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Abstract

Geometry is one of computer graphic’s core concepts describing how to represent,

store and process artificially generated imagery. In this thesis, we investigate how to

make best use of a modern graphics processing unit to tackle various tasks involved

in handling geometry in a graphics pipeline. We use sophisticated scheduling

mechanisms to generate geometry on the fly on a large scale by evaluating shape

grammars. We analyze the derivation process at a high level by introducing the

operator graph, which not only permits to adjust execution patterns to improve

efficiency, but also lets us mimic various styles of shape grammar derivation systems

proposed in previous work to analyze and compare their performance within the same

software framework. Furthermore, we developed a novel graphics primitive—the

CPatch—for rasterization of two dimensional vector graphics. Like triangles in

polygon meshes for 3D computer graphics, CPatches not only consisting of lines

but also curves, can be thought of as equivalent for 2D vector graphics. A third

aspect of geometry processing that this thesis contributes to deals with sampling for

visibility. An object space shading approach for decoupled rendering systems needs

to determine what will be visible in a scene from a certain view point to reduce the

shading workload to this subset of the scene’s geometry. This subset—the visible

set—can be insufficient and cause disocclusion artifacts if either the view point at

the time a frame is displayed differs too much from the view point at the time of

shading, or the input primitives were simply not detected because their transformed

geometry is too small and fell through the sampling grid. In either case, the artifacts,

stemming from missing information, can be mitigated by enriching the visible set by

additional primitives, forming a potentially visible set (PVS). Our proposed method

is a solution to the latter problem of geometry that can not be sampled correctly
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because of its size.

Keywords. computer graphics, virtual reality, GPU computing, scheduling, geom-

etry processing, vector graphics, svg, decoupled rendering, rasterization, visibility

sampling, CUDA, Vulkan



Kurzfassung

Geometrie, ein zentrales Konzept in der Computergrafik, wird dazu verwendet, zu

beschreiben, wie künstlich erzeugte Bilder repräsentiert, gespeichert und verarbeitet

werden. Diese Arbeit untersucht die Anwendbarkeit moderner Grafikprozessoren

(GPU) um verschiedene Aspekte der Geometrieverarbeitung in Grafikpipelines zu

verbessern. Ausgeklügelte Ablaufkoordinationsmechanismen erlauben es, Figur-

Grammatiken zur Laufzeit auszuwerten um große Mengen an Geometrie direkt zur

Darstellung zu verwenden. Zur Analyse des Ableitungsprozesses führen wir den

Operator Graph ein. Dieser erlaubt es nicht nur, Ausführungsmuster anzupassen um

die Effizienz des Vorganges zu steigern, sondern auch verschiedene Figur-Grammatik

Stile zu imitieren um deren Leistungsfähigkeit im gleichen Software System zu

vergleichen. Des Weiteren haben wir den CPatch entwickelt—eine neuartige ge-

ometrische Grundform zur Rasterisierung zwei dimensionaler Vektorgrafik. Wie

Dreiecke in Polygon Netzen zur Darstellung in der 3D Grafik, werden CPatches

dazu verwendet zweidimensionale Vektorgrafiken anzuzeigen. Sie bestehen jedoch

nicht nur aus Linien zur Begrenzung, sondern auch aus Kurven. Ein dritter Aspekt

der Geometrieverarbeitung, den diese Dissertation behandelt, ist die Detektion der

Sichtbarkeit von Dreiecken. Bei Anwendung von Object Space Shading Methoden in

entkoppelten Render Systemen, müssen die sichtbaren Elemente eines bestimmten

Blickwinkels einer Szene zuerst ermittelt werden um den Rechenaufwand in Grenzen

zu halten und vorhandene Rechenleistung auf auf diesen sichtbaren Teil der Szene

zu konzentrieren. Diese Menge der sichtbaren Elemente kann unter Umständen nicht

ausreichen, um eine Szene fehlerfrei darzustellen. Wenn zum Beispiel der Blickwinkel

zwischen Erzeugung und Anzeige der Bildinformation verschieden ist, oder Dreiecke

nicht gerendert werden, weil sie zu klein sind um als sichtbar markiert zu werden,
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entstehen Artefakte auf Grund der fehlenden Bildinformation. Die Anzahl dieser

Artefakte kann vermindert werden indem man die Menge der sichtbaren Elemente

um wahrscheinlich sichtbare erweitert. Die vorgestellte Methode kann zu kleine

Dreiecke erkennen um eine potentiell sichtbare Menge an Dreiecken zu erzeugen.
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Jäger, Prof. Vincent Lepetit and Prof. Franz Leberl.

Last but not least I want to thank my parents, Walter and Anita, my sister Nadja

and my wife Julia, who supported and encouraged me in every possible way.

My work was also funded by the MPII, the Christian Doppler Laboratory for

Semantic 3D Computer Vision and Qualcomm Inc.



Contents

Abstract ix

Kurzfassung xi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Publications and Statement of Collaborations . . . . . . . . . . . . . 9

2 Related Work 11

2.1 Procedural Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Computer aided procedural modeling . . . . . . . . . . . . . . 11

2.1.2 Parallel evaluation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Grammar evaluation using GPU shaders . . . . . . . . . . . . 12

2.1.4 General purpose GPU languages . . . . . . . . . . . . . . . . . 13

2.1.5 Per-pixel grammar evaluation . . . . . . . . . . . . . . . . . . 13

2.2 Vector Graphics Rasterization . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Scanline methods . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Stencil, then cover . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Alternative representations . . . . . . . . . . . . . . . . . . . . 15

2.3 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Visibility Algorithms . . . . . . . . . . . . . . . . . . . . . . . 16

xv



xvi

2.3.2 Decoupled Shading . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Overview 19

3.1 GPU Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 The Whippletree Scheduling Framework . . . . . . . . . . . . 19

3.2 Procedural Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Representation and Rasterization of Vector Graphics . . . . . . . . . 22

3.4 Visibility Sampling for Decoupled Rendering . . . . . . . . . . . . . . 22

4 Procedural Generation 25

4.1 Operator graph representation . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Operator graph scheduling . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Scheduling strategies . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Graph partitioning . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Execution group matching . . . . . . . . . . . . . . . . . . . . 36

4.3 Operator graph equivalence to conventional representations . . . . . . 37

4.3.1 L-systems extensions . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2 Shape Grammars . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.3 Stack-based Generation . . . . . . . . . . . . . . . . . . . . . 39

4.4 Compiler Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Procedural generation system . . . . . . . . . . . . . . . . . . 41

4.4.2 Scheduling optimizer . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.3 Sequence fusion heuristic . . . . . . . . . . . . . . . . . . . . . 44

4.4.4 Divergence avoidance heuristic . . . . . . . . . . . . . . . . . . 46

4.4.5 Execution group size heuristic . . . . . . . . . . . . . . . . . . 46

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Evaluation of the heuristics . . . . . . . . . . . . . . . . . . . 47

4.5.2 Runtime performance . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Vector Graphics Rasterization 53

5.1 CPatch: A novel curved primitive . . . . . . . . . . . . . . . . . . . . 55

5.2 Hierarchical rasterization of CPatches . . . . . . . . . . . . . . . . . . 58

5.2.1 CPatch representation . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Tiled rasterization . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.3 GPU software rasterizer . . . . . . . . . . . . . . . . . . . . . 63

5.3 Converting vector graphics to CPatches . . . . . . . . . . . . . . . . . 66

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



xvii

6 Visibility Sampling 77

6.1 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Naive Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.2 Brute-Force Oversampling . . . . . . . . . . . . . . . . . . . . 81

6.1.3 Sub-Pixel Visibility . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.3.1 Conservative Rasterization . . . . . . . . . . . . . . . 82

6.1.3.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Conservative Visibility . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Test configuration . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.2 Dense visibility sampling as ground truth . . . . . . . . . . . . 89

6.3.3 Sampling Resolution . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.4 Depth Delta Variations . . . . . . . . . . . . . . . . . . . . . . 90

6.3.5 View Cell Sampling . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Conclusion 97

7.1 Findings and Gained Knowledge . . . . . . . . . . . . . . . . . . . . . 100

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 105





1
Introduction

1.1 Motivation

Approaching the end of the second decade of the twenty first century, graphics

processing units have become a common piece of hardware from the smart phone in

the pocket over laptop and desktop computers to compute clusters in data centers.

The widespread adoption of these many-core devices gave rise to the development of

parallel algorithms. With such powerful tools, we set out to improve methods which

deal with one of the central topics in computer graphics that is geometry.

Geometry as we understand it in the context of this work is a collection of

coordinates that describe positions, usually in two or three dimensional space. A

tuple of three coordinates, for example, would describe a point in space that is at

some distance to the origin and is called a vertex. Two vertices could describe a line,

three a triangle—the most commonly used and most efficiently handled geometric

primitive in computer graphics. But three vertices could also describe quadratic

Bézier curve, for example—start, end and control point. So we can define the shape

and position of things we want to display by their geometric properties and store

them in some suitable format. From the stored description to the final image, several

steps of processing are needed. Such processing systems are usually organized in

a pipeline design involving transformation, projection, rasterization and shading

stages.

Graphics pipelines implemented in current graphics application programming

interface (API) consist of several programmable and fixed-function stages. Figure 1.2

shows an overview of the OpenGL R© pipeline design. The stages in blue are user

1



2 Chapter 1. Introduction

Figure 1.1: Visualization of geometric primitives, e.g., a wire-frame rendering with
flat black and white coloring of the triangles and their borders.

programmable. Shader code is executed directly on the graphics processor. The first

three of the programmable stages deal with geometry processing and the remaining

one is for per pixel operations. The API is used to interface with the graphics

hardware, where threads are assigned with a granularity appropriate for the various

pipeline stages. The stages displayed in orange are assigned a fixed function. User

control in these stages, if at all possible, works via API calls to configure the pipeline

before drawing commences. A brief overview of these stages follows. The details of

what these stages do in particular can be looked up in the full specification [43].

• Vertex Assembly Vertex data (coordinates) and additional attributes (color,

normal, texture coordinates, etc) are pulled from input buffers.

• Vertex Shader User code is executed that usually performs transformation

operations on the vertex coordinates, like applying model, view and projection

matrices.

• Tessellation Shader This stage consists of three sub-stages. A programmable

control shader, a fixed-function primitive generator and a programmable eval-

uation shader. The tessellation shader operates on patches of vertex data to

do dynamic subdivision. This can be used for adjusting the geometric level of

detail during rendering.
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• Geometry Shader The optional geometry shader stage operates on primitives

and can output zero or more new primitives. Programs often just pass through

the input vertices unaltered and just calculate some per primitive values. This

is also called a pass-through shader.

• Primitive Assembly This fixed-function stage does various post-processing,

like establishing primitive order, on the geometry data, before it is converted

to pixels in the rasterization stage.

• Rasterization This stage uses fixed-function rasterization units to determine

the pixels covered by a projected rendering primitive. Some configuration can

be done on recent versions of the graphics API, like configuring the use of

conservative rasterization or switching it off completely. In case of a switched-off

rasterization stage, the pipeline ends at the geometry stage.

• Fragment Shader Per fragment code is executed to determine the color value

of the output pixel or if it will be discarded.

• Per-Fragment Operations Before pixel data is written to the output frame-

buffer, some (configurable) fixed-function operations will be carried out, like

blending and depth testing.

Three quarters of this pipeline deal with geometry processing, which illustrates

the importance this topic. Thus, efficient handling of geometric data and quick

execution of involved algorithms is most desirable. Besides, the development history

of this pipeline design shows that geometry processing has become more and more

important throughout the years. The first user programmable geometry stage was

the vertex shader, followed by geometry shaders and then tessellation shaders. Lately,

NVIDIA has proposed mesh shaders [52], which enable more efficient geometry

processing by supporting cooperative thread groups in the style of compute shaders

to work on geometry and dynamically generate levels of detail for meshes on the

graphics processing unit (GPU). Looking at these developments in graphics pipelines,

one can expect that the capabilities to handle more and more geometry will increase

further and that the complexity of geometry generated from shader programs directly

on the GPU will become richer in detail, as developers learn to use the novel

capabilities better. Some of these new methods of handling computer graphics tasks,

like generating geometry directly on the GPU or separating the rendering pipeline

into shading and display, are explored within this thesis.

Geometry processing is a large field that covers topics from subdividing surfaces

over modeling techniques like constructive solid geometry (CSG) to smoothly deform-
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Vertex Shader

Tessellation 
Shader

Geometry 
Shader

Rasterization

Vertex 
Assembly

Per-Fragment 
Operations

Fragment 
Shader

Primitive 
Assembly

Framebuffer OutputApplication Input

Figure 1.2: A graphics pipeline as it is used in modern graphics API like it is
described in the OpenGL specification [43]. The blue stages are user programmable
stages and the orange ones fixed funtion stages that can be configured to some extent
before issuing drawing commands.

ing meshes, to name just a few. This thesis focuses on a few specific topics that are

used to render computer-generated imagery in real-time. We try to avoid setting this

focus too narrow to cover a good subset of important topics within the domain of ge-

ometry processing from generating models, alternative representations, rasterization,

sampling, visibility and decoupled rendering pipelines. Many techniques in real-time

graphics exist that increase image quality and realism by operating on textures.

They can have a significant visual effect already with relatively low computational

overhead or even have gained hardware support because they have been around for

quite some time and belong to the standard feature set of any good 3D engine, like

various filter or texture mapping effects. In some cases, however, a certain level of

detail in geometric representation can not be avoided. An increase in the number

of triangles to draw can quickly become a hazardous performance bottleneck. One
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way of dealing with this is to adaptively reduce the quality of the used 3D models.

Another would be to keep storage requirements low by either applying compression

schemes or avoiding data transfers altogether and generate or refine the geometry

on the fly. With current hardware being rather limited by memory bandwidth and

latency rather than raw compute power, this is often a viable route to go. Therefore,

our primary objective is to provide solutions to the various problems that increase

efficiency by leveraging highly parallel hardware platforms.

Programming models on GPU hardware are not only vastly different from

traditional CPU based single or multi-threaded paradigms, but have also evolved

with more and more functional blocks of the graphics pipeline being opened up

from fixed-function to being freely programmable. Furthermore, the trend of using

shader programs for general purpose computing tasks has led the manufacturers of

such devices to provide API to use them in a dedicated compute mode. The free

programmability of GPU hardware opened up this platform for an even broader

range of tasks than just graphics problems. But the massively parallel nature of

this hardware makes it a non-trivial task to map algorithms to it. To ease this

burden and to increase the efficiency of programs running on the GPU, sophisticated

scheduling and careful resource management have to be considered to keep processor

occupancy high and memory access wait times low. In this regard, previous work

has shown the effectiveness of using software scheduling specifically tailored towards

massively parallel architectures, which motivated research in applications of that

technology leading to the results that are presented in this thesis.

1.2 Objectives

In our research, we consider applications that require geometry processing algorithms

with the following properties.

• G1 The geometry is both large and complex. Consequently, it can not be

rasterized directly. For example, this encompasses vector graphics containing

curved primitives, implicit modeling through grammars and poorly conditioned

triangle sets with tiny slithery primitives.

• G2 We aim for immediate rendering and, therefore, we want the result of the

geometry processing on-the-fly.

The two requirements imply that geometry processing must have both high through-

put and low latency. Even though offline geometry preprocessing can be done, the
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value of such a solution would be significantly reduced. A preprocessing solution

would be restricted by storage bounds and by inability to handle dynamic, animated,

or user-generated data sets. From these general requirements, we define several more

concrete research goals that meet the properties G1 and G2.

We postulate that we can improve upon the state of the art in various aspects

of geometry processing in terms of performance and image quality and derive the

following research objectives to be met by the work conducted prior to the writing

of this thesis.

• R1 Since previous work [71] has shown that with the help of appropriate

scheduling, the performance of shape grammar derivation systems can be

increased, an analysis of this workload’s characteristics can further improve

the mapping to GPU and therefore the efficiency of execution.

• R2 Besides the procedural generation of geometry, other problems that show

the same pattern of interpreting an input description to produce visual output,

must be able to benefit from applying our task scheduling paradigm. To further

specify this rather general objective, we choose descriptions of vector graphics

illustrations to reinterpret them in a way to foster ideal mapping to GPU.

• R3 Line equations are used in triangle rasterization to determine if a point is

inside or outside of a given primitive. Curve equations in their implicit form

can be used in the same way when various precautions are taken. This will

not only enable to map the same principle from triangle to curve rasterization,

but also allows us to represent curved outlines in compact fashion with a low

memory footprint.

• R4 In order to process just the right amount of geometry from a scene in a

rendering pipeline, a good method of determining the visibility of primitives

produces a visible set that is complete enough to avoid disocclusion artifacts but

does not induce excessive overshading. A method that meets these requirements

will be superior to simply increasing sampling density, which would be infeasible

in terms of performance when doing real-time rendering.

Starting out with an analysis of procedural modeling tasks is a good way to

focus on the abstraction of the algorithm to its fundamental operations and their

interaction. Since we already know, that parallel execution of such a workload can

be highly efficient we concentrate on the question why this is the case and how to

tune the break down of the derivation into work items to achieve maximum efficiency.

To this end, we postulate that a graph representation of a given shape grammar
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will help us to fulfill R1 and draw parallels to code generation and compilation

optimizations. Furthermore, makes sense to not only generate geometry directly

where it is consumed—on the GPU—to avoid expensive memory transfers, but also

to execute as much of the generation pipeline as possible on the GPU without any

round trip delays for central processing unit (CPU) intervention.

In a similar way we handle R2, if we appropriately prepare vector graphics

illustrations and thus will be able to execute the rasterization process in a highly

parallel fashion. By interpreting the contours as regions bounded by curves that do

not intersect their enclosed area, each sub-region will be handled independently and

in parallel. Again, a graph representation can be a suitable structure to analyze the

task at hand. From that graph representation we can decompose the regions to be

filled into patches bounded by curves which can be directly processed in a rasterizer

that can evaluate their implicit form (R3).

So far we have covered creation, rasterization and representation of geometry as

well as optimized instruction scheduling in our research goals. In our last objective

R4 we concentrate on the detection of geometry to improve not only visual quality

but also the sampling process. We argue that it is not only of importance how to

prepare the data and the rendering pipeline for efficient processing, but also to detect

what geometry is necessary to feed to that pipeline to achieve high fidelity graphics.

The most efficient rendering engine is of no use if the triangles it is supposed to

shade are not detected to be visible. Similarly it is of no use to spam the system

with work that will not be visible on screen. Consequently, potentially visible set

(PVS) algorithms are of interest in the context of virtual reality (VR) and this thesis.

1.3 Contribution

The contribution to the various topics of geometry processing for real-time graphics

applications achieved by this thesis and its preceding publications and how they

relate to the objectives stated in section 1.2 will be laid out in the following list.

• We introduce the operator graph to analyze shape grammars and find an optimal

schedule for the derivation process. This not only increases performance in

general, but also makes procedural generation more efficient (R1) on massively

parallel hardware by finding suitable work packages with the help of heuristics

to search the vast space of possible solutions.

• Besides procedural generation of geometry, we show that problems of interpret-

ing descriptions for generating graphical output can be tackled by reformulating
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them in a suitable manner for processing with a GPU scheduling system (R2).

We demonstrate this by implementing a vector graphics rasterization system

that reinterprets drawing commands to form new rendering primitives that can

be used to render simple as well as highly complex illustrations equally well.

• We propose an alternative representation (R3) to describe rendering primitives.

What triangles are to conventional rasterization in 3D rendering pipelines,

CPatches are to vector graphics rasterization. Similarly to using line equations

we can use curves for an efficient description of a primitive’s boundaries.

• In the advent of decoupled rendering systems to suit the demands of emerging

technologies in VR we propose a novel method to sample the visibility of

triangles. Specifically, our approach solves the problem missing geometry

when sampling, because it would be too small to be detected. By employing

conservative rasterization and carefully designed heuristics to filter excess

triangles we provide a solution that can meet real-time requirements as opposed

to what can be achieved by naively using supersampling (R4).

1.4 Organization

First, an introductory part contains a motivational statement that portrays the

situation and the problem to be solved. Chapter 1 contains this as well as research

objectives, a list of achieved contributions and organizational details about the thesis.

After successfully introducing and outlining the achievements of this thesis, we

will take a little detour in Chapter 2 to discuss background information and previously

conducted research in the fields covered by the individual subtopics. This shall give

the reader pointers for further reading as well as help to distinguish the accomplished

contribution.

Second, before starting out to the three in-depth chapters on geometry processing,

in Chapter 3, we provide an outline of what is to come. The publications, which

are also listed in Appendix ?? and a statement of collaboration is provided with

a short description of each individual subtopic. The two topics, GPU scheduling

and decoupled rendering are covered in more detail in the overview, to give the

reader essential knowledge upfront. The detailed description of the work follows in

subsequent chapters. The geometry generation in Chapter 4, representation and

sampling in Chapter 5 and visibility sampling in Chapter 6. These three chapters

closely resemble publications the author worked on prior to writing up the thesis.
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With this arrangement, we try to draw the picture for geometry’s life cycle from it’s

creation via procedural modeling, over storing it to memory in some representation

to transforming it to visual output in rasterization and consuming primitives in

sampling operations.

Third, Chapter 7 concludes the thesis with a summary and closing remarks on

limitations and future work. Lastly, there is the bibliography listing references to

other publications.

1.5 Publications and Statement of Collaborations

A brief statement of collaboration in the work that has been done and the publications

produced will be mentioned here in the introductory chapter in chronological order in

the style of title (in bold), authors (thesis author in bold) and venue/journal where

the work was published. The author of this thesis is meant when ”the author” is

mentioned in the statement of contribution, not the main author of the publication.

Whippletree: Task-based Scheduling of Dynamic Workloads

on the GPU

Steinberger, M., Kenzel, M., Boechat de Almeida Germano, P., Kerbl, B., Dokter,

M., Schmalstieg, D.

November 2014: ACM Transactions on Graphics (TOG)—Proceedings of ACM

SIGGRAPH Asia 2014 Volume 33 Issue 6 Article 228

The author contributed implementation work of the procedural modeling show

case of the described method. The co-authors did the major part of implementation

and the paper writing.

Representing and Scheduling Procedural Generation using

Operator Graphs

Boechat de Almeida Germano, P., Dokter, M., Kenzel, M., Seidel, H-P., Schmalstieg,

D., Steinberger, M.

November 2016: ACM Transactions on Graphics (TOG)—Proceedings of ACM

SIGGRAPH Asia 2016 Volume 35 Issue 6 Article 183

The author shared the implementation effort with the paper’s main author and

carried out supportive work in paper writing. The co-authors also provided ideas,
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expertise and useful discussion.

Shading Atlas Streaming

Müller, J., Voglreiter, P., Dokter, M., Neff, T., Majar, M., Steinberger, M., Schmal-

stieg, D.

December 2018: ACM Transactions on Graphics (TOG)—Proceedings of ACM

SIGGRAPH Asia 2018 Volume 37 Issue 6 Article 199

The author contributed development effort to the software framework and con-

ducted experiments to evaluate the described system against other state of the art

methods. he co-authors contributed implementation work, paper writing, ideas and

guidance.

Hierarchical Rasterization of Curved Primitives for Vector

Graphics Rendering on the GPU

Dokter, M., Hladky, J., Parger, M., Schmalstieg, D., Seidel, H-P., Steinberger, M.

May 2019: Computer Graphics Forum (Proceedings EUROGRAPHICS). To appear.

The author spent the majority of the projects lifetime on implementation work.

The writing was completed in cooperation with Markus Steinberger. The other

co-authors contributed development effort, valuable comments and guidance.

Real-Time Sub-Pixel Visibility for Decoupled Shading

Dokter, M., Müller, J., Voglreiter, P., Neff, T., Steinberger, M., Schmalstieg, D.

2019: pending submission IEEE Transactions on Visualization and Computer

Graphics—TVCG

The author implemented the described method and did most of the writing of

the publication. The co-authors provided the shared effort in creating the rendering

framework, guidance in overcoming development obstacles, expertise and experience

in general.
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The various topics of geometry processing, GPU programming and scheduling

discussed in this thesis have been subject to previous research work, which will be

considered on the following pages.

2.1 Procedural Generation

Procedural modeling has been the focus of research projects for decades, but only

in recent years several ways of parallelizing generation of geometry using shape

grammar descriptions have been proposed.

2.1.1 Computer aided procedural modeling

Stiny’s original shape grammars [75] were one of the first approaches which applied

a sequence of procedurally defined operations on a given set of shapes. Later on,

Stiny refined this work to define set grammars [76]. While shape grammars consider

operations on shapes, similar procedural generation processes can be defined on

11
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character strings. These approaches, called L-systems, are inspired by plant growth

patterns [60]. Similarly, Wonka et al. [88] found that facades can effectively be

described by split grammars, a special case of shape grammars, which restrict the

available operations to space subdivisions. Combining concepts from the original

shape grammar work, L-systems, and split grammars, CGA shape [49] is able to

describe complex buildings and cities. While the work on shape grammars and

L-systems spans three decades, the idea behind productions generation remains

unchanged. Given a shape or symbol, an operation is applied to that entity to yield

new shapes/symbols.

One of the most important extensions to simple procedural generation is consider-

ing external influences, such as the environment [59], user-defined curves [61], external

guidance [6], or vector fields [37]. In contrast to external influences, interactions

between generated objects can be modeled, such as interconnecting different struc-

tures [31], resolving intersections of generated geometry [57], or querying neighboring

shapes [49]. Treating shapes as first class citizens allows a variety of queries between

generated shapes and even temporary objects [69]. Procedural modeling can also be

extended to support more general terminal symbols [32] or more basic mesh editing

functions [23]. While these extensions introduce additional dependencies into the

generation, the very basic principle of procedural generation remains unchanged.

2.1.2 Parallel evaluation

The basis for computation on the GPU is how well an approach can be executed

in parallel. L-systems and shape grammars, which form the foundation of many

procedural generation systems, naturally provide a high degree of parallelism. In

L-system derivation, every symbol can be worked on independently. Shape grammar

evaluation follows a tree-like derivation, where different nodes in the tree can be

worked on in parallel. While we are interested in using this parallelism for execution

on the GPU, parallel CPU approaches are, of course, also possible [91].

2.1.3 Grammar evaluation using GPU shaders

Shape grammar evaluation with shaders started with the work by Lacz and Hart [34].

They derive their split grammar using vertex and pixel shaders, which are relaunched

using a render-to-texture loop. They sort intermediate symbols between shader

launches to provide the GPU with a homogeneous workload. Without this step,

control flow splits into multiple branches, leading to thread divergence and slowing

down the execution on the single instruction, multiple data (SIMD) units of the GPU.
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As every symbol on the same level of the tree can be worked on in parallel, good

performance should be achievable. However, the intermediate sorting steps dominate

the execution time, significantly lowering the performance. A similar approach was

proposed by Magdics [41] for L-system derivation, which uses multi-pass rendering

and GPU stream output to collect and sort intermediate symbols. The probably

most advanced shape grammar evaluation system using shaders is the approach by

Marvie et al. [46]. They use a combination of vertex, geometry and fragment shaders

to derive shape grammars similar to CGA shape. For their derivation approach,

they use a fixed-size stack in the vertex shader. This approach reduces the available

parallelism to the number of input axioms.

2.1.4 General purpose GPU languages

General purpose GPU languages have also been used for grammar derivations

on graphics processors. One of the first approaches to use NVIDIA Compute

Unified Device Architecture (CUDA) for L-system derivation was the system by

Lipp et al. [39]. Their approach is similar to the traditional shader-based approaches.

During one kernel launch, each thread interprets one symbol. Prefix sums are run

between launches to collect symbols in memory. As symbols are not being sorted,

their approach has severe problems with divergence and could not achieve speed-ups

over an optimized CPU approach, when the grammar was complex.

Recently, Steinberger et al. [72] proposed an approach that can perform an entire

shape grammar derivation within a single kernel launch. Intermediate symbols are

stored in a queue in global graphics memory, while threads are running in a loop,

pulling shapes from the queue and pushing newly generated shapes back into the

queue. Their approach handles additional interdependencies in the evaluation, such

as context sensitivity, by transforming them into redundant parallel evaluation or

splitting the generation process into multiple stages.

2.1.5 Per-pixel grammar evaluation

Alternatively, per-pixel grammar evaluation creates parallelism for grammar deriva-

tion by evaluating the rule-sets for every pixel on screen. This guarantees that work

is only completed for visible parts of the scene, and a sufficient amount of parallelism

can always be found. However, this approach is only applicable, if a coarse spatial

separation of geometry is already available. Furthermore, the grammars have to be

reevaluated for every rendered frame. Thus, this approach has only been used for

facade textures [22, 45]. While a significant amount of parallelism is guaranteed, it
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also leads to a significant number of redundant derivations for neighboring pixels. In

case different facade parts are hit by neighboring pixels, divergence can become an

issue.

2.2 Vector Graphics Rasterization

Previous curve rasterization techniques can be roughly classified into three categories:

(1) scanline filling methods, (2) ‘stencil, then cover’ approaches, and (3) alternative

vector graphics representations, such as data structures supporting spatial queries.

2.2.1 Scanline methods

Early scanline algorithms focus on rendering triangles [89] and construct spans

limited by pairs of edge-scanline intersections. To increase the efficiency of scanline

algorithms, the intersections of a scanline with all edges can be computed before

sorting and filling [51, 1].

CPU scanline algorithms for vector graphic rendering are found in contemporary

curve rendering packages such as Skia [20] or Cairo [55], which are used if no

appropriate GPU accelerated alternative is available. Manson and Schaefer [42]

used pixel-sized scanlines to implement analytic shading and anti-aliasing filters. To

increase performance, spans can be merged and clipped for hidden surface removal,

as shown by Whitington [87].

While scanline approaches are usually designed for the GPU, Li et al. [36] recently

showed that a GPU scanline algorithm can also be efficient. Their approach first

builds an acceleration data structure of potential scanline-curve intersections and

then evaluates them in parallel with simplified geometry. A final step rendered the

generated spans using traditional OpenGL. The efficiency of this algorithm comes

from the fact that not every filled pixel must be tested against the path. CPatch has

the same advantageous property, while requiring only a single pass.

2.2.2 Stencil, then cover

Many GPU curve rendering approaches follow a ‘stencil, then cover’ approach, where

a mask is first generated for a path (stencil) before filling, while blending happens

in a second step (cover). Stencil generation goes back to the work of Loop and

Blinn [40], which allows to efficiently determine on which side of a curve a sample lies.

In combination with Jordan’s theorem [16], fill rules can be computed in a discrete
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manner, which allows complex path stencils to be generated by rendering multiple

overlapping triangles with implicit curve descriptions [30, 29]. While hardware

support makes this method fast, it still requires a per-path multi-pass algorithm that

potentially touches many samples which are not part of the final stencil. Note that

the scanline approach by Li et al. [36] can be classified as ”stencil, then cover” as

well.

Several extensions exist: For example, the ‘stencil, then cover’ method used in

Adobe Illustrator [5] extends color schemes and blending modes. Tile-based rendering

of stencils [92] runs efficiently on mobile devices.

Like these approaches, our method classifies half-spaces, but it directly renders

paths from CPatches, rather than using a separate cover pass. In that sense, our

approach is closer to the original method of Loop and Blinn [40]. However, their

method only supported a single curve per primitive, which makes it prohibitively

complicated to construct complex shapes, like thin parallel curves. Our approach

supports multiple curves and draws further efficiency from hierarchical rasterization.

2.2.3 Alternative representations

Various alternative representations of vector graphics have been proposed. Motivated

by rendering vector graphics on top of surfaces, vector texture methods try to encode

sharp features in regularly sampled textures. Feature curves [56] encode distances

to quadratic Bézier curves and can thus render a limited number of sharp curves

intersecting at one location. Precise vector textures [63] encode the distances to

monotonic curve segments in the texture. As long as the distance to the evaluated

curves is not larger than the curve’s curvature, the method delivers error-free results.

Vector solid textures [84] use radial basis functions as primitive to construct sharp

features. All the above representations allow highly flexible display transformation

and are efficient to render using texture hardware. However, they cannot represent

arbitrary vector graphics due to their limitation to the sample grid of the underlying

texture or curves.

Nehab and Hoppe [50] use an adaptive lattice structure to describe vector graphics

with appropriate detail where needed. They support distance evaluation in the lattice

cells to linear, radial and quadratic curves. Cubic curves are not supported. While

their lattice generation is carried out on the CPU, the rendering is performed on the

GPU. Their lattice structure reduces the number of curves that need to be tested

for each fragment, but still requires that all pixels within a potentially large cell be

tested against all curves of that cell.
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Shortcut trees [19] allow efficient indexing into vector graphics. They can be built

on the GPU and support cubic curves by monotonizing curve segments. While their

tree representation is elegant and relatively fast to build, the resulting rendering

performance can compete with hardware-supported ‘stencil, then cover’ strategies

only at very high resolutions.

Diffusion curves [54, 18, 78] let a designer construct path outlines that implicitly

control the color of the interior through a simulated diffusion process. This approach

lends itself to parallel solving, but remains very computationally demanding overall.

Our method does not build an auxiliary data structure, but converts the vector

graphics data entirely into a set of new primitives supporting an object-order approach,

rather than being constrained to image-order.

2.3 Visibility

Our method of sub-pixel visibility sampling, described in Chapter 6 tackles the

problem of determining triangle visibility in a new way using conservative rasterization

and solves a problem of decoupled shading. What other research has been done in

visibility, decoupled shading and conservative rasterization will be briefly discussed

in the following subsections.

2.3.1 Visibility Algorithms

Visibility is an important aspect of computer graphics pipelines as it is crucial to

focus computation on what eventually will be displayed on screen. [7] give overview

of the many methods that have been proposed to address challenges in this field.

Anti aliasing in the context of visibility determination is needed to fight aliasing at

sharp edges of a scene’s geometry. This is done by increasing the sampling per pixel

which increases not only memory footprint but also run time considerably. Therefore

it is desirable to reduce the amount of sampling to a required minimum for example

by decoupling the visibility sampling to gather scene depth from expensive shading

[85].

2.3.2 Decoupled Shading

Decoupled rendering [64] describes the idea that shader evaluation and image gen-

eration are run as separate passes, for example, in a deferred rendering framework.

Various image-based models can be employed to connect the two passes. Usually,
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the image generation uses color and depth buffers and, possibly, proxy geometry [44,

15, 8, 35, 66]; others try to do the shading in object space and reuse the shaded

primitives for rendering the final output.

While the image based rendering (IBR) methods work from fully rendered frames,

object space shading methods need to decide upfront what to shade and therefore

need to decide what might be visible when the output image is rendered. A rendering

cache can, for example, rely on spatio-temporal coherence [64]. Many object space

shading methods use complex software implementations that are too slow for real

time use [3]; [10]; [11]; [9] and would require dedicated hardware acceleration to work

with feasible speed. Some implementations use visibility determination to enable

efficient implementations on modern graphics hardware, which makes the technique

fit for real time VR rendering [38]; [4]; [24].
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In this chapter, a brief overview of the work to be described in this thesis will be

given. The core areas in this thesis, namely procedural generation, rasterization of

curved primitives representation, and visibility sampling of geometry, will each be

discussed in a full chapter. Two topics that concern enabling technology and system

architecture will be covered in a more in-depth description in this overview chapter

to familiarize the reader with concepts of GPU scheduling and decoupled rendering.

3.1 GPU Scheduling

When trying to increase the performance of an algorithm by parallel execution, not

only concurrency issues ought to be considered, but also how to orchestrate the

collaboration of individual tasks on different levels of granularity supported by the

underlying platform. The framework used in this thesis will be briefly summarized

in this section.

3.1.1 The Whippletree Scheduling Framework

Our framework is built around the concept of a persistent threads megakernel. This is

a style of compute kernel execution, where all functionality is provided as subroutines

19
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of a single kernel function. Threads run in a loop continuously to draw work items

from a queue. Execution stops once all queues are empty.

This implementation, the Whippletree Megakernel (WMK), supports multi-

programming of different tasks on top of CUDA. It respects the constraints of

different task types, while ensuring high performance. Furthermore, we also propose

easy-to-use mechanisms for load balancing, data-locality-aware queuing, as well as

configurable scheduling strategies.

Parallel execution on the GPU is organized into a three-level hierarchy (see

Table 3.1) At the lowest level, small groups of cores operate in a SIMD fashion.

While it is possible for control flow within the same SIMD group to take different

branches, execution of these branches has to be serialized, leading to a condition

known as thread divergence. At the intermediate level, multiple SIMD groups are

organized into a streaming multiprocessor (SM). Each SM contains a small amount

of fast local shared memory accessible to all SIMD groups on the SM. At the

top level, the GPU itself consists of multiple SM units and is connected to global

graphics memory. Two programming models are prevalent on this hardware: shading

languages and compute languages.

The main contribution of Whippletree is its fine-grained resource scheduling and

its ability to exploit sparse, scattered parallelism. Complex branching or recursive

graphics pipelines as well as algorithms processing hierarchical data structures can be

scheduled such that SM units are efficiently filled with coherent workloads. Moreover,

the Whippletree model allows full multiple instructions, multiple data (MIMD)

task-parallelism without problematic interleaving of multiple kernels. Tasks can be

created dynamically and scheduling considers data locality.

As WMK inherits some traits from persistent megakernels, blocks of threads

(worker-blocks) are launched to exactly fill up all multiprocessors. These worker-

blocks execute a loop drawing tasks from work queues. Procedures are implemented

task type thread count feature set

level-0 2..M warp-level
level-1 M..B block-level
level-2 1 global

Table 3.1: Overview of the three task types supported by our programming model in
decreasing order of the associated feature set. M denotes the warp size of the device
and B the maximum block size.
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Figure 3.1: Whippletree consists of worker-blocks, continuously drawing tasks from
queues. We use one queue per function, which is essential for a divergence-free
execution of different task types. During execution, new tasks of any kind can be
created.

as branches in the main loop. When new tasks are generated, they are inserted

into the queues. In this way, concurrent execution of multiple tasks, e.g., multiple

stages of a pipeline, is supported. Load balancing between worker-blocks is achieved

through the work queues.

With Whippletree, we have a remarkably versatile framework at hand that allows

for scheduling tasks at various granularities of parallelism that map the underlying

hardware. We use this software scheduling method to implement our work on operator

graph analysis, described in Chapter 4, and develop our hierarchical rasterization

scheme for vector graphics rendering, as described in Chapter 5

3.2 Procedural Generation

In chapter 4 we present the findings of our research on shape grammar derivation

on the GPU. While we already used the Whippletree framework to evaluate shape

grammars in the paper focusing on the scheduling framework [73], we investigate

potential space for optimizing this process even further by using a more general
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approach of analyzing the input in a graph representation.

3.3 Representation and Rasterization of Vector

Graphics

In Chapter 5 we show how to reinterpret common vector graphics descriptions to

generate new data structures named CPatches. Similarly to triangles, which are

represented by three lines, a CPatch represents a shape by a set of Bézier curves.

As with triangles, where the line equations are used to determine on which side

of the line a point is to determine the inside and the outside of that primitive,

the implicit form of Bézier curves is used to evaluate the filling of a shape that is

described by a CPatch.

We developed a novel method of rasterizing vector graphics that can process the

CPatches. Our hierarchical rasterization scheme is very well suited for execution on

GPU hardware. We use the Whippletree framework again to achieve remarkably fast

rendering times that beat state of the art methods in many cases.

3.4 Visibility Sampling for Decoupled Rendering

Another discipline where we saw potential for improvement is in sampling of geometry

for visibility, very small geometry, to be specific. When triangles become so small

that can not be seen from the current view point, they might not be shaded in the

current frame. In a decoupled rendering scenario this might be a problem, when a

subsequent frame is to be rendered from the shading output of the current frame,

and triangles that have become visible in the new view point can not be displayed

due to the lack of shading information.

In Shading Atlas Streaming (SAS), the server GPU fills an atlas with shaded

pixels corresponding to just the visible triangles. The client GPU performs a final

geometry pass, but samples the shading information from the atlas rather than

invoking expensive fragment shaders.

To understand the design constraints of a remote rendering system using object-

space shading, we begin with an overview of the server-client pipeline ( Figure 3.2).

The end-to-end latency for a round trip from client to server and back can be broken

down as follows:
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Figure 3.2: Our pipeline is split across a server and a client part, with the shading atlas
as the central data structure connecting the two. Camera pose updates generated by
the user are sent upstream, on a slow (networked) path to the server for rendering
new shading into the atlas, and on a fast (direct) path to the client to render new
images to the display.

1. The client sends the current view matrix to the server. This duration is owed

to network latency. It can be changed with faster networking technology.

2. The message waits at the server until a new frame starts rendering. This

duration depends on how frequent the client sends pose updates, since the

most recently received pose is used for the next frame.

3. The server renders the atlas frame. This duration corresponds to the processing

times for visibility, shading and encoding stages. It depends on server CPU

and GPU performance.

4. Atlas frame and corresponding meta-information are sent to the client. This

duration is owed to network latency.

5. The client decodes (5a) the atlas frame and (5b) the meta-information. This

duration corresponds to the maximum of client’s processing time for the two

decoding tasks, since they are carried out by different hardware units. The

duration depends on client CPU and GPU performance.

6. The received data waits at the client until a new frame starts rendering. This

duration depends on the client frame rate and varies between 0 and the client

frame time.

7. The client renders the final frame. This duration corresponds to the client’s

processing times for the display stage. It depends on the client’s CPU and

GPUperformance.



24 Chapter 3. Overview

8. The final frame is displayed. The most recently received server frame is used

to render additional frames at the client (frame rate upsampling). Thus, this

duration increases with every upsampled frame, until a new atlas frame arrives.

The SAS architecture forms the basis for the work on sub-pixel visibility presented

in Chapter 6. However, to focus on the problem of determining the visibility of

triangles, the networking components the original implementation have been removed.

For simplicity, the architecture, for doing experiments in visibility sampling, has

been reduced to a visibility stage, shading stage and a display stage. Since there is

no need for a network layer, we implemented just a split rendering pipeline where

the server part consists of visibility and shading and the client part, running in the

same program, handles the display part asynchronously.

In contrast to the work on operator graphs and CPatches, the implementation of

this method was not done in CUDA and Whippletree, but in Vulkan.

Figure 3.3: Game scenes (top row) with corresponding shading atlas (bottom
row). The shading atlas contains all the shading information of the visible surfaces
corresponding to the rendered scenes. The object-space parametrization is created
fully dynamically. From the shading atlas, novel views at close viewpoints can be
rendered for framerate upsampling and warping. The shading atlas is temporally
coherent and lends itself to efficient MPEG compression and streaming.
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In recent years, content creation for virtual worlds has become increasingly limited

by human effort, rather than technology. Manually crafting every detail of vast

virtual worlds for games and feature films is tedious and time-consuming. Thus, it is

not surprising that procedural generation is becoming more widely adopted in the

digital content creation industry, shifting part of the labor from the designer to an

automated system. Using a procedural approach, complex models can be created

from small procedural programs or rule sets. A simple program written by an expert

can generate a large number of plausible variants of a model type, e.g., buildings for

an entire city.

Procedural generation methods are present in all phases of a content authoring

pipeline. In the design phase, tools like automatic object placement and style

transfer [21] may evaluate procedural programs hundreds of times to match high

level modeling goals. Similarly, Metropolis procedural modeling techniques [80] may

execute thousands of parameter sets to tune a model towards a target function. In

the deployment phase, a program might be evaluated millions of times, as the user

moves through a continuously generated procedural world [71]. Analogously, during

the rendering of a movie, procedural models might be evaluated on-the-fly for every

25
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frame, because reevaluation is more cost-efficient than keeping models around. While

the aforementioned applications use different procedural generation methods, they

all require the evaluation to run as fast as possible to increase usability, frame rates

or production time.

To speed up the evaluation process, procedural generation has been brought to the

GPU before [39, 46, 72]. However, previous approaches to procedural generation on

the GPU only focused on specific methods. We believe there is a need for systematic

parallelization of general procedural methods, which ensures that the generation

process is always efficient without having to rely on manual fine-tuning.

Figure 4.1: Using the operator graph, we optimize the procedural generation of
an entire city containing 50 000 buildings and 10 million triangles. The original
shape grammar takes more than five minutes to generate on the CPU. Generation
on the GPU according to previous work takes 630 ms. Applying our optimization
framework, we reduce the generation time to 109 ms by only changing the way we
schedule the underlying operations on the GPU.

To this aim, we describe a unified formal model for procedural generation systems,

which can be used to describe a variety of processes: the operator graph. Its practical

importance lies in its ability to analyze different ways to execute the generation

process on the GPU. Our work makes the following contributions:



4.1. Operator graph representation 27

• We introduce the operator graph, which is a common representation for a

variety of procedural generation methods and is independent of a particular

way a designer might write a program or describe a generation process.

• We establish a general scheduling method for running procedural generations

on the GPU and evaluate how static or dynamic scheduling of the operator

graph influences load balancing and data locality.

• We show that each schedule corresponds to a partition of the operator graph

and demonstrate how existing GPU approaches can be reduced to a specific

partitioning of the operator graph.

• We show how to optimize the scheduling of a procedural generation system by

finding the operator graph partition that achieves the best performance on a

given hardware. As the number of partitions is growing exponentially with the

size of the graph, we propose a set of heuristics to constrain the search space

to a manageable size.

To validate our results and show that the operator graph can be used to parallelize

different types of procedural generation systems, we analyze graphs of varying sizes

and with different characteristics. We fully analyze the space of possible partitions

for a number of small graphs verifying the proposed heuristics. For large graphs, we

show that the operator graph partitioning has considerable influence on the execution

time. We show that an optimized schedule is up to 14× faster than hand crafted

solution. We conclude that optimizing the scheduling based on the operator graph

leads to the currently fastest procedural generation evaluation on the GPU.

4.1 Operator graph representation

While a wide variety of procedural generation methods for different application

domains has been proposed, their execution model can most often be represented

with a rather simple graph. Consider the following methods: L-systems [60], which

were developed to model plant growth, define expansions on symbol strings. Shape

grammars, like CGA shape [49], which are well suited to model buildings, define

spatial relationships between shapes. Stack-based generation languages, such as

GML [23], which are well suited to model detailed man-made objects, define a list of

fine-grained modeling operations on polyhedra.

The common factor among them is that they all describe sequences of operations

applied to objects. This observation creates a link to data flow programming [83] or
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the stream processing abstraction [79], in which programs are defined as directed

graphs. Graph-based abstractions have been used for procedural generation before.

For example, commercial products like Houdini by Side Effects Software or Autodesk

Maya use data-flow networks. Directed acyclic graphs have been used for simple

shape grammars [58]. However, these graphs do not support more complex generation

methods or offer the information needed for efficient scheduling. To this aim, we

introduce the operator graph as an intermediate representation that captures the

requirements a procedural approach imposes on a scheduler. In this section, we

describe the basics of the operator graph. A detailed account how it can be used to

represent the aforementioned procedural modeling methods is given in 4.3.

Graph definition We model the procedural generation as a directed multi-graph

G = (V,E,D), whereas V = {vk} describes the vertices of the graph, E = {ej}
corresponds to directed edges modeling the flow of objects in the graph, and D = {dj}
is an additional set of directed edges introducing dependencies in the graph. Similar

to data flow programming and stream processing, the nodes in the graph describe

operations that are applied to objects that travel along the edges E of the graph.

Dependencies D introduce restrictions on the order of the operations. Alongside

the multi-graph, sets of supported operations R and object types O are needed to

describe the procedural generation. Both R and O may differ strongly between

generation methods and implementations of those methods.

An edge e = (vs, vd, Oe,me) is an ordered quadruple, connecting a source vertex

vs ∈ V to a destination vertex vd ∈ V , and defines a path an object can take through

the graph, i.e., there is a possibility for vs to output an object that will be input to

vd. Oe ∈ O defines the set of objects that can travel along the edge, i.e., objects that

may be input to vd. me is called the multiplicity of the edge, describing the number

of objects that will move over an edge concurrently after a single invocation of the

operation associated with node vs. A multiplicity set to a static number indicates

that a specific number of objects will always be generated by the node; / indicates

that either 0 or 1 object will be generated, and ∗ indicates that an arbitrary number

of objects can be generated (including 0). The source vertex for an edge shall be

given by s(e) = vs, the destination vertex, by d(e) = vd, and its multiplicity, by

m(e) = me.

A vertex v = (r, (p1, · · · , pn)) is described by an operation r ∈ R and a list of

parameters (p1, · · · , pn), which influence the operation. Whenever an object moves

over an incoming edge to v, the operation r is invoked on that object with the node’s

parameters; we say the object has been consumed by the node. Every invocation
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might output any number of objects; we say the objects are produced by the node.

The types of objects consumable by an operation r ∈ R and the types of producible

objects can be defined by a left-total, binary relation IOr ⊆ O ×O. The operation

defines the number of outgoing edges of the node; for each possible output, an edge

must exist in the graph.

Examples In a shape grammar, a translation operation in R3 moves an object

along a direction given by three parameters. It consumes and produces a single

object in R3. A translation node has one incoming edge and one outgoing edge,

each being limited to the same set of objects. In a string rewriting system, an

operation rewrites characters defined in the alphabet Σ according to matching rules

R. It consumes a character and outputs as many characters as there are parameters.

Both incoming and outgoing edges are limited to single characters. The outgoing

edge multiplicity is equal to the number of parameters. A triangulation operation

consumes any flat polygon, takes no parameters and triangulates the interior of the

polygon. The associated node has a single input edge, which is limited to polygons,

and a single outgoing edge with multiplicity ∗, which allows for triangles only. A

random path operator chooses randomly between different outgoing edges with the

parameters describing the likelihood for each option. A random path node consumes

any object type and produces objects of the same type. For every likelihood given

as parameter, an outgoing edge with m = / exists.

A dependence edge d = (vs, vd) is an ordered pair, connecting a source vertex

vs ∈ V to a destination vertex vd ∈ V , and defines a secondary graph on top of V .

Dependencies model side effects in the operator graph that cannot be captured by

E. Such side effects describe influences the operation from the source vertex vs can

have on the operation of vd. For example, the generation of a wall (vs) may limit an

operation vd that controls the growth of a tree. Dependency edges can be seen as

additional parameters to the operation of vd, which are set up dynamically, as other

objects move through the graph. If a dependency edge exists between nodes, the

system executing the operator graph has to make sure that there is no possibility

that any objects being present somewhere in the graph might still go through vs,

before executing objects waiting at vd. In the example above, this means that the

generation of trees has to wait, until all walls have been generated.

For a vertex v, the incoming edges shall be given by in(v) = {e ∈ E|d(e) = v},
and the outgoing edges, by out(v) = {e ∈ E|s(e) = v}. A vertex with in(v) = ∅ is

called source node, and a vertex with out(v) = ∅ is called terminal node. Source

nodes correspond to operations that start the procedural generation by introducing
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initial objects into the graph. Terminal nodes correspond to operations that end

the generation process, by discarding objects or outputting objects as part of the

generated model.

Fractal Example Consider the recursive generation of the Menger sponge, shown

in Figure 4.2, with the operator graph in Figure 4.3. The generation can be completed

by using axis-aligned boxes with a recursion counter: The required objects can be

given by the tuple o = (s, t, c), The generation starts at the blue source node with

a single outgoing edge with a multiplicity ∗, indicating that any number of initial

boxes might come from the source node. Each box is split along the X, Y , and

Z-axis, creating three sub-boxes each, leading to a grid of 3× 3 equally sized boxes.

Seven of these boxes are discarded, and the remaining twenty boxes are split anew,

unless a fixed number of recursions have been carried out. The recursive nature

of the generation is captured by a cycle in the graph. The graph does not contain

additional dependencies.

Figure 4.2: The Menger Sponge generated by a recursive generation program stopped
at level 3.

L-System Example An L-system is defined over an alphabet S, axioms a ∈ S and

production rules P , which take a character s ∈ S and map it to a string (s1, . . . , sn)

of characters si ∈ S, see Lindenmayers’s original algae example in Figure 4.4 (a). The

result of an L-system evaluation is a string of characters after a certain number of

iterations. A system for L-system evaluation can be described as follows. An object is

modeled by a character, its position on the string and a rewrite counter: O = S×N2.

Only a single parameterized rewrite operation is needed, which produces one object

(character) for each parameter. It also increases the recursion count and updates the
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2*

(SplitX,(1,1,1)

(SplitY,(1,1,1))

(SplitY,(1,1,1))

(SplitZ,(1,1,1))

(SplitZ,(1,1,1))

(Discard,())

(IfCntGT,(3))

(IncCnt,())

2

2

2

3

(Output,())

1

1 1 1 1 /

/

Figure 4.3: The operator graph for the Menger Sponge. The blue node is the
source; orange nodes are terminals. Each node is annotated with its operation and
parameters. For each edge, its multiplicity is given: ∗ indicates a variable number of
objects can be produced, / stands for 0 or 1 produced object. No dependencies are
present.

Alphabet: A, B

Axiom: A

Production rules:

1: (A -> AB)

2: (B -> A)

(a) L-system

*

(Rep,(A,B))

(IfCntGT,(N))

(Compact,())

/

(Axioms,())

(Rep,(A))

*

12

/

/

(b) Operator Graph

Figure 4.4: Simple algae L-system and its translation to an operator graph. Red
edges indicate dependency edges.

string position. As the string position depends on the operations that are carried out

for all characters to the left, we compute a conservative string positions and leave

empty spaces in the string, i.e., the operator multiplies the position of the input with

the maximum number of characters that are produced by any operator. After the

desired number of rewrites, a compaction operator removes the empty spaces and

forms the output string. To stop the generation, a conditional operation is required,

see Figure 4.4 (b).

Every production rule, the recursion check, and the compaction step translate

into a node in the operator graph. As the compaction requires all other objects

to exist first, a dependency edge is introduced in the graph. This dependency is
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a typical example of a side effect. The operator graph does not only contain the

original L-system, but describes a full system that enables the interpretation of

the L-system. For example, if one would want to describe the parallel L-system

derivation by Lipp et al. [39], one would introduce a prefix sum node (replacing our

compaction step) within the recursive cycle. Note that the axioms themselves are

not part of the operator graph, and thus it describes all possible algae generations

from any combinations of starting symbols and not only a static scene.

4.2 Operator graph scheduling

Previous approaches proposed very specific ways of running procedural generation on

the GPU, trying to include different aspects of best practices in GPU programming.

Foremost, this includes (1) supplying enough parallelism to fully utilize the GPU

by load balancing between the execution cores, (2) avoiding thread divergence, and

(3) avoiding costly memory transactions. While previous approaches try to achieve

these goals in very different ways, we generalize these techniques using the concept

of the operator graph.

From an operator graph view, a system for procedural generation on the GPU

provides a user with the definitions of supported operations R and objects O. The user

specifies the generation process in a textual or graphical way. This step corresponds

to setting up the operator graph and handing it to the generation system. The

system must be able to manage objects that are produced throughout the generation

process, storing them in one of the memory spaces available on the GPU. For every

operation supported by the system, a GPU implementation must exist. Additionally,

the run-time system must provide the parameters to the operations and consider the

dependencies between graph nodes. The decisions about which objects should end

up in which memory space and which operations should be executed when and on

which processing cores can have a significant influence on the performance. Inspired

by the naming in Halide [65], we call the sum of these decisions the schedule of the

generation.

4.2.1 Scheduling strategies

In terms of the operator graph, the procedural generation is completed, when all

objects have moved through the entire graph. The time spent on the generation can

be divided into time spent on individual nodes and edges of the graph. The cost of a

node corresponds to the time spent on the execution of operations. Operations are

executed quickly, if (1) a sufficient number of them can be executed in parallel, (2)
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no divergence occurs, i.e., all GPU cores are active, and (3) operations executing on

the same SIMD cores require the same low-level instructions. The cost of an edge

can be seen as time needed for scheduling, including assigning cores to operations as

well as loading and storing of objects. Ideally, scheduling decisions take as little time

as possible and lead to divergence-free parallel execution.

Dynamic scheduling However, in real systems, these are opposing goals. To

create divergence-free parallel execution, a scheduler needs to collect objects that are

to be executed by the same operation. As new objects can be generated during any

other operation, on any multiprocessor, there is no way around global, device-wide

communication. Such communication is only possible via slow global GPU memory.

A global sorting or grouping mechanism for objects that are to be processed by the

same operation is ultimately necessary. Thus, objects must be transferred to and from

global memory between the execution of operations. In the worst case, the sorting

or grouping mechanisms involve device-wide synchronization. The combination of

these steps can be very costly in comparison to the execution of a single operation,

possibly increasing the cost of edges way beyond the cost of nodes. However, the cost

of nodes will be low, as operations are executed divergence-free, and load balancing

occurs over the entire device. As these scheduling decisions determine when and

where operations are executed during run-time, we call them dynamic.

Static scheduling The most time-efficient way of scheduling is to avoid any

decision making during run-time. The only possibility to achieve such a static

scheduling decision on current hardware is to continue using the resources already

allocated for a previous operation, fusing an operation with its successor, i.e. an

object produced by a thread is stored within the registers allocated to this thread

and the subsequent operation is executed by the same thread. If a node with multiple

outgoing edges should be processed by a single thread and scheduling is completely

static, the execution of all child nodes can only be serialized. This does not allow

for load balancing and reduces the amount of available parallelism. At the same

time, the chances of divergence rise, if the number of produced objects depends on

the input object. However, there is essentially no overhead associated with static

scheduling. Note that other scheduling systems, especially, if they work on entire

kernels, call this kind of static scheduling kernel fusion.

Static and dynamic scheduling decisions represent extremes along a continuum of

schedules. For example, instead of going to global memory for a dynamic scheduling

decision, one can also involve local shared memory, combining information from all

threads running on the same multiprocessor. This will generate a faster dynamic
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scheduling decision with less overhead and fewer options in terms of load balancing

and divergence avoidance. However, there is usually a pivotal point on this continuum

that separates dynamic scheduling decisions, involving decisions made during run-

time, from static scheduling decisions, involving only resource reuse and a predefined

execution order. In the interest of brevity, we distinguish only dynamic and static

scheduling decisions in the following discussions.

4.2.2 Graph partitioning

While scheduling decisions can either be dynamic or static, there is no need to

make scheduling decisions uniformly throughout the generation process. It is rather

possible to decide for each operator graph edge if it should involve a dynamic or static

scheduling decision, adjusting the schedule according to a desired execution pattern.

Given that the commands executed for individual operations do not change, the

schedule is actually (for a given GPU) the only factor influencing the execution time

of a production. Distinguishing between dynamic and static scheduling decisions,

it is possible to describe a schedule as a partitioning of the operator graph. Edges

within a single component of the partition involve static scheduling decisions only.

Edges between different components denote dynamic scheduling decisions. We define

a schedule S as a partitioning of V into non-empty subsets. We call each component

Si ∈ S an execution group. Note that, by definition, S itself is also an execution

group. Due to the way scheduling decision can be made, certain conditions must

hold for each execution group for the schedule to be valid.

Condition 1 There can only be a single node vr ∈ Si, for which incoming edges

have source nodes outside Si. This condition makes sure that each component has a

single node vr from which the execution of the component starts. All other nodes in

the component can be executed in a statically defined order.

Condition 2 There must be a path from the starting node vr to each other

node vn ∈ Si of the execution group that only contains nodes of Si. This condition

guarantees that a static schedule involving all nodes in Si can be defined. All edges

that are used in the above definition shall involve static scheduling decision and shall

be called static edges.

Condition 3 An execution group is not allowed to contain cycles, besides cycles

that include vr. This conditions prohibits recursions within a component, which might

lead to unpredictable time and resource requirements within statically scheduled

nodes. If a cycle is formed with vr, the incoming edge at vr is made dynamic, and

the cycle can be supported via dynamic scheduling.
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Condition 4 Dependency edges are only allowed between different execution

groups and not within an execution group. This condition is necessary, as context

sensitivity is usually only supported between dynamic scheduling decision, i.e., the

scheduler must be able to check if all sources of the dependency have been executed,

before the dependent node can be executed.

(a) (b) (c) (d)

Figure 4.5: Simplified Menger Sponge operator graph partitions. Blue edges are
dynamic, green edges static, execution groups are outlined in gray. (a) Turning every
node into an execution group, yields completely dynamic scheduling. (b) A large
execution group with mostly static edges. (c) Rules turned into execution groups.
(d) Invalid partitioning (red) having multiple nodes with dynamic incoming edges or
disconnected nodes.

Examples We revisit the Menger sponge, as shown in Figure 4.5. If all edges are

made dynamic (a), a large number of small execution groups is generated, possibly

leading to large scheduling overhead. As the graph contains a single cycle, nearly

the entire graph can be turned into a single execution group (b). The edge creating

the cycle becomes a dynamic edge. The first node in a large execution group is the

only one with incoming edges from outside of the execution group. A schedule like

this only draws parallelism from the recursion and the source node. A mixture of

dynamic and static edges creates execution groups of different sizes (c). A setup like

this might be a good compromise between dynamic and static scheduling. Not all

possible partitions are valid; unconnected nodes or multiple nodes with incoming

edges outside of the execution group yield an invalid schedule (d).

Operator graph scheduling allows modeling previous work as different partitioning

schemes, independent of the low-level details of the implementation: Sequential

rewriting and shape grammar evaluation algorithms, such as the approaches by Lacz
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Figure 4.6: Using the operator graph as central concept, our compile pipeline consists
of seven major steps: A procedural generation written in one of the supported
languages is translated into an operator graph; after selecting one partition, it is
validated, and execution groups are formed, while taking operator homomorphism
into account. Finally, code for a dynamic scheduler is generated alongside the
parameter table. After compilation to GPU code, an auto-tuner records statistics
for possible input parameters and steers the selection of different partitions.

et al. [34] and Lipp et al. [39], yield execution groups Si ∈ S of single nodes, |Si| = 1.

Thus, they make scheduling decisions after every single operation. While they get

good load balancing and a high degree of available parallelism, their scheduling

overhead is large. GPU shape grammars [46] put the entire graph into a single

execution group S = V . Thus, they can only draw parallelism from the axioms

and face problems with divergence, when generating different buildings. PGA [72]

partitions the graph according to the rules written by the designers. Thus, their

performance heavily depends on the way the rule sets have been written and can

suffer the same problems as the other approaches.

4.2.3 Execution group matching

There is another factor influencing performance that can be described using the

operator graph. Dynamic scheduling combines objects that are to be executed by the

same execution group to generate divergence-free parallel execution. If the number of

objects for one execution group is too low, the execution will suffer under-utilization

or divergence. To mitigate this issue, we propose execution group matching in

combination with dynamically loading parameters.

To describe execution group matching, we define operator homomorphism, which

applies to operator graphs that are compatible in terms of structure and operations

and, thus, can be described by the same parameterized execution group: Let G1 =

(V1, E1, D1) and G2 = (V2, E2, D2) be two different operator graphs with e1 ∈ E1,

e2 ∈ E2 and d1 ∈ D1, d2 ∈ D2. These operator graphs are operator homomorphic,
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iff there is a bijective homomorphism fh : V1 → V2, which fulfills the following

conditions:

∀e1 ∃e2 : fh(s(e1)) = s(e2) ∧ fh(d(e1)) = d(e2) (4.1)

∃e1 ∀e2 : fh(s(e1)) = s(e2) ∧ fh(d(e1)) = d(e2) (4.2)

∀d1 ∃d2 : fh(s(d1)) = s(d2) ∧ fh(d(d1)) = d(d2) (4.3)

∃d1 ∀d2 : fh(s(d1)) = s(d2) ∧ fh(d(d1)) = d(d2) (4.4)

fh ((r1, p1)) = (r2, p2) −→ r1 = r2, (4.5)

i.e., if there are matching operations in all nodes in both graphs and edges that

connect those nodes in the same way.

If the graphs of two execution groups are operator homomorphic, they can be

described by a single parameterized piece of code, constructed from the operations

used in either graph. This means that all possible ways through two operator

homomorphic graphs can be described by the same code. This concept is not only

applicable to two execution groups, but can be extended to multiple execution groups,

combining all of them. The implication is that more objects can be combined for

this parameterized execution group and thus executed more efficiently. However, as

the parameters of the individual operations might differ, the scheduling system must

provide the parameters dynamically to the executing objects.

In addition to easing the process of finding a sufficient number of objects for

efficient execution during dynamic scheduling, a homomorphic execution group is

represented using a single GPU function instead of multiple. This might have an

additional positive effect on the cost of dynamic scheduling. Depending on the

implementation of dynamic scheduling mechanism, fewer execution groups might

reduce the number of grouping structures or queues and thus reduce the time spend

on searching through this structure. Therefore, execution group matching can

potentially reduce the overhead of dynamic scheduling.

4.3 Operator graph equivalence to conventional

representations

Recall that a variety of methods and systems for procedural generation can be

described using an operator graph. In this section, we provide additional detail on

how the most prominent methods for procedural generation can be cast into operator

graph form.
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(a) GTX 630 (b) GTX 780 Ti (c) GTX 980

Figure 4.7: Performance results in ms for all 40 possible schedules for the Menger
Sponge test case with different object counts (sorted by performance on the GTX
630). Even for such a small rule set, the performance difference between schedules
can vary from a factor of two to five. Note how the relative performance of the
schedules changes between object counts and GPU.

4.3.1 L-systems extensions

The operator graph can also be used to describe extensions for L-systems. Stochastic

L-systems allow to specify multiple production rules for a single symbol, each being

chosen with a certain probability. This behavior can be integrated into the previously

described system by adding an operation that chooses one of its outgoing edges

at random. Context-sensitive L-systems adjust the production to the characters

before and after the input. This behavior can be modeled with dependency edges,

making sure that all symbols for a certain iteration are processed, before executing

the rules for the next iteration. Another extension to L-systems adds parameters

to characters. Using our definitions, this can be achieved by extending the object

type to O = S × N2 × <n, with n being the number of parameters that should be

associated with each character.

4.3.2 Shape Grammars

From a procedural generation point of view, shape grammars, like CGA shape [49],

are similar to L-systems. A designer sets up production rules, which are associated

with symbols to define the sequence of operations to be applied. However, the

underlying objects are shapes (O), and the production rules themselves can be

sequences (or trees) of operations. These operations can usually be chosen from

a predefined set of parameterized operations (R). As it has been shown before

that rule sets of simple, context-free shape grammars can be described by a direct

acyclic graphs [58], it is not surprising that our operator graph can be used for shape

grammars. However, our operator graph can model more complex shape grammar

operations, like context sensitivity or recursive productions.
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For example, a rule set written in CGA shape to create the Menger Sponge (see

Figures 4.2 and 4.3) could look as follows:

1: A -> Split(X){1r: B,

2: 1r: Split(Y){1r: C, 1r: Discard, 1r: C},

3: 1r: B }

4: B -> Split(Y){1r: D, 1r: C, 1r: D}

5: C -> Split(Z){1r: E, 1r: Discard, 1r: E}

6: D -> Split(Z){1r: E, 1r: E, 1r : E}

7: E -> IncRec(){IfRecGreater(4){Term, A}}

This rule set defines five rules, using the Split, Discard, IncRec, and IfRecGreater

operations. 1r represents a relative size parameter. Translating a rule set into an

operator graph is straight forward. Linking rules with symbols corresponds to setting

up edges between nodes. Also, the nesting of operators within a rule (line 1 and 7

in the example) translates to edges. The operations, including the parameters, are

captured by nodes, translating the rule set above into the operator graph shown

in Figure 4.3. Note that the operator graph is to a certain degree independent of

the way a designer chooses to group operators to rules. If the designer split the

nested rules in line 1 and 7 into multiple rules, each containing a single operation,

the resulting operator graph would still be the same.

Shape grammars often use random values and randomized rule selection to

introduce stochastic variation into the generation process. Random parameters are

simply added as parameters in the operator graph and can be defined by any random

variable distribution. Probabilistic rule selection can be added as another node.

Finally, context-sensitivity can either be set up directly between nodes (as described

before), or between entire subsets of nodes. CGA shape assigns priorities to rules,

which translates into execution phases, i.e., executing all rules with highest priority

before rules of the next lower priority. To model this behavior with dependency

edges, we add dependencies between all nodes of a higher priority to the next lower

priority, forcing all nodes of a certain priority level to be executed before nodes of

the next phase.

4.3.3 Stack-based Generation

Stack-based generation languages, like GML [23], also work on simple objects and offer

a user a set of operations that can be applied to objects. As found by Havemann [23],

the similarity between GML and a generalized data flow network is striking. They

can actually describe the same set of problems. By “flattening” out the stack
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(constructing the inputs and outputs of operations from the stack), it is possible

to generate a graph of operations. However, there is a distinct difference to our

operator graph. A single operation in a stack-based language can pop any number

of objects from the stack. In the operator graph, only a single object (and a set of

parameters) can be consumed by an operation. We do not allow for a join node that

would combine multiple input objects. This limitation keeps objects independent of

each other and allows for efficient parallel execution.

01: (0,0)

02: vertex

03: (0,0)

04: vertex

05: (0,0)

06: rand2()

07: translate

08: rand2()

09: translate

10: rand2()

11: translate

12: 3

13: polygon

14: 5.0

15: extrude

(a) Stack-based Program

(SelVertex,(0))

(Output,())

(Polygon,((0,0),(0,0),(0,0)))

(Extrude,(5.0))

(Translate,(rand2()))

(SelVertex,(1))

(Translate,(rand2()))

(SelVertex,(2))

(Translate,(rand2()))

(Deselect,())

(b) Operator Graph

Figure 4.8: A program written in a stack-based modeling language can be flattened
to a data flow graph. As operations used in the operator graph only consume a single
object at the time, operations which would require multiple inputs are replaced by a
single object and selectors for the sub objects. Note that such a strategy is hardly
ever needed in practice.

However, most operations in this type of procedural generation target a single

input object. Additional inputs usually correspond to parameters controlling the

operation itself, e.g., the length of an extrude or the direction of a translation. Among

the few exceptions that take multiple input objects are operations that combine

low-level objects. For example, a variable number of vertices may be combined to a

polygon. Each of those vertices can come from a chain of operations. While this is

usually not the case, the operator graph can support such more complex setups, too.
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For example, instead of modeling the chains of operations that produce three vertices

as input to a polygon generation, we can start with a polygon of three vertices and

alter one after the other, as shown in Figure 4.8. In essence, we serialize operations

from previously parallel paths. In this way, even operations which pop multiple

complex objects from the stack can be represented by an operator graph.

4.4 Compiler Pipeline

To complete our approach, we describe a state-of-the-art procedural generation

runtime system and an auto-tuner for the selection of schedules. These components

close the loop of our compile pipeline, see Figure 4.6. As dynamic scheduler, we

use the task scheduling framework Whippletree [73]. Whippletree works around the

definition of procedures and tasks. Procedures are function-like entities that take

tasks as input. Tasks are collected in queues in global GPU memory. When there

are enough tasks available for parallel execution on a multiprocessor, Whippletree

executes them together, increasing the chances for a divergence-free execution. In

our terminology, tasks correspond to objects moving through the operator graph,

and procedures are operations or execution groups. Whippletree makes dynamic

scheduling decisions as to when and on which multiprocessor these execution groups

should be executed. Note that Whippletree has been used for shape grammar

scheduling before [72]. However, we do not use Whippletree’s shape grammar

implementation, but rather generate a schedule directly from an operator graph and

our own operation definitions.

4.4.1 Procedural generation system

We implemented a limited number of operations, which are similar to the shape

grammar operations available in CGA shape, as well as operations for L-systems

and functional languages for procedural generation. To use Whippletree for dynamic

scheduling, we define a Whippletree procedure for every execution group in the

operator graph. The procedure is built from operations used in the execution group,

together with the parameters specified. These parameters can either be predefined

values or drawn from random distributions. Within an execution group, we serialize

the execution of all contributing operations, implementing static scheduling decision.

Serializing the graph in a depth-first manner, we make sure that the number of

temporary objects that need to be kept in registers is low. Whenever a dynamic edge

is reached, we hand the object over to the Whippletree scheduler, which transfers it

into its own grouping mechanism and load-balances its execution across the entire
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GPU.

We require a way to supply dynamic parameters to operator-homomorphic

execution groups. For this purpose, we use a parameter table stored in GPU memory.

This table is used to look up the parameters of the involved operations based on a

unique identifier that we store alongside each object. During execution, each thread

looks up the parameters associated with its object. Using the texture cache for

parameter loads reduces the overhead of these additional memory transactions. As a

subset of the parameters might be identical for all operator homomorphic execution

groups, we use the look-up table only for those parameters which actually differ. The

remaining parameters are statically included during compilation.

Our implementation also supports context sensitivity, i.e., dependency edges.

Dependencies always involve two operations. The first operation (source) adds an

object into a spatial data structure and adds a customizable id to that object. The

second operation (destination) allows to query an object against the objects stored in

the spatial data structure. If there is an overlap between the query and the objects

of a given id in the data structure, a different outgoing edge is chosen than if there is

no overlap. Scheduling needs to make sure that all source operations are completed,

before the destination nodes are executed. Whippletree does not allow to set up

these dependencies directly. However, we can separate the execution in multiple

phases with global synchronization barriers in between by executing a sequence of

Whippletree programs, one for each phase. Whenever there are dependencies in an

operator graph, we make sure that source and destination nodes end up in different

phases, while keeping the number of phases minimal.

4.4.2 Scheduling optimizer

The fastest schedule for a given operator graph might depend on the GPU architecture

and the number of objects generated by the source node. Depending on the number

of cores, a GPU requires more or less parallel workload to work efficiently. A

larger number of initial objects provides more parallelism, and, thus, less dynamic

scheduling is necessary to create enough parallel workload. When trying to find the

best schedule, these factors must be considered.

The number of different graph partitions (and different schedules) for an operator

graph with |E| edges is 2|E| (every edge can either be dynamic or static). While a

large number of these schedules might achieve similar performance, the difference

between a good schedule and a bad schedule can—according to our experiments—be

up to two orders of magnitude for large operator graphs. Even for small graphs, the
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best performing schedule varies between object counts and GPU type, as shown in

the example in Figure 4.7. This large variance shows that, for modern a GPU, it

is difficult to predict what makes a schedule good or bad. Thus, it is essential to

provide means to find the best schedule for any given operator graph, object count

and GPU.

With the goal of finding the most efficient procedural generation system, we

search for the schedule that minimizes execution time. To this aim, we implemented

an auto-tuner that searches for the best schedule for a given operator graph. It

is intended to compute good schedules for use cases such as video games, movie

production or inverse procedural modeling. As a baseline, it uses an exhaustive

search algorithm, generating and evaluating all valid schedules for a given set of

source objects.

Our compiler pipeline starts with a rule set written in a syntax similar to

CGA shape or an L-system and internally translates it into an operator graph. To

perform this translation, the compiler requires a definition of supported object types,

operations, and input-output relations (cf. O, R, and IO in section 4.1). We use

C++ class specifications for object types and C++ source code for the operations

and input-output relations. Internally, our compiler represents all possible partitions

as a bit sequence (one bit per edge). After a partition is selected, it is checked for

validity according to the conditions given in section 4.2.2. If it is valid, we search for

operator homomorphic execution groups and identify common parameters. Finally,

the compiler generates Whippletree procedure code for all execution groups, including

the CUDA/C++ code for the involved operations. It also generates the parameter

table for the procedures and inserts the corresponding load instructions into the

CUDA/C++ code. The generated code is compiled, and the auto-tuner evaluates its

performance for a given set of target input objects.

Even after restricting the search space to valid partitions, it is still not practical to

perform an exhaustive search through the remaining number of possible schedules for

larger graphs. Thus, we introduce a set of heuristics based on parallel programming

principles translated to choices in the operator graph. These heuristics work by

setting edges as static or dynamic, according to certain local characteristics of the

operator graph. Naturally, fixing an edge (to either static or dynamic) reduces the

search space in half. Although heuristics significantly reduce the search space, there

is no guarantee that the best schedule is found. However, we have collected strong

evidence that the presented heuristics work well for a wide variety of cases.
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Figure 4.9: H1 (a) → (b) removes dynamic scheduling if there is only a single object
generated.
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Figure 4.10: H2 (a) → (b) removes divergence (red crosses) by adding dynamic
scheduling under conditional nodes.

4.4.3 Sequence fusion heuristic

Nodes with a single outgoing edge of multiplicity m = 1 do not introduce any

parallelism. If no parallelism is introduced, there is no gain for load balancing, and a

dynamic edge would only increase scheduling overhead. Thus, the sequence fusion

heuristic H1 sets all edges in Eh,1 to static:

Eh,1 = {e|m(e) = 1 ∧ |out(src(e))| = 1}.
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Figure 4.11: H3 (a) → (b) makes sure small execution groups are not split apart and
thus reduces dynamic scheduling overhead.

For example, consider the sequence of a Translate, Rotate and Scale operation, as

shown in Figure 4.9. For simplicity, assume that all operations as well as a dynamic

scheduling decisions take equally long. The operations carried out on different SIMD

units and cores are represented as cells of the table. Light cells indicate available

cores, and dark cells indicate that the resource is used. Using static edges between

those operations will result in a single thread executing all three operations, with

virtually no cost for scheduling. Dynamic edges, in this case, might result in the

operations to be executed with different threads. However, no more than a single

thread will be active with those operations at any point in time. Additionally, the

overhead for two dynamic scheduling decisions increases the overall execution time.

Resource usage (darker cells) is reduced from seven to three, and the execution time

is reduced from five to three by applying the heuristic. Intuitively, static edges should

lead to a better performance in this case.

Note that applying this heuristic might link two dependent operations to each

other with a sequence of static edges. For example, imagine a dependency edge

between the Translate and Scale operation in the previous example. One of the

static edges needs to be turned into a dynamic edge to yield a valid schedule. In

our implementation, this is taken care of by the optimizer, which validates each

application of heuristics. It would reject the static edge, when the heuristic is applied

to the last edge in the sequence, as it would connect the dependencies to each other.
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4.4.4 Divergence avoidance heuristic

Edges with multiplicity m = / have a high change of introducing divergence. Consider

an If operation or an operation that chooses one of the outgoing edges at random.

For those operations, different objects have a high chance of choosing different edges

for execution. If these edges are made static, thread divergence will occur. Thus, the

divergence avoidance heuristic H2 sets all edges in Eh,2 to dynamic:

Eh,2 = {e|m(e) = /}.

For example, consider a conditional operation executed on two cores of the same

SIMD unit, as shown in Figure 4.10. Each conditional branch is followed by a

sequence of operations. If static scheduling is used, and objects choose different

edges, half of the cores will not run code for the entire execution. Using dynamic

edges, however, will only introduce a small amount of divergence, when starting

the dynamic scheduling. The execution of the following operations can then be

carried out in parallel on different SIMD units, avoiding divergence and speeding up

the execution (eight time units vs six time units). Also, the overall resource usage

(darker cells) is reduced from 16 to 15. Intuitively, dynamic edges will allow to reduce

divergence, introduce parallelism and speed up the execution in this case.

4.4.5 Execution group size heuristic

In contrast to edges that might or might not be taken, there are those nodes that

have edges with a fixed multiplicity, i.e., there will always be a fixed number of

objects created by an operation. Examples include Subdivide or ComponentSplit. If

the outgoing edges of such a node are set to static, combining a node with its children

into the same execution group will prevent divergence, but potential parallelism will

be lost. At first sight, it may appear that these outgoing edges are good candidates

for dynamic edges to increase parallelism. However, one has to consider the overhead

of dynamic scheduling. This is particularly true, when the edges following the

successors are dynamic, too, creating sequences of dynamic scheduling decisions. In

this case, the scheduling overhead will outweigh the gains of parallel execution. Thus,

the execution group size heuristic H3 enforces a minimum execution group size by

greedily setting edges with a constant multiplicity to static until a certain execution

group size t is reached.

∀Si ⊆ S : |Si| ≥ t (4.6)
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For example, consider a Subdivide operation creating three objects, each followed

by a single node and a dynamic scheduling operation, as shown in Figure 4.11. If the

edges are set to dynamic, three dynamic scheduling operations are carried out, and

the following nodes are distributed among different cores. In this way, parallelism is

generated, but with a high amount of scheduling overhead. However, if the edges are

set to static, all nodes are executed on the same core, and the scheduling overhead

is greatly reduced. While the overall execution is taking slightly longer (one time

unit), the consumed resources (darker cells) are nearly halved from thirteen to seven.

As long as there is a sufficient amount of parallelism available, the reduction in

resource usage will lead to a faster generation process. In our experiments, we used

a minimum execution group size t of 5.

4.5 Results

To evaluate our approach, we used test cases from shape grammars, L-systems, and

Monte Carlo procedural modeling approaches as shown in Figure 4.12 and Figure 4.1.

The test cases include a variety of sizes and include results for different numbers of

initial object counts. As test system, we used an Intel i7 4820K with 16GB RAM

and an NVIDIA GTX 780Ti.

4.5.1 Evaluation of the heuristics

To evaluate the heuristics on test data sets of a non-trivial size, we use the following

approach: First, we identify all edges in a given operator graph for which a heuristic

does not apply and randomly set each of those edges to be either dynamic or static.

Second, we apply the heuristic to the other edges and run the schedule for a given

set of input objects, recording their performance. Third, we invert those edges to the

opposite of the heuristic and run the schedule again on the same input set. We repeat

the entire process, until we arrive at a predefined number of samples. For the pairs

of samples, we run a paired Student’s t-test to check if there is a difference between

the performance of the schedules with activated heuristic and inverted heuristic. To

determine the number of samples for achieving a 5% error margin and a confidence

interval of 95%, we created 384 pairs, following the sample size guidelines [33].

In each of the test cases, we make sure that the pattern occurs on which the

heuristic is based. We used Suburban House for H1, as it is rather small and offers

multiple edges that match the heuristic, Commercial for H2, as it chooses randomly

from different window styles, and Balcony for H3, as it has many nodes with only

few outgoing edges. The t-test results for all three evaluations are shown in Table 4.1.
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(a) 3D Tree 12,2 (b) MC Skyscrapers

(c) Spaceship (d) Suburban House

(e) Balcony (f) Commercial

Figure 4.12: The evaluation test cases include L-systems (a), Monte Carlo procedural
modeling (b and c), and shape grammars (d-f).
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Test Obj t p H ¬H perc

H1
15/76
edges

1 -8.36 ¡.001 0.58 (0.65) 0.61 (0.68) .81
64 -51.38 ¡.001 1.13 (0.72) 1.36 (0.72) .99
128 -74.36 ¡.001 1.73 (0.70) 2.16 (0.69) .99
256 -94.54 ¡.001 2.95 (0.73) 3.81 (0.72) 1.00

H2
6/150
edges

1 -18.20 ¡.001 0.53 (0.09) 0.58 (0.08) .87
64 -30.76 ¡.001 0.84 (0.16) 0.94 (0.15) .94
128 -34.85 ¡.001 1.16 (0.29) 1.29 (0.28) .95
256 -35.86 ¡.001 1.79 (0.56) 2.01 (0.53) .96

H3
43/104
edges

1 -2.87 .004 0.51 (0.16) 0.54 (0.04) .89
64 -27.87 ¡.001 0.65 (0.17) 0.90 (0.07) .98
128 -55.96 ¡.001 0.78 (0.16) 1.33 (0.13) 1.00
256 -94.96 ¡.001 1.09 (0.16) 2.19 (0.25) 1.00

Table 4.1: The heuristics affected 15, 6 and 43 edges out of the 76, 150 and 104 edges
in the respective operator graphs. All three heuristics had statistically significant
influences on the performance (p value and t for the paired Student’s t-test). H is
the mean generation time (with standard deviation) in ms with heuristic on, while
¬H shows the same results with heuristics off. For small object counts (Obj), up
to 89% (perc) of pairs benefited from the heuristic. For larger object counts, the
heuristics work even better.

As can be seen, all heuristics had a statistically significant influence on performance

for all axiom counts. Altering 19.7%, 4%, and 41% of edges boosted performance up

to 30%, 12%, 100%, on average, for H1, H2, and H3, respectively, indicating that

the chosen edges actually have a large impact on performance. The heuristics seem

to work especially well for larger object counts. Overall, we argue that all three

heuristics seem to be a good starting point for optimization, reducing the search

space significantly.

4.5.2 Runtime performance

To relate our approach to previous work, we ran the Tree 4,3 test case from GPU

Shape Grammars [46], the Tree 8,3, Overview and Skyscrapers test cases from

PGA [72] as well as the MC Spaceship and MC Skyscrapers from Stochastically-

Ordered Sequential Monte Carlo [67]. We include their performance numbers for

CPU and GPU approaches (adjusted for hardware differences). Additionally, we

compare how the scheduling strategies followed by previous work introduced in our

scheduler perform compared to the best schedule found by our auto-tuner. Rewriting
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approaches (RW ), like the ones by Lacz et al. [34] and Lipp et al. [39], correspond

to execution groups of size 1 and all parameters being stored in the parameter table.

GPU Shape Grammars [46] are represented by a schedule of a single execution group

with all parameters being static (SGL). To represent PGA [72], we used execution

groups according to the rules specified in the shape grammar rule set and again

provide all parameters as statics. For unbiased evaluation, we let an external expert

on shape grammars write those rule sets for us (DGN ). We ran our optimizer in four

different setups: random search (OPTS), search with heuristics (OPTH), and both

variants with execution group matching (OPT·,M).

The performance results are shown in Table 4.2. SGL performs well for small

operator graphs and large object counts, as there is a sufficient parallelism available,

and scheduling overhead is reduced to a minimum. Additionally, there is a low chance

of divergence for such small operator graphs. RW introduces the most parallelism,

but also has the highest scheduling overhead. Thus, it performs better, when there

are few initial objects for which parallelism must be generated quickly. DGN leads

to more balance between scheduling overhead and the ability to generate parallelism.

It works well for test cases which are above a certain size, outperforming both other

approaches. In case of smaller test cases, DGN is, however, outperformed by SGL.

Looking at all three approaches, we can see that there is no single strategy that

always performs best. For the smaller test cases, the auto-tuner can search the entire

space. Thus, OPTS slightly outperforms OPTH as it tests every single schedule.

For the larger test cases, a fully random search is less likely to pick good schedules;

thus, the heuristics-guided search most often achieves better results in less time.

Also, execution group matching usually achieves slightly better results, while, at

the same time it reduces compile time. Overall, OPT always picks the best option,

boosting performance by up to 14.4× compared to SGL, 7.1× compared to RW,

and 2.8× compared to DGN. On average, OPT is better by 3.9×, 3.6×, and 1.8×,

respectively. The larger the operator graph gets, the larger the difference becomes.

This points towards the fact that efficient scheduling for complex problems cannot

easily be done by hand. Also, as procedural worlds are growing in size, the gains of

an auto scheduler grows.

As the operator graph can be applied to different procedural approaches, we used

it for L-system generation, shape grammars and Monte Carlo procedural modeling.

GPU Shape Grammar’s 3D Tree 4,3 is constructed by their approach in 40 ms.

Adjusting for GPU differences (time multiplied by peak FLOPS ratio) results in

about 10 ms on our GPU. The same test case is completed by OPTH ,M in 0.09 ms.

The comparisons to PGA (Overview, 3D Tree 8,3 and Skyscrapers) show that OPT
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finds schedules that are 5 to 30 times faster than their GPU approach (adjusted for

GPU differences) and up to 100 times faster than their CPU approach. Bringing

Monte Carlo procedural modeling to the GPU, an optimized schedule can speed up

the generation process multiple hundred times compared to the CPU implementation

by Ritchie et al. Considering all results, it is safe to assume that our compiler finds

efficient schedules. The comparison to previous work suggests that the combination

of our compiler with an efficient dynamic scheduler yields the currently fastest

procedural generation system for the GPU.

However, finding the best schedule for a given operator graph comes with a cost.

For every single schedule tested, we have to generate the partition from the operator

graph, generate source code, compile it, and run a representative set of procedural

generations. The partition and source code generation takes less than a second, the

compilation takes between 20 seconds and 2 minutes, depending on the operator

graph size. Thus, the optimization for large test cases can take multiple hours. As

the same schedule can be used for different initial objects, the target scenario for our

approach is optimizing a generation that is used heavily in a production system for

different inputs. For example, we used our approach to optimize the generation for

an entire randomly generated city as seen in Figure 4.1.

4.6 Summary

While previous approaches to procedural generation on the GPU employed specialized

data structures and techniques, we looked at the problem from a high-level perspective

and introduced the concept of the operator graph to handle a variety of procedural

generation methods. The operator graph concisely describes the generation process

for any input object. Given the operator graph, we draw a connection between

a partition of this graph and how a system can schedule the generation on the

GPU. An optimizer can search the space of all partitions to find the schedule that

performs the generation within the shortest time. While an exhaustive search of this

exponential space is only possible for small graphs, we proposed three heuristics,

which all increase search performance. Finally, we showed that our tool chain can

significantly speed up the generation of a variety of common procedural generation

systems. Our optimizer is able to increase performance over hand crafted solutions

by up to fourteen times only by changing the schedule.
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Vector graphics precede raster graphics as a representation of digital content,

yet, remain relevant today, since a resolution-independent representation allows

artifact-free display on everything from a tiny smartwatch to a huge wall-size display.

Consequently, vector graphics are ubiquitous in all kinds of data visualization,

including font rendering, user interfaces, web pages, diagrams, charts, maps, games,

and artistic illustrations.

However, vector graphics representations have not radically departed from the

seminal work of Warnock and Wyatt [86]. Vector graphics are typically defined as

a collection of paths, where each path is defined by a number of curves. Curves

are commonly defined as straight lines, quadratic or cubic Bézier curves, or circular

segments. A closed path separates an interior and exterior; the interior and the path

itself can be filled using a variety of styles and patterns.

53
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Unfortunately, efficient rendering of vector graphics at high resolutions still forms

a challenging task for computer graphics. Rendering on the CPU does not scale

well to high resolutions and super-sampling. Consequently, parallel vector graphics

rendering has been actively researched over the last decades [40, 29, 19, 5, 36].

However, there is still no parallel approach for vector graphics rendering which comes

close to the elegance and efficiency of triangle rasterization.

Recent approaches typically use two steps: stencil, then cover [40, 29, 36]. A

first step determines which (sub-)pixels are inside a patch. A second step evaluates

the actual shading of the marked pixels. The stencil generation is the costly step

of the two, either involving a large number of overlapping triangles to modify the

stencil [40, 29] or scanline-curve intersections to generate bit masks [36].

Figure 5.1: Three simple vector graphics constructed from curved patches (CPatches).
All CPatches are indicated with their bounding box in blue. For efficient rasterization,
auxiliary curve are added during patch cutting. Patch outlines and auxiliary curves
are shown in blue and green. CPatches are rendered by our hierarchical rasterizer
completely in parallel on the GPU, leading to superior performance and flexibility
compared to previous work.

We propose a novel approach for vector graphics rendering in a single parallel

rendering pass. Inspired by polygon rasterization, we propose a new primitive, the

curved patch (CPatch), which is limited by a number of curves, each dividing the

space into a positive and a negative half-space. The union of all positive half-spaces

defines the inside of a CPatch, similar to the use of edge equations in polygon

rasterization. Consequently, a CPatch can be seen as a generalization of a polygon.

Even though representing the interior of a path might require multiple CPatches

(Figure 5.1), all CPatches can be processed in parallel, leading to a very efficient

algorithm. Hence, we make the following contributions:

• We introduce CPatches and their mathematical description.
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(a) Triangle (b) CPatch

Figure 5.2: (a) Rasterization of a triangle classifies samples as inside a triangle, if all
edge equations classify them as inside (green). (b) CPatches are constructed in the
same spirit, with implicit curve equations classifying parts as inside.

• We derive a parallel, hierarchical rasterization approach that is efficient to

evaluate and very fast on current GPU hardware.

• We show how CPatches can efficiently be constructed and how arbitrary vector

graphics can be translated into a collection of CPatches.

An evaluation of our approach on modern GPU hardware indicates that it

outperforms previous GPU solutions by a factor of 1.17× to 1.80× on average.

5.1 CPatch: A novel curved primitive

Our approach is based on CPatches—primitives limited by cubic curves (see Figure 5.1

for examples). In principle, a primitive with curved boundaries can be treated in

the same way as a polygon (Figure 5.2b). For a polygon, inserting into all line

equations lets one determine whether a sample is inside (as shown in Figure 5.2a).

Salmon [68] as well as Loop and Blinn [40] show how to translate quadratic and

cubic Bézier curves into implicit form to determine on which side of a curve a sample

lies: Depending on the type of the curve, three parameters k, l, m are computed for

each control point. A linear interpolation of these parameters and evaluation of a

simple cubic function

fc(x, y) = k3(x, y)− l(x, y) ·m(x, y)
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(a) Quadratic (b) Cubic

Figure 5.3: (a) The implicit form for a quadratic Bézier curve shows a sharp edge
(white dashed line) outside the control polygon, which inverts the function (arrows).
(b) The implicit form of a cubic follows the curve extension (black).

yields positive values for one side of the curve and negatives for the other. As the

factors only need to be interpolated linearly, the approach is well suited for GPU

execution. For the classification of curves into ‘serpentine’, ‘cusp’, and ‘loop’ and

the complete table of interpolation factors, see Loop and Blinn [40].

However, the implicit function can only be used for this half-space classification

within the convex hull of the curve’s control points. When extending a curve to

±∞, it may reach inside the CPatch and lead to an incorrect classification of sample

points. One could avoid this problem by limiting patches to the convex hull of all

curves, but at the cost of limiting the supported patch types to the single-curve

approach of Loop and Blinn [40]. Representing thin curved objects, such as font

characters, would lead to an excessive number of patches. Instead, we split a patch

into two when a curve extension reaches into the patch.

Figure 5.3a shows how, outside the convex bounds for a quadratic curve, one side

of the implicit function continues along the extension of the curve (black extension

to the right), while the other one changes abruptly (inverting at the white dashed

line). In contrast, the extension of an implicit function for a cubic curve essentially

follows the curve’s extension when running through the parameter from −∞ to ∞,

as shown in Figure 5.3b. This behavior is preferable, as it is more predictable, and

the locations of the sign change in the implicit form can be reconstructed from the

explicit formulation. Therefore, we elevate all quadratic curves to cubics [17] and

limit our discussions to the cubic case in the remainder of this thesis.

Note that, similar to triangles, CPatches only describe the interior of a primitive

and not the shading of the boundaries. Thus, similar to previous work, we do not

consider line shading as part of our approach. However, lines can be described by
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Figure 5.4: (left) Our hierarchical tiling starts by choosing the most fitting hierarchy
level for the CPatch. (right) We process the patch down to the lowest hierarchy
level. Sub-tiles are classified as completely outside (red overlay) or completely inside
(green overlay), if the patch does not require any more testing. For tiles that are
classified completely inside, the enclosing curve can be removed from further sub-tile
testing (blue numbers indicate the number of actives curves).
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CPatches. For solid strokes, CPatches are easy to derive as two ‘parallel’ curves in

combination with two end curves, which are easy and efficient to rasterize.

5.2 Hierarchical rasterization of CPatches

Constructing vector graphics from a collection of primitives has multiple advantages:

First, all primitives can be treated completely in parallel without any constraints

imposed by a multi-pass approach, such as stencil, then cover. Second, rendering

can be implemented as a streaming pipeline, which keeps resource requirements low.

Third, we can establish primitive order to address issues like a correct blending order.

5.2.1 CPatch representation

Before detailing our hierarchical rasterization approach, we need to give an exact

definition of a CPatch. We limit CPatches to consist of a predefined maximum

number of curves (four to eight curves have proven to work well in our experiments)

inside a given bounding box (represented as four lines). We allow curves to be either

straight lines or cubics; quadratic curves are elevated to cubics. For straight lines, we

encode the line equations in k, l, m form, such that l is the signed normal distance to

the line, while k = 0 and m = 1 everywhere. While this approach slightly increases

the evaluations for straight lines, it offers the advantage of a uniform treatment with

only slightly increased computations. Note that we treat circular segments separately,

as discussed at the end of the section.

To represent curves, we interpolate k, l, and m over the entire space of the patch

using homogeneous rasterization [53]. We can define k, l, and m for three arbitrary

points in space—any three control points are good choices—and store them in vector

form:

k = [k0, k1, k2]
T , l = [l0, l1, l2]

T , m = [m0,m1,m2]
T .

Furthermore, we store the transformation matrix M that captures the location of

the interpolation points in space, at which [x0, y0]
T is the location where k = k0,

l = l0, and m = m0:

M =

x0 x1 x2
y0 y1 y2
1 1 1

−1 .
For any sample point s = [x, y, 1]T , we can interpolate k, l,m:

u = M · s, ks = kT · u, ls = lT · u, ms = mT · u.
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Transformations can be applied by multiplying M with any 3 × 3 transformation

matrix. While we only consider 2D operations here, it is straight forward to extend

our homogeneous rasterization to 3D, as long as patches remain planar. Similarly to

the interpolation of k, l, and m, other parameters, like texture coordinates or color

gradients, can be stored along a patch.

Commonly, a curve will be shared by multiple CPatches, e.g., to construct a

larger complex shape. Therefore, we propose an indirect storage format, similar to

indexed triangle meshes. We store each curve separately (k, l, m, M), and represent

a CPatch as a constant-size array of references to curves, padded with null pointers if

necessary. Moreover, the CPatch stores a primitive id to look up additional shading

parameters.

5.2.2 Tiled rasterization

A naive rasterization of CPatches would evaluate all curve equations for all pixels

and fill those that lie in the intersection of all half-spaces. The main cost of such

an approach is in the curve equation evaluation, which we would like to reduce as

much as possible. Large homogeneous regions, which have the same classification,

should be determined without visiting individual pixels. This consideration suggests

a divide-and-conquer approach. We would like to concentrate on the regions close to

curve boundaries, while the interior area can be filled in a single step.

Hierarchy Our hierarchical tiling approach is illustrated in Figure 5.4): Starting

from the bounding rectangle of the patch, we determine the first level in the hierarchy

where a patch should be tested. From there, the hierarchical rasterization removes

irrelevant curves, while proceeding through the levels. All tiles of a level are processed

in parallel. When the lowest level is reached, a fine rasterization determines the pixel

fill state.

In the inner loop of this algorithm, we must determine whether a curve equation

is uniformly positive or negative with respect to a given tile. Unfortunately, this

test is complicated by the fact that boundaries are not lines, but implicit curves.

Hence, testing the corners of a tile is not sufficient, as there is no guarantee that the

curve does not change orientation between sample locations, as shown in Figure 5.5c.

Furthermore, there is no efficient closed form solution to determine whether an entire

tile is on one side of the curve, as this would require inserting two bounded linear

functions into a cubic equation, leading to a higher order polynomial.
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(a) Inside tile (b) Intersections (c) Double crossing

Figure 5.5: Our tile rasterizer relies on the fact that curves reach to infinity and
thus determining sign changes along the tile boundary is sufficient to identify sign
changes within a tile.

Tile evaluation For an efficient alternative solution to the problem, we rely on

two facts. Since straight lines and cubic curves extend to infinity, it suffices to ensure

that the implicit curves do not change sign along any tile boundary (Figure 5.5).

For this purpose, we rely on the intermediate value theorem. By determining

the extremal values of a curve equation on the tile boundary, we determine whether

there is a sign change.

We evaluate the curve equations at the tile corners and then look for the location

of extrema in-between by constructing the interpolation factors along an edge: Let

c0 and c1 be two corners of the tile edge. We compute the interpolation factors of k,

l, m in a 3× 2 matrix I:

I =

kT

lT

mT

 ·M ·
c0,x c1,x − c0,x
c0,y c1,y − c0,y
1 0

 .
Using I, we can evaluate the curve equation anywhere on the edge by multiplying

with
[
1 i

]T
, where i is the relative location between c0 and c1. The general equation

for evaluating the curve,

fklm(i) = I ·
[
1 i

]T
fc(i) = fk(i)3 − fl(i) · fm(i)

= (Ik0 + i · Ik1)3 − (Il0 + i · Il1) · (Im0 + i · Im1),
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has the derivative

f ′c(i) = 3 · (Ik0 + i · Ik1)2 · Ik1 − Il0fm1 − Im0Il1 − 2ifl1Im1.

We set f ′c(i) = 0 and directly solve the quadratic equation in i. If the found extrema

lie within the tile border bounds (0 < i < 1), we evaluate the curve equation at these

locations, again using I, and determine the minimum and maximum along each tile

border.
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Figure 5.6: Operating on an entire tile sub-grid with eight threads, we reduce the
overall number of operations. Example for the strong blue curve: (1) parallel corner
evaluation, (2) min/max update, shown as circles, (3) row extrema computations and
update. After column extrema computation (not shown), most tiles can be classified
as either inside the curve (green glow) or outside (red glow), while only eight tiles
still need to test for the curve (blue glow). Note that the center tile is only classified
correctly due to the extrema.

Parallel evaluation Performing the above steps individually for all tiles would

be inefficient, as the same computations would be repeated many times. Thus, we

perform the evaluation on a sub-grid of tiles at once. Multiple threads can be

employed for this evaluation, as shown in Figure 5.6 and Algorithm 1: We determine

I for all rows of the grid using one thread per row. In step (1) (line 3–4), each

thread evaluates the curve equation for all corners in its row. In step (2) (line 5),

it applies the result to the surrounding tiles, updating their min/max. In step (3)

(line 6–8), we determine the extrema for each row and update the min/max only for

the touched tiles. Finally, we switch to columns and perform the min/max updates

as well (line 9–13). This scheme reuses I for both the corner evaluation and the

extrema computation, performing all computations only once for multiple tiles.

While iterating over all curves that define a patch, we only add those to the tiles

that can still influence it (line 18). In particular, if a curve completely marks a tile
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Algorithm 1: Parallel Tile Rasterization

1 for all curves ∈ CPatch do
2 for all grid rows r in parallel do
3 compute cr,0, cr,n and I to get fcr(i) for the curve
4 for i ∈ [0, 1] with increase 1/(n− 1) do
5 evalute fcr(i) and MinMax to surrounding tiles

6 compute ei from f ′cr(i) = 0
7 for all 0 < ei < 1 do
8 evalute fcr(ei) and MinMax to surrounding tiles

9 for all grid columns c in parallel do
10 compute cc,0, cc,n and I to get fcc(i)
11 compute ei from f ′cc(i) = 0
12 for all 0 < ei < 1 do
13 evalute fcc(ei) and MinMax to surrounding tiles

14 for all tiles in parallel do
15 if Max < 0 then
16 discard tile
17 else if Min ≤ 0 and Max ≥ 0 then
18 add curve to tile

19 for all non-discarded tiles in parallel do
20 if tile has no curves or final level is reached then
21 forward to fine raster
22 else
23 forward with curves to next level rasterization

as outside, we discard the tile (line 16). After completing the step for one patch, we

have created a per-tile curve list, i.e., a new CPatch structure for each tile to pass

down the hierarchy (line 23). A tile with an empty curve list that is not marked as

outside can be passed on to the fine rasterization stage immediately (line 21).

Fine rasterizer The final rasterization stage (the fine rasterizer) is called for a

final tile and only needs to evaluate the remaining curve equations for all (sub-)pixels.

The fine rasterizer operates in parallel over all pixels and can make use of efficient

on-chip memory on the GPU. If multi-sampling is desired, a coverage bitmask is

forwarded to the final shading stage.
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Circular curves Half-space classification for circular curves only requires the

center and the radius; tile-circle intersection is simply derived from line-circle tests.

The only difference to the infinitely extending curves discussed above is that a circle

can be completely inside a tile, a situation that is trivial to detect. Taking all this

into account, we employ the same parallel tile test as for curves.

5.2.3 GPU software rasterizer

To show the benefits of our proposed scheme, we discuss an implementation operating

on the GPU in compute mode. To take advantage of the many-core architecture

of the GPU, we want to perform as many operations in parallel as possible. This

problem is complicated by different entry points into the tile hierarchy, the varying

number of hierarchy levels to traverse, and the varying amount of parallelism per

patch, mainly owed to its size. Moreover, blending needs to respect the depth order

of patches.

To take best advantage of the parallelism of the problem, we rely on Whipple-

tree [74], a task-scheduling framework based on CUDA. We use two task types: the

tile rasterizer and the fine rasterizer. For the tile rasterizer, we generate multiple

instances supporting a range of sub-grids, from which we choose the one most fitting

the CPatch. We use grids sizes of 1× 7, 7× 1 and 7× 7, each using eight threads,

which allows Whippletree to fill up a warp (32 threads executing on a SIMD core)

with four tasks.

The input data to the tile rasterizer includes the level, and the id of the tile

to be rasterized. As the execution of tile rasterizer on different levels is identical,

Whippletree can combine tasks for different levels for efficient computation. For

example, four tiles of size 1 × 7 taken from different levels can be combined for

one warp. The fine rasterizer uses a grid of 8 × 4 threads, each responsible for a

single pixel. For sub-pixel coverage, we use a bitmask for multi-sampling, while

super-sampling treats all sub pixels individually. Using one thread for all sub-pixel

samples achieves better performance than using one thread per sub-pixel sample.

Tile store Finally, we need to resolve blend order. For order independent trans-

parency in conventional polygon rendering, a common approach is constructing

per-fragment linked lists [90]. We could employ a similar approach for CPatch

blending, storing samples that lie inside patches in dynamically constructed linked

lists. This approach would require many lists and all samples would need to be

generated and stored, before consuming any of the data.
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(a) Graph Flatten (b) Fill Scoring

(c) Cycle Extraction (d) Patch Cutting

Figure 5.7: Our six-stage conversion pipeline for arbitrary vector graphics to a CPatch
representation: (a) A flat graph is constructed by computing all curve intersections.
(b) By shooting two rays for each edge, the fill score is determined. (c) After removing
edges with identical fill score on both sides, complete cycles are extracted. (d) Cycles
with many curves are cut down to smaller patches.
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(e) Self-intersections (f) Extension Correction

Figure 5.7: (e) Self-intersecting curves are handled by splitting patches along the
self-intersections. (f) Additional straight lines are added to cut away wrongly filled
outside areas.

Thus, instead of storing lists for each fragment, our tile-based rasterizer can

be extended to create lists for the final tiles. This strategy allows to delay the

execution of the fine rasterizer to a second pass operating on sorted tile lists. Each

list entry needs to store the CPatch data, i.e., the remaining curve references and

the primitive id. This design implies a trade-off: While the number of lists is reduced

significantly in comparison to per-pixel lists, the amount of data stored per entry is

larger. Nonetheless, the resulting memory requirement is usually lower. Moreover,

sorting becomes less expensive, as its cost is proportional to the number of lists.

Upon closer inspection, this approach closely resembles triangle rasterization

on NVIDIA hardware: The hardware pipeline assigns primitives to tiles for final

rasterization [26]; processing is carried out with a parallel sorting step before final

rasterization [62]. However, our approach can still not be classified as a full streaming

solution, since it temporarily stores all output data and performs a complete sort. A

full streaming approach could reduce sorting cost further, but would require a more

complex implementation.

Note that we evaluate shading only in the final pass, which inherits properties

of deferred shading. We operate on the sorted lists from front to back and stop list

traversal as soon as full opacity is reached. This not only reduces the shading and
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blending cost, but also the rasterization cost. In case advanced blend modes are

needed that do not support front-to-back processing, the process can be reversed.

5.3 Converting vector graphics to CPatches

In the last section, we have described a hierarchical rasterizer for CPatches. For a

complete pipeline, it is left to show that general vector graphics can be represented

as CPatches. To this end, we present a simple conversion pipeline. Our current

implementation takes an scalable vector graphics (SVG) image as input, and converts

all its path elements to a CPatch representation. Strokes must be converted to filled

paths in a preprocessing step. The converter supports lines, quadratic Bézier curves,

cubic Bézier curves and circular arcs, with non-zero and even-odd fill rules. The six

stages of our pipeline are outlined in Figure 5.7, including examples of each stage.

Graph flattening SVG paths can have arbitrary cycles and overlaps; intersections

of curves are not explicitly captured in the SVG. To simplify later processing, we

build a flattened graph for each path: We iteratively add curves to the existing path

representation, until the complete path is captured by the graph. When adding a new

curve, we determine matching nodes in the graph (end points of curves) and perform

curve-curve intersection testing with all existing curves via Bézier clipping [70]. For

each intersection, we add a new node to the graph and break open the curves at the

intersection. This process results in a flattened graph for each path, where nodes

capture all intersections of curves, and edges represent segments of the original curves

connecting to the nodes.

Fill scoring For each flattened graph, we determine where the path should be

filled. While fill scores are typically defined for each sample in the drawing, we only

determine the fill score for each graph edge to either side of the curve. To this end,

we shoot a ray normal to the edge at the half-way point of the curve. For each

ray, we determine the fill score by computing the intersections with all curves and

applying the fill score rule accordingly (non-zero or even-odd). The result of the

fill score test is stored with each edge. If both sides of the edge yield the same fill

score, we simply remove the edge, as it is not relevant for the drawing. Note that

this computation is very light-weight, as we only determine the fill score twice per

edge and not per sample in the drawing.

Cycle extraction As CPatches should represent primitives, we extract cycles in

the graph at an early point. In this way, we can later ignore interaction between
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loosely connected sub-patches. To perform the extraction, we start with a random

edge and walk along the graph. At each node, we choose the curve with the smallest

outgoing angle to the incoming edge, considering which side of the edge should be

filled. For this angle computation, we compute the derivative of the involved curves

at the node. When we encounter the starting edge again, we have extracted a full

cycle.

In this way, we separate each path into multiple independent cycles. The outlined

approach works well even if cycles are touching. However, nested cycles need

additional treatment, as both the outer and the inner cycle are required to construct

a CPatch representation. From each inner cycle we shoot a ray to find the first

outer cycle and split ring-like paths into two separate touching cycles, as shown in

Figure 5.7c. Note that there could be multiple inner cycles. In this case, we first

connect the inner cycles and then make the connection to the outermost cycle to

avoid ‘cutting’ inner cycles.

(a) (b)

Figure 5.8: Self-intersections of patches arise, when a curve reaches back into the
patch and wrongly classifies parts as outside the patch, which can happen when a
curve (light green) extension points inward the patch (a), or comes back (b). Cutting
the patch in two resolves the problem.

Patch cutting While cycles, per definition, already form a patch, they might

consist of a large number of curves. As we limit the number of curves for efficient

rendering, we cut cycles that exceed the limit, using an algorithm inspired by ear

clipping [47].

Although this heuristic is rather simple, it worked for all drawings we tested.

In some cases, a large number of additional nodes are inserted when straight lines
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1 while Patch has more than MaxCurves curves do
2 for N ←MaxCurves− 1 to 1 do
3 for all edges in patch do
4 mark edge and next N-1 edges
5 connect end-points of marked edges with line
6 if line does not intersect any edge then
7 split off marked edges and make new patch
8 add line to original patch
9 break

10 if Patch still has more than MaxCurves curves then
11 split longest edge in the middle and add new node

cannot be placed in the interior. Curved cuts could be an option to avoid these

additional nodes.

Self-intersection cutting Self-intersecting curves are one of the major challenges

for CPatch generation, since they lead to incorrect half-space classifications, as shown

in Figure 5.8. We distinguish two cases, a curve which extends into a patch from its

starting node (Figure 5.8a) and a curves that returns into the patch after leaving it

(Figure 5.8b).

We handle self-intersections by cutting the patch in two. We iterate over all

curves of the patch and test the derivative at the end nodes to determine whether

the curve points inward. Then, we compute all intersections of the curve extension

with the patch. We simply extend the curve to a large multiple of the original length

using the De Casteljau algorithm [14] and again perform Bézier clipping to check for

intersection. According to our experiments, the alternative of solving for intersections

using the implicit curve is more time consuming and less accurate.

After finding all intersections, we sort them and split the patch in two (Figure 5.8).

After creating the two new patches, we continue the process for both newly generated

patches. For efficiency reasons, we retain the information about which curves of the

new patch have already been tested. Curves that have loops need special treatment,

if a complete loop is formed by the extension. In this case, an additional patch only

consisting of the loop might be needed.

Extension correction One final issue concerns curves that cross outside of the

patch, but within the bounding box. This might create wrongly filled areas, as shown
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(a) (b)

(c) (d)

Figure 5.9: (a) Extension correction is necessary when curve extensions cross outside
the patch and thus wrongly classify regions as inside. (b) Such errors are also common
for cusps, where they happen directly next to the patch. (c) We fit an additional line
to cut these regions. (d) Sometimes, a straight curve cannot successfully perform
the cut, in which case we split the patch in two.

in Figure 5.9. Again, this issue might arise directly at the end of the curve, e.g., with

cusps (Figure 5.9a), or from an intersection of two curve extensions (Figure 5.9b).

These unwanted regions can be handled by locating them and pruning the offending

crossings by inserting an additional curve to the patch.

To locate such offending crossings, we consider all intersections of curve extension

(which are guaranteed to be outside of the patch after the execution of the previous

stage) as well as all intersections of curve extensions with the bounding box. For

each of those points, we evaluate all implicit curve equations and keep only those

that yield a wrong result. From the offending crossings, we construct connected
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Input CPatch Tile Raster
Data Pth. C. Ptc. C./Ptc. Ptc. Ptc./Tile C./Ptc.

drops 204 1k 1k 3.58 18k 2.24 1.09
embrace 225 5k 4k 3.20 43k 5.35 1.37

tiger 240 2k 3k 3.38 22k 2.74 1.81
car 420 12k 7k 3.33 38k 4.75 1.95

sample v2 691 7k 7k 3.29 34k 4.21 2.28
hawaii 1137 53k 41k 2.83 102k 12.48 2.21
boston 1922 28k 14k 3.23 46k 5.71 1.85

paris-70k 45k 545k 303k 3.36 531k 64.91 2.88
contour 53k 188k 57k 3.42 115k 14.06 2.81

Table 5.1: Statistics of the test data sets and processing results. The input SVG
daasets range from 200 to 53k paths (Pth) with up to 545k curves (C). Our pre-
processing generates up to 303k patches (Ptc) with an average of about 3.3 curves
per patch. After tile rasterization (1k resolution), lists capture up to half a million
patches.

cycles (there might be multiple).

Then, we find the point that is closest to the original patch—for cusps, this could

even be a node of the patch. We use this point as anchor and place a line to cut the

wrong region, which we add as a curve to the patch. There are infinitely many line

directions to consider. We optimize by starting with a random direction and rotate

it depending on where we hit the falsely positive region (or the patch), as shown in

Figure 5.9c. We iterate with a reduced rotation angle, until we find a fitting direction

or end up with no movement. In case no solution is found, we cut the patch in two

(Figure 5.9d).

Remarks Even though the preprocessing sounds complex, our non-optimized,

single-threaded CPU code runs efficiently. For example, it loads and processes the

Tiger image (Figure 5.1, right) in less than a second. Given our simple implementation,

there is a large optimization potential. Furthermore, a CPatch representation only

needs to be constructed once; it could easily be stored as additional information

alongside the vector drawing. Especially when using our technique in a graphics

editor, such as Adobe Illustrator, only one path is edited at a time, and thus only

a single CPatch representation needs to be computed, which can easily be done at

interactive rates.



5.3. Converting vector graphics to CPatches 71

(a) embrace (b) tiger

(c) car (d) sample v2

(e) hawaii (f) boston

(g) paris-70k (h) contour

Figure 5.10: The test data set spans simple (≈ 200 paths a,b), medium sized (1000
to 2000 paths e,f), and large graphics (> 40 000 paths g,h).
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5.4 Results

To evaluate the performance of our approach, we tested a variety of common vector

graphics benchmark drawings, as outlined in Table 5.1 and Figure 5.1 and 5.10.

All tests were run on an NVIDIA GeForce GTX 1080Ti (3584 CUDA cores, 11GB

of global memory) hosted by an Intel Core i7-6850K CPU 3.60GHz with 64GB

of system memory. As comparison methods, we use NVIDIA path rendering [29]

(NV) and the GPU scanline rasterizer (SL) of Li et al. [36] . We use their original

published implementation.

Our approach uses a tile size of 8 × 4, a maximum number of four curves per

patch, and every element in the tile list can hold 32 elements. For sorting, we use

per-block radix sort and choose the best fitting block size among 32, 64 and 128,

depending on the average guessed number of patches per tile. While these choices

put slightly more pressure on the preprocessing and increase memory requirements,

they favor speed.

Preprocessing As can be seen in Table 5.1, our preprocessing usually cuts each

input path into 5 to 40 CPatches on average, creating up to 300 000 CPatches for

the largest input. Drawings with smaller and more complex curved structures, e.g.,

hawaii or boston, are cut into more patches than rather simple drawings, like drops.

As contour mostly consists of triangular and rectangular data, it is already very

close to a usable CPatch representation and thus hardly needs any processing.

After tile rasterization, the overall number of patch references throughout all lists

ranges from 18 000 to 530 000 (1k resolution). List lengths are relatively short on

average for most simple drawings with 2 to 14 entries. paris-70k forms an exception

with its large number of small patches. The number of referenced curves after tile

rasterization is strongly reduced to 1.9 to 2.9 on average, indicating the success of

the hierarchical approach.

Timing Performance numbers are shown in Table 5.2. When multisampling is

disabled, our approach shows the best performance in eight out of nine cases for 1k

resolution and four out of nine cases for 2k resolution. NV takes the lead in two and

four cases, respectively. SL is always the slowest approach. For 16× multisampling,

the situation slightly shifts, with our approach winning in four and three cases, NV

in four and two cases, and SL in one and three cases, respectively. Overall, we

achieve a mean (harmonic) speed up of 1.48× and 1.80× without multisampling

and 1.43× and 1.17× for 16× multisampling over NV and SL, respectively. Our
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res 1× Multisampling 16× Multisampling
Our NV SL Our NV SL

drops
1k 0.51 0.61 1.62 0.72 0.71 1.75
2k 1.31 0.61 1.72 2.12 1.44 2.10

embrace
1k 0.75 0.63 1.95 0.93 0.84 2.08
2k 0.92 0.62 2.01 1.81 1.75 2.39

tiger
1k 0.66 0.66 1.63 0.87 0.81 1.73
2k 0.79 0.66 1.69 1.72 1.75 2.04

car
1k 0.82 1.17 2.16 1.38 1.12 2.35
2k 1.07 1.17 2.21 1.91 2.22 2.54

sample v2
1k 0.47 2.57 1.37 0.83 2.57 1.52
2k 0.88 2.53 1.39 1.66 2.56 1.72

hawaii
1k 0.88 2.07 2.49 1.90 2.10 2.97
2k 2.31 2.06 5.53 4.45 5.44 9.96

boston
1k 0.64 3.42 1.30 1.04 3.41 1.44
2k 1.26 3.43 1.33 2.14 3.41 1.73

paris-70k
1k 1.96 74.6 2.43 3.13 74.1 2.58
2k 3.52 72.5 2.52 4.81 73.5 2.99

contour
1k 0.63 90.9 1.48 1.53 90.9 1.57
2k 0.85 90.1 1.55 3.24 90.9 1.89

Table 5.2: Runtime performance of our approach in milliseconds compared to NV
path rendering and GPU scanline rasterization.

approach shows the most balanced performance, keeping up with NV for smaller

drawings (drops, tiger, car) and showing very competitive performance for large

drawings with complex structures (paris-70k, contour), which are typically vastly in

favor of alternative approaches.

It should be noted that NV, in many cases, is not limited by the compute power

of the GPU, but rather suffers from synchronization delays due to the ‘stencil, then

cover’ approach, which reduces the amount of parallel workload. Thus, increasing the

resolution or multisampling has hardly any influence for NV. While SL also follows

a ‘stencil, then cover’ approach, they first generate strides that are then rendered

in parallel by OpenGL. SL uses an approximation for stride boundaries and thus

multisampling is less costly in their approach. Therefore, SL results may slightly

differ visually. Our approach scales with the workload, reducing performance when

the resolution is increased or multisampling is activated.

The relative performance of the three steps of our approach is shown in Figure 5.11.
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Figure 5.11: Relative run time of the three major steps of our approach. Multisam-
pling influences fine raster time only.

If multisampling is disabled, tile rasterization is usually the most time consuming

step. Fine rasterization is slightly more costly than sorting. When multisampling is

enabled, fine raster takes over the majority of the workload for most tests, which is

not surprising, as the number of tested samples is increased 16×.

Quality Figure 5.12 shows quality examples for 8× multisampling of the tested

approaches in comparison to a 256× supersampled ground truth (16×16 downsampled

image). Our approach clearly achieves the best result for this challenging case (even

4× multisampling is superior in image quality). We can only speculate about the

errors of the other approaches which both rely on hardware multisampling. Both

NV and SL render geometry for the fine structures, which is subject to sub-pixel

snapping for fixed point rasterization, which may influence the evaluated equations

and generated stencils. Additionally, SL represents both scanline ends with simplified

geometry, which leads to additional errors. As our approach does not perform any

boundary simplifications and fully evaluates curve equations for all sub-pixels, we

achieve a higher quality.
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(a) Original
(b) Ground truth (c) 4×MS ours

(d) 8×MS ours (e) 8×MS NV (f) 8×MS SL

Figure 5.12: Quality example for 12×14 pixels large renderings of the feather image
compared to 256× super-sampled ground truth of the feather image. SL and NV
show higher errors due to their treatment of sub-pixels. Even our 4×MS image
achieves high accuracy in comparison to the 8×MS renderings of NV and SL.

Discussion While CPatches are usable for all vector graphics, some drawings, like

contour, are already close to a CPatch representation and thus more efficient. Paths

with many curves, like the butterfly in Figure 5.1, will typically get cut into many

patches, which explains the high expansion factor of some drawings. However, while

the number of CPatches increases, memory requirements only increase marginally

when using references to the original curves.

Our approach is most efficient when rendering patches that fill out their bounding

box well, e.g., rectangular CPatches result in most efficient rendering. However, also

thin and slanted patches can be rasterized efficiently, as empty regions are discarded

early in the hierarchical rasterizer, whereas traditional ‘stencil, then cover’ methods

would test all curves for all pixels in the bounding polygon. Thus, our approach

is also well suited for boundary rasterization which naturally consist of many thin
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segments.

Due to the nature of our approach, all types of fill types and blending can easily be

integrated. As the fine rasterizer is executed in compute mode, not only color gradient

or textures are naturally supported as fill types, but any type of computations can

be performed, e.g., noise evaluations, complex sampling, or lighting are possible.

Similarly, as blending is performed in software, we can use any combination of color

spaces and blend functions.

5.5 Summary

We have presented a novel approach for representing and rendering vector graphics

using curved primitives, CPatches, which enable parallel rendering, similar to how

triangle rasterization is performed in real-time rendering. A CPatch representation

allows the construction of a complete parallel hierarchical rasterizer on the GPU. Our

software prototype, running in GPU compute mode, shows competitive performance

when compared to the hardware supported NVPR for small vector graphics. It

performs on the same level as previous state-of-the-art methods for complex drawings,

while completely avoiding all approximations. Thus, our approach not only achieves

speedups of 17% to 80% over the previous state-of-the-art, but also achieves higher

quality for multi sampling. Our approach shows the best performance, when the

input vector graphics is already close to a CPatch representation.

To show the applicability of our approach, we have also presented a preprocessing

pipeline to convert arbitrary vector graphics to a CPatch representation. We see

high potential for better preprocessing in the future, which would not only increase

preprocessing speed, but also generate CPatches that can be rendered more efficiently.
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In the last decade, VR has again risen in popularity. Alongside, new technical

difficulties have surfaced, mostly due to the high number of shaded pixel required at

very high frame rates to establish a smooth VR experience. The combination of a

large field of view to cater immersion, high pixel densities to hide display properties

of near-eye displays, as well as low latency to avoid VR sickness simply overload the

capabilities of most modern graphics cards.

As a consequence, alternate rendering strategies such as object space shading

approaches as well es decoupled shading are rising in popularity. For example, shading

can be computed on a powerful server in object space and sent to the head-mounted

display (HMD), which displays the geometry for new head poses [48]. In this way, the

shading rate can be reduced, while the final rendering always considers the correct

view. Similarly, object-space shading [24] and decoupled shading [38] first determine

which primitives are visible in a scene before shading them.

A separation into visibility, shading and display becomes troublesome, when

visibility and display do not use the exact same viewing parameters, i.e., if the

77
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camera parameters or resolution is not identical. For VR scenarios, considering small

view offsets from visibility to display can effectively reduce display latency and VR

sickness. Thus, it is highly desirable to support camera adjustments between those

stages. When rendering the scene from a view point that does not correspond to

the one where shading took place, disocclusions may occur. Disocclusions become

visible as black or colorless spots on screen where no shading information is available

because that location was not meant to be seen from the original pose. For this

reason, the exactly visible set (EVS) of triangles need to be extended into a PVS in

decoupled rendering to support a certain offset between shading and display view

position. In a first person VR setting, the movement of the user can be predicted for

a few frames into the future, and the triangles that become visible in the additional

views can be taken into account when shading. With this approach, a simple PVS

can be created to mitigate the disocclusion problem for many situations. Abrupt view

changes like sudden head rotations or jumps will still cause the effect to occur [48].

An additional source of disocclusions is insufficiently accurate sampling of visibility.

When determining which triangles are visible at the center of each pixel in the output

surface, geometry in-between two sample points will be lost. A simple solution would

be to increase the sampling resolution. This brute force approach quickly exceeds

the constraints of real-time rendering. Figure 6.2 displays the problem. On the left,

the triangles that could be sampled from a view point further away are shown when

moving the camera closer. The center image shows the result of our approach, and

the one to the right is a visualization of the triangles that could be visible from the

original view point according to a ground truth we establish.

In this work, we propose a method for sampling the visibility of geometric

primitives from a certain view point that also includes primitives that would otherwise

fall in-between sample locations. Our approach comprises two passes, whereas the

first pass is a simple G-buffer pass and the second uses conservative rasterization to

compare primitives with the G-buffers. During the comparison, primitives that are

likely from the same surface are identified and added to the visible set. We make the

following contributions:

• We propose heuristics that consider depth differences and triangle sizes to

identify primitives that are likely to correspond to the same surface. These

heuristics take the specifics of conservative rasterization into account.

• We show that dynamically adjusting the heuristics depending on triangle

properties increases the true positives and reduces false negative classifications.

• We identify additional considerations, such as geometric relations of primitives,
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Figure 6.1: Visualizing high density hot spots of triangles per pixel where spatial
aliasing occurs due to primitives missed in standard visibility sampling (marked in
red). Our method can detect small triangles within these areas to include them in
the visible set.

their distances and overlap to further increase the classification rate among

multiple scenes.

• We solve the problem of sub-pixel-size gaps in scenes by introducing a pixel

coverage measure and extend our approach to multiple passes limiting the work

to only those pixels that show gaps.

We compare the effectiveness of our method by comparing to a fine grid sampling

per pixel method that serves as a ground truth.

6.1 Sampling Methods

In this section, we describe the three methods we use to determine visibility of triangles

(the last one being our novel approach). The first uses standard rasterization to

record the front-most triangle per pixel. The second serves as our ground truth

of what should be visible. We use the first method in a two dimensional grid to

increase the sampling density. The third is our newly developed method that uses

conservative rasterization to consider triangles that would not be detected using a
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Figure 6.2: Left: Closeup of visible triangles after sampling from further away. Center:
After sampling from the same view point with our method. Right: Visualization of
triangle visibility. Green: Detected with standard and conservative sampling; Grey:
Conservative only; Red: False positives (too much); Blue: False negatives (missing)

standard one sample per pixel approach.

All three methods are comprised of two stages. The first stage determines the

triangle id for every pixel at the center, and the second stage gathers the visibility

information into data structures for the shading system.

6.1.1 Naive Sampling

In its most simple form, the visibility is sampled by rendering the geometry with

a forward render pipeline consisting of a vertex and a fragment shader. The only

difference is that instead of a color value written to a framebuffer, the ID of the

triangle that invoked the fragment shader in that location of the render area is saved

to a texture. One fragment shader invocation, caused by the triangle that overlaps

with the pixel center, is issued per pixel. We call this the standard or naive method

(Figure 6.3a). The triangle ID is determined by a running index of invocations

provided by the rendering API and an offset into the draw buffer that contains the

primitives to be drawn. Once all draw calls for all visible models in the scene have

completed, the output texture to which all the draws have written, contains only

the front-most triangle ID for every pixel. We call this texture the ID buffer. The

second pass in this approach has only the single purpose of gathering the IDs from
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the two dimensional ID buffer into a one dimensional array of rendering primitives.

This visibility stage has to be performed separately from the ID stage, so all draw

calls could complete their writes before the information is read again.

6.1.2 Brute-Force Oversampling

To construct a method to serve as ground truth, we use the standard method within

an offset area to thoroughly sample the visibility at a certain viewpoint. For our

purposes, we set this region to be all possible view points within the distance of half

a pixel to the left and to the right in horizontal and vertical direction of the position

from where we want to sample (Figure 6.3b). The density of that grid can be set

arbitrarily high (although hardware limits apply in practice) to get a more exact

result of the true visible set.

(a) Standard sampling (once at pixel center) (b) Pixel grid sampling

Figure 6.3: (left) While standard sampling operates at the pixel center (green dot),
our (right) ground truth. Super-sampling is generated by repeatedly running the
standard sampling pipeline with sub-pixel projection offsets in an eight by eight grid
in addition to the center sample (red dots).

6.1.3 Sub-Pixel Visibility

This novel visibility sampling approach uses two render passes (and an optional

compute shader pass to further improve performance). The first pass is similar

to the naive sampling but stores the minimum and maximum depth per pixel in

addition to the triangles’ ID. The second render pass uses conservative rasterization

to invoke a fragment shader program for every pixel that is touched by a triangle.

In the fragment shader we apply heuristics to keep or discard the invoking triangle.

The computation of the minimum and maximum depth can be moved to a compute
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shader, launched between the first and second render pass, to only compute that

information for triangles that are visible after the first pass.

6.1.3.1 Conservative Rasterization

Rasterization is the process of determining which cells of a grid of screen locations

(pixels), the raster, are covered by a geometric primitive. The standard behavior

of this part of the graphics pipeline, which is a fixed function unit in today’s

implementations, is to consider a cell covered if the center overlaps with the primitive.

In contrast, conservative rasterization [2, 25, 77] defines any coverage of the cell as

valid:

• Under-estimation mode will report only those cells of the raster covered that

are fully covered by the primitive.

• Over-estimation will mark all pixels that are at least partially overlapping with

the primitive as covered.

Our visibility algorithm relies on the over-estimation mode. For every triangle,

even if it falls through the sampling grid, a fragment shader invocation will be

generated, so we can decide on its visibility in the executed shader program.

(a) Standard rasterization
behavior fills pixels where
the center is covered by the
primitive.

(b) Conservative underes-
timation fills only pixels
which are fully covered by
a primitive.

(c) Conservative overesti-
mation, the technique our
method makes use of, fills
all pixels which are touched
by a primitive, regardless of
how much area is covered.

Figure 6.4: Rasterization modes supported by modern graphics hardware. The
pixels in the raster (center marked with dots), will be filled with color depending on
the position of the triangle and the rasterization mode.

6.1.3.2 Heuristics

If every triangle that hits the fragment shader stage in the conservative visibility pass

was marked visible, a lot of false positives would be generated causing unnecessarily
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high load on the shading stage for triangles that will never be visible.

a b

c

r

r =
2A

a+ b+ c
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√
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(6.1)

Figure 6.5: In-circle radius r of a triangle with area A, side lengths a, b, c and
half-circumference s

With the help of information gathered in the first render pass and settings which

enable fine tuning to some degree, we can formulate criteria on whether to keep or

discard a triangle. We use the following components:

• Triangle ID: If the ID matches from the first pass, we accept the triangle

without even rasterizing it because it is already marked visible.

• In-circle radius: Large triangles that get detected only in the second render

pass are bad. The rationale being that they generate unnecessary high load

not only at the subsequent fragment stage, especially when using conservative

rasterization, but also in the later shading of the triangle of which only a very

small portion will be visible. Otherwise the large triangle would have been

detected in the first render pass already. We calculate the in-circle radius

(Figure 6.5) for triangles that are not marked visible and discard them before

rasterization if they are larger than a pixel.

• Depth: If the projected position of two triangles is almost the same (within

the area of one pixel) and the one was already marked visible in the first pass,

while the other was not, we compare their depth to determine if the triangle
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that was missed in the first pass is likely to be visible or not. We compare the

minimum and maximum depth of the triangle currently processed within the

current fragment location to the depth stored for this location from the first

render pass.

ε = ∆abs + ∆dyn ∗ (1− abs(< ns, nt >)) (6.2)

δ =

{
ds,min − dt,max if ds,min > dt,max

dt,min − ds,max if dt,min > ds,max

(6.3)

accept = (δ < ε) (6.4)

The depth heuristic is applied in the fragment shader of the conservative render

pass. We calculate a threshold ε according to equation 6.2 based on configurable

parameters ∆abs and ∆dyn. We compare this to the depth difference δ of the current

triangle and the triangle sampled in the first render pass (Equation 6.3). This depth

difference is based on the minimum and maximum depth of the triangle within

the area of the current pixel. ds,min and ds,max are the minimum and maximum

depth of the triangle sampled at that pixel in the first render pass. dt,min and dt,max

are the minimum and maximum depth of the current triangle in the conservative

rasterization pass.

The diagram in Figure 6.6 shows a schematic description of the situation of two

triangles within a pixel. At the sample point (center vertical line), only the upper

triangle (long blue line on the right) would be detected with standard sampling.

Since we also get to process the missed lower triangle (shorter left blue line) with

conservative rasterization, we take the depth of that triangle into consideration and

measure how far it is behind or in front of the originally sampled triangle. We take

two settings into account to configure our depth discard criterion, a static depth

offset and a dynamic offset. The dynamic part of the ε takes the relative position

of the two triangles using the dot product of the normalized triangle normals into

consideration.
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Figure 6.6: Depth comparison heuristics: In order to create reasonable compar-
isons of triangle depths, we do not directly look at the depth value at the sample
point in the middle, but determine the minimum and maximum depth within the
pixel boundary. We also take the triangle’s normals into consideration to adjust
the boundary at which we discard a triangle dynamically according to their relative
angles.

6.2 Implementation

Our implementation of the newly developed conservative visibility method is realized

in a decoupled shading system [48]. In contrast to their implementation of a fully

fledged VR streaming system, we use a reduced set of functionality that serves as a

testbed to better focus on the research problem of improving the visibility sampling.

The rendering system is implemented in the C++ and GLSL programming

languages and makes use of the Vulkan graphics API and its conservative rasterization

extension, supported since version 1.0.67 [27].

Our software design evolves around a pipeline with the individual stages depending

on the tested scenario. After an initialization that sets up buffers for input and

output data, the visibility stage is the first stage where render passes happen. This

stage can be exchanged at compile time with classes implementing the visibility

producer interface. Our test application uses three separate pipelines, one compiled

with a standard visibility stage, one with the conservative visibility variant and

one for the view cell version. The pipeline can then be switched at run-time. The

output of the visibility stage is subsequently used as the input to the shading stage,

that renders the triangles marked visible into a shading atlas [48]. At the end of

the pipeline, there is the display stage that simply renders the visible triangles by

mapping the generated shading information.

The system is decoupled in terms of being able to decide what rendering work to
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A B C

D E F

Figure 6.7: Color coded visibility visualization: A: False positives (too much),
B: False negatives (missing), C: Standard sampling, D: Union of A, B, C. E: Heuristics
too strict, F: Heuristics relaxed; Grey triangles in E and F: Correctly recognized by
the conservative method (according to ground truth and in addition to the green
triangles, which are of course also marked visible by the conservative method)
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process each frame. The stages up to the shading stage are recorded into a different

Vulkan command buffer [28] than the display stage. The command buffer containing

the shading part can be submitted to the Vulkan system at a different rate than

the one containing the display stage. The matrices containing the view information

are updated separately for the shading and the display stage, allowing to generate

several fast view updates from one shading update. With this mechanism, we can

also pause the shading updates and inspect what has been rendered - a behavior

used extensively in our visibility visualization renderer (Figure 6.7).

The high level mechanism already describes the standard visibility sampling

adequately. One implementation detail we might add here is that we use a compute

shader in the visibility gathering sub-stage to quickly prepare the data for the

subsequent shading.

6.2.1 Conservative Visibility

In the first render pass of the conservative visibility method some extra computation

is carried out in addition to filling the ID buffer with IDs of the primitives that pass

the depth test and are closest to the camera at the center location of each pixel.

A geometry shader is used to compute and store the triangle’s normal vector and

store it in a buffer containing per triangle entries. The only other thing this shader

program does is pass down the triangle’s vertex data to the fragment shader where

it is used to determine the minimum and maximum depth (in clip space coordinates)

of the triangle plane intersected with the bounds of the pixel area.

To accomplish this, we first perform a point-in-triangle test to find out if any of

the pixel’s corner points fall within the triangle. If this is the case for all four pixel

corners, we intersect a ray perpendicular to the pixel plane from the corner points to

intersect with the triangle plane. The minimum and maximum depth of the four

intersections will be stored together with the triangle ID in the pixel’s coordinate of

the ID buffer. If not all four pixel corners are covered by the triangle, we need to

clip the triangle’s edges against the pixel border planes. After clipping, we gather

the minimum and maximum depth values from the edge’s endpoints in addition to

computing that information from the pixel corner points that are covered by the

triangle.

Now, for the second render pass, we activate the conservative rasterization feature

in the Vulkan API. Again, a geometry shader provides the the triangle normal and

vertices to the fragment program with one addition - the screen space in-circle radius.
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In the fragment shader, the minimum and maximum depth are computed like in

the previous pass. The difference of the computed depth values and the sampled

values is used to compare to the ε that is also computed with the help of the normals.

If a triangle then conforms to our heuristics, we mark it as visible for the subsequent

shading stage to consider.

6.3 Results

To evaluate our visibility sampling approach, we not only conduct timed test runs to

gather performance metrics, but also test the impact of the individual heuristics to

assess their effectiveness.

6.3.1 Test configuration

Testing of our algorithm was mainly done with the Viking Village scene, freely

available from the Unity3D engine [82]. This is not only a popular scene for testing

VR systems, but also a very demanding one. It features models of skulls that are

used for decoration along the pathways of the village and on the walls of several

houses. The geometric detail of this model is very high with every root of a tooth

modeled with great care. Having models with such a high degree of detail in a

scene is usually not wanted for simple decorative items. However, since dealing

with inappropriately modeled items is a real-world scenario, and the problem of

geometric aliasing becomes clearly visible with them, the skulls serve the purpose of

demonstrating our technique very well. In Figure 6.1, the red spots show the high

triangle density in spots where the skulls are located. In figures 6.2 and 6.7, we

render one single skull with debug visualizations to have a closer look at how our

sampling method deals with the geometry.

Apart from visual inspection, we also ran synthetic tests with a prerecorded

walk-through in Viking Village to test a variety of settings and their effect on our

method. Further test scenes are the Robot Lab (also a Unity3D scene [81]), Sponza

from Crytek [13], and a scene containing a grid of cows (using Spot [12]).

The output quantities we measure are frame times, coverage and overestimation.

Coverage and overestimation are comparisons to the output of the ground truth

method. The tests were carried out on a Desktop PC running Windows 10 on an

Intel Core i7-7700, 32 GB RAM and an NVIDIA Geforce 1080 Ti.
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(a) Robot Lab (b) Viking Village

(c) Sponza (d) Grid of Cows

Figure 6.8: Test scenes used for evaluation.

6.3.2 Dense visibility sampling as ground truth

In order to compare the effectiveness of our method, we need to establish a ground

truth. To determine which triangles are truly visible from a certain view point, we

thoroughly sample the scene within a two dimensional grid of views, or view cell.

This implementation applies the standard sampling technique with a few mod-

ifications to prepare for sampling at offsets from the original view position. The

sampling at the pixel center stays the same. The offsets are 2D coordinates altered

by a fraction of pixel width according to the configured grid size. In addition to the

offsets, the original position is also added to the list.

When recording the Vulkan drawing commands, we do this in a secondary

command buffer that will be resubmitted to the Vulkan execution queues for every

location of the grid, changing the view position in-between.

The dense sampling is computationally expensive, but a sufficiently thorough

measure to use as a ground truth is necessary. We have tested configurations up to

512 by 512 sampling points and decided, that for our purposes, we use a 64 by 64 plus

one (for the original view) sized grid, to be sufficiently accurate as it gathers 99.5%

of the triangles detected by the maximum grid size that was practically possible.

Larger grids than 512 by 512 would require more time and memory than justified by
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the diminishing returns as can be seen in Figure 6.9 With a rendering resolution of

1920 x 1080, the processing times per frame for the 64 by 64 grid are in the order of

seconds. One frame at 512 by 512 takes several hours.
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Figure 6.9: Pixel grid effectiveness: Increasing the amount of super-sampling per
pixel yields diminishing returns. With a detection rate of 99.5 percent (relative to
the largest configuration tested) we settled for a grid size of 64x64 samples per pixel
to serve as the ground truth we compare to.

6.3.3 Sampling Resolution

Due to the nature of conservative rasterization, generating a fragment that we can

process as soon as a triangle touches the area of a pixel, we expect our approach

to work well already at resolutions lower than the one used for final display. If this

assumption holds, we should gain an advantage in performance.

We run tests at resolutions 25%, 50%, 75% and 100% of the output resolution and

show run-time results in Figure 6.10 and Table 6.1 for Viking Village. In Figure 6.11,

we see the effect of the lower resolutions on coverage and overestimation. Already at

quarter resolution, we achieve an increase in triangle detection rate of about 10%

compared to standard sampling.

6.3.4 Depth Delta Variations

In Figure 6.12, we show the results for a series of configurations for the static and

dynamic depth ∆ settings. We cover a range of sensible values, which we found from
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Figure 6.10: Frame times of the conservative visibility in various resolutions compared
to standard sampling. Again, cons is our method using conservative visibility, std is
standard sampling. 0.5x etc indicates the proportional resolution (e.g., 0.5 · 1920×
1080 = 960× 540)

Configuration Visibility Shading Display Frame Time FPS Rel %

cons 0.25x 2.503 1.011 0.104 3.618 276.396 0.450
cons 0.5x 2.597 1.013 0.101 3.710 269.511 0.439
cons 0.75x 3.005 1.227 0.102 4.333 230.761 0.376
cons 1.0x 3.401 1.279 0.103 4.783 209.064 0.341
std 1.0x 0.688 0.849 0.091 1.629 613.946 1.000

Table 6.1: Resolution timing results Viking Village of our decoupled shading
rendering prototype in milliseconds. The conservative visibility method (cons) has
been configured with several resolutions, lower than the resolution of the output
surface. Static and dynamic ε values have been set to 2.0. The standard sampling
method (std) is only run in full resolution.
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Figure 6.11: Results for coverage and overestimation rate compared to ground truth
in the Viking Village scene when running our visibility detection method at various
resolution settings (factors of the full output resolution)

manual experiments to be quite suitable, as well as some exaggerated settings to test

out limits.

The gain in coverage shows diminishing returns upon increasing the two ∆ settings,

whereas overestimation increases steadily. The effect of the static ∆ is, of course,

solely dependent on the scene’s geometry.

6.3.5 View Cell Sampling

A view cell in the scope of computer graphics describes the union of all view points

within a region [7]. To see how our approach behaves when combined with other

PVS algorithms which might use multiple view points, we constructed a test case

where we sample visibility from different view points. The view points are arranged

in a grid as shown in Figure 6.13. To achieve this, we simply add an offset to the

view matrix before running the visibility pipeline and repeat this procedure for all

view offsets. Although the area of the original view point is already covered by the

grid (Figure 6.13 (a), we also test the original position to make sure we do not miss

any triangles in the slight variation in sample points.
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Figure 6.12: Showing the effect of various static and dynamic depth ∆ settings on
coverage and overestimation rate compared to ground truth in the Viking Village
scene.

In Figure 6.14, we plot the tested view cell configurations and their effect on

coverage and overestimation. To achieve a coverage of 95%, it is sufficient to increase

the view cell to a two by two grid. These tests were run at full resolution (1920 x

1080 pixels). This should still be feasible in terms of real-time performance, even

though the frame times would quadruple. The larger the view cell becomes, the more

overestimation of visible triangles occurs. Since our approach tends to generally

overestimate, this amount increases proportionally to the area covered. By increasing

the view cell, we give the visibility sampling stage more ground to generate false

positives.
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(a) View cell size 2x2 pixels (b) View cell size 4x4 pixels (c) View cell size 8x8 pixels

(d) View cell size 8x8 pixels, sampling grid
size 2x2

(e) View cell size 8x8 pixels, sampling grid
size 4x4

Figure 6.13: View cell configurations: By adding offsets to the current view
position we cover a view cell area from two by two up to 32 by 32 pixels in steps of
powers of two (configurations up to eight by eight shown in (a), (b) and (c)). We run
these configurations for our method and the ground truth to test if we can improve
coverage or minimize overestimation. We also investigated the impact of skipping
sample positions within the view cell (shown in (d) and (e))
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Figure 6.14: View Cell Configurations: The scatter plot shows overestimation
versus coverage results of various view cell configurations measured in Viking Village.
The data point labels indicate the view cell size in the first number and the amount
of skipped view points in the second number. 328, for example, indicates a 32 x 32
pixels wide view cell where only every eights view point is sampled—resulting in a 4
x 4 grid.
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6.4 Summary

We have presented a novel method of sampling the visibility of triangles in 3D scenes.

Our approach considers geometry that would normally be missed via standard

sampling. The additionally detected primitives improve visual fidelity especially in

the setting of decoupled shading. In this scenario, these tiny missing triangles can

already cause disocclusion artifacts when the display view position is only slightly

different to the view point when shading of the last full frame took place.

We conducted a wide variety of tests to prove the capabilities of our approach.

Results have shown that the method is suitable for real-time rendering and already

achieves good results at lower resolutions.
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To conclude this thesis we summarize the work and its achievements. Furthermore,

we attempt to formulate take-away messages and list aspects and issues that were

left open and lend themselves as starting point for future work.

In this thesis we present novel approaches to geometry processing problems with

a focus on real-time graphics applications leveraging latest advances in software

scheduling frameworks, compute and graphics API. Under this common theme

of parallel geometry processing we offer a new view on procedural modeling by

introducing operator graphs, we propose methods of representing and rasterizing

vector graphics and improve visibility sampling for decoupled rendering scenarios.

The operator graph concisely describes the generation process for any given

input object and is applicable for a variety of generation methods. Given such a

graph we can reason about how to efficiently execute the mass model generation code

for the specific input on the GPU. By partitioning the operator graph we generate

compilable code that executes as procedures in a scheduling system. Occupancy

of the streaming multiprocessors depends on various factors like how well a given

97
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schedule fits the type of GPU used, the thread divergence caused and the memory

access patterns that occur.

As the number of possible partitions of the operator graph depends on the length

of the input description, an exhaustive search is only feasible for small graphs.

Therefore we propose several heuristics to search the space of solutions to find a

schedule that generates the output geometry within the shortest time.

Before describing three search heuristics that accommodate different aspects of

execution properties intrinsic to the nature of GPU hardware, we define the concepts

of static and dynamic scheduling. The former fuses nodes of the operator graph

to execution groups at compile time, while the latter involves run-time scheduling

decisions. Static partitioning prolongs the time a single thread has to work on a

subroutine. In contrast, a dynamic scheduling decision involves slow communication

over global memory, but has the ability to initiate the execution of several work

items at once, increasing the ability for parallel execution.

Based on the two fundamental types of scheduling decisions we use sequence

fusion, divergence avoidance and execution group size to prune the space of partitions

of a graph. The first heuristic applies static scheduling to nodes of the graph that do

not have multiple output edges. As no parallelism can be gained, we spare ourselves

the scheduling overhead with this measure. With the second heuristic, we try to

anticipate the unpleasant condition of thread divergence, introduced by conditional

execution paths. Therefore, we avoid having variable sized strands in the subsequent

path of derivation by forcing dynamic scheduling at occurrences of this kind of nodes.

Lastly, the third heuristic enforces a minimum execution group size to avoid multiple

dynamic scheduling decisions in sequence after each node in the graph. This balances

the time taken between scheduling, operator interpretation and geometry generation.

CPatches are a new way of representing and rendering two dimensional vector

graphics. While rasterization engines in current graphics hardware are optimized to

the large scale processing of triangles, this novel geometric primitive enables parallel

processing in a similar way by our hierarchical rasterization approach.

Common vector graphics formats like PostScript or SVG describe drawings by

a list of paths describing contours to be filled. The paths may be represented by

lines, Bézier curves of second or third degree or elliptical arcs. We convert these

input descriptions to a set of patches consisting of an implicit curve representation.

A patch signifies a (sub-)region of the drawing bounded by curves.

A crucial property of CPatches is the strict avoidance of self-intersection of the
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curves with the area of the patch. This key requirement enables the decision of

whether a given point resides inside or outside of the patch’s area. This is achieved

by evaluating the implicit form of all involved curves for a given coordinate, which

either results in a negative or positive value, depending on which side of the curve the

point. For points where all tested boundaries provide the same solution, a decision

can be made to either fill a pixel at that coordinate or discard it.

We describe an implementation of a system that can process input in the form

of SVG and generate CPatches from it. In a first step, we construct a graph

representation from the input where start points, end points and intersections of the

curves are embodied by nodes and the actual curves as edges.

The next steps in our preprocessing pipeline involve determining which side of

each participating curve is to be filled by ray shooting (winding order test) and

finding closed loops in the graph to remove them in an ear clipping fashion to form

new sub-graphs. The sub-graphs are checked for intersection of implicit extensions

of the bounding curves with the area of the patch and its bounding box. Several

heuristics are needed to handle critical points, like implicit extensions reentering the

bounding box of the patch or cases where the ear clipping runs into a dead end.

With the CPatch representation allowing for definite determination of inclusion

or exclusion of points to be filled, we propose a hierarchical rasterization scheme and

provide an efficient implementation based on the the GPU scheduling framework

Whippletree.

We start at the coarsest level of a patch and test points of interest like corners

of the patch’s bounding box and extreme points of the involved curves against the

interpolated values stemming from the implicit representation. The result of that

test enables the decision of discarding the patch (result for all points is outside),

further subdivision (some tests result in inside, some in outside), complete fill (all

points report inside), or fine rasterization, if a certain level of subdivision has been

reached. The decisions that require further processing will generate new work item

for the scheduling system. For efficient blending, the processing of all final tiles is

deferred to a second pass where the fine rasterizer performs the actual shading.

Sub-pixel visibility sampling is a method we proposed to mitigate visual ar-

tifacts we encountered in the context of decoupled rendering. When dividing a

rendering pipeline into two separate parts for shading and display, where the shading

happens in object space and the display stage is dependent on the scene’s geometry,

the visible primitives to be shaded must be determined beforehand (in contrast to
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image-based rendering solutions where whole frames are provided to the display

stage to warp to the current view point).

Not only missing shading information will cause disocclusion artifacts, but also

triangles that were missed when doing the visibility sampling due to them falling

through the sampling grid.

Our method consists of at least two render passes, where we establish a baseline

in the first pass with standard sampling. The triangles are processed by a rendering

pipeline that is set up to write the triangle’s ID (a running index assigned when the

meshes are loaded) to a texture at the coordinates where that triangle survives the

depth test. In addition to that, the minimum and maximum depth of the primitive

within the pixel’s boundaries are computed and stored.

After the first pass, the triangles that also would have been detected by a standard

sampling are already in the visible set. In the second pass, we enrich this set by

running a rendering pipeline set up with conservative rasterization. This causes all

pixel locations that are touched by a triangle to invoke a fragment shader in which

we apply heuristics to decide whether to mark the triangle visible or not.

The proposed heuristics take geometric properties of the transformed triangles

into account. We compare the minimum and maximum depth, the in-circle radius

and the relative angle between the triangle in consideration and the sampled triangle

from the first pass.

7.1 Findings and Gained Knowledge

The solutions investigated in this thesis follow the general idea that the input data

set is transformed into an intermediary representation, which can be computed either

offline or on-the-fly, but its memory footprint is small enough so it conveniently

fits in GPU memory. This allows the actual geometry processing to operate on

the intermediary representation in a massively parallel manner. The output of

the geometry processing are trivial primitives, which can be fed into a standard

rasterization engine. The core concept of this thesis is shaping the input data

of a given problem to an intermediate form that is suitable for consumption by

massively parallel processors to improve the efficiency in handling increasing amounts

of geometry data used in state of the art computer graphics.

In Table 7.1, we display the case studies that have been presented to underline

the effectiveness of our approach and how this core concept, the mapping of input to
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an intermediary representation suitable for massively parallel real-time processing, is

applied to them.

The generation of models with shape grammars is optimized by transforming

the input description to the operator graph representation which can be analyzed to

produce the resulting triangles as fast as possible.

Vector graphics are transformed to CPatches to remove ambiguities in the decision

of whether an area of the illustration should be filled with color or not. Only by

removing the ambiguities, which are caused by self intersection of the bounding

curves, our hierarchical rasterizer can produce correct renderings quickly.

By identifying poorly conditioned triangles in 3D models with the help of con-

servative rasterization and filtering them according to geometric properties such as

depth, size and relative position, we can sample triangles that would stay undetected

otherwise and enrich a potentially visible set to prevent disocclusion artifacts in

certain situations.

Input data set Intermediary
representation

Geometric pro-
cessing

Rasterization
data set

Shape grammar Operator graph
partitioning

Operator graph
scheduling

Temporary trian-
gle set

SVG CPatch Hierarchical tiling Simple tiles
Huge set of poorly
conditioned trian-
gles

G-Buffer
(depth+id)

Conservative ras-
terization + depth
heuristic

Potentially visible
set

Table 7.1: This matrix shows the mapping from problem (input data) to solution
(rasterizable output) via an intermediate representation that is suitable for on-the-fly
generation and rendering.

We show the effectiveness of our scheduling approach and argue other problems

in the domain of geometry, are eligible for redesigning them with our massively

parallel execution. We also document the pitfalls that may be encountered when

mapping the described methods to the GPU. In this regard, it is not always a safe

bet to try to increase parallelism. When the input in mass model production already

provides enough work, gearing the derivation process towards a low frequency of

context switches yields better results.

While the operator graph provides a high level view of the generation process of

shape grammar derivation, it allows us to tailor the execution to both the GPU and

the requirements that come with the task at hand. If a bulk of input axioms already
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provides enough parallelism to fill the queues of the system, the execution paths can

be fused to prevent unnecessary scheduling decisions. The downside to this is the

long preprocessing time to generate and test the code for a specific case. So rather

than aiding in the modeling and expressiveness of shape grammars, our findings will

help in accelerating the generation process for production systems.

For our vector graphics rasterization efforts we show that a lot of unnecessary

computation can be saved by giving the input generation more thought. Once a good

subdivision into CPatches is found, the workload is perfectly tuned to be run on

GPU. We compare to the state of the art, which is, in the case of NVPR, even able

to benefit from hardware acceleration. Our approach outperforms other methods in

many cases in terms of performance and quality and still performs well, if that is

not the case. Furthermore, CPatches can be implemented in a slim way in terms of

memory consumption which is not only favorable for GPU per se, but would also be

very well suited for mobile devices with a limited amount of memory.

When implementing a decoupled rendering system, we found that sampling at

output resolution can be insufficient to detect all triangles that are truly visible.

While supersampling by simply increasing the resolution when constructing the

visible set can mitigate the problem, the workload quickly becomes infeasible to

handle. With the support for conservative rasterization in modern graphics hardware,

it becomes much more efficient to run the detection quickly at lower resolution and

filter out wrongly detected triangles afterwards.

7.2 Outlook

For geometry processing a lot of potential exists to improve processing efficiency and

quality of rendered output by opening up the programmability of the graphics pipeline

We also see a lot of opportunity for hardware implementation of new functional

blocks to accelerate geometry processing.

In future research, the quest to parallelize algorithms in geometry processing goes

on. Compression to stream-generated geometry from the GPU comes to mind. An

online PVS algorithm is yet to be created. As decoupled rendering systems will put

into practice forVR, these topics might gain attention from researchers as well as the

graphics industry.

With our work on operator graphs we have paved the way for future work not only

in procedural modeling, but also in code generation and execution optimization for

GPU. Since many computing problems can be represented by graphs, our work may
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help to spark the interest to adapt the operator graph paradigm to many other fields

of computing. To make the search for optimal schedules more feasible, improved

search heuristics will be needed to handle the long computation times it currently

takes to tackle larger problems.

The vector graphics rasterization can be improved by further optimizing the

rasterization pipeline. While an implementation in software helps in gaining insights

to its internals and where to find potential for performance improvements, hardware

support to rasterize curves is devisable. Also the patch generation lends itself to

further investigation, not only to determine what resembles a good patch, but also

to come up with further patching strategies to speed up the process. From an

engineering point of view, CPatches would benefit from implementations in drawing

libraries like Skia or Cairo. In addition, a new file format to store CPatches and

filter modules for web servers to convert vector graphics, commonly used on websites,

on the fly would allow thin clients to only do the rasterization.

Our novel visibility sampling approach will benefit from further research in

terms of improved heuristics to discard false positives. Another item on the list of

improvements is to leverage the capability of latest graphics hardware to run the

pipeline simultaneously for several view points. Since our method already achieves

good results at lowered resolutions, running the triangle detection in parallel for

multiple view offsets could be implemented efficiently with the help of these new

extensions.
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