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Abstract

The quantitative evaluation of myocardial perfusion using computed tomography

is a promising modality, since technical improvements, such as higher temporal

resolution and the wider detectors, have been introduced. However, the result of

the perfusion calculation depends on the quality of the data obtained from CT

images.

The aim of this work is to assess the quality of these CT images. For this pur-

pose, the image noise, the signal-to-noise ratio and the contrast-to-noise ratio of

14 patients at five different locations of the myocardium were determined. For

the subjective evaluation of image quality, four radiologists were questioned in

regard to image contrast, image noise, artifacts and reason for the artifacts. The

perfusion was calculated using the Upslope and the Fermi method. In the Ups-

lope method, the raw data were fitted by model curves, which are further used

for perfusion calculation. To assess the quality of the model curves fitting to the

raw data, the difference between myocardial and ventricular baseline, the signal-

to-noise ratio and contrast-to-noise ratio of the model curves are determined.

It can be shown that in both, the Upslope and the Fermi method, outliers were

found in the perfusion results. One reason for these outliers was the high im-

age noise, which was mainly caused by streak-artifacts from the vertebral body.

Another reason was the wrong timing between contrast agent start and scan

start, which led to differences between the myocardial and ventricular baseline.

Therefore, to improve the results of the perfusion calculation, artifacts should be

avoided, and the timing between the contrast agent start and scan start should

be optimized.

Key words: Myocardial perfusion, image quality, signal-to-noise ratio, contrast-

to-noise ratio, artifacts



Zusammenfassung

Die quantitative Bestimmung der Myokardperfusion mittels Computertomo-

graphie ist eine vielversprechende Modalität, seitdem technische Verbesserungen

wie eine höhere zeitliche Auflösung und breitere Detektoren eingeführt wurden.

Das Ergebnis der Perfusionsberechnung hängt allerdings von der Qualität der

Daten ab, die aus den CT-Bildern gewonnen werden.

Ziel dieser Arbeit ist es, die Qualität dieser CT-Bilder zu beurteilen. Dazu wur-

de das Bildrauschen, das Signal-Rausch-Verhältnis und das Kontrast-Rausch

Verhältnis von 14 Patienten an fünf verschiedenen Stellen des Myokards be-

stimmt. Zur subjektiven Bewertung der Bildqualität wurden vier Radiologen zu

Bildkontrast, Bildrauschen, Artefakten und Gründen für die Artefakte befragt.

Die Berechnung der Perfusion erfolgte mittels der Upslope und der Fermi Me-

thode. Bei der Upslope Methode werden die Rohdaten durch Modellkurven an-

gepasst, die in weiterer Folge zur Perfusionsberechnung verwendet werden. Um

die Qualität der Anpassung der Modellkurven an die Rohdaten zu ermitteln,

wurden der mittlere quadratische Fehler, der Unterschied zwischen myokardia-

ler und ventrikulärer Basislinie sowie Signal-Rausch-Verhältnis und Kontrast-

Rausch-Verhältnis der Modellkurven bestimmt.

Es konnte gezeigt werden, dass sowohl in der Upslope als auch in der Fermi

Methode Ausreißer in den Perfusionsergebnissen zu finden waren. Ein Grund

dafür lag im erhöhten Bildrauschen, das vorwiegend durch Streifenartefakte aus

dem Wirbelörper verursacht wurde. Ein weiterer Grund lag am falschen Timing

zwischen Kontrastmittelstart und Scanstart, der zu Unterschieden zwischen der

myokardialen und ventrikulären Basislinie führte. Um die Ergebnisse der Perfu-

sionsberechnung zu verbessern, sollten deshalb Artefakte vermieden werden und

das Timing zwischen Kontrastmittelstart und Scanstart optimiert werden.



Schlüsselwörter: Myokardperfusion, Bildqualität, Signal-Rausch-Verhältnis,

Kontrast-Rausch-Verhältnis, Artefakte
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1 Introduction

Cardiovascular disease (CVD) claims more than 4 million lives in 2016, account-

ing for 45 % of all deaths each year in Europe. The most common cause of CVD

is the coronary heart disease (CHD) with 19 % of all deaths, accounting for

1.8 million deaths [1].

Atherosclerotic disease leading to obstructive coronary artery disease takes

typically decades to develop. These patients are often asymptomatic for years.

But, when symptoms of angina or angina equivalent manifest, patients are

referred for myocardial perfusion imaging (MPI). That is not only for risk

stratification but also to determine if they benefit from revascularisation [2].

Guidelines from national organizations, including the American Heart Associ-

ation (AHA) and the American College of Cardiology (ACC), provide guidance

on the choice and use of these techniques in the area of echocardiography, cardiac

radionuclide imaging, cardiac computed tomography (CT), and cardiac magnetic

resonance imaging (MRI) [3]. CT is the only of the aforementioned imaging

technologies that is able to provide the anatomic assessment of the coronary

arteries and functional evaluation of the downstream myocardial territory in a

single mode.

Although the concept of CT examination for myocardial perfusion defect was

first investigated in 1978 [4], its reliability has only been increased with recent

advancements in CT technologies [5]. In 2005 Kurata et al. [6] explored the

first attempt to use multi-detector CT (MDCT) to characterize myocardial

perfusion defects in human under stress, using adenosine stress on a 16-detector

1



MDCT scanner. The study showed a good agreement between myocardial CT

perfusion (CTP) and thallium-201 myocardial perfusion scintigraphy. However,

CT perfusion at that time had limitations in the temporal resolution and was

not sufficient to provide diagnostic image quality at higher heart rates, which

occur during adenosine stress acquisition [6]. Newer generations of scanners

show improved results in the evaluation of the feasibility of stress myocardial

CTP in both animal models and humans [5][7].

The introduction of 64-detector CT improves the performance of adenosine

CT perfusion imaging. Hence, it led to a notable reduction of the scan time,

motion artefacts, use of contrast agent, and radiation dose exposure. This

yields to a higher spatial and temporal resolution at the same time and widened

the application of CT from anatomical detection of CAD to physiological

assessment of myocardial ischemia [8]. Several clinical studies have established

the value of myocardial CT perfusion (CTP) compared to reference standards as

SPECT, invasive coronary angiography (ICA) (with or without fractional flow

reserve (FFR)) and stress perfusion MRI [9].

Nonetheless, there are still some limitations of dynamic CT myocardial perfu-

sion imaging. Due to the dynamic scans, a long breath-hold time for whole-heart

scanning (> 30 seconds) is necessary, which can lead to patient movement and

therefore to motion-artifacts. Further, spatial misalignments resulting from table

movements are possible. These limitations may influence the image quality of

the CT scans and therefore the results of the perfusion calculation. Besides, the

higher radiation dose in the dynamic scanning, compared to static scanning, has

to be kept in mind (see Section 2.4.5).
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1.1 Motivation and Goal

The goal of this master thesis is to find and determine suitable quality parameters

for both, the image quality and the evaluation of myocardial perfusion imaging

using computed tomography. Further it would be interesting, if the image quality

of the myocardium is depended on the myocardial location. The myocardial

perfusion was calculated using two different methods, in particular the Upslope

[10] and the Fermi [11] method. The upslope method, which requires curve

fitting algorithms, was used as a quality criterion. This algorithm was applied

to five different regions of interest (ROI) of the myocardium to compare these

aforementioned quality parameters.

Toifl, 2014 [12] has done the groundwork in his master thesis in terms of signal

processing for perfusion calculation. Therefore, he provided a Matlab-workflow

for myocardial perfusion calculation. This workflow was used for the perfusion

calculation here. Additionally, image quality parameter calculation methods

were integrated.

Many of the recent researchers use post-processing methods like temporal or

spatial filtering, de-noising, segmentation, registration and so on, to achieve bet-

ter image quality results and therefore better perfusion quantification results.

But, the focus on this work lies on image quality assessment of axial recon-

structed CT scans without any of these post-processing methods. Hence, it is

possible to detect image quality degrading factors like artifacts.
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1.2 Thesis Structure

This thesis is structured as follows: Firstly, the section Related Research gives

an overview of myocardial perfusion imaging with computed tomography and

demonstrates quantification methods for the perfusion calculation. It also gives

an overview of image quality in CT and describes image quality assessment tools

for CT. Next, in the Methods section, the methods for the qualitative and quanti-

tative assessment of image quality using CT are described. Besides, curve fitting

methods and their quality criterion’s are presented in this section. After that,

the Result section shows the results of the quality parameter for a ROI compar-

ison prepared in graphics and text. Afterwards, these results are discussed in

the Discussion section. Finally, the results are summarized in the Conclusion

section.
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2 Related Research

The first two sections of this chapter give an overview about the medical back-

ground for the evaluation of myocardial perfusion using CT and introduce to the

the static and dynamic perfusion imaging protocols. The focus of section 2.3 lies

on the explanation of nondeconvolution-based and deconvolution-based methods:

Both methods are used for the quantification of CT myocardial perfusion. The

last two sections deal with the topic image quality. On the one hand the techni-

cal aspects that have an impact on image quality and on the other hand image

quality assessment tools.

2.1 Myocardial Perfusion Imaging with Com-

puted Tomography

Since the introduction of MDCT more than 15 years ago, coronary computed

tomography angiography (CTA) has become the mainly used noninvasive imag-

ing modality for the detection and exclusion of significant coronary stenosis [8],

[9]. Because of its high sensitivity and negative predictive value (NPV) (≥ 95 %)

for the detection of significant coronary stenosis, CTA is currently recommended

as the first diagnostic test on symptomatic patients with low-to-intermediate

probability of coronary artery disease (CAD) [8][9]. Furthermore, CTA has

also a prognostic value providing information on the total plaque burden, with

a better outcome when there is no evidence of atherosclerosis and a worse

prognosis depending on the extent and severity of CAD [8].

The actual limit of CTA is the evaluation of the hemodynamic significance of

CAD due to the lack of functional information for a given stenosis [9] related
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to its moderate positive predictive value (about 50 %) in detecting inducible

myocardial ischemia [8]. It is important to improve the physiological evaluation,

because it influences the outcome of CAD more than its anatomical detection

[8]. In fact, studies have demonstrated that a strategy guided by the invasive

hemodynamic parameter fractional flow reserve (FFR) may be superior to a

angiography-guided strategy alone. Thus, revascularization should be guided

by functional assessment of myocardial ischemia. In absence of myocardial

ischemia, revascularization offers no symptomatic or prognostic benefit for

patients, while it is effective in patients with moderate to severe ischemia (total

myocardial ischemia >10 %) [8]. Therefore, functional tests such as single

photon emission computed tomography (SPECT), stress echocardiography or

stress perfusion MRI are necessary to guide coronary revascularization [8][9].

Stress myocardial CTP provides both anatomic and physiological information [5].

The classic ischemic cascade is useful to understand the relationships of patho-

physiology of myocardial ischemia leading to infarction. Although it was devel-

oped on a temporal scale of minutes after occlusion of a coronary artery, it helps

to understand the relationship between the severity of ischemia and its resulting

abnormalities [13]. At first, perfusion abnormalities occur, before metabolic al-

terations, wall motion abnormalities, ECG changes, and symptoms [8]. Because

of coronary autoregulation myocardial perfusion at rest is normal until the lu-

minal diameter narrowing of a coronary artery exceeds 85-90 %. In presence of

coronary stenosis greater than 45 % maximal coronary hyperemia, which is in-

duced by coronary arteriolar vasodilator, leads to a progressive decrease in the

hyperemic response [14]. Under this condition, exercise or pharmalogical vasodi-

lation of subepicardial resistance vessels results in a reduction in distal coronary

pressure that redistributes flow away from the subendocardium that leads to

a ”transmural steal” phenomenon. The pharmacological stress agents adenosine

and dipyridamole are used to induce the myocardial hyperemia. Two intravenous
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(IV) lines are crucial for the injection of contrast media and of the vasodilator

agent, respectively [8].

The application of adenosine requires an infusion pump with an infusion rate of

140 µg/kg/min for 3 to 5 minutes. The most common side effects are flushing,

chest pain, dyspnea, or nausea. Because of the short half-life of 30 s most side

effects resolve in a few seconds after discontinuation of the adenosine infusion [8].

Dipyridamole can be applied manually at a slow rate in a dose of 0.56 mg/kg to

0.84 mg/kg over a 4 to 6- minute period. Caused by its longer half-life of approx-

imately 30 min, in some patients the administration of aminophylline for reversal

of persistent symptoms may be required [15][9].

Recently, regadenoson has been introduced as a pharmacological stress vasodila-

tor, which has a safer side effect profile in comparison to adenosine and dipyri-

damole, especially for patients with asthma or severe chronic obstructive pul-

monary disease. However, it is limited by its cost and it is not widely available

[8].

2.2 CT Perfusion Imaging Protocols

The protocol of CTP imaging is similar to other noninvasive imaging techniques

such as nuclear imaging and stress cardiac MRI. It includes the evaluation of

myocardial perfusion during both rest (baseline) and stress (hyperemia) condi-

tions in order to differentiate reversible from fixed myocardial perfusion defects

[8]. After intravenous administration of iodinated contrast agent (typically via

antecubital vein), CTP imaging analysis is performed by imaging the left ventric-

ular (LV) myocardium during the first pass of the contrast bolus as a surrogate

marker of myocardial blood flow (MBF), similar to stress perfusion MRI [9].

Because iodinated contrast agents attenuates X-ray directly proportionally to

iodine content in tissue, myocardial perfusion defects can be directly visualized

as hypoattenuated or nonenhancing myocardial regions. For the reason that
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a rapid wash-out of contrast agent due to diffusion to the extravascular space

after about 1 min is expected, imaging during the early portion of first-pass

circulation is critical. To optimize the strength of enhancement in the first-pass

of the arterial phase, the contrast injection needs a high flow rate of at least

5 ml/s [8].

A combined coronary CTA/CTP imaging protocol could be performed. The

two protocols mostly used are named according to sequence of scan acquisition:

rest/stress or stress/rest. These two sequences should be separated by an interval

of 10-15 minutes to provide an optimal contrast wash-out.

The rest/stress protocol is the preferred approach for patients with low-to-

intermediate probability, because it uses the ability of coronary CTA to rule

out obstructive CAD. Stress CTP imaging is performed only in the presence of

anatomically defined CAD of intermediate or obstructive coronary stenosis to

assess the physiological significance of CAD. Further radiation and iodinated

contrast exposure can be avoided in absence of coronary artery stenosis.

However, this protocol is limited by the risk of cross-contamination of contrast

in the stress phase and the use of beta-blockers before the rest acquisition may

confound perfusion defects and leads to underestimation of myocardial ischemia.

For patients with high pre-test probability of CAD or patients with known

CAD, the stress/rest protocol could be more suitable. The advantage is

the reduced risk of contrast media contamination from the rest phase that

may confound perfusion defects, which may decrease sensitivity for infarction.

Moreover, beta-blocker and nitrates may be administrated after the stress and

before the rest protocol to avoid interfering with the stress perfusion evaluation

[9]. Certainly, the best protocol should be tailored on the patients risk profile

[8].

There are two approaches for the evaluation of CT myocardial perfusion imaging:

Static CT myocardial perfusion which can further be divided into single energy

and dual energy techniques, and dynamic CT myocardial perfusion [16] [17].
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2.2.1 Static CT Myocardial Perfusion Imaging

Static CTP imaging is based on a static evaluation of contrast medium distribu-

tion in the myocardium during early attenuation [17]. It allows visual qualitative

assessment of a single snapshot, which encompasses the entire left ventricle, of

myocardial iodine contrast attenuation. The acquisition is performed during the

early arterial phase of first-pass contrast enhancement, at the moment of peak

contrast concentration in the coronary arteries, to detect early contrast uptake

differences. Bischoff, Bamberg, Marcus, et al. [18] found that the optimal time

frame for stress CT-MPI is between 8 and 16 s after contrast enhancement in

the ascending aorta exceeds 100 HU. These acquisition parameters can also be

used for the evaluation of coronary artery stenosis and myocardial blood supply.

So it is possible to perform static single-shot myocardial CT-MPI using any CT

scanner capable of acquiring diagnostic-quality coronary CT angiography (CTA)

[16].

To evaluate the static myocardial perfusion at rest, generally, coronary CTA

image sets, already obtained for the morphologic assessment of the coronary

arteries, are used and no additional radiation or acquisition time is necessary.

For the assessment of myocardial perfusion at stress, an additional acquisition

during pharmacologic stress can be obtained [16].

The qualitative assessment is performed by visual evaluation of left ventricular

myocardial contrast enhancement, which is sometimes complemented by atten-

uation measurements of the ischemic and nonischemic myocardium. It is also

possible to make a semi-quantitative assessment of myocardial perfusion by us-

ing the transmural perfusion ratio, which is the ratio between subendocardial and

subepicardial ratio [16].
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Limitations of Static Myocardial Perfusion Imaging

There are some limitations of static myocardial perfusion imaging. The timing of

image acquisition significantly influences diagnostic accuracy because the peak

of contrast attenuation may be missed [18]. Additionally, artifacts like beam

hardening, motion artefacts, and partial scan artifacts may occur when using

the static technique.

2.2.2 Dynamic CT Myocardial Perfusion Imaging

To determine the perfusion related parameters a 4D cardiac image data set is re-

quired to create time-attenuation curves (TACs) for the region of interest (ROI)

(see figure 2.1). Therefore, a focus-centered 2D detector and an X-ray source are

moving on a circular path around the anatomy acquiring continuously projection

data to obtain the images. The ECG is recorded in parallel to the circular scan

[19].

Dynamic CT-MPI uses serial acquisitions of the myocardium through the whole

cardiac cycle to track the kinetics of contrast media distribution during the ini-

tial pass, arterial phase and microcirculation. It takes up to 32 s after the ad-

ministration of contrast medium for differences between normal and abnormal

myocardium to show.
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Figure 2.1: Time-attenuation curve for PatientID 122 in Myocardium ROI 4.

For a dynamic CT perfusion imaging study, a greater volume coverage of the

left ventricle must be attained [17]. There are two major approaches available for

dynamic imaging. One approach uses a MDCT with 256 or 320 detectors and a

stationary table. It is necessary that the detector width covers the whole heart.

The other approach uses a second-generation DSCT and the scanner’s table shut-

tle mode, which enables whole-heart coverage (73 mm) by moving the table back

and forth between two scanning positions. Scanning during the systolic car-

diac phase provides some advantages like - sufficient coverage of the whole heart

- because the apicobasal length of the heart is shorter and myocardial wall is

thicker, length of the systolic phase is relatively constant. Furthermore, images

acquired in systole are less susceptible to beam-hardening artifacts, because of

the lower amount of contrast material in this phase [8]. The introduction of

third-generation DSCT enables a high temporal resolution dynamic myocardial

perfusion imaging with an extended coverage of 105 mm. A whole-heart-coverage

even in larger dilated hearts can be obtained [16].

There are some limitations of dynamic CT myocardial perfusion imaging like

the high radiation dose, the long breath-hold time for whole-heart scanning (>

30 s) and spatial misalignments resulting from table movements [16][8].
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2.3 Quantification of CT Myocardial Perfusion

Currently the primary mode for clinical assessment of myocardial perfusion is

the qualitative visual assessment. For an accurate assessment of CT myocardial

perfusion images, the images have to be acquired during or shortly after peak

myocardial contrast enhancement and during a quiescent period of the cardiac

cycle. The gray scale of the images has to be optimized for the visualization

of low-attenuation myocardial areas which signify perfusion defects. A careful

survey of the images should be performed to identify whether any relevant

artifacts are present.

Perfusion defects are visually evaluated using the American Heart Association

17-segment model and can be ”scored” as transmural (> 50 %) or non-transmural

(< 50 %), with reversibility graded on a 0 to 3 scale for none, minimal, partial,

or complete, respectively.

Additional approaches have been proposed with a 0 to 4 scale: 0 indicates

uniform CT attenuation, 1 indicates reduced attenuation of < 50 % of the

myocardial segment, 2 indicates reduced attenuation involving > 50 % of the

myocardium, 3 indicates reduced attenuation in 50 - 75 % of the myocardium,

and 4 indicates reduced attenuation in > 75 % of the myocardium [20].

For the quantification of the myocardial perfusion different methods are avail-

able. They can be grouped into nondeconvolution-based and deconvolution-based

methods. The theory of these perfusion calculation method is the indicator di-

lution method. The indicator in this instance is the iodinated contrast medium.

There have to be certain fundamental assumptions to be fulfilled which are: com-

plete mixing of the indicator; the volume of indicator injected is negligible; the

indicator does not perturb hemodynamic equilibrium; there is no extravascular

loss of indicator; the indicator is administrated as a bolus; the contrast density

12



can be accurately measured [21]. The following two sub-sections give a short

overview of the nondeconvolution-based and deconvolution-based methods.

2.3.1 Nondeconvolution-based Methods for Perfusion

Calculation

The upslope method, the maximum enhancement method and the full width

at half maximum method are three representatives for the nondeconvolution-

based method for perfusion calculation. These three methods will be described

at present.

Upslope Method

The upslope method is the most commonly used method for a semi-quantitative

analysis. This method assumes that there is no venous outflow from the tissue

volume under consideration during the time of observation. Hence, this requires

a faster contrast agent bolus injection rate in order to approximately fulfill this

condition [10]. The upslope method is also called maximum slope method, be-

cause the perfusion can be estimated by dividing the maximal slope of the tissue

time-concentration curve by the maximum value of the contrast agent concentra-

tion in the feeding artery (see figure 2.2) [10]. In the case of myocardial perfusion

computation, as shown in equation 2.1, the tissue time-concentration curve cor-

responds to the myocardial time-concentration curve cmyo. The contrast agent

concentration in the feeding artery equates to the contrast agent concentration

in the ventricle cventricle.

MBF = [
dcmyo(t)

dt
]max ·

1

[cventricle(t)]max
[ml/100g/min] (2.1)
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An advantage of the upslope method is the shorter overall acquisition time,

because only the upslope of the time-concentration curve is required [10], [17].

A disadvantage of the upslope methode is that it delivers accurate MBF values

only if the maximum gradient is reached earlier than the transit time of the

tissue [22]. However, if the maximum gradient is reached later, it leads to

MBF values that will increasingly be underestimated. The maximum tissue

gradient is reached simultaneously with the peak of the arterial input function

(AIF) or the ventricle time-attenuation curve, respectively. So the accuracy

directly depends on the ratio of the injection time and the tissue transit time

[22]. Hence, in high quality CT images this method gives comparable as good

results as deconvolution-based approaches. Contrary, like in terms of noise,

deconvolution-based methods provide superior results in poor quality CT images

[10].

Figure 2.2: Upslope model for myocardial perfusion calculation. Perfusion can be

estimated by dividing the maximal slope (orange line) of the myocardial atten-

uation curve (green) by the maximum value of the contrast agent concentration

in the left ventricular attenuation curve (blue) [12].
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Maximum enhancement (Mullani-Gould) Method

A similar approach to the upslope method is used by Rumberger [21] who calcu-

lates the myocardial perfusion with the modified formula 2.2 from Mullani and

Gould [23]:

MBF =
CPH
ALV

[ml/100g/min] (2.2)

CPH denotes the myocardial opacification peak and ALV is the area under the left

ventricular attenuation curve until this peak is reached. The disadvantage of this

method are the severe restrictions. An agreement with comparison techniques

was achievable only by using a large, relatively arbitrary empirical correction

factor [22].

Full Width/Half Maximum Method

The full width at half maximum method has also been mentioned by Rumberger

[21]. For this method the time points at which the myocardial curve reaches half

maximum value at either side of its peak have to be found. The empirical transit

time tet is the timespan between these two time points. Additionally the areas

under the myocardial and the ventricular curves, Amyo and Aventr, respectively,

have to be calculated. Then the perfusion is:

MBF =
F

V
=
Amyo · tet
Aventr

[ml/100g/min] (2.3)
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2.3.2 Deconvolution-based Methods for Perfusion Calcu-

lation

The principle of the deconvolution-based methods is that the system response

of contrast transport within a tissue is linear and stationary [24]. With this

assumptions the contrast concentration curve of the tissue y(t) can be expressed

as a convolution of the arterial input function u(t) and an impulse response

function h(t) shown in the following equation:

y(t) = u(t) ∗ h(t). (2.4)

The impulse response function h(t) is a probability density function and can be

obtained through a reverse process of deconvolution. The shape of this function

is fitted with a mathematical model, because deconvolution is sensitive to noise.

The Fermi function is the most commonly used function in this overall process

called model-constrained deconvolution [24]. This function was introduced by

Axel [25] and was chosen based on the perception that its shape resembles the

expected shape of an impulse response for an intra-vascular tracer. The mathe-

matical formulation is presented in [26]:

RF (t) =
A

e( t−µk ) + 1
(2.5)

where the parameter t represents time, and the parameters µ, k, and A, repre-

sents shape parameters which have no physiological interpretation. The parame-

ter µ defines the width of the initial plateau before the function decays at a rate

set by the parameter k. Only the amplitude of RF (t = 0) corresponds to the

blood flow according to the Central Volume Theorem. Figure 2.3 illustrates the

Central Volume Principle [26].
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Figure 2.3: Measured arterial input, impulse responses to arterial input and the

tissue curve as a sum of impulse responses. a) To illustrate the Central Volume

Principle the arterial input can be considered as a sequence of impulses (gray lines

with circles at top), whose amplitudes reproduce the measured arterial input

(red line). b) Each of the impulses in the arterial input generates an impulse

response in the tissue. These are all identical, however, each is scaled according

to the amplitude of the corresponding impulse in the arterial input. Each impulse

response is shifted so that its start coincides with the location of the arterial input

pulse. c) The sum of the contributions from each impulse response correspond to

the total tissue response. This sum is the numerical equivalent of the convolution

integral of the arterial input with the impulse response. For deconvolution one

tries to reverse the above process. The form of the impulse response can be

estimated from the signal curves in (a) and (b) [26].
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2.4 Image Quality in CT

Image quality in CT depends on 4 basic factors: image contrast, spatial resolu-

tion, image noise and artifacts [27]. One definition for image quality is that it is a

nonspecific and subjective measure of the readability of a visual image [28]. For a

better understanding of the term image quality, this section gives an overview of

the basic principles of CT and image reconstruction techniques at the beginning.

Next, the image parameters spatial resolution, contrast resolution, and tempo-

ral resolution are explained. Additionally, the most common types of artifacts

which can usually degrade the quality of CT images are discussed. At the end

of this section the fundamental dose parameter, dose affecting factors, and dose

reduction systems are described.

2.4.1 Basic Principle in Computed Tomography

The following subsection is mainly taken from [29]. The basic principle in com-

puted tomography consists of measuring the spatial distribution of a physical

quantity to be examined from different directions and to compute superposition-

free images from these data. The intensity I of X-rays attenuated by the object

and the primary intensity I0 has to be measured in CT to calculate the atten-

uation value along each ray from source to detector, called linear attenuation

coefficient µ(x,y). The physical quantity µ is not very descriptive and strongly

depends on the used spectral energy. To directly compare images obtained by

scanners with different voltages and filtration, the computed attenuation coef-

ficient is displayed as a so-called CT value relative to the attenuation of water

µwater.

CT values, often also referred to as CT numbers, are specified in Hounsfield units

(HU). For an arbitrary tissue T with attenuation coefficient µT the CT value is

defined as
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CT value = (µT − µwater)/µwater · 1000 [HU]. (2.6)

The CT value of water is 0 HU by definition, air corresponds to a CT value of

-1000 HU. These are the two fixed points for the CT value scale, because the CT

values of water and air are independent of the energy of the X-rays.

Figure 2.4 displays the CT values and the corresponding tissues. Lung tissue

and fat show negative CT values due to their lower density that result in lower

attenuation. Muscle, connective tissue and most soft tissue organs exhibit pos-

itive CT values. Bone and calcification have higher CT values of typically up

to 2000 HU, because of the higher effective atomic number of calcium and the

increased density. CT values of bone or contrast media are more strongly depen-

dent on x-ray energy than water, which leads to an increase of CT values with

reduced high voltage settings.

Figure 2.4: Hounsfield Scale. CT values display the attenuation coefficient of a

tissue relatively to the µ of water[29].

Although the Hounsfield scale has no upper limit, a range from -1024 HU to

+3071 HU is provided for medical scanners. As a result, 4906 (=212) different

grey levels are available. Human observers can distinguish at maximum only
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about 60 - 80 gray levels. For that reason, the complete grey scale is assigned to

the CT value interval of interest only. This is called windowing. Values above

the window are displayed as white, values below as black. The desired CT value

interval can be adjusted by choosing the right center an width of the window [29].

2.4.2 Image Reconstruction Techniques

Filtered back projection (FBP) has become the standard reconstruction method

for diagnostic CT because it is very fast though less than perfect. On the other

hand, iterative reconstruction (IR) CT algorithms have their renaissance due to

the advances in CT hardware and increases in computing power [30]. These two

reconstruction methods are described in more detail in the following subsection.

Filtered Back Projection

FBP is an analytical reconstruction algorithm which is based on the premise that

both the measurement process and the projection data are represented by contin-

uous functions. For a simplification of the data acquisition model, the x-ray beam

can be thought as collimated to a pencil shape and moved subsequently parallel

to a linear x-ray detector array. Next, the x-ray source is rotated by an angle α

and the process is repeated. The resulting intensity profiles are measured by the

detector and can be mathematically described as an integral function for a certain

angle α and a specific linear shift position of the x-ray tube. The reconstruction

process can be described as the solution of the resulting integral equations by

inversion (back projection)[29][30]. A so-called low-pass blur occurs because of

the different numbers of projections passing through the center and periphery of

an object, respectively. Therefore, the back projection that describes the propa-

gation of the measured projection data into the image domain is combined with

a filter component (eg, Ram-Lak filter).
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Further variations of the filter (kernel) can be chosen. They are contingent

upon a compromise between spatial resolution and image noise. With increasing

compensation of the low-pass blur, the ”sharpness” of the image but also the

image noise increases. A characteristic of FBP is that sharpness and image noise

are directly coupled: that means, the sharper the image, the higher the image

noise. The main advantages of FBP consists in its robustness and speed. A major

limiting feature is that it fails to account for image noise that results from Poisson

statistic variations of the photon number across the image plane. This means that

a reduction in radiation dose translates into an increase in image noise. Certain

minimal radiation dose requirements need to be fulfilled to generate a diagnostic

CT data set, because high image noise interferes with the delineation and low-

contrast detectability. Choosing ”smoother” kernels for image reconstruction to

lower image noise will result in impaired spatial resolution with the use of a

conventional FBP technique [30].

FBP has the ability to generate CT studies of adequate image quality in a

robust and fast manner [30]. But they can be affected by high image noise,

artifacts, or poor low-contrast detectability in specific clinical scenarios. Data

acquisition with reduced tube output or CT imaging of obese patients is often

compromised by high image noise; high density structures, such as calcifications

or stents result in blooming artifacts; metallic implants or bone structures might

lead to severe streak artifacts [30].

Iterative Reconstruction

IR methods have re-emerged in transmission x-ray computed tomography. The

concept of iterative reconstruction was already established in single photon

emission CT in the 1960s and also used in the first transmission CT efforts

in the early 1970s. In the first clinical CT products relatively small amounts

of measured data were generated per scan and reconstructed into crude 128 x
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128 image matrices. They were given up because of the higher computational

demands of IR compared to analytic methods when the amount of measured

data increased. Since large computational capacities in normal workstations

are availably nowadays and the ongoing efforts towards lower doses in CT

the situation has changed. The commonly used filtered back projection is an

analytical algorithm which is based on only a single reconstruction. Because

iterative algorithms use multiple repetitions in which the solution converges

towards a optimum solution, the computational demands are much higher.

Different concepts of IR methods exist. They can be distinguish between pure

iterative methods without any modeling, statistical methods with modeling

of the photon counting statistics, and model-based methods which go beyond

statistical modeling [31].

All IR methods have three major steps in common which are repeated iteratively.

Figure 2.5 shows the principle steps of the iterative image reconstruction. In a

first step, a forward projection of the volumetric object estimate creates artificial

raw data. In a second step, this raw data is compared to a real measured data

in order to compute a correction term which, in a last step, is back projected

onto the volumetric object estimate. The iteration process can be initiated

with an empty image estimate or using prior information like a standard FBP

reconstruction or a volume of a similar object. The better the prior images

match the final images, the faster the progress converges towards a stable

solution. The iterative process ends when either a fixed number of iterations is

reached, or the update for the current image estimate is considered small enough

or when a predefined quality criterion in the image estimate is fulfilled [31].

22



Figure 2.5: Principle steps of iterative image reconstruction. After getting mea-

sured projections (1) from the CT acquisition process, a first image (2) can be

estimated. Via forward projection a x-ray beam is simulated that acquires sim-

ulated projection data. These simulation projection data are then compared (3)

with the measured projection data. If there is a discrepancy, the first image esti-

mate is updated (4) depending on the characteristic of the underlying algorithm.

This adjustment of image and projection data iterates (5) until a predefined

condition is satisfied and the final image (6) is generated [30].

2.4.3 Image Parameters

The following section gives an overview of parameters that influence the image

quality like spatial and contrast resolution. Additionally, in the case of imaging

the heart, the understanding of the temporal resolution is also very important.

Spatial Resolution

Spatial resolution is the ability of an imaging system to distinguish two adjacent

objects in the two spatial dimensions of an image (length and width) from one

another. Spatial resolution measures the ability of a system to distinctly delineate
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two objects as they become smaller and closer together. The closer they are

together with the image still showing them as separate, the better the spatial

resolution [28] [32]. Spatial resolution depends on the following parameters that

can not be modified [33]:

• focal spot size

• detector width

• minimal slice thickness

• object to detector distance

• matrix size

And on parameters that can be modified in the reconstruction phase [33]:

• reconstruction thickness

• reconstruction increment

• field of view

• convolution kernels

The resolution properties of an imaging system are described by the mod-

ulation transfer function (MTF), which describes the percentage of an object

contrast that is recorded by the imaging system as a function of its size (spacial

frequency) [28].

Contrast Resolution

Contrast resolution of an imaging system determines the contrast detail that can

be visibly reproduced when there is a small difference in density relative to the

surrounding area, implying that more subtle objects can bee seen on the image.
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Contrast resolution is highly degraded by noise. To reliably identify a structure,

the signal to noise ratio (SNR) needs to be better than 5:1. The SNR is thus the

best descriptor of contrast resolution which is easily determined from measures

of regions of interest within the test object and surrounding noise [28][32].

Noise

Noise in CT is the uncertainty in the measurement of the attenuation of an x-ray

beam passing through the patient and should be so low as to not influence the

presentation of the resultant image. Noise depends on the number of x-ray pho-

tons falling on the detector referred to as quantum noise. Quantum noise is the

statistical fluctuation or standard deviation of CT numbers of a homogeneous

region of interest and is measured by calculating the standard deviation from

the mean HU over an area 10 % of the cross-sectional area of a test object. A

standard range for noise for spiral CT scanners is ± 4 HU.

The number of photons reaching the detectors is determined by the milliampere-

seconds (mAs) while their energy is determined by the kilo-voltage (kV). A de-

crease of the mAs and kV leads to increasing image noise but reduces the patients

dose [28].

When increasing the kV, the kinetic energy of the accelerated electrons

bombarding the anode target also increases. This results in more x-ray photons

being generated from the x-ray tube even though tube current remains constant.

Therefore, whenever kV is increased this should be compensated by a reduction

in mA. The basis in image quality optimization in CT is finding the acceptable

amount of noise generated without impairing diagnosis when dose reduction

measures are implemented, because a certain amount of noise is always present

in an image [28].
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Temporal Resolution

A sharp image of an organ in motion can only be obtained, if the acquisition time

or speed is less or equal to the speed of the organ. In CT scanners the temporal

resolution depends largely on the gantry rotation speed and the geometry of the

image reconstruction algorithm, which is dependent on the segments available

for the reconstruction of the image. To generate an image, a 180◦ acquisition

is required. This can be obtained from a single cardiac cycle, so-called single

segment reconstruction or from several consecutive cardiac cycles which is called

multisegmental reconstruction. The image quality is inversely proportional to

the speed of the object [33].

2.4.4 Artifacts

The term image artifact is not clearly defined, but artifacts can degrade the

quality of CT images. This term is applied to any systematic discrepancy between

the CT numbers in the reconstructed image and the true attenuation coefficients

of the object. To optimize image quality, the knowledge about how artefacts

occur and how they can be prevented or suppressed is necessary [34]. Artifacts

can be classified into four broad categories: motion-related artifacts caused by

cardiac, pulmonary or other body motion; beam-hardening artifacts caused by

metallic implants, severe calcifications, or air bubbles in the pulmonary artery;

structural artifacts produced by adjacent contrast material-filled structures and

overlaying vessels; and artifacts that result from technical errors or limitations

[35].

Motion Artifacts

Motion artifacts can be caused by voluntary and/or involuntary and/or intrinsic

motion of the patient or the organ which is being examined.

Patient motion leads to misregistration artifacts, that can be seen as shading
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or streaking in the reconstructed image. Voluntary motion can be avoided, but

some involuntary motion may not be preventive during body scanning. However,

some scanners have special features to minimize the resulting artifacts [34].

Cardiac Motion-related Artifact

Coronary CTA can be obtained by using a ECG-gated reconstruction algorithm,

but image quality can still be affected by cardiac motion. The reasons for

that is e.g. a heart rate greater than 70 - 75 beats per minute, variations in

heartrate during the breathholding, arrhytmia, and unsuitable selection of pitch.

These artifacts result in motion blurring or stepladder effects. Blurring takes

place when the movement of the cardiac structure is faster than the temporal

resolution of the scanner. The reasons can either be a fast heart rate or an

unsuitable reconstruction window selection. Therefore, the easiest way to reduce

cardiac motion artifacts is to lower the heart rate [35].

Pulmonary and Voluntary Motion-related Artifact

A typical example for a voluntary artifact is the interruption of breath-hold by

the patient during the scan phase and so they are generally due to errors or failed

compliance by the patient. These artifacts generate clear and severer changes

in image quality: on one hand physical motion leads to blurring and intense

gaps and overlaps between sections, on the other hand respiratory and voluntary

movements causes a phase-missmatch artifact. This is similar to the artifact

that is produced by acceleration of the heart rate towards the end of a long

breath hold. Therefore, respiratory artifacts can be similar to artifacts which

occur when scanning is performed over a relativity long time period. Voluntary

motion artifacts are present as stepladder effect in the anterior thoracic wall and

along the border of the heart and can be distinguished from the artifacts related

to cardiac motion [35].
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Partial Volume Effects

Partial volume effect can lead to image artifacts in a number of ways, which

are a separate problem from partial volume averaging, because a CT number

represents the average attenuation of the material within a voxel.

One type of partial volume effect occurs when a dense object lying off-center

sticks out part of the way into the x-ray beam. Because of the divergence of the

x-ray beam which increases along the z axis the dense object is ”seen” by the

detectors, when the tube is pointing from for example left to right, but not seen

by the detector when the tube is pointing from right to left. Shading artifacts

appear in the image because of the inconsistencies between the views. The best

way to avoid partial volume artefacts is to use a thin acquisition section width

[34].

Photon Starvation

Photon starvation is a potential source of streaking artifacts. They can occur in

highly attenuated areas like the shoulders as shown in figure 2.6. The attenuation

is greatest when the x-ray beam is travelling horizontally and insufficient photons

can reach the detector. In these angulations the produced projections are very

noisy. In the reconstruction process these noisy projections become magnified

and result in horizontal streaks in the image. The problem of photon starvation

can be overcome by increasing the tube current, but this would lead to an un-

necessary increase of dose to the patient. Techniques like automatic tube current

modulation and adaptive filtration minimize photon starvation [34].
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Figure 2.6: CT image of a shoulder phantom shows streaking artifacts caused by

photon starvation [34].

Beam Hardening Artifacts

An x-ray beam consists of individual photons with polychromatic energies. As

the beam passes through an object, the lower-energy photons are absorbed more

rapidly than the higher-energy photons and so its mean energy increases, it

becomes ”harder”. This effect results in the so-called cupping artefacts and the

appearance of streaks and dark bands between dense objects in the image.

Cupping artefacts occur because x-rays passing through the middle portion of

a uniform cylindrical phantom are hardened more, because they are passing

more material, than those passing through the edges. As the beam becomes

harder, the rate at which it is attenuated decreases. This leads to a more intense

beam when it reaches the detector than it would be expected if it had not been

hardened. The resultant attenuation profile differs from the ideal profile that

would be obtained without beam hardening.

Streaks and dark bands can appear in very heterogeneous cross sections between

two dense objects in an image. The portion of the beam that passes through

both objects at certain tube positions is hardened more than when it passes

through one of the objects at other tube positions. This type of artefact can

occur in bony regions of the body and in scans where a contrast medium has

been used (see figure 2.7) [34].
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Examples of dense objects:

• pacemaker leads, metal valvular protheses, metal surgical clips, indicators

of the site of bypass grafts (metal clips), metal sternal sutures and coronary

stents.

• the presence of calcified atherosclerotic plaque

Figure 2.7: CT image shows streaking artifacts due to the beam hardening effects

of contrast medium [34].

Manufacturers minimize beam hardening by using built-in features like

filtration, calibration correction and beam hardening correction software. A flat

piece of attenuating material is used to ”pre-harden” the beam, which filters out

the lower-energy components before the beam passes through the patient. The

edges of the beam, which will pass through the thinner parts of the patient are

hardened by an additional ”bowtie” filter.

With phantoms in a range of sizes manufacturers calibrate their scanners, the

detectors are calibrated with compensation tailored for the beam hardening
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effects of different parts of the patient. In clinical practise there may be either

a slight residual cupping artefact or a slight ”capping” artefact, because patient

anatomy never exactly matches a cylindrical calibration phantom. This leads to

a higher central CT value due to overcorrection.

Beam hardening correction software uses an iterative correction algorithm which

may be applied when images of bony regions are being reconstructed. This helps

to reduce the appearance of dark bands in inhomogeneous cross sections.

To avoid beam hardening artefacts it is important to select the appropriate scan

field of view to ensure that the scanner uses the correct calibration and beam

hardening correction data and, on some systems, the appropriate bowtie filter.

Scanner-based Artifacts

Scanner-based artifacts arise from the incorrect functioning of the scanner at the

time of data acquisition or during the reconstruction process [33].

Ring Artifact

Ring artifacts occur if a detector fails to function correctly or is out of calibration

with the rest of the system (see figure 2.8). On a third-generation scanner, where

the rotating x-ray tube and detector assembly, a consistently erroneous reading

at each view of the tube detector system will lead to a circular artifact. The

visualization depends on the width of the window and is less evident in wide

windows. Ring artifacts (see figure 2.9) are rarely be mistaken with diseases,

however, they can reduce the diagnostic quality of an image. This is more likely

when central detectors are involved and leads to a dark smudge at the center

of the image. Scanner with solid-state detectors (all the detectors are separate

entities) are more vulnerable to ring artifacts than scanners with gas detectors

(single xenon-filled chamber subdivided by electrodes). Nonetheless, solid-state
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detectors are more stable and therefore the preferred technique [34].

Figure 2.8: Formation of a ring artifact when a detector is out of calibration [34].

Figure 2.9: Image of ring-artifact in PatientID 67

If circular artifacts appear in an image the detector gain needs recalibration

or may need repair services. The selection of the correct scan field of view may
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reduce the artifact, because calibration data is used that fit more closely to the

patient’s anatomy. Software that recognizes and corrects detector variations

reduces the potential for ring artifacts [34].

Cone Artifact

Cone artifacts occur in helical scanning, when the object changes rapidly in

the z-direction, e.g. at the top of the skull, and are worse for higher pitches.

The cone-shaped phantom produces artifacts in form of distortion because of

the weighting function used in the helical interpolation algorithm. According

to projection angles, the image is influenced more by contributions from wider

or narrower parts of the cone in front or behind the scan plane predominate,

respectively. For that reason, the orientation of the artifact changes depending

on the tube position at the center of the image plane. This artifact can easily be

misinterpreted as disease e.g. in series of liver images. A minimization of this

artifact is possible by using a low pitch, a 180◦ interpolation rather than a 360◦

interpolation if there is a choice and thin slice acquisition [33], [34].

Helical (Windmill) Artifact

The helical interpolation process produces a more complicated form of axial

image distortion if a multidetector scanner is used than a single-detector scanner.

This artifact has a typical windmill-like appearance - radial bands which rotate

around high attenuation structures along the volume [33]- because several rows

of detectors intersect the plane of reconstruction with each rotation (see figure

2.10). When increasing the pitch, the windmill artifact increases, because a

greater number of detectors intersect the reconstruction plane with each rotation.

Z-filter interpolation is used to reduce the intensity of windmill artifacts when

the image reconstruction width is wider than the detector acquisition width.

Another way to reduce this artifact is to use non-integer pitch values relative to

detector acquisition width, because z-axis sampling density is optimized for non
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integer pitches [34][33].

Figure 2.10: CT image shows smoothly undulating streaks around cholecystec-

tomy clips due to windmill artifacts [36].

Cone Beam Effect

The number of detectors has increased and a wider collimation is required so

that the X-ray beam becomes more cone-shaped than fan-shaped. The tube and

the detectors rotate around the patient, but the data collected by each detector

does no longer correspond to an ideal flat plan but rather to a volume contained

between two cones. The outcome of this is similar to those caused by partial

volume around off-axis objects. Outer detector rows are more affected than

inner ones, where the data collected agree more closely to a plane. The severity

of this effect is proportional to the number of detector rows. Manufacturers

solve this problem by new dedicated reconstruction algorithms [34].

Stair-step and Zebra Artifact

Stair-step artifact occurs around edges of structures in multiplanar and 3D re-

formatted images when an acquisition is performed with wide collimations and

non overlapping reconstruction. This artifact typically does not appear in helical

scanning, because it permits reconstruction of overlapping sections. For that, no
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additional dose to the patient is necessary when compared to overlapping axial

scans. Zebra artifact appear as weak stripes in multiplanar and 3D reformatted

images from helical data. The reason for that is that the helical interpolation

process leads to noise inhomogeneity along the z-axis. The noise inhomogeneity

is worse off-axis therefore, it gets more notably away from the axis of rotation

[34].

2.4.5 Radiation Exposure

Radiation dose can be divided into three fundamental dose parameters: absorbed

dose; effective dose; equivalent dose. They can be expressed in different units

which make it often difficult to compare studies published in the literature [33].

This section gives an overview of these parameters for a better understanding

[27].

Absorbed dose

The absorbed dose represents the quantity of energy absorbed per unit of mass.

The unit of absorbed dose is Gray (Gy).

Technical measures of the dose output of CT scanners

The CT dose index (CTDI) is a measure of the CT scanner’s radiation output nor-

malized to a tube current time product, usually quotes in units of mGy/100mAs.

An exposure rate characteristic for a volume exam is always higher than the dose

measured for a single-slice exposure because of the scattered radiation contribu-

tions from the surrounding media.

The CTDI is measured in polymethyl methacrylate cylinders of 15 cm cm length

and diameters of 16 and 32 cm considered representative for a standard head and

body section, respectively, with one central and four peripheral bore holes in

which a 100 mm long ionization chamber is inserted. The measurement position
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can be central (c), peripheral (p) or in air (central in the field of measurement but

without a phantom). A weighted CTDI was agreed to take the inhomogeneity of

dose distribution into account [37] [38].

CTDIw = 1/3 · CTDIc + 2/3 · CTDIp (2.7)

The CTDI concept was the standard for acceptance and constancy testing of

CT apparatus, since about 2005. When wider CT detectors were introduced

with collimation widths nearing or exceeding the 100 mm length of the standard

CT ionization chamber, primary radiation is not registered completely and

multiple scatter contributions only had a limited extent [38][37].

Technical descriptors of exam-specific dose levels

Dose estimates are intended to provide values in mGy, therefore the applicable

normalized CTDI value is multiplied by the mAs product Q used in the exam.

To take the spiral CT acquisition into account the division by the pitch factor p

is necessary and yields to the so-called ’volume CTDI’ or CTDIvol [38]:

CTDIvol = CTDIw ·Q/p [Gy]. (2.8)

There is a quantity equivalent to CTDIvol for sequential CT in an analogous

manner. In the standard case of contiguous gapless scans p = 1 applies directly

to equation 2.8; p can be set accordingly for differences in spacing of scans.

Statements of CTDIvol values are obligatory for each CT exam. They have to

be provided by the manufactures on the CT scanner console. However, CTDIvol

does not take the patient size, cross-section and the length of the scanned volume

into account. More information is provided by the dose-length product (DLP).

It is obtained by multiplying the CTDIvol value with the scan range R [37]:
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DLP = CTDIvol ·R [mGy · cm] (2.9)

The quantity DLP does not provide a dose value, but it is a useful quantity

which serves a surrogate for patient dose, which is especially meaningful in

efforts to compare dose levels. It became accepted through the establishment of

diagnostic reference levels (DRL) [38].

Effective Dose

The effective dose includes the probability of stochastic effects of radiation that

depends on the type and energy of radiation. For this correction a so-called

radiation weighting factor Wr is multiplied by the dose D. Therefore, the effective

dose E is given by the following equation:

E = D ·Wr (2.10)

Wr = 1 by definition for X-rays . The unit for effective dose E is Sievert (Sv)

which is expressed as Joules per kilogram in SI-units [38].

Equivalent Dose

The probability of the stochastic effects also depends on the organ or tissue irradi-

ated. The organ dose equivalent HT takes into account that there are differences

in the susceptibility of tissues to the effects of radiation. The tissue weighting fac-

tor WT is used to weigh the dose equivalent in a tissue or an organ T . Therefore

the equivalent dose can be calculated by:

HT = E ·WT , (2.11)

where the unit for HT is also Sievert (Sv) [39].
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Dose Affecting Factors

The background noise in a CT examination corresponds to the graininess overly-

ing the useful information. It is defined as the standard deviation of attenuation

values assumed by a pixel in a homogeneous region of known density like water or

air. This error can not be eliminated from CT images but it can be statistically

limited. Therefore, background noise influences the quality of reconstructed im-

ages and reduces the potential diagnostic accuracy of an examination. Equation

2.12 shows the relationship between background noise σ, patient attenuation B,

pixel size W , slice thickness used h and the surface dose D0 [33].

σ =

√
B

W 3hD0

(2.12)

Equation 2.12 highlights the strong correlation between dose and image quality,

since σ is proportional to
√

1
D0

. This means that a fourfold increase in patient

dose is required to halve noise. Another conclusion is that an increase in slice

thickness produces a reduction in σ by a factor to the second power. A further

scan parameter that influences background noise in MDCT is the spiral pitch.

This parameter shows an inversely proportional relationship, because a reduction

in table feed leads proportionately to an improvement of the signal-to-noise ratio

(SNR), but on the other hand to a significant increase in radiation dose received

by the patient.

D0 depends on operator-dependent parameters as well as scanner specific factors

[33].

Operator-dependant Parameters:

• Tube current [mA]

is a measure of the electric current flowing through the X-ray tube. It can be

described as the number of electrons accelerated by the potential difference.

The exposure time and the absorbed dose are directly proportional to the
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mA.

• Tube voltage [kVp]

is a measure of the electrical potential between the anode and the cathode.

It correlates to the speed to which the photons are accelerated. Tube voltage

proportionally influences D0 approximately by a quadratic factor.

• Spiral pitch

Under condition that mAs and kVp are constant: spiral pitch is inversely

proportional to the absorbed dose. Examinations performed with pitch <

1 produces partially overlapping scans which increase the examination time

and radiation exposure.

• Gantry rotation time

it influences the scan duration ergo the exposure time of the patient.

Scanner specific factors:

• Scanner Geometry

is a specific property of the used scanner model and cannot be modified by

the operator. Recent MDCT scanner have their X-ray tube as close to the

patient as possible to reduce the centrifugal forces. Hence, this causes a

proportionally increasing exposure of the patient according to the so-called

inverse square law, which says that the dose is equal to the inverse square

of the distance of the patient from the electron source.

• Geometric Efficiency of the Scanner

is given by the percentage of photons emitted by the X-ray tube and are

effectively used to form the image. It is expressed in terms of the geometric

efficiency of the scanner in the z-axis, or width of the radiation dose profile,

and the efficiency of the detector array.
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Dose Reduction Systems

All the manufacturers of MDCT scanners had the aim to reduce the exposure of

the patient while maintaining an adequate level of diagnostic image quality. They

use different approaches of automatic dose reduction systems based on either di-

rect modification of the scan parameters, like reduction in mAs, kVp, pitch, etc.,

or modulation according to individual patient characteristics, like ECG pulsing

and automatic exposure control.

The manual reduction of the current intensity (mAs) and/or voltage (kVp) leads

to a reduction in the number and mean energy of the photons, respectively, which

interact with the detector array. A reduction in voltage reduces the patient ex-

posure and the dose to target organs, however, the use of lower energy photons

tends to increase the attenuation values of elements with a high atomic num-

ber and with a greater absorption coefficient. This increases the interactions

produced by the photoelectric effect. The diagnostic accuracy can be reduced

caused by an increase in beam hardening artifacts. To overcome this disadvan-

tage the overall dose can be reduced by using an ECG-controlled modulation of

the current emitted by the X-ray tube. The best phase of cardiac cycle for im-

age reconstruction is the mid- to end-diastolic, because in this phase the cardiac

motion is at a minimum. For this reason, the X-ray tube current is maximized

in the mid- to end-diastole and progressively reduced towards end-systolic during

data acquisition. Controversially, recent studies have demonstrate that systole is

often the best phase for image reconstruction. That is especially true for patients

with elevated heart rates and for the analysis of cardiac volumes and regional

wall motion. A different approach uses the automatic regulation of tube current

intensities depending on the individual patient characteristics obtained by the

initial scout images. The tube current will be lower in subjects with a lower

anterio-posterior diameter and greater in obese patients. This leads to optimal

image quality [39].
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Radiation CT Dose Values for CT-MPI

The contemporary estimated effective dose of coronary CTA and myocardial

static CTP imaging typically ranges between approximately 1.5 and 5.0 mSv [8].

Seitun et al. [8] summed up average CT dose values in dynamic CTP imaging

from eight human studies. These radiation exposures depend on protocol op-

timization with an average value of 9.23 mSv (versus 5.93 mSv for static CTP).

This is comparable with that of traditional nuclear imaging approaches. The goal

is directed towards further reducing radiation exposure while preserving a high

diagnostic performance using recent technical innovations like automated tube

current modulation and iterative reconstruction [8].

2.5 Image Quality Assessment Tools for CT

This section gives an overview of image quality assessment tools for CT. First,

the physical parameters are described, which are assessed by specific quality

control tests using phantoms. Next, psychophysical tests are explained which

are evaluated with psychophysical phantoms. Finally, observer and diagnostic

performance measurements are presented.

2.5.1 Physical Parameters

One definition of image quality in CT refers to how accurately the CT image

reproduces the three dimensional attenuation distribution of the X-ray beam

through the patient. There are specific quality control tests performed on a

regular basis to ensure that the CT unit does not deviate from accepted stan-

dards of quality ensuring the systems consistency over time. The International

Electrotechnical Commission recommends the expression of the quality of CT

images in terms of objective physical tests as measures of diagnostic performance

of a system like uniformity, linearity and measures of the detective quantum
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efficiency of the imaging system using psychophysical evaluation [28].

Uniformity

CT values are scaled by the Hounsfield unit (HU), while the value of water is

0 HU and the value of air is -1000 HU. These values are checked regularly during

normal quality control tests of the CT system to check for uniformity by using

an appropriate water phantom. The HU value for water should not differ over

time. The accepted tolerance range for different measures over time of the mean

CT value of the water phantom is usually 0 ± 4 HU and ± 2 HU for uniformity

[28].

Linearity

Linearity is the relationship between the calculated CT number for uniformity

and the linear attenuation coefficient of each different element in the scanned

object. The different linear attenuation coefficients of tissues within the body are

reflected in the corresponding CT values in the image. The phantom used for

linearity tests consists of several materials of different compositions and linear

attenuation coefficients but with known CT numbers placed in different positions

throughout a water phantom. To ensure the accuracy of the CT numbers for each

material and primarily for water routine checks and calibrations are necessary.

The accepted tolerance range for linearity is ±5 HU from the known CT numbers

of the elements within the phantom [28].

Detective quantum efficiency (DQE)

CT scanning is a digital imaging modality which uses image detectors for the

acquisition of image data. An overexposure of the digital image detector can still

produce excellent results since the electronics of the system compensate large

42



fluctuations in exposure. Therefore, a quality control program should be in place

to monitor proper exposure levels. DQE is directly related to the exposure nec-

essary to produce good images. Detectors with high DQE need less exposure for

adequate signal to noise ratios because they make more efficient use of X-rays.

DQE describes the imaging system in terms of noise, resolution and contrast [28].

The DQE as a function of dose (D) and frequency (f) is given by

DQE(D, f) =
(large area signal)2MTF (f)2

NPS(D, f)SNR2
in

(2.13)

where MTF is the Modulation Transfer Function (describing the resolution

properties of the system) and NPS is the Noise Power Spectrum (describing

the noise properties of the system). The ”large area signal” comes from

normalising the NPS, and the signal-to-noise ratio squared describes the photon-

or energy-weighted variance of the incident beam [40].

The physical characteristics of a CT system predict the outcome of the

possible quality results of the observer or subjective tests. Evaluation of image

quality in radiology is not complete without subjective methods using observer

psychophysical measurements [28].

2.5.2 Psychophysical tests

Psychophysical measurements are obtained from the response of an observer

to visual stimuli where test images from the psychophysical phantom are

evaluated. The quantitative measure of the spatial resolution is tested by line

pairs as visual stimulus. Contrast resolution is measured by identifying discs of

different densities within a phantom containing cylinders of different attenuation
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coefficients. Objective information concerning the image quality of the CT

system give the measurements of DQE and MTF. These measurements do not

take into account patient related parameters influencing image quality so their

effect on diagnosis still has to be investigated. The evaluation of image quality in

CT is associated with detecting pathologies therefore it is necessary to evaluate

the diagnostic performance of the CT system by measuring the diagnostic

accuracy of the images within the clinical setting [28][40].

2.5.3 Observer and Diagnostic Performance

Observer performance measures and diagnostic performance measurements are

obtained from images of patients in the clinical settings and/or phantoms. There

are several established methods to perform observer and diagnostic performance

tests while it is possible to measure image quality in terms of a specific set of

criteria [28].

Such methods include those that consider the detection of abnormal conditions

(i.e., receiver operating characteristic (ROC) analysis), visual grading analysis

(VGA) and alternative forced choice (AFC). Although all of these methods can

be valuable in image quality assessment it is necessary to choose the correct tool

depending on the research question [41].

Visual grading characteristics (VGC) analysis

Visual grading techniques can be used to evaluate the quality of images by

grading the clarity of reproduction of anatomic or pathological structures. The

methods are characterised by their simplicity and reliability and can be divided

into ”visual grading analysis (VGA)” and the ”image criteria (IC) study”. Bath

and Mansson [42] introduced a method called ”visual grading characteristic

(VGC) analysis”. It is a non-parametric rank-invariant statistical method for
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statistical analysis of VGA-data.

There are two ways to perform VGA:

• as relative grading

• as absolute grading

For relative visual grading studies there are one or several reference images

necessary to which all other test images are compared based on predetermined

criteria. The observer compares the display quality of the target structure of

the test image with the corresponding landmark of the reference image. To

categorize the observer decision a scale with 3, 5, or 7 points is used (e.g. a

5-step scale comparing visibility would appear thus: +2 = much better, +1 =

slightly better, 0 = equal, -1 =slightly worse, -2 = much worse).

For absolute visual grading studies there is no reference image used. The

observer states his opinion an the visibility of a certain feature using an absolute

scale. This consists typically of 4 to 7 points. [41] [43]

VGA-studies can be used to evaluate anatomical or pathological structures and

physical quality parameters [43]. They are generally performed in the absence of

any disease, pathology, or lesion as these can create non-standard image appear-

ances that are difficult to compare [41]. The assessment of anatomical structures

is often based on quality standards which have been established for a variety of

examinations (CEC Report EUR 16262 EN for computed tomography) [43].

The results of a VGA study can be summarised in a VGA-score (VGAS):

V GAS =

∑
O,I SC

NiNo

(2.14)

where SC is the given individual score for observer (O) and image (I), Ni is the

total number of images, and No is the total number of observers [40].
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To calculate the significance of differences between different systems in a VGA

study the analysis of variance (ANOVA) is used in conjuction with a method

for multiple comparisons in order to reduce risk of random significance, e.g. the

Newman-Keuls test [40].

Receiver operating characteristic (ROC) analysis

The state-of-the art observer performance methodology today is Receiver

Operating Characteristics (ROC) analysis. ROC analysis originates from Signal

Detection Theory, where one describes the detection of low contrast signals in a

noisy background. In the clinic it is the detection of abnormal cases against the

background of normal cases. This method is applicable only to tasks that call for

binary decision on the part of the observer: is the image normal or abnormal [40]?

Mansson [40] outlines the following six prerequisites for a successful ROC study:

1. There has to be a clear purpose for the study comparing two or more

imaging systems or techniques.

2. The images should faithfully represent the clinical situation. This is usually

realised by using anthropomorphic phantoms with simulated pathology or

software simulating pathology on images.

3. With a sufficient number of readers, it is possible to evaluate the quality of

the images and limit down variations between readers.

4. The true state of each case (image) must be known against which the read-

ers’ results are compared. This is easy by using phantom studies but hard

in clinical studies. Late follow-up, gold standard, and consensus decisions

are common usage.
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5. If the lesions are too obvious or too conspicuous the ROC study will become

worthless. There have to be borderline cases in the set of images. Again,

this is easier in phantom studies than with clinical images.

6. If modalities are compared, the statistical analysis will be strengthened

considerably.

There are different ROC methods:

• Localization ROC (LROC)

The LROC method deals only with no or one lesion per image. The observer

is asked to make a localisation decision even if it is given a very confident

normal score.

• Free-response ROC (FROC)

The ’free-response’ in the FROC method is the spatial location uncertainty

of lesions in a medical image. In an FROC experiment, several lesions may

be used in each image. The observers are asked to localize each lesion, and

a rating reflecting the observers certainty of the lesion and its location must

be given.

• Alternative free-response ROC (AFROC)

This is an alternative way of analysing FROC data. It uses a false-positive

image that produces one or more false positive responses.

• Free-response forced error (FFE)

In an FFE experiment, the observer has to rank the test structures in

decreasing order of confidence until they make an error. A false positive

image is caused to be produced. The FFE method can also be used to

analyse image sets with only zero or one lesion per image. It could be

regarded as an empirical detection accuracy measure independent of any

observer performance models. A system is superior, if a greater fraction of

lesion is detected with this system before making the false-positive error.
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• Differential ROC (DROC)

This method is used to determine the differences between two modalities

and is a common procedure in observer performance tests. It produces the

differences between the systems, but no absolute values for single modali-

ties. DROC has a superior statistical power to classic ROC.
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3 Methods

This chapter describes the setups for qualitative and quantitative image quality

assessment in perfusion calculation, which are applied on axial CT scan images

in 14 patients with valvular aortic stenosis.

Quantitative measurements were obtained by using Fiji-ImageJ and Mat-

lab R2016a (Mathworks Inc., Natick, USA). The qualitative image quality was

assessed by four radiologists.

3.1 Overview and Workflow

3.1.1 Patients

This study contains 14 patients (3 female and 11 male) with valvular aortic

stenosis. They were selected because patients with valvular aortic stenosis have

a minor likelihood to have perfusion defects. These patients had undergone their

CT scans either in Moscow, Russia (10 patients) or in Tashkent, Uzbekistan (4

patients) between February 21, 2015 and December 26, 2017. The range of the

patients age was between 28 and 78 years with an average age at 56.9 years.

3.1.2 Scanning Technique

CT examinations of the myocardium were performed with a Philips iCT 256 scan-

ner after administration of a weight dependent amount (0.5 ml/kg body weight)

of an intravenous contrast medium (Iodixanol). The images were dynamically

acquired during the first-pass of the contrast medium with scanning parameters

optimized for the patients weight (see table 3.1) and reconstructed from the raw

data at a 5 mm slice thickness.
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Patients Weight [kg] Tube Voltage [kV] Exposure [mAs] Tube Current [mA]

< 70 80 50 276

70 - 90 80 60 331

> 90 100 40 221

Table 3.1: Weight-depending Scan Parameters

The Philips specific iterative reconstruction technique, called iDose, level 6,

was used for the reconstruction of the raw data. The scan arc is 240◦ and the

duration of X-ray exposure is 180 ms, while the exposure can be calculated by

multiplying the tube current and the exposure time.

3.1.3 Placement of ROIs

The myocardium is divided into five regions as shown in Figure 3.1 to find out if

there are differences in myocardial perfusion dependent on the location in the my-

ocardium. The first region (blue) is the septobasal part of the myocardium , the

second region (green) is the septoapical part. So, these two regions lie between

the right heart and the ventricle. The next three regions of the myocardium are

surrounded by the lung: Region three lies apical (red), region four lateroapical

(magenta), and region five laterobasal (cyan). The ventricle region (yellow) is

located between the septobasal and laterobasal region of the myocardium.

The aforementioned regions (see A.1) were assessed by the radiologists to evalu-

ate the qualitative image quality. Quantitative image quality was evaluated by

processing the ROIs in Fiji-ImageJ and Matlab.
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Figure 3.1: Placement of ROIs in Myocardium and Ventricle in Patient ID 122

3.2 Qualitative Assessment

The images were qualitatively assessed by four radiologists with different CT

experience (one radiologist 5-8 years, one 13-17 years and two more than 25

years). The radiologists had to evaluate image contrast, image noise and the

three following artifacts: streak-artifacts; ring-artifacts; motion-artifacts. The

axial reconstructed images were viewed in Fiji-ImageJ as a hyperstack saved in

tiff-format. The structure of the questionnaire for the assessment was adopted

from [44] and is shown in A.1.
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3.2.1 Assessment of Image Contrast

The image contrast or rather the enhancement between the Myocardium ROI 1-5

in the native image and image with maximal contrast was ranked and evaluated

using a five-point scale (5 = excellent image contrast, 4 = above average contrast,

3 = acceptable image contrast, 2 = suboptimal image contrast, and 1 = very poor

contrast).

3.2.2 Assessment of Image Noise

The subjective image noise for the Ventricle ROI and for Myocardium ROI 1-5

was assessed using a five-point scale (5 = minimal image noise, 4 = less than

average noise, 3 = average image noise, 2 = above average noise, and 1 = unac-

ceptable image noise).

3.2.3 Evaluation of Artifacts

The evaluation of artifacts was subdivided into the three following types:

Streak-artifacts

The observer had to evaluate the streak-artifacts for the Ventricle ROI and for

Myocardium ROI 1-5. Artifacts are graded using a four-point scale: 1 = artifacts

affecting diagnostic information, 2 = major artifacts affecting visualization of

major structures but diagnosis still possible, 3 = minor artifacts not interfering

with diagnostic decision making, and 4 = No artifacts.

If there were any streak-artifacts, the observer had to mark the cause of

streak-artifacts for each corresponding ROI. The possible choices for the cause

were: right coronary artery (RCA); left anterior descending (LAD); left circum-

flex (LCX); aortic valve; mitral valve; rib; vertebral body; contrast medium in
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aorta; contrast medium in right heart; pacemaker leads; ECG leads; none of the

aforementioned.

Ring-artifact

Ring-artifacts seen on the CT scans in the Ventricle ROI and/or in Myocardium

ROI 1-5 were graded using a four-point scale: 1 = artifacts affecting diagnostic

information, 2 = major artifacts affecting visualization of major structures

but diagnosis still possible, 3 = minor artifacts not interfering with diagnostic

decision making, and 4 = No artifacts.

Motion-artifact

Motion-artifact seen on the CT scans in the Ventricle ROI and/or in Myocardium

ROI 1-5 were graded using a four-point scale: 1 = artifacts affecting diagnostic

information, 2 = major artifacts affecting visualization of major structures

but diagnosis still possible, 3 = minor artifacts not interfering with diagnostic

decision making, and 4 = No artifacts.

3.3 Quantitative Assessment

The open source image processing tool Fiji-ImageJ was used for the quantitative

assessment. An axial reconstructed slice of the CT scans nearby the mitral valve

was chosen. Five circular ROIs were placed in the regions of the myocardium

and one circular ROI in the ventricle as explained in 3.1.3 on page 50 and shown

in figure 3.1 to measure the HU values. The image of the first time-frame was

assigned to be the native one for the myocardium and the ventricle. The images at

maximum contrast for the ventricle and the myocardium have different instances

of time, since the maximum of the ventricle appears earlier. A so-called z-plot

was produced to find the time-frame at maximum contrast. The z-plot shows the
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mean HU value in a ROI over the time.

The measured values for the native and maximum contrast images were: ROI

area, ROI mean, ROI standard-deviation (SD), ROI minimum, ROI maximum,

ROI skew, image slice, image frame.

3.3.1 Contrast-to-Noise Ratio

The contrast-to-noise ratio (CNR) was calculated using the formula:

CNR =
Contrast

Noise
=
|µcontrast − µnative|√
σ2
contrast + σ2

native

(3.1)

where µcontrast is the ROI’s mean in the contrast image, µnative the ROI’s mean

in the native image, σcontrast the ROI’s standard-deviation in the contrast image

and σnative the ROI’s standard deviation in the native image [45].

3.3.2 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) was calculated using the formula:

SNR =
Signal

Noise
=
HUMean

HUSD
(3.2)

where HUMean is the mean HU-value of the ROI and HUSD is the standard

deviation HU-value of the ROI.

3.4 Curve Fitting Assessment

The calculations of image quality parameters for the curve fitting assessment

were done in MATLAB. The required functions for these calculations were

integrated into an exiting MATLAB-GUI for myocardial perfusion measurement.
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This program loads the ventricle and myocardium data from an EXCEL-file.

The used dataset is equal to the dataset evaluated as explained in 3.1.3.

3.4.1 Model Functions for Curve Fitting

The following model functions were used for curve fitting. The residual error was

calculated for each fit as a parameter for the quality of the fit, thereby specifying

the most suitable model function.

Weibull Distribution

The Weibull distribution might be one of the most widely used lifetime distribu-

tion models [46]. This distribution is positive only for positive values of the time

t, and zero otherwise. For positive values of the shape parameter β and scale

parameter α, the weibull distribution is defined by [47]:

f(t) =
β

α
·
(
t

α

)β−1

· e
−

 t
α

β

(3.3)

Gamma-Variate Function

Thompson Howard K., Starmer C. Frank, Whalen Robert E., et al. proposed to

model time-concentration curves, which are based on indicator dilution theory,

with the gamma variate function. This function is suitable for modelling ven-

tricular and myocardial time-intensity curves during the first pass of the contrast

agent [49]. A simplified formulation of the gamma variate has been established

by Madsen in 1992 [50]:

f(t) = hmax · (tmax)−β · tβ · e

β−β · t
tmax


(3.4)

where hmax is the maximal height of the curve, tmax is the time at peak and

the parameter β is varied by the fitting algorithm.
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Low-Pass of nth Order

Baumgartner, 1998 [51] has already used the low-pass of fourth order, because it

can be easily transformed to the Laplace domain. The following formula defines

the function in the time domain and its Laplace transformation, respectively.

f(t) = at(n−1) · e−tb d tF (s) =
6a

(s+ b)n
, n ∈ N (3.5)

The two parameter a (gain) and b (decrease) are varied to fit the data in the

time domain and in the Laplace domain. Figure 3.2 shows an example for curve

fitting with a low-pass model function.

Figure 3.2: Time attenuation curve for the myocardium of Patient ID 122 ROI 4

with a low-pass model function. Blue circles indicate the raw data, red crosses

are the interpolated data, the magenta line shows the model curve fit, red dashed

line in the right plot shows the myocardial baseline, red dashed line the ventricle

baseline. The blue dotted lines shows the 95% confidence interval.
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3.4.2 Baseline Detection

The basic formulas of the introduced fitting models have no constant parameter

for non-zero baselines. However, the native ventricular and myocardial tissues

have CT-values higher than zero. Qanadli, Jouannic, Dehmeshki, et al. [52]

found that the mean CT-values for the lateral myocardial wall is 39 HU (10 -

82 HU). Before starting the curve fitting process this native baseline-values for

the myocardium and ventricular curve have to be subtracted to shift all CT-

values against the time axis. As shown in equation 3.13 the perfusion result

depends on the peak hight of the ventricular attenuation curve. Therefore, the

baseline values for the myocardium and the ventricle should be the same. In

noisy datasets or if the scan was started too late it is very difficult to find the

real baseline CT-value. A wrong determination of the baseline may result in bad

perfusion results. Therefore, finding the right baseline might be a quality criterion

for perfusion measurement. The MATLAB code for the baseline detection was

already implemented in the provided MATLAB GUI.

3.4.3 Mean Square Error

A further criterion for the goodness of the model curve fit is the so-called esti-

mated mean squared error (MSE) and is given by [53]:

MSE = E([T −Θ]2) (3.6)

where T is the estimator and Θ the measured data. Equation 3.6 can be converted

to:

MSE = V ar(T ) +Bias(T )2 (3.7)

As can be seen, the estimated squared error can be written as the sum of the

variance of the estimator T and the squared bias of T . The lowest MSE indicates
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the fit with the best model curve [53].

3.4.4 Signal Range Raw Data versus Model Data

As explained in chapter 2, perfusion calculation methods require good model

fitting of the raw data. In case of data with high noise levels and especially in the

case of outliers, the signal range between the raw data and the model data can

diverge. The minimum and maximum CT-value of the raw data and the model

data were determined using the MATLAB functions min() and max(). The

signal ranges RangeCT−V alue for the raw data or the model data were calculated

as follows:

RangeCT−V alue = MAXCT−V alue −MINCT−V alue [HU] (3.8)

where MAXCT−V alue is the maximum CT-value and MINCT−V alue is the min-

imum CT-value of the raw data or the model data.

3.4.5 Image Quality Parameter Calculation

According to the quantitative assessment of image quality as described in 3.3

the contrast-to-noise ratio and the signal-to-noise ratio of the time-attenuation-

curves can be calculated. They can be formulated as follows:

Contrast-to-Noise Ratio of Time-Attenuation-Curves

The contrast-to-noise ratio of the curve was calculated using the formula:

CNRCurve =
[HUpeaktime −HUbaseline]

noisebaseline
(3.9)

where HUpeaktime is the maximum HU-value of the fitted curve, HUbaseline is the
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HU-value of the fitted curve baseline and noisebaseline is the standard deviation

in the baseline.

Signal-to-Noise Ratio of Time-Attenuation-Curves

The assumption for the calculation of the signal-to-noise ratio was that the Signal

is defined by the curve of the model data and the Noise is defined by the error

between the model data and the raw data.

The signal power PSignal is calculated by equation 3.10 and noise power PNoise

by equation 3.11.

PSignal =
1

N
· Σ (Signal − SignalMean)2 (3.10)

PNoise =
1

N
· Σ (Noise−NoiseMean)2 (3.11)

where SignalMean is the mean of the Signal, NoiseMean is the mean of the

Noise and N is the number of data points.

Therefore, the SNRCurve was calculated using the formula:

SNRCurve = 10 · log
(
PSignal
PNoise

)
(3.12)

3.4.6 Perfusion Calculation

In 2.2 different methods for perfusion calculation are presented. Two of them

were chosen to enable a comparison between the perfusion results: the upslope

method as a representative for the nondeconvolution-based methods and the fermi

method for a representative for the deconvolution-based method. The equations

for these perfusion calculation methods are shown again in equation 3.13 and

3.14 to improve readability.
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Upslope Method

MBF = [
dcmyo(t)

dt
]max ·

1

[cventricle(t)]max
[ml/100g/min] (3.13)

where cmyo corresponds to the myocardial time-concentration curve and cventricle

to the contrast medium concentration in the ventricle.

Fermi Method

RF (t) =
A

e( t−µk ) + 1
(3.14)

where the parameter t represents time, and the parameters µ, k, and A define

the shape of the model function.

3.5 Statistical Evaluation

The data of the image quality parameters was stored in an Excel-file and

imported into Matlab. The Likert-scales for observer assessment were calculated

an visualized in Excel. The boxplots and regression lines were calculated and

visualized in Matlab.

The statistically significance calculations were also done in Matlab. Therefore, a

Kruskal-Wallis test was performed as to decide if the data set of each ROI cor-

responds to the same distribution (test of the null hypothesis). The alternative

hypothesis is that the data set of the ROI’s correspond to different distributions

[54].
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4 Results

The focus on this work lies on image quality evaluation of dynamic CT scans

for myocardial perfusion measurement. These axial CT scans were reconstructed

from the raw data set and there was no further image processing applied like

temporal or spatial corrections. The left heart was divided into five different

myocardium ROIs and one ventricle ROI, as described in chapter 3.1.1. Each of

these ROIs were evaluated regarding native/contrast enhanced signal intensity,

native/contrast enhanced signal noise, native/contrast enhanced SNR, and CNR,

as the quantitative image quality parameters. For the qualitative evaluation,

observer assessed the aforementioned ROIs in relation to contrast enhancement,

noise, and artifacts. The detailed evaluation of streak-artifacts and their causes,

as well as motion- and ring-artifacts, were done. The last part of this section

presents the results for MSE, SNR, and CNR in the curve fitting which were

evaluated by using the upslope method.

4.1 Perfusion Calculation

Figure 4.1 visualizes the results for the myocardial perfusion evaluation for

the upslope and the fermi method side by side. The results for the ups-

lope method in table 4.1 show that, Myocardium ROI 1 has the lowest range

(67.56 ml/100g/min), the lowest median (76.74 ml/100g/min) and the lowest IQR

(37.62 ml/100g/min). The highest range (449.75 ml/100g/min) can be found in

ROI 3. ROI 5 has the highest median at 100.78 ml/100g/min and the highest

IQR at 73.18 ml/100g/min. Outlier can be found in ROI 3 and ROI 5. There

was no statistically significant difference between the MBF in the Myocardium

ROIs (p-value=0.156) for a 1 % significance level for the upslope method.
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The results for the fermi method displayed in table 4.2 were that, ROI 5 has the

highest range at 356.73 ml/100g/min, the highest median at 123.53 ml/100g/min

and the highest IQR at 75.74 ml/100g/min. ROI 3 shows the lowest median at

79.13 ml/100g/min and the lowest IQR at 30.73 ml/100g/min. The lowest range

(74.99 ml/100g/min) was found in ROI 1. Outlier was found in ROI 2, ROI 3

and ROI 5. There was no statistically significant difference between the MBF in

the Myocardium ROIs (p-value=0.034) in a 1 % significance level for the fermi

method. Table 4.3 summarizes the mean and standard-deviation of the perfusion

results for the upslope and fermi method. Figure B.30 - B.34 in the appendix

show the correlation between the upslope and fermi method for each ROI.

Figure 4.1: Boxplot of the myocardial perfusion calculation results using Upslope

and Fermi Method
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Table 4.1: Result of the boxplot for myocardial perfusion using the upslope

method. Min = minimum value, Max = maximum value, Range = maximum

value - minimum value, Q 25 = 25th-quartile, Median = median of the values,

Q 75 = 75th-quartile, IQR = interquartile-range. All values in [ml/100g/min].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 43.13 110.69 67.56 55.51 76.74 93.14 37.62

Myocardium 2 69.29 155.28 85.99 77.98 96.52 136.56 58.58

Myocardium 3 47.15 496.90 449.75 73.29 87.46 112.84 39.55

Myocardium 4 60.06 170.27 110.22 73.10 95.54 122.24 49.14

Myocardium 5 53.68 282.73 229.05 72.37 100.78 145.55 73.18

Table 4.2: Result of the boxplot for myocardial perfusion using the fermi method.

Min = minimum value, Max = maximum value, Range = maximum value -

minimum value, Q 25 = 25th-quartile, Median = median of the values, Q 75 =

75th-quartile, IQR = interquartile-range. All values in [ml/100g/min].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 46.10 121.09 74.99 60.81 96.31 110.14 49.32

Myocardium 2 46.38 215.49 169.11 72.93 87.33 111.86 38.94

Myocardium 3 30.16 181.39 151.23 54.43 79.13 85.16 30.73

Myocardium 4 60.80 185.83 125.03 81.48 94.73 150.19 68.71

Myocardium 5 56.64 413.37 356.73 87.13 123.53 162.87 75.74
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Table 4.3: Mean and Standard-deviation (SD) of the MBF for Upslope and Fermi

Method. All values are given in [ml/100g/min].

MBF Upslope MBF Fermi

Mean SD Mean SD

Myocardium 1 76.12 22.81 86.16 26.78

Myocardium 2 106.58 31.43 97.47 43.26

Myocardium 3 118.70 111.53 80.49 36.92

Myocardium 4 102.92 33.87 110.81 41.68

Myocardium 5 118.44 63.10 140.21 88.27

4.2 Image Signal Intensity

The image signal intensity corresponds to the mean value in the measurement

of the CT value within the ROI. Figure 4.2 shows the boxplots of the signal

intensities in the five myocardium ROIs for all 14 patients. The intensities at

the first time step of the dynamic CT acquisition were assigned to be the na-

tive image signal intensity. The CT-values for the signal intensity of contrast

enhanced images are also shown in Figure 4.2. These were measured at the

time step at maximum contrast enhanced ROIs in the myocardium. Due to

the higher signal intensity in the contrast enhanced ventricle, the ventricle ROI

was excluded in the native and contrast enhanced boxplots to make the results

better comparable for the myocardium ROIs. The average CT-value for the na-

tive signal intensity was 53.45 ± 10.95 HU and for the contrast enhanced signal

intensity 124.08 ± 22.11 HU. Table 4.4 shows the corresponding values of the re-

sults for the native images visualized in figure 4.2. ROI 3 has the lowest median

(49.115 HU) and ROI 1 the highest median (57.605 HU). ROI 4 has the low-

est range (17.54 HU) and the lowest IQR (8.1 HU), ROI 5 has the highest range

(51.17 HU) and the highest IQR (13.76 HU) of the myocardium. The ventricle
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Figure 4.2: Boxplot of the Signal Intensity in the native and contrast enhanced

image for each Myocardium ROI

ROI show higher ranges (54.4 HU) and IQR (26.93 HU) than the myocardium.

Outlier can be found in the native images in ROI 1, ROI 3, and ROI 5. The

results of the boxplot for the contrast enhanced image in figure 4.2 are shown in

table 4.5. In the contrast enhanced image ROI 3 has the lowest and ROI 5 the

highest median at 77.285 HU and 93.31 HU, respectively. The lowest IQR can be

found in ROI 4 at 12.95 HU and the highest IQR in ROI 5 at 22.07 HU. The

highest range (65.53 HU) in the contrast enhanced image can be found in ROI 1

due to the outlier. There are no statistical significant differences in the ROIs

of the native image (p-value=0.0574) nor in the contrast enhanced ROIs of the

myocardium (p-value=0.1588) on a 1 % significance level.
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Table 4.4: Result of the boxplot for signal intensity of native images. Min = min-

imum value, Max = maximum value, Range = maximum value - minimum value,

Q 25 = 25th-quartile, Median = median of the values, Q 75 = 75th-quartile, IQR

= interquartile-range. All values in [HU].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 42.5 77.06 34.56 50.74 57.605 61.07 10.33

Myocardium 2 41.03 62.9 21.87 47.18 52.25 56.91 9.73

Myocardium 3 23.95 62.25 38.3 42.84 49.115 53.76 10.92

Myocardium 4 42.29 59.83 17.54 48.13 51.485 56.23 8.1

Myocardium 5 27.61 78.78 51.17 50.23 55.56 63.99 13.76

Ventricle 34.58 88.98 54.4 40.25 48.425 67.18 26.93

Table 4.5: Result of the boxplot for signal intensity of contrast enhanced images.

Min = minimum value, Max = maximum value, Range = maximum value -

minimum value, Q 25 = 25th-quartile, Median = median of the values, Q 75 =

75th-quartile, IQR = interquartile-range. All values in [HU].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 65.24 130.77 65.53 72.32 81.55 86.04 13.72

Myocardium 2 71.3 97.29 25.99 78.78 88.41 91.84 13.06

Myocardium 3 71.02 106.67 35.65 72.9 77.285 93.31 20.41

Myocardium 4 75.51 105.06 29.55 82.67 92.285 95.62 12.95

Myocardium 5 66.76 110.15 43.39 80.49 93.31 102.56 22.07

Ventricle 237.87 494.54 256.67 243.48 298.24 331.72 88.24
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4.3 Image Noise

The quantitative image noise for the native and contrast enhanced image was

evaluated by the standard deviation of the signal intensity. The qualitative as-

sessment contains the evaluation of image noise and image artifacts. Image ar-

tifact assessment was subdivided into streak-artifacts, ring-artifacts and motion-

artifacts. For the determination of the streak-artifacts, a list of possible causes

were prepared in the questionnaire.

4.3.1 Quantitative Assessment of Image Noise

Figure 4.3 shows the boxplot for the comparison of the noise in the native and the

contrast enhanced images for each of the five myocardium ROIs and the ventricle.

The corresponding results of the boxplot for the noise in the native image are

shown in table 4.6. The results for image noise in the native image show that

ROI 2 has the lowest median at 13.18 HU and the highest range at 23.25 HU.

ROI 3 shows the lowest range (14.88 HU) and the lowest IQR (5.54 HU). ROI 1

has the highest median at 16.51 HU. The highest IQR can be found in ROI 5 at

10.41 HU.

In the boxplot for the image noise in the contrast enhanced image, one outlier

can be observed in myocardium ROI 2. Additionally, ROI 2 has the highest range

at 32.21 HU. The highest IQR can also be found in ROI 2 (9.65 HU). The lowest

IQR of the noise in the contrast enhanced image shows ROI 3 (6.08 HU). The

lowest median is 13.905 HU and can be found in ROI 4, the highest median in

ROI 5 (17.825 HU). The corresponding results of the boxplot for the noise in

contrast enhanced images can be found in table 4.7. There were no statistically

significant differences in both the noise of the native (p-value=0.6105) and the

noise in the contrast enhanced image (p-value=0.817) on the 1 % significance
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Figure 4.3: Boxplot of the Noise in the native and contrast enhanced Images

level.

Table 4.6: Result of the boxplot for image noise in the native images. Min = min-

imum value, Max = maximum value, Range = maximum value - minimum value,

Q 25 = 25th-quartile, Median = median of the values, Q 75 = 75th-quartile, IQR

= interquartile-range. All values in [HU].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 7.89 28.11 20.22 10.68 16.515 19.01 8.33

Myocardium 2 5.81 29.06 23.25 8.75 13.18 17.02 8.27

Myocardium 3 4.56 19.44 14.88 12.08 14.70 17.62 5.54

Myocardium 4 4.85 22.02 17.17 8.90 13.66 17.67 8.77

Myocardium 5 5.55 27.39 21.84 11.46 16.255 21.87 10.41

Ventricle 8.20 26.63 18.43 11.76 15.51 21.46 9.70
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Table 4.7: Result of the boxplot for image noise in contrast enhanced images.

Min = minimum value, Max = maximum value, Range = maximum value -

minimum value, Q 25 = 25th-quartile, Median = median of the values, Q 75 =

75th-quartile, IQR = interquartile-range. All values in [HU].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 9.1 24.02 14.92 12.42 15.305 18.52 6.1

Myocardium 2 5.25 37.46 32.21 8.76 14.6 18.41 9.65

Myocardium 3 5.84 27.07 21.23 12.23 14.58 18.31 6.08

Myocardium 4 7.95 28.51 20.56 10.28 13.905 18.75 8.47

Myocardium 5 5.28 26.42 21.14 12.07 17.825 20.86 8.79

Ventricle 11.09 32.12 21.03 17.74 19.95 23.11 5.37

4.3.2 Observer Assessment of Image Noise

Figure 4.4 shows the histogram of the results for noise assessment by observers

for all patients. The following list shows the results in a descent order of their

incidence:

• ’average image noise’ with n=123 (36.61 %) observations.

• ’above average image noise’ with n=98 (29.17 %) observations.

• ’less than average image noise’ with n=49 (14.58 %) observations.

• ’minimal image noise’ with n=45 (13.39 %) observations.

• ’unacceptable image noise’ with n=21 (6.25 %) observations.

Figure 4.5 shows the Likert scale of the observer assessment for each ROI. There

is no significant difference in the observer assessment of noise for each ROI but

the bars are shifted a little bit more to the ’above image noise’ direction.
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Figure 4.4: Histogram of Noise Assessment by Observers

Figure 4.5: Likert Scale for noise observer assessment for all ROIs. Image Noise

was graded using a five-point scale: 5 = minimal image noise, 4 = less than aver-

age noise, 3 = average image noise, 2 = above average noise, and 1 = unacceptable

image noise. The numbers in the bars indicate the number of observations

70



4.4 Artifacts

Artifacts may be the reason for image noise. Therefore, the observer assessment

for streak-artifacts, motion-artifacts and ring-artifacts will be shown next.

4.4.1 Streak-artifacts

Figure 4.6 shows the histogram for streak-artifact observations for each ROI in all

patients. The following list shows the results in a descent order of their incidence:

• ’minor artifacts’ with n=112 (33.33 %) observations.

• ’major artifacts’ with n=108 (32.14 %) observations.

• ’no artifacts’ with n=86 (25.6 %) observations.

• ’artifacts affecting diagnostic information’ with n=21 (8.93 %) observations.

Figure 4.6: Histogram of Streak-artifact Assessment by Observers for all Patient

Figure 4.7 shows the Likert scale of the streak-artifact assessment by the ob-

servers. Streak-artifacts have the least impact on Myocardium ROI 5, followed
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by Myocardium ROI 4 and the Ventricle. The impact of streak-artifact on My-

ocardium ROI 1 and ROI 2 are very similar and observer assessed them a little bit

more shifted into the minor artifacts direction. Only Myocardium ROI 3 is shifted

to the major artifacts direction and is therefore the ROI which is influenced at

most by streak artifacts.

Figure 4.7: Likert scale of the Streak-artifact Observer Assessment for all ROIs.

Artifacts were graded using a four-point scale: 1 = artifacts affecting diagnostic

information, 2 = major artifacts affecting visualization of major structures but

diagnosis still possible, 3 = minor artifacts not interfering with diagnostic decision

making, and 4 = No artifacts. The numbers in the bars indicate the number of

observations.

4.4.2 Causes of Streak-artifacts

The causes of streak-artifacts for all patients are visualized in Figure 4.8. The

following list shows the result in a descent order of their incidence:
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• The vertebral body (29 %)

• The aortic valve (22 %)

• None of the default origins (19 %)

• The mitral valve (9 %)

• The contrast medium in the right heart (8 %)

• Contrast medium in the aorta; rib; RCA; LAD; ECG leads (2 %)

• Pacemaker leads; no artifact (1 %)

Figure 4.8: Pieplot for the causes of Streak-artifacts for all Patients

The pieplots for each myocardium ROI and the ventricle ROI are displayed in

the appendix in B.1 - B.6.
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4.4.3 Motion-artifacts

Figure 4.9 shows the histogram of the motion-artifact assessment for all patients

and can be listed in a descent order of their incidence as follows:

• ’no artifacts’ with n=279 (36.61 %) observations

• ’minor artifacts’ with n=42 (12.5 %) observations.

• ’major artifacts’ with n=10 (2.98 %) observations.

• ’artifacts affecting diagnostic information’ with n=5 (1.49 %) observations.

Figure 4.9: Histogram of Motion-artifact Assessment by Observers for all Patient

Figure 4.10 shows the Likert scale for the assessment of motion-artifact by ob-

servers. The observer mainly evaluated that in the most ROIs no motion-artifacts

are recognisable. Some ROIs were assessed to show minor motion-artifacts. Only

a few observations of major motion-artifacts or artifacts affecting diagnostic in-

formation have been evaluated.

74



Figure 4.10: Likert scale of the Motion-artifact Observer Assessment for all ROIs.

Artifacts were graded using a four-point scale: 1 = artifacts affecting diagnostic

information, 2 = major artifacts affecting visualization of major structures but

diagnosis still possible, 3 = minor artifacts not interfering with diagnostic decision

making, and 4 = No artifacts.

4.4.4 Ring-artifacts

Figure 4.11 shows the histogram of the ring-artifact assessment by the observer

for all patients and can be listed in a descent order of their incidence as follows:

• ’no artifacts’ with n=284 (1 %) observations

• ’minor artifacts’ with n=37 (11.01 %) observations.

• ’major artifacts’ with n=11 (3.27 %) observations.

• ’artifacts affecting diagnostic information’ with n=4 (1.19 %) observations.
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Figure 4.11: Histogram of Ring-artifact Assessment by Observers for all Patient

Figure 4.12 shows a Likert scale for the ring-artifact assessment. The most

ring-artifacts appear in the ROI 1 and the ventricle. They do not appear in

ROI 2, ROI 3 and ROI 4.
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Figure 4.12: Likert scale of the Ring-artifact Observer Assessment for all ROIs.

Artifacts were graded using a four-point scale: 1 = artifacts affecting diagnostic

information, 2 = major artifacts affecting visualization of major structures but

diagnosis still possible, 3 = minor artifacts not interfering with diagnostic decision

making, and 4 = No artifacts.

4.5 Signal-to-Noise Ratio

Figure 4.13 shows the boxplot of the SNR in the native and contrast enhanced

image. Table 4.8 provides the corresponding results for the SNR of the native

image. There is no statistically significant difference between the SNR of the

Myocardium ROIs in the native image (p-value=0.7239) on a 1 % significance

level. Myocardium ROI 3 has the lowest median (3.098) and the lowest IQR

(0.667), but the highest range (9.847) due to the outliers. The smallest range

(3.907) can be found in ROI 1. ROI 2 has the highest median (4.070) and ROI 4

the highest IQR (3.139). Outliers can also be found in Myocardium ROI 3 and

ROI 5.
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Figure 4.13: Boxplot of the signal-to-noise ratio of the native and contrast en-

hanced image for each ROI

Table 4.8: Result of the boxplot for signal-to-noise ratio of native images. Min

= minimum value, Max = maximum value, Range = maximum value - min-

imum value, Q 25 = 25th-quartile, Median = median of the values, Q 75 =

75th-quartile, IQR = interquartile-range. All values in [a.u.].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 2.524 6.431 3.907 3.123 3.528 5.482 2.359

Myocardium 2 2.122 10.826 8.704 2.772 4.070 5.126 2.354

Myocardium 3 1.429 11.276 9.847 2.860 3.098 3.527 0.667

Myocardium 4 2.342 10.724 8.381 3.028 3.938 6.167 3.139

Myocardium 5 1.008 8.951 7.943 2.982 3.708 5.129 2.147

Ventricle 1.703 6.192 4.489 2.764 3.293 4.292 1.528

Table 4.9 provides the results of the boxplot shown in figure 4.13 for the SNR
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of the contrast enhanced image. There is no statistically significant difference

between the SNR of the Myocardium ROIs in the contrast enhanced image (p-

value=0.7643) on a 1 % significance level. ROI 5 has the highest range (17.025),

the highest IQR (4.199) and the lowest median (5.113). The lowest range (5.899)

and the lowest IQR (2.455) can be found in ROI 1. The highest median (6.007)

was shown in ROI 2. Outliers can be found in Myocardium ROI 2, ROI 3 and

ROI 5.

Table 4.9: Result of the boxplot for signal-to-noise ratio of contrast enhanced

images. Min = minimum value, Max = maximum value, Range = maximum

value - minimum value, Q 25 = 25th-quartile, Median = median of the values,

Q 75 = 75th-quartile, IQR = interquartile-range. All values in [a.u.].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 3.381 9.280 5.899 4.423 5.439 6.878 2.455

Myocardium 2 2.444 16.535 14.092 4.894 6.007 8.317 3.424

Myocardium 3 2.802 13.265 10.463 4.600 5.776 7.155 2.556

Myocardium 4 3.229 11.761 8.532 4.735 5.808 8.823 4.088

Myocardium 5 2.888 19.913 17.025 3.859 5.113 8.058 4.199

Ventricle 9.436 26.398 16.961 12.550 14.497 21.399 8.850

Figure 4.14 shows the boxplot of the SNR in the curvefit for the My-

ocardium ROIs and the Ventricle ROI and table 4.10 the corresponding results.

There is no statistically significant difference between the Myocardium ROIs

(p-value=0.6465) on a 1 % significance level. Myocardium ROI 1 and ROI 5

have SNR values in their interquartile range lower than zero. That means, that

the power of the noise is higher than the power of the signal. In Myocardium

ROI 2 and ROI 4 the lower whiskers reach into the negative range. Myocardium

ROI 3 contains one outlier in the negative range. ROI 3 has the highest median

(9.964 dB) and the lowest IQR (5.975 dB). The highest IQR (13.907 dB) can be
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found in ROI 1. The lowest median (5.320 dB) has ROI 5. ROI 2 has the lowest

range (21.804 dB) and ROI 4 has the highest range (29.823 dB).

Table 4.10: Result of the boxplot for signal-to-noise ratio of the curvefit. Min

= minimum value, Max = maximum value, Range = maximum value - min-

imum value, Q 25 = 25th-quartile, Median = median of the values, Q 75 =

75th-quartile, IQR = interquartile-range. All values in [dB].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 -11.474 18.030 29.504 -3.537 8.430 10.369 13.907

Myocardium 2 -5.111 16.693 21.804 1.942 7.444 12.656 10.714

Myocardium 3 -4.736 20.292 25.029 6.566 9.964 12.541 5.975

Myocardium 4 -3.157 26.666 29.823 1.929 9.543 12.463 10.534

Myocardium 5 -11.170 16.520 27.690 -1.088 5.320 9.410 10.498

Ventricle 2.993 41.959 38.966 17.295 21.148 31.642 14.347

Figure 4.14: Boxplot of SNR in the myocardial curve fit for each ROI
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The correlation between the quantitative evaluation of the SNR and the SNR

of the curvefit is not significant (R2 = 0.104). It is shown in Figure 4.15.

Figure 4.15: Correlation between SNR quantitative and SNR of the curvefit for

myocardium ROIs (blue crosses). Regression line (red line), 95 % confidence

interval (red dotted lines) and R2.

4.6 Image Contrast

Figure 4.16 displays the boxplot for the CNR of the Myocardium ROIs. There

is no statistically significant difference between the Myocardium ROIs (p-

value=0.1122) on a 1 % significance level. ROI 1 has the lowest median (1.060)

and the lowest IQR (0.698). ROI 2 has the lowest range (2.259), the highest

range is found in ROI 5 at 7.188. The highest median (1.892) shows ROI 4 and

the highest IQR (1.610) ROI 3. Outliers are found in Myocardium ROI 1, ROI 4
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and ROI 5. Table 4.11 shows the results of the boxplot in figure 4.16.

Figure 4.16: Boxplot of CNR in native and contrast enhanced images

Table 4.11: Result of the boxplot for image contrast. Min = minimum value,

Max = maximum value, Range = maximum value - minimum value, Q 25 =

25th-quartile, Median = median of the values, Q 75 = 75th-quartile, IQR =

interquartile-range. All values in [a.u.].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 0.013 4.115 4.102 0.993 1.060 1.691 0.698

Myocardium 2 0.795 3.053 2.259 1.294 1.809 2.343 1.049

Myocardium 3 0.421 4.222 3.801 1.210 1.550 2.820 1.610

Myocardium 4 1.124 4.616 3.492 1.431 1.892 2.259 0.827

Myocardium 5 0.052 7.240 7.188 0.816 1.435 2.259 1.442

Ventricle 5.500 18.441 12.941 7.331 9.520 13.827 6.496

The boxplot for the CNR of the curvefit for the Myocardium ROIs is shown
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in figure 4.17 and table 4.12 provides the corresponding results. There is no sta-

tistically significant difference between the Myocardium ROIs (p-value=0.3021)

on a 1 % significance level. Myocardium ROI 3 has the highest median at 4.210

followed by Myocardium ROI 4 at 3.776 and ROI 2 at 3.511. Myocardium ROI 5

(3.159) and ROI 1 (3.087) have the lowest median. ROI 4 has the highest range

(9.801) and the highest IQR (3.249). ROI 5 has the lowest range (5.704) and the

lowest IQR (1.797). Outliers are found in Myocardium ROI 1, ROI 2, ROI 4 and

ROI 5.

Figure 4.17: Boxplot of CNR in the myocardial curve fit

The correlation between the quantitative evaluation of the CNR and the CNR

of the curve fit is not statistically significant (R2 = 0.0144). This is shown in

figure 4.18
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Table 4.12: Result of the boxplot for the CNR of the curvefit. Min = minimum

value, Max = maximum value, Range = maximum value - minimum value, Q 25

= 25th-quartile, Median = median of the values, Q 75 = 75th-quartile, IQR =

interquartile-range. All values in [a.u.].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 1.210 8.780 7.570 1.564 3.087 4.364 2.801

Myocardium 2 1.422 10.321 8.899 2.852 3.511 4.918 2.066

Myocardium 3 1.371 8.267 6.897 3.129 4.210 6.366 3.236

Myocardium 4 2.261 12.062 9.801 3.015 3.776 6.263 3.249

Myocardium 5 1.725 7.429 5.704 2.614 3.159 4.411 1.797

Ventricle 6.064 83.814 77.750 16.279 25.421 41.649 25.369

Figure 4.18: Scatterplot of the data (blue crosses), regression line (red line), 95 %

confidence interval (red dotted lines) and R2 for CNR Quantitative vs. CNR of

the curve fit for Myocardium
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Figure 4.19 shows the histogram of the observer assessment of image contrast

for all patients. The results can be listed in a descent order of their incidence as

follows:

• ’acceptable image contrast’ with n=98 (35 %) observations.

• ’above image contrast’ with n=55 (19.64 %) observations.

• ’excellent image contrast’ with n=52 (18.57 %) observation.

• ’suboptimal image contrast’ with n=48 (17.14 %) observation.

• ’very poor image contrast’ with n=27(9.64 %) observations

Figure 4.19: Histogram of contrast assessment for all Patients

Figure 4.20 shows that Myocardium ROI 4 was assessed to be the ROI with

the best image contrast. Next, Myocardium ROI 5 shows a similar result like

ROI 4. The last three ROIs can be ranked: Myocardium ROI 3, ROI 2 and

ROI 1, whereas the differences are minimal.

85



Figure 4.20: Likert Scale for Contrast Observer Assessment for all ROIs. Image

Contrast was graded using a five-point scale: 5 = excellent image contrast, 4

= above image contrast, 3 = acceptable image contrast, 2 = suboptimal image

contrast, and 1 = very poor image contrast.

4.7 Curve Fitting Assessment

For the myocardial perfusion quantification a model function has to be found

that fits the raw data of the myocardium and the ventricle. One assumption for

the perfusion quantification is that the model function for the myocardium and

the ventricle have the same baseline.

4.7.1 Ventricle Baseline vs. Myocardial Baseline

Figure 4.21 shows a boxplot of the difference between ventricle baseline and

myocardium baseline for each myocardium ROI. The corresponding results are
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summarized in table 4.13. There is no statistically significant difference between

the Myocardium ROIs (p-value=0.1168) on a 1 % significance level. The lowest

median was found in Myocardium ROI 1 at 0.30 HU as well as the lowest range

(31.32 HU) and the lowest IQR (8.00 HU), but there are outliers. The highest

median shows ROI 4 at 7.58 HU. ROI 3 has the highest range (35.66 HU) and

the highest IQR (16.94 HU). Outliers were found in ROI 2.

Figure 4.21: Boxplot of the difference between Ventricle baseline and Myocardium

baseline for each ROI
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Table 4.13: Result of the boxplot for the baseline difference between myocardium

and ventricle. Min = minimum value, Max = maximum value, Range = max-

imum value - minimum value, Q 25 = 25th-quartile, Median = median of the

values, Q 75 = 75th-quartile, IQR = interquartile-range. All values in [HU].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 0.05 31.37 31.32 0.11 0.30 8.11 8.00

Myocardium 2 0.02 33.48 33.46 1.57 4.73 10.70 9.14

Myocardium 3 0.21 35.87 35.66 0.85 4.85 17.79 16.94

Myocardium 4 0.41 33.07 32.66 3.15 7.58 16.45 13.30

Myocardium 5 0.53 32.12 31.58 2.97 6.12 18.23 15.26

Figure 4.22: Difference between Ventricle baseline and Myocardium baseline for

PatID 165 ROI 1. Blue circles indicate the raw data, red crosses are the interpo-

lated data, magenta line shows the model curve fit, red dashed line in the right

plot shows the myocardial baseline, red dashed line in the left plot the ventricle

baseline. Green dotted line in the right plot shows the ventricle baseline. The

blue dotted lines shows the 95 % confidence interval.

88



4.7.2 Minimum Raw Data vs. Minimum Model Data

The minimum CT-values of the raw data are used for the computation of the

baseline. The minimum CT-values of the model data correspond to the baseline

data. Therefore, the difference between the minimum of the raw data and the

minimum of the model data should be as small as possible to get meaningful

perfusion results. The distance between the minimum CT-values of the raw data

and the model data are shown in figure 4.23 and table 4.14. Myocardium ROI 2

has the greatest range at 35.14 HU and the lowest IQR at 4.34 HU. The lowest

median was found in ROI 4 (5.46 HU) and the highest median in ROI 1 (9.40 HU).

The lowest range shows ROI 3 at 17.00 HU and the highest IQR (13.12 HU) in

ROI 5. There is no statistically significant difference between the Myocardium

ROIs (p-value=0.581) on a 1 % significance level.

Figure 4.23: Boxplot of the difference between the Minimum CT-value in the raw

data and the model data for each ROI
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Table 4.14: Result of the boxplot for difference between the minimum of raw

data and the minimum of model data. Min = minimum value, Max = maximum

value, Range = maximum value - minimum value, Q 25 = 25th-quartile, Median

= median of the values, Q 75 = 75th-quartile, IQR = interquartile-range. All

values in [HU].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 0.11 34.48 34.37 5.74 9.40 15.31 9.57

Myocardium 2 0.68 35.82 35.14 3.32 5.83 7.66 4.34

Myocardium 3 0.86 17.86 17.00 4.22 8.53 11.22 7.00

Myocardium 4 0.39 23.53 23.14 4.01 5.46 10.33 6.32

Myocardium 5 1.41 30.36 28.95 3.53 7.12 16.65 13.12

Ventricle 1.09 21.45 20.36 5.38 8.21 13.71 8.34

4.7.3 Maximum Raw Data vs. Maximum Model Data

The boxplot in figure 4.24 and table 4.15 shows the results for the difference of

the maximum in the raw data and model data. The ventricle shows the lowest

median at 3.34 HU and the lowest IQR (2.93 HU). But there are outliers in the

ventricle, therefore the range is 18.49 HU. The comparison of the myocardium

ROIs show, that ROI 1 hast the lowest median at 7.16 HU. ROI 4 has the lowest

range (12.03 HU), the lowest IQR (5.91 HU) and the highest median (11.21 HU).

The highest range can be found in ROI 5 (34.16 HU) and the highest IQR in

ROI 3 (10.28 HU). There is no statistically significant difference between the

Myocardium ROIs (p-value=0.711) on a 1 % significance level.
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Figure 4.24: Boxplot of the difference between the maximum CT-value in the

raw data and the model data for each ROI

Table 4.15: Result of the boxplot for the difference between the maximum of

the raw data and the maximum of the model data. Min = minimum value,

Max = maximum value, Range = maximum value - minimum value, Q 25 =

25th-quartile, Median = median of the values, Q 75 = 75th-quartile, IQR =

interquartile-range. All values in [HU].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 2.59 22.98 20.39 4.46 7.16 10.58 6.12

Myocardium 2 3.12 19.24 16.12 6.78 8.14 15.13 8.35

Myocardium 3 0.48 28.34 27.85 3.56 7.41 13.85 10.28

Myocardium 4 2.83 14.86 12.03 6.89 11.21 12.80 5.91

Myocardium 5 2.18 36.34 34.16 5.80 8.81 15.42 9.63

Ventricle 0.61 19.10 18.49 2.09 3.34 5.01 2.93
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4.7.4 Signal Range Raw Data vs. Signal Range Model

Data

Figure 4.25 shows the boxplot of the difference between the signal range of the

raw data and the model data. A small difference between those ranges could be

a criterion for perfusion results because they would show a good correspondence.

As shown in table 4.16, the ventricle has a median at 10.49 HU, a range at

27.15 HU and an IQR at 10.09 HU. When comparing the myocardium, ROI 3

has the lowest median at 11.95HU. ROI 4 has the lowest range (32.07 HU) and

the lowest IQR (7.58 HU). ROI 5 shows the highest range (60.39 HU) and the

highest median (17.52 HU). The highest IQR was found in ROI 1 at 17.78 HU.

Outliers are in ROI 2, ROI 3, ROI 4, ROI 5 and in the ventricle ROI. There is no

statistically significant difference between the Myocardium ROIs (p-value=0.659)

on a 1 % significance level.

Figure 4.25: Boxplot of the Difference of the Signal range in the raw data and

the model data for each ROI
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Table 4.16: Result of the boxplot for the difference between signal range of the raw

data and the model data. Min = minimum value, Max = maximum value, Range

= maximum value - minimum value, Q 25 = 25th-quartile, Median = median of

the values, Q 75 = 75th-quartile, IQR = interquartile-range. All values in [HU].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 6.68 43.33 36.65 11.82 15.33 29.60 17.78

Myocardium 2 7.05 55.06 48.01 9.52 13.62 22.80 13.28

Myocardium 3 2.07 40.63 38.56 9.85 11.95 21.03 11.18

Myocardium 4 3.22 35.29 32.07 12.68 16.45 20.26 7.58

Myocardium 5 6.32 66.70 60.39 11.25 17.52 25.90 14.65

Ventricle 6.59 33.73 27.15 7.66 10.49 17.76 10.09

4.7.5 Mean Square Error

Figure 4.26 displays the boxplot of the MSE of the curvefit for all myocardium

ROIs and for the ventricle ROI. The result of the boxplot are shown in table

4.17. The ventricle ROI has a range of 0.127, a median of 0.040 and an IQR

of 0.050. Myocardium ROI 1 has the highest range (3.648) due to the highest

outlier. ROI 4 has the lowest range (0.181), the lowest median (0.013) and the

lowest IQR (0.012). ROI 3 has the highest median at 0.020 and the highest IQR

at 0.025. There is no statistically significant difference between the myocardium

ROIs (p-value=0.934) on a 1 % significance level.
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Figure 4.26: Boxplot of MSE in the myocardial curvefit for each ROI

Table 4.17: Result of the boxplot for MSE in the myocardial and ventricle curvefit.

Min = minimum value, Max = maximum value, Range = maximum value -

minimum value, Q 25 = 25th-quartile, Median = median of the values, Q 75 =

75th-quartile, IQR = interquartile-range. All values in [dB].

ROI Min Max Range Q 25 Median Q 75 IQR

Myocardium 1 0.005 3.653 3.648 0.011 0.019 0.032 0.021

Myocardium 2 0.004 1.199 1.195 0.012 0.016 0.027 0.015

Myocardium 3 0.005 1.909 1.904 0.010 0.020 0.035 0.025

Myocardium 4 0.002 0.183 0.181 0.010 0.013 0.022 0.012

Myocardium 5 0.006 0.885 0.879 0.014 0.018 0.033 0.019

Ventricle 0.010 0.137 0.127 0.026 0.040 0.075 0.050
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Figure 4.27 shows the scatterplot for the correlation between MSE and SNR of

the curvefit. SNR of the curvefit higher than zero leads to a MSE that is nearly

zero. The correlation between MSE and SNR of the curvefit was R2=0.13831

and therefore not statistically significant.

Figure 4.27: Scatterplot of the data (blue crosses), regression line (red line), 95 %

confidence interval (red dotted lines) and R2 for MSE vs. SNR of the curvefit for

myocardium
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5 Discussion

The aim of this thesis was to determine and compare image quality parameter of

axial reconstructed CT scans for quantitative myocardial perfusion calculation in

5 different ROIs of the myocardium.

5.1 Perfusion Calculation

The results for the MBF using the upslope and fermi method are comparable to

the results in the literature, which have a range of 46.37 - 138.490 ml/100g/min

for the global MBF at rest and a range of 76.37 - 208.43 ml/100g/min for the

global MBF at stress [55]. The standard-deviation for the upslope method in

Myocardium ROI 3 (SD =111.53 ml/100g/min) is at highest. The outlier in My-

ocardium ROI 3, when using the upslope method, occurred in PatientID 51. The

reason for this outlier were streak-artifacts which were caused by the aortic valve

and the vertebral body. Myocardium ROI 5 shows a high standard-deviation in

the upslope method (SD= 63.10 ml/100g/min). These outlier can also be found

using the fermi method for MBF calculation. Using the fermi method, the outlier

in ROI 5 has more impact on the MBF results. This outlier in ROI 5 occurred

in PatientID 165 where the baseline difference was 29.31 HU. The reason for this

baseline difference was that the scan started too late. Additionally, ROI 2 and

ROI 3 show outliers when using the fermi method, but no outlier can be found

in ROI 2 when using the upslope method. The outliers in ROI 2 and ROI 3

occurred in PatientID 1024, where the baseline differences were 28.58 HU and

33.89 HU, respectively. Again, the scan was started too late. Therefore, it seems

that baseline differences have more impact on the perfusion results when using

the fermi method.
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5.2 Image Signal Intensity

In Myocardium ROI 1 outliers can be found in both the native and the contrast

enhanced image. These outliers occurred in PatientID 67 where a ring-artifact

was found. Further outliers are in the native image in ROI 3 and ROI 5. They

occurred in PatientID 51 and PatientID 78, respectively. The range of the signal

intensities are highest for the contrast enhanced images in ROI 3 and ROI 5.

5.3 Image Noise

The ranges for image noise in the quantitative evaluation are very similar for

all ROIs. In the observer assessment there are also very similar results for each

ROI. The quantitative evaluation for image noise by determining the standard-

deviation is not difficult. On the other hand, the observer assessment of image

noise is not that easy, since it is hard to define. Some may interpret noise only

as appearance of artifacts, others may interpret it as the graininess in the image.

Summed up, the images are very noisy because only 28 % of the ROIs were

assessed better than average noise and 35 % were assessed worse than average

image noise. It also depends on the choice of the window.

5.4 Artifacts

Artifacts were only assessed by radiologists. There was no quantitative evalua-

tion for artifacts per se, but the idea was that it would be comparable to the

quantitative image noise assessment.
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5.4.1 Streak-artifacts

The observer assessed that streak-artifacts have the most impact on ROI 3 and

the least on ROI 5. When comparing those two ROIs, ROI 3 is additionally

influenced by contrast medium in the aorta, contrast medium in the right heart

and the rib. On the other hand, ROI 5 is additionally influenced by LAD and

LCX.

The most frequent origin is the vertebral body followed by the aortic valve and

’none of the aforementioned’ origin. The reason for the frequent observation

of the aortic valve may be that patiens with aortic valve stenosis were selected

for this work. Calcifications in the aortic valve can lead to this stenosis and

therefore, artifacts like beam-hardening can occur.

The category ’none of the aforementioned’ includes origins that were either

not by default selectable or written by hand on the questionnaire. E.g., one

radiologist writes that the contrast medium in the left ventricular cavity

causes streak-artifacts. Another radiologist writes that detector defects cause

streak-artifacts.

5.4.2 Motion-artifacts

The results for the motion-artifact assessment showed that 16.96 % of the ROIs

were affected by motion-artefacts. Although the breath-hold time can last until

30 s, motion-artifacts due to respiration were rare. Besides, motion-artifacts may

lead to shift the ROIs out of the myocardium and therefore have an impact on

image quality degradation. On the other hand, motion-artifacts can also occur

when the heart beats too fast. This can lead to i.e. blurring of the border between

the heart and the lung.
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5.4.3 Ring-artifacts

Ring-artifacts affect diagnostic information or show major artifacts in the ven-

tricle and ROI 1. Minor artifacts can be assessed in descending order as follows:

ROI 5, ROI 2, ROI 4 and ROI 3. That is because ring-artifacts occur if a de-

tector fails to function or is out of calibration [34], as described in section 2.4.4.

These artifacts occur in the center of the FOV and therefore in the adjacent

ROIs. These ring-artifacts appeared in the scans acquired in Moscow in Patien-

tID 25 and PatientID 45, which were scanned on 26/02/2015 and 21/02/2015,

respectively. Also in PatientID 66 and PatientID 67, which were scanned on the

same day (11/06/2015). Scans acquired in Tashkent show ring-artifacs too. Pa-

tientID 1018 was scanned on 16/12/2016 and PatientID 1037 one year later on

26/12/2017. In between, the scanner may have been calibrated.

5.5 Signal-to-Noise Ratio

The lowest SNRs of the native images can be found in ROI 3 and ROI 5, but

in the contrast enhanced images these differences are negligible. Therefore, the

outliers in the results for the MBF can not be explained by the result of the SNR.

On the other hand, the results for the SNR of the curvefit show negative values

for nearly every myocardial ROI. Only ROI 3 has just an outlier in the negative.

The scatterplot for the quantitative SNR and the SNR of the curvefit show no

statistical significant correlation. This difference may occur due to the different

calculation methods. The quantitative estimation of the SNR in native and con-

trast enhanced images represents only two fixed moments. The calculation of the

SNR of the curvefit includes the volatility over time.
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5.6 Image Contrast

The term ’image contrast’ in this work can be misinterpreted. Not only the

difference of the density in the myocardium and the adjacent ventricle in one

slice was meant, but the contrast enhancement of the myocardium during the

first pass of the contrast medium. Myocardium ROI 3 shows highest CNR in

both the quantitative evaluation and the curvefit. On the other hand, observer

assessed that ROI 4 and ROI 5 show the best contrast.

5.7 Curve Fitting

The distance between the baselines in the ventricle and the myocardium show

that the medians of the ROIs are in a range from 0.30-7.58 HU. Therefore, the

baselines for the ventricle and the myocardium had a good agreement for one

half of the patients. But the other half of the patients show distances up to more

than 30 HU. A significant result for MBF calculation in distances up to more

than 30 HU is disputable.

The distance between the minimum of the raw and the model data shows medi-

ans in a range from 5.46-9.40 HU. The extreme outliers in Myocardium ROI 1,

ROI 2 and ROI 4 occur in PatientID 51. The highest value in ROI 5 belongs to

PatientID 78.

The distance between the maximum of raw and model data has medians in a

range from 7.16-11.21 HU. The outlier in Myocardium ROI 1 occurs in Patien-

tID 1023, and the outlier in ROI 5 occurs in PatientID 78.

The distance between the signal range of raw and model data has medians in

a range from 11.95-17.52 HU. Therefore, finding the suitable minimum for the

model data seems to work better than finding the suitable maximum. This dis-

crepancy in finding the suitable minimum and maximum is reflected in the results

for the distance of the signal range. These results are comparable to the range
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of image noise.

The extreme outlier of the mean square error in ROI 1, ROI 2 and ROI 3 occur

in the same patient, namely PatientID 51. These ROI’s were affected by motion-

artifacts and streak-artifacts. The causes for these streak-artifacts were: The

aortic valve, the vertebral body and contrast medium in the right heart. The

mild outlier in ROI 4 occur in PatientID 78. The outlier in ROI 5 came from

PatientID 51 and PatientID 78, and one mild outlier came from PatientID 165.

Therefore, only three patients are reliable for these outlier. ROI 4 and ROI 5 in

PatientID 78 were affected by motion-artifacts. Occasionally, these ROIs slipped

into the ventricle. This led to a noisy data set in these ROIs and further to a high

mean square error. ROI 5 in PatientID 165 was also affected by motion-artifacts

but did not slip into the ventricle. Additionally, a ring-artifact occurred in this

ROI.
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6 Conclusion

The quantitative evaluation of myocardial perfusion using computed tomography

is a promising modality. However, the results of the perfusion calculation depend

on the image quality of the CT scans. In particular, image noise due to streak-

artifacts degrades the image quality at most. The streak-artifacts were mainly

caused by the vertebral body. Furthermore, the calcifications of the aortic valve

and the mitral valve led to streak-artifacts. Besides, the image quality of the

myocardium depends on the location. The apical region of the myocardium is

most affected by streak-artifacts followed by the interseptal region whereas the

lateral region is the least affected.

Motion-artifacts that influenced the diagnostic information occurred only in one

patient and concerned the entire myocardium. Therefore, it could be shown that

motion-artifacts are rare, but if they occur, they have a great impact on the per-

fusion results.

Ring-artifacts were also rare but had hardly an effect on image quality. They

occurred only in the ventricle and the basoseptal region of the myocardium. The

reason for this location is the consistently erroneous reading at each view of the

detector system in which the central detectors were involved. This artifact can

easily be fixed by recalibration or repair service. The subjective image contrast

also depends on the localization, because the lateral region of the myocardium

was rated better in terms of image contrast than the septal region. The reason

for this is probably that the contrast of the lateral region, which is surrounded

by the lungs, is subjectively felt more strongly than the contrast between the

myocardium and the right ventricle.

The perfusion of the myocardium was calculated using two different methods, the
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Upslope and the Fermi method. The Upslope method requires model curves that

fit the raw data. Therefore, the result of the perfusion calculation depends on how

accurate the raw data is fitted by the model curve. To determine this accuracy

the mean square error was calculated, where the smaller the mean square error

the better the accuracy. The reasons for high mean square errors were high image

noise due to motion-artifacts in one patient and streak-artifacts in two patients,

which led to overestimated results in the perfusion evaluation. Nevertheless, there

were patients with low mean square errors and overestimated perfusion results.

The reason for that was the difference between the myocardial and ventricular

baseline. The baselines were not recognized correctly either because the data

had high noise or because the timing between the contrast agent application and

scanstart was not chosen correctly.

In order to improve the quality of the perfusion evaluation special attention should

be paid to the avoidance of scanner-based artifacts that could be avoided by

calibrating the scanner. Since the vertebral body apparently has the greatest

influence on the emergence of streak artefacts, correction algorithms could be

developed which counteract this influence. Another step to improve the perfu-

sion results is to optimize the timing between contrast agent and scanstart. By

improving the image quality, the evaluation of the left ventricular myocardial

perfusion using computed tomography could be given a higher priority.
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A Appendix

A.1 Questionnaire
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Questionnaire Assessment of Image Quality   Michaela Hawranek 

[1] 

 

 

Questionnaire: Assessment of Image Quality 

 

1. Introduction 

My name is Michaela Hawranek and I am writing my masterthesis with the topic 
„Quantitative Evaluation of Left Ventricular Myocardial Perfusion Using Computed 
Tomography – Assessment of Image Quality”. 

This questionnaire is divided into 3 parts, Assessment of Image Contrast, Assessment of 
Image Noise and Assessment of Artifacts, respectively.  

The Assessment of Artifacts is subdivided into Streakartifacts, Ringartifacts and 
Motionartifacts. 

To assess the Image Quality the following questions for 14 patients are provided. To 
answer the questions please circle your choice. 

Thank you very much! 

 

The picture on the right side shows an  

example of ROI-Arrangement in the  

Myocardium: 

ROI 1…septobasal 

ROI 2… septoapical 

ROI 3…apical 

ROI 4…lateroapical 

ROI 5…laterobasal 

 

 

2. Beginn of Questionnaire: 

Years of CT Experience 

 

5-8 9-12 13-17 18-25 > 25 
 

 

ROI 1 

ROI 2 
ROI 3 

ROI 4 

ROI 5 

Ventricle 

ROI 5 



Questionnaire Assessment of Image Quality   Michaela Hawranek 

[2] 

Patient Nr. 25 
1. Assessment of Image Contrast 

Please assess the Image Contrast between the Myocardium ROI 1-5 in the native 
Image and Image with maximal Contrast. 

Image contrast is ranked and assessed by using a five-point scale (5 = excellent image contrast, 4 = 
above average contrast, 3 = acceptable image contrast, 2 = suboptimal image contrast, and 1 = very 
poor contrast). 

 

 

2. Assessment of Image Noise 

Please assess the Image Noise for the Ventricle ROI and for Myocardium ROI 1-5. 

Subjective image noise is assessed by using a five-point scale (5 = minimal image noise, 4 = less than 
average noise, 3 = average image noise, 2 = above average noise, and 1 = unacceptable image noise). 

 

 

 

 Excellent 

Image 

Contrast 

Above Image 

Contrast 

Acceptable 

Image 

Contrast 

Suboptimal 

Image 

Contrast 

Very Poor  

Image 

Contrast 

ROI 1 5 4 3 2 1 

ROI 2 5 4 3 2 1 

ROI 3 5 4 3 2 1 

ROI 4 5 4 3 2 1 

ROI 5 5 4 3 2 1 

 

 Minimal 

Image 

Noise 

Less than 

Average 

Image Noise 

Average 

Image Noise 

Above 

Average Noise 

Unacceptable 

Image Noise  

ROI Ventricle 5 4 3 2 1 

ROI 1 5 4 3 2 1 

ROI 2 5 4 3 2 1 

ROI 3 5 4 3 2 1 

ROI 4 5 4 3 2 1 

ROI 5 5 4 3 2 1 
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3. Assessment of Artifacts  

3.1 Streak-artifacts 

Please assess the Streak-artifact for the Ventricle ROI and for Myocardium ROI 1-5. 

Artifacts are graded using a four-point scale: 1 = artifacts affecting diagnostic information, 2 = major artifacts 
affecting visualization of major structures but diagnosis still possible, 3 = minor artifacts not interfering with 
diagnostic decision making, and 4 = No artifacts 

 

If there are any Streak-Artifacts, what are their origin? Please mark with a cross the origin of 
Streak-artifacts and the corresponding ROI in the lists below. 

Streak-
artifact 

Artifacts 

affecting 

diagnostic 

information 

Major artifacts Minor artifacts No artifacts 

ROI Ventricle 1 2 3 4 

ROI 1 1 2 3 4 

ROI 2 1 2 3 4 

ROI 3 1 2 3 4 

ROI 4 1 2 3 4 

ROI 5 1 2 3 4 

 

Calcification/Implants in: RCA LAD LCX Aortic Valve Mitral Valve  

Appear in which ROI:       
  

ROI Ventricle ☐ ☐ ☐ ☐ ☐ 

ROI 1 ☐ ☐ ☐ ☐ ☐ 

ROI 2 ☐ ☐ ☐ ☐ ☐ 

ROI 3 ☐ ☐ ☐ ☐ ☐ 

ROI 4 ☐ ☐ ☐ ☐ ☐ 

ROI 5 ☐ ☐ ☐ ☐ ☐ 

 

 Rip  Vertebral 
Body 

 Contrast 
Medium in 

Aorta 

 Contrast 
Medium in 
Right Heart 

 Pacemaker 
Leads 

 ECG 
Leads 

None of the 
afore- 

mentioned 

Appear in 
which ROI: 

        

ROI Ventricle ☐  ☐  ☐  ☐  ☐  ☐ ☐ 

ROI 1 ☐  ☐  ☐  ☐  ☐  ☐ ☐ 

ROI 2 ☐  ☐  ☐  ☐  ☐  ☐ ☐ 

ROI 3 ☐  ☐  ☐  ☐  ☐  ☐ ☐ 

ROI 4 ☐  ☐  ☐  ☐  ☐  ☐ ☐ 

ROI 5 ☐  ☐  ☐  ☐  ☐  ☐ ☐ 
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3.2 Ring-Artifact 

Please assess the Ring-artifact for the Ventricle ROI and for Myocardium ROI 1-5. 

Artifacts are graded using a four-point scale: 1 = artifacts affecting diagnostic information, 2 = major 
artifacts affecting visualization of major structures but diagnosis still possible, 3 = minor artifacts not 
interfering with diagnostic decision making, and 4 = No artifacts 

 

3.3 Motion-Artifact 

Please assess the Motion-artifact for the Ventricle ROI and for Myocardium ROI 1-5. 

Artifacts are graded using a four-point scale: 1 = artifacts affecting diagnostic information, 2 = major 
artifacts affecting visualization of major structures but diagnosis still possible, 3 = minor artifacts not 
interfering with diagnostic decision making, and 4 = No artifacts 

 

End of Patient 25 

Ringartifact Artifacts 

affecting 

diagnostic 

information 

Major artifacts Minor artifacts No artifacts 

ROI Ventricle 1 2 3 4 

ROI 1 1 2 3 4 

ROI 2 1 2 3 4 

ROI 3 1 2 3 4 

ROI 4 1 2 3 4 

ROI 5 1 2 3 4 

 

Motion 
Artifact 

Artifacts 

affecting 

diagnostic 

information 

Major artifacts Minor artifacts No artifacts 

ROI Ventricle 1 2 3 4 

ROI 1 1 2 3 4 

ROI 2 1 2 3 4 

ROI 3 1 2 3 4 

ROI 4 1 2 3 4 

ROI 5 1 2 3 4 

 



B Plots

Figure B.1: Pieplot for the causes of Streak-artifacts in ROI 1
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Figure B.2: Pieplot for the causes of Streak-artifacts in ROI 2

Figure B.3: Pieplot for the causes of Streak-artifacts in ROI 3
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Figure B.4: Pieplot for the causes of Streak-artifacts in ROI 4

Figure B.5: Pieplot for the causes of Streak-artifacts in ROI 5
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Figure B.6: Pieplot for the causes of Streak-artifacts in Ventricle

Figure B.7: Histogram for the observer evaluation of image contrast in ROI 1
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Figure B.8: Histogram for the observer evaluation of image contrast in ROI 2

Figure B.9: Histogram for the observer evaluation of image contrast in ROI 3
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Figure B.10: Histogram for the observer evaluation of image contrast in ROI 4

Figure B.11: Histogram for the observer evaluation of image contrast in ROI 5
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Figure B.12: Histogram for the observer evaluation of streak-artifacts in ROI 1

Figure B.13: Histogram for the observer evaluation of streak-artifacts in ROI 2

115



Figure B.14: Histogram for the observer evaluation of streak-artifacts in ROI 3

Figure B.15: Histogram for the observer evaluation of streak-artifacts in ROI 4
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Figure B.16: Histogram for the observer evaluation of streak-artifacts in ROI 5

Figure B.17: Histogram for the observer evaluation of streak-artifacts in the

ventricle
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Figure B.18: Histogram for the observer evaluation of motion-artifacts in ROI 1

Figure B.19: Histogram for the observer evaluation of motion-artifacts in ROI 2
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Figure B.20: Histogram for the observer evaluation of motion-artifacts in ROI 3

Figure B.21: Histogram for the observer evaluation of motion-artifacts in ROI 4
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Figure B.22: Histogram for the observer evaluation of motion-artifacts in ROI 5

Figure B.23: Histogram for the observer evaluation of motion-artifacts in the

ventricle
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Figure B.24: Histogram for the observer evaluation of ring-artifacts in ROI 1

Figure B.25: Histogram for the observer evaluation of ring-artifacts in ROI 2
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Figure B.26: Histogram for the observer evaluation of ring-artifacts in ROI 3

Figure B.27: Histogram for the observer evaluation of ring-artifacts in ROI 4
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Figure B.28: Histogram for the observer evaluation of ring-artifacts in ROI 5

Figure B.29: Histogram for the observer evaluation of ring-artifacts in the ven-

tricle
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Figure B.30: Correlation between Upslope and Fermi method for MBF in ROI1

Figure B.31: Correlation between Upslope and Fermi method for MBF in ROI2
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Figure B.32: Correlation between Upslope and Fermi method for MBF in ROI3

Figure B.33: Correlation between Upslope and Fermi method for MBF in ROI4
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Figure B.34: Correlation between Upslope and Fermi method for MBF in ROI5
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