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Abstract

Recommender Systems play an important role for successful e-com-

merce platforms ranging from retailers like Amazon.com to online DVD

rental platforms like Netflix. With ever growing user and product bases,

Recommender Systems are seen as a way of improving the user expe-

rience by matching products to customers.

Acknowledging the need for better Recommender Systems, Netflix

set up a tournament in 2006 with a large cash prize for the team that

improves the accuracy of their own recommendation algorithm – Cine-

match - by 10%. The Netflix challenge served as a catalyst for the de-

velopment of a plethora of Collaborative Filtering techniques for gener-

ating recommendations and led to large amount of fresh research in

the field. With Matrix Factorization models topping the leader-boards,

these types of methods proved to be the most popular and successful

Latent Semantic Indexing approaches for Collaborative Filtering in this

real-world inspired challenge. 

In  this  thesis,  two popular  inference methods,  namely  Stochastic

Gradient Descent (SGD) and Alternating Least Squares (ALS), were se-

lected and implemented as interchangeable components of a general-

ized factorization model. Analysis was done in pragmatic fashion with

the help of a practical implementation and tested on three large, real-

world, sparse datasets. The factorization model represents an SVD-like

decomposition, which maps the large matrix-like dataset to an approxi-

mation of smaller dimensions via the inference methods. The experi-

mental results have shown that, although its relative simplicity, SGD

can deliver satisfactory results when properly tuned. ALS on the other

hand delivers excellent accuracy with great potential  for further im-

provement, at the cost of being somewhat difficult to optimize and im-

plement. Both return good results on the Netflix dataset with scores

better than Netflix' own recommender system, and congruent with re-

sults by similar implementations from teams that have taken part in

the Netflix challenge. The other two datasets -  MovieLens and IMDB

show even better results by using the same framework, partly because

of their smaller size, but also because of the universality of the afore-

mentioned algorithms.
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Kurzfassung

Empfehlungssysteme spielen eine wichtige Rolle bei erfolgreichen e-

commerce  Platformen,  vom Einzelhändler  wie  Amazon  bis  hin  zum

Videoverleih wie Netflix.  Bei  der ständig wachsenden Anzahl  an Be-

nutzern  und  Produkten  sind  Empfehlungssysteme  ein  Weg  zur

Verbesserung der Benutzererfahrung durch die Auswahl der Produkte

die  zu  den Kunden passen.  Nachdem Netflix  die  Notwendigkeit  von

besseren Empfehlungssystemen erkannte, wurde 2006 ein Wettbewerb

mit großem Geldpreis für das Team ausgerufen, das die Genauigkeit

des  eigenen  Empfehlungsalgorithmus  -  Cinematch  -  um  10%

verbessert. Die Netflix Herausforderung diente als Katalysator für die

Entwicklung  einer  Vielzahl  kollaborativer  Filtertechniken  um

Empfehlungen zu  generieren  und  führte  zu  einer  großen  Anzahl  an

neuer Forschung in diesem Bereich. Mit Matrix Factorization-Modellen

an der Spitze, erwiesen sich diese Methoden als die beliebtesten und

erfolgreichsten Latent Semantic Indexing-Ansätze für Collaborative Fil-

tering in dieser von der realen Welt inspirierten Herausforderung. In

dieser  Arbeit  wurden zwei  populäre  Inferenzmethoden,  nämlich  Sto-

chastic Gradient Descent (SGD) und Alternating Least Squares (ALS),

ausgewählt  und  als  austauschbare  Komponenten  eines  Generalized

Factorization Model implementiert. Die Analyse wurde mit einer prak-

tischen Implementation durchgeführt und an drei großen, realen und

spärlichen Datensätzen getestet. Das Faktorisierungsmodell repräsen-

tiert eine SVD-artige Zerlegung, welche den großen Matrix-ähnlichen

Datensatz  auf  eine  Annäherung  kleinerer  Dimensionen  mittels  In-

ferenzmethoden abbildet. Die experimentellen Ergebnisse zeigen, dass

SGD trotz seiner relativen Einfachheit mit den passenden Parametern

zufriedenstellende Ergebnisse liefern kann. ALS hingegen liefert eine

hervorragende  Genauigkeit  mit  großem  Verbesserungspotenzial,  ist

aber  schwieriger  zu  optimieren  und  umzusetzen.  Beide  liefern  gute

Ergebnisse für den Datensatz von Netflix und übertreffen dabei den Al-

gorithmus von Netflix und andere Implementationen von Teams die am

Netflix  Wettbewerb  teilgenommen  haben.  Bei  den  beiden  anderen

Datensätzen - MovieLens und IMDB werden mit dem selben Framework

sogar noch bessere Ergebnisse erzielt. Dies wird teilweise aufgrund der

kleineren Größe, aber auch wegen der Universalität der oben genan-

nten Algorithmen erreicht.
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1. Introduction

1 Introduction

The purpose of this chapter is to shed light on Recommender Systems as

defined: in own words, historically, loosely and from technical perspective.

Then an outline of the different types of Recommender Systems is listed.

After that the motivation behind this work is presented and supplemented

by research questions and contributions. Finally a quick outline of the rest

of the work completes the chapter.

1.1 Definition

Recommender Systems offer customers or users a personalized selection

of products or items based on different strategies. This personalized item

selection is generated in order to aid the user with selection in an ever

growing list of products or items. Previous research has shown that gener-

ally users are not eager to scroll down large lists of items on online plat-

forms, this negatively affects the user satisfaction and impairs the com-

mercial or practical success of these platforms. This gave rise to the devel-

opment and adoption of recommender systems by different internet lead-

ers like: Netflix, IMDB, Amazon.com and Google [10][11][5]. The following

definition cascade follows the pattern presented by A. Felfernig et al. In

[10], beginning with a pristine definition from 1997 [54]: 

"In  a  typical  recommender  system  people  provide

recommendations as inputs,  which the system then

aggregates  and directs  to  appropriate  recipients.  In

some  cases  the  primary  transformation  is  in  the

aggregation; in others the system’s value lies in its

ability  to  make  good  matches  between  the

recommenders and those seeking recommendations."

(Resnick & Varian, 1997)
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1. Introduction

With aggregation in mind this definition prophetically defined collaboration

between users as a means to generate  recommendations. This was then

further expanded to include any method for generating recommendations

[13]:

"Any system that produces individualized recommen-

dations as output or has the effect of guiding the user

in a personalized way to interesting or useful objects

in a large space of possible options." (Burke, 2002)

This generalized and more colloquial definition can be complemented by

the more technically oriented [11]:

"More formally, the recommendation problem can be

formulated as follows: Let  C be the set of all users

and let S be the set of all possible items that can be

recommended...Let  u be  a  utility  function  that

measures the usefulness of item  s to user  c, i.e.,  I:

C×S ⇒ R, where R is a totally ordered set (e.g., non-

negative  integers  or  real  numbers  within  a  certain

range). Then, for each user c ∊ C, we want to choose

such item  s'  ∊ S that maximizes the user’s utility."

(Adomavicius & Tuzhilin, 2005)   

This definition, albeit not including group recommendations, is sufficient

for the scope of this work, as it also does not consider group scenarios.

2



1. Introduction

1.2 Types of Recommender Systems

As shown in Fugure 1, from both historical and approach perspective Rec-

ommender Systems can be roughly split into these strategies:

Fig. 1: Types of Recommender Systems.

1.2.1 Content based

Basically, profiling a user or an item, either implicitly or explicitly, in order

to  generate  a  personalized  (profiled)  recommendation.  For  items  like

movies such profiles, as an example, can take the form of: genre, director,

actors involved, year of release etc. In the implicit case trained analyst as-

signs the item to a category; in the explicit case the users themselves cat-

egorize and score the items. User profiles on the other hand can contain

various information like gender, age, preferred genre etc. This type of in-

formation is typically filled in provided forms by the users themselves. A

prime example of this type of Recommender System is the Music Genome

Project utilized by the Internet radio pandora.com1. Content based meth-

ods suffer from the fact, that they need to collect external information in

advance, which is not always readily available or easy to collect [1].

1 Pandora Internet Radio, URL: http://www.pandora.com (currently only available 

in: U.S., Australia and New Zealand).
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1. Introduction

1.2.2 Collaborative Filtering

Collaborative Filtering (shortly CF), which is the main focus of this work and

its accompanying framework, is the most commonly used type of Recom-

mender System and as a concept was named by the team that developed

one of the first Recommender Systems - Tapestry [14][1]. Generally it is

sub-divided into two main strategies or a combination of them:

1. Nearest Neighbor (methods), relies on finding similar users or items

in order to predict future associations, hence the name.

2. Model- or  Factorization-based Collaborative Filtering, relies on past

user behavior (ratings) in order to generate a recommendation. Typi-

cally, this type of Collaborative Filtering works by utilizing various [1]

Latent Semantic Indexing/Analysis (LSI/LSA for short) techniques in

order  to  discover  hidden relationships  and interdependencies  be-

tween the users and the items. This, then enables Model/Factoriza-

tion-based CF to designate new user-item associations [6]. These as-

sociations or factors as technically termed, serve as a miniature (low

rank) model of the original data (user-item matrix), that captures the

most  important  aspects  of  the user-item interactions  and is  then

used to generate recommendations with high accuracy [2].

Both methods do not need extra information like implicit data like: time-

stamps, viewing, renting, purchasing etc., but such information can and of-

ten is incorporated to boost prediction quality [7][9]. Unlike Content based

Recommender Systems, CF's lack of need of gathering extensive profiling

information makes it more universally applicable. This strategy also offers

the potential to discover various domain-free patterns, which would be oth-

erwise impossible to formulate in advance [2]. These traits made the tech-

nique a hot topic in the research community [18] with various projects [19]

and real-life commercial applications [20]. Albeit its wide practical success,

like  in  the  Netflix  challenge2 [47],  Collaborative  Filtering  is  not  without

drawbacks. As a prime example that plagues both previously presented CF

strategies, one can identify the so called Cold Start problem [30], to sum it

2 http://www.netflixprize.com/
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1. Introduction

up: when a new user or item arrives, it lacks the necessary information

(ratings) needed to assign it a group or to extract latent factors. For this

problem various workarounds have been proposed bearing different  de-

grees of success [31][32]. Collaborative Filtering will be thoroughly exam-

ined in the following chapters.

1.2.3 Other Recommender Systems

Systems such as -  Knowledge based recommender systems and various

hybrid approaches also exist mainly within the research world. Knowledge

based recommender systems [21] employ various forms of deep knowl-

edge, such as as semantic knowledge [22], instead of typical (con-)textual

description or numerical ratings. This deep knowledge captures more prop-

erties about the items and can lead to richer recommender experience.

Hybrid approaches, as the name suggests, try to combine the previously

mentioned recommender strategies in different ways in order to achieve

higher recommendation quality [13].

1.3 Motivation and Goals

This work takes inspiration from the extensive research done during the

Netflix challenge [47].  During its course, various algorithms were devel-

oped  [2][3][5][6][7][9][29][33][36][45][49][50][51][23]  (and  more)  and

further improved in order to tackle already existing and newly arisen prob-

lems. Among these algorithms one could distinguish:  Stochastic Gradient

Descent,  Alternating  Least  Squares, Restricted  Boltzmann  Machines,

Markov Chain Monte Carlo and various  Nearest-Neighbor techniques that

were used as machine learning approaches in order to tackle the Recom-

mender System problem. Netflix further released a large dataset contain-

ing over 100 million ratings from over 480 thousand users on 17770 items

which was used to  train, test, qualify and  rate and the models using the

RMSE metric (more on RMSE in 4.2).

The motivating research objectives can be summarized in the following

list:

5



1. Introduction

• Can a generalized implementation be drawn from the cus-

tomized algorithms made explicitly for the Netflix dataset –

most of the algorithms are fine-tuned for the Netflix challenge and

depend on large number of  additional parameters that have to be

explicitly trained.

• A fresh evaluation of the accuracy of the selection of factor-

ization algorithms on new and old datasets – (1) how does the

practical implementation, which is a part of this thesis, rate on the

Netflix dataset compared to the ones used in the challenge.  (2) How

suitable are these algorithms for factorizing new datasets like Movie-

Lens  an  IMDB.  (3)  Comparison  of  the  results  on  old  and  new

datasets.

• Qualitative and Quantitative evaluation of performance met-

rics – different algorithms have different demands on the hardware.

With that in mind ones goal is to measure important performance

figures like CPU time and memory usage and to draw conclusion of

possible bottlenecks and improvement points in the selected algo-

rithms.

• Standalone algorithmic perspective – since most of the winning

approaches included ensembles of algorithms working in a feedback

loop in order to achieve the desired goal of 10% improvement – from

a research point of view a more atomized analysis of the different al-

gorithms makes more sense, with fusion of algorithms being its own

research field.

Derived from the objectives listed above, Table 1 shows the research

questions and contributions of this work:

6
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Questions Contributions

Q1:  Is  general  (works  on  all

datasets) implementation deriv-

able?

Yes, with remarks. The algorithms de-

veloped for the Netflix challenge work

also well with other datasets, but re-

quire algorithmic parameters tuned for

the task.

Q2:  How  does  the  provided

practical  implementation  stack

against previous work?

The accuracy of the practical imple-

mentation is consistent with the find-

ings of from other works. This is true

for older as well for newer datasets,

confirming the universal applicability

of the implemented algorithms.

Q3: How does the selection of

factorization algorithms perform

on normal desktop hardware,

and how do they fare against

each other?

The experimental results have shown

that the selected algorithms can run in

reasonable time with sufficient accu-

racy on a normal desktop PC. If

proper optimization techniques are

implemented both algorithms can run

in similar times with comparable accu-

racy.

Q4: Is an ensemble of factoriza-

tion algorithms a necessity for

achieving high prediction accu-

racy?

No. Properly implemented and tuned

algorithms can achieve high prediction

accuracy on their own.

Tab. 1: Research Questions and Contributions

1.4 Outline

The next Chapter is dedicated to the major concepts of Recommender Sys-

tems and a selection of Algorithms from these concepts. The algorithms

themselves are introduced and discussed. Chapter 3 presents the datasets

used for obtaining the experimental results via a framework (which accom-

panies this work) of two matrix factorization algorithms. Later on in Chap-

ter 4 these experimental results are exhibited in a graphical fashion in or-

7



1. Introduction

der ease the analysis of the implications of the results. The key findings of

this work are discussed in chapter 5. Finally Chapter 6 concludes this work

with a general discussion about the implemented and tested algorithms

and proposes means for improvement of their performance.

2 Theoretical Overview

This chapter provides theoretical overview of the core concepts of Collabo-

rative Filtering with emphasis on Matrix Factorization. The beginning deals

with the introduction of some of the most common Nearest Neighbor ap-

proaches and then the chapter continues with a general Matrix Factoriza-

tion (short MF) model. This is then extended by various techniques for im-

proving accuracy and dealing with cold start problems, these include im-

plicit and explicit feedback. Finally a selection of two inference methods is

introduced. These methods are also a part of the practical implementation

and framework and are more thoroughly and pragmatically covered in the

sub-chapters.

2.1 Collaborative Filtering

This thesis' main focus of work is an algorithmic perspective of matrix fac-

torization for recommender systems. This algorithmic approach, is itself a

part  of  a  broader  collection  of  techniques  utilizing  similarities  between

users or items. This collection is commonly referred to as  "Collaborative

Filtering". Figure 2, as a complementation to Fig. 1 from Chapter 1, aims to

draw a map of the different Recommender Systems and the relevant for

this work algorithmic approaches.

Collaborative  Filtering,  as  a  paradigm,  aims  to  generate  predictions

(used as recommendations, thus filtering irrelevant items/products)  that

are relevant to the interests of a particular user by rallying  similar users

(collaboration) and using their shared preferences. The general premise of

Collaborative Filtering is that if user A has the same preference for prod-

ucts/items rated by user B (and also rated by A), then user A is going to

have the same preferences as user B for other (non-rated by user A, but

8



2. Theoretical Overview

rated by B) items/products. For illustrative purposes, in a typical collabora-

tive filtering recommender system for movies or series like Netflix or IMDB,

the system can make predictions about  which movies or  series  user  A

could find relevant by using only user A's preferences (e.g. ratings or even

binary information - like/dislike) and interpolating from that information by

finding similar users with similar preferences and using their already seen

movies or series as a base for recommendations.  In other words, although

these predictions are specifically bound to a particular user, the predictions

themselves depend on other,  similar users in order to be generated. This

approach is more complex and precise, than for an example a typical linear

or polynomial regression approach, which gives an average (not specifi-

cally bound to a particular user) prediction for each potential item/product.

Or differently formulated – taking the global (of all items) or local mean

score (for this particular item) does not enough to capture a specific user’s

preferences.

Fig. 2: Types of Recommender Systems and relevant subtypes.

Recommender  Systems (blue),  relevant  sub-types (blue),  algorithmic  ap-

proaches popular in the Netflix challenge and taken as basis for the practi-

9



2. Theoretical Overview

cal implementation of this thesis (violet), faded: other types of algorithmic

approaches.

As an alternative definition, the CF task can be viewed as a  missing

value estimation [6]. What is known: a dominantly sparse user-item matrix

of ratings. What needs to be done  :   an estimation of the missing values in

the sparse matrix. How it shall be done  :   based on the given ratings - pre-

dict the missing ones. The given user-item ratings are means to measure

the degree of interest between users and items. These ratings are typically

explicitly given by the users themselves by utilizing the rating capability of

the commercial platform and serve as the input of the Collaborative Filter-

ing algorithms. In the relevant literature one can also find the term "score"

in place of "rating" with the same semantic meaning.  Figure 3 illustrates

the process.

Fig. 3: The missing value estimation process.

10



2. Theoretical Overview

Alternatively, in order to tackle the cold-start3 problem or users with in-

sufficient number of rated items, one can use (often) implicit data  from

previous interactions like historical purchases (but left unrated) or brows-

ing of items.

2.2 The Nearest-Neighbor Approach

At  the  beginning  the  most  common approach  to  Collaborative  Filtering

were various Nearest Neighbor methods (also known as k Nearest Neigh-

bors, shortly kNN) [6][11]. These methods use various similarity measures

[10][11][22] in order to identify groups of items that tend to get rated simi-

larly. This approach can also go both directions [53] and thus can be used

to  find  groups  of  users  that  share  similar  preferences  in  items.  These

groups of similar items or similar users are then used to discover new in-

terconnections between the users and the items. The whole concept lies

on the assumption that previous preferences of users will hold with time in

a consistent and stable matter. [53] Figure 4 illustrates the process.

Fig. 4: The Nearest-Neighbor approach.

In order to generate predictions for User A, this approach aims to find a 

group of users that have already seen the movies seen by User A (black ar-

rows), hence indicating similarity, and then generate a list from this similar 

3 cold-start - no or insufficient data at the beginning

11
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user group (red arrow) and present it to User A (green arrow). (All images 

courtesy of their respective owners)

As positive feature of this approach one can distinguish:

1. Ease of implementation - compact and uncomplicated algorithms

2. Computational performance - fast computation times with low 

memory footprint

3. Intuitive recommendations - ease of explanation to the user of 

the rationale behind a recommendation 

For a more balanced overview of the kNN approach, one should also

consider its drawbacks. The main one can be considered the fact, that kNN

epitomizes the so called "lazy learning"  approach. This means, that the al-

gorithm does not learn any useful props (like in feature extraction) from

the training data, but rather uses the data itself for the classification task

(side-note here: of the nearest neighbors or similar users/items) and the

subsequent prediction task. Because generating a prediction is done via

finding the k closest neighbors, the prediction itself will be the most com-

mon score among the k nearest neighbors, thus skipping any global effects

until late in the learning phase. This makes drawing generalizations about

the data difficult, which further makes the algorithm prone to have low re-

siliency for noisy data. Another serious drawback of the kNN algorithm is

that for each training example, it must calculate the distance of its nearest

neighbors and then sort them. This can be computationally expensive for

large datasets (although using indexing like L-D trees may reduce the over-

head). Further one must also determine a proper k value for the number of

associated neighbors. Also in all distance-based learning techniques, there

is no clarity which attribute one should use, or which distance measure.

In the core of the kNN algorithm lays the similarity measure function

used to determine the nearest neighbors. Popular choices are the Pearson

correlation coefficient and the closely related  Cosine correlation. The for-

mer  is  typically  used  for  user-based recommendations,  while  the  latter

mostly in item-based scenarios. One advantage of the Pearson correlation

coefficient over the Cosine is the fact that its range is between -1 and 1,

12
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where -1 indicates negative correlation and +1 indicates positive correla-

tion [53]. The cosine correlation, which in its basic form covers the range

of [0,1], however it can be modified to the -1 and +1 range. The main ad-

vantage of this modified cosine measure is that it takes into account the

average rating behavior of  the users,  by subtracting the average value

from the ratings. [53]  

2.2.1 The Pearson Correlation Coefficient

Equation 1 depicts the Pearson Correlation coefficient for a typical user-

based recommendation:

sim (a ,b)=

∑
i∈ I

(ra , i− ra)(rb ,i −rb)

√∑
i∈ I

(r a ,i −r a)
2

√∑
i∈ I

(rb , i− rb)
2

Equation 2.1: The Pearson Correlation 

Coefficient 

In order to fully understand the mechanics behind correlation-based rec-

ommendations, one should consider the following example:

User 1 User 2 User 3 User 4 User 5

Item 1 2 3 - 5 -

Item 2 5 - - - -

Item 3 - 3 4 3 3

Item 4 - 5 5 - 4

Item 5 - - 3 - -

Item 6 - 4 4 - 4

Item 7 1 - - - -

Item 8 - 2 - - -

Item 9 - - - 2 -

Item 10 - - - 1 -

r 2.67 3.4 4 2.75 3.67

Tab. 2: Example Collaborative Filtering Dataset

13



2. Theoretical Overview

Example rating matrix: items and ratings by users (ratings in range of 1–5). 

Empty cells indicate no rating for that item by this user. r -  denotes the 

mean rating value for this item.

Using Equation 2.1 and the example dataset above, one can calculate

the following correlation coefficients or similarities for users 2 and 3 in re-

spect to user 5, shown in Table 3:

User 1 User 2 User 3 User 4

User 5 - 0.866 0.5 -

Tab. 3: Example similarities

Example similarity values for User 5, since users 1 and 4 did not rate 

enough or any items that User 5 rated, no similarity measure for these 

users can be obtained.

Building upon the correlation coefficients calculated above one can pro-

ceed and generate predictions using the following Equation [53]:

pred(a , i)=ra+

∑
b∈N

sim(a ,b)∗(rb , i− rb)

∑
b∈N

sim (a ,b)

Equation 2.2: Prediction for Pearson Correlation

Coefficients

Applying the Equation above one obtains following predictions:

Item

1

Item

2

Item

3

Item

4

Item

5

Item

6

Item

7

Item

8

Item

9

Item

10

User 2 3 - 3 5 - 4 - 2 - -

User 5 - - 3 4 - 4 - - - -

Prediction

User 5
3.27 - - - - - - 2.27 - -

Tab. 4: Example user-based predictions
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Predictions generated by user-based collaborative filtering for items not 

rated by User 5, but rated by User 2 (most similar user) - see Fig. 4. These 

predictions can later be sorted and used as recommendations.

2.2.2 The Cosine Correlation Coefficient

As an alternative to the user-based approach,  the item-based approach

emerged from the need of a faster calculation method in the context of a

very large user/item database [4]. This approach utilizes the fact that there

are typically far less items than users, so determining their neighborhoods

is computationally less expensive [4]. The basic idea is to examine User A's

rated items and determine his/her similar items. The algorithm then calcu-

lates a similarity measure and feeds it to a prediction function. Typically

the cosine and adjusted cosine similarity measures are used [53] for deter-

mining similarity between the items. Both approaches calculate the simi-

larity  between  two  n-dimensional  vectors by  using  the  angle  between

them [53]. They are also commonly used in information retrieval and tf-idf

problems4. The cosine similarity measure is defined as follows [53]:

sim (a⃗ , b⃗)=
a⃗ . b⃗

|a⃗|∗|b⃗|

Equation 2.3: The cosine similarity 

measure

By applying the Equation above on the example dataset defined in Table

2, one obtains following similarities:

User 1 User 2 User 3 User 4 User 5

Item 3 - 3 4 3 3

Item 6 - 4 4 - 4

Similarity: 0.99

Tab. 5: Example cosine similarity

Example similarity values for Item 3 and Item 6, only overlapping values are

taken into account. The possible range lies between 0 and 1, where values 

approaching 1 indicate strong similarity. 

4 http://www.ir-facility.org/scoring-and-ranking-techniques-tf-idf-term-weighting-

and-cosine-similarity)
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2.2.3 The Adjusted Cosine Correlation Coefficient

The basic cosine coefficient, however, does not take into account the av-

erage rating pattern of the current user. This is remedied by taking the ad-

justed cosine similarity coefficient [53]. This approach works by first sub-

tracting each user’s average value from the ratings.  By doing this,  the

range now lies between -1 and 1 as in the the Pearson approach. The simi-

larity is calculated with the following formula:

sim (a ,b)=

∑
u∈U

(ru , a− ru)(ru ,b −r u)

√∑
u∈U

(ru , a− ru)
2

√∑
u∈U

(ru , b −r u)
2

Equation 2.4: The adjusted cosine similarity measure

In order to continue, first the example dataset from Table 2 must be ad-

justed by subtracting the user’s average values.

Item

1

Item

2

Item

3

Item

4

Item

5

Item

6

Item

7

Item

8

Item

9

Item

10

User 1 -0.67 2.33 - - - - -1.67 - - -

User 2 -0.4 - -0.4 1.6 - 0.6 - -1.4 - -

User 3 - - 0 1 -1 0 - - - -

User 4 2.25 - 0.25 - - - - - -0.75 -1.75

User 5 - - -0.67 0.33 - 0.33 - - - -

Tab. 6: Average-adjusted ratings

Example rating matrix: the values depicted are after subtracting the aver-

age user rating value and transposed for convenience

With the average ratings subtracted, one can choose for an example

items 4 and 6, and then proceed calculating the similarity values by using

Equation 2.4. Table 7 depicts the results:
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User 1 User 2 User 3 User 4 User 5

Item 4 - 1.6 1 - 0.33

Item 6 - 0.6 0 - 0.33

Similarity: 0.815

Tab. 7: Example adjusted cosine similarity

Example similarity values for Item 4 and Item 6, only overlapping values are

taken into account. The possible range lies between -1 and 1, where values 

approaching 1 indicate strong similarity and values approaching -1 indicate 

negative similarity. 

After the calculation of the adjusted cosine similarity values has been

taken care of, the next step is to generate predictions using the similarity

coefficients. This can be done by using Equation 2.5 [53]:

pred(u ,i)=
∑

j∈ratedItems (u )

sim( j ,i)∗ru , j

∑
j∈ratedItems (u )

sim( j , i)

Equation 2.5: Prediction by adjusted cosine 

similarity measure

Utilizing  Equation  2.5  on  the  data  from  Table  7,  one  obtains:

prediction(User 4, Item 4) = 3.0 , i.e. based on similar items, User 4 would

rate Item 4 with a rating of 3.0 .

2.2.4 Related work

During the course of the Netflix challenge many teams first approached

the problem from the NN perspective with the main innovations coming

from the team of Y. Koren and R. Bell (team “BellKor”) which won the chal-

lenge afterwards. In [6] they introduce an improved neighborhood tech-

nique, which trains all features simultaneously with minimal performance

penalty. This approach also takes global biases into account and is tested

on the  Netflix  dataset.  In  another  paper  [2]  from Koren  et  al.,  the  re-

searchers improve the kNN method in two directions. First as in the previ-
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ous paper - by training all of the interpolation factors simultaneously, by

solving  a  global  interpolation  problem.  And  second,  by  applying  the

method on the slower user-oriented approach via a low-dimensional em-

bedding of the users. In another paper [34] again inspired by the Netflix

challenge an Austrian team consisting of A. Toescher, M. Jahrer and R. Leg-

enstein which later joined “BellKor” in winning the prize, proposed a regu-

larized matrix factorization algorithm which includes neighborhood infor-

mation.

2.3 The Matrix Factorization Approach

Matrix Factorization is a popular method for performing Latent Semantic In-

dexing on various datasets, be it commercial or scientific [49][50][51][2]

[3][5][6][7][9][36][45][23]. In the case of application in a commercial rec-

ommender system, the method aims to infer (extract) n number of factors

(also called  features) which generalize an item's properties and a user's

preferences (for an example: and online DVD rental service and its user-

base). These features, normally in the range from 8 to 50 [2][3][5][6][7][9]

[1], are inferred from existing, explicit data (usually ratings) with no previ-

ous knowledge of their structure, hence they are  latent in the data. The

ratings are placed in a matrix where one dimension represents users and

the other items. Inference is done in a row-wise fashion, hence  indexing.

The matrix itself is largely sparse due to the fact that the majority of the

users have rated only a small proportion of the items. And with the goal

being inferring features from this sparse matrix, which capture the essence

of the items' properties and users' preferences, one comes to the term se-

mantic. The terminology of matrix factorization comes from the analogy of

this technique to Singular Value Decomposition which it  closely mimics.

The inferred features are placed in vectors and represent sometimes easy

to understand dimensions like comedy, drama or thriller (for a movie ori-

ented example). But more often than not, the features represent opaque

dimensions  like  geekiness (movies with  traits  preferable  by "geek"  cul-

ture), tarantinoesque5, or completely uninterpretable dimensions. A simpli-

fied example for such a latent factor space can be seen in Fig 5. 

5 https://en.wiktionary.org/wiki/Tarantinoesque
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Fig. 5: The Matrix Factorization Approach.

This low-dimensional example splits the traits of users and movies

into two dimensions. The first one is male / female orientedness and

the second one is old / young viewership. Aligned on those dimen-

sions there are several well-known movies and phew fictional users

which aim to cover the whole spectrum of the aforementioned di-

mensions. For this type of recommender system a prediction is gen-

erated by taking the dot product of the user's and movie's points on

the plane. As an example one can consider the user Willy who likes

Transformers and The Matrix to not like Titanic. He would also give

an average rating to The Shawshank Redemption and be thrilled by

The Terminator. (All images courtesy of their respective owners)
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Pair matching or recommendation generation is done when a high corre-

lation  between  both  user's  and  item's  feature  vectors is  present.  This

mostly automated praxeology6 has the positive traits of both good scalabil-

ity  and good recommendation accuracy.  This  made matrix  factorization

very attractive and popular as well for theoreticians as also for practition-

ers. 

Another positive trait of Matrix Factorization is its flexibility in modeling

real-life applications by adding  implicit feedback to additionally enhance

the quality of the extracted features. But in order for one to understand the

importance of implicit data, let us first recap on explicit data. Types of ex-

plicit data are: ratings (collected by Netflix, IMDB, MovieLens) and like/dis-

like rudimentary indication of user preferences (collected by TiVo). Ratings

typically have a range e.g 1-5 “stars” for Netflix or 0-10 score for IMDB,

with higher values indicating higher interest. All these examples refer to

companies specialized in movie/TV/Series types of entertainment products

and their  datasets  comprise of  highly sparse user/item matrices.  As al-

ready mentioned this is so, because each user typically rates only a small

portion of all the movies. This of course makes drawing generalizations on

new users with few or no ratings challenging (the so called “cold start

problem” ). In contrast, implicit data is normally comprised of dense matri-

ces, examples of types of data they hold include: viewing history, browsing

history, search patterns and even mouse movements. As an example: a

user that has seen many episodes of a series probably likes the series. The

data is often stored in binary fashion and indicates the presence or ab-

sence of an event (e.g. user  u browsed item i). Albeit implicit data is not

scarce, the indirect nature of how it is collected, limits its capabilities to ac-

curately draw generalizations by it alone, hence it is used to boost predic-

tion accuracy and tackle cold starts [1]. 

From technical  perspective  Matrix  Factorization  operates  by  mapping

users and items to a  joint latent factor space with dimensionality  f, in a

way that allows user-item interactions to be modeled from the inner prod-

ucts of the feature vectors in this space [1][5]. From this follows, that each

6 https://wiki.mises.org/wiki/Praxeology
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item i and each user u is described by a vector p,q ∈ ℝf , where p is often

reserved for users and  q for items [1][5]. The elements of vector  q de-

scribe the features of item i, i.e. how well an item scores on a certain fac-

tor - positive or negative. From the other side the elements of p describe

the  interests of a user  u in items scoring high on the respective factors,

again, they can indicate positive or negative correlation. Generating rec-

ommendations is done by taking the dot product between qi
T pu, the result

captures the extent of the correlation between user u's interests in item i's

properties. This approximation or prediction tries to mimic a rating for the

particular item, as if it has been rated to by the user him/herself. The pre-

dicted rating takes the form of: 

r̂ui=qi
T pu

Equation 2.6: Prediction by feature

vectors

 and is often used for generating recommendations (by picking the ones

with  the  highest  score)  and  measuring the  accuracy  of  the  used

algorithm(s)  by  comparing  the  predicted  ratings  against  the  real  ones

(more on that follows). The predictions can also be fed to other Recom-

mender Systems algorithms in order to boost the overall performance of

the combined system [49][50][51]. This is generally done by chaining an

ensemble of factorization algorithms [49][50][51] or in some cases in a

synchronous matter. As it can be noted (seen in Equation 2.6) this is not a

costly operation. The  difficulties arise from inferring the feature vectors

themselves. Only after the costly inference of the vectors is done, one can

proceed and estimate a rating via eq. 2.6.

Feature factor inference is done in a similar fashion related to Singular

Value Decomposition or SVD for short. SVD is a commonly used technique

for feature inference in information retrieval [1][5], but in its pure form it

can not operate in highly sparse datasets, which is the case in the condi-

tions  of  explicit  feedback  systems.  In  other  words  since  each  user  has

rated only a small portion of the overall items, conventional SVD can not

factorize the user-item matrix, as its behavior is undefined in the presence
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of missing values. To further complicate the matter,  selecting naive ap-

proach for the feature vector inference often leads to overfitting. 

Overcoming the sparseness problem in early systems was done by im-

putation [1][5]. As Koren already noted in [1][5] using imputation is im-

practical as it drastically increases the size of dataset, this penalizes the

performance significantly [1]. Further imprecise imputation can warp the

data and lead to misinterpretations [1][5].

With imputation rendered impractical, additional research has been di-

rected  into  the  development  of  customized  algorithms  that  factor  the

sparse matrix  directly  [1][5].  To deal  with the omnipresent problem of

overfitting, L2 regularization technique was incorporated into the factoriza-

tion algorithms. With that in mind a typical [1][5] factorization approach

tries to minimize the regularized squared error on the dataset (the existing

ratings), thus inferring the features of the user and item vectors p and q:

min
q*, p*

= ∑
(u ,i)∈K

(rui −qi
T pu)

2
+λ(‖qi‖

2
+‖pu‖

2
)

Equation 2.7: Optimization problem of a

Regularized Factorization Model

The equation follows Koren's notation as used in [1]. Here, κ represents the

set of the user/item (u,i) pairs for which the rating ru,i is known. Inferring is

done by modeling the vectors  on the existing ratings,  while  combating

overfitting by regularizing the model parameters in order to attain best

possible generalizations, suitable for high quality predictions for the unob-

served ratings. In short: this is done by penalizing high-scoring features so

that low-scoring ones do not get overshadowed and their (vital) informa-

tion lost. The regularization parameter λ is arbitrarily chosen or can be de-

termined by cross-validation.

2.3.1 Global Factors

Before we begin with the learning algorithms themselves, perhaps this is a

good spot to shed some light on the fact that the majority of the ratings

are influenced by effects either on the user or on the item side. These uni-
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lateral effects take the form of biases, which are systematic tendencies of

certain items to be rated higher or lower than others, or certain users giv-

ing higher or lower (biased) ratings than other users [1][5]. As an example

one can take the global average of all movies in the Netflix dataset with

value ~3.6 (in the range of 0-5), then select a movie with a higher than the

average rating - like  "The Godfather", which is rated with 4.4 (0.8 higher

than the median) and assume a generally positive user that rates movies

on average with 0.4 point higher than the other users. This leaves us with

the following baseline estimation: 3.6 + 0.8 + 0.4 = 4.8. This calculation

can be generalized into:

bu , i=μ+ bu +b i

Equation 2.8: Baseline predictors - this Equation follows Koren's notation [1] with μ

being the global average rating and bu and bi being the user and item unilateral biases

which leaves bui as the desired baseline predictor for this user/item pair. 

By using baseline predictors, one tries to remove the aforementioned bi-

ases  from  the  final  model,  thus  eliminating  the  unnecessary  unilateral

noise and leaving the factorization algorithms to capture the vital multilat-

eral user-item interactions. This makes the baseline predictors of great im-

portance for the proper initialization of the factorization algorithms and is

typically done at the beginning of the learning process. Or to sum it up:

one tries to capture how much actually does a user like or dislike a particu-

lar  item  and is  not  influenced by his/her  own rating inclinations or  the

item's tendencies to be over/under-rated, which leaves purified data to be

fed to the next step of the learning process - factorization, this in result

shall  give better prediction accuracy. By integrating the global biases to

the factorization model one infers the following Equation [1]

r̂ui =μ+bi +bu +q i
T pu

Equation 2.9: The components of the integrated prediction formula, where both

unilateral and bilateral biases are taken into account.

After the biases are integrated, the inference process can be accomplished

by minimizing the squared error function for all types of parameters:
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min
q*, p*, b*

= ∑
(u ,i)∈K

(rui −μ−bi−bu − pu
T qi)

2
+λ(‖pu‖

2
+‖qi‖

2
+bu

2
+bi

2
)

Equation 2.10: The objective function of the model, integrating both unilateral and

bilateral interactions (also called global biases or factors). It serves as a basis for

evaluation of the inferred parameters, which are learned via either SGD or the ALS

algorithms. Note the regularization parameter λ used to counter overfitting, which is

selected apriori.

As finishing thoughts on biases one can note, that Koren et. al. [1][9][5]

further recognized other types of so called first  order  (unilateral) interac-

tions. For an example in his paper - "Collaborative Filtering with Temporal

Dynamics" [36] he proposes various ways of dealing with  temporal phe-

nomena, which capture the alteration of the rating tendencies of the users

and the fluctuations of popularity of the items over time. To illustrate, let

us take movies with Christmas theme are rated higher and are more rele-

vant around Christmas. Also users tend change their  tastes slowly over

time, or accounts get handed over. 

Temporal interactions are not supported by the framework accompa-

nying this work, this is in order to stay in line with the idea of keeping the

experimental setup more general, because not all datasets may provide

this kind of information, therefore the theoretical basis for calculating time

related coefficients has been left outside of the scope of this work. For

more information on temporal interactions please refer to the aforemen-

tioned work - [36]. There is, however, an additional source of information

that is present in all datasets and which is  is described in the next chapter.

2.3.2 Implicit input sources

The infamous “cold start” problem resulting from the fact that a large pro-

portion of the users have rated only a small subset of the items leads to in-

accurate conclusions about their preferences [1]. These types of conditions

are called sparse and prevail in Recommender system datasets where the

number of items is large enough so that the majority of the users are not

able to rate them all or to a higher degree. This inherent property of these

voluntary input datasets is most proficient at the beginning – hence its

name – the “cold start” problem. To alleviate this, additional (to the gen-
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eral factorization) measures have to be taken. One intuitive way of tackling

missing  information  is  by  introducing  new,  implicit input  (information)

sources. As the name applies this is done in a fashion that circumvents the

user’s eagerness to provide additional data and can incorporate various

metrics like browsing/view history and existing purchases (with and with-

out rating!). This work discusses implicit feedback in the fashion of Koren

et. al. in [1] and Paterek in [7]. Technically the additional sources represent

normalized7 (Koren) or weighted8 (Paterek), dense, binary linear models [7]

which are directly incorporated into the larger model. These include data

about past “views“ (ratings) in binary format i.e. 1 for viewed/rated (imply-

ing interest) and 0 otherwise (implying  no interest). The addition of the bi-

nary models has also been shown to have the same positive effect of en-

hancing general accuracy also for other, than the discussed in this work,

types of factorization algorithms [5][33]. This boosting of prediction accu-

racy is also true when there is no implicit feedback and one has only the

explicit ratings, as shown in [nhood] Koren has found that, making the ad-

dition of a new factor set for “shown explicit and implicit interest”  is bene-

ficial for both cases – when there  is implicit feedback and when there  is

not. To illustrate how this works, let us denote N(u) as a set which contains

all items with implicit input for user u, these are the "1"s of the dense bi-

nary model  discussed above,  the "0"s are all  the other items. We then

store the implicitly gathered preferences in a new set of item factors, fol-

lowing Koren [1] and Paterek's [7] ideas. In them an item is associated with

xi ∈ ℝf , and for a user that showed interest for the items in N(u), one gets

the following characterization vector in non-normalized form [4][5]:  

  

   Finally, by integrating the implicit feedback into the prediction formula,

one gets:

7 Normalized binary additional input model [koren]: |N (u)|−0.5 ∑
i∈N(u)

x i

8 Weighted binary additional input model [paterek]: m j+e i∗∑
j2∈J (i)

w j 2 here ev-

erything is the same as in the Normalized model except the addition of the con-

stant mj  which is the mean rating of the movie j.
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r̂ui=μ−bi−bu−q i
T [ pu+|N (u)|

−
1
2 ∑

i∈N (u)

xi ]
Equation 2.11: The integrated prediction formula, where additional implicit

input sources are taken into account by the summation of xi.

2.3.3 Additional explicit input sources

Although explicit feedback is not used in the practical implementation in

the accompanying  framework, for the sake of completeness it will be in-

troduced here as it takes a part in various other approaches for matrix fac-

torization [1]. Before we begin with the introduction  of the explicit input

sources, one has to note that at this spot it is fairly easy to add various

kinds of additional input sources in the same fashion as the implicit input

sources from the previous chapter. Examples for explicit feedback can be

comprised of various distinguishing characteristics such as: temporal data

(mentioned in chapter 2.3.1), which can be used as an example to mea-

sure the up-to-dateness of the data a.k.a. older ratings have lesser influ-

ence; or arbitrary user attributes such as: age, gender, geographic location

or other demographic statistics. Again caution should be taken as such in-

formation may be sensitive and its usage may be unwanted for specific re-

gions, platforms or even individual users. This creates additional require-

ments for the factorization algorithms in the sense that: 

1. flexibility - they shall be able to incorporate such input sources (if

they are available and usage is permitted) in a fashion that does not

require heavy modification of the existing parts of the factorization

models 

2. robustness - they shall be able to work in a stable fashion with or

without additional explicit  input sources or in other words - these

sources shall only add to the accuracy of the predictions, not com-

prise the bulk of it

26



2. Theoretical Overview

Fortunately the approach introduced in the previous chapters complies to

both of these requirements, by adding additional explicit input to the Equa-

tion 2.11 one gets:  

r̂ui=μ−bi−bu−q i
T [ pu+|N (u)|

−
1
2 ∑

i∈N (u)

xi+ ∑
a∈A(u)

y a]
Equation 2.12: The integrated prediction formula, where additional explicit input

sources are taken into account by the summation of ya, here ya represents an individual

(per user) attribute vector that stores the various user attributes.

Note, that the data format must be adjusted accordingly, as the binary for-

mat from the previous chapter can prove to be insufficient or incompatible

for capturing the depth of the new data encoded in ya. Finally we can de-

rive the full  objective function including both explicit  and implicit  input

data:

min
q*, p*, b*

= ∑
(u ,i)∈K (rui −μ−bi−bu −q i

T [ pu+|N (u)|
−

1
2 ∑

i∈N (u )

x i+ ∑
a∈A(u )

y a])
2

+λ (‖q i‖
2
+‖pu‖

2
+ ∑

i∈N(u)

‖xi‖
2
+ ∑

a∈ A(u)

‖y a‖
2
+bu

2
+bi

2

)
Equation 2.13: The integrated objective formula, where additional explicit input

sources are taken into account. Note that the terms xi and ya are also regularized.

2.3.4 Inference via Stochastic Gradient Descent

One of the two algorithms implemented in the course of this thesis and a

part of the accompanying framework is the widely known, basic, learning

(inferring) algorithm – Stochastic Gradient Descent. It was selected follow-

ing the steps of the various teams that participated in the Netflix9 chal-

lenge.  This  method  was  firstly  introduced  by  Simon  Funk10 and  later

adopted and extended by the other participants [1][7].  Its  main advan-

tages include:  ease of implementation, customizability (making extended

versions  like:  e.g.  incorporating  additional  input  sources),  fast  running

times  and  low memory footprint. As disadvantages one can identify: the

9 https://www.netflixprize.com/
10 S. Funk, “Netflix Update: Try This at Home,” Dec. 2006; http://sifter.org/~simon/

journal/20061211.html.
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need of tuning the different learning parameters and the need of a coping

mechanism against overfitting (typically this is done via regularization). Ta-

ble 8 summarizes the advantages and disadvantages of Stochastic Gradi-

ent Descent:

Advantages Disadvantages

Ease of implementation: this al-

gorithm is among the easiest to un-

derstand and implement, it  is  also

widely used and studied at different

learning  institutions,  hence  it  is

comprehensively  covered  in  litera-

ture and has a broad base of exam-

ples online.

Fine  tuning  of  learning  parameters:

SGD needs properly tuned: number of fac-

tors, iteration count and step size. While

the former two parameters are common in

various  learning algorithms,  the  latter  is

key for the quality of the results. If one

chooses a large value for the step, the al-

gorithm will converge faster, but will be in-

accurate, choosing a small value may lead

to  poor  running  to  times  or  no  conver-

gence at all.

Customizability: one  can  modify

and  adapt  the  inference  algorithm

to  suit  one’s  needs  and  current

problem  definition,  thus  inferring

various factors which may be a part

of a custom learning algorithm.

Extendability: one  can  make ex-

tended versions of existing learning

algorithms by inferring parameters

from additional  input  sources  like:

time of rating, browse/purchase his-

tory  and  other  forms  of  implicit

feedback.

Coping  mechanism  for  overfitting: a

mechanism has to be chosen and adapted.

Typically [1] L2  regularization [48] is cho-

sen. Various contenders [1][7] of the Net-

flix challenge have found L2 regularization

to be working best for the Netflix dataset,

implying that  the sample size grows lin-

early in the number of irrelevant features

[48].  Further  the  regularization  parame-

ters must be tuned, this can be problem-

atic for users with large variance (i.e. rat-

ing  either  very  high  or  very  low)  since

they  will  need  more  regularization  than

users  that  rate  with  smaller  variance

(where  conclusions  are  more  easily

drawn).

Fast running times low memory

footprint: run time grows  in linear

fashion with the number of parame-

ters and learning iterations/epochs.

Memory  footprint  also  grows  lin-

early with the number of parame-

ters  since  the  algorithm  does  not

need to store additional data in or-

der to run.

Tab. 8:  Advantages and disadvantages of SGD
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At its core Stochastic Gradient Descent tries to minimize the error be-

tween the prediction rui and the actual rating, this is for all the factors in

the factor vectors:

eui=
def

r̂ui−q i
T pu

Equation 2.14: Basic calculation of the error (difference) between the predicted value

and the actual rating value from the training set.

But is most often used to infer the whole model from Equation 2.10, in-

cluding global biases and also for inferring the implicit/explicit data from

Equation 2.13.

Having the error in hand, the algorithm adjusts the parameter values

with a degree γ (learning factor) in the opposite direction of the gradient of

the error [1]:

pu← pu+γ .(eui .qi−λ . pu)

q i←qi+γ .(eui . pu−λ .q i)

Equation 2.15: Adjusting the values of the feature vectors by a factor of ɣ in direction

opposite to the gradient of the error (“gradient descent”). Further prevention for

overfitting is being governed by the regularization parameter λ.

For the global factors the process is similar and it is beneficial if they are

regularized as well:

bu←bu+γ .(eui−λ .bu)

bi←bi+γ .(eui−λ .b i)

Equation 2.16: Adjusting the values of the global factors in the same fashion as for the

feature vectors in Equation 2.15. It is to be noted that the regularization parameter λ

can differ from the one in Equation 2.15 if needed, here for simplicity it is the same.

For a full-blown listing of all of the important variables from a complete

run of 10 iterations on a very simple toy dataset and without any additional

“weight” in the form of global factors or implicit/explicit data, just pure in-

ference via Stochastic Gradient Descent, see: Appendix I. For discussion of
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performance, see: Chapters  5 and  6. For potential improvements and fu-

ture work, see Chapter 6.

2.3.5 Inference via Alternating Least Squares

At the beginning both qi and pu are unknown in Eq. 2.7, which represents

an non-convex problem [1]. By initializing them in the fashion of SGD one

can convert this problem to a quadratic one which is optimally solvable [1]

[2]. A common way of doing this is to: oscillate between fixing one side

(e.g. q) and computing each value of p via the solution of a least squares

problem, and then doing the same for q. This switching and calculating is

repeated until convergence [1][2]. Since the basic implementation of an

Alternating Least Squares method requires f 3 of running time [3] (where f

is the dimension of the feature vectors p and q), various techniques have

been proposed for overcoming this problem. Some of them include repre-

senting the items as “bags of users” [50][51] which reduces the complex-

ity to f  2 which still won’t be efficient if there are a lot of items. Thus I have

stopped myself at an implementation that utilizes a form of dynamic pro-

gramming11 technique [3] (basically sacrificing memory for CPU time) that

also incorporates various mathematical  optimizations in order to reduce

the run time to a linear time [12]. Table 9 summarizes the advantages and

disadvantages of the ALS algorithm:

Advantages Disadvantages

No need  of  learning  factor  hy-

perparameter: ALS fixes one entry

in a feature vector at a time, then

optimizes until  convergence, so no

need  of  explicit  learning  factor  is

necessary.

Basic version of the algorithm runs in

f  3: an inherent property of the algorithm

is that in its basic form it is very slow. So

a version that avoids this is needed.

Parallelization:  ALS  works  by

computing each qi independently of

the  other  item  factors  and  then

computes each  pu independently of

the  other  user  factors.  This  opens

Coping  mechanism  for  overfitting: a

mechanism has to be chosen and adapted.

Typically L2  regularization [48] is chosen.

Various  contenders  [1][7]  of  the  Netflix

challenge have found  L2 regularization to

11 https://www.geeksforgeeks.org/dynamic-programming/
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an opportunity  to  massively paral-

lelize the algorithm [1][44].

be  working  best  for  the  Netflix  dataset,

implying that  the sample size grows lin-

early in the number of irrelevant features

[48].  Further  the  regularization  parame-

ters must be tuned, this can be problem-

atic for users with large variance (i.e. rat-

ing  either  very  high  or  very  low)  since

they  will  need  more  regularization  than

users  that  rate  with  smaller  variance

(where  conclusions  are  more  easily

drawn).

Extendability: one  can  make ex-

tended versions of existing learning

algorithms by inferring parameters

from additional  input  sources  like:

time of rating, browse/purchase his-

tory and other forms of implicit/ex-

plicit feedback.

Handling  of  implicit  data: since

this type of data is not sparse the

means of  operation  (iterating  over

all  training  cases  and  calculating

gradients) of the other algorithm -

SGD - is inefficient (where there are

a lot of training cases). ALS is profi-

cient at handling this type of cases

[1][9]

Complexity  of  implementation: (this

one  is  somewhat  subjective)  the  imple-

mentation of  the faster versions of ALS

are more costly in terms of manpower. 

Tab. 9:  Advantages and disadvantages of  ALS

To combat the exponential runtime cost Hu et al. in [12] describes a

solution which utilizes a ridge regression and an uniform weight to all miss-

ing ratings in the dataset. This however is dependant on matrix inversion,

which on itself is a costly operation relying again on optimizing p or q as a

whole [12]. To combat this the team used the derivative of the objective

function, which optimizes p and q in parallel but is dependent on continu-

ous recalculation of the weights mentioned above. This last problem was

solved via dynamic programming by storing the last state of the weights

and reformulating the equations for computing p and q (see: Eq. 2.18 and

2.19). The whole algorithm is described in Eq. 2.17 and has a linear [12]

runtime, traded for slightly worse accuracy and some memory cost:
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Equation 2.17: The linear time ALS algorithm 
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User estimation in Eq. 2.17 :

Equation 2.18: Estimation of the user factors.

Item estimation in Eq. 2.17 :

Equation 2.19: Estimation of the item factors.

Where c is:

Equation 2.20: “popularity” estimation.
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3 Datasets and Framework

This chapter introduces the datasets used in the experimental analysis,

this includes basic statistics and description. Then a brief introduction of

the accompanying practical implementation (framework) finishes the chap-

ter.

3.1 Datasets

3.1.1 The Netflix Dataset x 2

The Netflix (NF) dataset from the mentioned in the previous chapters

competition contains 100 480 507 ratings in the form of r  = {iduser, iditem,

rui} and also timestamps when the rating was issued, these are not used in

the experimental analysis and are thus not a part of the companion frame-

work. These are however relevant in other works [36]. The ratings stem

from 480 189 users and 17 770 movies and fill a total of roughly 1% of the

rating matrix.  The ratings are given on a 1 to 5 whole-number scale. On

the Netflix platform they are called stars and higher number means that

the customer has liked the movie, while the opposite means distaste. The

data is provided as a standard Train-Test pair of sub-datasets. The test set

contains 1 408 395 ratings and is called the Probe set, but this work uti-

lizes the term “Test set” and it shall be called like this further on. The Test

set contains newer [38] and fewer [49][23] ratings for each user than the

Train and their selection process is undisclosed so that a potential model

can use this as an advantage in the competition. This causes two major is-

sues:

1. Ratings explicitly selected to be “hard” may benefit the commercial

application (luring and keeping new customers) of a potential model

that can beat the “hard” challenge, but for a general overview and

evaluation of the performance of a particular model it  may prove
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misleading since it does not show the more average or general per-

formance which can than be compared to similar datasets.

2. The unknown selection criteria make mimicking this Test dataset in

other datasets challenging and may impair the objectiveness of a

comparison between datasets

With these issues in mind a second, more “generic” Test set was se-

lected from the NF dataset. This set is based on a method which selects in-

dices (in the dataset) from a Gaussian uniform distribution and is also used

for selecting the Test sets from the other datasets in this framework. To dis-

tinguish between them the old, original Test set will  be referred as “NF-

Original” and the new one “NF-Uniform”. Both of these sets are used in the

experimental part of this work and since they share the same proto-set,

they have the same statistics:

Datasets: NF-Original and NF-Uniform

Movies with >= 1000 ratings: 7127 Total ratings: 100480507

Movies with >= 500 ratings: 2163 Train ratings: 98931315

Movies with >= 250 ratings: 2749 Test ratings: 1408789

Movies with >= 100 ratings: 4756

Movies with >= 50 ratings: 918

Movies with >= 10 ratings: 55

Movies with no ratings: 2

Tab. 10:  Statistics of the Netflix dataset

3.1.2 The MovieLens Dataset

Scraped in 2015 this dataset is far newer than the one from the Netflix

challenge which is from 2006, but is also significantly smaller at 21 622

187 ratings. These are split between 30 106 movies and were made by

234934. It is to be noted as the internet becomes more and more ubiqui-

tous, more content is being delivered trough it,  this results in a greater

number of movies at 30 106 compared to NF’s 17770 albeit the dataset

having roughly 20% of the total size. As with the NF dataset, MovieLens or

ML for short utilizes the same 5 “star” scale, but this time with half-star in-

crements, range: 0.5 – 5.0. Again it comes with additional data such as
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timestamps and tag applications which are not utilized in the experimental

part of this work. Some facts about the dataset:

Dataset: MovieLens

Movies with >= 1000 ratings: 1974 Total ratings: 21622187

Movies with >= 500 ratings: 5738 Train ratings: 21315151

Movies with >= 250 ratings: 13223 Test ratings: 307036

Movies with >= 100 ratings: 32948

Movies with >= 50 ratings: 33573

Movies with >= 10 ratings: 117063

Movies with >= 1 ratings: 30415

Tab. 11:  Statistics of the MovieLens dataset

3.1.3 The IMDB Dataset

The IMDB dataset is the second largest of the three by being slightly larger

than the ML dataset with 25 947 627 ratings compared to the ~21m for

the latter. The interesting here is the rating scale, which is different from

the previous two and it takes the range from 1 – 10 in whole number incre-

ments. This leads to a RMSE value which is twice as large as on the other

two dataset, but this is ok since by just dividing the RMSE by 2 one obtains

results on the same scale as the other datasets. This is also the sparsest

dataset since it tries to be the “main” movie database on the internet (and

thus the world) and contains a lot of “indie” or unknown entries. Again

some statistics:

Dataset: IMDB

Movies with >= 1000 ratings: 4585 Total ratings: 25947627

Movies with >= 500 ratings: 2760 Train ratings: 25583828

Movies with >= 250 ratings: 4346 Test ratings: 363799

Movies with >= 100 ratings: 11779

Movies with >= 50 ratings: 16121

Movies with >= 10 ratings: 80379

Tab. 12:  Statistics of the IMDB dataset
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3.2 Framework

As a part of a practical implementation for this work, the two factoriza-

tion algorithms described in Chapters  2.3.4 and  2.3.5 were implemented

as a means to solve the problem described in Equation 2.10 as part of the

prediction model from Chapter 2.3. The inference part, however, is only a

part of the functionality that the framework must be capable of in order to

achieve its goal. The framework must also:

1. convert data from the different formats of the datasets to the one

used internally: r = {iduser, iditem, rui}

2. generate a Test subset based on a common method for all datasets

3. be reasonably fast on loading and calculating data

4. have a small  memory footprint so that event the largest datasets

can fit

5. be numerically stable, since some parameters of the algorithms can

get really small

With these criteria in mind, I have stopped at C++11 as a technology for

developing my own factorization framework. The reasoning behind is, that

it covers all of the above requirements and not at last place since I am fa-

miliar  with  the  language.  No  external  libraries  were  needed  since  the

newer versions of the language support all the required functionalities. The

used compiler was GCC12 7.4.0 under a 64 bit Linux environment.

4 Experimental Setup

This chapter first briefly introduces the test system (hardware part) used

for factorizing the datasets. Then it follows with the definition of the Root

Mean Squared Error used for measuring the performance of the predictions

of the factorization model. After that the main part of this chapter begins

with fine tuning the parameters of the factorization algorithms and then

the results from all of the datasets. Along the results various other data

12 https://gcc.gnu.org/
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deemed worth the attention by the author is also presented. All the results

from the experiments are in plot or table format with a short description

and discussion.

4.1 Hardware Setup

The experimental system involved is my own personal computer which has

a 4.2 GHz Octa-core processor and 16 GB RAM (8GB after a module failed

during factorizing), solid state disks and improved cooling capabilities in

order to handle the sometimes week long marathons of calculating results

and experimenting. At its full performance the system could handle run-

ning  the  ALS  algorithm  (more  resource  intensive)  with  the  NF  dataset

(largest) with 100 factorization parameters (dimensions) two times in par-

allel. Of course smaller datasets could be fitted more than twice simultane-

ously into the main memory and then the system profited from the higher

core count of the processor, enabling to run up to 6 factorizations at once.

Although measuring running time isn’t the main objective of this chapter,

they are sometimes given for the sake of clarity.

4.2 Measuring Accuracy via Root Mean Squared Error

The accuracy of the model is measured via a method called  Root Mean

Squared Error  or RMSE for short:

RMSETest=√ ∑
(u ,i)∈TestSet

(rui−r̂ui)
2
/|TestSet|

Equation 4.1: Calculation of RMSE for a Test dataset, for training it is

equivalent.

This method was chosen by the organizers of the Netflix challenge and has

been the de facto standard way of measuring the performance of recom-

mender systems [large list refs]. As the name suggests the first step is to

square the difference (error) between the prediction and the actual data,

this is done in order to:
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1. Always get a positive value for the difference and avoiding errors

with opposite signs canceling each other out (we are interested if

there is a difference and how big it is, not its sign). 

2. Add greater emphasis to values further from the target in compari-

son to let’s  say taking the absolute  value.  Thus predictions with

poor performance are emphasized more

The “root” at the end (not in the name) is to remove the effects of the

squaring. “Mean” means average over all elements of a data set (training

or test). The RMSE for a Train set is typically always (much) lower than the

one for a Test set, since the Train set that is used to “train” the model is

larger and more complete than the Test set which is used to test the model

by calculating the RMSE of the difference between the predicted and actual

values. Lower RMSE is better.

4.3 Fine-tuning of Factorization Hyperparameters

Each  factorization  algorithm  in  this  work  depends  on  one  or  more

“global” (for the algorithm, hence the name “hyper”) parameters to com-

bat some deficiencies of the factorization method or in the data itself, see

Chapters 2.3.4 and 2.3.5. Thus proper selection of the parameters is cru-

cial for the end result. Selection can be done via a parameter sweep on the

parameter space, which is simple but can be very costly with lots of pa-

rameters, since the computation time grows exponentially with each pa-

rameter or by more complex means like cross-validation.

4.3.1 Fine-tuning SGD

Stochastic Gradient Descent as the more simple of the two algorithms

depends on two parameters  γ  and  λ, without which it can not work. The

first one -  γ or gamma is the “learning” parameter and it represents the

rate of factor adjustment opposite to the gradient of the error (hence the

name of the algorithm). In other words this factor specifies the size of the

step of error reduction for each factor per iteration, which can be described

as “reverse” learning. 
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Fig. 6: Comparison of the results for various values for the learning step – ɣ.

 These are aggregates of all of the datasets.

Discussion: choosing a too large learning parameter (γ) leads to a very fast

overfitting (over-learning) and possible falling into the local minimum on

the Train set, accompanied first by a fast and short-lived reduction of the

Test RMSE, followed by a steep increase. On the other hand the very small

learning parameter seems to deliver goods results after some time, but

this is misleading. The best result is achieved by the brown line (represent-

ing the Train RMSE of the “medium” γ ) at epoch 21-22, at this point it has

the same Test RMSE as the Train RMSE of the small  γ,  which indicates no

convergence. One way of spotting bad values for parameters is to look at

the distribution of their results:
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Fig. 7: Distributions of the RMSE values for the Test sets with different values for  ɣ.

In this dotplot one can see the "footprint" of the RMSE errors that the algo-

rithm leaves with different values for γ. The first one (large γ = 0.02) expe-

riences a "hole"  in  the upper half  (worse RMSE) of  its  distribution,  this

means that with that  γ the algorithm jumped in one step from the lower

end of the distribution straight into the middle. This "jumping" alone can

be taken as a sign for a too high γ. After that the values are evenly distrib-

uted and spread out with slight edge for the upper half which contains the

higher (worse) RMSE values, hence its bad performance. This can mean,

that after "falling" into the local minimum, the algorithm stayed there since

its γ was too strong. The right one (γ = 0.005) shows also a bizzare skew-

ing of the distribution with very long "bad" RMSE tail (indicating slow learn-

ing) in the upper half. And after finally the median is reached, the algo-

rithm continues to suffer from its slow learning pace and one can find the

majority of the "good" (low RMSE - lower end) values tightly packed in a

"dead-end street" achieving not much. The one in the middle is the one

that I recommend to look out for, its distribution is slightly skewed towards
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the lower (better) RMSE end and the majority of its values are around the

median with no major holes or extreme skewing (smooth line).

The second parameter that SGD needs is the regularization parameter – λ.

This parameter controls the intensity of regularization that is applied. Since

we are working in very sparse conditions – let’s say with a “higher” factor

dimension of 50 per user we will have more factors that describe the rat-

ings of single user, than the average user has ratings, thus overfitting is an

inherent property of these type of datasets and one must select λ accord-

ingly:

Fig. 8: Comparison of the results of various values for the regularization parameter 

– λ for the SGD algorithm . These are aggregates of all of the datasets.

This result is similar to the one for γ but with a larger/smaller spread be-

tween the Train and Test RMSE for the lower/higher λ values. The lines are

not that edgy as in Fig. 6, which leaves one to speculate that a bad γ can

be somewhat restrained by a good  λ.  For the low value λ case the huge

discrepancy  between  Train  and  Test  RMSE  combined  with  the  ultra-low

score for Train RMSE one can see a classical example of overfitting. On the
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other end with a high λ one can see that both Train and Test are very close

together which indicates slow learning on Train, but at least this doesn’t

send Test in a wrong direction, also the spike at around epoch 18-20 can in-

dicate a missed local minimum.

4.3.2 Fine-tuning ALS

ALS as the more sophisticated algorithm requires only one hyperparameter

- the regularization parameter – λ – which plays the same role as in SGD.

Also the motivation is the same since both algorithms are working in highly

sparse conditions. Actually since ALS has better convergence than SGD it

benefits from regularization even higher than SGD:

Fig. 9: Comparison of the results of various values for the regularization parameter 

– λ for the ALS algorithm. These are aggregates of all of the datasets.

Discussion  of  Fig.  9:  this  result  is  to  be  expected  –  low  regularization

means a high spread between Train and Test RMSE (the two green lines) –

classical case for overfitting. Interesting is the good performance of the
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high λ value, which can be explained with sparseness and serves as a re-

minder of how important regularization parameters are.

With the proper parameters selected one can proceed with the ac-

tual experimental runs where each of the datasets is factorized individu-

ally.

4.4 Experimental Approach

All datasets:  Netflix-original,  Netflix-uniform,  MovieLens  and  IMDB  (for

more info, see Chapter 3.1) are tested under the same conditions with the

goal to ensure a more realistic comparison of the results, these conditions

include:

SGD ALS Epochs Datasets Hyperparameters

small factorization size f = 10 yes yes 100 all fixed

medium factorization size f = 20 yes yes 100 all fixed

large factorization size f = 50 yes yes 100 all fixed

Tab. 13:  Experimental modes

Epochs are fixed at 100 which is enough for convergence even for a model

with a large factor space on the bigger Netflix datasets. All the algorithms

hyperparameters are the  same for all  datasets and are selected by the

means of “best average”. This is in order to ensure equal conditions for the

combined evaluation of the different models and not to measure the best

possible performance of each model. How this is achieved is shown in the

previous chapter (4.3.1 and 4.3.2). Thus we get: for each of the 4 datasets

we run the 2 algorithms 3 times for a total of (4*2*3) = 24 experiments.

The results are represented on 8 diagrams containing the results for the 3

different factorization sizes for each algorithm and dataset.
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4.5 Experimental Results 

4.5.1 IMDB – SGD

Fig. 10: SGD running on the IMDB dataset for 100 epochs.

Analysis: Due to its extreme sparsity the IMDB dataset is even more prone

to overfitting, which is a possible explanation for why the model with the

most parameters produced slightly worse results on the Test set, despite

the good Train RMSE. A possible remedy is to increase the regularization

for the model with 50 factors. Note that the RMSE here is twice as big as in

the other datasets, this is so because the range of the input data is twice

as large:  1-10 compared to 1-5 for  the other  datasets.  By dividing the

RMSE by 2 one can obtain a result that can be compared directly to the

other datasets.

Train best RMSE Test best RMSE

small factorization size f = 10 1.42014 1.5416

medium factorization size f = 20 1.34883 1.52498

large factorization size f = 50 1.2434 1.52725

Tab. 14: Best RMSE: SGD - IMDB
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4.5.2 IMDB – ALS

Fig. 11: ALS running on the IMDB dataset for 100 epochs.

Analysis: this time a somewhat more predictable results by the more accu-

rate ALS algorithm. Again the best result is delivered by the medium sized

factor model, but with the large model slightly behind. As with the SGD

case for this dataset, a possible remedy for the under-performing large fac-

tor model is to increase the regularization for this model.

Train best RMSE Test best RMSE

small factorization size f = 10 1.28927 1.42175

medium factorization size f = 20 1.21773 1.40865

large factorization size f = 50 1.09274 1.4158

Tab. 15: Best RMSE: ALS – IMDB
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4.5.3 MovieLens – SGD

Fig. 12: SGD running on the MovieLens dataset for 100 epochs.

Analysis: here we see a continuation of the trend from the IMDB dataset,

where the large model quickly reaches the local minimum, only to overfit

afterwards.  Also interesting is  how the smallest  model  is  being able  to

overtake the other two at the later stages, but this is still after its best re-

sult has been reached.

Train best RMSE Test best RMSE

small factorization size f = 10 0.752152 0.839865

medium factorization size f = 20 0.697598 0.835004

large factorization size f = 50 0.607969 0.839264

Tab. 16: Best RMSE: SGD – MovieLens
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4.5.4 MovieLens – ALS

Fig. 13: ALS running on the MovieLens dataset for 100 epochs.

Analysis: Here a surprisingly poor result by the bigger model is visible, con-

firming the emerging trend that a bigger model is not necessarily better in

sparse conditions.

Train best RMSE Test best RMSE

small factorization size f = 10 0.74576 0.827475

medium factorization size f = 20 0.693363 0.824946

large factorization size f = 50 0.601685 0.836909

Tab. 17: Best RMSE: ALS – MovieLens
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4.5.5 Netflix original – SGD

Fig. 14: SGD running on the original Netflix dataset for 100 epochs.

Train best RMSE Test best RMSE

small factorization size f = 10 0.801034 0.93562

medium factorization size f = 20 0.763003 0.932218

large factorization size f = 50 0.705507 0.933851

Tab. 18: Best RMSE: ALS – Netflix original

Analysis: The poor results on the original Netflix Test set serve as a proof of

the difficult selection of Test examples in the Netflix challenge and should

not be compared to the other results in this work. Without the additional

techniques [49][50][51][2][3][5][6][7][9][36][45][23] (and many more) de-

veloped during the Netflix challenge a “generic”  factorization algorithm

offers poor performance against this challenging Test set (which is inspired

by real-world problems that Recommender Systems face e.g. new users,

users sharing accounts etc). As finishing thoughts on the analysis of the
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curves and RMSE values, one can note the initial “good” looking results on

the Training set only to be followed by very poor ones on the Test set, this

suggests that the small  amount of training examples for these (usually)

users is quickly overfitted, only to return poor performance in the Test set

later on. This type of missing information problem can not be just “regular-

ized” away.

4.5.6 Netflix original – ALS

Fig. 15: ALS running on the original Netflix dataset for 100 epochs.

Train best RMSE Test best RMSE

small factorization size f = 10 0.790118 0.929385

medium factorization size f = 20 0.749652 0.934915

large factorization size f = 50 0.675827 0.960924

Tab. 19: Best RMSE: ALS – Netflix original

See: Analysis for: SGD – Netflix original in 4.5.5
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4.5.7 Netflix uniform – SGD

Fig. 16: SGD running on the uniform Netflix dataset for 100 epochs.

Train best RMSE Test best RMSE

small factorization size f = 10 0.801812 0.845378

medium factorization size f = 20 0.7633 0.835507

large factorization size f = 50 0.705125 0.832141

Tab. 20: Best RMSE: SGD – Netflix uniform

Analysis: a different means of Test set selection (random index generated

by a uniform distribution) shows a completely different result than the one

in  4.5.5. Here the evolution of the RMSE looks similar to the other uni-

formly selected Test sets (IMDB and MovieLens). There is however one no-

table difference – for the first time the large factorization model takes the

lead. This is not a surprise since the Netflix dataset is much larger and in-

stead of overfitting via the extra factors, the factorization model utilizes

them accordingly.
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4.5.8 Netflix uniform – ALS

Fig. 17: ALS running on the uniform Netflix dataset for 100 epochs.

Train best RMSE Test best RMSE

small factorization size f = 10 0.790601 0.831562

medium factorization size f = 20 0.749601 0.822821

large factorization size f = 50 0.674888 0.832769

Tab. 21: Best RMSE: ALS – Netflix uniform

Analysis:  Here  the  medium factorization  model  regains  the  first  place,

while the larger one struggles with overfitting. The cause for this may be

the more “fine-grained” learning of ALS which is able to squeeze the most

from the medium sized model by improving SGD’s 0.835507 to 0.822821.

The early overfitting problem of the large model suggests that heavier reg-

ularization may be beneficial for this model only and potentially outper-

form the two smaller ones like in 4.5.7.
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5 Discussion

In this chapter a summarization of the key findings is presented in a struc-

tured fashion. Each of these findings are then discussed and have their

overall implications distilled. It is to be noted however, that the validity of

the implications is localized to the datasets and algorithms (and their spe-

cific implementations) investigated in this thesis.

5.1 Summary of Key Findings

After running the algorithms on the 3 datasets used for evaluation, the

most prominent findings or insights gained from the results of the experi-

ments in Chapter 4.5 are:

1. Both factorization algorithms seem to favor a medium sized factor

space (f = 20) (See: Table 22)

2. The low prediction accuracy of the large (f = 50) factorization model

due to  omnipresent overfitting issues (See: Table 22)

3. The poor performance of both algorithms on the original Netflix Test

set compared to generic (uniform) Test set selected from the Netflix

dataset (See: Table 22)

4. ALS slightly outperforms SGD  (See: Table 22)

Table  22  presents  the  best results  from  all  model  dimensions  on  all

datasets:

Train f = 10 Test f = 10 Train f = 20 Test f = 20 Train f = 50 Test f = 50
SGD IMDB 1.42014 1.5416 1.34883 1.52498 1.2434 1.52725
ALS IMDB 1.28927 1.42175 1.21773 1.40865 1.09274 1.4158
SGD ML 0.752152 0.839865 0.697598 0.835004 0.607969 0.839264
ALS ML 0.74576 0.827475 0.693363 0.824946 0.601685 0.836909
SGD NFO 0.801034 0.93562 0.763003 0.932218 0.705507 0.933851
ALS NFO 0.790118 0.929385 0.749652 0.934915 0.675827 0.960924
SGD NFU 0.801812 0.845378 0.7633 0.835507 0.705125 0.832141
ALS NFU 0.790601 0.831562 0.749601 0.822821 0.674888 0.832769

Tab. 22: Best RMSE of all runs
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5.2 Discussion of the Key Findings

5.2.1 Factor Dimensionality and Regularization

Findings (1) and (2) seem to be connected. For (2) the fault is clearly a too

week regularization parameter, this can be most prominently seen on the

IMDB dataset due to its extreme sparsity. Since the large model has way

more factors than the other two models (2.5 and 5 times respectively) it

has more “space” to “memorize” the learned data. So selecting a “best av-

erage” regularization parameter for all 3 models has proven discriminatory

for the large model since it requires heavier regularization, especially on

smaller datasets. By selecting a “best average” parameter the two smaller

ones are “pulling” (2 against 1) towards a lower factor in the parameter es-

timation calculation. This fits them well since they are not that far apart

from each other (in terms of factor dimensionality) compared to the big

model. Remedy for this problem is to take the best individual parameters

for each model and remove the hyperparameters from the “equal condi-

tions” for comparison.

5.2.2 Difficulty of the Netflix Test dataset

Finding (3) stems from the fact that this is the dataset that caused (not

taking the monetary prize of the Netflix challenge into account) the devel-

opment of  a large number (see:  Bibliography) of  all  kinds of  prediction

models and factorization algorithms. Some of these specialize at finding

additional  sources  of  information  [36][9][2][5][26].  Selection  of  such

sources is described in chapters 2.3.2 “Implicit input sources” and 2.3.3

“Additional explicit input sources”. Others use ensembles of models and al-

gorithms to achieve a lower RMSE [49][50][51]. Neither of these strategies

are however a part of the framework and thus the algorithms can not take

advantage of their benefits. The general performance, however is compa-

rable to other similar implementations before the addition of such improve-

ments [2][5][7]. The root cause for (3) is the nature of the Netflix Test/Vali -

dation sets which include “tough” examples of users/items with very few

ratings (new users/items) or contradictory patterns (user account shared
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by two or more persons with different taste). More on the motivation about

this in Chapter 6. Hence the implication of (3): the results from the Netflix

original – SGD and Netflix original – ALS datasets are not to be compared to

the other results of this work, they serve to compare how the practical im-

plementation  of  this  work  stacks  against  other  implementations  (since

there are lots of results for the original Netflix dataset from various algo-

rithms). As a finishing thought about (3) I want to add a quote from Yehuda

Koren, co-winner of the Netflix prize from his “The BellKor Solution to the

Netflix Grand Prize” paper [49]:

"Another helpful factor was some touch of luck. The

most  prominent  one  is  the  choice  of  the  10%

improvement  goal.  Any  small  deviation  from  this

number, would have made the competition either too

easy or impossibly difficult.."

5.2.3 ALS slightly outperforms SGD

Finding (4): As Table 22 shows, Alternating Least Squares (ALS) emerges as

the slightly better performing algorithm in terms of prediction accuracy.

This comes at the cost of slightly increased memory footprint and slower

run times. Note, that the implemented version runs in linear time, as op-

posed to the much more time consuming basic version of the of the ALS al-

gorithm, which runs in exponential time (f 3).

5.3 Best Result

As to conclude the discussion, the dataset with lowest RMSE achieved

on its Test set is:  IMDB. With a model factorization dimension of:  f = 20

and inferred via the ALS algorithm. It achieves a RMSE of 1.40865 which

scaled down to the range of the other datasets (1-5) (from native 1-10) re-

sults to: 0,704325.
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6 Conclusion

Two algorithms for inferring the factors of a general factorization model for

a Recommender System were introduced, implemented and analyzed and

had their results  compared with the goal of answering a set of Research

Questions which were set in Chapter 1.3 and are listed and answered bel-

low. 

The core concept for the comparison was to find a common ground

of “equal conditions” for measuring the overall competence of a factoriza-

tion model instead of concentrating on boosting single performance crite-

ria, like: small improvements of the prediction accuracy which more often

than not comes at a great cost, like: huge factor dimension or hyper-pa-

rameterization (fine-tuning) of the algorithms for a specific task or dataset.

To achieve this, both factorization algorithms were hyper-parameterized to

their  “best average” (Chapter  4.4) values and were let to always run the

same amount of iterations (epochs) - 100. The only parameter tested in

multiple configurations was the dimension of the factorization, or in other

words the number of factors used for describing a particular user or item.

Since this parameter directly affects both the run time and memory con-

sumption, which on their hand dictate the real world feasibility and quality

(responsiveness/accuracy)  of  a  factorization  model  for  a  Recommender

System. Thus in this work a model that achieves a second best prediction

accuracy (slightly behind the best) is deemed the better one, if in doing so

it needs considerably less factors than the one with the lowest prediction

error. The values chosen for the factorization dimension or “f”  were 10, 20

and 50 representing a small, medium and large models respectively. As it

was found out and discussed in Chapter 5.2.1 choosing a “one-size-fits-all”

parameters can hinder the performance of the algorithms, but it does not

negate their universal applicability for similar tasks if they are initialized

with parameters best fitting for the task or particular dataset. This directly

answers Research Question 1 from Tab. 1: Research Questions and Contri-

butions:

• Is general (works on all datasets) implementation derivable?
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Even with proper parameterization a “generic” factorization model (pure

algorithm only, without additional input sources or ensembling [35] of algo-

rithms) can underperform on real-world inspired Test datasets. This is true

even  if  it  performs  well  on  generic  selections  from  the  same  parent

dataset, see Chapter 5.2.2. Netflix’ motivators for choosing such a dataset

come from a commercial perspective: 

1. offer good recommendations to new users which are in the “critical”

phase – having interest in the service, but not yet loyal customers

2. better handling of “difficult” users (“contradictory rating patterns”)

3. general improvement of prediction quality under sparse conditions

 Commercial success is one of the primary quality measures (and driver

for research in the field) for a Recommender System and the motivators

listed above are not only domain to Netflix. New users for example repre-

sent the cold-start problem which is a problem in almost all Latent Seman-

tic Indexing approaches. Unfortunately however Netflix did not provide the

exact selection criteria for their Test dataset, since it could have been ex-

ploited in the Netflix challenge. This led to the “generic” selection method

for generating Test datasets utilized in this work. With that in mind the

practical implementation of this work proves to have similar performance

compared to the “generic” parts of other implementations i.e. before their

improvement by various means like ensembling [35] or additional  input

sources [1]. This leads to the answer of Research Question 2 from Tab. 1:

Research Questions and Contributions:

• How does the provided practical implementation stack against previ-

ous work?

As finishing thoughts one can note,  that both algorithms achieve

good results on the tested datasets and they further achieve this without

the need of large number of iterations (epochs) or parameters (since even

the small dimensional factorization model has a reasonably good perfor-

mance in all of the results). To sum up: for a good recommendation from a
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typical dataset one doesn’t need an overly complex model, thousands of it-

erations or specialized hardware (all experiment runs were done on a desk-

top PC). This answers Research Question 3 and 4 from  Tab. 1: Research

Questions and Contributions:

• Is an ensemble of factorization algorithms a necessity for achieving

high prediction accuracy?

• How does the selection of factorization algorithms perform on nor-

mal desktop hardware, and how do they fare against each other?

A summary of research questions and their corresponding contributions

can be found in Table 1.

6.1 Future Work

Multiple promising aspects were left out of scope by this work, but the

most immediate ones include:

• Adding additional implicit and explicit input sources to the existing

model and performing analysis of the potential benefits (Chapters

2.3.2 and 2.3.3)

• Adding  adaptive  (hyper-)parameters  for  real-time  adjustments  of

learning rates and regularization rates like: adaptive learning rate

which has a fixed "penalty" coefficient of e.g. 0.9 after each step.

• Removing  the  need  of  hyper-parameters  altogether  by  using  ad-

vanced methods like Markov chain Monte Carlo [29]
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7 Appendices

Appendix I: Example run of Stochastic Gradient Descent

What follows is a 10 iteration run of the algorithm defined in chapter 2.3.4

with no global factors or implicit/explicit data. Learn rate is 0.01, regular-

ization parameter is 0.1. Here the dataset, the last value of each entry is

the rating that the user gave for this item:

Items = {The Notebook (NB), Don Jon (DJ), Rush Hour (RH), Predator (PR)};

Users = {Alice (A), Bob (B), Carl (C)};

Ratings = {(A, NB, 5), (A, DJ, 3), (A, RH, 1), (B, RH, 4), (B, PR, 5), (C, NB, 1),

(C, DJ, 3), (C, RH, 5)} = Training set;

Test set = {(A, DJ, 3), (B, RH, 4), (C, DJ, 3)};

Bellow is a listing of all relevant variables, per iteration, with floating point

precision – 5 digits behind the decimal mark. Since for simplicity both the

user’s and the item’s feature vector is both mapped to the same factor

matrix F, here are the indices of the users and the items:

0 1 2 3 4 5 6

Alice The Notebook Don Jon Rush Hour Bob Predator Carl

Factors: Gaussian, initialization: sigma = 0.1
F[0]: -0.02157 0.06538 -0.05692 0.13727 0.03333 0.04631 0.0063
F[1]: 0.05864 0.1296 -0.10846 0.11342 -0.05712 0.00654 0.16433

u i Fu[0][0] Fi[0][1] Fu[1][0] Fi[1][1] r̂ r̂[1:5] err
0 1 -0.02157 0.06538 0.05864 0.1296 0.00619 1 4

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.06538 0.26153 0.00216 -0.02157 -0.01893
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 0.02157 -0.08626 -0.00654 0.06538 0.06445
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.1296 0.5184 -0.00586 0.05864 0.06377
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.05864 0.23457 -0.01296 0.1296 0.13182
u i Fu[0][0] Fi[0][2] Fu[1][0] Fi[1][2] r̂ r̂[1:5] err
0 2 -0.01893 -0.05692 0.06377 -0.10846 0.07416 1 2

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 0.05692 -0.11383 0.00189 -0.01893 -0.02005
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new
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Fi[0][2] 0.01 0.1 0.01893 -0.03786 0.00569 -0.05692 -0.05724
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 0.10846 -0.21693 -0.00638 0.06377 0.06153
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.06377 0.12753 0.01085 -0.10846 -0.10708
u i Fu[0][0] Fi[0][3] Fu[1][0] Fi[1][3] r̂ r̂[1:5] err
0 3 -0.02005 0.13727 0.06153 0.11342 0.12419 1 0

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.13727 0 0.002 -0.02005 -0.02003
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 0.02005 0 -0.01373 0.13727 0.13714
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.11342 0 -0.00615 0.06153 0.06147
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.06153 0 -0.01134 0.11342 0.11331
u i Fu[0][4] Fi[0][3] Fu[1][4] Fi[1][3] r̂ r̂[1:5] err
4 3 0.03333 0.13714 -0.05712 0.11331 0.0581 1 3

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.13714 0.41141 -0.00333 0.03333 0.03741
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.03333 0.1 -0.01371 0.13714 0.138
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.11331 0.33993 0.00571 -0.05712 -0.05366
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 0.05712 -0.17135 -0.01133 0.11331 0.11148
u i Fu[0][4] Fi[0][5] Fu[1][4] Fi[1][5] r̂ r̂[1:5] err
4 5 0.03741 0.04631 -0.05366 0.00654 0.12138 1 4

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.04631 0.18525 -0.00374 0.03741 0.03923
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][5] 0.01 0.1 -0.03741 0.14966 -0.00463 0.04631 0.04776
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.00654 0.02614 0.00537 -0.05366 -0.05335
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][5] 0.01 0.1 0.05366 -0.21465 -0.00065 0.00654 0.00438
u i Fu[0][6] Fi[0][1] Fu[1][6] Fi[1][1] r̂ r̂[1:5] err
6 1 0.0063 0.06445 0.16433 0.13182 0.19207 1 0

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.06445 0 -0.00063 0.0063 0.0063
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 -0.0063 0 -0.00645 0.06445 0.06439
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.13182 0 -0.01643 0.16433 0.16416
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.16433 0 -0.01318 0.13182 0.13168
u i Fu[0][6] Fi[0][2] Fu[1][6] Fi[1][2] r̂ r̂[1:5] err
6 2 0.0063 -0.05724 0.16416 -0.10708 0.13206 1 2

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 0.05724 -0.11448 -0.00063 0.0063 0.00515
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 -0.0063 0.01259 0.00572 -0.05724 -0.05706
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 0.10708 -0.21416 -0.01642 0.16416 0.16186
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new
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Fi[1][2] 0.01 0.1 -0.16416 0.32833 0.01071 -0.10708 -0.10369
u i Fu[0][6] Fi[0][3] Fu[1][6] Fi[1][3] r̂ r̂[1:5] err
6 3 0.00515 0.138 0.16186 0.11148 0.21875 1 4

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.138 0.552 -0.00051 0.00515 0.01066
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.00515 0.02058 -0.0138 0.138 0.13807
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.11148 0.44593 -0.01619 0.16186 0.16615
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.16186 0.64743 -0.01115 0.11148 0.11785
Factors:

F[0]: -0.02003 0.06439 -0.05706 0.13807 0.03923 0.04776 0.01066
F[1]: 0.06147 0.13168 -0.10369 0.11785 -0.05335 0.00438 0.16615

Epoch=  0 Train RMSE= 2.85044 Test RMSE= 2.38048
u i Fu[0][0] Fi[0][1] Fu[1][0] Fi[1][1] r̂ r̂[1:5] err
0 1 -0.02003 0.06439 0.06147 0.13168 0.29667 1 4

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.06439 0.25756 0.002 -0.02003 -0.01743
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 0.02003 -0.08011 -0.00644 0.06439 0.06352
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.13168 0.52673 -0.00615 0.06147 0.06668
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.06147 0.24589 -0.01317 0.13168 0.13401
u i Fu[0][0] Fi[0][2] Fu[1][0] Fi[1][2] r̂ r̂[1:5] err
0 2 -0.01743 -0.05706 0.06668 -0.10369 0.3639 1 2

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 0.05706 -0.11411 0.00174 -0.01743 -0.01856
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 0.01743 -0.03487 0.00571 -0.05706 -0.05735
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 0.10369 -0.20738 -0.00667 0.06668 0.06454
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.06668 0.13336 0.01037 -0.10369 -0.10225
u i Fu[0][0] Fi[0][3] Fu[1][0] Fi[1][3] r̂ r̂[1:5] err
0 3 -0.01856 0.13807 0.06454 0.11785 0.44475 1 0

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.13807 0 0.00186 -0.01856 -0.01854
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 0.01856 0 -0.01381 0.13807 0.13793
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.11785 0 -0.00645 0.06454 0.06447
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.06454 0 -0.01178 0.11785 0.11773
u i Fu[0][4] Fi[0][3] Fu[1][4] Fi[1][3] r̂ r̂[1:5] err
4 3 0.03923 0.13793 -0.05335 0.11773 0.389 1 3

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.13793 0.41379 -0.00392 0.03923 0.04333
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.03923 0.11769 -0.01379 0.13793 0.13897
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.11773 0.35318 0.00533 -0.05335 -0.04976
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

III



Fi[1][3] 0.01 0.1 0.05335 -0.16004 -0.01177 0.11773 0.11601
u i Fu[0][4] Fi[0][5] Fu[1][4] Fi[1][5] r̂ r̂[1:5] err
4 5 0.04333 0.04776 -0.04976 0.00438 0.42175 1 4

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.04776 0.19105 -0.00433 0.04333 0.04519
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][5] 0.01 0.1 -0.04333 0.17331 -0.00478 0.04776 0.04945
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.00438 0.01753 0.00498 -0.04976 -0.04954
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][5] 0.01 0.1 0.04976 -0.19905 -0.00044 0.00438 0.00239
u i Fu[0][6] Fi[0][1] Fu[1][6] Fi[1][1] r̂ r̂[1:5] err
6 1 0.01066 0.06352 0.16615 0.13401 0.48284 1 0

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.06352 0 -0.00107 0.01066 0.01065
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 -0.01066 0 -0.00635 0.06352 0.06346
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.13401 0 -0.01662 0.16615 0.16599
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.16615 0 -0.0134 0.13401 0.13388
u i Fu[0][6] Fi[0][2] Fu[1][6] Fi[1][2] r̂ r̂[1:5] err
6 2 0.01065 -0.05735 0.16599 -0.10225 0.42228 1 2

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 0.05735 -0.11469 -0.00106 0.01065 0.00949
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 -0.01065 0.0213 0.00573 -0.05735 -0.05708
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 0.10225 -0.2045 -0.0166 0.16599 0.16378
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.16599 0.33198 0.01023 -0.10225 -0.09883
u i Fu[0][6] Fi[0][3] Fu[1][6] Fi[1][3] r̂ r̂[1:5] err
6 3 0.00949 0.13897 0.16378 0.11601 0.54001 1 4

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.13897 0.55587 -0.00095 0.00949 0.01504
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.00949 0.03797 -0.0139 0.13897 0.13921
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.11601 0.46404 -0.01638 0.16378 0.16825
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.16378 0.65511 -0.0116 0.11601 0.12244
Factors:

F[0]: -0.01854 0.06346 -0.05708 0.13921 0.04519 0.04945 0.01504
F[1]: 0.06447 0.13388 -0.09883 0.12244 -0.04954 0.00239 0.16825

Epoch=  1 Train RMSE= 2.85044 Test RMSE= 2.38048
u i Fu[0][0] Fi[0][1] Fu[1][0] Fi[1][1] r̂ r̂[1:5] err
0 1 -0.01854 0.06346 0.06447 0.13388 0.58692 1 4

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.06346 0.25384 0.00185 -0.01854 -0.01598
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 0.01854 -0.07415 -0.00635 0.06346 0.06266
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.13388 0.53551 -0.00645 0.06447 0.06976
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

IV



Fi[1][1] 0.01 0.1 -0.06447 0.25789 -0.01339 0.13388 0.13632
u i Fu[0][0] Fi[0][2] Fu[1][0] Fi[1][2] r̂ r̂[1:5] err
0 2 -0.01598 -0.05708 0.06976 -0.09883 0.6534 1 2

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 0.05708 -0.11415 0.0016 -0.01598 -0.01711
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 0.01598 -0.03196 0.00571 -0.05708 -0.05734
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 0.09883 -0.19766 -0.00698 0.06976 0.06772
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.06976 0.13953 0.00988 -0.09883 -0.09734
u i Fu[0][0] Fi[0][3] Fu[1][0] Fi[1][3] r̂ r̂[1:5] err
0 3 -0.01711 0.13921 0.06772 0.12244 0.76498 1 0

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.13921 0 0.00171 -0.01711 -0.01709
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 0.01711 0 -0.01392 0.13921 0.13907
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.12244 0 -0.00677 0.06772 0.06765
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.06772 0 -0.01224 0.12244 0.12232
u i Fu[0][4] Fi[0][3] Fu[1][4] Fi[1][3] r̂ r̂[1:5] err
4 3 0.04519 0.13907 -0.04954 0.12232 0.71962 1 3

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.13907 0.41721 -0.00452 0.04519 0.04932
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.04519 0.13558 -0.01391 0.13907 0.14029
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.12232 0.36697 0.00495 -0.04954 -0.04582
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 0.04954 -0.14861 -0.01223 0.12232 0.12071
u i Fu[0][4] Fi[0][5] Fu[1][4] Fi[1][5] r̂ r̂[1:5] err
4 5 0.04932 0.04945 -0.04582 0.00239 0.72195 1 4

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.04945 0.19779 -0.00493 0.04932 0.05125
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][5] 0.01 0.1 -0.04932 0.19729 -0.00494 0.04945 0.05137
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.00239 0.00955 0.00458 -0.04582 -0.04568
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][5] 0.01 0.1 0.04582 -0.18327 -0.00024 0.00239 0.00055
u i Fu[0][6] Fi[0][1] Fu[1][6] Fi[1][1] r̂ r̂[1:5] err
6 1 0.01504 0.06266 0.16825 0.13632 0.77342 1 0

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.06266 0 -0.0015 0.01504 0.01503
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 -0.01504 0 -0.00627 0.06266 0.06259
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.13632 0 -0.01683 0.16825 0.16809
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.16825 0 -0.01363 0.13632 0.13619
u i Fu[0][6] Fi[0][2] Fu[1][6] Fi[1][2] r̂ r̂[1:5] err
6 2 0.01503 -0.05734 0.16809 -0.09734 0.71224 1 2

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

V



Fu[0][6] 0.01 0.1 0.05734 -0.11468 -0.0015 0.01503 0.01386
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 -0.01503 0.03005 0.00573 -0.05734 -0.05698
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 0.09734 -0.19467 -0.01681 0.16809 0.16597
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.16809 0.33617 0.00973 -0.09734 -0.09388
u i Fu[0][6] Fi[0][3] Fu[1][6] Fi[1][3] r̂ r̂[1:5] err
6 3 0.01386 0.14029 0.16597 0.12071 0.86097 1 4

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.14029 0.56115 -0.00139 0.01386 0.01946
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.01386 0.05546 -0.01403 0.14029 0.1407
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.12071 0.48285 -0.0166 0.16597 0.17063
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.16597 0.66388 -0.01207 0.12071 0.12723
Factors:

F[0]: -0.01709 0.06259 -0.05698 0.1407 0.05125 0.05137 0.01946
F[1]: 0.06765 0.13619 -0.09388 0.12723 -0.04568 0.00055 0.17063

Epoch=  2 Train RMSE= 2.85044 Test RMSE= 2.38048
u i Fu[0][0] Fi[0][1] Fu[1][0] Fi[1][1] r̂ r̂[1:5] err
0 1 -0.01709 0.06259 0.06765 0.13619 0.87695 1 4

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.06259 0.25037 0.00171 -0.01709 -0.01457
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 0.01709 -0.06836 -0.00626 0.06259 0.06185
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.13619 0.54474 -0.00677 0.06765 0.07303
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.06765 0.2706 -0.01362 0.13619 0.13876
u i Fu[0][0] Fi[0][2] Fu[1][0] Fi[1][2] r̂ r̂[1:5] err
0 2 -0.01457 -0.05698 0.07303 -0.09388 0.94266 1 2

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 0.05698 -0.11396 0.00146 -0.01457 -0.01569
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 0.01457 -0.02914 0.0057 -0.05698 -0.05722
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 0.09388 -0.18775 -0.0073 0.07303 0.07108
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.07303 0.14606 0.00939 -0.09388 -0.09232
u i Fu[0][0] Fi[0][3] Fu[1][0] Fi[1][3] r̂ r̂[1:5] err
0 3 -0.01569 0.1407 0.07108 0.12723 1.08488 1.08488 -0.08488

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.1407 -0.01194 0.00157 -0.01569 -0.0158
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 0.01569 0.00133 -0.01407 0.1407 0.14057
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.12723 -0.0108 -0.00711 0.07108 0.0709
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.07108 -0.00603 -0.01272 0.12723 0.12704
u i Fu[0][4] Fi[0][3] Fu[1][4] Fi[1][3] r̂ r̂[1:5] err
4 3 0.05125 0.14057 -0.04568 0.12704 1.04827 1.04827 2.95173

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

VI



Fu[0][4] 0.01 0.1 -0.14057 0.41494 -0.00513 0.05125 0.05535
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.05125 0.15128 -0.01406 0.14057 0.14195
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.12704 0.375 0.00457 -0.04568 -0.04188
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 0.04568 -0.13482 -0.0127 0.12704 0.12557
u i Fu[0][4] Fi[0][5] Fu[1][4] Fi[1][5] r̂ r̂[1:5] err
4 5 0.05535 0.05137 -0.04188 0.00055 1.02017 1.02017 3.97983

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.05137 0.20445 -0.00553 0.05535 0.05734
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][5] 0.01 0.1 -0.05535 0.22028 -0.00514 0.05137 0.05352
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.00055 0.0022 0.00419 -0.04188 -0.04182
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][5] 0.01 0.1 0.04188 -0.16668 -6E-05 0.00055 -0.00111
u i Fu[0][6] Fi[0][1] Fu[1][6] Fi[1][1] r̂ r̂[1:5] err
6 1 0.01946 0.06185 0.17063 0.13876 1.06227 1.06227 -0.06227

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.06185 -0.00385 -0.00195 0.01946 0.0194
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 -0.01946 -0.00121 -0.00618 0.06185 0.06177
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.13876 -0.00864 -0.01706 0.17063 0.17038
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.17063 -0.01063 -0.01388 0.13876 0.13851
u i Fu[0][6] Fi[0][2] Fu[1][6] Fi[1][2] r̂ r̂[1:5] err
6 2 0.0194 -0.05722 0.17038 -0.09232 0.99918 1 2

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 0.05722 -0.11443 -0.00194 0.0194 0.01824
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 -0.0194 0.03881 0.00572 -0.05722 -0.05677
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 0.09232 -0.18465 -0.01704 0.17038 0.16836
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.17038 0.34075 0.00923 -0.09232 -0.08882
u i Fu[0][6] Fi[0][3] Fu[1][6] Fi[1][3] r̂ r̂[1:5] err
6 3 0.01824 0.14195 0.16836 0.12557 1.17753 1.17753 3.82247

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.14195 0.54258 -0.00182 0.01824 0.02365
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.01824 0.06972 -0.01419 0.14195 0.1425
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.12557 0.47998 -0.01684 0.16836 0.17299
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.16836 0.64355 -0.01256 0.12557 0.13188
Factors:

F[0]: -0.0158 0.06177 -0.05677 0.1425 0.05734 0.05352 0.02365
F[1]: 0.0709 0.13851 -0.08882 0.13188 -0.04182 -0.00111 0.17299

Epoch=  3 Train RMSE= 2.6732 Test RMSE= 2.17026
u i Fu[0][0] Fi[0][1] Fu[1][0] Fi[1][1] r̂ r̂[1:5] err
0 1 -0.0158 0.06177 0.0709 0.13851 1.16133 1.16133 3.83867

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

VII



Fu[0][0] 0.01 0.1 -0.06177 0.23712 0.00158 -0.0158 -0.01341
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 0.0158 -0.06064 -0.00618 0.06177 0.0611
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.13851 0.5317 -0.00709 0.0709 0.07615
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.0709 0.27216 -0.01385 0.13851 0.14109
u i Fu[0][0] Fi[0][2] Fu[1][0] Fi[1][2] r̂ r̂[1:5] err
0 2 -0.01341 -0.05677 0.07615 -0.08882 1.22372 1.22372 1.77628

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 0.05677 -0.10084 0.00134 -0.01341 -0.01441
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 0.01341 -0.02382 0.00568 -0.05677 -0.05695
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 0.08882 -0.15777 -0.00761 0.07615 0.07449
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.07615 0.13526 0.00888 -0.08882 -0.08738
u i Fu[0][0] Fi[0][3] Fu[1][0] Fi[1][3] r̂ r̂[1:5] err
0 3 -0.01441 0.1425 0.07449 0.13188 1.38882 1.38882 -0.38882

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.1425 -0.05541 0.00144 -0.01441 -0.01495
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 0.01441 0.0056 -0.01425 0.1425 0.14241
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.13188 -0.05128 -0.00745 0.07449 0.07391
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.07449 -0.02896 -0.01319 0.13188 0.13146
u i Fu[0][4] Fi[0][3] Fu[1][4] Fi[1][3] r̂ r̂[1:5] err
4 3 0.05734 0.14241 -0.04182 0.13146 1.36071 1.36071 2.63929

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.14241 0.37587 -0.00573 0.05734 0.06104
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.05734 0.15133 -0.01424 0.14241 0.14379
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.13146 0.34695 0.00418 -0.04182 -0.0383
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 0.04182 -0.11037 -0.01315 0.13146 0.13022
u i Fu[0][4] Fi[0][5] Fu[1][4] Fi[1][5] r̂ r̂[1:5] err
4 5 0.06104 0.05352 -0.0383 -0.00111 1.30206 1.30206 3.69794

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.05352 0.19792 -0.0061 0.06104 0.06296
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][5] 0.01 0.1 -0.06104 0.22572 -0.00535 0.05352 0.05573
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 0.00111 -0.00412 0.00383 -0.0383 -0.03831
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][5] 0.01 0.1 0.0383 -0.14165 0.00011 -0.00111 -0.00253
u i Fu[0][6] Fi[0][1] Fu[1][6] Fi[1][1] r̂ r̂[1:5] err
6 1 0.02365 0.0611 0.17299 0.14109 1.33097 1.33097 -0.33097

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.0611 -0.02022 -0.00236 0.02365 0.02342
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 -0.02365 -0.00783 -0.00611 0.0611 0.06096
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

VIII



Fu[1][6] 0.01 0.1 -0.14109 -0.0467 -0.0173 0.17299 0.17235
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.17299 -0.05725 -0.01411 0.14109 0.14038
u i Fu[0][6] Fi[0][2] Fu[1][6] Fi[1][2] r̂ r̂[1:5] err
6 2 0.02342 -0.05695 0.17235 -0.08738 1.26194 1.26194 1.73806

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 0.05695 -0.09899 -0.00234 0.02342 0.02241
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 -0.02342 0.04071 0.0057 -0.05695 -0.05649
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 0.08738 -0.15187 -0.01724 0.17235 0.17066
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.17235 0.29956 0.00874 -0.08738 -0.0843
u i Fu[0][6] Fi[0][3] Fu[1][6] Fi[1][3] r̂ r̂[1:5] err
6 3 0.02241 0.14379 0.17066 0.13022 1.45874 1.45874 3.54126

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.14379 0.50918 -0.00224 0.02241 0.02748
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.02241 0.07935 -0.01438 0.14379 0.14444
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.13022 0.46115 -0.01707 0.17066 0.1751
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.17066 0.60435 -0.01302 0.13022 0.13614
Factors:

F[0]: -0.01495 0.06096 -0.05649 0.14444 0.06296 0.05573 0.02748
F[1]: 0.07391 0.14038 -0.0843 0.13614 -0.03831 -0.00253 0.1751

Epoch=  4 Train RMSE= 2.46451 Test RMSE= 1.90952
u i Fu[0][0] Fi[0][1] Fu[1][0] Fi[1][1] r̂ r̂[1:5] err
0 1 -0.01495 0.06096 0.07391 0.14038 1.41324 1.41324 3.58676

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.06096 0.21867 0.00149 -0.01495 -0.01274
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 0.01495 -0.05361 -0.0061 0.06096 0.06037
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.14038 0.50351 -0.00739 0.07391 0.07887
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.07391 0.26508 -0.01404 0.14038 0.14289
u i Fu[0][0] Fi[0][2] Fu[1][0] Fi[1][2] r̂ r̂[1:5] err
0 2 -0.01274 -0.05649 0.07887 -0.0843 1.47008 1.47008 1.52992

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 0.05649 -0.08642 0.00127 -0.01274 -0.0136
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 0.01274 -0.0195 0.00565 -0.05649 -0.05663
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 0.0843 -0.12897 -0.00789 0.07887 0.0775
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.07887 0.12066 0.00843 -0.0843 -0.08301
u i Fu[0][0] Fi[0][3] Fu[1][0] Fi[1][3] r̂ r̂[1:5] err
0 3 -0.0136 0.14444 0.0775 0.13614 1.65322 1.65322 -0.65322

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.14444 -0.09435 0.00136 -0.0136 -0.01453
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 0.0136 0.00888 -0.01444 0.14444 0.14438
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

IX



Fu[1][0] 0.01 0.1 -0.13614 -0.08893 -0.00775 0.0775 0.07653
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.0775 -0.05062 -0.01361 0.13614 0.13549
u i Fu[0][4] Fi[0][3] Fu[1][4] Fi[1][3] r̂ r̂[1:5] err
4 3 0.06296 0.14438 -0.03831 0.13549 1.6366 1.6366 2.3634

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.14438 0.34123 -0.0063 0.06296 0.06631
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.06296 0.14879 -0.01444 0.14438 0.14572
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.13549 0.32022 0.00383 -0.03831 -0.03507
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 0.03831 -0.09054 -0.01355 0.13549 0.13445
u i Fu[0][4] Fi[0][5] Fu[1][4] Fi[1][5] r̂ r̂[1:5] err
4 5 0.06631 0.05573 -0.03507 -0.00253 1.55406 1.55406 3.44594

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.05573 0.19203 -0.00663 0.06631 0.06816
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][5] 0.01 0.1 -0.06631 0.22849 -0.00557 0.05573 0.05795
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 0.00253 -0.00872 0.00351 -0.03507 -0.03512
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][5] 0.01 0.1 0.03507 -0.12084 0.00025 -0.00253 -0.00374
u i Fu[0][6] Fi[0][1] Fu[1][6] Fi[1][1] r̂ r̂[1:5] err
6 1 0.02748 0.06037 0.1751 0.14289 1.56494 1.56494 -0.56494

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.06037 -0.0341 -0.00275 0.02748 0.02711
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 -0.02748 -0.01552 -0.00604 0.06037 0.06015
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.14289 -0.08072 -0.01751 0.1751 0.17412
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.1751 -0.09892 -0.01429 0.14289 0.14176
u i Fu[0][6] Fi[0][2] Fu[1][6] Fi[1][2] r̂ r̂[1:5] err
6 2 0.02711 -0.05663 0.17412 -0.08301 1.49091 1.49091 1.50909

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 0.05663 -0.08545 -0.00271 0.02711 0.02623
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 -0.02711 0.04091 0.00566 -0.05663 -0.05616
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 0.08301 -0.12527 -0.01741 0.17412 0.17269
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.17412 0.26276 0.0083 -0.08301 -0.0803
u i Fu[0][6] Fi[0][3] Fu[1][6] Fi[1][3] r̂ r̂[1:5] err
6 3 0.02623 0.14572 0.17269 0.13445 1.70352 1.70352 3.29648

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.14572 0.48037 -0.00262 0.02623 0.03101
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.02623 0.08646 -0.01457 0.14572 0.14644
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.13445 0.44322 -0.01727 0.17269 0.17695
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.17269 0.56928 -0.01345 0.13445 0.14001
Factors:

X



F[0]: -0.01453 0.06015 -0.05616 0.14644 0.06816 0.05795 0.03101
F[1]: 0.07653 0.14176 -0.0803 0.14001 -0.03512 -0.00374 0.17695

Epoch=  5 Train RMSE= 2.29038 Test RMSE= 1.68144
u i Fu[0][0] Fi[0][1] Fu[1][0] Fi[1][1] r̂ r̂[1:5] err
0 1 -0.01453 0.06015 0.07653 0.14176 1.63236 1.63236 3.36764

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.06015 0.20257 0.00145 -0.01453 -0.01248
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 0.01453 -0.04892 -0.00602 0.06015 0.0596
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.14176 0.47739 -0.00765 0.07653 0.08123
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.07653 0.25773 -0.01418 0.14176 0.14419
u i Fu[0][0] Fi[0][2] Fu[1][0] Fi[1][2] r̂ r̂[1:5] err
0 2 -0.01248 -0.05616 0.08123 -0.0803 1.68457 1.68457 1.31543

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 0.05616 -0.07388 0.00125 -0.01248 -0.01321
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 0.01248 -0.01642 0.00562 -0.05616 -0.05627
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 0.0803 -0.10563 -0.00812 0.08123 0.08009
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.08123 0.10685 0.00803 -0.0803 -0.07915
u i Fu[0][0] Fi[0][3] Fu[1][0] Fi[1][3] r̂ r̂[1:5] err
0 3 -0.01321 0.14644 0.08009 0.14001 1.88303 1.88303 -0.88303

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.14644 -0.12931 0.00132 -0.01321 -0.01449
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 0.01321 0.01167 -0.01464 0.14644 0.14641
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.14001 -0.12363 -0.00801 0.08009 0.07877
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.08009 -0.07072 -0.014 0.14001 0.13916
u i Fu[0][4] Fi[0][3] Fu[1][4] Fi[1][3] r̂ r̂[1:5] err
4 3 0.06816 0.14641 -0.03512 0.13916 1.88039 1.88039 2.11961

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.14641 0.31034 -0.00682 0.06816 0.0712
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.06816 0.14447 -0.01464 0.14641 0.14771
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.13916 0.29497 0.00351 -0.03512 -0.03213
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 0.03512 -0.07444 -0.01392 0.13916 0.13828
u i Fu[0][4] Fi[0][5] Fu[1][4] Fi[1][5] r̂ r̂[1:5] err
4 5 0.0712 0.05795 -0.03213 -0.00374 1.77974 1.77974 3.22026

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.05795 0.18663 -0.00712 0.0712 0.07299
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][5] 0.01 0.1 -0.0712 0.22927 -0.0058 0.05795 0.06019
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 0.00374 -0.01203 0.00321 -0.03213 -0.03222
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][5] 0.01 0.1 0.03213 -0.10348 0.00037 -0.00374 -0.00477
u i Fu[0][6] Fi[0][1] Fu[1][6] Fi[1][1] r̂ r̂[1:5] err

XI



6 1 0.03101 0.0596 0.17695 0.14419 1.76855 1.76855 -0.76855
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.0596 -0.04581 -0.0031 0.03101 0.03052
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 -0.03101 -0.02383 -0.00596 0.0596 0.0593
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.14419 -0.11082 -0.0177 0.17695 0.17567
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.17695 -0.136 -0.01442 0.14419 0.14269
u i Fu[0][6] Fi[0][2] Fu[1][6] Fi[1][2] r̂ r̂[1:5] err
6 2 0.03052 -0.05627 0.17567 -0.07915 1.69032 1.69032 1.30968

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 0.05627 -0.07369 -0.00305 0.03052 0.02975
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 -0.03052 0.03997 0.00563 -0.05627 -0.05581
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 0.07915 -0.10366 -0.01757 0.17567 0.17445
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.17567 0.23007 0.00791 -0.07915 -0.07677
u i Fu[0][6] Fi[0][3] Fu[1][6] Fi[1][3] r̂ r̂[1:5] err
6 3 0.02975 0.14771 0.17445 0.13828 1.91644 1.91644 3.08356

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.14771 0.45548 -0.00297 0.02975 0.03427
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.02975 0.09173 -0.01477 0.14771 0.14848
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.13828 0.42639 -0.01745 0.17445 0.17854
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.17445 0.53794 -0.01383 0.13828 0.14352
Factors:

F[0]: -0.01449 0.0593 -0.05581 0.14848 0.07299 0.06019 0.03427
F[1]: 0.07877 0.14269 -0.07677 0.14352 -0.03222 -0.00477 0.17854

Epoch=  6 Train RMSE= 2.14594 Test RMSE= 1.48194
u i Fu[0][0] Fi[0][1] Fu[1][0] Fi[1][1] r̂ r̂[1:5] err
0 1 -0.01449 0.0593 0.07877 0.14269 1.82285 1.82285 3.17715

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.0593 0.18842 0.00145 -0.01449 -0.01259
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 0.01449 -0.04604 -0.00593 0.0593 0.05879
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.14269 0.45335 -0.00788 0.07877 0.08323
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.07877 0.25028 -0.01427 0.14269 0.14505
u i Fu[0][0] Fi[0][2] Fu[1][0] Fi[1][2] r̂ r̂[1:5] err
0 2 -0.01259 -0.05581 0.08323 -0.07677 1.87121 1.87121 1.12879

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 0.05581 -0.063 0.00126 -0.01259 -0.01321
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 0.01259 -0.01421 0.00558 -0.05581 -0.0559
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 0.07677 -0.08666 -0.00832 0.08323 0.08228
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.08323 0.09395 0.00768 -0.07677 -0.07575
u i Fu[0][0] Fi[0][3] Fu[1][0] Fi[1][3] r̂ r̂[1:5] err
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0 3 -0.01321 0.14848 0.08228 0.14352 2.0826 2.0826 -1.0826
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.14848 -0.16075 0.00132 -0.01321 -0.0148
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 0.01321 0.0143 -0.01485 0.14848 0.14847
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.14352 -0.15538 -0.00823 0.08228 0.08064
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.08228 -0.08908 -0.01435 0.14352 0.14249
u i Fu[0][4] Fi[0][3] Fu[1][4] Fi[1][3] r̂ r̂[1:5] err
4 3 0.07299 0.14847 -0.03222 0.14249 2.09602 2.09602 1.90398

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.14847 0.28269 -0.0073 0.07299 0.07574
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.07299 0.13897 -0.01485 0.14847 0.14972
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.14249 0.27129 0.00322 -0.03222 -0.02948
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 0.03222 -0.06135 -0.01425 0.14249 0.14173
u i Fu[0][4] Fi[0][5] Fu[1][4] Fi[1][5] r̂ r̂[1:5] err
4 5 0.07574 0.06019 -0.02948 -0.00477 1.98226 1.98226 3.01774

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.06019 0.18164 -0.00757 0.07574 0.07749
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][5] 0.01 0.1 -0.07574 0.22858 -0.00602 0.06019 0.06242
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 0.00477 -0.01439 0.00295 -0.02948 -0.02959
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][5] 0.01 0.1 0.02948 -0.08896 0.00048 -0.00477 -0.00565
u i Fu[0][6] Fi[0][1] Fu[1][6] Fi[1][1] r̂ r̂[1:5] err
6 1 0.03427 0.05879 0.17854 0.14505 1.94565 1.94565 -0.94565

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.05879 -0.05559 -0.00343 0.03427 0.03368
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 -0.03427 -0.03241 -0.00588 0.05879 0.0584
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.14505 -0.13717 -0.01785 0.17854 0.17699
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.17854 -0.16884 -0.0145 0.14505 0.14322
u i Fu[0][6] Fi[0][2] Fu[1][6] Fi[1][2] r̂ r̂[1:5] err
6 2 0.03368 -0.0559 0.17699 -0.07575 1.86394 1.86394 1.13606

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 0.0559 -0.0635 -0.00337 0.03368 0.03301
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 -0.03368 0.03827 0.00559 -0.0559 -0.05546
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 0.07575 -0.08606 -0.0177 0.17699 0.17596
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.17699 0.20107 0.00758 -0.07575 -0.07367
u i Fu[0][6] Fi[0][3] Fu[1][6] Fi[1][3] r̂ r̂[1:5] err
6 3 0.03301 0.14972 0.17596 0.14173 2.1015 2.1015 2.8985

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.14972 0.43395 -0.0033 0.03301 0.03732
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

XIII



Fi[0][3] 0.01 0.1 -0.03301 0.09569 -0.01497 0.14972 0.15052
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.14173 0.4108 -0.0176 0.17596 0.17989
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.17596 0.51001 -0.01417 0.14173 0.14669
Factors:

F[0]: -0.0148 0.0584 -0.05546 0.15052 0.07749 0.06242 0.03732
F[1]: 0.08064 0.14322 -0.07367 0.14669 -0.02959 -0.00565 0.17989

Epoch=  7 Train RMSE= 2.02681 Test RMSE= 1.30743
u i Fu[0][0] Fi[0][1] Fu[1][0] Fi[1][1] r̂ r̂[1:5] err
0 1 -0.0148 0.0584 0.08064 0.14322 1.98833 1.98833 3.01167

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.0584 0.17589 0.00148 -0.0148 -0.01303
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 0.0148 -0.04458 -0.00584 0.0584 0.0579
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.14322 0.43132 -0.00806 0.08064 0.08488
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.08064 0.24287 -0.01432 0.14322 0.1455
u i Fu[0][0] Fi[0][2] Fu[1][0] Fi[1][2] r̂ r̂[1:5] err
0 2 -0.01303 -0.05546 0.08488 -0.07367 2.03356 2.03356 0.96644

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 0.05546 -0.0536 0.0013 -0.01303 -0.01355
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 0.01303 -0.01259 0.00555 -0.05546 -0.05553
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 0.07367 -0.07119 -0.00849 0.08488 0.08408
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.08488 0.08203 0.00737 -0.07367 -0.07277
u i Fu[0][0] Fi[0][3] Fu[1][0] Fi[1][3] r̂ r̂[1:5] err
0 3 -0.01355 0.15052 0.08408 0.14669 2.25575 2.25575 -1.25575

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.15052 -0.18902 0.00136 -0.01355 -0.01543
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 0.01355 0.01702 -0.01505 0.15052 0.15054
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.14669 -0.1842 -0.00841 0.08408 0.08215
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.08408 -0.10558 -0.01467 0.14669 0.14549
u i Fu[0][4] Fi[0][3] Fu[1][4] Fi[1][3] r̂ r̂[1:5] err
4 3 0.07749 0.15054 -0.02959 0.14549 2.28692 2.28692 1.71308

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.15054 0.25789 -0.00775 0.07749 0.07999
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.07749 0.13274 -0.01505 0.15054 0.15172
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.14549 0.24923 0.00296 -0.02959 -0.02707
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 0.02959 -0.05069 -0.01455 0.14549 0.14483
u i Fu[0][4] Fi[0][5] Fu[1][4] Fi[1][5] r̂ r̂[1:5] err
4 5 0.07999 0.06242 -0.02707 -0.00565 2.16438 2.16438 2.83562

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.06242 0.17699 -0.008 0.07999 0.08168
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new
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Fi[0][5] 0.01 0.1 -0.07999 0.22681 -0.00624 0.06242 0.06462
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 0.00565 -0.01603 0.00271 -0.02707 -0.0272
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][5] 0.01 0.1 0.02707 -0.07676 0.00057 -0.00565 -0.00641
u i Fu[0][6] Fi[0][1] Fu[1][6] Fi[1][1] r̂ r̂[1:5] err
6 1 0.03732 0.0579 0.17989 0.1455 2.09959 2.09959 -1.09959

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.0579 -0.06366 -0.00373 0.03732 0.03665
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 -0.03732 -0.04104 -0.00579 0.0579 0.05743
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.1455 -0.15999 -0.01799 0.17989 0.17811
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.17989 -0.1978 -0.01455 0.1455 0.14338
u i Fu[0][6] Fi[0][2] Fu[1][6] Fi[1][2] r̂ r̂[1:5] err
6 2 0.03665 -0.05553 0.17811 -0.07277 2.01503 2.01503 0.98497

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 0.05553 -0.0547 -0.00366 0.03665 0.03606
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 -0.03665 0.0361 0.00555 -0.05553 -0.05511
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 0.07277 -0.07168 -0.01781 0.17811 0.17721
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.17811 0.17543 0.00728 -0.07277 -0.07094
u i Fu[0][6] Fi[0][3] Fu[1][6] Fi[1][3] r̂ r̂[1:5] err
6 3 0.03606 0.15172 0.17721 0.14483 2.26223 2.26223 2.73777

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.15172 0.41537 -0.00361 0.03606 0.04018
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.03606 0.09873 -0.01517 0.15172 0.15256
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.14483 0.39652 -0.01772 0.17721 0.181
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.17721 0.48517 -0.01448 0.14483 0.14954
Factors:

F[0]: -0.01543 0.05743 -0.05511 0.15256 0.08168 0.06462 0.04018
F[1]: 0.08215 0.14338 -0.07094 0.14954 -0.0272 -0.00641 0.181

Epoch=  8 Train RMSE= 1.92904 Test RMSE= 1.15476
u i Fu[0][0] Fi[0][1] Fu[1][0] Fi[1][1] r̂ r̂[1:5] err
0 1 -0.01543 0.05743 0.08215 0.14338 2.13198 2.13198 2.86802

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.05743 0.16471 0.00154 -0.01543 -0.01377
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 0.01543 -0.04425 -0.00574 0.05743 0.05693
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.14338 0.41121 -0.00822 0.08215 0.08618
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.08215 0.23562 -0.01434 0.14338 0.14559
u i Fu[0][0] Fi[0][2] Fu[1][0] Fi[1][2] r̂ r̂[1:5] err
0 2 -0.01377 -0.05511 0.08618 -0.07094 2.17469 2.17469 0.82531

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 0.05511 -0.04549 0.00138 -0.01377 -0.01421
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new
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Fi[0][2] 0.01 0.1 0.01377 -0.01136 0.00551 -0.05511 -0.05517
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 0.07094 -0.05855 -0.00862 0.08618 0.08551
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][2] 0.01 0.1 -0.08618 0.07113 0.00709 -0.07094 -0.07016
u i Fu[0][0] Fi[0][3] Fu[1][0] Fi[1][3] r̂ r̂[1:5] err
0 3 -0.01421 0.15256 0.08551 0.14954 2.40581 2.40581 -1.40581

u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][0] 0.01 0.1 -0.15256 -0.21446 0.00142 -0.01421 -0.01634
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 0.01421 0.01997 -0.01526 0.15256 0.1526
u= 0 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][0] 0.01 0.1 -0.14954 -0.21023 -0.00855 0.08551 0.08332
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.08551 -0.12021 -0.01495 0.14954 0.14819
u i Fu[0][4] Fi[0][3] Fu[1][4] Fi[1][3] r̂ r̂[1:5] err
4 3 0.08168 0.1526 -0.0272 0.14819 2.45611 2.45611 1.54389

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.1526 0.2356 -0.00817 0.08168 0.08395
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.08168 0.1261 -0.01526 0.1526 0.15371
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 -0.14819 0.22879 0.00272 -0.0272 -0.02489
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 0.0272 -0.042 -0.01482 0.14819 0.14762
u i Fu[0][4] Fi[0][5] Fu[1][4] Fi[1][5] r̂ r̂[1:5] err
4 5 0.08395 0.06462 -0.02489 -0.00641 2.32852 2.32852 2.67148

u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][4] 0.01 0.1 -0.06462 0.17263 -0.0084 0.08395 0.08559
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][5] 0.01 0.1 -0.08395 0.22427 -0.00646 0.06462 0.0668
u= 4 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][4] 0.01 0.1 0.00641 -0.01713 0.00249 -0.02489 -0.02503
i = 5 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][5] 0.01 0.1 0.02489 -0.06649 0.00064 -0.00641 -0.00707
u i Fu[0][6] Fi[0][1] Fu[1][6] Fi[1][1] r̂ r̂[1:5] err
6 1 0.04018 0.05693 0.181 0.14559 2.23332 2.23332 -1.23332

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.05693 -0.07021 -0.00402 0.04018 0.03944
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][1] 0.01 0.1 -0.04018 -0.04956 -0.00569 0.05693 0.05638
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.14559 -0.17956 -0.0181 0.181 0.17902
i = 1 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][1] 0.01 0.1 -0.181 -0.22323 -0.01456 0.14559 0.14321
u i Fu[0][6] Fi[0][2] Fu[1][6] Fi[1][2] r̂ r̂[1:5] err
6 2 0.03944 -0.05517 0.17902 -0.07016 2.14645 2.14645 0.85355

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 0.05517 -0.04709 -0.00394 0.03944 0.03893
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][2] 0.01 0.1 -0.03944 0.03366 0.00552 -0.05517 -0.05478
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 0.07016 -0.05989 -0.0179 0.17902 0.17825
i = 2 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

XVI



Fi[1][2] 0.01 0.1 -0.17902 0.15281 0.00702 -0.07016 -0.06856
u i Fu[0][6] Fi[0][3] Fu[1][6] Fi[1][3] r̂ r̂[1:5] err
6 3 0.03893 0.15371 0.17825 0.14762 2.4017 2.4017 2.5983

u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[0][6] 0.01 0.1 -0.15371 0.39939 -0.00389 0.03893 0.04288
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[0][3] 0.01 0.1 -0.03893 0.10115 -0.01537 0.15371 0.15457
u= 6 ɣ λ u∇u u * err∇u λ * Fu F u, previous F u, new

Fu[1][6] 0.01 0.1 -0.14762 0.38356 -0.01782 0.17825 0.1819
i = 3 ɣ λ i∇u i * err∇u λ * Fi F i, previous F i, new

Fi[1][3] 0.01 0.1 -0.17825 0.46314 -0.01476 0.14762 0.1521
Factors:

F[0]: -0.01634 0.05638 -0.05478 0.15457 0.08559 0.0668 0.04288
F[1]: 0.08332 0.14321 -0.06856 0.1521 -0.02503 -0.00707 0.1819

Epoch=  9 Train RMSE= 1.84911 Test RMSE= 1.02119

Tab. 23:  Example run of SGD for 10 Epochs

on a toy dataset defined at the beginning of this Ap-

pendix. The algorithm runs for 10 (0-9) epochs/itera-

tions on 8 training samples and infers 2 factors for

each of the 7 attributes (3 users and 4 items), these

are all mapped into the same factor matrix - F. Testing

is done on 2 samples, which are included in the train-

ing set. Note: no global factors are any other implicit

or explicit input data is taken into account – only pure

SGD factorization.
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