
Stefan Painhapp, BSc

Continuous Integration for iOS Apps
A practical approach for Pocket Code

Master’s Thesis

to achieve the university degree of
Master of Science

submitted to
Graz University of Technology

Supervisor
Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Institute for Software Technology

Graz, May 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Abstract

Continuous Integration (CI) has been increasingly gaining importance at
Software Development workflows during the course of recent years. The
benefits of automated processes and feedback are facilitating the agility
of developers and improving productivity. In this thesis the concepts of
Continuous Integration are explained in general, moreover how they can be
specifically used at iOS Development.

A practical example of a Continuous Integration pipeline is shown with
the introduction of CI at the development of Catrobat’s Pocket Code for
iOS. Additionally, the tools in use for this practical setup of CI and Con-
tinuous Delivery (CD) for iOS are explained in detail. At the end a short
summary shows the findings of the practical work and an outlook of future
developments of CI.

iii

Kurzfassung

Die Bedeutung von Kontinuierlicher Integration (Continuous Integration)
hat in der Softwareentwicklung in den vergangenen Jahren immer mehr
zugewonnen. Die Vorteile von automatisierten Prozessen und Rückmel-
dungen fördern die Agilität der Entwickler und erhöhen die Produktivität.
In dieser Arbeit werden die Konzepte von Kontinuierlicher Integration
im Allgemeinen, sowie dessen Eigenheiten in Bezug auf iOS Entwicklung,
erklärt.

Ein praktisches Beispiel eines Kontinuierlichen Integrations-Ablaufs wird
anhand der Einführung des Prozesses bei Catrobat’s Pocket Code für iOS
vorgestellt. Weiters werden die Werkzeuge für die Verwendung von Kon-
tinuierlicher Integration und Kontinuierlicher Bereitstellung (Continuous
Delivery) für iOS genauer erläutert. Schlussendlich werden die Ergebnisse
der praktischen Arbeit zusammengefasst und ein Ausblick für Kontinuier-
liche Integration und Kontinuierliche Bereitstellung präsentiert.

v

Contents

Abstract iii

List of Figures ix

Listings xi

1. Introduction 1
1.1. Catrobat . 2

1.2. Catty - Pocket Code for iOS . 3

1.2.1. iOS market for Pocket Code 5

Part I: Theoretical 9

2. iOS Development 9
2.1. FOSS in the iOS ecosystem . 9

2.2. Programming Languages (Objective-C, Swift) 10

2.3. Code Signing . 12

3. Continuous Integration 15
3.1. Practices . 15

3.2. Requirements . 17

3.3. Feedback . 17

3.4. Benefits . 18

3.5. Continuous Delivery . 19

Part II: Practical 23

4. Motivation 23
4.1. Situation before CI introduction 23

4.2. Challenges at setting up CI . 24

vii

Contents

5. Infrastructure and Tools 27
5.1. Automation Server - Jenkins . 27

5.2. App Automation Tool - Fastlane 30

5.3. In-Browser App Testing - Browserstack 33

5.4. Internationalization & Localization - Crowdin 34

5.5. Project Management - Jira . 36

6. Continuous Integration 37
6.1. Version Control System - Github 37

6.1.1. Gitflow for Pocket Code 39

6.1.2. Pull Request Integration 40

6.2. Build Process . 41

6.2.1. Dependency Management - Carthage 41

6.2.2. Coding Standard - Linting 42

6.3. Running Automated Tests . 43

6.3.1. Problems & Limitations 44

6.4. Distribution . 46

6.4.1. Provision of Ad-hoc Builds 46

7. Continuous Delivery 49
7.1. Pre-Release Actions . 49

7.2. Release Deployment . 50

7.2.1. App Store Connect . 51

7.2.2. Localized Metadata & Screenshots 52

7.3. Beta Testing . 56

7.4. App Store Review . 57

7.5. App Store Optimization . 58

Part III: Findings 63

8. Conclusion 63
8.1. Outlook . 63

8.2. CI at Pocket Code for iOS . 64

Bibliography 67

A. Acronyms 71

viii

List of Figures

1.1. Pocket Code for iOS app icon 3

1.2. Visual Programming in Pocket Code 4

1.3. Smartphone user share by operating system in the US 5

1.4. Age Profile of Smartphone Users in the UK 6

2.1. Stackoverflow Developer Survey 2019 11

2.2. Provisioning Profiles at Xcode 10 12

3.1. CI usage of projects in GitHub 18

3.2. Relationship between CI, Delivery and Deployment 19

5.1. Jenkins - PR pipeline . 28

5.2. Fastlane features . 31

5.3. In-Browser-testing with Browserstack 33

5.4. Crowdin - translation view . 35

5.5. Jira - Kanban Board of Catty . 36

6.1. CI Overview . 38

6.2. Gitflow - example illustration 39

6.3. Github - Jenkins integration . 40

6.4. Successful test result page of a Jenkins job 44

7.1. App Store Connect portal . 51

7.2. Localized Screenshots . 55

7.3. Public beta acceptance process 56

7.4. App Store Statistics for Pocket Code, Jan 2019 - Apr 2019 . . . 59

ix

Listings

5.1. Jenkinsfile - Pipeline configuration 29

5.2. Extract of Fastfile . 32

5.3. Crowdin - Export settings . 34

6.1. Ad-Hoc Installation Link . 46

6.2. Ad-Hoc Manifest Installation File 47

7.1. Snapshot UI Test - Code snippet 53

7.2. Snapfile - Snapshot configuration 54

xi

1. Introduction

Continuous Integration (CI) is a practice at Software Development that
resulted from the drawbacks of developers working on a set of features for
a long time span. After the completion of changes, merging the code was
a cumbersome task. The phrase “Continuous Integration” has been used
in literature before, but became popular with the publication of Extreme
Programming (XP) by Kent Beck’s demand:

“Continuous integration — Integrate and build the system many times
a day, every time a task is completed” , Beck (1999)

Many XP teams started to adopt to this behaviour. In 2000, Fowler and
Foemmel published their findings about using a basic CI setup. Wider
adoption came with the software CruiseControl1 in 2001, which was one of
the first tools that provided a set of features to tackle the challenges of CI.

Since then, CI development has come a long way and several different
software solutions are offered. However, the principles, challenges and ben-
efits stated in original publications, further discussed in chapter 3, are still
valid. Enhancement to CI, like Continuous Delivery (CD) are additionally
automating reoccurring tasks of the Software Development cycle.

Over the course of this work, CI will be discussed with the special focus
on iOS development (2). The setup is including several challenges, not only
the ones that come with developing smartphone apps itself, but also with
a very restrictive runtime and development environment of Apple, that is
increasing the difficulty of CI introduction for iOS App Development.
A practical implementation of a CI system is shown with the help of Catro-
bat’s Pocket Code.

1http://cruisecontrol.sourceforge.net/, visited on 05/15/2019

1

http://cruisecontrol.sourceforge.net/

1. Introduction

1.1. Catrobat

Catrobat was founded by Wolfgang Slany at Graz University of Technology.
It started with the vision of bringing Visual Programming in the education
sector to the emerging market of smartphones.
Inspired by the existing work of Scratch2 from MIT an Android app “Pocket
Code” was created (team name: Catroid). It uses the same concept of graphi-
cal scripting bricks to develop apps and games directly on phones.

This approach came not only with new difficulties - compared to the existing
web- and computer-based products - by using smaller screen sizes and
touchscreen input, but also with new possibilities to enable the creativity
of the users. The capabilities of using cameras, accelerometer, location data
and many other functionalities of smartphones are implemented within
Pocket Code to be utilised when developing projects.

All products developed by Catrobat are FOSS projects dependant on the
work of volunteers. Numerous developers, translators and other project
members are participating to constantly improve the functionalities by
realizing new ideas.

Several teams are working on different projects. Besides Catroid (Android),
there are Catty (iOS - presented in the following chapter), Jenkins (CI
environment), Catroweb (website and sharing), Paintroid (drawing app for
Android) and special teams for Design, Drones, Music, Lego Robots, Phiro
Robots, as well as working groups to research new technologies (example:
Catblocks - Google Blockly3).

Some projects were discontinued, such as Catrobat’s HTML5 player or
the Windows Phone app. Especially after Microsoft announced that they
are stopping the development of Windows Phone, the smartphone market
became a duopoly and providing an iOS version of Pocket Code became
crucial for supporting most of the devices on the market.

2https://scratch.mit.edu, visited on 10/05/2019

3https://developers.google.com/blockly/, visited on 05/15/2019

2

https://scratch.mit.edu
https://developers.google.com/blockly/

1.2. Catty - Pocket Code for iOS

Figure 1.1.: Pocket Code for iOS app icon.

1.2. Catty - Pocket Code for iOS

The idea for an iOS implementation of Pocket Code was already established
in 2012. Under the team name “Catty” (reference to “Pocket Code for iOS”), a
prototype was realized to evaluate the potential. The project did not develop
as rapidly as the Android counterpart, due to the lack of iOS developers at
Graz University of Technology and other factors. At the beginning of 2018

a feature-stop was coordinated, and the decision was made to publish the
app with a lower Catrobat language version (0.991) than currently released
in other projects. The language version of Catrobat defines the standard,
which includes featured bricks, their functionality and how projects are
stored in XML files and the corresponding file structure. After eradicating
misbehaviour and preparing the app for release, Pocket Code went live on
the Apple App Store on 18/01/2019. The app icon is shown in figure 1.1.

Catty is a fully native implementation using iOS frameworks (for more in-
formation about iOS Development, see chapter 2), sharing the same backend
with other Catrobat projects. As a result, Catrobat projects can be shared
across platforms and different operating systems.

3

1. Introduction

Figure 1.2.: Visual Programming with bricks in Pocket Code.

One of the challenges at implementing Catty was to provide the same user
experience as on other Catrobat platforms, while also following Apple’s set
of rules for iOS apps. All iOS apps distributed on the Apple App Store have
to follow the Human Interface Guidelines4, which are checked by Apple
during a review process (see chapter 7.4).

Figure 1.2 illustrates the visual editor for developing projects within Catty.
iOS UI patterns are used for an intuitive user experience and mitigating
rejections during App Review. On the other hand it is showing a familiar
UI for users, who are already using other Catrobat products.

4https://developer.apple.com/design/human-interface-guidelines/ios/, vis-
ited on 05/15/2019

4

https://developer.apple.com/design/human-interface-guidelines/ios/

1.2. Catty - Pocket Code for iOS

Figure 1.3.: Smartphone user share by operating system in the United States from 2014 to
2021, from Statista, eMarketer, 2019.

1.2.1. iOS market for Pocket Code

Catrobat’s philosophy is pursuing the goal to teach Programming in a play-
ful way to any interested person, whereat kids and teenagers are especially
targeted. Pocket Code for Android is also popular in developing countries,
as the smartphone market is notably surpassing computers. In terms of iOS
importance, the market is globally smaller in contrast to Android.

In some countries - like the US market (shown in figure 1.3), but also in
specific countries in Asia (South Korea, Japan) - iOS has a substantial market
share. With the release of Pocket Code for iOS, these phone owners can
also be served, thus helping the vision of Catrobat by offering cross-device
sharing of created content.

5

1. Introduction

Figure 1.4.: Age profile of smartphone users in the United Kingdom (UK) in 2015, by
operating system (OS), from Statista, MediaTel, 2015.

In figure 1.4 the target group of teenagers in the United Kingdom, 2015 is
specified by operating system. There is a noticeable trend of younger age
groups using iOS, whereas Android is more popular at older age groups.

6

Part I
Theoretical

7

2. iOS Development

In this chapter, iOS development characteristics related to Pocket Code are
discussed. Catty is using a variety of iOS frameworks, such as:

SpriteKit Framework for creating 2D games, supporting physics effects.
Core functionality for graphical interpretation, when running Catty
projects

CoreMotion Framework for accessing accelerometer, gyroscope and pe-
dometer data. The data can be used when executing projects at run-
time.

AVFoundation Framework for audio playback and camera support, making
Media content available within Catty projects.

These frameworks will not be covered in detail. Instead, the respective
information necessary for CI and CD should be pointed out.

2.1. FOSS in the iOS ecosystem

Due to the nature of Apple’s philosophy of distributing a closed, proprietary
system, FOSS is less common in contrast to Android. Especially in terms
of Software Distribution, developers are tied to the App Store Guidelines,
making it less attractive for open source projects to provide iOS versions,
as their single distribution channel can be revoked by Apple at all times.
Unlike Android, alternative markets for iOS Software Distribution (example:
Cydia, after jailbreaking devices) are exceptions and used by a minority.

However, renowned FOSS projects like Firefox, owncloud/nextcloud, VLC
and messengers (Signal, Telegram) among others are also providing iOS
versions.

9

2. iOS Development

In 2014, Apple announced the new programming language Swift. One year
later (2015), there was a paradigm shift by Apple, making Swift fully open
source and utilising the community engagement. That brings us to the next
section.

2.2. Programming Languages (Objective-C,
Swift)

Until the introduction of Swift, Objective-C was the only officially supported
language for iOS Development by Apple. As for iOS software updates
from user perspective, the adoption rate at the development community
has been tremendous to adjust to Swift. It is specifically owed to the low
popularity of Objective-C, which has also been proved at Stack Overflow
Insights, 2019. In this study, nearly 90,000 developers participated to rate
their most and least favourite programming languages. As illustrated in 2.1,
the development community really embraced the new software development
concepts introduced by Swift.

Some of the new features are:

No Pre-Processor Objective-C is based on C. At Swift no pre-processor is
needed, the source code consists of a single file (no header files).

Optionals Improved handling of non-existing values.
Protocols Acting as blueprint for requirements (methods, properties) that

can be assigned to classes.
Syntax Appearance is more common to modern programming languages.

Objective-C’s square brackets syntax is obsolete.

Other features like Range- and Overflow Operators, Lazy Stored Properties
and Closures are pointed out in the work of Garcia et al., 2015.

By May 2019, Catty’s code base consists of 59.2 % Objective-C, 37.1 % Swift
and 3.7 % other source code. Over the course of this thesis, several modules
have been migrated to Swift during refactoring, as well as newly introduced
concepts like Linting (see 6.2.2) have been realised with Swift.

10

2.2. Programming Languages (Objective-C, Swift)

Figure 2.1.: Loved (left) and dreaded (right) programming languages in percentage, from
Stack Overflow Insights, 2019

Rebouças et al. (2016) claimed in an empirical study on the usage of Swift
that it can be easily adopted by developers. The majority of the questions
during the interviews have not been about Swift, but more about libraries
and frameworks in general. This was also observed at Catrobat; team mem-
bers that were new to iOS Development showed a drastically decreased
learning curve than when confronted with Objective-C code.

Swift itself is using CI at development for PR integration testing on macOS,
Linux (Ubunutu) and iOS (Simulator) via Jenkins server1.

1https://ci.swift.org/, visited on 05/15/2019

11

https://ci.swift.org/

2. iOS Development

Figure 2.2.: Provisioning Profiles at Xcode 10.

2.3. Code Signing

A requirement for running iOS apps on physical devices is code signing. To
execute builds on a physical device, a signing certificate has to be requested
from Apple. This is done by creating a Certificate Signing Requests (CSR)
on the implementation machine and uploading the CSR to Apple. After
that, the provided certificate has to be added to the local Keychain of the
workstation. Meanwhile, Xcode is providing functionality to automatically
handle these requests for the developer. The integration into Xcode is illus-
trated in figure 2.2.

Signing Certifcates

Signing certificates can be classified into two categories: Development and
Distribution. Development certificates are bound to the Developer Identifier,
whereas Distribution certificates are attached to the Team Identifier.

12

2.3. Code Signing

The following signing certificates are examined:

Development Used by team members for development (builds).
Ad-hoc (Distribution) Enables over-the-air distribution for a limited num-

ber of devices (100). The devices have to be registered with their UUID
in the developer portal.

App Store (Distribution) Required signing method for builds that are up-
loaded to the App Store infrastructure.

Enterprise (Distribution) Propagation of builds outside of the App Store.

Development, Ad-hoc and App Store signing is included in the Apple
Developer Membership for iOS. Enterprise certificates are exclusive for
publishers that are not using the App Store. A seperate developer mem-
bership is needed and can not be combined with an existing App Store
membership.

Enterprise distribution outside the App Store is uncommon. Zheng et al.,
2015 analysed the state of the market and their opposing security risks,
finding several malicious apps.

Provisioning Profiles

Provisioning Profiles act as container that include all necessary components
of code signing, including certificates:

App Information General information about the app: Bundle-Id, Team Id
and the list of Entitlements (Push Notifications, Siri, HomeKit, ...).

Certificates Intended signing certificate.
Devices A list of devices by name and UUID, which are allowed to install

the signed build.

These profiles are used for signing a build. Common errors at build time
are caused by corrupt, expired or incorrect Provisioning Profiles.

13

3. Continuous Integration

Continuous Integration was introduced due to a common problem area at
software development teams: Every developer is working on an assigned
set of features until completion, until finally everything is tied together in
an integration phase. This can not be accomplished without difficulties in
most cases. As a result, integration becomes an uncertainty in development
cycles. If problems occur, the origin is not easily identifiable and it results
in a lengthy search for errors and bugs.

The idea of CI is to avoid these incidents by integrating as often as possible.
As manual integration can be an extensive task, it needs to be automated
wherever feasible. Duvall, Matyasand, and Glover (2007) accurately summed
it up:

“Developers spend most of their time automating processes for their
users, yet don’t always see ways to automate their own development
processes.”

Then again, CI is more than simple scripts tied together. Stakeholders of the
development process have to adhere to new rules and principles, that are
showing additional benefits to the sole concept of automation.

3.1. Practices

For CI to work, some behaviours and processes have to be adopted by
the developers. CI should not interfere with other software development
concepts, that might already be in use, like Agile, Scrum, XP or TDD
among others. The success factor of a CI system, however, is dependant on
improving the habits of developers, especially when working in teams.

15

3. Continuous Integration

Fowler and Foemmel, 2006 defined the following key practices for CI:

Maintain a Single Source Repository Every developer involved needs to
work on a single code base. All necessary parts should be included
and accessible by all members – only third-party components can be
referenced by dependecy management.

Automate the build Builds are automatically executed as first step of the
CI pipeline. Xcode provides command line tools for building without
the need of in IDE at iOS Development.

Make your Build Self-Testing Successful compilation of builds in the pre-
vious step are not guaranteeing correct functionality. All created tests
should be run additionally to verify the changes.

Everyone Commits To the Mainline Every Day Daily commits act as a rule
of thumb. Later literature (Duvall, Matyasand, and Glover, 2007) even
suggests frequent commits, many times a day – the more often, the
better.

Every Commit Should Build the Mainline on an Integration Machine CI jobs
at every commit ensure finding possible errors in a timely manner.
When introducing CI, nightly builds are a good start.

Keep the Build Fast Crucial for the productivity of the developers. Fast
responses mean, that they can focus on other tasks quickly, instead of
waiting for the CI status.

Test in a Clone of the Production Environment Tests should match the
live environment. iOS testing on physical devices might be more
beneficial than using iOS simulators in some cases.

Make it Easy for Anyone to Get the Latest Executable Getting builds for
specific changes is especially important for helping other team mem-
bers during problems or at code review.

Everyone can see what is happening Information about all CI runs should
be shared with the rest of the team. Modern CI tools are offering
valuable information to all members.

Automate Deployment This principle of Fowler and Foemmel resulted in
further deployment improvements, Continuous Delivery (see: 3.5).

16

3.2. Requirements

3.2. Requirements

CI itself does not require particular tools, although the following parts are
found in most CI setups:

Version Control System A central access point for developers. Example: a
source control system like Git.

Automation Tools A collection of tools to automate the processes, necessary
for CI (build, test, analyse). It is usually handled by the CI server and
its features.

Software Development Some preconditions at software development pro-
cesses are necessary, such as:
a) Tests should already be present, if CI is introduced in existing
development teams. More precisely, it is crucial that the tests are
meaningful for providing valuable feedback of CI. Pouclet, 2014 stated
that the tests should help the product and should not only be created
for the sake of testing.
b) Quality measures should be defined in the form of coding standards,
code coverage analysis and other actions.

3.3. Feedback

One of the main components of a CI system is the ability to provide more de-
tailed information about the development of software products. CI feedback
can help various stakeholders: Managers are able to have better insights on
the current state of developed features. They can quickly react to bottlenecks
at occurring issues by adapting workforce and priorities. Developers are able
to react faster to broken builds. The corresponding changes of a CI job are
included in the reports, which makes it easier to find bugs.

Most feedback systems of CI servers are providing additional functionalities.
For example: Emails, notifications or alerts can immediately report to specific
groups of interest, if certain cases occur.

17

3. Continuous Integration

Figure 3.1.: CI usage of projects in GitHub. Projects are sorted by popularity (number of
stars), taken from Hilton et al., 2016

3.4. Benefits

During the introduction of CI, multiple problems have to be tackled, besides
the technical challenges. The processes have to be adopted from everyone
within the team, barriers have to be removed and previous habits changed.
After successfully transitioning to this organizational behaviour, several
benefits can be observed.

Hilton et al., 2016 analysed open source projects that are using CI and found
out that FOSS projects with CI release more often, not only than before
using CI, but also in comparison to other similar projects. In figure 3.1 the
correlation of popularity (number of stars of a repository) and CI usage is
pointed out.

The main advantage is a reduced risk of software errors, because of the
early detection of bad code. Thanks to automation, developer spend less
time on integration and in general less time on all processes, that have been
automated by CI tools. Response times to broken code, builds and tests are
shortened by immediate feedback to the developers. Publishing releases is
involving less stress of the team, which results in more frequent updates. In
more advanced setups of CI, this step is automated as well.

18

3.5. Continuous Delivery

Figure 3.2.: The relationship between Continuous Integration, Delivery and Deployment,
taken from Shahin, Babar, and Zhu, 2017.

3.5. Continuous Delivery

Extending the concepts and philosophies of CI to the area of Software
Publishing, results in the topics of “Continuous Delivery” (CD) and “Con-
tinuous Deployment”. Shahin, Babar, and Zhu, 2017 explain that there are
debates about the exact definitions. As seen in figure 3.2, a commonly used
distinction is, that Continuous Delivery is using a manual approach for
publishing, whereas Continuous Deployment is automatically pushing all
successful changes automatically to the production environment. This pro-
cess is difficult to achieve at iOS Development, as iOS Apps have to pass
an App Review (see, 7.4). Rossi et al., 2016 describe in their paper how
Continuous Deployment at Facebook’s iOS app is handled.

After a successful CI job, CD is dealing with the general problems of deliver-
ing software; this includes Configuration- and Release-Management. Besides
software testing, acceptance tests ensure that non-functional requirements
are fulfilled. Humble and Farley, 2010 describe the challenges of Automated
Acceptance Tests and how to handle them.

In regards to iOS development, CD has to additionally handle App-Store
specific tasks (Distribution signing, Metadata, Screenshots) during the de-
ployment.

19

Part II
Practical

21

4. Motivation

Continuous Integration has already been successfully introduced at other
Catrobat teams (Catroid, Paintroid). Findings and benefits for Catroid’s CI
were published by Luhana, Schindler, and Slany, 2018.

To take advantage of the automated workflows and improvements at Catty,
CI should be adopted at iOS development of Pocket Code as well. With
an increasing number of contributors and a matured state of Catty, CI is
becoming a necessary part for substantial product growth. Where possible,
the running infrastructure should be utilised.

In contrast to other teams, there are particular challenges regarding the iOS
software development process. Other subjects are comparatively simpler
to Android. There is less segmentation because the amount of supported
hardware and devices is limited, which makes integration testing even more
compelling.

If feasible, limitations that are bound to the Apple ecosystem should be
avoided or abstracted. Examplarily, as some product owners (PO) of Catty
do neither own a Mac nor an iPhone, PO pull request (PR) reviews have not
been possible. An isolated environment of iOS in respect to other Catrobat
teams should be prevented.

4.1. Situation before CI introduction

All required actions for integrating new source code were performed manu-
ally by a reviewer. Provision of builds for PRs and other useful processes
described in chapter 3 were not available.

23

4. Motivation

Human error ratio is a substantial part of software failures emerging from
fully manual PR reviews. The reviewer had to first pull the code changes
submitted in the PR from the VCS. Then the code is checked on local
machines for validity, coding style and other standards. After that, the
integration tests are run within the local Xcode installation. As UI tests
are a lengthy process (for a detailed explanation, see 6.3.1), the whole
development process is slowed down. Furthermore, the motivation of the
stakeholders is decreased because of the tedious adoption of new features
and code changes.

To improve overall understanding of the source code, PR reviews should
have been conducted by every team member, including junior members.
Due to the difficulty of this setup, this demand was hardly ever achieved.

Furthermore, the distribution of new release builds was manually executed
from senior project members.

4.2. Challenges at setting up CI

Xcode - the IDE for iOS Development - only works on Apple’s macOS. As a
result, a dedicated machine had to be installed to cover this task. According
to the requirements a Mac mini was integrated into the existing network of
the CI infrastructure.

Due to the already present infrastructure along with the knowledge and
experience of the Catrobat Jenkins team, the decision was made to use
Jenkins as CI server for Catty. At the beginning, other solutions besides
Jenkins have been evaluated (Circle CI1, Travis CI2 and Xcode Server).

Travis CI and Circle CI are popular choices at FOSS projects as they offer
free plans for the open source community. Xcode Server is Apple’s official
approach for iOS Continuous Integration. It is using Bots (comparable to
Jobs at Jenkins) to map the workflow. Besides traditional CI tasks (run tests,
build), it is limited in functionality; being more widespread at smaller teams

1https://circleci.com/, visited on 05/15/2019

2https://travis-ci.com/, visited on 05/15/2019

24

https://circleci.com/
https://travis-ci.com/

4.2. Challenges at setting up CI

and individual developers. After previous research of another Catrobat
project member, using Xcode Server was not further pursued.

The chosen Jenkins setup is a standalone solution, which results in less
dependencies and full control over the process, but also in administra-
tion overhead. Other reasons for choosing Jenkins are the wide range of
plugins/third-party integrations and the usage of a fully FOSS CI solution.

Moreover, in-depth knowledge to various topics had to be acquired, that
are automatically handled by Xcode when executed manually. This includes
issues like code signing for builds (development, ad-hoc, App Store - already
discussed in 2.3), as well as communicating with the App Store Connect
API (see 7.2.1) among others.

25

5. Infrastructure and Tools

For the implementation of Continuous Integration, several tools and differ-
ent software were used. In the next subchapters the major cornerstones are
explained in detail and how they have been integrated in the CI pipeline.
Also, other third-party tools and frameworks (SwiftLint - covered in 6.2.2,
Carthage - covered in 6.2.1) were facilitated that are covered in the corre-
sponding topics in chapter 6.

5.1. Automation Server - Jenkins

The development of Jenkins started in 2004. Back then, it was known as
“Hudson”, engineered and owned by Sun Microsystems. Jenkins is written
in Java and functioning as CI Automation Server at Catrobat.

The present Jenkins infrastructure consists of the following Jenkins nodes:

• master

– Slave1-HardwareSensorBox
– Slave2 emulator
– Slave3 emulator
– Slave4

– SlaveMAC Mini

The master server is handling all requests, Slave1 to Slave4 are Linux nodes
used for CI at Android-related projects of Catrobat. For this thesis, the
macOS “SlaveMAC Mini” was put into operation. The communication
between the master and the node is accomplished via SSH connections
authenticated by SSH keys. The requirement for setting up a Jenkins node
at macOS is that the Java Development Kit (JDK) is installed beforehand.

27

5. Infrastructure and Tools

Figure 5.1.: Jenkins - PR pipeline

A screenshot of a finished PR job is illustrated in 5.1. Most information
about running and finished Jenkins jobs is publicly accessible under:
https://jenkins.catrob.at/

The configuration of Catty’s Jenkins job is directly integrated in the VCS.
Changes to the workflow can be handled as any other source code change.
The complete process, known as CI pipeline, is divided into different stages.
Each stage has its own responsibility and is aborting when a problem occurs
or at failures. As a result, the problem area is evident at a glance.

The current configuration file can be found here1 or in the following listing
(5.1):

1https://github.com/Catrobat/Catty/blob/master/Jenkinsfile/, visited on
05/15/2019

28

https://jenkins.catrob.at/
https://github.com/Catrobat/Catty/blob/master/Jenkinsfile/

5.1. Automation Server - Jenkins

Listing 5.1: Jenkinsfile - Pipeline configuration

#!/ usr/bin/env groovy

pipeline {

agent {

label ’MAC ’

}

options {

timeout(time: 2, unit: ’HOURS ’)

timestamps ()

buildDiscarder(logRotator(numToKeepStr: ’30’,

artifactNumToKeepStr: ’30’))

}

stages {

stage(’Carthage ’) {

steps {

sh ’make init ’

}

}

stage(’Browserstack ’) {

steps {

sh ’cd src && fastlane po_review ’

}

}

stage(’Run Tests ’) {

steps {

sh ’cd src && fastlane tests ’

}

}

}

post {

always {

junit

testResults:

29

5. Infrastructure and Tools

’src/fastlane/test_output/TestSummaries.xml ’,

allowEmptyResults: true

archiveArtifacts(

artifacts: ’src/fastlane/builds/’,

allowEmptyArchive: true)

archiveArtifacts(artifacts:

’src/fastlane/install.html ’,

allowEmptyArchive: true)

}

}

}

As the pipeline shows, the Jenkins stages are essentially functioning as
scheduler for the automation tool Fastlane, which brings us to the following
chapter.

5.2. App Automation Tool - Fastlane

Fastlane2 is a tool by the Austrian developer Felix Krause, which started
as a university project. It was later acquired by Fabric (Twitter) in 2015

and Fabric ultimately by Google in 2017. Nonetheless it is an open source
project driven by community engagement. It originated as solution to handle
the complex task of software delivery for iOS apps by providing a set of
command line tools. By now, it is also supporting Android Development.

With Fastlane, reoccurring tasks can be defined as “lanes”. These lanes,
written in the scripting language Ruby (a Swift version is currently in Beta),
are more than a configuration file with full OOP support. This comes with
the benefit of reusing lanes, combining lanes and improved readabilty of
the code.

2https://github.com/fastlane/fastlane/, visited on 05/15/2019

30

https://github.com/fastlane/fastlane/

5.2. App Automation Tool - Fastlane

Figure 5.2.: Fastlane features, taken from Krause, 2019.

The cornerstones of fastlane are illustrated in figure 5.2 and consist of the
following actions:

deliver Upload screenshots, metadata and binaries to ASC. The app version
can also be automatically submitted for App Review

pem Helper for Push certificate handling. Signing requests are uploaded to
Apple, certificates are downloaded.

produce Creation and Modification of iOS apps on ASC. Supports enabling
Apple-related services (Gamecenter, HomeKit, Siri, ...)

snapshot Producing localized screenshots for different languages and de-
vice sizes, configurable with a “Snapfile” (see chapter 7.2.2) and pro-
cessable by the “deliver” action.

sigh Handling Provisioning Profiles.
gym Building and signing IPA files - helper for a command line build of

Xcode (xcodebuild).
frameit Improving the appearance of screenshots by adding device frames

or insertion of tag lines.
cert Handling code signing certificates.
scan Running tests on simulator or connected hardware and producing

reports (Junit, Code coverage).

31

5. Infrastructure and Tools

Listing 5.2: Extract of Fastfile

...

desc "Upload Development Build to Browserstack"

lane :upload_to_browserstack do

upload_to_browserstack_app_live(

browserstack_username: ENV[" BS_USERNAME "],

browserstack_access_key: ENV[" BS_ACCESS_KEY "],

file_path: $build_dir+$branch_name +". ipa"

)

end

...

desc "Prepare for PO Review"

lane :po_review do

cert

sigh(adhoc: true)

create_build scheme:$catty_schemes [" release"],

method :"ad-hoc"

upload_to_browserstack

end

...

Listing 5.2 is an example lane triggered in a stage of the Jenkins integra-
tion job. In the “po review” lane, provisioning profiles and certificates are
updated at first. Then a build is created and uploaded to Browserstack
(handled on the following page). Moreover, the build is archived as Artifact
of Jenkins, so that iOS devices can also install the build when visiting the
Jenkins portal on their smartphone. The necessary usernames and access
tokens are obfuscated with environment variables and stored at the Jenkins
node configuration.

32

5.3. In-Browser App Testing - Browserstack

Figure 5.3.: In-Browser-testing with Browserstack.

5.3. In-Browser App Testing - Browserstack

Browserstack is a commercial product, offering the ability to run iOS apps
within the browser. Catrobat was provided with 5 user accounts of Browser-
stack for being an educational open source project.

Builds can be uploaded on the website or by using an API. The interface
is even accepting Ad-hoc builds, as Provisioning Profiles are replaced. To
be executable on their simulators, the app is re-signed by Browserstack. As
visible in figure 5.3, the simulator is fully operable and a useful tool not
only for product owners, but also for other Catrobat teams who have got no
permanent access to iOS devices.

Log output is visualized on the right side of the screen. Besides test cases
for which sensors (accelerometer, location, camera) are needed, Catty has
no limitations running on this web service.

33

5. Infrastructure and Tools

5.4. Internationalization & Localization - Crowdin

Internationalization (i18n) and Localization (l20n) at all Catrobat projects is
handled by Crowdin3. Crowdin is a collaboration web tool for Translation
Management. Catrobat projects are uploading their translation resource files
in English, after that these get transcribed by the community of translators.
Different file formats are supported, like .xml, .csv, .txt and the format used
by iOS: .strings

All necessary strings (App- and App Store-specific) are stored on Crowdin
with the following structure:

catty

App

Locale: en.lproj, pt BR.lproj, ru.lproj, zh-Hans.lproj...

Localizable.strings

AppStore

Locale: en, de, ru, ...

description.txt

keywords.txt

subtitle.txt

Listing 5.3: Crowdin - Export settings

App:

/catty /% osx_code %/% original_file_name%

App Store:

/catty/AppStore /% osx_locale %/% original_file_name%

Listing 5.3 shows the export settings of Catty translations. With the place-
holder “%osx code%” (provided by Crowdin), a usable folder structure for
Xcode - with the format [language designator]-[script designator] [region
designator] - is automatically created.

3https://crowdin.com/project/catrobat, visited on 05/15/2019

34

https://crowdin.com/project/catrobat

5.4. Internationalization & Localization - Crowdin

Figure 5.4.: Crowdin - translation view.

The GUI for translation input is displayed in figure 5.4. As indicated,
Crowdin offers suggestions for translators to use already existing trans-
lations from a translation memory of all combined Catrobat projects, as well
as independent translation suggestions from Crowdin (in beta).

Untranslated items are identifiable by a red status indicator on the left
side-menu. In the main menu all available languages can be selected. The
current progress of translations by languages is displayed - broken down to
the Catrobat platform.

As Translation Management is an ongoing process, it should become a
non-factor for developers. The CI sequence is automatically handling all
synchronization activity from a software developer point of view. This
includes uploading new or modified data, but also downloading and inte-
grating all language data from Crowdin.

35

5. Infrastructure and Tools

Figure 5.5.: Jira - Kanban Board of Catty, taken 10/05/2019.

5.5. Project Management - Jira

Jira is an online tool used for Project Management of the Agile software
process at Catrobat. Occurring issues, bugs and new features from planning
games are categorized in Kanban Boards. Anderson, 2010 is showing prior-
ization approaches, when using the Kanban method. Product Owners and
Project Coordinators are able to prioritize and control the process of current
development.

Items with the status “Ready for Development” are free for any Developer
to implement (example in 5.5). When starting to work on an issue, it needs
to be moved to “in Development”. With a comment function, changes can be
discussed within the team, but also questions to the reporter can be clarified.
Jira has an integration to Github (see 6.1) for direct linking of associated
branches, commits and PRs.

36

6. Continuous Integration

During the practical part, the theoretical knowledge from chapter 3 was
realized for Catty. The upcoming sections cover the corresponding parts of
a Continuous Integration system.

As development for Catty was already ongoing, CI was progressively intro-
duced to prevent any potential issues whilst adoption.

6.1. Version Control System - Github

As Duvall, Matyasand, and Glover, 2007 pointed out, version control systems
are a basic requirement for CI. Even without using CI, source code should
be handled within version control - whether it is Git or another type (SVN,
Mercurial).

Catrobat is using Github, as numerous other open source projects. The Catty
repository is available at: https://github.com/catrobat/catty/

An overview of how Github is integrated into the CI process is illustrated
in 6.1. The representation is adopted to reflect the environment of Catty.

With the help of webhooks, Github is communicating PR- and branch-
changes to the CI master server. The Jenkins master is scheduling a job to
the Mac node, running the consecutive stages of the CI pipeline. After the
job has finished the results are propagated back to Github to reflect the
status of the task.

The interaction possibilities for developers with the VCS are extended by CI
feedback, giving additional information on PRs by providing results of CI
jobs (more in 6.1.2)

37

https://github.com/catrobat/catty/

6. Continuous Integration

Figure 6.1.: CI Overview, adopted from Duvall, Matyasand, and Glover, 2007, p.5.

38

6.1. Version Control System - Github

Figure 6.2.: Gitflow - example illustration, taken from Atlassian, 2019.

6.1.1. Gitflow for Pocket Code

In the course of this thesis Catrobat’s workflow for code integration was
applied to Catty. The process is based on Gitflow by Atlassian, 2019 with
slight modifications. The presented example in 6.2 is divided into the
following branches (with the distinction of feature branches at Catrobat):

master reflects the currently released version.
hotfix is used to patch bugs in production code. It is the only fork al-

lowed from master. Respective patches are also adopted in the develop
branch.

release branches are created whenever a new version is about to be de-
ployed.

develop reflects the current state of changes. It acts as base for feature
branches and is used for PR creation. It represents the mainline of
the “Maintain a Single Source Repository” principle of Fowler and
Foemmel.

feature Catrobat: branches are maintained at the user forks of the mainline.

39

6. Continuous Integration

Figure 6.3.: Github - Jenkins integration.

6.1.2. Pull Request Integration

The credo at development and review of Pull Requests (PR) is to “Keep
it green”. Every time a PR is created, a CI integration job is automatically
scheduled. It is helping the stakeholders to follow the build and test status
of the changes. Whenever new commits are pushed to the branch, associated
with the PR, the process is repeated.

The master and develop branch, mentioned in 6.1.1, are branch-protected,
which means that it is only allowed to merge changes if at least one reviewer
from the Catrobat team has verified and approved the performed changes.
The possibility to only merge code, that has successfully passed the CI
workflow, is available - however not activated. It is up to the reviewer to
check if the reason for failed CI checks are comprehensible and not resulting
in potential issues.

Figure 6.3 shows the feedback of Github for a PR ready to merge, after
changes were approved by a reviewer and the CI job was succeeding.

40

6.2. Build Process

6.2. Build Process

The first stage of the CI workflow verifies that the changes are successfully
buildable. Before every build process, caches (iOS: derived data) are deleted
and simulators are reset to prevent interference with previous runs. Success-
ful builds are a precondition for every other step of the CI job and should
hamper the “It works on my machine” phenomenon of development. Before
every build the dependencies of Catty are handled, covered in the next
chapter.

6.2.1. Dependency Management - Carthage

Dependency management is necessary to improve maintenance of third-
party tools and frameworks. There are two solutions with widespread usage
at iOS development: Cocoapods, and Carthage
(Note: A similar tool used at Android Development is Gradle.)

Cocoapods

Xcode workspaces (.xcworkspace) are required to use Cocoapods. Co-
coapods creates a workspace with the project and all the dependencies
listed in a corresponding configuration file (Podfile). The dependencies are
built at the same process as the app itself. Catty has previously been using
Cocoapods, but migrated to Carthage.

Carthage

Carthage, however, follows the approach of pre-building the dependencies
and linking the frameworks within the existing project file. This is resulting
in faster build times and less overhead within Xcode. The configuration file
(Cartfile) is comparable to Cocoapods. With a simple command “carthage
bootstrap” the dependencies are automatically fetched and pre-built. More-
over, Carthage is written in Swift which makes it easier to extend for iOS
developer, compared to Cocoapods written in Ruby. Running Carthage is
the first step of the CI pipeline after the source code is fetched from the
repository.

41

6. Continuous Integration

6.2.2. Coding Standard - Linting

To improve overall code quality at Catty, SwiftLint1 was introduced. SwiftLint
is used to define rules for styling and coding conventions, based on Github’s
Swift Style Guide. The tool is producing additional warnings and errors
- depending on the severity of the violation - already at the development
stage.

Development at Catty is following the principles of Clean Code by Martin,
2008, which is explaining the problem of Code Smells. Habchi et al., 2017

found 6 Code Smells specific to iOS. They also observed that the quality
metrics of Objective-C and Swift apps are very differntial.

Additional to the integrated warnings and errors of Xcode, 99 more rules
have been activated during the course of this thesis. The existing code was
refactored to satisfy the conditions.

Examples for styling checks: (descriptions from SwiftLint Rules):

colon Colons should be next to the identifier when specifying a type and
next to the key in dictionary literals.

operator usage whitespace Operators should be surrounded by a single
whitespace when they are being used.

trailing semicolon Lines should not have trailing semicolons.

Examples for coding convention checks (descriptions from SwiftLint Rules):

anyobject protocol Prefer using AnyObject over class for class-only proto-
cols.

empty count Prefer checking isEmpty over comparing count to zero.
discouraged object literal Prefer initializers over object literals.

Some violations are able to be auto-corrected by SwiftLint, but only trailing
whitespaces are automatically removed. This feature helps to standardize
the code appearance across the code base. For educational purposes of all
contributing developers the warnings should be taken notice of instead of
being automatically processed at other violations.

1https://github.com/realm/SwiftLint/, visited on 05/15/2019

42

https://github.com/realm/SwiftLint/

6.3. Running Automated Tests

6.3. Running Automated Tests

Catty is using the method of Test Driven Development (TDD) in practice.
Hauser, 2017 presented in his work about TDD for iOS the method of
“Red”, “Green”, “Refactor”, in allusion to the status colour of a test run.
Red means that a test failed, green indicates that a test has passed. Hereby,
when working on an issue, a test is written first that is validating the
desired outcome of the changes. After the testing code is ready, the actual
implementation is realized. In the next stage, the developer is programming
the actual changes until the it reaches the “Green” stage by any means.
Finally, the code is getting refactored to meet the Coding Standards of
Catrobat.

As a result of the TDD approach, testing is getting special attention within
the Catty team. The overall test suite is providing meaningful feedback to the
developer, if the changes do any harm to the functionality of the software.
By the time of writing (May, 2019) almost 1700 tests are implemented that
can be divided into the following categories:

• (1526) Unit Tests
• (84) Bluetooth Unit Tests (introduced during the work of Slavec, 2016)
• (73) UI Tests

The testing framework XCTest is available since Xcode 5 to simplify testing
iOS Apps. It is providing a rich set of features for both Unit, and UI tests.
Previous to CI implementation, all testing was executed by all participants
involved in a Pull Request separately. Tests had to be run manually on the
local machines for verification purposes.

With the introduction of CI, test runs are automatically processed on a
separate build machine (Mac Jenkins node). It is acting as neutral judge for
running the tests. The test run is started by a fastlane plugin on a defined
target device running with a configurable iOS version. In contrast to Xcode
the test run is executed headless with the help of mapped command line
tools. At the end the results of the different testing schemes are concatenated
as Junit reports, which are processable by Jenkins to generate a rich UI for
visual feedback.

43

6. Continuous Integration

Figure 6.4.: Successful test result page of a Jenkins job.

The feedback of a successful test run is shown in figure 6.4. Reports include
all testcase status and the corresponding execution time. Other informa-
tion about the CI job - like performed changes, pipeline command line
output and resulting Artifacts - can be easily accessed via the provided
navigation.

6.3.1. Problems & Limitations

Several problems and limitations had to be tackled during the introduction
of automated testing. In the sense of the “Keep the Build Fast” CI principle,
the overall runtime of the tests was not entirely satisfying. Mainly due to
slow UI testing in comparison to Unit testing. This is caused by the nature
of UI tests, simulating how a user would operate in a real-world situation
by mimicking clicks and producing view transitions with UI animations.

To decrease UI test runtimes, the animation speed was increased. However,
this was only marginally an imporevement. In general, Unit tests should

44

6.3. Running Automated Tests

be preferred in future development in many areas, solely for speed reasons.
Then again, UI tests remain an important part of the test process and support
acceptance testing in a possible Continuous Deployment environment.

UI tests are popular at developers new to Software Testing, as the tests act in
a natural, human way. At unit testing deeper knowledge is required: Some
data that is only available at runtime has to be simulated, for instance by
Mocking. Nolan, 2016 is presenting a showcase of how Mocking in Swift
can be achieved with the Mocking framework Cuckoo2.

Flaky UI Tests

When running automated tests, “flaky” UI tests were observed. Flaky means,
that the test is not reliable and failing randomly (Mascheroni and Irrazabal,
2018). 3 to 4 test cases have been identified that showed this behaviour
increasingly. Test cases dependent on animations and alerts are especially
concerned. Some cases were able to be limited by using Expectations (telling
the test case to wait for UI to catch up), but it was not reliably preventing
all occurences.

To mitigate this behaviour Fastlane’s testing action has been extended to
allow re-running of failed test up to n times (production setting: 3). In the
repeated test run only failed tests are restarted. In ideal circumstances this
solution would not be necessary as the tested workflow should pass every
time. However, it is the current solution in use to deal with this problem
of nondeterminism. Flaky tests can be identified by the feedback of the CI
system and should be addressed to be more stable.

2https://github.com/Brightify/Cuckoo, visited on 05/15/2019

45

https://github.com/Brightify/Cuckoo

6. Continuous Integration

6.4. Distribution

The distribution of the integration builds is supporting the following two
categories and use cases:

• Abstract: Browser-based App Testing
• Physical: Signed Ad-hoc builds

For both cases a signed ad-hoc build is used. The browser-based solution
has been shown in 5.3 by using the “App Live” Browserstack service. For
installation on hardware devices the build is archived as Artifact on Jenkins.
The necessary steps for this task are described in the following chapter.

6.4.1. Provision of Ad-hoc Builds

Executable IPA files (Android-counterpart: APK) do not offer one-click
installation like Android. Providing that the device is included in the provi-
sioning profile, with which the build was signed, the app can be installed in
two ways.

a) After an IPA file is downloaded on a workstation it can be installed with
the software iTunes. This process is not really appealing as it includes too
much manual effort.

b) iOS is providing an URL-scheme to trigger app installations (itms-
services://). An example hyperlink for a PR build installation is shown in
6.1. The ITMS scheme is called with a Manifest file containing information
of the app (bundle identifier, version number, title) and a link to the corre-
sponding IPA file that should be installed, 6.2. With this setup it is possible
to provide installation links alongside the IPA files on Jenkins’ Artifacts to
enable simple installation on smartphones without the need of additional
equipment.

Listing 6.1: Ad-Hoc Installation Link

<a href="itms -services ://? action=download -manifest&

url=https :// jenkins.catrob.at /.../ PR147 -1. plist">

Install PR on your device

46

6.4. Distribution

Listing 6.2: Ad-Hoc Manifest Installation File

<plist version ="1.0" >

<dict >

<key >items </key >

<array >

<dict >

<key >assets </key >

<array >

<dict >

<key >kind </key >

<string >software -package </string >

<key >url </key >

<string >

https :// jenkins.catrob.at /.../ PR147 -1. ipa

</string >

</dict >

</array >

<key >metadata </key >

<dict >

<key >bundle -identifier </key >

<string >org.catrobat.pocketcode.PR </string >

<key >bundle -version </key >

<string >0.6.9 </ string >

<key >kind </key >

<string >software </string >

<key >title </key >

<string >PR147 #1</string >

</dict >

</dict >

</array >

</dict >

</plist >

47

7. Continuous Delivery

Several preparations for Continuous Delivery have been realized, that are
discussed in this chapter. In the sense of XP, fast deployment of new features,
reducing integration risks and other reasons, Catty is aiming for short release
cycles.
Hereby, CD is not only important for less time spent on administrative tasks,
but also to give Product Owners the possibility to deploy Catty without
profound knowledge of the manual Xcode deployment workflow.

7.1. Pre-Release Actions

Whenever the decision is made to start a release process, a few required
steps have to be handled before.

Firstly, according to the adopted Gitflow (6.1.1) a release branch is forked
from the develop branch. The naming convention is release-[ReleaseNumber]
(example: release-0.6.9). This also acts as feature stop, so that only bugfixes
that occur during the beta test will be merged into the version.
Secondly, a fastlane action was developed to upload the currently active out-
put strings to the Crowdin (5.4) platform for translators to interpret. This is
accomplished by running the custom command “fastlane upload crowdin”.
It is necessary as the Translation Service is only updating the data after
running a build. However, the build process can neither be triggered by an
API call nor with the official command-line tool provided by the publisher.
Therefore, the build has to be executed via the Crowdin website. Generated
translations are downloaded later during Deployment (7.2) and imported
into the project.

Although the used tools are capable of automating this process as well, the

49

7. Continuous Delivery

pre-release process is currently manual by choice, as it can be carried out
with simple command-line instructions. To minimize introduction problems,
this workflow will be continuously transformed to automation.

7.2. Release Deployment

After the creation of a release branch, the CI integration pipeline is running
automatically. If the integration tests are passing and the version looks
ready, the distribution can be started. The deployment itself is handled by a
separate Jenkins job, and can only be started with required user rights on
the Jenkins server.

The release pipeline is running the following actions:

• Increase build number (and version number if necessary)
• Download translation data from Crowdin
• Prepare App Story entry with metadata from Crowdin (see 7.2.2)
• Run Snapshot scheme to update localized screenshots (see 7.2.2)
• Create Build with “App Store” certificate
• Upload data to ASC (build, metadata, screenshots)

After every upload of a binary to App Store Connect (see 7.2.1), the build
number has to be increased as it is only allowed to use build numbers once.
If the build number is not adapted, the process fails.

Depending every step above was successful and the job has successfully
finished, the app is entering the next stage: beta testing (see 7.3).

In the event of occuring bugfixes in the release branch the deployment job
has to be repeated. On the case of a successful beta test, the app will be
submitted to Apple for App Review (see 7.4). App Review can either be
started on the ASC platform manually or automatically within the release
pipeline by a configuration setting.

The final production release needs to be treated with caution as reverting
changes is not supported on the App Store. Hence, it is not possible to roll
back to a previous, working, lower version. Even if serious issues occur a
new release process has to be run through.

50

7.2. Release Deployment

Figure 7.1.: App Store Connect portal.

7.2.1. App Store Connect

App Store Connect1 (previously known as iTunes Connect) is the app ad-
ministration portal of iOS. All interactions with the App Store are managed
on this platform.

Features of ASC include:

App Management Create, modify and delete listings on the App Store.
Respond to user ratings and reviews.

Sales Statistics and trends of downloaded app units.
Analytics Reports on the usage: origin countries, active sessions, crashes

and more.
Users Assign roles (Developer, App Manager, Marketer) to project members

1https://appstoreconnect.apple.com/, visited on 05/15/2019

51

https://appstoreconnect.apple.com/

7. Continuous Delivery

with Apple-IDs.
Agreements Signing developer agreements and managing distributor data

(company name, bank account).

Test device management (UUIDs), Signing certificates and provisioning
profiles are not handled by ASC, but with the help of the Apple Developer
portal2.

7.2.2. Localized Metadata & Screenshots

The most time consuming part of manual publishing of iOS versions is
a) preparing the metadata in different languages, and even more b) the
production of localized preview images for different device sizes. The data
has to be captured language by language for every intended change on the
App Store Connect platform, if done by hand.

At Catty, it is possible to run this process automatically, because fastlane’s
“deliver” and “snapshot” actions are used in combination with Crowdin’s
translation data.

Metadata

Metadata, used at the “deliver” action, is autonomous from the build
process. The “AppStore” folder structure mentioned in chapter 5.4 has to
be downloaded, merged with the already existing English information and
saved at a predefined path. The folder structure is using simple language
identfiers in contrast to the .lproj structure used by Xcode.

During the upload of the new version the translated files - description.txt,
keywords.txt, subtitle.txt - are transmitted to the App Store server in all
supported languages.

2https://developer.apple.com/account, visited on 05/15/2019

52

https://developer.apple.com/account

7.2. Release Deployment

Screenshots

A new build scheme has to be added to the project for using snapshots.
Snapshots are realized as special form of UI Tests created in a separate
target to not interfere with integration UI tests. Fastlane is providing a
helper class “SnapshotHelper.swift” that deals with the image logic. A
simplified example implementation is shown in 7.1. Whenever the simulator
is navigated to a desired screen at the UI test, the “snapshot()” function is
saving a preview image.

Listing 7.1: Snapshot UI Test - Code snippet

class CattyUISnapshots: XCTestCase {

let app = XCUIApplication ()

override func setUp () {

continueAfterFailure = false

setupSnapshot(app)

app.launch ()

}

func appStoreScreenshots () {

... // navigate to first screenshot

snapshot ("0 Launch ")

... // navigate to next screenshot

snapshot ("1 Scripts ")

... // navigate to next screenshot

snapshot ("4 Paint ")

... // navigate to next screenshot

snapshot ("3 MediaLibrary ")

... // navigate to next screenshot

snapshot ("2 Explore ")

}

}

53

7. Continuous Delivery

Listing 7.2: Snapfile - Snapshot configuration

devices ([

"iPhone 8",

"iPhone SE",

"iPhone XS",

"iPhone XR",

])

languages ([

"en -US",

"de -DE",

"it -IT",

"ru",

#add additional languages here

])

The name of the scheme which contains the UI Tests

scheme (" Snapshots ")

Where should the resulting screenshots be stored?

output_directory ("./ fastlane/screenshots ")

clear_previous_screenshots(true)

The recommended usage of fastlane’s “snapshot” action is by using a
“Snapfile” configuration. An example of a Snapfile is indicated in listing
7.2. Devices and languages can be added to the configuration statically
on demand or can be generated dynamically by evaluating the existing
translations reported by Crowdin.

The result of the snapshot process is shown in figure 7.2. The images are only
showing a specific device type, respectively screen size, for demonstration
purposes.

54

7.2. Release Deployment

Figure 7.2.: Localized Screenshots

55

7. Continuous Delivery

Figure 7.3.: Public beta acceptance process.

7.3. Beta Testing

After uploading a build to the App Store infrastructure, it is available for
publication to beta testers. The distribution is not handled by the “App Store”
app on end devices, but with the separate “Testflight” app. Participants can
be divided into internal and external testers:

internal Up to 25 members of the team, who have at least one of the
following roles assigned: Admin, Technical, App Manager, Developer
or Marketer.

external Up to 10,000 arbitrary, registered testers.

Internal testers are immediately able to start testing after the build has
finished processing on the App Store server. For external testing to start, the
version has to first run through Beta Review of Apple.

Since 26/09/2018 the public beta registration process is simplified by pro-
viding a web form for enrolment. Previously testers had to be captured
manually at the App Store Connect (see 7.2.1) portal. The process of accept-
ing an external testing invite for Pocket Code is shown in 7.3.

56

7.4. App Store Review

7.4. App Store Review

Apps have to pass a review process to be listed on Apple’s App Store. The
software is not only checked automatically for anomalies and misusage, but
also manually to fulfil Apple’s guidelines. Precise information about this
process is not communicated to software publishers. If an infringement of a
guideline occurs, the submission is getting rejected with a listing of reasons
as response.

Common rejection reasons include:

• Crashes and/or Bugs
• Unfinished Content (Placeholder)
• Improper UI for mobile usage or touchscreens
• Metadata and/or Screenshot objections

Prior to the first Publication of Pocket Code on the App Store, the app was
rejected because of software crashes. After eradicating the misbehaviour
Pocket Code was rejected again due to accusation of running executable
code from shared, downloaded *.catrobat files, which is prohibited at iOS.
Accordingly, an appeal to the App Review Board was expressed, and the
misconception could be clarified.

“The App Review Board provides the opportunity to appeal the rejection of
an app if you believe that the functionality or technical implementation was
misunderstood. You can submit additional details to the App Review Board
to help them determine if your app should be reconsidered.”3

Reoccurring issues for new app releases can not be fully mitigated. Emerging
rejections need to be handled case by case in the future. This may prevent
an otherwise possible, completely automated deployment during these
incidents.

3https://developer.apple.com/app-store/review/, visited on 05/15/2019

57

https://developer.apple.com/app-store/review/

7. Continuous Delivery

7.5. App Store Optimization

An important part for user acquisition is a relatively new subject, called
App Store Optimization (ASO). The goal is, similar to Search Engine Op-
timization (SEO), to improve the download rate within the smartphone
stores (primarily Google Play Store and Apple’s App Store). The App Store
is using several key metrics for ranking, including ratings, title, short ti-
tle, description and keywords. Keywords can be of 100 characters length
divided by commas and should emphasize the use case of the app. They
are used for search rankings within the App Store. The search algorithms
are transforming rapidly and have not been analysed during this work.
However, as Jung, Baek, and Lee, 2012 show, it is important for apps to be
listed in the charts as it has a big impact on the performance of download
numbers.

Commercial ASO products suggest to publish regular updates at least every
4 to 6 weeks to improve app visibility on the app store. During the timeframe
of January and April three releases of Pocket Code were published. After
every update the app was listed in the charts of the “Education” category.
Though this is too little information to statistically proof the positive impact,
regular updates enhanced by Continuous Delivery should be targeted to
investigate further.

Figure 7.4 on the following page shows some statistical information of
Pocket Code at the App Store during the timeframe of January to April
2019.

58

7.5. App Store Optimization

Figure 7.4.: App Store Statistics for Pocket Code, Jan 2019 - Apr 2019.

59

Part III
Findings

61

8. Conclusion

In this thesis the principles of Continuous integration have been shown by
the example of Pocket Code for iOS. The introduction of CI has proven to
amplify philosophies of Test-Driven Development and certain CI principles
like “Don’t break the build”.

Holck and Jørgensen, 2003 claimed that even the basic approach of Continu-
ous Integration at FreeBSD and Mozilla in 2003 had a positive impact on
their engineering process. For contributors of Catty the integration suite has
turned out to be a valuable tool during development. Contrary, Vasilescu
et al., 2014 discovered by analyzing (Java, Python, Ruby) Github repositories
that many projects introduced CI, but are not using it.

Hence, it is important that the feedback of the CI system is fast and mean-
ingful to programmers. On the basis of a Continuous Integration system,
CD can help iOS projects to achieve short release cycles by implementing a
set of tools presented in this work.

8.1. Outlook

Due to the complexity of setting up Continuous Integration structures,
many projects are starting to use managed, hosted services. Also, for teams
that would not fully utilise hardware, but would still like to use CI, it is a
good starting point. Furthermore, administration overhead is cut down at
managed solutions.

Apple’s solution of Xcode Server Bots for CI at iOS development is not
satisfying for large projects. With the acquisition of buddybuild, they are
trying catch up to the competition, like they did with the beta testing

63

8. Conclusion

issue and Testflight integration. No further information about the future
development of CI at Apple is communicated to iOS developers by the time
of writing. However, it is expected that Apple will improve this topic within
their Software environment.

8.2. CI at Pocket Code for iOS

After the practical implementation of this thesis an existing CI system is
used in production. Nevertheless, it should be the goal to always improve
this process (continuos integration of new Continuous Integration features).
Regarding Continuous Delivery, a necessary set of tools is provided that
should be automated further as much as possible. New technologies like
Xcode’s support of parallelizing test runs on multiple simulators could
be evaluated and introduced if integrable in Catty’s testing environment.
Developers are able to examine overall test coverage with a set of tools used
by CI to further improve the testing ability. Moreover, the following areas
should get addressed particularly.

Runtime

Due to the amount of UI tests in use at Catty, the runtime of integration tests
is relatively lengthy in comparison to suggested timeframes by literature.
UI tests are reset to the initial condition of the app in every test case via
simulated actions on the User Interface. The process of resetting could be
verified in a separate test and simulated with program logic in every other
run.

Physical devices

Pocket Code is using many device sensors, that are unavailable in iOS
simulators. Mockings for sensors in test cases are not entirely assuring
correct functionality for un-simulated program execution. Hardware-tests
with physical devices are already in use at Catroid and would be a good
extension of Catty’s CI suite. During an evaluation of this thesis, the CI
integration job in use was tested and verified to work as well with hardware
devices.

64

Appendix

65

Bibliography

Anderson, David J (2010). Kanban: successful evolutionary change for your
technology business. Blue Hole Press (cit. on p. 36).

Atlassian (2019). url: https : / / www . atlassian . com / git / tutorials /

comparing-workflows/gitflow-workflow (visited on 05/07/2019) (cit.
on p. 39).

Beck, Kent (Oct. 1999). Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional. isbn: 9780201616415 (cit. on p. 1).

buddybuild (Jan. 2018). The buddybuild team is now part of Apple! url: https:
//www.buddybuild.com/blog/buddybuild-is-now-part-of-apple

(visited on 05/12/2019) (cit. on p. 63).
Duvall, Paul M., Steve Matyasand, and Andrew Glover (July 2007). Continu-

ous Integration: Improving Software Quality and Reducing Risk. Addison-
Wesley Professional. isbn: 9780321336385 (cit. on pp. 15, 16, 37, 38).

Fowler, Martin and Matthew Foemmel (2006). “Continuous integration.” In:
url: https://martinfowler.com/articles/ContinuousIntegration.
html (visited on 04/20/2019) (cit. on pp. 1, 16, 39).

Garcia, Cristian Gonzalez et al. (2015). “Swift vs. objective-c: A new pro-
gramming language.” In: IJIMAI 3.3, pp. 74–81 (cit. on p. 10).

Habchi, Sarra et al. (2017). “Code Smells in iOS Apps: How do they compare
to Android?” In: 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). IEEE, pp. 110–121 (cit. on
p. 42).

Hauser, Dominik (Oct. 2017). Test-Driven iOS Development with Swift 4 - Third
Edition: Write Swift code that is maintainable, flexible, and easily extensible.
Packt Publishing. isbn: 9781788475709 (cit. on p. 43).

Hilton, Michael et al. (2016). “Usage, costs, and benefits of continuous
integration in open-source projects.” In: Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM, pp. 426–
437 (cit. on p. 18).

67

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.buddybuild.com/blog/buddybuild-is-now-part-of-apple
https://www.buddybuild.com/blog/buddybuild-is-now-part-of-apple
https://martinfowler.com/articles/ContinuousIntegration.html
https://martinfowler.com/articles/ContinuousIntegration.html

Bibliography

Holck, Jesper and Niels Jørgensen (2003). “Continuous integration and qual-
ity assurance: A case study of two open source projects.” In: Australasian
Journal of Information Systems 11.1 (cit. on p. 63).

Humble, Jez and David Farley (July 2010). Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Automation. Addison-
Wesley Professional. isbn: 9780321601919 (cit. on p. 19).

Jung, Euy-Young, Chulwoo Baek, and Jeong-Dong Lee (2012). “Product
survival analysis for the App Store.” In: Marketing Letters 23.4, pp. 929–
941 (cit. on p. 58).

Krause, Felix (2019). fastlane is now part of Fabric. url: https://krausefx.
com/blog/fastlane-is-now-part-of-fabric (visited on 05/10/2019)
(cit. on p. 31).

Luhana, Kirshan Kumar, Christian Schindler, and Wolfgang Slany (May
2018). “Streamlining mobile app deployment with Jenkins and Fast-
lane in the case of Catrobat’s pocket code.” In: 2018 IEEE International
Conference on Innovative Research and Development (ICIRD), pp. 1–6. doi:
10.1109/ICIRD.2018.8376296 (cit. on p. 23).

Martin, Robert C. (Aug. 2008). Clean Code: A Handbook of Agile Software
Craftsmanship. Prentice Hall. isbn: 9780132350884 (cit. on p. 42).

Mascheroni, Maximiliano Agustin and Emanuel Irrazabal (2018). “Continu-
ous Testing and Solutions for Testing Problems in Continuous Delivery:
A Systematic Literature Review.” In: Computacion y Sistemas 22.3 (cit. on
p. 45).

Nolan, Godfrey (Dec. 2016). Agile Swift: Swift Programming Using Agile Tools
and Techniques. Apress. isbn: 9781484221013 (cit. on p. 45).

Pouclet, Romain (Aug. 2014). Pro iOS Continuous Integration. Apress. isbn:
9781484201251 (cit. on p. 17).

Realm (2019). SwiftLint Rules. url: https://github.com/realm/SwiftLint/
blob/master/Rules.md (visited on 05/12/2019) (cit. on p. 42).

Rebouças, Marcel et al. (2016). “An empirical study on the usage of the
swift programming language.” In: 2016 IEEE 23rd international conference
on software analysis, evolution, and reengineering (SANER). Vol. 1. IEEE,
pp. 634–638 (cit. on p. 11).

Rossi, Chuck et al. (2016). “Continuous deployment of mobile software at
facebook (showcase).” In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM,
pp. 12–23 (cit. on p. 19).

68

https://krausefx.com/blog/fastlane-is-now-part-of-fabric
https://krausefx.com/blog/fastlane-is-now-part-of-fabric
https://doi.org/10.1109/ICIRD.2018.8376296
https://github.com/realm/SwiftLint/blob/master/Rules.md
https://github.com/realm/SwiftLint/blob/master/Rules.md

Bibliography

Shahin, Mojtaba, Muhammad Ali Babar, and Liming Zhu (2017). “Con-
tinuous integration, delivery and deployment: a systematic review on
approaches, tools, challenges and practices.” In: IEEE Access 5, pp. 3909–
3943 (cit. on p. 19).

Slavec, Marc (Apr. 2016). Integration of controlling Arduino boards via Bluetooth
with Pocket Code for iOS using test-driven development (cit. on p. 43).

Stack Overflow Insights (Apr. 2019). Stack Ovvrflow Insights Developer Sur-
vey 2019. url: https://insights.stackoverflow.com/survey/2019/
(visited on 05/05/2019) (cit. on pp. 10, 11).

Statista, eMarketer (Mar. 2019). Smartphone user share by operating system in
the United States from 2014 to 2021. url: https://www.statista.com/
statistics/201207/us-smartphone-user-share-since-2010-by-os/

(visited on 05/09/2019) (cit. on p. 5).
Statista, MediaTel (Oct. 2015). Age profile of smartphone users in the United King-

dom (UK) in 2015, by operating system (OS). url: https://www.statista.
com/statistics/513988/smartphone-user-age-distribution-by-os/

(visited on 05/09/2019) (cit. on p. 6).
Vasilescu, Bogdan et al. (2014). “Continuous integration in a social-coding

world: Empirical evidence from GitHub.” In: 2014 IEEE International
Conference on Software Maintenance and Evolution. IEEE, pp. 401–405 (cit.
on p. 63).

Zheng, Min et al. (2015). “Enpublic apps: Security threats using iOS en-
terprise and developer certificates.” In: Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security. ACM,
pp. 463–474 (cit. on p. 13).

69

https://insights.stackoverflow.com/survey/2019/
https://www.statista.com/statistics/201207/us-smartphone-user-share-since-2010-by-os/
https://www.statista.com/statistics/201207/us-smartphone-user-share-since-2010-by-os/
https://www.statista.com/statistics/513988/smartphone-user-age-distribution-by-os/
https://www.statista.com/statistics/513988/smartphone-user-age-distribution-by-os/

Appendix A.

Acronyms

ASC App Store Connect

ASO App Store Optimization

API Application Programming Interface

CI Continuous Integration

CD Continuous Deployment

FOSS Free/Libre Open Source Software

IDE Integrated Development Environment

OOP Object-oriented Programming

PR Pull Request

SSH Secure Shell

TDD Test Driven Development

UI User Interface

UUID Universally Unique Identifier

VCS Version Control System

XML Extensible Markup Language

XP Extreme Programming

71

	Abstract
	List of Figures
	Listings
	Introduction
	Catrobat
	Catty - Pocket Code for iOS
	iOS market for Pocket Code

	Part I: Theoretical
	iOS Development
	FOSS in the iOS ecosystem
	Programming Languages (Objective-C, Swift)
	Code Signing

	Continuous Integration
	Practices
	Requirements
	Feedback
	Benefits
	Continuous Delivery

	Part II: Practical
	Motivation
	Situation before CI introduction
	Challenges at setting up CI

	Infrastructure and Tools
	Automation Server - Jenkins
	App Automation Tool - Fastlane
	In-Browser App Testing - Browserstack
	Internationalization & Localization - Crowdin
	Project Management - Jira

	Continuous Integration
	Version Control System - Github
	Gitflow for Pocket Code
	Pull Request Integration

	Build Process
	Dependency Management - Carthage
	Coding Standard - Linting

	Running Automated Tests
	Problems & Limitations

	Distribution
	Provision of Ad-hoc Builds

	Continuous Delivery
	Pre-Release Actions
	Release Deployment
	App Store Connect
	Localized Metadata & Screenshots

	Beta Testing
	App Store Review
	App Store Optimization

	Part III: Findings
	Conclusion
	Outlook
	CI at Pocket Code for iOS

	Bibliography
	Acronyms

