

Affidavit

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded to
TUGRAZonline is identical to the present master‘s thesis.

Date Signature

Eine Reise, tausend Meilen lang, mit einem ersten Schritt fing sie an.
Laotse

Abstract

The Steiner forest problem is a well-studied NP-hard problem in combinatorial optimiza-
tion, for which a primal-dual constant factor approximation was shown by Agrawal, Klein &
Ravi [AKR95] and Goemans & Williamson [GW95] in the years between 1991 and 1995.

In 2014, Gupta & Kumar [GK14] presented a constant factor approximation algorithm that
is purely of combinatorial nature. At that time, this was the first combinatorial algorithm
for which a constant approximation factor could be shown.

In this master thesis, we want to deal with another constant factor approximation for the
Steiner forest problem: Gross et al. [G17] introduced a local search algorithm (LSA) and
proved it to be a polynomial time constant factor approximation for the named problem.

In the first part of this thesis, we introduce the Steiner forest problem (SFP) itself and re-
view some results on SFP. Further we provide some general preliminaries on local search
algorithms. Then we introduce the local moves that define LSA including small examples
and comments for an easy understanding. After that, a theoretical analysis of the algorithm
is provided considering the approximation factor and the time complexity. We first show
that the presented algorithm has indeed a constant approximation factor. We distinguish
two cases: (a) the case where the local optimum is a tree and (b) the case where the local
optimum is a forest. In Case (a) we use a potential function to bound the total length of the
locally optimal solution. In the general Case (b), where the local optimum is a forest and not
necessarily a tree, we transform the solution in such a way that the results of Case (a) can be
applied. The second part of the analysis focuses on the time-complexity of the algorithm. We
depict which obstacles have to be handled in order to make the algorithm run in polynomial
time without violating the approximation guarantee. There are quite a number of complex
transformations and intermediate results needed in this analysis; they have been illustrated
by means of small examples and comprehensive visualizations. We have also added a number
of comments to explain non-trivial details which have been handled as such in the original
paper. The first part closes with a short description of two other methods to solve the Steiner
forest problem: a greedy algorithm called Gluttonous and a formulation of the problem as
an integer program (IP), that can be handled by some standard solver.

The second part of this thesis discusses in detail the implementation of the local search algo-
rithm. We describe also the functions and classes used in the C++ code. In order to evaluate
the performance of LSA we have compared it to two other approaches to solve SFP known in
the literature: the Gluttonous algorithm and the exact solution of the IP. We provide some
details on the implementation of these alternative methods.

In the last part of this master thesis, we compare the performance of the local search algo-
rithm and the two other algorithms mentioned above on two classes of test instances. The
comparison addresses both the running time and the quality of the obtained solutions. The
first class of test instances contains small randomly generated test instances. The second class
of test instances is obtained by modifying benchmark instances for the Steiner tree problem
known in the literature.

i

Table of contents

I. Theory 1

1. Statement of the problem and preliminaries 2
1.1. Basic definitions and notations . 2
1.2. The Steiner forest problem . 4
1.3. SFP as a generalization of other simpler problems 6

2. The local search algorithm from Gross et al. for the SFP 7
2.1. The local search algorithm in a nutshell . 8
2.2. Local moves and post-processing . 8
2.3. A generic local search algorithm . 21

3. Analysis of the local search algorithm: solution quality 21
3.1. Case I: The local optimum is a tree . 22
3.2. Case II: The local optimum is a forest . 35

4. Analysis of the local search algorithm: time complexity 55
4.1. k-MST Problems . 55
4.2. c-approximate connecting move optimality . 57
4.3. Convergence in polynomial time . 59
4.4. Summary . 62

5. Two more approaches for SFP 63
5.1. The Gluttonous Algorithm . 63
5.2. SFP as an integer program . 64

II. Implementation 67

6. Basic ideas and questions 68
6.1. Identifying problematic aspects . 68
6.2. A concept for the implementation . 69
6.3. The implementation of connecting moves . 72

7. Classes and functions 77
7.1. Classes . 77
7.2. Functions . 79
7.3. The main . 82

III. Applying the algorithm 85

8. The algorithm applied to a small example 86
8.1. Some words at the beginning . 86
8.2. The underlying instance . 86
8.3. The application of both variants of the algorithm 87
8.4. Overview . 93
8.5. An optimal solution . 94

9. Running times of the algorithms 95
9.1. Randomly generated test instances . 95

iii

9.2. An unexplainable slowdown . 96
9.3. 2-Conn versus 3-Conn . 97
9.4. Running times of local search . 98
9.5. Running times of Gluttonous . 99
9.6. Finding an optimal solution by solving the IP formulation 100

10.Performance of the algorithms 101
10.1. Quality of the solution for random instances 101
10.2. Performance on SFP instances known in the literature 104

11.Conclusion 105

References A

List of Figures C

List of Tables D

iv

Part I.

Theory

1

1. Statement of the problem and preliminaries

1.1. Basic definitions and notations

1.1.1. Graph theory

Definition 1.1. (Concepts of graph theory)
Let G = (V,E) be an undirected graph with non-negative edge lengths de ∈ R≥0 for ev-
ery e ∈ E. Let n := |V | be the number of vertices of the graph. For W ⊆ V , let
G[W] := (W,E[W]) be the vertex induced subgraph and for F ⊆ E, let G[F] := (V [F], F) be
the edge-induced subgraph that consists of all edges in F and the vertex set V [F] that arises
from these edges. A forest is a set of edges F ⊆ E such that G[F] is acyclic. If the forest
consists of exactly one connected component, it is called a tree.

Let u, v ∈ V be two vertices in the graph G. We denote the length of the shortest path between
u and v in (G, d) by distd(u, v), which is called also the shortest path distance between u and
v in (G, d).

Let D = {{si, ti} ∈ V × V | i = 1, . . . , k} be a set of vertex pairs in the graph G. For
technical reasons we number the pairs according to non-decreasing shortest path distances
(where ties are broken arbitrarily). Hence, D = {{s1, t1}, . . . , {sk, tk}} and i < j implies that
distd(si, ti) ≤ distd(sj , tj).

For a subset S ⊆ E, we define the total length d(S) to be the sum of the lengths of edges in
S, i.e. d(S) :=

∑
e∈S de. For a subgraph H = (VH , EH) of G = (V,E), we define the length

d(H) of H as the length of EH , i.e.
∑

e∈EH de, if there is no ambiguity about the graph G.

1.1.2. Combinatorial optimization problems

Definition 1.2. (Combinatorial optimization problem)
An instance I of a combinatorial optimization problem can be specified as a pair (FI , c) where
F := FI is the set of feasible solutions to the instance I and c : F → R≥0 is a cost function.
Let g ∈ {max,min} be either the maximum or the minimum function. The goal is to find
some feasible solution F ∗ ∈ F , such that

c(F ∗) = g{ c(F) | F ∈ F } (1)

A feasible solution F ∗ that fulfils Equality (1) is called an optimal solution. Let I be the set
of instances as described above. Then a combinatorial optimization problem can be seen as
a quadruple P = (I,FI , c, g). If g = max, then we call P a (combinatorial) maximization
problem, else a (combinatorial) minimization problem. The function c is often called objective
function or objective.

1.1.3. Algorithms

Definition 1.3. (Exact algorithm)
Let P = (I,F , c, g) be a combinatorial optimization problem. An algorithm ALG is called an
exact algorithm that solves P , if for every input I ∈ I, ALG outputs an optimal (and hence
feasible) solution of I.

Definition 1.4. (α-approximation algorithm for combinatorial minimization problems)
Let P = (I,F , c,min) be a combinatorial minimization problem. An algorithm ALG is called
an α-approximation algorithm or α-approximation for the problem P , if there is a constant
α ∈ R≥1, such that for every input I ∈ I, ALG outputs a feasible solution A(I) such that

2

c(A(I)) ≤ α · c(OPT (I))

holds, where OPT (I) is an optimal solution of the instance I.
If in addition to that, ALG runs in polynomial time with respect to the input size, then we
call ALG a polynomial time α-approximation algorithm or polynomial time α-approximation
for the problem P .

Definition 1.5. (Neighbourhood, improving solution)
Let P = (I,F , c,min) be a combinatorial minimization problem and let I ∈ I be an instance
with F := FI being the set of feasible solutions for I. A neighbourhood function for the
instance I is a function

N = NI : F → 2F

F 7→ N (F) ⊆ F

N (F) is called the neighbourhood of the solution F . Let F be a feasible solution. A feasible
solution F ′ is called an improving solution with respect to F (and c), if c(F ′) < c(F).

Definition 1.6. (Local search algorithm for a combinatorial minimization problem)
Let P = (I,F , c,min) be a combinatorial minimization problem and let I ∈ I be an instance
with F := FI being the set of feasible solutions for I. Moreover, let N := NI be a neighbour-
hood function for I. The following generic procedure is called a local search algorithm for the
problem P and the neighbourhood function N for I with respect to the cost function c:

Algorithm 1 Local search for minimization problems, generic version

Require: An instance I of a combinatorial minimization problem P = (I,F , c,min), a
feasible solution F ∈ F = FI and a neighbourhood function N = NI .

Ensure: A feasible solution A ∈ F for the instance I.
1: Start with A := F .
2: while ∃ A′ ∈ N (A) such that c(A′) < c(A) do
3: Set A := A′

4: end while
5: Output A

A feasible solution F is a local optimum (or local optimal) for the instance I with respect to
the neighbourhood function N , if c(F) ≤ c(F ′) holds for all F ′ ∈ N (F). The replacement
of a feasible solution F ∈ F by some other feasible solution F ′ ∈ N ⊆ F is called a local
move. If c(F ′) < c(F) holds, then the local move is called improving (with respect to the cost
function c). This is often called performing an (improving) local move (with respect to the
cost function c). A feasible solution F is called a near-optimal solution, if there exists an
optimal solution F ∗ and a constant K ≥ 1, such that c(F) ≤ K · c(F ∗).

Comments:

• Note that a local search algorithm can be an exact algorithm or an α-approximation
algorithm or none of both.

• Crucial for every local search algorithm is the definition of the neighbourhood function:
If a feasible solution has a neighbourhood that can be not checked in polynomial time
for an improving solution, then the local search algorithm will not be a polynomial time
algorithm in general. On the other hand, if the neighbourhoods of feasible solutions

3

tend to be small, they can be searched faster than large neighbourhoods, but the quality
of local optimal solutions can be poor.

• In general, the starting solution for a local search algorithm can be generated by some
simple approximation algorithm or can be arbitrarily chosen from the set of all feasible
solutions.

1.2. The Steiner forest problem

Definition 1.7. (The Steiner forest problem (SFP))
The input of the Steiner forest problem consists of an undirected, connected graph G = (V,E),
a mapping d : E → R≥0 and a set of demands D = {{si, ti} ∈ V × V | si 6= ti, i = 1, . . . , k}.
The vertices si, ti of each demand-pair {si, ti}, 1 ≤ i ≤ k are called terminals. Vertices that
are not contained in any demand-pair are called non-terminals or Steiner vertices. A feasible
solution is a subset of edges F ⊆ E such that for each demand-pair {si, ti}, 1 ≤ i ≤ k, si
and ti belong to the same connected component of GF = (V, F). The goal is to find a feasible
solution F ∗ which minimizes the cost c(F ∗) = d(F ∗) =

∑
e∈F ∗ d(e). Since d(e) ≥ 0 ∀e ∈ E,

we can restrict the feasible solutions F to be such that (V, F) is a forest. We refer by SFP to
the Steiner forest problem.

A graph G = (V,E) together with lengths d and demand-pairs D forms a Steiner forest
instance I = (G, d,D), with nt := |D| being the number of demand-pairs.

Comments:
Note that we can define SFP also on an unconnected graph G provided that for each demand-
pair {si, ti} both terminals si and ti belong to the same connected component of G. Then
we would solve an instance of the SFP in each connected component of G and obtain the
solution of the whole problem as the union of the solutions over all connected components.

Definition 1.8. (Width, mind, potential φ)
Let I = (G = (V,E), d,D) be an instance of the SFP and let E′ ⊆ E be a connected set of
edges. Recall that for two vertices s, t ∈ V in G, the symbol distd(s, t) defines the shortest
path distance of s and t in G with respect to the function d. We define:

w(E′) := max{distd(s, t) | {s, t} ∈ D, {s, t} ⊆ V [E′]}, for any E′ ⊆ E

Moreover, let F ⊆ E be a forest in G with connected components F1, . . . , Fl ⊆ F . Then,

w(F) :=

l∑
i=1

w(Fi).

w(E′) is the maximum distance in the original graph G of any demand-pair connected in
E′. By the chosen enumeration of the pairs (see Section 1.1), this is the distance of the pair
{si, ti} with the largest index i among all pairs in V [E′]. w(F) is also called the width of the
forest F , which is the sum of the widths of its connected components.

With mind(E
′) := max{i | {si, ti} ⊆ V [E′]}, we get w(E′) = distd(smind(E′), tmind(E′)).

By Definition 1.1, the total length of the forest F is defined by d(F) :=
∑

e∈F d(e) and the
potential of the subgraph F is defined by

φ(F) := d(F) + w(F)

4

Lemma 1.9. (Bounds for φ)
With the settings as above, we have d(F) ≤ φ(F) ≤ 2d(F).

Proof. Clear by the definition of w(F), since 0 ≤ w(F) ≤ d(F).

Notations 1.10.
Consider an algorithm ALG that takes as input an instance I of the SFP and outputs a
feasible solution (the type of the output is a forest), we often denote this forest by A := AI .
We denote by F := FI an optimal solution to the underlying instance I1.

Example 1.11. (Introductory example of the SFP)

1

2

3

4

5
6

7

8
9

Figure 1: Instance of SFP, terminals marked in red.

Consider the graph G = (V,E) on the vertex set V = {1, . . . , 9} given in the Euclidean
plane together with the Euclidean distance d as the length-function depicted in Figure 1. We
set the demands as D = {(3, 4), (3, 9), (1, 7)} which are sorted according to non-decreasing
shortest path distances. The coordinates of the vertices are given as follows:

1: (1,9) 4: (9,6) 7: (1,0.5)
2: (0.5,2) 5: (6,5) 8: (4,1)
3: (7,8) 6: (2,3) 9: (8,1.5)

One feasible solution for this instance is the forest F1 on the vertex set V consisting of the
edges {1, 5}, {3, 4}, {3, 5}, {5, 7}, {5, 9}. It can be checked that this is indeed a subgraph of
G. Observe that this forest F1 is actually a tree. The cost of F1 is equal to the length of the
edges, the length of each edge is the Euclidean distance between its endpoints. Hence, the
cost of forest F1 is ≈ 23.1.

Another feasible solution is the forest F2 on the vertex set V consisting of the edges {1, 7},
{3, 4}, {4, 9}. This forest consists of two separate trees. The cost of forest F2 is ≈ 15.9, which
is less than the cost of forest F1.

1Since there will always be only one single instance at which we are looking at, we do not need to indicate
to which instance the obtained solution or the optimal solution belongs to.

5

1

2

3

4

5
6

7

8
9

Figure 2: Feasible solution F1

1

2

3

4

5
6

7

8
9

Figure 3: Feasible solution F2

1.3. SFP as a generalization of other simpler problems

Let’s see how the Steiner forest problem relates to other fundamental problems known in
combinatorial optimization.

Reachability problem
Input: A directed, not necessarily connected graph G = (V,E) and vertices u, v ∈ V .
Output: A path in G connecting u and v, if such a path exists.
It is easy to see that depth first search or breadth first search can be used to obtain the desired
path, if such one exists. Both algorithms are known to run in polynomial time. Sometimes
the output should be only yes or no, as the answer to the question whether a u− v path in
G exists or not.

Shortest path problem
Input: A directed, not necessarily connected graph G = (V,E), edge lengths d : E → R≥0

and vertices u, v ∈ V .
Output: A shortest u− v path2 in G if a u− v path exists.
This problem is a standard problem in combinatorial optimization and known as shortest
path problem. Standard algorithms that solves the problem are Prim’s algorithm, Dijkstra’s
algorithm or Floyd-Warshall’s algorithm. The last solves even the all-pairs shortest path
problem, i.e. it determines a shortest path between any two vertices in V . The complexity
of Floyd-Warshall is cubic in the number of vertices of the graph, hence the shortest path
problem can be solved in polynomial time.

Steiner tree problem (STP)
Input: A directed (connected) graph G = (V,E), edge lengths d : E → R≥0 and a vertex set
S ⊆ V .
Output: A tree T ⊆ E of minimal total length that connects all vertices of S.
The Steiner tree problem is a generalization of the shortest path problem: Given a set of
vertices S ⊆ V , we ask for a tree of minimum total length that connects all vertices of S.
These vertices are called terminals, the vertices in V \ S are called non-terminals or Steiner
vertices. The STP is NP-hard, see [San03], but simple polynomial time 2-approximations
are known. In the case where G is the complete graph and the function d is a metric, the
following approach works:

2A shortest u− v path in G is a path in G that has the shortest length among all u− v paths, where the
length of a path is the sum of the lengths of the contained edges.

6

Ignore all non-terminals and find a minimum spanning tree on the weighted graph that has
vertex set S and edge lengths defined by d. Details can be found in e.g. [Tre11], also have a
look on Theorem 3.31.

Steiner forest problem (SFP)
Input: A directed (connected) graph G = (V,E), edge lengths d : E → R≥0 and a set of
demand-pairs D = {{si, ti} ∈ V × V | i = 1, . . . , k}.
Output: A forest A ⊆ E of minimal total length such that each demand pair {si, ti} lies
within exactly one connected component of A.
Knowing the Steiner tree problem, it is easy to see that the Steiner forest problem from Defini-
tion 1.7 is a generalization: Instead of one set S ⊆ V , there are many sets Si := {si, ti} ⊆ V
gathered as the demand set D that should be contained in some subgraph H ⊆ G, such
that each set Si is contained within exactly one connected component of H. This implies
that also the Steiner forest problem is NP-hard. Also for this problem, polynomial time
2-approximations are known, but they are not as simple as for the STP. Agrawal, Klein and
Ravi [AKR95] showed that there is a polynomial time 2-approximation for the SFP that is
based on primal-dual methods and hence not “purely” of combinatorial nature. In 2014,
Gupta and Kumar [GK14] presented a polynomial time approximation algorithm for the
SFP that is totally based on combinatorial methods and showed that it is a constant factor
approximation. Up to that time, all polynomial time SFP algorithms, for which a constant
approximation factor was known, where based on linear programming relaxations. Currently
no polynomial time approximation algorithm with a better approximation factor than 2 is
known for the SFP.

The SFP itself can be generalized in many other ways like the online-SFP or the network
connectivity leasing problem and can be seen as a classical network design problem, see
e.g. [AAB04] for more details related to generalizations of the SFP.

In practical, the SFP has applications in the design of road-networks, communication-networks,
integrated circuit, etc.

About the naming of the problem
The Steiner forest problem is named after the Swiss mathematician Jacob Steiner and belongs
to Karp’s 21 NP-complete problems, for which Richard Karp showed in 1972 that they are
all NP-complete. The complexity proofs are done based on reductions from the boolean
satisfiability problem which is NP-complete due to the Cook-Levin Theorem.
Definition 1.7 does not explicitly explain why the term forest is appropriate. Remember that
the lengths are non-negative. Assume the optimal solution (which is in general a subgraph of
G) is not a forest i.e. not cycle free. One can easily remove an edge from every cycle and this
does not hurt the connectivity property. If every removed edge has length zero, one gets an
optimal solution that is cycle free and hence a forest. If one of the removed edges has positive
length, then the obtained feasible solution is cycle free and has lower total length than the
optimal solution which contradicts the optimality. Hence, there is always an optimal solution
that is a forest.

2. The local search algorithm from Gross et al. for the SFP

The ideas and notations of the Sections 2 to 4 are based on the paper A Local-Search Algorithm
for Steiner Forest of Matrin Groß, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel
R. Schmidt, Melanie Schmidt and José Verschae [G17].

7

2.1. The local search algorithm in a nutshell

As in the generic version of a local search algorithm, also this local search algorithm starts
with a feasible solution and performs in each step one of the local moves described below, i.e.
it checks every solution in the neighbourhood of the current feasible solution and then take
one feasible solution which is best among all of them until no such solution exists any more.

We consider the following local moves (which can be seen as a description of the neighbour-
hood):

• edge-set swap: Add an edge to a tree in the forest and remove one or more edges
from the created cycle such that the solution remains feasible.

• path-set swap: Add a shortest path between two vertices of a tree in the forest and
remove edges from the created cycle such that the solution remains feasible.

• connecting move: Connect some trees of the current solution-forest by adding edges
between them.

In addition to the local moves, which are considered in each step during the algorithm, there
is one final post-processing move at the end of the algorithm:

• clean up: Delete all inessential edges, i.e. all edges that do not alter the feasibility of
the solution.

A detailed description and illustrating examples of the local moves and the post-processing
moves can be seen in Section 2.2.

The algorithm performs a local search with respect to the potential φ, and not with respect
to the total length of the current solution. Therefore, also the connection move makes sense,
it does not decrease the total length of the solution but it possibly decreases the potential φ.
Consider the SFP instance in the Euclidean plane represented in Figure 4: The forest shown
in (a) consists of two trees each of them connecting one demand-pair. For both trees, we see
that the width is exactly the length of the tree itself. Since the two trees have equal length L,
the potential of the left forest is 4L. The forest shown in (b), results by connecting the two
trees from (a) by the edge {1, 2} and hence consists of only one tree. Note that the potential
of this tree is L. Hence, the potential of the tree in (b) is given by 3L + d({1, 2}), which is
smaller than 4L as long as d({1, 2}) < L.

In [G17] can be shown, that there are examples, where performing the moves described above
with respect to the total length of the solution gives a local optima with cost Ω(log(n))·OPT ,
where OPT denotes the cost of an optimal solution. We will show, that performing local
search with respect to the potential φ yields a constant approximation factor algorithm.

Definition 2.1. (X-optimal)
A feasible solution A is called X-optimal with respect to a certain kind of a local move X, if
no moves of the kind X are improving.

2.2. Local moves and post-processing

2.2.1. Swaps

Swaps are local moves in which we start with a feasible, cycle-free solution A. In other words,
A is a feasible forest. Add some edges to create a single cycle and remove one (or more) edges

8

t1

1

s1

t2

2

s2

(a) A feasible solution (in green) for the SFP
instance with the depicted graph, the
demand-pairs {s1, t1}, {s2, t2} and Eu-
clidean distances.

t1

1

s1

t2

2

s2

(b) A feasible solution A′ obtained from the
solution in (a) by applying a connecting
move and adding the edge {1, 2}. Notice,
that φ(A′) < φ(A).

Figure 4: A connection move that decreases the potential of the forest. Note that the move
does not make any improvement with respect to the total length of the forest.

of that cycle in order to get a solution A′ that is on the one hand cycle-free and on the other
hand feasible. We distinguish between three types of swaps: edge-edge swaps, edge-set swaps
and path-set swaps.

Edge-edge swaps
The most basic move is the so called edge-edge swap which adds an edge e that has both end
vertices in a tree T of the current solution A. This creates a cycle C(e) in T . We remove an
edge f from the cycle C(e) to obtain a feasible, cycle-free solution A′.
We denote this move by edge-edge swap(e,f).

Comments

• Since we choose f ∈ C(e), we can also choose f = e which implies A′ = A. This means
that the solution A itself is part of its own neighbourhood but it is obvious that we do
not obtain an improvement by considering such a move.

• An edge-edge swap does not change the number of connected components of the solution,
since we only add one edge to one single component and remove one edge from the
created cycle.

• Since the number of connected components does not change, the width-part in the
potential also does not change. This means that φ(A)− φ(A′) = d(A)− d(A′). Hence,
removing an edge of highest length in the cycle C(e) leads to the best possible outcome
with the added edge e.

• The distances that are used for the width’s of each connected component are the shortest
path distances in the original graph G and not the shortest path distances in the graph
G[A] induced by the current solution A.

• It will be shown that there are only polynomially many edge-edge swaps when analysing
the edge-set swap in the next paragraph.

9

Example 2.2. (Edge-edge swap)

Consider the following instance I with the graph given below, assume the lengths to be
Euclidean distances3 and three source-sink pairs {si, ti} for 1 ≤ i ≤ 3.

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 5: Instance I with current solution A in blue.

The shortest path distances between the demand-pairs in the underlying graph G are given
as follows:

distd(s1, t1) = 2.83 Shortest path: s1 → 12→ t1
distd(s2, t2) = 4.27 Shortest path: s2 → t2
distd(s3, t3) = 5.04 Shortest path: s3 → 3→ 2→ t3

Hence, the width of the left component of A in Figure 5 is equal to distd(s3, t3) = 5.04 and the
width of the right component of A is equal to distd(s1, t1) = 2.83. Notice that d(A) = 24.35
and φ(A) = 24.35 + 5.04 + 2.83 = 32.21.

Let’s assume we add the edge e = {t3, 2} in the left tree of the current solution A. This
creates a unique cycle C(e) = t3 − 5− s3 − 3− 2− t3. We can remove any edge of this cycle,
let’s choose the edge f = {5, s3}. We obtain a cycle-free, feasible solution A′ depicted in
Figure 7.

The new solution has a lower total length and also the potential decreases by the same
amount. We obtain d(A′) = 22.99 and φ(A′) = 22.99 + 5.04 + 2.83 = 30.85.

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 6: Current solution A in blue, new edge in green and dashed edge get removed.

3We do not list up all distances, since it is not necessary for an illustrating example

10

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 7: The new solution A′.

Edge-set swaps
The edge-set swap is a generalization of the edge-edge swap as follows: Add an edge e into
a single tree T of the current solution A. This results in a cycle C(e) in T . Then remove a
subset S of edges from this cycle C(e) so as to obtain a feasible, cycle-free solution A′.
We denote this move by edge-set-swap(e,S).

In general, the subset S that can be removed from C(e) is not necessarily unique. If we fix
some edge f ∈ C(e), then there is a unique inclusion-maximal set R(e, f) ⊆ C(e) of edges
that can be removed from C(e) together with f without destroying the feasibility of the so-
lution. Hence, R(e, f) contains f and all edges on C(e) that can be removed in A∪ {e} \ {f}
without destroying feasibility. Notice that we can remove any subset S ⊆ R(e, f) and obtain
a feasible, cycle-free solution. Clearly, if the local search is applied with respect to the total
length of the solution, we would always remove the whole set R(e, f) since the length of any
edge is non-negative. However, since the local search is applied with respect to the potential
φ, removing only a subset S may lead to a better solution than removing R(e, f).

Let’s assume R(e, f) = {e1, . . . , el} where the edges are in the order of their appearance in
C(e). We only consider swaps where S consists of consecutive edges in this order. This means
that S = {ei, . . . , ej} for some 1 ≤ i < j ≤ l. If we would consider all subsets S ⊆ R(e, f),
this may lead to a “too” big neighbourhood4.

Since T is a tree on at most n vertices, there are O(n2) choices for the edge e and O(n)
choices for the edge f (the cycle C(e) can consist of at most n vertices). Therefore, also
1 ≤ i < j ≤ l ≤ n and hence there are O(n2) consecutive sets S ⊆ R(e, f).
Summing up, we get the following number of choices:

1: Select an edge e that should be added to a tree T of A O(n2)

2: Select an edge f ∈ C(e) O(n)

3: Select a connected subset S ⊆ R(e, f) O(n2)

Total number of choices O(n5)

This shows that the number of possible edge-set swaps to be applied to a feasible solution is
polynomial. Thus this type of edge-set swap results in a polynomial-sized neighbourhood.

4Indeed, consider an instance with a complete graph on the vertices 1, . . . , n with one single demand-pair
{1, n}. A feasible solution would be the set of edges {{1, 2}, . . . , {n − 1, n}}. Adding the edge e = {n, 1}
gives a cycle C of n edges. Let’s fix f ∈ {{1, 2}, . . . , {n − 1, n}} to be removed from C. It’s easy to see that
R(e, f) = {{1, 2}, . . . , {n− 1, n}} of size n− 1. Hence, there would be 2n−1 possibilities to choose a subset S.

11

Comments

• Since we choose S ⊆ C(e), we can also choose S = {e} which implies A′ = A.

• edge-edge swap is a special case of edge-set swap with S = {f}.Thus edge-set swap-
optimality implies edge-edge swap-optimality.

• This also implies that there are only polynomially many edge-edge swaps.

• An edge-set swap may increase the number of connected components of the solution.

• It is not straightforward to determine the set R(e, f) for given edges e and f .

Example 2.3. (Edge-set swap)

Consider the instance from Figure 5 and assume that the edge e = {s2, t2} is added to
the current solution A that is also shown in Figure 5. This creates a unique cycle C(e) =
s2 − t2 − 9− 2− 3− 6− s2. Assume we fix the edge f = {2, 9} that should be removed from
the cycle.

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 8: Current solution A with new edge e in green and selected edge f in red.

We can now determine the set of edges R(e, f) that can be removed (together with f) in
order to get a new feasible, cycle-free solution A′. It’s easy to see that
R(e, f) = {{t2, 9}, f, {2, 3}, {3, 6}, {6, s2}}, since removing any subset S ⊆ R(e, f) does not
violate the feasibility of the solution.

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 9: New edge e in green and the set R(e, f) in red.

12

In general, the set R(e, f) can be determined as follows: For edges e and f contained within
one single tree T , compute shortest paths in A \ {f} ∪ {e} between any demand-pair that is
also contained in T . This results in a set of paths P = {P1, . . . , Pr}. The set R(e, f) contains
all edges of C(e), that are not part of any path Pi ∈ P, i.e.

R(e, f) = C(e) \
r⋃
i=1

E(Pi)

The number of components in the solution A′ obtained after applying an edge-set swap(e,S)
depends on the choice of S ⊆ R(e, f). Clearly also the potential φ(A′) depends on the choice
of S. For example, by deleting S = {f, {2, 3}, {9, t2}}, we do not change the number of
connected components, but by deleting S = R(e, f) we increase the number by one.

By doing all calculations, we get the following values:

d(A) = 24.35 φ(A) = 24.35 + 5.04 + 2.83 = 32.21

d(A′) = 20.28 φ(A′) = 20.28 + 5.04 + 2.83 = 28.14

d(A′′) = 16.15 φ(A′′) = 16.15 + 5.04 + 4.27 + 2.83 = 28.29

We can see that both new solutions have a smaller total length and also a smaller potential
than the starting solution. Observe that d(A′′) < d(A′) while φ(A′′) > φ(A′). In this case,
deleting less edges to obtain A′ is a better choice since the number of connected components
does not increase and hence the width of the solution-forest remains unchanged.

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 10: New feasible solution A′ if S = {f, {2, 3}, {9, t2}}.

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 11: New feasible solution A′′ if S = R(e, f).

13

Path-set swap
Also edge-set swap can be generalized: We pick two vertices u, v lying in some tree T
of the current feasible, cycle-free solution A and determine a shortest path P between
them in the graph G′, obtained as follows from the original graph G. Let T, c1, . . . , ck be
the connected components of A. Each ci is shrunk to a single node Vci , 1 ≤ i ≤ k and
V (G′) = V (T) ∪ {Vci : 1 ≤ i ≤ k}. The edge set of G′ is obtained from the edge set of G by
removing all edges from T as well as edges for which at least one endpoint has been shrunk.
For each {s, t} ∈ E(G) with s ∈ V (Ci) and/or t ∈ V (Cj) for some 1 ≤ i, j ≤ k with i 6= j,
add an edge {Vci , Vcj}, {s, Vcj} or {Vci , t} in G′, respectively.

Adding the corresponding edges of P to A creates a cycle in A that may connect two or
more components of A. We imagine the path P as an ”virtual” edge {u, v}, which we denote
by {u, v}V , that is added to T and then remove a subset of consecutive edges from some
R({u, v}V , f) ⊆ C({u, v}V) ⊆ E(T). Such a move can be seen as an edge-set swap with the
”virtual” edge {u, v}V . We denote this move by path-set swap(u,v,S).

Similar as in the case of the edge-set swap the cardinality of the neighbourhood generated
by path-set swap is of size O(n5):

1: Select two vertices u and v in a tree T of A O(n2)

2: Select an edge f ∈ C({u, v}) O(n)

3: Select a connected subset S ⊆ R({u, v}, f) O(n2)

Total number of choices O(n5)

Comments:

• The current solution A may already contain the edge {u, v}, but due to shrinking, the
shortest u− v path in G′ may be even shorter than this edge. In this case, the path-set
swap move would add this shortest u − v path to A and result in a cycle C({u, v}V)
which consists of the (real) edge {u, v} and the virtual edge {u, v}V . Then the only
possible choice for a set of edges to be deleted is the original edge {u, v}.

• If the shortest u− v path is the edge {u, v}, then path-set swap(u,v,S) is equivalent to
edge-set swap({u, v},S).

• The created cycle C({u, v}V) may contain edges from different components, nevertheless,
only edges from the tree T can be removed.

• A path-set swap may increase or decrease the number of connected components.

14

Example 2.4. (Path-set swap)

Also for this local move, recall the example from before with a current solution A:

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 12: Instance I with current solution A in blue.

Let’s choose u = s2 and v = t2 (of course we can also choose non-terminals!), which are part
of the left component. The graph, in which we search for a shortest u−v path looks as follows:

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 13: Graph in which we search for a shortest u− v path.

There are two possible paths from u to v in this graph:
The path s2 → t2 which is the direct edge of length ≈ 4.27 and the path s2 → 15 → 12 →
t1 → t2 (where the edges {15, 12} and {12, t1} have length zero) of length ≈ 7.77. Hence, the
shortest u−v path is given by the direct edge {s2, t2}. Adding {s2, t2} to the right connected
component in A results in the same situation as in the edge-set swap discussed in Example
2.3 and represented in Figure 8.

Now consider an alternative feasible solution Ā depicted in Figure 14. Choose again u = s2

and v = t2. The graph G′ in which we search for a shortest u−v path is depicted in Figure 15.

In this case, there is a unique shortest u − v path in G′, namely s2 → 15 → 12 → t1 → t2
(where the edges {15, 12} and {12, t1} have length zero) of length ≈ 7.77.
We add the path as a virtual edge {u, v}V to the current solution which results in the graph
shown in Figure 16 with the unique cycle C({u, v}V) that consists of the edge {u, v} and the
virtual edge {u, v}V .

We are now allowed to remove some edges from the cycle C({u, v}V) that are part of the
original connected component T . There is only one such edge, namely the {u, v} = {s2, t2}.

15

From now on, we proceed exactly in the same way as we do in the edge-set swap. Thus
R({u, v}V , {u, v}) = {{u, v}} and hence the only possible edge set to remove is S = {{u, v}}.
This leads to the following new solution Ā′, where instead of the virtual edge {u, v}V the
shortest path represented by this edge is added. Note that the number of connected com-
ponents in Ā′ has decreased by one as compared to the number of connected components of Ā.

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 14: Instance I with a feasible solution Ā in blue.

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 15: Graph G′ in which we search for a shortest u− v path.

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 16: Adding the virtual edge {s2, t2} in green produces a cycle in T .

16

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 17: New solution Ã′ obtained by a path-set swap.

The following equalities hold:

d(Ã) = 26.12 φ(Ã) = 26.12 + 5.04 + 2.83 = 33.98

d(Ã′) = 29.61 φ(Ã′) = 29.61 + 5.04 = 34.65

In this case, the path-set swap applied to Ā does not lead to a solution Ā′ with a lower
potential than Ā.

2.2.2. Connecting moves

Connecting moves add a set of edges that connect some of the connected components of the
current feasible solution A and result in a new feasible solution A′ with a smaller number of
connected components. Recall that the goal is to decrease the potential φ and not the total
length of the solution. Since we are dealing with non-negative lengths of the edges, it is clear
that d(A′) ≥ d(A), however a connecting move may reduce the potential φ.

Formally, let GallA be the (multi)graph that results from the graph G after contracting all
connected components of A in G, deleting self-loops and keeping parallel edges. A connecting
move consists of picking a tree T in GallA and adding the corresponding edges to A.
We denote this move by conn(T).

In contrast to the number of possible swap-moves, the number of possible connecting-moves
can be very large and grows exponentially with n. Thus is due to the fact that the number
of trees on n labelled vertices is nn−2 due to the well known Cayley’s formula [St07].
During the analysis of the algorithm, we will show how to modify the connecting move in
order to obtain a polynomial sized neighbourhood.

Example 2.5. (Connecting move)

Let’s consider the same SFP instance as in the previous Examples 2.2, 2.3 and 2.4 with a
feasible solution A depicted in Figure 18.

The corresponding graph GallA is shown in Figure 19.

Choose a tree T in the graph GallA , for example T = {{T3, 3}, {3, 6}, {6, T2}}, which is marked
in green in Figure 20.

17

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 18: Instance I with current solution A in blue.

2 3

6

8
9

T2

T1

T3

Figure 19: Corresponding graph GallA .

2 3

6

8
9

T2

T1

T3

Figure 20: Selected tree T in GallA in green.

We now add the edges of the original graph corresponding to the edges of T to the current
solution A:

{T3, 3} corresponds to {s3, 3}
{3, 6} corresponds to {3, 6}
{6, T2} corresponds to {6, s2}

The resulting solution A′ is represented in Figure 21. Notice that the following equalities hold:

d(A) = 15.15 φ(A) = 15.15 + 5.04 + 4.27 + 2.83 = 27.29

d(A′) = 20.28 φ(A′) = 20.28 + 5.04 + 2.83 = 28.15

18

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 21: Instance I with obtained solution A′ in blue.

We would not apply this connection move, since φ(A′) > φ(A). However, we see that the
total length would increase by about 34 percent while the potential would increase only by
about 3 percent.

2.2.3. Clean-up move

This move does not define a neighbourhood of some current feasible solution, it is just a
post-processing move at the end to improve the quality of the obtained solution with respect
to the total length d.

This move removes the unique inclusion - maximal edge set S ⊆ A such that A\S is a feasible
solution. In other words, we erase all unnecessary edges. This might increase the potential
φ(A), but clearly does not increase d(A).

The unique inclusion - maximal edge set S ⊆ A mentioned above can be found as follows:
The solution A holds a forest, hence there exists a unique path Pi between every demand-pair
{si, ti}. Therefore it suffices to take all these paths together and remove from A all edges
that are not part of any path, i.e.

S = A \
nt⋃
i=1

E(Pi)

Comments

• Since a solution A is a forest, there is a unique path connecting the two terminals in
each pair of terminals and hence this path is also the shortest path in G[A]. Hence,
these paths can be computed in polynomial time by nt shortest path computations or by
doing an all-pair shortest path computation in G[A]. Both can be done in polynomial
time.

• The clean-up move may increase the number of connected components of the solution.

• In contrast to the local moves, the goal of the clean-up move is to decrease the total
length of the solution and not the potential φ. Since the lengths d are non-negative,
the solution resulting after applying a clean-up move cannot have a larger total length
than the previous solution.

19

Example 2.6. (Clean-up move)

Consider again the instance of the previous examples, e.g. Example 2.2 and assume that
after applying all local moves we end up with the following solution A:

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 22: Instance I with a final solution A in blue.

Determine the shortest paths between the terminals for each demand-pair. They are repre-
sented in Figure 23 in green.

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 23: Shortest paths in green, the “rest” of the solution A in red.

The clean-up move deletes all red edges from the solution A to obtain the final solution Af :

t3

2 3

s3

5
6

s2

8
9 t2

t1

12 13

s115

Figure 24: The graph with the solution Af obtained after the clean-up move.

Notice that the following equalities hold:

d(A) = 26.12 φ(A) = 26.12 + 5.04 + 2.83 = 33.98

d(Af) = 12.32 φ(Af) = 12.32 + 5.04 + 4.27 + 2.83 = 24.46

20

2.3. A generic local search algorithm

We give a formal description of the local search algorithm that is based on the discussed ideas
from the previous section:

Algorithm 2 Local search, first approach

Require: An instance I = (G, d,D) of the Steiner forest problem and a feasible solution A
for I.

Ensure: A solution Af for the instance I.
Let the neighbourhood N (A) be the set of all solutions that can be obtained by executing
an edge-edge swap, edge-set swap, path-set swap or a connecting move on A.
while there exists A′ ∈ N (A) with φ(A′) < φ(A) do

Set A := A′.
end while
Output the solution Af that results by applying the clean-up move to A.

Let’s summarize what we already checked and what is still open:

• The number of possible edge-edge swaps, edge-set swaps and path-set swaps is poly-
nomial, each swap can be carried out in polynomial time and it can be checked in
polynomial time whether such a move improves the solution.

• The clean-up move can be done in polynomial time.

• The number of possible connecting moves is in general not polynomial, hence checking
whether an improving connecting move exist can not be done in polynomial time (it is
NP-hard in general).

• Due to the previous remark, the while loop and also the whole algorithm cannot be
implemented in polynomial time.

• Up to this point, we have not discussed the quality of the solution produced by this
algorithm.

3. Analysis of the local search algorithm: solution quality

In the following sections, we want to establish a way to proof the main theorem in this work:

Theorem 3.1.
There is a local search algorithm for the Steiner forest problem with a constant locality gap.
It can be implemented to run in polynomial time.

It’s not surprising, that we will consider the algorithm described above as a candidate for the
claimed algorithm. During the proof, we have to modify the algorithm slightly, but the main
ideas stay the same.

The content of the following sections as well as the ideas and proofs are mainly based on the
work of Gross et al. [G17]. The goal is, to give an overview about the ideas and techniques
that are used for proving Theorem 3.1. Technical details and lengthy or technical proves are
shortened or in some cases not given here at all. They can be seen in Gross et al. [G17] in
full length.

21

Consider a version of Algorithm 2 where only edge-edge swaps and edge-set swaps are allowed.
In Section 3.1 we deal with the case where the local optimum A generated by Algorithm 2 is
a tree and that the vertex set of the optimal solution F is the same as the vertex set of the
local optimum, i.e. V [A] = V [F].

First in Section 3.1.2 we obtain a bound for the total length of the solution A in the case
that the function d is used instead of φ in the while-loop (see the pseudo code in Section
1.1.3). Then in Section 3.1.3 we give a bound for the case where the potential φ is used in
the while-loop just as in the original version of the Algorithm. Section 3.1.8 gives a bound
for the total length of the solution-forest.

In Section 3.2 we consider the general case, where the local optimum A is a forest, hence it
can consist of more than one connected component. We show that there exists a constant
K such that for any optimal solution forest F , there exists another solution forest F ′ with
cost c(F ′) ≤ K · c(F) having the property, that every connected component lies within some
connected component of A. Then the results of Section 3.1 are applied to every connected
component of A.

The proof uses the important fact that it suffices to deal with the metric Steiner forest prob-
lem as discussed in Section 3.2.2. Also the c-approximate connecting moves are introduced
as an alternative of the already introduces connecting-moves. It will be shown that it is
enough to use this type of connecting moves in order to get a polynomial constant - factor
approximation algorithm.

3.1. Case I: The local optimum is a tree

What we want, is to bound the total length of a forest that is locally optimal with respect
to the defined moves in Section 2.2. At the beginning, we consider a simpler case, where the
local search algorithm outputs a tree as a solution.

Let A,F ⊆ E be two feasible Steiner forests with respect to an instance I = (G, d,D), where
F is an optimal (or at least near optimal) solution and A is a feasible tree-solution computed
by the algorithm.

For our purposes, we can assume that V [A] = V [F]5.
Moreover, throughout this section, we assume that our solution A is a tree. Note that F does
not need to be a tree.

3.1.1. Definitions and preliminaries

Notations 3.2.
Let G = (V,E) be an undirected graph. For a set of vertices W ⊆ V and an edge-set F ⊆ E,
let δF (W) denote the edges of F leaving W , i.e having exactly one end vertex in W . For a
forest A ⊆ E, we abbreviate δF (A) := δF (V [A]) For two disjoint vertex sets U,W ⊆ V , define
δF (U : W) := δF (U) ∩ δF (W) to be the set of edges that cross between U and W . For two
forests F1, F2 ⊆ E we abbreviate δF (F1 : F2) := δF (V [F1] : V [F2]).

5It will turn out, that in the general setting, the problem can be split up into partial problems that fulfil
this equality. Hence we can make this assumption without loss of generality

22

Definition 3.3. (compatible edges)
Let e = {s, v1}, f = {vl, t} ∈ A be two edges. Consider the unique path P = s→ v1 → · · · →
vl → t in G[A] that connects e and f . We call s and t the end vertices and v1, . . . , vl the inner
vertices of the path P . Let G′(P, e, f) := (V [P] \ {s, t}, E[P] \ {e, f}) be the graph containing
the inner vertices of P and the edges of P except e and f . Moreover, let G′′(A, e, f) :=
(V [A], A \ {e, f}) be the graph formed by the vertices V [A] and the edge set A \ {e, f}. By
construction, there exists a unique connected component Te,f of G′′(A, e, f) that contains
G′(P, e, f). We say that e and f are compatible with respect to F , if there are no F -edges
leaving Te,f , i.e. δF (Te,f) = ∅. In this case, we write e ∼cp f .

Example 3.4. (compatible / not compatible edges)

Consider the two edge sets A and F shown in Figure 25. Note that the vertex sets coincide,
i.e. V [A] = V [F].

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Figure 25: The edge set A on the left and the edge set F on the right.

Suppose that e = {v1, v4} and f = {v3, v6}. The unique e − f path is given by P = v1 →
v4 → v3 → v6. Hence

G′(P, e, f) = ({v3, v4}, {{v3, v4}}) G′′(A, e, f) = (V [A], {{v1, v2}, {v3, v4}, {v5, v6}})

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Figure 26: The graph G′(P, e, f) on the left and G′′(A, e, f) on the right. Note that the
vertices v1, v2, v5 and v6 are not part of G′(P, e, f) but are depicted pale to make
the example more handsome.

It is easy to see, that the Te,f = ({v3, v4}, {{v3, v4}}). There are no F -edges leaving Te,f and
hence e and f are compatible.

Now suppose that e = {v1, v2} and f = {v5, v6}. The unique e − f path is given by P =
v2 → v1 → v4 → v3 → v6 → v5. Hence

G′(P, e, f) = ({v1, v3, v4, v6}, {{v1, v4}, {v3, v4}, {v3, v6}})

G′′(A, e, f) = (V [A], {{v1, v4}, {v3, v4}, {v3, v6}})

23

v1

v2

v3

v4

v5

v6

v1

v2

v3

v4

v5

v6

Figure 27: The graph G′(P, e, f) on the left and G′′(A, e, f) on the right.

Note that the Te,f = ({v1, v3, v4, v6}, {{v1, v4}, {v3, v4}, {v3, v6}}). Since there are F -edges
leaving Te,f , e and f are not compatible.

Lemma 3.5. (Equivalence relation ∼cp)
Let e, f ∈ A and f, g ∈ A be two pairs of compatible edges. Then e and g are also compatible,
which means that ∼cp is transitive. Hence, ∼cp is an equivalence relation.

Proof. The proof of transitivity splits up to three different cases that results by different
position-constellations of the edges e, f and g in A. Since it uses only the definition of an
compatible edge and basic ideas, we omit it. Moreover, the relation is reflexive and symmetric
by definition summarizing ∼cp is an equivalence relation.

Definition 3.6. (Equivalence classes C)
We denote the set of equivalence classes of the equivalence relation ∼cp by C.
For an equivalence class S ∈ C, denote by l(S) := |S| the number of edges in S.

Definition 3.7. (essential edge, safe edge)
Let A be a feasible solution of an instance I = (G, d,D) of the SFP. An edge e ∈ A is called
essential, if A is feasible, but A \ {e} is infeasible. Let T1, T2 be the connected components of
A \ {e}. Then e is called safe (with respect to F) if δF (T1) = δF (T2) 6= ∅, i.e. if at least one
F -edge crosses between T1 and T2.

Important!
Remember that we assumed V [A] = V [F]. With that in mind, it is easy to see that any
essential edge is safe, but the converse is not true in general: Safe edges can be essential or
inessential. See the examples in Figures 28 and 29. Therefore, we can classify the edges of A
into three distinct classes:

• safe essential edges

• safe inessential edges

• unsafe (and hence inessential) edges

s3

t3

s2

t2 t1

s1

e2

e1
e3

s3

t3

s2

t2 t1

s1

Figure 28: Consider this Euclidean instance with demand-pairs as depicted. On the left a
solution A in red and on the right a solution F in green. Note that V [A] = V [F].

24

s3

t3

s2

t2 t1

s1

e2

e3

s3

t3

s2

t2 t1

s1

e1
e3

s3

t3

s2

t2 t1

s1

e2

e1

Removing the edge e1 destroyes the feasi-
bility of A, hence e1 is essential. We can
see that there are two F -edges between
the two arising components in A\{e}, and
hence the e1 is safe w.r.t. F .

Removing the edge e2 does not change the
feasibility of A and hence e2 is inessential.
One of the resulting components consist
only of the left end-point of e2, that is con-
nected by two F -edges to the other com-
ponent. Therefore, e2 is safe w.r.t. F .

Removing the edge e3 does not change the
feasibility of A and hence e3 is inessential.
Since there are no F -edges between the
resulting two components of A \ {e}, e3 is
unsafe w.r.t. F .

Figure 29: The edges e1, e2, e3 have different properties regarding essentialness and safeness

Lemma 3.8.
Let e, f ∈ A be two compatible edges. Then e is safe w.r.t. F if and only if f is safe w.r.t.
F .

Proof. Suppose that the edge e = {v1, v2} is safe w.r.t. F , f = {vs−1, vs} and let P = v1 →
v2 → · · · → vs−1 → vs be the unique e−f path in A. Denote by Te, Te,f and Tf the connected
components of A\{e, f} that contain the vertex v1, the vertices v2, . . . , vs−1 and the vertex vs,
respectively. Note that A\{e, f} consists of exactly those three components. We need to show
that f is safe w.r.t. F , i.e. that there is at least one F -edge that leaves Tf , meaning δF (Tf) 6=
∅. The compatibility of e and f implies that δF (Te : Te,f), δF (Tf : Te,f) ⊆ δF (Te,f) = ∅. Since
e is safe w.r.t. F , we have that δF (Te) = δF (Te : Te,f) ∪ δF (Te : Tf) 6= ∅ which implies that
δF (Te : Tf) 6= ∅. But this means that δF (Tf) = δF (Tf : Te,f) ∪ δF (Tf : Te) 6= ∅, i.e. that f is
safe.

Lemma 3.9.
Let e, f ∈ A be two unsafe edges w.r.t. F . Then e and f are compatible.

Proof. Suppose that e = {v1, v2} and f = {vs−1, vs}. Let P = v1 → v2 → · · · → vs−1 → vs
be the unique e − f path in A. Denote by Te, Te,f and Tf the connected components of
A \ {e, f} that contain the vertex v1, the vertices v2, . . . , vs−1 and the vertex vs, respectively.
By assumption, e and f are unsafe w.r.t. F , i.e. δF (Te) = ∅ and δF (Tf) = ∅. We need to
show that δF (Te,f) = δF (Te : Te,f) ∪ δF (Tf : Te,f) = ∅.
Note that δF (Te : Te,f) ⊆ δF (Te) and δF (Tf : Te,f) ⊆ δF (Tf), hence δF (Te,f) = ∅.

25

Comment
Note that with the settings as in Lemma 3.8 or Lemma 3.9, equations like

δF (Te) = δF (Te : Te,f) ∪ δF (Te : Tf) δF (Te,f) = δF (Te : Te,f) ∪ δF (Tf : Te,f)

only hold true since V [A] = V [F]. This is not true in the general case!

Summarizing we get the following lemma:

Lemma 3.10. (Summary)
Let e, f ∈ A be two compatible edges. Then

1. e is essential if and only if f is essential.

2. e is safe if and only if f is safe.

3. If two edges e and f are unsafe, then they are compatible.

4. The set Su := {e ∈ A | e is unsafe} forms an equivalence class of ∼cp.

5. If S ∈ C is an equivalence class of ∼cp, then either all edges e ∈ S are essential or
none.

6. If S ∈ C 6= Su is an equivalence class of ∼cp, then all edges in S are safe.

Proof. We only have to show (1), the other statements follow from Lemmas 3.8 and 3.9. The
second is Lemma 3.8, the third holds true by Lemma 3.9. Points 4 to 6 are direct implications
by the former and the fact that ∼cp is an equivalence relation, which was proven in Lemma 3.5.

To show the first point, let P = v1 → v2 → · · · → vs−1 → vs be the unique e − f path in A
where e = {v1, v2} and f = {vs−1, vs}. Denote by Te, Te,f and Tf the connected components
of A that contain the vertex v1, the vertices v2, . . . , vs−1 and the vertex vs, respectively. Sup-
pose that e is essential. We show that there exists a demand-pair s, t with s ∈ Te ∪ Te,f and
t ∈ Tf . This would mean that removing the edge f makes A \ {f} infeasible and hence the
edge f is essential.

Since e is essential, there exists a demand-pair s′, t′ with s′ ∈ Te and t′ ∈ Te,f ∪ Tf . By the
compatibility of e and f , we know that there are no F -edges leaving Te,f . If t′ ∈ Te,f , then
the forest F would be infeasible, hence t′ ∈ Tf . We set s = s′ and t = t′ and obtain a pair
that yields the essentialness of the edge f .

Lemma 3.11.
Let K := {e1, . . . , el} ⊆ A be a set of pairwise compatible edges of cardinality at least two.
Suppose that one and therefore all edges in K are safe.
Then there exists a path P ⊆ A with K ⊆ P .

Idea of the proof. For two edges e, f ∈ K let Pe,f be the unique path in A starting with edge
e and ending with edge f . Define R :=

⋃
e,f∈K Pe,f . It is easy to see that K ⊆ R ⊆ A and

that R is a tree whose leaves are incident to edges of K. We assume for a contradiction that
R is not a path, i.e. that there is some vertex with at degree at least three. This will finally
contradict the safeness of an edge of K.

26

Lemma 3.12.
Let S ∈ C \ {Su} be an equivalence class of safe edges. Let f ∈ F be an edge.

1. For any K ⊆ S there is a path P ⊆ A such that K ⊆ P.

2. Let P ⊆ A be the unique inclusion minimal path containing S and let T0, . . . , Tl be the
components of A \ S in order they are traversed by P . Then either f ∈ δF (T0 : Tl) or
there exists i ∈ {0, . . . , l} such that Ti contains both endpoints of f .

3. Let C be the unique cycle in A ∪ {f}. Then S ⊆ C or S ∩ C = ∅.

Proof. The first follows from Lemma 3.11.
For the second part, denote the edges of S by e1, . . . , el such that ei is the edge between
Ti−1 and Ti for all i ∈ {1, . . . , l}. Since all edges ei, ej for i 6= j ∈ {1, . . . , l} are pairwise
compatible, there can not be an F -edge crossing between Ti and Tj for any i 6= j ∈ {1, . . . , l}.
Also there can not be an F edge crossing between T0 and Ti for some i ∈ {1, . . . , l− 1}, since
e1 and ei+1 are compatible. The only possibilities that remain are that either both endpoints
of f lie within some component Ti or that f ∈ δF (T0 : Tl).
The third point follows now by the second corresponding to the two cases for f .

Lemma 3.13.
Let S ∈ C be an equivalence class of ∼cp and let e ∈ S. Moreover, let f ∈ F such that
A \ {e} ∪ {f} is feasible. Then A \ S′ ∪ {f} is feasible for all subsets S′ ⊆ S and especially
A \ S ∪ {f} is feasible.

Proof. First case: If e is inessential, then all edges in S are inessential by Lemma 3.10 and
hence A \ S is feasible even without adding f and we are done.

Second case: If e is essential, then by Lemma 3.10 all edges of S are essential and hence
safe. We can now apply the second part of Lemma 3.12: Let T0, . . . , Tl be the connected
components of A \ S in the order they are traversed by the path P that is containing S. We
get that δF (Ti) = ∅ for i ∈ {1, . . . , l − 1}.

Therefore, every demand-pair {s, t} ∈ D is either contained in one single Ti or w.l.o.g. s ∈ T0

and t ∈ Tl. Removing the set S therefore only disconnects the pairs of the second type. We
also know that either f ∈ δF (T0 : Tl) or both its endpoints lie in the same connected compo-
nent Ti. If f ∈ δF (T0 : Tl), then A\{e}∪{f} is feasible since T0∪Tl is a connected component.

If both endpoints of f lie in the same component, then the connected components of
A \ {e} ∪ {f} are the same as the connected components of A \ {e} and by our assumption
it means that A \ {e} is feasible. But this is a contradiction to e being essential.
The “especially” part follows trivially with S′ = S.

3.1.2. Bounding the total length: first attempt

We want to give a bound for the total length in some special case: As above, we suppose that
the solution A obtained by the algorithm is a tree and V [A] = V [F], where F is an optimal
or near-optimal solution. Lemma 3.12 helps us to proof the following theorem which then
allows us to give an interim statement as a corollary. The proof of the theorem can be seen
in [G17].

Theorem 3.14. (Bipartite graph based charging)
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let F be a feasible solution
and let A be a feasible tree-solution for I such that V [A] = V [F]. Let ∆ : C → R be a cost

27

function, that assigns a cost to each equivalence class S ∈ C. Suppose that ∆(S) ≤ df for all
pairs (S, f) ∈ C \ {Su} × F such that the cycle in A ∪ {f} contains S. Then,∑

S∈C\{Su}

∆(S) ≤ 7

2
·
∑
f∈F

df

Corollary 3.15. (Bounds on d for a special case)
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let OPT be an optimal solution
(w.r.t. the total length). Let A be a feasible tree solution that does not contain inessential
edges and V [A] = V [OPT]. If A is edge-set swap-optimal and hence also edge-edge swap-
optimal with respect to OPT and d, then

d(A) ≤ 7

2
· d(OPT)

Proof. Since A contains no inessential edges, there can not be unsafe edges (remember that
unsafe implies inessential), hence Su = ∅. We set ∆(S) :=

∑
e∈S de for all S ∈ C. Let

f ∈ OPT be an edge that closes a cycle C in A such that V [C] contains S (cf. Lemma 3.12c).
Then, (A ∪ {f}) \ {e} is feasible for any edge e ∈ S ⊆ C, since we remove only one edge of
the cycle C, which means that the obtained solution is still a tree. Using Lemma 3.13 we
obtain that (A ∪ {f}) \ S is also feasible. Therefore, we can consider the edge-set swap that
adds the edge f ∈ OPT and deletes S. By assumption, this move was not improving (with
respect to d), since A is edge-set swap-optimal with respect to edges from OPT and d. Thus,
∆(S) =

∑
e∈S de ≤ df . We can now directly apply Theorem 3.14. In our setting, with Su = ∅

and F = OPT , this yields ∑
S∈C

∆(S) ≤ 7

2
·
∑

f∈OPT
df

With the definition of ∆(S) we get

d(A) =
∑
e∈A

de =
∑
S∈C

∑
e∈S

de =
∑
S∈C

∆(S) ≤ 7

2
·
∑

f∈OPT
df =

7

2
· d(OPT)

which proves the claimed result.

3.1.3. Bounding the potential φ

In the previous section, we considered the case, that our solution (of special form) is edge-set
swap-optimal with respect to the optimal solution OPT and the distance function d. Now
we want to consider the edge-set swaps with respect to the potential φ.

Since edge-set swaps may increase the number of connected components, and some of these
“new” components may have large widths, edge-set swaps that are improving with respect to
the lengths may not be improving any more. Handling this situation requires a more careful
analysis, but we will still rely on some tools that we already established. As before, consider
the case where the feasible solution A is a single tree and V [A] = V [F].

We start with some notation:
Let S ∈ C \ {Su} be an equivalence class of safe edges that contain l(S) edges. By the first
part of Lemma 3.12, the edges of S lie on a path P . We write S = 〈eS,1, . . . , eS,l(S)〉 if the
edges lie in this ordering on P . With the edges of the form eS,i = {wS,i−1, vS,i}, we get the
following layout of the path:

28

wS,0
eS,1−−→ vS,1 → · · · → wS,i−1

eS,i−−→ vS,i → · · · → wS,l(S)−1

eS,l(S)−−−−→ vS,l(S)

When the context is clear, and that should be the case in this section, we drop some in-
dices and write e1, . . . , el(S) and v1, . . . , vl(S), w0, . . . , wl(S)−1 instead of the above used names.
Hence we describe the path in this way:

w0
e1−→ v1 → · · · → w1

e2−→ v2 → · · · → wi−1
ei−→ vi → · · · → wl(S)−1

el(S)−−−→ vl(S)

Note that wi = vi is possible, but always wi−1 6= vi, i.e. the edge ei is not a self loop.

If we remove the set S, this yields a decomposition of A into l(S) + 1 connected com-
ponents. Let GS,i = (VS,i, ES,i) be the connected component that contains wi and let
GS,l(S) = (VS,l(S), ES,l(S)) be the connected component that contains vl(S). These compo-
nents GS,i are subgraphs of G for all 1 ≤ i ≤ l(S). For convenience, we will identify each
component with its edge set ES,i.

We think of ES,0 and ES,l(S) as the outer components of the path P and we see ES,1, . . . , ES,l(S)−1

as the inner components. It is easy to see that these components form vertex-disjoint subtrees
of (the tree) A, as stated below.

Observation 3.16.
Let S ∈ C \ {Su} and i 6= j ∈ {1, . . . , l(S)}. Then ES,i ∩ES,j = ∅ and A is the disjoint union
of the edge sets ES,0, . . . , ES,l(S) and S.

Definition 3.17. (m(S) and n(S))
Let the settings be as above. Let m(S) and n(S) be the index of the inner components with the
largest and second-largest widths, respectively. We use the index mind from Definition 1.8 to
break ties consistently, hence

m(S) := arg max
i∈{1,...,l(S)−1}

mind(ES,i)

n(S) := arg max
i∈{1,...,l(S)−1}

i 6=m(S)

mind(ES,i)

Agreement
Without loss of generality, we assume that the orientation of the path P containing S ∈
C \ {Su} is such that m(S) < n(S).

Definition 3.18. (InS and InS′)
Let the settings be as above. We set

InS := {1, . . . , l(S)− 1}
InS′ := {1, . . . , l(S)− 1} \ {m(S), n(S)}

i.e. InS are the indices of the inner components and InS′ are the indices of the inner
components excluding the vertices which corresponds to the components with the largest and
second-largest width, respectively.

29

Let’s have a look on the potential of the solution A which can be written as follows:

φ(A) = w(A) + d(A)

= w(A) +
∑
e∈A

de

= w(A) +
∑
e∈Su

de +
∑

S∈C\{Su}

∑
e∈S

de

=

(
w(A) +

∑
e∈Su

de

)
+

(∑
S∈C\{Su}

l(S)∑
i=1

dei

)
(2)

=

(
w(A) +

∑
e∈Su

de

)
+

(∑
S∈C\{Su}

l(S)∑
i=1

dei

)

−
(∑
S∈C\{Su}

∑
i∈InS

w(ES,i)

)
+

(∑
S∈C\{Su}

∑
i∈InS

w(ES,i)

)

=

(
w(A) +

∑
e∈Su

de

)
︸ ︷︷ ︸

Term A

+

(∑
S∈C\{Su}

(l(S)∑
i=1

dei −
∑
i∈InS

w(ES,i)
))

︸ ︷︷ ︸
Term B

+

(∑
S∈C\{Su}

∑
i∈InS

w(ES,i)

)
︸ ︷︷ ︸

Term C

The next goal is to bound the three Terms A, B and C. To do so, we will use some results
which we do not prove here, since the proofs are in parts lengthy or of technical nature. All
proofs can be seen in full length in Gross et al. [G17].

3.1.4. Bounding Term B

We use the following lemma to give a bound for Term B.

Lemma 3.19.
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let F be a feasible solution
and A be a feasible tree-solution for I satisfying V [A] = V [F]. Suppose that A is edge-set
swap-optimal with respect to F and φ. Furthermore, let S ∈ C \ {Su} be an equivalence class
of safe edges and let f ∈ F be an edge that closes a cycle in A that contains S. Then

df ≥
1

3

(l(S)∑
i=1

dei −
∑
i∈InS

w(ES,i)

)

Corollary 3.20. (A bound for Term B)
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let F be a feasible solution
and A be a feasible tree-solution for I satisfying V [A] = V [F]. Suppose that A is edge-set
swap-optimal (and hence also edge-edge swap-optimal) with respect to F and φ. Then

∑
S∈C\{Su}

(l(S)∑
i=1

dei −
∑
i∈InS

w(ES,i)

)
≤ 10.5 · d(F)

Proof. For an equivalence class S ∈ C \ {Su}, we set

30

∆(S) :=
1

3

(l(S)∑
i=1

dei −
∑
i∈InS

w(ES,i)

)

Lemma 3.19 ensures that ∆(S) ≤ df for any pair (S, f) ∈ C \ {Su} × F where f closes a
cycle in A that contains S. Note, that the requirements of Theorem 3.14 are fulfilled, which
implies that ∑

S∈C\{Su}

∆(S) ≤ 7

2
· d(F)

Plugging in the definition of ∆(S) yields

∑
S∈C\{Su}

1

3

(l(S)∑
i=1

dei −
∑
i∈InS

w(ES,i)

)
≤ 7

2
· d(F)

and multiplying the inequality by 3 gives the result.

3.1.5. Bounding Term A

We need the following definition for the bound of Term A:

Definition 3.21. (Removing swap)
Let I = (G, d,D) be an instance of the SFP with G = (V,E) and A a feasible solution. Let
U ⊆ A be a subset of edges such that A\U is feasible. Removing U from A to obtain another
feasible solution A′ := A \ U is called a removing swap with the set U .
Removing swap optimality (with respect to some objective function) means that there is no
U ⊆ A such that the resulting feasible solution A′ yields a better objective function value.

Remember that (in our standard setting) Su is the set of unsafe edges of the solution A
with respect to an optimal or near optimal solution F . We already know that unsafe edges
are inessential, hence they can be removed without destroying the feasibility of the solution.
Therefore, a removing swap with the set Su is always an option.

Lemma 3.22. (A bound for Term A)
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let F be a feasible solution and
A be a feasible tree solution for I that is removing swap optimal and V [A] = V [F]. It holds
that

w(A) +
∑
e∈Su

de ≤ w(F)

Proof. Suppose F consists of cc(F) connected components F1, . . . , Fcc(F). Consider the re-
moving swap that removes all edges in Su. A′ := A\Su contains |Su|+1 connected components
E1, . . . , E|Su|+1, let’s suppose they are numbered such that their width’s are non increasing,
i.e. w(E1) ≥ · · · ≥ w(E|Su|+1).

By definition of Su, the edges of F do not connect any of those connected components, and
with V [A] = V [F] it follows that cc(F) ≥ |Su| + 1. Furthermore, any component Ei con-
tains a component Fj of the same width, i.e. w(Ei) = w(Fj). Assume that the components
F1, . . . , Fcc(F) are numbered such that w(Fi) = w(Ei) for i = 1, . . . , |Su|+ 1.

Let’s have a look at the potentials of A and A′. Remember that A is per assumption a tree.

31

φ(A) =
∑
e∈A

de + w(A) φ(A′) =
∑
e∈A

de −
∑
e∈Su

de +

|Su|+1∑
i=1

w(Ei)

Since A was removing swap optimal, this removing swap was not improving, hence

∑
e∈A

de + w(A) ≤
∑
e∈A

de −
∑
e∈Su

de +

|Su|+1∑
i=1

w(Ei) =
∑
e∈A

de −
∑
e∈Su

de +

|Su|+1∑
i=1

w(Fi)

and finally

w(A) +
∑
e∈Su

de ≤
|Su|+1∑
i=1

w(Fi) ≤
cc(F)∑
i=1

w(Fi) = w(F)

3.1.6. Bounding Term C

To obtain a bound for Term C, we use two results for which we will not give a proof.
As always, the proofs can be seen in Gross et al. [G17]

Lemma 3.23.
Let S, S′ ∈ C \ {Su} be two different equivalence classes, i.e. S 6= S′.
Then exactly one of the two following cases holds:

1. S′ ⊆ ES,0 ∪ ES,l(S), i.e. S′ lies in the outside of the path of S.

2. There exists i ∈ {1, . . . , l(S)− 1} with S′ ⊆ ES,i.

Definition 3.24. (The function µ)
In our standard setting, we set µ(S, i) := mind(ES,i) for all S ∈ C \ {Su} and i ∈ InS.

Lemma 3.25. (µ is injective)
Let S, S′ ∈ C \ {Su}, i ∈ InS and i′ ∈ InS′. Then

µ(S, i) = µ(S′, i′) =⇒ S = S′ and i = i′

i.e. µ is an injective function in S and i.

Comment
Lemma 3.23 is essential to give a compact proof for Lemma 3.25.
We use now Lemma 3.25 to give a bound for Term C.

Lemma 3.26. (A bound for Term C)
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let F be a feasible solution
and A be a feasible tree solution for I and denote by ES,i the i-th inner connected component
on the path that contains S ∈ C \ {Su}6. Then

6Remember that we assumed the orientation of the path such that m(S) < n(S), i.e. the notation is well
defined.

32

∑
S∈C\{Su}

∑
i∈InS

w(ES,i) ≤ w(F)

Proof. Suppose F consists of cc(F) connected components F1, . . . , Fcc(F). With Definition
1.8 we can write

w(ES,i) = dG(umind(ES,i), ūmind(ES,i)) = dG(uµ(S,i), ūµ(S,i))

for all S ∈ C \ {Su} and i ∈ InS .
Therefore, it holds that∑

S∈C\{Su}

∑
i∈InS

w(ES,i) =
∑

S∈C\{Su}

∑
i∈InS

dG(uµ(S,i), ūµ(S,i)) (3)

Let χ(S, i) denote the index of the connected component Fχ(S,i) which contains the demand-
pair {umind(ES,i), ūmind(ES,i)} in F .

Claim: χ is injective with respect to S and i.
Consider S, S′ ∈ C and i ∈ InS , i′ ∈ InS′ such that χ(S, i) = χ(S′, i′). By an compati-
bility argument, we know that δF (VS,i) = ∅ and δF (VS′,i′) = ∅. Since Fχ(S,i) is connected,
it follows that V [Fχ(S,i)] ⊆ VS,i ∩ VS′,i′ . This implies that uµ(S,i), ūµ(S,i) ∈ VS′,i′ and also
uµ(S′,i′), ūµ(S′,i′) ∈ VS,i. Hence, mind(ES,i) = mind(ES′,i′) or in the context of the function µ
this means µ(S, i) = µ(S′, i′). Using Lemma 3.25, we obtain that S = S′ and i = i′ which
proves the claim, i.e. the injectivity of the function µ gives the injectivity of the function χ.

Since dG(uµ(S,i), ūµ(S,i)) ≤ w(Fχ(S,i)), we can estimate the right hand side of (3) in the
following way:

∑
S∈C\{Su}

∑
i∈InS

dG(uµ(S,i), ūµ(S,i)) ≤
∑

S∈C\{Su}

∑
i∈InS

w(Fχ(S,i)) ≤
cc(F)∑
i=1

w(Fi) = w(F)

The last inequality holds since χ is injective and its image is a subset of {1, . . . , cc(F)}. By
summing over all cc(F) connected components of F we may make the sum larger, since all
width’s are non-negative.

3.1.7. Wrapping up

Considering all these bounds and tools, we are now able to proof the main result of
Section 3.1 and also some nice corollaries:

Theorem 3.27. (Bound for φ(A), first version)
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let F be a feasible solution
and let A be a feasible tree-solution for I such that V [A] = V [F]. Furthermore, suppose that
A is edge-set swap-optimal with respect to F and φ. Then,

φ(A) = d(A) + w(A) ≤ w(A) +
∑
e∈Su

de + 10.5 · d(F) + w(F)

33

In particular, we have

d(A) ≤
∑
e∈Su

de + 10.5 · d(F) + w(F)

Proof. Writing φ(A) in the form as in (2) on Page 30, we obtain immediately the claimed
bound by applying Corollary 3.20 and Lemma 3.26 to the Terms B and C:

φ(A) =

(
w(A) +

∑
e∈Su

de

)
+

(∑
S∈C\{Su}

(l(S)∑
i=1

dei −
∑
i∈InS

w(ES,i)
))

︸ ︷︷ ︸
≤10.5d(F) by Corollary 3.20

+

(∑
S∈C\{Su}

∑
i∈InS

w(ES,i)

)
︸ ︷︷ ︸
≤w(F) by Lemma 3.26

If we additionally apply Lemma 3.22, we get the following reformulation of Theorem 3.27:

Corollary 3.28. (Bounds for φ(A), second version)
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let F be a feasible solution and
let A be a feasible tree-solution for I such that V [A] = V [F]. Furthermore, suppose that A is
optimal with respect to edge-set swaps and removing swap with respect to F and φ. Then,

φ(A) ≤ 10.5 · φ(F)

Proof. Starting with the claimed bound of Theorem 3.27 and applying Lemma 3.22 leads
almost directly to the claimed bound:

φ(A) ≤ w(A) +
∑
e∈Su

de︸ ︷︷ ︸
≤w(F) by Lemma 3.22

+10.5 · d(F) + w(F)

≤ 10.5 · d(F) + 2 · w(F) ≤ 10.5 ·
(
d(F) + w(F)

)
= 10.5 · φ(F)

3.1.8. Bounding the total length: second attempt

Having established a bound for the potential φ(A) for some feasible tree-solution, we obtain
a bound for the total length.

Corollary 3.29. (A Bound for d)
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let A,F be two feasible Steiner
forests for I with V [A] = V [F] and A being a tree. Suppose that A is edge-set swap-optimal
with respect to F and φ. Denote by A′ the modified solution, where all inessential edges have
been removed from A. Then

d(A′) ≤ 10.5 · d(F) + w(F) ≤ 11.5 · d(F)

Proof. From Theorem 3.27 we get

d(A) ≤
∑
e∈Su

de + 10.5 · d(F) + w(F)

34

Let Sis be the set of safe but inessential edges. We get

d(A′) = d(A)−
∑
e∈Su

de −
∑
e∈Sis

de

≤
∑
e∈Su

de + 10.5 · d(F) + w(F)−
∑
e∈Su

de −
∑
e∈Sis

de

= 10.5 · d(F) + w(F)−
∑
e∈Sis

de

≤ 11.5 · d(F)

since w(F) ≤ d(F) and
∑

e∈Sis de ≥ 0.

Comments
Corollary 3.29 gives a bound for the total length of the solution A in the case, that A has
the following properties, which are not necessarily true for a general feasible solution:

• A is a tree

• V [A] = V [F]

• A is edge-set swap optimal with respect to F and φ

We have not yet considered the path-set swap and the connecting-move. Nevertheless, we will
see that we do not need to consider these moves at all to obtain our desired results. While
dropping some restrictions of the solution A may increase the bound, considering more local
moves may allow a lower bound.

3.2. Case II: The local optimum is a forest

In the general case, both A and F can have multiple connected components. The first idea
may be that we apply the results of Section 3.1 to each component individually. The problem
is the following: For Theorem 3.27 and also for other results in that section, we assumed
implicitly that there are no edges from F which cross between two connected components in
A. This was clear since A was a tree and hence consisting of only one connected component.
Now, where A can be a forest, this is not necessarily true any more. The main idea is to
replace F -edges that cross between two connected components of A by some edges that lie
within components of A in such a way that the (modified) solution F ′ stays feasible and its
cost is only a constant multiple of the cost of F . Formally, we want to transform a pair (A,F)
into a pair (A,F ′) such that F ′ has the desired properties mentioned above. This will then
allow us to prove the first part of Theorem 3.1.

3.2.1. Changing the type of instance

In the previous section, we considered the general Steiner forest problem where G = (V,E)
was an arbitrary graph and the only restriction to the cost function d : E → R≥0 was to be
non-negative. Now, we have to change this setting at some points: We assume thatG = (V,E)
is the complete graph on the vertex set V and the cost function d : E = V ×V → R≥0 is given
by a metric. Hence, an instance Im in this setting consists of the complete graph G = (V,E),
a metric d and a set of demand-pairs D ⊆ V × V .

35

Definition 3.30. (Metric Steiner forest problem)
The type of the Steiner forest problem described above, where we consider the complete graph
and the cost function d is a metric, is called metric Steiner forest problem. We use the
abbreviation MSFP for this type of problem.

Comment
If one chooses n points in the Euclidean plane, declare them as vertices and connect each pair
of vertices by an edge whose length is the Euclidean distance dE between the two end-vertices,
one get a complete graph G that is embedded in the Euclidean plane. By choosing a set of
demand-pairs D, we obtain an instance Im = (G, dE ,D) of the MSFP. We will call this the
Euclidean version of the Steiner forest Problem.
The next section shows there is no loss of generality working with the metric version of the
Steiner forest problem.

The more important change in our setting is, that we no longer assume that the feasible
solution A is a tree. From now on, A can be an arbitrary feasible solution-forest in the graph
G. We denote its connected components as A1, . . . , Ap ⊆ A, where the numbering is chosen
such that w(A1) ≤ · · · ≤ w(Ap) holds.

As before, we denote by F another feasible solution for the underlying instance.

3.2.2. Metric SFP and the general SFP

The following theorem depicts why we can concentrate on the metric version of the Steiner
forest problem without any loss of generality:

Theorem 3.31. (Metric SFP and general SFP)
If there exists a polynomial time c-approximation algorithm for the Metric Steiner forest
problem, then there is a polynomial time c-approximation algorithm for the (general) Steiner
Forest Problem.

Proof. Suppose there is a polynomial time c-approximation algorithm for the Metric Steiner
forest problem, let’s call it ALGm. We show that there is a polynomial time c-approximation
algorithm solving the (general) Steiner forest problem.

Let I = (G, d,D) be an instance of the (general) Steiner forest problem with G = (V,E) being
an connected, undirected graph, d : E → R≥0 being a cost function that is not necessarily a
metric, and D a set of demand-pairs. Let F ∗ be an optimal solution for I.

For two points u, v ∈ V , let dm(u, v) be the length of the shortest u−v path in the connected
graph G. Note that the function dm : V × V → R≥0 defines a metric. Hence, Im := (Gm =
(V, V × V), dm,D) is an instance of the metric Steiner forest problem. We can apply ALGm
to Im and obtain in polynomial time a solution Am that satisfies:

dm(Am) ≤ c · dm(F ∗m)

where F ∗m is an optimal solution to the metric instance Im.

For two points u, v ∈ V , that are not connected by an edge, set d(u, v) := M for some
sufficiently large constant M ∈ R≥0, for example M :=

∑
e∈E de + 1. This should represent

the cost infinity for the non-present edge {u, v} in G. With this adjustment, we then have
dm(u, v) ≤ d(u, v) for every pair of points u, v ∈ V . Then the following inequality holds

dm(F ∗m) ≤ dm(F ∗) ≤ d(F ∗)

36

and hence also

dm(Am) ≤ c · d(F ∗)

We construct a solution A for the original instance I out of Am as follows: Replace each edge
e = {u, v} of Am by the corresponding shortest u− v path. Note that this construction can
be easily done in polynomial time. By construction, it holds that

d(A) ≤ dm(Am)

We have an inequality between those two values since some paths may share edges which are
then counted only once in d(A) but multiple in dm(Am). Putting everything together, we
finally obtain

d(A) ≤ c · d(F ∗)

which completes the proof.

3.2.3. Preliminaries

From now on, we are dealing with an instance Im = (G, dE ,D) of the MSFP. Let’s see, what
we may assume about the feasible solution F (we always have in mind that F is an optimal
solution). Denote the connected components of F by F1, . . . , Fq ⊆ F . We can assume that
there are no inessential edges. Note that every connected component Fi is a tree. We may
convert every component Fi into a simple cycle:

• Let G[Fi] be the graph induced by Fi. Double each edge in G[Fi] such that the resulting
graph is a multi-graph (“twice around the corner”).

• Construct an Euler-Tour P in G[Fi]. By construction, every vertex of G[Fi] has even
degree and hence, by the Euler- Hierholzer Theorem (see e.g. [EH]), such a tour exists.

• Short-cut P over repeated vertices. This yields a Hamiltonian cycle HC on the vertices
V [Fi] in G.

• Short-cut the Hamiltonian cycle HC over non-terminals. This yields a Hamiltonian
Cycle HC ′ on the terminals of V [Fi] in G.

• The edge set of HC ′ gives the edge set F ′i that induces a simple cycle in G.

Denote by F ′ the solution obtained by applying the modification shown above to each con-
nected component of F . We have that V [F ′] ⊆ V [A], since the vertices of F ′ are all terminals,
which clearly has to be covered by the feasible solution A.

We can assume that V [A] also consists only of terminals (the triangle inequality allows this)
and hence V [F ′] = V [A]. For a given set of demand-pairs D, denote by VD ⊆ V the set of
all terminals. From now on, we can assume that V = V [F] = V [A] = VD.

Example 3.32. (Modifying the forest F)

Consider the following connected component Fi of the feasible solution F consisting of four
terminals {s1, t1, s2, t2} and two non-terminals {v1, v2} shown in the left picture of Figure 30.

37

s1

v1

t1

s2 v2

t2 s1

v1

t1

s2 v2

t2 s1

t1

s2

t2

Figure 30: The left picture shows the connected component Fi in its original form, the picture
in the middle the constructed Hamiltonian cycle on the vertices of Fi and the right
picture the resulting component F ′i .

Finding an Euler-Tour is straight forward:

s1 → v1 → t1 → s2 → t1 → v2 → t1 → v1 → t2 → v1 → s1

Short-cutting over already visited vertices mean that we delete all vertices which has already
appeared on the path. This yields a Hamiltonian path on the vertices of Fi in G. Note, that
G is the complete graph, hence all the edges are present in G:

s1 → v1 → t1 → s2 → v2 → t2 → s1

Finally, we short-cut also over non-terminal, hence we simply delete the non-terminals from
the path and take instead the direct edges. The final simple cycle that passes through all
terminals looks as follows:

s1 → t1 → s2 → t2 → s1

Lemma 3.33.
Let A,F be two feasible solutions for the instance Im of MSFP and assume that V [A] = VD.
Then there exists a solution F ′ whose connected components F1, . . . , Fq are node disjoint
simple cycles and which satisfies V [F ′] = V [A] = VD. Moreover, it holds that d(F ′) ≤ 2 ·d(F)
and φ(F ′) ≤ 2 · φ(F).

Proof. To obtain F ′, we apply the modification given on the previous page to each connected
component F1, . . . , Fq ⊆ F . F ′ consists therefore of simple cycles F ′1, . . . , F

′
p where F ′i was

obtained from Fi for 1 ≤ i ≤ q. By construction, it follows that V [F ′] = V [A] = VD. In
each component Fi, we start with the edge set Fi, double each edge e ∈ Fi and short-cut
edges whose edge lengths obey a metric, therefore we get d(F ′i) ≤ 2 · d(Fi) by using triangle
inequality and summing over all components yields d(F ′) ≤ 2 · d(F) . For the last part, we
use that w(Fi) = w(F ′i) for 1 ≤ i ≤ q, and hence

φ(F ′) = d(F ′) + w(F ′) =

q∑
i=1

d(F ′i) +

q∑
i=1

w(F ′i) ≤ 2 ·
q∑
i=1

d(Fi) +

q∑
i=1

w(Fi)

≤ 2 ·
(q∑
i=1

d(Fi) +

q∑
i=1

w(Fi)
)

= 2 ·
(
d(F) + w(F)

)
= 2 · φ(F)

38

Definition 3.34. (ξ(v), GA and ĜA)
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let A,F be two solutions for
I such that A1, . . . , Ap ⊆ A are the components of A and F1, . . . , Fq ⊆ F are the components
of F where every component Fi is a simple cycle which vertices are only terminals. As men-
tioned, we can assume V = V [F] = V [A] = VD.

For v ∈ V , we set ξ(v) := j for the unique j ∈ {1, . . . , p} that satisfies v ∈ Aj, i.e. ξ(v) is
the index of the connected component of A that contains the vertex v.

Moreover, set GA,F := G/{A1, . . . , Ap} = (VA,F , EA,F) to be a multi-graph with

VA,F := {1, . . . , p} EA,F := {ef | f = {v, w} ∈ F : ξ(v) 6= ξ(w)}

We extend the distance function d to GA,F by setting def := df for all ef ∈ EA,F .

Denote by ĜA,F the graph on the vertices VA,F that is the transitive closure of GA,F : For all
pairs (i, j) with i 6= j ∈ VA,F it contains an edge eij whose length deij is given by the length
of a shortest i− j path in GA,F .

Comments

• The graph GA,F results from contracting the connected components of A in F .

– The vertices of GA,F corresponds to the connected components of A .

– The edges of GA,F corresponds to edges f ∈ F that cross between two different
components of A.

• Recall the graph GallA defined in Section 2.2.2 for the connecting-moves. Note that GA,F
is a subgraph of this graph GallA .

• Thus, every tree in GA,F induces a connecting-move.

3.2.4. Simple cycles and their circuits

Consider an instance of the Metric Steiner forest problem with all the settings as in the pre-
vious section. Remember that we can assume the connected components F1, . . . , Fq of the
solution F being simple cycles.

For each i ∈ {1, . . . , q}, the simple cycle Fi in G induces a circuit Ci in GA
7. The edges of the

circuit Ci corresponds to those edges of Fi, that cross between two connected components of
A. Remember that these edges are those we want to remove such that there are no F -edges
crossing between two connected components of A.

Observe that Ci is not necessarily simple (see Figure 31): Whenever Fi visits the connected
component Aj of A, the induced circuit Ci revisits the same node j ∈ VA.

Assume Ci visits exactly s distinct vertices, which corresponds to the s different connected
components Aξ1 , . . . , Aξs , that are traversed by the simple cycle Fi in G. Name those vertices
by the index of the component, from which they arise, i.e. by ξ1, . . . , ξs. We can assume
without loss of generality that ξ1 > · · · > ξs.

7Note, that the circuit consists of only one single vertex in the case where V [Fi] ⊆ V [Aj] for some 1 ≤ i ≤ q
and 1 ≤ j ≤ p.

39

Since the connected components are ordered according to non-decreasing width, we know
that w(Aξ1) ≥ · · · ≥ w(Aξs), hence the ξi are ordered according to the widths of the corre-
sponding connected components.

Let nl be the number of times that Ci visits ξl for l ∈ {1, . . . , s}8.

A7

A5

A4

A1
1

4

5

7

Figure 31: The simple cycle Fi in G depicted on the left induces the circuit Ci in GA which
is shown on the right. The connected components A1, A4, A5, A7 are numbered in
a way such that w(A1) ≤ w(A4) ≤ w(A5) ≤ w(A7), which is indicated by the size
of the rounded rectangles. The edges of Fi in red are those, that cross between
two connected components, the blue one are inner-connected-component edges.

Example 3.35.

In Figure 31 we have:
s = 4, ξ1 = 7, ξ2 = 5, ξ3 = 4, ξ4 = 1 and n1 = 1, n2 = 1, n3 = 2, n4 = 1.

3.2.5. Connection move-optimality and partitions

The crucial idea for the replacement of Ci is to use the connecting move optimality of A
in order to give a lower bound for the total length d(Ci) of the circuit Ci. Note that any
subgraph T of Ci that is a tree in GA can be used for a connecting-move.

Consider the simple cycle Fi and the induced circuit Ci from Figure 31. We can partition the
simple cycle into subgraphs H1, H2, H3 that corresponds to trees T1, T2, T3 in GA that parti-
tion the circuit as shown in Figure 32 (let’s write H1 ∼ T1 if the subgraph H1 corresponds
to the tree T1 in GA).

Assuming that A is connection-move-optimal, then using any of those trees does not improve
the quality of the solution, hence we can give some lower bounds for the d(Ti)’s and therefore
for d(Ci).

Example 3.36.

For an easier notation set A = A1 ∪ A4 ∪ A5 ∪ A7 and let A′ = A ∪ T1 be the solution that
results by applying conn(T1) to A.

8If we would be very precise, we should have indexed all variables above also with an additional i that
indicates to which simple cycle Fi they belong to, e.g. we would have to write ξi,1, . . . , ξi,s instead of ξ1, . . . , ξs.
We drop this additional index right from the beginning, since it would only cause more confusion as it helps.

40

A7

A5

A4

A1

H1 ∼ T1

A7

A5

A4

A1

H2 ∼ T2

A7

A5

A4

A1

H3 ∼ T3

Figure 32: A partitioning of the simple cycle into three sub-sets H1, H2, H3 yields a corre-
sponding partition of the circuit into three trees T1, T2, T3 in GA. The partition is
not unique, see Figure 33.

We get

φ(A) = d(A) + w(A)

= d(A) + w(A1) + w(A4) + w(A5) + w(A7)

φ(A′) = d(A′) + w(A′)

= d(A) + d(T1) + w(A1) + w(A4) + w(A5) + w(A7)− w(A4)

= φ(A) + d(T1)− w(A4)

Since this move does not improve, we have

φ(A′) ≥ φ(A) ⇐⇒ φ(A) + d(T1)− w(A4) ≥ φ(A) ⇐⇒ d(T1) ≥ w(A4)

Analogous calculations shows that d(T2) ≥ w(A4) + w(A1) and d(T3) ≥ w(A4) + w(A1).
Taking all these three bounds together, we obtain

d(Ci) = d(T1) + d(T2) + d(T3) ≥ 3 · w(A4) + 2 · w(A1)

We may consider one other possible partitioning of the circuit into trees:

A7

A5

A4

A1

H ′1 ∼ T ′1

A7

A5

A4

A1

H ′2 ∼ T ′2

A7

A5

A4

A1

H ′3 ∼ T ′3

Figure 33: Another partitioning of the simple cycle yields another partition of the circuit into
three trees T ′1, T

′
2, T

′
3.

41

Doing the same calculation as before and assuming that none of these induced connection-
moves is improving, we get

d(T ′1) ≥ w(A5) + w(A4) d(T ′2) ≥ w(A4) + w(A1) d(T ′3) ≥ w(A1)

and summing over all three trees gives

d(Ci) ≥ w(A5) + 2 · w(A4) + 2 · w(A1) ≥ n2 · w(A5) + n3 · w(A4) + n4 · w(A1) (4)

Let’s assume that w(A5) > w(A4) (by our convention how to enumerate the connected com-
ponents we always have w(A5) ≥ w(A4)). Then, the second partition provides a better lower
bound for d(Ci), since w(A5) + 2 · w(A4) + 2 · w(A1) > 3 · w(A4) + 2 · w(A1).

Inequality (4) shows more: This lower bound contains w(Aξl) at least nl times for all l ∈
{2, 3, 4} = {2, . . . , s}. We will show in Section 3.2.6 that there exists always a partition with
this property in some special cases.

Definition 3.37. (T pays for ξl)
We say a tree T in GA pays for the vertex ξl (once) if it contains ξl and at least one other
vertex ξk with ξk > ξl.

Definition 3.38. (guarded, minimal guarded)
Let C = (e1, . . . , e|C|) be a circuit in GA that starts at v1 and visits the nodes v1, . . . , v|C|+1 =
v1 in this order. For this fixed order, we call C guarded, if vi < v1 for all i ∈ {2, . . . , |C|}.
A circuit C is minimally guarded if it is guarded and no sub-circuit (vi1 , . . . , vi2) with i1, i2 ∈
{2, . . . , |C|}, i1 < i2 and vi1 = vi2 is guarded.

Comments

• In any guarded circuit, the highest component number only appears once (twice, if you
start the circuit with this number and end it also there).

• In Figure 31, Ci is guarded, since starting at v1 = 7, in this circuit 7−4−5−4−1(−7),
the highest number, namely 7, appears only once (twice, if you start with 7 and close
the circuit).

• This circuit is also minimally guarded, since it is guarded and the only sub-circuit,
namely 4 − 5 − 4 is not guarded. Note, that it is not allowed to change the starting
point of the sub-circuit, i.e. in this example we are not allowed to describe the sub-
circuit as 5− 4− 5.

Definition 3.39. (c-approximate connection move)
In the setting of the local search algorithm provided in this work, a c-approximate connection
move for some constant c ≥ 1 is a connecting move conn(T) applied to the current solution
A that uses a tree T ∈ GallA such that c · d(T) ≤ w(A)− w(A ∪ T).
A solution A is c-approximate connecting move optimal, if there are no c-approximate con-
necting moves.

Comment
If a tree T ∈ GallA yields a c-approximate connection move, it means that at least the single
total length of the tree T is less or equal to the difference of the width’s of the solution A and
A ∪ T , respectively. Denote by A′ := A ∪ T the obtained solution by the connection move
with T. Then, with c ≥ 1 and d(T) ≥ 0, we get

42

c · d(T) ≤ w(A)− w(A ∪ T) = w(A)− w(A′)

⇐⇒ c · d(T) + w(A′) ≤ w(A)

=⇒ d(T) + w(A′) ≤ w(A)

and further

φ(A′) = d(A′) + w(A′) = d(A) + d(T) + w(A′) ≤ d(A) + w(A) = φ(A)

which means that a c-approximate connection move is always improving with respect to the
potential φ or at least yields the same value of φ.

For c′ < c it’s easy to see that a c-approximate connecting move is also a c′-approximate
connecting move, but not necessarily vice versa.

If a connecting-move, as defined in Section 2.2.2, is improving, then it is at least a
1-approximate connecting move. Since the set of all possible trees in GallA is not of polynomial
size, we can not decide in polynomial time whether there is a 1-approximate connecting move,
but we will see later, that deciding in polynomial time whether there exists a c-approximate
connecting move for some c > 1 is possible.

Lemma 3.40. (Bounding the total length of a circuit, first Approach)
Let C = (e1, . . . , e|C|) be a guarded circuit in GA that visits the nodes v1, . . . , v|C|+1 = v1 in this
order. Assume that v1 = v|C|+1 > vi for all i ∈ {2, . . . , |C|} and that v1, . . . , v|C| correspondes
to pairwise different vertices ξ1 > · · · > ξs (it follows that v1 = ξ1). Furthermore, let nl be the
number of times that C visits node ξl for all l ∈ {1, . . . , s}. If A is c-approximate connecting
move optimal and there exists a set of trees M in GA, that satisfies

(i) all trees in M are edge-disjoint and only contain edges from C

(ii) for all l ∈ {2, . . . , s} there are at least nl trees that pay for ξl

then the equality

|C|∑
i=2

w(Avi) =

s∑
l=2

nl · w(Aξl) ≤ c ·
|C|∑
i=1

dei = c · d(C)

holds.

Proof. Assumption (i) implies that

∑
T∈M

∑
e∈T

de ≤
|C|∑
i=1

dei

As mentioned in the comments at the end of Section 3.2.3, every tree in M is also a tree in
GallA and hence defines a connecting move. By our assumption, A is c-approximate connecting
optimal, therefore it holds that

∑
v∈V [T]

w(Av)− max
v∈V [T]

w(Av) ≤ c ·
∑
e∈T

de = c · d(T) (5)

43

for every tree T ∈M. We set low(T) := V [T] \max{ξi | ξi ∈ T} and then we have

|C|∑
i=2

w(Avi) =
s∑
l=2

nl · w(Aξl)
(ii)

≤
s∑
l=2

∑
T∈M

1low(T)(ξl)w(Aξl) =
∑
T∈M

s∑
l=2

1low(T)(ξl)w(Aξl)

=
∑
T∈M

∑
v∈low(T)

w(Av) =
∑
T∈M

(∑
v∈V [T]

w(Av)− max
v∈V [T]

w(Av)

)
(5)

≤
∑
T∈M

c · d(T) = c · d(C)

3.2.6. The partitioning algorithm

In this section, we show how to partition minimally guarded circuits into a set M of trees
such that there are at least ni trees that pay for each ξi. In other words, we want to give a
recipe for finding a partition of a minimally guarded circuit that fulfils the requirements of
the partition needed in Lemma 3.40.

The algorithm on a high level
To be precise, the algorithm computes a sequence of sets Mk of trees such that for
k ∈ {2, . . . , s}, Mk contains a partitioning with ni trees that pay for ξi for all i ∈ {1, . . . , k}.
The output of the algorithm is then M := Ms.

The algorithm maintains a partitioning of C into a set of sub-paths Pk: These paths are not
necessarily simple, but they are all edge-disjoint. The algorithm iteratively splits non-simple
sub-paths into simple sub-paths.

In addition to that, the algorithm needs to make sure that the sub-paths can be combined to
trees that satisfy the conditions in Lemma 3.40. This is done by building the elements of the
set Mk not as trees in GA, but in its transitive closure ĜA (recall Definition 3.34). Doing it
in this way, we ensure that any edge of each tree in Mk corresponds to a path in the current
partitioning Pk.

If a tree in Mk contains an edge {v, w}, then the partitioning contains a sub-path (v, . . . , w).
We call the edge {v, w} transitive, if there exists at least one inner vertex in the sub-path
(v, . . . , w). Moreover, we say that a tree T ∈ Mk claims a sub-path P of C if one of the
edges of T corresponds to P . Each time the algorithm splits a sub-path, it also splits the
corresponding edge of a tree in Mk.

The trees in the final set Ms do not contain transitive edges, hence they are subgraphs of
GA. They also leave no sub-path of C unclaimed.

The correspondence between trees and sub-paths, is represented by the following mapping:

Definition 3.41. (The mapping πk)
In the setting as described above, we define

πk : Pk →
(⋃
T∈Mk

T

)
∪ {⊥}

44

that maps a path P = (v, . . . , w) ∈ Pk to an edge e ∈
⋃
T∈Mk

T 9 if and only if e ∩ V [P] =
{v, w}. If no such edge exists, then it maps the path P to ⊥, i.e. π(P) =⊥.

Note that the mapping is indeed well-defined: Consider the path P = (v, . . . , w). If

πk(P) = e ⇐⇒ e ∩ V [P] = {v, w} =⇒ e = {v, w}

πk(P) = f ⇐⇒ e ∩ V [P] = {v, w} =⇒ f = {v, w}

it follows that e = f .

The algorithm
The following Partitioning Algorithm itself would deserve a handful of pages, if we want to
describe each detail and idea. For our purposes, it suffices to know that such an algorithm
exists and how it works on a high level. For the sake of completeness, we provide the pseudo-
code of the algorithm and a short example on the following pages.

Observe, that the vertex v in Line 1 of Algorithm 3 is indeed unique: If vi1 , vi2 ∈ C with
i1 6= i2 would be two vertices such that vi1 = vi2 = ξ2, then the subcircuit (vi1 , . . . , vi2)
certifies that C is not minimally guarded. Note, that the trees in Mk are rooted, which is
needed for the computation during the run of the algorithm. In the final set Ms, one can
drop the roots of each tree, since they are not needed any more.

9Remember that the tree T is represented by its edge set, so we do not need to write E(T).

45

Algorithm 3 Partitioning algorithm

Require: A minimally guarded circuit C = (v1, . . . , v|C|+1) in GA with v1 = v|C|+1. Let
{ξ1, . . . , ξs} be the set of disjoint vertices on C, w.l.o.g. ξ1 > · · · > ξs.

Ensure: A set M of edge disjoint trees in GA consisting of edges from C.

1: let v be the unique vertex in C that satisfies v = ξ2

2: let T = {{v1, v}} and let M2 = {(T, v1)}
3: let P2 = {(v1, . . . , v), (v, . . . , v|C|)}

4: for k = {3, . . . , s} do
5: let Mk = Mk−1 and let Pk = Pk−1

6: let I = {j ∈ {2, . . . , |C|} | vj = ξk}
7: let Pj = (vPj , . . . , wPj) be the path in Pk−1 with j as inner node

or where wPj = ξk for all j ∈ I
8: for j ∈ I with πk−1(Pj) =⊥ do
9: if j is an inner node of Pj then

10: let T = {{vPj , vj}} and let Mk = Mk ∪ {(T, vPj)}
11: let Pk = Pk \ {Pj} ∪ {(vPj , . . . , vj), (vj , . . . , wPj)}
12: else
13: let T = {{vPj , vj}} and let Mk = Mk ∪ {(T, vPj)}
14: end if
15: end for
16: for (T, r) ∈Mk−1 do
17: let IT = {j ∈ I | πk−1(Pj) ∈ T}
18: if IT = ∅ then
19: select j∗ ∈ IT such that the path from j∗ to r in T contains no j ∈ IT \ {j∗}
20: let T = T \ {{vPj∗ , wPj∗}} ∪ {{vPj∗ , vj∗}, {vj∗ , wPj∗}}
21: let Pk = Pk \ {Pj∗} ∪ {(vPj∗ , . . . , vj∗), (vj∗ , . . . , wPj∗)}
22: for j ∈ IT \ {j∗} do
23: let T = T \ {{vPj , wPj}} ∪ {{vj , wPj}}
24: let T ′ = {{vPj , vj}} and let Mk = Mk ∪ {(T ′, vPj)}
25: let Pk = Pk \ {Pj} ∪ {(vPj , . . . , vj), (vj , . . . , wPj)}
26: end for
27: end if
28: end for
29: end for
30: return Ms (where the roots of the trees are dropped)

Example 3.42.

Consider the following example from Gross et al. [G17].
Let C = (v1, . . . , v12) = (7, 1, 2, 1, 4, 1, 2, 5, 1, 3, 2, 7) be a minimally guarded circuit in some
graph GA

10 on the vertices {ξ1, . . . , ξ7} = {7, 5, 4, 3, 2, 1}. Therefore, |C| = 11 and s = 6. The
circuit C fulfils the requirements for Algorithm 3 and therefore Algorithm 3 can be applied
to C. Below, there is a description of the run of the algorithm where the information of all
necessary lines of the pseudo-code in the current iteration are present. We denote the trees
that will be added to the sets Mk by T1, T2, Figure 34 depicts the development of the
sets Mk and Pk during the run of the algorithm.

10A detailed description of the graph G, the forests A,F and the graph GA is not necessary in order to
apply Algorithm 3 to the circuit C.

46

Start
Line 1: ξ2 = 5, v = v8

Line 2: T1 = {{v1, v8}}, M2 = {(T1, v1)}
Line 3: P2 = {(v1, . . . , v8), (v8, . . . , v11)}

Iteration where k = 3
Line 4: k = 3
Line 5: M3 = M2, P3 = P2, ξ3 = 4
Line 6: I = {5}
Line 7: P5 = (v1, . . . , v8)

Line 8: @j ∈ I : π2(Pj) =⊥

Line 16: Take (T1, v1) ∈M2

Line 17: IT1 = {5}
Line 18: IT1 6= ∅
Line 19: j∗ = 5
Line 20: T1 = T1 \ {{v1, v8}} ∪ {{v1, v5}, {v5, v8}}
Line 21: P3 = P3 \ {(v1, v8)} ∪ {(v1, v5), (v5, v8)}
Line 22: IT1 \ {5} = ∅

Iteration where k = 4
Line 4: k = 4
Line 5: M4 = M3, P4 = P3, ξ4 = 3
Line 6: I = {10}
Line 7: P10 = (v8, . . . , v11)

Line 8: π3(P10) =⊥
Line 10: T2 = {{v8, v10}} and M4 = M4 ∪ {(T2, v8)}
Line 11: P4 = P4 \ {(v8, v11)} ∪ {(v8, v10), (v10, v11)}

Line 16: @(T, r) ∈M3 : IT 6= ∅

Iteration where k = 5
Line 4: k = 5
Line 5: M5 = M4, P5 = P4, ξ5 = 2
Line 6: I = {3, 7, 11}
Line 7: P3 = (v1, . . . , v5), P7 = (v5, . . . , v8), P11 = (v10, v11)

Line 8: π4(P11) =⊥
Line 13: T3 = {{v10, v11}} and M5 = M5 ∪ {(T3, v10)}

Line 16: Take (T1, v1) ∈M4

Line 17: IT1 = {3, 7}
Line 18: IT1 6= ∅
Line 19: j∗ = 3
Line 20: T1 = T1 \ {{v1, v5}} ∪ {{v1, v3}, {v3, v5}}
Line 21: P5 = P5 \ {(v1, v5)} ∪ {(v1, v3), (v3, v5)}
Line 22: IT1 \ {3} = {7} =⇒ j = 7
Line 23: T1 = T1 \ {{v5, v8}} ∪ {{v7, v8}}
Line 24: T4 = {{v5, v7}} and M5 = M5 ∪ {(T4, v5)}

47

Line 25: P5 = P5 \ {(v5, v8)} ∪ {(v5, v7), (v7, v8)}

Line 16: Take (T2, v8) ∈M4

Line 17: IT1 = ∅

Iteration where k = 6
Line 4: k = 6
Line 5: M6 = M5, P6 = P5, ξ6 = 1
Line 6: I = {2, 4, 6, 9}
Line 7: P2 = (v1, . . . , v3), P4 = (v3, . . . , v5), P6 = (v5, . . . , v7), P9 = (v8, . . . , v10),

Line 8: @j ∈ I : π2(Pj) =⊥

Line 16: Take (T1, v1) ∈M5

Line 17: IT1 = {2, 4}
Line 18: IT1 6= ∅
Line 19: j∗ = 2
Line 20: T1 = T1 \ {{v1, v3}} ∪ {{v1, v2}, {v2, v3}}
Line 21: P6 = P6 \ {(v1, v3)} ∪ {(v1, v2), (v2, v3)}
Line 22: IT1 \ {2} = {4} =⇒ j = 4
Line 23: T1 = T1 \ {{v3, v5}} ∪ {{v4, v5}}
Line 24: T5 = {{v3, v4}} and M6 = M6 ∪ {(T5, v3)}
Line 25: P6 = P6 \ {(v3, v5)} ∪ {(v3, v4), (v4, v5)}

Line 16: Take (T2, v8) ∈M5

Line 17: IT2 = {9}
Line 18: IT2 6= ∅
Line 19: j∗ = 9
Line 20: T2 = T2 \ {{v8, v10}} ∪ {{v8, v9}, {v9, v10}}
Line 21: P6 = P6 \ {(v8, v10)} ∪ {(v8, v9), (v9, v10)}
Line 22: IT2 \ {9} = ∅

Line 16: Take (T3, v10) ∈M5

Line 17: IT3 = ∅

Line 16: Take (T4, v5) ∈M5

Line 17: IT4 = {6}
Line 18: IT4 6= ∅
Line 19: j∗ = 6
Line 20: T4 = T4 \ {{v5, v7}} ∪ {{v5, v6}, {v6, v7}}
Line 21: P6 = P6 \ {(v5, v7)} ∪ {(v5, v6), (v6, v7)}
Line 22: IT4 \ {6} = ∅

Final step
Line 30: Return M6 = {T1, . . . , T5}

48

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

M2

P2

M3

P3

M4

P4

M5

P5

M6

P6

Figure 34: The sets Mk and Pk during the run of Algorithm 3 for the given circuit C. The
roots of the trees in Mk are coloured in blue.

The properties of Algorithm 3
Let’s list up some properties of the Partitioning algorithm described on the previous pages.
We will see then in the next section, how they help us to prove our desired results.

Lemma 3.43. (Partitioning Algorithm, Part I)
For all k = {2, . . . , s} it holds that after iteration k there are at least ni trees in Mk that pay
for ξi for all i ∈ {2, . . . , k}.

Lemma 3.44. (Partitioning Algorithm, Part II)
The following statements are true for all k = {2, . . . , s}:

1. The trees in Mk are edge disjoint.

2. The paths in Pk are edge disjoint and it holds that
⋃
P∈Pk P = C \ {{v|C|, v|C|+1}}.

3. If v is an outer node of some P ∈ Pk, then v ∈ {ξ1, . . . , ξk}. If v is an inner node,
then v ∈ {ξk+1, . . . , ξs}.

4. For any e ∈ T , T ∈Mk, π−1
k (e) consists of one path from Pk.

5. If {vj1 , vj2} with j1 < j2 is an edge in T for some (rooted) tree (T, r) ∈Mk, then vj1 is
closer to r than vj2.

49

Corollary 3.45. (Bounding the total length of a circuit)
Assume that a solution A to an metric SFP instance Im is c-approximate connecting move
optimal. Let C = (v1, . . . , v|C|+1 = v1) be a circuit in GA with edges (e1, . . . , e|C|). If C is
minimally guarded, then

|C|∑
i=2

w(Avi) ≤ c ·
|C|∑
i=1

dei = c · d(C)

Proof. We can apply Algorithm 3 to the minimally guarded circuit C, which gives us a
set M = Ms of edge disjoint trees in GA that consists of edges from C and also the final
partitioning P = Ps of C into sub-paths11.

• Lemma 3.44.4 ensures that for all T ∈ M and all edges e ∈ T there is a unique path
π−1(e) ∈ P.

• Lemma 3.44.3 for k = s means that paths can no longer have inner nodes, hence π−1(e)
is a single edge and therefore, e also exists in GA

12.

• Thus, all trees in M are trees in GA.

• By Lemma 3.44.1 and the previous points, the trees of M are edge disjoint in GA.

• Lemma 3.43 ensures that precondition 2 in Lemma 3.40 is fulfilled.

This shows, that we are in the setting as in Lemma 3.40 and fulfil all requirements, hence we
can apply the lemma which directly proves the corollary.

Comment
Corollary 3.45 simply put Lemma 3.40 and the results of Algorithm 3 together:

Lemma 3.40 starts with a guarded circuit and the c-approximate optimal solution A. Then
it assumes that a special kind of set of trees exists.

The analysis of Algorithm 3 shows, that for minimally guarded cycles (which are guarded
by definition), Algorithm 3 provides exactly such a partition as needed in Lemma 3.40.
This means, for minimally guarded circuits, the assumptions for Lemma 3.40 are fulfilled
automatically and hence the claimed bound for d(C) holds, which is exactly the statement
of Corollary 3.45.

3.2.7. Final preliminaries

Definition 3.46. (F↔ and F�)
Let I = (G, d,D) be an instance of the SFP with G = (V,E). Let A be a solution to I with
connected components A1, . . . , Ap. Remember that for a vertex v ∈ V , the value ξ(v) is the
unique index j ∈ {1, . . . , p} such that v ∈ Aj.

For an edge set F ⊆ E in G we denote by F� the set of edges in F that lie within any
component of A and by F↔ the set of edges in F that connect different components of A, i.e.

F� := {e = {u, v} ∈ F | ξ(u) = ξ(v)}, F↔ := {e = {u, v} ∈ F | ξ(u) 6= ξ(v)}

11The algorithm does not explicitly output the set Ps, but of course this set exists.
12Remember that the algorithm in principle built the trees in the transitive closure ĜA of GA

50

If an edge set F ′ ⊆ E in G satisfies V [F ′] ⊆ V [Aj], then we set ξ(F ′) := j, i.e. we extend
the mapping ξ to all subsets of edges that lie within one connected component of A. Notice,
that in this case F ′ = F ′�.

Lemma 3.47. (Getting rid of F↔)
Let Im = (G, d,D) be an instance of the MSFP and let A be a solution to Im with connected
components T1, . . . , Tp. Let F̄ be a simple path in G that starts and ends in the same connected
component Tj∗ of A and satisfies ξ(v) ≤ j∗ for all v ∈ V [F̄]. Assume that F̄ 6= F̄�. Assume
that A is edge-set and path-set swap-optimal with respect to F̄↔ and that A is c-approximate
connecting move optimal.

Then, there exist a set R of edges on the vertices V [F̄↔] with (F̄� ∪ R)� = (F̄� ∪ R) that
satisfies the properties listed below. Let F ′1, . . . , F

′
x be the connected components of F̄� ∪R in

(V [F̄� ∪R], E[F̄� ∪R]).

1. A is edge-set swap-optimal with respect to R.

2. It holds that d(R) ≤ d(F̄↔) and
∑x

l=2w(Tξ(F ′l)) ≤ c · d(F̄↔).

3. For all F ′l there exists an index j ∈ {1, . . . , p} such that V [F ′l] ⊆ V [Aj] and hence
ξ(F ′l) = j.

4. There is only one F ′l with ξ(F ′l) = j∗, w.l.o.g say that ξ(F ′1) = j∗.

3.2.8. Taking everything together

Lemma 3.48. (Transforming the forest)
Let Im = (G, d,D) be an instance of the metric Steiner forest problem with the complete graph
G = (V,E), a metric d : E → R≥0 and a set D ⊆ V × V of demand-pairs. Let A,F ⊆ E be
two feasible Steiner Forest solutions for Im. Suppose that A is edge-edge, edge-set and path-
set swap-optimal with respect to E and φ, that A is c-approximate connecting move optimal
and that A only uses edges between terminals.

Then there exists a feasible solution F ′ with d(F ′) ≤ 2(1 + c) · d(F) that satisfies F ′ = F ′�
such that A is edge-edge and edge-set swap-optimal with respect to F ′.

Proof. If F = F� then there is nothing to show and we are done. So suppose F 6= F�.
Denote the connected components of A by T1, . . . , Tp and the connected components of F by
F1, . . . , Fq. Lemma 3.33 shows that by accepting a factor of 2 in the cost, we can assume

• the connected components F1, . . . , Fq of F being node disjoint simple cycles and

• V [A] = V [F] = VI = V .

Our goal is to replace each cycle Fi by some edge set F̂i which satisfies F̂i = (F̂i)� while
keeping the solution feasible and within a constant factor with respect to the potential φ.
For an easier writing, let F = Fi be one of the simple cycles.

Let j∗ := maxv∈V [F] ξ(v) be the index of the component with the highest width among the
components that are visited by F13. At least two vertices from the component Tj∗ have to be
on the cycle F . Indeed, assume that there is only one vertex z of F in Tj∗ . By assumption,

13Recall that the components of A have indices such that a lower index means a lower width.

51

every vertex is a terminal and hence has a mate. Since A is a feasible solution, the mate of z
is also within Tj∗ . The simple cycles of F are disjoint, hence if z does not lie on F , it would
not be connected to its mate by F , which contradicts the feasibility of F .

If the two vertices of F in Tj∗ are adjacent (in F), we delete the edge that connects them and
obtain a path that satisfies the assumptions of Lemma 3.47 and hence the lemma guarantees
the existence of an edge set R. Otherwise, let v1, v2 be the two vertices from Tj∗ that are not
connected by an direct edge in F. This gives a partition of the simple cycle into two paths P1

and P2, both with endpoints v1 and v2 and both satisfying the assumptions of Lemma 3.47.
In this case, the lemma implies the existence of two sets Rl and Rr and we set R := Rl ∪Rr.
In both cases, we get a set of edges R on the vertices V [F] inducing connected components
F ′1, . . . , F

′
x of F� ∪R with the following properties:

(1) A is edge-set swap-optimal with respect to R.

(2) For all F ′l there exists an index j such that V [F ′l] ⊆ V [Tj] and hence ξ(F ′l) = j. In the
case R = Rl ∪Rr, notice that the connected components of Rl and Rr are disjoint with
the exception of those that contain v1 and v2. Thus, no components with vertices from
different Tj will get connected.

(3) There is only one F ′l with ξ(F ′l) = j∗, assume w.l.o.g. that ξ(F ′1) = j∗. In the case
R = Rl ∪ Rr, then all occurrences of vertices from Tj∗ are connected to v1 and v2 in
either Rl or Rr and hence they are in the same connected component of R.

(4) It holds that d(R) ≤ d(F↔) and
∑x

l=2w(Tξ(F ′l)) ≤ c · d(F↔). In the case that R =

Rl ∪ Rr, we have d(R) = d(Rl) + d(Rr) ≤ d(F↔) and
∑x

l=2w(Tξ(F ′l)) (which does not
include the component that contains v1 and v2) can be split up into two parts, such that
each part contains exactly the width of those components F ′i that fall into connected
components of A that are visited by P1 or P2, respectively.

The (partial) solution F ′ that arises from substituting F↔ by R is not necessarily feasible
because F� ∪R can consist of multiple connected components. We need to transform R such
that all demand-pairs in F� ∪R are connected.

Notice that a demand-pair u, ū always satisfies ξ(u) = ξ(ū) since A is a feasible solution.
Hence, we do not need to connect some connected components with vertices from different
Tj , but we may have to connect two connected components F ′i1 and F ′i2 that are contained
within the same connected component Tj of A.

Furthermore, all vertices of F from Tj∗ are already connected because of Property (3). Fix a
j < j∗ and consider all connected components F ′l with ξ(F ′l) = j. Note that j < j∗ implies
that the widths of these components are part of

∑x
l=2w(Tξ(F ′l))

Start with an arbitrary F ′l that contains a terminal u ∈ F ′l whose mate ū is in F ′l′ for some
l′ 6= l (and ξ(F ′l′) = j as supposed above). Connect u to ū and since u, ū ∈ Tj , their distance
is at most w(Tj). Since w(Tξ(F ′

l′
) = w(Tj), the contribution of F ′l′ to the sum

∑x
l=2w(Tξ(F ′l))

is large enough to cover the cost incurred by the connection of the terminals u and ū.

Now, F ′l and F ′l′ are merged into one component (that lies within Tj). We call this component
F ′l . Repeat this process until all terminals in F ′l are connected to their mates while always
spending a connection cost that is bounded by the contribution (to the width-sum) of the
component that gets merged into F ′l . When F ′l is done, i.e. all terminals are connected to

52

their mates, pick another component and continue in the same fashion.

In the end, the modified set F ′ is a (partial) feasible solution, and the cost spent for the ad-
ditional edges is bounded by

∑x
l=2w(Tξ(F ′l)) ≤ c·d(F↔). Denote this modification of F ′ by F̂ .

The transformation step explained so far can be summarized as follows:

• F is a simple cycle of the feasible solution F .

• We have F = F� ∪ F↔.

• F ′ arises from substituting F↔ by the set R, i.e. F ′ = F� ∪R.

• d(R) ≤ d(F↔)

• F ′ = F ′�, but F ′ is not necessarily a feasible (partial) solution.

• F̂ is obtained by adding edges of cost at most c · d(F↔) to F ′.

• Denote the set of all added edges by Eadd.

• Therefore F̂ = F ′ ∪ Eadd and d(Eadd) ≤ c · d(F↔).

• The set F̂ is a feasible (partial) solution.

In terms of the total length, this means

d(F̂) = d(F ′) + d(Eadd) ≤ d(F ′) + c · d(F↔) = d(F�) + d(R) + c · d(F↔)

≤ d(F�) + d(F↔) + c · d(F↔) = d(F�) + (1 + c) · d(F↔)

≤ (1 + c) ·
(
d(F�) + d(F↔)

)
= (1 + c) · d(F)

We apply this procedure to all components Fi of F with Fi 6= (Fi)� and obtain a solution F̂
with F̂ = F̂� and d(F̂) ≤ (1 + c) · d(F). Note that A is edge-edge and edge-set swap-optimal
with respect to F̂ , since A is swap optimal with respect to G and the edges of Eadd and also
the edges in R are from G.

As mentioned at the beginning of the proof, Lemma 3.33 brings in a factor 2 in the cost,
hence the final bound for the solution F̂ is

d(F̂) ≤ 2 · (1 + c) · d(F)

and F̂ satisfies the desired properties.

Corollary 3.49. (Bound for solution A)
Let Im = (G, d,D) be an instance of the metric Steiner forest problem with the complete graph
G = (V,E), a metric d : E → R≥0 and a set D ⊆ V × V of demand-pairs. Let A,F ⊆ E be
two feasible Steiner Forest solutions for Im. Suppose that A is edge-edge, edge-set and path-
set swap-optimal with respect to E and φ, that A is c-approximate connecting move optimal
and that A only uses edges between terminals. Denote by A′ the modified solution, where all
inessential edges have been removed from A. Then

d(A′) ≤ 23 · (1 + c) · d(F)

53

Proof. We can apply Lemma 3.48 to the solution forests F and A′ and get a solution F ′ that
satisfies F ′ = F ′� and d(F ′) ≤ 2 · (1 + c) · d(F) and such that A′ is edge-edge and edge-set
swap-optimal with respect to F ′.

This means that there are no F -edges between any components of A′, i.e. every connected
component of F ′ lies completely in some connected component A′j of A′. Since A′ does not
contain inessential edges, no removing swap is possible which means that A′ is removing swap
optimal. We can now apply Corollary 3.28 to every connected component A′j and the part
of F ′ that lies within A′j . We get

d(A′)
(Cor. 3.28)

≤ 11.5 · d(F ′)
(Lemma 3.48)

≤ 23 · (1 + c) · d(F)

The previous results motivate a modified version of Algorithm 2. Note that we can restrict
to metric instances since we have shown Theorem 3.31.

Algorithm 4 Local search, second approach

Require: An instance Im = (G, d,D) of the MSFP, a feasible solution A for Im and a
constant c ≥ 1.

Ensure: A solution Af for the instance Im.
Let the neighbourhood N (A) be the set of all solutions that can be obtained by executing
an edge-edge swap, edge-set swap, path-set swap or a c-approximate connecting move on
A.
while there exists A′ ∈ N (A) with φ(A′) < φ(A) do

Set A := A′.
end while
Output the solution Af that results by applying the clean-up move to A.

3.2.9. What was shown so far

Corollary 3.49 gives an approximation guarantee for Algorithm 4, which is a modified version
of the local search algorithm for the SFP provided in Algorithm 2.

Note that the optimality conditions for solutions by Algorithm 4 are slightly different com-
pared to those in Algorithm 2: In Algorithm 4, we assume that there are no improving
c-approximate connecting moves in the solution, whereas in Algorithm 2 we continue with
the search for a better solution as long as there are improving connecting-moves at all. For
c > 1, c-approximate connecting move-optimality does not necessarily imply connecting-
move-optimality, see Definition 3.39 and the comment after the definition.

For c being a constant, the approximation guarantee of Algorithm 4 is 23 · (1 + c) and hence
constant, as shown in Corollary 3.49.

We discussed after the definition of a c-approximate connecting move, that deciding whether
there exists a 1-approximate connecting move is not manageable in polynomial time, which
results in the same problem we had for our first approach with connecting-moves. Of course,
we can choose c = 1 and obtain a local search algorithm with an approximation guarantee
of 46 which is however not running in polynomial time. We will see in the next section, that
we can decide whether there exists a 2-approximate connecting move in polynomial time and

54

that this finally helps us to give a polynomial time algorithm that satisfies an approximation
guarantee of 69(1 + ε) for ε > 0.

Nevertheless, the first statement from our main theorem, namely Theorem 3.1 follows directly
from Corollary 3.49 at least for the metric case: There exists a local search algorithm for the
MSFP with a constant approximation guarantee.

By applying Theorem 3.31 (Section 3.2.2), we then obtain the same result for the (general)
Steiner forest problem and hence the proof of the first part of Theorem 3.1 is now completed.
We have now proven, that there exists a local search algorithm for the SFP with a constant
approximation guarantee.

4. Analysis of the local search algorithm: time complexity

The previous two sections analysed the algorithm regarding approximation guarantee but did
not bother about the running time or convergence. So far, we have seen that there is a local
search algorithm that has a constant approximation guarantee, namely Algorithm 2 with a
slight changing of the connecting moves to c-approximate connecting moves.

In this section, we discuss the time complexity of the algorithm and fix some problematic
points. The complexity analysis of Algorithm 2 is simple: The algorithm does not run in
polynomial time since in general exponentially many connecting moves need to be checked. A
modification of Algorithm 2 so as to obtain a local search algorithm which runs in polynomial
time and has a constant approximation guarantee would need to address the following crucial
aspects.

Aspect 1: Choose a neighbourhood structure so as to be able to optimize over it in poly-
nomial time. In Section 3.2 we have seen, that restricting Algorithm 2 to c-approximate
connecting moves suffices to obtain constant approximation guarantee. In the following we
show that this move can be handled in polynomial time. To do so, we show that finding
an c-approximate connecting move reduces to approximating the k-MST problem and show
then that the k-MST problem can be approximated to a constant factor in polynomial time.

Aspect 2: The number of iterations, i.e. the improving local search steps performed by the
algorithm should be polynomial in the size of the instance. We show that for our local search
algorithm, convergence to a local minimum can be achieved by a standard rounding technique
of the edge lengths with a loss of a factor (1 + ε) in the approximation guarantee for any
ε > 0.

4.1. k-MST Problems

Let’s consider the following minimization problems and their relations:

Definition 4.1. ((rooted) k-MST problem)
Let G = (V,E) be a graph with a root r ∈ V , a metric d : V × V → R≥0 and k ∈ N.
Task: Find a tree T in G with r ∈ V [T] and |V [T]| ≥ k that minimizes

∑
e∈E[T] d(e).

The weighted unrooted k-MST problem is defined in the same way except for the fact that no
distinguished root has to be part of the tree.

Comments

• Fischetti et al. [F94] have shown that the unrooted k-MST problem is NP-hard.

55

• Any algorithm for the rooted k-MST transfers to an algorithm for the unrooted k-MST
with the same approximation guarantee: Apply the rooted k-MST algorithm for all
possible vertices as roots all possible vertices as the node and return the best solution
found. In particular, this holds for optimal algorithms, hence the rooted k-MST problem
is also NP-hard.

• Vice versa, algorithms for the unrooted k-MST can be used for the rooted k-MST
without any change of the approximation guarantee: Create n vertices with distance
zero to the root vertex and search for a tree with n+ k vertices. Any such tree T has
to include the root r and at least k − 1 other vertices. By removing from T the newly
created vertices together with their incident edges, we obtain a tree T ′ containing r and
at least k−1 original vertices and having the came cost as T .Thus, any solution for the
unrooted k-MST problem is feasible for the rooted k-MST problem and has the same
cost [Gar05].

• Thus that the rooted and unrooted version of the k-MST problem are equivalent.

• There are several polynomial time algorithms with constant approximation guarantee
for the k-MST problem:

– Blum, Ravi and Vempala [BRV96] in 1996, approximation factor: 17

– Garg [Gar96] in 1996, approximation factor: 3

– Arya and Ramesh [AR98] in 1998, approximation factor: 2.5

– Arora and Karakostas [AK00] in 2000, approximation factor: 2 + ε

– Garg [Gar05] in 2005, approximation factor: 2

Definition 4.2. (weighted Γ-MST problem)
Let G = (V,E) be a graph with a metric d : V × V → R≥0, a function γ : V → R≥0 and
Γ ∈ R≥0. Task: Find a tree T in G with

∑
v∈V [T] γ(v) ≥ Γ that minimizes

∑
e∈E[T] d(e).

Definition 4.3. (weighted rooted Γ-MST problem)
Let G = (V,E) be a graph with a root r ∈ V , a metric d : V × V → R≥0, a function
γ : V → R≥0 and Γ ∈ R≥0. Task: Find a tree T in G with r ∈ V [T] and

∑
v∈V [T] γ(v) ≥ Γ

that minimizes
∑

e∈E[T] d(e).

Comments

• It’s easy to see that the unweighted version is a special case of the weighted version:
Set Γ = k and γ(v) = 1 for all vertices v ∈ V .

• For a better understanding, we call the weighted Γ-MST problem also weighted k-MST
problem, i.e. we give Γ the role of k.

• Johnson, Minkoff and Phillips [JMP00] observe the following reduction from the weighted
k-MST problem to the unweighted k-MST problem for the case that all γ(v) are in-
tegers: To create an unweighted instance, start with the vertex set V of the weighted
instance, and for each v ∈ V , add 2γ(v)n − 1 vertices with distance zero to v to the
graph. This means, there are finally 2γ(v)n vertices “at” v. We set k = 2nΓ.Any
solution for the unweighted instance can be changed to a solution such that for any
vertex v ∈ V in the weighted instance, either “all” 2γ(v)n copies of v in the unweighted

56

graph are chosen or none of them. This change does not alter the cost, since picking
more vertices at the same location does not increase the cost. Then a solution of the
weighted k-MST problem is constructed by picking an original vertex v ∈ V if and
only if all corresponding vertices in the (modified) solution for the unweighted case are
selected. This reduction constructs an input for the unweighted k-MST problem that
is of pseudo-polynomial size. However, Johnson et al. [JMP00] note that algorithms
for the unweighted k-MST problem can typically be adapted to handle the “clouds” of
vertices at the same location implicitly without incurring a super-polynomial running
time. They specifically state that this is true for the 3-approximation by Garg [Gar96]
from 1996 for the rooted k-MST problem.

• Due to a personal communication of the authors of Gross et al. [G17] with Naveen Garg
in 2016, the more recent 2-approximation by Garg from 2005 [Gar05] for the k-MST
problem can be adapted for the weighted k-MST problem such that the running time
is independent of the weights.

4.2. c-approximate connecting move optimality

Let’s see now how the weighted rooted k-MST problem helps dealing with the two aspects
mentioned in the introduction of Section 4.

Theorem 4.4.
Let Im be an instance of the MSFP and assume that there exists β > 0 such that ∀e ∈ E :
∃ le ∈ N : d(e) = le · β. Assume we are given an algorithm Tree-Approx that computes a
c-approximation for the weighted rooted k-MST problem. Then we can find an improving
connecting move in polynomial time, if such one is existing, or guarantee, that there is no
((1 + ε) · c)-approximate connecting move at all.

Proof. Let A be a feasible solution forest for the instance Im. We apply Tree-Approx to the
graph GallA , with vertex set {1, . . . , p}, corresponding to the connected components A1, . . . , Ap
of A. Each connecting move connects some of the p components of A. Let Ai be the con-
nected component with the largest width among all connected components which will get
connected. Clearly, i can take |V [GallA]| = p possible values. Since the width of the compo-
nents Ai increases with their indices, all vertices from GallA with indices larger than i can be
deleted. Then we set γ(i) := 0 and γ(j) := w(Aj) for j < i.

By choosing some of the remaining vertices in GallA , we can collect prices (the values γ(v))
between wmin := min{w(Ai) | i ∈ {1, . . . , p}, w(Ai) > 0} and

∑i−1
j=1w(Aj) < p · w(Ap).

Now we call Tree-Approx for Γ = (1 + ε
2)l · wmin for all l ≥ 1 until

(
1 +

ε

2

)l · wmin ≥ p · w(Ap) ⇐⇒ l ≥ log1+ ε
2

(
p · w(Ap)

wmin

)

Considering all p possible choices for the component Ai as described above, the total number
m of Approx-Tree calls is bounded by

m ≤ p · log1+ ε
2

(
p · w(Ap)

wmin

)
≤ n · log1+ ε

2

(
n ·∆

)
where ∆ is the largest distance between any terminal and its partner divided by the smallest
such distance. The value ∆ is polynomial in the input because w(AP) ≤ n ·max{de : e ∈ E}

57

and wmin ≥ β. Therefore, also m is polynomial in the input. If one of the Tree-Approx calls
returns a solution Tj , 1 ≤ j ≤ m such that∑

e∈E[Tj]

d(e) <
∑

v∈V [Tj]

γ(v)

then Tj induces an improving connecting move:

d(Tj) =
∑

e∈E[Tj]

d(e) <
∑

v∈V [Tj]

γ(v) = w(A)− w(A ∪ T) (6)

and therefore

φ(A ∪ T) = φ(A) + d(Tj)− w(A) + w(A ∪ T)︸ ︷︷ ︸
< 0 by (6)

< φ(A)

Now assume that Tree-Approx returns solutions Tj , 1 ≤ j ≤ m with∑
e∈E[Tj]

d(e) ≥
∑

v∈V [Tj]

γ(v) (7)

for all calls 1 ≤ i ≤ l. By the definition of γ and the connecting move, this means that none
of the obtained trees induces an improving connecting move. We will show that there does
not exist a ((1+ε) ·c)-approximate connecting move in this case. For a contradiction, assume
that there exists a ((1 + ε) · c)-approximate connecting move T ∗. Let

i∗ := arg max{i : Ai ∈ V [T ∗]} and γi :=

{
w(Ai) i < i∗

0 otherwise
(8)

Then the definition of the ((1+ε) · c))-approximate connection move T ∗ implies the following
inequality: ∑

e∈E[T ∗]

d(e) <
1

c · (1 + ε)

∑
v∈V [T ∗]

γ(v)

Set Γ∗ :=
∑

v∈V [T ∗] γ(v) ≤ p · w(Ap). Let l′ be the index that satisfies

(1 +
ε

2
)l
′ · wmin ≤ Γ∗ < (1 +

ε

2
)l
′+1 · wmin

Consider the application of Tree-Approx on the instance IΓ of the weighted Γ-MST with
input GallA , d, r = i∗ and γi as defined in Equation (8) and Γ = Γ′ := (1 + ε

2)l
′ · wmin. The

above inequalities apply that Γ∗ ≥ Γ′.

Notice that T ∗ is a feasible solution for this instance IΓ since
∑

v∈V [T ∗] γ(v) = Γ∗ ≥ Γ satisfies
the lower bound. Since any feasible solution gives an upper bound for an optimal solution,
we conclude that the cost of an optimal solution TOPT for this instance IΓ satisfies∑

e∈E[TOPT]

d(e) ≤
∑

e∈E[T ∗]

d(e)

58

The algorithm Tree-Approx computes a c-approximation, i.e. a solution T̂ with∑
v∈V [T̂] γ(v) ≥ Γ′ and

∑
e∈E[T̂]

d(e) ≤ c ·
∑

e∈E[TOPT]

d(e) ≤ c ·
∑

e∈E[T ∗]

d(e)

≤ c · 1

c · (1 + ε)

∑
v∈V [T ∗]

γ(v) =
c

c · (1 + ε)
· Γ∗

≤ (1 +
ε

2
) · c

c · (1 + ε)
Γ′ < Γ′

≤
∑

v∈V [T̂]

γ(v)

which means that Tree-Approx computes an improving connecting move for this special set-
ting, which is a contradiction to our assumption corresponding to Equation (7).

Corollary 4.5.
Consinder an ε > 0 and a polynomial time c-approximation algorithm for the weighted rooted
k-MST problem. Then there exists a polynomial time algorithm called Improving-Connecting-
Move (ICM) which takes as input an instance of the metric SFP where all edge lengths are an
integer multiple of some constant β > 0 together with a feasible solution A for that instance
and outputs an improving connecting move w.r.t. φ if a ((1 + ε) · c)-approximate connecting
move exists.

Proof. This follows directly from the statement and the proof of Theorem 4.4. ICM is de-
scribed in the proof of Theorem 4.4.

Comment
This result shows that every iteration of Algorithm 4 can be performed in polynomial time
at least for c ≥ 2 and for the case, that all edge lengths are an integer multiple of some
constant β > 0 (cf. Aspect 1 at the introduction of Section 4). What remains to show is
that the number of iterations, i.e. the number of improving steps in Algorithm 4 itself is of
polynomial size, which is done in the following section.

4.3. Convergence in polynomial time

We apply a standard rounding technique to the edge lengths in order to make the presented
local search algorithm running in polynomial time. Therefore, some definitions are necessary.

Definition 4.6. (dβ and φβ)
Consider an instance Im = (G, d,D) of the MSFP with G = (V,E). The metric d : E → R≥0

can be seen as a metric d : V × V → R≥0 where d(u, v) := d(e) for e = {u, v}. For ε > 0 and
u, v ∈ V , we set

β :=
ε ·max{u,ū}∈Dd(u, ū)

|E|
dβ(u, v) :=

⌈d(u, v)

β

⌉
· β

Analogous to Definition 1.8, we set

wβ(E′) := max{distdβ (s, t) | {s, t} ∈ D, {s, t} ⊂ V [E′]}

59

for any connected E′ ⊆ E where distdβ is the shortest path distance in G with respect to dβ
and for a forest F ⊆ E with connected components F1, . . . , Fl ⊆ F ,

wβ(F) :=
l∑

i=1

wβ(Fi) φβ(F) := dβ(F) + wβ(F)

Lemma 4.7. (dβ is a metric)
With the settings as in Definition 4.6, the function dβ defines a metric on V × V .

Proof. Let u, v, w ∈ V . It is easy to see that dβ(u, v) ≥ 0 since β > 0 and d(u, v) ≥ 0.
Moreover,

dβ(u, v) = 0 ⇐⇒ d(u, v) = 0 ⇐⇒ u = v

since d is a metric. This shows the identity of indiscernibles and that dβ is positive definite.
The next equation shows the symmetry of dβ. The second equality holds since d is symmetric.

dβ(u, v) =
⌈d(u, v)

β

⌉
· β =

⌈d(v, u)

β

⌉
· β = dβ(v, u)

Last but not least, the triangle inequality for dβ holds since

dβ(u,w) =
⌈d(u,w)

β

⌉
· β ≤

⌈d(u, v) + d(v, w)

β

⌉
· β =

⌈d(u, v)

β
+
d(v, w)

β

⌉
· β

≤
(⌈d(u, v)

β

⌉
+
⌈d(v, w)

β

⌉)
· β = dβ(u, v) + dβ(v, w)

where the first inequality holds since the triangle inequality holds for d.

60

We can now reformulate Algorithm 4:

Algorithm 5 Local search, polynomial time

Require: An instance Im = (G, d,D) of the MSFP with G = (V,E) being the complete

graph and A being a solution obtained by connecting each demand-pair by a direct edge

and deleting an edge from every cycle that appears. This gives a feasible solution for Im.

Furthermore let ε > 0 be given.

Ensure: A solution Af to the instance I.

Set i := 0 and let A0 := A

Set β :=
ε·max{u,ū}∈Dd(u,ū)

|E| and dβ(e) :=
⌈
d(e)
β

⌉
· β

while Ai admits an improving edge-edge swap, edge-set swap or path-set swap with respect

to φβ, or the algorithm ICM finds an improving connecting move with respect to φβ do

Set Ai+1 to be the resulting solution after applying the move

Set i := i+ 1

end while

Output the solution Af that results by applying the clean-up-move to Ai

Theorem 4.8.
Assume that the locality gap for swap-optimal and c-approximate connection move optimal
solutions is C and let ε > 0. Then Algorithm 5 computes in polynomial time a (1 + ε) · C-
approximation for the MSFP, and hence also for the general Steiner forest problem.

Proof. First we concentrate on the runtime: We claim that the algorithm runs in polynomial
time. To see this, first note that dβ(e) = β · `e with `e ∈ N for all e ∈ E. Therefore, every
improving swap-move and every successful run of ICM decreases the potential φβ by at least
β, i.e. φβ(Ai+1) ≤ φβ(Ai)− β. We started with a subgraph of the solution, that connects all
demand-pairs by the direct edge14 and therefore, with nt being the number of demand-pairs,

φβ(A0) ≤ 2 ·
∑

{u,ū}∈D

dβ(u, ū) ≤ 2 · nt · max
{u,ū}∈D

d(u, ū) =
2 · nt · |E|

ε
· β

since of the trivial setting of β in Algorithm 5. This means that the algorithm terminates
after at most 2 · nt·|E|ε iterations. Since each iteration can be executed in polynomial time,
we get an overall polynomial time algorithm.

Consider the output Af of the algorithm. It is path-set swap optimal (which implies also
edge-edge swap- and edge-set swap-optimality) and c-approximate connecting move optimal
with respect to the corresponding potential φβ. The assumption on the locality gap implies
that dβ(Af) ≤ C · dβ(Fβ), where Fβ is the optimal solution of the Steiner Forest instance
defined by the metric dβ. Furthermore it holds that dβ(Fβ) ≤ dβ(F) for any optimal solution
F of the original instance defined by the metric d.

14Remember that for the MSFP we always assumed that G = (V,E) is the complete graph.

61

We observe that

d(Af) ≤ dβ(Af) ≤ C · dβ(Fβ) ≤ C · dβ(F) = C ·
∑
e∈F

⌈d(e)

β

⌉
· β

≤ C ·
∑
e∈F

(
d(e)

β
+ 1

)
· β ≤ C ·

(
d(F) + |F | · β

)
≤ C ·

(
d(F) + |E| · β

)
= C ·

(
d(F) + ε · max

{u,ū}∈D
d(u, ū)

)
≤ C ·

(
d(F) + ε · d(F)

)
= (1 + ε) · C · d(F)

which finally proves the whole statement.

4.4. Summary

Due to Garg [Gar05] and a personal communication between the authors of [G17] with Garg,
there is a polynomial time 2-approximation for the weighted k-MST problem and hence The-
orem 4.4 provides a polynomial time algorithm that can guarantee 2(1 + ε)-approximate
connecting move optimality for every ε > 0.

By using this result in the assumptions of Corollary 3.49 we get a locality gap of
23(1 + C(1 + ε)) = (69 + 46ε). Note that we do not know if we can decide 2-approximate
connecting move optimality in polynomial time, so we have to consider 2(1 + ε)-approximate
connecting move optimality.

Taking C = (69+46ε) and ε as above in the conditions of Theorem 4.8, we obtain an algorithm
that computes in polynomial time a solution within a factor of (1 + ε)(69 + 46ε) = 69(1 + ε̂)
with ε̂ = 113

69 ε+ 46
69ε

2 ≤ 3ε for ε < 1. So ε̂ is small if ε is small.

By summarizing we obtain the following result:

Theorem 4.9.
For every ε > 0 there is a local search algorithm that computes in polynomial time a solution
A to an SFP instance I such that

d(A) ≤ (1 + ε) · 69 · d(F)

where F is an optimal solution for I.

Theorem 4.9 clearly implies Theorem 3.1.

62

5. Two more approaches for SFP

In Part II, we implement a modified version of the local search algorithm (Algorithm 2).
In order to compare the behaviour of the implementation with respect to running time and
solution quality, we consider two more approaches for the SFP. The implementation of both
has been done in the Master’s Seminar report of Stefan Golja [Gol18].

5.1. The Gluttonous Algorithm

Consider the approximation algorithm “Gluttonous” for the Steiner forest problem. It’s a
classical greedy algorithm of purely combinatorial nature. We give a short overview about
the preliminaries, the algorithm itself and the analysis of the algorithm below. For details
we refer to the paper Greedy Algorithms for Steiner Forest of Anupam Gupta and Amit
Kumar [GK14], in which the Gluttonous algorithm was presented and analysed. Some more
detailed information, implementation details and examples can be found in the Master’s Sem-
inar report of Stefan Golja [Gol18].

We will use this implementation provided by [Gol18] to compare the performance of the local
search algorithm introduced in this Master thesis with the Gluttonous algorithm, at least for
some smaller instances that can be handled by both algorithms in manageable time.

Definition 5.1. (Metric space)
Let V be a vertex set and d : V × V → R≥0 be a metric. We call M = (V, d) a metric space.
Hence, an instance of the metric Steiner forest problem as described in Definition 3.30 can
be given by a metric space M and a set of demand-pairs D.

Definition 5.2. (Supernodes, clustering, active nodes, inter-supernode edges)
Let I = (M,D) be an instance of the MSFP. A supernode S is a subset of terminals. A
clustering C = {S1, . . . , Sq} is a partition of the terminals into supernodes. By the trivial
clustering we mean the clustering where each terminal builds a supernode on its own. Given
a clustering, we call a terminal u active if it belongs to a supernode S that does not contain
its mate ū. A supernode S is active if it contains some active terminal. An inter-supernode
edge is an edge with endpoints belonging to different supernodes.

Definition 5.3. (dM/C)
Let I = (M,D) be an instance of the MSFP and C = {S1, . . . , Sq} be a clustering.
Take the complete graph on the vertex set V , for an edge {u, v} set the length d′(u, v) := d(u, v)
if u and v are both terminals lying in different supernodes in C or if at least one of them is
a non-terminal. If u and v are both terminals and lie in the same supernode, set the length
d′(u, v) := 0. We call this graph GC and define the C-punctured distance to be the shortest path
distance in GC with respect to d′, which we denote by dM/C(·, ·). The extension of dM/C(·, ·)
to supernodes Si and Sj is defined in a natural way by

dM/C(Si, Sj) := dM/C(u, v) for any u ∈ Si, v ∈ Sj (9)

Comment
Since the length d′(e) of an edge e = (u, v) in GC that connects two vertices of the same
supernode is zero, it does not matter which specific vertices u ∈ Si and v ∈ Sjare chosen for
the calculation of dM/C(Si, Sj) in (9).

63

In the following we include the pseudo-code of the Gluttonous algorithm.

Algorithm 6 The Gluttonous algorithm

Require: An instance I = (M,D) of the metric Steiner forest problem.
Ensure: A solution A to the instance I.

1: Let C being the trivial clustering and E′ being the empty set.
2: while there exists active supernodes in C do
3: Calculate all C-punctured distances.
4: Find active supernodes S1, S2 in C with minimum C-punctured distance.

Break ties by choosing the lexicographically smallest pair.
5: Update the clustering to C ← (C \ {S1, S2}) ∪ {S1 ∪ S2}.
6: Add to E′ the edges corresponding to the inter-supernode edges on the shortest path

between S1 and S2 in the graph GC .
7: end while
8: Output a maximal acyclic subgraph A of E′.

Some comments about Algorithm 6:

• The sum of the lengths of the edges added in Step 6 is equal to dM/C(S1, S2). This sum
is called the merging distance of the corresponding step.

• The algorithm maintains the following invariant: If S is a supernode,
then the terminals in S lie in the same connected component of A.

• The algorithm terminates when there are no more active terminals,
so each terminal u shares a supernode with its mate ū, hence the final forest A connects
all demand-pairs.

• Since the total length of the edges in E′ is at most the sum of the merging distances
and we output a maximal sub-forest of A, we get that the cost of the obtained solution
is at most the sum of all merging distances.

Theorem 5.4. (Approximation factor for Gluttonous)
The Gluttonous algorithm is a constant-factor approximation for the metric Steiner forest
problem that runs in polynomial time. In particular, Gluttonous is a polynomial time 96-
approximation of the MSFP.

5.2. SFP as an integer program

With the help of the previous section, we are able to compare the implemented version of
Algorithm 2 with another approximation algorithm. Here, we introduce an integer linear
programming (ILP) of the SFP which allows us to compare to optimal solutions for instances
of small size. The ILP is solved by some standard solver like Gurobi.

We use the ILP - formulation IPuf of Schmidt, Zey and Margot [SZM17] as described below.
For this, remember some basics from graph theory: A cut-set in G is a subset S ⊆ V of
vertices of G. Any cut-set induces a cut δ(S) := {{i, j} ∈ E | |{i, j} ∩ S| = 1}. If S = {i} is
a singleton, we abbreviate δ(i) := δ({i}). For a directed graph D = (V,A) , we distinguish
between the outgoing cut δ+(S) := {(i, j) ∈ A | i ∈ S and j ∈ V \ S} and the incoming
cut δ−(S) := {(i, j) ∈ A | i ∈ V \ S and j ∈ S}. Note that we can always transform an
undirected graph into an directed graph by replacing each edge {i, j} by the two arcs (i, j)

64

and (j, i) with costs c((i, j)) = c((j, i)) := c({i, j}).

For the ILP - formulation IPuf, we start with a slightly generalized form of the SFP compared
to that in Definition 1.7: Given an undirected graph G = (V,E) with edge lengths ce for
every edge e ∈ E and terminal sets T 1, . . . , TK ⊆ V , the task is to find a cycle-free subgraph
of G of minimum total length d(E(G)) in which the vertices in each terminal set are connected.

A feasible forest F = (VF , EF) for (G,T 1, . . . , TK) is a subgraph of G which is a forest such
that for all 1 ≤ k ≤ K and for all s, t ∈ T k, there exists an s− t path in F. Without loss of
generality, we can assume that the terminal sets are pairwise disjoint: if T k and T l for some
1 ≤ k < l ≤ K share at least one vertex, then a forest F is feasible for (G,T 1, . . . , TK) if and
only if it is feasible for (G,T 1, . . . , T k−1, T k ∪ T l, T k+1, . . . , T l−1, T l+1, . . . TK). We denote
the set of all terminal nodes by I := T 1 ∪ · · · ∪ TK and denote by τ(t) := k to denote the
index of the unique terminal set that contains the terminal t ∈ I. For each terminal set T k

we select an arbitrary vertex rk ∈ T k as a fixed root vertex and define R := {r1, . . . , rk} to
be the set of all root vertices.

To formulate the SFP as an integer linear program, we transform the undirected graph G
into a directed graph and introduce a binary variable xij for each edge {i, j}. Moreover, we
define two flow variables f tij , f

t
ji for each non-root terminal t ∈ I \ R. Then, a selection of

edges induced by the xij variables forms a feasible Steiner forest, if it allows us to send one
unit of flow from the k-th root rk to any terminal t ∈ T k for all k ∈ {1, . . . ,K}. This leads
to the following formulation:

min
∑
{i,j}∈E

c({i, j}) · xij (IPuf)

such that

∑
{i,j}∈δ+(i)

f tij −
∑

{i,j}∈δ−(i)

f tij =

1 if i = rτ(t)

−1 if i = t

0 otherwise

∀ i ∈ V ∀ t ∈ I \ R (1a)

f tij + f tji ≤ xij ∀ {i, j} ∈ E ∀ t ∈ I \ R (1b)

f tij , f
t
ji ∈ {0, 1} ∀ {i, j} ∈ E ∀ t ∈ I \ R (1c)

xij ∈ {0, 1} ∀ {i, j} ∈ E} (1d)

65

Part II.

Implementation

67

6. Basic ideas and questions

Hard- and software
The algorithm was implemented with VisualStudio 2017 in the language C++.
We use an ASUS R556U with Intel Core i5-6200U processor to execute the algorithm.

Comment
Every time we use the phrase “the Local Search algorithm”, we mean the local search algo-
rithm described in Algorithm 5, or later, the modified version Algorithm 7.

6.1. Identifying problematic aspects

Recall the local search algorithm defined at the end of Part I:

Algorithm 5 Local search, polynomial time

Require: An instance Im = (G, d,D) of the MSFP with G = (V,E) being the complete

graph and A being a solution obtained by connecting each demand-pair by a direct edge

and deleting an edge from every cycle that appears. This gives a feasible solution for Im.

Furthermore let ε > 0 be given.

Ensure: A solution Af to the instance I.

Set i := 0 and let A0 := A

Set β :=
ε·max{u,ū}∈Dd(u,ū)

|E| and dβ(e) :=
⌈
d(e)
β

⌉
· β

while Ai admits an improving edge-edge swap, edge-set swap or path-set swap with respect

to φβ, or the algorithm ICM finds an improving connecting move with respect to φβ do

Set Ai+1 to be the resulting solution after applying the move

Set i := i+ 1

end while

Output the solution Af that results by applying the clean-up-move to Ai

Before implementing the heart of the algorithm, we need to define, which data types and
types of classes will be used. A bunch of question arises in this context, especially how

. . . to specify the input?

. . . many different types of input should we handle and what structure do they have?
Do we need some transformation so that we can apply Algorithm 5?

. . . does an instance look like? Which information has to be present?

. . . to store the solution that gets modified in each step?

. . . to initialize this solution?

. . . to implement the swaps?

. . . to implement the Improving-Connecting move?

. . . to implement the clean-up move?

. . . to calculate R(e, f) for some edges e and f?

. . . to handle situations, where trees may get connected or disconnected?

. . . to deal with the rounding technique for the edge lengths?

In the following we will address this kind of issues.

68

6.2. A concept for the implementation

Different types of input instances
There are basically two possible ways to get an instance. We can read the necessary infor-
mation from a .txt-file or create a random instance. The following input file formats are
supported:

In the general case, the (connected) graph is given by its number of vertices, its edges together
with lengths and the demand-pairs. The general input structure looks as follows:

Number of points = vertices n (leads to point names/numbers 1, . . . , n)
Number of edges m
Edges (in form of first vertex, second vertex, length)
Number of demand-pairs k
Demand-pairs (in form of k pairs of vertices)

In many applications, the graph is given by a number of vertices in the Euclidean plane and
edges between any pair of vertices. This are the so called Euclidean instances. The lengths
attached to each edge are the Euclidean distances that can be computed easily by knowing
all coordinates of the vertices. In this case, the structure of the input file looks as follows:

Number of points n (leads to point names/numbers 1, . . . , n)
Coordinates of all points (in form of pairs of real values)
Number of demand-pairs k
Demand-pairs (in form of k pairs of points)

For testing purposes, we will also consider randomly generated instances. We implement a
tool to get a random Euclidean instance with a given number of vertices and demand-pairs
as well as limits for x- and y-coordinates.

In order to evaluate the quality of the solutions generated by the implemented algorithm,
we will make use of some instances out of the SteinLib - Library (see Section 10 for further
information), where some special kind of input format is used. We provide the possibility to
handle the format of those kind of input data from a .txt file.

Transformation of an input instance
The local search algorithm is applied to instances which have some particular properties: a)
the underlying graph has to be complete, b) the lengths have to obey a metric and c) the
demand-pairs has to be ordered in such a way, such that their shortest path distances in the
original graph are non-decreasing. This is achieved by applying the transformation described
in Theorem 3.31 and by reordering the set of demand-pairs. Note, that we have to store the
shortest paths between any two vertices so as to be able to “re-transform” a solution, i.e. to
expand an edge that represents a shortest path.

Storing the instance
For storing the whole instance, an appropriate class will be necessary. The instance is entirely
described by the number of points, the distance matrix, the number of demand-pairs and the
demand-pairs. In order to handle this situation in a comfortable way, we will implement a
simple class for matrices (since there is no data type“matrix” in C++) and also a class for a
triple of values. Note that there is no need to change the underlying data type while doing
the transformation described above.

69

A concept for the storage of the solution
The easiest way to store the solution would be to store its adjacency matrix. The problem
with that approach is, that we need information about the trees of the forest to perform the
local moves. Therefore, it is easier to develop a more sophisticated model in order to do
the necessary operations without much effort. The idea is the following: We design a class
that represents a tree, it should bare information about the member vertices, its edges and
additional information like the total length and the potential. It should be easy to execute
operations as removing or adding an edge.

Having established a class for the trees, we go one step further and develop a class for a
forest. Basically, it should be a conglomeration of trees. The goal is to handle the following
situations without much effort during the algorithm: Query in which tree a given vertex is
contained, check whether two vertices are contained within one single tree, add an edge to
the forest, connect two trees, delete edges of a single tree and update this tree (it may be the
case that the tree splits up in many components) or add a vertex to a tree. In addition to
that, we should be able to check if a forest is feasible, i.e. if each demand-pair is contained
within one single tree.

An initial solution to start
Each local search algorithm has to start with a feasible solution. In our case, we start with
the following solution: Since the underlying graph is the complete graph, we can connect
each terminal by the direct edge to its mate. The obtained graph may contain cycles, hence
we delete an edge from each cycle (take an edge of highest cost) to obtain a feasible solution.

For technical reasons, we perform the steps above only with the help of the adjacency matrix.
After that, we build the initial forest as an instance of the corresponding forest - data type
based on the given adjacency matrix: We use a DFS - approach to determine the connected
components, then create an instance of the corresponding tree - data type for each component
and gather all trees in the forest - instance.

The edge-edge swap
The idea how to handle the edge-edge swaps is simple: For each tree T , we take any pair of
vertices u, v ∈ T (remember that we deal with the complete graph) and connect it by the
direct edge e = {u, v}, if this edge is not yet present in the current solution-forest. Before
adding this edge e, we determine the unique shortest u − v path P in the current solution-
forest. The path P together with the edge e gives the unique cycle C(e). Knowing this path
P, it suffices to consider an edge f ∈ C(e) of highest cost among all edges of P and delete this
edge f to obtain a new solution-forest. Note that all these steps can be performed without
much effort, when the underlying data structure is implemented as described above.

The edge-set swap
Since this move is a generalization of the edge-edge swap, the basic idea is the same. As
before, adding an edge e that is not present in the actual forest to a single tree gives a unique
cycle C(e). Now we have to consider all possible edges f ∈ C(e) which can be deleted. Given
the edges e and f , we determine the set R(e, f). We show below how this is carried out.
The final process is to divide the set R(e, f) as described in Section 2.2 and check if one of
the obtained forests is a feasible solution with smaller potential. Note that by removing a
subset S ⊆ R(e, f), we may split up the corresponding tree into many sub-trees, hence the
underlying data-type should be able to handle this situation.

70

Determining the set R(e, f)
We use the following approach: After adding the edge e and deleting the edge f , the cor-
responding component is a tree T ′ (and hence has no cycles). Remember that we want to
know, which edges of C(e) can be deleted together with f without destroying the feasibility
of the current solution-forest. Therefore, we determine for each demand-pair a shortest path
in this tree T ′. It is easy to see, that none of those edges from a shortest path can be part
of R(e, f). Hence, we initialize R(e, f) := {f} and then add all edges from C(e) that are not
part of any shortest path that connects a demand-pair. The elements of R(e, f) are sorted
according to the order of their appearance on the cycle C(e).

The path-set swap
We proceed in the following way: In each tree T ⊆ F of the current solution-forest, we take
any pair of member vertices u, v ∈ T of the tree and calculate a shortest path P in the graph
described in Section 2.2.1 (each tree T ′ ⊆ F with T ′ 6= T get contracted and the edges of T
were deleted). In addition to that, we also determine the unique shortest u−v path PC in the
current solution-forest F . The next task is to add the path P to the current solution-forest,
note that we may need to connect some trees in the forest, hence the forest - data type should
provide the corresponding methods. Then, we determine the set R(e, f) ⊆ PC (remember
that we are not allowed to delete edges from P any more) and continue as in the edge-set
swap case.

Disconnecting a single tree of the forest
During the edge-set swap or the path-set swap it may occur that the deletion of some edges
of a tree T disconnects T into components C1, . . . , Cr. Therefore, we have to re-build the
underlying data-structure, i.e. we have to create a new tree for each connected component
Ci, for 1 ≤ i ≤ r, and delete the “old” tree T from the data-structure.

Connecting trees in the forest
The task to connect some trees in the forest is not trivial: If we add an edge e = {u, v} that
has its endpoints in different trees T1, T2, then we need to connect those two trees. Therefore,
we proceed as follows: Take the vertex- and edge-set of tree T2 and add them to T1. Add
also the edge e to T1. Update the properties of tree T1 and delete the tree T2 from the forest.

About the Improving-Connecting move
Theoretically, the best way to determine an improving connecting move is by computing a
weighted k-MST approximation as described in Section 4.1, which causes much work for the
implementation. The first idea was, to use a given k −MST approximation algorithm as a
black-box in our implementation. Unfortunately, we were not successful with this approach.
Originally we wanted to use one of the approximation algorithms suggested by Christian
Blum and Matthias Ehrgott [EB02], for which also the code of the implementation is pro-
vided by the authors. However, the implementation of the algorithms can be only used on
a Linux operating system. We tried to fix the problem, but after many hours of work we
had to realize that this was a dead end. Since we feared that searching for other algorithms
or implementations would end up in the same way, we decided to go on as follows: Remem-
ber that the original connection move takes some trees of the current forest and connects
them. We want to use a local improvement technique to provide a set of trees that can be
found in polynomial time and which is of polynomial size. We describe in Section 6.3 how
this set can be found. Remember that the problem with the general connecting move was,
that the set of possible trees, and hence the whole neighbourhood, may be of exponential size.

71

Post-processing: The clean-up move
If we do the clean-up move as described in Section 2.2.3, we need to determine shortest
paths in the local optimal solution A obtained after the improving steps between the two
demand vertices of any demand-pair of the instance. This gives a set of paths P. In order to
perform the clean-up move, we drop all edges of A that are not part of any shortest path in P.

The modification of the edge lengths
We saw in Section 4.3 that we need to apply a special rounding technique to the edge lengths
to achieve a polynomial running time of the Local Search algorithm instead of a pseudo-
polynomial running time. For our purposes, we will not implement this rounding technique.
It will be very likely that the running time of each single iteration has far more impact on the
total running time as the number of iterations itself and also the size of the underlying in-
stance (number of vertices, number of demand-pairs) will be crucial for the total running time.

Useful tools
A tool that we will need quite often is the all-pair shortest path computation due to Floyd
and Warshall [KV06]. Hence, an implementation as an own standing function will be helpful.
Moreover we will implement the standard Depth-First-Search (DFS) and also a variation of
DFS, that detects cycles in a given graph and always deletes an edge of highest cost from the
underlying cycle.

6.3. The implementation of connecting moves

In Section 4.1 have seen, that we need to solve a weighted k-MST problem in order to
deal with the Improving-Connecting move, which itself is a concept to handle the general
connecting move described in Section 2.2.2. As noted in Section 4.1, the k-MST problem
itself is NP-hard. There is quite a number of heuristics and approximation algorithms for
the k-MST problem proposed in the literature, see e.g. [EB02]. However, for the purpose of
this thesis we decided to use simpler heuristics to search for an improving connecting move.
There heuristics are described in the following Sections 6.3.1 and 6.3.2.

6.3.1. The 2-Conn neighbourhood

Consider a feasible solution F of the current instance consisting of the trees T1, . . . , Ts. Con-
sider the (multi)graph GallF obtained by shrinking every tree of F to a single point, removing
self loops and keeping parallel edges (see also Section 2.2.2). A shortest path between two
trees among T1, . . . , Ts is a path of shortest length that connects the two vertices representing
those trees in GallF . Note that such a path can lead through some other trees of the forest.
Adding such a shortest Ti− Tj path that connects two trees Ti, Tj ⊆ F means connecting all
trees visited by the shortest Ti − Tj path in GallF .

The 2-Conn neighbourhood of F consists now of all solutions F ′ obtained by connecting two
trees among T1, . . . , Ts as described above. Since the number of trees in the current solution
forest is bounded by the number of vertices, there are O(n2) many solutions in the 2-Conn
neighbourhood of F and hence the size of this neighbourhood is polynomial in the number
of vertices. Note that also all calculations needed to obtain all the solutions can be done
in polynomial time. Note also that the 2-Conn neighbourhood is a subset of the original
connecting neighbourhood.

6.3.2. The 3-Conn neighbourhood

The 3-Conn neighbourhood for a solution F is defined analogous to the 2-Conn neighbour-
hood: We select three trees of the current solution forest and connect them by shortest

72

paths.Actually this means computing an optimal solution of a Steiner tree problem in GallF
with terminals Ti, Tj , Tk, where Ti, Tj , Tk are the three selected trees. Since there are only
three terminals, we solve this problem by enumeration. Indeed, there are three ways to
connect three specific trees Ti, Tj , Tk ⊆ F . First, find shortest paths Pi,j connecting Ti and
Tj in GallF and Pj,k connecting Tj and Tk in GallF . Take the union of these two paths and
remove from it all unessential edges. Let the final set of edges obtained in this way be called
E(i,k). Notice, that we did not use the shortest path connecting Ti and Tk directly. Com-
pute analogously E(i,j) and E(k,j). The set of edges of minimum total length connecting
Ti, Tj , Tk is arg min{d(E(i,k)), d(E(i,j)), d(E(k,j))}. We allow Tj = Tk and hence the 2-Conn
neighbourhood is a subset of the 3-Conn neighbourhood. The size of this neighbourhood is
polynomial in the number of vertices, since we can choose O(n3) triples of trees that should
get connected. Also here, all other computations can be done in polynomial time. Moreover,
the neighbourhood is a subset of the original connecting neighbourhood.

Notation:
With 2/3-Conn neighbourhood we mean the 2-Conn neighbourhood or the 3-Conn neigh-
bourhood, but not both at the same time.

Example 6.1. (2-Conn neighbourhood and 3-Conn neighbourhood)

Consider the following example of the Euclidean Steiner forest problem with fifteen vertices
collected in V = {1, . . . , 15} with coordinates given as follows:

1 = (1, 1) 6 = (3, 11) 11 = (17, 10)
2 = (10, 0) 7 = (13, 5) 12 = (20, 7)
3 = (6, 8) 8 = (10, 10) 13 = (13, 15)
4 = (2, 14) 9 = (17, 3) 14 = (20, 14)
5 = (4, 14) 10 = (17, 11) 15 = (7, 5)

and seven demand-pairs as follows:

Demand 1: {4, 5} Demand 5: {10, 11}
Demand 2: {4, 6} Demand 6: {10, 7}
Demand 3: {3, 9} Demand 7: {13, 2}
Demand 4: {14, 10}

Combining these information, we get the following terminals and non-terminals:

Terminals: {2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14}
Non-Terminals: {1, 8, 12, 15}

A possible solution forest F0 consists of three trees T1, T2 and T3:

Tree T1: Edges {4, 5}, {4, 6}
Tree T2: Edges {2, 9}, {2, 3}, {3, 13}
Tree T3: Edges {7, 10}, {10, 11}, {10, 14}

73

1

2

3

4 5

6

7

8

9

10

11

12

13

14

15

T1

T2

T3

Figure 35: The underlying instance in Example 6.1: terminal in red, non-terminals in blue.
The solution forest F0 pictured by the black edges splits up in trees T1, T2 and T3.

T1

T2

T3

Figure 36: The corresponding multigraph GallF0
. There are many edges between the shrunken

components T1, T2 and T3, see Table 1. Note that the non-terminal do not play a
role, hence we do not draw the edges involving the non-terminals.

We have the following edges between the shrunken connected components T1, T2 and T3 in
GallF0

. The edges marked in blue are those of shortest length among all edges between two of
the three trees.

74

T1 − T2 T2 − T3 T1 − T3

edge length edge length edge length

{4, 2} 16.12 {2, 7} 5.83 {4, 7} 14.21
{4, 3} 7.21 {2, 10} 13.04 {4, 10} 15.29
{4, 9} 18.60 {2, 11} 12.21 {4, 11} 15.52
{4, 13} 11.04 {2, 14} 17.20 {4, 14} 18
{5, 2} 15.23 {3, 7} 7.62 {5, 7} 12.73
{5, 3} 6.32 {3, 10} 11.40 {5, 10} 13.34
{5, 9} 17.02 {3, 11} 11.18 {5, 11} 13.60
{5, 13} 9.05 {3, 14} 15.23 {5, 14} 16
{6, 2} 13.04 {9, 7} 4.47 {6, 7} 11.66
{6, 3} 4.24 {9, 10} 8 {6, 10} 14
{6, 9} 16.12 {9, 11} 7 {6, 11} 14.04
{6, 13} 10.77 {9, 14} 11.40 {6, 14} 17.26

{13, 7} 10
{13, 10} 5.66
{13, 11} 6.40
{13, 14} 7.07

Table 1: Edges and their lengths in the multi-graph GallF0
.

For the 2-Conn neighbourhood, we have to consider all pairs of trees of the current solution
forest and determine the shortest paths between any pair. This results in the 2-Conn neigh-
bourhood of F0 which consists of three feasible solutions F1, F2, F3 as follows.

Connecting trees T1 and T2 means adding the path 3 → 6 that consists of the edge {3, 6}.
This results in replacing T1 and T2 by the tree T := (V (T1)∪V (T2), E(T1)∪E(T2)∪{{3, 6}}
and obtaining the solutio F1 := {T, T3}.

Connecting trees T2 and T3 means adding the path 7 → 9 that consists of the edge {7, 9}.
This yields the solution F2 := {T1, T

′} where T ′ := (V (T2)∪V (T3), E(T2)∪E(T3)∪{{7, 9}}).

Connecting trees T1 and T3 means adding the path 6 → 3 → 2 → 9 → 7, consisting of the
edges {3, 6}, {2, 3}, {2, 9}, {7, 9}, where the edges {2, 3}, {2, 9} are part of the current solution
forest F and hence have length zero. This means we add the edges {3, 6} and {7, 9} that
forms a tree in GallF0

. Note that connecting the two trees T1 and T3 finally connects all trees

T1, T2 and T3 since the shortest path from tree T1 to T3 go through tree T2 in the graph GallF0
.

This results in the solution F3 := {T ′′} where T ′′ := (V (T1)∪V (T2)∪V (T3), E(T1)∪E(T2)∪
E(T3) ∪ {{3, 6}, {7, 9}}).

In general in the 3-Conn neighbourhood, a solution resulting from the minimal length con-
nection of T1, T2, T3 might arise. However, in this example the shortest path among T1 and
T3 in GallF0

already goes through T2, and hence this is also the required minimum weight

connection of T1, T2, T3 in GallF0
. So, in this example, the 2-Conn neighbourhood of F0 and

the 3-Conn neighbourhood of F0 coincide. In general, of course this is not the case and we
simply have the following inclusions:

2-Conn neighbourhood ⊆ 3-Conn neighbourhood ⊆ general connecting neighbourhood,

where the last neighbourhood is not necessary of polynomial size, but the first two are.

75

1

2

3

4 5

6

7

8

9

10

11

12

13

14

15

T1

T2

T3

Figure 37: Example for the 2/3-Conn neighbourhood. Connecting the trees T1 and T2 results
in adding the edges {3, 6} and {7, 9} shown in green to the current solution. This
finally connects all three trees. Note that all additional moves of the 3-Conn
neighbourhood yields also this outcome.

Using the 2-Conn neighbourhood or the 3-Conn neighbourhood
In our implementation of the Local Search algorithm, we will use the 2-Conn or the 3-
Conn neighbourhood instead of the improving-connecting neighbourhood. We will try to
determine,if there is a crucial difference in the running time when using either the 2-Conn
neighbourhood or the 3-Conn neighbourhood. Note that it might be the case, that using the
algorithm with the 3-Conn neighbourhood yields a worse solution than using the algorithm
with the 2-Conn neighbourhood.. This might be illogical on the first glance, since the 2-Conn
neighbourhood is a subset of the 3-Conn neighbourhood. However, the quality of the finally
reached local minimum does not improve with the sizes of the local search neighbourhoods
in general.

Note that we cannot give any approximation guarantee for this modified version of the Local
Search algorithm. However it is obvious to see that this version of the local search algorithm
runs in pseudo-polynomial time for the metric Steiner forest problem.

Terminology:
Let F be a feasible solution for the metric SFP. If there is a feasible solution F ′ in the 2-Conn
(3-Conn) neighbourhood of F with φ(F ′) < φ(F), we say that F admits a 2-Conn (3-Conn)
improving move with respect to φ.

This finally yields in the following modification of the local search algorithm considered in
Part I:

76

Algorithm 7 Local search with 2-Conn (3-Conn)

Require: An instance Im = (G, d,D) of the metric Steiner forest problem with G = (V,E)
being the complete graph and A being a solution obtained by connecting each demand-
pair by an direct edge and deleting an edge from every cycle that appears. This gives a
feasible starting solution for Im.

Ensure: A solution Af to the instance I.
Set i := 0 and let A0 := A
while Ai admits an improving edge-edge swap, edge-set swap, path-set swap or 2-Conn
(2-Conn) move with respect to φ do

Set Ai+1 to be the resulting solution after applying the move
Set i := i+ 1

end while
Output the solution Af that results by applying the clean-up-move to Ai

7. Classes and functions

As we saw in the previous section, we need to implement some classes and functions which
help then to implement the main part of the algorithm. Here we give a short overview about
these classes and functions. Further details about the implementation and more comments
can be seen in the code provided as an external appendix.

Note that the whole project consists of three main parts: The Local Search algorithm (Algo-
rithm 7), the Gluttonous algorithm (Algorithm 6) and a function, that computes an optimal
solution of the integer program formulation of the Steiner forest problem (IPuf) by using
appropriate solver. We use Gurobi 8.0.1 with an academic license.

A description of the functions and classes that are used only for the Gluttonous and the IP
part can be seen in [Gol18], here we describe only the functions and classes that are needed
for the Local Search and the general part of the project.

7.1. Classes

class “file io”
This class is used to read the data from a .txt file and store it as a vector of doubles. This
class was provided by Prof. Gundolf Haase from Karl Franzens University in the course of
his coding lecture and is allowed to be used also in this project.

class “matrix”
This class is only introduced for convenience. It stores a matrix as a vector of doubles, i.e.
the rows of the matrix are concatenated as a vector. The methods getEntry and changeEntry
simply do the nasty translation from row-column index to the corresponding index of the
vector. Methods for getting the dimension of the matrix and getting the whole matrix are
implemented.

class “triple”
We implement this class to handle all situations, where three values of the type double are
needed to be gathered in a comfortable way. It can be used to represent an edge of a graph,
with the first two values being the end-vertices and the third one representing the cost of the

77

edge, for example15. There are getter -methods for all three values and also a setter -method
for the third value.

class “tree”
As the name suggests, the class is used to represent a tree in the graph-theoretic sense. The
attributes of a tree are an integer name, member vertices in form of a vector of double, edges
in form of a vector of triple, its total length (sum of all edge lengths) and its potential, both
of type double. There are two constructors: The first takes only one edge that is then con-
sidered as the whole tree, the second has as input a list of member vertices, demand-pairs
and the adjacency and distance matrix of the underlying graph. The tree is created out of
all those information. The method vertexInTree checks if a given vertex is contained within
the tree, addVertexToTree and removeVertexFromTree add / remove a vertex to / from the
tree. The last should be used only in a higher logic to prevent invalid operation as deleting
a vertex that is still covered by an edge. To add an edge to the tree, we use addEdgeToTree.
The methods queries first whether the edge is already present in the tree. The method re-
moveEdgeFromTree deletes an edge given by two end-vertices. If one of the end-vertices is
not covered by some other edge of the tree any more, it uses removeVertexFromTree to delete
this vertex from the tree. To calculate the total length and the potential of the tree, we
can use the methods calcTotalLength and calcPotential. Note that calcPotential first calls
calcTotalLength and then calculates the potential. The tree also stores information about
that demand-pair, which is connected by the tree and has the highest shortest path distance
in the original graph among all pairs that are connected by the tree (remember that we need
that pair to calculate the potential). We store this pair as a variable named highestPair of
type triple16 as part of the tree and it can be changed by the method changeHighestPair.
Typical getter -methods are implemented.

class “forest”
An object of type forest has the following attributes: A vector of trees named components, a
vector of triple named demands, a matrix called adjacency and two double values potential
and totalLength. The constructor is some kind of initialization of the forest. It takes the
distance matrix and the demand-pairs as input and creates an initial forest as follows: Since
we are dealing always with a complete graph, we add the direct edge connecting two termi-
nals to a virtual graph that is given by its adjacency matrix. This virtual graph may contain
cycles, hence we use the method getCycleFree to delete one edge from each cycle using also
the method modifiedDFS. For details of these two functions have a look on Section 7.2. The
result after this operation is the adjacency matrix of the initial forest. We apply the classical
DFS search (using the method DFS) on the adjacency matrix to determine the components
of this virtual graph, where each component can be seen as a tree of the forest. With this
information, we create an object of type tree for each of these trees and add it to the forest
with the method addTree. Let’s have a look on further methods: addInnerTreeEdge and
deleteInnerTreeEdge can be used to add / delete an edge that is contained within / should
be removed from one single tree of the forest. Several checks are made before executing the
necessary operations. The method inWhichTree returns the name of the tree where a given
vertex is contained (the value zero is returned if the vertex is not part of any tree), getTree
returns the whole tree of a given name and sameTree returns true if two given vertices are
contained within one single tree. The method mergeTrees takes two trees T1, T2 as input
and output a subgraph H that contains both T1 and T2. Note that H is not a tree yet,
since it consists of the two connected components T1 and T2. The aim is that H become

15Of course, for this situation we do not need the first two values being of type double, but with this setting
we can also use the class in another context.

16We store one terminal, its mate and the cost of the shortest path between them in the original graph as
the third value

78

a tree, therefore one should use the method in the following setting: We want to add an
edge e that connects two trees T1, T2 in the graph theoretical sense to obtain a new tree
T ′ := (V [T1] ∪ V [T2], E[T1] ∪ E[T2] ∪ {e}). Therefore, we first call the method mergeTrees
with input T1, T2. This gives a subgraph H as described above. H is not yet a tree in the
sense of graph theory, since the connecting edge e is missing. In the second step, we add e
to H that makes H to a tree in the graph theoretic sense. Let’s consider another situation:
We remove an edge from a tree, this may disconnect the tree in the graph theoretical sense.
The method updateTree does then exactly the same as the constructor, namely it queries the
remaining components (trees) and builts a new tree for each of them, add them to the forest
and delete the former tree from the forest by using removeTree. Please check the comments
at the beginning of the code of removeTree to understand how to use this method. updatePo-
tential calculates all potentials (and hence also all total lengths) of the contained trees and
then sum them up to one value for the whole forest. To add a vertex to a given tree, we
use addVertexToTree, the method checkFeasibility determine on the one hand if each member
vertex is contained in only one tree and on the other hand if each demand-pair is contained
within one single tree. Error-messages are output in the case of an invalid setting. Typical
getter -methods are implemented for all attributes of the class.

class “sfpLocal”
This class should represent an instance of the Steiner forest problem. It consists of an inte-
ger numOfPoints for the number of vertices/points, a matrix distances to store the distance
matrix of the underlying graph, another integer numOfDemands for the number of demand-
pairs and a vector of triple called demands to store the demand-pairs. We chose the data
type triple for a demand in order to store both terminals and also the length of a shortest
path in the original graph, which is often needed for some computations. Note that the
classname-postfix “Local” is necessary since we also use the class sfpGlut that represents
basically also an instance of the Steiner forest problem, but with slightly different attributes
in order to use all functions of the project Gluttonous algorithm without any changes. The
class sfpLocal provides all getter -methods and the method setDemands, which changes the
whole set of demand-pairs. We will need it in order to do the transformation of an instance
as described in Section 6.

Each class that is used as a new data type also contains a method that enables an output on
the screen via the standard cout command.

7.2. Functions

To have a slender structure of the main program, the code is organized in the following func-
tions. Here is a short overview, details about the transferred parameters can be seen in the
comments of the code in the external appendix.

function “getInput”
As the name suggests, this function is used to get the input data in one of the structures
described in Section 6. For each way of getting the input information, there are several checks
to ensure a valid input which is then returned as an instance of type sfpLocal. Note that the
instance which we obtain by this function is not necessarily one with a complete graph or
demand-pairs obeying the desired ordering. Specific transformation of the instance for local
search, Gluttonous or the integer program solver are done afterwards in the corresponding
functions for technical reasons.

function “iToS”
Transforms an integer variable into a variable of type string.

79

function “displaySolution”
This function outputs some information about the underlying instance and details of the ob-
tained solution like calculation time, cost of the obtained solution and the adjacency matrix
of the solution on the screen.

function “writeSolutionToFile”
In general, the function does the same as displaySolution, but it writes the information about
the obtained solution into a .txt file.

function “allPairShortestPaths”
Based on the underlying distance matrix, this function calculates shortest paths between all
pairs of vertices. We use the all-pair shortest path algorithm of Floyd-Warshall [KV06] in
this function. The algorithm calculates the cost of the shortest paths and the predecessor
matrix containing the information about all shortest paths.

function “getShortestPath”
Determines the vertex sequence of a shortest path between two given vertices using the pre-
decessor matrix obtained by allPairShortestPaths.

function “addPathToSolution”
Given the adjacency matrix of a graph and a path connecting two vertices of the graph, this
function adds the edges of the path to the graph by setting the corresponding entries of the
adjacency matrix.

function “modifiedDFS”
This function implements basically the well known depth first search (DSF) starting at a
given vertex. In contrast to the classical DFS, the intention here is to find a cycle if it exists,
and then delete an edge from the cycle. The way this function is implemented is only mean-
ingful if it is used within the function getCycleFree.

function “getCycleFree”
This function returns a cycle free subgraph of the input graph by deleting one edge of highest
cost in each cycle. The approach implements a modified DFS search that terminates if a
cycle was found, deletes an edge of highest cost from the cycle and restarts the DFS search.
This procedure is repeated until no more cycles are found.

function “calcCostOfSolution”
We use this function to calculate the cost of a given graph, i.e. the sum of all edge lengths.
This function does not check whether the given graph is indeed a feasible solution to the SFP
instance.

function “transformInstance”
The input of this function can be an arbitrary instance of the Steiner forest problem in form
of the data type sfpLocal. The output, or to be precise some part of the output, should be
of the same data type, but in the form desired by the local search algorithm implemented in
the function doLocalSearch. Therefore, we do the transformation described in Theorem 3.31
with the help of allPairShortestPaths to compute the metric closure of the input graph. In
addition to that, we reorder the demand-pairs such that the costs of the shortest paths that
connect them in the original graph are non-decreasing. We return the transformed instance
and also the predecessor matrix obtained by allPairShortestPaths. It is necessary to return
also this predecessor matrix in order to re-transform an obtained solution, as described below.

80

function “retransformSolution”
This function is used to handle the following situation: Consider a graph GSP where an edge
e = {i, j} represents a shortest i − j path in some underlying graph G, hence GSP is the
metric closure of G. We want to determine the graph Gexpand, where all paths are present
in their expanded form. Therefore, we take each edge e = {i, j} ∈ GSP , get the information
about the shortest i− j path that is represented by e and add the path to Gexpand using the
function addPathToSolution. We finally return the adjacency matrix of Gexpand.

function “getR e f”
We use this function to determine the edge-set R(e, f) ⊆ C(e) for some edges e and f as
described in the theory part in Section 2.2.1. Note that the description of this set is easy to
understand, but it is not trivial how to get the concrete set R(e, f). Details can be seen in
the code. We use a vector of triple to return the edges of R(e, f), although we do not need
the third value of the data type triple.

function “doLocalSearch”
The function implements the main part of the local search algorithm. It takes an (arbitrary)
instance of the Steiner forest problem and call transformSolution in order to obtain an in-
stance in the desired format. The function does not explicitly need a feasible solution to
start with since this initial solution is obtained by the constructor as described in the class
forest. Then the Algorithm 7 is implemented where one has to specify which substitution
for the connecting neighbourhood (2-Conn or 3-Conn) should be used. The algorithm itself
returns the adjacency matrix of the obtained solution to the transformed instance. Then
retransformSolution is applied to obtain the corresponding solution to our original instance.

function “SFPLocalToSFPGlut”
Since we use two different data types for storing an instance of the Steiner forest problem
(namely sfpLocal and sfpGlut), we use this function to transform an instance given in the
sfpLocal -format to an instance of the data type sfpGlut. This function enables the usage of
all functions inherited from the project Gluttonous Algorithm without any changes. Note
that this transformation has nothing to do with the transformation mentioned above in the
functions transformInstance and retransformSolution based on Theorem 3.31.

function “getRandomEuclideanInstance”
Creates a random instance of the Euclidean Steiner forest problem with a given number
of points and demand-pairs as well as limits for the coordinates. The function generates
the desired number of points and demand-pairs in the following way: The vertices are cho-
sen uniformly at random from the integer-based two dimensional grid in the first quadrant
with the corresponding limits in each direction, the demand-pairs are chosen uniformly at
random from the set of all possible demand-pairs. All chosen points are pairwise distinct.
Also the demand-pairs are chosen pairwise distinct (two pairs can share one single vertex,
but not both vertices). There is a trigger which yields that the function ignores the given
number of desired demand-pairs that should be chosen and choose this number uniformly
at random from the set of all possible numbers of demand-pairs (depends only on the num-
ber of vertices). This can be helpful for some statistical experiments. The function returns
an instance of type sfpLocal. At the end of the function, all necessary information about
the generated instance are stored in an .txt file in order to be able to use the instance later
again. The format of the .txt file is compatible with the requirements of the function getInput.

function “doSeriesOfRandomInstancesLocalSearch”
With this function, one can create a desired number of instances with a common given num-

81

ber of vertices and demand-pairs and then try to solve every single instance using the Local
Search algorithm by applying doLocalSearch. Information about the results is output on
screen and saved in .txt files. See Section 9.4 for results obtained by using this function.

function “doSeriesOfRandomInstancesGluttonous”
The function does basically the same as doSeriesOfRandomInstancesLocalSearch, but as the
name suggests, it uses doGluttonous instead of doLocalSearch, i.e. we try to approximate the
solution using the Gluttonous algorithm instead of the Local Search algorithm. See Section
9.5 for results obtained by using this function.

function “doSeriesOfRandomInstancesGurobi”
The function does the same as doSeriesOfRandomInstancesLocalSearch, but instead of ap-
proximating the solution by the Local Search algorithm, here we try to solve the instances
to optimality by using the integer program formulation introduced in Section 5.2 and the
Gurobi-Solver. See Section 9.6 for results obtained by using this function.

function “doSeriesOfRandomInstancesLocalGluttonousGurobi”
This function is a kind of aggregation of the last three functions: We create a desired number
of instances with a common given number of vertices and demand-pairs. For every single
instance, we try to achieve three solutions: one from applying doLocalSearch, one from doG-
luttonous and another one from doGurobi17. Information about “the outcome” is provided
on the screen and saved in .txt files. Note that this function can applied only to instances
with a limited number of vertices, edges and demand-pairs; otherwise stack-overflows and
prohibitively long running times become more and more probably with increasing size of the
instance. For more details and results see Section 10.

function “doSeriesOfRandomInstancesLocalGluttonous”
We use this function to create a series of random instances and then apply Local Search and
the Gluttonous algorithm to each instance and compare the outcomes. This means that the
function does basically the same as the previous function, but without solving each instance
by the Gurobi -Solver. Details about results of applying this function can be seen in Section 10.

function “doSeriesOfRandomInstancesLocalSearchComparingConnectingMoves”
The function creates a series of random instances in the same way as in the functions above.
Then, it tries to solve each single instance involving the 2-Conn move on the one hand and
then involving the 3-Conn move on the other hand. A statistical evaluation is shown on
screen and saved into a .txt file at the end of the execution.

7.3. The main

Since we invested a lot of time to create helpful functions, the main file can be implemented
in a very slender and clear way. The following features are implemented:

• Get the input from getInput and apply LSA.

• Get the input from getInput and apply the Gluttonous algorithm.

• Get the input from getInput and apply the Gurobi-Solver.

• Get the input from getInput, apply LSA and the Gluttonous algorithm.

• Create a series of random instances and apply LSA to each instance.

17Note that this function has the name solvingByGurobi in [Gol18].

82

• Create a series of random instances and apply LSA to each instance once with using
the 2-Conn neighbourhood and once with using the 3-Conn neighbourhood.

• Create a series of random instances and apply the Gluttonous algorithm to each in-
stance.

• Create a series of random instances and apply the Gurobi-Solver to each instance.

• Create a series of random instances, apply LSA and the Gluttonous algorithm to each
instance.

• Create a series of random instances, apply the Gluttonous algorithm and the Gurobi-
Solver to each instance.

• Create a series of random instances, apply LSA, the Gluttonous algorithm and also the
Gurobi-Solver.

Comment
Note that depending on which feature one wants to use, there are different limits for the
number of vertices, edges and demand-pairs of the input in order to avoid stack overflows or
far too long running times. For more details please check Part III.

83

Part III.

Applying the algorithm

85

8. The algorithm applied to a small example

8.1. Some words at the beginning

In Section 6, we have developed Algorithm 7 as a modification of the original Local Search
Algorithm (Algorithm 5) proposed by Gross et al. [G17]. Let’s consider the application of
the algorithm to a concrete instance. Basically, we would have to list up all possible moves in
the neighbourhood for the solution in the current iteration and choose the best move. Since
the neighbourhood can be huge even in the case of small instances, we will not list up all the
moves but just track the evaluation of the solution during the run of the algorithm.

Remember, that in Algorithm 7, we have introduced two possible neighbourhoods as a substi-
tute for the original connecting-neighbourhood. Our local search algorithm involves exactly
one of them. For illustration purposes we will apply the algorithm twice, one variant involv-
ing the 2-Conn neighbourhood and the other variant involving the 3-Conn neighbourhood.
We may obtain different solutions and different forests after some iterations.

In the Sections 8.2 - 8.5 below we will introduce an SFP and apply both variants of the algo-
rithm to that instance starting with a specific starting solution. Then the solutions generated
by both variants of the algorithm will be compared.

8.2. The underlying instance

We consider the following instance of the metric Steiner forest problem:
We assume the metric space to be the Euclidean plane, hence the metric d is the Euclidean
distance.

The instance consists of the following 20 vertices/points in V :

1 = (24, 2) 8 = (3, 21) 15 = (22, 26)
2 = (2, 12) 9 = (18, 27) 16 = (28, 29)
3 = (9, 15) 10 = (28, 7) 17 = (1, 21)
4 = (13, 1) 11 = (0, 19) 18 = (8, 12)
5 = (4, 4) 12 = (6, 5) 19 = (26, 27)
6 = (3, 1) 13 = (27, 1) 20 = (11, 20)
7 = (3, 21) 14 = (0, 9)

and six demand-pairs in the set D as follows:

Demand 1: {18, 4} Demand 4: {20, 16}
Demand 2: {19, 20} Demand 5: {11, 20}
Demand 3: {1, 12} Demand 6: {10, 13}

Combining these information, we get the following terminals and non-terminals:

Terminals: {1, 4, 10, 11, 12, 13, 16, 18, 19, 20}
Non-Terminals: {2, 3, 5, 6, 7, 8, 9, 14, 15, 17}

86

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 38: Instance Overview. The vertices are points in the Euclidean plane, terminals
colored in red and non-terminals in blue.

8.3. The application of both variants of the algorithm

At the beginning, we start in both cases with a feasible solution obtained as described in
Algorithm 7, i.e. we add all the direct edges that connect a demand-pair and remove cycles
if necessary.

Initial forest for both variants of the algorithm:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 39: Note that no cycles where created by adding the edges connecting the vertices
within each demand-pair, hence no edges were removed.

87

Forest after iteration 1, using Algorithm 7 with 2-Conn :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 40: The first chosen move is an edge-edge swap: Adding the edge {16, 19} creates a
cycle 16 − 19 − 20 − 16 in which the edge with the highest Euclidean distance is
{16, 20}. Hence, we remove this edge and obtain a better feasible forest.

Forest after iteration 1, using Algorithm 7 with 3-Conn :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 41: The best move is a 3-Conn move: It connects the components C1 =
{11, 16, 19, 20}, C2 = {4, 18} and C3 = {10, 13}. The shortest path in GallA con-
necting C1 and C2 is given by the edge {18, 20}, the shortest path connecting C2

and C3 uses the fourth component C4 = {1, 12} as an intermediate vertex, i.e. is
given by 18→ C4 → 13 and adds finally the edges {12, 18} and {1, 13}. Therefore,
the obtained solution consists of one single tree.

88

Forest after iteration 2, using Algorithm 7 with 2-Conn :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 42: We obtain the next forest by a path-set swap: Choosing vertices 1 and 12, adding
the edges {1, 4} and {12, 18} yields a connection of the chosen vertices (shortest
path 1 → 4 → 18 → 12 where the edge {4, 18} has length zero). The only
possibility to delete edges in the created cycle (due to definition) is to delete
{1, 12}.

Forest after iteration 2, using Algorithm 7 with 3-Conn :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 43: We have seen this move already in Figure 40: Adding the edge {16, 19} and
removing {16, 20} yields a solution with a lower potential and also a lower total
length.

89

Forest after iteration 3, using Algorithm 7 with 2-Conn :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 44: We apply a 2-Conn move: To connect components C1 = {11, 16, 19, 20} and
C2 = {10, 13} we add the edges {1, 13} and {18, 20} that form a path in GallA .
Hence, all three components get connected.

Forest after iteration 3, using Algorithm 7 with 3-Conn :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 45: The forest results from an edge/edge-swap: We have to add the edge {1, 4} and
then remove the edge {1, 12}. Removing a second edge from the created cycle
would make the forest infeasible.

90

Forest after iteration 4, using Algorithm 7 with 2-Conn :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 46: This edge-edge swap leads to the best possible forest in the neighbourhood: Adding
the edge {4, 12} and removing the edge {4, 18}.

Forest after iteration 4, using Algorithm 7 with 3-Conn :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 47: Note that the forest at the beginning of the iteration is the same as in the case,
where we use the 2-Conn neighbourhood. Allowing 3-Conn moves does not change
the best possible move, hence we get the same outcome as above.

91

Forest after iteration 5, using Algorithm 7 with 2-Conn :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 48: Also the last iteration brings an edge-edge swap: Adding the edge {11, 18} and
removing the edge {11, 20}.

Forest after iteration 5, using Algorithm 7 with 3-Conn :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 49: As in iteration 4, both algorithms perform the same move on the same underlying
forest.

92

Forest after clean-up in both cases:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 50: We can remove the edge {1, 13} from the forest without hurting the feasibility.
Removing one of the remaining edges would lead to an infeasible forest. This
forest is the solution obtained by both algorithms.

8.4. Overview

The following tables summarize the course of each variant of Algorithm 7 when applied to
the instance introduced in Section 8.2.

Algorithm 7 with 2-Conn neighbourhood:

Iteration move total length potential components

Start 83.25 138.9 4
1 E/E 66.84 122.5 4
2 P/S 66.92 110.5 3
3 C-2 78.62 97.86 1
4 E/E 74.60 93.84 1
5 E/E 74.19 93.42 1
Clean-up 71.03 2

Algorithm 7 with 3-Conn neighbourhood:

Iteration move total length potential components

Start 83.25 138.9 4
1 C-3 102.2 121.47 1
2 E/E 85.83 105.1 1
3 E/E 78.62 97.86 1
4 E/E 74.60 93.84 1
5 E/E 74.19 93.42 1
Clean-up 71.03 2

93

8.5. An optimal solution

The following forest gives an optimal solution to the described instance. We obtain the solu-
tion by using the function doGurobi presented in Section 7.2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

Figure 51: An optimal solution to the instance.

Let‘s compare the obtained solutions regarding total length and running time:

Solution total length running time

Alg. 7 with 2-Conn 71.03 10.56 s
Alg. 7 with 3-Conn 71.03 16.66 s
Optimal solution 62.90 1.082 s

Observe that both variants of the algorithm output the same solution that has a total length
which is about 13 percent higher than the total length of an optimal solution. For this in-
stance, with only a small number of vertices and demand-pairs, also the running time of the
algorithm is much higher than the time needed to solve the integer programming formulation
of the problem by an off-the-shelf software.

Note, that the first variant of the algorithm (2-Conn neighbourhood) generated a feasible
solution with a total length which is smaller than the total length of the final solution. The
objective function value of the solution after iteration 1 is much closer to the optimal ob-
jective function value than the objective function value of the final obtained solution. This
can happen, since the algorithm tries to decrease the potential, but not necessarily the total
length of the forest.

Comment
One can improve the quality of the solution obtained by Algorithm 7 as follows: Store the
best solution forest B with respect to the original edge lengths d found so far during the run
of the algorithm and output either B or Af , depending on which has the lower total length.

94

9. Running times of the algorithms

This section is structured as follows: At the beginning, we discuss the generation of the test
instances, then we compare the performance of both variants of Algorithm 7 involving neigh-
bourhoods 2-Conn and 3-Conn. The goal of this process is to decide which neighbourhood is
more beneficial to the algorithm such that we can concentrate on this variant of the algorithm
in the following tests.

Having fixed one of the two neighbourhoods for our algorithm, we want to compare the three
implemented algorithms Local Search, Gluttonous and the integer program in terms of run-
ning time. It should be clear, that we cannot hope to achieve a solution within reasonable
time if we choose an instance with a very large number of vertices, edges and demand-pairs,
since the implementations have not been optimized regarding efficiency and there are also
hardware restrictions.

Moreover we will compare the implemented algorithms also in terms of quality of their output
solutions and in the case of small instances we will also address the optimality gaps.

9.1. Randomly generated test instances

On a low level, we will do the following process within our tests: For some fixed number of
vertices and demand-pairs, we create a given number of instances with exactly those input
parameters in a random way, in order to determine an average running time or an average
approximation factor. We refer to solving a sequence of instances all of them sharing a given
set of input parameters, i.e. the number of vertices and the number of demand-pairs, as a
single test. To obtain meaningful values from a statical point of view, the number of instances
in each test should be preferably high, but on the other hand, single tests should not take
too much time. We restrict ourselves to single tests with a total running time of no more
than two hours.

Convention
If we write a “?” for the value of the running time (or the approximation factor), then we
have not finished the test since it took longer than two hours.

It should be clear, that when applying the algorithm on large instances, we cannot hope to
obtain a solution within reasonable time. First, we should clarify, what the adjective large
means for an instance of the (metric) Steiner forest problem.

According to Theorem 3.31 we can convert any instance of the general Steiner forest problem
into an instance of the metric Steiner forest problem. Thus, it suffices to concentrate on this
type of problem. To be precise, we will consider randomly chosen instances of the Euclidean
type where the vertices are points in the Euclidean plane, each pair of vertices is connected
by a direct edge (the underlying graph is therefore the complete graph) and the distance
attached to an edge is the Euclidean distance between its end points. We will choose the
coordinates of the vertices within some given bounded rectangle, but this does not restrict the
setting, since we can always scale down larger instances such that they fit into this setting
(remember that we have implemented the function getRandomEuclideanInstance). Hence,
the input of an instance consists of two parameters: the number of vertices n and the number
of demand-pairs |D|.

We obtain a random instance of Euclidean type as follows: The vertices are chosen from

95

the integer-grid [0, 100] x [0, 100] uniformly at random such that no two vertices coincide18.
Among the generated vertices, we choose the given number of demand-pairs uniformly at
random such that no two pairs coincide. For this procedure, the function getRandomEu-
clideanInstance described in Section 7.2 is used.

During the tests, we prevent the implementation to output information on the screen in order
to have no negative influence on the running times.

9.2. An unexplainable slowdown

In the the Master Seminar [Gol18], the Gluttonous algorithm was tackled from the theoretical
and practical point of view. In this context, we did some tests regarding the average running
time of the algorithm. Those tests where made in October of 2018 with the same hard- and
software as the one used for the test now. With the same implementation of Gluttonous some
tests were performed in January 2019. The latter tests were unexpectedly slow as compared
to the tests in the past19. In general, it was the same code, we have only changed a few
lines concerning information output. Since we have always stored the different versions of
the implementation, we were able to try the same version of the code as we used for the
tests in October 2018, and also with this version, we had still the same problem. The values
listed below should give an impression of the observed behaviour. We should admit, that the
underlying test instances where not necessarily the same, but since we take the average over
a larger set and try it for different input - sizes, the deviation is conspicuous.

Vertices demand-pairs Instances Avg. time 2018 Avg. time 2019

8 10 100 0.004 s 0.089 s
10 15 100 0.006 s 0.162 s
20 10 100 0.056 s 1.194 s
50 10 20 1.056 s 18.52 s
100 5 20 no Test 87.68 s
100 10 20 09.52 s ?

Table 2: Running times of Gluttonous from 2018 compared to those in 2019.

The observed slowdown factor is around 20. Since we tried the same version of the code,
the problem could not be within the lines of the code. Also the settings in Visual Studio
where the same. The next step was to update Visual Studio, it may could be that with a
new version available the old version get slow. We observed the same slowdown factor with
the updated version of Visual Studio.

Personal communication with experts in information technology revealed the following po-
tential explanation. In summer 2018, two security problems called Meltdown [Lipp18] and
Spectre [Koch18] where uncovered by a group of students and researchers of the University of
Technology Graz. Later in the year, a series of software updates were necessary to fix those
security problems. It is well known that some of those updates also causes a restriction of
the CPU performance.

18Thus it is possible to generate 101 · 101 = 10.201 different vertices.
19To be precise, the suspicious situations came up while using the implementation of the current local

search algorithm. From one day to the other, quasi overnight, the running times seemed to have multiplied.
Since we had not yet reference running times for this algorithm, we tried the Gluttonous algorithm as well,
since we indeed had some reference values for that.

96

Unfortunately the slowdown described above has an impact on the size of instances which
can be solved by Gluttonous in reasonable time.

9.3. 2-Conn versus 3-Conn

Our primary goal is to find out the impact of the neighbourhood used in Algorithm 7 with
respect to running time and quality of the solution. Let’s make the following experiment:
We apply both variants of the algorithm (involving 2-Conn and 3-Conn) to randomly gener-
ated instances as described in Section 9.1 and compare the running times and the objective
function values of the obtained solutions, respectively. We categorize the result of the com-
parison in “2-Conn better than 3-Conn”, “3-Conn better than 2-Conn” and ”Tie”. For each
set of input parameters (number of vertices and number of demand-pairs), we generate ten
instances randomly. The following table shows the outcome of the experiment.

|V | |D| #inst Øt2 [s] Øt3 [s] Win2 Win3 Tie

8 5 10 0.284 0.272 0 0 10
8 10 10 2.636 2.596 0 0 10

10 5 10 1.910 1.840 0 0 10
10 10 10 7.320 7.224 0 0 10
10 25 10 12.28 13.11 0 0 10

15 5 10 3.997 4.491 0 0 10
15 10 10 22.59 22.55 0 0 10
15 25 10 103.1 104.0 0 0 10

20 5 10 6.740 7.810 0 0 10
20 10 10 77.96 83.84 0 0 10

25 5 10 9.025 9.497 0 0 10
25 10 10 94.96 103.1 0 0 10

30 5 10 15.53 18.46 0 0 10
30 10 10 202.5 234.9 0 0 10

40 5 10 36.96 40.47 0 0 10
40 10 10 ? ? 0 0 10

50 5 10 60.69 62.96 0 0 10
50 10 10 ? ? 0 0 10

Table 3: Comparing the two variants of Algorithm 7.

|V | indicates the number of vertices of the instance and |D| indicates the number of demand-
pairs, where #inst shows the number of considered instances. The two values Øt2 and Øt3
stand for the running times in seconds of the algorithms by using the 2-Conn or the 3-Conn
neighbourhood, respectively. Win2 (Win3) indicates the number of instances, where the
algorithm with the 2-Conn (3-Conn) neighbourhood yields a lower objective function value
as the algorithm with the 3-Conn (2-Conn) neighbourhood. If both variants of Algorithm 7
yield the same objective function value when executed on a single instance, then this instance
is counted as a Tie.

We can see, that for all tested instances, there is no difference in the objective function value
of the solutions obtained by the two variants of the algorithm. There is also no essential
difference in the running times. Of course, we have only tried a small number of different
instances and also the size of the instances (number of vertices, number of demand-pairs) was
chosen to be small, in order to get the results within a reasonable time.

97

Convention
From now on, we use Algorithm 7 always with the 3-Conn neighbourhood, since there is no
noteworthy time overhead in contrast to the algorithm that uses the 2-Conn neighbourhood.
However, the 3-Conn neighbourhood is a superset of the 2-Conn neighbourhood and in
general it could yield a better solution.

9.4. Running times of local search

In this section, we want to get an estimation for the size of instances which can be solved by
the local search algorithm within the time limit of about two minutes.

Let’s have a look on the average time our computer needs to output a solution to an SFP
instance by applying Algorithm 7 with the 3-Conn neighbourhood (function doLocalSearch).
The times were obtained as follows: For each set of input parameters, a given number of
instances of the Euclidean SFP were generated randomly as described in Subsection 9.1
(function getRandomEuclideanInstance). For each set of input parameters, the average run-
ning time was computed (function doSeriesOfRandomInstancesLocalSearch).

Vertices Demand-pairs Instances Average running time

8 3 50 0.270 s
8 5 50 1.110 s
8 10 50 2.994 s
8 20 50 3.215 s

10 3 50 0.335 s
10 5 50 1.688 s
10 10 50 6.937 s
10 20 50 11.26 s

15 3 50 0.723 s
15 5 50 4.382 s
15 10 50 25.77 s
15 20 50 81.61 s

20 3 50 1.380 s
20 5 50 7.525 s
20 10 50 71.85 s
20 20 50 153.3 s

25 3 50 1.871 s
25 5 50 11.46 s
25 10 20 126.2 s
25 20 20 410.1 s

30 3 50 3.104 s
30 5 50 17.79 s
30 10 20 198.8 s

40 3 50 5.510 s
40 5 50 39.89 s
40 10 20 465.5 s

50 3 50 11.88 s
50 5 50 73.43 s
50 10 20 ?

98

Vertices Demand-pairs Instances Average running time

75 3 50 41.40 s
75 5 20 257.1 s

100 3 20 98.34 s
100 5 20 ?

Table 4: Running times of local search (Algorithm 7 with 3-Conn neighbourhood).

9.5. Running times of Gluttonous

An analogous experiment as in the last section is done with respect to the Gluttonous algo-
rithm (functions doGluttonous and doSeriesOfRandomInstancesGluttonous). The results are
summarized in the following table.

Vertices Demand-pairs Instances Average running time

8 3 100 0.064 s
8 5 100 0.062 s
8 10 100 0.089 s
8 20 100 0.093 s

10 3 100 0.082 s
10 5 100 0.110 s
10 10 100 0.162 s
10 20 100 0.195 s

15 3 100 0.215 s
15 5 100 0.374 s
15 10 100 0.521 s
15 20 100 0.753 s

20 3 100 0.476 s
20 5 100 0.725 s
20 10 100 1.194 s
20 20 100 1.747 s

25 3 50 1.043 s
25 5 50 1.450 s
25 10 20 2.420 s
25 20 20 3.543 s

30 3 50 1.634 s
30 5 50 2.502 s
30 10 20 4.061 s

40 3 50 3.286 s
40 5 50 5.667 s
40 10 20 10.21 s

50 3 50 6.091 s
50 5 50 10.60 s
50 10 20 18.52 s

75 3 50 21.94 s
75 5 20 37.97 s

100 3 20 54.20 s
100 5 20 87.68 s

Table 5: Running times of Gluttonous.

99

9.6. Finding an optimal solution by solving the IP formulation

In Section 5.2, we discussed the integer programming (IP) formulation of the Steiner forest
problem. We consider this IP formulation for randomly generated test instances (see Section
9.1) and solve then to optimality by applying the Gurobi solver. This solution approach is
referred to as “exact algorithm”. For each set of input parameters we generate a number of
test instances and report the average running time in Table 6.

A random number of demand-pairs means, that for each instance the number of demand-
pairs was chosen uniformly at random from the set of all possible numbers of demand-pairs.
For an instance with n vertices, we can choose between one and n·(n−1)

2 distinct demand-pairs.

Vertices Demand-pairs Instances Average running time

8 random 100 0.408 s
10 random 100 0.867 s
15 5 100 1.005 s
15 10 100 5.753 s
20 5 100 2.453 s
20 10 100 43.71 s
20 20 10 328.5 s
22 10 100 85.51 s
24 10 10 252.9 s
25 5 100 8.317 s
30 5 10 21.32 s
30 10 10 ?
40 5 10 465.6 s
50 - - stack overflow

Table 6: Running times of solving the IP formulation of SFP.

Finally, let us compare the average running times of the three algorithms (local search,
Gluttonous, Gurobi solution of the IP formulation). To do so, we apply the algorithms to
instances with a variable number of vertices and a constant number of demand-pairs. We
choose the number of demand-pairs to be five, this allows us to consider instances with up
to hundred vertices. The results are summarized by the following plot.

100

0 20 40 60 80 100
0

20
40
60
80

100

150

200

250

300

Number of vertices

A
v
g
.

ru
n

n
in

g
ti

m
e

[s
]

Local Search
Gluttonous

Gurobi

Figure 52: Comparing the running times of local search, Gluttonous and the IP formulation
approach.

10. Performance of the algorithms

10.1. Quality of the solution for random instances

In this section, we want to analyze the quality of the solutions obtained by Algorithm 7 and
Gluttonous. As discussed in Section 9, we know for which size of instances we can hope
to find a solution within reasonable time. We focus on two scenarios as follows: The first
scenario concentrates on instances which can be solved by all three approaches (Algorithm 7,
Gluttonous, Exact Algorithm) within a reasonable time. In this scenario, we can compare20

the solutions obtained by the Local Search algorithm (LSA) and by Gluttonous to the optimal
solution. The second scenario concentrates on instances that can be solved by both the Local
Search algorithm and Gluttonous within a reasonable time, but not by the exact algorithm.
In this scenario, we just compare the solutions obtained by the two approximation algorithms.

Tables 7 and 8 summarize the results of the experiments in the two scenarios. In the tables
we use the following notations.

|V | Number of vertices
|D| Number of demand-pairs
#inst Number of instances
ØtL [s] Average running time of LSA
ØtG [s] Average running time of Gluttonous
ØtO [s] Average running time of the exact algorithm
ØfL Average approximation factor of LSA
ØfG Average approximation factor of Gluttonous
L < G Number of instances where LSA found a better solution than Gluttonous
L > G Number of instances where Gluttonous found a better solution than LSA
L = G Number of instances where the solutions generated by Gluttonous and

LSA have same objective function value
L = Opt Number of instances where LSA found an optimal solution
G = Opt Number of instances where Gluttonous found an optimal solution

20In this context, this means that we compare the objective function values of the obtained solutions.

101

|V | |D| #inst ØtL [s] ØtG [s] ØtO [s] ØfL ØfG L < G L > G L = G L = Opt G = Opt

8 3 25 0.240 0.043 0.152 1.018 1.013 0 2 23 20 22
8 5 25 0.948 0.057 0.177 1.003 1.008 1 0 24 20 19
8 10 25 3.233 0.072 0.316 1.006 1.006 0 0 25 24 24

10 3 25 0.273 0.069 0.169 1.019 1.026 1 0 24 20 19
10 5 25 1.508 0.095 0.246 1.073 1.088 1 0 24 18 18
10 10 25 6.810 0.138 0.629 1.392 1.392 0 0 25 21 21

15 3 25 0.611 0.204 0.363 1.033 1.065 3 0 22 14 13
15 5 25 5.316 0.370 0.913 1.215 1.222 2 0 23 14 13
15 10 25 26.74 0.576 5.490 1.253 1.253 0 1 24 12 13
15 15 25 59.09 0.729 12.15 1.308 1.308 1 0 24 13 13

20 3 25 1.119 0.423 0.739 1.055 1.057 1 1 23 13 13
20 5 25 6.622 0.753 2.580 1.572 1.572 4 2 19 8 7
20 10 25 55.36 1.079 36.16 1.502 1.502 0 0 25 3 3
20 15 25 155.0 1.280 119.0 1.356 1.356 0 0 25 5 5

25 3 25 1.862 0.834 1.325 1.138 1.156 3 0 22 15 12
25 5 25 12.83 1.337 3.205 1.240 1.252 2 0 23 12 11

30 3 25 3.565 1.434 2.288 1.196 1.197 1 1 23 13 13
30 5 25 19.61 2.294 38.42 1.308 1.322 4 0 21 4 4

40 3 25 6.229 3.270 6.460 1.048 1.056 2 0 23 9 8
40 5 25 34.90 5.062 39.99 1.977 1.990 5 0 20 5 5

Table 7: Comparing the solutions obtained by the three algorithms (LSA, Gluttonous, exact algorithm) in the first scenario.

1
02

We found the following results for the second scenario:

|V | |D| #inst ØtL [s] ØtG [s] L < G L > G L = G

25 10 25 99.11 2.140 0 0 25
25 15 25 308.6 2.668 0 1 24
30 10 20 218.9 3.970 0 0 20
30 15 20 ? ? ? ? ?

40 5 20 49.12 6.035 2 0 18
40 8 20 198.4 8.257 2 0 18
40 10 20 544.3 9.751 3 0 17

50 3 20 14.04 6.560 1 0 19
50 5 20 77.59 10.84 3 1 16
50 8 20 364.7 15.65 2 0 18
75 3 20 40.43 22.67 2 0 18
75 5 20 254.1 36.60 3 2 15

Table 8: Outcome of the experiment in the second scenario.

Based on the results of the two experiments we can make the following observations with
respect to the behaviour of LSA and Gluttonous:

• For instances with less demand-pairs, both approximation algorithms found an optimal
solution for a good portion of the number of considered instances.

• The higher the number of demand-pairs, the lower is the percentage of instances for
which the algorithms (separately) found an optimal solution.

• Both approximation algorithms yield an average approximation factor smaller than two
in all test instances.

• There is no significant difference in the average approximation factors of the two ap-
proximation algorithms.

• For most of the tested instances both algorithms found solutions with the same objective
function value.

• The average running time of LSA is a multiple of the running time of Gluttonous in all
test instances. There are some particular instances for which the running time of LSA
is 50 times higher than the running time of Gluttonous.

• For instances with a small number of demand-pairs (five or smaller) the average running
time of the exact algorithm is often smaller than the average running time of LSA.

Finally, let us consider instances with a larger number of vertices. Due to prohibitively long
running times we just solve one randomly generated instance per set of input parameters (and
not a series of instances with the same input parameters as in the previous experiments). The
outcome can be seen in the table below, where Local is the objective function value obtained
by LSA and Glut is the corresponding value obtained by Gluttonous.

103

Name |V | |D| ØtL [s] ØtG [s] Local Glut

Test01 75 8 1093 51.71 242.6 242.6
Test02 75 10 3588 78.23 310.8 310.8
Test03 60 10 681 26.94 252.9 252.9
Test04 60 12 890 32.65 274.5 274.4
Test05 60 15 4580 44.20 369.8 369.8
Test06 50 15 4007 31.98 313.1 313.1
Test07 55 12 1889 27.20 199.2 199.2
Test08 65 11 4342 47.09 258.8 258.8
Test09 100 5 356 88.33 186.3 186.3
Test10 100 8 3794 154.2 295.0 295.0
Test11 100 10 ? 167.9 ? 236.2

Table 9: Comparing LSA and Gluttonous for some single test instances.

For all ten instances, where both algorithms provide a solution within two hours of running
time, the objective of the obtained solution is the same. As for running times, also this
experiment shows that our implementation of Gluttonous is much faster than that of LSA.

10.2. Performance on SFP instances known in the literature

At www.steinlib.zib.de/steinlib.php one can find instances of the Steiner Tree Problem to-
gether with the corresponding best objective function value known so far. Since the Steiner
Tree Problem is a special case of the Steiner forest problem, we can use them to test our
algorithms. To execute our implementation of LSA and Gluttonous on this instances in the
given SteinLib - Format, we have provided the choice SteinLib Format Graph as an input
format. Note that one has to modify the original format of the given files slightly, but of
course, without modifying the underlying instance. Details can be found in the comments
that are made in the code.

In the table below, we summarize the results obtained by applying LSA and Gluttonous to
some of the instances mentioned above. Opt indicates the optimal value for each instance,
Local is the value of the solution obtained by LSA. fL is the quotient Local/Opt. The last
column shows the running time of the LSA. Note, that according to some comments on the
website mentioned above, all instances in Table 10 can be solved in less than a minute. It is
not specified which software and hardware was used.

Comment
The Steiner Tree instances are given in the general setting described in Definition 1.7 with
the exception that there are no demand-pairs specified, but just a set of terminals. These
Steiner Tree instances can be transformed to SFP instances by introducing a demand-pair for
each pair of terminals in the original instance. We use the construction described in Theorem
3.31 to obtain an instance in the desired input format to apply LSA and Gluttonous.

104

Name |V | |E| |D| Opt Local fL tL [s]

berlin52 52 1326 120 1044 1069 1.024 255.9
brazil58 58 1653 325 13655 ? ? ?
p455 100 4950 10 1138 1166 1.025 48.60
p456 100 4950 10 1228 1239 1.009 46.65
p457 100 4950 45 1609 1642 1.021 362.5
p458 100 4950 45 1868 1868 1.000 308.0
p459 100 4950 190 2345 2348 1.001 2229
p460 100 4950 190 2959 3010 1.017 2239
p461 100 4950 1275 4474 ? ? ?
lin01 53 80 6 503 503 1.000 3.986
lin04 157 266 15 1239 1267 1.023 284.5
msm1844 90 135 45 188 196 1.043 215.8
msm4224 191 302 55 311 333 1.071 2763

Table 10: LSA applied to some Steiner Tree instances.

Finally, we consider the performance of Gluttonous on those instances. The results are sum-
marized in Table 11, where Glut denotes the objective function value of the solution obtained
by Gluttonous and fG indicates the approximation factor of Gluttonous, i.e. fG = Glut/Opt.
The last two columns contain the running times of the respective algorithms.

Name Opt Local Glut fL fG tL [s] tG [s]

berlin52 1044 1069 1069 1.024 1.024 255.9 22.86
brazil58 13655 ? 13682 ? 1.002 ? 42.98
p455 1138 1166 1166 1.025 1.025 48.60 44.45
p456 1228 1239 1239 1.009 1.009 46.65 44.41
p457 1609 1642 1642 1.021 1.021 362.5 102.4
p458 1868 1868 1868 1.000 1.000 308.0 101.0
p459 2345 2348 2348 1.001 1.001 2229 182.7
p460 2959 3010 3010 1.017 1.017 2239 185.3
p461 4474 ? 4491 ? 1.004 ? 401.5
lin01 503 503 503 1.000 1.000 3.986 5.561
lin04 1239 1267 1267 1.023 1.023 284.5 211.0
msm1844 188 196 196 1.043 1.043 215.8 68.02
msm4224 311 333 333 1.071 1.071 2763 734.0

Table 11: LSA and Gluttonous applied to some Steiner Tree instances.

We see that for all instances which are solved by both algorithms within a reasonable time, the
objective function value of the obtained solutions coincide. For some instances, the running
times are close to each other, but there are also instances (e.g. p459, p460), where the running
time of LSA is about ten times the running time of Gluttonous. Note also, that LSA never
outperforms Gluttonous in terms of running time.

11. Conclusion

In this Master Thesis, we analyzed and implemented a local search algorithm (LSA) for the
Steiner forest problem originally introduced by Gross et al. [G17]. The moves that define

105

the neighbourhood of the feasible solution are easy to understand, but some of them cause
troubles when coming to the time analysis of the algorithm. We discussed in details the ap-
proaches proposed in the literature to handle those obstacles and obtain an algorithm, that
has on the one hand a polynomial running time and on the other hand a constant approxima-
tion factor. The resulting algorithm, which has both properties, is not as easy to implement
compared to some other known approximation algorithms for the Steiner forest problem, as
for example, the Gluttonous algorithm. The main problem is, that the presented local search
algorithm is rather of theoretical nature while the Gluttonous algorithm is more practical.

Nonetheless, at least we implemented a modified version of the local search algorithm. The
modification consists in replacing the complex Improving-connecting move with some sim-
pler local improvement technique (2-Conn and 3-Conn neighbourhood) and in dropping
the rounding technique of the edge lengths in order to achieve a more practical algorithm.
Clearly, the theoretical results on the approximation guarantee and time complexity of LSA
do not hold for the modified version of the algorithm. Different tests on randomly generated
instances of small size show some interesting details of our implementation. First, the algo-
rithm performs very well on instances with a small number of vertices and demand-pairs (less
than forty vertices and less than fifteen demand-pairs), and secondly, the approximation fac-
tor is in most cases smaller than two. When applying Gluttonous to the same instances, the
obtained objective function values are in most cases the same as those obtained by LSA, but
the running times of Gluttonous are a good deal better. This behaviour can also be observed
for tests where the number of vertices is below one hundred and the number of demand-pairs
is below twenty. Summing up, our implementation of the local search algorithm yields almost-
always solutions of the same quality as the solutions obtained by Gluttonous, only in very few
cases we obtain a better solution. However, the running time of our LSA implementation is
in general a multiple of the running time of Gluttonous, hence there is no substantial reason
to prefer this modification of the local search algorithm to Gluttonous.

An interesting open question which was not dealt within this work would be to implement the
original polynomial time local search algorithm (Algorithm 5) with the proved approximation
factor and to compare it with Gluttonous and the exact algorithm in terms of running time
and solution quality. It would be also interesting to know whether our modified version of the
LSA would be competitive with the original LSA in terms of both running time and solution
quality.

106

References

[AKR95] A.Agrawal, P.Klein, R.Ravi, When trees collide: an approximation algorithm for
the generalized Steiner problem on networks, SIAM J. Comput., 24(3):440-456, 1995

[AK00] Sanjeev Arora, George Karakostas, A 2 + ε Approximation Algorithm for the k-MST
Problem, Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms (David Shmoys, ed.), SODA’00, Society for Industrial and Applied Mathematics,
2000

[AR98] Sunil Arya, H. Ramesh, A 2.5-factor Approximation Algorithm for the k-MST Prob-
lem, Information Processing Letters 65, no. 3, 117-118, 1998

[AAB04] Baruch Awerbuch, Yossy Azar and Yair Bartal, On-line generalized Steiner Forest,
Theoretical Computer Science, Volume 324, Issues 2-3, 20. September 2004, Pages 313-
324, 2004

[BRV96] Avrim Blum, R. Ravi, Santosh Vempala, A Constant-factor Approximation Algo-
rithm for the k-MST Problem, Proceedings of the Twenty-eight Annual ACM Symposium
for the Theory of Computing (Gary L. Miller, ed), STOC’96, ACM, pp.442-448, 1996

[EB02] Christian Blum, Matthias Ehrgott, Local search algorithms for the k-cardinality tree
problem, Science Direct, Volume 128, Issues 2–3, Pages 511-540, 2003.

[EH] I.N. Bronshtein, K.A. Semendyayev, Gerhard Musiol, Heiner Mühlig, Handbook of
Mathematics, Springer, 6th edition, ISBN: 3662462214, 9783662462218, 2015

[F94] Mattheo Fischetti, Horst W. Hamacher, Kurt Jornsten, Francesco Maffioli, Weighted
k-Cardinality Trees: Complexity and Polyhedral Structure, Networks 24, no. 1,11-21,
1994

[Gar96] Naveen Garg, A 3-approximation for the Minimum Tree Spanning K Vertices, Pro-
ceedings of the Thirty-seventh Annual Symposium on Foundations of Computer Science,
FOCS’96, IEEE Computer Society, pp. 302-309, 1996

[Gar05] Naveen Garg, Saving an Epsilon: A 2-approximation for the k-MST problem in
Graphs, Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Com-
puting (Ronald Fagain and Hal Gabow, eds.), STOC ’05, ACM, pp.396-402, 2005

[GW95] Michel X. Goemans and David P. Williamson, A general approximation technique
for constrained forest problems, SIAM J. Comput., 24(2):296-317, 1995

[Gol18] Stefan Golja, Steiner forest problem - The Gluttonous Algorithm, Elaboration for the
Master’s Seminar, 2018.

[G17] Martin Gross, Anupam Gutpa, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt,
Melanie Schmidt, José Verschae, A Local-Search Algorithm for Steiner Forest, Cornell
University Library, arXiv:1707.02753, 2017

[GK14] A.Gupta, A.Kumar, Greedy Algorithms for Steiner Forest, Cornell University Li-
brary, arXiv:1412.7693v1, 2014.

[JMP00] David S. Johnson, Maria Minkoff and Steven Phillips, The Prize Collecting Steiner
Tree Problem: Theory and Practice, Proceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’00, Society of Industrial and Applied Math-
ematics, pp. 760-769, 2000

A

[Koch18] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz and
Yuval Yarom, Spectre Attacks: Exploiting Speculative Execution, 40th IEEE Symposium
on Security and Privacy (S&P’19), 2019.

[KV06] Bernhard Korte, Jens Vygen, Combinatorial optimization: theory and algorithms,
Springer Verlag, 2006.

[Lipp18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, An-
ders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,Daniel Genkin, Yuval Yarom and
Mike Hamburg, Meltdown: Reading Kernel Memory from User Space, 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[San03] Alessandro Santuari, Steiner Tree NP-completeness Proof, Exercise for the Compu-
tational Complexity course taken at the University of Trento, 2003.

[SZM17] Daniel R. Schmidt, Bernd Zey and Francois Margot, MIP Formulations for the
Steiner forest problem, Cornell University Library, arXiv:1709.01124, 2017.

[St07] Angelika Steger, Diskrete Strukturen, Band 1: Kombinatorik, Graphentheorie, Alge-
bra, Springer Verlag, 2007.

[Tre11] Luca Trevisan, Handout 2 for CS261 - Optimization, Handout 2 for
the course “Optimization” on January 6, 2011 at Stanford University,
https://people.eecs.berkeley.edu/∼luca/cs261/lecture02.pdf, 2011.

B

List of Figures

1. Instance of SFP . 5
2. Feasible solution F1 . 6
3. Feasible solution F2 . 6
4. Why connecting moves are useful . 9
5. Example: edge-edge swap 1 . 10
6. Example: edge-edge swap 2 . 10
7. Example: edge-edge swap 3 . 11
8. Example: edge-set swap 1 . 12
9. Example: edge-set swap 2 . 12
10. Example: edge-set swap 3 . 13
11. Example: edge-set swap 4 . 13
12. Example: path-set swap 1 . 15
13. Example: path-set swap 2 . 15
14. Example: path-set swap 4 . 16
15. Example: path-set swap 5 . 16
16. Example: path-set swap 6 . 16
17. Example: path-set swap 7 . 17
18. Example: connecting move 1 . 18
19. Example: connecting move 2 . 18
20. Example: connecting move 3 . 18
21. Example: connecting move 4 . 19
22. Example: clean-up 1 . 20
23. Example: clean-up 2 . 20
24. Example: clean-up 3 . 20
25. Compatible / not compatible edges 1 . 23
26. Compatible / not compatible edges 2 . 23
27. Compatible / not compatible edges 2 . 24
28. About being essential and safe . 24
29. About being essential and safe 2 . 25
30. Example: Convert connected components into simple cycles 38
31. Example: Simple cycle and its circuit . 40
32. Example: Partitioning the circuit into trees I 41
33. Example: Partitioning the circuit into trees II 41
34. Example: Partitioning Algorithm . 49
35. Example: 2/3-Conn 1 . 74
36. Example: 2/3-Conn 1 . 74
37. Example: 2/3-Conn 1 . 76
38. Example: 2/3-Conn - Underyling Instance . 87
39. Example: 2/3-Conn - Initial forest . 87
40. Example: 2-Conn - After iteration 1 . 88
41. Example: 3-Conn - After iteration 1 . 88
42. Example: 2-Conn - After iteration 2 . 89
43. Example: 3-Conn - After iteration 2 . 89
44. Example: 2-Conn - After iteration 3 . 90
45. Example: 3-Conn - After iteration 3 . 90
46. Example: 2-Conn - After iteration 4 . 91
47. Example: 3-Conn - After iteration 4 . 91
48. Example: 2-Conn - After iteration 5 . 92
49. Example: 3-Conn - After iteration 5 . 92
50. Example: 2-Conn - After clean-up . 93

C

51. Example: 2-Conn - Optimal solution . 94
52. Comparing the running times . 101

List of Tables

1. Edges and their lengths in the multi-graph GallF0
. 75

2. Comparing the running times of Gluttonous 96
3. Comparing the two variants of Algorithm 7. 97
4. Running times of Algorithm 7 . 99
5. Running times of Gluttonous. 99
6. Running times of solving the IP formulation 100
7. Comparing the obtained solutions in Scenario 1 102
8. Comparing the obtained solutions in Scenario 2 103
9. Comparing LSA and Gluttonous . 104
10. LSA applied to Steiner Tree Instances . 105
11. LSA and Gluttonous applied to Steiner Tree instances 105

D

	Theory
	Statement of the problem and preliminaries
	Basic definitions and notations
	The Steiner forest problem
	SFP as a generalization of other simpler problems

	The local search algorithm from Gross et al. for the SFP
	The local search algorithm in a nutshell
	Local moves and post-processing
	A generic local search algorithm

	Analysis of the local search algorithm: solution quality
	Case I: The local optimum is a tree
	Case II: The local optimum is a forest

	Analysis of the local search algorithm: time complexity
	k-MST Problems
	c-approximate connecting move optimality
	Convergence in polynomial time
	Summary

	Two more approaches for SFP
	The Gluttonous Algorithm
	SFP as an integer program

	Implementation
	Basic ideas and questions
	Identifying problematic aspects
	A concept for the implementation
	The implementation of connecting moves

	Classes and functions
	Classes
	Functions
	The main

	Applying the algorithm
	The algorithm applied to a small example
	Some words at the beginning
	The underlying instance
	The application of both variants of the algorithm
	Overview
	An optimal solution

	Running times of the algorithms
	Randomly generated test instances
	An unexplainable slowdown
	2-Conn versus 3-Conn
	Running times of local search
	Running times of Gluttonous
	Finding an optimal solution by solving the IP formulation

	Performance of the algorithms
	Quality of the solution for random instances
	Performance on SFP instances known in the literature

	Conclusion
	References
	List of Figures
	List of Tables

