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Abstract

Spherical harmonics and their correlating coefficients, which are measured by
numerous methods, define the Earth’s gravity field in the context of scientific
consideration.
The Euler-Liouville differential equation represents the equation of motion for
the rotation of a dynamic Earth and describes the mutual influences between
the gravity field and rotation vector due to the time-varying inertia tensor,
which is defined by second-degree coefficients. The formula calculated the
angular velocity and was applied to simulate an Earth’s rotation vector by
numerical integration as an initial value problem. The integrated vector was
the foundation of this thesis.
Furthermore, the integration progress was modified to determine the impact of
temporal variations of each parameter, which was implemented as numerical
derivation. The parameters of the spherical harmonic coefficients were estimated
per month, in contrary to initial values of the rotation vector and Love number
regarding an anelastic Earth. Various parameter combinations were considered
at the linearised adjustment and validated concerning a solution of Satellite
Laser Ranging (slr) observations.

In conclusion, the estimated zeroth order cosine coefficients (c20), as well as
second-order cosine and sine coefficients (c22, s22), contained a constant offset.
Furthermore, the determined variances were in disagreement in comparison to
those of the reference solution. The most suitable results were obtained by the
tesseral coefficients (c21, s21), due to a viable coherence to the rotation vector.
Thereby solutions with the further determination of the Love number were
the most fitting in terms of their approach towards their reference coefficients,
although differences of coefficient s21 were less significant than those of coefficient
c21.
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Zusammenfassung

Im Kontext wissenschaftlicher Betrachtungen wird das Gravitationsfeld der
Erde mithilfe von Koeffizienten, in Abhängigkeit zu Kugelflächenfunktionen,
ermittelt. Diese wiederum können durch eine Vielzahl von unterschiedlichsten
Methoden bestimmt werden.
Die wechselseitige Beeinflussung von Gravitationsfeld und Erdrotationsachse
wird anhand der Euler-Liouville Differentialgleichung beschrieben, welche die
Bewegungsgleichung für die Rotation der dynamischen Erde darstellt. Als
Ausgangspunkt der vorliegenden Arbeit wurde diese zur Simulation eines
Erdrotationsvektors anhand numerischer Integration mit Startwertproblem
verwendet.
Um die Auswirkungen zeitlicher Differenzen zu bestimmen, wurden hierfür die
numerische Ableitung der jeweiligen Einflussgrößen der Simulation entsprechend
modifiziert und der Kugelflächenfunktionskoeffizient – anders als der reale und
imaginäre Teil der Love’schen Zahl oder der Initial-Vektor der Erdrotation –
monatlich bestimmt. Die so ermittelten Zuschläge des linearisierten Ausgle-
iches wurden daraufhin abermals mithilfe einer Lösung der slr-Beobachtungen
wissenschaftlich hinterfragt und diverse Ergebnisse möglicher Parameterkombi-
nationen innerhalb der Schätzung einbezogen.

Als Fazit wird festgehalten, dass aufgrund der konstanten Abweichungen zur
Nullstelle von einer Bestimmung der monatlichen Zuschläge des jeweiligen
Kosinus Koeffizienten nullter Ordnung (c20) wie auch der Kosinus und Sinus
Koeffizient zweiter Ordnung (c22, s22) abzusehen ist. Ferner sind die dabei
bestimmten Varianzen im Vergleich zur Referenz zu unspezifisch. Von den
mithilfe des Erdrotationsvektors untersuchten Koeffizienten zeigen sich bei den
tesseralen Koeffizienten (c21, s21) die besten Eigenschaften. Die in Kombination
mit der Love’schen Zahl ermittelten Lösungen passen sich in Hinblick auf ihre
Referenzkoeffizienten am besten an, gleichwohl die berechneten Differenzen des
Koeffizienten s21 weniger prägnant ausfallen als jene von c21.
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1 Introduction

The Earth is a dynamic system, distinguished into three fields: the Earth’s
geometry, orientation and gravity field. The cause of variations in these areas
has multiple sources, such as the gravitational forces of bodies within the
solar system. Additionally, the variations have mutual influences on each other.
Monitoring and understanding alterations are the foundation to provide an exact
reference frame, which serves as a base for scientific and societal applications.
The changes are monitored by the Global Geodetic Observing System (ggos),
GGOS (2016).

This thesis focuses on the Earth’s rotation, a fundamental part for the definition
of the reference system’s origin. Therefore, the behaviour has to be observed
continuously with use of different techniques including Very Long Baseline
Interferometry (vlbi), Satellite/Lunar Laser Ranging (slr/llr) and Global
Navigation Satellite Systems (gnss) (Moritz et al., 1987, p. 323ff.). The second
aspect of this paper relates to the spherical harmonic coefficients, which define
a gravity field model.
The state of the art approach towards determining gravity field models is an
integration of multiple techniques. The practised methods provide different
levels of accuracies for individual coefficients, which further depend on their
resolution – represented by degree and order of the spherical harmonics.
The relation of the rotation vector to the mass distribution can be stated by a
modified Euler-Liouville equation. The objective of this thesis was to investigate
a possible additional method to determine coefficients of second-degree spherical
harmonics. Gaining another source to resolve spherical harmonic coefficients and
adding further observations to the determination of a gravity field model would
improve these results as long as the certainties are adequate to other methods.
Measurements of slr observations provide the highest accuracies regarding
second-degree spherical harmonics and act as a quantification reference.
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2 Theory of the Earth’s rotation

2.1 Reference frames

The variations of the rotation vector are divided into two areas: the study
respecting an Earth-fixed reference frame and the study respecting a Space-fixed
reference frame (Dehant and Mathews, 2015). This thesis focuses on the former,
which is described by two parameters:

• polar motion is defining the orientational changes of the rotation vector
in relation to the polar axis of the frame
• Length of Day (lod) is representing the absolute value of the rotation

vector, thus the angular velocity

The rotation vector changes its orientation in addition to the mentioned polar
motion that is observed in an Earth-fixed frame as well as in a Space-fixed
frame. These variations are known as precession and nutation (Dehant and
Mathews, 2015, p. 2f.). Though this thesis discusses the variation in an Earth-
fixed system, it is still of significance to acknowledge the Space-fixed system
motion parameters and even more so the transformation of one system into
the other. Due to the gravitational forces of the Moon and Sun, referred to as
lunisolar in combination, which is influencing the parameters in either system.
Therefore it is necessary to transform the lunisolar Space-fixed coordinates for
an Earth-fixed frame.

Transforming from a Celestial Reference System (crs) to a Terrestrial Reference
System (trs) can be enunciated by a series of multiplications of elementary
rotation matrices (Dehant and Mathews, 2015, p. 88ff.). Since orientational
alteration in the systems changes relative to one another. The motion parameters
are expressed by individual matrices that are rotational sets of different axes

xCRS = RCRS
TRS (t) · xTRS, (2.1)
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2 Theory of the Earth’s rotation

RCRS
TRS (t) = Q(t) ·R(t) ·W (t). (2.2)

The polar motion is covered with the matrix W (t), which is the rotation from a
terrestrial system of a specific epoch into a true terrestrial reference system:

W (t) = Ry(xp)Rx(yp). (2.3)

The next rotationR(t) describes the transformation of a true celestial equatorial
to a true terrestrial system, each at a specific time. Therefore the true angle
between the true vernal equinox and the Greenwich meridian is required, also
known as the Greenwich Apparent Sidereal Time (gst). This hour angle also
contains Earth variations as well as the motion of the vernal equinox,

R(t) = Rz(−GST ). (2.4)

The last rotation Q(t) manages the precession and nutation. Splitting up into
the precession P (t) and nutation N (t) matrices gives:

Q(t) = N (t)P (t),

P (t) = Rz(ζa)Ry(−θa)Rz(za),

N (t) = Rx(−εs)Rz(∆ψ)Rx(εs + ∆ε).

(2.5)

These matrices contain the equatorial precession parameters (ζa, θa, za) (Lieske
et al., 1977) and celestial pole offsets (∆ψ,∆ε). Former ones are published by
the International Astronomical Union (iau). The celestial pole offset parameters
are two of five Earth Orientation Parameters (eop). The other ones are the
polar motion (xp, yp) used in Eq. (2.3) and the Universal Time offset (∆UT1).
The latter one is needed to calculate the GST of Eq. (2.4). The International
Earth Rotation and Reference System Service (iers) monitors and publishes
these on daily and they are used for rotational transformation considering all
irregularities between the terrestrial and the celestial system.

The coordinates determining the position of Sun and Moon are DE421 ephemeris
published by the Jet Propulsion Laboratory (jpl) (JPL, 2014a) for the terrestrial
reference frame. Therefore there was no demand for any transformation as a
part of the thesis. Summarising the major features provides valuable insight for
understanding the complex motions of the Earth’s rotation. Further references
regarding the topic of precession and nutation are Dehant and Mathews (2015)
and IERS (2013).
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2 Theory of the Earth’s rotation

2.2 Polar motion

Figure 2.1: Daily polar motion along the x-axis computed by the observed rotation vector
between the years 2004 and 2014.

Figures 2.1 and 2.2 shows the determined polar motion and its period of
approximately 435 days. Named after its discoverer, Seth Carlo Chandler, the
Chandler period (Moritz et al., 1987, p. 48) is a damped oscillation. The Earth
is in constant motion due to the effects of internal and external forces (Moritz
et al., 1987, p. 280ff.) – the dynamic system Earth. Variances of the geometry
or gravity field of the Earth, caused by atmospheric mass shift, tides, and
earthquakes amongst others, have an impact on the rotation vector due to
changes of torque or inertia vector and vice versa.
Additionally, the rotation axis of the Earth is not coincidental with the body
axis, which leads to a wobbling motion of the rotation axis. The oscillation
period of a comparable rigid body in size of the Earth would last 305 days and
is known as the Euler period (Moritz et al., 1987, p. 48). The polar motion is

4



2 Theory of the Earth’s rotation

Figure 2.2: Daily polar motion along the y-axis computed by the observed rotation vector
between the years 2004 and 2014.

calculated by using the following equations in relation to the components of
Earth rotation vector ωx and ωy in rad/s

xp(t) =
R

ΩN

ωx(t),

yp(t) =
R

ΩN

ωy(t).

(2.6)

The radius of the Earth R and nominal Earth rotation ΩN is defined by

R = 6378136.6m,

ΩN = 7.2921151467064 · 10−5rad/s.
(2.7)

Figures 2.1 and 2.2 displays the average polar motion of each day, derived
from the rotation vector. The relative motions in respect to the Earth-fixed
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2 Theory of the Earth’s rotation

reference frame vary between −4 m and +9 m at the x-axis. At the orthogonal
y-axis the variations are between −17 m and −4 m. Both indicate the offset of
the rotation axis to the Earth’s body axis at the relating time frame between
January 1st 2004 and December 31th 2014. The most obvious oscillation shows
the Chandler period. The amplitude of the period is inconsistent, and the
signal is further affected by a beat, as seen at the turn between the years 2005
and 2006. This shift leads to the extinction of the upcoming ascending peak
followed by another ascending one. The time series’s analytical trends are hardly
noticeable (10−5 m) - the migration movement of the rotation axis (IERS, 2013)
is not detectable – due to the shortness of time. Figure 2.3 illustrates the polar
motion of both axes including the oscillation of the Chandler period as well
as the beat of approximate 6.4 years, which is a result of an annual period
overlaying with the Chandler signal (Seitz, 2004, p. 12f.).

6



2 Theory of the Earth’s rotation

Figure 2.3: Daily polar motion along x- and y-axis computed by the observed rotation vector
between the years 2004 and 2014.

7



2 Theory of the Earth’s rotation

2.3 Length of day

The time needed for one full Earth rotation varies at a daily base, stated by the
length of day variations (∆LOD) in the range of milliseconds, characterised in
Fig. 2.4. The differences are defined using the constants of Eq. (2.7):

∆LOD = 86.400s
ΩN − ωz

ΩN

. (2.8)

∆LOD is dominated by an annual signal in addition to high-frequent variations.
Traceable influences on the length of day variations are assumably caused by
the Earth’s core, mantle and its generated magnetic field (Seitz and Schuh,
2010, p. 196f.).

Figure 2.4: Daily ∆LOD computed by the observed rotation vector between the years 2004
and 2014.
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2 Theory of the Earth’s rotation

2.4 Euler-Liouville equation

How a rigid body reacts to external torques within a rotating reference system
is mathematically defined by the Euler’s rotation equation (Moritz et al., 1987,
p. 46ff.):

T ω̇ + ω × Tω = M . (2.9)

The sum of external torques of Sun and Moon is represented as M , known as
lunisolar torques. Variable T stands for the inertia tensor of Earth as ω stands
for its rotation vector of the rotating system. The inertia tensor is understood
as the Earth’s mass distribution along the system’s axis, therefore is T is a
3× 3 matrix. Choosing a principal coordinate system (Dehant and Mathews,
2015, p. 18) leads to a diagonal matrix:

T PCS =

A 0 0
0 B 0
0 0 C

 . (2.10)

As a simplification, the tensor of the Earth can be assumed to be equal to the
tensor of an ellipsoid of rotation. The diagonal elements A and B are therefore
identical, and all elements are constant for a rigid body.
The inertia tensor T multiplied by the rotation vector ω equals the angular
momentum L. The change of the angular momentum over time (first derivation)
is the physical quantity of the torque M

L̇ = M . (2.11)

Replacing the inertia tensor in the Euler’s rotation equation with the angular
momentum in a body tied system results in:

dL

dt
+ ω ×L = M . (2.12)

The angular momentum of a rotating non-rigid body is the sum of the time
variant inertia tensor multiplied by rotation vector and a motion term h,

L = T · ω + h. (2.13)

9



2 Theory of the Earth’s rotation

The latter results from the mass distribution in relation to the rotating system,
known as a relative angular momentum. The Euler-Liouville equation (Moritz
et al., 1987, p. 122ff.) indicates time variant changes of the rotation vector of a
deformable body within a rotating system:

T ω̇ + ω × (Tω) +
DT

Dt
ω + ω × h+

Dh

Dt
= M . (2.14)

Restructured in order to calculate the angular velocity of the Earth leads to
the ordinary differential equation:

ω̇ = T−1

[
M − DT

Dt
ω − ω × (Tω)− ω × h− Dh

Dt

]
. (2.15)

Initially used to simulate the Earth’s rotation vector by numerical integration
as an initial value problem. Every variable in the Euler-Liouville equation is
time-related:

ω̇ = ω̇ (t) ,ω = ω (t) ,T = T (t) ,M = M (t) ,h = h (t) . (2.16)

2.5 Spherical harmonics

The gravitational forces of Earth, Sun, Moon and the centrifugal force of
Earth’s rotation lead to the gravity field. Due to the improvement of space
techniques and unique satellite missions increased accuracies and a higher
resolution of modelled gravity fields are achieved. These gravity models are
defined by spherical harmonics and related coefficients, which are calculated
and published by institutes and teams around the globe. The second-degree
coefficients of a spherical harmonic expansion are directly related to the inertia
tensor

T =

A D E
D B F
E F C

 . (2.17)

The inertia tensor T is altered in terms of second-degree spherical harmonic
coefficients. The trace cannot be determined by the gravitational potential and

10



2 Theory of the Earth’s rotation

is further stated by tr. Adjusting the inertia tensor by using normalised basis
functions as well as the gravitational potential and integrating along the related
axis of the inertia product results in:

T =

√
5

3
MR2


1√
3
c20 − c22 −s22 c21

−s22
1√
3
c20 + c22 s21

−c21 −s21
2√
3
c20

+
1

3

tr 0 0
0 tr 0
0 0 tr

 . (2.18)

The explicit derivation of six elements of the inertia tensor are given by Seitz
(2004, p. 25f.).

2.6 Rotation deformation

The varying rotation vector has a significant impact on the centrifugal potential
of the Earth and further to its deformation. This rotational deformity is defined
by changes in the inertia tensor and coefficients of spherical harmonics of to the
gravitational potential. The previous tensor of the Liouville equation is split
up regarding the effects of pole tides TR and gravitational potential TG:

T (t) = TG(t) + TR(t). (2.19)

Analog to Eq. (2.18) is the rotation deformation’s tensor:

TR =

√
5

3
MR2

 0 0 −∆c21

0 0 −∆s21

−∆c21 −∆s21 0

 . (2.20)

The coefficient differences of the spherical harmonics are:

∆cs21(t) = −
√

3

5

ΩNR
3

3GM

(
kReωx + kImωy

)
,

∆ss21(t) = −
√

3

5

ΩNR
3

3GM

(
kReωy + kImωx

)
.

(2.21)
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2 Theory of the Earth’s rotation

The variables of k are referring to the Love number, a dimensionless parameter
that characterises the deformability of the Earth. Three different Love numbers
are defined to measure a planetary body behaviour in response to potential
changes (Dehant, Defraigne, et al., 1999). The real kRe and imaginary kIm are
parts of the complex Love number relating to the properties of an anelastic earth.
The spherical harmonic coefficient differentials from Eq. (2.21) are substituted
in (2.20) and lead to the matrix:

TR(t) =
ΩNR

5

3G

 0 0 kReωx + kImωy

0 0 kReωy − kImωx

kReωx + kImωy kReωy − kImωx 0

 . (2.22)

The derivative parts of the inertia tensor (Eq. (2.15)) are further distinguished
and rearranged by putting the tensor in relation to the rotation deformation
TR on the left side next to the total inertia tensor T :

T ω̇ +
DTR

Dt
ω = M − DTG

Dt
ω − ω × (Tω)− ω × h− Dh

Dt
. (2.23)

Assuming the Earth’s rotation vector by ωx = ωy = 0 and ωz = ΩN (in a first
order approxmiation) leads to following simplification:

DTR

Dt
ω =

Ω2
NR

5

3G

 kRe kIm 0
−kIm kRe 0

0 0 0

ω̇x

ω̇y

ω̇z

 . (2.24)

Combining with the total inertia tensor produces matrix:

F = T +
Ω2

NR
5

3G

 kRe kIm 0
−kIm kRe 0

0 0 0

 . (2.25)

The substitution of F and the rearrangement of the Euler-Liouville equation
in regards to the differential rotation vector element gives its implemented
form:

ω̇ = F−1

[
M − DTG

Dt
ω − ω × (Tω)− ω × h− Dh

Dt

]
. (2.26)
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3 Simulation

3.1 Introduction

This chapter is about the calculation of a simulated Earth rotation vector
that builds the foundation of the developed algorithm. The result of the Euler-
Liouville equation is used in a numeric integration in order to model the Earth’s
rotation for the time frame of the observed rotation vector, lunisolar positions
and spherical harmonic coefficients. The following data was processed:

• position of Sun and Moon relatively to the Earth-fixed reference frame
from DE421 ephemeris (JPL, 2014a)
• second-degree spherical harmonic coefficients of a time variable gravity

field

– daily filtered Gravity Recovery and Climate Experiment (grace)
data from ITSG-Grace 2016 solutions (Mayer-Gürr et al., 2016) with
high frequency variations of the AOD1B RL05 model (Flechtner
et al., 2014)

– potential variations by Earth tides according to the IERS2010 con-
ventions (Petit et al., 2010) and ocean tides from the EOT11a model
(Savcenko et al., 2012)

• observed Earth rotation vector from the iers eop 08 C04 series (Bizouard
et al., 2019)

The period under review was from 01-01-2004 to 01-01-2015 with a sampling
rate of one hour and provided constants of the algorithm as listed in Tab. 3.1.

13



3 Simulation

Table 3.1: Processed constants in the algorithm.

Parameter Value

kRe real part of Love number 0.3077
kIm imaginary part of Love number 0.0036
G gravitational constant 6.674× 10−11 m3/kg/s2

GMsun gravitational parameter Sun 1.327 124 420 76× 1020 m3/s2

GMmoon gravitational parameter Moon 4.902 777 9× 1012 m3/s2

M mass of the Earth 5.9737× 1024 kg
R radius of the Earth 6.378 136 6× 106 m
Ā = B̄ moments of inertia 0.3296108 ·MR2

C̄ moment of inertia 0.3307007 ·MR2

3.2 Earth’s rotation model

In order to solve the modified Euler-Liouville equation numerically the initial
value ω(t = 1) was set as observations of the first epoch (t = 1) of the provided
Earth rotation vector ω0:

ω(t = 1) = ω0 =

ωx
0

ωy
0

ωz
0

 . (3.1)

The torque M represents the total torques of third bodies (M sun +Mmoon).
These are independent of the Earth rotation itself and were calculated in
advance for every epoch by using element-wise vector operations:

M j =
3GMj

r5
j

yjzj(C̄ − B̄)
xjzj(Ā− C̄)
xjyj(B̄ − Ā)

 . (3.2)

Sun and Moon were implemented in the form of j, according to gravitational
parameter GM , the position coordinates xj, yj, z, and the distance

rj =
√
x2
j + y2

j + z2
j . (3.3)

14



3 Simulation

The motion term h is modelled by the relative angular momentum, and the
data is published by the German Centre of Geoscience (gfz), Dobslaw et al.
(2018).

The effective angular momentum (eam) is defined by using the required motion
term and describes the mass distribution above the Earth’s surface. The data
is available for atmosphere, dynamic ocean and continental hydrosphere in a
sampling rate of three hours. Therefore the data between 2004 and 2015 was
interpolated to match the temporal resolution of one hour. The motion term
was computed by the total of the three eams, represented by vector χ with
the relation to the motion termhxhy

hz

 =

ΩN (C̄−Ā)
1.610

χ1
ΩN (C̄−Ā)

1.610
χ2

ΩN C̄
1.125

χ3

 . (3.4)

The calculation of the time series of motion terms as well as the inertia tensor
of gravitational effects TG was optimised with the use of element-wise vector
operations, analogue to M . The derivation parts of h and TG were numerically
generated by the mean differences of two adjacent epochs to t

DTG

Dt
(t) =

TG(t+ 1)− TG(t− 1)

2 · 3600
,

Dh

Dt
(t) =

h(t+ 1)− h(t− 1)

2 · 3600
.

(3.5)

Start and end values were computed using only one adjacent epoch for the
numerical derivation, due to the missing values. The denominator of the fractions
considered the transformation from one hour to seconds since the angular
velocity is defined in radian per seconds.

15



3 Simulation

3.3 Numeric integration

For integrating the rotation vector a Euler-Integration (Griffiths et al., 2010,
p. 19ff.), with a step size of one hour, was used:

ω(t+ 1) = ω(t) + ω̇(t)∆t. (3.6)

The following terms depended on the modelled Earth rotation vector and were
determined within the numerical integration loop:

F = F (T ),T = T (TG),TR = TR(ω). (3.7)

Figure 3.1 provides the daily calculated rotation vector elements and shows
them in relation to the observed data, which was gathered over the span of
a decade. The given series of z-components are reduced by the arithmetic
mean of the observations for readability reasons and are characterised by a
negative offset to the observed vector. The other two components show different
behaviour than their measured references. The approximation of the first year
is as expected, but with further progress, differences and errors increase in
relation to the observed rotation vector. In 2006 the simulation approaches the
observed data again after the occurring beat. However, by the end of 2010, the
simulation is shifting its phase.

16



3 Simulation

Figure 3.1: Simulated rotation vector in relation to provided observations for the analysed
period of 2004 to 2014. Data series of the z-components reduced by arithmetic
mean of observations.
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4 Adjustment

This chapter focuses on the monthly estimation of spherical harmonic coeffi-
cients, the verification of the adjustment and with it the selection of differential
values regarding the numerical derivation.
Firstly an overview of the Gauss-Markov Model (Koch, 1999, p. 153f.) is
provided and adapted to this thesis’ equation and parameters. Furthermore,
the necessary linearisation is implemented to adjust the model to the nonlin-
ear equation, which was executed as a numerical as numerical derivation by
differences to modified simulated Earth rotation vectors.

4.1 Least square adjustment

An overdetermined system is defined by a majority of observations y with
the effect that more equations of observations than unknown parameters x
are available. The theoretical background is to find the Best Linear Unbiased
Estimator (blue) by minimising the squares of residues:

‖r‖2 = ‖y − f(x)‖2 → min. (4.1)

Observations and parameters are both vectors. The relation of these is described
by a function f() and can be displayed in a matrix-vector notation. Therefore
the n×m - matrix A is used and is hereafter be referred to as design matrix:

y = Ax+ r. (4.2)

The functional interrelation is adapted for the residues to:

‖r‖2 = ‖y −Ax‖2 → min. (4.3)
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Each observation is weighted by its reciprocal squared variance, as elements of
the diagonal matrix P , since correlations between the observations were not
considered here. Introducing the weight matrix and substituting the residues
leads to:

‖r‖2 = rTPr

= (y −Ax)T P (y −Ax)

= yTPy − 2yTPAx+ xTATPAx.

(4.4)

Whereas P is a n× n - matrix with the number of observations n. In order to
ensure the condition of Eq. (4.3) the partial derivations of the square sum of
residues are set zero

δ ‖r‖2

δx
= 0. (4.5)

Substituting Eq. (4.5) by (4.4) results in the following formula:

0 =
δ
(
yTPy − 2yTPAx+ xTATPAx

)
δx

= −2yTPA+ 2xTATPA

yTPA = xTATPA

ATPy = ATPAx.

(4.6)

What remains is the final equation to estimate the unknown parameters:

x̂ =
(
ATPA

)−1
ATPy. (4.7)

As the adjustment for a linear observation equation is demonstrated, a non-
linear model has to be linearised by using approximated values x0 in order
to estimate increments of the unknown parameters. Accordingly, the equation
of observations is approximated by a Taylor series expansion up to the first
derivation term:

f(x) ≈ f(x0) +
δf(x)

δx

∣∣∣∣
x0

(x− x0). (4.8)

Therefore the linearised observation calculates the differences of observations:

∆y = A∆x+ r, (4.9)
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The differences of unknown parameters ∆x, observations ∆y and the design
matrix are computed with the use of the approximated values:

∆x = x− x0,

∆y = y − f(x0),

A =
δf(x)

δx

∣∣∣∣
x0

.

(4.10)

The estimation of the parameters is defined analogue to Eq. (4.7) with the
linearised design matrix:

∆x̂ =
(
ATPA

)−1
ATP∆y. (4.11)

The corresponding variances of the estimated parameters are determined by
the inverted normal equation N and posterior variance σ̂2

0:

Σ (∆x̂) = σ̂2
0N

−1, (4.12)

with N =
(
ATPA

)−1
. (4.13)

The estimated residues r̂ are calculated by the differences of the observations
and estimated observations in relation to the degree of freedom within the
adjustment – by the numbers of observations n and unknown parameters m

r̂ = y −Ax̂, (4.14)

σ̂2
0 =

r̂T r̂

n−m
. (4.15)

4.2 Observation equation and its parameters

Analogue to the general Gauss-Markov model the following differential parame-
ters were introduced to the linear adjustment:

∆x̂ =
[
∆ω0 ∆c20 ∆c21 ∆s21 ∆c22 ∆s22 ∆kRe ∆kIm

]T
. (4.16)
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The first one regarded the starting values ωx
0 , ωy

0 and ωz
0 and covered the uncer-

tainties of the initial values at the numerical integration. Objectives were ∆c as
well as ∆s – representing the differential increments of the respected spherical
harmonics cosine and sine coefficients. Real kRe and imaginary part kIm of
the Love number permitted variations of these. Adding the increments to the
approximated values resulted in the estimated parameters

x̂ = ∆x̂− x0. (4.17)

As a result of the Euler-Liouville integration, the simulated vector served as an
approximated value y0. The Earth rotation vectors were arranged chronologi-
cally, as for the following differential observation vector

∆y =



∆ωx(t = 1)
∆ωy(t = 1)
∆ωz(t = 1)
∆ωx(t = 2)
∆ωy(t = 2)
∆ωz(t = 2)

...
∆ωx(t = n)
∆ωy(t = n)
∆ωz(t = n)


. (4.18)

This structure had to utilised as an element order of the design matrix and was
necessary for the approach of matrix-vector multiplications. The design matrix
was split into the following equations to provide a better representation of its
elements concerning the parameters. Attaching the individual matrices Aω0 ,
Ashc and Ak per column leads to the full design matrix:

A =
[
Aω0 Ashc Ak

]
. (4.19)
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Aω0 =



δωx(t = 1)

δωx
0

δωx(t = 1)

δωy
0

δωx(t = 1)

δωz
0

δωy(t = 1)

δωx
0

δωy(t = 1)

δωy
0

δωy(t = 1)

δωz
0

δωz(t = 1)

δωx
0

δωz(t = 1)

δωy
0

δωz(t = 1)

δωz
0

δωx(t = 2)

δωx
0

δωx(t = 2)

δωy
0

δωx(t = 2)

δωz
0

...
...

...

δωy(t = n)

δωx
0

δωy(t = n)

δωy
0

δωy(t = n)

δωz
0

δωz(t = n)

δωx
0

δωz(t = n)

δωy
0

δωz(t = n)

δωz
0



(4.20)

Ashc =



δωx(t = 1)

δc20

δωx(t = 1)

δc21

δωx(t = 1)

δs21

δωx(t = 1)

δc22

δωx(t = 1)

δs22

δωy(t = 1)

δc20

δωy(t = 1)

δc21

δωy(t = 1)

δs21

δωy(t = 1)

δc22

δωy(t = 1)

δs22

δωz(t = 1)

δc20

δωz(t = 1)

δc21

δωz(t = 1)

δs21

δωz(t = 1)

δc22

δωz(t = 1)

δs22

δωx(t = 2)

δc20

δωx(t = 2)

δc21

δωx(t = 2)

δs21

δωx(t = 2)

δc22

δωx(t = 2)

δs22

...
...

...
...

...

δωy(t = n)

δc20

δωy(t = n)

δc21

δωy(t = n)

δs21

δωy(t = n)

δc22

δωy(t = n)

δs22

δωz(t = n)

δc20

δωz(t = n)

δc21

δωz(t = n)

δs21

δωz(t = n)

δc22

δωz(t = n)

δs22


(4.21)
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Ak =



δωx(t = 1)

δkRe

δωx(t = 1)

δkIm

δωy(t = 1)

δkRe

δωy(t = 1)

δkIm

δωz(t = 1)

δkRe

δωz(t = 1)

δkIm

δωx(t = 2)

δkRe

δωx(t = 2)

δkIm

...
...

δωy(t = n)

δkRe

δωy(t = n)

δkIm

δωz(t = n)

δkRe

δωz(t = n)

δkIm



(4.22)

4.3 Numerical derivation

The functional relation between the observations and parameters was analyti-
cally unspecified. Therefore the approach of numerical derivation was applied
by modelling the impact of differential variations of the parameters. These
characteristics were determined by modifying the parameters of the simulation
and the weighted difference to the first simulation:

δω(t)

δxi
=
ω(t)− ωi(t)

∆pi
. (4.23)

Where ∆pi states the differential value that was also applied at the modified
simulation to its derived parameter. The parameters are indicated by i = 1 . . .m
and should, in theory, be as small as possible. A closer review of the resulting
number suggested testing each parameter value by itself and in combination
with each other for scientific justification. The adapted design matrix A leads
to:
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A ≈



ω(1)− ωωx
0 (1)

∆pωx
0

ω(2)− ωωx
0 (2)

∆pωx
0

· · · ω(n)− ωωx
0 (n)

∆pωx
0

ω(1)− ωωy
0 (1)

∆pωy
0

ω(2)− ωωy
0 (2)

∆pωy
0

· · · ω(n)− ωωy
0 (n)

∆pωy
0

ω(1)− ωωz
0 (1)

∆pωz
0

ω(2)− ωωz
0 (2)

∆pωz
0

· · · ω(n)− ωωz
0 (n)

∆pωz
0

ω(1)− ωc20(1)

∆pc20

ω(2)− ωc20(2)

∆pc20
· · · ω(n)− ωc20(n)

∆pc20

ω(1)− ωc21(1)

∆pc21

ω(2)− ωc21(2)

∆pc21
· · · ω(n)− ωc21(n)

∆pc21

ω(1)− ωs21(1)

∆ps21

ω(2)− ωs21(2)

∆ps21
· · · ω(n)− ωs21(n)

∆ps21

ω(1)− ωc22(1)

∆pc22

ω(2)− ωc22(2)

∆pc22
· · · ω(n)− ωc22(n)

∆pc22

ω(1)− ωs22(1)

∆ps22

ω(2)− ωs22(2)

∆ps22
· · · ω(n)− ωs22(n)

∆ps22

ω(1)− ωkRe
(1)

∆pkRe

ω(2)− ωkRe
(2)

∆pkRe

· · · ω(n)− ωkRe
(n)

∆pkRe

ω(1)− ωkIm(1)

∆pkIm

ω(2)− ωkIm(2)

∆pkIm
· · · ω(n)− ωkIm(n)

∆pkIm



T

. (4.24)

Generating the inverse of the normal equation matrix in Eq. (4.7) may appear
numerically critical due to the varying orders of magnitude of matrix elements.
Incorrectly scaled elements led to a bad condition of the matrix. An internal
system function provided information about the sensitivity of the inverse matrix
concerning input changes and round off errors. The function ascertains the
ratio of the singular values by singular value decomposition, further described
at MATLAB documentation (The MathWorks, 2019, CONDition number for
inversion function cond). Therefore a scaling factor was determined of each
column to its maximum. Those were applied to the numerical derived elements
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to improve the overall ratio of the matrix. Later, the results were reduced by
their related scaling values.

4.4 Coefficient estimation per month

The estimation was adjusted to determine coefficients for each month, to agree
with standard solutions of reference coefficients such as one of slr observations.
This modification increased the number of coefficient parameters twelve times
per year as well as the processing power since the simulated rotation vector was
integrated for each month and parameter. The implementation was ordered by
parameter type at first and chronologically at second. The months of spherical
harmonic coefficients are stated as t = 1 . . . 132, between the year 2004 and
2014. The section regarding the coefficient c20 increments of the parameter
vector is:

∆x̂ =
[
· · · ∆c1

20 ∆c2
20 · · · ∆ct−1

20 ∆ct20 · · ·
]T
. (4.25)

The number of parameters expanded from m = 10 (Eq. (4.16)) to m = 665, by
determining all second degree coefficients besides the unique parameters of k
and ω0. Adapting the numerical derived design matrix of spherical harmonic
coefficients to temporal resolution of each month leads to:

Ashc =



ω(1)− ωc120(1)

∆pc120
· · · ω(1)− ωct20(1)

∆pct20
· · · ω(1)− ωst22(1)

∆pst22
ω(2)− ωc120(2)

∆pc120
· · · ω(2)− ωct20(2)

∆pct20
· · · ω(2)− ωst22(2)

∆pst22
...

. . .
...

. . .
...

ω(t)− ωc120(t)

∆pc120
· · · ω(t)− ωct20(t)

∆pct20
· · · ω(t)− ωst22(t)

∆pst22


.

(4.26)

An individual number of days d was thereby considered for each month, a one-
hour sampling rate as well as leap years, led to d×24×3 = l elements. Simplifying
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the notation defines the rotation vectors per month t and parameters i:

ω(t) =



ωx(1)
ωy(1)
ωz(1)
ωx(2)
ωy(2)
ωz(2)

...
ωx(l)
ωy(l)
ωz(l)


, ωit(t) =



ωit

x (1)

ωit

y (1)

ωit

z (1)

ωit

x (2)

ωit

y (2)

ωit

z (2)
...

ωit

x (l)

ωit

y (l)

ωit

z (l)


. (4.27)

Differential values altered only elements of the respective months at the numeric
integration in the course of computing the numerical derivation. The numerical
derived results of the design matrix were zero until the associated month of
the coefficient was reached.

ω(j) = ωit(j) with j < t (4.28)

4.5 Adjustment verification

The correctness of the least square adjustment was proven in a simulation case
by modifying its observation vector and approximated parameters. Adjusting
these for various approaches established the scientific interpretation and further
recognised coherence. Therefore the simulated vector was introduce as the
observation vector of the adjustment, leading to differential observation vector
equals zero (∆y = 0).
A constant value c was applied to an initial parameter at the process of
simulating the rotation vector. The application should further be the estimated
increment of the related parameter. Therefore, one or several months were tested.
Additionally, the sizes of the constant value, as well as derivation increment,
were adjusted, leading to multiple combinations. Each adjustment included the
determination of the differential rotation vector components. The derivation
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step size of these were predefined as 10−12 rad/s, in relation to obtainable
accuracies of eop data by IERS (2013).

Verifying the Love number was realised by modifying each part of the whole
decade. Whereby both parts were estimated due to their correlation in addition
to the initial vector. The matching digits between the determined increment
and used constant value in relation to the step size of numerical derivation is
listed in Tab. 4.1.

Table 4.1: Identical digits between estimated increments ∆ ˆkRe and test value c of the real
Love number in relation to the used numerical derivation interval ∆pkRe .

Applied value c to kRe

Interval ∆pkRe 10−4 10−5 10−6 10−7

10−4 10−17 10−7 10−8 10−9

10−5 10−6 10−18 10−9 10−10

10−6 10−6 10−8 10−19 10−11

10−7 10−6 10−8 10−10 10−19

The following cases of the results are thereby distinguished:

• Case one: ∆pi = c.
• Case two: ∆pi 6= c.

The principal diagonal of Tab. 4.1 contains the first case, with the remaining
elements as a representation of the second case. The differences between the
estimations and test value were smaller in the first case. This pattern continued
in the acquired accuracies of the covariance matrix, characterized in Fig. 4.1a
with modification value and derivation interval equal 10−4. The obtained
variances were above 10−40 of the first case, in contrast to the second case
illustrated in Fig. 4.1b(step size 10−6 and constant value 10−4). The estimated
parameters were, therefore, more accurate regarding the first case, where the
increment size is consistent with derivation one. Elements of the covariance
matrices along the principal diagonal are squared, and therefore the square
root has to be taken to consider those as accuracies of the parameters.
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(a) First case (b) Second case

Figure 4.1: Covariance matrix of real part of the Love number kRe computed at the adjustment
verification. Two distinguished cases: (a) derivation increment equal test value
10−4 and (b) derivation increment 10−6 unequal test value 10−4.

The results of the imaginary part were similar and are represented in Tab. 4.2.

Table 4.2: Identical digits between estimated increments ∆ ˆkIm and test value c of the
imaginary Love number in relation to the used numeric derivation interval ∆pkIm .

Applied value c to kIm

Interval ∆pkIm 10−4 10−5 10−6 10−7

10−4 10−18 10−7 10−8 10−9

10−5 10−6 10−18 10−9 10−10

10−6 10−6 10−8 10−20 10−11

10−7 10−6 10−8 10−10 10−20

The correctness of determining the Love number was confirmed since the
modified values were adequately estimated. The accuracy of the increments
differed depending on the step size of numerical derivation.

Validating the coefficients of spherical harmonics was accomplished by modi-
fying one or several months of its parameter. Figure 4.2 displays approaches
of the connection between the derivation interval and applied test value of

28



4 Adjustment

different magnitudes. The behaviour was likewise to the Love numbers, and
estimated results approved the implementation. The increments are indicated
at logarithmic scales along the y-axis. Figures 4.2a and 4.2b show the first case,
whereby the numeric derivation equals estimated value. The altered fifth month
is obvious. The remaining increments of the parameters were consistent and
considered zero, due to the difference to the actual increment. The second row
of the figure indicates the second case with Figs. 4.2c and 4.2d. Although the
modified month was certainly detectable, the determined values were not as
stable as in the first case and settling after the altered month.

(a) ∆pc20 = c = 10−9 (b) ∆pc20 = c = 10−11

(c) ∆pc20 = 10−10, c = 10−12 (d) ∆pc20 = 10−11, c = 10−9

Figure 4.2: Estimated spherical harmonic coefficient increments ∆x̂c20 determined at adjust-
ment verification of one altered month. Estimated parameters were ∆ω0 and ∆c20
for the time period between the years 2004 and 2014. Algorithm adjustments:
(a) ∆pc20 = c = 10−9, (b) ∆pc20 = c = 10−11, (c) ∆pc20 = 10−10, c = 10−12 and
(d) ∆pc20 = 10−11, c = 10−9.
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The achieved coefficient increments of ∆x̂c21 are characterized in Fig. 4.3.
A weaker correlation between ∆p and c was noticeable of both first order
spherical harmonics c21 and s21 (see Fig. 4.4). This was possible due to the
good determinability of the tesseral coefficients.

(a) ∆pc21 = c = 10−11

(b) ∆pc21 = 10−12, c = 10−9

Figure 4.3: Estimated spherical harmonic coefficient increments ∆x̂c21 determined at adjust-
ment verification of one altered month. Estimated parameters were ∆ω0 and ∆c21
for the time period between the years 2004 and 2014. Algorithm adjustments:
(a) ∆pc21 = c = 10−11 and (b) ∆pc21 = 10−12, c = 10−9.
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(a) ∆ps21 = c = 10−10 (b) ∆ps21 = 10−11, c = 10−9

Figure 4.4: Estimated spherical harmonic coefficient increments ∆x̂s21 determined at adjust-
ment verification of one altered month. Estimated parameters were ∆ω0 and ∆c21
for the time period between the years 2004 and 2014. Algorithm adjustments:
(a) ∆ps21 = c = 10−10 and (b) ∆ps21 = 10−11, c = 10−9.

Further outcome validating the adjustment are displayed in Figs. 4.5 and 4.5
for remaining second degree coefficients c22, s22.

(a) ∆pc22 = c = 10−11 (b) ∆pc22 = 10−11, c = 10−12

Figure 4.5: Estimated spherical harmonic coefficient increments ∆x̂c22 determined at adjust-
ment verification of one altered month. Estimated parameters were ∆ω0 and ∆c22
for the time period between the years 2004 and 2014. Algorithm adjustments:
(a) ∆pc22 = c = 10−11 and (b) ∆pc22 = 10−11, c = 10−12.
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(a) ∆ps22 = c = 10−11 (b) ∆ps22 = 10−11, c = 10−10

Figure 4.6: Estimated spherical harmonic coefficient increments ∆x̂s22 determined at adjust-
ment verification of one altered month. Estimated parameters were ∆ω0 and ∆s22
for the time period between the years 2004 and 2014. Algorithm adjustments:
(a) ∆ps22 = c = 10−11 and (b) ∆ps22 = 10−11, c = 10−10.

The implemented adjustment was considered correct for differences of spherical
harmonic coefficients, Love number, and the initial vector. The results of
the latter are not explicitly shown since the result did not present further
information. However, the selection of the numerical derivation step size seemed
essential concerning the estimations. Therefore, the related increment was
defined concerning the expected size of the determined parameters. Certainties
of Love number parts were not known, and the numeric derivation increment
was chosen based on the last provided decimal numbers:

∆pkRe = ∆pkIm = 10−4. (4.29)

The accuracies of the observation vector y were not specified either, which
appeared in the adjustment as well as reciprocal elements of the weighted
matrix. Therefore the accuracies were calculated with aid of eops data by
IERS (2013) and converted using Eqs. (2.6) and (2.8). The accuracies were
introduced equally of every component, although the determined accuracies of
the axis varied, and the z-axis is, in general, more accurate:

σωx = σωx = σωx = ∆pωx = ∆pωx = ∆pωx = 10−12. (4.30)
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Two solutions were considered for the accuracies of spherical harmonic co-
efficients. A satellite-only gravity field model from the Gravity Observation
COmbination (goco) – the GOCO05s (GOCO, 2019)– and the Earth’s dynamic
oblateness of slr observations by JPL, 2014b, related to (Cheng et al., 2011).
The accuracies from the slr model were adapted to the derivation increment
size:

∆pc20 = ∆pc21 = ∆ps21 = ∆pc22 = ∆ps22 = 10−11. (4.31)
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The estimated increments are represented for different combinations of the
parameters. Introducing various combinations of the adjustment facilitates the
comparison and verifies the parameters that can be best-estimated incoherence
to Earth’s rotation vector. A solution of slr observations, obtained from JPL
(2014b) (Cheng et al., 2011) served as reference coefficients. The parameters
are therefore categorised into each order of the spherical harmonic coefficients,
components of the initial vector and parts of the Love number due to the
correlation between these parameter types.

The coefficients of the second degree spherical harmonics were the results of
determining these parameters for each month in contrary to the initial rotation
vector and Love number, which are estimated once for the whole period – for
the time frame of January, 1st 2004 to December, 31th 2014. Therefore the
predefined accuracies of Sec. 4.5 were used as differentials at the numerical
derivation as well as for the uniform weight matrix of the observations.

5.1 Spherical harmonics coefficients

Coefficient c20

The determined coefficient increments of the zonal second degree spherical
harmonic c20 contained a yet unknown bias. Figure 5.1 illustrates spherical
harmonic coefficients including the determined increments, initial (see Sec. 3.1)
and reference coefficients. The latter two are reduced by the arithmetic mean
of the reference time series. The data sets appear as linear lines without visible
oscillations, where the slr graph is overlaid by the approximated coefficients,
due to the constant offset value of 10−6 within the estimated increments. The
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variations of c20 coefficients were expected at the size of the predefined accuracy
10−11.

Figure 5.1: Estimated coefficient increments (red dotted line) of the zeroth order ∆ĉ20
compared to initial data series of the implemented coefficients (blue dashed line)
at the numerical integration of Earth’s rotation vector and published reference
data of slr observations (black line). The initial and reference coefficients are
reduced by the mean value of slr data.

The steady trend changed with further determined parameters but still existed in
all considered combinations. Figure 5.2 displays the magnitude of the absolute
increments of various adjustment versions. The offset did not occur at the
validation of the algorithm in Sec. 4.5 or in the increments of other parameters
by introducing c20 to the adjustment. Therefore, the obtained offsets were most
probably based within the initial spherical harmonic data sets. Including the
Love number parameters in addition to the zeroth order coefficient, which
increased the obtained constant value. The extension by further spherical
harmonics coefficients (c21, s21 or c22, s22) decreased the bias, whereas the
determined accuracy from the covariance matrix decreased as well.
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(a) c20 (b) c20 and kRe, kIm

(c) c20 and c21, s21 (d) c20 and c22, s22

Figure 5.2: Absolute estimated increments of coefficients c20 determined by an adjustment
including the parameters: (a) -, (b) Love number k, (c) first order coefficients
c21, s21, (d) second order coefficients c22, s22 – besides the initial vector ω0 and
coefficient c20.

Table 5.1 contains the arithmetic mean values, standard derivations of the
estimated increments ∆ĉ20 and the achieved certainties from the covariance
matrix σ̂c20 . The offset is represented by the average µ and appear several
exponents larger than the variations of the data series. The second statistical
parameter was stable at 10−10, despite the standalone version and further
determination of the Love number. However, the obtained accuracies were larger
than their oscillations, which indicated a poor determinability of coefficient c20

for all combinations.
The highest certainties within the adjustment were achieved by the standalone
estimation of the parameter, followed by the combinations with other spherical
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harmonic coefficients. The bias of second order coefficients c22, s22 combination
stood out as the only positive one. The sign changed to negative again by adding
the Love number to the adjustment. Other than that, the Love numbers had
hardly any influence on the outcome of combinations with multiple spherical
harmonic coefficients. Declaring which combination is the most suitable was
barely possible, due to the unknown dimension and source of the encountering
offset. The extracted certainties of the covariance matrices were expected to fit
the estimated increments.

Table 5.1: Statistical parameters of the coefficient increments ∆ĉ20 and the obtained certain-
ties σ̂c20 for implemented parameter combinations.

x̂{ω0, c20, . . . } µ (∆ĉ20) s (∆ĉ20) σ̂c20

− −3.877× 10−6 1.5× 10−9 ±2.00× 10−8

k −4.504× 10−4 8.7× 10−8 ±3.53× 10−6

c21, s21 −1.818× 10−7 5.2× 10−10 ±2.45× 10−7

c22, s22 8.447× 10−7 5.2× 10−10 ±2.35× 10−7

c21, s21,k −1.283× 10−8 5.1× 10−10 ±2.52× 10−7

c21, s21, c22, s22 −2.523× 10−7 5.2× 10−10 ±2.33× 10−7

c21, s21, c22, s22,k −2.664× 10−8 5.1× 10−10 ±2.32× 10−7

c22, s22,k −1.018× 10−8 5.1× 10−10 ±2.52× 10−7

Removing the zero degrees trend from the summarised approximated spherical
harmonics and estimated increments show the temporal variations in Fig. 5.3.
The combinations with additional spherical harmonics coefficients have a similar
signal behaviour – contained more high-frequent variations and showed a
noticeable different amplitude than the standalone version.
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(a) c20 (b) c20 and c21, s21

(c) c20 and c21, s21,k (d) c20 and c22, s22

(e) c20 and c22, s22,k (f) c20 and c21, s21,k, c22, s22

Figure 5.3: Comparison of the spherical harmonics coefficients c20 × 10+9. Reference data of
slr observations reduced by arithmetic average (black line). Initial coefficients
for the simulation (blue dashed line), see Ch. 3, reduced by the mean value of
the reference series. Mean free series of combining the initial coefficients and esti-
mated increments (red dotted line). Determined parameters: (a) -, (b) c21 and s21,
(c) c21, s21 and k, (d) c22, s22, (e) c22, s22 and k, (f) c21, s21, c22, s22 and k – be-
sides c20,ω0.
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The divergent results of the Love number combination are displayed in Fig. 5.4.
The time series illustrated an oscillation over the whole period, due to the weak
coherence of coefficient c20 and Love number k.

Figure 5.4: Mean free spherical harmonics coefficients ĉ20 estimated with ω0, c20 and k (red
dotted line). Reference data of slr observations reduced by its arithmetic average
(black line). Initial coefficients of the simulation (blue dashed line), see Ch. 3,
reduced by mean value of slr data.

Coefficients c21 and s21

Figure 5.5 illustrates tesseral spherical harmonic coefficients c21 and s21. Visu-
alised are the estimated increments, reference coefficients of slr observations
and provided initial coefficients of the simulation. The latter two data sets
were reduced by the arithmetic mean of the reference series. Neither of the
increment data sets contained a bias as the coefficient increments of c20 since
the first statistical parameter is in relation close to zero. The static differences
between the initial spherical harmonic and reference coefficients were larger
than estimated increments values. Therefore, adjusting the initial coefficients
by the increments did not lead to a significant improvement to the reference
coefficients.
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(a) c21 (b) s21

Figure 5.5: Estimated coefficient increments (red dotted line) of the first order (a) ∆ĉ21 ×
10+10 and (b) ∆ŝ21 × 10+9 in comparison to the initial coefficients (blue dashed
line) for numerical integration of the Earth’s rotation vector and published refer-
ence data of slr observations (black line). The initial and reference coefficients
were reduced by the arithmetic mean of the reference series.

The outcome of the increments and their obtained variances are listed in Tab. 5.2
regarding ∆ĉ21 and Tab. 5.3 concerning ∆ŝ21. The achieved information of both
spherical harmonic coefficients was analogous, besides the different dimensions
and signs of the arithmetic mean of the data. The average of the estimated values
was smaller than their standard derivation for both coefficient increments, except
two versions of ∆ĉ21 that included the Love number and the zonal spherical
harmonic coefficient. The standard derivation of the time series increased by
adding additional unknown parameters as well as the uncertainties within the
adjustment. The best variances were achieved with the standalone versions.
The obtained certainties of determining all parameters fitted the predefined
certainties of 10−11 as well. The stable behaviour and sufficient accuracies lead
to the assumption that both tesseral spherical harmonic coefficients are well
determinable regarding Earth’s rotation vector variations.
The zonal spherical harmonic coefficient c20 confirmed no major influence on the
estimation of the coefficient increments ∆c21,∆s21, displayed in Fig. 5.6. The
figure also shows no visible differences for the various parameter combinations.
The estimated values were thereby to small to identify neither a positive or
negative change of the applied time series.
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Table 5.2: Statistical parameters of the coefficient increments ∆ĉ21 and the obtained certain-
ties σ̂c21 for implemented parameter combinations.

x̂{ω0, c21, s21, . . . } µ (∆ĉ21) s (∆ĉ21) σ̂c21

− −6.662× 10−12 2.3× 10−11 ±5.90× 10−13

k −3.868× 10−11 2.8× 10−11 ±3.24× 10−12

c20 6.546× 10−12 2.3× 10−11 ±6.39× 10−13

c22, s22 7.491× 10−11 6.9× 10−10 ±4.07× 10−11

c20,k −3.792× 10−11 2.8× 10−11 ±3.15× 10−12

c20, c22, s22 8.191× 10−11 6.9× 10−10 ±3.94× 10−11

c20, c22, s22,k 1.692× 10−10 8.5× 10−10 ±4.99× 10−11

c22, s22,k 1.265× 10−10 8.3× 10−10 ±5.16× 10−11

Table 5.3: Statistical parameters of the coefficient increments ∆ŝ21 and the obtained certain-
ties σ̂s21 for implemented parameter combinations.

x̂{ω0, c21, s21, . . . } µ (∆ŝ21) s (∆ŝ21) σ̂s21

− 2.485× 10−11 3.3× 10−11 ±5.90× 10−13

k 2.259× 10−11 2.9× 10−11 ±3.23× 10−12

c20 2.537× 10−11 3.3× 10−11 ±9.18× 10−13

c22, s22 6.082× 10−12 8.4× 10−10 ±4.07× 10−11

c20,k 2.324× 10−11 2.9× 10−11 ±3.14× 10−12

c20, c22, s22 8.807× 10−12 8.3× 10−10 ±3.94× 10−11

c20, c22, s22,k 5.004× 10−10 9.2× 10−10 ±4.99× 10−11

c22, s22,k 4.680× 10−10 9.1× 10−10 ±5.16× 10−11

The Love number parts kRe, kIm as well as sectoral spherical harmonic co-
efficients c22, s22 increased the estimated increments, see Fig. 5.7. Whereby
variations of the determined coefficients exceeded the scaling of both external
time series oscillations. The major differences at the end of 2005 and 2010
resembled the inconsistency of the simulated earth rotation vector to the obser-
vations of Fig. 3.1. Introducing the Love numbers increased the amplitude of
ĉ21, approaching the reference series of slr observations. No differences were
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noticeable for the sinus coefficient of the first order with the same adjustment
conditions.

(a) c21 - with c21, s21 (b) s21 - with c21, s21

(c) c21 - with c20, c21, s21 (d) s21 - with c20, c21, s21

Figure 5.6: Comparison of the spherical harmonics coefficients c21×10+9 (left) and s21×10+9

(right). Reference data of slr observations (black line). Initial coefficients of
Earth’s rotation simulation (blue dashed line), see Ch. 3. Calculated coefficients
by combining initial coefficients and estimated increments (red dotted line). Data
sets were reduced by the mean of the reference series. Determined parameters:
(a)/(b) c21, s21 and ω0, (c)/(d) c20, c21, s21 and ω0.

42



5 Estimated parameters

(a) c21 × 10+8 - with c21, s21, c22, s22 (b) s21 × 10+8 - with c21, s21, c22, s22

(c) c21 × 10+10 - with c21, s21,k (d) s21 × 10+9 - with c21, s21,k

(e) c21 × 10+8 - with c21, s21, c22, s22,k (f) s21 × 10+8 - with c21, s21, c22, s22,k

Figure 5.7: Comparison of the tesseral spherical harmonics coefficients c21 (left) and s21
(right). Reference data of slr observations (black line). Initial coefficients of
Earth’s rotation simulation (blue dashed line), see Ch. 3. Calculated coefficients
by combining initial coefficients and estimated increments (red dotted line). Data
sets were reduced by the mean of the reference series. Estimated parameters
besides c21, s21 and ω0: (a)/(b) c22 and s22, (c)/(d) k and (e)/(f) c22, s22 and k.
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Coefficients c22 and s22

The outcome of the sectoral spherical harmonic coefficients c22 and s22 are
listed in Tabs. 5.4 and 5.5. The time series showed an offset by the arithmetic
mean values similar to c20. The dimensions of the standard derivations and
achieved variances of the estimated increments were larger by factor ≈105

than expected. The statistical parameters were consistent throughout various
parameter versions, despite the combinations including coefficients c21, s21.
Figures 5.8 and 5.9 illustrate the increments in relation to the reference time
series of slr observations and the initial coefficients of the numerical integration.
Both existing time series were reduced by the mean of the slr coefficients and
appear as linear lines, due to the size and scaling of the estimated increments.
An annual and semi-annual oscillation with strong variations at the beginning
of 2007 could be identified for both increments. Combinations with further
parameters reduced the occurring bias. However, the obtained results were not
meaningful of any adjustment setting, due to the dimension of the variations
and variances.

Table 5.4: Statistical parameters of the coefficient increments ∆ĉ22 and the obtained certain-
ties σ̂c22 for implemented parameter combinations.

x̂{ω0, c22, s22, . . . } µ (∆ĉ22) s (∆ĉ22) σ̂c22

− 1.706× 10−5 2.4× 10−5 ±3.69× 10−7

k 2.482× 10−6 2.4× 10−5 ±1.22× 10−6

c20 1.603× 10−5 2.4× 10−5 ±4.83× 10−7

c21, s21 −1.047× 10−6 4.1× 10−4 ±2.27× 10−5

c20,k 2.622× 10−6 2.4× 10−5 ±1.19× 10−6

c20, c21, s21,k −2.109× 10−5 4.5× 10−4 ±2.49× 10−5

c20, c21, s21 −2.530× 10−6 4.1× 10−4 ±2.20× 10−5

c21, s21,k −1.842× 10−5 4.4× 10−4 ±2.57× 10−5
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Figure 5.8: Estimated coefficient increments ∆ĉ22 (red dotted line) of an adjustment with
both second-order parameters and initial starting vector ω0. Initial coefficients
(blue dashed line) for numerical integration of the Earth’s rotation vector and
published reference data of slr observations (black line). The initial and reference
coefficients were reduced by the arithmetic mean of the slr series.

The behaviour of both second-order coefficients was similar, especially regarding
combinations of first order spherical harmonic coefficients.

Table 5.5: Statistical parameters of the coefficient increments ∆ŝ22 and the obtained certain-
ties σ̂s21 for implemented parameter combinations.

x̂{ω0, c22, s22, . . . } µ (∆ŝ22) s (∆ŝ22) σ̂s22

− 1.827× 10−6 1.6× 10−5 3.69× 10−7

k 1.278× 10−5 1.6× 10−5 1.22× 10−6

c20 1.358× 10−6 1.6× 10−5 4.40× 10−7

c21, s21 4.408× 10−5 4.2× 10−4 2.27× 10−5

c20,k 1.269× 10−5 1.6× 10−5 1.19× 10−6

c20, c21, s21 4.747× 10−5 4.1× 10−4 2.20× 10−5

c20, c21, s21,k 5.058× 10−5 4.6× 10−4 2.49× 10−5

c21, s21,k 4.581× 10−5 4.5× 10−4 2.57× 10−5
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Figure 5.9: Estimated coefficient increments ∆ŝ22 (red dotted line) of an adjustment with
both second-order parameters and initial starting vector ω0. Initial coefficients
(blue dashed line) for numerical integration of the Earth’s rotation vector and
published reference data of slr observations (black line). The initial and reference
coefficients were reduced by the arithmetic mean of the slr series.

5.2 Initial vector elements and Love number

All combinations considered the uncertainties of starting vector of the timer
series ω0, due to the initial value problem at numeric integration of the Earth’s
rotation vector. Thereby the initial vector consisted of three components:

∆ω̂0 = [∆ω̂x
0 ∆ω̂y

0 ∆ω̂z
0]T . (5.1)

The increments of the Love number were analogue:

∆k̂ =
[
∆k̂Re ∆k̂Im

]T
. (5.2)

The spherical harmonic coefficients were cohesively presented monthly to the
contrary of the uniquely solved initial vector and Love number increments.
The introduction of the initial vector in the algorithm was unavoidable, and
the obtained accuracies within the adjustment were sufficient to the defined
predefined certainties. Those appear in the weight matrix as reciprocal values
and numerical derivations. Table 5.6 lists the results of the estimated initial
vector elements. The z-component was overall better determinable concerning
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the Earth’s rotation vector with smaller variances. Introducing tesseral or
sectoral spherical harmonic coefficient as unknown parameters reduced the
increment dimensions up to 10−2. The obtained accuracy fluctuated between
10−15 rad/s and 10−13 rad/s and was below the predefined certainties 10−12 rad/s
of the algorithm. The zonal spherical harmonic coefficient did have a negative
effect on the values of the z-axis.

Table 5.6: Estimated increments of initial vector ∆ω̂0 and the posterior accuracies from the
covariance matrices in rad/s.

x̂{ω0, . . . } ∆ω̂x
0 × 10−12 ∆ω̂y

0 × 10−12 ∆ω̂z
0 × 10−12

− −38.118± 0.058 −13.977± 0.058 −0.370± 0.050

k −13.524± 0.040 12.487± 0.041 −0.370± 0.022

c20 −25.429± 0.085 −18.826± 0.060 −0.059± 0.537

c21, s21 0.515± 0.028 −0.407± 0.028 −0.370± 0.001

c22, s22 0.525± 0.027 0.353± 0.028 −0.370± 0.001

c20,k −12.728± 0.040 11.368± 0.041 −0.616± 0.241

c20, c21, s21 0.515± 0.027 0.407± 0.027 −0.057± 0.015

c20, c22, s22 0.525± 0.027 0.358± 0.027 −0.056± 0.015

c20, c21, s21,k 0.562± 0.028 0.414± 0.028 −0.057± 0.015

c20, c22, s22,k 0.601± 0.027 0.387± 0.027 −0.057± 0.015

c20, c21, s21, c22, s22 0.283± 0.039 0.330± 0.039 −0.057± 0.014

c20, c21, s21, c22, s22,k 0.185± 0.039 0.310± 0.039 −0.057± 0.014

c21, s21,k 0.563± 0.028 0.414± 0.028 −0.370± 0.001

c21, s21, c22, s22 0.283± 0.040 0.330± 0.040 −0.370± 0.001

c21, s21, c22, s22,k 0.193± 0.040 0.306± 0.040 −0.371± 0.001

c22, s22,k 0.602± 0.028 0.387± 0.028 −0.370± 0.001

Figure 5.10 displays the elements of the covariance matrices of four cases
of the initial vector increment. The square root of the principal diagonal
are representing the obtained accuracies of the vector elements variances. The
similar output proved a stable parameter within the adjustment and observation
equation. Maximal and minimal values were varying by 10±2 rad/s for the x-,
y- and by 10±1 rad/s for the z-components.
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(a) k (b) c20, c21, s21

(c) c20, c21, s21,k (d) c20, c21, s21, c22, s22,k

Figure 5.10: Covariance matrices of the initial vector increments ∆ω̂0 in rad2/s2 deter-
mined with the parameters of: (a) k, (b) c20, c21 and s21, (c) c20, c21, s21 and k,
(d) c20, c21, s21, c22, s22 and k – besides ω0.

The estimation of Love number parts was introduced to consider variations of the
provided values within the adjustment. The increment outcome varied strongly,
depending on other unknown parameters as well as the defined numerical
derivation interval. The estimated increments are listed in Tab. 5.7. The Love
number appeared to be unstable concerning the achieved increments and
their corresponding covariance matrix elements. The imaginary part showed
smaller variations throughout different versions than the real part, which is
affected the most by the introduction of the zonal spherical harmonic coefficient.
The covariance matrices with and without spherical harmonic coefficients are
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displayed in Fig.. 5.11. The uncertainties increased by adding further parameters.
The posterior certainties σk̂ ≈ 10−2 were too inaccurate to make a point about
the estimated increments and provided values.

Table 5.7: Estimated Love number increments of ∆k̂Re and ∆k̂Im and the posterior accuracies
from the covariance matrices.

x̂{ω0,k, . . . } ∆k̂Re × 10−2 ∆k̂Im × 10−2

- −0.747± 0.002 1.850± 0.002

c20 86.344± 0.682 1.564± 0.003

c21, s21 −0.508± 0.198 2.962± 0.198

c22, s22 1.263± 0.129 2.314± 0.129

c20, c21, s21 −0.537± 0.198 2.903± 0.193

c20, c22, s22 1.252± 0.134 2.294± 0.125

c20, c21, s21, c22, s22 −28.751± 1.143 −10.991± 1.145

c21, s21, c22, s22 −27.331± 1.170 −8.490± 1.182

(a) first (b) third

Figure 5.11: Covariance matrices of the Love number’s real ∆k̂Re and imaginary part ∆k̂Im

determined using the parameters of: (a) ω0 and k, and (b) ω0,k, c20, c21 and s21
– besides the Love number k.
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5.3 Coherent consideration

Four specific cases are defined in Tab. 5.8 for reasons of legibility.

Table 5.8: Final cases of estimated parameter combinations.

ω0 c20 c21 s21 c22 s22 k

1st case 7 7

2nd case 7 7 7 7

3rd case 7 7 7 7 7

4th case 7 7 7 7 7 7 7

The coefficients of c20, c22 and s22 were not suitably determined relating to
the Earth’s rotation vector with the use of its simulation. The zonal spherical
harmonic coefficient c20 was consistently fraught by an offset. Even though the
mean free temporal variation’s dimensions were in good agreement to the refer-
ence solution, the determined certainties appeared larger than their increments.
Introducing additional spherical harmonic coefficients had a stabling effect on
the zeroth order estimations without significant enhancement of their biases.
The contrary applied to the appropriate values of coefficient c21 and s21. The
achieved results got more inaccurate by adding further parameters, especially
in combinations with the sectoral spherical harmonic coefficients. The most
reasonable product was obtained by adding the Love number. Whereby the
alterations mainly occurred at the cosine coefficient, while the sine coefficient
remained unchanged. The variances were in good agreement with their compa-
rable slr accuracies.
Estimations of second-degree and -order coefficients were not viable throughout
all parameter combinations. The determined certainties as well as increments
were by an average factor 105 larger than required.
The estimation of the initial vector was necessary, due to the initial value
problem at the numeric integration. The achieved variances were adequate and
improved by introducing further parameters unlike the Love number, which
was only rational in combination with coefficient c21 and s21. Both uniquely
determined parameters had no additional benefit in the default algorithm of
this application.
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Therefore the estimation of the third case parameters was recommended regard-
ing a determination of spherical harmonic coefficients concerning the Earth’s
rotation. The best correlation was proven by the tesseral coefficients. Although
the estimation of coefficient c20 increased the computation time, it should be
studied for the gain of further information regarding its offsets. Figure 5.12
illustrates the covariance matrices of four cases. Adding coefficient c20 had no
negative consequences for other parameters and was considered as stabilisation,
despite the mentioned scientific purpose.

(a) 1st case (b) 2nd case

(c) 3rd case (d) 4th case

Figure 5.12: Covariance matrices of least square adjustments for the four final cases in
Tab. 5.8. Asterisk (*) stands for the Love number parts kIm, kRe and initial
vector ωx

0 , ω
y
0 , ω

z
0 at (c) and (d). Variances presented in rad2/s2 for the rotation

vector and unit less for the love number and harmonic coefficients.
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5.4 Further considerations

Additional investigations were realised by drawing on the results of the ad-
justment verification in Sec. 4.5. A connection was recognised between the
estimated values and derivation elements. Therefore, the interval sizes of the
parameters were modified in this manner. The numerical derivation differences
are listed in Tab. 5.9 for each parameter. The adjusted step size is stated as
∆p̃ according to the obtained variances of the first determination using ∆p.
Thereby the more inaccurate parameters were affected and further diminished
their increments as displayed in Fig. 5.13 for the covariance matrices.

Table 5.9: Interval increments of the numeric derivation.

parameter ∆p ∆p̃

ωx, ωy, ωz 10−12 10−14

c20 10−11 10−8

c21, s21 10−11 10−12

c22, s22 10−11 10−6

kRe, kIm 10−4 10−3

52



5 Estimated parameters

(a) 1st case (b) 2nd case

Figure 5.13: Covariance matrices of adjustment with adjusted numerical derivation interval
∆p̃. Estimated parameters of: (a) the 1st case and (b) the 3rd case – asterisk
(*) stands for the Love number parts kIm, kRe and initial vector ωx

0 , ω
y
0 , ω

z
0 .

Variances presented in rad2/s2 for the rotation vector and unit less for the love
number and harmonic coefficients.

Additionally, the numeric derivation interval was set as small as possible without
numerical warnings or errors by the software. Even though the calculation was
theoretically possible, the determined increments were too small to detect any
alterations to the approximated coefficients, similar to the standalone versions
of the tesseral spherical harmonic coefficients.

The method of iteration was further considered, assuming that the increments
would approach zero. Therefore the standalone versions of each coefficient degree
were estimated in combination with the initial value. Absolute increments of
this approach are characterized in Fig. 5.14.
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(a) c20 - with constant initial value (b) c20 - with iterating initial value

(c) c21 - with constant initial value (d) s21 - with constant initial value

Figure 5.14: Absolute values of estimated spherical harmonic coefficient increments of first
(black circles), second (red circles) and third (blue circles) iteration. Increments
of: (a) c20 - estimation with constant initial value, (b) c20 - estimation with
iterating initial value, (c) c21 - estimation with s21 and constant initial value,
(d) s21 - estimation with c21 and constant initial value.

The occurring offsets of the coefficients remained in similar dimensions. The
assumption that signs were switching for each iteration was not confirmed,
as Tab. 5.10 proves. The increments of coefficient c21 and s21 decreased as
expected. Second-order parameter of c22 as well as of s22 did not improve either
to fit the expected dimensions. Iterated parts of the Love number fluctuated
by the same dimensions. In contrast to the iteration results of initial elements
which decreased rapidly. The topic of iteration was not investigated in detail.
The collected information retained unchanged for the estimating coefficient and
determinability.
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Table 5.10: Iteration results of spherical harmonic coefficients of each parameter in combina-
tion with constant ω0.

x µ(∆x̂)|1 µ(∆x̂)|2 µ(∆x̂)|3
c20{ω0, c20} −3.877× 10−6 −5.182× 10−6 −4.999× 10−6

c21{ω0, c21, s21} 6.662× 10−12 −3.557× 10−18 −7.887× 10−20

s21{ω0, c21, s21} 2.485× 10−11 −7.863× 10−18 −3.989× 10−20

c22{ω0, c22, s22} 1.706× 10−5 9.988× 10−7 −1.384× 10−7

s22{ω0, c22, s22} 1.827× 10−6 −1.204× 10−6 −1.909× 10−7
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6 Conclusion

The approach to determine second-degree spherical harmonic coefficients in
relation to the Earth’s rotation vector was researched using the differential
Euler-Liouville equation. Therefore the formula was adapted to simulate an
Earth’s rotation vector and further estimate the gravity field parameters per
month of the inertia tensor – second-degree spherical harmonic coefficients.
The presented parameter configurations in this thesis were validated by slr
observations and showed that the tesseral second-degree coefficients c21 and s21

were the most sufficient in terms of temporal variations as well as computed
variances. The pole-flattening coefficient c20 did not reach the required accuracies
and contained a yet unexplained offset. Establishing the bias’s origin could
improve the determined results since the temporal variations of the constant
trend reduced increments indicated adequate differences. Contrary to the second-
order coefficients c22 and s22, which are fraught by consistent offsets at every
combination and uncertainties twice as large as their reference solutions.
The obtained dimensions of the zeroth- and first-order coefficient depended
strongly on the added parameters, whereby the uncertainties of the first one
decreased, whereas those of the second ones increased. The best coherence to
the rotation vector was presented by the coefficients c21 and s21 due to their
consistency and precise results, except for combinations including sectoral
harmonic coefficients.

Although the achieved increments did not lead to a significant improvement
of the approximated coefficients since they were too small in relation to the
differences between the initial and reference harmonic coefficients. Further, it
was assumed that the approximated coefficients caused the occurring bias at
coefficients c20, which remains to be investigated. Therefore additional consid-
erations of the used initial gravity field models may be required.
Furthermore, correcting the modelled rotation vector during its integration
would reduce differences to the observations with the use of a filter algorithm.
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6 Conclusion

One of the acknowledged error sources was the simulation of the rotation vector.
Correcting the simulated rotation vector during its integration could reduce
differences between the observation and simulation by using a filter algorithm.
Whereby the accuracies and temporal behaviour of the measurements are con-
sidered for each period.
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