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Abstract

In 2004 it was possible for the first time to create a two-dimensional material, namely
Graphene. Hence, the interest in the physics of such materials increased rapidly. Their
possible application in spintronic devices due to topological effects were promising.
However, in the one-band model of Graphene the band gap in the topological insulating
state is due to second order perturbations and therefore, very small compared to room
temperature. Only a two-band model, like passivated Bismuthene, with a local spin-
orbit coupling could produce a sufficiently large band gap to be applicable to devices.
In this thesis we perform a DFT calculation on passivated Bismuthene, where only the
px- and py-orbitals remain at the Fermi level. These two bands are further used as the
two-band model where a local SOC term can be applied. The correlations of such a
system depending on the interaction are investigated. Furthermore, we compare the
method where a local SOC term is added to the Hamiltonian of the DFT calculation,
to the method of treating spin-orbit coupling already at the DFT level. Spin-orbit
coupling is the reason why non-trivial topological effects appear in two-dimensional
materials. Regarding topological aspects, the topological invariant is determined and
the prediction that correlations stabilize the topological insulating phase is verified.
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Kurzfassung

Im Jahr 2004 war es erstmals möglich, ein zweidimensionales Material, nämlich Graphen,
herzustellen. Im Zuge dessen, hat das Interesse an der Physik derartiger Materialien
rasch zugenommen. Ihre mögliche Anwendung in spintronischen Geräten aufgrund
topologischer Effekte war vielversprechend. Im Ein Band Modell von Graphen ist die
Bandlücke des topologischen Isolators jedoch auf Störungen zweiter Ordnung zurück-
zuführen und daher im Vergleich zur Raumtemperatur sehr gering. Nur ein Zwei-Band-
Modell wie passiviertes Bismuthene mit einer lokalen Spin-Bahn-Kopplung könnte eine
ausreichend große Bandlücke erzeugen, um für Anwendung zu finden. In dieser Arbeit
führen wir eine DFT-Berechnung für passiviertes Bismuthene durch, bei dem nur die
Orbitale px und py am Fermi-Niveau verbleiben. Diese zwei Bänder werden in folge als
Zwei-Band-Modell verwendet, dem ein lokaler SOC-Term hinzugefügt werden kann. Die
Korrelationen eines solchen Systems in Abhängigkeit von der Wechselwirkung werden
untersucht. Darüber hinaus vergleichen wir die Methode, bei der ein lokaler SOC-Term
zum Hamiltonian der DFT-Berechnung hinzugefügt wird, mit der Methode bei der Spin-
Bahn-Kopplung bereits auf der DFT-Ebene behandelt wird. Spin-Bahn-Kopplung ist
der Grund, warum nicht-triviale topologische Effekte in zweidimensionalen Materialien
auftreten. Es wird die topologische Invariante bestimmt und die Vorhersage bestätigt,
dass topologische Isolatoren duch Korrelationen stabilisiert werden.
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Introduction

In the last years two dimensional materials with their topological properties have at-
tracted a lot of interest. Especially, topologically insulating states have been inves-
tigated. A physical key principle to obtain a topological insulator is the spin-orbit
coupling. One promising material since it was discovered is Graphene. Kane and Mele
have developed a toy model to study topological properties in Graphene. To do so they
had to include a next-nearest-neighbour hopping which originates from second order
perturbation theory. Therefore, the topological band gap is rather small compared to
room temperature. Hence, the possible applications of such a material for spintronic
devices are limited.
In order to achieve a larger band gap, the spin-orbit coupling has to come from a direct
local SOC term. Such a term can only exist when the major contribution in the bands
around the Fermi level comes from the px- and py-orbitals. Hence, a material has to
be found where the pz-orbitals are shifted away and only px- and py-orbitals remain
at the Fermi level. As proposed by Freitas et al. a single layer of Bismuth atoms
could be passivated with the addition of Hydrogen atoms [1]. Besides from becoming a
planar hexagonal material, the pz-orbitals are shifted away and it can be treated with
an effective two-band model where a local spin-orbit term can be applied. Another
method realized by Reis et al. would be to put the Bismuthene layer on a SiC substrate
which leads to the same result [2].
Since correlations occur due to interaction, it does not suffice to solely perform DFT
calculations but one has to use a method that is suited to treat interacting systems, like
DMFT. Hence, an approach where DFT and DMFT are combined shows good results
for the properties of correlated materials. In this thesis a possible way is investigated to
perform DFT+DMFT calculations on the two-band model of an sp2-hybrid material. In
this process, the difficulties of choosing a correct projection method shall be discussed.
Since there are different ways to include spin-orbit coupling in the calculations, two
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possible approaches have been performed. The question at hand was if DFT+DMFT
calculations, where spin-orbit coupling was already introduced in the DFT level lead
to the same results as the DFT+DMFT calculations where a local SOC term is added
to the local Hamiltonian after the DFT calculation is converged. Additionally, the
possible effect of each method on this topological insulator and its topological invariant
is investigated.
A further kind of insulator is the Mott insulator. It results from large on-site interaction
energies. To deal with such phenomena again the approach of combining DFT and
DMFT is the method of choice for correlated materials. In this thesis, not only the
Mott insulator and the topological insulator state are regarded separately, but also the
transition from the topological insulating Bismuthene to a Mott insulating material.



Chapter 1

Computational Principles

In order to describe molecules and solids, one has to solve the Schrödinger equation

Ĥ |Ψν〉 = Eν |Ψν〉 , (1.1)

with the following Hamiltonian, given in atomic units:

Ĥ = −1

2

∑
i

∇2
i −

∑
α

1

2Mα

∇2
α −

∑
α,i

Zα
|ri −Rα|

+
∑
i<j

1

|ri − rj|
+
∑
α<β

ZαZβ
|Rα −Rβ|

(1.2)

Here α and β denote the indices of the nuclei, and i and j are the indices over all
electrons considered in the system. R and r stand for the positions of the nuclei
and electrons, respectively, and M and Z are the mass and the charge of the nuclei.
The first two terms describe the kinetic energy of the electrons and the nuclei. The
last three terms describe the nuclei-electron, electron-electron and the nuclei-nuclei
Coulomb interaction. Since the exact solution to this problem can only be found for the
Hydrogen atom, one has to introduce approximations such as the Born-Oppenheimer-
approximation. For this simplification it is taken into account, that the nuclei have
way more mass compared to the electrons and are therefore, treated as being fixed with
the electrons moving around in the resulting steady potential-surfaces. By doing so the
second term in eq. (1.2) drops out and the last term becomes a constant. A constant
just gives a shift to the energy levels and can therefore be dropped out. In the end, the
Hamiltonian in Born-Oppenheimer-approximation has the following structure:

3



1.1. Density Functional Theory 4

Ĥ =
1

2

∑
i

∇2
i

kinetic energy

−
∑
α,i

Zα
|ri −Rα|

lattice potential

+
∑
i<j

1

|ri − rj|
interaction

. (1.3)

Even with this simplification, the electron-electron term is still difficult to treat. How-
ever, to describe materials properly it is not possible to simply neglect it, especially if
one has to deal with semiconductors or insulators since the free electron model is usu-
ally only applicable to metals. The following sections are going to deal with methods
to solve this many-body problem.

1.1 Density Functional Theory

The following summary on density functional theory is based on the book by Gerd Czy-
choll [3] and Walter Kohn’s nobel lectures [4]. The most common method, nowadays, to
calculate the electronic structure of materials is density functional theory. Making use
of the Born-Oppenheimer-approximation it does not solve the electron-electron inter-
action term explicitly but rather treats this phenomenon with an effective one-particle
potential. In order to express this potential, only the total electron density is needed.
This depends on three variables rather than 3 ∗ N , like it would be necessary for the
full many-body-wave function. The dependence on the density only arises from the two
Hohenberg-Kohn-theorems [5]. The first theorem states: "The ground-state energy from
Schrödinger’s equation is a unique functional of the electron density". This implies that
there is a one-to-one correspondence between the ground-state wave function and the
ground-state electron density. In other words, the ground-state electron density defines
all properties including the ground-state energy and wave-function. However, the exact
form of the energy-density-functional E{n(r)} remains unknown. This functional can
be split up into the form of:

E{n(r)} = T{n(r)}+ V {n(r)}+ U{n(r)}, (1.4)

where the first two parts represent the density-functionals of the kinetic and the poten-
tial energy and the last term stands for the density-functional of the exchange energy.
Approximating the kinetic part with the one-particle wave function dependence and
splitting the exchange-energy functional into a well-known electrostatic exchange term
and an unknown exchange-correlation functional, the energy-density-functional can be
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written as:

E{n(r)} =
Ne∑
i=1

− ~2

2m

∫
d3rψ∗i (r)∇2ψi(r) +

∫
d3rV (r)n(r)

+
e2

2

∫
d3r

∫
d3r′

n(r)n(r’)
|r− r’|

+ Exc{n(r)},

(1.5)

with the density being a sum over one-particle densities of the Kohn-Sham orbitals:

n(r) = ns(r) =
∑
i

|ψi(r)| . (1.6)

To get the ground state, it is necessary to minimize this functional which is done by
a variation with respect to ψ∗i . The resulting differential equations are known as the
Kohn-Sham-Equations [6]:

{
− ~2

2m
∇2 + V (r) +

∫
d3r′

e2

|r− r’|
n(r’) +

δExc{n(r)}
δn(r)

}
ψi(r) = εiψi(r). (1.7)

These equations are exact as long as all the exchange-correlation effects and the ex-
change parts of the kinetic energy are dealt with in the unknown functional Exc {n(r)}.
Since the density we want to know also influences the effective one-particle potential
these equations have to be solved in a self-consistent way.
The result of DFT calculations strongly depends on the choice of the exchange-correlation
functional, which can only be approximated. There are many different functionals
for different applications, however, most popular among them are the local-density-
approximation LDA and the generalized-gradient-approximation GGA:

ELDA
xc =

∫
d3rεxc[n(r)]n(r)

EGGA
xc =

∫
d3rεxc[n(r),∇n(r)]n(r)

(1.8)

As can be seen, the LDA approach only depends on the local densities, whereas the
generalized-gradient-approximation additionally depends on the gradient of the density.
If one is interested in periodic lattices like it is the case in this thesis, then the wave
functions can be expressed according to Bloch’s theorem as:
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ψkν(r) = eik·rukν(r), (1.9)

where ν denotes the band index of of a certain Bloch-band, k the crystal momentum
inside the Brillouin zone and the ukν(r) represent lattice-periodic functions.

1.2 Wannier Functions

Usually, after performing a DFT calculation the electronic ground state is expressed
in terms of Bloch orbitals as mentioned before. Since the translation operator of the
crystal commutes with the Hamiltonian in momentum space the Bloch functions are
maximally localized in k-space. There are, however, issues, such as strong correlation
effects, where one needs localization in real space. Therefore, another representation of
the ground state is needed. One that might be more useful, is the basis set of Wannier
functions (WFs). The following procedure to obtain Wannier functions closely follows
the article of Nicola Marzari, David Vanderbilt et al. [7]. The Wannier function for the
n-th band and real-space lattice vector R can be obtained by Fourier-transforming the
Bloch functions

|ωRin〉 =
∑
k

eik·Ri

∑
ν

Unν
k |ψkν〉 . (1.10)

Here Unν
k stands for a unitary transformation. This unitary transformation is allowed

since it changes the states only by a phase factor. Hence, the WFs are not uniquely
defined, a fact that can be exploited in generating maximally localized WFs.

1.2.1 Projection Method

Tracing back to the analysis of Cloizeaux (1964) [8] is the simple approach of con-
structing localized WFs with a smooth gauge in momentum space by projection. This
is done by starting with N localized trial orbitals tn(r). These orbitals do not need to
represent the wanted WFs well. They can be some analytic functions that only need to
roughly be located where the wanted WFs are going to be centred. Via the known Bloch
manifold we can project these trial functions to a k-formulation which is in general not
orthonormal:
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|φnk〉 =
N∑
m=1

|ψmk〉 〈ψmk|tn〉 . (1.11)

We define a matrix Ak with the matrix elements being 〈ψmk|tn〉. With the help of this
matrix the overlap matrix (Sk)mn = 〈φmk|φnk〉 = (A†kAk)mn can be computed. This
overlap matrix is now used to obtain the orthonormalized Bloch-like states:

∣∣∣ψ̃nk〉 =
N∑
m=1

|φmk〉 (S−1/2
k )mn. (1.12)

These states are related to the previous Bloch functions via a unitary transformation
and yield well localized WFs when inserted in equation (1.10), for the trial states have
already been localized where expected.

1.2.2 Maximally localised Wannier functions

It is possible to enforce maximum localization. In 1997 Marzari and Vanderbilt [9]
developed this procedure to enforce localization by introducing a localization criterion.
The localization functional is defined as:

Ω =
∑
n

[〈
On|r2|On

〉
− 〈On|r|On〉2

]
=
∑
n

[〈
r2
〉
n
− r̄2

n

]
.

(1.13)

It measures the sum of quadratic spreads of the N WFs around their centres in the home
unit cell. In the next step the Ω has to be expressed in momentum space, a procedure
far from trivial since the position operators are ill-defined in momentum space. How do
we get the reciprocal space representation? First, it can be shown, that the localization
functional from above can be split into a gauge-invariant and a gauge-dependent part:

Ω = ΩI + Ω̃, (1.14)

with both parts being positive definite:

ΩI =
∑
n

[〈
0n|r2|0n

〉
−
∑
Rm

|〈Rm|r|0n〉|2
]

(1.15)
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Ω̃ =
∑
n

∑
Rm 6=0n

|〈Rm|r|0n〉|2 . (1.16)

The connection between the localization functional and reciprocal space is given by the
matrix elements of the position operator shown by Blount (1962):

〈Rn|r|0m〉 = i
V

(2π)3

∫
dkeik·R 〈unk|∇k|umk〉 (1.17)

and

〈
Rn|r2|0m

〉
= − V

(2π)3

∫
dkeik·R

〈
unk|∇2

k|umk
〉
. (1.18)

To determine these matrix elements one uses Bloch orbitals that are defined on a regular
k-grid as well as finite differences to calculate the derivatives. For any smooth function
in k-space the gradient takes the form:

∇f(k) =
∑
b

wbb [f(k + b)− f(k)] +O(b2), (1.19)

and a similar expression for the squared gradient. Here the b vector connects a k-point
to one of its neighbours, ωb represents an appropriate geometric factor. In order to
calculate the matrix elements, it is only necessary to know the overlaps between the
Bloch orbitals at neighbouring k-points:

Mk,b
mn = 〈umk|un,k+b〉 . (1.20)

Knowing this overlap matrix provides all the information needed for the localization
process. Hence, no further dependence on the DFT calculation has to be taken into
account. There are of course many different functionals that can be used, however,
since for this thesis we used wannier90 to get maximally localized Wannier functions,
only the expression of Marzari and Vanderbilt (1997) shall be reviewed. With the
overlap-matrix, the two parts of the functional can be expressed as:

ΩI =
1

N

∑
k,b

wb

(
N −

∑
mn

|M (k,b)
mn |2

)
(1.21)

and
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Ω̃ =
1

N

∑
k,b

wb

∑
m 6=n

|M (k,b)
mn |2

+
1

N

∑
k,b

wb

∑
n

(
−= lnM (k,b)

nn − b · r̄n
)2
.

(1.22)

Now it is time to take a look at the localization procedure. Basically, the minimized
functional is found by varying the spread functional from above by an infinitesimal
gauge transformation: U (k)

mn = δmn + dW
(k)
mn . With dW being an anti-hermitian matrix,

such that: |unk〉 −→ |unk〉 +
∑

m dW
(k)
mn |umk〉. To arrive at Marzari and Vanderbilt’s

definition of the gradient it is necessary to make following definitions:

q(k,b)
n = = lnM (k,b)

nn + b · r̄n (1.23)

R(k,b)
mn = M (k,b)

mn M (k,b)∗
nn (1.24)

T (k,b)
mn =

M
(k,b)
mn

M
(k,b)
nn

q(k,b)
n . (1.25)

Hence, the gradient of the spread-functional takes the form:

G(k) =
dΩ

dW (k)

= 4
∑
b

wb

(
R

(k,b)
mn −R(k,b)†

mn

2
− T

(k,b)
mn + T

(k,b)†
mn

2i

)
.

(1.26)

With this gradient it is straightforward to evaluate the minimal spread and therefore,
the maximum localization.

1.2.3 Disentanglement

The procedure described so far is performing very well as long as the Bloch bands of
interest are separated from the other bands by a certain band gap. However, most of
the time, and especially in this thesis, one has to deal with the case where the desired
bands lie within the energy-range of other bands. In literature these bands are referred
to as entangled bands. In order to be able to perform the localization procedure it
is now necessary to specify the Bloch states that can be used to form the N Wannier
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functions. This selection of a subspace is achieved by adapting the projection procedure
from the previous subsection. The difference is that now we want to extract a subspace
of N smoothly varying Bloch-like states from a bigger set of Nk ≥ N Bloch bands [10].
Again, one starts from a set of N trial orbitals gn(r) and projects them onto the set of
Nk eigenstates:

|Φnk〉 =

Nk∑
m=1

|ψmk〉 〈ψmk|gn〉 , (1.27)

where now the overlap matrix (Ak)mn = 〈ψnk|gn〉 takes a rectangular form of shape
Nk ×N . After orthonormalizing the wanted J Bloch-like states the result is:

∣∣∣ψ̃nk〉 =
J∑

m=1

|Φmk〉 (S−1/2
k )mn, (1.28)

with (Sk)mn being defined as 〈Φmk|Φnk〉V = (A†kAk)mn like in Equation (1.12) but with
rectangular matrices Ak. Usually, this technique suffices the requirements to obtain
Wannier functions that represent the Bloch bands quite well. However, by treating
Hybrid-states it can be necessary to enforce certain Bloch states to be preserved in the
projected manifold. In the Wannier90 code [11] this is referred to as setting an inner
frozen window. It is done by defining an energy range where one can be certain that
only the wanted states appear.

1.3 Dynamical Mean Field Theory

As already mentioned in previous sections, it is necessary to find other ways than DFT
to treat strongly-correlated materials in a correct manner. In this thesis, the focus
lies on the treatment of the materials with DFT + DMFT, where DMFT stands for
dynamical mean field theory which is a quantum mechanical extension of the classical
mean-field theory. The summary on the principles of DMFT is based on the PhD thesis
of Gernot Kraberger [12] and of Robert Triebl [13], as well as on the review [14].
Since in strongly correlated materials it does not suffice to consider only the electronic
hopping between the sites one also has to include interaction terms in the Hamiltonian,
leading to the so called Hubbard-model:
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H =
∑
〈mm′〉,σ

tmm′(c†mσcm′σ + c†m′σcmσ) + U
∑
m

nm↑nm↓, (1.29)

where the last term denotes the interaction Hamiltonian Hint, which may take different
forms in different applications. In equation (1.29) the interaction is only taken into
account for one band, which in this thesis is used for the single-band model of Graphene.
In the two-band model of Bismuthene a Kanamori-Hamiltonian of following form has
to be used:

Hint = U
∑
m

nm↑nm↓ + U ′
∑
m6=m′

nm↑nm′↓ + (U ′ − JH)
∑

m<m′,σ

nmσnm′σ

+ JH
∑
m 6=m′

c†m↑c
†
m′↓cm↓cm′↑ + JH

∑
m6=m′

c†m↑c
†
m↓cm′↓cm′↑.

(1.30)

In DMFT this Hubbard model is self-consistently mapped onto the Anderson impurity
model. The Anderson impurity model describes a strongly correlated impurity that
is coupled to a non-interacting bath via hopping. The Hamiltonian describing the
Anderson impurity model can be written as:

H =
∑
mm′,σ

εmm
′

loc c†mσcm′σ +Hint +
∑
p,σ

εpbatha
†
pσapσ +

∑
mp,σ

ζmp(c
†
mpapσ + a†pσcmσ). (1.31)

Here, the first two terms represent the local Hamiltonian of the impurity, the third
term is the non-interacting Hamiltonian of the bath and the last term stands for the
hybridization between the impurity and the bath. Making use of Green’s functions one
can express the non-interacting Green’s function as:

GAIM
0 (z) = (z −HAIM

0 )−1. (1.32)

In this formulation z denotes a complex frequency, namely z = ω + i0+ or z = iωn

for retarded- or Matsubara Green’s function, respectively, with Matsubara frequencies
ωn = (2n + 1)π/β at inverse temperature β. One can not further break down this
Green’s function into an impurity part and a bath part since these are coupled via the
hybridization. However, by effectively integrating out the bath it is possible to obtain
the hybridization function ∆(z) with the matrix-elements:
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∆mm′
(z) =

∑
p

ζ∗mpζm′p

z − εpbath
. (1.33)

Finally, it is possible to explicitly write down the impurity part of the non-interacting
Green’s function GAIM

0 :

G0(z) = (z − εloc −∆(z))−1. (1.34)

By inserting this non-interacting impurity Green’s function and an interaction Hamil-
tonian Hint to an impurity solver like the CTHYB from TRIQS as used in this Thesis,
one obtains the interacting impurity Green’s function Gimp(z), which has to fulfill the
Dyson equation:

(Gimp(z))−1 = (G0(z))−1 − Σ(z). (1.35)

In the Dyson equation the Self-energy Σ(z) takes care of all the electron-electron in-
teractions. Until now only the impurity Green’s function has been considered. Let us
now write down the lattice Green’s function, in other words the Green’s function of the
Hubbard model. Without an interaction the lattice Green’s function takes the form:

Glatt,0(k, z) = (z − εk + µ)−1, (1.36)

where µ denotes the chemical potential, adjusted in such a way that it ensures the
correct electron filling. Obeying the Dyson equation the interacting lattice Green’s
function is given by:

Glatt(k, z) = (z − εk + µ− Σ(k, z))−1. (1.37)

The correctly weighted k-sum over the first Brillouin zone gives the local Green’s func-
tion:

Gloc(z) =
∑
k

Glatt(k, z). (1.38)

Until here all considerations have been exact. The approximation done within DMFT is
to set the self-energy of the lattice Σ(k, z) equal to the local self-energy of the Anderson
impurity model. However, this leaves the hybridization function ∆(z) still unknown.
Therefore, one has to iteratively perform a self-consistent calculation, such that the
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local Green’s function equals the impurity Green’s function:

Gloc(z) =
1

Nk

∑
k

Glatt(k, z) = Gimp(z). (1.39)

When Equations (1.35) and (1.39) are combined one gets the connection between the
lattice and the impurity model, where an effective non-interacting Green’s function G0,
which is the analogue to the classical Weiss field, can be determined:

G0 =
(
(Gloc(z))−1 + Σ(z)

)−1
. (1.40)

As soon as the Gloc matches Gimp the self-consistency criterion is fulfilled
All the different steps of a DMFT self-consistency cycle summarized:

• Choosing an initial self energy Σ.

• Extracting the local Green’s function Gloc, using Eq. (1.37) and Eq. (1.38).

• Using equation (1.40) to map the problem onto the impurity model.

• Calculate a Gimp and an updated Σ with the impurity solver.

• Checking whether Equation (1.39) is fulfilled, if not, perform another iteration
starting with the obtained Σ.



Chapter 2

Physical Principles

2.1 Two-Dimensional Hexagonal Lattice

This section is based on the second chapter (The Atomic Structure of Graphene and
Its Few-layer Counterparts) of the book [15].
In order to be able to form a two-dimensional hexagonal lattice, atoms need to have
a specific electronic structure. They should provide four valence electrons, where the
s-orbital hybridizes with two of the p-orbitals forming three sp2-orbitals that are at an
angle of 120° to each other plus a pz-orbital that is perpendicular to the plane spanned
by the sp2-orbitals. The lattice vectors describing the unit cell are:

a1 = a

(
1

0

)
a2 =

a

2

(
−1√

3

)
. (2.1)

For Graphene, a = (2.46± 0.02)Å and for Bismuthene, a = (5.51± 0.02)Å. From these
basis vectors one gets the reciprocal lattice vectors spanning the Brillouin zone:

b1 =
2π

a

(
−1

0

)
b2 =

4π

a

(
1√
3

)
. (2.2)

In the first Brillouin zone the high symmetry points are Γ, K and M ,

Γ =

(
0

0

)
K =

2π

a

(
1√
3

)
M =

π

a

(
1

0

)
. (2.3)

Along the path that is obtained from connecting these points, usually the bandstructure

14
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M

K

kx

ky

b1

b2

Figure 2.1: The first Brillouine zone of a two dimensional hexagonal lattice, including the
high symmetry points.

can be evaluated. Among the high-symmetry points the K-points, also known as the
Dirac points are by far the most interesting ones. In these points the conduction and the
valence bands touch in a linear dispersion relation. This dispersion is a result of massless
charge-carriers at the K-points. The unique band structure gives rise to interesting
topological effects, which we want to further investigate in this thesis. In Graphene it
is the pz-orbital that gives rise to the Dirac cone around the Fermi level. Therefore, the
calculations of electronic properties break down to a simple one band model. However,
with only one band, it is not possible to apply a direct local SOC term in order to
investigate non-trivial topological effects. This can be only achieved by considering an
imaginary next-nearest-neighbour hopping, as shown by Haldane. The resulting band
gap of such a topological insulator is rather small compared to room temperature. Since
there is growing interest in two dimensional materials with topological properties and
larger bandgaps, materials with higher atomic number attract the attention.
Therefore, in this thesis we want to take a closer look at Bismuthene. It does not only
have a higher atomic number, but also provides the possibility to add a direct local
SOC term. This spin-orbit term gives rise to a large gap, and hence a stable topological
insulator. In order to add a local SOC term, one needs to have at least a two-band
model. In Bismuthene all three p-orbitals contribute at the Fermi level. In order to
obtain the wanted two-band model of px-py-orbitals, it is essential to shift away the
pz-orbitals from the Fermi level by some chemical modification. One way to do so,
proposed by Liu et al. is to passivate Bismuthene with Hydrogen atoms. By shifting
away the pz-orbitals, it creates a planar two-dimensional hexagonal structure. Since the
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s-orbitals are lower in energy and show a smaller bandwidth than in Graphene and the
pz-orbitals can be assumed to be filled, one only needs to consider the two-band model
of px-py-bands.

2.2 Spin-Orbit Coupling

The following derivation of the spin-orbit coupling term from relativistic quantum me-
chanics is based on the book of J.Bjorken [16] and the summary in Gernot Krabergers
PhD thesis [12].
Of course there are semi-classical models that give a good estimate of spin-orbit cou-
pling. However, it’s origin is of relativistic nature. Therefore, it is not sufficient to
continue with the Schrödinger equation, where the energy-momentum relation is given
by E = p2/2m, but it is important to use Einstein’s relation from special relativity:

E2 = m2p4 + c2p2. (2.4)

Since the energy takes a quadratic form in this relation, a new quantum mechanical
equation had to be found, leading to the relativistic Dirac equation:

i~
∂ψ

∂t
=
c

i

∑
i

αi
∂ψ

∂xi
+ βmc2ψ = Hψ. (2.5)

To ensure the dispersion relation from eq. (2.4), the quantities αi and β need to obey
the following restrictions:

αiαj + αjαi = 2δij

αiβ + βαi = 0

β2 = 1.

(2.6)

It can be easily seen that αi and β have to be matrices. There are different repre-
sentations, but here the most common one, namely the Dirac representation will be
used:

αi =

(
0 σi

σi 0

)
β =

(
1 0

0 −1,

)
(2.7)

where the σi denote the Pauli matrices:
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σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(2.8)

and 1 is the unity matrix. To derive an expression for the spin-orbit coupling, we are
going to use the Dirac equation describing a hydrogen-like atom:

Hψ =

[
c
∑
i

αipi + βmc2 + v

]
ψ = Ẽψ. (2.9)

It is useful to break down the four-index Dirac spinors ψ into a two indexed vector of
two-index components:

ψ =

(
φ

χ

)
. (2.10)

Inserting into eq. (2.9) one ends up with two coupled equations of the form:

c(σ · p )χ = (E − v)φ

c(σ · p )φ =
(
E + 2mc2 − v

)
χ,

(2.11)

where E = Ẽ −mc2 represents the energyon top of the rest energy mc2. Here, it is as-
sumed that time derivative, kinetic energy and electrostatic energy are small compared
to the rest energy. Hence, the φ component is approximated as being much larger than
the χ component. This approximation was first used by Pauli. Therefore, combining
the coupled equations leads to the so called Pauli equation:

1

2m
(σ · p)K(σ · p)φ+ v(r)φ = Eφ, (2.12)

for the larger φ component, with K ≡
[
1 + E−v(r)

2mc2

]−1

. This equation can be rewritten
by using Einstein’s sum convention as well as the relation σiσj = δij1 + iεijkσk in the
following form: [

1

2m
pK · p +

i

2m
σ · (pK × p) + v(r)

]
φ = Eφ. (2.13)

The first term, which is independent of spin, describes the so called scalar-relativistic
kinetic energy. The second term, however, is spin dependent and represents the spin-
orbit coupling (SOC). Most of the times the K of eq. (2.13) is just approximated.
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Furthermore, the K of the scalar-relativistic term does not necessarily have to be the
same as the K of the SOC-term. K can be approximated by an expansion in E−v(r)

2mc2
,

which is a reasonable choice sincemc2 � E−v(r). If only the zeroth order is considered,
the SOC-term would become zero due to the crossproduct of p, resulting in the non-
relativistic Schrödinger equation. Obviously, the K needs to be at least expanded to
first order K ≈ 1 − E−v(r)

2mc2
, to be able to treat spin-orbit coupling. This leads to the

weak relativistic approximation of eq. (2.13):

[
p2

2m
− 1

4m2c2
[p(E − v(r)) · p] +

i

4m2c2
σ · (pv(r)× p)

]
φ = [E − v(r)]φ, (2.14)

which can be rearranged further in terms of spin s = σ~/2 and orbital angular momen-
tum l = r× p:[

p2

2m
+ v(r)− p4

8m3c2
− 1

4m2c2

dv(r)

dr

∂

∂r
+

1

2m2c2

1

r

dv

dr
(l · s)

]
φ = Eφ. (2.15)

We can see that this represents the Schrödinger equation (first two terms) plus correc-
tions due to relativity. The third term deals with the mass increase, the fourth term
is the so called Darwin term, only affecting s-orbitals and the last term finally denotes
the spin-orbit coupling in the well known form. The prefactor of the SOC is usually
denoted as λ:

λ =
1

2m2c2

1

r

dv

dr
=

ZNαF
2m2c2r2

, (2.16)

with αF being the fine-structure constant and the derivative being evaluated like in a
hydrogen-like potential: dv

dr
= ZN

r2
αF .

2.2.1 SOC in px-py-orbitals

From the previous section it can be observed, that the relativistic eigenvalue equation,
derived by Pauli, is approximated by some, most of the times small, energy shifts and
an additional SOC-term in the Hamiltonian of the form:

HSOC = λl · s = λ(lxsx + lysy + lzsz). (2.17)
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Here, the s = ~σ/2 are proportional to the Pauli matrices, eq. (2.8). Since we are
here only interested in the spin-orbit coupling for l = 1 orbitals, we start out from a
representation in the spherical basis (ml = −1,ml = 0,ml = 1). This basis is easily
derived from the well known relations:

lz |l,ml〉 = ~ml |l,ml〉

l± |l,ml〉 = ~
√
l(l + 1)−ml(ml ± 1) |l,ml〉 .

(2.18)

Via the definition of the ladder operators used in the second relation l± = lx ± ily, we
can easily evaluate the matrix representation of the angular momentum operator:

lsx =
~√
2

0 1 0

1 0 1

0 1 0

 lsy =
~√
2

 0 i 0

−i 0 i

0 −i 0

 lsz = ~

−1 0 0

0 0 0

0 0 1

 , (2.19)

where the index s stands for spherical basis. Since in this thesis the SOC-term is
going to be added manually to an existing local Hamiltonian coming from a wannier90
calculation, this additional term needs to be provided in the same basis representation
used in wannier90. Therefore, the angular momenta have to be transformed into a cubic
basis (px, py, pz). We use the following transformation:

px =
1√
2

(|l = 1,ml = −1〉 − |l = 1,ml = 1〉)

py =
i√
2

(|l = 1,ml = −1〉+ |l = 1,ml = 1〉)

pz = |l = 1,ml = 0〉 ,

(2.20)

which leads to the following cubic matrix representation:

lcx =
~√
2

0 0 −i
0 0 0

i 0 0

 lcy =
~√
2

0 −i 0

i 0 0

0 0 0

 lcz = ~

0 0 0

0 0 i

0 −i 0

 , (2.21)

with index c referring to the cubic basis. Evaluating the spin-orbit operator of eq.
(2.17) in cubic basis (p↑z, p↑x, p↑y, p↓z, p↓x, p↓y) leads to:
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l · s =
~2

2



0 0 0 0 −1 −i
0 0 i 1 0 0

0 −i 0 i 0 0

0 1 −i 0 0 0

−1 0 0 0 0 −i
i 0 0 0 i 0


. (2.22)

In neglecting now the pz terms since they won’t be necessary in our calculations later
on we finally arrive at the SOC term of the Hamiltonian for a px - py - model:

HSOC = λ
~2

2


0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0

 . (2.23)

2.3 Topology

Topology is a section in mathematics that investigates whether geometric properties
of an object can be smoothly deformed or not. The most common picture to explain
topology is the mug that can be deformed into a doughnut. Since the mug has only one
hole in its surface (the handle) it can obviously be smoothly reshaped into a doughnut.
However, it would never be possible to deform a sphere into a torus without ripping an
additional hole into its surface. Therefore, the sphere and the torus are distinguished
by an integer topological invariant. Those surfaces, which can be transformed into one
another without adding any holes, are said to be topological equivalent and share the
same topological invariant. Although, this invariant does not play a role in this thesis,
the topological invariants treated in the following are going to be quite similar, though
more abstract. This section is based on chapter 1 (Topological Band Theory and the
Z2 invariant) of the book [17].

2.3.1 Berry Phase and Chern invariant

The quantum-mechanical wave functions are well defined up to an arbitrary phase
that is physically meaningless since it drops out in the expectation values. However,
in topological band theory, a so called Berry phase arises due to the intrinsic phase
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ambiguity of a wave function. Berry has shown in 1984 that this geometric phase
appears when a system is transformed adiabatically and it can induce observable effects
[18] [19].
The following derivation is based on the review of Yoichi Ando [19]. The Schrödinger
equation for a given Hamiltonian H depending on a set of parameters a which change
adiabatically from the t = 0 value R0 is given by:

H[a(t)] |n, a(t)〉 = En[a(t)] |n, a(t)〉 , (2.24)

where |n, a(t)〉 denotes the nth eigenstate. This state evolves in time following:

H[a(t)] |n, a0〉 (t) = i~
∂

∂t
|n, a0〉 (t). (2.25)

Therefore, a state at time t can be expressed as:

|n, a0〉 (t) = exp

{
i

~

∫ t

0

dt′(i~ȧ(t′) 〈n, a(t′)|∇a|n, a(t′)〉 − En[a(t′)])

}
|n, a(t)〉 . (2.26)

The second term of the phase factor denotes the well known dynamical phase factor
which is not explicitly time dependent. The first term is called the Berry phase γn and
it is a non-trivial phase that appears when the parameters a change adiabatically.
If the parameters a move on a closed loop C for evolving time from 0 to T , then the
Berry phase can be defined as:

γn[C] ≡ i

∫ T

0

dtȧ(t′) 〈n, a(t′)|∇a|n, a(t′)〉

= i

∮
C

da · 〈n, a(t′)|∇a|n, a(t′)〉

= −
∮
C

da ·An(a)

= −
∫
S

d2a · Fn(a),

(2.27)

where the definition An(a) ≡ −i 〈n, a(t′)|∇a|n, a(t′)〉 is the so called Berry connection,
from which one can obtain the Berry curvature Fn(a) ≡ ∇a×An(a) via Stokes’ theorem.
To sum up, the Berry phase represents an accumulated phase factor additional to the
dynamical one after completing a closed path in parameter space a. Like the vector



2.3. Topology 22

potential for electromagnetic fields in real space, the Berry connection plays the role of
a gauge field in parameter space.
To describe topological insulators, there is a topological invariant called the Chern
number. Its definition for the m-th band is given by [20]:

Cm ≡
1

2π

∫
BZ

d2k · Fm(k)

=
1

2π

∮
∂BZ

dk ·Am(k)

=
1

2π
γm[∂BZ],

(2.28)

where we have used the relations Am(k) = i 〈umk|∇k|umk〉 and Fm(k) = ∇k ×Am(k).
Here the |umk〉 states represent the Bloch states and the wave vector k spans the set of
parameters that are changed adiabatically. Of course the closed path described by the
parameters k is given by the edge of the Brillouin zone. Therefore, the Chern number
equals the Berry phase up to a factor of 2π.
For individual bands the Chern number may not be unique. For degenerate bands it
may vary by a gauge. The total Chern invariant is given as the sum of Chern numbers
of all occupied bands [21]:

C =

occupied∑
m

Cm. (2.29)

As long as the gap between the occupied states and the empty bands remains finite this
total Chern invariant is a uniquely defined integer.
For the better understanding the simplest model of a two band Hamiltonian can be
investigated [17]. The Hamiltonian expressed in terms of Pauli matrices σ takes the
form:

Hm(k) = hm(k) · σ =

(
hz hx − ihy

hx + ihy hz

)
. (2.30)

The corresponding eigenvalues are given by ±|h| and therefore the normalized vectors
are: ĥ = h/|h|. The vector ĥ defines a point on a sphere S2. Berry has shown in [18]
that the Berry phase for a closed loop C on the surface S2 is given by γC = 1

2
(Solid

angle swept out by ĥ(k)).
Since we know the connection between the Berry phase and the Chern number we can
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write down the expression for the Chern invariant [17]:

Cm =
1

4π

∫
d2k

[
∂ĥm(k)

∂kx
× ∂ĥm(k)

∂ky

]
· ĥm(k), (2.31)

where the Berry curvature is given by half the solid angle element for the mapping
ĥ(k): Fm(k) = 1

2

[
∂ĥm(k)
∂kx

× ∂ĥm(k)
∂ky

]
· ĥm(k). In words, the Chern invariant describes the

number of times ĥ(k) wraps around the S2 as a function of k.
The Chern number describes classes of Bloch bands when the time reversal symmetry
is broken. Details on the time reversal symmetry are provided in the next subchapter.
When there is a band gap at the Fermi level and the total Chern number doesn’t vanish
it is showed in the work of Thouless, Kohmoto, Nightingale and Nijs (TKNN) in 1980
[22], that an integer quantum hall effect can be observed as well as gapless chiral edge
states at the boundary of the system. The derivation of this TKNN invariant can be
looked up in the review by Yoichi Ando [19] and won’t be provided here since in this
thesis the Z2 invariant plays the major role.

2.3.2 Time reversal symmetry

When reversing time, the spin S receives a minus sign for it behaves like an angular
momentum. The time symmetry T is represented by an anti-unitary operator Θ, which
can be represented as [17]:

Θ = e−iπSy/~K = e−iπσy/2K = −iσyK, (2.32)

for spin 1/2 particles. Sy denotes the spin operator and K is the operator for complex
conjugation. Therefore, when considering the spin 1/2 electrons, Θ shows the property
Θ2 = −1. Due to this property one faces a constraint known as the Kramer’s theo-
rem, that states: A Hamiltonian that is T invariant, describing a system with an odd
number of electrons, possesses energy eigenvalues that are at least two fold degenerate.
This can be proven via contradiction: If a non degenerate state |ψ〉 would exist, then
Θ |ψ〉 = c |ψ〉 for any constant c. This would, however, due to the properties of Θ imply
Θ2 |ψ〉 = |c|2 |ψ〉, which is not possible since |c|2 6= −1. This Kramer’s degeneracy is
simply expressed in the degeneracy of up and down spins for systems without spin-
orbit interaction. However, as soon as a spin-orbit interaction is present, non-trivial
consequences can be observed.
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The Hamiltonian for a system that preserves time reversal symmetry has to satisfy:

H(−k) = ΘH(k)Θ−1. (2.33)

Hence, the Bloch waves for momentum k have the same energy as for momentum −k. If
k and −k are equivalent points in the Brillouin zone, then the bands show a degeneracy
at these points. These momenta are also known as time reversal invariant momenta
(TRIM).

2.3.3 Z2 invariant

It was already mentioned that the Chern number describes the integer quantum Hall
effect. However, a system that shows zero Hall conductivity may still have a non-zero
spin Hall conductivity σsxy = 1

2
(σ↑xy−σ↓xy) for an existing spin current Js ≡ (~/2π)(J↑−

J↓) [23]. Same as for the Hall conductivity, the spin Hall conductivity can only be a
multiple of e

2π
, where the multiplication factor is the negative spin Chern number [24]:

Cs =
∑
σ

σCσ = (C↑ − C↓)/2. (2.34)

The spin Chern number modulo 2 defines the Z2 invariant ν which describes all the
topological spin properties of a system [21]:

ν = C2 mod 2. (2.35)

In order to achieve further insight into the physical meaning of the Z2 invariant, consider
the definition given by Fu and Kane in their original work [25] for a one dimensional
periodic Hamiltonian H with lattice constant a. In addition, the Hamiltonian changes
adiabatically depending on a periodic pumping parameter t that is odd under time
reversion Θ.

H[t+ T ] = H[t] (2.36)

From previous chapters we know the expression for the Berry connection: Am(k) =

−i 〈umk|∇k|umk〉 as well as the connection between the Wannier functions and the
Bloch functions: 〈Rn|r|0m〉 = − V

(2π)3

∫
dkeik·R 〈unk|∇k|umk〉. Obviously, the Berry

phase can be connected to the position operator in the Wannier basis. Hence, it is
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reasonable to describe the topological properties of the system in terms of Wannier
charge centres (WCCs). In the case of the one dimensional model the polarisation P n

is expressed as:

P n ≡ 〈0n|x|0n〉 =
i

2π

∫ π

−π
dk 〈unk|∂k|unk〉 = Cn, (2.37)

which denotes the first Chern number Cn. By summing up all the P n one gets the total
charge polarization Pρ. For adiabatic changes of H(t) from t1 to t2 the change of the
charge polarization is given by:

Pρ[t1]− Pρ[t2] =
1

2π

∫ π

−π
dk(A(t1, k)− A(t2, k)). (2.38)

This can be expressed in terms of the Berry curvature if one treats k and t as two
independent coordinates of a two dimensional system:

Pρ[t1]− Pρ[t2] =
1

2π

∫ π

−π
dk

∫ t2

t1

F (k, t). (2.39)

Figure 2.2: Kramers pairs of a one dimensional time reversal invariant system. Each level α
consists of two pairs I and II

Since H is invariant under time reversion the integration over a full period gives zero
and hence the Chern number becomes trivial. Due to the presence of Kramers pairs
in a time reversal symmetric system it is sufficient to only evaluate a half period to
describe it. These Kramers pairs are obtained through the proposition made by Fu and
Kane [25] to separate the total charge polarization in two parts namely up and down
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parts. As shown in figure 2.2 each Kramers pair is further distinguished by the label
s = I , II . Hence, the relation between the Bloch waves within one band is:

∣∣uIα,−k〉 = −eiχα,kΘ
∣∣uIIα,−k〉 . (2.40)

As a consequence it is possible to split the total charge polarization into the sum of
partial polarizations Pρ = P I + P II , with

P s =
1

2π

∫ π

−π
dkAs(k) (2.41)

As(k) = i
N∑
α=1

〈
usα,k|∂k|usα,k

〉
. (2.42)

Even though, for the system at hand the total charge polarization represented by the
Chern number turns out to be zero, there is still a way to define a topological invariant
in order to describe the topological spin effects. To do so the time reversal polarization
needs to be defined as the difference between the partial polarizations:

Pθ ≡ P I − P II . (2.43)

Since it is sufficient to integrate over half a period at the presence of time reversal
symmetry the Z2 invariant can be defined as:

ν ≡ PΘ[T/2]− PΘ[0] mod 2. (2.44)

Kane and Fu also provided a method to determine the Z2 invariant. However, there is
more robust method by Soluyanov and Vanderbilt [26] which is also used in this thesis.

2.3.4 Soluyanov-Vanderbilt method to determine the Z2 invari-

ant

Although, in the original paper [26] the parametrization (k, t) is used, we are going to
stick to the notation (kx, ky), that Robert Triebl used in his Master thesis [27]. The
reason to do so, is that I am only going to investigate two dimensional systems. Hence,
to describe the Wannier charge centres we need a hybrid Wannier function, where only
one coordinate is transformed from momentum to position space:
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|Rxkxn〉 =
1

2π

∫ π

−π
dkxe

−iRxkx |ψnk〉 . (2.45)

As already mentioned, the WCC is given by:

x̄n(ky) = 〈0kyn| X̂ |0kyn〉 , (2.46)

where X̂ is the x component of the position operator. The expression of the WCC
can be further rewritten by taking the connection between the Berry curvature and the
Wannier transformation:

x̄n(ky) =
i

2π

∫ π

−π
dkx 〈unk|∂kx|unk〉 , (2.47)

which of course represents the polarization in the x direction. Inserting into equation
(2.44) leads to the Z2 invariant:

ν =
∑
α

[x̄Iα(π)− x̄IIα (π)]−
∑
α

[x̄Iα(0)− x̄IIα (0)]. (2.48)

At the points ky = 0 and ky = π, x̄Iα equals x̄IIα as a consequence of Kramers degener-
acy. As already mentioned in previous sections the Wannier functions are not uniquely
defined but rather possess a freedom of unitary gauge transformations. This gauge
freedom can be used to exploit maximally localized WCCs which is achieved via the
same functional as given in (1.15) [7]. The correct transformation of the Bloch bands
is finally given by:

|ũmk〉 =
∑
n

Umn(k) |ũnk〉 . (2.49)

Since we are dealing with a periodic lattice, it is possible to relate |ũm0〉 and |ũm2π〉 via
a unitary matrix Λ:

|ũm2π〉 =
∑
n

Λmn |ũn0〉 , (2.50)

it is allowed to express the eigenvalues of Λ in terms of complex phases λn = e−iφn ,
where |ũn0〉 picks up the total phase φn while evolving from kx = 0 to kx = 2π with ky
still remaining a constant. This phase has a direct relation to the WCC:
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x̄n(ky) =
φn
2π
, (2.51)

where the properties of the curves x̄n(ky) represent all the topological properties of the
band structures.
To sum up, one simply has to follow the WCC for all Kramers pairs from ky = 0

to ky = π. If the same branches intersect again one is dealing with a topologically
trivial system. However, a Kramers pair is said to be non trivial for the case that
the WCCs at ky = 0 and ky = π belong to a different branch. One major drawback
is, that due to the discretization of the ky values it can be hard to track the WCCs.
Therefore, Soloyanov and Vanderbilt [26] proposed to follow the maximum interspace
z(ky) between the WCCs rather than the curves themselves. Hence, the Z2 invariant
can be defined as the number of discontinuities of z(ky) between 0 and π.

ν = number of discontinuities of z(ky) in [0, π] mod 2 (2.52)

This is a much easier approach since the jump at a discontinuity takes exactly the value
1/2 for two bands whereas the crossing of two bands needs a pretty good resolution to
be made out.

2.3.5 Topology in interacting systems

In this section we are going to deal with topological invariants in interacting systems.
The expression for the Chern number previously mentioned cannot be used for inter-
acting systems, because it is calculated using Bloch states. The first approach to deal
with this problem was given by Niu, Thouless and Wu in 1984 [22]. In their definition,
they utilize a change of the ground state |ψ0〉 while the boundary conditions are altered.
Let’s consider a 2D many body system to get further insight. This system should obey
general boundary conditions defined by phase shifts φx and φy, such that:

ψ0(..., xi + nxLx, yi + nyLy, ...) = ei(nxφx+nyφy)ψ0(..., xi, yi, ...). (2.53)

Under these circumstances, the Chern number is defined as [22]

C =

∫ 2π

0

∫ 2π

0

dφxdφy
2πi

(〈
∂ψ0

∂ψy

∣∣∣∣∂ψ0

∂ψx

〉
−
〈
∂ψ0

∂ψx

∣∣∣∣ ∂ψ0

∂ψy

〉)
, (2.54)

where it is again possible to distinguish between spins to get the Z2 invariant or the
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spin Chern number. Therefore, the Chern number for the spin combinations takes the
form [24]:

Cσσ′
=

∫ 2π

0

∫ 2π

0

dφσxdφ
σ′
y

2πi

(〈
∂ψ0

∂φσ′
y

∣∣∣∣∂ψ0

∂φσx

〉
−
〈
∂ψ0

∂φσx

∣∣∣∣ ∂ψ0

∂φσ′
y

〉)
, (2.55)

from which the total Chern number C =
∑

σσ′ Cσσ′ and spin Chern number C =∑
σσ′ σCσσ′ can easily be evaluated.

However, expressions like that may turn out to be hard to calculate. The good news is
that by using a formulation of Green’s functions it is possible to get another expression
of equation (2.54) in terms of a single particle Green’s function [22] [28]:

C =
εµνρ

24π2

∫
dk0

∫
d2kTr[G∂µG

−1G∂νG
−1G∂ρG

−1], (2.56)

with k0 being the real frequencies k0 ≡ ω ∈ R and G = G(iw,k) referring to the
Matsubara Green’s functions taking on the form of matrices. Of course the Greek
letters take the integer values [0, 1, 2, 3] and are summed over according to Einstein’s
convention. With this formulation a good qualitative measure for topology is ensured
even though the numerical evaluation can be demanding, since the derivatives of the
Green’s functions have to be well known in order to ensure an accurate integration.
Fortunately, Zhong Wang et al. came up with a much simpler method where only the
Green’s function evaluated at ω = 0 is needed [29] [30] [31]. For ω = 0 the eigenfunction
for a Green’s function is:

G−1(ω = 0,k) |α(ω = 0,k)〉 = µα(ω = 0,k) |α(ω = 0,k)〉 . (2.57)

One can see that this expression is similar to the Schrödinger equation with the hamil-
tonian being substituted by the inverse of the Green’s function. Therefore, the Chern
numbers are calculated via:

Cα =
1

2π

∫
BZ

d2k · Fα(k) =
1

2π

∮
∂BZ

dk ·Aα(k), (2.58)

where as before the Berry curvature is given as Fα(k) = ∇k × Aα(k) and Aα(k) =

−i 〈α(0,k)|∇k|α(0,k)〉 denotes the so called Berry connection, directly determined from
the eigenvectors of the interacting system. So rather than Bloch bands, here we have
used the eigenfunctions |α(k)〉 of the inverse Green’s function G−1(ω = 0,k) to evaluate
the topology of the system. In the work of Wang et al. it is shown, that summing up
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the Cα, which belong to the positive eigenvalues results in the same total Chern number
as defined in equation (2.29)

C =
∑

α∈R−space

Cα, (2.59)

where R-space presents all the positive eigenvalues µα > 0.
In other words: Where for non-interacting systems one uses the negative eigenvalues of
the Hamilton matrix H(k) to calculate the topological invariants, in the interacting case
these values are determined by the positive eigenvalues of the inverse Green’s function
G−1(ω = 0,k). Therefore by defining a topological Hamiltonian:

Ht(k) = −G−1(ω = 0,k), (2.60)

the problem takes an equivalent form and all the methods described for the non-
interacting calculation can now be used on the interacting system taking advance of
the topological Hamiltonian Ht(k).



Chapter 3

One Band Model (Graphene)

As already mentioned Graphene won´t be able to show any non-trivial effects due to
a direct local SOC-term. Nonetheless, it is useful to first start out with this two-
dimensional material as a one band model and gain some insight in the calculations
before proceeding with the more sophisticated two band model.

Figure 3.1: Structure of a Graphene layer.

3.1 DFT + DMFT

Contrary to the tight-binding model, we want to perform ab-initio calculations of
Graphene’s electronic properties and then proceed with a dynamical mean field calcu-
lation after having done a projection onto the pz-orbitals which are the most interesting
ones as already mentioned. The DFT-codes that are going to be tested are plane wave
codes with periodic boundary conditions. That is particularly useful for the calculation
of solids since one has periodically repeated unit cells. In the cases present where two
dimensional materials are treated, it is important to ensure a sufficiently large vacuum

31
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gap between the atomic planes so that the result correctly represents a mono-layer
atomic sheet rather than a bulk. The first approach to do these calculations was to use
Wien2k for the band structure calculations and then create the projectors via dmftproj
to be able to use TRIQS for the DMFT calculations. While Wien2k did a pretty good
job on calculating the Graphene structure, the determination of the structure of Bis-
muthene exceeded the computational capacities. This is due to the fact that Wien2k
other than VASP does not approximate the region around the atoms with pseudo po-
tentials. When it comes to the determination of the projectors, using dmftproj raised
another problem. The main issue with dmftproj was that one can only project onto
the s-orbitals or the p-orbitals as they are. There is no way of taking into account
that the orbitals of Graphene (as well as Bismuthene) undergo a sp2 hybridization and
we are only interested in the pz-orbitals. This led to wrong fillings in the bands and
wrong densities. To solve the problem one is left with two options, either adapt the
dmftproj procedure so that it is able to treat sp2-hybrid and pz-orbitals separated or
use wannier90 to create maximally localized Wannier functions. The latter was the
method of choice since there is already an existing interface between the finally chosen
VASP code and the wannier90 program.

3.1.1 First try: Wien2k + dmftproj

In computational material science the most promising way of treating strongly corre-
lated materials is the approach of combining DFT and DMFT. One can do this in a
so called single shot manner, where the DFT calculation is performed and the final
result is obtained by further application of a DMFT code. However, it is important not
to forget that the DMFT calculation may produce corrections in the charge distribu-
tion. Therefore, a self-consistent DFT+DMFT loop would be preferable. Hence, the
first approach in this thesis was to use Wien2k and dmftproj to generate the Wannier
functions, since, other than with wannier90, it would be possible to easily extend the
calculation to a self-consistent cycle.
In Wien2k the only input file that needs to be provided is the structure file. The struc-
ture of Graphene was taken as a .cif file from the ICSD homepage [32] and converted
to the Graphene.struct file.
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Graphene
H LATTICE,NONEQUIV.ATOMS 1 194 P63/mmc
MODE OF CALC=RELA unit=bohr
4.667624 4.667624 30.000000 90.000000 90.000000120 .000000
ATOM −1: X=0.33333333 Y=0.66666667 Z=0.00000000
MULT= 2 ISPLIT= 4

−1: X=0.66666667 Y=0.33333333 Z=0.00000000
C 0+ NPT= 781 R0=.000100000 RMT= 1.34 Z : 6 .00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000

Listing 3.1: Graphene.struct file to provide the atomic structure for the Wien2k code.

With the existing .struct file one can make further specifications by running init lapw.
Among them, the specification of the muffin-tin radius RMT is fundamental for the
(L)APW method in order to determine where the plane waves connect to the spherical
harmonics describing the atomic spheres. An exchange correlation potential needs to be
selected (PBE in the present case [33]) as well as an energy to separate the valence states
from the core states. Finally, one has to determine the RKMAX value, determining the
size of the basis set, and the k-points grid on which the problem is evaluated. A grid of
49×49×1 has proven to be more than sufficient to obtain reasonably converged results.
After the initialization is completed, the DFT calculation is started via run lapw. The
following programs start in a self-consistent loop :

• x lapw0: calculates the exchange-correlation potential

• x lapw1: solves the Kohn-Sham equations

• x lapw2: calculates the charge density

• x lcore: calculates the core states

• x mixer: mixes the old and the new charge densities

With a converged DFT-cycle the band structure is easily calculated. First, set up the
preferred k-path and save it in the .klist band file. Run x lapw0 and x lapw1 -band
to solve the Kohn-Sham equations on the new k-path. The x lapw2 -band command
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should be executed after having prepared the .insp file that deals with several plot
specifications. To conclude the band structure calculation x spaghetti needs to be run
in order to obtain the bands in dependence of the k points, which can be plotted as
figure 3.2. The Wien2k DMFT calculation was performed with the WIEN2k code [34].
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Figure 3.2: Band structure of Graphene determined with Wien2k.

With the electronic structure obtained from a Wien2k calculation, one can use dmftproj
to generate projective Wannier functions. This means to calculate the projection matrix
Pmν(k), such that it satisfies:

G0,α
mn(iωn) =

∑
k

∑
ν

Pα
mν(k)

1

iωn − εkν + µ
Pα∗
nν (k), (3.1)

where G0,α
mn(iωn) is the non-interacting Green’s function depending on the Matsubara

frequencies iωn. To write all the necessary quantities into an input file the command x
lapw2 -almd has to be invoked. In addition, a .indmftpr file should be provided in order
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to determine the local orbitals for the projection. All the necessary files provided, the
projectors are calculated by invoking the command dmftproj. These projectors could
already be converted to run a dmft code. However, due to the way the orbitals are
implemented in this code, it is not possible to apply it on a Graphene calculation. The
problem arises when specifying for which orbitals projections should be generated. In
Graphene as well as in Bismuthene, which will be treated later, the s-orbital hybridizes
with the px- and the py-orbitals. Unfortunately, in the .indmftpr file one can only choose
between the s-orbitals and/or all p-orbitals rather than distinguish them. One way to
solve this problem, is to modify the code to obtain a linear combination of the orbitals
in such a way that the sp2-hybrid is guaranteed.
Since the Wien2k calculation was rather time consuming compared to a VASP calcula-
tion and due to the fact that in this thesis only single-shot DFT+DMFT calculations
need to be done, the obvious step was to execute the DFT calculation with VASP and
use wannier90 to construct the maximally localized Wannier functions since in this code
the sp2-hybrid is already implemented.

3.1.2 DFT calculations (VASP)

The following DFT calculations have been performed using the ab-initio total-energy
and molecular-dynamics program VASP (Vienna ab-initio simulation program) devel-
oped at the Institut für Materialphysik of the Universität Wien [35] [36].
Since VASP calculations are performed with periodic boudary conditions as already
mentioned, one can use Bloch’s theorem from eq. (1.9). Writing all cell periodic
functions as sum of plane waves leads to the following structure of the wave functions:

ψkν(r) =
1√
Ω

∑
G

cGkνe
i(G+k)r (3.2)

where one has to choose an energy cut-off ~2
2me
|G + k|2 < Ecutoff to make the sum over

the G-vector finite. For two dimensional materials this cut-off has to be chosen rather
large in order to have enough plane waves to deal with the vacuum gap. The usage
of plane waves is simply due to computational reasons, since the evaluation of H |ψ〉
becomes very efficient using Fast Fourier transform (FFT).
Even though there is the limit of an energy cut-off, the number of plane waves would
become highly impractical as the atomic number increases. Therefore, instead of exact
potentials, VASP uses pseudo-potentials. These treat the core electrons as a frozen
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Figure 3.3: Band structure of Graphene determined with Vasp.

ensemble, providing a potential for the valence electrons. Hence, VASP was chosen
over Wien2k since this saves a lot of computational time.
To run the calculations four files need to be prepared: INCAR, KPOINTS, POSCAR
and POTCAR. In the INCAR file one specifies all the different parameters essential for
a calculation like the energy cut-off that needs to be set to 700 eV in order to be able
to deal with the vacuum gap between the sheets. The KPOINTS file sets the k-points
for the calculation which should be sufficiently large in order to get smooth results. In
case of the Graphene calculations a Gamma-centred grid of 49× 49× 1 has been used.
The POTCAR file contains the pseudopotentials that are used for the different atoms
of the material and the POSCAR file includes the information of the atomic structure.

Graphene_Vasp
1 .0

2.4700000000 0.0000000000 0.0000000000
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−1.2350000000 2.1390827473 0.0000000000
0.0000000000 0.0000000000 25.0000000000

2
Di rec t

0 .666670000 0.333330000 0.000000000 !C
0.333340000 0.666670000 0.000000000 !C

Listing 3.2: POSCAR file for Graphene calculations in VASP

In addition, it is necessary to set the LWANNIER90-tag as well as the LWRITE MMN
AMN-tag to TRUE in the INCAR file. Otherwise, one would not be able to perform
the wannier90 projections. After convergence was reached a second run was started on
a given K-path in order to check the band structure of Graphene, figure 3.3.
Comparing the bandstructure obtained from the Wien2k calculation figure 3.2 with the
one of VASP figure 3.3, one can see the perfect agreement for the filled bands. At the
energy of 10 eV one can see that VASP kinks the pz-orbital, whereas Wien2k depicts
all the orbitals as expected. This is probably due to the fact that the energy cut-off for
the VASP calculation was chosen smaller than necessary in order to save computational
time.

3.1.3 Projections

With the Bloch states obtained from the DFT calculations one can proceed by trans-
forming them into Wannier functions using wannier90 [11]. The essential file to be
prepared is the wannier90.win file. This is created already in the VASP run because of
the LWANNIER90-tag. However, it is important to add some additional information,
otherwise wannier90 would not be able to determine which projections should be done.

s e a r ch_she l l s = 70

num_wann = 2 ! s e t to NBANDS by VASP
num_bands = 24

fermi_energy = −3.06267351

dis_conv_window = 4
dis_conv_tol = 1 .0E−10
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dis_win_min = −15.6
dis_win_max = 9 .4

dis_froz_min = −5.9
dis_froz_max = −0.2

Begin Pro j e c t i on s
C: pz
End Pro j e c t i on s

hr_plot = TRUE

bands_plot = TRUE
begin kpoint_path
G 0.000000 0.000000 0.000000 K 0.333333 0.333333 0.000000
K 0.333333 0.333333 0.000000 M 0.500000 0.000000 0.000000
M 0.500000 0.000000 0.000000 G 0.000000 0.000000 0.000000
end kpoint_path

Listing 3.3: wannier90.win file for Graphene

For Graphene the important bands are the pz-orbitals of the Carbon-atoms. This
is defined in the section between Begin and End Projections. The number of bands
num bands is taken from the number of Bloch bands obtained in the DFT run, whilst
num wann represents the number of Wannier functions to be obtained (two in our case).
To further improve the calculation it is possible to define an energy-window in which the
wanted bands are expected as well as a frozen window, that represents an energy-range
where solely the bands of interest can be found.
As can be seen, there is also a kpoint path defined. Along this path the Wannier
Hamiltonian is printed, figure 3.4.
At the Gamma point, the band structures do not match perfectly. The differences near
this point are du to the kink from the VASP calculation. Here, wannier90 tries to follow
the bands of the DFT results while at the same time orthonormality of the Wannier
states should be ensured. However, at the K-points, the interesting physics happens
and since we have a maximally localized presentation now there won’t be any influence



3.1. DFT + DMFT 39

Γ K M Γ

k-path
15

10

5

0

5

10

(E
 - 
E
F
) /

 e
V

Figure 3.4: Band structure of Graphene. The black lines depict the Bloch bands obtained
from the VASP DFT calculation. In red the Wannier bands are shown. Around the K-point
they match perfectly.

due to discrepancies at the origin of the Brillouin zone.
With setting the hr plot-tag TRUE a file is written at the end of the calculation which
includes the local Hamiltonian. This is the essential file needed to be passed on to the
TRIQS code for running DMFT-calculations.

3.1.4 DMFT

The DMFT calculations were carried out with the TRIQS toolbox [37], where the DFT-
Tools applications [38] have been used to combine the VASP calculation with the DMFT
runs. To create the input HDF5 file one has to provide the wannier90 hr.dat file along
with a wannier90.inp file.

0 49 49 1 # s p e c i f i c a t i o n o f the k−mesh
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2 .0 # e l e c t r on dens i ty
2 # number o f atoms
0 0 1 1 0 0 # atom , sort , l , dim , SO, i r e p
1 0 1 1 0 0 # atom , sort , l , dim , SO, i r e p

Listing 3.4: wannier90.inp file for Graphene

In this file it is crucial to correctly define the correlated shell structure. The SO flag can
in a way be ignored. To use calculations with spin-orbit coupling, one has to modify
the HDF5 file once it is written. The HDF5 file is obtained via the short script:

from pyt r i q s . a pp l i c a t i o n s . d f t . c onve r t e r s import
Wannier90Converter

Converter = Wannier90Converter ( seedname = ’ wannier90 ’ )
Converter . convert_dft_input ( )

Listing 3.5: Code to invoke the Wannier90 converter

In order to later on achieve correct results, it is beneficial to add the Fermi energy
to the hopping matrix in the HDF5 file, since it is dropped out during the wannier90
calculation. Finally, it is save to perform the DMFT run, as follows:
There are several basic modules that need to be imported to run a TRIQS code:

from pyt r i q s . g f . l o c a l import ∗
from pyt r i q s . ope ra to r s import ∗
from pyt r i q s . ope ra to r s . u t i l import ∗
from pyt r i q s . a r ch ive import ∗
from pyt r i q s . a r ch ive import HDFArchive
import numpy as np
import py t r i q s . u t i l i t y . mpi as mpi
import os

Listing 3.6: Modules needed to run a TRIQS DMFT cycle on top of a DFT calculation

Furthermore, the SumkDFT class has to be initialized. This class contains all the basic
routines to perform k-space-summation in order to obtain local quantities:

from pyt r i q s . a pp l i c a t i o n s . d f t . sumk_dft import ∗
SK = SumkDFT( hd f_ f i l e = f i l ename + ’.h5 ’ )

Listing 3.7: Initialization of the SumkDFT class
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In addition, it is essential to setup an impurity solver, where one has different solvers
from which can be chosen. In this case the most suitable solver is the CTHYB solver,
that solves the generic problem of an impurity embedded in a conduction bath. How-
ever, to do so the structure of the Green’s functions needs to be defined. Since we only
have the pz-orbitals they take a diagonal form of a 2 × 2 matrix with entries for the
’up’ and the ’down’ spin.

g f_st ruct = { ’up ’ : [ 0 ] , ’down ’ : [ 0 ] }

Listing 3.8: Structure of the Green’s functions

from pyt r i q s . a pp l i c a t i o n s . impur i ty_so lver s . cthyb import ∗
S = So lve r ( beta = beta , g f_st ruct = gf_st ruct )

Listing 3.9: Initialization of the Solver class

In order to perform the self-consistent DMFT loop some further parameters need to be
set.

f i l ename = ’ wannier90 ’

beta = 40 # Inve r s e temperatur
n_loops = 15 # Number o f c y c l e s to be performed
measure = 25000 # Number o f measurements to be made per cy c l e
dc_type = 1 # Type o f formula to t r e a t double−count ing
U_min = 6 # Minimum value o f the i n t e r a c t i o n range
U_max = 9 # Maximum value o f the i n t e r a c t i o n range
n_orb = SK. c o r r_sh e l l s [ 0 ] [ ’ dim ’ ] # Number o f o r b i t a l s
orb_names = [ i f o r i in range (0 , n_orb ) ] # Names o f the o r b i t a l s
orb_hyb = True # Hybr id i za t i on o f the o r b i t a l s
l = SK. c o r r_sh e l l s [ 0 ] [ ’ l ’ ] # Corre la ted s h e l l s
spin_names = [ ’ up ’ , ’ down ’ ] # Names o f the sp in s

Listing 3.10: Global parameters to be set in order to run a DMFT cycle

Since Graphene is only a one-band model the interaction Hamiltonian is simply obtained
by:

h_int = Operator ( )
h_int += U ∗ (n ( ’ up ’ , 0 ) ∗ n ( ’ down ’ , 0 ) )

Listing 3.11: Interaction Hamiltonian
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With all the initializations done the DMFT loop can be set up with the self-consistency
condition:

f o r k in range (1 , n_loops+1):
SK. set_Sigma ( [ S . Sigma_iw ] )
chemica l_potent ia l = SK. calc_mu
S .G_iw << SK. extract_G_loc ( ) [ 0 ]
G_loc = S .G_iw

S .G0_iw << S . Sigma_iw + inv e r s e (S .G_iw)
S .G0_iw << inv e r s e (S .G0_iw)

G0_tau = S .G_tau . copy ( )
f o r name , g in S .G0_iw :

G0_tau [ name ] << Inve r s eFour i e r ( g )
G0_tau [ name ] . data [ : , : , : ] =

np . r e a l (G0_tau [ name ] . data [ : , : , : ] )
S .G0_iw [ name ] << Four i e r (G0_tau [ name ] )

S . s o l v e ( h_int = h_int ,
l ength_cyc le = 10 ,
n_warmup_cycles = 5000 ,
n_cycles = measure ,
∗∗p)

S .G_iw[ ’ up ’ ] = 0 . 5∗ ( S .G_iw[ ’ up ’ ]+S .G_iw[ ’ down ’ ] )
S .G_iw[ ’ down ’ ] = S .G_iw[ ’ up ’ ]
S . Sigma_iw [ ’ up ’ ] = 0 . 5∗ ( S . Sigma_iw [ ’ up ’ ]

+ S . Sigma_iw [ ’ down ’ ] )
S . Sigma_iw [ ’ down ’ ] = S . Sigma_iw [ ’ up ’ ]

Listing 3.12: The DMFT loop for Graphene

In the first section the self energy as well as the chemical potential are set and a local
Green’s function is extracted. This local Green’s function is also saved as G loc.
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Next, the Dyson equation is applied in order to obtain an effective non-interacting
Green’s function.
Before solving the impurity problem to obtain the impurity Green’s function as well
as an updated self energy, the positive imaginary part of the non-interacting Green’s
function is set to be the same as the inverse negative imaginary part. Due to this
enforcement of antisymmetry, numeric errors won’t result in failures of the code.
When the impurity problem is solved, spin ’up’ and spin ’down’ parts are forced to
be equal since it is a paramagnetic ordering that is expected. At the end of one cycle
the local Green’s function is extracted and depending on the convergence a new loop is
started or the problem is considered as being solved.
For high frequencies the Green’s functions usually show a lot of noise in the data and
therefore, need to be fitted. This is done via a tail fit provided by Gernot Kraberger.

fit_min_n = f_min [U−2]
fit_max_n = f_max [U−2]
fit_max_moment = 4
i f FIT == True :

fit_known_moments = {}
f o r name , g in S . Sigma_iw :

fit_known_moments [ name ]
= TailGf ( l en ( g . i nd i c e sL ) ,

l en ( g . ind icesR ) , 0 , 0 )
f o r name , s i g in S . Sigma_iw :

t ry :
S . Sigma_iw [ name ] . f i t _ t a i l (

fit_known_moments [ name ] ,
fit_max_moment ,
−S . Sigma_iw [ name ] . mesh .

last_index ()−1 ,
−fit_min_n−1,
fit_min_n ,
S . Sigma_iw [ name ] . mesh .

last_index ( ) ,
error_omega=2.0)

except TypeError :
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S . Sigma_iw [ name ] . f i t _ t a i l (
fit_known_moments [ name ] ,
fit_max_moment ,
−fit_max_n−1,
−fit_min_n−1,
fit_min_n ,
fit_max_n )

S .G_iw[ name ] . t a i l
= i nv e r s e ( i nv e r s e (S .G0_iw [ name ] . t a i l )
− S . Sigma_iw [ name ] . t a i l )

Listing 3.13: Tailfit for Green’s functions according to Gernot Kraberger

To take care of double counting, the density needs to be known. the double counting
energy along with the chemical potential is written into the SumkDFT class:

dm = S .G_iw. dens i ty ( )
SK. calc_dc (dm, U_interact = U, J_hund = J , orb = 0 ,

use_dc_formula = dc_type )
SK. save ( [ ’ chemica l_potent ia l ’ , ’ dc_imp ’ , ’ dc_energ ’ ] )

Listing 3.14: Writing the results into an HDF5 file

Finally, the results need to be saved in a HDF5 file. The structure is such that the
Green’s functions are saved for every iteration.

i f mpi . is_master_node ( ) :
with HDFArchive (" r e su l t s_"+f i l ename+"_U{:1d } . h5"

. format (U) , ’ a ’ ) as A:
i f ’DMFT_results ’ not in A:

A. create_group ( ’ DMFT_results ’ )
i f ’ I t e r a t i o n s ’ not in A[ ’ DMFT_results ’ ] :

A[ ’ DMFT_results ’ ] .
create_group ( ’ I t e r a t i o n s ’ )

A1 = A[ ’ DMFT_results ’ ] [ ’ I t e r a t i o n s ’ ]
i f k < 10 :

A1 [ ’ Giw_it { :1 d } ’ . format (k ) ] = S .G_iw
A1 [ ’ Gloc_it { : 1 d } ’ . format (k ) ] = G_loc
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A1 [ ’ G0_iw_it { :1 d } ’ . format (k ) ] = S .G0_iw
A1 [ ’ Sigma_it { :1 d } ’ . format (k ) ]

= S . Sigma_iw
A1 [ ’ Gtau_it { :1 d } ’ . format (k ) ] = S .G_tau

e l s e :
A1 [ ’ Giw_it { :2 d } ’ . format (k ) ] = S .G_iw
A1 [ ’ Gloc_it { : 2 d } ’ . format (k ) ] = G_loc
A1 [ ’ G0_iw_it { :2 d } ’ . format (k ) ] = S .G0_iw
A1 [ ’ Sigma_it { :2 d } ’ . format (k ) ]

= S . Sigma_iw
A1 [ ’ Gtau_it { :2 d } ’ . format (k ) ] = S .G_tau

A[ ’ DMFT_results ’ ] [ ’ i t e rat ion_count ’ ] = k

Listing 3.15: Writing the results into an HDF5 file

3.2 Results

Since Graphene as an effective one band material was more or less only a model to test
the performance of the programs when calculating correlation effects for ab-initio two
dimensional structures, no further physical measurements besides the determination of
the Green’s function and the self energy have been made. The final impurity Green’s
function for Graphene takes the form of figure 3.5.
The self energy obtained from the DMFT calculations also satisfies the wanted shape,
with negative values for positive Matsubara frequencies. In figure 3.6 there is a small
spike in the curve. This is a result of the tail fit not being perfect.
Taking a look at the Fourier transform of the impurity Green’s function, figure 3.7,
namely G(τ) one can see that the bands are half filled as expected since G(0) = G(β) =

−1
2
.
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Figure 3.5: The real and imaginary part of the Green’s function of Graphene. Up and down
spin are degenerate as can be seen. Interaction value U = 2.
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Figure 3.6: The real and imaginary part of the self energy function of Graphene. Up and
down spin are degenerate as can be seen. Interaction valu U = 2.
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Figure 3.7: The real part of the Fourier transform of the impurity Green’s function of
Graphene. Up and down spin are degenerate as can be seen. The τ values go from 0 to the
defined beta value 40. Interaction value U = 2.



Chapter 4

Two Band Model (Bismuthene)

Bismuth has one more valence electron than Carbon, therefore, it forms a hexagonal
lattice, that is buckled, with all the p-orbitals being near the Fermi edge. When pas-
sivating this sheet of Bismuth atoms with either a suitable substrate or hydrogen, not
only the buckling vanishes and it becomes planar, but also the pz-orbitals are shifted
away from the Fermi energy. This happens because the Hydrogen atom binds with
the excess valence electron, resulting in Dirac cones at the K-points for the px- and
the py-orbitals, which gives an effective two band model. In the Science paper [2] on
Bismuthene the authors used SiC as a substrate to get rid of the pz-orbitals. In this
thesis, the approach of adding Hydrogen atoms to the Bismuthene sheet like it is done
in the paper of Freitas et al. [1] is used, figure 4.1. Here the H-atoms are attached
chair-like as they called it in the paper. This means, that for neighbouring Bismuth
atoms one Hydrogen is attached top- and one down-side of the sheet, figure 4.2. Due to
the rather high atomic number of Bismuth, it is said to open a rather large band gap
when considering spin-orbit coupling. Since in the passivated Bismuthene we are left
with two bands, it is possible to add a local spin-orbit term to the Hamiltonian. This
term should give rise to non-trivial topology.

48



49

Figure 4.1: Passivated Bismuthene viewed from an angle in order to make out the structure
and the H-atoms of the passivation.

Figure 4.2: Passivated Bismuthene viewed from x-direction. The hydrogen atoms are ar-
ranged alternately on top and bottom of the Bismuth atoms.
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4.1 DFT

As was done for Graphene, the electronic structure of Bismuthene was calculated using
VASP. The atomic structure is similar to Graphene, but the atomic distances were taken
from the paper of Freitas et al. [1]. Therefore, the POSCAR file takes the following
form:

Bismuthene
1.00000000000000
5.5059967041000002 0.0000000000000000 0.0000000000000000
−2.7529983521000001 4.7683330188999999 0.0000000000000000
0.0000000000000000 0.0000000000000000 32.9177017211999967
Bi H
2 2
Di rec t
0.3333333429999996 0.6666666919999997 −0.0009766590231054
0.6666666730000017 0.3333333460000034 0.0009766590231054
0.3333333429999996 0.6666666919999997 0.0336044968170526
0.6666666730000017 0.3333333460000034 0.9663955251829494

0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00

Listing 4.1: POSCAR file for all the VASP calculations of Bismuthene.

A Γ-centred k-point grid of 27 × 27 × 1 turned out to be sufficient. Since Bismuthene
consists of two atom sorts, two different POTCAR files need to be provided, namely
the ones for Hydrogen and Bismuthene. In the INCAR files it was sufficient to set
ENCUT to 200 eV. Of course the flags LWANNIER90 = .TRUE. LWRITE MMN AMN
= .TRUE. need to be included in order to be able to perform wannier90 calculations
later on. Depending on whether spin-orbit coupling is included or not, the corresponding
flag needs to be set too (LSORBIT=.TRUE.).
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4.1.1 DFT-calculation for Bismuthene

The DFT calculation for Bismuthene results in the band structure, figure 4.3
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Figure 4.3: Bandstructure of Bismuthene determined with VASP. The two lowest bands with
the crossing at the K-point are the pz-orbitals that are shifted away from the Fermi level.

In figure 4.3 one can see the prominent Dirac cone at the K-point. At the Fermi level
the cone is formed by the px- and py-bands. The pz-bands, the two lowest bands in
figure 4.3 are shifted away from the Fermi level due to the passivation with hydrogen
atoms.

4.1.2 DFT-calculation for Bimuthene including spin-orbit cou-

pling

When performing the DFT-calculation with the spin-orbit flag set true, the bands split
up with respect to their spin resulting in a band gap 4.4
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Figure 4.4: Bandstructure of Bismuthene with the inclusion of spin-orbit coupling determined
with VASP. At the Fermi level, the px- and the py-orbitals open up a gap, while there is no
gap in the bands coming from the pz-orbitals (lowest energy bands).

4.2 Projections

Same as for Graphene, maximally localized Wannier functions are created, in order to
perform the DMFT calculations. Since we have four bands now, we need to prepare
a new wannier90.win file, determining for which Blochbands a projection should be
made. In addition, we have to distinguish between the Bismuthene calculations with
and without spin-orbit coupling, because spin-orbit coupling doubles the bands. The
possibility of spin-orbit coupling is not implemented in the wannier90-Converter and
therefore, some matrices need to be doubled by hand.
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Figure 4.5: Band structure of Bismuthene. In red are the Wannier functions, which match
the black Bloch functions of the DFT calculation pretty well.

4.2.1 wannier90 for Bismuthene

As a result of the VASP calculation with the LWANNIER90-tag set true, a wan-
nier90.win file is generated:

s e a r ch_she l l s = 100

num_wann = 4
num_bands = 24

dis_mix_ratio = 0 .5

dis_conv_window = 4
dis_conv_tol = 1 .0E−10
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dis_win_min = −11.6
dis_win_max = 9 .4
dis_froz_min = −5.6
dis_froz_max = −2.1

Begin Pro j e c t i on s
Bi : px , py
End Pro j e c t i on s

hr_plot = TRUE

bands_plot = TRUE
begin kpoint_path
M 0.500 0 .000 0 .000 G 0.000 0 .000 0 .000
G 0.000 0 .000 0 .000 K 0.333 0 .333 0 .000
K 0.333 0 .333 0 .000 M 0.500 0 .000 0 .000
end kpoint_path

begin un i t_ce l l_car t
5 .5059967 0.0000000 0.0000000
−2.7529984 4.7683330 0.0000000
0.0000000 0.0000000 32.9177017
end un i t_ce l l_car t

begin atoms_cart
Bi −0.0000000 3.1788888 32.8855524
Bi 2 .7529984 1.5894444 0.0321494
H −0.0000000 3.1788888 1.1061828
H 2.7529984 1.5894444 31.8115196
end atoms_cart

mp_grid = 27 27 1

Listing 4.2: wannier90.win file for Bismuthene without spin orbit coupling
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Besides from determining four bands that are projected onto the px and the py orbital, it
is also essential to set the energy window where the orbitals are to be found (dis win min
and dis win max). In addition, it is possible to choose a so called frozen window. In
this energy region only the bands we want to project onto are present and therefore, it
is easier to do the transformation. In listing 4.2 not only the command to generate the
local Hamiltonian is defined, but also a path of k-points. Therefore, the output is the
local Hamiltonian along with a file that allows plotting the band structure as shown in
figure 4.5
As can be seen in figure 4.5, the projections are in perfect accordance with the Bloch
bands. Hence, we can further proceed to perform the DMFT calculations.

4.2.2 Wannier90 for Bismuthene with spin-orbit coupling

In the case of Bismuthene with spin-orbit coupling the wannier90.win file has the same
form as without spin-orbit coupling apart from some minor changes. It has the same
structure as 4.2 but the following parameters have been modified:

num_wann = 8

dis_win_min = −6.5
dis_win_max = 2 .7

dis_froz_min = −6.5
dis_froz_max = −2.1

sp i no r s = . t rue .

Listing 4.3: changes in the wannier90.win file from the case of Bismuthene to Bismuthene
with spin-orbit coupling

The most important difference is the doubling of the bands according to the spins.
Since the different spins are treated individually it is useful to set the spinors-tag to
true. Besides, it is essential to define new energy windows. This is important because
wannier90 does not take care of Fermi energy and therefore, one needs to determine
the windows according to a different Fermi level. The Wannier functions have been
determined with the wannier90 code [11]. In figure 4.6, the gained Wannier functions
are again checked against the Bloch functions from the DFT calculation.
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Figure 4.6: Band structure of Bismuthene with spin-orbit coupling. In red are the Wannier
functions, which are in perfect accordance to the black Bloch bands.

It can be easily seen that the constructed Wannier functions are nearly identical to the
Bloch bands. There is only one minor difference for the highest Wannier bands at the
K-point, which will not affect the physics near the Fermi level. Hence, they can be used
to perform DMFT cycles without doubt.

4.3 DMFT

Finally, all the prerequisites to perform the calculations that take correlation effects into
account are provided. These DMFT calculations are again performed with the TRIQS
code using the DFTTools package [38] and a CTHYB solver [37]. The main code has
already been discussed in the subsection of Graphene. In the following subsections
of Bismuthene with and without spin-orbit coupling only the relevant changes for the
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specific cases are to be reviewed.

4.3.1 DMFT for Bismuthene

Same as for Graphene, the results of Bismuthene wannier90 calculations need to be
converted and written to an HDF5 file. The corresponding wannier90.inp file takes the
form:

0 27 27 1 # s p e c i f i c a t i o n o f the k−mesh
4 .0 # e l e c t r on dens i ty
2 # number o f atoms
0 0 1 2 0 0 # atom , sort , l , dim , SO, i r e p
1 0 1 2 0 0 # atom , sort , l , dim , SO, i r e p

Listing 4.4: wannier90.inp file for Bismuthene conversion

In comparison to the one orbital Graphene here we have dimension 2 from px and py
and therefore, an electron density of four electrons in the unit cell. Together with the
wannier90 hr.dat file these two files form the input for the wannier90Converter that
creates the HDF5 file. As previously already mentioned, wannier90 does not take the
Fermi energy into account. Therefore, it needs to be fixed before performing a DMFT
cycle in order to obtain correct results of the chemical potential.

import numpy as np
from pyt r i q s . a r ch ive import ∗

f i l ename = ’ wannier90 ’
ar = HDFArchive ( f i l ename + ’.h5 ’ , ’ a ’ )
dft_in = ar [ ’ dft_input ’ ]
hopping = dft_in [ ’ hopping ’ ]
f o r f e r in range ( 8 ) :

hopping [ : , : , f e r , f e r ] = hopping [ : , : , f e r , f e r ]
+ 3.01604113

dft_in [ ’ hopping ’ ] = hopping

de l ar

Listing 4.5: Programm to ensure the Fermi level is set correctly
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At the beginning of the python file containing the actual DMFT code, the same modules
are loaded as in listing 3.6. Again the SumkDFT class needs to be initialized :

from pyt r i q s . a pp l i c a t i o n s . d f t . sumk_dft import ∗
SK = SumkDFT( hd f_ f i l e = f i l ename + ’.h5 ’ , use_dft_blocks = True )
SK. b lock_structure . approximate_as_diagonal ( )
g f_st ruct = { ’up_0 ’ : [ 0 ] , ’up_1 ’ : [ 0 ] ,

’down_0 ’ : [ 0 ] , ’down_1 ’ : [ 0 ] }

Listing 4.6: SumkDFT initialization with enforcement of a diagonal block structure

With the structure of the Green’s functions at hand, the solver class can be initialized
like it is done in listing 3.9. Same as for Graphene (listing 3.10) the global variables are
defined before setting up an interaction Hamiltonian and the self consistent cycle. Since
we no longer treat a one band model the interaction Hamiltonian needs to take on a
more sophisticated form. Here, we use the density interaction Hamiltonian constructed
with U matrices from the function U matrix kanamori. The Hund’s coupling J is going
to be a tenth of the interaction value U.

Umat , Upmat = U_matrix_kanamori ( n_orb=n_orb , U_int=U, J_hund=J )
h_int = h_int_density ( spin_names , orb_names ,

map_operator_structure = SK. sumk_to_solver [ 0 ] ,
U=Umat , Uprime=Upmat)

Listing 4.7: Construction of the interaction himltonian

This setup at hand, allows to perform the DMFT cycle until self-consistency is achieved:

f o r k in range (1 , n_loops+1):
SK. set_Sigma ( [ S . Sigma_iw ] )
chemica l_potent ia l = SK. calc_mu ( )
S .G_iw << SK. extract_G_loc ( ) [ 0 ]
SK. symm_deg_gf(S .G_iw, 0 )

S .G_iw[ ’ up_0 ’ ] =
0 .25∗ ( S .G_iw[ ’ up_0’ ]+S .G_iw[ ’ down_0 ’ ]
+ S .G_iw[ ’ up_1’ ]+S .G_iw[ ’ down_1 ’ ] )

S .G_iw[ ’ down_0 ’ ] = S .G_iw[ ’ up_0 ’ ]
S .G_iw[ ’ up_1 ’ ] = S .G_iw[ ’ up_0 ’ ]
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S .G_iw[ ’ down_1 ’ ] = S .G_iw[ ’ up_0 ’ ]

G_loc = S .G_iw

S .G0_iw << S . Sigma_iw + inv e r s e (S .G_iw)
S .G0_iw << inv e r s e (S .G0_iw)

G0_tau = S .G_tau . copy ( )
f o r name , g in S .G0_iw :

G0_tau [ name ] << Inve r s eFour i e r ( g )
G0_tau [ name ] . data [ : , : , : ] =

np . r e a l (G0_tau [ name ] . data [ : , : , : ] )
S .G0_iw [ name ] << Four i e r (G0_tau [ name ] )

S . s o l v e ( h_int = h_int ,
l ength_cyc le = 10 ,
n_warmup_cycles = 5000 ,
n_cycles = measure ,
random_seed = 34788 + 928374 ∗ mpi . rank ,
move_double = True ,
∗∗p)

Listing 4.8: Self-consistent DMFT loop for Bismuthene

In listing 4.8 it is easily observed that it hardly differs from the one-band model. The
only major difference is the symmetrization done at the beginning, where all the bands
available are set equal since this expected property of the two band model should be
enforced at any time. In addition, for the solver the move double parameter is activated
which is important for multi-band calculations. The tail fitting for higher frequencies
as well as the treatment of the double counting and finally the saving of the results is
exactly the same as for the Graphene case, see listings 3.13, 3.14 and 3.15.
As already expected the Green’s function is spin degenerate, figure 4.7. The px- and
py-orbitals however, differ just a little bit. Since they already differ in G0 the self energy,
figure 4.8 is equal for both orbitals. The kink at Matsubara frequency iω = 15 comes
from the choice of tailfit parameters.
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Inspecting the Fourier transform of the impurity Green’s function, namely G(τ) one
can see that averaging over all bands gives half filling as expected, since G(0) = G(τ) =

−0.5. However, taking a closer look at the bands separately, one can see that the
individual bands are not half filled.
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Figure 4.7: The real and imaginary part of the Green’s function of Bismuthene. U = 2 and
J = 0.2. Up and down spin are degenerate as can be seen. However, the px- and the py-orbital
vary slightly.
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Figure 4.8: The real and imaginary part of the self energy function of Bismuthene. U = 2
and J = 0.2. Up and down spin are degenerate as well as the px- and py-orbitals.
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Figure 4.9: The real part of the Fourier transform of the impurity Green’s function of
Bismuthene. U = 2 and J = 0.2. Again the four bands available are degenerate. The τ values
go from 0 to the defined beta value 40.
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4.3.2 DMFT for Bismuthene with spin-orbit coupling included

in the DFT calculation

The DMFT cycle of Bismuthene with spin-orbit coupling is based on the one of plain
Bismuthene without SOC. However, there are some changes that need to be made
in order to make the program work properly. To begin with, the conversion from
the wannier90 output to a HDF5 file is done the same way as before, but since w90-
Converter does not allow spin-orbit coupling some changes to the HDF file need to be
made. Hence, in a small program the HDF5 file is loaded and the specific values are
modified:

from i t e r t o o l s import ∗
import numpy as np
from pyt r i q s . a r ch ive import ∗
from pyt r i q s . a pp l i c a t i o n s . d f t . sumk_dft_tools import ∗

f i l ename = ’ wannier90 ’

de f double_size (M) :
# doubles the s i z e o f an np . array M
# a copy om M i s in each d iagona l b lock
sh = M. shape
M_new = np . z e r o s ( ( sh [ 0 ] ∗ 2 , sh [ 1 ] ∗ 2 ) , np . complex_ )
M_new [ : sh [ 0 ] , : sh [ 1 ] ] = M
M_new[ sh [ 0 ] : , sh [ 1 ] : ] = M
return M_new

#read nece s sa ry data :
ar = HDFArchive ( f i l ename + ’.h5 ’ , ’ a ’ )
dft_in = ar [ ’ dft_input ’ ]
SO = dft_in [ ’SO ’ ]
SP = dft_in [ ’ SP ’ ]
n_k = dft_in [ ’ n_k ’ ]
n_corr_she l l s = dft_in [ ’ n_corr_shel ls ’ ]
charge_below = dft_in [ ’ charge_below ’ ]
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dens i ty_requ i red = dft_in [ ’ dens i ty_required ’ ]
n_orb i ta l s = dft_in [ ’ n_orbita l s ’ ]
c o r r_sh e l l s = dft_in [ ’ c o r r_she l l s ’ ]
s h e l l s = dft_in [ ’ s h e l l s ’ ]
hopping = dft_in [ ’ hopping ’ ]
proj_mat = dft_in [ ’ proj_mat ’ ]
T = dft_in [ ’T ’ ]
rot_mat = dft_in [ ’ rot_mat ’ ]

# change data :
SP = 1
SO = 1
n_spin_blocks = 1+SP−SO

f o r sh in s h e l l s :
sh [ ’ dim ’ ] = sh [ ’ dim ’ ] ∗ 2

f o r csh in c o r r_sh e l l s :
csh [ ’SO ’ ] = 1
csh [ ’ dim ’ ] = csh [ ’ dim ’ ] ∗ 2

proj_mat = np . append ( proj_mat , np . z e r o s (np . shape ( proj_mat ) ) ,
ax i s = 3)

proj_mat [ : , : , : , 2 : 4 , 4 : 8 ] = proj_mat [ : , : , : , 0 : 2 , 0 : 4 ]

f o r f e r in range ( 8 ) :
hopping [ : , : , f e r , f e r ] = hopping [ : , : , f e r , f e r ] + 2.85129687

f o r k , s , ind1 , ind2 in range (n_k , n_spin_blocks , 8 , 8 ) :
i f abs (np . r e a l ( hopping [ k , s , ind1 , ind2 ] ) ) < 0 . 0 0 1 :

hopping [ k , s , ind1 , ind2 ] = 0 +
np . imag ( hopping [ k , s , ind1 , ind2 ] )∗1 j

f o r k , s , ind1 , ind2 in range (n_k , n_spin_blocks , 8 , 8 ) :
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i f abs (np . imag ( hopping [ k , s , ind1 , ind2 ] ) ) < 0 . 0 0 1 :
hopping [ k , s , ind1 , ind2 ] =

np . r e a l ( hopping [ k , s , ind1 , ind2 ] ) + 0

T = [ double_size (TT) f o r TT in T]

rot_mat = [ double_size ( ro ) f o r ro in rot_mat ]

# wr i t e data
dft_in [ ’SO ’ ] = SO
dft_in [ ’ SP ’ ] = SP
dft_in [ ’ charge_below ’ ] = charge_below
dft_in [ ’ dens i ty_required ’ ] = dens i ty_requ i red
dft_in [ ’ n_orbita l s ’ ] = n_orb i ta l s
dft_in [ ’ s h e l l s ’ ] = s h e l l s
dft_in [ ’ c o r r_she l l s ’ ] = co r r_sh e l l s
dft_in [ ’ hopping ’ ] = hopping
dft_in [ ’ proj_mat ’ ] = proj_mat
dft_in [ ’T ’ ] = T
dft_in [ ’ rot_mat ’ ] = rot_mat
de l ar

Listing 4.9: Additonal changes in order to treat the spin-orbit coupling of the DFT calcula-
tions correctly

In this program, the necessary values are read from the existing HDF5 file. Then spin
polarization and spin orbit coupling are set true. Since the bands double with spin orbit
coupling, so do all the matrices. Therefore, a function to double matrices is defined and
applied to the projection matrix as well as the rotation and the transposition matrix.
the only matrix that need not be doubled is the hopping matrix, since it is already
made up of eight bands as wanted. However, some changes need to be ensured even
for the hopping matrix. First of all, the Fermi energy has to be included. This time
however, it is essential to only add it to the diagonal since we have off-diagonal terms
due to spin orbit coupling. Furthermore, all the elements in the hopping matrix smaller
than 10−3 are set to zero in order to avoid numerical problems later on. In the end the
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changes are again written into the HDF5 file, which can now be used as an input for
the DMFT calculation.
At first, nearly the same code as for Bismuthene without SOC was used, however, it
soon turned out to produce a severe sign problem because of the off-diagonal terms.
Hence, the basis in which the solver operates needs to be rotated into a diagonal form.
Thus we import the matrix dict.py written by Gernot Kraberger as well as the following
function to transform an operator:

de f transform_operator (O_in , T, fops_from , fops_to ) :
O_out = Operator (0 )

f o r monomial in O_in :
c o e f f i c i e n t = monomial [−1]
new_monomial = Operator (1 )

f o r s ing l e_opera to r in monomial [ 0 ] :
new_single_operator = Operator (0 )
daggered = s ing l e_opera to r [ 0 ]
i = fops_from . index ( s ing l e_opera to r [ 1 ] )
f o r j in range ( l en ( fops_to ) ) :

new_single_operator += (T[ j , i ]
∗ c_dag (∗ fops_to [ j ] ) )
i f daggered
e l s e (T[ j , i ] . con jugate ( )
∗ c (∗ fops_to [ j ] ) )

new_monomial ∗= new_single_operator

O_out += new_monomial ∗ c o e f f i c i e n t

re turn O_out

Listing 4.10: transform operator function

When initializing the SumkDFT class, now we need to define two structures of Green’s
functions. One structure representing the initial problem (gfs from) and one diagonal
structure(gfs diag).
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from pyt r i q s . a pp l i c a t i o n s . d f t . sumk_dft import ∗
SK = SumkDFT( hd f_ f i l e = f i l ename + ’.h5 ’ , use_dft_blocks = True )
gfs_from = SK. b lock_structure
gfs_diag = SK. b lock_structure . copy ( )
#gfs_diag . approximate_as_diagonal ( )

Listing 4.11: Initializing the SumkDFT class for Bismuthene with spin-orbit coupling

In this code the SK-basis is always going to be the original basis with the off-diagonal
terms. The solver however, only operates in the diagonal representation. Hence the
initial self-energy, the local Green’s function, the chemical potential and the double
counting are determined as before in listing 4.8. To obtain a diagonal basis, the eigen-
values of the local Hamiltonian needs to be evaluated as well as a rotation matrix ’V full’
be defined:

Hloc = e f f_atomic_leve l s_so lve r ( f i rst_G_loc )
e ,V = Hloc . d i a g ona l i z e ( hermit ian = True )
V_full = V. to_ful l_matr ix ( gfs_from . sumk_to_solver [ 0 ] )

Listing 4.12: Determination of the diagonal basis

Having this rotation matrix at hand one can set up the solver in the diagonal basis as
well as pass on the rotated self-energy and the first local Green’s function. Though a
rotation has been performed, there could still be some off-diagonal terms in the solver
basis due to the hybridization with the bath. If these are small, one can use the
approximate as diagonal() function to ignore off-diagonals. The code was tested with
and without applying this function and gave the same results.

from pyt r i q s . a pp l i c a t i o n s . impur i ty_so lver s . cthyb import ∗
S = So lve r ( beta = beta , g f_st ruct =

gfs_diag . g f_st ruct_so lve r [ 0 ] )
S . Sigma_iw << rotate_and_convert_gf ( f i rst_Sigma , V_full ,

gfs_from , gfs_diag , beta=beta )
S .G_iw << rotate_and_convert_gf ( f irst_G_loc , V_full ,

gfs_from , gfs_diag , beta=beta )

Listing 4.13: Initializing the solver in the diagonal basis

The rest of the DMFT cycle is the same as without spin-orbit coupling. Only, in the
end one has to rotate back all the wanted results into the original basis with off-diagonal
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terms.
The resulting impurity Green’s function is shown in figures 4.10 and 4.11
The real part as well as the imaginary part of the impurity Green’s function has the
same Green’s function in the diagonal. the complex off-diagonal terms coupling the px-
and the py-orbital differ by a minus sign as they do in 2.23. The other off-diagonals are
zero as expected. In the self energy one can see the diagonal parts are at the Hartree
energy, whereas the off-diagonals have zero real value, figure 4.12.
The imaginary part depicts a similar structure as the impurity Green’s function, where
again the off diagonal parts that couple the px- and py-orbitals are nonzero, figure 4.13.
The self-energy gives a measure of how much the local non-interacting Green’s function
differs from the interacting Green’s function. Therefore, it represents the degree of
electron-electron interactions, especially the correlations. The imaginary part of the
self-energy in 4.13 has only a small diagonal part. Also the off-diagonals representing
the interaction between the px- and py-orbitals are very small. Hence, the correlations
within the two-band model are hardly present. Since the other off-diagonals coupling
up and down parts are zero, one can derive that there is no interaction between the
spin up and the spin down block at all.
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Figure 4.10: The real part of the Green’s function of Bismuthene with spin-orbit coupling
added at DFT level. For U = 2 and J = 0.2
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Figure 4.11: The imaginary part of the Green’s function of Bismuthene with spin-orbit
coupling added at DFT level. For U = 2 and J = 0.2
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Figure 4.12: The real part of the self energy of Bismuthene with spin-orbit coupling added
at DFT level. For U = 2 and J = 0.2
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Figure 4.13: The imaginary part of the self energy of Bismuthene with spin-orbit coupling
added at DFT level. For U = 2 and J = 0.2

4.3.3 DMFT for Bismuthene with additional local spin-orbit

coupling term

Besides from performing the spin-orbit coupled calculation already in the DFT code
and then proceeding to the DMFT run, it is also possible, to add a local spin orbit term
to the non-SOC Hamiltonian of Bismuthene. Therefore, the local Hamiltonian of the
wannier90 calculation of Bismuthene without SOC is taken and converted as before,
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but to the resulting HDF5 file some major changes need to be made. Some changes
are similar to the one for the case of Bismuthene where spin-orbit coupling is already
included in DFT, however in addition now also the hopping matrix needs to be doubled
and the SOC term derived in 2.23 has to be added.
Since the doubling of the matrices and saving of the new values was already treated in
listing 4.9 we will not review them at this point. However, it is essential to take a look
at the changes done to the hopping matrix:

lambda_so = 0.435
n_orb i ta l s = n_orb i ta l s ∗ 2

# pau l i matr i ce s
sx=np . array ( [ [ 0 , 1 ] , [ 1 , 0 ] ] )
sy=np . array ( [ [0 ,−1 j ] , [ 1 j , 0 ] ] )
sz=np . array ( [ [ 1 , 0 ] , [ 0 , − 1 ] ] )

# angular momentum matr i ce s f o r p−o r b i t a l s

ldx = np . z e r o s ( ( 3 , 3 ) , dtype=np . complex )
ldx [ 0 , 2 ] = −1 j
ldx = ldx + ldx . conjugate ( ) .T
ldy = np . z e r o s ( ( 3 , 3 ) , dtype=np . complex )
ldy [ 0 , 1 ] = −1 j
ldy = ldy + ldy . conjugate ( ) .T
ldz = np . z e r o s ( ( 3 , 3 ) , dtype=np . complex )
ldz [ 1 , 2 ] = 1 j
ldz = ldz + ldz . conjugate ( ) .T

LS = np . kron ( sx , ldx ) + np . kron ( sy , ldy ) + np . kron ( sz , ldz ) ;
LS = LS [ : , [ 1 , 2 , 4 , 5 ] ] ;
LS = LS [ [ 1 , 2 , 4 , 5 ] , : ] ;

l s = np . z e r o s ( ( 8 , 8 ) , dtype=np . complex )
l s [ 0 : 2 , 0 : 2 ] = LS [ 0 : 2 , 0 : 2 ]
l s [ 2 : 4 , 2 : 4 ] = LS [ 0 : 2 , 0 : 2 ]
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l s [ 4 : 6 , 4 : 6 ] = LS [ 2 : 4 , 2 : 4 ]
l s [ 6 : 8 , 6 : 8 ] = LS [ 2 : 4 , 2 : 4 ]

LS = −0.5∗ l s

hopping = np . array ( [ [ double_size ( hopping [ k , s ] ) + lambda_so∗LS
f o r s in range ( n_spin_blocks ) ] f o r k in range (n_k ) ] )

Listing 4.14: Adding the local spin-orbit coupling term to the local Hamiltonian of a DFT
calculation without SOC.

The value chosen for the spin-orbit coupling is taken from [2], where they have deter-
mined it via treating the problem with a tight binding model. Since spin-orbit coupling
splits the spin bands the number of bands needs to be doubled. The expression of the
SOC-term in equation 2.23 is derived following the formula 2.17. In the end the local
spin-orbit term is added to a doubled hopping matrix.
As expected, the local SOC term gives rise to a band gap at the Fermi level. In figure
4.14 it is shown that for applying a λ-parameter of 0.435eV the band gap pretty much
equals the band gap obtained from DFT calculations where SOC was already included.
Especially at the K-point, where the interesting physics takes place the bands match
well. Hence, it is shown that the spin-orbit term can also be added by hand after the
DFT cycle and be used as an input for the DMFT calculations. SOC is shown to be
mainly local here.
For the dynamical mean-field theory calculations, exactly the same code as for the
Bismuthene calculation with SOC from DFT is used. The only difference are some
names of up and down blocks. Apart from that, again the Sumk basis needs to be
rotated to obtain a diagonal solver basis in order to not run into a sign problem.
And of course the resulting Green’s function and self energy are similar to the ones
shown before in figures 4.10, 4.11, 4.12 and 4.13. However, the complex off diagonal
parts in the impurity Green’s function have exactly the opposite sign as the ones where
SOC has been treated in DFT. However, this shall not pose any problems, since it just
switches the ordering of the spin up and the spin down block.
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Figure 4.14: The band structure of Bismuthene. The black lines depict the band structure
of Bismuthene gained from spin-orbit coupling included DFT-calculations. The red lines show
the band structure of Bismuthene, where the DFT calculations have been performed without
SOC, but a local spin-orbit coupling term is added with values for λ from 0 to 0.435.

Due to the SOC-term (2.23) the local Hamiltonian has off-diagonal terms. Therefore,
when interactions are present also the self energy gets off-diagonals as shown in figures
4.12 and 4.13. In the eigenbasis of the local Hamiltonian,∣∣∣p↑±〉 =

1√
2

(∣∣p↑x〉± i ∣∣p↑y〉)∣∣∣p↓±〉 =
1√
2

(∣∣p↓x〉± i ∣∣p↓y〉) , (4.1)

where the eigenvalues are ±λ/2, the self-energy is diagonal, too, with Σ↑+ = Σ↓− and
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Σ↑− = Σ↓+. In this basis it is possible to expand the self energy as:

Σ =
1

2

(
Σ↑+ + Σ↑−

)
1 +

(
Σ↑+ − Σ↑−

)
l · s. (4.2)

With this relation one can express an effective spin-orbit coupling as

λeff = λ+
(

Σ↑+(ω)− Σ↑−(ω)
) ∣∣∣∣

ω→0

. (4.3)

Since the diagonal elements of the Hamiltonian, proportional to the unity matrix, have
no influence on topological effects, only the effective SOC influences the topology of the
system. The imaginary part of the off diagonal Σyx shown in figure4.17 is equivalent
to the real part of Σ↑+ − Σ↑−. It is positive for all Matsubara frequencies iω and there-
fore, correlations effectively enhance the spin-orbit coupling. As a result, interactions
stabilize the topological phase, as we will see in the next subchapter where different
interaction parameters were tested.
In figure 4.18 the imaginary part of the Self energy of the two different ways of calcu-
lating the two band model with spin orbit coupling are compared. In the diagonal part
the red line of Bismuthene with added local SOC-term exactly matches the black line of
Bismuthene with spin-orbit coupling already included at the DFT level. As discussed
before, due to a small interaction parameter U = 2, the self energies are small as are the
correlations within the bands. Interestingly, the off-diagonals coupling the px- with the
py-orbitals show the same behaviour but with different amplitudes. It seems like the
electron-electron interaction in the case of the added local SOC-term is smaller than for
Bismuthene with SOC included in DFT by a factor of two. Therefore, the px- and the
py-bands interact more when SOC is already included in the DFT calculations. As a
consequence, the effective SOC contribution from the self energy is smaller when a local
SOC term is added, than it is when the SOC was already treated at the DFT level.
Hence, the effective value of the SOC-parameter is increased when using a Hamiltonian
where SOC was already treated at the DFT level, compared to adding the SOC term
to a Hamiltonian by hand. The real parts are not depicted since they perfectly match
for any element of the Self energy matrix.
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Figure 4.15: The imaginary part of the Green’s function of Bismuthene with local SOC term
added after the DFT calculations were performed. U = 2 and J = 0.2.
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Figure 4.16: The real part of the self energy of Bismuthene with spin-orbit coupling added
to a given local Hamiltonian. U = 2 and J = 0.2.
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Figure 4.17: The imaginary part of the self energy of Bismuthene with spin-orbit coupling
added to a given local Hamiltonian. U = 2 and J = 0.2.
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Figure 4.18: Comparison of the imaginary part of the self energy of Bismuthene in cubic
basis with spin-orbit coupling included at the DFT level (black graphs) and Bismuthene with
an added local SOC term. U = 2 and J = 0.2.

4.3.4 Z2Pack

In this last subsection, the presence of a non-trivial insulator is investigated. As seen
in previous band structures, the spin-orbit coupling in Bismuthene gives rise to the
opening of a band gap at the Fermi level. Therefore, it is interesting to determine now
the Chern number as well as the Z2 invariant. To do so the Z2pack is used [39] [40]. It
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is a simple tool that calculates topological invariants from a given Hamiltonian. Just
for simplicity the topological invariants of the px-py-model without spin-orbit coupling
are determined even though we obviously expect them to be zero any ways. This is
a good way to check whether the written code works or not. There are two possible
ways to provide the Hamiltonian. The first method is to Fourier transform the local
Hamiltonian resulting from the wannier90 calculation:

nrpt = np . load ( ’ datnrpt . npy ’ )
Rvec = np . load ( ’ datRvec . npy ’ )
Rdeg = np . load ( ’ datRdeg . npy ’ )
HR = np . load ( ’ datHR . npy ’ )

norb = 4
twopi = 2∗ np . p i

de f hami l tonian (k ) :
HK = np . z e r o s ( ( norb , norb ) , dtype=np . complex )

f o r i r in np . arange (0 , nrpt ) :
rdotk = twopi ∗ np . dot ( k [ : ] , Rvec [ i r , : ] )
f a c t o r = (math . cos ( rdotk ) + 1 j

∗ math . s i n ( rdotk ) ) / \
f l o a t (Rdeg [ i r ] )

HK[ : , : ] += f a c t o r ∗ HR[ i r ] [ : , : ]

r e turn HK

Listing 4.15: Construction of a k-dependent Hamiltonian via Fourier transform of the local
Hamiltonian of the wannier90 calculations

At the beginning, the different values of the wannier90 hr.dat file are loaded. They have
been saved separately with a python2 script since the wannier90Converter only works
in python2 while the Z2pack only operates in python3. The Hamiltonian is simply the
Fourier transform of the given local Hamiltonian.
The second possibility of generating a k-dependent Hamiltonian is via the negative
inverse of the local Green’s function at zero frequency as mentioned in equation (2.60).
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To do so, one has to first Fourier transform the Green’s function at zero frequency into
local space only to Fourier transform it later back as a k-dependent Hamiltonian. To
obtain the Green’s functions value at zero frequency one needs to fit the function and
evaluate it at iω = 0. The negative inverse of the outcome is saved again and called
upon in the python3 script, which is exactly the same as listing 4.15
In this thesis both ways have been used as an input to the Z2pack which only consists
of a few lines:

system = z2pack .hm. System ( hamiltonian , bands = [ 0 , 1 ] ,
hermit ian_tol = None )

r e s u l t = z2pack . s u r f a c e . run ( system = system ,
su r f a c e = lambda t1 , t2 : [ t1 /2 , t2 , 0 ] ,
pos_tol =0.01 , gap_tol =0.8 , move_tol=0.3 ,)

p r i n t ( z2pack . i nva r i an t . chern ( r e s u l t ) )
p r i n t ( z2pack . i nva r i an t . z2 ( r e s u l t ) )
z2pack . p l o t . wcc ( r e s u l t )
p l t . show ( )

Listing 4.16: The code used to calculate the topological invariants for Bismuthene without
SOC

One important fact to be mentioned: If one determines the invariants with the first
method of the local Hamiltonian the filled bands are the first two bands (four bands
if SOC is included). However, when using the method with the Green’s function the
order of the orbitals gets mixed up and one has to take the zeroth and the second band
(zeroth, second, fifth and seventh band for SOC), in order to get the correct result. As
expected this calculation gives a trivial Chern and Z2 number. The plot of the Wannier
charge centres as well as the largest gap between them while pumping in one direction
obviously depicts only straight lines and is therefore not shown.
More interesting is the case of Bismuthene with spin-orbit coupling. Here, the self en-
ergy at zero frequency needs to be added to the local Hamiltonian before performing
the Fourier transform in order to obtain an interacting Hamiltonian. The Z2pack cal-
culations are performed for both methods as well as for both ways of adding spin-orbit
coupling. Fortunately, in all four cases the Chern number turns out to be zero whereas
the Z2 invariant becomes one since time reversal symmetry is broken. When taking a
look at the Wannier charge centres all four figures depict a similar behaviour with only
numerical deviations:
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Figure 4.19: The Wannier charge centres of Bismuthene with spin-orbit coupling. a) and
b) depict the result for Bismuthene where the local SOC term was added after the DFT
calculation was solved. With a) being gained from the local Hamiltonian plus the self energy
and b) being the result of the inverse Green’s function method. c) and d) are shown the
cases for Bismuthene with spin-orbit coupling included at DFT level. c) again arises from the
local Hamiltonian with added self energy, whereas d) is the product of the inverse Green’s
function method. The self energies and the Green’s functions have been obtained from DMFT
calculations with U = 2 and J = 0.2. The black dots represent the Wannier charge centres,
the blue crosses stand for the largest gap between the WCCs.

In figure 4.19 the Wannier charge centres are shown. All four of them have a similar
structure and the largest gap between the Wannier charge centres only performs a jump
of 0.25 once between 0 and π. The blue lines do not take exactly the same form in the
different cases which is a result of numerical errors and the symmetry at hand. The
distance between the Wannier charge centres at the beginning is nearly the same in the
lower half of the plot compared to the upper half. However, small numerical deviations
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make it hard for the code to decide where the biggest gap is. As a result the blue
line performs a jump of 0.5 in a), which of course has no influence on the topological
invariants.

4.3.5 Variation of the interaction parameter U

This subsection deals with the physics arising due to increasing interaction energy in
a topological insulator. With increasing interaction energy U a Mott transition takes
place. Hence, a conducting material becomes insulating. Bismuthene, especially the px-
py two band model, without spin orbit coupling is a conducting material as can be seen
in its band structure 4.3. Its density of states for zero interaction is similar to Graphene
where the density goes to zero for zero frequency. However, there is no actual band gap
since the filled states touch the empty states in the K-pints of the Brillouin zone. The
effect of an increasing U is shown in figure 4.20. It was essential to determine the density
of states, since it best depicts the effects of a change in the U parameter. Unfortunately,
the post-processing tools of TRIQS were not applicable to the results generated from
the wannier90 calculations. Therefore,

∑
k(ω −H(k))−1 was calculated and evaluated

at frequencies ω + i0+, for the non-interacting case. The Hamiltonian H(k) is simply
the hopping matrix from the DMFT input file. To take the interaction into account the
real frequency self energy needs to be added to the Hamiltonian

∑
k(ω−H(k)−Σ)−1.

To get the real-frequency self energy the Matsubara frequency self energy needs to
be analytically continued. This procedure is done with the maxent-code provided by
Kraberger, Triebl, Zingl and Aichhorn [41]. The maximum entropy method provides
a good estimate of the self energy, however one can never be sure whether it provides
the correct solution or not. After determining the best suited parameters the density of
states can be plotted. From the evolution of density of states with increasing interaction
parameter a Mott transition can be observed. In the DMFT-calculations, the Hund’s
coupling J was set to 0.2U since it reduces the critical interaction parameter.
In figure 4.20 it can be seen that for increasing values of U the filled states and the
empty states come closer to one another. When the interaction takes a critical value of
roughly U = 14, the transition takes places and an insulating gap opens. For U = 14 an
additional small peak arises at zero frequency, however, since it is not possible to further
improve the resolution, one cannot exactly tell whether this has a physical meaning or
is just a numerical artefact
In the case of Bismuthene with spin-orbit coupling, the material already starts from a
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band-insulating state. The procedure to determine the density of states is the same as
before. With increasing interaction energy the material changes from being a topological
insulator to becoming a Mott insulator. As observed in the trivial case, the states get
closer to one another for increasing U and at a critical point the Mott transition takes
place. Due to the non-trivial topology this transition occurs for much higher interaction
energies, around U = 32. In a way, topology protects the material from becoming a
Mott insulator
In figure 4.21 one can see a similar behaviour to the case without spin orbit coupling.
At the critical U value the material density of states seems to be metallic, since there
are a lot of states around zero frequency. However, due to the issues connected to
analytical continuation, it is not guaranteed that the result at the transition represents
the correct solution.
Since due to the large interaction the material becomes a Mott insulator, it obviously
has to effect the topological Z2 invariant. In order to prove this, one can apply the
Z2pack on the DMFT results for different interaction values. In figure 4.22 it can
be easily observed that the material is topologically non-trivial over a wide range of
interaction energies. However, above the critical value near U = 32 the topology in the
Mott state is trivial with a vanishing Z2 invariant. As already mentioned in the previous
subchapter, with interactions at hand the topological effects are enhanced. This is also
the reason why the Mott transition takes place for much higher interaction values than
it does for Bismuthene without spin-orbit coupling. With increasing interaction also
the effective SOC is increased and therefore, the topology is protected.
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Figure 4.20: The density of states of Bismuthene without spin-orbit coupling plotted for
increasing interaction values U and J = 0.2U .
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Figure 4.21: The density of states of Bismuthene with spin-orbit coupling plotted for in-
creasing interaction values U and J = 0.2U .



4.3. DMFT 87

0

1
U = 2

0

1
U = 22

0

1
U = 30

0
0

1
U = 34

k2

x

Figure 4.22: Wannier charge centers for increasing U values and J = 0.2U . Above the
critical interaction parameter U = 32 the topology becomes trivial.



Conclusion

In this thesis the two band px-py-model as an example of Bismuthene has been inves-
tigated. After setting up the prerequisites to perform the DFT + DMFT calculations
with the help of the one band toy model, a two band model has been prepared. This
was done by passivating a sheet of Bismuthene atoms with the help of additional Hy-
drogen atoms, that shifted the pz-orbitals away from the Fermi level. As a result the
px-py-model is obtained.
The DFT+DMFT calculations of this model show that the bands are half filled, even
though they are not symmetric around the Fermi level. This can be seen both in
G(τ) and in the density of states. The correlation effects due to electron-electron
interactions are very small since the px- and the py-orbitals form hybrid orbitals. Only
with artificially increased interaction parameter U one can observe a Mott transition.
However, this transition occurs at interaction values only relevant in theory but not for
the real material of Bismuthene.
When spin-orbit coupling is added to the two-band model, correlations start to become
in a sense more relevant, since the effective SOC-constant also depends on the self-
energy of the off-diagonal terms that arise due to SOC. Therefore, with larger electron-
electron interaction the effective SOC gets bigger. With the spin-orbit coupling the
system becomes topological non-trivial. This state is even further ensured when the
interactions are increased. The system performs a Mott transition at a sufficiently large
interaction parameter, however, this does not happen until the interaction parameter
takes values that are no longer relevant to describe the nature of Bismuthene.
In this thesis two different approaches have been implemented to include SOC. Both
ways, including SOC at the DFT-level or adding a local SOC-term to the Wannier
Hamiltonian of a non-SOC DFT calculation, lead to very similar results in the DMFT
calculations. They only differ in the magnitude of self-energy in the off-diagonals, which
gives rise to different effective SOC parameters.
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We used two different approaches to calculate the topological invariants of interacting
systems. On the one hand the approach of using a non-interacting Hamiltonian and
adding the self-energy obtained from DMFT calculations and on the other hand the
method where the inverse impurity Green’s function of a converged DMFT calculation
is used as an interacting Hamiltonian. It was shown that the same results are obtained
from both methods.
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