.2). In R2, this technique is used to improve the program similarity.
Relocatable code is not executable because the target addresses are not resolved yet.
When firmware updates are performed using relocatable code, additional metadata must
be transmitted to the target sensor node in order to make the code executable. In R2, the
metadata contains the relocation entries as shown in Figure 2.7. For each position in code
where the target address was replaced by 0x0000, a relocation entry is generated. Using
the relocation entries, the bootloader is able to insert the actual target address when the
reconstructed image is loaded from external memory into the internal flash. In Figure 2.7
for example, 0x8000 is inserted at pos1 and pos2, and 0x8100 is inserted at pos3.
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Figure 2.6: Improving Similarity of different Firmware Versions using Slop Regions.

Relocatable code covers more types of reference instruction types than indirection table
based approaches. Compared to indirection tables, the size of metadata is much higher.
For each reference instruction, a relocation entry is needed. This will result in a large
amount of metadata for complex programs. In R2, this problem is addressed by using
additional delta commands specifially designed for efficient delta encoding of relocation
entries. Nevertheless, the amount of metadata that must be transmitted when performing
updates is still too high as described in R3diff [DMH+13]. In order to further reduce the
metadata size, the solution presented in R3diff only transmits the symbol table and a
bitmap instead of the relocation entries. The approach of R3diff is shown in Figure 2.7:
Instead of placing a constant into the reference instructions, the symbol table index is
inserted. Using the symbol table index, the bootloader is able to locate the actual target
address inside the symbol table. In Figure 2.7 for example, symbol index #1 refers to
address 0x8000 (fun1) and symbol index #2 refers to address 0x8100 (fun2). The bitmap
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Figure 2.7: Improving Similarity of different Firmware Versions using Relocatable Code.

is required for the bootloader in order to locate the positions in code where symbol indexes
have to be replaced by the real target address. Due to the 16-bit architecture of the used
MCU in R3diff, each bit in the bitmap maps 2 bytes inside the memory. This leads to a
bitmap size m of n/16, where n is the code size. Compared to R2, the amount of metadata
is efficiently reduced in R3diff. Yet some aspects regarding the transmission of the symbol
table and the bitmap are unclear in the presented paper: Does R3diff transmit the whole
metadata for each update or is the delta algorithm applied to the metadata as well? If
the metadata is inlcuded in the delta generation phase there are still some concerns. In
relocatable code approaches, reference instructions often are relocated in different firmware
versions. This causes a lot of changes inside the bitmap for every firmware version which
leads to larger delta files.

Assembly Modifications

In LiRep [QHQ16] and Trampoline [ZAZC16], solutions are presented that preserve sim-
ilarity by modifying the assembly executed on the target node. LiRep introduces the
concept of in-situ code modifications where the code executed on flash is directly modified
instead of reconstructing the image on the external flash. This reduces the necessary en-
ergy for rebuilding the new image compared to other solutions like R3diff [DMH+13] and
others. LiRep defines three types of update blocks: code insertion, code removal and code
modification. In case of code modifications, a single section on flash may is split: One
part of the modified section remains on the same position and the other part is positioned
at the end of the code. This requires to insert jump instructions in order to preserve the
execution flow, otherwise the node would end in unexpected behaviour. The solution pre-
sented in [ZAZC16] uses a similar approach extended with trampolines. Trampolines are
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used in order to avoid consistency problems when currently running code is updated. The
main target of the solution presented in [ZAZC16] is to minimize the downtime of nodes
while updates are performed. Although these approaches seem to be promising, they have
very high complexity to implement and cause massive fragmentation (single sections are
split). Also the reliability is questionable because code that is currently being executed,
becomes modified. In LiRep for example, there was no explanation what happens if the
code part, which performs the update, is modified using in-situ modifications.

2.4.2 Memory Organization and Image Reconstruction

Existing incremental update solutions can only be applied on platforms where correspond-
ing memory storage is available. Some of the existing solutions require additional external
memory while others only need the MCUs internal memory for processing updates. In
Figure 2.8 different types of memory layouts are shown. In following subsections, the
different memory layouts and required image reconstruction considerations are described
in more detail. Existing incremental update solutions are mainly designed for one specific
memory layout. Nevertheless, most of the presented approaches could also be modified in
order to support different memory layouts while others can only be used when external
memory is available. This is shown in table 2.2.
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Figure 2.8: Types of Memory Layouts used in Incremental Update Solutions.

External Memory

Equipping sensors with external memory in order to process incremental updates has
several advantages: The received delta image can be buffered in external memory. This
enables the main application to continue execution while the delta image is received. An-
other advantage is that external memory is usually non-volatile. In case of an unexpected
device reboot while receiving the delta, the transmission of the delta doesn’t have to be
restarted from the beginning in contrast to storing deltas in RAM. Solutions like Zephyr
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Solution External Memory Dual Image Single Image

Reijers [RL03] Yes Yes* Yes*

XDelta [KP05a] Yes* Yes* Yes

Zephyr [PBM09] Yes Yes* Yes*

Hermes [PB12] Yes No No

Qdiff [SAH12] Yes Yes* Yes

R2 [DLC+13] Yes No No

R3diff [DMH+13] Yes No No

Delta Generator [KB16b] Yes* Yes* Yes

Trampoline [ZAZC16] Yes* Yes* Yes

LiRep [QHQ16] Yes* Yes* Yes

Table 2.2: Supported Memory Layouts of different Incremental Update Solutions (Yes*....
Modifications necessary for support).

[PBM09] and Hermes [PB12] additionally place the reprogramming logic on the external
memory. The reprogramming logic doesn’t have to be included into the application image,
the node receives a command to reboot from the reprogramming component when updates
are pending. While adding the reprogramming logic to external memory reduces the size
of the application image, the main application is halted for the whole update process.
Furthermore, updating the reprogramming logic itself is not possible with approaches like
Zephyr and Hermes. Using external memory enables to store multiple firmware versions
simultaneously and provides simpler image reconstruction compared to other memory lay-
outs. The new firmware can be reconstructed directly on the external memory. When
the reconstruction of the new firmware is finished, the bootloader is used to copy the new
firmware from external memory into the internal flash. Some of the incremental update
solutions store non-executable firmware versions on the external memory. The bootloader
additionally performs tasks in order to make the firmware executable when loaded into the
internal flash. This approach is used for example in R2 [DLC+13] and R3diff [DMH+13].
The delta files for processing updates are much smaller by applying delta algorithms on
the generated relocatable code. The old version of the relocatable code is necessary for
reconstructing the corresponding new version. The bootloader transforms the relocatable
code into executable code while loading the new version into the internal flash. This means
that solutions, which need to transform the firmware before it’s executed on the internal
flash, need additional memory spaces for storing the non-transformed firmware that is
used to generate smaller delta files.

As described in [LWS18], most byte-level delta generation algorithms do not consider
the problems related with page-based erase operations in real flash memories. This prob-
lem can easily be avoided when for example an EEPROM or FRAM is used as external
memory instead of flash. Block-level based approaches like FBC [Jeo03], RSyncBerk [JC04],
Zephyr [PBM09], Hermes [PB12] and others usually set the block size equal to the page-
size of the external flash. For each delta command, simply a whole page is overwritten. On
the other hand, Hirschberg [MH13] for example uses FRAM as external memory, which
allows to erase and overwrite single bytes for image reconstruction. Although the use of
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external memory has a lot of advantages, there are also some drawbacks that should be
considered: Adding external memory to a sensor raises the cost per device, especially when
expensive memory chips like EEPROM or FRAM are needed for the incremental update
solution. The energy consumption for the image reconstruction process is high [QHQ16].
A lot of read and write operations are necessary on the external memory and usually the
whole internal image is overwritten for loading the new firmware.

Dual-Image

The dual-image layout splits the available internal flash memory into two halves, the
upper image and the lower image. This layout provides the possibility to execute the
firmware from one half of the image and simultaneously process an update on the other
half without creating consistency problems. The only incremental update solution that
mentions this type of memory layout is Reijers [RL03]. In Reijers, always the firmware
in the upper image is executed. The lower image is only used for reconstructing the new
firmware by using the old firmware in the upper image together with the transmitted
delta. When the reconstruction process is finished, a small piece of code is loaded into
RAM that copies the code from the lower image to the upper image. When the sensor
reboots unexpectedly while code is copied from lower image to the upper image, the sensor
would result in undefined behaviour. The MCU cannot be restored into a defined state
anymore. Another thing to consider in dual image layouts is how to buffer the delta
image, which is not further described in Reijers. The delta file can either be transmitted
completely before reconstruction process starts, or the operations encoded into each single
delta commands are processed immediately after reception.

Single Image

Single image layouts require image reconstruction approaches that have a very high reli-
ability. In contrast to dual image and external memory layouts, no rollbacks to previous
firmware versions are possible in case the new firmware is invalid. The big challenge is
that only one area to store the application image is available, the reconstruction process
cannot use any buffers, such as external memory or RAM, to store the reconstructed
image before it’s loaded into the executed application image. XDelta [KP05a] solves this
challenge by transferring the control to the bootloader before the transmission of the delta
file starts. The bootloader is handling the communication and the reconstruction process.
Delta commands are received until a single page can be reconstructed. The next step is
to reconstruct the affected page. This means that the bootloader only needs buffers for
storing a small amount of delta commands and a single reconstructed page. The drawback
of this approach is that no application logic can be executed as long as the bootloader
performs the update. This issue is solved in LiRep [QHQ16] and Trampoline [ZAZC16].
The system downtime is minimized by only stopping the parts of the application that are
currently updated. This approach is complex to implement and very platform dependent
because the update logic directly manipulates the code execution flow.
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2.5 Comparison of Existing Solutions

Native update solutions provide maximum flexibility when sensors need to be updated.
The whole firmware is replaced in every update, which allows to modify every component
inside the firmware. The main drawback in native update solutions is the high amount of
data to be transmitted for each update. In resource constrained, low-power environments,
this approach would exceed the network bandwidth limits. Deploying Virtual Machines
on sensor nodes reduces the transmission cost significantly compared to native updates.
Virtual machine code is much more compact than native code. On the one hand, updates
in VM solutions only contain the application logic, which further reduces the transmission
cost. On the other hand, this is a big drawback in VM solutions: Updates can only
be applied to the application logic, updates of core components such as communication
stack, OS and others, are not possible. Another drawback of VMs is the high execution
overhead, which leads to reduced energy efficiency compared to platforms that execute
native code. Modular design approaches occupy a middle ground with more flexibility
and lower execution overhead than VMs, but also lower energy efficiency. In summary,
none of these three approaches meet the requirements in this thesis (Section 1.3). The
trade-off between flexibility, execution efficiency and update cost is not satisfying in native,
modular, or VM approaches.

In contrast to the other approaches, incremental updates provide good flexibility, small
updates and depending on the implementation, very small or no execution overhead com-
pared to standard native code running on a sensor. Similarity improvements help to fur-
ther reduce the resulting delta size when updates are applied. In Table 2.3, the different
approaches described in Section 2.4.1 are compared using following properties:

• Toolchain Changes: Provides information if modifications in the compiler, linker
or executable code are necessary. Note that indirection tables could also be imple-
mented in the source code directly but this isn’t the case in the solutions presented
in Section 2.4.1.

• Preserving Similarity: Affects the resulting delta size when updates are performed.
For example using slop regions would reduce the delta size more than using indirec-
tion tables.

• Runtime Efficiency: Some of the listed approaches degrade the runtime performance
when applied on sensors. For example indirection tables cause additional jumps,
which leads to a high execution overhead.

• Memory Efficiency: Describes the amount of memory additionally needed when the
approach is applied to a sensor. For example slop regions cause massive fragmenta-
tion on flash.

• Processing Complexity: Describes the complexity for processing the received firmware
update on the sensor node. Higher complexity raises the risk that updates may fail
or something goes wrong while processing the update on the sensor node. In the
worst case, a device could get bricked.

• External Memory: Describes if the approach requires external memory
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• Platform Independency: High independency means that porting the similarity im-
proving method to a different platform requires little effort, low independency re-
quires a lot of effort.

In Chapter 3 a solution for similarity improvements is presented that is based on the
slop regions approach described in Section 2.4.1. Slop regions are very efficient in terms of
similarity preservation and the processing complexity is low compared to other approaches.
Furthermore, the runtime efficiency is only slightly reduced and more importantly, no
external memory is required.

Indirection
Table

Slop Regions Relocatable
Code

Assembly
Modifica-
tions

Toolchain Changes Yes No Yes Yes

Preserving
Similarity

Poor Very Good Good Very Good

Runtime Efficiency Low Medium High Low

Memory Efficiency High Low High Low

Processing
Complexity

Medium Low High Very High

External Memory Yes No Yes No

Platform
Independency

Medium High Medium Low

Table 2.3: Comparison of Similarity Improvement Approaches.



Chapter 3

Architecture and Concept

In this chapter, an incremental updates concept for resource constrained devices is intro-
duced. The presented architecture is not limited to a single device type. It can be deployed
in any environment where sensors equipped with MCUs meet following requirements:

• The Memory containing the firmware can be overwritten by the MCU itself.

• Sufficient memory is available for OTA. The memory requirements are further de-
scribed in Section 3.3.

In Figure 3.1, an overview of the concept presented in this thesis is shown. The update
process starts with improving the similarity between the old firmware, which is residing
on the target sensors, and the new firmware. When this step is finished, a delta image
is generated using the old and the new firmware image. The generated delta image is
prepared for the transmission phase in the Delta Image Encoding step. The Firmware
Update Manager (FUM) is responsible for storing and providing all the necessary infor-
mation when updates are processed. When updating sensors to a new firmware version is
desired, the FUM provides the necessary information of the old firmware image. After the
Similarity Improvement step, the FUM stores all the necessary data of the adapted new
firmware image for future updates. The FUM additionally provides metadata, such as
version numbers and firmware checksums. This metadata is encoded into the transmitted
delta image in the Delta Image Encoding step. Another task of the FUM is tracking the
current firmware versions of the sensors in the WSN. The Diff Image Reception is the
first step processed on the sensor. The received packets are buffered for the following
Image Reconstruction step. The location of the delta image buffer is depending on the
used memory layout of the sensor. After transmission is finished, the next step is to recon-
struct the new image using the old image residing on the sensor and the transmitted delta
image. The used memory layout specifies the target location of the reconstructed, new
firmware and also the reconstruction logic. The memory layout is highly depending on the
available memory on the platform. Platforms with less memory available may require a
more complex reconstruction logic and reduce the reliability of the update process. After
reconstruction of the new firmware, the sensor is rebooted. This triggers the execution of
the bootloader, which checks if the new firmware is valid in the Image Verification step.
The last step of the update process is the Image Activation. Depending on the used mem-
ory layout, multiple firmwares could be available on the sensor. The bootloader decides

30
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which firmware image will be executed depending on the corresponding firmware version.

New 
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Firmware Update 
Manager

Delta Image Generation

Delta Image 
Encoding
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Memory 
Layout

Old
Firmware

Similarity Improvements

Old Firmware
New Firmware

Adopted

Firmware Versions
and Checksums

Delta Image
Transmission Application

Logic

Bootloader

Host, Server Sensor

Figure 3.1: Overview of Incremental Update Concept.

The components, shown in Figure 3.1, are further described in the rest of this chapter
and in Chapter 4. The algorithm used in the Delta Image Generation step is called DGO
[Ast19], which is already described in a different thesis. The thesis, which presents this
algorithm, uses a simple encoding scheme with fixed sized headers for delta messages. This
chapter presents a more efficient and platform independent approach in Section 3.2.

3.1 Similarity Improvements

In this section, a concept for improving similarity between different firmware versions is
shown. As already described in Section 2.4.1, similarity improvements can efficiently re-
duce the differences between different firmware versions, what leads to smaller delta files,
no matter which delta algorithm is applied. In Section 2.5, Table 2.3, a comparison of the
existing approaches is shown. The incremental update solution presented in this thesis
should be deployable in environments where no external memory is available. Due to
this requirement, only Slop Regions or Assembly Modifications are possible options for the
similarity improvement concept presented in this thesis. When comparing the two remain-
ing options, the Slop Regions concept is the only reasonable choice: First, changes inside
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the toolchain should be avoided because they perform numerous optimizations specifically
developed for the intended platform. Furthermore, Assembly Modification approaches
are depending on the used instruction set of the platform, which leads to high platform
dependency. Enabling reliable updates using Assembly Modificatins requires additional
development effort and is hard to achieve. Slop Regions can be realized by simply mod-
ifying the linker script. Generating errors inside the firmware due to modifications of
the linker script is not possible. When problems occur, the linker will throw an error
and no firmware is generated. This means that applying Slop Regions does not require
any additional validation of the generated firmware in contrast to modified firmware in
Assembly Modification approaches. The executable code may becomes modified after the
linking stage, thus validation mechanisms of the modified firmware are necessary. The
linker script modifications are called Link Time Optimizations (LTOs) in this thesis.

The solution described in this section is based on the Slop Region approaches presented
in Reijers [RL03], XDelta [KP05a], and QDiff [SAH12]. In Section 3.1.1, issues of these
existing solutions are explained. Most of them will be avoided or minimized by the con-
cept described in Sections 3.1.2 and 3.1.3. In Section 3.1.2, a placement strategy will be
introduced that is intended to be used on the initial firmware, which will be programmed
before roll-out of the sensors. This so called ”major placement strategy” is optimizing
the placement of code/data sections within the memory by analysing their dependencies.
In Section 3.1.3, ”the minor placement strategy” is introduced, which is used for creation
of firmwares with maximized similarity based on an existing version. It uses concepts of
existing solutions and additionally introduces new optimizations. The ”minor placement
strategy” generates firmware images used for incremental updates of already deployed sen-
sors. Fragmentation of the memory is unavoidable when using the Slop Region approach
for similarity improvements. Section 3.1.4 explains, why the major and minor placement
strategies are optimized for efficient defragmentation. Partially defragmenting the memory
minimizes the enlargement of the resulting delta file.

3.1.1 Analysis of Existing Solutions

The concepts in existing solutions assume that Slop Regions are already existing after each
single section. There is no information provided what size for each Slop Region should be
chosen in the initial firmware version. Several questions for initial placement of sections
and Slop Regions remain unanswered:

• Which amount of memory should be kept unused? This affects the resulting size of
each Slop Region.

• Should the size of each slop region be constant or should it be depending on the size
of the corresponding section?

• Should the placed section have a certain order or should the default order, provided
by the linker, be used?

Figure 3.2 shows an example where small Slop Regions are inserted between sections
in order to preserve some free space in the initial program. Smaller Slop Regions lead
to a higher probability that modified sections grow beyond the following Slop Regions
boundary. In Reijers [RL03], this would lead to big delta files because the modified
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sections are not relocated and thus numerous sections would be shifted (Keep Position
in figure 3.2). In XDelta [KP05a], the modified section would be relocated to an unused
position in memory (Relocate Section in Figure 3.2). The previous location of the modified
section is filled with a Slop Region. Address shifts occur in both solutions whereas XDelta
would lead to a smaller delta file. Small Slop Regions provide more free space in memory
but they are often to small for modified sections in order to retain their position. They
only have benefits in terms of delta generation when the size of modified sections slightly
increases. Figure 3.3 shows an example where big Slop Regions are inserted between
sections in order to reduce the number of modified sections that grow beyond the Slop
Regions. A new section, which is larger than the Slop Regions between the sections, is
inserted. Defragmentation is necessary in order to fit the new section into the memory.
The resulting delta will have increased size due to the occurring address shifts caused by
defragmentation.
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Figure 3.2: Initial placement of small Slop Regions between each section. The probabil-
ity for modified sections which grow beyond the Slop Regions is high when firmware is
updated.

Placing a Slop Region after every section is not efficient no matter what size for the
Slop Regions is chosen. Small Slop Regions would cause a lot of relocations and waste
of memory. Most of these small Slop Regions are probably never used. The sections
above may never grow into the Slop Region. Furthermore is the size of the Slop Regions
probably too small for most relocated and new sections. Big Slop Regions would probably
require defragmentation in order to fit relocated and new sections into memory. Firmware
typically contains hundreds of sections. Using all of the unused memory for creating Slop
Regions would still result in relatively small Slop Regions.
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Exisiting Slop Region approaches have several other drawbacks: A placement strategy
for data memory (RAM) is only mentioned in XDelta [KP05a]. The placement strategy
for RAM sections is different to the strategy used for flash. The strategy uses a memory
map on the flash for preserving similarity in RAM. Shifts of sections in RAM have
the same impact on the resulting delta size as shifts in flash. Thus, preventing this
shifts and preserving similarity of the RAM layout between different firmware versions
further reduces the delta size. The used placement strategies for performing updates have
drawbacks as well: Reijers [RL03] does not relocate modified sections that grow beyond
the Slop Region. Furthermore, it is not mentioned whether new sections are placed in
existing Slop Regions or at the end of the firmware. QDiff [SAH12] splits sections that
grow beyond the following Slop Region. Modification of code after the compilation and
linking stage should be avoided. The reliability and efficiency of the system is reduced.
XDelta [KP05a] relocates sections that grow beyond the Slop Region. On the one hand,
the placement strategy minimizes the number of pages to be rewritten on the sensor, which
reduces the cost for image reconstruction. On the other hand, is the placement strategy
used in XDelta causing a higher amount of memory fragmentation.
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Figure 3.3: Initial placement of big Slop Regions between each Section. High Probability
that Memory Defragmentation is required when Firmware is updated.

3.1.2 Major-Version Placement Strategy

In this section, a concept for creating major firmware versions is introduced. Figure 3.4
shows the changes in the flash layout when the presented approach is used. For example,
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the GNU linker for MSP430 MCUs orders sections descending by their size in flash. Bigger
sections are positioned at the beginning of the used flash region, smaller sections at the
end. The presented concept first groups sections together before placing them on flash:

• Sections of a single object file (code file) are grouped together.

• Objects are grouped together into modules. Modules usually contain the objects of a
single layer in the software architecture. Typical examples for modules are Hardware
Abstraction Layer (HAL), Radio Protocol Stack, OS, Application Logic, etc.
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Figure 3.4: Major Placement Strategy on Flash.

After grouping the sections into objects and modules, the placement order on memory
is calculated by analysing the inter-dependencies of the sections. For each section, object
and module a so called placement metric (placemetric) is calculated:

placemetric = reffrom − refto (3.1)

Parameter refto describes the number of references to other sections in code. Parameter
reffrom describes the number of references from other sections pointing to the correspond-
ing section in code. Existing slop region solutions use different approaches for preventing
shifts in RAM and flash. In this thesis, the same approach will be used for both types
of memory. Figure 3.5 compares the default placement with the initial placement us-
ing LTO. The default placement uses a MSP430 MCU as example. The default linker
separates uninitialized (bss) and initialized variables (data) and puts them into the bss
and data output section respectively. The linker orders the output sections descending
by size except the stack region. The linker places the stack at the end of the RAM and
the heap after the bss and data section. Most other linkers place the heap at the bottom
and the stack above and leave some free space between them. The initial placement using
LTO groups the sections placed on RAM the same way as done in flash. Sections are
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Figure 3.5: Major Placement Strategy on RAM. Sections containing initialized and uni-
tialized data are also grouped into objects and modules.

grouped into objects which are grouped into modules respectively. The placement metric
calculation for RAM sections is identically to the calculation used for flash sections. The
resulting placement order mixes data and bss sections on RAM, as shown in Figure 3.5. At
startup, the MCU initializes the data variables in RAM. When data sections are grouped
together on a certain location in RAM, the initialization logic can simply copy a sequence
containing the init values from flash to the data region. This initialization logic only needs
the start and end address of the data section in RAM and the start and end address of
the flash region containing the values. When data sections are mixed with other sections
in RAM, the data variables would be initialized incorrectly. The initialization logic needs
knowledge of each data section address in order to copy the initial value to the correct
position in RAM. Mixing of data and bss sections is supported on MSP430 platforms
when the linker is configured to use the so-called ”ROM model” for variable initialization
[Tex13b]. When platforms require to group data and bss sections, two options are possible:

• Implement a custom logic for variable initialization.

• Split grouping of bss and data sections. This results in a series of modules containing
the bss sections and a series containing the data sections. The modules containing
the data/bss sections must be placed contiguous. Slop regions between bss or data
sections are not a problem for variable initialization. The drawback is that frag-
mentation is increased because bss and data sections must be kept separate for each
firmware version.

3.1.3 Minor-Version Placement Strategy

The minor placement strategy defines the memory layout based on an existing version. It
minimizes the number of address shifts between the new and the old version. The changes
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of a new firmware image compared to an existing firmware image can be broken down to
three types:

• New Sections

• Modified Sections

• Removed Sections
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Figure 3.6: Minor Placement Strategy used for Similarity Improvements.

Figure 3.6 shows an example including these three types of changes. The minor place-
ment strategy aims to preserve maximum similarity between two versions. Building the
memory layout for the new version is divided into multiple steps:

• Fill the regions where removed sections were placed in the old firmware with Slop
Regions.

• Handling of modified sections is depending on the changed size:

– When the size of the section decreases, it remains on the same position in
memory. In order to avoid shifts, a Slop Region is inserted after the modified
section. Section 4 in Figure 3.6 for example is padded with a Slop Region of
0x10 bytes.

– When the size of the section is increasing and no Slop Region with sufficient
size is placed below, the section must be relocated. When a Slop Region with
sufficient size is below the modified section, it grows into the Slop Region. The
size of the Slop Region must be reduced accordingly. When the modified section
needs relocation, it is replaced by a Slop Region.

Performing these steps generates a memory layout where all existing sections, which do
not require relocation, are kept on the same position relative to the old version. Figure 3.6
shows the temporary memory layout where non-relocated sections are placed. The next
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step is to insert the remaining sections into the temporary memory layout. The remaining
sections consist of modified sections that require relocation and new sections. Choosing
the locations where the remaining sections should be inserted is a non-trivial task. The
implemented algorithm should satisfy following requirements:

• Place sections inside the region of the module they belong to.

• Filling Slop Region with sections should result in minimized fragmentation. After
inserting the remaining sections, the number of ”small” Slop Region should be as
small as possible.

Figure 3.7 shows an example for clarification of the second requirement. Example B shows
the optimal placement for the shown problem case. In contrast, Example A places the
sections in a way that three small Slop Regions remain in the memory. Example A causes
more fragementation of the memory than Example B, which has a single Slop Region left
after placement. The chance is higher that the single Slop Region in Example B can be
filled with sections in future updates. The Slop Regions in Example A probably remain in
the memory until defragmentation is performed. Filling the Slop Regions is actually a bin
packing problem [bin06], which is NP-hard. This thesis introduces a heuristic approach
to solve this problem. The developed algorithm is further described in Section 4.1.2.
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Figure 3.7: Placement of New and Relocated-Modified Sections into existing Slop Regions.

3.1.4 Partially Defragmentation

Performing numerous updates leads to fragmentation of the memory. The used minor
placement strategy creates Slop Regions for relocated modified sections. At some point,
the memory may has insufficient free slots for placing the sections required for the update.
Defragmenting the memory creates free space but the delta size increases significantly
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because a lot of address shifts are generated when the sections are rearranged. The major
placement strategy described in Section 3.1.2 reduces the delta size when defragmenta-
tion is required. Grouping sections into modules and ordering them descending by their
placement metric results in an initial placement order where most references point from
higher memory addresses to lower addresses. In Figure 3.8 for example, most references
point from Module 3 to Module 1 and Module 2. Modules with low placement metric typi-
cally contain application logic, modules with higher placement metric are typically system
libraries, HALs, drivers, and others. Firmware updates usually include more changes in
modules, such as the application logic for example. Changes to modules containing system
libraries for example are less often required. Therefore, modules placed at higher addresses
usually become more fragmented due to updates than modules placed at lower addresses.
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Figure 3.8: Bottom-Up Defragmentation of Memory.

The placement strategies introduced in this chapter enable to partially defragment the
memory when additional space is required for placing sections. Defragmentation is started
at the bottom (high address) and performed towards the top of the memory (low address)
until sufficient free memory is available. Figure 3.8 shows an example where only Module
3 is defragmented. The sections inside Module 2 and Module 1 retain on their previous
position. The number of address shifts (changed target addresses) in these modules is
minimized, only references pointing to the defragmented Module 3 will create address
shifts which increase the delta size. Absolute references pointing from Module 3 to the
other non-defragemented modules remain unchanged as well. Relative references on the
other hand are changed due to the modified distance of the reference. Another advantage
of the bottom-up approach is that defragmentation of modules at higher addresses also
creates more free space due to higher degree of fragmentation.
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3.2 Delta Image Encoding

The DGO algorithm, presented in [Ast19], creates a list of delta messages. This section
presents a concept for efficient encoding of the given message list. The presented concept
encodes numbers, such as addresses and lengths, with a variable length encoding called
LEB128 [UNI93]. LEB128 enables to encode small numbers with a few bytes and at the
same time enables to encode arbitrarily large numbers. These properties are very suitable
for encoding delta messages. Another advantage of LEB128 is the simple decoding. Figure
3.9 shows an overview of the different encoding steps. Section 3.2.1 describes the content
and the encoding of the delta image header. The encoding step groups COPY, ADD and
OFFSET messages. This enables more efficient encoding because including the message
type into each message header is not necessary. The relative addressing approach also
enables more efficient encoding by using LEB128. Further information about message
encoding is provided in section 4.2. The next step after encoding is to split the delta image
into fixed sized packets. The chosen packet size depends on the amount of data that is
transmitted in a single frame. After packaging, the delta image is ready for transmission
to the target nodes. The Update Info Packet is used to inform the sensors that an update
is pending. With the information provided in this packet, the sensor prepares for the
upcoming update.
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Figure 3.9: Encoding Overview.

3.2.1 Header Encoding

Figure 3.10 shows the delta image header structure. The header has variable length except
the checksum, which has fixed length.

Checksum

The checksum is positioned at the beginning of the header, its calculation includes the
rest of the image header and the delta image content (delta messages). The calculation
ensures that the transmitted delta is valid. Due to the delta image check, the sensor is
able to prevent reconstruction using an invalid delta image. This would lead to a corrupt
new firmware with undefined content.
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Figure 3.10: Delta Image Header Structure.

Base Image

The sensor reconstructs the New Image from the Base Image. Depending on the recon-
struction approach, the sensor may has several options what image is used as reconstruc-
tion base. The Base Image field contains necessary information for reconstructing from
the intended image:

• baseabsolute: Absolute start address of the Base Image.

• basesize: Size of the Base Image.

• basechecksum: Checksum of the Base Image.

The Base Image checksum, which is included in the Update Info Packet, enables the target
sensor to verify that the reconstruction base is identical to the base firmware (old firmware)
used in the delta generation phase.

New Image

The New Image field contains the necessary information for reconstructing the new image
to the desired location:

• newabsolute: Absolute start address of the new image.

• newsize: Size of the new image.

The New Image checksum is encoded directly into the firmware header. The delta image
includes the firmware header, which means that the checksum information is sent with the
delta messages. Section 4.8 provides further information about the firmware header.

Message Structure

The Message Structure provides information to find the start of each message group when
reconstruction is processed. This is necessary because each message group has variable
length and the type is not encoded into the messages directly. The Message Structure
field includes following information:

• sizeCOPY : Size of the COPY messages block.

• sizeADD: Size of the ADD messages block.

• sizeOFFSET : Size of the OFFSET messages block.
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For page-level target memories, the delta messages are placed inside the delta image in
a fixed order, ascending by a certain field inside the message depending on the message
type.

Page Update Order

Each memory type has a certain granularity for overwriting data:

1. Page-level granularity (e.g., FLASH, etc.).

2. Byte-level granularity (e.g., EEPROM, FRAM, etc.).

When the reconstruction target has byte-level granularity, any message order inside their
group can be used. The messages can be reordered arbitrarily for avoiding copy conflicts.
The Page Update Order field is obsolete for byte-level memory types. To avoid copy
conflicts at reconstruction phase, the Page Update Order field is included. This field tells
the reconstruction logic on the sensor in which order the pages should be reconstructed.
The header encodes three types of update orders:

• Ascending order from page 0 to last page.

• Descending order from last page to page 0.

• Custom update order.

In most update scenarios, ascending or descending order probably causes no copy conflicts.
These orders can be encoded using a small header. When a custom update order is
necessary, the header includes an additional array. The array’s size depends on the number
of pages available in the target image. A custom update order is only necessary when the
base image and the new image are the same, otherwise no copy conflicts are possible
because no source regions of COPY messages can be overwritten. Section 4.3 describes
an approach to find a custom page order that prevents copy conflicts.

3.2.2 Update Info Packet

The gateway sends an Update Info Packet to each sensor that should be updated. The
sensor uses the information inside this packet in order to prepare for the upcoming update.
In order to prevent the sensor from performing an update using a wrong base image, the
old version number and the CRC of the base firmware are included into the packet. In case
that either the version number or the CRC is not matching with the existing base image,
the sensor ignores the upcoming update. The Packet Size is mandatory for the sensor to

Version Number

Old New

CRC Base

Firmware Packet Size
Update Size

# Packets # Bytes

Single Packet

Base Image

Position

Figure 3.11: Content of Update Info Packet.

store the received update fragments correctly. Especially when packets get lost, the sensor
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still can store the received packets into the right position in the delta image buffer. The
device calculates the correct position by using the packet size in combination with the
frame number. The Packaging for Transmission step adds the frame number to the fixed
sized packets (see Figure 3.9). The update info packet encodes the size of the upcoming
update including the number of packets and number of bytes. In the reception phase of the
delta image, the # Packets info is used to determine the completion of the delta update
transmission. Due to the fixed packet size, the last packet containing the delta image is
usually filled with a constant value at the end. The decoder in the image reconstruction
phase needs information at which position the end of the delta image is reached. Since
delta messages have variable length, correct encoding is not possible without the delta size
information. The update info packet could also include additional transmission related
information. Depending on the used transmission technology for example, the planned
update start time must be transmitted to the sensor.

3.3 Memory Layout

The presented incremental update approach requires numerous components that must be
available in the memory of the target device. Section 3.3.1 describes these components.
Section 3.3.2 provides an analysis of possible failure modes in the update system. Since the
presented solution is intended for resource constrained devices, the available memory for
those components is scarce. The used memory layout defines where the update components
are stored. This layout is always a tradeoff between efficiency, reliability and memory cost.
Section 3.3.3 compares some of the possible layout options. The possible options, which
can be used on the target platform, mainly depend on the available memory types and
their sizes. This section is intended to provide the reader some insights, which tradeoffs
for a given platform have to be accepted, or which requirements must be fulfilled by the
platform in order to meet the defined requirements for the OTA implementation.

3.3.1 Required Update Components

Figure 3.12 shows the update components for the presented OTA solution. The two
Application components contain the firmware to be updated:

• Reconstruction Target : Defines the destination region where new firmware version
is reconstructed.

• Reconstruction Source: Defines the source region that is used to reconstruct the new
firmware together with the delta image.

The two images can either be placed on different locations or at the same location (New
Image = Base Image). The Reception Logic describes the code that processes the reception
of the Update Info Packet and the delta image packets. The Reception Logic performs
following tasks:

• Writing the received delta packets into the Delta Image buffer.

• Handling of lost packets. Depending on the protocol used for delta image transmis-
sion.
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Figure 3.12: Components included in presented OTA Approach.

• Tracking the current Reception Status, which contains info whether reception of a
delta image is in progress or not. Further information included is to track, what
delta image packets are already received and what packets are still missing.

• CRC Check of the delta image when reception is complete.

• Notifying the Reconstruction Logic that the Delta Image is ready in case the delta im-
age is valid. Otherwise writing the occurred error into the Update Report Packet(s).

The Reconstruction Logic uses the Delta Image and the old firmware, which is residing
in the Base Image, to reconstruct the new firmware into the New Image. When the New
Image is positioned in a page-level granularity memory, a Page Buffer is required for
reconstruction. The Reconstruction Status tracks following information:

• Reconstruction currently in progress.

• Page or address that is currently reconstructed.

After finishing the reconstruction process, the logic informs the system about completion.

3.3.2 Failure Analysis

This analysis assumes that the hardware of the MCU has no errors and works as expected.
Only possible failures when writing into non-volatile memory are considered. Figure 3.13
shows the possible failure roots divided into software-, hardware- and transmission-errors.
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Figure 3.13: Possible Failure Roots in the Update Process.

Software Errors

Software Errors are caused by unknown bugs or wrong handling in the update system.
Erroneous Delta Image Generation at the host side causes failures at the sensor side as
well. Wrong values in the delta image header cause errors in the update process. The
following list describes which errors are caused depending on the header field:

• Base Image: Reconstruction Logic uses a different base image as the Delta Image
Generation logic. The reconstructed new firmware will be invalid.

• New Image: Reconstruction Logic writes to unintended memory regions. In the
worst case, the device gets bricked.

• Message Structure: Invalid decoding of delta messages in the Reconstruction Logic.
The reconstructed new firmware will be invalid.

• Page Update Order: Depending on the used layout option, a wrong order can lead
to a corrupt new firmware due to copy conflicts.

• Delta Image CRC: The update process aborts when the Reception Logic calculates
the checksum of the delta image.

Invalid delta messages can occur due to errors in the delta generation algorithm or the
message encoding logic. The Reconstruction Logic creates an invalid new firmware, which
is handled in the Image Verification and Activation step. The severity of Software Errors
on the target sensor depends on the used layout option. Implementing countermeasures for
the possible failure roots prevents the target sensors from getting bricked when updates are
distributed. Intensive testing of the update logic can prevent unknown bugs beforehand.

Hardware Errors

An Unexpected Reboot of the target sensor can happen at any stage during the update
process. The reliability and resilience of the sensor are highly depending on the used
layout option. A high reliability is achieved, when the sensor is able to continue the
update process after an Unexpected Reboot. A high resilience is achieved, when the sensor
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is recovered to a defined state after reboot and updates can be restarted. A Flash Write
Error prevents that the sensor is able to successfully process any upcoming updates.
Depending on the used layout option, the sensor may is able to recover to a defined state
and continues execution with the latest valid firmware version available. The erase cycle
limitations on flash memories are probably the main cause for Flash Write Errors. Thus,
the probability of flash errors is reduced when the number of writes to a single page is
kept at a minimum when updates are processed.

Transmission Errors

The reception of Invalid Delta-Packets should be handled by the communication stack
implemented on the sensor. When an invalid packet is still passed to the Reception Logic,
the update process will be aborted in the delta image verification step.

3.3.3 Analysis of Layout-Options

The used layout option is always a tradeoff between efficiency, reliability and memory cost.
This section provides an overview over the layout options Dual-Image, Single-Image and
External Memory. A combination of these options is also possible. The Data and Status
components shown in figure 3.12 can either be placed in non-volatile or volatile memory.

Volatile vs. Non-Volatile Memory

Storing update components in non-volatile memory increases the reliability of the update
process on the target devices. The process can be continued after an unexpected reboot.
Recovery from an unexpected reboot during the delta image reception phase requires to
store following data and status components inside non-volatile memory:

• Update Info Packet

• Reception Status

• Delta Image Buffer

In case of an unexpected reboot the transmission of the delta image does not need to
be restarted from the beginning. Recovery from an unexpected reboot during the image
reconstruction phase requires to store following data and status components inside non-
volatile memory:

• Reconstruction Status

• Delta Image Buffer

• Page Buffer

Placing these components into non-volatile memory also has drawbacks: More non-volatile
memory is necessary and the complexity of the reception logic and/or the reconstruction
logic increases. When using flash memory for example, the erase cycle limitations can lead
to Flash Write Errors. Thus, a byte-level granularity memory (e.g., EEPROM) should be
used for storing data and status components. Another drawback of non-volatile memory
usage is the higher amount of energy consumption compared to volatile memory.
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Dual-Image

The Dual-Image layout splits the internal flash memory into two halves with fixed size,
called Lower Image and Upper Image. This layout has several advantages:

• No additional hardware costs.

• High energy efficiency: Only modified pages inside the target image need to be
overwritten.

• High resilience: There is always at least one image with valid firmware available. The
reconstruction logic does not allow to overwrite pages inside the currently executing
image.

• High flexibility and low complexity: Each component inside the firmware can be
updated, including the OTA components.

• Rollback to previous version possible.

The Dual Image layout also has several drawbacks:

• Inefficient memory usage. The maximum size of the firmware is only half of the
available flash.

• The update flow (Section 4.5) is more complex.

• Requires a MCU with vector table remapping functionality. Some platforms only
support vector tables at fixed position. In this case, a software solution for remapping
would have to be implemented.

Single-Image

Using the Single-Image memory layout for the presented OTA solution is not recommended
because bringing the device into an undefined state due to an update cannot be completely
avoided. The reconstruction logic must either be loaded into RAM before it’s executed, or
it has to be separated from the firmware image. This would reduce the flexibility because
the reconstruction logic cannot be updated. When the reconstructed image is invalid, the
sensor has no possibility to boot an older, valid firmware version.

External Memory

This layout option uses external memory for reconstructing the new image. The External
Memory layout has following advantages :

• Efficient usage of internal memory. The firmware image can use the whole flash.

• High resilience.

• High flexibility and low complexity.
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The External Memory layout also has several drawbacks:

• Additional hardware cost due to external memory.

• Lower energy efficiency: The new version is reconstructed on the external memory.
After reconstruction, the content of the external memory is loaded into the internal
flash. Compared to the Dual Image layout, more write operations on non-volatile
memory are required.

• Rollback only possible when multiple versions available on the external memory.



Chapter 4

Design and Implementation

This chapter refines the components of the presented OTA solution and provides a detailed
view on the actual implemented system. Following subsections describe the implementa-
tion details of the different components illustrated in Figure 3.1. Section 4.3 presents the
solution for the ”Page Ordering Problem”, which occurs in page-level granularity memory.
Section 4.4 presents the used memory layout for the sensors. This layout increases the
complexity of generating delta images and building different firmware versions. Thus, in
Section 4.5 the ”Update Flow” is presented.

4.1 Link-Time Optimizations

This section describes the implementation of the similarity improvement concepts pre-
sented in Section 3.1. Section 4.1.1 provides details about the implemented major-placement
algorithm. Section 4.1.2 provides details about the developed minor-placement algorithm.
Figure 4.1 provides an overview of the implemented LTO solution. The presented imple-
mentation requires two types of inputs:

• Object Files: Relocatable ELF-Files generated by compiler.

• Map-File: Generated by the linker together with the executable ELF-File.

The Map-File provides information, which sections are used and at which position they
are placed in the final executable. The Object Files provide information about depen-
dencies between sections. The only platform-dependent components are the Memory-Map
Parser and the Linker Script Writer. The rest of the LTO implementation is platform
independent, provided that the compiler of the target platform generates the relocatable
code using the ELF format. The Linker Script Writer generates the placement order of
sections and holes (Slop Regions), which can be interpreted by the platform-specific linker.
After inserting the output of the Linker Script Writer into the linker script, the firmware
needs to be linked again in order to generate an optimized major- or minor-version. The
required input for the LTO implementation is depending on the used placement strategy.
Building a major version only requires the input files (Map-File, Object Files) from the
new version. A minor version requires the input files from the new and the old version.
The FUM provides the necessary input files of the old version. Generating a firmware

49
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Figure 4.1: Link-Time Optimizations Overview (Similarity Improvements).

with optimized placement, requires to initially build the new version without LTO. This
is necessary to create the required input for the LTO algorithm.

The ELF Analyzer determines the dependencies between sections and assigns them
to their corresponding objects and modules. By using these dependencies, the placement
metric (placemetric) can be calculated. The Diff Analyzer compares the firmware versions
by using the data provided by the ELF Analyzer. The determined new, modified and
removed sections are passed to the Minor Placement algorithm, which is further described
in Section 4.1.2.

4.1.1 Major-Placement Algorithm

The Major Placement algorithm generates the section placement order for major versions.
It uses the calculated placement metric and following input parameters for ordering the
sections:

• group objects: Setting this flag enables grouping of sections into objects.

• group modules: Enables grouping of sections and/or objects into modules.
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• interspacing: Defines the size of holes (slop regions) inserted between objects and/or
modules.

• memory roi: Defines which memory directives (FLASH, RAM, etc.) and corre-
sponding output sections (.text, .const, .bss, etc.) inside these directives should be
used for auto-placement.

The placement metric calculation of modules does not include references occurring
inside the module. Only references across different modules are used for calculation. The
same pattern is used for objects and sections respectively. Figure 4.2 shows an example
how the placement metric is calculated for sections, objects and modules. For example
Section 4 has a reference pointing to Section 1. This reference raises the reffrom counter
in Section 1 and the refto counter in Section 4 by one. Section 1 could be a function
that is called in Section 4. It could also be a constant that is used in Section 4. The
calculation of the placement metric is not depending on the section type (code, constant,
global variable, etc.). A section can also have multiple references to another section. In
Figure 4.2 for example, Section 5 has two references pointing to Section 3. The placement
metric for objects/modules excludes references that occur inside the same object/module:

• The placement metric calculation of Object C excludes the reference from Section 6
to Section 5.

• The placement metric calculation of Module A excludes the references from Section
4 to Section 3, Section 3 to Section 1 and Section 4 to Section 1.

Section 1

reffrom = 4

refto = 0

Section 2

reffrom = 2

refto = 0

Section 3

reffrom = 2

refto = 2

Section 4

reffrom = 0

refto = 1

Section 5

reffrom = 1

refto = 3

Section 6

reffrom = 0

refto = 3

Object A

reffrom = 6

refto = 0

Object B

reffrom = 2

refto = 3

Object C

reffrom = 0

refto = 5

Module A

reffrom = 5

refto = 0

Module B

reffrom = 0

refto = 5

Figure 4.2: Placement Metric calculation using the directed Dependencies between Sec-
tions.

The calculated placement metric values define the placement order of each module
in the firmware. Module 1 in Figure 3.4, has the highest placement metric, Module n
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has the lowest placement metric. Inserting Slop Regions after each module increases the
probability that sections of a single module remain in a contiguous area on flash when
updates are performed. The placement metric of the objects defines the placement order
of the objects inside their corresponding modules. The placement metric for sections
defines their order inside the object they belong to.

4.1.2 Minor-Placement Algorithm

Figure 4.3 shows the basic flow of the implemented minor-version placement algorithm.
Processing of removed and modified sections is already described in Section 3.1.3. The
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Figure 4.3: Minor-Placement Algorithm Overview.

remaining sections to insert (SectionsToInsert) consist of New Sections and Relocated-
Modified Sections. The next step is to determine whether the sections should be grouped
into objects or not. This parameter (group objects) is set when the initial major version
is created. When the sections are grouped into objects, the next step is to iterate over
each existing object and determine the corresponding region inside the firmware. The
intended region of each object is saved after generating a major version. For each object,
Algorithm 1 is executed. This algorithm tries to efficiently insert the remaining sections,
which belong to the corresponding object, into the defined region. When grouping of
objects is disabled, or sections to insert remain, the same approach is applied by iterating
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over each existing module. The corresponding region of each module is determined and
Algorithm 1 is executed for each module. In this case the algorithm tries to efficiently
insert the remaining sections into the module region they belong to. When grouping of
modules is disabled and/or sections to insert remain, Algorithm 1 is called again with the
whole image as valid region for inserting the remaining sections.

Algorithm 1 Try Place SectionsToInsert into given Region

1: procedure TryPlaceInRegion(SectionsToInsert, MappingNew, Region)
2: SectionsInserted← 1
3: while length(SectionsToInsert) > 0 and SectionsInserted > 0 do
4: SectionsInRegion← GetSectionsInRegion(SectionsToInsert, Region)
5: HolesInRegion← GetHolesInRegion(MappingNew,Region)
6: SectionsInserted← 0
7: for Section in SectionsInRegion do
8: for Hole in HolesInRegion do
9: if Section.Length ≤ Hole.Length then

10: Margin = Hole.Length− Section.Length
11: Hole.Candidates.add(Tuple(Section,Margin))
12: Section.Candidates.add(Tuple(Hole,Margin))

13: for Section in SectionsInRegion do
14: Section.Candidates.sort(by ←Margin,mode← Ascending)

15: for Hole in HolesInRegion do
16: Hole.Candidates.sort(by ←Margin,mode← Ascending)

17: for Section in SectionsInRegion do
18: BestHoleCandidate← Section.Candidates[0].Hole
19: if BestHoleCandidate.Candidates[0].Section == Section then
20: IndexToInsert←MappingNew.IndexOf(BestHoleCandidate)
21: MappingNew.InsertAt(IndexToInsert, Section)
22: Margin← BestHoleCandidate.Candidates[0].Margin
23: BestHoleCandidate.Length←Margin
24: if BestHoleCandidate.Length == 0 then
25: MappingNew.Remove(BestHoleCandidate)

26: SectionsToInsert.Remove(Section)
27: SectionsInserted← SectionsInserted+ 1

28: return [MappingNew, SectionsToInsert]

4.2 Delta Message Encoding

The presented encoding approach groups the different message types together as shown
in Figure 3.9. The order of messages inside their groups is depending on the target
memory granularity. For byte-level memories, the message order can be defined arbitrarily.
Page-level memories require a strict message order. The presented encoding approach is
optimized for page-level memories, byte-level memories with custom message order would
require different encoding for certain delta message fields.
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4.2.1 COPY Messages

COPY messages are ordered ascending by their absolute destination address dest abs.
Each message contains following information:

• length copy: Number of bytes to copy, the absolute value is encoded as unsigned
LEB128.

• dest copy: Destination start address of COPY message. The address is encoded
relative as unsigned LEB128.

dest copyi = dest absi − dest absi−1,

dest copy1 = dest abs1 − newabsolute

(4.1)

dest copy1 is the destination start address of the first COPY message in the delta
image.

• move dist: Move distance of COPY message, encoded relative as signed LEB128.

src rel = src abs− baseabsolute,
dest rel = dest abs− newabsolute,

move dist = dest rel − src rel
(4.2)

Figure 4.4 shows that relative destination start addresses lead to smaller numbers to en-
code. LEB128 encodes small numbers with fewer bytes, the dest copy field inside the
COPY message needs less bytes for encoding. The defined COPY message order addition-
ally enables to use unsigned LEB128 for encoding dest copy. The calculation of dest copy,

Update Target
Image

0x0000

Image Start
(newabsolute)

COPY 1 COPY 2

dest copy1 dest copy2

dest abs1

dest abs2

dest copyi ≪ dest absi

Figure 4.4: Improved Encoding Efficiency when using Relative Target Addresses.

as shown in Equation 4.1, also allows to encode nested COPY messages. Nested COPY
messages only bring benefits when the messages fully overlap (see Figure 4.5). Further-
more, is the generation of nested COPY messages a non trivial task for a delta generation
algorithm. The DGO algorithm [Ast19] does not support them. When the delta algorithm
creates no nested COPY messages, dest copy can be calculated even more efficiently using
following formulas:

dest copyi = dest absi − dest absi−1 − length copyi−1,

dest copy1 = dest abs1 − newabsolute

(4.3)
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The move dist efficiently encodes the source start address of a COPY message. The
value is independent of the used images for performing updates. Another advantage of
move dist is the small resulting value, which can be efficiently encoded using signed
LEB128. Signed encoding is necessary because COPY operations are possible in both
directions. The high probability for small values of move dist can be explained with the
similarity improvement approach presented in Section 2.4.1: COPY messages are mainly
generated due to modified sections. When no relocation is required, move dist is small
because the section remains at the same position. In case of relocation, the minor place-
ment strategy tries to place the section inside the modules region. The distance to the
previous location of the section is kept at a minimum.
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Figure 4.6: Efficient Encoding of Copy Source Address by using the Move Distance.
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4.2.2 ADD Messages

ADD messages are ordered ascending by their absolute destination address dest abs. Each
message contains following information:

• length add: Number of bytes to add, the absolute value is encoded as unsigned
LEB128.

• dest add: Destination start address of ADD message. The address is encoded relative
as unsigned LEB128:

dest addi = dest absi − dest absi−1 − length addi−1,

dest add1 = dest abs1 − newabsolute

(4.4)

dest add1 is the destination start address of the first ADD message in the delta
image.

• data add: Array that contains the data to be written into the encoded memory
region. length add defines the size of the array.

The encoding approach of dest add has the same benefits as dest copy for COPY messages.
Since nested ADD messages don’t bring any advantage in terms of delta size, the length
of the previous ADD message is included for calculating dest add. This further reduces
the value and increases the encoding efficiency.

4.2.3 OFFSET Messages

OFFSET messages are ordered ascending by their offset value. Each offset message con-
tains following information:

• value off : Offset value of the message. Encoded as difference to the previous offset
value as unsigned LEB128. The first OFFSET message encodes the value absolute
as signed LEB128.

• add list off : List of addresses where offset is applied in the new image. The ad-
dresses are ordered ascending and encoded relative as unsigned LEB128. The cal-
culation of address i (add offi) inside the address list of size n is performed with
following formulas:

dest aligni =
dest absi
arch align

,

add offi = dest aligni − dest aligni−1,

add off1 = dest align1 −
newabsolute

arch align
,

add offn+1 = 0

(4.5)

The delta algorithm generates offset messages that are intended to be applied on addresses
in code. For example, the offset is applied to the address field of a call instruction. The
positions of these address fields are usually aligned inside the code. The alignment value
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arch align depends on the MCUs architecture. A 16-bit MCU aligns addresses to 2, a
32-bit MCU aligns them to 4 for example. In order to further reduce the value of add offi,
the absolute addresses dest absi are divided by arch align. The delta algorithm checks
whether found addresses are aligned to arch align. Unaligned addresses are changed to
the next lower, aligned address entry, the offset must be adopted accordingly (left shift).
The encoding approach does not need to include the length of the address list. The decoder
on the sensor recognizes the end of the list when an address entry is zero (add offn+1).
Except the first address list entry, which can be zero. In this case the offset is applied to
address newabsolute.

4.3 Page Ordering Problem

In page-level granularity memories, the reconstruction logic of the sensor processes the
delta messages page-wise. The sensor completes the reconstruction of a single page be-
fore the next page is processed. Dependencies between two pages exist when following
conditions are true:

• Source and destination region of a COPY message are located in different pages.

• Source region is modified by other delta messages (COPY, ADD, OFFSET).

Figure 4.7 shows how dependencies between pages are found. For given page dependencies,
a custom page update order is necessary. This avoids that copy conflicts lead to invalid
reconstruction of the new firmware. To find an optimal order, pages are modelled by a
directed graph. A vertex represents a page, an edge represents N COPY messages from
page A to B that meet the dependency conditions mentioned above. An optimal page
update sequence is equivalent to a vertices sequence (ve0, ..., ven), where each vertex vei is
a sink in the vertices subsequence (ve0, ..., vei−1). This statement is only true when the
graph is cycle-free. Circular dependencies require to remove edges in the directed graph
until the graph is cycle-free. Finding the best candidates to remove cycles in the graph is
a non-trivial task. This thesis presents an approach that is based on SUSPIRe [LWS18],
whereas the method for calculating the weights of edges is modified. The weight w of
an edge (A, B) describes the additional bytes needed in order to replace the N COPY
messages with a list of messages that remove the dependency from page A to B. A simple
approach is to replace the ”Copy Conflict Regions” (Figure 4.7) of the N COPY messages
with M ADD messages. This replacement removes the dependency of page A to B. The
copied areas, which cause no conflicts, can be replaced by L smaller COPY messages.
Equation 4.6 shows the calculation of the weight w:

w =

N∑
i=1

rem costi − βi,

rem costi =
M∑
k=1

(αk + length addk) +
L∑

j=1

βj

(4.6)
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where: N = number of COPY messages that meet dependency conditions from
page A to B

βi = header size of COPY message i
rem costi = number of bytes required to remove the dependency caused by

COPY message i
M = number of ADD messages required to remove the dependency

caused by COPY message i
αk = header size of ADD message k, αk = 0 when ADD message can be

merged into preceding or following ADD message.
length addk = number of bytes to add by message k
L = number of COPY messages required to remove the dependency

caused by COPY message i
βj = header size of COPY message j
length copyi = number of bytes copied by message i from page A to page B

The sum of delta messages, used to replace COPY message i, have to process the same
number of bytes as COPY message i. This is shown in Equation 4.7.

length copyi =

M∑
k=1

length addk +

L∑
j=1

length copyj (4.7)

4.4 Dual-Image Layout

The target platform, where the update solution should be deployed, has no external mem-
ory available. The internal memory provides sufficient space for using the dual-image
layout. Achieving high resilience and reliability for dual-image layout is much simpler
than for single-image layout. Figure 4.8 shows three different dual-image layout options:

• Option 1: Provides high efficiency because update status and data components are
stored in RAM. Provides low reliability because retransmission of delta image is
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Figure 4.8: Dual-Image Layout Options.

required in case of an unexpected reboot during the reception phase. Additionally,
an unexpected reboot during the reconstruction phase leads to a corrupt target
image (Lower Image or Upper Image). In this case, a delta image that uses a base
image with defined state must be generated at the server and transmitted to the
sensor for a successful update (further described in Section 4.5)

• Option 2: Provides lower efficiency than Option 1, but higher reliability. The data
and status components, required for the reception logic, are placed inside the non-
volatile memory. The device is able to continue the delta image reception phase after
an unexpected reboot. No retransmission of the whole delta image is necessary.

• Option 3: Provides lowest efficiency but highest reliability. In case of an unexpected
reboot during the delta image reception or the reconstruction phase, the sensor can
continue the update process.

The probability for unexpected reboots during the update process is very low. Thus,
Option 1 will be used on the target platform.

4.5 Dual-Image Update Flow

The dual-image memory layout increases the complexity of building firmware images and
generating delta images. Figure 4.9 shows the update flow. The sensor can execute code
from the Lower Image and the Upper Image. Before rollout, the initial firmware version
is built for both images. A firmware update can be performed with two different delta
images:

• Option A: The base image and the target image are the same. In most cases, this
option provides smaller delta files. The drawback is that copy conflicts are possible
(Section 4.3).
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• Option B: The base image and the target image are different. The advantage is
that no copy conflicts are possible.

The presented OTA solution always uses the option that generates the smaller delta
image. When the update leads to a corrupt image, the delta generated with Option B is
transmitted repeatedly to the device until the update is succesful. When using a MCU
that supports dual bank memory [STM16], the firmware images built for the Lower Image
and the Update Image are equal (e.g.: v1L == v1U). In this case, the update flow is
simplified. Both options, which are shown in Figure 4.9, generate the same delta image.

Initial State Update 1 Update 2

Lower
Image

Upper
Image

v1L

v1U

Currently Executing Image

v2L

v1U

v2L

v3U

A: delta(v1L,v2L)

B:
del

ta(
v1U

,v2
L)

A: delta(v1U,v3U)

B: delta(v2L,v3U)

Version x, built for Execution in Upper ImagevxU...
Version x, built for Execution in Lower ImagevxL...

Figure 4.9: Dual-Image Update Flow. Two possible Options for generating Delta Images.

4.6 Delta Image Receipton

The received packets, containing the Delta Image Fragments, have a fixed size. The packet
size is given via the update info packet (Section 3.2.2). Figure 4.10 shows the handling of a
received delta image packet. The Delta Image Buffer is a static array located in the RAM.
Due to the fixed packet size, the reception logic can store each Delta Image Fragment to the
correct position in the buffer instantly. When packets are missed, the rest of the received
fragments are still stored at the correct position. The reception logic determines the start
position for the received fragment with following equation: (framenr − 1) · sizepacket.
Another advantage of the fixed packet size is the simple handling of missed packets. The
reception logic tracks the received packets with a Lookup Table. The reception of a packet
leads to setting a bit at position framenr. Missing packets can be easily identified with the
Lookup Table by looking for zero bits. Depending on the transmission approach, the sensor
can act accordingly to receive the missing packets. For example, sending a retransmission
request frame to the gateway, which contains the missing frame numbers. The reception
logic determines the completion of the reception by checking if every bit position in the
Lookup Table is set. After completion, the reception logic checks if the delta image in the
buffer is valid (Section 4.6.1). Using static arrays for the Delta Image Buffer has several
drawbacks compared to dynamic memories:
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Figure 4.10: Handling received Delta Image Packet.

• A maximum delta image size (size deltamax) for future updates must be defined at
compile time.

• When a delta image exceeds size deltamax, the update cannot be processed. The
user has to split the desired firmware update into smaller sub-updates.

• A minimum packet size (size packetmin) must be defined at compile time. The max-
imum size of the Lookup Table (size lookupmax) is depending on size deltamax and
size packetmin. The Lookup Table is also stored as static array, thus size lookupmax

defines the size of the array at compile time. The calculation of the array size for
the Lookup Table is shown in Equation 4.8. Each table entry requires a single bit,
size lookupmax is provided as number of bytes.

size lookupmax = d size deltamax

size packetmin
· 1

8
e (4.8)

• The Delta Image Buffer occupies a lot of RAM that cannot be used by the firmware
for any other purpose. Defining size deltamax is a tradeoff between the avoidance
of performing sub-updates and preserving sufficient RAM for the firmware.

Placing the Delta Image Buffer inside the dynamic memory (heap) would allow the
firmware to use more memory during normal operation mode. In this case, the maxi-
mum size of the heap must be set according to size deltamax at link time. The reserved
heap cannot be used for any other components in RAM, such as stack or global variables.
But in contrast to the proposed implementation, the heap required for the Delta Image
Buffer could be used for other dynamic structures that are needed during normal oper-
ation. The major problem when using dynamic memory for image reception is that the
guarantee for sufficient memory at runtime is very hard to achieve. The update system
becomes more error-prone and complex.
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4.6.1 Delta Image Verification

After completing the reception of the delta image, the sensor executes the verification
step. Figure 4.11 shows how the sensor processes this verification. The reference checksum
(CRC) resides at the beginning of the delta image header and has fixed length. Thus, the
checksum is located at the beginning of the Delta Image Buffer. The sensor excludes
the region of the reference CRC for the checksum calculation of the received delta image.
The delta image size is usually smaller than the maximum size (size deltamax) of the
buffer. Thus, the sensor must only use the region that is filled with the delta image for
calculating the checksum. Otherwise, the checksums wouldn’t match because the unused
areas (usually filled with zeros) would change the result of the calculation. The region for
the checksum calculation is determined with the Update Size field inside the Update Info
Packet. When the reference CRC and the calculated CRC are equal, the sensor starts with
the image reconstruction step. Otherwise the CRC missmatch is reported to the gateway
and the sensor aborts the update process.

Delta Image

Buffer

CRC

Update Size

# Packets # Bytes

Update Info Packet

# Bytes Calculate

CRC

=

Valid Delta Image

Invalid Delta Image

Yes

No

Figure 4.11: Checksum Calculation for Delta Image Verification.

4.7 Image Reconstruction

The sensor starts reconstructing the new image after verification of the delta image. The
implemented reconstruction logic supports dual-image memory layouts where both images
(Upper Image, Lower Image) are executable by the MCU. Placing one of the images
on external memory is not possible on most platforms, because code cannot be directly
executed from there. The logic currently supports two reconstruction approaches:

1. Base Image = Executing Image, New Image = Non-Executing Image: No copy con-
flicts possible, this approach can be repeated as often as necessary in case the update
process fails.

2. Base Image = Non-Executing Image, New Image = Non-Executing Image: Copy
conflicts are possible. When update process fails during the first try, approach 1
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must be used because the Non-Executing Image results in an undefined state. The
main advantage compared to approach 1 is the smaller delta file because it’s created
with firmwares built for the same memory region (same image).

Another possible approach is to generate the delta using firmwares that are both built
for execution in the currently Executing Image. The reconstruction is equal to approach
1. After reconstruction, the bootloader copies the whole New Image into the Base Image
because the new firmware is built for execution in the previously Executing Image. This
approach would generate small deltas and could be repeated as often as necessary. The
major disadvantage of this approach is the higher reconstruction cost due to the higher
amount of pages overwritten. When the target platform supports dual-bank memory
[STM16], this approach would not require the bootloader to copy the whole New Image
into the Base Image. Dual-bank memories enable to map two images in the internal
memory to the same address space. This MCU feature simplifies the whole update process.
The generated firmwares are always positioned at the same memory region no matter
which image is used as reconstruction target. Figure 4.12 shows the different steps of the
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Figure 4.12: Reconstruction Logic Flowchart.
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reconstruction logic. The delta image header contains information necessary for processing
the reconstruction. Thus, parsing the header is the first step of the reconstruction logic.
Since the implementation is intended to be used for flash memories, the reconstruction is
processed page-wise. The page update order is included in the delta image header, it tells
the reconstruction logic what page is the next to be reconstructed. The next step is to
load the current page from the Base Image into the Page Buffer. Afterwards, the delta
messages, which intersect with the current page, are applied to the page buffer. The last
step is to write the processed page from the Page Buffer into the New Image.

Current Page

Current Message

msgstart ≥ pagestart

msgstart < pagestart

msgend ≤ pageend msgend > pageend

Current Page

Current Message

Current Page

Current Message

Current Page

Current Message

Intersection: Area of Flash-Page reconstructed by Delta Message

pagestart: Absolute Start Address of Page in Target Image

pageend: Absolute End Address of Page in Target Image

msgstart: Absolute Start Address of Delta Message in Target Image

msgend: Absolute End Address of Delta Message in Target Image

Figure 4.13: Processing Delta Messages on Single Flash-Page.

Delta messages ignore page boundaries. Thus, the reconstruction logic is responsible
for processing intersections of pages and messages only. Figure 4.13 shows the possible
intersections of pages with delta messages. Processing the delta messages on the current
page is done block-wise per message type. Due to the block size infos in the delta image
header, the beginning of each message block can be calculated without decoding all the
delta messages. Due to the presented encoding scheme (Section 4.2), forward-decoding is
necessary to find intersecting messages for the current page. For each page to reconstruct,
the decoding starts from the beginning of each message block. The COPY and ADD
message block is decoded until msgstart ≥ pageend. When this condition is true, decoding
of the next message block for the current page is started immediately because COPY
and ADD messages are sorted ascending by their destination address destabs. No further
message inside the block can intersect with the current page. The OFFSET block has to be
decoded completely for each page due to the encoding scheme. An alternative to repetitive
decoding for each page would be to decode the delta messages only once and store them
in an additional buffer. The problem is that this would require a lot of additional memory
for the delta image.

4.8 Bootloader Implementation

The bootloader is responsible for checking and activating the firmware images residing in
the lower and upper image on the sensor’s flash memory. Figure 4.14 shows the layout
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of a firmware image. The Interrupt Vector Table resides at the beginning of the firmware
image. Every firmware image needs it’s own vector table. Thus, the used MCU must
support relocatable vector tables in order to execute code in the lower and upper image.
The bootloader reads the Image Header of both images at the beginning for comparison
of the Version Numbers. The header is located at a fixed position in both images. The
checksum, generated at the host side, is located at the end address imgend of the firmware.
Figure 4.15 shows the steps performed by the bootloader. The implementation of the
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Figure 4.14: Firmware Image Layout.

different steps is depending on the used MCU: When there is no hardware unit available
for CRC calculation, a software implementation inside the bootloader logic is necessary.
Setting the Vector Table Entry, Stack Pointer and Program Counter is also depending on
the used hardware.
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Chapter 5

Results

This chapter evaluates the efficiency of the incremental update concept presented in this
thesis. Section 5.1 introduces the simulation setup. Section 5.2 evaluates the Similarity
Improvements approach presented in section 2.4.1. The evaluation presents among others
the significant delta size reduction and drawbacks due to fragmentation of memory.

5.1 Simulation Setup

This section introduces the simulation setup used for evaluating the presented concepts
in this thesis. In order to automate the firmware building and delta generation process,
a simulation framework was developed, which is presented in Section 5.1.1. Section 5.1.2
introduces the firmware used for evaluating the performance of the presented incremental
update solution.

5.1.1 Simulation Framework

Figure 5.1 shows an overview of the developed simulation framework. This framework
enables to automatically build firmware versions for desired LTO configurations and to
generate delta images for various DGO configurations. The configuration file enables to
define the desired build-runs and diff-runs. Each build-run defines how to build the given
firmware. Following parameters need to be set for each build-run:

• key: Unique name of the build-run. Required to identify each build-run in the
evaluation step.

• enable autoplacement: Defines whether LTO is used for the build-run or not. When
LTO is disabled, the built firmware contains the standard placement defined by the
linker of the platform.

• versions: A list that defines the versions to generate for the given build-run. Each
list entry contains following parameters:

– placement strategy: Defines the placement strategy of the LTO logic (major
or minor).

67
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– version old: Version number of the old firmware. Only required when creating
the new version using the minor placement strategy.

– version new: Version number of the new firmware.

• LTO configuration parameters: group objects, group modules, interspacing and
memory roi. Further described in Section 4.1.

Each diff-run contains following parameters:

• build run: The target build-run to generate delta images. The delta generator uses
the built firmwares of the build-run to create delta-images.

• versions: A list that defines the used versions for creating delta images. Each list
entry contains following parameters:

– version old: Version number of the old firmware.

– version new: Version number of the new firmware.

• config list: List of configuration parameters used for the DGO algorithm.

Simulation Processing

Configuration Firmware Processing
Similarity 

Improvements (LTO)

DGO

Simulation Results

Version Management

Figure 5.1: Simulation Setup used for Evaluation.

Each diff-run creates a delta image for each version list entry and diff-config entry com-
bination. Each version-number entry in the build-run configuration exists as tag in the
firmware repository. The Version Management component is responsible for checking out
the desired version in the firmware repository. The Firmware Processing component builds
the desired firmware version. Simulations are executed by the Simulation Processing com-
ponent. This component generates the firmware versions as described in the build-runs
and generates the delta images as described in the diff-runs. The Simulation Results com-
ponent is used to store all necessary information for evaluating the developed LTO and
DGO implementations. All results presented in this chapter were generated using the
simulation framework.
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5.1.2 Used Firmware

This section introduces the firmware used for evaluating the developed LTO and DGO.
The firmware is executed on a sensor that was developed by the company smaXtec animal
care [sacG]. Its purpose is to measure the movement activity and the temperature inside
the rumen of a cow. The firmware is running on a CC430F5137 MCU [Tex13a] and
contains several modules:

• System Libraries: Functionality provided by the manufacturer. Contains code such
as initialization logic of .bss and .data sections for bare metal firmware, standard
libraries (memcopy, memset,...) and others.

• Com Stack: Communication protocol for narrowband radio device.

• Measure: Measurement logic and drivers for peripherals.

• Application Logic: Contains logic for compression of measurement data, buffering
of measurement data, data interpreters, sensor activation logic, state machines and
others.

For build-runs, where module grouping is enabled, the developed LTO solution groups
the sections of the firmware into the modules mentioned above. Figure 5.2 shows the
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Figure 5.2: Flash Usage and Changed Bytes of Firmware Versions used for Evaluation.

flash usage and changed bytes of the different firmware versions used for evaluation. This
figure should help to understand the amount of change between different firmware versions.
Based on the amount of change, the performance of the presented LTO approach can be
evaluated more accurate. The parameter Changed Bytes describes the total number of
non-matching bytes between two firmware versions. The publication, which presents the
existing Delta Generator [KB16a], also uses this parameter for describing the amount of
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change between different versions. The Changed Bytes parameter can be misleading. The
number of changed bytes is very high for almost every version. Figure 5.3 shows that the
high number of changed bytes is not caused by a high amount of firmware changes. The
number of changed bytes is high because a lot of sections get shifted inside the firmware.
Figure 5.3 shows the firmware changes before the linking step. Analysing firmware changes
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Figure 5.3: Firmware Changes before Linking Step.

before linking step represents the actual amount of change more accurate. The firmware is
compared per section and the final position of the section in the firmware has no influence
on the resulting amount of firmware changes. The information provided in Figure 5.3 is
extracted with the developed Diff Analyser (Section 4.1). The actual amount of firmware
changes is much smaller than the Changed Bytes parameter.

5.2 Results including Link-Time Optimizations

Figure 5.4 compares the achieved delta size of the DGO delta algorithm [Ast19] with
the firmware changes before the linking step. Even though the DGO achieves a higher
compression than the Delta Generator [KB16a], still much more data must be transmitted
to the target nodes than actually changed inside the firmware image. This section presents
the results including LTO. Section 5.2.1 evaluates how efficient the presented similarity
concept reduces address shifts. Section 5.2.2 evaluates the reconstruction cost. It is shown
that using LTOs additionally raises the chance that less pages have to be overwritten.
Thus, the energy consumption during reconstruction decreases. Section 5.2.3 evaluates
the advantages of grouping modules and objects when applying the major placement
strategy on a firmware image. Section 5.2.4 evaluates the limitations caused by memory
fragmentation. Section 5.2.5 finally presents the resulting delta size achieved with the
concepts presented in this thesis.
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Figure 5.4: Delta Size when using DGO compared with the Firmware Changes before
Linking Step.

5.2.1 Reduction of Address Shifts

The main target of the similarity improvement concept, presented in Section 3.1, is to
preserve maximum similarity between different firmware versions. The presented concept
aims to reduce the number of address shifts because they have a significant impact on
the resulting delta size. Figure 5.5 compares the number of address shifts for following
build-runs:

• No Placement : LTO disabled (enable autoplacement = False, described in Section
5.1.1).

• Flash: LTO applied to flash sections only (enable autoplacement = True,
memory roi = [FLASH]).

• Flash+RAM : LTO applied to flash and RAM sections (enable autoplacement =
True, memory roi = [FLASH,RAM ]).

The presented LTO solution efficiently reduces the number of address shifts. Figure 5.5
additionally confirms the necessity of applying similarity improvements to RAM sections.
Some of the target versions produce a lot of address shifts due to shifted RAM sections.
In this case the number of address shifts in the Flash build run is significantly higher
compared to the Flash+Ram build-run.

5.2.2 Reconstruction Cost

The amount of used energy for reconstructing the new image is mainly depending on the
number of flash pages that need to be overwritten. The reconstruction approach, presented
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Figure 5.5: Reduction of Address Shifts when using Link-Time Optimizations.

in Section 4.7, only requires to overwrite pages that are modified by delta messages. Thus,
minimizing the number of shifted sections results in less pages to overwrite. Figure 5.6
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Figure 5.6: Reconstruction of Target Memory. Target Version = v1.7.5.

and 5.7 shows the reconstruction of two target versions on flash with delta messages using
three different approaches:

• DG without LTO : Delta Image created with the Delta Generator algorithm without
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LTO.

• DGO without LTO : Delta Image created with the DGO algorithm without LTO.

• DGO with LTO : Delta Image created with the DGO algorithm including LTO.

Each x-axis tick in both figures represents a flash page boundary. The size of a flash page
on the CC430 is 512 bytes. Page 1 starts at memory address 0x8000 and ends at 0x8200,
page 2 starts at address 0x8200 and ends at 0x8400. Using LTO reduces the number of
pages to overwrite from 31 to 7 for the update to target version v1.7.5. For the update
to version v1.7.0.4, the number of pages to overwrite is not significantly reduced. This is
due to the high number of modified, removed and new sections.
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Figure 5.7: Reconstruction of Target Memory. Target Version = v1.7.0.4.

5.2.3 Advantages of Grouping Modules and Objects

This section evaluates the effects of grouping object and modules. Furthermore, the ad-
vantages of Slop Regions between objects and modules are presented. Following build-runs
(described in Section 5.1.1) were processed for evaluation:

1. No Grouping, No Interspacing :

• enable autoplacement: True

• group objects: False

• group modules: False

• interspacing: None

2. Group Modules, Interspacing Modules:
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• enable autoplacement: True

• group objects: False

• group modules: True

• interspacing: 2048 bytes between modules

3. Group Modules + Objects, Interspacing Modules + Objects:

• enable autoplacement: True

• group objects: True

• group modules: True

• interspacing: 1024 bytes between modules, 128 bytes between objects

Evolution of Memory Layout

Figure 5.8 illustrates the evolution of the memory layout for build-run 2 (Group Modules,
Interspacing Modules), Figure 5.9 shows the evolution for build-run 3 (Group Modules +
Objects, Interspacing Modules + Objects). The fragmentation (holes between sections) in
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Figure 5.8: Evolution of Memory Layout when using Slop Regions between Modules.

modules at higher memory regions is bigger than in modules at lower memory regions.
The Application Logic is the most fragmented module. Figure 5.8 and 5.9 prove the
hypothesis from Section 3.1.4 that modules at higher memory regions usually become
more fragmented. In case the MCU runs out of memory after several further updates, the
additional delta size increase would be limited by applying bottom-up defragmentation
(Section 3.1.4).
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Figure 5.9: Evolution of Memory Layout when using Slop Regions between Objects and
Modules.

Move Distance of Relocated-Modified Sections

Figure 5.10 shows the mean and standard deviation of move-distances for relocated-
modified sections between the generated firmware versions. Equation 5.1 shows how to
calculate the move-distance (distancereloc) for a single relocated-modified section.

distancereloc = abs(originnew − originold) (5.1)

The average move-distance is minimized in build-run 3 (Group Modules + Objects, Inter-
spacing Modules + Objects) and maximized in build-run 1 (No Grouping, No Interspac-
ing). This behaviour occurs due to the implementation of the minor-placement algorithm
presented in Section 4.1.2: When sections are grouped into objects + modules and inter-
spacing between them is configured while creating the major version, the minor-placement
algorithm tries to place relocated-modified sections into their intended object regions.
Small values of distancereloc can further reduce the resulting delta size when using the
message encoding approach presented in Section 4.2. The move distance (move dist) of
COPY messages is encoded relative as signed LEB128. Smaller move distances require less
bytes for encoding. Another advantage of smaller move distances is the higher probability
that source and destination regions of COPY messages reside in the same flash page. That
in turn reduces the probability of page conflicts (Section 4.3).
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Figure 5.10: Mean and Standard Deviation of Move-Distances for Relocated-Modified
Sections.

Delta Size

Figure 5.11 compares the resulting delta sizes of the different build-runs. They have
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Figure 5.11: Comparing DGO Delta Size for different Grouping- and Interspacing Ap-
proaches.

following average delta size: build-run 1 = 585 bytes, build-run 2 = 510 bytes, build-
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run 3 = 479 bytes. Build-run 3 has a slightly smaller average delta size than build-run
2. This results from the higher number of holes in build-run 3. The probability that
modified sections can grow into following slop-regions (holes) and subsequently not have
to be relocated is higher. The relocation of modified sections increases the resulting delta
size. Build-run 1 has the highest average delta size. On the one hand this results from
the low number of holes compared to the other build-runs, on the other hand the average
delta size raises due to the update to target version v1.7.0.7 : The delta of build-run 1 is
much larger than the delta of the other build-runs. The large difference occurs because a
large section is relocated in build-run 1. The previous position of this relocated-modified
section is filled with a hole, this means the previous position is filled with a constant value.
Due to the used placement strategy for build-run 1, no large holes exist before the update
to target version v1.7.0.7. The DGO cannot use any existing holes for copying this large
sequence containing a constant value and thus generates a large ADD message for the
created hole.

5.2.4 Memory Fragmentation

This section evaluates the fragmentation of memory which is unavoidable when using the
presented Slop Regions approach for improving similarity.

Total Fragmentation

Figure 5.12 shows the progress of total fragmentation for the build-runs described in
Section 5.2.3. The total fragmentation conforms to the summed up size of all holes in
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Figure 5.12: Progress of Total Fragmentation for different Grouping- and Interspacing
Approaches.

the flash and RAM of the firmware image. For build-run 2 (Group Modules, Interspacing
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Modules) and build-run 3 (Group Modules + Objects, Interspacing Modules + Objects),
the total fragmentation is already very high at the initial version v1.7.0.3. This version is
created using the major placement strategy. The progress of their fragmentation remains
almost constant. This means that existing holes are efficiently used for relocated-modified
and new sections. For the total number of 16 updates simulated, the total fragmentation
does not increase significantly in build-run 2 and build-run 3. The total fragmentation
in the initial version of build-run 1 (No Grouping, No Interspacing) is zero because no
slop-regions (holes) are created in the major placement step. The total fragmentation
increases during the processed updates because sections are removed and some of the
modified sections are relocated.

Comparison Flash Usage

Figure 5.13 compares the flash and RAM usage of different build-runs. Without LTO
(No LTO in Figure 5.13), the memory usage is minimized because no holes are created
except paddings used for alignment of sections. These paddings are created by the linker
of the used platform. Build-run 2 and build-run 3 have a lot of initial fragmentation.
Thus, the memory usage is already high at version v1.7.0.3. Due to the efficient usage
of holes for relocated-modified and new sections, the memory usage is nearly constant
for all firmware versions. Figure 5.13 states that the initial interspacing between objects
and modules should be chosen with respect to the available memory on the target device.
When the resulting memory usage is already very close to the device’s limits, the risk
that defragmentation is necessary increases. In build-run 2 and build-run 3 for example,
the flash usage is already very close to the maximum. When a large section needs to be
inserted or relocated in a future update, defragmentation is unavoidable.
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None-Reusable Holes

The target of the minor placement strategy (Section 3.1.3) is to avoid the creation of
small holes when sections are inserted or relocated. This section evaluates if the presented
LTO approach creates small holes. Furthermore, the hypothesis that small holes lead to
unusable memory for future updates is verified. Figure 5.14 verifies that small holes
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Figure 5.14: Distribution of small Holes (Slop Regions) at Version v1.7.9.

v1.7.0.3

v1.7.0.4

v1.7.0.5

v1.7.0.6

v1.7.0.7

v1.7.0.8

v1.7.0.9

v1.7.0.10

v1.7.0
v1.7.1

v1.7.2
v1.7.3

v1.7.4
v1.7.5

v1.7.6
v1.7.8

v1.7.9

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350

Number of Sections in Flash

Target Version

S
iz

e 
pe

r 
S
ec

tio
n 

[B
yt

es
]

N
um

be
r 

of
 S

ec
tio

ns

Figure 5.15: Distribution of Section Size for different Versions.



CHAPTER 5. RESULTS 80

are existing after the update to version 1.7.9. It shows the distribution of small holes for
the different build-runs. For evaluating the hypothesis of unusable holes, it’s necessary to
define the size of a so called ”small” hole. Thus, the distribution of the section size is shown
in Figure 5.15. The plot shows that 50% of the existing sections have a size between 20 and
80 bytes in all versions. 25% of the sections are larger than 80 bytes and 25% are smaller
than 20 bytes. For further evaluation, a small hole is defined with a size between 0 and 20.
This corresponds to the position of the lower quartile in the boxplots shown in Figure 5.15.
Figure 5.16 compares the memory usage by small holes with the memory usage by holes

v1.7.0.3

v1.7.0.4

v1.7.0.5

v1.7.0.6

v1.7.0.7

v1.7.0.8

v1.7.0.9

v1.7.0.10

v1.7.0
v1.7.1

v1.7.2
v1.7.3

v1.7.4
v1.7.5

v1.7.6
v1.7.8

v1.7.9

0
50

100
150
200
250
300
350

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Grouping Modules+Objects, Interspacing Modules + Objects
Group Modules, Interspacing Modules
No Grouping, No Interspacing

Target Version

H
ol

e 
S
iz

e 
=

 [
0:

20
] 

 T
ot

al
 B

yt
es

H
ol

e 
S
iz

e 
>

 2
0 

 T
ot

al
 B

yt
es

Figure 5.16: Increasing Memory Usage by small Holes.

bigger than 20 bytes. The memory usage of bigger holes remains almost constant for the
different updates in build-run 2 and build-run 3. With these configurations, the existing
larger holes are efficiently reused for relocated-modified and new sections. In build-run
1, the memory-usage by bigger holes increases more significantly compared to the other
build-runs. This happens due to relocation of modified sections that do not fit into already
existing holes and thus are placed at the end of the flash memory. The memory usage by
small holes, which is shown in Figure 5.16, increases with the number of minor updates
performed. This progress can be observed for each build-run. Thus, Figure 5.16 verifies
the hypothesis that the presented LTO approach causes small holes that cannot be used
for placing sections in future updates. Even though the total amount of unusable memory
is relatively small after 16 updates, defragmentation will be unavoidable at some point
when a lot of updates are performed.

5.2.5 Resulting Delta Size

This section evaluates the resulting delta size when using the presented LTO approach
in combination with the DGO. Figure 5.17 shows the reduction of the delta size when
using LTO. The significant improvement is achieved due to the reduction of address
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shifts, as described in Section 5.2.1. Figure 5.18 compares the achieved delta size with
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Figure 5.17: Reduction of Delta Size when using Link-Time Optimizations.

the firmware changes before linking step. For almost every update, the resulting delta
size is significantly smaller than the amount of firmware changes. Table 5.1 summarizes

v1.7.0.3

v1.7.0.4

v1.7.0.5

v1.7.0.6

v1.7.0.7

v1.7.0.8

v1.7.0.9

v1.7.0.10

v1.7.0
v1.7.1

v1.7.2
v1.7.3

v1.7.4
v1.7.5

v1.7.6
v1.7.8

v1.7.9

0

1000

2000

3000

4000

0

0.5

1

1.5

Firmware Changes Delta Size (DGO with LTO) Delta Size / Firmware Changes

Target Version

B
yt

es
Ra

tio

Figure 5.18: Comparison of Delta Size (DGO) including LTO with Firmware Changes
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the results presented in this chapter. Using the presented LTO approach leads to efficient
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results for both delta algorithms evaluated in this Chapter. The improvement of the DGO
compared to the existing Delta Generator is less significant when using LTO. This can be
explained with the reduced number of address shifts. They are handled more efficiently
by the developed DGO.

Without LTO With LTO
DG DGO DG DGO

Mean Delta Size [bytes] 8660 3961 779 480

Deviation Delta Size [bytes] 2670 1633 868 537

Mean Compression [%] 59.59 81.53 96.34 97.75

Deviaton Compression [%] 12.31 7.54 4.12 2.55

Mean Improvement [%] - 55.36 - 34.53

Table 5.1: Comparison of Delta Generator (DG) and DGO including LTO.



Chapter 6

Conclusion

This final chapter concludes the thesis. Section 6.1 summarizes the contributions presented
in the previous chapters. Section 6.2 describes limitations and potential future work on
the topics covered.

6.1 Contributions

The goal of this thesis was to implement and evaluate an efficient and reliable OTA solution
for resource-constrained devices that communicate using a lossy, low-bandwidth network
technology. Several issues relating to this goal had to be solved:

• The solution should support platforms with limited resources, where no additional
hardware for processing firmware updates, such as external memory, is available.

• The amount of transmitted data should be kept to a minimum. The similarity of
different firmware versions needs to be improved, otherwise the delta algorithm used
does not achieve the required efficiency.

• Bringing a target device into an undefined state due to firmware updates must be
prohibited.

• The OTA solution should have low platform dependency.

In order to address the issues stated above, this thesis examined following topics:

Similarity Improvements

Although the DGO algorithm achieves significant efficiency improvements compared to
transmission of the whole firmware image, the efficiency is still not sufficient. Thus, im-
proving the similarity of different firmware versions is necessary in order to further reduce
the amount of data needed for applying updates. The goal of similarity improvements is to
mitigate the effects of shifted code sections. These cause a high amount of address shifts
inside the firmware image, which leads to delta files being much larger than the actual
code changes themselves.

83
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The solution presented in this thesis is based on the existing Slop Region approach,
which inserts small pace-holders (holes) after each section. Several publications have men-
tioned that slop regions cause massive fragmentation of memory and thus do not present
a practicable solution for similarity improvements. This thesis evaluates these drawbacks
and presents a solution in order to avoid them. The presented Major Placement algo-
rithm generates an optimized placement order of code/data sections within the memory
by analysing their dependencies. This algorithm is intended to be used for creating ini-
tial firmware images before devices are shipped and firmware updates are applied. The
presented Minor Placement algorithm is used for creating firmwares with maximized sim-
ilarity based on an existing version.

Some of the other similarity improvement approaches modify the building toolchain or
the executable binary. With the presented approach, only the linker script, which defines
the placement of sections, is modified. This additionally reduces platform dependency.
Only the linker script writer and the memory map parser may require adaptations for
different platforms. Another advantage is that the approach does not require specific
memory layouts. Other solutions require external memory in order to process the updates
on the sensor. The evaluation was done with firmware that is actually used in productive
environments. Without LTO, the used DGO algorithm achieved an average delta size of
3961 bytes (compression = 81.53%). Including the presented LTO solution, the average
delta size was reduced to 480 bytes (compression = 97.75%). The major drawback of the
presented approach is the fragmentation of memory. The evaluation in this thesis showed
that the fragmentation is efficiently limited with the presented concepts. Only about 1%
of memory was unusable due to fragmentation after processing 16 updates. The evaluation
showed that the Minor Placement algorithm is able to efficiently reuse big holes in future
firmware versions. Only small holes have a high probability of not being reused.

Update Processing on Sensor

Existing publications regarding OTA mainly focus on the efficient distribution of firmware
updates, similarity improvements and delta generation. Besides the development of an ef-
ficient similarity improvement approach, this thesis also focussed on processing the trans-
mitted update data on the sensor. The main goal of the sensor processing is to prevent
an undefined state of the sensor due to firmware updates. Furthermore, the sensor should
be able to process updates without additional hardware.

The developed concept presents several update components, which are included directly
into the updateable firmware image. The Diff Image Reception logic is responsible for
writing the received delta packets into the Delta Image Buffer, which is located in RAM.
When all packets are received, the reception logic validates the delta image. The Image
Reconstruction logic reconstructs the new version by using the received delta image and the
old version. When reconstruction is finished, the sensor performs a reset. The bootloader
performs image verification at startup. This ensures that no corrupt firmware is executed.
After verification, the bootloader then starts execution of the newer firmware version.

The presented solution does not disturb normal operation on the sensor while receiving
the delta image. Furthermore, the dual-image memory layout ensures that at least one
working firmware image is always available on the sensor. This provides high reliability for
the whole update system. The used memory layout does not require any external memory
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on the sensor. However, the main drawback is that the maximum size of the firmware is
only half of the available memory.

6.2 Future Work

With the conclusion of this work, some additional tasks remain:

• Further reduction of platform dependency: The current LTO implementation
contains two platform dependent components. The information provided by the
memory-map parser could also be extracted from the executable ELF file. This
would further reduce the platform dependency of the LTO implementation and would
decrease the effort involved in adapting the presented solution to different platforms.
The ELF file format is standardized in contrast to memory-map files, which are often
platform specific.

• Minor-placement algorithm improvements: The minor-placement algorithm
currently relocates every modified section, which causes shifts of sections placed
below. In some cases the resulting delta size would be smaller if the modified section
is kept in the same position. This depends on the number of sections that are shifted
below the modified section.

• Further evaluations: Carrying out an evaluation with more than 16 different
firmware versions could provide a more detailed insight into the fragmentation of
memory due to the presented LTO approach. Additionally, the delta size enlarge-
ment caused by memory defragmentation could also be evaluated. Another com-
ponent that could be evaluated is the presented message encoding approach. This
implementation should deliver smaller delta files, especially for 32-bit platforms.



Appendix A

Acronyms

ASCII American Standard Code for Information Interchange
CS Common Subsequence
DGO Delta-Generator with Offset
EEPROM Electrically Erasable Programmable Read-Only Memory
ELF Executable and Linking Format
ES Embedded System
FBC Fixed Block Comparison
FRAM Ferroelectric Random Access Memory
FUM Firmware Update Manager
HAL Hardware Abstraction Layer
IoT Internet of Things
LCS Longest Common Subsequence
LoRaWAN Long Range Wide Area Network
LPWAN Low-Power Wide Area Networks
LTO Link Time Optimization
MCU Microcontroller Unit
NMS Non-Matching Segment
OS Operating System
OTA Over The Air Update
RAM Random-Access Memory
RMTD Reprogramming with Minimal Transferred Data
VM Virtual Machine
VM Virtual Machine
WSN Wireless Sensor Network
XNP Crossbow Network Programming
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