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Abstract 

 

In the course of the FET-Open project “CONQUER”, Bi-aryl compounds proved to be 

promising in terms of their physical and chemical properties to enable quadrupole 

relaxation enhancement. Knowledge of Bi-aryl compound’s temperature sensitivity is 

of great importance to predict the desired frequency crossing of NQR transition 

frequencies and the Larmor frequency of protons at certain field strength more 

precisely. The aim of this master’s thesis is to model the temperature dependence of 

NQR transition frequencies of Triphenylbismuth and Tris(2-

methoxyphenyl)bismuthine based on molecular motions, precisely torsional 

oscillations. The focus is set on numerical modelling to overcome commonly applied 

assumptions and approximations, which are constant asymmetry parameter of the 

electric field gradient 𝜂 and small angle approximation of torsional oscillations, used 

by analytical models. Their influence on modeled NQR transition frequencies as well 

as benefits of numerical implementations are displayed and analyzed. Furthermore, a 

novel numerical fitting approach, involving two NQR transition frequencies at once 

(increased data set for fitting), is presented. Obtained fitting parameters of 

Triphenylbismuth, such as torsional frequency and equivalent moment of inertia, of 

analytical and numerical models are comparable and have plausible orders of 

magnitude. Generally, Triphenylbismuth shows a greater response to temperature 

than Tris(2-methoxyphenyl)bismuthine. Interestingly, numerical simulations of 

different torsional oscillation directions revealed to have an impact on the sign of the 

temperature coefficient of the lowest transition in case of an axially asymmetric 

electric field gradient. Finally, important aspects and improvements concerning future 

modelling processes of the temperature dependence of NQR transition frequencies 

are proposed. 

 

Keywords: NQRS, Triphenylbismuth, Tris(2-methoxyphenyl)bismuthine, 

temperature sensitivity, numerical modelling 
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Zusammenfassung 

 

Im Rahmen des FET-Open-Projekts "CONQUER" stellten sich Bi-aryl-Verbindungen 

in ihren physikalischen und chemischen Eigenschaften als vielversprechend heraus 

um Quadrupole-Relaxation-Enhancement zu ermöglichen. Die Kenntnis der 

Temperatursensitivität von Bi-aryl-Verbindungen ist von großer Bedeutung um das 

gewünschte Frequency-Crossing von NQR-Übergangsfrequenzen und der 

Larmorfrequenz von Protonen bei bestimmten Feldstärken genauer vorherzusagen. 

Ziel dieser Masterarbeit ist es daher, die Temperaturabhängigkeit der NQR-

Übergangsfrequenzen von Triphenylbismuth und Tris(2-methoxyphenyl)bismuthine 

basierend auf molekularen Bewegungen, genauer gesagt ihrer 

Torsionsschwingungen zu modellieren. Um gängige Annahmen (konstanter 

Asymmetrieparameter des elektrischen Feldgradienten 𝜂)  und Approximationen 

(kleine Winkel der Torsionsschwingungen) analytischer Modelle zu überwinden, liegt 

der Schwerpunkt auf numerischer Modellierung. Einfluss dieser Annahmen und 

Approximationen auf modellierte NQR-Übergangsfrequenzen, sowie Vorteile 

numerischer Implementierungen werden dargestellt und analysiert. Darüber hinaus 

wird ein neuartiger numerischer Fitting-Ansatz vorgestellt, der zwei NQR-

Übergangsfrequenzen gleichzeitig berücksichtigt (vergrößerter Datensatz). Daraus 

gewonnene Fitting-Parameter bei Modellierung des Triphenylbismuth, wie 

Torsionsfrequenz und äquivalentes Trägheitsmoment von analytischen und 

numerischen Modellen sind vergleichbar und haben plausible Größenordnungen. 

Triphenylbismuth weist eine größere  Temperatursensitivität als Tris(2-

methoxyphenyl)bismuthine auf. Interessanterweise zeigten numerische Simulationen 

verschiedener Torsionsschwingungsrichtungen einen Einfluss auf das Vorzeichen 

des Temperaturkoeffizienten (niedrigste Übergangsfrequenz) unter Voraussetzung 

eines axial asymmetrischen elektrischen Feldgradienten. Abschließend werden 

wichtige Aspekte und Verbesserungen für zukünftige Modellierungsprozesse der 

Temperaturabhängigkeit von NQR-Übergangsfrequenzen vorgestellt. 

 

Schlüsselwörter: NQRS, Triphenylbismuth, Tris(2-methoxyphenyl)bismuthine, 

Temperatursensitivität, Numerische Modellierung 
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1 Introduction 

 1.1 Motivation 

The idea underlying this work originated during the collaboration in the FET-open 

project “CONQUER” funded by the European Commission. This multi-disciplinary 

project focused on the development of novel magnetic resonance imaging (MRI) 

contrast agents (CA´s) for molecular imaging (MI) [1]. 

MRI is a tomographic imaging technique that generates images of the human body 

based on the water content and relaxation times of individual tissues. Contrast 

agents are molecules that are able to change the relaxation times and thus the image 

contrast in regions where the CA accumulates, e.g. tumors. In contrast to 

commercially available CAs (paramagnetic), this novel CA is based on cross-

relaxation between protons and large quadrupolar nuclei and offers a variety of 

useful features [1]. 

In the course of this research Bi-aryl compounds proved to be promising in terms of 

their physical and chemical properties (tunability in NQR transition frequency, low 

toxicity, NQR transition frequency range applicable to clinical 1.5- and 3T MRI 

Systems) to enable quadrupole relaxation enhancement (QRE) [2].   

Of particular interest is the investigation of the temperature-dependent NQR 

transition frequency of Bi-aryl compounds and the underlying physical processes 

(molecular dynamics). Knowledge of Bi-aryl compound’s temperature sensitivity is of 

great importance, in order to predict the desired frequency crossing [2] of NQR 

transition frequencies and the Larmor frequency of protons at certain field strengths 

more precisely in the future. The modelling of temperature-dependent NQR transition 

frequencies will be the first step to gain such insights. Therefore, the focus of this 

thesis is set on numerical modelling to avoid simplifications caused by commonly 

used analytical models. 

1.2 NQR Theoretical background 

Nuclear quadrupole resonance spectroscopy (NQRS) is a technique methodically 

related to nuclear magnetic resonance spectroscopy (NMRS) that excites and finally 

detects transitions between discrete energy levels of the spin system due to an 

applied alternating magnetic field in the radiofrequency (RF) range. In contrast to 

NMR, the splitting of the sublevels of the "pure NQR" results from an interaction of 

the nuclear quadrupole moment with the electric field gradient (EFG), and not from 

an interaction of the magnetic dipole moment with a static magnetic field [3], [4].  
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1.2.1 Energy levels and the Hamiltonian 

 

The interaction of the nucleus´s quadrupole moment 𝑄 with the associated electric 

field gradient ∇𝐸 causes a splitting of the nuclear ground state into different energy 

levels [5]. 

 

The Hamiltonian of nuclear quadrupole interaction is described by the following 

tensor scalar product [5]: 

 

𝐻𝑄 = 𝑄 ⋅  ∇E = ∑ 𝑄2
𝑚(∇E)2

−𝑚
𝑚                           (1.1) 

 

 

 

With the irreducible components of the tensor 𝑄, 

 

  

                                     𝑄2
0 =

eQ

2𝐼(2𝐼−1)
(3Iz

2 − I2) 

 

                𝑄2
±1 =

eQ

2𝐼(2𝐼−1)

√6

2
[Iz(Ix ± iIy) + (Ix ± iIy)Iz]                 (1.2) 

 

                                     𝑄2
±2 =

√6eQ

4𝐼(2𝐼−1)
(Ix ± iIy)

2
 

 

 

and tensor ∇E [5]: 

 

   

                                     (∇E)0 =
1

2
Vzz   

 

                                     (∇E)±1 = −
1

√6
(Vxz ± iVyz)                                          (1.3)             

                       

                                              (∇E)±2 =
1

2√6
(Vxx − Vyy ± 2iVxy)  

 

 

An easy to follow explanation/summary of the nuclear quadrupole moment  𝑄 and the 

electric field gradient ∇𝐸 (EFG) can be found in [4] resp. a more detailed one in [3], 

[5]. 
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In the principal axis system (PAS) of the EFG [3]: 

 

 

   𝐻𝑄 =
e2qQ

4𝐼(2𝐼−1)
[3Iz

2 − I2 + η(Ix
2 − Iy

2)]    (1.4) 

 

 

The rectangular brackets contain the angular momentum operators, while the 𝐼′𝑠 in 

the denominator correspond to the nuclear spin quantum number. 

The quadrupole coupling constant 𝑒2𝑞𝑄 (further named as 𝑄𝑐𝑐) and the asymmetry 

parameter 𝜂 are the basic quantities determined by nuclear quadrupole spectroscopy 

and contain information about the nuclear environment [3]. 

 

“Do you know your Hamiltonian?” 

 

Finding the right formulation of the Hamiltonian that describes the physical problem of 

interest is quite challenging. Fortunately, the Hamiltonian is known, but how does its 

parameters change with temperature? 

Consequently, the main focus in this thesis is set to the development of the 

Hamiltonian´s parameters, precisely 𝑄𝑐𝑐 and 𝜂 in terms of temperature and its 

numerical implementation, describing the NQR transition frequency temperature 

dependence in the observed molecular crystals of Triphenylbismuth and Tris(2-

methoxyphenyl)bismuthine. 

 

Within this master thesis the following key questions should be answered: 

 

How do the Hamiltonian´s parameters change with temperature? 

Which underlying physical model can describe this temperature dependency? 

What are the advantages and disadvantages of numerical implementations 

concerning this physical problem? 

 

The existing models describing NQR transition frequency temperature dependence 

typically use several approximations to end up with analytical expressions. This 

thesis aims to overcome the applied approximations and assumptions by using a 

numerical approach. 
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1.2.1.1 Energy levels in the case of axially symmetry 

 

Axial symmetry 𝜂 = 0 leads to a diagonalization of the Hamiltonian (represented in a 

so called “Zeeman basis”). This results in the following energy levels [5]: 

 

   EQ±m =
𝑄𝑐𝑐

4𝐼(2𝐼−1)
[3m2 − 𝐼(𝐼 + 1)]             (1.5) 

 

The magnetic quantum number 𝑚 can have the following 2𝐼 + 1 values (– 𝐼, −𝐼 +

1, … , 𝐼 − 1, 𝐼). The same energy level can be obtained by two quantum numbers which 

are identical in magnitude but different in sign (degenerate energy level). Nuclei with 

half-integer spin yield 𝐼 + 1/2 degenerate energy levels. An integer spin implies 𝐼 + 1 

energy levels, of which 𝐼 are degenerate [5]. 

 

1.2.1.2 Energy levels in the case of axially asymmetry 

 

For axially asymmetric electric field gradient 𝜂 > 0, the energy levels can only be 

calculated analytically for spin 3/2 and spin 1 [3]. 

Common practice is the evaluation of secular equations, which are used to obtain 

approximate solutions for the observed energy levels (see [5] page 12). 

Furthermore, some numerical solutions can be found in the tables of Cohen (𝐼 =

{
9

2
,

7

2
,

5

2
}) and Livingston/Zeldes (𝐼 =

5

2
) [5].  

 

1.2.2 Excitation of transitions between energy levels 

 

By applying a magnetic RF field that interacts with the magnetic dipole moment of the 

nucleus, it is possible to excite transitions between different energy levels. The x- and 

y-components of the magnetic field allow quantum transitions between energy levels 

which differ by  ±1  in their magnetic quantum number 𝑚. If 𝜂 > 0 also double 

quantum transitions ∆m = ±2  are allowed as shown in Figure 1.1 [3], [5]. 
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Figure 1.1: Shows possible transition frequencies with respect to η for spin 5/2, 

7/2, and 9/2 nuclei reproduced from [3]. 

 

 

With suitable pulse-type RF-equipment [6], [7] it is possible to measure these excited 

states and make possible NQR transition frequencies visible.  

1.2.2.1 General definition of NQR transition frequency 

 

The transition frequency is generally defined as follows [5]: 

 

 

    𝜈𝑄 =
𝐸±𝑚−𝐸±𝑚−1

ℎ
     (1.6) 

 

 

Equation (1.6) applies only to single quantum transitions. 

 

In words, the energy difference is the transition frequency times ℎ.  

 

To achieve a significant transition probability between levels ∆m = ±1 resp. ∆m =

±2  for 𝜂 > 0, the alternating RF-field frequency must be very close to the transition 

frequency (see [8] page 180). 
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1.3 Temperature dependence of NQR transition frequency 

 

The following chapter explains the development of the most commonly used models 

to describe NQR transition frequency temperature dependence. Although the focus is 

set to molecular crystals, as it is the case for investigated Triphenylbismuth and 

Tris(2-methoxyphenyl)bismuthine. 

 

1.3.1 The Bayer Model 

 

Dehmelt and Krüger [9] were the first which reported a temperature dependence of 

NQR transition frequencies of crystal dichloroethylene resp. methylbromid. They 

assumed that molecular motions, precisely torsional oscillations, were responsible for 

the observed frequency shift with temperature.  

 

Since torsional frequencies are much higher than the observed NQR transisition 

frequencies (>THz), the quadrupolar nucleus experiences a so called averaged 

electric field gradient (EFG). The magnitude of the effective electric field gradient 

seen by the quadrupolar nucleus is reduced, resulting in a decrease of the observed 

NQR transition frequency. The higher the temperature, the greater are the torsional 

amplitudes (torsional angles), which lead to a negative temperature coefficient of the 

NQR transition frequencies [10].  

The decrease of NQR transition frequencies with increasing temperature is the 

general case and is often reported in literature [11]-[18].  

 

However, there exist also few cases with positive temperature coefficients. Since 

their underlying physical interpretation is not the focus of this thesis, the reader is 

referred to [19], [20] & [21]. 

Bayer was the first who introduced a physical model to describe the temperature 

dependence of NQR transition frequency based on oscillatory torsional motions of 

the molecule, with the help of a quantum mechanical harmonic oscillator which 

relates the energy of the fluctuations to temperature [10]. 
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 For Bayer´s model several assumptions are made [22]: 

 

-The EFG tensor is axially symmetric (𝜂 = 0) 

-The asymmetry parameter remains zero throughout the temperature range 

-The oscillation is confined to a plane and takes place about the principal x- and y-

direction of the EFG tensor 

-The magnitude of the EFG tensor´s z-component remains unaltered during lattice 

oscillation 

-The oscillations are assumed to be small {𝜃(𝑡) ≪ 1} 

 

The principal axes of the EFG tensor for the stationary molecule are defined as x, y 

and z (also defined as laboratory axis system (LABS) see section 2.3.1). According to 

Bayer [10] the molecule can execute oscillations about the x- and y-directions by 

torsional angles 𝜃𝑥(𝑡) and 𝜃𝑦(𝑡). 

The time dependency of (harmonic) torsional oscillations can be described as follows 

[10]: 

𝜃(𝑡) =  𝜃(𝑡) sin (2𝜋𝑓𝑡𝑡 + 𝜑(𝑡))    (1.7) 

 

With its torsional frequency 𝑓𝑡 in Hz, peak amplitude of torsional angle 𝜃(𝑡), time 

dependent torsional angle 𝜃(𝑡) and its statistical time dependent phase 𝜑(𝑡). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Torsional oscillation about the principal x-axis of the electric field gradient (EFG); 

x´, y´ and z´ determine the molecular fixed principle axis system   
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Under consideration of a harmonic oscillation, the mean 〈𝜃(𝑡)〉 resp. mean square 

〈𝜃2(𝑡)〉 of the time dependent torsional angle 𝜃(𝑡) can be written as follows, 

 

〈𝜃(𝑡)〉 = 0 and  〈𝜃2(𝑡)〉  =  
�̂�2(𝑡)

2
       (1.8) 

 

The NQR transition frequency temperature dependence with respect to the mean 

square angle of the torsional oscillation can be described via (1.9) [10], 

 

𝜈(𝑇) =  𝜈𝑄(1 −
3

2
〈𝜃2(𝑡)〉),     (1.9) 

 

with 𝜈𝑄 =
𝑄𝑐𝑐

2ℎ
 as the transition frequency of the stationary molecule in the case of spin 

I = 3/2.  

 

Bayer [10] introduced the connection between torsional oscillations and temperature 

with the help of the quantum mechanical harmonic oscillator, by setting its mean 

energy in the thermodynamic equilibrium equal to the energy of a classic oscillator.   

 

 

ℎ𝑓𝑡 (
1

2
+

1

𝑒
ℎ𝑓𝑡
𝑘𝑇 −1

)  =  4𝜋2𝑓𝑡
2𝐴〈𝜃2(𝑡)〉,   (1.10) 

 

 

where 𝐴  is the moment of inertia of the molecule with respect to its torsional 

oscillation axis. 𝐴  and  𝑓𝑡 are parameters that can be related to molecule dynamics. 

  

By considering the torsional oscillation about the x- and y-axis (formula) can be 

adapted by setting 

 

〈𝜃2(𝑡)〉   =  〈𝜃𝑥
2(𝑡)〉  𝑜𝑟  〈𝜃𝑦

2(𝑡)〉,  𝑓𝑡 =  𝑓𝑡,𝑥  𝑜𝑟  𝑓𝑡,𝑦  and  𝐴 =  𝐴𝑥  𝑜𝑟  𝐴𝑦    (1.11) 

 

 

If the torsional oscillations occur independently about the x- and y-axis, 〈𝜃2(𝑡)〉 can 

be expressed as 〈𝜃𝑥
2(𝑡)〉   +  〈𝜃𝑦

2(𝑡)〉 [22].  

 

 

Substituting (1.10) in (1.9) finally yields the well-known Bayer equation [10], [22]: 
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𝜈(𝑇) =  𝜈𝑄[1 −
3ℎ

8𝜋2
∑

1

𝐴𝑖𝑓𝑡,𝑖
𝑖=𝑥,𝑦 (

1

2
+  

1

𝑒

ℎ𝑓𝑡,𝑖
𝑘𝑇 −1

)]  (1.12) 

 

Where 𝜈𝑄 is the transition frequency of the stationary molecule (vibrationless lattice), 

depending on nuclear spin I, magnetic quantum number m and nuclear quadrupole 

coupling constant Qcc (as seen in [23] equation 12). 

 

The transition frequency 𝜈0  at 𝑇 = 0𝐾 can be obtained with: 

 

𝜈0 =  𝜈𝑄[1 −
3ℎ

16𝜋2
∑

1

𝐴𝑖𝑓𝑡,𝑖
𝑖=𝑥,𝑦 ]     (1.13)  

 

Bayers theory was verified qualitatively by many investigators and builds the basis for 

describing the NQR transition frequency temperature dependence related to torsional 

oscillations of the studied molecules, in molecular solids, resp. ionic solids [5], [11] & 

[12]. 

The harmonic oscillator model is valid only at low temperatures, or more precisely to 

temperatures far below the melting point of the samples studied. At higher 

temperatures approaching the melting point, the harmonic oscillator model no longer 

holds [10], [24].   

 

1.3.2 Tatsuzaki Model 

 

The original Bayer model assumes that the principal directions of the EFG tensor 

coincide with the principle directions of the moment of inertia tensor (harmonic 

torsional oscillation), which is not always the case [17].  Therefore Tatsuzaki and 

Yokozawa [25] introduced a correction term in Bayer´s equation to account for this 

[22]. 

 

𝜈(𝑇) =  𝜈𝑄[1 −
3ℎ

8𝜋2
∑

𝑠𝑖𝑛2𝛼𝑖

𝐴𝑖𝑓𝑡,𝑖
𝑖=𝑥,𝑦 (

1

2
+  

1

𝑒

ℎ𝑓𝑡,𝑖
𝑘𝑇 −1

)]   (1.14) 

 

, with 𝐴𝑖 as the moment of inertia, 𝑓𝑡,𝑖 as the torsional oscillation about the 𝑖𝑡ℎ 

principal axis of the moment of inertia tensor. The angle between the principal z-axis 

of the EFG tensor and the 𝑖𝑡ℎ principal axis of the moment of inertia tensor is notated 

as 𝛼𝑖. 
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1.3.3 Kushida Model 

 

Kushida generalized Bayer´s theory of motional averaging of the EFG, and 

considered all possible vibrational normal modes 𝑖 of molecules in the crystal [26]. 

Further he rewrote (1.12) for the high temperature regime and low torsional 

frequencies ( 
ℎ𝑓𝑡,𝑖

𝑘𝑇
≪ 1 ) with the help of following approximation [26], [22]: 

 
1

2
+  

1

𝑒𝑥−1
 ≅  

1

𝑥
+  

𝑥

12
      (1.15) 

to 

𝜈(𝑇) = 𝑎 (1 + 𝑏𝑇 +
𝑐

𝑇
)    (1.16) 

 

where 

   𝑎 =  𝜈𝑄 =
𝑒2𝑞𝑄

2ℎ
, in case of spin I = 3/2 

 

𝑏 =  −
3𝑘

8𝜋2
∑

1

𝐴𝑖𝑓𝑡,𝑖
2𝑖     (1.17) 

 

𝑐 = −
ℎ2

32𝜋2𝑘
∑

1

𝐴𝑖
𝑖   

 

 

𝐴𝑖 corresponds to an equivalent moment of inertia of the 𝑖𝑡ℎ normal mode of 

molecular vibration. 

 

Another important aspect, concerning modelling the NQR transition frequency 

temperature dependence, was introduced by Kushida, Benedek and Bloembergen 

[23]. They showed that the parameters a, b and c are functions of temperature as a 

result of thermal expansion (volume effects). Usually experiments are carried out at 

constant pressure conditions and not at constant volume conditions, so these 

parameters cannot be determined exactly from temperature measurements alone 

[18]. The constant volume assumption (1.16) leads consequently to a mismatch 

between measured and modeled NQR transition frequency data, especially in the 

high temperature regime.  

An adequate analysis of the NQR transition frequency temperature dependence with 

Kushidas theory (1.16) can only be achieved when the NQR transition frequency is 

known as a function of volume for a series of different temperatures [23].   



17 

1.3.4 Brown Model 

 

Kushida, Benedek and Bloembergen [23] assumed that the torsional frequency 𝑓𝑡,𝑖, 

the equivalent moment of inertia 𝐴𝑖 and the NQR transition frequency for the 

stationary molecule 𝜈𝑄  are volume dependent. 

 

For molecular crystals, like the samples considered in this Thesis the following 

simplifications can be assumed: 

 

-The transition frequency of the stationary molecule 𝜈𝑄 is approximately independent 

of volume due to small volume dependent contributions of lattice fields to the 

quadrupole coupling constant. 

-The equivalent moment of inertia 𝐴𝑖, which can be calculated from molecular 

dimensions alone, will also be assumed to be independent of volume [27].  

 

Both simplifications are possible, due to the fact that in molecular crystals, the 

change in bond lengths and bond angles with temperature are negligible [22].  

 

The remaining volume dependence of the torsional frequency 𝑓𝑡,𝑖 can be introduced 

with the help of a linear model [27], which is based on temperature dependent 

measurements of low frequency Raman lines by Ichishima [28]: 

 

 

      𝑓𝑡,𝑖 = 𝑓𝑡,𝑖0(1 − 𝑔𝑖𝛥𝑡)     (1.18) 

 

 

Where 𝑓𝑡,𝑖 is the value of the torsional frequency at any fixed temperature                

𝛥𝑡 = 𝑇 − 𝑇0, at temperature 𝛥𝑡 = 0𝐾 follows, 𝑓𝑡,𝑖 = 𝑓𝑡,𝑖0, and 𝑔𝑖 is the so-called 

temperature coefficient of the torsional frequency [27] [22].  

 

Such linear relationship agrees well with the measurements on naphthalene made by 

Ichishima [28] [22]. 

In view of this relationship for the temperature dependence of 𝑓𝑡,𝑖, constant b in 

Kushida´s formula (1.16) becomes also temperature dependent. This circumstance 

leads to a non-linear temperature dependence of the NQR transition frequency under 

constant pressure conditions [27]. 
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Brown introduced the following method to obtain a value for the temperature 

coefficient of the torsional frequency 𝑔𝑖 [27]:  

 

At first it is assumed that 𝑔𝑖 of all vibrational modes 𝑖 are equal, 

 

     〈𝑔𝑖〉 =  𝑔 𝑎𝑛𝑑 〈𝑔𝑖
2〉 = 〈𝑔𝑖 〉2 =  𝑔2    (1.19) 

 

Followed by skipping the term 
𝑐

𝑇
 from (1.16) (which holds for large moments of inertia 

and relatively high temperatures) and taking the first and second derivatives, 

obtaining a pair of equations [27], [22]: 

 

 

1

𝜈𝑄

𝑑𝑣

𝑑𝑡
|

𝑇0

= (1 + 2𝑇0𝑔)𝑏0 

           (1.20) 

1

𝜈𝑄

𝑑2𝑣

𝑑𝑡2
|

𝑇0

= (4𝑔 + 6𝑇0𝑔2)𝑏0 

 

 

   with the weighted averages 〈𝑔𝑖〉 and 〈𝑔𝑖  〉2, 

 

 

〈𝑔𝑖〉 =

∑ (
1

𝐴𝑖𝑓𝑡,𝑖0
2𝑖 )𝑔𝑖

∑ (
1

𝐴𝑖𝑓𝑡,𝑖0
2𝑖 )

 

  (1.21) 

〈𝑔𝑖 〉2 =

∑ (
1

𝐴𝑖𝑓𝑡,𝑖0
2𝑖 )𝑔𝑖

2

∑ (
1

𝐴𝑖𝑓𝑡,𝑖0
2𝑖 )

 

 

Whereby 𝑏0 (value of 𝑏 at 𝛥𝑡 = 0𝐾) and 𝑔 are obtained by solving this pair of 

equations (1.20) at any convenient high temperature reference point 𝑇0!  

For evaluating the derivatives at the reference point, it has been normal practice to fit 

the measurement data to a parabola [17], [18], [29] & [30].  

 

Brown observed that the introduction of the temperature-dependent torsional 

frequency term (1.18) represents a good agreement between the theoretically and 

experimentally determined value of 𝑏0 in p-dichlorobenzene [27], [22].  
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The models mentioned so far refer directly to the change of the measurable NQR 

transition frequency with temperature. Though, the temperature-dependent change of 

the Hamiltonian´s parameters, namely 𝑄𝑐𝑐 and 𝜂  are introduced and analyzed in 

detail in the methods chapter. 
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1.3.5 Normal Modes 

Above assumption of torsional oscillation´s of the electric field gradient is based on 

vibrations of molecules in the crystal lattice. These vibrations, more precisely 

sinusoidal oscillations, can be described in the form of normal modes with defined 

frequencies f. Thus, a general motion can be described as a superposition of 

independent (orthogonal) normal modes. The number of possible normal modes in a 

molecule depends on the total number of degrees of freedom (3N for N atoms) and 

can be categorized by the type of motion like wagging, stretching, torsion etc. [31]. 

 

Energy of normal modes: 

 

The energy levels 𝐸𝑛 of a vibrational mode with vibrational frequency 𝑓 (harmonic 

oscillator approximation) is given by: 

 

𝐸𝑛 = ℎ𝑓 (𝑛 +
1

2
) ,    (1.22) 

 

where n are integers defining the different energy levels and ℎ𝑓 is the energy quanta 

needed to make transitions between these energy levels possible [32]. Transitions 

between different energy levels (rotational, vibrational), so called optical modes can 

be detected by means of Raman and/or Infrared (IR) spectroscopy. 
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2 Methods 

This chapter introduces the practical implementation concerning the NQR transition 

frequency temperature dependency of the investigated molecular crystals 

Triphenylbismuth and Tris(2-methoxyphenyl)bismuthine. First, the observed 

molecular crystals and their data sets to be analyzed are described, followed by a 

detailed explanation of the modelling methods and numerical implementations used. 

 

2.1 Observed molecules and measurement data 

 

In the course of the FET-open project “CONQUER” Bi-aryl compounds, like 

Triphenylbismuth (further termed as BIPH3) and Tris(2-methoxyphenyl)bismuthine 

(further termed as BIPH3_OME) proved to be promising in terms of their physical and 

chemical properties: NQR transition frequency range applicable to clinical 1.5-  and 

3T MRI systems, low toxicity and tunability in frequency by chemical modification [2]. 

Therefore, all modelling processes in this thesis focused on these two substances. 

The following section shows their chemical, physical (Table 2.1) and NQR properties 

(Table 2.2) together with a description of the observed measurement data (Table 

2.3). 

 

2.1.1 Triphenylbismuth and Tris(2-methoxyphenyl)bismuthine 

 

 

Table 2.1: Chemical and physical properties of BIPH3 and BIPH3_OME [33] 

Synonyms Molecular 

formula 

Appearance Molecular 

weight in g/mol 

Melting 

point in °C 

Type of 

crystalline solid 

Triphenylbismuthine, 

BIPH3* 
𝐶18𝐻15𝐵𝑖 

Light yellow 

powder 
440.29  76-81 Molecular solid 

Tris(2-

methoxyphenyl)- 

bismuthane 

BIPH3_OME* 

𝐶21𝐻21𝐵𝑖𝑂3 Solid 530.37  162-165 Molecular solid 

*…labeling in this thesis 
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Figure 2.1: 2D-Structure of BIPH3 and BIPH3_OME [33] 

 

NQR properties 

 

𝐵𝑖83
209 , with a nuclear spin quantum number of I = 9/2 is the quadrupolar nucleus (QN) 

of interest. The interaction of its quadrupole moment with the electric field gradient 

gives rise to 10 energy levels and 4 pure (no external magnetic field applied) NQR 

transition frequencies (single quantum transitions that are further named as 

Transition 1...4 according to frequency in ascending order). All originating pure NQR 

transition frequencies can be completely described by means of the quadrupole 

coupling constant 𝑄𝑐𝑐 and the asymmetry parameter 𝜂.  

 

 

Table 2.2: NQR properties of BIPH3 and BIPH3_OME [2] 

Sample name Temperature in K 𝑸𝒄𝒄 in MHz 𝜼 (1) 

BIPH3 310 668.9 0.083 

77 684.6 0.090 

BIPH3_OME 

Site A 

310 715.2 0.000 

77 n/a. n/a. 

BIPH3_OME 

Site B 

310 714.3 0.000 

77 n/a. n/a. 

n/a…no measurement data available 

 

Table 2.2 lists the quadrupole coupling constant 𝑄𝑐𝑐 and the asymmetry parameter 𝜂 

of BIPH3 and BIPH3_OME at two different temperatures. 

 

BIPH3´s quadrupole coupling constant shows a clear temperature dependency 

(negative temperature coefficient), whereas for BIPH3_OME only data at 310K was 

available so far. Furthermore BIPH3_OME has two crystallographic inequivalent 

sites, resulting in slightly different quadrupole coupling constants. The asymmetry 

parameters of both substances are relatively small or even zero. Therefore, it´s 

common to assume axially symmetric field gradients of BIPH3 and BIPH3_OME.  
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2.1.2 Measurement data  

All measurement data were obtained using a self-built wideband pulse-type NQR 

spectrometer (50 - 150 MHz) developed at the Institute of Medical Engineering [6], 

[7]. With the help of a cryostatic wideband probehead [34] combined with a liquid 

nitrogen (LN) flow cryostat, measurements of NQR transition frequencies (Transition 

3 and Transition 4) of BIPH3 and BIPH3_OME at several temperatures were possible 

(Range from -196 °C/77.15 K to 50 °C/323.15 K). Transition 3 resp. 4 denotes the 

±5/2 ⟷ ±7/2 resp. ±7/2 ⟷ ±9/2 transitions. All measurements were performed as 

part of Felix Theyer´s bachelor thesis. The thesis contains a detailed description of 

the measurement setup and methods used [35]. 

 

Table 2.3 : Measured NQR transition frequencies with error estimation ∆𝝂(𝑻𝟎) of BIPH3 and 
BIPH3_OME 

 BIPH3 BIPH3_OME 

Site A 

Temperature T0  

in K 

Transition 3 ± ∆ν(T0)   

in MHz 

Transition 4 ± ∆ν(T0)   

in MHz 

Transition 3 ± ∆ν(T0)   

in MHz 

Transition 4 ± ∆ν(T0)   

in MHz 

77.15 85.44 ± 0.01 114.03 ± 0.02 n/a. n/a. 

133.15 85.17 ± 0.02 113.65 ± 0.03 n/a. n/a. 

153.15 85.04 ± 0.02 113.48 ± 0.03 90.06 ± 0.03 120.10 ± 0.03 

173.15 84.89 ± 0.02 113.23 ± 0.03 90.01 ± 0.03 120.04 ± 0.03 

193.15 84.68 ± 0.03 113.01 ± 0.03 89.95 ± 0.03 119.93 ± 0.03 

213.15 84.51 ± 0.03 112.78 ± 0.04 89.89 ± 0.03 119.82 ± 0.04 

233.15 84.41 ± 0.03 112.65 ± 0.04 89.83 ± 0.04 119.77 ± 0.04 

253.15 84.17 ± 0.04 112.32 ± 0.06 89.67 ± 0.05 119.59 ± 0.05 

273.15 83.90 ± 0.05 111.65 ± 0.06 89.63 ± 0.05 119.56 ± 0.06 

293.15 83.59 ± 0.05 111.55 ± 0.07 89.47 ± 0.05 119.29 ± 0.06 

313.15 83.35 ± 0.05 111.21 ± 0.07 89.29 ± 0.06 119.02 ± 0.07 

323.15 83.22 ± 0.06 111.05 ± 0.07 89.16 ± 0.06 118.90 ± 0.07 

n/a…no measurement data available 

 

Table 2.3 shows the determined maxima of the measured spectra together with its 

calculated error estimation using equation 2.1. The analysis of BIPH3_OME´s Site B 

is not part of this work due to lack of valid data. 

 

Error estimation of measurement data 

 

Numerous factors influenced the accuracy of the measurement results, such as 

thermocouple placement, frequency resolution of the acquired NQR spectra or 

stability of the temperature control. In order to take these influences into account, the 

following error estimation was applied, which is based on the error estimation in [35].  
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Equation 2.1 introduces the applied error estimation with respect to the measured 

NQR transition frequency, 

 

∆𝜈(𝑇0) = |
𝑑𝑣

𝑑𝑇
|

𝑇0

| ∆𝑇0 +  ∆𝑣𝑠𝑝𝑒𝑐/2      (2.1) 

 

 Where  ∆𝜈(𝑇0) is the magnitude of the NQR transition frequency´s error estimation 

(precisely, positive and negative value of error bar), 
𝑑𝑣

𝑑𝑇
|

𝑇0

is the temperature 

coefficient at the evaluated temperature 𝑇0, ∆𝑇0 is its estimated deviation and  ∆𝑣𝑠𝑝𝑒𝑐 

is the frequency resolution of the measured NQR spectra. A generous temperature 

deviation of ∆𝑇0 = 2.5 K resp. 3.5 K was chosen for measurement points in the 

ranges [77.15 K …233.15 K] resp. [253.15 K...323.15 K]. The obtained NQR 

transition frequency resolution ∆𝑣𝑠𝑝𝑒𝑐 equals 10 kHz for BIPH3 and 50 kHz for 

BIPH3_OME regarding the used sequence (acquisition window) in [35].  

The influence of a Lorentz fit on the measurement accuracy/error was negligible, so 

the measured maximum values (Table 2.3) of the NQR transition frequencies were 

selected for all further analyses. 
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2.2 Fitting Models 

The following section presents the adaption of the used fitting models describing the 

NQR transition frequency temperature dependency of BIPH3 and BIPH3_OME. 

This step provides a quick check of the underlying physical model used, before the 

focus can be set on a purely numerical implementation.   

 

Regarding molecular crystals, two simplifications (section 1.3.4) of Kushida´s model 

(1.16) are possible, leading to the used Kushida-Brown model. The adaption of the 

Kushida-Brown model for our purposes and its application to the measurement data 

is described below.   

 

Fitting equation for high temperature regime (Kushida-Brown-Model) 

 

 

Kushida’s formula (1.16 and 1.17) for the high temperature regime is recalled, 

  

𝜈(𝑇) = 𝑎 (1 + 𝑏𝑇 +
𝑐

𝑇
)    (1.16) 

 

where, 

   𝑎 =  𝜈𝑄 =
𝑒2𝑞𝑄

2ℎ
, in case of spin I = 3/2 

 

𝑏 =  −
3𝑘

8𝜋2
∑

1

𝐴𝑖𝑓𝑡,𝑖
2𝑖   

(1.17) 

𝑐 = −
ℎ2

32𝜋2𝑘
∑

1

𝐴𝑖
𝑖   

 

 

For simplifications only one vibrational mode 𝑖 is assumed. 

Replacing the sum in 𝑏 and 𝑐 and substituting constant terms with 𝑏´ and 𝑐´ leads to 

the following result: 

 

 

𝑎 =  𝜈𝑄;  𝑏´ =  −
3𝑘

8𝜋2 ;  𝑐´ = −
ℎ2

32𝜋2𝑘
     (2.2) 
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with, 

𝑏 =  𝑏´
1

𝐴𝑓𝑡
2  

    (2.3) 

𝑐 = 𝑐´
1

𝐴
  

 

Since the fitting parameter 𝑎 =  𝜈𝑄  depends on spin I and magnetic quantum number 

m, it is different for each spin I and transition. 

 

Furthermore, replacement of the torsional frequency 𝑓𝑡 with Brown´s linear model 

𝑓𝑡 = 𝑓𝑡,0(1 − 𝑔𝛥𝑡)  (1.18) to take volume dependency into account.  

 

In a final step, 𝑔 must be calculated from the measurement data: Therefore, Brown´s 

method (1.19 – 1.21) is applied to the measurement data, 

 

 

1

𝜈𝑄

𝑑𝑣

𝑑𝑡
|

𝑇0

= (1 + 2𝑇0𝑔)𝑏0 

           (2.4) 

1

𝜈𝑄

𝑑2𝑣

𝑑𝑡2
|

𝑇0

= (4𝑔 + 6𝑇0𝑔2)𝑏0 

 

 

The evaluation of the derivatives at the reference point 𝑇0 = 293.15𝐾 was done by 

fitting a polynomial of 2nd order to the measurement data. These values were 

obtained using the MATLAB solvers polyfit and polyder. 

 

Building the ratios of the above equations (2.4) skips the parameters 𝜈𝑄 and 𝑏0, 

 

𝑟𝑑 =  

𝑑𝑣

𝑑𝑡
|
𝑇0

𝑑2𝑣

𝑑𝑡2|
𝑇0

=
1+2𝑇0𝑔

4𝑔+6𝑇0𝑔2      (2.5) 

 

 

Equation (2.5) can be rewritten to the following quadratic equation: 

 

(4𝑟𝑑 − 2𝑇0)𝑔 + 6𝑟𝑑𝑇0𝑔2 − 1 = 0  

 

𝑥𝑔2 + 𝑦𝑔 + 𝑧 = 0    (2.6) 
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Where,  

𝑥 =  6𝑟𝑑𝑇0 

𝑦 =  4𝑟𝑑 − 2𝑇0   

𝑧 =  −1 

 

 

The quadratic equation (2.6) was solved with the MATLAB solver roots. It gives two 

results for g, where only the positive value was used. 

 

Finally, the adapted Kushida-Brown´s fitting equation for the high temperature regime 

(2.7) can be written as follows:  

 

 

𝜈(𝑇) = 𝜈𝑄 (1 + 𝑏´
1

𝐴𝑓𝑡,0
2 [1−𝑔(𝑇−𝑇0)]2 𝑇 + 𝑐´

1

𝐴𝑇
 ),   (2.7) 

 

 

where 𝑏´, 𝑐´ and 𝑔 are known constants, and 𝜈𝑄, 𝐴 resp. 𝑓𝑡,0 are the unknown fitting 

parameters. 

 

Fitting equation without high temperature approximation (Bayer-Brown-Model) 

 

To get rid of the high temperature approximation it is possible to use Bayer´s 

formulation (1.12).  

Adapted to only one vibrational mode 𝑖 and under consideration of a volume 

dependent torsional frequency 𝑓𝑡, equation (1.12) results in: 

 

𝜈(𝑇) =  𝜈𝑄[1 −
3ℎ

8𝜋2

1

𝐴𝑓𝑡,0[1−𝑔(𝑇−𝑇0)]
(

1

2
+  

1

𝑒
ℎ𝑓𝑡,0[1−𝑔(𝑇−𝑇0)]

𝑘𝑇 −1

)]   (2.8) 

 

 

The torsional frequency´s temperature coefficient 𝑔 can be obtained the same as 

described above with Brown´s method. 
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Application of the adapted fitting models to the measurement data 

 

The fitting equations (2.7 and 2.8) were applied separately to our given measurement 

data (section 2.1.2). A comparison of the models shows the influence of the high 

temperature approximation in the low temperature regime.   

  

The nonlinear least square solver used was lsqnonlin and executed a trust-region-

reflective algorithm. As termination tolerance ‘TolFun’ was set to 1e-10. Additionally, 

‘MaxIter’ resp. ‘MaxFunEvals’ was set to 1000 and 1500.  

 

The initial parameters and boundary conditions were defined as follows:  

 

Table 2.4: Initial parameters and boundary conditions of fitting models 

 𝒇𝒕,𝟎 𝒊𝒏 𝑻𝑯𝒛 𝑨 𝒊𝒏 𝟏𝟎−𝟒𝟒𝒊𝒏 𝒌𝒈𝒎𝟐 𝝂𝑸 𝒊𝒏 𝑴𝑯𝒛 

Transition 3/Transition 4 

BIPH3 

Initial parameters 1 1 85.55/114.26 

Lower bounds 0 0 0 

Upper bounds 100 100 200 

BIPH3_OME 

Initial parameters 1 1 89.61/119.45 

Lower bounds 0 0 0 

Upper bounds 100 100 200 

 

 

10−44, 1012 and 106 are scaling factors to avoid too small/large numerical values 

during the fitting procedure. The initial parameter 𝜈𝑄 was determined using the 

evaluation of the polynomial fit of 2nd order at 0 K. 

The parameters obtained in these fittings and their goodness of fit are presented in 

chapter results (Table 3.2). 
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2.3 Numerical implementations  

As already described in chapter 1.3, torsional oscillations of our investigated 

molecules seem to be mostly responsible for the temperature-dependent change of 

the NQR transition frequency. This chapter focuses on the numerical implementation 

and evaluation of this physical model. 

The first part deals with different formulations of the nuclear quadrupole interaction 

Hamiltonian (recall section 1.2.1) and their evaluation to obtain the NQR-transition 

frequencies of interest. 

The temperature dependency of NQR transition frequencies resp. their underlying 

nuclear quadrupole interaction Hamiltonian’s parameters due to torsional oscillations 

is introduced in section 2.3.2. First, an analytical model is presented that describes 

the temperature-dependent variation of the nuclear quadrupole coupling constant 𝑄𝑐𝑐  

and the asymmetry parameter 𝜂. Followed by a numerical implementation of the 

nuclear quadrupole interaction Hamiltonian´s motional averaging, also leading to a 

change of 𝑄𝑐𝑐 and 𝜂. Furthermore, the calculation of 𝑄𝑐𝑐  and 𝜂 from two NQR 

transition frequencies, precisely Transition 3 and Transition 4, is described. In 

addition, the numerical implementations obtained are tested and compared with the 

help of the fitting parameters acquired in section 2.2. Finally, a novel numerical fitting 

approach is introduced and tested with the measurement data.  

 

The entire implementation process was carried out in MATLAB (MathWorks). 

 

2.3.1 Hamiltonian of nuclear quadrupole interaction - different 

representations 

Numerical implementation of the nuclear quadrupole interaction Hamiltonian is an 

essential part in this thesis, therefore 3 slightly different numerical approaches of the 

nuclear quadrupole Hamiltonian are introduced. In addition, the numerical evaluation 

of the introduced Hamiltonians, to get finally the wanted NQR transition frequencies, 

is described in detail.  
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2.3.1.1 Hamiltonian in the principle axis system and its eigenvalue problem 

 

Commonly used is the formulation of the Hamiltonian in the principle axis system of 

the electric field gradient (1.4). In the principle axis system, the real symmetric 

traceless 3x3 EFG-tensor reduces to three components, namely 𝑉𝑥𝑥, 𝑉𝑦𝑦 and 𝑉𝑧𝑧.  

Therefore, the electric field gradient is completely characterized by two parameters: 

𝑒𝑞 = 𝑉𝑧𝑧 the z-component of the electric field gradient, which is part of 𝑄𝑐𝑐 =  𝑒2𝑞𝑄 

and the already known 𝜂 =
𝑉𝑥𝑥−𝑉𝑦𝑦

𝑉𝑧𝑧
. 

𝜂 can take values between 0 and 1, whereby condition |𝑉𝑥𝑥| ≤ |𝑉𝑦𝑦| ≤ |𝑉𝑧𝑧| in the 

principle axis system must be satisfied [3]. 

 

 

The following steps were carried out to obtain the wanted NQR transition 

frequencies: 

 

 

Hamiltonian: Matrix representation 

 

 

Recall equation 1.4: 

 

   𝐻𝑄 =
𝑄𝑐𝑐

4𝐼(2𝐼−1)
[3Iz

2 − I2 + η(Ix
2 − Iy

2)]   (1.4)  

 

 

Where 𝑄𝑐𝑐, 𝜂 and 𝐼 are all scalar values. 

 Although, the spin operator I and its components Ix, Iy and Iz  in the square bracket 

(I = (Ix, Iy, Iz) , where I2 =  Ix
2 + Iy

2 + Iz
2 ) have to be represented in matrices by 

selecting a suitable base (Zeeman base) to make further analysis possible. 
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For a nuclear spin quantum number 𝐼 above-mentioned spin operators can be 

described as square matrices of dimension  2𝐼 + 1. More precisely, they are 

represented in the Zeeman basis with states* |𝑚⟩ (where 𝑚 is the magnetic quantum 

number) that satisfy the following conditions [36]: 

 

⟨𝑚´|Ix|𝑚⟩ = (𝛿𝑚´,𝑚+1 + 𝛿𝑚+1´,𝑚)
1

2
√𝐼(𝐼 + 1) − 𝑚´𝑚 

⟨𝑚´|I𝑦|𝑚⟩ = (𝛿𝑚´,𝑚+1 − 𝛿𝑚+1´,𝑚)
1

2𝑖
√𝐼(𝐼 + 1) − 𝑚´𝑚 

⟨𝑚´|I𝑧|𝑚⟩ = 𝛿𝑚´,𝑚𝑚     (2.9) 

⟨𝑚´|I+|𝑚⟩ = 𝛿𝑚´,𝑚+1√𝐼(𝐼 + 1) − 𝑚´𝑚 

⟨𝑚´|I−|𝑚⟩ = 𝛿𝑚´+1,𝑚√𝐼(𝐼 + 1) − 𝑚´𝑚 

⟨𝑚´|I2|𝑚⟩ = 𝛿𝑚´,𝑚𝐼(𝐼 + 1) 

 

Where 𝛿𝑖,𝑗 is generally known as the Kronecker-Delta: 

 

𝛿𝑖,𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

    (2.10) 

 

I+ and I− in 2.11 are the non-Hermitian ladder operators [36]: 

 

I+ = Ix + 𝑖I𝑦 and I− = Ix − 𝑖I𝑦    (2.11) 

 

Thus, for a nuclear spin quantum number of I = 9/2, like the investigated 𝐵𝑖83
209 , the 

spin operators are represented in 10x10 matrices with 10 eigenstates (Zeeman 

basis): 

 

 | − 9/2⟩, | − 7/2⟩, | − 5/2⟩, | − 3/2⟩, | − 1/2⟩, |1/2⟩, |3/2⟩, |5/2⟩, |7/2⟩, |9/2⟩ 

 

To calculate the required matrices for different nuclear spin quantum numbers I, a 

MATLAB function spinmat(I) with the above-mentioned conditions (2.9) was written. 

By applying function spinmat(I) to I = 9/2, it was possible to calculate all matrices 

needed for the evaluation of equation 1.4. 

 

*Detailed information regarding quantum mechanical states (eigenstates and 

eigenvalues), quantum mechanical operators as well as the formulation of the 

eigenvalue problem of linear Hermitian operators (observables), can be found in ([37] 

p.134 & p.159). 
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Solving the eigenvalue problem 

 

The first step was required to obtain the nuclear quadrupole interaction Hamiltonian 

in its matrix representation. Finally, the NQR transition frequencies 𝜈𝑄 =
𝐸±𝑚−𝐸±𝑚−1

ℎ
, 

which are defined as the difference between two energy levels divided by ℎ, must be 

calculated from the given Hamiltonian. 

 

In quantum mechanics the Hamiltonian is also known as the „Energy-Operator“ [8]. 

Its unknown energy-levels 𝐸±𝑚 (eigenvalues) and eigenstates (eigenvectors) |𝜑⟩ can 

be obtained by solving the following eigenvalue problem (2.12) [37]: 

 

 

𝐻𝑄|𝜑⟩ = 𝐸|𝜑⟩      (2.12) 

  

 

Eigenvalue problem in the case of axial symmetry 

 

As shown in section 1.2.1.1, axially symmetry 𝜂 = 0 leads to a diagonalization of the 

Hamilton matrix (represented in the Zeeman basis). Consequently, the eigenvalues 

searched for are easy to obtain, since they are placed on the principal diagonal.  

The desired NQR transition frequency can be easily determined by evaluating the 

difference between the energy levels of interest.  

For example, 
𝐸±9/2−𝐸±7/2

ℎ
 gives NQR Transition 4 (I = 9/2).   

In the case of axial symmetry the calculated eigenstates match the previously 

mentioned Zeeman states |𝜑⟩ = |𝑚⟩. 

 

Eigenvalue problem in the case of axial asymmetry 

 

Generally, the EFG deviates from axially symmetry 𝜂 ≠ 0 resulting in a nondiagonal  

Hamilton matrix. In that case the eigenvalues have to be obtained by diagonalizing 

the given Hamilton matrix 𝐷𝐻𝑄 = 𝑈+𝐻𝑄𝑈. The columns of the unitary transformation 

matrices (𝑈+𝑈 = 1) contain the eigenvectors of 𝐻𝑄 [37]. Diagonalization leads to a 

change of the basis, more precisely the calculated eigenstates |φ⟩ are now linear 

combinations of Zeeman states |m⟩. 

Common numerical methods solving eigenvalue problems are the Cholesky 

factorization or the generalized Schur decomposition (QZ algorithm). 

In the course of this thesis the MATLAB solver eig was applied to all occurring 

eigenvalue problems. The MATLAB implementation chooses therefore between the 
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Cholesky factorization and the QZ algorithm, regarding the given matrix properties 

(symmetry, Hermitian) [38]. 

 

2.3.1.2 Bayer Approach 

 

Bayer was the first who introduced an angle dependency 𝜃(𝑡) of the nuclear 

quadrupole Hamiltonian to account for the observed molecule’s torsional oscillation 

[10]. For reasons of simplicity (𝜂 = 0), he assumed only one torsional oscillation, 

occurring about the y-principal axis of the EFG [10]. 

 

The principle axis system of the stationary molecule (x, y, z; also called laboratory 

axis system LABS) has to be related to the molecular fixed principle axis system (x´, 

y´, z´).  

 

The EFG components in the laboratory axis system (LABS) are described by the 

following equations: 

 

               𝑉𝑧𝑧 =
1

2
𝑉𝑧′𝑧′(3𝑐𝑜𝑠2(𝜃(𝑡)) − 1) ≈ 𝑉𝑧′𝑧′ (1 −

3

2
 𝜃2(𝑡)) , 𝑤ℎ𝑒𝑟𝑒𝑏𝑦 𝜃(𝑡) ≪ 1  

𝑉𝑥𝑥 =
1

2
𝑉𝑧′𝑧′(3𝑠𝑖𝑛2(𝜃(𝑡)) − 1) ≈ 𝑉𝑧′𝑧′ (

3

2
 𝜃2(𝑡) −

1

2
) , 𝑤ℎ𝑒𝑟𝑒𝑏𝑦 𝜃(𝑡) ≪ 1  (2.13) 

𝑉𝑥𝑧 = −
3

2
𝑉𝑧′𝑧′𝑠𝑖𝑛(𝜃(𝑡))cos (𝜃(𝑡)) ≈ −

3

4
𝑉𝑧′𝑧′ 𝜃(𝑡), 𝑤ℎ𝑒𝑟𝑒𝑏𝑦 𝜃(𝑡) ≪ 1 

𝑉𝑦𝑦 = −
1

2
𝑉𝑧′𝑧′ , 𝑉𝑦𝑧 = 𝑉𝑥𝑦 = 0     

 

Here, the tensor component Vxz is not zero as in the PAS case. 

 

 

Thus, the Bayer Hamiltonian of the nuclear quadrupole interaction in the LABS can 

be formulated as follows: 

 

 

𝐻𝑄 =
𝑒𝑄

2𝐼(2𝐼−1)
[𝑉𝑥𝑥Ix

2 + 𝑉𝑦𝑦Iy
2 + 𝑉𝑧𝑧Iz

2 + 𝑉𝑥𝑧(IxIz + IzIx)]  (2.14) 
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With sufficiently small angles 𝜃(𝑡) ≪ 1 the approximated Bayer Hamiltonian is given 

by: 

 

  𝐻𝑄 =
1

8

𝑒𝑄𝑉
𝑧′𝑧′

𝐼(2𝐼−1)
[(6Iz

2 − 2I2) (1 −
3

2
 𝜃2(𝑡)) − 3𝜃(𝑡)[ (I+ + I−)Iz + Iz(I+ + I−)] 

                                            + 
3

2
 𝜃2(𝑡)(I2

+ + I2
−)]                              (2.15) 

 

 

The first term contains the Hamiltonian (for 𝜂 = 0) with the perturbation caused by 

torsional oscillations, followed by terms containing ladder operators. 

The next section illustrates a more general formulation, that considers torsional 

oscillations occurring around all three coordinate axes!  

 

2.3.1.3  Hamiltonian in the laboratory axis system  

 

In order to allow oscillations of the investigated molecule about an arbitrary axis, the 

representation of the Bayer Hamiltonian must be adapted. With the help of Euler 

angles (𝛼, 𝛽, 𝛾) it is possible to describe the orientation of the molecule (precisely its 

EFG tensor) in the three-dimensional laboratory axis system (LABS).  

As in the previous case, the principle axis system and the laboratory axis system of 

the EFG tensor must be related to each other.              

 

The EFG tensor in the LAB system under consideration of Euler angles (𝛼, 𝛽, 𝛾) is 

given by [39], [40]: 

 

 

𝑉2,0 =
𝑒𝑞

2
[

3 cos2(𝛽)−1

2
+ 𝜂

sin2 (𝛽)(𝑒2𝑖𝛾+𝑒−2𝑖𝛾

4
]  

  

𝑉2,±1 =
𝑒𝑞

2
[∓√

3

8
sin(2𝛽) 𝑒±𝑖𝛼 +

𝜂

√6
(−

1∓cos(𝛽)

2
sin(𝛽) 𝑒±𝑖(𝛼∓2𝛾) + 

1∓cos(𝛽)

2
sin (𝛽)𝑒𝑖(±𝛼+2𝛾))]  

 

𝑉2,±2 =
𝑒𝑞

2
[∓√

3

8
sin2(𝛽) 𝑒±2𝑖𝛼 +

𝜂

√6
(

(1∓cos(𝛽))2

4
𝑒±2𝑖(𝛼∓𝛾) + 

(1±cos(𝛽))2

4
𝑒2𝑖(±𝛼+𝛾))]   (2.16) 

 

 

 

The above representation results using Wigner-D matrix elements [39] 

 



35 

With the help of the above introduced EFG tensor (2.16) a general formulation of the 

nuclear quadrupole interaction Hamiltonian in the LAB system is possible [39], [40]: 

 

 

                    𝐻𝑄 =
𝑒𝑄

𝐼(2𝐼−1)
[

1

2
(3Iz

2 − I2)V2,0 +
√6

4
((IzI+ + I+Iz)V2,−1 

                                                        −(IzI− + I−Iz)V2,+1+I2
+V2,−2+I2

−V2,+2)]   (2.17) 

 

 

The above formulation permits the EFG tensor to be rotated in arbitrary directions 

without assuming an axially symmetric EFG (𝜂 ≠ 0). 

Therefore, this formula will be our preferred choice when simulating torsional 

oscillations and the resulting averaging of the electric field gradient.  
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2.3.2 Averaging of Hamiltonian  

 

The temperature-dependent change of the NQR transition frequency was discussed 

in detail in the introduction. In this section the temperature-dependent change of the 

associated nuclear quadrupole interaction Hamiltonian’s parameters is presented. 

Thus, methods for the simulation of the EFG’s motional averaging, caused by 

temperature-dependent torsional oscillations of the investigated molecules, are 

introduced. 

To give insight into the temperature-dependent change of the Hamiltonian’s 

parameters, a common analytical approach is presented first, followed by a novel 

numerical implementation. 

 

 

Recall torsional oscillation: 

 

The time-dependency of (harmonic) torsional oscillations were introduced with the 

help of the following equation (1.7) [10]: 

 

 

𝜃(𝑡) =  𝜃(𝑡) sin (2𝜋𝑓𝑡𝑡 + 𝜑(𝑡))    (1.7) 

 

  

Under consideration of a harmonic oscillation, the mean  〈𝜃(𝑡)〉 resp. mean square 

〈𝜃2(𝑡)〉 of the time-dependent torsional angle 𝜃(𝑡) have the following values (1.8): 

 

 

〈𝜃(𝑡)〉 = 0 and  〈𝜃2(𝑡)〉  =  
�̂�2(𝑡)

2
      (1.8) 

 

 

The mean of the time-dependent torsional angle equals zero 〈𝜃(𝑡)〉 = 0 , in the case 

of harmonic oscillations.  
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2.3.2.1 Analytical averaging of Hamiltonian 

 

Harmonic oscillations cause an averaging of the electric field gradient, seen by the 

quadrupolar nucleus of interest. Therefore, T. P. Das and E. L. Hahn [5] considered 

this averaging by varying the z-component of the electric field gradient 𝑒𝑞 = 𝑉𝑧𝑧 and 

the asymmetry parameter 𝜂 of the stationary molecule (precisely its electric field 

gradient) with respect to the mean square of the torsional angle 〈𝜃2(𝑡)〉, since  

〈𝜃(𝑡)〉 = 0 (1.8). Oscillations occur about the x- and y- principle axis of the stationary 

molecule, and are assumed to be small 𝜃𝑥(𝑡), 𝜃𝑦(𝑡)  ≪  1. 

 

 

〈𝑉𝑧𝑧〉 = 𝑉𝑧𝑧 [1 −
3

2
(〈𝜃𝑥

2(𝑡)〉 + 〈𝜃𝑦
2(𝑡)〉) −

𝜂

2
(〈𝜃𝑥

2(𝑡)〉 − 〈𝜃𝑦
2(𝑡)〉 +

1

2
(3 − 𝜂)〈𝜃𝑥

2(𝑡)〉〈𝜃𝑦
2(𝑡)〉] 

 

(2.18) 

 

〈𝜂〉 =
𝑉𝑧𝑧

〈𝑉𝑧𝑧〉
[𝜂 −

3

2
(〈𝜃𝑥

2(𝑡)〉 − 〈𝜃𝑦
2(𝑡)〉) −

𝜂

2
(〈𝜃𝑥

2(𝑡)〉 + 〈𝜃𝑦
2(𝑡)〉 +

1

2
(3 − 𝜂)〈𝜃𝑥

2(𝑡)〉〈𝜃𝑦
2(𝑡)〉] 

 

The magnitude of 〈𝜂〉 was always used to avoid negative values of 〈𝜂〉. 

 

If above equations (2.18) are inserted into the PAS formulation of the nuclear 

quadrupole interaction Hamiltonian (1.4) the following averaged Hamiltonian 〈𝐻𝑄〉 

results: 

 

 

〈𝐻𝑄〉 =
𝑒𝑄〈𝑉𝑧𝑧〉

4𝐼(2𝐼−1)
[3Iz

2 − I2 + 〈η〉(Ix
2 − Iy

2)] ,  (2.19) 

 

 

where 𝑒𝑄〈𝑉𝑧𝑧〉 is the averaged nuclear quadrupole coupling constant, containing the 

averaged z-component of the electric field gradient 〈𝑉𝑧𝑧〉 and 〈𝜂〉 denotes the 

averaged asymmetry parameter. 

The relation of 〈𝜃𝑥
2(𝑡)〉 resp. 〈𝜃𝑦

2(𝑡)〉 to temperature is done by means of the 

quantum mechanical harmonic oscillator already mentioned. This step is shown in 

section 2.3.2.3. 
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2.3.2.2 Numerical averaging of Hamiltonian 

 

With the help of a numerical averaging implementation it is possible to consider 

oscillations around any predefined axis (Hamiltonian in the LABS). In addition, 

assumptions about small angles θ(t) ≪ 1, as in 2.3.2.1, are no longer necessary. 

 

Thus equation 1.7, describing harmonic torsional oscillations was applied as follows: 

 

Assumption of harmonic oscillation:  

 

𝜃(𝑡) =  𝜃(𝑡) sin(2𝜋𝑓𝑡𝑡) =  𝜃(𝑡) sin(2𝜋𝑡),    (2.20) 

 

where time t  is a vector of dimension 1 X N ranging from 0 to 1 s, N is the number of 

sampling points. Only one period of the oscillation is considered, thus the torsional 

frequency 𝑓𝑡 can be set to 1.    

 

Averaging of Hamiltonian: 

 

Calculation of the Hamiltonian for each sampling point N using the previous 

mentioned Bayer Hamiltonian (2.14 or 2.15) or the general LABS – formulation 

(2.17), and subsequent averaging (arithmetic mean). 

 

Repeat previous steps for each peak amplitude 𝜃(𝑡) of the torsional angle.  

 

The numerical error of this implementation obviously depends on the number of 

sampling points N. The temperature-dependent peak amplitudes of the torsional 

angle 𝜃(𝑡) must be related to temperature with the help of the quantum mechanical 

harmonic oscillator already mentioned. This step is introduced in section 2.3.2.3. 

 

All previously introduced numerical implementations of the quadrupole interaction 

Hamiltonians as well as their averaging due to torsional oscillations will be evaluated 

and discussed in the results section.  
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2.3.2.3 Torsional’s angle peak amplitude as a function of temperature 

 

As already discussed in the introduction, the relationship between torsional 

oscillations and sample temperature can be described with the help of the quantum 

mechanical harmonic oscillator (equation 1.10) [10]: 

 

 

ℎ𝑓𝑡 (
1

2
+

1

𝑒
ℎ𝑓𝑡
𝑘𝑇 −1

)  =  4𝜋2𝑓𝑡
2𝐴〈𝜃2(𝑡)〉   (1.10) 

 

 

Rearrangement of above formula gives: 

 

 

〈𝜃2(𝑡)〉 =  ℎ𝑓𝑡 (
1

2
+

1

𝑒
ℎ𝑓𝑡
𝑘𝑇 −1

)
1

4𝜋2𝑓𝑡
2𝐴

    (2.21) 

 

 

Furthermore, using relation 〈𝜃2(𝑡)〉  =  
�̂�2(𝑡)

2
 , 

 

 

𝜃(𝑡) = √2ℎ𝑓𝑡 (
1

2
+

1

𝑒
ℎ𝑓𝑡
𝑘𝑇 −1

)
1

4𝜋2𝑓𝑡
2𝐴

    (2.22) 

 

 

Whereby, 𝑓𝑡 = 𝑓𝑡,0(1 − 𝑔𝛥𝑡) in case of our investigated molecular crystals! 

 

                               

If the molecule-specific parameters: 𝑔, 𝑓𝑡,0, and A are known, it is possible to express 

the temperature dependence of the peak amplitude 𝜃(𝑡) resp. the mean square 

〈𝜃2(𝑡)〉 of the time-dependent torsional angle 𝜃(𝑡) with the equations (2.21 and 2.22) 

described above. 
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2.3.3 Calculation of 𝑸𝒄𝒄 and 𝜼 from NQR transition frequencies 

 

In order to determine the parameters 𝑄𝑐𝑐 and 𝜂 by means of “pure” nuclear 

quadrupole resonance spectroscopy, it is necessary to know at least two NQR 

transition frequencies [41]. The calculation of the nuclear quadrupole coupling 

constant 𝑄𝑐𝑐 and the asymmetry parameter 𝜂 from measured NQR transition 

frequencies, precisely Transition 3 and 4, is now briefly explained. 

 

Calculation of 𝜂: 

 

The asymmetry parameter 𝜂 can be easily calculated by forming the ratio Transition 4 

/ Transition 3. Once the ratio is formed, it can be assigned to a value of the 

asymmetry parameter. This assignment was done with the help of a lookup table and 

piecewise linear interpolation. To generate the lookup table the NQR transition 

frequency ratio, for different values of 𝜂 (ranging from 0 to 1 with 1e6 sampling 

points) had to be calculated before.  

 

 

Calculation of 𝑸𝒄𝒄: 

 

The calculation of 𝑄𝑐𝑐 is done with the previously calculated η and Transition 4. 

Therefore, the nuclear quadrupole interaction Hamiltonian (in PAS) must be 

rearranged without its nuclear quadrupole coupling constant being included (𝑄𝑐𝑐 set 

to 1). After determining its eigenvalues and relation to Transition 4, the unknown 

nuclear quadrupole coupling constant 𝑄𝑐𝑐 can be obtained. 
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2.3.4 Numerical fitting approach 

 

The fitting models described in section 2.2 assume that the asymmetry parameter of 

the observed molecule equals zero (𝜂 = 0). In fact, it remains equal to zero over the 

entire temperature range. In order to reject this assumption, a numerical fitting 

approach was implemented, considering (𝜂 ≠ 0) and its temperature-dependent 

change. 

The NQR transition frequency of interest (Transition 3 and Transition 4) is calculated 

with the help of the numerical averaging function introduced above (see 2.3.2.2), 

using the LABS-formulation of the Hamiltonian (see 2.3.1.3 equation 2.17). 

 

Thus, the objective function to be minimized is given by: 

 

 

          

min𝑝𝑎𝑟𝑎𝑚 ‖𝑣𝑎𝑣𝑔(𝑝𝑎𝑟𝑎𝑚, 𝑔, 𝑇)|
𝑇3,𝑇4

− 𝑣𝑚𝑒𝑎𝑠|𝑇3,𝑇4 ‖
2

2

  (2.23) 

 

where, 𝑣𝑎𝑣𝑔(𝑝𝑎𝑟𝑎𝑚, 𝑔, 𝑇)|
𝑇3,𝑇4

 are the calculated NQR transition frequencies 

(concatenated vector of Transition 3 and Transition 4) with minimization parameters: 

param = [ft,0, 𝐴, 𝑄𝑐𝑐, 𝜂] and the temperature coefficient g determined by Brown´s 

method (see section 2.2); 𝑣𝑚𝑒𝑎𝑠|𝑇3,𝑇4 contains the measured NQR transition 

frequencies of interest. 

 

The objective function presented above considers both measured NQR transition 

frequencies, which is crucial since the nuclear quadrupole coupling constant as well 

as the asymmetry parameter have to be determined.  

 

The above introduced objective function (2.23) was minimized using the nonlinear 

least-squares MATLAB solver lsqnonlin (trust-region-reflective algorithm). As 

termination tolerance ‘TolFun’ was set to 1e-10, with an additional restriction of 80 

iterations.    
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The following initial parameters and boundary conditions were applied: 

 

Table 2.5: Initial parameters and boundary conditions of numerical fitting approach 

 𝒇𝒕,𝟎 𝒊𝒏 𝑻𝑯𝒛 𝑨 𝒊𝒏 𝟏𝟎−𝟒𝟒 𝒊𝒏 𝒌𝒈𝒎𝟐 𝑸𝒄𝒄 𝒊𝒏 𝑴𝑯𝒛 𝜼 (𝟏) 

BIPH3 

Initial parameters 1.5 0.05 684.6 0.09 

Lower bounds 0 0 668.9 0.08 

Upper bounds 10 10 700 0.5 

BIPH3_OME 

Initial parameters 1.5 0.05 715 0 

Lower bounds 0 0 700 0 

Upper bounds 10 10 800 0.5 

 

 

The boundary conditions and initial parameters of the quadrupole coupling constant 

and the asymmetry parameter were chosen based on the values already known, as 

listed in Table 2.2, whereby the initial parameters of 𝑓𝑡,0 and 𝐴 were chosen on the 

basis of the fittings (Table 3.2) already made.  

 

The parameters obtained in these fittings and their goodness of fit are presented in 

detail in the results section (Table 3.5). 
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2.4 Identifier scheme of different implementations 

 

To keep the overview the following identifiers are used for different numerical and 

analytical implementations (Table 2.6), which were introduced in previous sections 

(section 2.2 and 2.3).  

 

 

Table 2.6: Identifier scheme of used implementations 

Identifier 

Hamiltonian 

formulation/Fitting 

equation* 

Averaging method Assumptions Color in plots 

NABayer 
Bayer 

(equation 2.14) 

numerical  

(section 2.3.2.2) 
𝜂 = 0, not constant green 

NABayerA 
Bayer approx. 

(equation 2.15) 

numerical 

 (section 2.3.2.2) 

𝜂 = 0, not constant 

small angle 

approximation 

black 

NALABS 
LABS 

(equation 2.17) 

numerical  

(section 2.3.2.2) 
- red 

AAPASA 
PAS 

(equation 1.4) 

analytical 

(section 2.3.2.1) 

small angle 

approximation 
magenta 

Bayer-Brown 

Analytical Bayer-

Brown-Model* 

(equation 2.8) 

- 

𝜂 = 0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

small angle 

approximation 

blue 

Kushida-Brown 

Analytical Kushida-

Brown-Model* 

(equation 2.7) 

- 

𝜂 = 0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

small angle 

approximation 

green/arbitrary 

 

 

Above introduced identifiers are applied to further analyses, especially in section 3.2. 
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3 Results 

This chapter shows the most important findings of the above introduced methods 

applied to the measurement data. First, fitting parameters were determined using the 

analytical Kushida-Brown and Bayer-Brown models (equation 2.7 and 2.8). With the 

help of these fitting parameters the before-mentioned numerical implementations 

could be tested and compared. The influence of simplifications on the calculated, 

more precisely modelled NQR transition frequencies is shown. Finally, the numerical 

fitting approach (equation 2.23) was applied to measurement data, obtaining the 

fitting parameters 𝐴, 𝑓𝑡,0, 𝑄𝑐𝑐 and 𝜂. The practical benefits of numerical methods, 

more precisely the introduced numerical fitting approach, are also demonstrated. 

Furthermore, interesting facts regarding the underlying temperature-dependent 

torsional oscillations of the investigated molecules are shown. 

3.1 Fitting Models  

Figure 3.1 to Figure 3.4 show the fitting results of the Kushida-Brown resp. Bayer-

Brown model (equation 2.7 & 2.8 applied to BIPH3 and BIPH3_OME Transition 3 and 

4). The obtained fitting parameters (𝐴, 𝑓𝑡,0 and 𝑣𝑄) and goodness of fit are illustrated 

in Table 3.2.  

Figure 3.1: Fitting to measurement data (BIPH3 Transition 3; error estimation of measurement 
data included) with Bayer-Brown- resp. Kushida-Brown-Model  
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Figure 3.2: Fitting to measurement data (BIPH3 Transition 4; error estimation of measurement 
data included) with Bayer-Brown- resp. Kushida-Brown-Model  

 

 

Figure 3.3: Fitting to measurement data (BIPH3_OME Transition 3; error estimation of 
measurement data included) with Bayer-Brown- resp. Kushida-Brown-Model 
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Figure 3.4: Fitting to measurement data (BIPH3_OME Transition 4; error estimation of 

measurement data included) with Bayer-Brown- resp. Kushida-Brown-Model 

 

 

The temperature coefficients 𝑔 of the torsional frequencies could be successfully 

determined with the help of Browns method and are listed in Table 3.1. 

 

 

Table 3.1: Calculated temperature coefficients 𝒈 with Brown´s-Method at evaluation point 𝑻𝟎  

Sample Transition 𝒈 = 〈𝒈〉 𝒊𝒏 𝟏/𝑲  𝑻𝟎 𝒊𝒏 𝑲  

BIPH3 
3 9.46*𝟏𝟎−𝟒  293.15 

4 8.87*𝟏𝟎−𝟒  293.15 

BIPH3_OME 
3 18.12*𝟏𝟎−𝟒  293.15 

4 18.03*𝟏𝟎−𝟒  293.15 
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Table 3.2: Fitting parameters and goodness of fit obtained with Bayer-Brown´s- resp. Kushida-
Brown´s model  

Fitting Model 
𝑨 𝒊𝒏 𝟏𝟎−𝟒𝟒 𝒌𝒈𝒎𝟐 

95% ci. 

𝒇𝒕,𝟎 𝒊𝒏 𝑻𝑯𝒛 

95% ci. 

𝒗𝑸 𝒊𝒏 𝑴𝑯𝒛 

95% ci. 
𝒗(𝟎 𝑲) 𝒊𝒏 𝑴𝑯𝒛 𝑹𝑴𝑺𝑬  𝑹𝟐

𝑨𝒅𝒋 

BIPH3 

Transition 3 

Bayer-Brown 
0.019 

(0.003-0.035) 

5.168 

(3.197-7.140) 

86.374 

(86.056-86.692) 
85.516 0.037 0.998 

Kushida-Brown 
0.030 

(0.012-0.048) 

4.194 

(3.040-5.348) 

86.264 

(86.069-86.458) 
-Inf 0.038 0.997 

Transition 4 

Bayer-Brown 
0.022 

(-0.018-0.062) 

4.806 

(0.754-8.859) 

115.250 

(114.399-16.100) 
114.153 0.104 0.989 

Kushida-Brown 
0.031 

(-0.010-0.072) 

4.048 

(1.594-6.502) 

115.142 

(114.596-15.687) 
-Inf 0.104 0.989 

BIPH3_OME 

Transition 3 

Bayer-Brown 
0.004 

(-0.014-0.023) 

15.842 

(-15.050-46.733) 

91.440 

(88.155-94.725) 
90.321 0.027 0.993 

Kushida-Brown 
0.014 

(0.002-0.027) 

9.046 

(5.767-12.324) 

90.870 

(90.470-91.271) 
-Inf 0.028 0.992 

Transition 4 

Bayer-Brown 
0.004 

(-0.011-0.019) 

16.710 

(-13.555-46.976) 

122.055 

(117.753-26.357) 
120.456 0.048 0.987 

Kushida-Brown 
0.015 

(-0.003-0.033) 

8.917 

(4.368-13.466) 

121.148 

(120.425-21.871) 
-Inf 0.051 0.985 
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3.2 Forward Simulation and Model Comparison 

Previously introduced numerical implementations of the quadrupole interaction 

Hamiltonians (PAS-, LABS-, Bayer-formulation, equations 1.4, 2.17, 2.14 & 2.15) and 

their averaging due to torsional oscillations (analytical and numerical averaging, 

sections 2.3.2.1 & 2.3.2.2) were used for simulations with the help of the before 

obtained fitting parameters of the Bayer-Brown model (BIPH3, Transition 3 and 4, 

see Table 3.2). It has to be mentioned that the quadrupolar coupling constant 𝑄𝑐𝑐 

and the asymmetry parameter 𝜂 had to be calculated with the knowledge of the fitting 

parameter 𝑣𝑄 (NQR transition frequency of the static lattice) of Transition 3 and 4, to 

get the so-called “reference value*” for the analytical and numerical averaging 

functions. The Forward Simulation of different numerical implementations as well as 

the simulation of the analytical Bayer-Brown model (equation 2.8, also with above 

fitting parameters) are displayed in Figure 3.5  and Figure 3.6. All numerical 

simulations were carried out with Euler angles set to: 𝛼 = 0°, 𝛽 = 𝜃(𝑡) , 𝛾 = 90°, 

(oscillations about the x-principal axis of the stationary molecule) and 1250 sampling 

points N of the numerical averaging function of section 2.3.2.2. 

 

The background of these simulations with an equivalent set of parameters is to show 

their deviations and to demonstrate the influence of certain simplifications on the 

calculated NQR transition frequencies. All further implementations (numerical and 

analytical Forward Simulations) are named according to the scheme in section 2.4. 

The following simulations (with different reference values) and calculations 

(implementation deviations) are explained and discussed in detail in the discussion 

part. The whole analysis was focused on BIPH3 as BIPH3_OME would provide 

similar results. 

* denotes the “static lattice parameter” of the torsional averaging process. 
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Figure 3.5: Forward simulation of different implementations with previously obtained fitting 

parameters (Bayer-Brown-Model, BIPH3 Transition 3) and reference values 𝜼 = 𝟎. 𝟎𝟖𝟑 resp. 

𝑸𝒄𝒄 =  𝟔𝟗𝟏. 𝟖𝟖𝟖 MHz. 

 

 

 

Figure 3.6: Forward simulation of different implementations with previously obtained fitting 

parameters (Bayer-Brown-Model, BIPH3 Transition 4) and reference values 𝜼 = 𝟎. 𝟎𝟖𝟑 resp. 

𝑸𝒄𝒄 =  𝟔𝟗𝟏. 𝟖𝟖𝟖 MHz. 
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 Figure 3.7: Change of Qcc and 𝜼 of BIPH3 in terms of temperature (with 𝜼 = 𝟎. 𝟎𝟖𝟑, 𝑸𝒄𝒄 =

 𝟔𝟗𝟏. 𝟖𝟖𝟖 MHz as reference values).  

 

Figure 3.8: Change of Qcc and 𝜼  of BIPH3 in terms of temperature (with 𝜼 = 𝟎, 𝑸𝒄𝒄 =  𝟔𝟗𝟏. 𝟖𝟖𝟖  

MHz as reference values) 

 

 Figure 3.7 & Figure 3.8 show the temperature dependence of  𝑄𝑐𝑐 and 𝜂 for two 

different reference values (𝜂 = 0.083 and 𝜂 = 0) for different implementations (see 

identifier table section 2.4). The relative change of 𝑄𝑐𝑐 can be defined as 

(𝑄𝑐𝑐(𝑠𝑡𝑎𝑡𝑖𝑐) − 𝑄𝑐𝑐(𝑇))/𝑄𝑐𝑐(𝑠𝑡𝑎𝑡𝑖𝑐) ∗ 100. 
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The mean deviations (arithmetic mean) of 𝑄𝑐𝑐 and 𝜂 between the NALABS and the  

NABayer implementation resp. the NABayerA and the AAPASA implementation are 

listed in Table 3.3 for both reference values mentioned above ( Figure 3.7 & Figure 

3.8). 

 

Table 3.3: Mean Deviations of Qcc and 𝜼 for different implementations  

𝑸𝒄𝒄 = 691.888 MHz, 𝜼 = 𝟎. 𝟎𝟖𝟑 Mean Deviation of 𝑸𝒄𝒄 in kHz Mean Deviation of 𝜼 (1) 

NALABS vs. NABayer 3.545*102 4.672*10−2 

NABayerA  vs. AAPASA 3.677*102 4.642*10−2 

𝑸𝒄𝒄 = 691.888 MHz, 𝜼 = 𝟎 Mean Deviation of 𝑄𝑐𝑐 in kHz Mean Deviation of 𝜼 (1) 

NALABS vs. NABayer 1.007*10−9 3.386*10−13 

NABayerA  vs. AAPASA 1.029*101 1.55*10−5 

 

 

The absolute differences between NABayer and NABayerA implementation (black 

dotted line) resp. AAPASA and Bayer-Brown (black solid line) are visualized in Figure 

3.9 for both investigated Transitions (3, 4) of BIPH3. The calculated maximum 

deviations  (T=323.15K) are 39kHz resp. 52kHz (black dotted line) and 15kHz resp. 

76kHz (black solid line). 

 

 

 

 

Figure 3.9: Implementation Deviations due to small angle approximation 𝜽(𝒕) ≪ 𝟏 and constant 

𝜼  assumption in Bayer´s Model (with 𝜼 = 𝟎. 𝟎𝟖𝟑, 𝑸𝒄𝒄 =  𝟔𝟗𝟏. 𝟖𝟖𝟖  MHz as reference values). 
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Figure 3.10: Implementation Deviations due to a finite number N of sampling points (numerical 

averaging function, with 𝜼 = 𝟎, 𝑸𝒄𝒄 =  𝟔𝟗𝟏. 𝟖𝟖𝟖  MHz as reference values)  

The implementation deviation caused by the finite number of sampling points N, used 

for the numerical calculation of the EFG´s averaging effect (section 2.3.2.2) are 

illustrated in Figure 3.10 and Table 3.4. Therefore, the absolute difference between 

the AAPASA and the NABayerA implementation (reference values 𝑄𝑐𝑐 = 691.888, 

𝜂 = 0) for different numbers of sampling points N (numerical averaging function 

section 2.3.2.2) ranging from 250 to 5000, were determined. Followed by a 

calculation of the maximum (Value at T=323.15 K) and mean (arithmetic mean) of 

above differences.  

 

 

 

Table 3.4: Mean and Maximum Deviation due to numerical averaging function (section 

2.3.2.2) 

 Sampling points N 250 1250 5000 

Transition 3 Mean Deviation in kHz 6.5 1.3 0.3 

Maximum Deviation in kHz 12.9 2.6 0.6 

Transition 4 Mean Deviation in kHz 8.6 1.7 0.4 

Maximum Deviation in kHz 17.1 3.4 0.9 

 

 

All before-mentioned Figures and Tables in this section are a summary of the 

analysis performed to work out the influence of different simplifications on simulated 

NQR transition frequency temperature dependency. A detailed explanation follows, 

as already mentioned, in the discussion part. 
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Figure 3.11: Fitting to measurement data (BIPH3 Transition  3  &  4; error estimation of  
measurement data included) with numerical fitting approach 

 

3.3 Numerical fitting approach 

Figure 3.11 and Figure 3.12 show the fitting results of the numerical fitting approach 

of section 2.3.4 (BIPH3 and BIPH3_OME Transition 3 and 4). The obtained fitting 

parameters (𝐴, 𝑓𝑡,0, 𝑄𝑐𝑐 and 𝜂) and goodness of fit are illustrated in Table 3.5.  All 

numerical Forward Simulations, carried out in the course of the optimization process, 

were done with Euler angles set to: 𝛼 = 0, 𝛽 = 𝜃(𝑡) , 𝛾 = 90, (oscillations about the 

x-principal axis of the stationary molecule) and 1250 sampling points N of the 

numerical averaging function (recall section 2.3.2.2). 

 

 

 

 

 

To keep in mind, with this approach it is possible to fit Transition 3 and Transition 4 at 

once. 
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Figure 3.12: Fitting to measurement data (BIPH3_OME Transition  3  &  4; error estimation of  
measurement data included) with numerical fitting approach 

 

 

 

Table 3.5: Fitting parameters and goodness of fit obtained with numerical fitting approach 

Fitting Model 

𝑨 𝒊𝒏 𝟏𝟎−𝟒𝟒 𝒌𝒈𝒎𝟐 

95% ci. 

𝒇𝒕,𝟎 𝒊𝒏 𝑻𝑯𝒛 

95% ci. 

𝑸𝒄𝒄 𝒊𝒏 𝑴𝑯𝒛 

95% ci. 

𝜼 (𝟏) 

95% ci. 

𝑹𝑴𝑺𝑬* 

Transition 3 

Transition 4 

𝑹𝟐
𝑨𝒅𝒋* 

Transition 3 

Transition 4 

BIPH3 

Transition 3 & Transition 4 

Numerical 

approach 

(NALABS) 

0.020 

(0.001-0.039) 

5.007 

(2.860-7.154) 

692.380 

(689.430-695.331) 
0.104 

(0.067-0.141) 

0.040 

0.110 

0.997 

0.988 

BIPH3_OME 

Transition 3 & Transition 4 

Numerical 

approach 

(NALABS) 

0.056 

(-0.182-0.294) 

4.894 

(-5.056-14.844) 

724.283 

(720.769-727.797) 
0.000 

(-0.203-0.203) 

0.039 

0.063 

0.984 

0.977 

*… 𝑅𝑀𝑆𝐸 and 𝑅2
𝐴𝑑𝑗 were separately calculated for Transition 3 and Transition 4 
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3.4 Forward simulation of numerical models: Interesting Findings 

 

The next subsection shows some interesting impacts on NQR transition frequency 

temperature-dependency, concerning different torsional oscillation directions. 

Furthermore, the temperature-dependent change of the torsional angle´s peak 

amplitude is displayed for both investigated molecules 

 

3.4.1 LABS-Formulation and impact of asymmetry parameter 𝜼 

 

 

Figure 3.13: Influence of different torsional oscillation directions (𝛂, 𝛃 = 𝛉(𝐭) , 𝛄) on NQR 

transition frequencies (BIPH3 with 𝑸𝒄𝒄 = 𝟔𝟗𝟐. 𝟑𝟖 MHz and 𝜼 = 𝟎. 𝟏𝟎𝟒 as reference values). 
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Figure 3.14: Influence of different torsional oscillation directions (𝛂, 𝛃 = 𝛉(𝐭) , 𝛄) on 𝑸𝒄𝒄 and 𝜼 

(BIPH3 with 𝑸𝒄𝒄 = 𝟔𝟗𝟐. 𝟑𝟖 MHz and 𝜼 = 𝟎. 𝟏𝟎𝟒 as reference values). 

 

 

Figure 3.15: Influence of different torsional oscillation directions (𝛂, 𝛃 = 𝛉(𝐭) , 𝛄) on NQR 

transition frequencies (BIPH3 with 𝑸𝒄𝒄 = 𝟔𝟗𝟐. 𝟑𝟖 MHz and 𝜼 = 𝟎 as reference values). 
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Figure 3.16: Influence of different torsional oscillation directions (𝛂, 𝛃 = 𝛉(𝐭) , 𝛄) on 𝑸𝒄𝒄 and 𝜼 

(BIPH3 with 𝑸𝒄𝒄 = 𝟔𝟗𝟐. 𝟑𝟖 MHz and 𝜼 = 𝟎 as reference values). 

 

 

The Forward Simulation of NQR transition frequencies were performed (Figure 3.13 

and Figure 3.15) with the help of the Hamiltonian´s LABS-formulation (2.17) and the 

numerical averaging function (2.3.2.2), also called NALABS. 

For this purpose, sampling points N of the numerical averaging function were set to 

1250. All simulation parameters (𝐴, 𝑓𝑡,0, 𝑄𝑐𝑐 and 𝜂) were those obtained from 

previous described numerical fitting approach of BIPH3 (Table 3.5 line 1). The 

influence of different torsional oscillation directions to 𝑄𝑐𝑐 and 𝜂 are displayed in 

Figure 3.14  and Figure 3.16.  However, Figure 3.15 and Figure 3.16  illustrate 

simulations assuming an axially symmetric electric field gradient (𝜂 = 0). 

𝑄𝑐𝑐 and 𝜂  are the reference values (“static lattice parameter”) of the torsional 

averaging process. 
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3.4.2 Temperature-Dependency of torsional angle 

 

The relationship between torsional oscillations and sample temperature can be 

described with the help of the quantum mechanical harmonic oscillator (recall 

equation 1.10 and section 2.3.2.3). This relationship, precisely the torsional angle´s 

peak amplitude 𝜃(𝑡) in terms of temperature (equation 2.22), is therefore displayed in 

Figure 3.17  concerning both investigated molecular crystals.    

  

Figure 3.17:  �̂�(𝒕) in terms of temperature for BIPH3 and BIPH3_OME 
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4 Discussion 

Fitting Models 

 

Figure 3.1 to Figure 3.4 visualize the fitting results of the analytical Bayer-Brown 

resp. Kushida-Brown model (BIPH3 and BIPH3_OME Transition 3 and 4). The trend 

of Kushida-Brown’s model to minus infinity for low temperatures shows clearly why 

it’s called the high temperature approximation. Both models seem to be valid 

describing the supposed decreasing NQR transition frequencies with increasing 

temperature (negative temperature coefficient) regarding their goodness of fit (𝑅𝑀𝑆𝐸, 

𝑅2
𝐴𝑑𝑗 of Table 3.2) as well as their predictions being almost inside the estimated 

measurement errors (Table 2.3).  In the case of BIPH3, the fitting parameters 𝐴, 𝑓𝑡,0 

and 𝑣𝑄 of both models (Bayer-Brown and Kushida-Brown) are comparable in contrast 

to BIPH3_OME, where the estimated torsional frequency 𝑓𝑡,0 of Bayer-Brown’s model 

is almost twice as large as that of Kushida-Brown's (see Table 3.2). One reason is 

surely the missing of measurement points of BIPH3_OME in the low-temperature 

range < 153.15 K, in contrast to BIPH3 having points at 133.15 K and 77.15 K too. 

 

All fitting parameters of BIPH3 and previously calculated g-parameters (Table 3.1), 

having rationally orders of magnitude: 

 

-g-values for molecular solids fall typically in the range of (0.0005 to 0.0015 K−1) [29, 

27]: Thus, obtained values range from ~ 0.0009 to 0.0018 K−1  

 

-The equivalent moment of inertia A is reported in magnitudes of order  10−45 kgm2 

for solid chlorine in Nakamura and Chihara [42] or dichloroethylene in Bayer [10]. 

Unfortunately, calculated values for BIPH3 or BIPH3_OME couldn’t be found so far: 

The fitted A are in the order of 10−46 kgm2, thus one order of magnitude below the 

values for solid chlorine or dichloroethylene. 

 

-Usually normal modes with torsional frequencies below 150 cm−1 = 4.5 1012 Hz 

contribute significantly to NQR transition frequency’s temperature dependency [27]: 

So, the fitted torsional frequencies 𝑓𝑡,0 seem to be on the upper limit of supposed 

values. 

 

The NQR transition frequency of the static lattice 𝑣𝑄 is always greater than that at 0 K 

(scale of 1 MHz), pointing out that the NQR transition frequency of the static lattice is 

not the same as the transition frequency at 0 K, a frequently used assumption in 

NQR transition frequency temperature dependence modeling processes!  
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Despite many simplifications of both models used, the fitted parameters seem to be 

plausible in their magnitudes. However, they should not be interpreted as valid 

physical parameters due to a variety of assumptions. 

 

Model Comparison 

 

To show the influence of frequently used simplifications on the modeled NQR 

transition frequencies temperature dependency, different implementations were 

compared (Figure 3.5 and Figure 3.6). Both Bayer implementations (NABayer and 

NABayerA) show a significant offset in both figures, which is due to the fact that they 

assume an axially symmetric electric field gradient of the static lattice (reference 

value). This fact is also illustrated in  Figure 3.7 and Figure 3.8, where the change of 

𝜂 is the same for different reference values (𝜂 = 0.086 vs. 𝜂 = 0). However, the 

numerical averaging function (section 2.3.2.2) as well as the analytical averaging 

(section 2.3.2.1) lead to a change of 𝜂 with temperature, which is not the case for 

analytical models because of Bayer’s assumptions (𝜂 equals zero over the entire 

temperature range: section 1.3).  

At this point it is important to mention that due to the knowledge of two transitions it 

was possible to calculate the variation of 𝑄𝑐𝑐 and 𝜂 in terms of temperature also for 

the Bayer-Brown model (analytical model equation 2.8), even though the model itself 

does not consider varying 𝜂 (constant 𝜂 assumption). Obviously, this issue results in 

an offset in calculated 𝜂 of Bayer-Brown (blue solid line in  Figure 3.7) compared to 

NALABS and AAPASA implementations. 𝑄𝑐𝑐 and 𝜂 of the measurement data shows 

plausible order of magnitude, but they are strongly influenced by measurement errors 

(see section 2.1.2).   

The analytical (AAPASA) and numerical averaging implementations (NALABS) have 

a similar trend compared with the simulated analytical Bayer-Brown model (Figure 

3.5 Figure 3.6), but they don’t yield the same results due to Bayer’s assumptions. 

Values of the AAPASA and NALABS implementations differ exponentially with 

increasing temperature. This is due to the small angle approximation in the AAPASA 

and the implementation deviation caused by the numerical averaging function of the 

NALABS implementation. 

Thus, to show the influence of different simplifications/assumptions on modeled NQR 

transition frequency as well as to check the plausibility of different numerical 

implementations, the following analyses were carried out: 

 

1. The mean deviations of 𝑄𝑐𝑐 and 𝜂 between the NALABS and NABayer resp. 

the NABayerA and the AAPASA implementation were calculated and listed 

in Table 3.3: 
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-In the case of 𝜂 = 0 the NALABS and the NABayer coincide like expected, 

because the mean errors of 𝑄𝑐𝑐 and 𝜂 are in the range of numerical errors 

(Table 3.3, line 3). 

That’s not the case for the Mean Deviations between the NABayerA and the 

AAPASA. In fact, the main difference between both implementations (for 

𝜂 = 0)  is the used numerical averaging function (section 2.3.2.2).  

 

2. Consequently, the absolute difference of these implementations could be 

used to calculate the deviation caused by a finite number of sampling points 

N of the numerical averaging function. The evolution of the mean and 

maximum values of the deviation is displayed in Figure 3.10 and listed in 

Table 3.4. 

 

3. The impact of the small angle approximation as well as the constant 𝜂 

assumption of Bayer [10] could be investigated as follows: 

 

-The only difference between the NABayer and the NABayerA  

implementation is the assumption of small angles. Thus, calculating the 

absolute difference between both implementations (black dotted line) makes 

it possible to get information regarding the assumption´s impact. Figure 3.9 

displays the calculated deviations. 

 

-Calculation of the absolute difference between the AAPASA implementation 

and the analytical Bayer-Brown model gives the deviation due to a constant 

eta assumption, because the analytical Bayer-Brown model doesn’t account 

for that change. Both models assume small angles, so this calculation will be 

supposed to be valid showing the influence of the constant 𝜂 assumption. 

The evolution of the deviation in terms of temperature is also shown in 

Figure 3.9 (black solid line). 

 

Summarized, three simplifications were investigated: Namely, the influence of a finite 

number of sampling points N (numerical averaging function), the assumption of small 

angles and the impact of the constant 𝜂 assumption (both cited in Bayer [10]) on 

modeled NQR transition frequencies temperature dependency. The implementation’s 

maximum deviation due to a finite number of sampling points N could be kept below 

3.5 kHz using N = 1250, which is smaller than the frequency resolution of the 

measurement data (10 kHz of BIPH3 and 50 kHz of BIPH3_OME). Therefore, every 

numerical simulation was at least carried out with 1250 sampling points! In 

comparison, the small angle approximation and constant 𝜂 assumption lead to a 
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maximum deviation of max. 52 kHz resp. 76 kHz. So, they are in the order of 

magnitude of the measurement’s data error estimation (Table 2.3). However, all 

deviations mentioned so far increase exponentially with temperature since they 

depend on the mean square resp. peak torsional angle of the EFG’s oscillation. 

 

Consequently, the introduced NALABS implementation can be seen as the best 

choice of above implementations regarding modeling the NQR transition frequency 

temperature dependence, since it gets rid of the small angle- and constant 𝜂 

assumption. 

 

Numerical Fitting Approach 

 

The Application of the novel numerical fitting approach to the measurement data is 

illustrated in Figure 3.11 resp. Figure 3.12 with its fitting parameters 𝐴, 𝑓𝑡,0, 𝑄𝑐𝑐 and 𝜂 

and goodness of fit listed in Table 3.5. The Parameters 𝐴, 𝑓𝑡,0 obtained are 

comparable to those of the analytical Bayer-Brown resp. Kushida-Brown model in 

case of BIPH3, whereas in case of BIPH3_OME the obtained parameters have 

slightly different values. Moreover, the obtained parameters of BIPH3_OME are 

comparable to those of BIPH3 which is plausible since BIPH3_OME is only a small 

modification of BIPH3.  

The estimated quadrupole coupling constant as well as the asymmetry parameters 

have also reasonable values compared to values already known (Table 2.2).   

As already mentioned, works this numerical fitting approach without an assumption of 

small angles resp. constant 𝜂 (NALABS), resulting in the possibility of a more precise 

determination of fitting parameters under condition of a sufficient number of sampling 

points N. Another advantage is the consideration of both transitions, which makes it 

more robust against measurement errors (outliers, small amount of measurement 

points). However, longer processing times (~factor 100 compared to analytical 

evaluation) due to the evaluation of the numerical averaging function (solving 

eigenvalue problems) can be seen as a drawback. 

Since there are many simplifications regarding the modeling process (one normal 

mode assumption, linearly varying torsional frequency, limitation to 80 iterations to 

shorten processing time) the obtained parameters shouldn’t be interpreted as valid 

physical parameters. 
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Interesting Findings and benefits of numerical simulations 

 

The influence of different torsional oscillation directions concerning the modelled 

NQR transition frequencies is visualized in Figure 3.13 and Figure 3.15. Therefore, 

the Euler angle 𝛾  got adapted to force the molecule to oscillate about the x-principle 

axis (𝛾 = 90°), about the y-principle axis (𝛾 = 0°) and finally about an axis which is 

lying between the x- and y- principle axis of the LABS (𝛾 = 45°).  The oscillation 

direction has an impact on the averaging effect of 𝑄𝑐𝑐 and 𝜂 in case of axially 

asymmetry (Figure 3.14). Thus, 𝜂 changed in opposite directions with increasing 

temperature, comparing oscillation directions of 𝛾 = 0° and 𝛾 = 90°. This behavior had 

especially an impact on Transition 1 (𝛾 = 0°), having a positive temperature 

coefficient. NQR transition frequencies with positive temperature coefficients were 

also reported in the literature Nakamura et. al [19] related to pi-bonding and 

hydrogen bonding. However, no literature could be found describing that special case 

caused due to torsional oscillations. 𝑄𝑐𝑐 and 𝜂 in Figure 3.16  behave the same for 

different oscillation directions in case of axially symmetry, indicating that the deviation 

from axial symmetry caused the positive temperature coefficient of transition 1.  

Before-mentioned observations are simulation results of arbitrary scenarios of 

molecular motions, which might not be observable in the investigated compounds. 

 

The whole modelling process mentioned so far accounts for torsional oscillations of 

molecules about pre-defined axes. These oscillations are supposed to become 

greater with increasing temperature and are based on the mean energy of the 

quantum mechanical harmonic oscillator. Therefore, the torsional oscillation peak 

angle in terms of temperature is illustrated in Figure 3.17  for both investigated 

molecules. BIPH3 has clearly a greater response to temperature than BIPH_OME 

with a maximum peak angle of about 12°, thus having a greater temperature 

coefficient in general.  

 

With the help of numerical implementations it is possible to simulate all 4 possible 

NQR transition frequencies for different scenarios by knowing only two transition 

frequencies needed for the numerical fitting approach to obtain the simulation 

parameters 𝑄𝑐𝑐 and 𝜂. A further advantage can be considered the elimination of 

secular equations and the removal of small angle- and constant 𝜂 assumption. 
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Simplifications and improvements 

 

In the course of the modelling process several assumptions were made: 

 

-Assumption of one torsional normal mode 

-Torsional frequency varies linearly with temperature 

-The principal directions of the EFG tensor coincide with the principle directions of the        

moment of inertia tensor  

-Stretching Vibrations were assumed to do not contribute significantly to the EFG’s 

averaging. 

 

Therefore, for future modelling it would be preferable to adapt/skip at least two of 

above assumptions: 

  

1. Calculation of the moment inertia tensor of the molecule to skip one fitting 

parameter and account for deviations of the principle axis directions w.r.t. to 

the principle axis directions of the moment of inertia tensor. 

 

2. Additionally, gaining deeper knowledge of lattice dynamics is a crucial step to 

adapt future modeling processes. To be more precise, the influence of such 

vibrations on the change of the EFG must be clarified and analysed in detail. 

The interested reader is referred to McEnnan and Schempp [43] where a 

zero-wavevector analysis is carried out to find the vibrational amplitudes of 

individual molecules regarding normal mode vibrations of the crystal. 

 

 Conclusion 

 

In the course of this thesis it was possible to model the NQR transition frequency 

temperature dependence of BIPH3 and BIPH3_OME quantitatively with the help of 

analytical (Bayer-Brown and Kushida-Brown model) and numerical implementations 

(NALABS). The above introduced novel numerical fitting approach can be seen as a 

comprehensive tool for future investigations as arbitrary oscillation directions can be 

considered without making assumptions of small angles and constant 𝜂. 

Furthermore, different simulated torsional oscillation directions have an impact on the 

averaging effect of 𝑄𝑐𝑐 and 𝜂 in case of axially asymmetry, resulting (e.g. for  𝛾 = 0°) 

in positive temperature coefficients for the lowest transition of BIPH3. Up to now it 

was not reported (considering the screened literature) that different torsional 

oscillation directions can lead to positive temperature coefficients of NQR transition 

frequencies.  
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