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Zusammenfassung

Die vorliegende Arbeit gliedert sich in zwei Teile. Im ersten Abschnitt werden von
der Versicherungsmathematik motivierte Risikoprozesse behandelt und es werden neue
Methoden und Ansätze für klassische Fragestellungen aus diesem Fachbereich präsen-
tiert. Dabei liegt der Fokus auf speziellen, abdiskontierten Straffunktionen, in der Lit-
eratur auch als Gerber-Shiu Funktionen bekannt. So wird zunächst eine effiziente und
allgemein anwendbare, numerische Approximation, basierend auf Quasi-Monte Carlo
Integration, vorgestellt um Gerber-Shiu Funktionen zu berechnen. Im Anschluss wird
das Problem optimaler, dynamischer Rückversicherung untersucht, wobei Gerber-Shiu
Funktionen minimiert werden sollen. Dies wird mittels optimaler stochastischer Kon-
trolle auf sehr allgemeine Art undWeise erreicht, sodass dieses Verfahren für verschiedene
Rückversicherungsarten, Prämienkalkulationsprinzipien und Schadenshöhenverteilungen
gültig ist.
Im zweiten Abschnitt werden Abhängigkeitsstrukturen zwischen den einzelnen Kom-
ponenten höherdimensionaler Zufallsverktoren untersucht und über die Modellierung
bestimmter Abhängigkeitskonzepte diskutiert. Als nützliches Werkzeug werden dabei
insbesondere Copulas hervorgehoben und es wir kurz auf deren Bedeutung in Forschung
und Praxis eingegangen. Motiviert durch zahlentheoretische Überlegungen wird dann ein
Problem des optimalen Transports mit einem diskreten, linearen Optimierungsproblem
identifiziert. Anschließend wird ein Lösungsverfahren für Probleme in mehr als zwei Di-
mensionen vorgestellt, diskutiert und im Vergleich zu vorhandenen Verfahren evaluiert.
Zur Illustration werden bestehende, theoretische Resultate über Extremwerte von Ab-
hängigkeitsmaßen numerisch bestätigt und Schranken angegeben für Fälle, in denen
keine exakten Lösungen bekannt sind. Der letzte Teil liefert schließlich einen genaueren
Blick auf strukturelle Aspekte von Abhängigkeit und verknüpft diese Thematik mit der
Theorie von Majorisierungen zwischen Vektoren. Das führt zu einer Verallgemeinerung
eines in der Praxis angewendeten Verfahrens um Extremfälle negativer Abhängigkeit in
höheren Dimensionen zu berechnen.
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Summary

This thesis is organized in two parts. The first section deals with risk theory, a com-
mon subject in insurance mathematics, and presents new methods and approaches to
this topic. In this, the main focus will be on particular discounted penalty functions, also
known as Gerber-Shiu functions in literature. At first, an efficient and broadly applica-
ble numerical approximation based on Quasi-Monte Carlo Integration, is presented to
calculate Gerber-Shiu functions. Then the problem of optimal dynamic reinsurance with
the objective to minimize a Gerber-Shiu function is analyzed. The presented approach
uses optimal stochastic control theory and is general enough to allow for a wide variety
of models, including different reinsurance types, premium principles and claim-height
distributions.
The second part focuses on dependence structures between the components of a multi-
dimensional random vector and discusses the modeling of certain dependence concepts.
As a useful tool in this area, copulas are mentioned and their relevance in research and
industry is briefly outlined. Motivated by a number theoretical result, a problem from
the theory of optimal transport is identified with a discrete, linear optimization prob-
lem. In the following, a numerical calculation method for more than two dimensions is
presented, discussed and evaluated against existing methods. The proposed approach
is then illustrated by numerically confirming analytic results on extremal bounds of
dependence measures and also by stating bounds in cases, where no explicit solutions
are known. Lastly, a more rigorous examination of dependence structures is attempted
and the subject is linked to majorization theory. This leads to a generalization of an
algorithm that is commonly used in practice.
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Part I.

Risk Theory
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1. Introduction to Risk Theory

This first part of the thesis covers various problems in the framework of risk theory and
more specifically from the field of risk reserve processes and ruin probabilities. Simply
speaking, this theory analyzes the probability and consequences of a ruin event. Often
such an event is interpreted in the context of monetary reserves held by an insurance
company. Given that this field of research naturally aims for applicability, both theoreti-
cal foundations and concrete computational procedures are called for in many problems.
Catering to these needs, Chapter 2 applies numerical methods based on Quasi-Monte-
Carlo (QMC) techniques to risk reserve processes, whereas Chapter 3 develops theory
to find an optimal reinsurance strategy with respect to a certain target functional. The
results in both of these chapters are novel in their respective form and are published as
indicated in the corresponding chapters. In order to present these results in detail, it
will be necessary to establish some background, notions and definitions.

1.1. A Short Note on History and Motivation

Although many models and concepts from risk theory have made their way into finance,
this discipline of applied mathematics originated from and is usually considered as in-
surance mathematics. Insurance mathematics or actuarial science as it is also called has
been practiced, at least in a basic sense, for several hundreds of years, however it was
mainly in the first half of the 20th century that this field of science emerged as the rigor-
ous mathematical discipline it is today. Much of this boom in the early 1900s was fueled
by a very active group of Swedish mathematicians around Filip Lundberg and Harald
Cramér, to name just the probably most notable pioneers in actuarial mathematics.

The basic idea of actuarial science is to provide the mathematical tools an insurance
company needs to operate its business. This mainly includes quantifying and modeling
the risks that are to be insured and, of course, ways to secure these risks, for example by
calculating premiums or necessary reserve heights. In fact, the importance of doing this
risk management in a proper way has by now been recognized by defining frameworks
whose implementation is compulsory by law. In the European Union, this is given by
the so called solvency directive which, among other things, propagates sound financial
protection against ruin. For an introductory overview on solvency, see e.g. Sandstrom
(2005).
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1.2. Some Basics
As already mentioned, we will focus on risk reserve processes in this first part. A risk
reserve process, or sometimes also a surplus process is a stochastic process that describes
the evolution of the reserve heights of an insurance company over time. Its dynamics
are governed by
• the premium inflow and

• claims of random size that occur at random times.
Throughout the first two chapters, we will denote the premium rate, that is the amount
of money, the insurer gains from its customers per unit time by c(t). To reach a higher
flexibility, the premium rate can change over time. The claim height distribution and
the distribution of the waiting times between claims however are assumed to stay un-
changed. In more mathematical terms this means, we want the heights of the claims
to be independent and identically distributed (i.i.d.) and we assume the same for the
inter-claim times. Furthermore, inter-claim times and claim heights are independent
of each other. We write FY for the distribution of the claim heights and FT for the
distribution of the inter-claim times. We will use the symbols FY and FT also to denote
the respective distribution functions and, whenever we assume they exist, we write fY
and fT for the corresponding density functions.
The reserve process itself will usually be denoted by Xt for t ∈ R+

0 . For mathemat-
ical completeness, we assume that FT , FY and Xt are defined on a probability space
P(Ω,P,F), with probability measure P and σ-algebra F , that is large enough to carry
all the needed quantities. However, since the measure theoretical details are not directly
relevant for the upcoming results, we will, at least for the moment, not specify this any
further.

If we denote the initial reserve X0 by x and write Nt for the number of claims up
to time t, then a simple example of a risk reserve process might look like this

Xt = x︸︷︷︸
initial capital

+ ct︸︷︷︸
premiums

−
Nt∑
k=1

Yk.︸ ︷︷ ︸
aggregate claims

The case above is particularly easy, since the pre-
mium rate c(t) ≡ c is constant here, meaning
that the premiums up to time t can simply be
computed as ct. A possible path of this reserve
process is shown in Figure 1.1

X(t)

t

x

Figure 1.1.: Evolution of Xt.
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What we introduced so far servers as the basis for most models built around risk pro-
cesses. In order to describe more specialized problems or to cater for certain needs in
applications, a large number of modifications of this basic setup has been studied. These
include for example adding a diffusion term (Dufresne and Gerber (1991)), considering
multiple processes at once (Dembo et al. (1994), Collamore et al. (2002)), introducing a
reflection level (De Finetti (1957), Gerber and Shiu (2006), Albrecher and Thonhauser
(2009)) or allowing the insurer to buy reinsurance (Waters (1983)). The latter two vari-
ations will be studied in the upcoming chapters.

As stated in the beginning, a crucial part of risk theory is the study of ruin and its
consequences. To make this more formal, we define the time of ruin τ as

τ(x) := inf{t ≥ 0 : Xt < 0|X0 = x}.

Obviously, τ depends on the starting value x and it is a stopping time with respect to
Ft, the σ-algebra generated by the process Xt. Of course, it might also happen that
we never see the reserve dropping below zero. Therefore it makes sense to study the
probability of ruin, usually denoted by ψ(x) and defined as

ψ(x) := P(inf
t≥0

Xt < 0|X0 = x).

These two quantities also have a straightforward relation to each other, as ψ(x) =
P(τ(x) < ∞). Indeed, the analysis of τ and ψ is so central to this field that some
authors prefer to call it ruin theory instead of risk theory.

It should not be surprising, that the choice of the inter-claim time distribution FT
and the claim height distribution FY is determinant for much of the behaviour shown
by the risk process. Concerning the inter-claim times, the most widely used assumption
is that of exponentially distributed time intervals between single claims. This setting
is known as the Cramér-Lundberg model and has been popular since the early days of
modern actuarial science. The reason for this is certainly that the memoryless property
of the exponential distribution makes many considerations a lot easier than they would
otherwise be. In the Cramér-Lundberg model, the claim arrivals are given as a Poisson
process which gives access to a rich toolbox of mathematical methods.
For the claim height distribution one usually distinguishes between light- and heavy-
tailed distributions. Here, FY is called light-tailed, if the moment generating function
m̂(s) = E[esY ] is finite for some s > 0 and heavy-tailed otherwise, however there are
slightly different definitions used in the literature as well. Generally, light-tailed distribu-
tions are often easier to handle, whereas the heavy-tailed ones offer a better description
of real claim data in many cases.
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2. Quasi-Monte-Carlo Methods in Ruin
Theory

To understand the motivation behind the research that was undertaken for this project,
it is worth noting that finding concrete solutions is quite difficult in many problems in
risk theory. Even in the most friendly case, the Cramér-Lundberg model with light-tailed
claims, the set of quantities with a known closed form expression is surprisingly limited.
Incorporating slight tweaks in the model assumptions will often mean that no analytic
solution is available for the problem at hand. As a consequence, numerical procedures
are then the only viable way to reach the assertions one is interested in.

Being a part of the special research program (SFB) for Quasi-Monte-Carlo methods,
it may be seen as a natural research task to apply QMC techniques for risk processes,
providing a tool that has not been very common in this field yet.

2.1. On Quasi-Monte Carlo Theory
Quasi-Monte Carlo techniques are mainly used for numerical integration. Just like with
the more widespread “regular” Monte Carlo approach, the idea is to approximate an
integral

∫ 1
0 f(x) dx by evaluating f at N points that are evenly distributed in the unit

interval.

The main difference is that while Monte Carlo simulation relies on pseudorandom num-
bers drawn from a uniform distribution for the evaluation points, the Quasi-Monte Carlo
approach is to choose a deterministic sequence whose points are as evenly distributed
across the unit interval as possible. To phrase this in more mathematical terms, a notion
is introduced that measures how uniformly a sequence fills the unit interval.

Definition 2.1.1. The discrepancy of N numbers {x1, . . . , xN} ∈ [0, 1)s is given as

DN := sup
J

∣∣∣∣∣A(J, {x1, . . . , xN})
N

− λ(J)
∣∣∣∣∣ ,

where J = Πs
i=1[0, ui) is a half-open subinterval of [0, 1)s, the expression A(J, {x1, . . . , xN})

is the number of points from {x1, . . . , xN} that fall in the interval J and λ(J) denotes
the Lebesgue measure of J .
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Looking at the definition, it becomes intuitively clear that DN measures how much
{x1, . . . , xN} deviates from a perfect uniform distribution. The above is however just
one possible way of defining a discrepancy and depending on the situation, one might
want (or need) to consider another variant, as it will also be done later in this chapter. A
comprehensive treatment of the whole subject can be found in Kuipers and Niederreiter
(1974)

A sequence (xn)n∈N is called a low discrepancy sequence, if for all N ∈ N, N ≥ 2
the discrepancy of {x1, . . . , xN} is low, where “low” generally means

N ·DN ≤ Cs(logN)s +O
(
(logN)s−1

)
for a constant Cs which should be smallest possible. For details see e.g. Niederreiter
(1988). As they are essential for Quasi-Monte Carlo integration and the possibility to
consider uniformity in multiple dimensions or on different surfaces offers many ways of
generalization, the construction of these low discrepancy sequences has been and still
is a very active field of research. The most common low discrepancy sequences on the
d-dimensional unit hypercube include the Halton sequence, the Van der Corput sequence
and the Sobol sequence. The pictures below show a comparison between pseudorandom
numbers and Sobol points on [0, 1]2.

0 0.2 0.4 0.6 0.8 1
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0.6

0.7

0.8

0.9
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Figure 2.1.: 190 pseudorandom numbers.
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Figure 2.2.: 190 points of 2-dim. Sobol sequence.

Since among true (pseudo) random numbers there are naturally clusters but also less
densely populated areas, it becomes reasonable that the same number of Quasi-Monte
Carlo points achieves a better approximation of the uniform distribution. Therefore,
Quasi-Monte Carlo integration features a convergence rate close to (but not actually
reaching) O

(
1
n

)
, in comparison to regular Monte Carlo integration, which has a proba-

bilistic convergence rate of O
(

1√
n

)
. Although they show faster convergence behaviour
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and are usually equally easy to implement, Quasi-Monte Carlo methods are still not
nearly as popular as their regular counterpart. The reason for this might be that theo-
retical error bounds are eventually crude and in some cases the empirically shown good
performance of Quasi-Monte Carlo integration lacks rigorous understanding and justi-
fication. Note however, that the overview given here is by no means comprehensive
and that there exist many variations and also combinations of MC and QMC meth-
ods that play a role in research and application. Gaining more insights into unifomrly
distributed sequences in general, as well as bridging the gap between theoretical and
practical performance of certain methods are some of the goals of the mentioned SFB
for Quasi-Monte-Carlo methods.

The remainder of this chapter, that is sections 2.2 through 2.5, was published as
Preischl et al. (2018) and is therefore adopted verbatim, with only one reference,
namely Tang and Wei (2010), added in section 2.5.

2.2. Introduction
During the last two decades quasi-Monte-Carlo methods (QMC-methods) have been
applied to various problems in numerical analysis, statistical modeling and mathematical
finance. In this paper we will give a brief survey on some of these developments and
present new applications to more refined risk models involving discontinuous processes.
Let us start with Fredholm integral equations of the second kind:

f(x) = g(x) +
∫

[0,1]s
K(x,y)f(y)dy, (2.1)

where the kernel is given by K(x,y) = k(x − y) with k(x) having period 1 in each
component of x = (x1, . . . , xs). As it is quite common in applications of QMC-methods
(see for example Dick et al. (2007), Sloan and Woźniakowski (2001), Kuo (2003)) it is
assumed that g and k belong to a weighted Korobov space. Of course, there exists a
vast literature concerning the numerical solution of Fredholm equations, see for instance
Ikebe (1972), Atkinson (1967) or Twomey (1963). In particular, we want to mention the
work of I. Sloan in the late 1980’s where he explored various quadrature rules for solving
integral equations and applications to engineering problems (Sloan and Lyness (1989),
Sloan (1988) and Kumar and Sloan (1987)), which have also, after some modifications,
been applied to Volterra type integral equations (see Brunner (1984) or Brunner (1992)).
In Dick et al. (2007) the authors approximate f using the Nyström method based on
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QMC rules.
For points t1, . . . , tN in [0, 1]s the N -th approximation of f is given by

fN(x) := g(x) + 1
N

N∑
n=1

K(x, tn)fN(tn), (2.2)

where the function values fN(t1), . . . , fN(tN) are obtained by solving the linear system

fN(tj) = g(tj) + 1
N

N∑
n=1

K(tj, tn)fN(tn), j = 1, . . . , N. (2.3)

Under some mild conditions on K,N, and the integration points t1, . . . , tN , it is shown in
Dick et al. (2007) that there exists a unique solution of (2.3). Furthermore, the authors
analyze the worst case error of this, so-called QMC-Nyström method. In addition, good
lattice point sets t1, . . . , tN are presented. Its convergence rate is best possible. A special
focus of this important paper lies on the study of tractability and strong tractability of
the QMC-Nyström method. For tractability theory in general we refer to the fundamen-
tal monograph of Novak and Woźniakowski (2010). Using ideas of Hlawka (1961) the
third author of the present paper worked on iterative methods for solving Fredholm and
Volterra equations, see also Hua and Wang (1981).

The idea is to approximate the solution of integral equations by means of iterated (i.e.
multi-dimensional) integrals. The convergence of this procedure follows from Banach’s
fixed point theorem and error estimates can be established following the proof of the
Picard-Lindelöf approximation for ordinary differential equations. To be more precise,
let us consider integration points t1, . . . , tN ∈ [0, 1]s with star discrepancy D∗N defined
as usual by

D∗N = sup
J⊂[0,1]s

∣∣∣∣ 1
N
]{n ≤ N : tn ∈ J} − λ(J)

∣∣∣∣ , (2.4)

where the supremum is taken over all axis-aligned boxes J with one vertex in the origin
and Lebesgue measure λ(J). In Tichy (1984) the following system of r integral equations
has been considered for given functions gj on [0, 1]s+r and hj on [0, 1]s:

fj(x) =
∫ x1

0
. . .
∫ xs

0
gj(ξ1, . . . , ξs, f1(ξ), . . . , fr(ξ))dξs . . . dξ1 + hj(x) , j = 1, . . . , r (2.5)

where we have used the notations x = (x1, . . . , xs) ∈ [0, 1]s and ξ = (ξ1, . . . , ξs). Fur-
thermore, we assume that the partial derivatives up to order s of the functions gj and
hj, j = 1, . . . , r, are bounded by some constants G and H, respectively. Then, for a
given point set t1, . . . , tN in [0, 1]s with discrepancy D∗N , the solution f = (f1, . . . , fr)
of the system (2.5) can be approximated by the quantities f(k) = (f (k)

1 , . . . , f (k)
r ), given

recursively by

f
(k+1)
j (x) = x1 · · ·xs

N

N∑
n=1

gj(x1t1,n, . . . , xsts,n, f
(k)
1 (x · tn), . . . , f (k)

r (x · tn)); (2.6)
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here x · tn stands for the inner product x1t1,n + . . . + xsts,n, where tn = (t1,n, . . . , ts,n).
In Tichy (1984) it is shown, that based on the classical Koksma-Hlawka inequality the
worst case error, i.e., ‖ f(k) − f ‖∞ (sum of componentwise supremum norms) can be
estimated in terms of the bounds G and H and the discrepancy D∗N of the integration
points. This method was also extended to integral equations with singularities, such as
Abel’s integral equation. The main focus of the present paper lies on applications in
mathematical finance. In Albrecher and Kainhofer (2002) the above method was used
for the numerical solution of certain Cramér-Lundberg models in risk theory. However,
it turned out that in these models certain discontinuities occur. This means, that one
cannot assume bounds for the involved partial derivatives and simply apply the classical
Koksma-Hlawka inequality. Moreover, the involved functions are indicator functions of
simplices, thus not of bounded variation in the sense of Hardy and Krause, see Drmota
and Tichy (1997) and Kuipers and Niederreiter (1974).
Albrecher and Kainhofer (2002) considered a risk model with non-linear dividend bar-
rier and made some assumptions to overcome the difficulties caused by discontinuities.
For such applications it could help to use a different notion of variation for multivariate
functions. Götz (2002) proved a version of the Koksma-Hlawka inequality for general
measures, Aistleitner and Dick (2015) considered functions of bounded variation with
respect to signed measures and Brandolini et al. (2013a,b) replaced the integration do-
main [0, 1]s by an arbitrary bounded Borel subset of Rs and proved the inequality for
piecewise smooth integrands. Based on fundamental work of Harman Harman (2010), a
new concept of variation was developed for a wide class of functions, see Pausinger and
Svane (2015) and Aistleitner et al. (2017).

In the following we give a brief overview on concepts of multivariate variation and how
they can be applied for error estimates in numerical integration. Let f(x) be a func-
tion on [0, 1]s and a = (a1, . . . , as) ≤ b = (b1, . . . , bs) points in [0, 1]s, where ≤ denotes
the natural componentwise partial order. Following the notation of Owen (2005) and
Aistleitner et al. (2017) for a subset u ⊆ {1, . . . , s} we denote by au : b−u the point with
ith coordinate equal to ai if i ∈ u and equal to bi otherwise. Then for the box R = [a,b]
we introduce the s−dimensional difference operator

∆(d)(f ;R) = ∆(f ;R) =
∑
u

(−1)|u|f(au : b−u),

where the summation is extended over all subsets u ∈ {1, . . . , s} with cardinality |u| and
complement −u. Next we define partitions of [0, 1]s as they are used in the theory of
multivariate Riemann integrals, which we call here ladder. A ladder Y in [0, 1]s is the
cartesian product of one-dimensional partitions 0 = yj1 < . . . < yjkj < 1 (in any dimension
j = 1, . . . , s). Define the successor (yji )+ of yji to be yji+1 if i < kj and (yjkj)+ = 1. For
y = (y1

i1 , . . . , y
s
is) ∈ Y we define the successor y+ = ((y1

i1)+, . . . , (ysis)+) and have

∆(f ; [0, 1]s) =
∑
y∈Y

∆(f ; [y,y+]).

Using the notation

11



VY(f ; [0, 1]s) =
∑
y∈Y

∆(f ; [y,y+])

the Vitali variation of f over [0, 1]s is defined by

V (f ; [0, 1]s) = sup
Y
VY(f ; [0, 1]s). (2.7)

Given a subset u ⊆ {1, . . . , s}, let

∆u(f ; [a,b]) =
∑
v⊆u

(−1)|v|f(av : b−v)

and set 0 = (0, . . . , 0),1 = (1, . . . , 1) ∈ [0, 1]s. For a ladder Y there is a corresponding
ladder Yu on the |u|-dimensional face of [0, 1]s consisting of points of the form xu : 1−u.
Clearly,

∆u(f ; [0, 1]s) =
∑

y∈Yu
∆u(f ; [y,y+]).

Using the notation

VYu(f ; [0, 1]s) =
∑

y∈Yu
∆u(f ; [y,y+])

for the variation over the ladder Yu of the restriction of f to the face of [0, 1]s specified
by u, the Hardy-Krause variation is defined as

V(f) = VHK(f ; [0, 1]s) =
∑

∅6=u⊆{1,...,s}
sup
Yu

VYu(f ; [0, 1]s).

Assuming that f is of bounded Hardy-Krause variation, the classical Koksma-Hlawka
inequality reads as follows:∣∣∣∣∣ 1

N

N∑
n=1

f(xn)−
∫

[0,1]s
f(x)dx

∣∣∣∣∣ ≤ V(f)D∗N , (2.8)

where x1, . . . ,xN is a finite point set in [0, 1]s with star discrepancy D∗N . In the case
f : [0, 1]s → R has continuous mixed partial derivatives up to order s the Vitali variation
(2.7) is given by

V(f ; [0, 1]s) =
∫

[0,1]s

∣∣∣∣∣ ∂sf

∂x1 · · · ∂xs
(x)

∣∣∣∣∣ dx. (2.9)

Summing over all non-empty subsets u ⊆ [0, 1]s immediately yields an explicit formula
for the Hardy-Krause variation in terms of integrals of partial derivatives, see (Leobacher
and Pillichshammer, 2014, Ch.3, p. 59). In particular, the Hardy-Krause variation can
be estimated from above by an absolute constant if we know global bounds on all partial
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derivatives up to order s.

In the remaining part of the introduction we briefly sketch a more general concept
of multidimensional variation which was recently developed in Pausinger and Svane
(2015). Let D denote an arbitrary family of measurable subsets of [0, 1]s which contains
the empty set ∅ and [0, 1]s. Let L(D) denote the R−vectorspace generated by the system
of indicator functions 1A with A ∈ D.

A set A ⊆ [0, 1]s is called an algebraic sum of sets in D if there exist A1, . . . , Am ∈ D
such that

1A =
n∑
i=1

1Ai −
m∑

i=n+1
1Ai ,

and A is defined to be the collection of algebraic sums of sets in D. As in Pausinger and
Svane (2015) we define the Harman complexity h(A) of a non-empty set A ∈ A, A 6=
[0, 1]s as the minimal number m such there exist A1, . . . , Am with

1A =
n∑
i=1

1Ai −
m∑

i=n+1
1Ai ,

for some 1 ≤ n ≤ m and Ai ∈ D or [0, 1]s \ Ai ∈ D. Moreover, set h([0, 1]s) = h(∅) = 0
and for f ∈ L(D)

V ∗D(f) = inf
{

m∑
i=1
|αi|hD(Ai) : f =

m∑
i=1

αi1Ai , αi ∈ R, Ai ∈ D
}
.

Furthermore, let V∞(D) denote the collection of all measurable, real-valued functions on
[0, 1]s which can be uniformly approximated by functions in L(D). Then the D−variation
of f ∈ V∞(D) is defined by

VD(f) = inf{ lim inf
i→∞

V ∗D(fi) : fi ∈ L(D), f = lim
i→∞

fi }, (2.10)

and set VD(f) = ∞ if f /∈ V∞(D). The space of functions of bounded D−variation is
denoted by V(D). Important classes of sets D are the class K of convex sets and the
class R∗ of axis aligned boxes containing 0 as a vertex. In Aistleitner et al. (2017) it is
shown that the Hardy-Krause variation V(f) coincides with VR∗(f). For various appli-
cations the D−variation seems to be a more natural and suitable concept. A convincing
example concerning an application to computational geometry is due to Edelsbrunner
and Pausinger (2016). Pausinger and Svane (2015) considered the variation VK(f) with
respect to the class of convex sets. They proved the following version of the Koksma-
Hlawka inequality:

∣∣∣∣∣ 1
N

N∑
n=1

f(xn)−
∫

[0,1]s
f(x)dx

∣∣∣∣∣ ≤ VK(f)D̃N ,
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where D̃N is the isotropic discrepancy of the point set x1, . . . ,xN , which is defined as
follows

D̃N = sup
C∈K

∣∣∣∣ 1
N
]{n ≤ N : xn ∈ C} − λ(C)

∣∣∣∣ .
Pausinger and Svane (2015) have shown that twice continuously differentiable functions
f admit finite VK(f), and in addition they gave a bound which will be useful in our
context.

Our paper is structured as follows. In Section 2 we introduce specific Markovian models
in risk theory where in a natural way integral equations occur. These equations are
based on arguments from renewal theory and only in particular cases they can be solved
analytically. In Section 3 we develop a QMC method for such equations. We give an
error estimate based on Koksma-Hlawka type inequalities for such models. In Section 4
we compare our numerical results to exact solutions in specific instances.

2.3. Discounted Penalties in the Renewal Risk Model
2.3.1. Stochastic Modeling of Risks
In the following we assume a stochastic basis (Ω, F , P ) which is large enough to carry
all the subsequently defined random variables. In risk theory the surplus process of an
insurance portfolio is modeled by a stochastic process X = (Xt)t≥0. In the classical risk
model, going back to Lundberg (1903), X takes the form

Xt = x+ c t−
Nt∑
i=1

Yi, (2.11)

where the deterministic quantities x ≥ 0 and c ≥ 0 represent the initial capital and the
premium rate. The stochastic ingredient St = ∑Nt

i=1 Yi is the cumulated claims process
which is a compound Poisson process. The jump heights - or claim amounts - are {Yi}i∈N
for which Yi iid∼ FY with FY (0) = 0. The counting process N = (Nt)t≥0 is a homogeneous
Poisson process with intensity λ > 0. A crucial assumption in the classical model is the
independence between {Yi}i∈N and N . A major topic in risk theory is the study of the
ruin event. We introduce the time of ruin τ = inf{t ≥ 0 |Xt < 0}, i.e., the first point in
time at which the surplus becomes negative. In this setting τ is a stopping time with
respect to the filtration generated by X, {FXt }t≥0 with FXt = σ{Xs | 0 ≤ s ≤ t}. A first
approach for quantifying the risk of X, is the study of the associated ruin probability

ψ(x) = Px(Xt < 0 for some t ≥ 0) = Px(τ <∞),

which is non-degenerate if Ex(X1) > 0, and satisfies the integral equation
c

λ
ψ(x) =

∫ ∞
x

(1− FY (y))dy +
∫ x

0
ψ(x− y)(1− FY (y))dy.
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In Gerber and Shiu (1998, 2005) so-called discounted penalty functions are introduced.
This concept allows for an integral ruin evaluation and is based on a function w :
R+ × R+ → R which links the deficit at ruin |Xτ | and the surplus prior to ruin Xτ− :=
limt↗τ Xt via the function

V (x) = Ex
(
e−δτw(|Xτ |, Xτ−)1{τ<∞}

)
.

The time of ruin τ is included by means of a discounting factor δ > 0 which gives more
weight to an early ruin event. In this setting specific choices of w allow for an unified
treatment of ruin related quantities. In the literature, this kind of expected, discounted
penalty function is often called a Gerber-Shiu function.

Remark 2.3.1. When putting a focus on the study of ψ(x), the condition Ex(X1) > 0
is crucial. It says that on average premiums exceed claim payments in one unit of time.
Standard results, see Asmussen and Albrecher (2010), show that under this condition
limt→∞Xt = +∞ P -a.s. From an economic perspective the accumulation of an infinite
surplus is unrealistic and risk models including shareholder participation via dividends
are introduced in the literature. We refer to Asmussen and Albrecher (2010) for model
extensions in this direction.

2.3.2. Markovian Risk Model
In the following we consider an insurance surplus process X = (Xt)t≥0 of the form

Xt = x+
∫ t

0
c(Xs−)ds−

Nt∑
i=1

Yi.

The quantity x ≥ 0 is called the initial capital, the cumulated claims are represented by
St = ∑Nt

i=1 Yi and the state-dependent premium rate is c(·). The cumulated claims pro-
cess S = (St)t≥0 is given by a sequence {Yi}i∈N of positive, independently and identically
distributed (iid) random variables and a counting process N = (Nt)t≥0. For convenience
we assume that the claims distribution admits a continuous density fY : R+ → R+.
In our setup we model the claim counting process N = (Nt)t≥0 as a renewal counting
process which is specified by the inter-jump times {Wi}i∈N which are positive and iid
random variables. Then, the time of the i−th jump is Ti = W1+. . .+Wi and if we assume
thatW1 admits a density fW , the jump intensity of the process X is λ(t′) = fW (t′)

1−
∫ t′

0 fW (s)ds
.

Here t′ denotes the time since the last jump. A common assumption we are going to
adopt, is the independence between {Yi}i∈N and {Wi}i∈N.
We choose, in contrast to classical models, a non-constant premium rate to model the
effect of a so-called dividend barrier a > 0 in a smooth way. A barrier at level a > 0
has the purpose that every excess of surplus of this level is distributed as a dividend
to shareholders which allows to include economic considerations in insurance modeling.
Mathematically, this means that the process X is reflected at level a. Now instead of
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directly reflecting the process we use the following construction. Fix ε > 0 and for some
c̃ > 0, define

c(x) =


c̃, x ∈ [0, a− ε),
f(x), x ∈ [a− ε, a],
0, x > a,

(2.12)

with some positive and twice continuously differentiable function f which fulfills f(a−
ε) = c̃, f(a) = 0, f ′(a − ε) = f ′(a) = f ′′(a − ε) = f ′′(a) = 0. Altogether, we assume
c(·) ∈ C2[0, a] with some Lipschitz constant L > 0 and c′(a− ε) = c′(a) = 0, c′′(a− ε) =
c′′(a) = 0, c′ ≤ 0 and bounded derivatives c′, c′′. Then limx↗a c(x) = 0 and the process
always stays below level a if started in [0, a).
A concrete choice for f would be

c(a− x)3 (15ε(x− a) + 6(a− x)2 + 10ε2)
ε5 . (2.13)

In the following we do not specify f any further.
In this setting we add X0 = x into the definition of the time of ruin, i.e., τx = inf{t ≥
0 |Xt < 0, X0 = x}.
Remark 2.3.2. In this model setting ruin can only take place at some jump time Tk
and since the process is bounded a.s. we have that Px(τx <∞) = 1. If an approximation
to classical reflection of the process at level a is implemented, then the process virtually
started above a is forced to jump down to a − ε and continue from this starting value.
Consequently, we put the focus on starting values x ∈ [0, a).
In the remainder of this section we will study analytic properties of the discounted

value function which in this framework takes the form

V (x) = Ex
(
e−δτxw(|Xτx|, Xτx−)

)
, (2.14)

with δ > 0 and a continuous penalty function w : R+ × [0, a)→ R.
To have a well defined function, typically the following integrability condition is used∫ ∞

0

∫ ∞
0
|w(x, y)|fY (x+ y)dy dx <∞,

see Asmussen and Albrecher (2010). Since our process is kept below level a and w
is supposed to be continuous in both arguments we can naturally replace the above
condition by

sup
z∈[0,a)

∫ ∞
0
|w(|z − y|, z)|fY (y)dy =: M <∞, (2.15)

which we will assume in the following. The condition from equation (2.15) holds true
for example, if |w(x, y)| ≤ (1 + |x|+ |y|)p and FY admits a finite p-th moment for some
p ≥ 1. The condition (2.15) is motivated by the observation that Xτx− ∈ [0, a) and
|Xτx| = |Xτx− − YNτx | where YNτx

d∼ fY . Consequently, we get

V (x) ≤ Ex (|w(|Xτx |, Xτx−)|) ≤ sup
z∈[0,a)

∫ ∞
0
|w(|z − y|, z)|fY (y)dy.
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Remark 2.3.3. From the construction of X we have that X̃ = (X̃t)t≥0 with X̃t =
(Xt, t

′(t), t) is a piecewise-deterministic Markov process, see Davis (1993). Since the
jump intensity depends on t′ = t − TNt, one needs this additional component for the
Markovization of X. But on the discrete time skeleton {Ti}i∈N with T0 = 0 the process
X = {XTk}k∈N has the Markov property.

Remark 2.3.4. In risk theory surplus models including a reflection at some level a > 0
with dynamics of the form

dXt = c1{Xt<a}dt− dSt, X0 = x ≥ 0,

arise when studying dividend strategies which pay out every excess over the level a im-
mediately to shareholders. This is motivated by the following observation: when study-
ing ruin probabilities it is crucial having Ex(X1 − x) > 0, which results in P (Xt <
0 for some t > 0 or limt→∞Xt = ∞) = 1. This says that on the favourable set
{ω ∈ Ω | τx(ω) = ∞} the surplus becomes arbitrarily large. As a reaction to this unre-
alistic behaviour, a shareholder participation via dividend payments is introduced. An
overview on the dividend problem in risk theory and related results can for instance
be found in Albrecher and Thonhauser (2009). In the present setting, we introduce a
smoothed reflection to make relevant computations accessible to an application of QMC
methods, a feature which does not show up in the corresponding literature. Results on a
classical QMC treatment in the situation of a non-linear dividend barrier can be found
in Albrecher and Kainhofer (2002).

2.3.3. Analytic Properties and a Fixed Point Problem
We start with showing some elementary analytical properties of the function V defined
in (2.14).

Theorem 2.3.5. The function V : [0, a)→ R is bounded and continuous.

Proof. The boundedness of V follows directly from the assumption made in (2.15).
For proving continuity we split off the expectation defining V into two parts which we
separately deal with. Let x > y and observe

|V (x)− V (y) | =
∣∣∣E [e−δτxw(|Xx

τx|, X
x
τx−)− e−δτyw(|Xy

τy |, X
y
τy−)

]∣∣∣
≤E

[
e−δτx

∣∣∣w(|Xx
τx|, X

x
τx−)− w(|Xy

τx|, X
y
τx−)

∣∣∣1{τx=τy}
]

+ E
[∣∣∣e−δτxw(|Xx

τx|, X
x
τx−)− e−δτyw(|Xy

τy |, X
y
τy−)

∣∣∣1{τx>τy}]
=A+B.

For A we fix some T > 0 and notice the following bound

A ≤ E
[
e−δτx|w(|Xx

τx|, X
x
τx−)− w(|Xy

τx|, X
y
τx−)|1{τx=τy≤T}

]
+ 2M P (τx > T ) ≤ 2M.

(2.16)
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Before going on we need some estimates on the difference of two paths, one starting
in x and the other in y. For fixed ω ∈ Ω we have that on (0, T1(ω) the surplus ful-
fills ∂Xt(ω)

∂t
= c(Xt(ω)) with initial condition X0 = 0, T1(ω) is finite with probability

one. Standard arguments on ordinary differential equations, see for instance (Stoer and
Bulirsch, 2000, Th. 7.1.1 - 7.1.8), yield that an appropriate solution exists and is contin-
uously differentiable in t and continuous in the initial value x. We even get the bound
|Xx

t − X
y
t | ≤ eL t |x − y| for fixed ω, where Xx

t denotes the path which starts in x and
L > 0 the Lipschitz constant of c(·). From these results we directly obtain for a given
path

|Xx
T1− −X

y
T1−| ≤ eLT1|x− y|,

which by iteration results in

|Xx
Tn− −X

y
Tn−| = |X

x
Tn −X

y
Tn| ≤ eLTn|x− y|,

because |Xx
Tn −X

y
Tn| = |Xx

Tn− − Yn − (Xy
Tn− − Yn)| = |Xx

Tn− −X
y
Tn−|. Since ruin takes

place at some claim occurrence time Tk we get that on {ω ∈ Ω | τx = τy ≤ T} the quan-
tities |Xx

τx| and Xx
τx− converge to the corresponding quantities started in y, all possible

differences are bounded by eLT |x − y|. Therefore, sending y to x in (2.16) and then
sending T to infinity, we get that A converges to zero because P (τx < ∞) = 1 and
bounded convergence. We can repeat the argument for x→ y when using P (τy > T ) in
(2.16).

Now consider part B. We first observe that B ≤ 2MP (τx > τy). Consequently, we
need to show that P (τx > τy) tends to zero if y → x or x → y. Again, fix ω ∈ Ω for
which τx(ω) > τy(ω), this implies that there is a claim amount Yn, occurring at some
point in time Tn, for which

Xx
Tn−(ω) ≥ Yn(ω) > Xy

Tn−(ω),

i.e., causing ruin for the path started in y, (Xy
t ), but not causing ruin for the one started

in x, (Xx
t ). From the construction of the drift c(·), it is decreasing to zero, we have that,

surpressing the ω dependence,

0 < Yn −Xy
Tn− ≤ Xx

Tn− −X
y
Tn− ≤ x− y.

Since Xy
Tn− ∈ [0, a) we have

P (τx > τy) ≤ sup
q∈[0,a)

P (0 < Y − q ≤ x− y) = sup
q∈[0,a)

{FY (x− y + q)− FY (q)},

which approaches zero whenever x and y tend to each other since FY is continuous.

Define for functions f ∈ Cb([0, a)) the operator A by

Af(x) := Ex
(
e−δT1f(XT1)1{T1<τx} + e−δτxw(|XT1|, XT1−)1{τx=T1}

)
. (2.17)
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The Markov property of the sequence {XTi}i∈N and the definition of V in (2.14) allow
us to derive that V = AV , or explicitly written

V (x) = Ex
[
e−δT1V (XT1)1{T1<τx} + e−δT1w(|XT1|, XT1−)1{τx=T1}

]
.

We can state the following lemma.
Lemma 2.3.6. If δ > 0, the operator A : Cb([0, a)) → Cb([0, a)) defined in (2.17) is a
contraction with respect to || · ||∞.

Proof. Let f ∈ Cb([0, a)) be bounded by some constant M ′, then

Af(x) = Ex
(
e−δT1f(XT1)1{T1<τx} + e−δτxw(|XT1|, XT1−)1{τx=T1}

)
,

is bounded by max{M,M ′}. From the integral representation ofAf(x) we get continuity
in x,

Af(x) =
∫ ∞

0
e−δt1fW (t1)

 ∫ Xt1−

0
f(Xt1− − y1)dFY (y1)+

∫ ∞
Xt1−

w(|Xt1− − y1|, Xt1−)dFY (y1)
dt1,

where Xt1− is the ODE’s solution up to time t1 with X0 = x. From (Stoer and Bulirsch,
2000, Th. 7.1.4) we have that Xt1− is continuous in its initial value which shows that
Af(x) is continuous in x.
Let f, g ∈ Cb([0, a)), then we have for all x ∈ [0, a) that

|(Af −Ag)(x)| ≤
∫ ∞

0
e−δt1fW (t1)

∫ Xt1

0
|f(Xt1 − y1)− g(Xt1 − y1)|dFY (y1)dt1

≤ ||f − g||∞
∫ ∞

0
e−δt1fW (t1)dt1 = ||f − g||∞E[e−δT1 ].

Since δ > 0 and T1 > 0 P−a.s., A is contractive with Lipschitz constant
L̃ = E[e−δT1 ] < 1.

For a possible application of quasi-Monte Carlo techniques we need to examine the
structure of A,

Av(x) =
∫ ∞

0
e−δt1fW (t1)

∫ Xt1−

0
v(Xt1− − y1)dFY (y1)dt1+∫ ∞

0
e−δt1fW (t1)

∫ ∞
Xt1−

w(y1 −Xt1−, Xt1−)dFY (y1)dt1

=: Gv(x) +H(x).

For n ∈ N the probabilistic interpretation of iterated applications of A is Anv(x) =
Ex
(
e−δTnv(XTn)1{Tn<τx} + e−δτxw(|Xτx|, Xτx−)1{τx≤Tn}

)
. Using G and H we can write

Anv(x) = Gnv(x) +
n−1∑
k=0
GkH(x),
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where Gnv(x) = Ex(e−δTnv(XTn)1{Tn<τ}) and

Gk−1H(x) =
∫ ∞

0
· · ·

∫ ∞
0

∫ ∞
Xt̄k−

∫ Xt̄k−1−

0
· · ·

∫ Xt̄1−

0(
k∏
i=1

e−δti fW (ti)
)
w(yk −Xt̄k−, Xt̄k−)dFY (yk) · · · dFY (y1)dtk · · · dt1.

Here, t̄ := ∑k
i=1 ti and represents the time of the k-th jump. We see that via Xt̄k =

Xt̄k−1 − yk +
∫ t̄k
t̄k−1

c(Xs)ds the path of the process depends on all integration variables
(t1, . . . , tk, y1, . . . , yk).
For dealing with the situation δ = 0, i.e., when the contraction argument fails, we can
use a probabilistic argument. Since limn→∞ Tn = ∞ and P (τx < ∞) = 1 we have
that limn→∞ Gnv(x) = limn→∞ Ex

(
e−δTnv(XTn)1{Tn<τ}

)
= 0 for v ∈ Cb([0, a)). Using

|Anv(x) − V (x)| = | Gnv(x) − GnV (x) | we get limn→∞Anv(x) = V (x) pointwise, even
in the case if δ = 0.
In what follows we put the focus on the determination of GkH(x).

2.4. Approximation Procedure
For the application of QMC methods we need to transform in a first step the integration
domain in

Gk−1H(x) =
∫ ∞

0
· · ·

∫ ∞
0

∫ ∞
Xt̄k−

∫ Xt̄k−1−

0
· · ·

∫ Xt̄1−

0(
k∏
i=1

e−δti fW (ti)
)
w(yk −Xt̄k−, Xt̄k−)dFY (yk) · · · dFY (y1)dtk · · · dt1

to [0, 1]2k. This is achieved by use of the following substitutions

αi := e−ti ⇒ ti = − logαi for i ∈ {1, . . . , k}

βi := yi
Xt̄i−

⇒ yi = Xt̄i−βi for i ∈ {1, . . . , k − 1}

βk := eXt̄k−e−yk ⇒ yk = Xt̄k− − log βk.

Here it has to be taken into account that the values of the reserve process X have to be
calculated recursively, i.e., Xt̄i− depends on t1, . . . , ti and y1, . . . , yi−1. Since the Jacobian
matrix of this transformation has a lower triangular form, the determinant can easily be
found as 1

α1...αk
Xt̄1− · · ·Xt̄k−1−

1
βk
. Altogether, we arrive at

Gk−1H(x) =
∫

[0,1]2k

k∏
i=1

αδi fW (ti(αi))
k∏
i=1

fY (yi(α1, . . . , αi, β1, . . . , βi))

1
α1 . . . αk

Xt̄1− · · ·Xt̄k−1−
1
βk
w(− log βk, Xt̄k−) dα1 . . . dαkdβ1 . . . dβk.
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Consequently, for recovering the Koksma-Hlawka type error bound we need to examine
the variation of the integrand:

F (α1, . . . , αk, β1, . . . , βk) =
(
k−1∏
i=1

αδ−1
i fW (− log(αi))

)(
k−1∏
i=1

fY (βiXt̄i−)Xt̄i−

)
·(

αδ−1
k fW (− log(αk))fY (Xt̄k− − log(βk))

1
βk
w(− log βk, Xt̄k−)

)
. (2.18)

Here we denote by φ(t, s) the solution to ∂
∂t
x(t) = c(x(t)) with x(0) = s. Consequently,

we can write

Xt̄i− = Xt̄i−1− − yi−1 + φ(ti, Xt̄i−1− − yi−1).

Or in terms of αi, putting x̂i−1 = Xt̄i−1− − yi−1 = Xt̄i−1−(1− βi−1) and

Xt̄i− = x̂i−1 + φ(− log(αi), x̂i−1). (2.19)

In the following proposition we show that with a particular choice of model parameters it
is possible to apply results from Pausinger and Svane (2015) to show that the integrand
in (2.18) is in some sense of finite variation. Its proof shows that probabilistic and
deterministic model ingredients are considerably interconnected.

Theorem 2.4.1. Let fW (t) = λe−λt1{t≥0} (λ > 0), fY (y) = µe−µy1{y≥0} (µ > 0), w ≡ 1
and c(·) be specified by (2.13). Then, under the assumption λ + δ ≥ 3 and µ ≥ 3 the
variation VK(F ) (see (2.10) with D = K) of F , defined in (2.18), is finite.

Proof. The main idea of the proof is the application of (Pausinger and Svane, 2015, Th.
3.12). For this purpose we need to show that M(F ) = sup{‖Hess(F, x)‖ |x ∈ [0, 1]2k},
supF and inf F are finite, with the implication

VK(F ) ≤ supF − inf F +M(F ).

Since in this theorem the operator (matrix) norm ‖Hess(F, x)‖ is arbitrary we use the
2-norm and exploit the relation

‖Hess(F, x)‖2 ≤

 2k∑
i=1

2k∑
j=1

[Hess(F, x)]2ij

 1
2

.

We will show that [Hess(F, x)]ij is finite for all x ∈ [0, 1]2k. At first we observe that
when taking derivatives with respect to αi and βj, the structure of (2.19) implies the
appearance of the following terms:

∂

∂t
φ(t, s) = c(φ(t, s)), ∂2

∂t2
φ(t, s) = c′(φ(t, s))c(φ(t, s)),

∂

∂s
φ(t, s) =: y(t, s) = e

∫ t
0 c
′(φ(u,s))du,

∂2

∂t∂s
φ(t, s) = c′(φ(t, s))y(t, s),

∂2

∂s2φ(t, s) =: z(t, s) = y(t, s)
∫ t

0
c′′(φ(u, s))y(u, s)du.
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The functions y, z correspond to the first and second derivative of the ODE’s solution
with respect to the initial value. They can be derived from the associated first and
second order variational equations (see Grigorian (2009)). From our assumptions on
c(·) we have that y is bounded by one (c′ ≤ 0) and all other derivatives including z are
bounded as well. The boundedness of z can be derived from the boundedness of c′′(·)
and an analysis of the growth behaviour of y.
For the structure of [Hess(F, x)]ij we can derive the following(

k∏
l=1

α
δ+λ−aij
l β

µ−bij
k e−µ(y1+···+yk−1+Xt̄k−)

)
·

Qij

(
β1, . . . , βk−1, φ,

∂

∂t
φ,

∂2

∂t2
φ,

∂

∂s
φ,

∂2

∂t∂s
φ,

∂2

∂s2φ

)
,

for aij, bij ∈ {1, 2, 3} and a function Qij. Qij is evaluated at the integration points and φ
and its derivatives which themselves are evaluated in points of the form (− log(αl), x̂l−1) ∈
(0,∞)× [0, a) for l ∈ {1, . . . , k}. If φ and its derivatives are considered to be variables,
neglecting their dependence on the αls and βls, then Qij is a polynomial of degree k.
The degree of the polynomial is produced by the recursive structure of the paths and
its dependence on all previous jump times and sizes. From this inspection we get that
under the conditions λ+ δ ≥ 3 and µ ≥ 3 all entries of the Hessian matrix are bounded.
Furthermore, the conditions on the parameters λ, δ, µ ensure that supF is finite and
inf F = 0.

Remark 2.4.2. We can combine the above result with the convergence rate from Ba-
nach’s fixed point theorem and obtain for our specific situation∥∥∥∥∥

n∑
k=0
ĜkH− V

∥∥∥∥∥
∞

≤
∥∥∥∥∥
n∑
k=0

(ĜkH− GkH)
∥∥∥∥∥
∞

+ ‖An − V ‖∞ + ‖Gnv‖∞

≤
n∑
k=0
VK(F k)D̃Nk + L̃n

1− L̃
‖Av − v‖∞ +M ′

(
λ

δ + λ

)n
.

Here F k denotes the integrand from (2.18) in dimension 2k, D̃Nk the isotropic discrep-
ancy of a pointset with Nk elements in [0, 1]2k and ĜkH is the QMC approximation for
GkH. For the last term we used that v is bounded by some M ′ > 0 and the fact the Tn
follows a Gamma distribution Γ(n, λ).
From the type of arguments we used for the proof of Theorem 2.4.1, we expect that the
result holds true for Γ-distributed inter-claim times and jump heights and w(y, z) = ykzl

with similar conditions on the parameters. Hence the method is also applicable for this
more general situation. A detailed study of this claim is part of future research.

2.5. Numerical Results
In this section, we evaluate the integrals from Section 2.4 by applying Monte Carlo and
quasi-Monte Carlo methods for different choices of the penalty function w.
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Note that in the general case, determining the Gerber-Shiu function analytically is a
profoundly hard problem, since only certain parameter constellations allow for explicit
results. For constant parameter settings, in particular constant drift c, inter-claim times
and jumps following phase-type distributions and special choices of w, the problem can be
handled by matrix-analytic methods. For an overview on these techniques see Asmussen
and Albrecher (2010), or for exemplary results one may consult Albrecher et al. (2010)
and Lin et al. (2003). A main focus in the risk theoretic literature lies on asymptotic
approximations as the initial value x becomes large, these results are referred to as
Cramér-Lundberg type approximations, see Asmussen and Albrecher (2010) and Rolski
et al. (1999). While there are examples for literature on the numerical treatment of
Gerber-Shiu functions (e.g. Tang and Wei (2010)), these are relatively scarce in contrast
to those on probabilistic approximations. For a survey on the use of collocation methods
we refer to Makroglou (2004).

2.5.1. The Discounted Time of Ruin
Letting w(y, z) := 1, we arrive at V (x) = Ex(e−δτxw(|Xτx|, Xτx−)) = Ex(e−δτx) which
is the discounted time of ruin. Lin et al. Lin et al. (2003) found an analytic expres-
sion for this discounted time of ruin if both the inter-arrival times of the claims and
the claim sizes are exponentially distributed. To have a reference value, we also adopt
these assumptions and denote the parameters of the exponential distributions with λ
for the parameter of the inter-arrival times and µ for the parameter of the claim sizes.
The premium rate c(·) was chosen as in Section 2.3.2 with f from equation (2.13), with
c̃ = 2, a = 3 and ε was set to 0.001. Note that the results of Lin et al. (2003) were
proved for a reflected process in the classical sense, which means c(x) = c̃ for x ≤ a
and c(x) = 0 for x > a. Since Theorem 2.4.1 requires a premium rate satisfying certain
smoothness conditions, we cannot use a discontinuous c and thus have a methodic error
in our simulations. However, we will see that this error is, at least for small ε, very small.

We list the parameters together with the approximation values for increasing numbers
of (Q)MC points and k = 20 iterations of the algorithm in Table 2.1, whereas Table
2.2 shows the approximation values for k = 100 iterations of the algorithm. Figure 2.3
and Figure 2.4 show the MC points (green) with 95% confidence intervals, together with
QMC points from Sobol sequences (blue) and Halton sequences (orange).
The red line at height 0.7577 marks the analytically found value for the reflected pro-
cess. We use it as a reference value here but, again, remark that it is not the exact
value for our smoothed process. As can be seen in Figure 2.3, the algorithm has not
yet converged for k = 20, whereas Figure 2.4 shows that k = 100 already yields a
very good approximation. The computation time of the above example, for k = 100,
was under 4 minutes for both choices of QMC sequences, whereas the MC method has
a runtime of more than 30 minutes. The exact computation times are given in Table 2.3.

To illustrate the speed of convergence, we also plotted the absolute error, both for the
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Figure 2.3.: k = 20 iterations of the algorithm. Figure 2.4.: k = 100 iterations of the algorithm.

x λ µ w(y, z) k δ
1.2 1 0.8 1 20 0.05
N : 10000 15000 20000 25000 30000
MC: 0.7425 0.7452 0.7463 0.7458 0.7459
Sobol: 0.7494 0.7440 0.7403 0.7394 0.7383
Halton: 0.7502 0.7509 0.7473 0.7488 0.7457

Table 2.1.

x λ µ w(y, z) k δ
1.2 1 0.8 1 100 0.05
N : 10000 15000 20000 25000 30000
MC: 0.7535 0.7507 0.7534 0.7555 0.7527
Sobol: 0.7597 0.7566 0.7560 0.7508 0.7510
Halton: 0.7615 0.7591 0.7577 0.7555 0.7543

Table 2.2.

k MC points Halton seq. Sobol seq.
20 121 37 38
100 2436 198 200

Table 2.3.: Times to obtain the plots in Figures 2.1 and 2.2 in seconds.

MC approach as well as for QMC points (again taken from Sobol and Halton sequences)
for varying numbers of points N . Figures 2.5 and 2.6 show the values obtained for k = 40
iterations of the algorithm. Obviously, k = 40 is also not yet enough to reach the actual
value. But notice that the absolute error even for more iterations cannot converge to
zero because of the smoothed reflection procedure. For both of the QMC methods, a
scramble improved the results. In the Sobol case however, an “unlucky” choice in the
scramble and the skip value (i.e. how many elements are dropped in the beginning) can
lead to relatively high variation in the output, whereas the Halton set shows a more
stable performance (compare Figures 2.5 and 2.6).
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Figure 2.5.: “lucky” choice of QMC points. Figure 2.6.: “unlucky” choice of QMC points.

Figure 2.7.: Influence of the starting value

For Figure 2.7 we evaluated k = 40 iter-
ations of the algorithm with N = 30000
(Q)MC points for different starting val-
ues x, ranging from 0.7 to 2. As ex-
pected, the discounted time of ruin de-
creases for increasing x.

2.5.2. The Deficit at Ruin
If we set w(y, z) := y, and δ = 0, we have V (x) = Ex(|Xτx|), the expected deficit at ruin.
We use the same premium rate c(·) as before and again choose exponential distributions
for the inter-arrival times and claim sizes with parameters λ and µ respectively, since
also in this case the true value Ex(|Xτx|) = 1

µ
(for a classically reflected process) can be

found in Lin et al. (2003). Figures 2.8 and 2.9 show the results for k = 20 and k = 100
iterations respectively. The reference value is again shown as a red line, in our case at
1.25. The MC points are drawn in green, the Sobol points blue and the Halton points in
orange. Table 2.4 and Table 2.5 contain the precise values along with the corresponding
parameters.

Note again the difference between Figure 2.8 and Figure 2.9, resulting from a differ-
ent number of iterations k. The computation times for these plots deviate very little
from those given in Figure 2.3.
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Figure 2.8.: k = 20 iterations of the algorithm. Figure 2.9.: k = 100 iterations of the algorithm.

x λ µ w(y, z) k δ
1.2 1 0.8 y 20 0
N : 10000 15000 20000 25000 30000
MC: 1.1952 1.1991 1.1986 1.1987 1.1939
Sobol: 1.2105 1.2142 1.2070 1.2074 1.1975
Halton: 1.2084 1.2019 1.1906 1.1872 1.1885

Table 2.4.

x λ µ w(y, z) k δ
1.2 1 0.8 y 100 0
N : 10000 15000 20000 25000 30000
MC: 1.2624 1.2558 1.2446 1.2602 1.2607
Sobol: 1.2669 1.2704 1.2624 1.2373 1.2398
Halton: 1.2487 1.2404 1.2344 1.2273 1.2199

Table 2.5.

Again, we plotted the absolute error for
k = 40 iterations of the algorithm and
a varying number of (Q)MC points N .
Figure 2.10 shows the results using the
same colorings as before.

Figure 2.10.: The absolute error for the deficit at
ruin
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Remark 2.5.1. We considered in our numerical examples two test cases for which ex-
plicit (approximate) reference values are available. Certainly our approach is not re-
stricted to this particular choice of model ingredients - which are fY , fW and the penalty
function w.
While there are several approximation techniques for discounted penalty functions, it is
precisely this flexibility that makes the (Q)MC approach favourable in many situations.
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3. Optimal Reinsurance for
Gerber-Shiu Functions

If an insurance company decides to buy an insurance contract from another company,
e.g. against very large claims, this is called reinsurance. From a practitioner’s point of
view, reinsurance is a central and highly necessary part of insurance business, be it for
the company buying reinsurance, or the one offering it. It is therefore not surprising that
actuaries have developed and improved ways to model reinsurance for several decades.
However, it wasn’t until the early 2000s that reinsurance was considered in a dynamic
way, meaning the extent of the protection can be updated in response to business de-
velopment. It may be questioned, whether this dynamic assumption is very realistic in
applications, since contracts are generally renewed after fixed time periods (e.g. annu-
ally), but from a mathematical point of view, these dynamic contracts give rise to a very
rich and interesting theory, which might eventually find its way into actuarial practice.
It turned out that stochastic optimal control was a suitable approach to incorporate this
dynamic setting and after some pioneering works this new branch in insurance math-
ematics spawned quite a lot of research. For an overview see e.g. Albrecher et al. (2017).

When something shall be optimal this instantly induces the question with respect to
what? Indeed there are numerous different performance criteria for reinsurance and
therefore also many concepts of optimality. So far, most literature focused on picking a
specific feature that was to be optimized, usually ruin probabilities or dividend payouts,
and then deriving a method tailored to solve this particular problem. The discounted
penalty functions that were introduced in the last chapter, however offer a way to unify
many relevant quantities connected to risk processes. So a method aiming to optimize
these penalty functions is a useful generalization that will be presented in the following.

The remainder of this chapter, that is sections 3.1 through 3.4, was published as
Preischl and Thonhauser (2019) and is therefore adopted verbatim, modulo some
typographical errors that have been corrected in this thesis.
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3.1. Introduction and Preliminaries

3.1.1. Motivation
The problem of choosing an optimal reinsurance contract has been a very active field
inside actuarial mathematics for several years and numerous different frameworks have
been considered in this context. The earlier works on this topic were inspired by Waters
(1983) where the idea is to maximize the adjustment coefficient to achieve the fastest
decay rate for the ruin probability with increasing initial capital. While this approach is
focused on the asymptotic behaviour and therefore results in a static reinsurance strat-
egy, Schmidli (2001, 2002), Hipp and Vogt (2003) and Hipp and Taksar (2010) considered
dynamic control strategies, so the reinsurance policy can adapt to the evolution of the
reserve process. A collection of results on optimal dynamic reinsurance can be found in
Schmidli (2008). Like the papers cited above, most authors working on dynamic rein-
surance take the perspective of optimal stochastic control. A comprehensive summary
of these methods in insurance mathematics is provided by Azcue and Muler (2014).
Many different approaches can be made, depending on whether or not capital injections
are considered, a diffusion term is added to the risk process and also which functional is
to be optimized. For the latter question, the most popular choice is the ruin probability
but other target values are thinkable and interesting. For example Azcue and Muler
(2005) and Cani and Thonhauser (2017) ask for the strategy maximizing a dividend
payoff and it is shown that results are qualitatively different from optimal strategies for
minimizing the probability of ruin. In our manuscript, we will consider a quite gen-
eral selection of functionals combined in the notion of discounted penalty functions, a
concept that is widely used in many branches of insurance mathematics.

3.1.2. The Model
We consider a risk reserve process (Xt)t≥0 in the classical Cramér-Lundberg model. That
is, starting from some initial value x, the reserve process evolves over time subject to
premium income and claim occurrence. The claim arrivals are given by a Poisson process
with intensity λ, i.e. there are λ claims to be expected per unit time (equivalently,
inter claim times follow an exponential distribution with mean 1

λ
). The claim heights

are independent of this Poisson process and follow some continuous distribution FY on
(0,∞). Although not strictly necessary, we will in general assume that FY has a density
fY .
In our setting, reinsurance can be obtained in the form of a control function u in the
following sense:
At each point in time t, a control parameter u is chosen from a compact set U (e.g.
U = [0, 1]). The map ut : R+ → U is called the reinsurance strategy and by U we denote
the set of processes on U that are previsible with respect to FXt , the filtration generated
by the process Xt. The functions in U are called admissible control strategies.
The effect of the reinsurance is modeled by the retention function r : R×U → R+

0 . If a
claim of height y is encountered at time t, only the part r(y, ut) is to be paid by the first
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insurer (in the following also called the cedent), the rest of the cost is transferred to the
reinsurance company. Note that r is non-negative, meaning the cedent cannot reinsure
more than the actual claim height. For the whole paper, we assume r to be monotone
in y and continuous in u.
Of course, reinsurance is not for free and so the reinsurance strategy also influences the
reinsurance premiums and thus ultimately the premium income of the cedent. Therefore,
the premium rate at time t is calculated as

c(ut) = c− p(ut),

where c denotes the cedent’s premiums without reinsurance and p(ut) is the reinsurer’s
premium. These premiums can be calculated in several ways, including the expectation
principle, the variance principle and the exponential principle as some of the most popu-
lar ones. Throughout this article, we assume that U contains parameters corresponding
to the two extremal cases of reinsurance, which are no reinsurance, denoted by ů and
full reinsurance, denoted by u∗, i.e.

r(y, ů) = y, c(̊u) = c,

r(y, u∗) = 0, c(u∗) =: π < 0.

Note that we want to assume that the reinsurance premium is in relation higher than
the cedent’s premium. So buying full reinsurance will result in a negative premium rate
π.

Combining these quantities, we define the process Xu
t controlled by the strategy u ∈ U :

Xu
t = x+

∫ t

0
c(us) ds−

Nt∑
i=1

r(Yi, uTi).

Here, and in the rest of the paper, Nt denotes the number of claims up to time t and Ti
resp. Yi denotes the time resp. the height of the i-th claim.

Let τux := inf{t ≥ 0 : Xu
t < 0|Xu

0 = x} denote the time of ruin, i.e. the first point
in time at which Xu

t becomes negative. For convenience, we freeze the process after the
ruin event, that is Xu

t = Xu
τux

for all t > τux . Following Gerber and Shiu (1998), we are
interested in discounted penalty functions (or Gerber-Shiu functions) of the following
form

Φu(x) := Ex
[
e−δτ

u
xw(Xu

τux−, |X
u
τux
|)1τux<∞

]
.

Here, Xu
τux− is called surplus prior to ruin, |Xu

τux
| is the deficit at ruin and δ > 0 is a

discounting factor. Throughout this article, we demand that w : R+
0 × R+

0 → R+ is a
continuous function. Furthermore, we want w to fulfill the two boundary conditions∫ ∞

0

∫ ∞
0

w(x, y)fY (x+ y) dx dy <∞. (3.1a)
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and ∫ ∞
0

w(x, y)fY (x+ y) dy < M <∞ ∀x ∈ R+
0 (3.1b)

Given that we want to minimize the penalty, we are left with finding

V (x) := inf
u∈U

Φu(x),

for x > 0. We will also call V (x) the value function.

Remark 3.1.1. Condition (3.1a) ensures that Φů(x), the Gerber-Shiu function with the
strategy that does not buy any reinsurance, has a finite value. It is, for example, fulfilled
if w is bounded. However, we didn’t want to make boundedness an a priori assumption
since many results only require the weaker statement (3.1a). Both boundedness and
(3.1a) imply that Φů(x)→ 0 as x→∞ (see Asmussen and Albrecher (2010)). Note that
conditions (3.1a) and (3.1b) do not imply each other.

3.1.3. Properties of the Value Function
To conclude the preliminaries, we want to show two short but important lemmas, giving
monotonicity, boundedness and, under mild conditions, Lipschitz continuity of V .

Lemma 3.1.2. V (x) is strictly monotonically decreasing. Furthermore, it holds that
0 ≤ V (x) ≤ eδ

x
πw(0, 0).

Proof. Since w(x, y) ≥ 0, it is obvious that 0 ≤ V (x). To achieve V (x) ≤ eδ
x
πw(0, 0)

just take full reinsurance, resulting in some negative drift π, until ruin occurs. We now
show monotonicity. Let x > y and, starting in x, buy continuously full reinsurance.
Hence, deterministically, after time y−x

π
the process reaches level y. Taking an ε-optimal

strategy from there means

V (x) ≤ e−δ
y−x
π (V (y) + ε) < V (y)

for ε < eδ
y−x
π V (y)

(
1− e−δ y−xπ

)
.

Remark 3.1.3. Note that Lemma 3.1.2 is a statement about the discounted penalty
function of the optimally controlled process. Monotonicity does not necessarily hold for
an arbitrary control strategy. We also want to point out that boundedness of V does
not require boundedness of w or any of the integrability conditions (3.1a) and (3.1b) but
solely needs w(0, 0) <∞, as long as U contains full reinsurance. We will however need
some integrability conditions on w respectively Φ to show the Lipschitz continuity of V
in the next lemma.

Lemma 3.1.4. If (3.1a) and (3.1b) hold, then V (x) is Lipschitz continuous.
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Proof. From (3.1a) it follows that the expected penalty function without reinsurance,
Ex
[
w(X ů

τ ůx−
, |X ů

τ ůx
|)
]
, is bounded by some constant M0. Let y < x and let ut ≡ ů be the

constant control strategy of no reinsurance. Under this strategy and without any claim,
the process started at level y will reach level x at time x−y

c
. For every x > 0 there is an

ε-optimal strategy ũ which fulfills

V (x) ≥ Φũ(x)− ε.

We now define a new control strategy ū = (ūyt ) for the process starting in y by ūt = ut
for 0 ≤ t ≤ T1 ∧ x−y

c
and

ūt = 1T1>
x−y
c
ũt−x−y

c
+ 1T1≤x−yc

ů

for t > T1 ∧ x−y
c
. So starting in y, the strategy ūt refuses to buy any reinsurance unless

level x is reached before the first claim, in which case the strategy changes to the ε-
optimal choice ũ.
We have

V (y) ≤Φū(y)

=P
(
T1 >

x− y
c

)
Ey

[
e−δτ

ū
y w

(
X ū
τ ūy −,

∣∣∣X ū
τ ūy

∣∣∣) ∣∣∣∣∣T1 >
x− y
c

]

+ P
(
T1 ≤

x− y
c

)
Ey

[
e−δτ

ū
y w

(
X ū
τ ūy −,

∣∣∣X ū
τ ūy

∣∣∣)1Y1≤Xū
T1−

∣∣∣∣∣T1 ≤
x− y
c

]

+ P
(
T1 ≤

x− y
c

)
Ey

[
e−δT1w

(
X ū
T1−,

∣∣∣X ū
T1

∣∣∣)1Y1>Xū
T1−

∣∣∣∣∣T1 ≤
x− y
c

]

≤P
(
T1 >

x− y
c

)
e−δ

x−y
c Φũ(x) + P

(
T1 ≤

x− y
c

)
(M0 +M)︸ ︷︷ ︸

=:M1

,

where the last inequality follows from applying conditional expectation w.r.t FXx−y
c

resp.
FXT1 , then using tower and markov property and finally conditions (3.1a) and (3.1b). So

|V (x)− V (y)| = V (y)− V (x)

≤ V (x)
(
e−(δ+λ)x−y

c − 1
)

+ εe−(δ+λ)x−y
c +

(
1− e−λ

x−y
c

)
M1

Note that Lipschitz continuity implies absolute continuity of V .

3.2. Main Results
Since we want to use the theory of stochastic optimal control, it is crucial to show
that the value function is a solution to the problem’s Hamilton-Jacobi-Bellman equation
(HJB). For this, we need to show that the dynamic programming principle holds.
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Lemma 3.2.1 (dynamic programming principle). For every bounded stopping time S,
we have

V (x) = inf
u∈U

Ex
[
e−δSV (Xu

S)1S<τux + e−δτ
u
xw(Xu

τux−, |X
u
τux
|)1S≥τux

]
, (3.2)

Proof. Let S be a bounded stopping time. We first show that for an arbitrary strategy
ut and any ε > 0, it is possible to find a strategy ût in a measurable way such that
V (Xu

S) > Φû(Xu
S)−ε, i.e. û is ε-optimal for the random starting point Xu

S . So let ε > 0.
There exists xn > 0 such that with constantly full reinsurance parameter u∗ it holds
Φu∗(x) = eδ

x
πw(0, 0) < ε for all x ≥ xn. Since V is continuous, we can choose a grid

x0 < x1 < · · · < xn−1 < xn such that 0 ≤ V (xi−1) − V (xi) < ε
2 for i ∈ {1, 2, . . . , n}.

Also, for every fixed xi, there exists an ε
2 -optimal strategy ui with Φui(xi) < V (xi) + ε

2 .
Note that for Xu

S > xn, the strategy of full reinsurance is ε-optimal for Xu
S as it holds

Φu∗(Xu
S)− V (Xu

S) < ε, since Φu∗(Xu
S) < ε and V (Xu

S) ≥ 0.
So assuming Xu

S ∈ [xi−1, xi) we choose the strategy ûi−1 which does the following: Buy
continuously full reinsurance until the level xi−1 is reached, then apply the ε

2 -optimal
strategy ui−1. We show that ûi−1 is ε-optimal for Xu

S .

|Φûi−1(Xu
S) − V (Xu

S)| ≤ |Φûi−1(Xu
S) − V (xi−1)| + |V (xi−1)− V (Xu

S)|︸ ︷︷ ︸
< ε

2

< ε

because

|Φûi−1(Xu
S)− V (xi−1)| = e−δ

xi−1−X
u
S

π Φui−1(xi−1)− V (xi−1) < ε

2 ,

which holds because e−δ
xi−1−X

u
S

π can be made arbitrarily close to 1 by increasing the
fineness of the grid.

We now define a composed strategy by choosing an arbitrary strategy ut in the in-
terval [0, S] and, starting in S, we choose the strategy ût := ∑n

i=1 u
i−1
t−S1[xi−1,xi)(Xu

S).
Above, we showed that V (Xu

S) > Φû(Xu
S)− ε. Call this composed strategy ūt. We get

V (x) ≤ Φū(x)
= Ex

[
e−δSΦû(Xu

S)1S<τux + e−δτ
u
xw(Xu

τux−, |X
u
τux
|)1S≥τux

]
< Ex

[
e−δSV (Xu

S)1S<τux + e−δτ
u
xw(Xu

τux−, |X
u
τux
|)1S≥τux

]
+ ε.

Since the inequality holds for arbitrary u and ε, we get that

V (x) ≤ inf
u∈U

Ex
[
e−δSV (Xu

S)1S<τux + e−δτ
u
xw(Xu

τux−, |X
u
τux
|)1S≥τux

]
.

To show the other direction, we take an arbitrary strategy ut and get

Φu(x) = E
[
e−δSΦu(Xu

S)1S<τux + e−δτ
u
xw(Xu

τux−, |X
u
τux
|)1S≥τux

]
≥ E

[
e−δSV (Xu

S)1S<τux + e−δτ
u
xw(Xu

τux−, |X
u
τux
|)1S≥τux

]
≥ inf

û∈U
E
[
e−δSV (X û

S)1S<τ ûx + e−δτ
û
xw(X û

τ ûx−, |X
û
τ ûx
|)1S≥τ ûx

]
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Since u was arbitrary, we can take the infimum on the left hand side and get the claim.

Now we address the Hamilton-Jacobi-Bellman equation. The proof will follow similar
arguments as the one of Lemma 3 in Cani and Thonhauser (2017).
Lemma 3.2.2. The value function V (x) is on (0,∞) a.e. a solution to

0 = inf
u∈U

{
c(u)V ′(x)− (δ + λ)V (x) + λ

∫ ρ(x,u)

0
V (x− r(y, u)) dFY (y)

+ λ
∫ ∞
ρ(x,u)

w(x, r(y, u)− x) dFY (y)
}
.

(3.3)

Here, ρ(a, u) := inf{y ∈ R+
0 : r(y, u) ≥ a} denotes the inverse of the retention function

in the first component.

Proof. We first show the ≤ part.
Fix x > 0 and u ∈ U and take h > 0 such that x+hπ > 0. Consider the strategy ût ≡ u
for t ∈ [0, h] and ût = ũt−h for t > h for some ũ ∈ U . With T1 again being the time of
the first claim, set S := min{h, T1}. Obviously, S is a stopping time and the strategy û
is constant in the time interval [0, S]. Setting V (x) = 0 for x < 0 and using (3.2), we
have

0 ≤ Ex
[
e−δSV (X û

s )
]
− V (x) + Ex

[
e−δτ

û
xw(X û

τ ûx−, |X
û
τ ûx
|)1S≥τ ûx

]
.

Applying Dynkin’s formula and using û ≡ u on [0, S] yields

0 ≤ Ex
[
V (x) +

∫ S

0
e−δt

(
AuV (Xu

t−)− δV (Xu
t−)
)
dt

]
− V (x)

+ Ex
[
e−δτ

u
xw(Xu

τux−, |X
u
τux
|)1S≥τux

]
,

where Au denotes the generator of the process Xu
t , which, according to Rolski et al.

(1999), Theorem 11.2.2, is given by

Aug(x) = c(u)g′(x)− λg(x) + λ
∫ ∞

0
g(x− r(y, u)) dFY (y). (3.4)

This leads to

0 ≤Ex
[∫ S

0
e−δt

(
c(u)V ′(Xu

t )− (δ + λ)V (Xu
t ) + λ

∫ ρ(Xu
t ,u)

0
V (Xu

t − r(y, u)) dFY (y)
)
dt

]
+ Ex

[
e−δτ

u
xw(Xu

τux−, |X
u
τux
|)1S≥τux

]
.

Collecting the terms and dividing by h gives

0 ≤ 1
h
Ex

[∫ S

0
e−δtc(u)V ′(x+ c(u)t) dt

]

+ 1
h
Ex
[
e−δT1w(x+ c(u)T1, |Xu

T1 |)1S≥τux
]

+ 1
h
Ex

[∫ S

0
e−δt

(
−(δ + λ)V (x+ c(u)t) + λ

∫ ρ(x+c(u)t,u)

0
V (x+ c(u)t− r(y, u)) dFY (y)

)
dt

]
.
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Having created an analogous situation as in the proof of Lemma 3 in Cani and Thon-
hauser (2017), we can use the same arguments to deduce

0 ≤ inf
u∈U

{
c(u)V ′(x)− (δ + λ)V (x) + λ

∫ ρ(x,u)

0
V (x− r(y, u)) dFY (y)

+ λ
∫ ∞
ρ(x,u)

w(x, r(y, u)− x) dFY (y)
}
,

which is the first half of the proof.

For the other direction, we fix x > 0 and choose h > 0 such that x + πh > 0, where
π < 0 is again the premium under full reinsurance. Let u1 be an h2-optimal strategy for
(3.2) and take again S := min{T1, h}. Starting, as above, with (3.2), we get

0 > Ex
[
e−δSV (Xu1

S )1S<τu1
x
− V (x)

]
− h2 − εh

+ Ex
[
e−δSw(Xu1

τu1
x −

, |Xu1

τu1
x
|)1S≥τu1

x

]
.

Conditioning on the time and height of the first claim and using the exponential distri-
bution of the inter-claim times, this can be written as

0 > e−(δ+λ)hV (x̃h)

+ Ex
[∫ h

0
λe−(δ+λ)t

∫ ρ(x̃t,u1
t )

0
V
(
x̃t − r(y, u1

t )
)
dFY (y) dt

]

+ Ex
[∫ h

0
λe−(δ+λ)t

∫ ∞
ρ(x̃t,u1

t )
w
(
x̃t, r(y, u1

t )− x̃t
)
dFY (y) dt

]
− V (x)− h2 − hε.

Note that, to improve readability, we used the notational shortcuts x̃t := x+
∫ t

0 c(u1
s)ds

and x̃h := x+
∫ h

0 c(u1
s)ds.

At this point, we can again follow the proof of Lemma 3 in Cani and Thonhauser
(2017) to deduce that

0 >c(u1
0)V ′(x)− (δ + λ)V (x) + λ

∫ ρ(x,u1
0)

0
V (x− r(y, u1

0)) dFY (y)

+ λ
∫ ∞
ρ(x,u1

0)
w(x, r(y, u1

0)− x) dFY (y)− ε.

And letting ε→ 0 completes the proof.

Having shown that the value function is a solution to the HJB-equation (3.3), we now
need to show that it is the only one (at least with some given analytical properties).
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3.3. Uniqueness of the Solution to the HJB-equation
and Verification Statement

Ruin can either occur by a claim that is bigger than the current reserve (claim ruin) or
by decreasing the reserve with a negative premium until the reserve becomes negative
(smooth ruin). Under certain conditions it can actually be advantageous to deliberately
induce smooth ruin and thus choose the penalty e−δτuxw(0, 0). Later, we will see that
the possibility of smooth ruin causes changes in the analytical framework of the model.

Write C+,b[0,∞) for the set of positive, continuous and bounded functions on [0,∞)
and define the operator G on C+,b[0,∞) as

Gf(x) := inf
u∈U

{
Ex
[
e−δT1f(Xu

T1)1T1<τux

]
+ Ex

[
e−δT1w(Xu

T1−, |X
u
T1|)1T1=τux

]
+ Ex

[
e−δτ

u
xw(0, 0)1T1>τux

]}
.

Lemma 3.3.1. Gf ∈ C+,b[0,∞). Furthermore, G is a contraction on C+,b[0,∞).

Proof. Positivity and boundedness follow immediately from (3.1a) and w(x, y) ≥ 0. Now
let f ∈ C+,b[0,∞) and x, y ∈ [0,∞) with x > y. With the same argumentation as in
Lemma 3.1.2, we get that Gf is monotonously decreasing as a function in x. Choose ux
as an ε-optimal strategy in Gf(x) and write Guxf(x) for the right hand side of Gf(x),
with the control strategy ux
In the following, we consider the reserve process pathwise. Write zXu

t for the risk process
at time t, started in z and controlled by the strategy u. Let ů ∈ U be the parameter
corresponding to no reinsurance and define ξ := inf{t : yX ů

t = xX
ux
t }, so ξ is the time

when the process started in y hits the path of the process started in x. Now set the
strategy (uy,t)t ≡ ů for t ∈ [0, ξ] and (uy,t)t = (ux,t)t for t > ξ. We have

|Gf(x)− Gf(y)| = Gf(y)− Gf(x) ≤ Guyf(y)− Guxf(x) + ε.

Obviously, denoting the time of ruin of the process started in x and controlled by the
strategy ux by xτ

ux , we have xτ
ux ≥ yτ

uy . Expanding the above equation gives

Guyf(y)− Guxf(x) + ε =E
[
e−δT1f(yX

uy
T1)1T1<yτ

uy

]
+ E

[
e−δT1w(yX

uy
T1−, | yX

uy
T1 |)1T1=yτuy

]
+ E

[
e−δτ

uy
w(0, 0)1T1>yτ

uy

]
− E

[
e−δT1f(xXux

T1 )1T1<xτ
ux

]
− E

[
e−δT1w(xXux

T1−, | xX
ux
T1 |)1T1=xτux

]
− E

[
e−δτ

ux
w(0, 0)1T1>xτ

ux

]
+ ε.

37



After collecting terms, we see that

Guyf(y)− Guxf(x) = E
[
e−δT1(f(yX

uy
T1)− f(xXux

T1 ))1T1<yτ
uy

]
− E

[
e−δT1f(xXux

T1 )1
yτ
uy=T1<xτ

ux

]
+ E

[
e−δT1w(yX

uy
T1−, | yX

uy
T1 |)1yτuy=T1=xτux

]
− E

[
e−δT1w(xXux

T1−, | xX
ux
T1 |)1yτuy=T1=xτux

]
.

Note that the terms for smooth ruin before T1 cancel out, since in this setting smooth
ruin is only possible, after the processes started in x and y have merged. At this point
it is helpful to distinguish the cases ξ ≤ T1 and ξ > T1, so whether or not the merge has
already happened before the first claim. Considering the summands separately yields

E
[
e−δT1(f(yX

uy
T1)− f(xXux

T1 ))1T1<yτ
uy

]
= E

[
e−δT1(f(yX

uy
T1)− f(xXux

T1 ))1T1<yτ
uy1ξ>T1

]
+ E

[
e−δT1(f(yX

uy
T1)− f(xXux

T1 ))1T1<yτ
uy1ξ≤T1

]
︸ ︷︷ ︸

=0

.

We see that for ξ ≤ T1 the terms cancel out. To analyze what happens for ξ > T1, take
εc > 0 and define

t∗ = inf{t : ∃εt > 0 : c(ux(t̃)) < c− εc for t̃ ∈ [t, t+ εt]}.

In other words, at t∗ starts the first open interval where the drift of the process started
in x is by at least εc smaller than the drift of the process started in y. For |x− y| small
enough, this interval in time will, even for arbitrarily small εc, be enough for yX

uy
t to

reach the trajectory of xXux
t so we know ξ ∈ [t∗, t∗ + εt] with εt → 0 for |x − y| → 0.

Now let us consider the first claim occurrence T1.

• For T1 < t∗, the processes haven’t merged yet, but their premium rates are at
most εc apart and since the premium is a continuous, strictly monotone function,
their control strategies are at most δc apart. Since the retention function is also
continuous in u, and εc was arbitrary, we know that |f(yX

uy
T1) − f(xXux

T1 )| → 0 as
|x− y| → 0.

• If t∗ < T1 < ξ, we cannot directly control the difference in the jump at T1, but
since we know that ξ ∈ [t∗, t∗+εt] and because the distribution of T1 is continuous,
P(T1 ∈ [t∗, t∗ + εt]) goes to zero for εt → 0.

Similarly, for the second summand, we see that

E
[
e−δT1f(xXux

T1 )1
yτ
uy=T1<xτ

ux

]
= E

[
e−δT1f(xXux

T1 )1
yτ
uy=T1<xτ

ux1ξ<T1

]
.

Using the definition of t∗ as before, we have again two cases to consider.
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• For T1 < t∗ we already argued that the two paths of the process are arbitrarily
close for |x − y| being sufficiently small. Since for a claim that ruins the process
started in y but not the one started in x, we know that the claim height Y1 must
be in [yX

uy
T1−, xX

ux
T1−] and since the claim height distribution is assumed to be

continuous, we deduce P(Y1 ∈ [yX
uy
T1−, xX

ux
T1−])→ 0 for |x− y| → 0.

• In the case t∗ < T1 < ξ, we can use the same argumentation as above to reach the
conclusion that P(T1 ∈ [t∗, t∗ + εt]) goes to zero for |x− y| → 0.

A combination of the arguments we used so far and exploiting the continuity of w will
also send the remaining two summands to 0, showing continuity of Gf .

The analysis of |Gf(x)−Gf(y)| showed that the operator G really acts on C+,b[0,∞), i.e.
in particular that Gf is again a continuous function. It now remains to prove that G is a
contraction on C+,b[0,∞). Hence, given two functions f1 and f2, we want to bound the
supremum norm ‖Gf1 − Gf2‖∞. So let f1, f2 be positive, continuous and bounded and
w.l.o.g. choose x ∈ [0,∞) such that Gf1(x) ≥ Gf2(x). Let u2 be a ε-optimal strategy
for f2 in G. We have

0 < Gf1(x)− Gf2(x)
= inf

u∈U

{
Ex
[
e−δT1f1(Xu

T1)1T1<τu

]
+ Ex

[
e−δT1w(Xu

T1−, |X
u
T1|)1T1=τu

]
+ Ex

[
e−δτ

u

w(0, 0)1T1>τu

]}
− inf

u∈U

{
Ex
[
e−δT1f2(Xu

T1)1T1<τu

]
+ Ex

[
e−δT1w(Xu

T1−, |X
u
T1|)1T1=τu

]
− Ex

[
e−δτ

u

w(0, 0)1T1>τu

]}
≤ Ex

[
e−δT1(f1(Xu2

T1 )− f2(Xu2
T1 ))1T1<τu2

]
+ ε

=
∫ ∞

0
e−δtλe−λt

ρ(Xu2
t− ,u2)∫
0

f1(Xu2
t− − r(y, u2))− f2(Xu2

t− − r(y, u2))dFY (y)dt+ ε

≤ E
[
e−δT1

]
︸ ︷︷ ︸

<1

‖f1 − f2‖∞ + ε.

Taking ε <
(
1− E

[
e−δT1

])
‖f1 − f2‖∞ completes the proof.

From the definition of G, we see that GV = V holds by the dynamic programming
principle. In the following, we want to establish the connection between G and the
HJB-equation.

Lemma 3.3.2. Let f ∈ C+,b[0,∞) be a solution to the HJB-equation (3.3) with f(0) ≤
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w(0, 0). For x ∈ (0,∞) set

uf (x) = arg min
u∈U

{
c(u)f ′(x)− (δ + λ)f(x) + λ

∫ ρ(x,u)

0
f(x− r(y, u)) dFY (y) (3.5)

+ λ
∫ ∞
ρ(x,u)

w(x, x− r(y, u)) dFY (y)
}
.

We complement the definition of uf by taking

uf (0) =

uf (0+) if f(0) < w(0, 0)
u∗ if f(0) = w(0, 0),

where u∗ denotes the strategy of full reinsurance. Then f is a fixed point of G and uf is
the minimizing strategy.

Proof. We start with the HJB-equation

0 = inf
u∈U

{
c(u)f ′(x)− (δ + λ)f(x) + λ

∫ ρ(x,u)

0
f(x− r(y, u)) dFY (y)

+λ
∫ ∞
ρ(x,u)

w(x, x− r(y, u)) dFY (y)
}
.

This holds for arbitrary x and f is certainly defined at all Xu
t for t ∈ [0, T1 ∧ τux ]. So

we define the minimizing strategy uf,t = uf
(
X
uf
t−

)
(which exists by the continuity of all

functions that are present in (3.5)). Using Dynkin’s formula and writing uf for uf,t, we
have

0 = Ex

[∫ T1∧τuf

0
e−δt

(
c(uf )f ′(Xuf

t− )− (δ + λ)f(Xuf
t− )

+ λ

∫ ρ(X
uf
t− ,uf )

0
f(Xuf

t− − r(y, uf )) dFY (y)

+ λ

∫ ∞
ρ(X

uf
t− ,uf )

w(Xuf
t− , r(y, uf )−Xuf

t− ) dFY (y)
)
dt

]

= Ex
[
e−δ(T1∧τuf )f(Xuf

T1∧τuf
)1T1 6=τuf

]
− f(x)

+ Ex

[∫ T1

0
e−δtλ

∫ ∞
ρ(X

uf
t− ,uf )

w(Xuf
t− , r(y, uf )−Xuf

t− ) dFY (y)dt1T1=τuf

]
= Ex

[
e−δT1f(Xuf

T1
)1T1<τ

uf

]
+ Ex

[
e−δτ

uf
f(0)1T1>τ

uf

]
− f(x)

+ Ex

[∫ T1

0
e−δtλ

∫ ∞
ρ(X

uf
t− ,uf )

w(Xuf
t− , r(y, uf )−Xuf

t− ) dFY (y)dt1T1=τuf

]
.

We now use the compensation theorem

Ex
[∫ T1

0
λe−δtHt dt

]
= Ex

[∫ T1

0
e−δtHt dNt

]
= Ex

[
e−δT1HT1

]
,
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where λ is the intensity of the counting process Nt, for the previsible process

Ht :=
∫ ∞
ρ(X

uf
t− ,uf )

w(Xuf
t− , r(y, uf )−X

uf
t− ) dFY (y).

Taking uf (0) as in the statement of the lemma yields

f(x) = Ex
[
e−δT1f(Xuf

T1 )1T1<τ
uf

]
+ Ex

[
e−δT1w(Xuf

T1−, |X
uf
T1 |)1T1=τuf

]
+ Ex

[
e−δτ

uf
w(0, 0)1T1>τ

uf

]
,

because 1T1>τ
uf = 0 if c(uf (0)) ≥ 0. So we showed f ≥ Gf .

On the other hand

Gf(x) = inf
u∈U

{
Ex
[
e−δT1f(Xu

T1)1T1<τux

]
+ Ex

[
e−δT1w(Xu

T1−, |X
u
T1 |)1T1=τux

]
+ Ex

[
e−δτ

u
xw(0, 0)1T1>τux

]}
= inf

u∈U

f(x) + Ex

∫ T1∧τu

0
e−δt

c(ut)f ′(Xu
t−)− (δ + λ)f(Xu

t−)

+ λ
∫ ρ(Xu

t−,ut)

0
f(Xu

t− − r(y, ut)) dFY (y)
)
dt

]
+ Ex

[
e−δτ

u
xw(0, 0)1T1>τux

]
+ Ex

[∫ T1∧τu

0
e−δtλ

∫ ∞
ρ(Xu

t−,ut)
w(Xu

t−, r(y, ut)−Xu
t−) dFY (y) dt

]
≥ f(x)

where we again used the compensation theorem for the last expression and the last
inequality follows from the HJB-equation.

Remark 3.3.3. In the above Lemma, we write uf (x) to indicate that we are working
with a Markov control, i.e. solely dependent on the current state. Furthermore, the
described choice of uf (x) happens in a measurable way, as can be seen from arguments
similar to those of Lemma 2.12 in Schmidli (2008).

Remark 3.3.4. The aim of this section is to show that the function f with the proper-
ties of Lemma 3.3.2 actually is the value function V . So demanding that f(0) ≤ w(0, 0)
is a natural condition since it is certainly fulfilled by V . The definition of uf is also
very intuitive as can be seen by the following consideration. Having uf (0) = u∗ means a
negative premium in zero and therefore the process can make the transition from “alive”
to “ruined” without a jump. Interpreting the process Xuf

t as a piecewise determinis-
tic Markov process (PDMP), this means the active boundary Γ is not empty here (see
Chapter 2 Section 24 in Davis (1993)). In the theory of PDMPs, this goes along with
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the additional boundary condition f(0) = w(0, 0). Because smooth ruin is usually not
considered in reinsurance scenarios where the ruin probability or dividend payments are
to be optimized, it is an interesting feature of our model to (potentially) have Γ 6= ∅. For
more details on this subject, we refer to Chapter 11 of Rolski et al. (1999).

The following Theorem is an immediate consequence of Lemmas 3.3.1 and 3.3.2 com-
bined with Banach’s fixed point theorem. It is also the central statement of this section
as it establishes the HJB-equation as the crucial tool for finding the value function.

Theorem 3.3.5. In the function space C+,b[0,∞), the value function V is the unique
fixed point of G and hence it is also the unique solution to the HJB-equation.

3.4. Numerical Examples
Following the results in the previous section, we can construct the value function by
finding a solution to the Hamilton-Jacobi-Bellman equation. Our method of choice
was policy iteration (for a detailed review of applicable methods see e.g. Kushner and
Dupuis (2013)). In a first step, we discretized the interval [x0, xN ] where we want to
find the solution. Then we started with an arbitrary strategy u(0) and used Monte-Carlo
techniques to find the values for Φu(0)(x0) and Φu(0)(xN). For simplicity we chose u(0) = ů
i.e. the strategy of no reinsurance. Knowledge of these boundary values then enabled us
to numerically solve the integro-differential equation that is given by the Feynman-Kac
type equation

0 = c(u(0))
(
Φu(0))′ (x)− (δ + λ)Φu(0)(x)

+ λ
∫ ρ(x,u(0))

0
Φu(0)(x− r(y, u(0))) dFY (y)

+ λ
∫ ∞
ρ(x,u(0))

w(x, r(y, u(0))− x) dFY (y)

as it is derived in Theorem 11.2.3 of Rolski et al. (1999). Here, we used a finite differences
approach. Having calculated Φu(0)(x) for all x on the grid corresponding to [x0, xN ] in
this manner, we look for an improving strategy by taking

u(1)(x) = arg min
u∈U

c(u)(Φu(0))′(x)− (δ + λ)Φu(0)(x)

+ λ
∫ ρ(x,u)

0
Φu(0)(x− r(y, u)) dFY (y)

+ λ
∫ ∞
ρ(x,u)

w(x, r(y, u)− x) dFY (y)
}
.

Now we repeat the procedure with u(1) in place of u(0) to construct u(2), u(3), . . . until
no significant improvement can be achieved anymore.
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For referencing, we chose similar parameters as in Schmidli (2008) Chapter 2 for the
risk model. That is, we set the Poisson intensity λ to 1 and the interval under consider-
ation to [0, 14]. The reinsurance shall be of proportional type, i.e. the retention function
is given as r(y, u) = u · y for u ∈ [0, 1]. Furthermore, we calculated the premiums c(u)
following the expected value principle with the cedent’s safety loading denoted by η and
the reinsurer’s safety loading θ. So

c(u) = λβ(η − θ + u(1 + θ)),

where β denotes the expected claim height. In all examples, we set η = 0.5 and θ = 0.7.

3.4.1. Exponential Claims
First, we want to consider exponentially distributed claims. Setting the expected claim
height to 1, this means FY (y) = 1− e−y. We start with the very simple penalty function
w1(x, y) = 1, so we want to minimize the discounted ruin probability. This exact
setting was treated in Schmidli (2008) for δ = 0. We undertook the calculation for
the case δ = 0.05 to see the effect of the discount factor on value function and strategy.
The resulting strategy and the first 5 iterations of Φ are shown in Figures 3.1 and 3.2
respectively. While Figure 3.1 shows clear resemblance to the undiscounted case in
Schmidli (2008), we see that in Figure 3.2, the difference between the first 3 Gerber Shiu
functions (blue, red, yellow) is still significant, whereas there is almost no difference
anymore between functions 3, 4 and 5 (depicted yellow, purple and green).
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Figure 3.1.: Optimal strategy for exponential
claims

0 2 4 6 8 10 12 14

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u

u
(1)

u
(2)

u
(3)

u
(4)

u
(5)

Figure 3.2.: functions Φu(1) to Φu(5) .

To show the flexibility of our approach we want to consider a more general penalty
function. So we will now use w2(x, y) = min(1010, (x + 0.5)(y + 1)2) and also increase
the discounting rate to δ = 0.1. This choice of penalty function might seem arbitrary
at first, but making the penalty actually depend on the surplus prior to- and deficit at
ruin will trigger the incentive for smooth ruin in some situations. As before, we used
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policy iteration and stopped when improvements fell under a predefined level. In Figure
3.4, we plotted the corresponding value of the HJB-equation. In the optimum this value
is zero, values close to zero indicate a good approximation. The optimal strategy can
be seen in Figure 3.3 where the red line is drawn at 0.1176, the zero of the premium
function c(u). So for u < 0.1176, the total premiums are negative.
The resulting strategy is particularly interesting since it leads to smooth ruin. That
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Figure 3.3.: Optimal strategy after 7 iterations,
sign change at red line.
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Figure 3.4.: Value of HJB-equation.
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Figure 3.5.: functions Φu(2) , Φu(4) and Φu(6) along with strategies u(2), u(4) and u(6).

means, for low reserve values, the insurer prefers deliberately terminating the business
and paying the comparably low penalty w2(0, 0) = 0.5 instead of taking the risk of
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a much higher penalty. In Figure 3.5, we show the second (blue), fourth (red) and
sixth (green) cost function with the respective minimizing strategies (dashed lines in the
corresponding colors).

3.4.2. Pareto Claims
In insurance mathematics, a particular interest lies in the study of heavy-tailed dis-
tributions. To account for that, we also investigated the case of Pareto distributed
claims. For w1, that is the discounted ruin probability, we chose the claim distribution
FY (x) = 1 − (x + 1)−2, resulting again in an expected claim height of 1. This claim
distribution was also used in Schmidli (2008). The resulting strategy is shown in Figure
3.6, while Figure 3.7 gives again the first 5 cost functions in the order blue, red, yellow,
purple and green.
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Figure 3.6.: Optimal strategy for Pareto claims
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Figure 3.7.: functions Φu(1) to Φu(5) .

As for the exponential case, we also want to find the optimal strategy for Pareto dis-
tributed claims and the penalty function w2. Since the second moment for Pareto dis-
tributions exists only for shape parameters greater than 2, we chose the claim height
distribution FY (y) = 1 − (1 + y)−3. In Figure 3.8, we again added the red line at the
zero of c(u). Note that on the whole interval the optimal strategy leads to negative pre-
miums. This can be explained by the heavy tails of the Pareto distribution. At no level
of the reserve does the chance to survive but under the risk of a potentially heavy ruin,
outweigh the very moderate penalty of w2(0, 0)e−δτ < 0.5. In Figures 3.10 and 3.11, we
also plotted the second to fifth iteration of the value function resp. the corresponding
strategy. Note that in Figure 3.10, the earlier iterations are not monotone, whereas Φu(4)

and later iterations show the postulated monotonicity.
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Figure 3.8.: Optimal strategy for Pareto claims
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Figure 3.9.: HJB error.
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Figure 3.10.: functions Φu(2) to Φu(5) .
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Figure 3.11.: strategies u(2) to u(5).
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3.4.3. Excess of Loss Reinsurance
In the examples we have treated so far, the reinsurance was always of proportional type,
i.e. we had the retention function rp(y, u) = u ·y with u ∈ [0, 1]. Our method however is
not restricted to this particular case. In the following we want to consider a prominent
example of a non-proportional model, which is excess of loss reinsurance. Here the re-
tention function is given as rXL(y, u) := min{y, u} with u ∈ [0,∞]. So the cedent always
pays the part of the claim that is below u but any amount exceeding the threshold u is
fully covered by the reinsurer. In this setting u = 0 means full reinsurance, while u =∞
corresponds to not buying any reinsurance at all.

We used again the Pareto distribution FY (y) = 1 − (1 + y)−3 for the claim heights,
the Poisson parameter λ = 1 for the claim arrivals and the discounting factor δ = 0.1.
As penalty function we chose w3(x, y) := x + y + 10 which is the sum of surplus prior
to ruin and deficit with a fixed penalty added for ruin. We calculated the premiums
again by the expected value principle with the same safety loadings as before. The
approximated optimal strategy after 8 iterations is shown in Figure 3.12 and the con-
trolled Gerber-Shiu functions for iterations 1, 5, 7 and 8 are shown in Figure 3.13. The
orange line in Figure 3.12 represents the value u = ∞, so here it is optimal to buy no
reinsurance. Since the resulting premium c(u) is positive for all values of the optimal
strategy, we did not add a red line to Figure 3.12. The strategy has a similar shape as in
Hipp and Vogt (2003), where the ruin probability is to be minimized. This is reasonable,
since the constant 10 that is added in our penalty term is relatively high for the chosen
parameters, hence the objective is essentially to prevent ruin.
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Figure 3.12.: Optimal strategy
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Figure 3.13.: Gerber-Shiu functions.

3.4.4. A Note on the Numerics
The calculations that were undertaken for this section turned out to be more laborious
than expected. While some cases, like exponential claims without or with low discount-
ing factor or Pareto claims without discounting factor didn’t make much trouble, other
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cases, namely the more general penalty function w2 in combination with discount rates,
proportional reinsurance and Pareto claims were quite demanding. The reason for this
is that the finite differences approach in these cases was extremely sensitive to the right
starting value, indeed to an extent where MC techniques could not provide the needed
accuracy anymore. Relying on IDE solvers that treat the problem in a more continuous
way is not immediately possible, since strategies crossing the zero of c(u) result in sin-
gularities in the involved ODE terms.
The method that brought the best results was an individually chosen mix of central and
backwards differences combined with a MC simulation for an initial guess, followed by
a somewhat manual bisection technique to provide the correct initial values.

3.4.5. Asymptotic Behaviour
We also investigated the question of the asymptotically optimal strategy. In the case
of exponentially distributed (that means light-tailed) claims, it is straightforward to
proceed as in Hald and Schmidli (2004). One has to keep in mind though that the
presence of a discount factor δ changes the associated Lundberg equation to

λm̂Y (α) = 1 + δ

λ
+ αc

λ
, (3.6)

where m̂Y (α) = E
[
eαY

]
is the moment-generating function of the claim height distribu-

tion FY . The positive solution γ for which (3.6) becomes zero (if such a solution exists)
is usually called the (generalized) adjustment coefficient. Now consider the Cramér-
Lundberg approximation for Ψ(x), the ruin probability with initial value x, which reads

lim
x→∞

Ψ(x)exγ = Cδ (3.7)

for some constant Cδ. From (3.7), it becomes clear that maximizing the adjustment coef-
ficient by means of the reinsurance parameter will lead to the maximally fast asymptotic
decay rate for the (discounted) ruin probability. This approach goes back to Waters
(1983). So if we now assume a constant reinsurance strategy u, proportional reinsur-
ance and premiums calculated by the expected value principle as above, equation (3.6)
becomes

λ(m̂Y (uγ)− 1)− δ − (λβ(1 + η)− (1− u)(1 + θ)λβ)︸ ︷︷ ︸
=c(u)

γ = 0.

Concavity arguments, differentiating and recollecting terms as in Schmidli (2008) now
yield the following asymptotically optimal control strategy.

uasy =
λ(θ − η)

(
1−

√
1

1+θ

)
δ + 2λ(1−

√
1 + θ) + θλ

. (3.8)
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It is, perhaps, a little surprising that for exponential claims, the optimal strategy does not
depend on β, the expectation of FY . If we calculate uasy for δ = 0.05 and λ = 1, η = 0.5
and θ = 0.7 as above, we get uasy0.05 = 0.3275 which is also indicated by Figure 3.1.

Another very interesting fact is that the asymptotically optimal strategy does not de-
pend on the actual penalty function w as well. This might seem counterintuitive at first,
but using material from Asmussen and Albrecher (2010), we see that for a constant
strategy u

lim
x→∞

Φu(x)eγ(u)x = Cδ,w.

So only the constant Cδ,w depends on the penalty function w, while the asymptotic be-
haviour is governed by the adjustment coefficient just as in the case of the discounted ruin
probability. The reason for this is of course the indicator function for ruin in the Gerber-
Shiu function; for high starting values, ruin is just unlikely to occur. Evaluating (3.8)
for δ = 0.1 yields the asymptotically optimal strategy uasy0.1 = 0.2423 which is confirmed
by Figure 3.3. So for the same values of δ, Figures 3.1 and 3.3 converge to the same level.
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Part II.

Dependence Modeling
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4. Overview and Connection to QMC
Theory

Dependence modeling as a mathematical discipline is a part of probability theory with
the focus on analyzing and describing the structures that arise in the interplay of sev-
eral quantities. This encompasses coming up with concepts to measure certain types
of dependence and also finding constellations that are extreme in these metrics. The
applications of this field can be of purely theoretical nature, however, many notions
of dependence modeling are widely used in practice and have become very popular in
financial mathematics in particular.

4.1. Quantitative Risk Management
With risk theory being mainly focused on insurance mathematics, quantitative risk man-
agement is the term commonly used when talking about a general financial institution,
or a bank in particular. In that sense, the applied branch of dependence modeling can be
seen as a part of quantitative risk management (QRM). Somewhat self explanatory, and
similar to risk theory for insurance companies, the aim of QRM is to identify, quantify
and manage the risks faced in the context of financial markets.

Since a portfolio, by the very meaning of the word, consists of various different po-
sitions, it is crucial to have an idea about the dependence between the single assets in
order to make a statement about the portfolio’s risk. It is therefore desirable to have a
model for these dependencies. Of course, taking the single assets to be random variables
X1, . . . , Xn, a complete description of the dependence is given by the common distri-
bution function FX1,...,Xn . However, as it turns out, the distribution function itself is
composed of two parts: the marginal distributions, that is the distribution FXi for every
i ∈ {1, . . . , n} and the dependence structure that binds the assets together. This binding
component is called a copula, a notion that we want to specify just a little further.

4.1.1. Copulas
Indeed, a copula is just a multidimensional distribution function, whose marginal distri-
butions are uniform. This is formalized in the following definition

Definition 4.1.1. A function C : [0, 1]d → [0, 1] that fulfills

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud) u1, . . . , ud ∈ [0, 1]
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for random variables U1, . . . , Ud ∼ U([0, 1]) is called a d-copula.

The importance of copulas in dependence modeling stems from the observation that
they can be extracted as “building blocks” from any multidimensional distribution. This
goes back to a famous result of Sklar (1959).

Theorem 4.1.2 (Sklar). A function F : Rd → [0, 1] is the distribution function of
some random vector (X1, . . . , Xd) if and only if there is a d-copula C and univariate
distribution functions F1, . . . , Fd : R→ [0, 1] such that

C(F1(x1), . . . , Fd(xd)) = F (x1, . . . , xd)

for any x1, . . . , xd ∈ R.

Additionally, if the marginal distributions F1, . . . , Fd are continuous, the correspond-
ing copula C is unique.

So this means that any multivariate distribution function can be seen as and decomposed
into univariate margins and a copula. This allows to treat marginal distributions and
dependence structures in a separate way. In statistics, this can be used to determine the
influence of marginals resp. dependence on certain features of the data. When model-
ing random vectors, Sklar’s theorem justifies restricting to copulas, because any desired
marginal distributions can simply be applied afterwards.

Another very useful feature of copulas is that they provide easy representations for
the extreme cases of dependency which are perfect positive dependence, usually called
comonotonicity, perfect negative dependence or countermonotonicity and independence.
In the case of two random variables X1, X2, perfect positive (resp. negative) depen-
dence means X2 is a monotonously increasing (resp. decreasing) function of X1. The
corresponding two dimensional copulas are given as

Π(x1, x2) = x1x2 M(x1, x2) = min(x1, x2) W (x1, x2) = max(x1 + x2 − 1, 0).

for x1, x2 ∈ [0, 1]. Here (X1, X2) ∼ Π is a vector of independent components, (X1, X2) ∼
M is a vector of comonotone components and (X1, X2) ∼ W is a vector of counter-
monotone components. Often, Π is called the independence copula and M and W are
called the upper resp. lower Fréchet-Hoeffding bound. Note that while a generalization
of independence and comonotonicity to higher dimensions is straightforward, it is not
at all clear, what countermonotonicity should mean for three or more random variables.
Indeed, finding extreme negative dependence concepts in higher dimensions is an active
field of research and we will also get back to this question later in the thesis.
But also in between these extremal cases, copulas ease the description of dependence
between two random variables. If we consider the probably most widespread measure of
association, the linear correlation coefficient, or sometimes called Pearson’s coefficient,
defined as

Cor(X1, X2) = Cov(X1, X2)√
Var(X1)

√
Var(X2)
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we quickly realize it has some shortfalls. Most prominent among these is that it only mea-
sures linear correlation and is also not invariant under nonlinear transformations of X1
or X2, so it should not be used if another shape of connection is assumed. Furthermore,
a correlation value of, say, 0.3 does not give much information about the strength of the
correlation, since the absolute value of Pearson’s coefficient is influenced by the marginal
distributions of X1 and X2. In addition, although Pearson’s coefficient is normed be-
tween −1 and 1, it is not a priori clear that these extreme values can be attained for any
fixed marginal laws. The reason for most of these features is that linear correlation mixes
aspects of dependence and marginal distributions, so they can be avoided when using
measures of association that depend only on the copula. These measures are called rank
correlations or concordance measures, we want to present two of them, namely Spear-
man’s ρ and Kendall’s τ . For two random variables X1, X2 with distribution functions
F1 and F2, Spearman’s ρ is simply defined as ρ := Cor(F1(X1), F2(X2)), so, following
Sklar, it is the Pearson coefficient of the underlying copula. To define Kendall’s τ , for a
random vector (X1, X2), we take another random vector (Y1, Y2) that is an independent
copy of (X1, X2) and set τ := E[sign((X1−Y1)(X2−Y2))]. Though ρ and τ are certainly
the most widespread concordance measures, there are many more and defining good new
measures for dependence tailored to certain situation is still an active field of interest.
For a detailed account on these measures and a discussion of desirable properties, we
refer to Nelsen (2007).
Moreover, because many copulas can be simulated easily, they are very well suited for
procedures that use Monte-Carlo techniques and in applications it is usually viable to
try out a variety of copula models to achieve a good fit on the data at hand.

4.1.2. Controversy About Copulas
Over the past decades, a broad variety of parametrized families of copulas has been
defined that serve as blueprints for different kinds of dependence structures. From rel-
atively simple Gaussian copulas that capture the dependence among components of
Gaussian vectors to more sophisticated structures like the Gumbel copula, which is bet-
ter suited to model tail dependencies there is a copula tailored to almost every situation.

Having such a rich toolbox of copulas that just require some parameter fitting to be
readily applicable is, of course, very appealing to practitioners. As a result of this, usage
of copulas boomed in many fields, especially financial mathematics and in particular
credit risk modeling. Unfortunately, be it due to a lack of insight about the mathe-
matical foundations or the desire to keep the underlying models as easy as possible,
many analysts oversimplified the involved structures. In particular, the probabilities of
joint defaults were often systematically underestimated which turned out to be fatal in
the 2008 financial crisis. For this reason, copulas are sometimes seen controversial in
financial literature and were even blamed in mainstream media (for a discussion on this
topic, see e.g. Brigo et al. (2010)).
From a mathematical point of view however, using the concept of copulas offers many
advantages, as long as sufficient care and understanding of the matter are applied.
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4.2. Intersections with Uniform Distribution Theory
As it is crucial for (Q)MC techniques to be able to fill out the unit interval in a par-
ticularly uniform way, the theory of uniformly distributed points and sequences is a
central aspect of Monte-Carlo and especially Quasi-Monte-Carlo simulation. Therefore,
uniform distribution theory was also in the focus of the special research program (SFB)
for Quasi-Monte-Carlo methods which the author of this dissertation is affiliated with.

The basic notion providing the bridge to copulas and dependence modeling is that
of uniformly distributed sequences. A sequence (xn)n∈N ∈ [0, 1)N is called uniformly
distributed if

lim
N→∞

1
N

N∑
n=1

1[a,b)(xn) = b− a

for all intervals [a, b) ⊂ [0, 1).

Fialová and Strauch (2011) showed that for uniformly distributed sequences (xn)n∈N,
(yn)n∈N and a continuous function c : [0, 1]2 → R, it holds

lim
N→∞

1
N

N∑
n=1

c(xn, yn) =
∫

[0,1)2
c(x, y)γ(dx, dy), (4.1)

with γ being a copula. Motivated by this result, Hofer and Iacò (2014) asked for maxi-
mizing and minimizing copulas, for (4.1). They were able to link this problem to optimal
transport theory and its discrete analogue, the assignment problem. Doing this, they
realized, they can find a solution to this optimization problem in a particular class of
copulas, the Shuffles of Min and could find such a solution using convex optimization
techniques. In a subsequent paper, Iacò et al. (2015) carried out a deeper structural
analysis, including convergence results and approximations in number theory.
Aside from the structural analogies between copulas and QMC theory that were out-
lined above, some work has also been done on connecting these topics by using QMC
methods in sampling algorithms for copulas. A reference would be Cambou et al. (2017).
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5. Bounds on Integrals with Respect
to Multivariate Copulas

From the perspective of number theory, the results of Fialová and Strauch (2011) are
interesting, because they give information about the “average” value of a function ap-
plied to two infinite, uniform sequences and link the discrete setting to a finite integral.
Looking through the eyes of probability theory, the integral on the right hand side of
(4.1) is an expectation with respect to the 2 dimensional copula γ. So the method from
Iacò et al. (2015) can be used to find maximal and minimal values for the expectation of
a function of two random variables, when varying over all possible dependence structures.

Indeed, since information about marginal distributions of a random vector is much
easier to acquire than about the dependence relation among the components, the as-
sumption of known margins but unknown multidimensional distribution function is a
common scheme in quantitative risk management. To assure stability, companies work-
ing in the finance sector, in particular banks and insurance companies, have to abide to
certain regulations, commonly known as the Basel framework for banks or Solvency for
insurers. In the aftermath of the 2008 financial crisis, many of these safety regulations
have been enhanced. So a proper risk quantification is not only in the own interest
of any financial institution, but also prescribed by law. A part of these frameworks
is analyzing and hedging worst case scenarios. For risk measures that can be written
as an expectation, this is exactly the maximization problem studied in Iacò et al. (2015).

Of course, having a method that is restricted to 2 dimensional random vectors might
not be satisfying in practice. However, as it turns out, the transition from 2 to higher
dimensions constitutes a structural break, caused by the higher complexity class of the
multidimensional assignment problem. So the generalization to higher dimensions was
left as an open problem in Iacò et al. (2015), that was eventually solved in Preischl
(2016). We present these results in the following.

The remainder of this chapter, that is sections 5.1 through 5.4, was published as
Preischl (2016) and is therefore adopted verbatim, with only one reference, namely
Bernard et al. (2018), added to Remark 5.3.6.
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5.1. Introduction
A multidimensional distribution function with uniform marginals is called a copula. In
contrast to the simplified approach of quantifying risk and dependence by single numbers
like Spearman’s ρ or Kendall’s τ , modeling with copulas makes it possible to describe and
encapsulate the entire dependence structure between random variables. On the other
hand, an obvious downside of copulas is that, unlike simple concordance measures, they
are often hard to treat analytically, especially in dimensions higher than two. Hence,
instead of modeling the actual dependence structure, it is naturally interesting to ask for
a “worst case” respectively a “best case” behaviour. In this paper, we propose a flexible
method to approximate those extremal cases.

Assume that we are given a d-dimensional random vector (X1, . . . , Xd) and a function
f : Rd → R that describes the quantity associated with (X1, . . . , Xd) which we wish to
optimize. We further assume that the marginal distributions of X1, . . . , Xd are known
and the dependence structure (i.e. the common distribution function) is completely
unknown. This assumption is called dependence uncertainty and it is widely used in ap-
plications, mainly because compared to finding the dependence structure, information
about the marginal laws can be relatively easily obtained.
By Sklar’s Theorem it is always possible to reduce this maximization respectively mini-
mization to a similar problem involving uniformly distributed random variablesX1, . . . , Xd,
see e.g. Nelsen (2007). Therefore, we are justified in restricting our focus to finding cop-
ulas Cmin and Cmax such that∫

[0,1]d
f(x1, . . . , xd)dCmin ≤

∫
[0,1]d

f(x1, . . . , xd)dC (5.1)

and ∫
[0,1]d

f(x1, . . . , xd)dC ≤
∫

[0,1]d
f(x1, . . . , xd)dCmax (5.2)

for all d-dimensional copulas C.

Equations (5.1) and (5.2) are special cases of the Monge-Kantorovich problem. This
problem is very well studied in the case d = 2, however, due to its complexity, most ana-
lytic approaches to the Monge-Kantorovich problem in higher dimensions are restricted
to particular situations. For example, one of Rüschendorf’s many contributions to this
field considered the case where f is a ∆-monotone function (Rüschendorf, 1980).
A more flexible, numerical take on this optimization problem that had a significant im-
pact in recent years is the rearrangement algorithm, introduced by Puccetti and Rüschen-
dorf (2012). This algorithm is impressively efficient in approximating the desired bounds
even in high dimensions and thus suffices for most real world applications. The price
for this is that it only works when f is a supermodular function and that convergence
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is not guaranteed. However, the cases where the algorithm does not converge are quite
pathological and can be circumvented in practice. For a detailed description of how the
rearrangement algorithm can be used to tackle optimization problems and also examples
of non-convergence, see Puccetti and Rüschendorf (2015).
In two dimensions, Hofer and Iacò (2014) combined the spirit of optimization theory
with rigorous structural considerations and developed an algorithm that converges to
the minimal respectively maximal values of equations (5.1) and (5.2) for any continuous
function f . Their method connects optimality with a particular class of copulas, the
Shuffles of Min. We state their main results in Theorem 5.2.2 in section 2.

5.2. Mathematical Foundations
As stated previously, a d-copula is a d-dimensional distribution function on [0, 1]d with
uniform marginals. Every d-copula C defines a measure µC on ([0, 1]d,B([0, 1]d)) which
is d-fold stochastic, i.e., it fulfills

µC([0, 1]× [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
i−1 times

×A× [0, 1]× [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
d−i times

) = λ(A), (5.3)

for all i = 1, . . . , d and any Borel set A ⊂ [0, 1]. Conversely, every d-fold stochastic
measure on ([0, 1]d,B([0, 1]d)) defines a copula. We write Cd for the set of all d-copulas.

We already mentioned that there is a class of copulas, which is closely related to as-
signment problems, the Shuffles of Min (or Shuffles of M ). As the name suggests, these
are obtained by a suitable rearrangement of the probability mass of the upper Fréchet-
Hoeffding bound, or Min copula, M(x1, . . . , xd) := min(x1, . . . , xd). In two dimensions,
C is a Shuffle of Min parametrized by n ∈ N, a permutation π on {1, . . . , n} and a
function ω : {1, . . . , n} → {−1, 1} if C distributes the mass 1

n
uniformly spread along

the diagonal respectively antidiagonal of [ i−1
n
, i
n
]× [π(i)−1

n
, π(i)

n
] whenever ω(i) = 1 respec-

tively ω(i) = −1. The original, two dimensional definition is slightly more general and
goes back to Mikusinski et al. (1992). In higher dimensions, there are several versions of
Shuffles of Min (see e.g. Durante and Sánchez (2012) for a discussion). A basic property
of these Shuffles is that they are dense in the set of all copulas with respect to weak
convergence. For more details and a survey of different metrics also see Durante and
Sánchez (2012).

A concept which has proven very useful when solving two dimensional Monge-Kantorovich
problems is that of c-cyclical monotonicity. It is a famous result in optimal transport
theory that, under mild assumptions on c, a probability measure µ is optimal for the
two dimensional Monge-Kantorovich problem if and only if it is concentrated on a c-
cyclically monotone set. This optimality result follows from a dual formulation of the
problem, for which we refer to the book of Villani (2008).

Finding a similar statement for dimensions higher than two has been an open problem
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for many years. Beiglböck and Griessler (2014) and Griessler (2016) recently generalized
c-cyclical monotonicity to arbitrary dimensions:

Definition 5.2.1 (Beiglböck and Griessler (2014) and Griessler (2016)). Let X1, . . . , Xd

be Polish spaces and define E := X1 × · · · ×Xd. Let c : E → R be Borel measurable. A
set Γ ⊂ E is called c-cyclically monotone if it fulfills one of the following conditions:

(i) For any N and any points (x(1)
1 , . . . , x

(1)
d ), . . . , (x(N)

1 , . . . , x
(N)
d ) ∈ Γ and permuta-

tions σ2, . . . , σd : {1, . . . , N} → {1, . . . , N}, one has
N∑
i=1

c(x(i)
1 , . . . , x

(i)
d ) ≤

N∑
i=1

c(x(i)
1 , x

(σ2(i))
2 , . . . , x

(σd(i))
d ).

(ii) Any finite measure α concentrated on finitely many points in Γ is a (with respect
to c) cost-minimizing transport plan between its marginals; i.e. if α′ has the same
marginals as α, then ∫

cdα ≤
∫
cdα′.

They were also able to show that for any measurable cost function c, a measure µ
which is optimal for the multidimensional Monge-Kantorovich problem is always con-
centrated on some c-cyclically monotone set.
Griessler (2016) recently showed the converse statement under more assumptions on c:
If the cost function c is continuous and bounded by a sum of integrable functions, any
measure which is concentrated on a c-cyclically monotone set is an optimal solution to
the multidimensional Monge-Kantorovich problem.

Next we give a short overview of assignment problems. The mathematical formulation
of a Linear Sum Assignment Problem is the following:

min
x∈Rn×n

n∑
i=1

n∑
j=1

aijxij (5.4)

subject to
n∑
j=1

xij = 1 ∀i ∈ {1, . . . , n}, (5.5)

n∑
i=1

xij = 1 ∀j ∈ {1, . . . , n}, (5.6)

xij ∈ {0, 1}. (5.7)

The matrix (aij) is also called the objective function and the set of all x ∈ Rn×n which
fulfill all the constraints is called the feasible region.
It is not hard to see that a Linear Sum Assignment Problem can equivalently be written
in the form

min
π∈Sn

n∑
i=1

aiπ(i),
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where Sn denotes the set of all permutations of {1, . . . , n}. Although the feasible re-
gion of this problem is actually n2-dimensional, with n being the number of objects, we
will refer to this version of the assignment problem as the “two dimensional assignment
problem (2-AP)” since one can interpret this as matching two different kinds of objects.
The assignment problem is, at least for the two dimensional case, very well-studied.

We are now ready to state the main result from Hofer and Iacò (2014) that connects
Shuffles of Min and assignment problems to integrals with respect to copulas.

Theorem 5.2.2. Let f be a continuous function on [0, 1]2 and let the partition In for
any n be given as

Inij :=
[
i− 1
n

,
i

n

)
×
[
j − 1
n

,
j

n

)
for i, j = 1, . . . , n.

Then define

fmaxn (x1, x2) = aij := max
(x1,x2)∈Inij

f(x, y) ∀(x1, x2) ∈ Inij.

Now a copula Cmax
n which fulfills

∫
[0,1]2

fmaxn (x1, x2)dCmax
n = max

C∈C2

∫
[0,1]2

fmaxn (x1, x2)dC(x1, x2) (5.8)

is given as a shuffle of Min with parameters (n, π∗, 1) where π∗ is the permutation which
solves the assignment problem

max
π∈Sn

n∑
i=1

aiπ(i).

Moreover, the maximal value of (5.8) is given as

max
C∈C2

∫
[0,1]2

fmaxn (x1, x2)dC(x1, x2) = 1
n

n∑
i=1

aiπ∗(i)

and it holds

lim
n→∞

max
C∈C2

∫
[0,1]2

fmaxn (x1, x2)dC(x1, x2) = max
C∈C2

∫
[0,1]2

f(x1, x2)dC(x1, x2).

Furthermore, Iacò et al. (2015) showed that the sequence of maximizers Cmax
n converges,

at least along some subsequence, to a maximizer Cmax of the problem

max
C∈C2

∫
[0,1]2

f(x1, x2)dC(x1, x2).
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5.3. Main Results
As we will see, some structural analogies are destroyed in the d-dimensional case, which
is why a direct application of the method from Hofer and Iacò (2014) is not possible.
For our main result, an extension of Theorem 5.2.2 to arbitrary dimensions along with
a similar convergence result as in Iacò et al. (2015), we start by introducing the concept
of a multidimensional assignment problem.

Define the index sets I := {1, . . . , n}d and Ikm := {(i1, . . . , id) ∈ I : ik = m}. The
(axial) d-dimensional assignment problem (d-AP) on n items with objective function
(ai) is given as follows:

min
x∈Rnd

∑
i∈I

aixi (5.9)

subject to ∑
i∈Ikm

xi = 1, ∀m ∈ {1, . . . , n}, ∀k ∈ {1, . . . , d}, (5.10)

xi ∈ {0, 1}. (5.11)

Again, “d-dimensional” is meant with respect to the number of different object types.
The feasible region in this case would actually be nd-dimensional.

Theorem 5.3.1. Let n be a positive integer and f : [0, 1]d → R be constant on the cubes
Ini with

Ini :=
[
i1 − 1
n

,
i1
n

)
× · · · ×

[
id − 1
n

,
id
n

)
,

for i = (i1, . . . , id) ∈ I. So f(x) = ai for all x ∈ Ini .
Then a copula Cmin which fulfills∫

[0,1]d
f(x) dCmin = min

C∈Cd

∫
[0,1]d

f(x) dC(x), (5.12)

distributes uniformly on each square of type Ini the probability mass equal to x∗i /n, where
(x∗i )i∈I is an optimal solution to the relaxed d-AP with respect to the objective function
(ai)i∈I. By this construction, Cmin is a so-called checkerboard copula (Durante et al.
(2015), Mikusiński and Taylor (2010)).

Here “relaxed” means that we are considering the continuous relaxation of the axial
d-AP, i.e., we replace the integer constraint (5.11) by xi ≥ 0 for all i. Even though
a seemingly subtle difference, this change yields an entirely different problem from the
perspective of optimization theory.
Theorem 5.3.1 holds for any dimension d and indeed for the case d = 2 we get precisely
the method proposed in Hofer and Iacò (2014). This follows from Birkhoff’s theorem,
which states that the two dimensional assignment problem is identical to its continuous
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relaxation. However, Birkhoff’s theorem does not hold for any dimension greater than
two, which is why it is not possible to restrict the solution space to Shuffles of Min in
higher dimensions. As a result, the optimizing copula that comes from the assignment
problem will, in general, not be given as a Shuffle of Min. We refer to Burkard et al.
(2009) for further details about assignment problems.

That means, for dimensions greater than two, the maximizer we find via this proce-
dure will not have the nicely parametrized form that made Shuffles of Min so appealing.
On the other hand, working with the relaxed assignment problem instead of the integer
problem brings great advantages concerning computability. While the classical integer
assignment problems are NP hard, their continuous relaxations lie in P . Here the com-
putational complexity is with respect to the number of objects that should be assigned,
or in the context of copulas, the coarseness of the partition of [0, 1]d.

Proof of Theorem 5.3.1. By definition, the value of (5.12) is given as

∫
[0,1]d

f(x)dC(x) =
∑
i∈I

aiµC(Ini ).

Notice that the value of (5.12) does not depend on how the copula C distributes mass
inside of each cube Ini , but only on how much mass is placed on each Ini . Hence, we can
write xi := µCmin(Ini ), with i ∈ I and are left with the following optimization problem:

min
∑
i∈I

aixi.

However, we still must encode constraints that ensure that the mass distribution xi
actually yields a copula. We recall that there is a one to one correspondence between
d-copulas and d-fold stochastic measures, so it suffices to ensure that the measure µCmin

is d-fold stochastic. Since we already noted that the value of (5.12) is independent of
the distribution inside the cubes Ii, we can assume that µCmin distributes the mass inside
of each cube Ii uniformly. The d-fold stochastic measures which distribute the mass xi
uniformly inside of the cube Ii for each i ∈ I are given by the equations

∑
i∈Ikm

xi = 1
n
, ∀m ∈ {1, . . . , n}, ∀k ∈ {1, . . . , d}. (5.13)

This can be seen as follows: It is elementary that each d-fold stochastic measure satisfies
the conditions (5.13). So let C fulfill (5.13) and let 0 ≤ a < b ≤ 1. Now look for
1 ≤ i− ≤ i+ ≤ n such that a ∈ [ i−−1

n
, i−
n

] and b ∈ [ i+−1
n
, i

+

n
]. Without loss of generality
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let us consider the first coordinate, it holds

µC([a, b]× [0, 1]× · · · × [0, 1]) = µC

([
a,
i−
n

]
× [0, 1]× · · · × [0, 1]

)

+
i+−1∑

i1=i−+1
µC

([
i1 − 1
n

,
i1
n

]
× [0, 1]× · · · × [0, 1]

)

+ µC

([
i+ − 1
n

, b

]
× [0, 1]× · · · × [0, 1]

)

= i−
n
− a+

 i+−1∑
i1=i−+1

∑
j∈I1

i1

xj

+ b− i+ − 1
n

= b− a = λ([a, b]).

By standard arguments of measure theory, we can extend this result from intervals to
arbitrary measurable sets A.
Hence the measure Cmin is d-fold stochastic if and only if the constraints (5.13) are
fulfilled. But those are exactly the constraints (5.10) from the d-AP with the right
hand side 1

n
instead of 1. Since scaling the right hand side of a linear optimization

problem results in a similar scaling of the optimal solution, the optimal probability mass
distribution (xi) is given as (xi) = 1

n
(x∗i ) with (x∗i ) being the optimal solution to the

general d-AP with objective function (ai).

With the necessary adjustments, Theorem 5.3.1 is equally valid for a maximization in-
stead of a minimization.

Also in the multidimensional case, it is possible to approximate integrals over continuous
functions by a sequence of integrals over functions that are piecewise constant.

Theorem 5.3.2. Let f be continuous on [0, 1]d and bounded by a sum of integrable
functions and let the sets Ini for i ∈ I be given as before. Then, set

fmax
n (x) := max

y∈Ini
f(y) ∀x ∈ Ini ,

fmin
n (x) := min

y∈Ini
f(y) ∀x ∈ Ini .

Now denote by Cmax
n and Cmin

n copulas which fulfill∫
[0,1]d

fmax
n (x) dCmax

n (x) = min
C∈Cd

∫
[0,1]d

fmax
n (x) dC(x) (5.14)

and ∫
[0,1]d

fmin
n (x) dCmin

n (x) = min
C∈Cd

∫
[0,1]d

fmin
n (x) dC(x).
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Then

lim
n→∞

∫
[0,1]d

fmin
n (x)dCmin

n (x) = lim
n→∞

∫
[0,1]d

fmax
n (x)dCmax

n (x)

= inf
C∈Cd

∫
[0,1]d

f(x)dC(x).

Furthermore, the sequences of minimizers Cmax
n and Cmin

n converge, at least along some
subsequence, to a minimizer Cmin of the problem

min
C∈Cd

∫
[0,1]d

f(x)dC(x).

Proof. We show directly that

lim
n→∞

∫
[0,1]d

fmin
n (x)dCmin

n (x) = lim
n→∞

∫
[0,1]d

fmax
n (x)dCmax

n (x).

Let ε > 0. Since f is continuous, we may choose n large enough such that

|fmin
n (x)− fmax

n (x)| < ε ∀x ∈ [0, 1]d.

Furthermore, fmin
n is piecewise constant, so we have∫

[0,1]d
fmin
n (x)dCmin

n (x) =
∑
i∈I

aiµCmin
n

(Ii),

with ai := minx∈Ini f(x). Hence∫
[0,1]d

fmax
n (x) dCmax

n (x) <
∫

[0,1]d
fmin
n (x) + ε dCmin

n (x) =
∑
i∈I

µCmin
n

(Ii)(ai + ε).

So we have ∣∣∣∣∣
∫

[0,1]d
fmax
n (x) dCmax

n (x)−
∫

[0,1]d
fmin
n (x) dCmin

n (x)
∣∣∣∣∣

<

∣∣∣∣∣∑
i∈I

ε µCmin
n

(Ii)
∣∣∣∣∣ = ε.

For the proof that the sequence of optimizers converges to an optimizer for the continu-
ous function, we start like in Iacò et al. (2015) by using Theorem 5.21 from Kallenberg
(2002) to deduce that Cmax

n converges weakly along some subsequence to a copula Cmin.

Now according to Theorem 2.4 from Beiglböck and Griessler (2014), any measure which
is an optimal solution to a transportation problem is necessarily concentrated on a c-
cyclical monotone set. So since Cmax

n is optimal for the transportation problem (5.14) it
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must be concentrated on a c-cyclical monotone set. Hence, for any N ∈ N, the N -fold
product measure Cmax,⊗N

n is concentrated on the set Sn(N) of points
(x(1)

1 , . . . , x
(1)
d ), . . . , (x(N)

1 , . . . , x
(N)
d ) for which for any permutations σ2, . . . , σd

N∑
i=1

fmax
n (x(i)

1 , . . . , x
(i)
d ) ≤

N∑
i=1

fmax
n (x(i)

1 , x
σ2(i)
2 , . . . , x

σd(i)
d ).

Now fix ε > 0. Since f is continuous, we can choose n large enough such that Cmax,⊗N
n

is concentrated on the set Sε(N) of points with

N∑
i=1

f(x(i)
1 , . . . , x

(i)
d ) ≤

N∑
i=1

f(x(i)
1 , x

σ2(i)
2 , . . . , x

σd(i)
d ) + ε.

Since f is continuous, the set Sε(N) is closed. Therefore the limiting measure C⊗Nmin
is concentrated on Sε(N) for all ε > 0. Now let ε → 0 and we have that C⊗Nmin is
concentrated on a set of points with

N∑
i=1

f(x(i)
1 , . . . , x

(i)
d ) ≤

N∑
i=1

f(x(i)
1 , x

σ2(i)
2 , . . . , x

σd(i)
d ),

which means that Cmin is concentrated on a c-cyclically monotone set. Since f is con-
tinuous and bounded by a sum of integrable functions, we can apply Theorem 1.2 from
Griessler (2016) to deduce that Cmin is optimal. The proof for the sequence Cmin

n is
identical.

In Hofer and Iacò (2014), the authors also give a convergence rate under the assumption
of Lipschitz continuity. For completeness, we want to mention that this holds in very
much the same way for the multidimensional setting.

Corollary 5.3.3. Let the assumptions of Theorem 5.3.2 hold and, in addition, assume
that f is Lipschitz continuous on [0, 1]d with Lipschitz constant L > 0. Then∣∣∣∣∣

∫
[0,1]d

fmax
n (x)dCmax

n (x)−
∫

[0,1]d
fmin
n (x)dCmin

n (x)
∣∣∣∣∣ ≤ L

√
d

n
.

Proof. by the Lipschitz continuity of f and the construction of fminn and fmaxn , we have
that

|fminn (x)− fmaxn (x)| ≤ L

√
d

n
.

Hence the proof follows by replacing ε with L
√
d
n

in the proof of Theorem 5.3.2.

Remark 5.3.4. The method presented generalizes the approach from Hofer and Iacò
(2014) and furthermore facilitates the computation since the relaxed assignment problem
is much easier to solve than the integer one. However, the solution vector is still nd-
dimensional. In practice this method can be applied on a standard laptop for nd ≤ 107 and
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since good approximations are already possible for n ≈ 25, dimensions up to d = 5 can
certainly be handled. So for most practical applications, the rearrangement algorithm by
Puccetti and Rüschendorf (2015) will, whenever applicable, still be the method of choice.
The merit of our approach lies in the generality of the statement. It is not limited to
supermodular functions but requires merely continuity and a notion of boundedness. Both
of these assumptions might possibly be relaxed as research in the field of optimal transport
progresses.

Remark 5.3.5. Considering only Shuffles of Min as minimizers respectively maximizers
in equations (5.1) and (5.2) as was done in in Hofer and Iacò (2014) is in some sense
also the notion behind the rearrangement algorithm. Puccetti and Wang (2015) consider
rearrangements, show how they are linked to copulas and illustrate that Shuffles of Min
can be seen as a construction of particular rearrangements. As the authors of Puccetti
and Wang (2015) mention, the fact that Shuffles of Min are dense in the set of copulas
could then be used to approximate solutions to copula optimization problems arbitrarily
well with Shuffles of Min. This would be a direct extension of the method from Hofer
and Iacò (2014) to general dimensions, however, due to the complexity of the integer
assignment problem, this approach is of very limited practical relevance. The rearrange-
ment algorithm, on the other hand, cuts the solution space down to oppositely ordered
rearrangements, resulting in the restriction to supermodular functions but also in an
enormous increase of efficiency. For more details, we refer to Puccetti and Rüschendorf
(2015).

Remark 5.3.6. Following the spirit of Bernard et al. (2018), Bignozzi et al. (2015)
or Lux et al. (2017), one might also consider including partial information about the
distribution by simply adding suitable constraints to the linear program.

5.4. Applications

5.4.1. Dependence Measures
A natural application for this technique is the approximation of upper and lower bounds
on dependence measures. In the bivariate case, there are well-known and widely used
measures such as Spearman’s ρ, Kendall’s τ , Blomqvists β and Gini’s γ. See e.g. Mai
and Scherer (2014) for definitions.

We now focus on a multidimensional version of Spearman’s ρ. Define

ρ(C) := d+ 1
2d − (d+ 1)

(
2d
∫

[0,1]d
Π(u)dC(u)− 1

)
. (5.15)

Here, Π denotes the independence copula, i.e. Π(x1, . . . , xd) = Πd
i=1xi. It is well-known

that ρ(C) is maximal when C = Md, i.e. C is the Min-copula. It is also well-known that
plugging in the lower Fréchet-Hoeffding bound (usually denoted by Wd) yields a lower
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bound on ρ(C):

ρ(Wd) = 2d − (d+ 1)!
d!(2d − (d+ 1)) ≤ ρ(C) ≤ ρ(Md), C ∈ Cd, d ≥ 2.

However, since Wd is not a copula for d ≥ 2, it is not a priori clear whether this lower
bound is attained or not. Indeed, this has been stated as an open problem in Schmid
et al. (2010). In 2011, Wang and Wang (2011) found an analytical solution to this long
unresolved question. They give a formula to explicitly compute

Λd := min
C∈Cd

∫
[0,1]d

Π(u) dC(u)

for any d ∈ N. Since the formula yields Λ3 = 5.4803 × 10−2, it is straightforward that
ρ(W3) = −2

3 is not attained. We now want to give an alternative, numerical proof for
this result. We chose this example because the fact that we know the exact analytical
value will help us to validate the convergence of our method.

We use Theorem 5.3.2 to compute strict upper and lower bounds for Λ3. In this case
the monotonicity of Π facilitates finding the maximum respectively minimum functions
in the algorithm as we simply have to evaluate Π at the vertices of the grid cubes that
maximize respectively minimize the arguments. An approximated value is also obtained
by evaluating Π in the center of each grid cube. Of course, this has to be adapted for
other cost functions. Table 5.1 illustrates the results obtained using the method pro-
posed in this paper with a grid of n ∈ {30, 40, 50, 60} sections in each dimension1 as well
as the range the rearrangement algorithm (which uses the same discretization method
as our algorithm) computes for a grid of 105 sections in each dimension Puccetti and
Rüschendorf (2015).

Note that the range here is not a confidence interval but actually consists of determin-
istic upper and lower bounds on the true value. Already the lower bound for n = 30
suffices to prove that ρ(C) > −2

3 = ρ(W3) for all copulas C. As can be seen, the re-
arrangement algorithm yields a more precise approximation for the same problem and
that in considerably less time, even for higher dimensions d (more details can be found
in Puccetti and Rüschendorf (2015)). However, since the lower bound computed by the
rearrangement algorithm does not always have to be satisfied, we see the merit of our
method in providing rigorous numerics for the fact that the lower bound −2

3 for ρ(C) is
not best-possible.

An interesting extension to the minimization of Λd is considering non-uniform marginal
distributions. While the result of Wang and Wang (2011) is restricted to identical

1This result was obtained using the “lpSolve” package for the open source program R. This package
is built on the free Mixed Integer Linear Program solver lp_solve, which utilizes the revised simplex
method and the Branch-and-bound method. No presolve routines or any other kind of advanced
techniques were used.
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n lower bd. approx. value upper bd.
30 0.044414 0.054971 0.066341
40 0.046906 0.054897 0.063349
50 0.048433 0.054863 0.061587
60 0.049466 0.054844 0.060427
105 (RA) 0.054800 - 0.054807
analytic value - 0.054803 -

Table 5.1.: Approximation results for Λ3. The values for n = 30, . . . , 60 were calculated by the method
proposed in this paper, whereas the values for n = 105 were calculated using the rearrange-
ment algorithm Puccetti and Rüschendorf (2015).

marginal distributions having an increasing density, Sklar’s Theorem allows us to treat
any marginal laws by inserting the quantile functions of the desired distributions. Table
5.2 contains the approximated value as well as upper and lower bounds of

Θ(µ1, µ2, µ3) = min
µ∈M(µ1,µ2,µ3)

∫
[0,1]3

Π(x)dµ(x)

for different choices of µ1, µ2, µ3. Here M(µ1, . . . , µd) denotes the set of probability
measures on [0, 1]d which have marginal distributions µ1, . . . , µd. Distributions with
unbounded support require some minor adjustments, however the method is still appli-
cable. Again, the rearrangement algorithm as proposed by Puccetti and Rüschendorf
(2015) will produce more accurate results in shorter calculation time and is thus proba-
bly the preferable choice in applications.

µ1 µ2 µ3 lower bd. approx. value upper bd.
Par(2, 0.2) U([0, 1]) U([0, 1]) 0.043123 0.046767 0.054226
U([0, 1]) U([0, 1]) Beta(2, 5) 0.030489 0.033876 0.037232
exp(1) U([0, 1]) Beta(2, 5) 0.044647 0.051213 0.058365

Table 5.2.: Approximation results for inhomogenous marginals, obtained for a discretization of n = 60
sections in each dimension.

5.4.2. First-to-default Swaps
In the examples so far, we always minimized the expectation of the product of random
variables. The product function is supermodular in the following sense.

Definition 5.4.1. A function f : Rd → R is called supermodular, if it fulfills

f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y) ∀x, y ∈ Rd.

Here, x∧ y resp. x∨ y means the componentwise minimum resp. maximum of x and y.
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Since the rearrangement algorithm can only be applied to approximate the expec-
tation of supermodular functions, it is interesting to look at an example involving a
non-supermodular function. We want to consider so called First-to-default Swaps. They
can be thought of as an insurance contract for portfolios of risky assets. The protection
seller (PS) compensates the losses if one of the assets in the portfolio of the protection
buyer (PB) defaults. In turn, the PB pays fixed premiums at fixed points in time (e.g.
quarterly or annually) until the first default occurs or the maturity of the contract is
reached. There are no payments for any event after the first default or after maturity.
We consider a portfolio consisting of three risky assets and use the following assumptions
and notations.

The default times τ1, τ2, and τ3 of the assets follow an exponential distribution with
parameters λ1, λ2 and λ3 respectively. The notionals of all three assets are 1 and the
recovery rates R1, R2 and R3 describe the amount of money that can be liquidized if the
corresponding asset defaults. So the total loss for a default of asset i is (1 − Ri). The
times of premium payments are denoted by 0 = t0 < t1 < · · · < tk = T with T denoting
the time of maturity. Note in particular that the first payment is due at time t0 = 0.
Finally, we assume there is a constant, risk free interest rate r ≥ 0. Now the premiums
p are given as

p =
∫

[0,1)3

e−rmin(F−1
1 (x1),F−1

2 (x2),F−1
3 (x3))∑k

i=0 e
−rti1{ti<min(F−1

1 (x1),F−1
2 (x2),F−1

3 (x3))}

·
(
1{F−1

1 (x1)≤min(F−1
2 (x2),F−1

3 (x3),T )}(1−R1)
+ 1{F−1

2 (x2)≤min(F−1
1 (x1),F−1

3 (x3),T )}(1−R2)

+ 1{F−1
3 (x3)≤min(F−1

1 (x1),F−1
2 (x2),T )}(1−R3)

)
dC(x),

with C denoting the copula of the distribution function of (τ1, τ2, τ3) and F−1
i being the

quantile function corresponding to the distribution of τi. Since our assumptions and
the valuation method we want to use are basically the same, we refer to Hofer and Iacò
(2014) for the precise deduction of the premium heights. We calculate bounds for the
minimal as well as for the maximal premium for three payment times t0 = 0, t1 = 1 and
t2 = T = 2. The results are listed in Table 5.3.
Remark 5.4.2. Note that the integrand in the last example is not continuous. Our
method is not restricted to continuous functions but can be applied as long as the in-
tegrand f can, with respect to the L1 norm, be approximated by a (subsequence of a)
sequence of functions (fn)n that are constant on the cubes Ini with i ∈ I (as defined in
Theorem 5.3.1). Hence, by a simple denseness argument, the algorithm actually works
for any function f in L1([0, 1]d), which is why we still have valid bounds in our last
example. However, the speed of convergence can be very slow for functions with many
discontinuities. For example, it can happen that for n1 < n2, the bounds for a discretiza-
tion of n2 sections are worse than those for a discretization with n1 sections. Also the
convergence of the sequence of optimizers is not guaranteed if we choose an integrand f
which is not continuous.
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λ1 = 1
3 , R1 = 0.5, λ2 = 1

2 , R2 = 0.7, λ3 = 2
5 , R3 = 0.6

n range min. premium range max. premium
30 0.14093− 0.16104 0.37090− 0.40287
40 0.14566− 0.16072 0.37693− 0.40086
50 0.14572− 0.15775 0.37777− 0.39690
70 0.14777− 0.15424 0.37889− 0.39102

Table 5.3.: Upper and lower bounds for the minimal and the maximal premium. The interest rate was
set to r = 0.05.
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6. On Majorization in Dependence
Modeling

In Chapter 4.1 we already discussed extremal dependence concepts in two dimensions
and alluded to the problem of defining extremal negative dependence for more than two
random variables. For two quantities, negative dependence is clear, high values of the
first should come with low values of the second and vice versa. Because this intuition is
not transferable to higher dimensions, other characteristics of negative dependence have
to be found.

For this, consider d random variables X1, . . . , Xd with corresponding distributions
F1, . . . , Fd. It is not hard to see that the copula which maximizes

Var
(

d∑
i=1

Xi

)
,

that is the variance of the sum of X1, . . . , Xd, is given by the comonotonicity copula
M . In fact, there is a whole class of functions that are maximized when choosing the
copula M , namely the supermodular functions, that we have already seen in part 5.4.
Interpreting countermonotonicity as the opposite of comonotonicity, it seems natural to
call a copula that minimizes supermodular functions a negative dependence structure.
Since for two random variables, the copula minimizing supermodular functions is indeed
the lower Fréchet-Hoeffding bound W , this interpretation is consistent with the two di-
mensional case.
Over the past years, several concepts tying negative dependence to supermodular func-
tions have been developed. Notable contributions to this field include Rüschendorf
(1980) who considered ∆-monotone functions, Wang and Wang (2011) who introduce
complete mixability (sometimes called joint mixability) and Puccetti and Wang (2015),
where Σ-countermonotone distributions are defined. These concepts differ in whether or
not they are attainable for any set of marginal distributions, whether they are unique
distribution functions if they exist and whether or not they minimize any supermodular
function. For questions concerning extremal dependence in applications see for example
Wang et al. (2013) and Bernard et al. (2014). A good survey on extremal dependence
concepts is provided in Puccetti and Wang (2015).

A very useful tool to find copulas minimizing supermodular functions in practice is
the rearrangement algorithm (RA) that we already mentioned in Chapter 5. The RA
is designed to return a Σ-countermonotone distribution for a given set of marginal laws
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which will minimize a certain subclass of supermodular functions (for details see Puc-
cetti and Rüschendorf (2015)). Since for any set of marginal distributions, there exists a
Σ-countermonotone joint distribution, the RA will certainly terminate and return a solu-
tion. It can also be shown that the minimizing distribution can be found in the class of Σ-
countermonotone distributions, unfortunately, though, Σ-countermonotonicity does not
guarantee uniqueness so one cannot be sure that there isn’t another Σ-countermonotone
distribution that yields an even lower value for the supermodular function which is to
be minimized. There are even theoretical examples that produce an arbitrarily large
error because of this, however these examples exhibit a quite unrealistic structure and
in contrast the RA works very well on real applications.

Still these shortcomings of the RA are somewhat unsatisfactory and in addition, the
focus on finding Σ-countermonotone distributions further limits the use of this method.
Following the motivation to broaden the set of functions the RA can be applied to and
also to improve the understanding of the underlying structures, we analyzed the topic
in more detail and found a strong connection to the field of majorization theory. In fact
we were able to use majorization to find generalizations of statements from Puccetti and
Rüschendorf (2015) also giving insights on the problem from a different angle. However,
we learned that, independently of our own research, our results were already found by
Jakobsons and Wang (2017), whose article had been under review while we were writ-
ing our paper. Since Jakobsons and Wang (2017) use the same foundations for their
theoretical results, namely Marshall et al. (2011), and also provide more applications
and connections to optimization theory, we felt that our paper couldn’t add anything
sufficiently new to the discussion. We therefore decided not to pursue publishing it but
instead kept a preprint available online.

The remainder of this chapter, that is sections 6.1 through 6.3, is identical to an
unpublished article that can be found on arXive as Preischl (2017).

6.1. Introduction and existing theory
When talking about dependence uncertainty, a major interest usually lies on finding a
dependence structure that maximizes or minimizes a certain expectation. That is, given
distributions F (1), . . . , F (d) and a function f : Rd → R, what are

inf
{
E
[
f(X(1), . . . , X(d))

]
: X(i) ∼ F (i), 1 ≤ i ≤ d

}
and

sup
{
E
[
f(X(1), . . . , X(d))

]
: X(i) ∼ F (i), 1 ≤ i ≤ d

}
?
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For a start, assume that X(1), . . . , X(d) are discrete and take n not necessarily distinct
values with an equal probability of 1

n
. In this case X(i) is said to have an n-discrete

distribution for i = 1, . . . , d. Denote by x(i) = (x(i)
1 , . . . , x

(i)
n )T a vector containing

the possible values for each X(i). Thus the n × d matrix X = (x(1), . . . , x(d)) can be
interpreted as the joint distribution of a random vector X = (X(1), . . . , X(d)), where
X(i) ∼ F (i) by giving each of its rows equal probability 1

n
. Obviously, for this distribution,

we have
E[f(X)] = 1

n

n∑
k=1

f(x(1)
k , . . . , x

(d)
k ).

If we now rearrange the entries in one or multiple columns ofX, we get a new distribution
X̃ which has the same marginals as X. Write

P(X) = {(x̃(1), . . . , x̃(d)) : x̃(i) = πix
(i), πi is a permutation on {1, . . . , n}}

for the set of matrices that can be obtained from X by permuting elements within
columns. In the following we will try to find

mf (X) := min
X̃∈P

n∑
k=1

f(x̃(1)
k , . . . , x̃

(d)
k ).

Note that the factor 1
n
was omitted since it does not affect optimality. This setting was

considered in (Puccetti and Rüschendorf, 2015) where conditions are given under which
the minimum is attained at a matrix which is in some sense oppositely ordered. More
precisely, assume h : Rd → R can be decomposed into two functions h2 : R2 → R and
hd−1 : Rd−1 → R such that for all x ∈ Rd

h(x1, . . . , xd) = h2(xi, hd−1(x1, . . . , xi−1, xi+1, . . . , xd)) ∀i = 1, . . . , d. (6.1)

We write X−i for the matrix (x(1), . . . , x(i−1), x(i+1), . . . , x(d)), i.e. X with the ith column
deleted and

hd−1(X−i) :=


hd−1

(
x

(1)
1 , . . . , x

(i−1)
1 , x

(i+1)
1 , . . . , x

(d)
1

)
hd−1

(
x

(1)
2 , . . . , x

(i−1)
2 , x

(i+1)
2 , . . . , x

(d)
2

)
...

hd−1
(
x(1)
n , . . . , x(i−1)

n , x(i+1)
n , . . . , x(d)

n

)


for the vector that is hd−1 applied to every row of X−i.
Then define

Oh(X) := {X̃ ∈ P(X) : x̃(i) ⊥ hd−1(X̃−i), i = 1, . . . , d}.

Here x ⊥ y denotes that the vectors x and y are oppositely ordered, meaning: for
x, y ∈ Rn : x ⊥ y ⇐⇒ (xi−xj)(yi−yj) ≤ 0 for all i, j ∈ {1, . . . , n}. A particular choice
for h which satisfies (6.1) would be the sum operator, i.e. h(x1, . . . , xd) = x1 + · · ·+ xd.
Now Puccetti and Rüschendorf state two cases in which the minimum is attained at an
element of Oh(X) (see Propositions 2.4 and 2.6 from (Puccetti and Rüschendorf, 2015)):
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Theorem 6.1.1. If f(x(1), . . . , x(d)) = g(h(x(1), . . . , x(d))) where g : R → R is convex
and h(x1, . . . , xd) = x1 + · · ·+ xd is the sum operator, then

mf (X) = min
X̃∈Oh(X)

n∑
k=1

f(x̃(1)
k , . . . , x̃

(d)
k ).

Theorem 6.1.2. If h : Rd → R is supermodular, componentwise strictly monotonic and
satisfies (6.1) with h2 and hd−1 also being supermodular, then

mh(X) = min
X̃∈Oh(X)

n∑
k=1

h(x̃(1)
k , . . . , x̃

(d)
k ).

Remember that a function h : Rd → R is called supermodular if
h(x) + h(y) ≤ h(x ∧ y) + h(x ∨ y), where ∧ and ∨ denote the componentwise minimum
respectively maximum. Some authors prefer the term L-superadditive instead of super-
modular.
The concept (and the implementation) of rearranging the matrix X until obtaining an
element in Oh(X) is the rearrangement algorithm (RA).

6.2. Main results
As noted by Puccetti and Rüschendorf, Th. 6.1.1 and Th. 6.1.2 consider two distinct
cases, though the difference might seem subtle. We will clarify this later, but for the
moment, we want to mention that a minor extra assumption allows us to unify these
cases.

Theorem 6.2.1. If f(x(1), . . . , x(d)) = g(h(x(1), . . . , x(d))) where g : R→ R is increasing
and convex and h : Rd → R is supermodular, componentwise strictly monotonic and
satisfies (6.1) with h2 also being supermodular, then

mf (X) = min
X̃∈Oh(X)

n∑
k=1

f(x̃(1)
k , . . . , x̃

(d)
k ).

Note that Th. 6.1.2 is trivially included in Th. 6.2.1, whereas Th. 6.1.1 is not due to
the extra monotonicity assumption on g. A proof of Th.6.2.1 will be given later along
with the remark that it is actually possible to derive a stronger conclusion from the as-
sumptions of 6.2.1 than the one actually stated. To see this, we need some notions from
the theory of majorization, which are taken from the extremely rich summary (Marshall
et al., 2011), from which also some of the arguments in (Puccetti and Rüschendorf, 2015)
are taken.

The concept of majorization allows to find extreme values for certain functions f :
Rn → R based on a (partial) ordering of the vectors x ∈ Rn. Let (x[1], . . . , x[n]) denote
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the decreasing rearrangement of x, i.e. x[1] is the largest component of x and x[n] is the
smallest. Analogously, we write (x(1), . . . , x(n)) for the increasing rearrangement of x,
i.e. x[1] = x(n) and x[n] = x(1). For reasons of convenience, we will also use the notation
x↓ := (x[1], . . . , x[n]) and x↑ := (x(1), . . . , x(n)) to denote the decreasing and increasing
rearrangements. Obviously it holds x↓ ⊥ x↑.

Definition 6.2.2. A vector x = (x1, . . . , xn) is said to be majorized by y = (y1, . . . , yn)
(write x ≺ y) if

k∑
i=1

x[i] ≤
k∑
i=1

y[i] k = 1, . . . , n− 1

n∑
i=1

x[i] =
n∑
i=1

y[i].

Furthermore, x is said to be weakly submajorized by y (write x ≺w y) if

k∑
i=1

x[i] ≤
k∑
i=1

y[i] k = 1, . . . , n.

Finally, x is said to be weakly supermajorized by y (write x ≺w y) if

k∑
i=1

x(i) ≥
k∑
i=1

y(i) k = 1, . . . , n.

Obviously, we have x ≺ y if and only if x ≺w y and x ≺w y.

When we observe x ≺ y, we are naturally interested in the effects of this majoriza-
tion. This leads to Schur-convex functions.

Definition 6.2.3. A function φ : Rn → R is said to be Schur-convex if x ≺ y implies
φ(x) ≤ φ(y).

Schur-convexity works with weak majorization as follows

Proposition 6.2.4 (see 3.A.8 in (Marshall et al., 2011)). A real valued function φ,
defined on Rn satisfies

x ≺w y ⇒ φ(x) ≤ φ(y)
if and only if φ is Schur-convex and componentwise increasing. Analogously,

x ≺w y ⇒ φ(x) ≤ φ(y)

holds if and only if φ is Schur-convex and componentwise decreasing.

An important class of Schur-convex functions is given by the following proposition.
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Proposition 6.2.5 (see 3.C.1 in (Marshall et al., 2011)). If ψ : R→ R is convex, then
the function φ defined by

φ(x) =
n∑
i=1

ψ(xi),

is Schur-convex. Obviously, if ψ is in addition increasing (decreasing) then φ is Schur-
convex and componentwise increasing (decreasing).

Another natural question would be, which operations preserve majorization. It turns out
that the ordering of vectors plays an important role here. A famous result for oppositely
ordered vectors is the following.

Proposition 6.2.6 (see 6.A.2 in (Marshall et al., 2011)). For any two vectors x(1) and
x(2) on Rn, it holds that

x
(1)
↓ + x

(2)
↑ ≺ x(1) + x(2).

It is also possible to consider more general aggregation operators than the sum. This
however requires more assumptions and yields only weak majorization (which is com-
pletely sufficient for our purpose).

Proposition 6.2.7 (see 6.C.4 in (Marshall et al., 2011)).(
h(x(1)

[1] , x
(2)
[n] ), . . . , h(x(1)

[n] , x
(2)
[1] )

)
≺w

(
h(x(1)

1 , x
(2)
1 ), . . . , h(x(1)

n , x(2)
n )

)
,

holds for any two vectors x(1) and x(2) in Rn, if and only if h is supermodular and either
increasing in each component or decreasing in each component.

These statements are clearly restricted to two vectors since “oppositely ordered” does
not make sense otherwise and this is also the reason why the decomposition property
(6.1) is needed.
We are now ready to prove Theorem 6.2.1.

Proof of Theorem 6.2.1: We want to show that for every matrix X̃ ∈ P(X) \ Oh(X),
there exists a matrix X̂ ∈ Oh(X) such that

n∑
k=1

f(x̂(1)
k , . . . , x̂

(d)
k ) ≤

n∑
k=1

f(x̃(1)
k , . . . , x̃

(d)
k ). (6.2)

If X̃ ∈ P(X) \ Oh(X), then there exists a column x̃(i) which is not oppositely ordered
to hd−1(X̃−i). Denote by X̂ the matrix obtained from X̃ by ordering x̃(i) oppositely to
hd−1(X̃−i). By Proposition 6.2.7 it holds that

h(X̂) =
(
h2
(
x̂

(i)
1 , h

d−1(X̂−i)1
)
, . . . , h2

(
x̂(i)
n , h

d−1(X̂−i)n
))T

≺w
(
h2
(
x̃

(i)
1 , h

d−1(X̃−i)1
)
, . . . , h2

(
x̃(i)
n , h

d−1(X̃−i)n
))T

= h(X̃).
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Since g is increasing and convex, we get with the help of Proposition 6.2.5 that
n∑
k=1

f(x(1)
k , . . . , x

(d)
k ) =

n∑
k=1

g(h(X)k)

is Schur-convex and increasing, hence, (6.2) holds by Proposition 6.2.4. If X̂ ∈ Oh(X),
we are done. It remains to show that this procedure eventually reaches an element
in Oh(X). To see this, we look at the reordering of a certain column in more detail.
Fix i and let K ⊂ {1, . . . , n} be the set of all indices that appear in a pair which
violates the opposite ordering of x̃(i) and hd−1(X̃−i). So k1, k2 ∈ K ⇐⇒ x̃

(i)
k1 < (>

)x̃(i)
k2 and hd−1(X̃−i)k1 < (>)hd−1(X̃−i)k2 . We construct x̂(i) in the following way: let

x
(i)
k := mink∈K xk and let hd−1(X̃−i)k := maxk∈K hd−1(X̃−i)k. Since k, k ∈ K and by

construction, we know that

x
(i)
k < x

(i)
k

and hd−1(X̃−i)k < hd−1(X̃−i)k. (6.3)

Now exchange x(i)
k and x(i)

k
. It is not hard to see that this reduces the number of violating

indices by at least one. We repeat this procedure until K = ∅ and have thus created a
vector x̂(i) which is ordered oppositely to hd−1(X̃−i). At this point it is important to see
that due to (6.3), we have

h2(x̃(i)
k
, hd−1(X̃−i)k) > h2(x̃(i)

k , h
d−1(X̃−i)k) > h2(x̃(i)

k , h
d−1(X̃−i)k)

and
h2(x̃(i)

k
, hd−1(X̃−i)k) > h2(x̃(i)

k
, hd−1(X̃−i)k) > h2(x̃(i)

k , h
d−1(X̃−i)k).

So after each exchanging step of the above type, the values of h(X̃) have changed in
exactly two components and the new values are strictly between the old ones. Hence it
is clear that h(X̂) 6= h(X̃) and also that h(X̂) is not a permutation of h(X̃). However,
x ≺w y and y ≺w x at the same time implies that x is a permutation of y, so we know
that h(X̃) ≺w h(X̂) cannot hold. This means that h(X̂) is strictly below h(X̃) w.r.t
≺w. Since P(X) is finite, it follows that after a finite number of steps, we arrive at a
matrix X̂ ∈ Oh(X) which satisfies

n∑
k=1

f(x̂(1)
k , . . . , x̂

(d)
k ) ≤

n∑
k=1

f(x̃(1)
k , . . . , x̃

(d)
k ).

Remark 6.2.8. With the proof of Theorem 6.2.1 we actually showed that for any ele-
ment X̃ ∈ P(X), there is a chain of matrices X̂(1), X̂(2), . . . , X̂(n) such that h(X̂(n)) ≺w
h(X̂(n−1)) ≺w · · · ≺w h(X̂(1)) ≺w h(X̃) and X̂(n) ∈ Oh(X). Indeed, weak majorization is
much stronger than just the inequality (6.2). This is also reflected by the fact that (6.2)
can be installed without majorization, using a weaker statement by Lorentz, see (Puccetti
and Rüschendorf, 2015) for details. There it is also shown that using Lorentz to obtain
(6.2) does not require h to be monotone at all, whereas we showed, weak majorization
needs (non strict) monotonicity. However, since strict monotonicity of h is, in general,
required to reach an element in Oh(X) the weaker statement does not give any benefit.
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Remark 6.2.9. The proof also shows, why Th. 6.1.1 does not require g to be monotone:
According to Proposition 6.2.6, the sum as aggregation function yields strong majoriza-
tion, which is why the inequality (6.2) holds for f = g ◦ h for arbitrary convex g. A
complete description of all aggregating functions yielding strong monotonicity and hence
(6.2) without monotonicity of g is given in the following statement.

Proposition 6.2.10 (see 6.B.2 in (Marshall et al., 2011)).(
h(x(1)

[1] , x
(2)
[n] ), . . . , h(x(1)

[n] , x
(2)
[1] )

)
≺
(
h(x(1)

1 , x
(2)
1 ), . . . , h(x(1)

n , x(2)
n )

)
holds for any two vectors x(1) and x(2) in Rn, if and only if h is of the form h(x1, x2) =
ϕ1(x1) + ϕ2(x2), where ϕ1 and ϕ2 are monotone in the same direction.

At this point, we would like to stress the fact that the gain of Th. 6.2.1 over Th.
6.1.2 consists of dropping the strict monotonicity of the overall function f by showing
that strict monotonicity is only needed for the aggregation function h. An example of
a function that is included in Th. 6.2.1 but not in Th. 6.1.2 would be the stop-loss
functional f(x1, . . . , xd) = max(x1 + · · ·+xd− k, 0) for some k 6= 0. Except for the issue
of strict monotonicity, the composition with an increasing convex function was already
possible in Th. 6.1.2 as the next lemma shows.

Lemma 6.2.11. If h : Rd → R has the decomposition property (6.1) then for any
g : R→ R the composition f = g ◦ h also satisfies (6.1). If furthermore the decomposi-
tion of h is supermodular (in particular h2 has to be supermodular) and g is increasing
and convex, then the decomposition of f is also supermodular (in particular f 2 is super-
modular).

Proof. It holds

f(x1, . . . , xd) = (g ◦ h)(x1, . . . , xd) = g (h((x1, . . . , xd))
= g

(
h2(xi, hd−1(x1, . . . , xi−1, xi+1, . . . , xd))

)
= (g ◦ h2)(xi, hd−1((x1, . . . , xi−1, xi+1, . . . , xd)))

for i = 1, . . . , d. So take f 2 = g ◦ h2 and fd−1 = hd−1 and we have (6.1). For the
claim that f 2 is supermodular if h2 is supermodular and g is increasing and convex, use
Proposition 6.D.2 from (Marshall et al., 2011).

Using majorization, we were able to identify new cases where the RA can be applied to
compute bounds on expected values. In particular, this extension yields more flexibility
when working with non-linear risk aggregation. While these models are relatively sparse
in mathematical finance, they enjoy some popularity in the field of modeling medical
risks (for example see (Brattin, 1994) or (Guo, 2000)). Another, even broader, extension
is possible, when we generalize the decomposition property as follows.
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Suppose that for every index i = 1, . . . , d, h : Rd → R can be decomposed into two
functions ih

2 : R2 → R and −ihd−1 : Rd−1 → R such that for all x ∈ Rd

h(x1, . . . , xd) = ih
2(xi, −ihd−1(x1, . . . , xi−1, xi+1, . . . , xd)). (6.4)

Note that in contrast to (6.1), here the decomposition may depend on the index. We
want to use the notations h(X) and −ihd−1(X−i) just as before. So for all i = 1, . . . , d

h(X) =


h(x(1)

1 , x
(2)
1 , . . . , x

(d)
1 )

h(x(1)
2 , x

(2)
2 , . . . , x

(d)
2 )

... ... ...
h(x(1)

n , x(2)
n , . . . , x(d)

n )

 =


ih

2
(
x

(i)
1 , −ih

d−1(X−i)1
)

ih
2
(
x

(i)
2 , −ih

d−1(X−i)2
)

...
ih

2
(
x(i)
n , −ih

d−1(X−i)n
)

 .

Notice that after a column x(i) is fixed, the same decomposition with index i is applied
in every row.
We now restate Theorem 6.2.1 in generalized form.

Theorem 6.2.12. If f(x(1), . . . , x(d)) = g(h(x(1), . . . , x(d))) where g : R→ R is increas-
ing and convex and h : Rd → R is supermodular, componentwise strictly monotonic and
satisfies (6.4) with all ih2 also being supermodular, then

mf (X) = min
X̃∈Oh(X)

n∑
k=1

f(x̃(1)
k , . . . , x̃

(d)
k ).

Furthermore, the requirement of g being increasing can be dropped, whenever ih
2 is of

the form ih
2(x1, x2) = ϕ1(x1) + ϕ2(x2), where ϕ1 and ϕ2 are monotone in the same

direction.

Proof. Since the majorization does not depend on the decomposition to be the same for
each index, the proof of Theorem 6.2.1 carries over verbatim. The second statement
follows from 6.2.10.

Theorem 6.2.12 contains the statements 6.2.1 and 6.1.1 as special cases. Note that in
contrast to (6.1), a function does not have to be symmetric to satisfy (6.4). An important
case that is included in Theorem 6.2.12 but not in 6.2.1 or 6.1.1 is a weighted sum.

6.3. Applications
To illustrate the usefulness of the new cases the RA can be applied to, we want to
compute some examples. That is, given some marginal distributions F1, . . . , Fd and a
cost function f : Rd → R which fulfills our assumptions, we want to estimate

sf := inf
{
E
[
f(X(1), . . . , X(d))

]
: X(i) ∼ F (i), 1 ≤ i ≤ d

}
. (6.5)
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Here, we are only interested in the infimum since it is well known that for supermodular
cost functions f , the supremum

Sf := sup
{
E
[
f(X(1), . . . , X(d))

]
: X(i) ∼ F (i), 1 ≤ i ≤ d

}
is attained, when X1, . . . , Xd are comonotonic (i.e. their copula is the upper Fréchet-
Hoeffding bound). Hence Sc is known in this case.

Considerig what we have seen in the preceding section, there are two immediate ob-
stacles. The first one is that so far, we always talked about n-discrete distributions and
now we want to work with general distributions Fi. This can be adressed by working
with the two n-discrete distributions

F i = 1
n

n−1∑
k=0

1[qi
k
,∞)(x) and F i = 1

n

n∑
k=1

1[qi
k
,∞)(x)

where the qik are defined in terms of the quantile functions F−1
i by qik := F−1

i ( k
n
). Writing

sf resp. sf for (6.5) with the Fi replaced by F i resp. F i, it holds that if the cost function
f is componentwise increasing we have

sf ≤ sf ≤ sf .

This allows us to compute a range for sf that will become small when n increases.

The second problem is that the rearrangement methodology aims to find mf and not sf .
The difference here is that for mf only distributions that give equal mass of 1

n
to n out

of nd possible realizations of X are considered. However, for n large enough, we have

sf ≈
mf

n
.

Combining these two ideas leads to the approximation of sf by the RA. For more details
see section 3 in (Puccetti and Rüschendorf, 2015). Note that the requirement to have f
componentwise increasing for this method eliminates the increased generality, 6.1.1 had
over 6.1.2 and 6.2.1 in terms of monotonicity.

6.3.1. A weighted portfolio
Imagine a portfolio consisting of three different assets with value processes X1(t), X2(t)
and X3(t). The value of the portfolio at time t = 0 is given by

L(0) = α1X1(0) + α2X2(0) + α3X3(0)

where αi denotes the amount of positions held in asset Xi. Furthermore, the return of
asset i is given by Ri := Xi(1)−Xi(0)

Xi(0) ∼ Fi with known distribution functions Fi. Then
the return of the portfolio at time t = 1 is given by

h(R1, R2, R3) = L(1)− L(0)
L(0) = α1X1(0)

L(0) R1 + α2X2(0)
L(0) R2 + α3X3(0)

L(0) R3.
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So interpreting wi := αiXi(0)
L(0) ∈ [0, 1] as the fraction of the original wealth that was in-

vested in Xi, we get h(R1, R2, R3) = w1R1 + w2R2 + w3R3.
Assuming a guaranteed return of k on the portfolio leaves us to examine
E [g(h(R1, R2, R3))] with g(x) = max(x − k, 0). Obviously g and h satisfy the assump-
tions of Theorem 6.2.12, hence we can use the RA to compute sf for f = g ◦ h.

We considered varying sets of distributions F1, F2, F3. Since the cost function f is
unbounded from above, the discretizations F i cannot be used in a meaningful way with
distributions that are unbounded from above. Therefore, we truncated all distributions
with infinite support at the 0.001% quantile and marked the modified distributions with
an asterisk (∗). Note that in practice, the question where to truncate can be hard to
decide, especially when dealing with heavy tails, see e.g. Clark (2013) for considerations
concerning the Pareto distribution.
For consistency, also the lower bounds of (positively) unbounded distributions were cal-
culated with the truncated distribution. To have a reference value, we also computed
the range of E [g(h(R1, R2, R3))] by solving a linear program. This procedure yields rig-
orous bounds but is computationally more costful and thus usually cannot provide the
accuracy of the RA. For more details on the LP method and a comparison of the two
approaches see Preischl (2016) and the references therein.

F1 F2 F3 range LP range RA
U([0, 0.4]) U([0.1, 0.5]) U([0, 1]) 0.0058-0.0148 0.0099-0.0100
exp(1)∗ exp(2)∗ exp(4)∗ 0.3416-0.4711 0.3749-0.3750
U([0, 0.4]) exp(3)∗ U([0, 1]) 0.0092-0.0303 0.0166-0.0167
exp(1)∗ Pareto(2)∗ N (0, 0.25)∗ 0.2876-1.4912 0.3990-0.4054

Table 6.1.: Approximation results for different marginals. LP values as a reference.

The RA was applied with a grid of 105 sections in each dimension, whereas the LP
method used a grid of 60 sections in each dimension. The weight vector was set to
w := (0.5, 0.2, 0.3) throughout these computations.

For the LP approach, the computation time depends strongly on the marginal distri-
butions and was on average around 10 minutes per value. The RA generally took less
than one minute to compute both upper and lower bound. All results were obtained
using the open source language R, where we used the implementation of the RA from
the package qrmtools by (Hofert and Hornik, 2016).
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