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Abstract

This master thesis deals with the continuous estimation of blood pressure
by an artificial neural network from a plethysmographic signal of an
optical sensor. For the training of the artificial neural network, single heart
cycles are extracted from the filtered and processed measurement data
and then decomposed into complex frequency components using a fast
Fourier transformation algorithm. These components are used as input
variables for the neural network with three hidden layers. Two different
data sources are used to train the network. On the one hand a public
database (MIMIC) that provides optical signals from the fingertips of
test persons and on the other hand own measurements with an optical
PALS-2 sensor at the wrist of the test persons. An invasive blood pressure
measurement is used as a reference measurement for the MIMIC database
and the continuous, non-invasive method according to Peňáz is used for
the self-acquired data.

The work has shown that it is possible to determine the blood pressure
from the photoplethysmographic signal of test persons if data with similar
characteristics are available in the training data set. This is best given
within a homogeneous group of subjects. Whether it is ultimately also
possible to determine blood pressure from a photopletysmographic signal
in elderly persons and for pathological changes through a very large
reference database cannot yet be answered.

Keywords: blood pressure, photoplethysmography, FFT-features, ma-
chine learning, neuronal network
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Kurzfassung

Diese Masterarbeit beschäftigt sich mit der kontinuierlichen Blutdruck-
schätzung durch ein künstliches neuronales Netzwerk aus einem photo-
plethysmographischen Signal eines optischen Sensors. Für das Training
des künstlichen neuronalen Netzwerkes werden aus den gefilterten und
aufbereiteten Messdaten Einzelherzzyklen extrahiert die anschließend
mit einem Fast-Fourier-Transformations-Algorithmus in komplexe Fre-
quenzkomponenten zerlegt werden. Diese Komponenten werden als Ein-
gangsgröße für das neuronale Netzwerk mit drei versteckten Schichten
verwendet. Für das Training des Netzwerkes werden zwei unterschiedliche
Datenquellen herangezogen. Einerseits eine öffentliche Datenbank (MIMIC)
die optische Signale von den Fingerspitzen von Probanden zur Verfügung
stellt und anderseits eigene Messungen mit einem optischen PALS-2 Sen-
soren am Handgelenk der Probanden. Als Referenzmessung wird für die
Datenbank MIMIC eine invasive Blutdruckmessung und für die selbst
akquirierten Daten die kontinuierliche, nichtinvasive Methode nach Peňáz
verwendet.

Die Arbeit hat gezeigt, dass die Möglichkeit besteht, den Blutdruck
aus dem photoplethysmographischen Signal von Probanden zu ermitteln,
wenn Daten mit ähnlichen Eigenschaften in den Trainingsdaten vorhanden
sind. Dies ist am besten innerhalb einer homogenen Gruppe von Proban-
den gegeben. Ob es letztlich auch möglich ist durch eine sehr große Ref-
erenzdatenbank, bei älteren Personen und pathologischen Veränderungen
den Blutdruck aus einem photopletysmographischen Signal zu bestimmen
kann noch nicht beantwortet werden.

Schlüsselwörter: Blutdruck, Photoplethysmographie, FFT-Features,
maschinelles Lernen, neuronales Netzwerk
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1. Introduction

1.1. Motivation

Arterial blood pressure is a very important vital parameter in the diagnosis
of cardio vascular diseases like myocardial infarction or heart failure,
and to observe their treatment success [1]. Currently several methods
exist to measure the arterial blood pressure noninvasively, like using the
Korotkoff sounds, the oscillometric method [2] or the method of Peňáz [3].
The Korotkoff and oscillometric method are easy to implement and the
technical effort is very low and cheap. However, these methods require
to inflate and deflate the cuff, which interrupts the arterial blood flow.
This interruption heavily influences the cardio vascular system, making a
certain recovery phase necessary before the measurement can be repeated.
It is recommended to keep the measurement interval smaller than two
minutes to achieve reliable results [4]. Contrary to that, the Peňáz method
allows a continuous measurement using a regulation circuit to achieve a
constant extremities blood volume. However, the technical effort for this
method is quite high, including the oscillometric reference measurement.
This is limiting the applicability to stationary measurements like in an
intensive care unit and the cardio vascular system is also influenced by
the measurement. For some diseases a continuous measurement of the
arterial blood pressure is desirable during activity, sleep or simply for a
long term observation in daily routine. Using the existing methods this
can be done until a certain degree, however due to the measurement
principles it can be very disturbing for the patient especially during
physical activity and sleep. Additionally the interest on wearable devices
and fitness tracking is rising based on the need to control the state of
health and for workout monitoring. By measuring the blood pressure
at a medical appointment, the behaviour of the patient changes and
this leads to a change of his bio-signals. This phenomenon is called the

1



1. Introduction

’white coat effect‘ which leads to increased blood pressure due to the
nervousness during medical examinations. A more descriptive term for
the cardiac behaviour is home measured data which avoids this effect [5].
BP monitoring systems for easy self-measurement may benefit patients by
providing information about the effect of antihypertensive medication. The
higher the BP, the higher the risk for cardiovascular disease, for example
myocardial infarction, heart failure, stroke and other risks like kidney
disease [1].

The target of this thesis is to investigate whether it is possible to use the
measurements of the optical PALS-2 sensor for non-invasive continuous
blood pressure measurement. This method is based on an optical absorp-
tion measurement where the signal is inverse proportional to the arterial
blood volume (Photoplethysmography (PPG)). The shape of this curve
changes with blood pressure according to the arterial wall stiffness as
described in [6] and additionally depends on many physical and biological
factors. This effect is exploited to estimate the systolic and diastolic blood
pressure using a neural network.

1.2. Previous work and defined scope

This thesis is based on a previous work [7] with promising results. In the
previous work individualized models were trained. This means that an
unique training process has to be done for each individual. The achieved
weights and biases of the artificial neural network (ANN) are only trained
for this specific person. PPG data provided by the MIMIC database and
self measured data by using the Infineon Opto ASIC PALS-2 were used as
basis for the blood pressure (BP) estimation. The work showed that the
principle of blood pressure estimation using photoplethysmograpic data
can work, however the result should be viewed critically, because of the
very small dataset used. 30 samples were used to train the neural network
and the cycles were selected manually for the self-measured data. Only a
few minutes per individual were extracted from the database and used
for training and testing the neural network. This leads to a very low data
variability and a small range of blood pressure values.
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1.2. Previous work and defined scope

The following section summarizes the predefined scope of this work.

a. State of the art for continuous blood pressure measurements
Literature research concerning possible modern methods for contin-
uous BP measurement should be done.

b. Arterial wall mechanics
Providing knowledge concerning the physiological background and
how the blood pressure shape is merged and affected.

c. Sensor communication and data tracking environment
Development of an environment for easy sensor communication,
data tracking and data saving.

d. Confirmation or disproof of the main principle
The principle of blood pressure estimation using photoplethysmo-
graphic signals should be investigated.

e. Expansion of the dataset
If part d. is proven to be possible, the dataset should be expanded
for getting a wider range of data and people.

f. Generalized method of blood pressure estimation
Examinations concerning the possibility to achieve a general neu-
ral network for estimating blood pressure for different individuals
should be performed.

The system should be developed in Python, an open source program-
ming language including packages for deep learning and signal process-
ing.

3



1. Introduction

1.3. Overview of the thesis

The aim of this thesis is to estimate a persons blood pressure from his
photoplethysmographic measured signals. The general part describes the
underlaying physiological mechanisms followed by engineering funda-
mentals, including the principle of the PPG measurement and a descrip-
tion of other reasonable non-invasive BP measurement methods as well
literature research concerning pressure estimation using artificial neural
networks. The PPG data quality is strongly varying for measurements and
patients due to different sensor positions, movements and person-specific
influences like skin color, the surface temperature of the skin, persons
weight and circulation. Due to that, the assessment of signal quality plays
an important role for reliable results. Figure 1.1 gives a short summary of
the implemented solution. After preprocessing, individual heart cycles are
cut out from the continuous measured signal. Due to different heart cycle
lengths it is necessary to zero-pad the single cycles to a predefined length,
then each is Fourier-transformed. Both, amplitude and phase information
describe the shape of the PPG heart cycle and thus is fed into the neuronal
network. The network is trained using BP data which were synchronously
measured with the PPG signal. Two different data sources were used
for the investigations: Data were provided on the MIMIC database [8]
including PPG signals measured on the fingertip combined with invasive
BP measurement. The self measured data were gained using the Infi-
neon Opto ASIC PALS-2 for PPG signal acquisition. A reference signal is
acquired using the Task Force Monitor (V2.3.20, CNSystems, Graz, AUT).

4



1.3.
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Figure 1.1.: Overview of the signal-processing flow; Individual cycles, cut out from the whole signal, are Fourier-
transformed and passed to the neural network (as features). After training, the network estimates a systolic
and diastolic blood pressure value
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1. Introduction

Different scenarios regarding the feature extraction and datasets were
investigated. The following list gives an short overview about the different
performed experiments:

1. Database; FFT; Test persons included in trainingsset
The fast Fourier transformation (FFT) was performed on single
heart cycles gained from the database data. The single heart cycles
were split into a train and a test set; cycles of each individual were
included in both train and test set.

2. Szenario 1. with additional windowing
After the extraction of single heart cycles out of the continuous
signal, windowing was performed at each cycle. The calculation of
the features, the data used and the distribution of the train and test
set corresponds to the previous scenario.

3. Database; FFT; Test persons excluded from trainingsset
As descibed in 1. the FFT was performed on single heart cycles
gained from the database data. The individuals were split into train-
and test-persons. In this case heart cycles of the test-persons were
not included in the training set.

4. Self-measured data; FFT; Test persons included in trainingsset
The FFT was performed on single heart cycles gained from the self-
measured data. The single heart cycles were split into train and test
set; cycles of each individual were included in both train and test
set.

5. Self-measured data; FFT; Test persons excluded from trainingsset
As described in 4. the FFT was performed on single heart cycles
of the self-measured data. The dataset was splitted as described in
3: Heart cycles of individuals included in the training set were not
used in the test set and vice versa. Since all available persons were
used to train the network, additional measurements were performed
to obtain test data from other people.

6. Database; Wavelet; Test persons included in trainingsset
To investigate the possibilities of Wavelets, the Wavelet transforma-
tion was performed on single heart cycles gained from the database
data. The single heart cycles were split into train- and test-set; cycles
of each individual were included in both train and test set.

6



2. Physiological background

2.1. Blood flow and pressure in the arterial
system

At contraction during the systole of the heart beat the pressure in the
left ventricle rises steeply, until it exceeds the internal aortic pressure. A
pressure gradient between the aorta and ventricle is generated, this leads
to the opening of the aortic valve. Now the blood moves with rapidly
increasing flow into the ascending aorta until the flow maximum appears,
afterwards the flow decreases back to zero. During the closing of the aortic
valve a small amount of blood flows back into the heart. This causes a
momentary negative blood flow and a pressure drop. At the beginning
of the following diastole, the blood flow in the aorta remains zero, the
blood stands still and the aortic valve is closed because the pressure in left
ventricle is smaller than in the aorta. At the beginning of the next systole
the aortic valve opens again and the heart cycle starts from beginning. The
insertion of blood into the aorta is done by a rhythmical blood flow pulse.
In most cases the duration between two pulses is longer than the pulse
itself. [9]

7



2.
P

hysiological
background

Figure 2.1.: Pressure an volume plot of the heart; The aortic, atrial and ventricular pressure in the left ventricle are shown
over time on the top of the Figure. Additionally, the corresponding ventricular volume, the ECG signal and
the Phonocardiogramare are shown over two heart periods [10].
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2.2. Winkessel function of the elastic arteries

Figure 2.2.: Internal heart structure including the direction of blood flow; On the right
side the left ventricle delimited by the mitral valve and the aortic valve is
pictured [11].

The time course of the aortic and ventricular blood pressure as well as
the corresponding ventricular volume are shown in Figure 2.1 over two
heart periods compared to the ECG signal and the Phonocardiogram [10].
Figure 2.2 shows the internal heart structure including the direction of the
blood flow [11].

2.2. Winkessel function of the elastic arteries

At each systole a blood volume of about 70 - 140 ml is ejected into the
arterial system. This leads to rhythmical volume fluctuations which do
not directly continue into the arterial system. During the ejection period
of the heart the aorta and vessels near to the heart, store one part of the
ejected volume. Due to their elastic properties they are able to increase
their volume. When the internal pressure decreases during the diastole,
the stored blood is delivered to adjacent vessels. This mechanism is called
the Windkessel function and ensures that the blood is pumped roughly
continuously through the arteries despite rhythmical heart activity. [12]

9



2. Physiological background

During the systole about 50% of the stroke volume is stored in vessels
near the heart and distributed during the diastole. The flow energy is
converted into potential energy of the elastic stretched arteries. At the
diastole it is converted into kinetic energy. This effect leads to a relief of
the heart because the transport of a balanced flowing blood mass requires
less effort for acceleration. [12]

Figure 2.3 shows the difference of the Windkessel function between
elastic and stiff arteries [13].

1

Figure 2.3.: Winkessel function for elastic and stiff arteries; Elastic vessels are able to
store blood volume during the systole and increase therefore the diastolic
flow. In contrast, less blood is stored by stiff arteries what leads to an increase
of the systolic pressure and a decrease of the diastolic flow [13].

2.3. Blood pressure wave propagation

The BP wave is generated as described in Chapter 2.1. It travels through
the arteries and is reflected multiple times. The reflection of the pulse wave
is caused at the branches of the aorta. The resulting pressure waveform
is the sum out of the forward travelling wave and the reflected, back
travelling wave. The back travelling wave can be interpreted as an echo of
the incident wave. The waveform depends on the mechanical properties
of the arteries. Due to the mechanical characteristics of the arteries, the
timing and also the magnitude of the incident and reflected waves can
change. In case the main arteries are healthy and elastic, the diastolic
blood pressure is increased. The reason is that the reflected wave merges

10



2.4. Blood pressure regulation system

2

Figure 2.4.: Change of the pressure waves shape along the arterial tree [14]

witch the incident wave during the diastole in the proximal aorta. In case
of stiff arteries, the velocity of the pulse wave increases and the incident
and reflected wave merge at the systole, so that the aortic systolic pressure
is increased.[14]

An important point regarding the relationship between the brachial and
the central aortic pressure is the effect of pressure wave amplification. The
value of the diastolic BP changes little across the arterial tree, the mean BP
sinks slightly. The value of the systolic BP is increased in more peripheral
regions shown in Figure 2.4. The pulsatile components of the systolic BP
and pulse pressure (PP) can vary greatly. In general brachial systolic BP
measurements tend to overestimate the central systolic blood pressure.
[14]

2.4. Blood pressure regulation system

The simplified BP regulation system can be shown as a typical regulation
loop. The mean arterial pressure depends on the product of the peripheral
flow resistance and the cardiac output. A drop in blood pressure can be
counteracted by increasing the cardiac output or the peripheral resistance.
Pressure should be kept at a specific level and can be seen as the control
variable of the regulation system. Baroreceptors, located at four areas in

11



2. Physiological background

the arterial system, are placed in the vessel’s wall for determining the
actual pressure. The sinus caroticus (a vessel dilation at the beginning of
the internal carotic artery) and the aortic depressor nerve act as stretch
receptors. The advantage compared to the usage of pressure receptors
arises from the non-linearity of the vessels wall stretching curve. The
counter regulation of the system is even stronger the lower the pressure
is. For the same pressure change, the change of the corresponding stretch
value is not linear for high and low pressures. In case of low pressures,
the stretch change is much higher than at high pressures. The information
about the actual stretch of the arteries is processed in the circulatory center
of the central nervous system. [9]

The higher the stretch and the faster the arteries are stretched the higher
is the pulse density of the action potential. This results in an excitement
of the nervus vagus (the tenth cranial nerve) proportional to the stretch of
the arteries. The nervous vagus is involved in the regulation of the activity
of almost all internal organs and the largest nerve of the parasympathetic
system. The nervous vagus regulates the vasoconstriction, by changing
the Windkessel and the peripheral vascular resistance, the stroke volume
and the pulse rate are decreased. [9]

In case of drop of the arterial stretch the sympathetic nerves are acti-
vated. The vasoconstriction and the heart muscles frequency is increased
(mainly by the release of noradrenaline). Additionally, the vessel’s tonus
and peripheral resistance are increased. The effect of the vasoconstriction
is applied rapidly but has a fleeting effect. In addition, adrenaline is re-
leased in the bloodstream and stimulates with a persistent effect the heart
and the vasomotoric center. Also the blood reservoir, the veins, the liver
and the spleen are stimulated and they increase the blood volume and
therefore the mean arterial strain. [9]

Figure 2.5 illustrates the described regulatory system. The system be-
haves in analogy to an electrical circuit and follows Ohm’s law. This
topic is treated in Chapter 3.2. Other influences of this regulation systems
are the thermoregulation of the hypothalamus, ascendancies of the dien-
cephalon(limbic system) and telencephalon (worries) [9]. This Chapter
cannot accurately describe the whole scope of acting influences and should
only give a short overview about this topic.

12



2.5. Classification of blood pressure

Figure 2.5.: Overview of BP regulation system; The arterial strech is related to the arterial
blood pressure and measured by stretch receptors. The stroke volume of the
heart, the heart frequency, the vasoconstriction and the blood volume are
regulated to influence the arterial pressure.

2.5. Classification of blood pressure

The lowest value in the blood pressure curve is normally reached at the
beginning of every pulse, that means at the end of the diastole. It is called
the ’diastolic pressure‘ and has a value of about 80 mmHg (10.7 kPa).
The peak value is reached in the systole and is called ’systolic pressure‘,
normally reaching about at 120 mmHg (16.0 kPa). [9]

Table 2.1 shows how BP is classified. The personal blood pressure is
strongly related to everybody’s lifestyle. To prevent cardiovascular risks by
decreasing hypertension, lifestyle modifications such as weight reduction
and moderation of alcohol consumption can achieve good results. For
example a weight loss of 10kg leads in average to an approximately systolic
BP reduction of 5 -20 mmHg. [1]

2.6. Variability of blood pressure

Blood pressure is a variable haemodynamic phenomenon that is influenced
by many factors, also by the measurement itself. The blood-pressure
variability (BPV) includes short term fluctuations occurring within a 24 h

13



2. Physiological background

Table 2.1.: Classification of blood pressure for adults aged 18 years or older [1]
BP classification Systolic BP Diastolic BP

mmHg mmHg
Normal < 120 and < 80

Prehypertension 120 - 139 or 80 - 89
Stage 1 hypertension 140 - 159 or 90 - 99
Stage 2 hypertension ≥ 160 or ≥ 100

period and changes over more-prolonged time periods with different
underlying mechanisms. Very short term BPV can only be measured
by beat-to-beat measurements over time. BPV can be divided into the
following types: [15]

Very short-term BPV (beat-by-beat)
Short-term BPV (within 24h)
Long-term BPV (day-by-day)
Very long-term BPV (visit-to-visity)

The BPV analysis gives an insight into the central sympathetic drive,
humoral and rheological factors, behavioral and emotional factors, activ-
ity/sleep and ventilation [15]. Figure 2.6 shows a typical blood pressure
progression. It shows that the beat-by-beat variations are in the range of
5 mmHg.
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2.6. Variability of blood pressure

Figure 2.6.: Short term blood pressure variability; Beat-to-beat variations are in the range
of 5 mmHg; Measured by using the Task Force Monitor.

15





3. Medical engineering
fundamentals

3.1. Photoplethysmography

Photoplethysmography is an optical technique for non-invasive blood vol-
ume change estimation. This is done by lighting up tissue and measuring
the reflected or transmitted light. This signal is widely used for heart rate
and oxygen saturation measurements. [16]

The main principle of PPG signal acquisition is shown in Figure 3.1. The
variation of the blood volume is caused by the pulsation of blood pressure
over the cardiac cycle. Depending on the current pressure the diameter
of the arteries is more or less dilated and the amount of blood changes.
This thesis is based on a measurement based on the backscattering of
green light located on the wrist. The wrist was chosen as measuring point
because of possible further applications in commercial wrist watches.

Figure 3.1.: Overview of PPG signal acquisition [17]

17



3. Medical engineering fundamentals

The PPG signal is composed of a pulsatile part (AC) and a slowly
varying DC baseline. The DC baseline is manly affected by various lower
frequency components attributed to the sympathetic nervous system
activity, respiration and thermo-regulation. The AC part is attributed to
cardiac synchronous changes in the blood volume of each heart beat,
and has its fundamental frequency typically around 1 Hz according to the
pulse rate. The quasi-DC component superimposes the AC part and relates
to the tissues and the average blood volume. It is slowly variated due
to respiration, vasomotor activity, vasoconstrictor waves, Traube Hering
Mayer (THM) waves and also thermo-regulation. Various optical effects
as scattering, absorption, reflection, transmission and fluorescence are
included by light interaction with biological tissue. The amount of detected
light by the photodetector can be related on the following key factors:
blood volume, blood vessel wall movement and the orientation of the red
blood cells. [18]

3.1.1. Wavelength selection

Three main reasons are important for the selection of the wavelength for
the optical radiation: The optical water window, the isobestic wavelength
and the tissue penetration depth [18]. The absorption spectrum of water
and other biological tissues is shown in Figure 3.2.

The optical water window Water is the main constituent of the human
tissue. Light at longer infrared and ultraviolet wavelengths is ab-
sorbed very strongly by water, melanin absorbs stronger at shorter
wavelengths. The wavelength range with minimal absorption in the
human tissue is called the optical water window. [18]
This window in the near- infrared region defines the range between
650 to 1350 nm.

Isobestic wavelength The absorption between oxyhaemoglobin (HbO2)
and desoxyhaemoglobin (Hb) shows a significant difference, except
at the isobestic wavelength located at 805 nm. When measurements
use the isobestic wavelength, the signal should be unaffected by
changes in the blood oxygen saturation. [18]

Tissue penetration depth The penetration depth is the depth of light at
which the light intensity drops by 1/e and depends strongly on the
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3.1. Photoplethysmography

Figure 3.2.: Absorption spectra of water, melanin and haemoglobin at different wave-
lengths [19].

used wavelength [18]. The optical penetration depth for blue, green
and infrared light is shown in Figure 3.3.

[16] suggests that green light is more suitable for wrist sensor appli-
cations than blue or infra-red light. Green and blue light penetrates less
than infra-red light. This is the reason why PPG signals measured with
short wavelengths are less influenced by movements located in the deeper
tissue. The skin penetration depth of light is shown in Figure 3.3. The
optical penetration depth calculation can be performed using absorption
and scattering coefficient of the tissue and is given with Equation 3.1. [16]

δ(λ) =
1√

3 · µa(λ) · (µa(λ) + µs(λ))
(3.1)

Where δ is the penetration depth in mm, µa is the absorption coefficient
in mm−1 and µs is the scattering coefficient in mm−1 [16].

Figure 3.4 compares the PPG response at three different wavelengths:
blue (465 nm), green (520 nm) and infrared (940 nm) and at different light
intensities: 1.28 mW/sr, 0.82 mW/sr and 0.26 mW/sr. The measurements
were done on the wrist using normalized radiant intensities. Artifacts
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Figure 3.3.: Optical penetration depth vs. wavelength of light [16]

were induced in the middle of the recordings by tapping the PPG sensor
three times in a row. Each experiment was repeated tree times. Three
criteria were investigated: the root mean square value of the PPG signal
before the artifact, pulsation to stationary component ratio (AC/DC) and
artefact to signal ratio (ASR). The ASR was calculated with the following
equation: [16]

ASR =
Va

VPPG
(3.2)

where ASR is the artefact to signal ratio, Va is the magnitude of the
PPG signal during tapping the sensor and VPPG is the average amplitude
of the PPG signal 20 seconds before the artefact [16].

It is shown that green light has the highest RMS, the lowest ASR and
the highest AC/DC values when using on the wrist. This shows that using
green light at wrist PPG application is more suitable than blue or infrared
light. It penetrates deep enough to sense blood pulsations and it is less
influenced by the DC part of the tissue. [16]
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3.1. Photoplethysmography

Figure 3.4.: Left top: RMS value of the PPG signal as the function of light intensity
measured on the wrist; Right top: AC/DC ration at the function of light
intensity measured on the wrist; Bottom: Artifact to signal ratio as the
function of light intensity measured on the wrist [16]
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3.1.2. Instrumentation

The main components of PPG instrumentation are the light source (LED)
and a matched photodetector. LEDs have a long operation life (> 105 h)
and a narrow bandwidth (the full width at half maximum (FWHM) is
about 24 - 27 nm). They are compact, mechanically robust and they operate
over a wide temperature range. The LEDs averaged intensity should be
constant. The photodetector and its characteristics are chosen to match
those of the light source and converts the light energy into electrical
current. Usually it is sensitive, low-cost and compact. The photodetector
is typically connected to an transimpedance amplifier circuit followed by
an filtering circuit. [18]

Figure 3.5 show the electronic building blocks used for PPG measure-
ments. Figure 3.6 shows a typical transimpedance amplifier.

Figure 3.5.: Typical arrangement of the electronic building blocks used for PPG measure-
ments. The transimpedance amplifier is followed by a low-pass against the
noise and a high-pass against the DC part. The AC part is amplified and the
preprocessed signal can be used for further processing.

Figure 3.6.: The light intensity which hits the photodiode is converted into an amplifier
output voltage by a transimpedance amplifier stage [18].
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3.2. Relation between pressure, flow and
resistance: The omic law

This Chapter should give an overview about the cardiovascular relations of
blood pressure, blood flow and body internal flow resistance. The arterial
and venous system of the human body can be described by arterial and
venous compartments and flow resistance. The different compartments
are separated by a flow resistance and described by a compliance element.
This compliance element is given by the inverse elasticity of the vessels.
The major resistance to flow is located in the peripheral regions between
the arteries and veins. The flow resistance of large vessels is small in
comparison to the resistance of peripheral vessels. In analogy to electrical
systems, blood pressure plays the role of voltage and volumetric flow the
role of current. In the described model it is assumed that the diameter
of the middle cerebral arteries remains constant. Measurements of the
middle cerebral blood flow have shown that the blood velocity in this
vessel can be seen as constant despite big changes of the diameter because
of different biological stimuli. The assumption is based on the volume
conservation law. By calculating the volume and volume change in each
compartment blood pressure and volumetric blood flow can be found.
Equations for the arterial and venous compartments are similar. Equation
3.3 shows how the volume at each cardiac cycle is calculated. [20]

Vstroke = Cp (3.3)

Where Vstroke is the volume pumped out during one cardiac cycle in
cm3, C is the Compliance in cm3/mmHg and p in mmHg references the
blood pressure. Out of the volume per heartbeat the cardiac output can be
calculated. [20]

CO = HVstroke (3.4)

Where CO is the cardiac output in cm3/s, H is the heart rate in beats/s
and Vstroke gives the volume of each stroke [20]. The change of the volume
V of each compartment can be described by Equation 3.5.

dV
dt

= qin − qout (3.5)
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q =
pin − pout

R
(3.6)

Where qin and qout in cm3/s are referred to Kirchhoff’s current law. R is
the flow resistance. Based on Kirchhoff the compartments can be seen as
nodes. Many compartments own more than one inflow and outflow. As
an example the vena cava has three inflows. [20]

3.3. Mechanics of the arterial wall

Figure 3.7.: Structure of the arterial wall [21]

The elastic properties of the blood vessels are decisive for the relation-
ship between the internal blood pressure and the PPG signal. Due to the
anisotropic composition of the arterial wall and the resulting non-linear
elasticity of the blood vessels, simply applying the Hook’s law would not
adequately describe the vessels behaviour at a changing blood volume.
Figure 3.7 shows that the arterial wall consists of three layers, the tunica
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3.3. Mechanics of the arterial wall

intima, tunica media and tunica externa, which contain collagenous and
elastic fibres as well as muscle cells. Collagen, elastin and smooth muscle
cells are mainly involved in the generation of stress in the arterial wall.
The stiffness is generally described with the Youngs modulus E. E is a
mechanical property describing the relationship between stress and strain
of a specific material. The elastic behaviour of the arterial wall, can be
approximated by Equation 3.7 using a combined modulus. The Equation
gives an relation between E and the transmural pressure p. The transmural
pressure gives the difference of pressure inside and outside of the vessels
wall. [6]

E(p) = E0eγp (3.7)

Where E0 is expressed in Pa and the factor γ in mmHg−1 depends on
the measuring site and the species, which is an empirical determined
factor. γ is in the range of 10 · 10−3 mmHg−1. Equation 3.8 describes the
elasticity in dependence of the pressure p, Poisson’s ratio σ, the arterial
wall thickness h and the mean radius of the blood vessel r. [6]

E = (1− σ2) · r2

h
· dp

dr
(3.8)

For the blood pressure estimation, the circumferential stress is the most
important stress, the conclusion is that E represents the tension-strain
modulus and σ can be set to zero [6].
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3.3.1. Mathematical modelling of the
photoplethysmographic signal

For achieving a simple mathematical model for the PPG signal, it is
assumed in [6] that the amplitude of the PPG signal is proportional to the
blood volume in the vessels. The volume in the vessels can be descried
with Equation 3.9, which emanates from a constant vascular radius r. [6]

V = kπr2 + V0 (3.9)

In this Equation k can be interpreted as the average of the arterial blood
vessel length and is assumed constant, V0 is added to correct for the cases
of micro vascular and venous blood volume. By combining the Equations
mentioned in the previous Chapter 3.7, 3.8 and 3.9 and by supposing that
V0 does not pulsate the following equation is derived. [6]

V =
k(E0γh)2π

(b + eγp)2 (3.10)

The constant b is introduced by integration, it is assumed that b is
independent of E0, γ and h. By approximating the Equation by its first
Taylor series order, the model describing V, and thereby also the PPG
signals amplitude, can be further simplified. The first order is given in
3.11. [6]

V≈k(E0γh)2π

b2 (1− 2
b

e−γ p) (3.11)

The amplitude of the AC part of the PPG signal is very small compared
to the amplitude of the DC part. This leads to a small normalized signal,
the normalization is shown in Equation 3.12. [6]

PPGnorm =
V −Vmin

Vmin
=

2(e−γpmin − eγp)

b− 2eγpmin
(3.12)

The PPG signal is strongly person dependent mainly due to the person
related blood vessel elastic properties E. This circumstance makes it diffi-
cult to find a model that works for all people to the same extent. Due to
the normalization, the signals of different individuals become comparable,
because the dependence on E is cancelled out.[6]
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3.4. Continuous non-invasive blood pressure
measurement methods

3.4.1. Cardiovascular unloading technique

The vascular unloading technique is one of the most basic procedures
for continuous non-invasive BP measurements. This widely used method
is based on a PPG measurement. Light is illuminating an extremity of
the human body containing an artery (e.g., finger, carpus, temple , etc.).
The pulsatile blood volume absorbs part of the light, and the reflected or
transmitted light is measured by a photo cell (PC). The basic principle can
be seen in the original drawing of Peňáz (1973) shown in Figure 3.8.

Figure 3.8.: Principe of the Penaz system shown in a block diagram: Lamp (L), Finger
(F), photo cell (PC), segments of pressure cuff (S), average of PC-signal
(C1), difference amplifier (DA), plethysmographic signal (PG), correcting
network (PID), set point (C2), SW switch between open and closed loop,
power amplifier (PA), electro-pneumatic transducer (EPT) [3]

The more blood in the arteries the more light is absorbed from the
blood and less light encounters the photo cell (PC). C1 represents the
mean value of the PPG signal. A differential amplifier (DA) subtracts C1
from PC. The result is the PPG signal (PG). PG is used as input of an PID
(proportional-integral differential) - controller, the output of the controller
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is added to the constant set point C2. This value is the control size of the
electro-pneumatic transducer (EPT). By the EPT a pressure signal pc(t) in
the cuff is produced. This pressure is applied to the finger illuminated by
the IR-light. [3]

It should be achieved that PG shall become zero over one cardiac cycle
due to the applied pressure pc(t). During the systolic increasing of the
blood volume, pc(t) is increased until the volume in the finger is decreased.
During the diastole the fingers volume is decreased and the system also
decreases pc(t). Because blood volume is held constant over time the
intra-arterial pressure pa is equal to the cuff pressure pc(t), witch can
easily be measured. [3]

The main drawback of this method is, that the system had to be cali-
brated once via a cuff-based measurement witch may cause deviations
between the real blood pressure and the measured. Without this calibration
the system can only track the local temporal change in pressure.

3.4.2. Pulse wave velocity method

Figure 3.9.: Schematic of the used signals in the pulse velocity calculation. [22] The
pulse wave transit time (TPTT) describes the duration of the blood wave
propagation through the arterial tree. Alternatively, it can be replaced by
the pulse arrival time(TPAT), because of the low variations over time of the
pre-ejection period (TPEP). [22]

The pulse wave velocity method is based on the pulse transit time
(PTT) which describes the duration for the propagation of the BP wave
through the arterial tree. For determining the PTT, biological signals
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as shown in Figure 3.9 are analyzed: pulse wave, electrocardiogram and
phonocardiogram. Using these signals the pulse wave velocity is calculated.
There is an opposite correlation between blood pressure and PTT. Equation
3.13 shows the relationship between the systolic blood pressure ps and the
pulse wave transit time TPTT(t). [22]

ps =
1

α·ln(2ρr∆x2/(E0hT2
PTT))

(3.13)

The Equation is derived by combining blood vessels elasticity and
the Moens-Kortewes Equation, describing the relation between Youngs
modulus of the arterial wall E and the speed of the pulse wave. α is a
constant related to be blood vessel’s characteristics, E0 is the modulus
of longitudinal elasticity of the blood vessel when ps is 0 mmHg, h is
the vascular wall’s thickness, ρ is blood density, r is the intra-vascular
diameter and ∆x the distance between the pulse wave measurement point
and the heart. Figure 3.10 shows a picture of the parameters used for
blood vessels diameter description. [22]

Equation 3.13 does not take into account changes of the blood vessels
diameter and because of that it does not cover a wide range of physiologi-
cal status from rest to exercise. Due to stress or exercise the blood vessels
diameter increases. In Equation 3.14 ∆p describes the variation of the intra
vascular pressure times the central blood vessels angle ∆θ. [22]

∆pr∆θ = 2E∆r/r·hsin(∆x/2) (3.14)

Where E is the blood vessel’s Young modulus of longitudinal elasticity
and ∆r is the variation of the blood vessel’s diameter. By combining
Equation 3.13 and 3.14 and after performing several mathematical steps
Equation 3.15 is derived. In case of noisy PPG signals it is often not possible
to detect TPTT(t) exactly. The variations over time of the pre-ejection period
are very small because of that TPTT(t) is replaced by TPAT(t), the pulse
arrival time. It is defined as the time between the foot print of the pulse
wave signal and the R wave peak event of the electrocardiogram. [22]

ps =
1

α×ln(2ρ∆x2/c0hT2
PAT − 1/αc0)

(3.15)

29



3. Medical engineering fundamentals

Figure 3.10.: Image of blood vessel’s parameter: variation of the intravascular pressure
∆p, variation of the blood vessels diameter ∆r, the central angle of the
blood vessel ∆θ and E is the blood vessel’s Young modulus of longitudinal
elasticity. [22]

Equation 3.15 shows ps the systolic BP in dependence of a constant
concerning blood vessels characteristics α, blood density ρ, the distance
between the pulse wave measure points ∆x and the heart, the integration
constant c0 and the pulse arrival time TPAT(t).

Using the main principle of the relation between PTT and BP described
in Equation 3.13 provides many different approaches for BP measurements.
An interesting approach for the usage of the PTT is shown in Figure 3.11.

Pulse wave velocity method using Diode Laser

By recording the mechanical movements of the blood vessel’s wall and
using an ECG signal as reference signal, a time delay for different regions
of the body is computed and additional information from the PPG signal
can be used for evaluation. The blood vessel’s profile is registered using
a laser diode. This experimental device is able to detect the pulsation
profiles of major arteries, including the profile of the pulse pressure. The
laser light interacts with the human body and is backscattered by the skin
into the laser. This leads to self mixing of the backscattered and generated
laser light in the diode laser cavity, causing a change in the laser pump
current. For registration of the changes two different methods are used: a
photo diode or a resistor in series to the laser pump current. Figure 3.11

shows this experimental arrangement. Via an optical fiber the probing ray
of the laser is guided to the skin surface. In this example Mp2 is placed
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Figure 3.11.: Experimental arrangement for BP monitoring using the pulse wave delay;
The mechanical movement of the vessels wall is registered by a laser diode.
Via an optical fiber the probing ray is guided to the skins surface located at
MP1 and MP2 and the time delay is calculated. As reference signal the ECG
is recorded by a 4 leads system. Additionally, the PPG signal is measured
and used for evaluation. [23]

close to the neck artery and MP1 is placed on the earlobe. As reference
signal an ECG is recorded by a 4 leads system. Additionally, a PPG signal
on the ear is measured. The developers were not able to measure the BP
at this time because of very large dispersion in their measurements. [23]

3.4.3. Neural Network-based method using time domain
features of the photoplethysmographic signal

This method is based on the PPG signal’s shape and amplitude and the
assumption that this shape correlates to the individual’s blood pressure
[24]. Figure 3.12 shows the parameters used for describing the PPGs signal
shape. These time domain features are used for BP estimation. The 21
parameters chosen, include systolic time, the diastolic time and a ratio
between them. Different times are extracted at 10 %, 25 %, 33 %, 66 % and
75 % the of PPGs amplitude. A feed-forward back propagation artificial
neural network architecture with two hidden layers was used for the
estimation. The MIMIC database was used for training and testing. Over
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15000 cyles of different individuals were analyzed, the heart cycles of the
different individuals were used in both train and test set. A resulting
root mean squared error of 3.80 ± 3.36 mmHg for systolic and 2.21 ±
2.09 mmHg for diastolic pressure was achieved for the test set.[24]

Figure 3.12.: The shape of the PPG signal, measured on the fingertip, is described by
21 parameters. This time domain features are fed into the neural network
which is used for BP estimation [24].

3.4.4. Blood pressure estimation with FFT-based neural
networks

This method described in [6] uses key features of the FFT of the PPG signal
such as amplitudes and phases of cardiac components. As input for the
FFT calculation one period of the PPG signal is extracted including 10 % of
the previous and 15 % of the following heart cycle. On each extracted cycle
an FFT is performed and the normalized amplitude and phase coefficients
are use to train the neural network. In this paper data from the MIMIC
II database are used as datasource including PPG measurements done at
the fingertip and invasive continuous BP measurements. Because the used
data is measured by commercial pulse oximeters, which had been highly
amplified and filtered, the autor recommends this also for data from other
sources. The single cycles were split into train and test set, cycles of the
same individuals were present in both. As result for the test set, a fitting
error of ±7.08 mmHg for the systolic and ±4.66 mmHg for the diastolic
value was achieved. [6]
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4.1. Data collection

4.1.1. Database data

Since measurements are very time consuming, for the first investigations
database data was used. Several databases are provided by Physionet
and can be downloaded at physionet.org.[8] The MIMIC database was
selected for this propose. It provides physiological data which include
invasive blood pressure measurements and synchronously measured PPG
data on the fingertip. The PPG measurements provided on this database
are highly filtered and preprocessed. 56 patients were used and up to 8 h
of measurement per patient were downloaded. The provided data has
a sampling rate of 125 Hz for both signals. For MATLAB and Python a
toolbox called WFBD (WaveForm DataBase) is provided which can be
easily integrated in those environments. To achieve a fast access to this
data it was saved locally.

4.1.2. Sensor attributes, communication and User
Interface

For own data collection, a proximity and ambient light sensor called
PALS-2 from the Infineon Opto ASICS is used. This sensor integrates
photodiodes and multiple LED driver outputs. The LEDs are driven in a
pulsed operation mode, which makes the measurement and further the
cancellation of ambient light possible. The proximity and the ambient
light inputs are measured with 16 bit resolution, the maximum amount
of driving current per LED is 200 mA and the maximum sampling rate
is 250 Hz. The PALS-2 ASIC has two separate signal paths for proximity
and ambient light functions. Three LED output pads are provided for
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controlling external LED light sources in proximity mode. Figure 4.1
shows a block diagram of the PALS-2. [25]

Figure 4.1.: PALS-2 block diagram

The used placement of the two LEDs and the photodetector is shown
in Figure 4.2. The shown packaging was realized by OSRAM Opto Semi-
conductors. The PALS-2 photodetector is placed between two green LEDs,
the components are fixed together in one housing.

Figure 4.2.: Used packaging; Arrangement of LEDs and photodetector

The IFX PALS-2 demo board was used for data acquisition. This board
contains the main components needed for communication with the PALS
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as well as the power supply of the system and the PALS-2 device itself.
In Figure 4.3 the demo board included in a wearable wrist watch fixture
is shown. Figure A.1 in the Appendix shows the schematic of the used
demo board.

Figure 4.3.: IFX PALS-2 demo board

For data monitoring and sensor communication a user interface was
developed in Python. The data exchange between the program and the
PALS-demo board is done via universal serial bus (USB) using the human
interface device (HID) class. In the first steps the communication port
is opened and the initialization of the sensors registers is done. At the
initialization the oscillators of the sensor are trimmed and the sampling
rate is set. To obtain similar data as provided on the database a sampling
frequency of 128 Hz is used. New measured data is always placed on the
opened port by the sensor. An interrupt occurs in case of new data and the
data is fed into a queue were it waits for further processing. Another part
of the routine is responsible for data preprocessing and displaying. The
data is taken out of the buffer and stored internally. The preprocessing step
as well as the update of the data displaying graph is triggered by a timer
interrupt. To achieve a better performance only the last 10 seconds of data
are used for live data processing (filtering etc.). The measured data can be
stored in an .txt file for later usage. The user interface is shown in figure
4.4 To achieve an optimal utilization of the available measurement range a
current regulation loop was developed. On a time triggered interrupt the
system checks if the measured signal is within a certain ADC value range.
If the amount of signal is too small, the LED driver current is increased.
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In case of too high measured values, the possibility of clipping the PPG
signal is high and the driver current is decreased.

Figure 4.4.: User interface of the developed Python program; The upper signal represents
the raw signal; the lower one the filtered, inverted signal.

4.1.3. Measurement setup

The continuous BP measurement was run using the Task Force Monitor
simultaneously to the PPG measurement. The Task Force Monitor is a
device using the Cardio vascular unloading technique described in Chap-
ter 3.4.1 and measures the blood pressure continuously with a sampling
frequency of 100 Hz. Figure 4.5 shows the used measurement setup. The
arm cuff measures the absolute pressure which is used as calibration
measurement. The finger cuff follows the continuous blood pressure.

The Task Force Monitor is very sensitive to the blood circulation of
the test persons fingers. As explained in Chapter 3.4.1 the PPG signal
is used to measure the change of the blood pressure over time. One of
the observed limitations is that in case of to cold limbs the system was
not able to detect the persons blood flow in the finger. A critical point
of this setup is that the reference blood pressure is measured by an arm
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Figure 4.5.: Measurement setup; Left arm: Task Force Monitor finger-cuff and PALS-2
demo board; Right arm: Task Force Monitor arm-cuff

cuff using the oscillometric method which is highly influenced by motion
artifacts, positioning of the cuff and other factors like talking. The reference
measurement itself is a challenge, and perhaps a more precise reference
can be obtained by an invasive measurement.

4.2. Preprocessing

4.2.1. Band-pass filtering

Choosing proper filter coefficients represents a fundamental point in data
processing. Disturbing effects should be filtered out; the shape which
carries the information of the blood pressure should not be influenced. A
digital IIR filter was used which filters the signal forwards and backwards
to achieve a phase shift of 0 degrees (bidirectional filter). This is needed to
prevent phase lags between the PPG and BP data after alignment which
is discussed in Chapter 4.2.3. To achieve the best results, investigations
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Figure 4.6.: Measured raw PPG data; Low frequency drift and high frequency noise; The
signal was measured on the individuals wrist.

using different high-pass cut-off frequencies were made. Table 4.1 shows
the achieved results for different cut-off frequencies. A predefined own
measured dataset from one individual was used. The artificial network
was trained for different cut-off frequencies, all other parameters of the
whole system were kept constant. If the size of the dataset increases, also
the time for the training process of the networks increases. Table 4.1 was
the basis for further investigations using more train and test data.

This Table 4.1 shows that the results in the range of 0.5-0.7 Hz only
differs in the range of 0.8 mmHg2. Table 4.2 shows the achieved results in
the predefined frequency range using train and test data of four different
individuals (4000 heart cycles).

Theoretically, it is worse for the final result to filter too much information
than to keep unnecessary frequencies. With correct usage of the neural
network it should learn to ignore unneeded frequency components. On
the other hand the low-pass filtering was necessary for the PPG heart
cycle shape inspection. The high frequency noise should not disturb the
comparison with the template as described later in Chapter 4.3. By using
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Table 4.1.: Achieved results using data of one individual for adjusting the lower cut-off
frequency; Settings of the artificial neural network: epochs max: 3000, batch
size: 30: learning rate: 0.0002; Filter settings: filter order: 6, cut-off frequency
low-pass: 9 Hz; The combined MSE for train and test data is shown for result
assessment.

high-pass cut-off Train error Test error
Hz mmHg2 mmHg2

0.2 12.51 31.28
0.3 15.01 19.37
0.4 13.33 17.41
0.5 12.55 15.42
0.6 12.24 15.57
0.7 11.94 16.21
0.8 12.12 26.50

Table 4.2.: Achieved results using data of 4 different individuals for adjusting the lower
cut-off frequency; Settings of the artificial neural network: epochs max: 7000,
batch size: 300: learning rate: 0.0002; Filter settings: filter order: 6, cut-off
frequency low-pass: 9 Hz; The combined MSE for train and test data is shown
for result assessment.

high-pass cut-off Train error Test error
Hz mmHg2 mmHg2

0.5 45.44 51.35
0.6 43.35 48.29
0.7 39.10 45.77

to high cut-off frequencies for the low-pass the system was not able
to match the PPG signal and the BP signal in the time domain using
the correlation function as descried later in Chapter 4.2.3. By using the
frequency spectrum of the PPG signal a cut-off frequency of 9 Hz was
selected. The spectrum in Figure 4.7 shows that the amplitude components
of the signal approach zero at approximately 9 Hz.
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Figure 4.7.: Amplitude information of the PPG signal measured on the individuals wrist;
Example of a amplitude spectrum showing the validity of the low-pass cut-off
frequency decision. (unfiltered)

Table 4.3.: Order and cut-off frequencies of the applied IIR band-pass filter on the PPG
signal

Order Cut-off frequency
Low-pass 6 9 Hz
High-pass 6 0.7 Hz
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4.2.2. Data re-sampling

The sampling rate of the used systems for own data collection, as described
in Chapter 4.1.3 is not equal for the PALS-2 and the Task Force Monitor.
The sampling frequency of the Task Force Monitor measurement is about
100 Hz and the used frequency of the PALS-2 was set to 128 Hz. It is thus
necessary to resample one of the signals to allow a direct comparison. The
internal oscillators of the sensor were pre-trimmed using the I2C interface
via the HID class by programming the Low-Power Oscillator Trimming
Register and the High-Performance Oscillator Trimming Register. Never-
theless, the effective sampling rate difference of the two different systems
is not known and therefore the up- and down-sampling values have to be
found. For this reason the FFT of the signals was calculated as shown in
Figure 4.8.

Figure 4.8.: Normalized magnitude of the FFT coefficients of the analyzed signals, the
x-axis shows the frequency in Hz

In the left part of the Figure, showing the spectrum of the blood pressure
signal, the main peak is shown at 0 Hz which represents the constant
component. This main component is not available in the right spectrum
because of the previous filtering of the PPG signal. The second dominant
peak represents the carrier frequency of the physiological signal. This
carrier is the beat rate of the heart and can also be found in the spectrum
of the PPG curve. To obtain the same sampling rate for both signals,
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the carrier frequencies have to be aligned. Figure 4.9 shows the carrier
frequencies if a sampling frequency of 128 Hz is assumed for both signals.

Figure 4.9.: Zoomed into carrier peak; Normalized magnitude of the FFT coefficients of
the analyzed signals, the x-axis shows the frequency in Hz

It is taken as assumption that the carrier frequency of the PPG signal is
correct and the carrier peak of the BP curve has to be adjusted. For both
horizontal axes a sampling frequency of 128 Hz is chosen which is the
sampling frequency of the PPG signal, and the frequency to be reached of
the BP data. The peak on the right spectrum occurs at 1.52 Hz and on the
left at 1.92 Hz. Since they are both coming from the same periodic process,
the peak at the left spectrum has to be shifted to the right ones position.
Equation 4.1 shows the expected proportion and Equation 4.2 the real
occurring relation between the carrier frequencies. The used up an down
sampling ratios can be found in Equation 4.3. By using the described
method the accuracy of re-sampling depends on the the FFT resolution.

f sPPG

f sBP
=

128Hz
100Hz

= 1.28 (4.1)

f sPPGpeak

f sBPpeak

=
1.92Hz
1.52Hz

= 1.26 (4.2)

up
down

=
192Hz
152Hz

= 1.26 (4.3)
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4.3. Quality assessment

Due to the limited resolution of the FFT, a fine tuning of the phase
adjustment is necessary. To find the remaining sampling difference, one
heart cycle out of the PPG signal and the matching cycle of the BP signal
were extracted. The length of both was calculated. The relation between
the cycle durations was used for the final resampling of the BP signal.
For up- and downsampling the Python function ’scipy.resample’ was
used. This function uses zero-padding in the frequency domain which
corresponds to a sinc interpolation.

4.2.3. Data alignment

By using own measured data, it is necessary to align the signal measured
by the PPG sensor and the Task Force Monitor. As data are collected on
separate systems and as there is no possibility for triggering available,
it is not possible to start the measurements at the same time. For phase
alignment the correlation between the two input signals is calculated. The
obtained information is used for shifting the curves. Because it is difficult
for the human eye to confirm the correctness of the operation, this is
done by looking at the heartbeat durations as shown in Figure 4.10. The
heartbeat durations differ significantly from beat to beat and because of
that it shows the time shift clearly. A small Python-script automatically
aligns the two signals and crops overlapping data. It then stores the signals
for further processing.

4.3. Quality assessment

4.3.1. Shape inspection

Physiological signals are very susceptible to artifacts and are typically
varying a lot. There are various biological effects like variation in heart
rate and cardiac output which lead to a change of the signal’s width,
height and morphology. The sensor’s position can change, due to motion
and a drift can overlie the useful signal due to different contact pressure. It
is necessary to evaluate the quality of used signals. A method is required
to automate the data selection for the ANN feature extraction. [26]
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4. Solution

Figure 4.10.: Representation of the time-shift between the BP and PPG signals in the
domain of heart cycle durations; Orange: heart cycle periods gained from
PPG data; Blue: heart cycle periods gained from BP data Top: Not-aligned
signals; Bottom: Heart cycle durations after correction of the phase lag
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4.3. Quality assessment

For quality assessment a procedure based on three steps has been
developed as shown in Figure 4.11. At first a template out of all cycles

Figure 4.11.: Three steps of data quality assessment

is generated. In the second step this template is improved: every cycle is
compared with the generated template and non-matching or less matching
cycles are removed creating a new template with the remaining. In the last
step every cycle is compared with the improved template and less fitting
cycles are discarded from the available data. A flow chart breakdown
for every step shows the quality assessment in detail. Figure 4.12 shows
the initial template generation. The fist step represents the cardiac cycle
extraction. A maximum and minimum detection is performed on the
bandpass filtered input signal. The used algorithm detects only local
minima/maxima which are at least 50 and a maximum of 150 samples
apart and delivers the lowest minimum / highest maximum in this area.
The signal is cut at every delivered minimum, the data between two
minima represents one cardiac cycle. At first it is ensured that if there
is a maximum between the two minima. In the next step every cycle is
discarded with a non physiological length. The algorithm firstly selects
cycles with a minimum length of 50 samples and a maximum length of
150 samples corresponding to 0.39-1.17 seconds. Cycles that do not fall
into this range are discarded. The algorithm then normalizes all accepted
cycles and computes a template by averaging them. The second step
represents the generation of the improved template where an additional
step compared to the initial template generation is inserted. For each
cycle the similarity between the initial template and the actual cycle is
calculated, in case of low similarity the cycle is discarded and not used in
the improved template. The described procedure is shown in Figure 4.12

and 4.13. The third step is to check the similarity between the improved
template and each cycle and is shown in Figure 4.14. Cycles with high
similarity are used for further processing.
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4. Solution

The similarity of the cycles is determined by calculating the covariance
matrix of the template and the heart cycle to validate. The covariance
matrix is a symmetrical matrix, in this case with the dimension 2x2. This
means that the entry at position [1, 0] is equal to the entry at position [0,
1]. This values represent the diagonal data variance. The entries at position
[0, 0] and [1, 1] are representing the parallel spread of the data. It was
discovered, that the entry at position [0, 1], a measure of the positive par-
allel similarity between two vectors, differ most between good and faulty
cycles. Thus, it was used as criteria to differ between those. Each heart
cycle is normalized before the comparison using vector normalization.

The calculation of the covariance matrix was performed using the
numpy.cov-funtion. The covariance compares two variables and indicates
the level to which two variables vary together [27]. As described in the
previous Section, the entry of the matrix at position [0, 1] was used to indi-
cate the similarity. Figure 4.15 shows cut PPG cycles within a time period
of < 30 seconds measured on the same individuals wrist. The sub-figure
on top left shows all of these measured cycles, without shape-quality
analysis. For further investigations two random good cycles and one bad
cycle were selected and shown in the right top sub-figure. The left bottom
of the Figure shows the selected good and bad cycles aligned on their
maximum, zero-padded and normalized. In this condition their similarity
was calculated as in the quality analysis procedure. Table 4.4 shows the
calculated convolution values. The threshold for accepting or discarding
the cycle has to be between the calculated values. Further covariances
were calculated to determine what threshold would be acceptable. Flawed
cycles should be rejected and the suitable ones should be kept. An value
for this boarder is set to 1.5 · 10−3.

Table 4.4.: Results of calculated covariance between good and bad cycles.
Value of covariance

Good cycle 1 and bad cycle 1.217 · 10−3

Good cycle 1 and good cycle 1.688 · 10−3

46



4.3. Quality assessment

Figure 4.12.: First step of data quality assessment: The cardiac cycles are extracted from
the measured PPG signal; Each normalized cycle with a non physiological
length is discarded. The algorithm computes a template by averaging all
accepted cycles.
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4. Solution

Figure 4.13.: Second step of data quality assessment: Cardiac cycles are extracted from
the input PPG signal; Each cycle with a non physiological length is dis-
carded. Each cycle is checked for similarity with the template, by calculating
their covariance. Cycles with a similarity under a predefined limit are dis-
carded. The algorithm then normalizes all accepted cycles and computes an
improved template by averaging them.
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4.3. Quality assessment

Figure 4.14.: Last step of data quality assessment: Cardiac cycles are extracted from the
input PPG signal; Each cycle with a non physiological length is discarded.
Each cycle is checked for similarity with the improved template, by calcula-
tion their covariance. Cycles with a similarity under a predefined limit are
discarded.

49



4.
S

olution

Figure 4.15.: Top left: Cut heart periods within 30 seconds of one individual. Top right: Selected bad and good cycles for
further investigations, Bottom left: Selected cycles aligned on their maximum, zero-padded and normalized.
Bottom right: Validated PPG cycles
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4.3. Quality assessment

4.3.2. Inspection of systolic and diastolic blood pressure
values

To remove invalid non physiological blood pressure values which were not
detected during the shape inspection, rules for plausible blood pressure
values were applied. The rules are show in Table 4.5.

Table 4.5.: Applied rules for approved blood pressure values; Only heart cycles within
this rule were used for further processing

Systolic BP Diastolic BP
mmHg mmHg

Minimum value 80 20
Maximum value 180
Additional rule syst - diast > 20

4.3.3. Statistical distribution and data properties

As shown in Figure 4.16 the distribution of the used systolic and diastolic
values can be approximated by a gaussian (normal) distribution. For later
evaluation of the results it is necessary to consider the characteristic of the
blood pressure data shown in Table 4.6 and 4.7. By the comparison of the
deviation of the database data and own measured data it sticks out that
the value of the standard deviation of the database data is almost twice
as the standard deviation of the own measured data. This fact should be
taken into account when assessing the achieved estimation.

To facilitate the learning process of the neural network, outliers of the
train and test data are removed. In order to achieve good results the
following rules are applied as shown in Table 4.8

Table 4.6.: Features of used database blood pressure data for training and testing the
network

Systolic Diastolic
mmHg

Standard deviation 16.91 9.79
Mean 116.06 68.90
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4. Solution

Figure 4.16.: Distribution of used database data (invasive measurement)

Table 4.7.: Features of own measured blood pressure data for training and testing the
network; The reference pressure data was measured using the Task Force
Monitor

Systolic Diastolic
mmHg

Standard deviation 10.55 8.05
Mean 119.24 85.73
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4.4. Feature extraction

Table 4.8.: Applied rules for statistical blood pressure control; Only heart cycles within
this rule were used for further processing

Applied rules
1. systolic BP ≷ mean(systolic BP) ± 2 * std(systolic BP)
2. diastolic BP ≷ mean(diastolic BP) ± 2 * std(diastolic BP)

4.4. Feature extraction

A critical point of the work is the feature extraction out of the recorded
preprocessed PPG signal. In literature different methods have been pro-
posed. In this work the FFT coefficients of one heart pulse are used to
train the ANN as suggested in [6]. In paper [6] is suggested that 10 % of
the previous and 15 % of the following cycle should be extracted and used
as input for the neuronal network. It is checked, whether these additional
data points are actually needed using data of one individual as input of
the ANN. The impact of different cycle length settings is shown in Table
4.9.

Table 4.9.: Achieved results using data of one individual for different data length; Settings
of the artificial neural network: epochs max: 3500, batch size: 30, learning
rate: 0.0004; The combined MSE for train and test data is shown for result
assessment.

Previous cycle Following cycle Train error Test error
% % mmHg2 mmHg2

10 15 2.64 2.91
10 0 3.21 3.42
0 15 3.311 3.32
0 0 2.93 4.1

All cycles have to be brought to the same length before the FFT calcu-
lation. This step was done by zero padding the extracted cycles in time
domain. In frequency domain this step leads to constant frequency dis-
tances respectively to a constant frequency resolution of the FFT. Table 4.9
shows the impact of different heart cycle length. It seems that the impact of
adding parts of the previous and following cycle is low; it should anyway
be highlighted that the suggested 10 % previous and 15 % of the following
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cycle lead to the best result. More FFT data points deliver more informa-
tion for the neural network and deliver a slightly better result. It can be
assumed that by using more than one heart cycle the error of the final
result should be reduced. It should also be pointed out that the impact
of using more successive cycles was not tested in this work and should
be investigated in further projects. Along with investigations concerning
the used signal input length, the choice of a suitable windowing before
the FFT arises. Due to the long duration for calculations using the whole
available dataset, data from one individual was used to investigate the
impact of windowing. The used window function are shown in Figure
4.17. The result is shown in Table 4.10.

Figure 4.17.: Different applied window functions

As shown in Table 4.10 different window types have a different impact
on the final result. The Hamming window leads to a better result with
an error reduction of 0.8 mmHg2 for the combined mean squared error
compared to the non-windowed data. For the Kaiser window, different
values for alpha were chosen and α = 0.5 provided the best result. The
impact of windowing by using data of the whole dataset is shown in the
Chapter 5.1 results. After the calculation of the FFT of each extracted heart
cycle, the amplitude coefficients were divided by the sum of all amplitude
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4.5. Artificial neural network

coefficients to achieve a normalized representation. The DC part, which is
represented at the 0 Hz frequency bin was not considered. Only one half
of the spectrum was used as input for the neural network, since the other
half is a mirrored replice for real input signals.

Table 4.10.: Achieved results using data of one individual for usage of different window
functions; Settings of the artificial neuronal network: epochs max: 3500, batch
size: 30, learning rate: 0.00025; The combined MSE for train and test data is
shown for result assessment.

Window type Train error Test error
mmHg2 mmHg2

No window 3.33 3.65
Hamming 2.53 2.88
Hanning 3.59 3.74
Barlett 3.78 3.83

Blackmann 3.87 4.01
Kaiser, α = 0.3 2.94 3.27
Kaiser, α = 0.5 2.41 2.67
Kaiser, α = 0.7 2.60 2.77
Kaiser, α = 1 2.81 2.98
Kaiser, α = 4 2.90 3.24

4.5. Artificial neural network

The neural network was developed using the Tensorflow library pro-
vided by Google in Python. A basic feed-forward structure with back-
propagation was used. 300 input neurons including 150 for the phase
and 150 for the amplitude features were used as input for the network
for estimating the systolic and diastolic blood pressure value. This basic
structure results from the idea that the calculation of the FFT coefficients
of an 150 point curve results in 300 coefficients, 150 for the phase and
150 for the amplitude. By later optimization of the algorithm only the
half sided FFT spectrum is fed into the neuronal network. This leads to
an usage of only 150 input neurons and the network was optimized in
further investigations.
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Output calculation
In the network a standard matrix-vector multiplication is performed be-
tween the weights W and the layer inputs x. After the multiplication the
bias vector b is added. This result is used as input for the Activation
function. As activation function an hyperbolic tangent function is used.

y = tanh(W ∗ x + b) (4.4)

Network structure
Three hidden layers are used, it has been shown that more layers tend to
over-fit the training data and do not lead to significant improvements. The
first hidden layer has 150 input neurons and the second hidden layer 50
input neurons. The output layer is representing the systolic and diastolic
BP and has two data points. The structure of the network is shown
in Figure 4.18. After reducing the input layer of the artificial neuronal
network to half, also the neurons of each hidden layer were halved.

Figure 4.18.: Structure of the artificial neuronal network showing 300 input neurons, 3
hidden layers and 2 output neurons representing the diastolic and systolic
blood pressure value. The updated network structure is represented by the
lower neuron number.

For the training process a loss function has to be defined. The used loss
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4.5. Artificial neural network

Table 4.11.: Achieved results on own measured data using different batch sizes; Settings
of the artificial neuronal network: epochs max: 25000, learning rate: 0.00005;
The combined MSE for train and test data is shown for result assessment.

batch size Train error Test error
mmHg2 mmHg2

350 62.45 68.12
300 47.93 64.47
250 59.12 64.23
200 52.49 65.05
150 48.98 71.01

function ’Mean Squared Error’ tries to minimize the sum of the mean
squared errors of the systolic and diastolic values between the estimated
values and the desired results. The weights are initialized with random
values with a standard deviation of 0.0001. The optimal batch size was
figured out by training the whole network using different batch sizes.

As shown in Table 4.11 batch sizes between 300 and 200 are ideal for
the training of the neural network. The smaller the learning rate the
less the weights are adjusted per trainings step and the more steps are
needed to find a local minimum which in this case is met more precisely.
Nevertheless, due to the limited time available, the used learning rates are
in the range of 0.0005 and 0.00005. For fast investigations higher learning
rates are used, for achieving final results, smaller learning rates are used.
Due to the random initialization of the network weights each training
process is individual and not reproducible. To prevent from landing in a
bad local minimum, it is necessary to carry out the training process several
times. The epoch is a measure for the amount of performed training steps.
In case of a too small epochs the trained network is under-fitted, in the
opposite case over-fitting occurs. The realization of the final networks can
be found in the following Section 5. If the network is trained once the used
structure, weights and biases are stored and can be reused for estimating
current blood pressure values from the photoplethysmographic signal.

57



4. Solution

4.6. Feature extraction using wavelets

Additionally to the FFT features, the possibility to describe the heart cycles
shape using the Wavelet transformation was investigated. It should be
noted that the whole system is set on the FFT features and just some
fast experiments were made to discover the possibilities of Wavelets. All
described steps were done as for the frequency features. Only the feature
extraction step on the preprocessed and selected cycles was adapted. Due
to the limited time expansion of the Wavelets it seems plausible that
they can describe the heart cycles shape more precisely. By cutting out
one single heart beat of the PPG signal, mathematically a multiplication
with the rectangular window is performed. This multiplication leads in
the frequency domain of the FFT to a convolution with a sinc function.
This convolution strongly affects the coefficients. This step is changed by
the usage of the Wavelet transformation. It is a special technique which
describes a general function through a sum of a Wavelet series. The basic
idea is that a signal can be decomposed out of a particular set of functions
obtained by dilating and shifting one single function. This specific wave is
called the mother-Wavelet. The key feature of the Wavelet analysis is the
time-frequency localization. In contrast to the Fourier transformation, the
energy of the Wavelet is restricted to a finite time interval. [28]

Figure 4.19 shows the Daubechies mother-Wavelet.

Figure 4.19.: Waveform of Daubechies mother-Wavelet
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4.6. Feature extraction using wavelets

By applying the wavelet transformation, two different types of coeffi-
cients are calculated. The first coefficient is representing the scaling and
the second the time shift of the mother-Wavelet. The continuous wavelet
transformation of a function f(t) at a scale α and position τ is given by the
following equation. [29]

W f (α, τ) =
1√
α

∫ +∞

−∞
f (t)Ψ+(

t− τ

α
)dt (4.5)

Where Ψ+ denotes the complex conjugation of the mother-Wavelet.
Equation 4.5 means that the signal to be analyzed f (t) is convolved with
stretched and dilated copies of the mother wavelet. For α < 1 the wavelet
is contracted and the transformation delivers information about finer
details of f (t). In case of α > 1 the mother wavelet is expanded and the
transformation delivers a coarse view. [29]

The discrete wavelet transformation analyses the signal at different
frequency bands, with different resolution. The signal is decomposed into
a coarse approximation and detailed information. This step is related to
high- and low-pass filtering. The mother wavelet is in this case interpreted
as the filters impulse response. The basic procedure is shown in Figure 4.20.
Each stage consists of two digital filters and two down sampling stages by a
factor of 2. The first filtering step is described by the mother wavelet (high-
pass) and its mirror-version (low-pass) (magnitude response mirrored
at π/2). The down sampled outputs after the first high- and low-pass
provide detail information D1 and its approximation A1. A1 is then
further processed. The wavelet transformation acts like a mathematical
microscope. It is zooming in like a microscope into small scales and it is
zooming out in case of large scales. [28]

The achieved number of coefficients depends on the input signal length.
The Python command ’pywt.pwt’ delivers 150 coefficients from a signal
length of 150 samples. This means that 75 coefficients describing the ap-
proximation and 75 coefficients describing the details are delivered. [28]
shows that the Daubechies Wavelet leads to the best result for electroen-
cephalography (EEG) signal classification. Because of that proposal this
mother wavelet was used for superficial investigations. After performing
the transformation the calculated coefficients were fed into the neural
network as described in Chapter 4.5.
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Figure 4.20.: Sub-band decomposition using Wavelets; h[n] represents the high-pass, g[n]
the low-pass filter. [28]

4.7. Summary of the used parameters

As mentioned in the previous chapters, two different data sources were
used for training and testing of the neural network. The optical PPG
signal was measured on the fingertip in case of the database data and
on the wrist in case of own measured data. After signal preprocessing,
10 % of the previous and 15 % of the following cycle in addition to the
actual cycle, were extracted out of the signal. After the quality assessment
of each cardiac period and the adjustment of the length, the FFT or the
Wavelet transformation was performed. The dataset containing different
individuals was shuffled and spit into train and test data. The test data was
used for training the network, in other words used for weight adjustment.
The resulting weights are applied on the features of the test data to
estimate their blood pressure values. The used parameters for filtering,
quality assessment and feature extraction for own measured data and
database data are summarized in Table 4.12. The same parameters are used
for FFT as well as for the Wavelet feature extraction. Only the parameter
of the used neural network were adjusted as shown in Table 4.13.
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4.7. Summary of the used parameters

Table 4.12.: Finally used parameters for filtering, quality assessment and feature extrac-
tion.

Parameter type Parameter Value
Filtering Order low-pass 6

Order high-pass 6
Cutt-off frequency low-pass 9 Hz
Cutt-off frequency high-pass 0.7 Hz

Quality assessment Convolution value for accepted cycle 0.0015
Feature extraction Attached previous cycle 10 %

Attached following cycle 15 %
Window Rectangular window

Kaiser window α = 0.5

Table 4.13.: Finally used parameters for the artificial neuronal network for different data
sources and different feature extraction.

Feature Data Epochs Batch size Learning rate
FFT Database 9000 200 0.0001
FFT Own measured 7500 200 0.0001

Wavelet Database 700 200 0.005
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4.8. Definition of the used errors

4.8.1. Root mean squared error

The root mean squared error (RMSE) is the standard deviation of the pre-
diction errors called residuals. They measure how far from the regression
line data points are; and how spread they are [30]. It is used in prediction
analysis to verify experimental results.

RMSE =

√√√√ 1
N

N

∑
i=1

(z fi − zσi)
2 (4.6)

where z fi are the expected values, zσi are the observed values and N is
the number of values [30].

4.8.2. Mean squared error

The mean squared error indicates how close a regression line is to a set of
data points. In this thesis the artificial neural network is using the sum
of the squared error of the systolic and diastolic values. The advantage
of using the mean squared error for the training process is, that it gives
more weight to larger differences [30].

MSE =
1
N

N

∑
i=1

(z fi − zσi)
2 (4.7)

4.8.3. Mean bias error

The mean is the average of a data set [30]. The mean bias error (MBE)
shows the average of the prediction error; the bias of the regression line.

MBE =
1
N

N

∑
i=1

(z fi − zσi) (4.8)
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4.8. Definition of the used errors

4.8.4. Standard error

The standard error(std(E)) in this thesis describes the standard deviation
of the errors.

std(E) =

√√√√ 1
N

N

∑
i=1

((z fi − zσi)−MBE)2 (4.9)
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5. Results

5.1. Results on database data

The resulting estimated pressures achieved by the usage of FFT feature
extraction are compared to the invasive measured pressure data. As a
measure of the error the root mean squared error (RMSE), the mean bias
error and the standard deviation of the error are used. The achieved result
on database train data (500.000 heart cycles) and test data (150.000 heart
cycles) of 56 different individuals is shown in Table 5.1. To get a better
insight into the achieved accuracy of the estimated BP values compared to
the invasive measured pressures, histograms for the diastolic and systolic
errors are constructed to show the error distribution in Figure 5.1.

Train data Test data
Systolic Diastolic Systolic Diastolic

mmHg mmHg
Standard error 8.06 4.29 9.24 4.71

Mean bias error 0.02 0.09 0.01 0.08
Root mean square error 8.06 4.29 6.18 3.25

Table 5.1.: Achieved results on test data using the same trained network for blood pres-
sure estimation for all individuals from the MIMIC database; The errors are
representing the difference of the estimated values compared to the invasive
measured data
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5. Results

Figure 5.1.: Histogram of the estimated systolic and diastolic BP values compared to the
invasive measured pressure; The error deviation of the test data from the
MIMIC database is shown. (Kurtosis systolic:13.31 diastolic: 7.41 )

Figure 5.2 shows the measured and estimated blood pressure values
of the database test data in mmHg. The shown test data was not used
for training and represents mixed heart cycles of all 56 individuals in a
random order.

Figure 5.3 shows the achieved result on not-mixed database test data.
This means that successively measured pressure values of individuals are
shown in actual chronological order. Measurements of different persons
were lined up. To show the trend of the pressure and better visualize if
the estimated values can follow this drift, an average of the estimated and
measured pressure values over ten heart cycles was made.

Table 5.2 shows the achieved results with additional usage of window-
ing. A comparison with Table 5.1 shows that the performance of the kaiser
window is worse compared to the rectangular window.
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Figure 5.2.: Estimated and invasively measured systolic and diastolic blood pressure values of the testing data in mmHg;
Final result for database data by using over 500.000 heart cycles from 56 different test persons for training and
150.000 cycles for testing; Shuffled heart periods from all test persons in a random order (Zoom)
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Figure 5.3.: Estimated and invasive measured systolic and diastolic blood pressure values of the testing data in mmHg;
Final result for database data by using over 500.000 heart cycles from 56 test persons for training and 150000
cycles for testing; Averaged heart periods over 10 cycles in chronological order; For averaging a moving
average filter was applied, the resulting edges were cut off; Measurements of different persons were lined up
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Figure 5.4.: Estimated and invasive measured systolic and diastolic blood pressure values of the testing data in mmHg;
Final result for database data by using over 500.000 heart cycles from 56 test persons for training and 150000
cycles for testing; Averaged heart periods over 10 cycles in chronological order; For averaging a moving
average filter was applied, the resulting edges were cut off; Measurements of different persons were lined up
(Zoom 5.3)69



5. Results

Kaiser window α = 0.5 Train data Test data
Systolic Diastolic Systolic Diastolic

mmHg mmHg
Standard error 8.72 5.09 9.99 5.39

Mean bias error −0.23 −0.06 −0.27 −0.06
Root mean square error 8.72 5.09 10.00 5.39

Table 5.2.: Achieved results on test data from the database for blood pressure estima-
tion for all 56 individuals; The errors are representing the difference of the
estimated values compared to the invasive measured data; Windowing was
performed on the PPG cycles used for training and testing before the calcula-
tion of the FFT coefficients.

Up to now the network was trained and tested with different heart
cycles of all available individuals. To examine the possibility of estimating
blood pressure from the PPG signal also for individuals not included
in the training set, an additional network was trained. For this purpose
5 random people were excluded from the trainings set and the data of
the remaining 51 individuals was used to train the neural network. The
achieved results for individuals whose heart cycles were not included in
the trainings set are presented in Table 5.3 and shown in Figure 5.5. In
the Figure the heart cycles of of these 5 individuals are lined up and the
persons are numbered. The Figure shows that the estimation achieves
different accuracy for different individuals. In particular, for test person 2
the mean bias error is significantly increased, even if the trend seems to
be still followed in the estimation.
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5.1. Results on database data

Test data
Systolic Diastolic

mmHg
Test person 1

Standard error 14.53 4.13
Mean bias error 5.34 −12.81

Root mean square error 15.49 13.45
Test person 2

Standard error 11.32 5.07
Mean bias error −30.53 −8.98

Root mean square error 32.56 10.30
Test person 3

Standard error 27.32 11.43
Mean bias error 2.01 3.12

Root mean square error 27.39 11.84
Test person 4

Standard error 15.94 8.13
Mean bias error −4.37 −2.34

Root mean square error 16.53 8.46
Test person 5

Standard error 5.41 4.09
Mean bias error −1.95 −2.25

Root mean square error 5.75 4.67

Table 5.3.: Achieved results on database test data for the 5 persons not included in the
training set; The errors are representing the difference of the estimated values
compared to the invasive measured data
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Figure 5.5.: Estimated and invasive measured systolic and diastolic blood pressure values of the testing data in mmHg;
Heart beats of individuals witch were not included in the training set; Averaged heart periods over 10 cycles
in chronological order; For averaging a moving average filter was applied, the resulting edges were cut off;
Measurements of different persons were lined up
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5.2. Results on own measured data

The neural network was trained and tested using data from 16 different
individuals with average measurement time of 15 minutes per person.
The continuous blood pressure reference measurement was done using
the Task Force Monitor. The photoplethysmographic signal was measured
on the wrist using the PALS-2 sensor. Over 6000 heart cycles were used
to train the generalized network and 2000 were used for testing. Table
5.4 shows the final result for investigations based on own measured data.
Histograms of the error of the systolic and diastolic estimated pressure
values compared to the Task Force Monitor measurement are shown in
Figure 5.6.

Train data Test data
Systolic Diastolic Systolic Diastolic

mmHg mmHg
Standard error 6.22 4.72 7.83 5.93

Mean bias error −0.23 −0.11 −0.33 −0.22
Root mean square error 6.22 4.72 5.79 4.34

Table 5.4.: Achieved results for estimation on own measured data; The data was collected
using the Infineon Opto Asics PALS-2 on the wrist
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Figure 5.6.: Histogram of the errors of the test data for estimated systolic and diastolic BP
values; The reference measurement was done using the Task Force Monitor
(Kurtosis systolic:4.98 diastolic: 3.38 )

Figure 5.7 shows the values of the reference measurement and estimated
blood pressure of own measured test data in mmHg. The heart cycles of
the testing set are shown in a random order. The estimated and measured
results of non-mixed data for different patients are shown in Figure 5.8.
This Figure should visualize that the estimation error varies for different
individuals. Some are underestimated and others are overestimated. A
moving average filter over 10 periods was applied for smoothing the BP
data results. It can be seen that some sections (individuals) are better
described by the model than others.
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Figure 5.7.: Estimated measured systolic and diastolic blood pressure values and reference measurement of the testing
data in mmHg; Final result for own measured data using the PALS-2 on the wrist; Shuffled heart periods
from 16 individuals in a random order (Zoom)
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Figure 5.8.: Estimated result and Task Force measurement for systolic and diastolic blood pressure values of the testing
data in mmHg; Final result for own measured data using the PALS-2 on the wrist; Heart periods of 16
individuals lined up in chronological order; Estimated and measured pressure values are averaged over 10
heart periods. For averaging a moving average filter was applied, the resulting edges were cut off (Zoom)
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To investigate the possibility to estimate blood pressure also for in-
dividuals not included in the training set, three more individuals were
measured. The weights and biases, which were calculated earlier, were
applied on the PPG features to estimate the blood pressure. Table 5.5
shows the achieved results for those persons, whose heart cycles are not
included in the training set. Figure 5.9 shows the averaged result over 10
cycles for not-mixed heart cycles for different individuals. The first section
shows estimated and measured blood pressure values of persons whose
cycles are not included in the training set. The right section shows the
measured and estimated values of heart cycles of persons included in the
training set. It is worth noting that different cycles of those individuals
were used for training compared to those used for testing. Before the
training process started the extracted cycles were split into a train and test
set.

Test data
Systolic Diastolic

mmHg
Test person 1

Standard error 6.25 5.75
Mean bias error 6.24 −5.07

Root mean square error 8.83 7.66
Test person 2

Standard error 11.72 10.60
Mean bias error 5.75 −0.67

Root mean square error 13.052 10.63
Test person 3

Standard error 9.42 8.18
Mean bias error 0.69 −1.42

Root mean square error 9.45 8.31

Table 5.5.: Achieved results on own measured test data for the 3 persons not included
in the training set; The errors are representing the difference of the estimated
values compared to the data measured with the Task Force Monitor.
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Figure 5.9.: Estimated pressure for individuals included and not included in training set; Left section: estimated and
measured pressure values for heart cycles from individuals not included in the training set; Right section:
Estimated and measured pressure values from individuals whose other measured cycles are used for training;
Own measurement using the PALS-2 sensor for PPG signal acquisition and the Task Force Monitor for the
reference measurement.
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5.3. Results using the wavelet transformation

This section gives a short outlook about the possibility to estimate BP
from the optical measured signals using the wavelet transformation. As
mother Wavelet the Daubechies Wavelet was used. Database data of all
56 individuals provided from the MIMIC database were used for training
and testing. As described in the previous chapters the heart-cycles were
split into a train and test set. The parameters of the ANN were adjusted.
All other parameters of the system were not modified compared to those
used for extracting the FFT features. In comparison with the achieved
parameters of the FFT features, in particular the results for the systolic
values were improved. The achieved results are shown in Table 5.6 and
the distribution of the systolic and diastolic error is shown in Figure 5.10.
How accurate the estimated pressure can follow the invasive measured
pressure is shown in Figure 5.11 and Figure 5.12.

Train data Test data
Systolic Diastolic Systolic Diastolic

mmHg mmHg
Standard error 7.60 4.28 7.08 4.49

Mean bias error −0.08 −0.31 −0.26 −0.87
Root mean square error 7.60 4.30 4.98 3.15

Table 5.6.: Achieved results on test data using the same trained network for blood
pressure estimation for all 56 individuals; The errors are representing the
difference of the estimated values compared to the invasive measured data
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Figure 5.10.: Histogram of the errors of the test data for estimated systolic and diastolic
BP values; The reference measurement was done using the Task Force
Monitor; For the feature extraction the Wavelet transformation was used.
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Figure 5.11.: Estimated and invasive measured systolic and diastolic blood pressure values of the testing data in mmHg;
Final result for database data by the Wavelet transformation; Not-shuffled heart periods from 56 individuals
are lined up. Remaining average of 10 samples; For averaging a moving average filter was applied, the
resulting edges were cut off. (Zoom)81
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Figure 5.12.: Estimated and invasive measured systolic and diastolic blood pressure values of the testing data in mmHg;
Final result for database data by the Wavelet transformation; Not-shuffled heart periods from 56 individuals
are lined up. Remaining average of 10 samples; For averaging a moving average filter was applied, the
resulting edges were cut off. (Zoom of Figure 5.11 )
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5.4. Examination on trained weights

This chapter deals with the drive to understand the correlation between
blood pressure and PPG signal. For this reason the trained network
achieved with the FFT features was analyzed. The following figures vi-
sualize the trained weights and biases. In general, it is very difficult to
interpret the coefficients of a neural network. It has to be noted that the
input layer is multiplied with the weights; the multiplied input layer
and the biases are summed; afterwards the activation function is applied
(y = tanh(W ∗ x + b)) as descried in Chapter 4.5. A neural network is ba-
sically an advanced fitting process. Each training procedure is individual
due to random weight initialization and normally no result is identical
to the others. The target is to find a global minimum for the error, but in
general only a local minimum can be found. This section shows the trained
weights for the database data; due to the larger dataset it is assumed that
they are describing a wider population. To visualize the weights of the
input layer a 3 dimensional plot is used. The x-direction represents the
neurons of the input layer (75 representing the FFT amplitude and 75
representing its phase), the y-direction the input to the first hidden layer
and the z-direction the weights value. The frequency resolution of the FFT
is given with Equation 5.1.

∆ f =
fs

N
(5.1)

with fs the sampling frequency, ∆ f the frequency resolution and N the
number of samples. The calculated frequency resolution for our setup is
therefore given with Equation 5.2.

∆ f =
128Hz

150
= 0.853Hz (5.2)

Figure 5.13 shows the first hidden layer for the reduced network with
150 input neurons. The weights of the input neurons representing the
phase information are weighted low compared to the weights of the am-
plitude information. In general it looks like that the weights representing
amplitude information in the range of 4-8 Hz, represented by the input
neurons 5-10, are having the highest values.
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Further layers and biases are more difficult to interpret. The weights
and biases of all layers are summarized in Figure 5.13 and 5.14. On the
y-axis the neuron input of the specific layer are shown, on the x-axis the
neurons representing the output.
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Figure 5.13.: 3D representation of the weights between input layer and first hidden layer; Achieved on database data by
usage of the FFT85
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Figure 5.14.: Weights and biases between input layer and second hidden layer; Achieved on database data by usage of the
FFT
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Figure 5.15.: Weights and biases between second hidden layer and output layer; Achieved on database data by usage of
the FFT
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6.1. Comparison to previous work

As mentioned in Chapter 1.2, this work contines and extends a previous
project. This section should give a summary about the differences and
improvements compared to the previous thesis [7].

• Software environment

– Previous: For data collection, preprocessing and training three
different environments had to be used. The data collection was
done with a special program which stored the collected data
into a txt file. This file was opend using MATLAB and the
preprocessing step was performed. The training of the artificial
network was done in python.

– Now: All data acquisition steps are developed in the Python
environment. An own HID communication program was de-
veloped for easy data collection, data storage and sensor com-
munication. The preprocessing steps were also done in python.
The neuronal network structure was reused, modified and ex-
panded.

• Database handling

– Previous: Only a few minutes of data per individual were
downloaded and used for training and testing. 30 cycles for
training and 30 cycles for testing were extracted per individual
out of the pre-saved files. The data had to be downloaded from
the physionet homepage and selected by hand. The ANN was
only able to learn from a limited number of cycles measured for
a short time period. The ANN suffers from small data variability
and low differences in blood pressure.
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– Now: The python interface can directly download the data
from the database. Because of the direct communication it was
possible to download the whole set of available data. Over 8h
of data per individual was extracted.

• Data quality analysis

– Previous: The length of the extracted cycles was checked and
heart period lengths outside the specified limits were discarded.

– Now: Additionally a PPG and BP shape inspection was de-
veloped for extracting only valid heart periods. A template is
generated with represents the average cycle in a specified time
range, cycles whose shape differ to much from the template are
discarded.

• PALS-2 dataset expansion for own data

– Previous: 60 samples per one individual are representing the
used dataset, 30 were used for training and 30 cycles for testing.

– Now: By using the cardiovascular unloading technique it was
possible to achieve a longer amount of measurements. Data of
16 people for about 20 minutes each were measured. This time
range leads to about 1500 collected cycles per individual.

• Feature extraction

– Previous: After usage of the fast Fourier transformation the am-
plitude and phase coefficients were fed into the neural network.
The zero-padding process was performed after performing the
FFT. This means that amplitude and phase coefficients were
stored in an array which represents the input vector with a
fixed dimension of 300 coefficients. In case of cycles shorter
than 150 samples, less than 300 coefficients were calculated and
the coefficient vertor’s were filled with zeros. This step leads to
coefficients representing variable frequency resolution.

– Now: The cycles are zero-padded before performance of the
Fourier transformation. This results in coefficients representing
an constant frequency resolution independent of the heart cycle
length. Additionally the impact of windowing was investigated
and only the single sided amplitude and phase spectrum is
used as input for the neuronal network.
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• Results

– Previous: The previous work showed that it is possible to train
a network with is meaningful for one individual. The trained
weights and biases are only descriptive for the blood pressure
of one specific individual; this means that a huge number of
reference measurements for every person is necessary.

– Now: The achieved network is able to estimate blood pressure
values of different individuals by usage of the same biases and
weights, if heart cycles of the test person were present in the
training set.
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6.2. Discussion

This work shows that blood pressure estimation by simply using optical
measured data is possible and promising at least for persons whose heart
cycles are included in the training set. By using the same weights and
biases, the blood pressure of different individuals can be estimated with-
out person-specific weight adjustments. The resulting network which was
computed from database data is able to estimate the blood pressure for 56
different individuals. If an optimal extended training set could be created,
it should be possible to generate a network for estimating blood pressure
values for a wide population range. The signal quality for the PPG at the
fingertip is much better than for the signal measured on the wrist, due
to two reasons: First the fingertip signals are more stable against motion
artifacts; Second the proportion of the pulsatile component compared to
the DC component, is higher for the fingertip measurement. Nevertheless
it was possible to achieve promising results also for data measured via
backscattering measurements at the wrist, as they are commonly used in
smart-watches for pulse rate measurements. Due to the long time needed
for the collection of own measurements, it was not possible to achieve a
dataset with similar size compared to the database. Due to some move-
ments of the test subjects also the reference measurement can be disturbed.
Deviations from actual blood pressure measured during the reference
measurement affect the training process and influence the final result
negatively.

As shown in the results of the database and own measured data in
Figure 5.3 and 5.8, the estimated pressures can follow the drift of the
reference measurements. The RMSE of the trained network for database
data is higher than for the own measured data, therefore these results
appear better at first glance. For the database data the blood pressure val-
ues are spread over a far wider range making the estimation more difficult.

By the usage of neural networks in most cases it is only possible to
find a local minimum of the fitting function. By repeating the training
process a few times, different minima can be found due to the random
initialization of the network weights. In this thesis, the shape of the PPG
signal is described by using its FFT coefficients. Due to the limited time
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expansion of each heart cycle it may be problematic to describe them
with the infinitely extended basis functions sinus and cosinus. For small
datasets it was shown that windowing can improve the results, but it was
not possible to improve the results compared to not-windowed signals
for the whole dataset. For a similar good result significant more training
processes were necessary in the case of windowing. Furthermore, it was
noticeable that a higher number of epochs was needed to find a good local
minimum, even when using the small dataset. Summarized: the usage of
windowing makes the training process more unstable.

By using of the Wavelet transformation, the final error and in partic-
ular the systolic error values could be decreased. The features used in this
case better describe the shape of the PPG signal of a single cardiac cycle,
as they can perform temporal localization.

The results of those individuals, whose heart cycles were not included in
the training set shown in Figure 5.5, are highly dependent on individual
specific properties. The accuracy of the estimation depends on whether
people with a similar relationship between blood pressure and PPG signal
were included in the training set; and how large the proportion of their
heart cycles in the training set was. The following statements can be made
regarding the results for individuals of the database data not included
in the training set: In particular the course of the diastolic value of test
person 1 can be followed well, however, the absolute diastolic pressure
was underestimated and the absolute systolic pressure overestimated. The
pressure curve of test person 2 is followed well, but the systolic blood
pressure in particular is underestimated for this person. The pressures
of test person 5 were best estimated, here the estimated pressures can
follow the course of the reference, also the estimation of the absolute
pressures does not deviate strongly from the reference measurement. The
individuals on which the own measurements were carried out, represent
only a very limited range of population as their age is between 22-29 years;
and probably having similar vessels properties, which thereby provide a
poor representation of the population.

The training process itself needs a high computational effort. In com-
parison, the computational effort to apply the trained weights and biases
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on the input data is low. It is very difficult to interpret the weights and
biases, due to the non-linear activation function and due to the large
number of neurons. To the present state of science the relation between
blood pressure and the photoplethysmographic signal is not completely
understood. Furthermore, simpler relations between both signals can not
be used for blood pressure calculations.

This work shows that it is possible to estimate different persons with
the same network if data is present in the training set having similar
behaviour. The results for people who are not present in the training set
are significantly worse in comparison. The blood pressure is not measured
by using physical relationships; there is always the chance to measure
individuals with very different pulse shapes compared to the training set.
This circumstance should be minimized by collecting more train data of
persons with blood pressure curve characteristics as differing as possible.
This should be achieved by measuring persons differing in their age, sex
and healthiness. Furthermore, it was shown that the use of the Wavelet
transformation represents a significant improvement compared to the
usage of the Fourier transformation.

6.3. Outlook

By using a wider training set measured from different age groups of
people in a clinical setting, it should be possible to achieve equal results
for data measured on the wrist as achieved for the fingertip measurements.
By adding features to the network like age, gender and sportivity the
training process of the network could be additionally supported. The
impact of different window functions should be proven more precisely in
further research. The usage of the wavelet transformation leads to better
results as their limited time expansion may describe the behaviour of
the time limited heart cycles better. Since the pressure measurement is
not very time critical in most cases, the usage of more successive cycles
as input for the FFT calculation leads to a higher frequency resolution
and may lead to a reduction of the mean error. In conventional smart-
watches, arrays including more LEDs and photo-detectors are used. In
this case signals measured on different locations on the wrist are available
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simultaneously, which reduces the reliance on corrupted signals during
motion artifacts. Due to the easy measurement setup and small package
sizes it would be also possible to integrate the LEDs and diodes into
hearing aids or headphones. This place seems very suitable for health-
and fitness-tracking because it does not affect the user while moving and
allows for simple fixation possibilities. The calculation process could be
relocated to cell phones, latest devices have integrated AI chips which
are optimized for neural network based applications; also TensorFlow has
already been presented for mobile scenarios.
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Appendix A.

PALS-2 demo board

The PALS-2 demo board includes following parts:

a) PALS-2 The schematic shows the version with external LEDs. On the
used board the LEDs were integrated in the package of the optical
Infineon ASIC PALS-2.

b) Programming socket
c) PIC Microcontroller
d) Gyroscope and accelerometer LM330 Theoretically it would be pos-

sible to measure additional system parameters. They could be used
to excluded noisy heart-cycles due to motion artifacts.

e) Pressure sensor Not used so far, could be used for additional pressure
measurement or correction of altitude.

f) USB socket
g) Voltage regulator Reg117 Regulates the voltage to 2.7V.

The schematic of the used PALS-2 demo board is shown in figure A.1.
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Figure A.1.: Schematic of the used PALS-2 demo board
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