TU

Grazm

Dominik Wieser, BSc

Tests and Evaluations of Neural Networks
on mbe(?ded ardware

Master’s Thesis
to achieve the university degree of
Master of Science

Master's degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Friedrich Fraundorfer

Institute of Computer Graphics and Vision
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Horst Bischof

Graz, May 2019

This document is set in Palatino, compiled with pdfI&IEX2e and Biber.

The IXTEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TuGrRAZOnNline is
identical to the present master’s thesis.

Date Signature

Abstract

Object detection and image classification based on Convolutional Neural
Networks are state of the art and deliver very good results. However these
networks need a lot of computing power for inference. It is still a challenge
to run these networks in real-time on small embedded devices. In this
thesis a Vision Processing Unit (VPU) is used to run a SSD MobileNet object
detection network and a MobileNet classification network on a Raspberry PI.
Concretely the Intel Movidius Neural Compute Stick (NCS) is used, which
achieves an inference time of 216 ms on the used object detection network. A
prototype of a small portable device is build which gives image descriptions
of objects via text-to-speech output and vibrations on a smartphone. The
surroundings are captured by a camera connected to the Raspberry PIL
The device can be controlled over a web application, which also shows the
detection results in real-time. Tests with the device showed, that the system
works well and that the trained objects are detected reliable. The thesis
shows that computer vision can be used on embedded devices for robotics or
mobile assistance systems, generating real-time image descriptions. Further
improvements of the work could be a object detection in 3D, which also
includes the distance of the objects and based on that a better filtering of
the spoken image descriptions.

Contents

Abstract

1 Introduction

2 Models
2.1 MobileNet e

2.1.1 Depthwise Separable Convolutions

2.2 Object Detection.,
23 Classification. Lo

3 Intel Movidius Neural Compute Stick

3.1 NCSDK
32 OpenVINO.
3.3 Comparison of the NCSvs. NCS2
3.4 Different form factors of Myriad VPUs
Implementation
4.1 HardwareSetup L.
4.2 Convertingthemodels
4.2.1 Classification
4.22 Object Detection
4.3 Application o L oo
4.3.1 Camera Publisher.
4.3.2 Inference Publisher
433 WebServer
4.3.4 Web Application
4.3.5 Autostart. oo oo,

Contents

5 Evaluation 39
5.1 Object Detection Model 39
5.1.1 Time for Inference on VPUvs CPU 40
5.1.2 Custom Trained Assistant System Network. 43
5.1.3 Evaluation of the Perspective of the Camera 46
5.2 Classification Model, 50
5.2.1 Time for Inference on VPUvs CPU 50

5.2.2 Evaluation of Detection Results of the Classification
Network o 000 50
6 Conclusion and Future work 53
Bibliography 56

Vi

List of Figures

Regular Convolution, Image from [3] 4
Depthwise Convolution, Image from [3] 4
Pointwise Convolution, Image from [3] 4
SSD default boxes, Image from [7] 5
Intel Movidius Neuronal Compute Stick (NCS), Image from [6] 8
NCSDK Workflow, Image from [9] 8
OpenVINO Workflow, Image from [10] 10
AAEONUP AICore X o oo 12
Hardware in comparison withapen 13
Overview of the application 19
Screenshot of the Application 31
Screenshot of Application with opened Menu 31
Screenshot of the ApplicationonaPC 32
Inference resultonthe CPU 42
Inference resultonthe VPU 42
Car and Person Inference with SSD Mobilenet V1 Coco network 43
Car and Person Inference with assistant system network . . . 43
Car and Person inference with SSD Mobilenet V1 Coco network 44
Car and Person inference with assistant system network . . . 44
Dumpster inference with SSD Mobilenet V1 Coco network . . 45
Dumpster inference with assistant system network 45
Motorcycle inference with SSD Mobilenet V1 Coco network . 45
Motorcycle inference with assistant system network 45
Street with cars. Picture taken from view of a walking person 46
Street with cars. Picture taken from ground level. 46
Car from above. Inference with assistant system network. . . 48

Vii

514
5-15
5.16
5.17
5.18

5-19
5.20
5.21
5.22
5-23
5-24
5-25
5.26

List of Figures

Car from below. Inference with assistant system network.

Car from above. Inference with SSD Mobilenet V1 Coco. . . .
Car from below. Inference with SSD Mobilenet V1 Coco. . . .
Person from above. Inference with assistant system network.
Person from the middle. Inference with assistant system net-
work. ..o
Person from below. Inference with assistant system network.
Person from above. Inference with SSD Mobilenet V1.

Person from the middle. Inference with SSD Mobilenet V1.
Person from below. Inference with SSD Mobilenet V1. .
Pavement edge furtheraway
Wall behind pavementedge
Pavement/Wall Edge fromabove
Pavement/Wall Edge frombelow

viil

Listings

4.1 Camera Publisher initialization 21
4.2 Camera Publisher MainLoop 21
4.3 ZMQ receiver setup forimage 23
4.4 ZMQreceivingofimage Lo oL 24
4.5 Build Script for Object Detection Inference 25
4.6 Script to run Object Detection Inference 26
4.7 Camera Class for Flask Video Streaming 27
4.8 WebsocketServer o oL 28
4.9 WebsocketClient 33
4.10 Speech Synthesis with Web Speech API 35
4.11 Vibration Feedback with Vibration API 37

List of Tables

3.1 Comparison of NCS vs NCS2

4.1 Files of the saved model for inference

5.1 Comparison of inference time

1 Introduction

In the last few years several problems in computer vision have seen a huge
enhancement in terms of quality. Many of these improvements are due to the
rise of powerful neuronal networks. Computer vision related tasks are part
of many products we use daily. At the same time more and more people
are using mobile devices such as smartphones, tablets, drones or other
embedded devices. The inference of neuronal networks is a computational
expensive process. Especially mobile devices have limited computing power
and the power consumption of the chips should be as low as possible to
extend battery life.

The Intel Movidius Neural Compute Stick (NCS) is a chip designed to make
the inference of neuronal networks fast and energy-efficient. In this thesis
this chip will be used to run a classification and object detection network
on a Raspberry PI. A small camera is attached directly to the Raspberry PI
to record the images.

The object detection network is able to detect the following categories: car,
person, bike, motorcycle, dumpster and bus. Using this network more than
one object can be detected at the same time. In the case of objects covering
the whole image, a classification network is used. In that case, the network
is trained to detect walls, stairs and the edge of a pavement.

For robotics and mobile assistant systems it is important that potentially
dangerous objects can be detected. As a showcase in this thesis spoken image
descriptions will be used. Other ways to detect objects in an environment can
be by ultrasonic sensors. However, this ultrasonic sensors fail with certain
types of obstacles. For example, stairs going down, or moving objects that
are further away such as cars, motorcycles, buses or bicycles cannot be
reliably detected with the current systems.

1 Introduction

In this thesis these limitations will be solved with the help of Convolu-
tional Neuronal Networks (CNNs). CNNs already proved that they are
very powerful detecting objects. For this specific task and the categories
mentioned above a network has already been trained in a project executed
at the Technical University of Graz. This network is converted so that it is
able to run on the Neural Compute Stick (NCS) on the Raspberry PL

The user can connect a phone to the Raspberry PI and receive feedback over
the phone. The communication with the user is done with a text-to-speech
output and vibration feedback. For testing purposes, the detection results
are also shown in real-time on the live image on the phone.

In chapter 2 the models used for the object detection 2.2 and the classification
2.3 are described in detail. Chapter 3 gives details about the structure and the
use of the Intel Movidius NCS. Chapter 4 describes the implementation of
the project. Especially the hardware used, the transformation of the network
and the web application with text-to-speech functionality. In chapter 5 the
results are evaluated and compared with similar models.

2 Models

The models used in this thesis need to run in real-time on an embedded
device, to generate real-time spoken image descriptions.

The base network used for the object detection (section 2.2) as well as for
image classification (section 2.3) is the MobileNet network [4]. Compared to
other Convolutional Neural Networks (CNNs) the inference is faster. The
architecture of MobileNet is described in detail in section 2.1.

Both networks were trained in a foregoing project at Graz Technology of
University. The implementation is done in Tensorflow. These models were
trained on training data gathered specially for a mobile assistance system.
In this thesis these existing networks were transferred to run on the Intel
Movidius Neural Compute Stick.

2.1 MobileNet

Convolutional Neural Networks (CNNs) are very popular. The networks
tend to get deeper and more complicated to achieve higher accuracy. How-
ever on limited hardware it is hard to run time critical applications.

MobileNet V1 is designed to achieve a significant speedup with similar
accuracy as regular CNNs. The main idea behind MobileNet are depthwise
separable convolutions.

2 Models

2.1.1 Depthwise Separable Convolutions

Most images have 3 input channels (RGB). Regular convolutions apply a
filter over all 3 input channels and output a weighted sum of the input
pixels over all 3 channels. See figure 2.1.

The depthwise separable convolution instead consists of two separate steps.
The depthwise convolution and the pointwise convolution.

The depthwise convolution performs a 2D convolution on every channel
separately. See figure 2.2. In a second step these 3 channels get combined
with a pointwise convolution. This is a regular convolution with 1x1 kernel.
See figure 2.3.

glgieidiz e

Figure 2.1: Regular Convolu- Figure 2.2: Depthwise Con- Figure 2.3: Pointwise ~Con-
tion, Image from volution, Image volution, Image
(3] from [3] from [3]

Splitting these two operations have a similar result, but the computation is
much faster. In [4] it is shown that the speedup for 3x3 kernels is about the
factor of 9, with similar results on accuracy.

The MobileNet architecture consists of 14 layers in total. The first layer
is a regular 3x3 convolution with 32 filters. The following 13 layers are
depthwise separable convolutions with 3x3 filters and a stride of 1 or 2.

2.2 Object Detection

For object detection the Single Shot MultiBox Detector (SSD) architecture is
used. [7]

2 Models

The SSD architecture is able to run in real-time and achieves similar accuracy
like other object detection networks. In [7] it is shown that SSD is faster than
Region-CNN (R-CNN), Fast-R-CNN and Faster-R-CNN, reaching similar
accuracy.

The name of the SSD architecture comes from:

Single Shot
Classification and object localization are done in a single forward pass
network.

Multibox
Is a technique used for bounding box regression. In SSD this technique
is enhanced by choosing fixed priors.

Detector
The detected objects also get classified into certain classes.

In SSD fixed priors are chosen. Two examples for a 8x8 grid and 4x4 grid
can be seen in figure 2.4. Every feature map cell has default bounding boxes
of different aspect ratios and size associated. For every prior the delta to
the bounding box together with the confidence of the predicted class is
calculated.

I
[]
rl= = I —
49 —h, ! | ' |
i I ||l: L.
Pt [I Bl B
3 il O =] e [JTEl IR BV M
iy et PO R j_____!d
o= 1
:_:_ll_;l-:-|: */—-—_ I e
gz
3 =] loc : A(cx, cy, w,h)
conf : (c1,¢2, -+, ¢p)

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Figure 2.4: SSD default boxes, Image from [7]

The bounding boxes get calculated at 6 different scales. For the first scale 3
different aspect ratios are used. For the following scales 6 different aspect
ratios are used.

2 Models

As a base network to generate the feature maps also MobileNet described
in section 2.1 is used.

2.3 Classification

For the classification also the MobileNet network, described in section 2.1
is used. The output of the MobileNet is a vector of dimension 1024. The
classification is done by placing a fully connected layer with 3 output classes
as the last layer. The classes that can be detected are stair, pavement edge
and wall.

During training the sigmoid activation function was used. Therefore for
each class the output can be between o and 1. A single image can therefore
be classified in multiple classes.

Often in classification also the softmax activation function is used. In that
case the sum of all values add up to one. There is only one class that has
high values at a time. To be able to not detect any class, a “empty” class is
added.

3 Intel Movidius Neural Compute
Stick

Intel Movidius Neuronal Compute Stick (NCS) is a chip specialized for
the inference of Deep Neural Networks (DNN). It offers high performance
and very good power efficiency. With the help of the NCS state-of-the-art
computer vision applications can run on embedded devices. [6]

The Intel Movidius is a so called Vision Processing Unit (VPU) which allows
highly parallel programmable computing with workload-specific hardware
acceleration. The chip consists of 12 SHAVE cores. SHAVE cores support a
mixture of different types of instructions. [19]

In contrast to the GPU the VPU does not contain specialized hardware like
rasterization or texture mapping.

The chip is available in regular chip packages to include it into custom
applications. For fast prototyping the NCS is perfect. It includes the chip
with the needed peripherals in the form of a USB stick. The NCS is shown
in figure 3.1.

Before an inference can run on the NCS, existing network typologies, includ-
ing the weights and biases, need to be compiled. Currently there are two
different frameworks available to do that. These frameworks are described
in section 3.1 and 3.2.

3.1 NCSDK

The Neural Compute SDK (NCSDK) consists of tools which allow you to
build custom applications with the Neural Compute Stick. A graphical

3 Intel Movidius Neural Compute Stick

Movidius

Neural Compute Stick
=
S

Figure 3.1: Intel Movidius Neuronal Compute Stick (NCS), Image from [6]

overview of the tool set is given in figure 3.2.

Neural Compute Stick Development Host Neural Compute Stick Prototyping Host
compiled +

SDK Tools SDK API

PROFILING, TUNING, AND COMPILING

Figure 3.2: NCSDK Workflow, Image from [9]

The training of the network is done on the GPU of a host PC. It can be done
with the frameworks Caffe or Tensorflow. The model definition together
with the corresponding weights are then converted into an intermediate
format for the stick. This is done with the mvINCCompile tool. The output
is a .graph file which can be later loaded on the stick for inference. Using
mvNCCompile one can check if the network behaves the same on the NCS
as on the host PC. mvNCProfile can check how long each layer takes to
compute.

As soon as the network is compiled the NCAPI can be used for inference
on the stick. The API is available for Python an C++. The .graph file can be
loaded to the Neural Compute Stick and an inference can be started. At run

3 Intel Movidius Neural Compute Stick

time all the original models and weights are not needed anymore, as all the
information is included in the .graph file. If the network is updated and the
input and the output layers stay the same, only the .graph file needs to be
replaced.

The model of the classification, described in section 2.3, was converted with
the NCSDK compiler.

3.2 OpenVINO

During the realization of this master thesis Intel offered a new framework
which is compatible with the NCS. [5]

Open Visual Inference and Neuronal Network Optimization toolkit (Open-
VINO) is a tool which allows developers to achieve improved neural network
performance on a variety of Intel processors to allow real time vision ap-
plications. The toolkit enables deep learning inference among different
hardware.

The general idea of the OpenVINO Toolkit is that models from different
deep learning frameworks such as Caffe, Tensorflow, MXNet, Kaldi and
more, are converted into an intermediate format. This intermediate format
can then be used for inference on all kinds of different hardware. Among
the supported hardware the Neural Compute Stick is also included. At the
time of the writing of this thesis the following hardware is supported. [10]

Intel® CPU

Intel® Processor Graphics

Intel® FPGAs

Intel ® Movidius™ Neural Compute Stick
Intel® Gaussian Mixture Model

The workflow is similar to the method used by the NCSDK (see section 3.1).
A graphical model is shown in figure 3.3.

First a model is trained with one of the supported frameworks. For this thesis
Tensorflow models which were already trained for this specific problem

3 Intel Movidius Neural Compute Stick

User
Application

Inference

xml Engine
.bin

v

Figure 3.3: OpenVINO Workflow, Image from [10]

were used. The OpenVINO framework then offers two tools, the model
optimizer and the inference engine.

Model Optimizer

The model optimizer creates the intermediate representation of the
trained model. It takes the network topology and the weights as
input and automatically adjusts the deep learning models for optimal
execution. The output of the model optimizer is independent of the
hardware used for inference. The layers used by the model need to be
supported by the model optimizer. The model optimizer supports the
following frameworks.

Caffe
TensorFlow
MXNet
Kaldi
ONNX

The intermediate representation describes the model with two files:

.xml describes the topology of the network.
.bin contains the weights and biases in form of binary data.

Inference Engine
The inference engine takes the intermediate representation, which
was generated with the help of the model optimizer as an input. The
inference engine offers a unified API to integrate with the application
logic. Furthermore, it optimizes the inference for the execution at the

10

3 Intel Movidius Neural Compute Stick

targeted hardware. The inference engine also runs on a Raspberry P,
and is optimized for embedded platforms.

The OpenVINO framework is used for the object detection model, which is
described in section 2.2.

3.3 Comparison of the NCS vs. NCS 2

During the writing of the thesis Intel released the successor of the Neural
Compute Stick (NCS), the Neural Compute Stick 2 (NCS 2).

The NCS 2 is based on the new Intel® Movidius™ Myriad™ X VPU,
whereas the NCS was based on the Intel® Movidius™ Myriad™ VPU.

Intel claims that the NCS 2 is up to 8 times faster than the NCS. To see if
a speedup for the networks used in this thesis can be achieved, the NCS 2
was purchased. However, no real speedup for the used networks could be
seen.

Myriad 2 Myriad X

SHAVE Cores 12 16
Enhanced ISP with 4K support no yes
Vision Accelerators including Stereo Depth no yes

Table 3.1: Comparison of NCS vs NCS2

3.4 Different form factors of Myriad VPUs

The Myriad VPUs are built to enable energy-efficient and fast inference on
embedded devices. However, the inference on this special VPUs are more
energy-efficient than on a GPU or a CPU. This could also be a reason to use
the VPUs in regular computers or servers, where the inference is usually
done on the GPU or on the CPU.

11

3 Intel Movidius Neural Compute Stick

The company AAEON UP focuses on bringing the Myriad VPUs into regular
computers. They offer one or more chips on an expansion board which can
be easily connected over mPCle, M.2 2230, M.2 2242, and M.2 228o.

Figure 3.4: AAEON UP AI Core X

My personal opinion is, that in future we will see VPUs like the Intel
Movidius Myriad integrated into regular computers or smartphones by
default. As Intel already has frameworks like OpenVINO to support efficient
inference on different Intel devices and they also own the Movidius VPUs, it
would be easy for them to package an Intel VPU together with an Intel CPU
into a single chip. This could be an additional boost for the deep learning

hype.

12

4 Implementation

4.1 Hardware Setup

The hardware is shown in figure 4.1. It is a small portable device powered
by a rechargeable battery. In figure 4.1 it is shown in comparison with a pen
to get a feeling for the size of the device. Due to the small size, it would
be possible to integrate this hardware directly into a mobile system like a
small robot. However, that is not part of this thesis.

T———

Figure 4.1: Hardware in comparison with a pen

13

4 Implementation

The basis of this device is a Raspberry PI (RPI) with an Intel Movidius
Neural Compute Stick connected to the USB port of the RPI. The RASP
CAM2 camera is directly connected to the Raspberry PI over a serial MIPI-
Interface. The camera is able to take images with a resolution of 1080p @
3ofps, although this high resolution is not needed for the current use case.
As the object detection runs with about only 5 frames per second, the image
is also recorded with about 5 frames per second.

The Raspberry PI and the camera are mounted in a black case. The camera
sits on top of the case. The angle of the camera can be adjusted and turned
approximately 45 degrees.

The whole setup is powered by a 5 volt rechargeable battery. This makes it
much easier to carry the setup around and use it to create test pictures for
the evaluation in chapter 5. It also shows that the power consumption is low
enough to power the device for several hours. When connecting the power
pack to the Raspberry, it is important that a short and sufficiently thick cable
is used. When starting the inference the Neural Compute Stick shows a high
current flow. If the resistance of the cable is too high, the voltage drops and
the Raspberry PI reboots. This happened when a regular USB cable, usually
used to charge a phone, was used. However, when using the short and thick
cable no problems occurred anymore. In addition, make sure that the power
pack in use can deliver a current of at least 2A.

The hardware can be built even smaller when creating a custom Printed
Circuit Board (PCB). Doing this was not on the scope of this thesis. However,
a first start would be using a Raspberry Zero together with the Myriad™ 2
or Myriad™ X VPU. The software created in this thesis should run on this
setup without major modifications.

4.2 Converting the models

4.2.1 Classification

The classification network is based on MobileNet architecture, which is
described in section 2.3. To convert the network the NCSDK toolkit is used

14

4 Implementation

which is described in section 3.1.

The mvNCCompile tool needs a frozen model file to create the graph file
which then can be used for inference.

To create the frozen model for inference the graph definition file containing
the network architecture and the checkpoint file containing the weights and
biases of the model is needed.

To get the graph definition file the export_inference_graph.py function from
the Tensorflow repository is used. The following command was used to
create the graph definition file.

export_inference_graph.py —alsologtostderr —
model_name=mobilenet_vi batch_size=1 dataset=
imagenet —image_size=224 —output_file
mobilenet_vi_1.0_224.pb

In the next step the model definition file together with the checkpoint file is
used to generate the frozen model. The following command was used to
create the frozen model.

python3 ~/ncappzoo/tensorflow/tf_src/tensorflow/
tensorflow /python/tools/freeze_graph.py —
input_graph=mobilenet_vi_1.0_224.pb —input_binary=
true —input_checkpoint=model.ckpt —output_graph=
mobilenet_vi_1.0_224_frozen.pb —output_.node_name=
MobilenetV1i/Predictions/Reshape_1

This frozen model can then be used to compile it for the NCS with the
mvINNCCompile tool.
mvNCCompile —s 12 mobilenet_-vi_1.0_224_frozen2.pb —in=

input —on=MobilenetV1i/Predictions/Reshape_1

The result is a graph file which contains the model definition and the
weights. This graph file can be loaded on the Neural Compute Stick and
used for inference.

15

4 Implementation

4.2.2 Object Detection

The object detection network is based on SSD MobileNet, which is described
in section 2.2. To convert the network the model optimizer of the OpenVINO
toolkit described in section 3.2 is used.

The original model, which was trained by Dipl.-Ing. Christian Ertler, bases
on the SSD MobileNet Coco network from the Tensorflow detection model
z00. [8] The pre-trained frozen model was taken from his last experiment
from the 14th of June of 2018. It can be found in the following folder of his
project.

/walkassist_object_detection/experiments/2018-06-14_17-44-15/evaluation/
frozen_infreence_graph.pb

The OpenVINO model optimizer supports converting models from the
official Tensorflow detection model zoo. [12] The command line tool of the
model optimizer supports many parameters that need to be set correctly to
convert the model:

—input-model
Is the path to the pre-trained frozen model file. The file was used
without modifications from Dipl.-Ing. Christian Ertler.
—tensorflow_use_custom _operations_config
This file describes the rules how to convert Tensorflow topologies.
For several common topologies files have been recreated by Intel. It
was not able to convert the network using the files created for SSD
topologies from the model zoo. Later it was found out that it was not
working due to the use of an old version of SSD MobileNet Coco.
—output
Allows to cut off the topology. The output of this network will be the
node names detection_boxes, detection_scores, num_detections.
—data_type
This parameter needs to be set to FP16 when compiling for the Intel
Movidius NCS. When running the inference on the CPU, this parame-
ter must not be set.

After changing several parameters in the custom operations configuration
file, the network still did not compile without any errors. The network used

16

4 Implementation

by Dipl.-Ing. Christian Ertler is based on the ssd_mobilenet v1_coco_2017_-11_17
version. The conversion was possible without any problems for the slightly
newer version ssd_mobilenet_v1_coco_2018_01_28 with the current framework
at that time OpenVINO 2018 R3.

After returning to the OpenVino 2018 R2 (2018.2.300) version and using the
corresponding custom operation files for the SSD typology the conversion
was possible.

The conversion on a regular computer takes about 10 seconds. A frozen_inference_graph.bin,
frozen_inference_graph.xml and frozen_inference_graph.mapping is generated,
which will be used for inference then.

The following command was used to convert the model. All paths and
parameters are included to easily reproduce it. In order to compile for the
CPU, the data_type parameter needs to be removed.

“/intelr2/computer_vision_sdk_2018.2.300/
deployment_tools/model_optimizer/mo_tf.py —
input_model “/walkassist_object_detection/object—
detection/experiments/2018—-06—14_17 —44—15/evaluation
/frozen_inference_graph.pb —
tensorflow_use_custom_operations_config ~/intelrz/
computer_vision_sdk_2018.2.300/ deployment_tools/
model_optimizer/extensions/front/tf/ssd_support.json
—output="detection_boxes ,detection_scores,
num_detections” —data_type FP16

4.3 Application

The application running on the Raspberry PI consists of four modules
written in several programming languages. The different modules, running
in separate processes, communicate over ZeroMQ (ZMQ) [20].

ZeroMQ allows to connect code over any platform and supports messaging
patterns like publisher-subscriber. ZMQ carries messages across inproc, IPC,
TCP, TIPC or multicast. In this thesis TCP is used.

17

4 Implementation

The four main parts of the software are the following:

Camera Publisher
The camera publisher reads the frames from the RPI camera and
publishes them.

Inference Publisher
The inference publisher reads the frames from the camera publisher
and runs the object detection on the Neural Compute Stick.

Web Server
The web server reads the results from the inference publisher and
serves a web page to the user. It publishes the inference results over
a websocket connection and creates a video stream of the processed
images.

Web Application
The user can open the web application on a phone, PC or tablet. The
web application shows the live image stream already with the inference
results and gives feedback to the user through vibrations as well as
spoken notifications. To save bandwidth the built-in text-to-speech
engine of the browser is being used.

In figure 4.2 a graphical overview of the application is given. The communi-
cation between the three processes running on the Raspberry PI is done with
ZMQ TCP connections. The communication between the web application
and the web server is done with a websocket connection.

The camera and the NCS are directly connected to the Raspberry PI. The
web application runs on an external device (smartphone, tablet or PC) and
is the interface to the user. The communication with the web server is done
over WiFi. There are basically 3 ways how the WiFi connection between the
mobile device and the Raspberry PI can be established. Each of them has
different advantages and disadvantages.

Raspberry creating WiFi
The Raspberry creates a WiFi network and every mobile device can
connect to this network to establish a connection with the web server.
The main advantage is the very easy setup, as the user just needs
to connect to the WiFi, and the IP of the Raspberry can be static.
The disadvantage is that the WiFi of the Raspberry does not have

18

4 Implementation

Camera

}_m Publisher

Inference _i V\{,_F_, ____________] .
Publisher : . > Webapplication

zMQ

zvMa

A
\ 4

Movidius NCS : :
Webserver [€-----t---------- .

Raspberry PI Smartphone

Figure 4.2: Overview of the application

a connection to the Internet. Most smartphones, when connected to
a WiFi, try to route all the traffic through the WiFi. Therefore the
smartphone also loses connection to the internet. Other services such
as WhatsApp, Google Maps or others will stop working.
Smartphone creating Hotspot
The smartphone or a different mobile device creates a WiFi network.
The Raspberry connects to it. The user then browses to the IP address
of the Raspberry to start the web application. The advantage in that
case is that the Raspberry, as well as the smartphone have internet
connection. The disadvantage is that the setup process is a bit more
complex. First of all, the WiFi credentials of the hotspot need to be set
on the Raspberry PI. And secondly the IP-address that the Raspberry
got over DHCP needs to be known. However, most smartphones show
the IP-addresses of the connected devices.
Connection through the Internet

The Raspberry PI and the smartphone could also have independent
connections to the Internet. For example, by having the Raspberry
connected to a public WiFi or connecting a modem with a SIM card.
Both, the Raspberry PI as well as the smartphone, can connect to a
relay server. All the traffic is routed through this relay server. The

19

4 Implementation

advantage is that remote computers and smartphones can also connect
easily. The disadvantage is that a lot of mobile data and good cellular
connectivity is needed, as also the image of the camera is transferred
via the Internet.

In this thesis the second option - smartphone creating hotspot - was chosen.
The reason for this is that it makes sense to have a direct connection between
the smartphone and the Raspberry. In the first case - Raspberry creating
WiFi - the smartphone as well as the Raspberry would not have an internet
connection. This was considered as a big disadvantage.

If the Raspberry would also have internet connection, the system could be
enhanced with some additional features. In case the object detection fails or
a person or robot needs assistance on the road, a connection to a helpline
can be established. This can be triggered by shaking the smartphone or some
other easy command. The helpline can access the image of the Raspberry
camera and guide the robot or person over voice. As long as computer
vision methods are not perfect yet, this hybrid mode is a very interesting
one.

4.3.1 Camera Publisher

The camera publisher records the image of the Raspberry’s camera and
publishes the frame so that the inference publisher can read it and perform
the inference on it. This module is written in C++.

For this application it is very important that the user or robot gets a noti-
fication in real time, for example, when a car appears in the picture. It is,
therefore, critical that there is no delay introduced anywhere in the system.
The next processing step needs the frame in the format of an OpenCV frame
to pass it on for inference.

When capturing the frames with the standard python library picamera in the
tests, the image was always 2-3 seconds delayed. As mentioned above this
is not suitable for this application. [13]

Several other approaches and libraries were tried out, but they all had
similar issues. The open source C++ library RaspiCam is used in this thesis

20

4 Implementation

to read the Raspberry’s camera. This library works best and does not add
any delays, which is critical for the purpose of this project. [14]

In listing 4.1 the Raspicam_CV object is created and the ZMQ publisher to
publish the frame on TCP port 5559 is set up. The object detection network
was trained for a resolution of 500 x 500 pixels. Therefore, the inference is
done with a similar resolution. Moreover, the final stream transferred to the
web application should not have a resolution which is too high. Otherwise,
too much bandwidth is needed to transfer the image and the application
lags. Therefore, the image is captured at a resolution of 640 x 480 pixels.

raspicam :: RaspiCam_Cv Camera;
Camera. set (CV_.CAP_PROP FRAME WIDTH, 640); //320
Camera. set (CV_.CAP_PROP_ FRAME HEIGHT, 480); //240

Mat frame;
zmq:: context_t context(1);

zmq:: socket_t publisher (context, ZMQPUB);
publisher .bind (“tcp://*:5559");

Listing 4.1: Camera Publisher initialization

In listing 4.2 the main loop of the camera publisher is shown. It grabs an
image from the camera, displays it for debugging reasons and publishes the
frame with ZMQ. The frame object is copied with memcpy and transferred
in binary format. The total length of the object is calculated by multiplying
the number of pixels by the number of channels.

for (;;) {
Camera. grab ();
Camera. retrieve (frame);
imshow (”Camera_Publisher _Frame”, frame);

int len = frame.total () * frame.channels ();
zmq:: message_t message(len);

memcpy (message.data (), frame.data, len);
bool rc = publisher.send(message);

21

4 Implementation

int k = waitKey (10);

if(k == "q"){
break;
}

Listing 4.2: Camera Publisher Main Loop

The Raspberry camera is not conncted like a regular USB camera. So there
is no /dev/videoO or similar device file. If regular USB cameras were used,
the standard OpenCV functions to read from a camera could be used. In
case one wants to exchange the camera, only the camera publisher needs to
be modified and the image will be published to Port TCP 5559. The rest of
the software stays identical.

In chapter 5 different viewing angles of the camera are evaluated. It turns out
that the viewing angle from the bottom is better for some objects, whereas
the viewing angle from the top is better for other objects and networks. In
further steps more than one camera could be connected. For example, one
from above and another one from underneath. One camera could even be
placed from behind, to warn people or robots of bikes, cars or other objects
coming from behind.

The camera publisher always needs to be started. Otherwise the input for
the other modules is missing. The module is started by running the script
run.sh. To compile the module use cmake. The provided CMakeLists.txt
file links OpenCV, RaspiCam and ZMQ to the executable. The according
libraries need to be installed first.

4.3.2 Inference Publisher

The inference publisher does the actual inference on the Neural Compute
Stick. It receives the recorded image from the camera publisher on port
5559. It processes the image and publishes it together with the bounding
boxes of the detected object on Port TCP 5558. The meta data of the detected
bounding boxes (coordinates, probability and class) are also published on

22

4 Implementation

port TCP 5557. All this information will be available in the web applica-
tion afterwards and the user can decide for which objects and for which
minimum confidence level they want to be warned.

For the inference the model files generated in section 4.2 are needed. The
original model is not needed at run time. The content of the model files
used is described in table 4.1.

File Content

frozen_inference_graph.bin The weights and biases of the trained model.
frozen_inference_graph.labels The names of the labels of the model.
frozen_inference_graph.xml = The network definition of the model.

Table 4.1: Files of the saved model for inference

The code is based on the object_detection_demo_ssd_async example from the
OpenVINO inference engine samples. [11]

The code is written in C++ and the inference is processed asymmetrical. This
boosts the performance as the second image is loaded while the inference
of the first image is done.

In listing 4.3 a OpenCV Matrix is created and a subscriber listening on TCP
port 5559 is opened. The ZMQ_CONFLATE option ensures that only the
last message is kept in the receiving queue. So always the newest available
frame gets processed. This is important to keep the latency low, to achieve a
real time notification of dangerous objects.

cv::Mat curr_frame (480, 640, CV.8UC3);
cv::Mat next_frame (480, 640, CV.8UC3);

zmq:: context_t context(1);

zmq:: socket_t subscriber (context, ZMQSUB) ;

int conflate = 1;

subscriber.setsockopt (ZMQCONFLATE, &conflate,
sizeof (conflate));

subscriber.connect(”tcp://localhost:5559");

subscriber.setsockopt (ZMQSUBSCRIBE, ””, o0);

Listing 4.3: ZMQ receiver setup for image

23

4 Implementation

In listing 4.4 the actual image is received and copied over to the OpenCV
matrix. No conversation is needed. The binary data can be used as it is, as
the used data structure is the same. Tests showed that in this case this is the
best way of sending an image. Converting it to JPEG and decoding it again
does not only lower the quality of the image, but also makes the application
slower.

zmq:: message_t message;
subscriber.recv(&message) ;

memcpy (curr_frame .data, message.data (), message
.size());

Listing 4.4: ZMQ receiving of image

In the code all the setup needed to prepare an inference is done. The most
important steps are the following;:

Load Plug-in for Inference Engine
The OpenVINO Framework supports different hardware for inference.
This code works with different hardware. In the standard case the
plug-in for the NCS is loaded.

Read IR Generated by Model Optimizer
In the next step the intermediate representation generated by the
model optimizer is read. The files read are also described in table 4.1.

Configure Input and Output
The input and output blobs are configured to accept an image and
return the results of the SSD.

Loading Model to the Plug-in
The model is loaded to the plug-in. When the plug-in used is the
NCS, the intermediate representation is transferred to the Neural
Compute Stick. One could say that the Neural Compute Stick is now
programmed to do the inference.

Create Infer Request
The inference request is generated.

Do Inference
In an endless loop the next image will be taken and the inference will
be started. The result of the inference is written in an array which is

24

4 Implementation

then published. Also the image gets edited so that the bounding boxes
can be seen together with the labels in the image. This edited image is
also published via ZMQ.

The output of the inference for each frame is a list of possible objects. Each
result in the list includes the following data.

Image ID

Label (car, bus, person, bike, motorcycle, dumpster)
Confidence

Coordinates (xmin, ymin, xmax, ymax)

All possible objects are published. Later on, in the web application the inter-
esting classes can be filtered. Also the user can set from which confidence
level onward one would like to be notified of objects.

Compiling for the Raspberry

The code should be running on the Raspberry. While running the compiler it
is important to set the DCMAKE_CXX_FLAGS and to set the target platform
to armvz-a, which is the chipset that powers the Raspberry.

The listing 4.5 shows a bash script with which the code can be compiled for
the Raspberry.

#!/bin/bash

build _dir=$PWD/build

mkdir —p $build_dir

cd $build _dir

cmake .. —DCMAKE BUILD_TYPE=Release —DCMAKE CXX FLAGS="
—march=armvy—a”

make —j2 object_detection_demo_ssd_async

Listing 4.5: Build Script for Object Detection Inference

Also this module uses cmake to generate the make file.

25

4 Implementation

Running the Module

For inference different hardware can be used. In this thesis we focus on
the Intel Movidius Neural Compute Stick. However, using the OpenVINO
Framework the inference can also be run on the GPU or on the CPU.

In listing 4.6 the bash script to run the inference on the Neural Compute
Stick is shown. The option -d MYRIAD is important to run the inference on
the Neural Compute Stick. Other options for -d would be:

CPU
GPU
FPGA
HDDL
MYRIAD

#!/bin/bash

./ build /armvyl/Release/object_detection_demo_ssd_async
—i cam —m model/frozen_inference_graph.xml —d MYRIAD

Listing 4.6: Script to run Object Detection Inference

4.3.3 Web Server

On the raspberry a web server is also running. The user can connect to this
web server to open the web application which is described in section 4.3.4.

The web server serves the HTML, CSS and JavaScript files, but also the
dynamic content like the livestream of the camera image and the data of
the current inference results.

This module is written in python, and Flask is used as the web server.

26

4 Implementation

Videostream

This web server receives the image from the inference publisher on port
TCP 5558. Also in this module ZMQ with the conflate option is used, to
only take the latest available inference result.

From the received image a live video stream is generated which can then be
played by the user with an HTMLj5 player in the web application.

The concept of building a video streaming server with flask was taken from
[2]. A separate camera class was implemented that takes the single images
from the ZMQ queue and returns them. This can be seen in listing 4.7.

class Camera(BaseCamera) :
"""An that streams images from ZMQ""”

@staticmethod
def frames():
context = zmq.Context()
socket = context.socket(zmq.SUB)

socket.connect(”tcp://localhost:5558")

socket.setsockopt(zmq.SUBSCRIBE, b’ ")
socket.setsockopt (zmq.CONFLATE, 1)

for i in range(1,3000000):
msg = socket.recv(o, True, False)
buf = buffer(msg)
A = np.frombuffer(msg, dtype="uint8”)
B = A.reshape((480, 640, 3))

yield cvz.imencode(’.jpg’, B)[1].tobytes ()

print ”"Done”
cvz.destroyAllWindows ()

Listing 4.7: Camera Class for Flask Video Streaming

27

4 Implementation

Static Pages

The web server will also serve the static content for the web application,
like the images, CSS and JavaScript files. In section 4.3.4 it will be discussed
more about these files and their functionality.

The file index.html is the start page of the web application. It is also a static
page which gets served by the flask web server.

websocket

All the inference results get published to the web application over a web-
socket connection.

Websockets are based on TCP and are a bidirectional connection between
the web browser (web application) and the web server. Websockets allow
the web server to push new information to the web client, without the web
client asking for new information or reloading the page. This feature is
extremely useful on this project to provide the user with a live connection.

In listing 4.8 every received message from port 5557, gets published on the
websocket connection and can then be received by the web application. The
websocket part is running in a separate thread, so that the application can
still serve the static content at the same time.

All the clients connected to the websocket server receive the same mes-
sages.

def update_thread ():
while True:
#socketio.emit (' message ', "was gekommen)
#time.sleep (5)
socket = context.socket (zmq.SUB)
socket.connect(”tcp://localhost:5557")
socket.subscribe (")

while True:
update = socket.recv_string ()

28

4 Implementation

print update
socketio.emit('message’, update)

Listing 4.8: Websocket Server

Shutdown Event

When powering the device (connecting it to the power pack) the operating
system starts and all the modules of the application get started automatically.
It is described in more detail in section 4.3.5.

As there are no buttons or other input methods on the Raspberry itself,
there is no way to tell the Raspberry that it should switch itself off again.
In the case of just disconnecting the power bank, the file system can get
corrupted, so that a boot would then not be possible anymore.

For this reason, in the web application there is a designated button to switch
of the Raspberry. By browsing to the IP of the device and making a GET
request to the route /shutdown, the device will switch off.

4.3.4 Web Application

The web application is the interface to the user. In the web interface the user
gets all the important information and feedback, that the network generates
for him. An spoken description of the image is given. Optionally a vibration
can be generated as soon as certain class appears.

Additionally, the web application serves as a configuration tool for the user.
The user can activate and deactivate the speech and vibration output for
separate classes. Also, the minimum time between notifications can be set
dynamically. The default value for a notification of the presence an object
is a confidence level of 50%. This can be lowered by people who want
to be notified earlier, but it can also have the risk of getting more false
notifications.

29

4 Implementation

User Interface

The user interface is very clean and easy to use. It is responsive and, there-
fore, can be used on every screen size. Most of the time the interface will be
most probably used on a smartphone.

In figure 4.3 a screenshot of the application on a smartphone can be seen.
In the center the live image, recorded by the camera, can be seen. In this
example there is a person and two cars in the picture and the objects are
clearly identified and marked with a red bounding box.

On top of the image there are icons of all the possible classes (bus, car, bike,
motorcycle, person and dumpster). As soon as one of these objects appears
in the image, the corresponding icon turns green, indicating that at least
one object of this class has been recognized in the image. If more than one
object of the same class is in the image, the number below the icon indicates
it accordingly.

Below the image there are messages in the form of a chat. It shows the
history of the object detections. When a new object is detected, a new
message describes what can be seen in the image. For instance, in this case
the message says: “Be careful there are two cars and a person.” This message
will also be spoken in the case that the corresponding settings is enabled.

In figure 4.4 the settings sidebar is shown, in this case, on a smartphone
screen. At the top the user can set the confidence level sliding the bar. Only
bounding boxes with a higher confidence than the set one are shown to the
user. Also notifications (text-to-speech output and vibrations) will only be
given if the confidence level is high enough.

The user is also able to switch on and off the text-to-speech output and the
vibration output for all the different categories.

When walking in a busy or crowded place, a lot of objects will be detected.
In order to avoid giving too many notifications in very a short time, hin-
dering the user experience, the user can set a minimum time between that
must elapse between notifications. This time can be set between 2 and 20
seconds.

30

4 |mplementation

=) E 9% & 15:
@lo - $ 5 il 35% B15:42 ©0 $ 4 430%E 1538

® 0 © 192.168.43.227:5000 ®

O © 192.168.43.227:5000

Settings

alk Assistant

Confidence level

Text to speech

Vibration
Bus ()
Car(---9)

Motorcycle (--)

B Messages
\ Person (- --)

v V - < - l' "_;‘)_' - -4
Messages Be careful

Minimum time between

Be careful thereisa

.
[
OOpQpQg

Dumpster (-)

Be careful there are two cars and a person. notifications (2- 20 Be careful
seconds)

Be careful there are two cars and a person.

Be careful there are two cars. Submit

Be careful there are two cars.

Figure 4.4: Screenshot of Application with

Figure 4.3: Screenshot of the Application opened Menu

31

4 |mplementation

In figure 4.5 the same web application is shown on a PC with bigger
screen size. In that case the settings navigation is always visible to the user.
Moreover, the messages are shown at the right side of the image, instead
of below the image. Thanks to this setup, more messages are visible at the
same time and the livestream image is bigger, using the space in an optimal
way.

The whole menu is also enabled with keyboard navigation. More about this
is written in the section about accessibility below.

‘Walk Assistant

Messages

Settings
Confidence level

 Be careful there is a person.
Text to speech h .
Be careful there is a person.
Vibration

Be careful there is a person.
Bus(----)
Car(---) Be careful there is a person.
Motorcycle (- -)
) Be careful there is a person.
Bike (- -)

Person (- - - °) Be careful there is a person.

opopoopoQ

Dumpster (- -)
Be careful there is a person.

Minimum time between B ful th .
e careful there is a person.
notifications (2 - 20 P

seconds))
Be careful there is a person.

Senden Be careful there is a person.

Be careful there is a person.

Be careful there is a person.

Figure 4.5: Screenshot of the Application on a PC

CSS and Bootstrap
The application is styled with CSS. The library bootstrap is used to create a

responsive design, allowing the web page to adapt to every screen-size. See
figure 4.2 and figure 4.5 for a comparison.

32

4 Implementation

Websocket Client

The web server described in section 4.3.3 also implemented a web server
socket with socket.io. [15] This websocket connection is used to push new
inference data to the web application. This way it is possible that the icons
are updated in real time and that the user gets immediate notifications over
vibrations or text-to-speech, without any delay.

Socket.io also offers a JavaScript File to include into the web application.
The web application then connects to the web server.

In listing 4.9 code is shown which receives the proposals over the websocket
connection. As soon as the JavaScript file is completely loaded, the browser
connects to the websocket which is running on the same domain and port
as the current window is opened. When the connection is established the
browser sends “I am connected” to the server. As soon as a message of type
“message” is received the received content is parsed as JSON. In the field
"proposals” the proposals are found.

$(function () {
var socket = io.connect("http://’ + document.domain +
"’ + location.port);

socket.on(’connect’, function() {
socket.emit('my event’, {data: 'I\’m connected
')
13F

socket.on(’'message’, function(message) {
console.log (”message._received”);
console . log (message) ;
var obj = JSON.parse (message) ;
console.log(obj[proposals ']);

1)

Listing 4.9: Websocket Client

33

4 Implementation

In the real code this proposals are not printed to the console log, but they
are used to update the icons and generate the notifications. By doing so the
configurations (confidence, vibrations enabled and text to speech output)
will be taken into consideration.

Accessibility in Webdesign

As this web application should also be usable as a mobile assistant system, it
is especially important that the web application is optimized for accessibility.
Accessibility is key in the design of products for people with disabilities
and in general helps to interact with the computer.

The user output in this thesis will be done with speech and vibrations. This
will be described in detail in the sections below.

But for the users it is also important to be able to use the settings of the web
application as well as understand them. Therefore, the web application and
the menu especially needs to be accessible. In this thesis the web application
was done according to the Web Content Accessibility Guidelines (WCAG).
This guidelines were published by the Web Accessibility Initiative (WAI) of
the World Wide Web Consortium (W3C).

The WCAG is organized in 4 principles with several guidelines. [18] This
principles are met in this thesis. The web application can, therefore, be used
by an impaired person.

Perceivable information and user interface components must be presentable
to users in ways they can perceive those.

e Provide text alternatives for any non-text content so that it can be
changed into other forms people need, such as large print, braille,
speech, symbols or simpler language.

e Provide alternatives for time-based media.

e Create content that can be presented in different ways (for exam-
ple simpler layout) without losing information or structure.

e Make it easier for users to see and hear content including sepa-
rating foreground from background.

Operable user interface components and navigation must be operable.

34

4 Implementation

Make all functionality available from a keyboard.

Provide users with enough time to read and use content.

Do not design content in a way that is known to cause seizures.
Provide ways to help users navigate, find content, and determine
where they are.

Understandable information and the operation of user interface must be
understandable.

e Make text content readable and understandable.
e Make web pages appear and operate in predictable ways.
e Help users avoid and correct mistakes.

Robust content must be robust enough that it can be interpreted reliably
by a wide variety of user agents, including assistive technologies.

e Maximize compatibility with current and future user agents,
including assistive technologies.

Text-to-speech

The text-to-speech output will be done with the HTML5 Web Speech API
[17]. This is a HTML5 standard which is built into the browser. It is com-
pletely offline ready and,therefore, it also works, when the smartphone has
no connection to the internet.

The Web Speech APl is currently not supported by Safari or Internet Explorer.
In this thesis the system was always tested in a Chrome browser, either on
the PC or on an android smartphone. In future the Web Speech API should
be supported by all major browsers.

The Web Speech API does not only support speech synthesis but also speech
recognition.

In listing 4.10 the sentence from the variable sentence is synthesised into
speech and played over the speakers.

var msg = new SpeechSynthesisUtterance(sentence);
var voices = window.speechSynthesis.getVoices();
msg.voice = voices|[o];

35

4 Implementation

msg.rate = 1;
msg. pitch = 1;
speechSynthesis .speak (msg) ;

Listing 4.10: Speech Synthesis with Web Speech API

The sentence which is spoken describes the image in a grammatically correct
way. It includes the count and the name of the classes seen in the picture.
The structure of the sentence is the following:

"Be careful there (is/are) (a/two/three/.../many) (name of class in singular
or plural), (a/two/three/.../many) (name of class in singular or plural), ...,
(and) (a/two/three/.../many) (name of class in singular or plural)”.

Examples of sentences spoken by the device.

e Be careful there is a person.
e Be careful there are two persons, three cars and a dumpster.
e Be careful there is a person and a bus.

As mentioned before there is a minimum time between two notifications,
not to swamp the user with notifications. The time between notifications
can be configured in the web application.

Vibrations

Another way to notify the person about objects of the certain class, is
by vibrations. This may be more suitable than text-to-speech notifications,
especially if the environment is noisy or the person’s hearing is impaired. Of
course, the device in use needs to be able to produce vibrations. Vibrations
usually do not work on computers or tablets, but they work on most
smartphones.

As we are using a web application, the vibration API will be used. [16] The
vibration API allows to set the time of a vibration and the pause between the
vibrations in milliseconds. This way vibration patterns can be generated.

36

4 Implementation

In this thesis every class can be activated and deactivated for vibration
feedback. See the menu in figure 4.4. Morse code is used as vibration
patterns to communicate one letter per category.

The morse code is an international standard. The length of a dot (e) is one
unit. A hyphen (-) is three units. The space between parts of the same letter
is one unit. One unit in this thesis was defined with 200 milliseconds.

The following letters and vibration patterns are used for the classes:

Bus(-ess)
Car (-o-9)
Motorcycle (- -)
Bike (e o)
Person (e - - o)
Dumpster (- o o)

In listing 4.11 an example for the pattern of the category ‘bus’ can be seen.
The first number in the array is the duration of the vibration, the next
number is the break, the next one a vibration again. The numbers are in
ms.

navigator.vibrate ([600,200,200,200,200,200,200]);

Listing 4.11: Vibration Feedback with Vibration API

The vibration API works on Firefox, Chrome, Android Browser and Chrome
for Android. Again it does not work on Safari. Also, this function will not
work on iPhones.

4.3.5 Autostart

The device created in this thesis should be very easy to use. To start the
application only the power needs to be plugged. A start script will then
start all the modules needed. Firstly, the camera publisher will be started,
secondly, the inference publisher, and lastly, the web server.

37

4 Implementation

X-Windows-System is the window manager running on linux. The X-Server
handles all the communication accessing the computer screen. The applica-
tion will only start when the X-Server is already running. The X-Server also
has a startup script. This script is located in:

/etc/xdg/lxsession/LXDE-pi/autostart

The following line is added to the script in order to start the services:
@sh /home/pi/start.sh

Around 1 minute later, the Raspberry should be fully started and users can
connect with their smartphones or PCs to the web server.

38

5 Evaluation

In this chapter the results of the object detection and the classification
networks are evaluated for quality and inference time. Therefore, different
networks are compared on different hardware (CPU and VPU). Moreover,
the influence of the camera position on the detection results are evaluated.

5.1 Object Detection Model

The network, which was trained for the object detection task in this thesis,
is described in detail in section 2.2. It is based on a the SSD Mobilenet V1
network. The network was pre-trained with the Coco dataset and afterwards
trained with specific images, which were made with a camera positioned at
ground level. The network was trained to detect the following categories:

e person
e bicycle

e car

e motorcycle
e bus

e dumpster

The Common Objects in Context (Coco) dataset [1] is a large-scale object
detection, segmentation, and captioning dataset. It has over 8o object cate-
gories and over 200.000 labeled images. All the classes used in this thesis,
except the class dumpster, are already included in the Coco dataset.

In the evaluation also different networks will be used. The networks are
described here to know which exact networks were used and compared
with each other.

39

5 Evaluation

Assistant System
This network is the network which was trained by Dipl.-Ing. Christian
Ertler for this specific task. He used the SSD MobileNet V1 which was
already pre-trained on the Coco dataset as a base network and used a
custom dataset to further train the network.

SSD MobileNet V1 Coco
The network is the same as the network used for the assistant sys-
tem. Only the weights are different, as it was not trained with the
images from the assistant system dataset. It also knows 8o classes,
instead of the 6 classes used for the assistant system. In contrast to
the assistant system network, the class dumpster is not known by
this network. The used version is the version from 17th November
2017. The frozen model including the weights can be downloaded
here: http://download.tensorflow.org/models/object_detection/
ssd_mobilenet_vl_coco_2017_11_17 .tar.gz

5.1.1 Time for Inference on VPU vs CPU

As this application gives notifications about objects for assistant systems
or robotics, one very important characteristic of this thesis was to create a
system which is capable of running in real time. Therefore, the inference
time for the different networks was tested on the CPU and on the Vision
Processing Unit (VPU). The results are summarized in table 5.1.

Network Run time in ms | FPS

CPU VPU CPU | VPU
Assistant System 104 ms | 216 ms | 9,61 | 4,63
SSD MobileNet V1 Coco | 340 ms | g9 ms | 2,94 | 10,10

Table 5.1: Comparison of inference time

In the table 5.1 it can be seen that the standard assistant system network
runs with about 4,6 fps on the VPU. This means that the application can
run at a reasonable frame rate even on small embedded systems like the

40

http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2017_11_17.tar.gz
http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2017_11_17.tar.gz

5 Evaluation

Raspberry PI thanks to the help of the Intel Movidius Neural Compute
stick.

For applications such as self driving cars or similar ones, 4,6 fps are not
enough. However, for people walking on the street this seems a reasonable
frame-rate.

The CPU used for the tests in this thesis is an Intel Core i5-3317U running
at 1.70 GHz. Interesting to see is that the assistant system network is
running faster on the CPU than on the VPU by about the factor 2. Of course,
when using a weaker CPU identical to the one from the Raspberry 3+, the
ARM Cortex-A53 running at 1.4 GHz, the inference would probably take
longer. Exact numbers cannot be determined, as the OpenVINO framework
currently only supports Intel CPUs.

Another interesting fact is that the SSD MobileNet V1 Coco network runs
faster than the assistant system model on the VPU, although the assistant
system model supports less classes and the rest of the architecture is the
same. The inference is twice as fast and takes only 99 ms, compared to 216
ms.

On the CPU the behaviour is exactly the opposite. The inference of the
SSD MobileNet V1 Coco network takes 340 ms compared to 104 ms for
the assistant system network. A reason for that could be that the network
is supported by default by the Intel Movidius Neural Compute stick. The
compiler is probably optimized for this kind of networks, and that can be
the reason for that such a fast speedup can be achieved with the VPU.

The results of the detections are very similar on the CPU and the VPU.
Because the VPU and the CPU do not use the same floating point precision
they are not 100% the same. However, these little deviations do not make a
difference, especially for this use case.

In figure 5.1 and in figure 5.2 a car and a dumpster are detected correctly. A
container to store gravel is detected as a dumpster. Whether the inference is
done on the CPU or the VPU does not matter. The results look the same in
both images (see figure 5.1 and 5.2).

41

5 Evaluation

Figure 5.1: Inference result on the CPU

Figure 5.2: Inference result on the VPU

42

5 Evaluation

5.1.2 Custom Trained Assistant System Network

Dipl.-Ing. Christian Ertler trained a custom network with images which
were recorded specially for the assistant system. In this section the custom
trained network will be compared to the SSD MobileNet V1 Coco network,
a network which was only trained on the Coco dataset. The network archi-
tecture of the networks are the same and, therefore, should not make too
much difference. The weights and biases, of course, are different.

Other network architectures are also available trained on the Coco network.
It only makes sense to compare results between different network architec-
tures if the exact same data set is used. The class dumpster is not available
in the MobileNet V1 Coco network and, therefore, it cannot be compared.

In figure 5.3 the inference was done with the SSD Mobilenet V1 network
trained on Coco. In figure 5.4 the inference was done with the network
which is trained specific for the assistant system. Both results look the
same. One could conclude that the custom training did not improve the
result, as the same result could be achieved with a standard pre-trained SSD
MobileNet network.

Figure 5.3: Car and Person Inference withFigure 5.4: Car and Person Inference with as-
SSD Mobilenet V1 Coco network sistant system network

In figure 5.5 and 5.6 a very similar image is shown. However, this image
was captured with a camera at ground level and not from the perspective of
a walking person. In that case the networks do not perform the same.

43

5 Evaluation

The network trained specially for the assistant system (figure 5.6) does not
only recognize the car, but also the person standing next to the car. The
standard SSD Mobilenet V1 Coco network (figure 5.5) also recognizes the
car, but does not recognize the person standing next to the car.

The training images for the assistant system network were all captured from
the perspective of the ground. So from this perspective the custom trained
network seems to perform better.

=

BLA466 BA '

Figure 5.5: Car and Person inference withFigure 5.6: Car and Person inference with as-
SSD Mobilenet V1 Coco network sistant system network

In figure 5.7 and 5.8 an image of a dumpster can be seen. The inference was
again done with both networks. As the dumpster is not a known class for
the standard SSD MobileNet V1 Coco network, the dumpster is not detected
with this network. On the other hand, the assistant system network does
not have any problems detecting this dumpster.

Nevertheless, there are also examples where the standard SSD MobileNet
V1 Coco network performs better than the custom assistant system network.
In figure 5.9 and 5.10 a motorcycle is shown and the inference is done
for both networks. The motorcycle gets detected correctly by the standard
SSD MobileNet V1 Coco network, but does not get detected by the custom
assistant system network. In figure 5.9 also two other small objects are
detected by the SSD MobileNet V1 Coco network. However, these object
categories are not in the defined list of classes which are interesting for the
assistant system. So they can be ignored.

44

5 Evaluation

Figure 5.7: Dumpster inference with SSD MoFigure 5.8: Dumpster inference with assistant
bilenet V1 Coco network system network

Figure 5.9: Motorcycle inference with SSDFigure 5.10: Motorcycle inference with assis-
Mobilenet V1 Coco network tant system network

45

5 Evaluation

5.1.3 Evaluation of the Perspective of the Camera

The camera position certainly has a great influence on the detection results
of the system. It is obvious that for some cases i makes sense to position the
camera at the level of the ground. For example, it is hard to detect pavement
edges when the camera is not positioned at ground level and the perspective
is, hence, a low one.

However, it also has several disadvantages. One of the disadvantage is
certainly that the perspective is a bit unusual and, therefore, more training
data would be needed to achieve better results. Another disadvantage is
that the camera moves a lot when it is fixed at a low position, like a leg. The
camera would need to be stabilized, which makes the device much more
complicated. When the image moves a lot the images get blurry. Also the
constant change of perspective makes it hard or even impossible to exactly
detect where a object is located. Moreover, objects further away are detected
when the leg is facing upwards. These objects that are far away, however,
are not too interesting for most use cases.

In this example, a street with some parking cars as obstacles are recorded
from the view of the ground and from the view of a walking person. See
figure 5.11 and 5.12 for a comparison of the two scenes.

Figure 5.11: Street with cars. Picture takenFigure 5.12: Street with cars. Picture taken
from view of a walking person from ground level.

Both scenes (from up and down) are evaluated with the assistant system
and the SSD Mobilenet V1 Coco network.

46

5 Evaluation

It is very interesting to see that when the picture is taken from above
(position of a walking person) the SSD Mobilenet V1 Coco network per-
forms better than the assistant system network. In figure 5.13 no car is
detected with the assistant system network, whereas in figure 5.15 the car
right in front of the person is detected correctly by the SSD Mobilenet V1
Coco network. The cars further away in the back are not detected by any
network.

When making an inference of the same scene but with a picture taken
from below the networks behave opposed. In this case the assistant system
network performs better than the SSD Mobilenet V1 coco network. With
the assistant system network the car right in front of the person and also
one car in the back is detected (see figure 5.14). With the SSD Mobilenet V1
Coco network, no car is detected (see figure 5.16).

Special trained networks for specific viewpoints seem to make the perfor-
mance better for this specific viewpoint, but do not detect objects from the
other viewpoint that well anymore. So if the camera is mounted on ground
level, more training data for the ground level certainly makes the overall
results better.

In the next example 2 people are detected again with the assistant system
network and the SSD Mobilenet V1 coco network. This time there are 3
different viewpoints used. The viewpoints are from below, from the center
and from above. The images are shown from figure 5.17 to 5.22.

The SSD MobileNet V1 network can detect all persons, independently from
the viewpoint. The assistant system network did not detect any person in
the image from the middle. In the image taken from below the assistant
system network only detected one person, although this is the position that
the assistant system network is trained on.

Despite the fact that the weights of the SSD MobileNet V1 network were
used to fine-tune the weights with the new training data for the assistant
system, the overall results in this specific example got worse.

47

5 Evaluation

Figure 5.13: Car from above. Inference withFigure 5.15: Car from above. Inference with
assistant system network. SSD Mobilenet V1 Coco.

=

Figure 5.14: Car from below. Inference withFigure 5.16: Car from below. Inference with
assistant system network. SSD Mobilenet V1 Coco.

48

5 Evaluation

Figure 5.17: Person from above. Inference

i ; Figure 5.20: Person from above. Inference
with assistant system network. lgure 5.20: e v

with SSD Mobilenet V1.

Figure 5.18: Person frqm the. middle. In_Figure 5.21: Person from the middle. Infer-
ference with assistant system

ence with SSD Mobilenet V1.
network.

Figure 5.22: Person from below. Inference

Figure 5.19: Person from below. Inference with SSD Mobilenet V1.

with assistant system network.

49

5 Evaluation
5.2 Classification Model

In this section the classification model is evaluated. The model architecture
is a MobileNet V1 Convolutional Neural Network. It was trained to detect
3 different classes: wall, pavement edges and stairs. In this example multi-
label classification is used. That means that for each class a value is given
between o and 1. One image can therefore be classified as more than one
class.

5.2.1 Time for Inference on VPU vs CPU

The Intel Movidius NCS enables fast inference on the Raspberry PI and
therefore brings Convolutional Neural Networks running in real time to
embedded systems. The time needed for inference of a single image was
tested on the CPU and on the VPU.

The CPU used was again an Intel Core i5-3317U processor running at 1.70
GHz. On this CPU a single inference takes 334 ms.

On the Intel Movidius NCS the inference for the same network and the
same image only takes 39 ms. So the speedup in this example is more than
factor 8. At the same time the Intel Movidius NCS is much more energy
efficient.

5.2.2 Evaluation of Detection Results of the Classification
Network

In figure 5.23 a pavement edge is seen. The pavement edge is taken with
a camera positioned at ground level, but the pavement edge is still a bit
further away. The network detects 84.9% a wall and 15.1% a pavement edge.
Behind the pavement edge even further away there is a wall. It seems when
the pavement edge is to small in the image, the wall gets detected stronger
than the pavement edge.

50

5 Evaluation

In comparison in figure 5.24 99.5% pavement edge is detected, whereas only
0.5% wall is detected. In this image a wall can be seen very clearly. However
in this image the pavement edge is closer and more prominent.

Figure 5.23: Pavement edge further away Figure 5.24: Wall behind pavement edge

84.9% wall 99.5% pavement edge
15.1% pavement edge 0.5% wall
0.0% stairs 0.0% stairs

In the figure 5.25 and 5.26 the same scene is shown. Once the image is taken
from the perspective of the ground and once the image is taken from the
perspective of a walking person.

Interesting to see is that when the image is taken from the position of the
walking person (see figure 5.25) the network gives a 84.9% probability that
the recorded image is a wall and only a 15.1% probability that the image is
a pavement edge.

In the image which is taken from the perspective of the ground (see figure
5.26) the network behaves opposite. The probability of being a pavement
edge is 90.2%, whereas the probability for being a wall is only 9.7%.

It seems that pavement edges can only be detected when they are close and
seen from the perspective of the ground. This also makes sense, as all the
training data was taken from the perspective of the ground.

51

5 Evaluation

Figure 5.25: Pavement/Wall Edge from aboveFigure 5.26: Pavement/Wall Edge from below

84.9% wall 90.2% pavement edge
15.1% pavement edge 9.7% wall
0.0% stairs 0.0% stairs

52

6 Conclusion and Future work

In this thesis a small embedded device was developed, that notifies persons
or robots from potentially dangerous objects in their surroundings. This was
done with the help of Convolutional Neural Networks (CNNs). In particular
two different neural networks were used.

The first network is an object detection network which was trained on the
classes car, bus, bike, person, motorcycle and dumpster. The base for this
object detection network is a SSD MobileNet architecture which was trained
with special training data for the assistant system. This network is used to
detect objects which are further away and only fill part of the image.

The second network is a classification network which detects stairs, walls
and pavement edges. When close to these objects they usually fill the whole
image. In that case image classification is used instead of object detection.
This network is also based on the MobileNet architecture.

Both networks already existed and were created in a previous project at
Graz University of Technology. In this thesis these networks were trans-
lated so that they can run on a Vision Processing Unit (VPU). The Intel
Movidius Neural Stick together with the Raspberry PI was used to create an
embedded system that notifies persons or robots from obstacles. A camera
was connected directly to the battery powered Raspberry PI, to deliver the
image. A web server was developed to which the user can connect with
a smartphone or a PC. The inference results of the network is sent in real
time over a websocket connection to the browser of the user. When an object
appears a notification is given via text-to-speech commands or vibrations.
Different settings in the web application allow the user to customize the
experience.

The system works pretty reliable, although in crowded places there are far
too many notifications as objects are detected all the time. This prototype

53

6 Conclusion and Future work

is a good base which proves that it is possible to create a computer vision
powered embedded device as an assistant system or for robotics. Using
better networks and more training data the results are expected to get even
better.

The system also has clear limitations which can be improved in the future.

The device does not detect many classes which can be very dangerous for a
person or robot. Among these objects are street sign or street lights. These
classes and more should be also added to the network.

It is helpful to know how many objects there are in an image. But for a
person or robot it would be an important information if these objects are
close to the person or far away. Currently the distance of the object cannot
be measured as the orientation between the camera and the obstacle is
unknown. The orientation would need to be very precise and therefore this
approach was not used.

This problem could also be solved using a stereo vision camera or another
depth sensor. In that case a complete 3D model of the surrounding can
be generated. The next step would be to filter which objects are in the
walking direction and close to the person. Only if there is really an object
in the way of the person or robot a notification should be generated. This
would be much more helpful as less notifications but of better quality are
generated. Another useful enhancement could be to improve further the
web application with a feature that allows remote help for the person or
the robot. In difficult situations a remote person could be called over the
internet. The remote person could see the surroundings over the camera
and guide the robot or person over voice.

While there is still much room for improvements the principal concept
looks very promising. This thesis showed that computer vision application
using CNNs can be embedded in small and portable devices. This is very
interesting for many different use cases.

54

Appendix

55

Bibliography

[1]

[2]

CocoDataset. Coco - Common Objects in Context. 2019. URL: http://
cocodataset.org/#home (visited on 04/01/2019) (cit. on p. 39).

Miguel Grinberg. Video Streaming with Flask. 2019. URL: https://blog.
miguelgrinberg.com/post/video-streaming-with-flask (visited
on 04/01/2019) (cit. on p. 27).

Matthijs Hollemans. Google’s MobileNets on the iPhone. Dec. 2011.

URL: https ://machinethink . net /blog/ googles - mobile - net -
architecture-on-iphone/ (visited on 12/10/2011) (cit. on p. 4).

Andrew Howard et al. MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications. 2016. URL: https://arxiv.org/
abs/1704.04861 (cit. on pp. 3, 4).

INTEL. Intel Open Source. 2019. URL: https://01.org/openvinotoolkit
(visited on 04/01/2019) (cit. on p. 9).

Intel. Intel Movidius Webpage. 2019. URL: https://wuw.movidius.com/
(visited on 04/01/2019) (cit. on pp. 7, 8).

Wei Liu et al. SSD: Single Shot MultiBox Detector. 2016. URL: https:
//arxiv.org/abs/1512.02325 (cit. on pp. 4, 5).

ModelZoo. Tensorflow detection model zoo. 2019. URL: https://github.
com/tensorflow/models/blob/master/research/object_detection/
g3doc /detection_model _zoo .md (visited on 04/01/2019) (cit. on
p- 16).

Movidius. Movidius NCSDK. 2019. URL: https://movidius.github.
io/ncsdk/index.html (visited on 04/01/2019) (cit. on p. 8).

Openvino. Open Vino Toolkit Docs. 2019. URL: http://docs.openvinotoolkit.
org (visited on 04/01/2019) (cit. on pp. 9, 10).

56

http://cocodataset.org/#home
http://cocodataset.org/#home
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://blog.miguelgrinberg.com/post/video-streaming-with-flask
https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/
https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://01.org/openvinotoolkit
https://www.movidius.com/
https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1512.02325
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://movidius.github.io/ncsdk/index.html
https://movidius.github.io/ncsdk/index.html
http://docs.openvinotoolkit.org
http://docs.openvinotoolkit.org

Bibliography

Openvino-SSD-Sample. Object Detection SSD C++ Demo, Async API
Performance Showcase. 2019. URL: https ://docs . openvinotoolkit .
org/latest/_inference_engine_samples_object_detection_demo_
ssd_async_README.html (visited on 04/01/2019) (cit. on p. 23).

Openvinotoolkit. Converting TensorFlow Object Detection API Models.
2019. URL: https://docs.openvinotoolkit.org/latest/_docs_MO_
DG_prepare_model _convert_model_tf_specific_Convert_0bject_
Detection_API_Models.html (visited on 04/01/2019) (cit. on p. 16).

Picamera. Picamera Online Documentation. 2019. URL: https://picamera.
readthedocs.io/en/release-1.13/ (visited on 04/01/2019) (cit. on
p- 20).

RaspiCam. RaspiCam: C++ API for using Raspberry camera with/without
OpenCo. 2019. URL: http://www.uco.es/investiga/grupos/ava/
node/40 (visited on 04/01/2019) (cit. on p. 21).

Socket.io. Socket.io. 2019. URL: https : / / socket . io/ (visited on
04/01/2019) (cit. on p. 33).

W3C. Vibration API (Second Edition). 2019. URL: https://www.w3.org/
TR/vibration/ (visited on 04/01/2019) (cit. on p. 36).

W3C. Web Speech API Specification. 2019. URL: https://w3c.github.
io/speech-api/ (visited on 04/01/2019) (cit. on p. 35).

WCAG. WCAG Quickreference. 2019. URL: https://www.w3.org/WAI/
WCAG21/quickref/ (visited on 04/01/2019) (cit. on p. 34).

Wikichip. SHAVE v2.0 Microarchitecture Movidius. 2019. URL: https://
en.wikichip.org/wiki/movidius/microarchitectures/shave_v2.0
(visited on 04/01/2019) (cit. on p. 7).

ZMQ. ZeroMQ Distirbuted Messaging. 2019. URL: http://zeromq.org/
(visited on 04/01/2019) (cit. on p. 17).

57

https://docs.openvinotoolkit.org/latest/_inference_engine_samples_object_detection_demo_ssd_async_README.html
https://docs.openvinotoolkit.org/latest/_inference_engine_samples_object_detection_demo_ssd_async_README.html
https://docs.openvinotoolkit.org/latest/_inference_engine_samples_object_detection_demo_ssd_async_README.html
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_Object_Detection_API_Models.html
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_Object_Detection_API_Models.html
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_Object_Detection_API_Models.html
https://picamera.readthedocs.io/en/release-1.13/
https://picamera.readthedocs.io/en/release-1.13/
http://www.uco.es/investiga/grupos/ava/node/40
http://www.uco.es/investiga/grupos/ava/node/40
https://socket.io/
https://www.w3.org/TR/vibration/
https://www.w3.org/TR/vibration/
https://w3c.github.io/speech-api/
https://w3c.github.io/speech-api/
https://www.w3.org/WAI/WCAG21/quickref/
https://www.w3.org/WAI/WCAG21/quickref/
https://en.wikichip.org/wiki/movidius/microarchitectures/shave_v2.0
https://en.wikichip.org/wiki/movidius/microarchitectures/shave_v2.0
http://zeromq.org/

	Abstract
	Introduction
	Models
	MobileNet
	Depthwise Separable Convolutions

	Object Detection
	Classification

	Intel Movidius Neural Compute Stick
	NCSDK
	OpenVINO
	Comparison of the NCS vs. NCS 2
	Different form factors of Myriad VPUs

	Implementation
	Hardware Setup
	Converting the models
	Classification
	Object Detection

	Application
	Camera Publisher
	Inference Publisher
	Web Server
	Web Application
	Autostart

	Evaluation
	Object Detection Model
	Time for Inference on VPU vs CPU
	Custom Trained Assistant System Network
	Evaluation of the Perspective of the Camera

	Classification Model
	Time for Inference on VPU vs CPU
	Evaluation of Detection Results of the Classification Network

	Conclusion and Future work
	Bibliography

