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Abstract

The rising popularity of the Internet of Things (IoT), and the increasing need to connect
ubiquitous objects to each other and to the Internet has led to the development of several
wireless technologies, in order to satisfy the requirement of different application domains.
Especially popular are, nowadays, low-power wireless technologies enabling the creation of
Low Power Wide Area Networks (LPWANs). One of these popular technologies is LoRa
(Long Range). Thanks to its large transmission range and low power consumption, LoRa
enables large-scale IoT applications such as air quality measurements in cities or smart
water management in rural areas. LoRa gains its communication range potential due
to its unique Chirp Spread Spectrum (CSS) modulation scheme, and furthermore allows
developers to fine-tune the transmission performance and range capabilities by modifying
several physical settings. To further enhance the energy efficiency and reliability of LoRa
communications a duty-cycled Medium Access Control (MAC) protocol is necessary, in
order to minimize the radio’s active time while offering full communication functionality.
Such protocol should also allow the runtime adaptation of LoRa’s PHY settings in order to
ensure a reliable communication despite the mobility of nodes or other external influences.

In this thesis we first introduce a port of a popular LoRa platform, the STM32L152
Nucleo-64 combined with the SX1272 from Semtech, to the well-known open-source
operating system Contiki. We then design DeFiL-MAC, a duty-cycled efficient MAC
protocol for LoRa and implement it for the Contiki OS. DeFiL-MAC is a protocol based
on Time-Division Multiple Access (TDMA) that provides an efficient master-to-slave
communication and that guarantees the duty-cycle regulations can be automatically met.
DeFiL-MAC also provides a mechanism for the run-time adaptation of LoRa’s physical
layer settings based on the quality of the link between two devices. This allows to reduce
packet loss and to find the best settings for each communication link, and hence to increase
both the efficiency and the reliability of communications.

An experimental evaluation validates DeFiL-MAC’s operations and shows that the
efficiency and reliability of a deployed LoRa network is increased by applying DeFiL-MAC’s
adaptation of physical layer settings.
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Kurzfassung

Die zunehmende Beliebtheit des ”Internet der Dinge” (Internet of Things, IoT) und die
zunehmende Notwendigkeit, allgegenwärtige Objekte miteinander sowie dem Internet zu
vernetzen, hat zur Entwicklung mehrerer Funktechnologien geführt, um den Anforderungen
verschiedener Anwendungsdomänen gerecht zu werden. Besonders beliebt sind heutzutage
drahtlose Technologien mit geringem Stromverbrauch, die die Realisierung von Low Power
Wide Area Networks (LPWANs) ermöglichen. Eine dieser populären Technologien ist
LoRa (Long Range). LoRa ermöglicht dank des großen Übertragungsbereichs und des
geringen Stromverbrauchs großflächige IoT-Anwendungen, wie Messungen der Luftqualität
in Städten, oder intelligentes Wassermanagement in ländlichen Gebieten. LoRa nutzt das so
genannte Chirp Spread Spectrum (CSS) -Modulationsschema und ermöglicht Entwicklern
die Feinabstimmung der Übertragungsleistung und der Reichweitenfunktionen, indem
verschiedene physikalische Einstellungen geändert werden. Um die Energieeffizienz und
Zuverlässigkeit der LoRa-Kommunikation weiter zu verbessern, ist ein Medium Access
Control -Protokoll (MAC) erforderlich, das die aktive Zeit des Funkgeräts minimiert und
gleichzeitig die volle Kommunikationsfunktionalität bietet. Ein solches Protokoll sollte
auch die Laufzeitanpassung der PHY-Einstellungen von LoRa ermöglichen, um trotz der
Mobilität von Knoten oder anderen äußeren Einflüssen eine zuverlässige Kommunikation
sicherzustellen.

In dieser Masterarbeit stellen wir zunächst den Port einer beliebten LoRa-Plattform,
dem STM32L152 Nucleo-64 in Kombination mit dem SX1272 von Semtech, in das bekannte
open-source-Betriebssystem Contiki vor. Des Weiteren präsentieren wir DeFiL-MAC, ein
effizientes MAC-Protokoll für LoRa, das mittels einem Lastzyklus gesteuert wird, und
implementieren es im Betriebssystem Contiki. DeFiL-MAC ist ein auf Zeitmultiplex-
Vielfachzugriff (Time Division Multiple Access, TDMA) basierendes Protokoll, das eine ef-
fiziente Master-to-Slave-Kommunikation ermöglicht und gewährleistet, dass die Vorschriften
für den Lastzyklus automatisch erfüllt werden. Weiters bietet DeFiL-MAC einen Mechanis-
mus für die Laufzeitanpassung der Einstellungen der physischen Schicht von LoRa, basierend
auf der Qualität der Verbindung zwischen zwei Geräten. Dies ermöglicht es, Paketverluste
zu reduzieren und die besten Einstellungen für jede Kommunikationsverbindung zu finden,
und somit sowohl die Effizienz als auch die Zuverlässigkeit der Kommunikation zu erhöhen.

Eine experimentelle Auswertung bestätigt die korrekte Funktion von DeFiL-MAC und
zeigt, dass die Effizienz und Zuverlässigkeit eines eingesetzten LoRa-Netzwerks durch die
Anpassung der Einstellungen der physikalischen Schicht durch DeFiL-MAC erhöht wird.
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Unterstützung ich bestimmt nicht an diesem Punkt in meinem Leben stehen würde.

Graz, im Mai 2019 Philip Winkler

iv



Contents

List of Abbreviations xii

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 LoRa Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Chirp Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 LoRa Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 LoRaWAN: Protocol and Architecture . . . . . . . . . . . . . . . . . 13

2.2 Contiki OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 The Contiki Network Stack . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Protothreads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 MAC protocols within the Contiki OS . . . . . . . . . . . . . . . . . 17

2.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 STMicroelectronics STM32L152 Nucleo-64 . . . . . . . . . . . . . . 19
2.3.2 Semtech SX1272 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Porting LoRa to the Contiki OS 23
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 PHY Settings Configuration . . . . . . . . . . . . . . . . . . . . . . . 28

4 MAC Layer Design 29
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 DeFiL-MAC: Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 DeFiL-MAC: Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Evaluation 55
5.1 De-FiL-MAC: Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Master and Slave operation . . . . . . . . . . . . . . . . . . . . . . . 55

v



5.1.3 Duty-cycle Regulations and Packet Time-on-Air . . . . . . . . . . . 58
5.1.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 De-FiL-MAC: Reliability and Efficiency . . . . . . . . . . . . . . . . . . . . 61
5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Energy consumption of individual PHY settings . . . . . . . . . . . 62
5.2.3 Adaptation of PHY parameters at runtime . . . . . . . . . . . . . . 62

6 Conclusions and Future Work 68
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 71

vi



List of Figures

2.1 Range vs. bandwidth - comparison of several transmission technologies
(adapted from [1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Transmission over free space, loss of power (adapted from [1]). . . . . . . . 8
2.3 Frequency spectrum of On-Off Keying (OOK) (adapted from [1]). . . . . . . 9
2.4 Frequency spectrum of Frequency Shift Keying (FSK) (adapted from [1]). . 9
2.5 Frequency spectrum of a LoRa communication (adapted from [1]). . . . . . 10
2.6 Bandwidth utilization with Chirp Spread Spectrum (CSS) (adapted from

[1] and [2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Demodulation principle of a LoRa signal with noise [1]. . . . . . . . . . . . 11
2.8 Basic functionality of spreading factors [1]. . . . . . . . . . . . . . . . . . . 13
2.9 Further properties of LoRaWAN’s classes regarding battery life and latency,

adapted from [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 Network stack within of Contiki OS. . . . . . . . . . . . . . . . . . . . . . . 16
2.11 Operation principle of X-MAC, retrieved from [4]. . . . . . . . . . . . . . . 17
2.12 ContikiMAC’s operation principle, nodes mostly sleep and use periodical

checks to detect radio activity, retrieved from [5]. . . . . . . . . . . . . . . . 18
2.13 Rough functionality of a Time Division Multiple Access (TDMA) protocol,

frames are divided into slots for each individual participant. . . . . . . . . . 19
2.14 Nucleo-64 STM32L152 layout, from [6]. . . . . . . . . . . . . . . . . . . . . 20
2.15 Arduino and Morpho headers of the Nucleo, from [6]. . . . . . . . . . . . . . 21
2.16 Pin layout of the Semtech SX1272, from [7]. . . . . . . . . . . . . . . . . . . 22

3.1 Contiki’s directory structure with the SX1272 implementation. . . . . . . . 25
3.2 Extension connectors of the Nucleo-64, from [6]. . . . . . . . . . . . . . . . . 26

4.1 General layout of Duty-cycled eFficient LoRa-MAC (DeFiL-MAC). A beacon
message is represented by a red rectangle, while blue depicts a message
transmission. Grey areas illustrate idle or sleeping phases of the nodes. . . . 32

4.2 Communication process in which node attempts to join a network. The
acknowledgement also contains information about the slot a node has been
assigned to. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Operation of DeFiL-MAC when multiple nodes try to join the network at
the same time. Node 2 is accepted into the network, while Node 1 will try
to join again upon reception of the beacon within the next cycle. . . . . . . 33

4.4 Communication steps between master and slave node when successfully
exchanging data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



4.5 State chart of a gateway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Different states a slave node cycles through while operation. . . . . . . . . . 37
4.7 Communication sequence between gateway and node, successful adaptation

of Physical Layer (PHY) settings. . . . . . . . . . . . . . . . . . . . . . . . . 39
4.8 Failed PHY switch, communication between master and slave node. . . . . 39
4.9 Network protocol stack of the Contiki OS, illustrating where implementations

have been made. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.10 Contiki’s directory structure with the rough layout of the MAC protocol

implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.11 Message format used within the DeFiL-MAC. . . . . . . . . . . . . . . . . . 42
4.12 Decision graph of the master node, evaluating if a PHY change should be

performed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.13 Scaling of each individual PHY parameter in regard to time-on-air, receiver

sensibility and link budget. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.14 Transmission cost in relation to output power. . . . . . . . . . . . . . . . . . 53

5.1 Functionality of a node in DeFiL-MAC. . . . . . . . . . . . . . . . . . . . . 57
5.2 1% duty-cycle of a slave communication, dashed lines mark the reception of

a beacon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Comparison of calculated vs. measured time-on-air for a 20 bytes data

packet with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Wake up (clock drift) offset correction. . . . . . . . . . . . . . . . . . . . . . 60
5.5 Measured energy consumption of the different physical settings applied in

DeFiL-MAC, as well as base energy consumption of the Nucleo and the
SX1272. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Measurement to evaluate the behaviour of DeFiL-MAC: a programmable
attenuator is connected to a node to simulate changing link qualities and
observe the run time adaptation of the physical settings. . . . . . . . . . . . 64

5.7 Behaviour of DeFiL-MAC’s PHY setting adaptation when constant attenua-
tion is applied: the aim to find the most efficient settings possible can cause
loss of packets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



List of Tables

2.1 Summary of LoRa’s configurable settings and their impact on communication
performance [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Different types of messages exchanged by gateway and node. . . . . . . . . 43
4.2 Combinations of physical parameters chosen for verification. Setting with id

0 is considered as default and is therefore used initially by each node. . . . 52
4.3 Un-encoded composition of physical parameters for setting with id 0. . . . . 52

ix



List of abbreviations

6LoWPAN IPv6 over Low Power Wireless Personal Area Network.

ACK Acknowledgement.

ADR Adaptive Data Rate.

BLE Bluetooth Low Energy.

BW Bandwidth.

CAD Channel Activity Detection.

CCA Clear Channel Assessment.

CoAP Constrained Application Protocol.

CR Coding Rate.

CSMA Carrier-Sense Multiple Access.

CSS Chirp Spread Spectrum.

DeFiL-MAC Duty-cycled eFficient LoRa-MAC.

EWMA Exponential Weighted Moving Average.

FCC Federal Communications Commission.

FDD Frequency Division Duplex.

FDMA Frequency Division Multiple Access.

FIFO First In First Out.

FSK Frequency Shift Keying.

FSPL Free-Space Path Loss.

GFSK Gaussian Frequency Shift Keying.

GMSK Gaussian Minimum Shift Keying.

x



xi

GPIO General Purpose Input/Output.

HAL Hardware Abstraction Layer.

HTTP Hyper Text Transport Protocol.

IDE Integrated Development Environment.

IoT Internet of Things.

IPv6 Internet Protocol version 6.

LLSEC Link Layer Security.

LPL Low Power Listening.

LPWAN Low Power Wide Area Network.

LPWANs Low Power Wide Area Networks.

MAC Media Access Control.

MF-TDMA Multiple Frequencies Time Division Multiple Access.

MSK Minimum Shift Keying.

OOK On-Off Keying.

OS Operating System.

PHY Physical Layer.

PRR Packet Reception Ratio.

RAM Random-Access Memory.

RDC Radio Duty Cycling.

RF Radio Frequency.

ROM Read-Only Memory.

RPL Routing Protocol for Low power and Lossy Networks.

RSSI Received Signal Strength Indicator.

SF Spreading Factor.

SNR Signal-to-Noise Ratio.

SPI Serial Peripheral Interface.



xii

TCP Transmission Control Protocol.

TDMA Time Division Multiple Access.

UDP User Datagram Protocol.



Chapter 1

Introduction

In recent years, the demand for connecting ubiquitous objects and gadgets to the Internet
has driven the upraise of the Internet of Things (IoT) and, with it, billions of connected
wireless devices [9].

IoT application domains range from smart manufacturing (i.e., Industry 4.0 [10]) over
personalized health care to home automation, and can hence have an immense amount
of possible applications with largely diverse and unique requirements. Nevertheless, the
employed IoT devices share some common basic restrictions: the demand for low cost and
low size. As a result of those preconditions, further limitations have developed, such as
no tethered connection for data exchange, constrained power supply, and computational
power. Those requirements, together with the need for efficient operation, have triggered
the development of several new wireless technologies.

While most of those technologies make use of the free-licensed 2.4 GHz ISM band
(e.g., Bluetooth Low Energy (BLE), ZigBee and Z-Wave), the high frequency and link
budget makes them unsuitable for use case scenarios that require data transmission over
large distances or propagation of radio waves through several obstructions. LoRa [11] is
a relatively recent wireless technology designed to address these limitations and to build
Low Power Wide Area Networks (LPWANs). Commonly, LoRa and other Low Power
Wide Area Network (LPWAN) technologies, such as SigFox [12] and Weightless [13], use
a single-hop star network topology that is built around a central gateway node1. The
latter is reachable by every sensor node, due to increased range capabilities, thus reducing
communication and network complexity while increasing stability.

Furthermore, wireless communication technologies have been proven to be quite energy
demanding. Hence, methods for power saving and run-time optimization, such as duty-
cycling, and low-power Media Access Control (MAC) protocols [5] are commonly used in
LPWANs as well as other devices establishing the IoT.

1The terms ’Gateway’ and ’Master’ will be used interchangeably within this thesis and are considered
equivalent
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CHAPTER 1. INTRODUCTION 2

1.1 Problem statement

LoRa and some alternative LPWANs solutions are already commercially used in a wide
variety of applications [14] such as emission measurements in Nordic cities [15] and smart
water management systems [16]. However, those novel technologies are mostly not stan-
dardized and distributed with proprietary software frameworks. Thus, they are often
incompatible with existing systems. In the case of LoRa, two different types of hardware
devices are needed: one of those being more expensive and powerful for it to function as
gateways, others, more generic and cheap taking on the role of sensor nodes.

Furthermore, to provide a mechanism for conserving energy, the LoRa Alliance [17]
released a specialized MAC protocol, LoRaWAN [17], that provides the user with a
framework and the necessary tools to set-up a LoRa network. However, due to the fact
that this is proprietary software, an end user can not fine-tune this framework nor the
MAC protocol to fit the specific applications needs, or use a single type of hardware for
both gateways and nodes2. Therefore, an open-source implementation that integrates
LoRa-enabled devices into a more standardized framework would help further research on
LPWANs, and help in integrating the LoRa technology into everyday usages, as well as
provide a more flexible baseline for developers.

An example of the benefits of an open-source platform is the Contiki Operating System
[18], an open-source operating system specifically crafted for the requirements of constrained
IoT devices. Since its creation in 2003, it supported some of the research that led to the
emergence of wireless sensor networks and its networking principles. For example, using
Contiki, researchers from all over the world have developed routing protocols, e.g., the
Routing Protocol for Low power and Lossy Networks (RPL) [19], or distinctive approaches
to media access protocols, such as ContikiMAC [5].

A first goal of this thesis is hence the implementation of an open-source port for a
LoRa device in the Contiki Operating System, which provides full compatibility within
the Contiki framework and network stack. As a second objective, this thesis tackles the
design and creation of a MAC protocol that allows for the free and adaptive tuning of
LoRa’s PHY parameters, so to increase the robustness and energy efficiency of LoRa-based
networks, while providing added flexibility and granularity.

The main challenge of integrating a LoRa device into the Contiki Operating System (OS)
is that the existing starting point platforms are deeply interwoven with their implemented
radio driver. Therefore, preceding the implementation of a new radio driver, the existing
radio driver and its components have to be stripped from its base platform implementation.
Regarding the design of a MAC protocol, the main challenge is that LoRa is a communication
technology made to communicate very little amount of data (in the order of 300bps up
to around 6kbps). This in combination with the desired compliance to the duty-cycle
regulations [20], results in packets that can have a large time-on-air and therefore long
sleep times in between active phases. This makes synchronization between gateway and
end-the nodes a very fickle process. Finally, both implementations should be compatible
with the existing Contiki OS structure and be interoperable with other LoRa devices.

2The terms ’Slave’ and ’Node’ will be used interchangeably within this thesis and are considered
equivalent
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1.2 Contributions

The contributions of this thesis are threefold.

Integrating the SX1272 into Contiki. First, we provide an open-source port of a
popular LoRa platform by integrating the STM32L152 Nucleo-64 from STMicroelectronics
in combination with the Semtech SX1272 LoRa transceiver into the Contiki operating
system. This port is kept compliant with the well-established Contiki architecture, as it
uses and implements each of the required interfaces defined by Contiki.

Design of DeFiL-MAC. Second, we present DeFiL-MAC, a duty-cycled, efficient
MAC protocol designed for LoRa devices supported by the Contiki operating system.
DeFiL-MAC is designed to fulfil the basic concept of a low-power MAC protocol: increasing
the efficiency of a communication system by introducing the duty-cycled operation of
the radio module. Thus, the first key-feature of DeFiL-MAC is that it provides efficient
operations, not only by reducing the active time of the radio to a minimum amount, but
also by introducing a smart, adaptive mechanism to adapt the physical layer parameters
of LoRa at runtime. The increase in efficiency regarding active time is accomplished by
performing duty-cycling in combination with TDMA, thus, nodes only need to be active
within their dedicated slot, enabling them to spend the remaining time in a sleep mode
that consumes very little energy. A key feature of LoRa is that, by altering the physical
settings, one can have a direct influence on the robustness and communication range of
the system. We further introduce the ability for the MAC to automatically negotiate
more reliable (higher energy consumption) or more conservative (less energy consumption)
settings, based on the current communication performance at runtime. This alteration
does not only have a direct influence on the energy consumed by a node, but also influences
the time-on-air of a transmitted packet, which has a direct influence on the used energy.
This change of settings establishes the second key feature of DeFiL-MAC: reliability. Due
to the low data-rate of LoRa its packets can have a time-on-air within seconds: this, in
combination with the 1% duty-cycle regulation [20] for the license-free sub-gigahertz radio
frequency band, results in few packets with little data spread over a long period of time.
Thus, packets have to be reliably received by the gateway, even more so because there are
few of them. The adaptive switching of PHY parameters increases the provided reliability
of a LoRa network, since it can detect changes in the communication performance and
propose more reliable settings to avoid either losing a packet or the loss of a link. Being
situated within the dynamic world of the IoT, we required our MAC to be scalable, which
means it can autonomously handle nodes joining or leaving a network. DeFiL-MAC is fully
open-source and embedded into the well-known Contiki operating system. We believe that
this will help LoRa in gaining more popularity within the IoT community and to encourage
developers to implement their own LoRa network which they can operate, customize and
tune at full potential.

Experimental evaluation. Third, this thesis provides an experimental evaluation
of the implemented duty-cycled MAC protocol on a LoRa network that is built with the
hardware that was previously ported to the Contiki OS. We validate the operations of the
protocol with a laboratory setup of three LoRa devices, two in the role of nodes and one as
a centralized gateway, by allowing the gateway to establish a demo network and exchanging
dummy data with its nodes. Furthermore, we evaluate the correct function and decreased
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energy consumption of the active PHY switching mechanism by extending the experimental
setup with a programmable attenuator, in order to decrease the communication performance
at will.

1.3 Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces the key features
of LoRa, describing its principle of operation, why it is able to propagate data over large
distances, and some of its applications. Additionally, the Contiki operating system and its
main features are introduced. Chapter 3 presents the first part of this thesis and describes
how we created a port for the STM Nucleo-64 in combination with a Semtech SX1272
radio, while listing related works and studies. Section 4 will provide a detailed overview
on the design process of our proposed MAC protocol, as well as present details on the
implementation and its functionality. The performance and evaluation of our protocol is
discussed in Chapter 5. Finally, Chapter 6 concludes this thesis and offers an outlook on
future work.



Chapter 2

Background

This chapter gives a short overview of LoRa, all other relevant software components and
concepts used in this thesis, as well as the utilized hardware. Section 2.1 introduces LoRa
technology, describing its key-features as well as its benefits, Section 2.1.1 briefly explains
the modulation technique behind LoRa, while Section 2.1.2 will introduce the physical
layer of LoRa. An introduction to the LoRaWAN MAC protocol can be found in 2.1.3.
Section 2.2 gives an overview of the Contiki Operating System, including its network stack
(Section 2.2.1), Protothreads (Section 2.2.2) and examples for built-in MAC protocols
(Section 2.2.3). Section 2.2.3 will introduce the functionality of TDMA methods. In Section
2.3 details on the hardware used in this thesis are presented, providing details of the
STM32L152 Nucleo-64 in Section 2.3.1 and the SX1272 in Section 2.3.2 respectively.

2.1 LoRa Technology

Published by Semtech in 2013, LoRa (derived as abbreviation of Long Range), is a
proprietary, physical layer, radio modulation technology [21]. Differently from other
technologies of the LPWAN family, LoRa uses a derivative of the CSS for its communication
[22] [23]. The core features of the CSS will further be discussed in Section 2.1.1. Like most
of its siblings, LoRa uses the license-free sub-gigahertz radio frequency bands, i.e., 868
MHz in Europe and 915 MHz in North America. Compared to other technologies, further
key-features are: a low bandwidth and low battery usage, with the drawback of a fairly
small data-rate. Figure 2.1 visualizes where LoRa would be placed among other radio
technologies, when comparing bandwidth and theoretical transmission range.

As can be seen, sending messages over large distances comes at a price of limited data
transmission, due to the low bandwidth.

If we would theoretically consider a perfect radio technology, it would include the
following three crux properties:

• Low energy consumption;

• High data rate;

• Reliable, long range transmission.

5
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Figure 2.1: Range vs. bandwidth - comparison of several transmission technologies (adapted
from [1]).

When it comes to real-world applications however, we are limited by several factors,
mostly the laws of physics, thus being limited to only pick two of the ideal parameters
presented above. One of those restrictive factors is the propagation of a radio wave through
a given medium, from a sender to a receiver. This is specified by the so-called ’link budget’
property of a communication system. The link budget is a special metric that considers all
gains and losses in a given arrangement, from the transmitter, through a given medium
(e.g., free space, cable, etc.) to the receiver. A simplified formula that expresses those
relations is given by Eq. 2.1.

ReceivedPower(dB) = TransmittedPower(dB) +Gains(dB)− Losses(dB) (2.1)

However, when taking a closer look at the formula, one needs to break down the
total gains and losses into individual terms. For example, the total losses would consist
of: various transmitter losses (e.g., connectors), path loss (commonly free space loss),
miscellaneous losses (e.g., fading) and receiver losses, rendering the previous addressed
formula much less trivial.

Furthermore, those losses are shown in Figure 2.2, when transmitting data over a given
channel, e.g., free space: a portion of the transmission power of the sender (limited for the
license-free band, Europe: 14 dBm) is lost due to the previously mentioned path loss and
fading [22] [24]. Path loss is specified as the attenuation of an electrical wave as it travels
through a given medium. Free-space path loss, being one of the more common loss factors
in communication networks, is defined as the loss between two isotropic radiators in free
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space. Despite its name, also includes a receiving antenna aperture component in the total
attenuation [25] [26].

Eq. 2.2 depicts how the calculation for the Free-Space Path Loss (FSPL) is done for
d in meters and f in Hertz. The important aspect of this formula is that it illustrates
quite well how this loss scales squared to the distance a signal travels. Another factor
that is shown in the formula is the absence of the used bandwidth of a signal. Although
bandwidth is one of the key parameters of LoRa and any communication system, it has
no direct dependency to the electromagnetic wave of a signal itself, but the antenna used
in the system (higher bandwidth requires a smaller antenna), and thus have its impact
through it.

FSPL(dB) = 20 log10

(
4πdf

c

)
= 20 log10(d) + 20 log10(f) + 20 log10

(
4π

c

)
= 20 log10(d) + 20 log10(f)− 147.55

(2.2)

where: d = Distance in Meters
f = Frequency in Hertz

As already mentioned, fading is another factor that is responsible for loss in a commu-
nication system. By definition, fading is referred to as an alteration of the signal strength
caused by various variables. There are multiple forms of fading, caused by different in-
fluences, such as: multipath propagation (multipath-fading), weather (especially rain),
temperature [8], or obstacles affecting the wave propagation (shadow fading / shadowing)
[24].

The sum of those losses increases when increasing the distance between the sender and
the receiver. As stated previously, the link budget then basically specifies the amount of
power that is available for a signal to be powerful enough to be detected by a receiver,
which is referred to as ’receiver sensitivity’. If we take a look at the given formula for the
receiver sensitivity, or the minimum amount of power that a signal needs to have in order
to be correctly received, shown in Eq. 2.3, we can see another key feature of why LoRa
can achieve such a long range. The receiver sensitivity scales with the used bandwidth,
and since LoRa uses a relatively low bandwidth, the sensitivity of the receiver is higher,
thus allowing signals to have a lower minimum power to be detectable. The typical values
for LoRa receiver sensitivity and link-budget are illustrated by a simple calculation shown
in Eq. 2.4.

Pi,min = NFloor + SNRo,min +NFRx

= −174dBm/Hz + 10 log (BWRx) + SNRo,min +NFRx
(2.3)

where: BWRx = used Bandwidth
SNRo,min = Signal-to-Noise ratio
NFRx = Receiver Noise Figure
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Figure 2.2: Transmission over free space, loss of power (adapted from [1]).

Sensitivity = −174dBm+ 10 log (125kHz)− 20 + 6dB = −137dBm

LinkBudget = 14dBm+ 137dBm = 151dBm
(2.4)

where: TXPower = 14dBm
Bandwidth = 125kHz
SNR = -20
NoiseF igure = 6dB

As shown in Eq. 2.4, a LoRa receiver can typically receive signals that are 20 dB below
the noise level, which results in a sensitivity of -137dBm. When transmitting with 14dBm,
we can achieve a link-budget for that system of 151dBm. If we bring those values back
into perspective of the free-space path loss, shown in Eq. 2.2, a FSPL of around 150dBm
would correspond to a theoretical distance of roughly 800km. Indubitably, in real-world
applications this calculation does not hold, due to several limitations and losses (some of
which have been mentioned previously).

2.1.1 Chirp Spread Spectrum

As stated previously, LoRa uses a variation of the CSS [22] as modulation scheme. Originally
developed in the 1940s, an early derivation of the chirp-spread spectrum was traditionally
used for military applications, due to its long communication distances and interference
robustness [27]. LoRa is its first low-cost implementation for commercial usage [27]. Figures
2.3, 2.4, and 2.5 illustrate the distinct difference between the frequency representation of
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an OOK based modulation, a FSK modulated communication, and the CSS modulation
used by LoRa.

Figure 2.3: Frequency spectrum of OOK (adapted from [1]).

Figure 2.4: Frequency spectrum of FSK (adapted from [1]).

As indicated by the various frequency spectra, the chirp spread spectrum is considerably
distinguishable from other modulation techniques. Further illustrated in Figure 2.6, LoRa
modulation uses the unabridged available, fixed bandwidth per ’chirp’, the latter being
specified as one iteration of the frequency increasing from low to high. The encoding of
information into such a signal is done by introducing gaps and ’jumps’ into the sequence of
chirps: this can be seen in Figure 2.6 and Figure 2.7 respectively.
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Figure 2.5: Frequency spectrum of a LoRa communication (adapted from [1]).

Figure 2.6: Bandwidth utilization with CSS (adapted from [1] and [2]).
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The advantages of this unique modulation scheme become even more distinct when
considering the demodulation of a signal, also when regarding the robustness against noise.
The demodulation is done by combining the received chirps with generated reverse chirps
on the receiver side. As displayed in Figure 2.7, the decoding process of a received LoRa
signal is fairly straightforward. The receiver generates a signal that matches the PHY
settings of the sender, the Spreading Factor (SF) of said signal plays a crucial role here
and will further be described in Section 2.1.2, but in an inverse form. This can also be
seen in Figure 2.7, those so-called ’inverse chirps’ are generated by altering the specified
frequency from high to low. Another important aspect is displayed in Figure 2.7: even
if the signal is corrupted with noise on the channel (illustrated in orange), symbols can
still be decoded correctly. Instead, generally, if there is noise present on a channel, it is at
a specific frequency band (e.g., narrowband interference - horizontally) and not across a
certain range of frequencies.

Figure 2.7: Demodulation principle of a LoRa signal with noise [1].

At the receiver, the inverse chirps are then generated and multiplied with the received
signal, cancelling out the basic chirps with the inverse chirps. This leaves only the decoded
symbols which get spread out over time. However, the noise that is interfering the received
signal is spread over the whole spectrum. This way, certain types of noise do not have any
influence on a received LoRa signal.

Telkamp [1] and Knight [2] list further advantages of the LoRa chirp spread spectrum
in their analysis:

• Simple to implement: Nodes can be kept simple and there is no mismatch in
capabilities between sink-nodes (generally prone to be more computational powerful)
and normal nodes;

• Resistant to in- and out of-band interference;

• Resistant to multipath and fading;

• Doppler shift resistant (moving devices pose no added difficulties).

2.1.2 LoRa Physical Layer

Another key ability of LoRa is that its communication performance and range capabilities
can be tuned by the programmer, depending on the current use-case of the setup. As
for most low-power transceivers, carrier frequency and transmission power can be altered
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for LoRa devices as well. However, LoRa’s performance can be fine-tuned by varying a
number of PHY settings, that is: bandwidth, spreading factor, coding rate, and carrier
frequency. Those parameters are, among others, used to achieve a more robust transmission
by lowering the receiver sensitivity to sustain an increased data-rate [8]. A listing of the
crucial PHY parameters and their impact on a LoRa communication system is given in
Table 2.1.2.

Parameter Possible values Impact

Bandwidth 125kHz to 500kHz

Higher bandwidths allow for transmitting
packets at higher data rates (1 kHz = 1
kcps), but reduce receiver sensitivity and
communication range.

Spreading Factor 7 to 12

Bigger spreading factors increase the signal-
to-noise ratio and hence radio sensitivity,
augmenting the communication range at the
cost of longer packets and hence a higher
energy expenditure.

Transmission Power 2dBm to 14dBm

Higher transmission powers reduce the
signal-to-noise ratio at the cost of an in-
crease in the energy consumption of the
transmitter.

Coding Rate 4/5 to 4/8

Larger coding rates increase the resilience
to interference bursts and decoding errors
at the cost of longer packets and a higher
energy expenditure.

Table 2.1: Summary of LoRa’s configurable settings and their impact on communication
performance [8].

Traditionally, in LPWAN systems, the bandwidth used scales with the amount of data
to be sent. For LoRa or other technologies that use CSS, the used bandwidth is usually
fixed at start up and will not be adapted to the transmitted data.

Generally, the reach of a radio can be increased by either increasing the transmission
power or the energy per bit. With the transmission power being a limiting component,
LoRa uses spreading factors to alter the modulation rate and the energy per bit, thus
being able to control the range. The effect that a change of the spreading factor has on a
sequence of chirps can be seen in Figure 2.8.

As shown in Figure 2.8, for SF = 7 we are able to have the most chirps within a given
time frame. This directly corresponds to the amount of data that possibly can be sent.
When observing SF = 8 we can see, that it is exactly half as fast as SF = 7, furthermore
SF = 9 is half as fast as SF = 8. This can be directly applied to all following spreading
factors up to SF = 12.

The direct relationship between spreading factor and available bit rate can be even
more exemplified when observing the Eq. in 2.5 for the symbol rate Rs and the bit rate Rb.
A further observation from both formulas is that the spreading factor has a direct influence
on the bits per symbol, thus increasing or decreasing the time it takes to send a symbol. A
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Figure 2.8: Basic functionality of spreading factors [1].

resulting ’rule of thumb’ regarding the relationship between range and spreading factor is
that the slower you send, the further away you can theoretically send.

Rs =
BW

2SF

Rb = SF ·Rs = SF · BW
2SF

(2.5)

where: SF = Spreading Factor
BW = Bandwidth.

2.1.3 LoRaWAN: Protocol and Architecture

Released in 2015, through a collaborative effort by the LoRa-Alliance, LoRaWAN defines
the communication protocol and system architecture for the network while the LoRa
physical layer enables the long-range communication link. The protocol and network
architecture have the most influence in determining the battery lifetime of a node, the
network capacity, the quality of service, the security, and the variety of applications served
by the network [17] [28].

LoRaWAN is capable of operating a network in a star topology, since each node can
transmit directly to one or multiple gateways, given that, usually, nodes are not coupled
with one specific gateway. LoRaWAN’s gateways have powerful radios, capable of receiving
and decoding up to fifty multiple concurrent transmissions [29]. Furthermore, LoRaWAN
specifies data rates from 300bps up to 5.5kbps and supports, among others, (secure)
bi-directional communication [28], [30].
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Another feature of LoRaWAN is that it specifies several classes for its end-devices. In
particular, LoRaWAN specifies three separate classes to address the different requirements
of various applications:

• Class A

– Battery powered

– Small payload

– End-device initiate com-
munication (uplink)

– Unicast Messages

• Class B

– Low latency

– Unicast and Multicast
messages

– Receive periodic Beacon
from gateway

– Transmission at fixed in-
tervals

• Class C

– No latency

– Transmission at any time, initiated by gateway

– End-device is constantly receiving

– Unicast and Multicast messages

In their introducing article about LoRaWAN, the LoRa-Alliance further specifies those
device classes by referring to their individual properties regarding battery life and their
influence of network latency, this can be seen in Figure 2.9.

Figure 2.9: Further properties of LoRaWAN’s classes regarding battery life and latency,
adapted from [3].

Furthermore, LoRaWAN is provided with a feature called ’adaptive data rate’: if
enabled, LoRaWAN will automatically manage the SF for each end-device [3]. Basically,
here the protocol decides whether to change the spreading factor or not, based on a look-up
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table that holds the available spreading factor values and a corresponding Signal-to-Noise
Ratio (SNR) threshold for said value. If the SNR value is above or below a given threshold,
the protocol orders a change of spreading factor.

Limitations. Although LoRaWAN provides users with a solid framework for a LoRa
network, it has some drawbacks. One major hindrance is that it is maintained and developed
solely by the LoRa-Alliance. Therefore, by not providing an open-source implementation,
the majority of developers and users are left out in the further evolution of the protocol.
While also having positive effects, another drawback is that LoRaMAC requires specialized
hardware that operates as a gateway for a network. While those gateways are much
more powerful, in respect to computational power, than a common sensor node within
the network, they are also much more expensive(e.g., Gateway: Dragino LG02, ∼75e[31]/
LoRa node: Adafruit Feather M0 with RFM95, ∼29e[32]). Furthermore, LoRaWAN is
not suited for real-time applications and use cases that require the transmission of large
amounts of data, mostly due to its low data rate.

As described previously, LoRaWAN also implements Adaptive Data Rate (ADR), a
mechanism to change transmission settings based on the current communication perfor-
mance. While being useful, this technique only implements a few possible configurations,
thus yielding little granularity and leaving behind energy optimization possibilities [33].

2.2 Contiki OS

The Contiki OS is an open source lightweight operating system developed especially
for constrained IoT devices that is retailed since 2011 as the ”Open Source OS for the
Internet of Things” [18]. Contiki itself is written in the C programming language and
is fully functional with approximately 10kB Random-Access Memory (RAM) and 30kB
Read-Only Memory (ROM), while still providing its users with a full network stack
supporting Hyper Text Transport Protocol (HTTP), Transmission Control Protocol (TCP)
and User Datagram Protocol (UDP), and other operating system features. A more
detailed overview of the network stack will be given in Section 2.2.1. Among others, the
Contiki operating system also supports some low-power communication protocols such
as Constrained Application Protocol (CoAP), RPL, and IPv6 over Low Power Wireless
Personal Area Network (6LoWPAN) [18]. Another feature that differentiates Contiki from
other operating systems for memory constrained devices, is the introduction of protothreads,
whose main advantages will be introduced in Section 2.2.2.

2.2.1 The Contiki Network Stack

As already stated, the Contiki OS comes with several functionalities, including a fully
functional network stack consisting of four layers (top-down): Network layer, Medium
Access Control layer, Radio Duty Cycling layer and Radio layer. An outline of the network
stack is illustrated in Figure 2.10.

The network layer implements high level protocols such as Internet Protocol version
6 (IPv6), UDP and RIME [34]. The MAC layer is responsible for data retransmission
in case of lost packets. The Contiki OS provides two default implementations: Carrier-
Sense Multiple Access (CSMA), an implementation of a protocol that detects collisions of
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Figure 2.10: Network stack within of Contiki OS.

packets and re-transmits them accordingly, and nullmac, which is an implementation that
basically provides no additional retransmission functionality and passes the unmodified
information on to the Radio Duty Cycling (RDC) layer, providing similar functionality as
an unsynchronized ALOHA protocol [35].

The RDC layer manages duty cycling of the radio, thus deciding when to turn off
the radio, as well as provide sleep and wake-up functionalities. Contiki provides some
built-in RDC drivers, such as ContikiMAC [5], X-MAC [4], and nullrdc, which provides
no duty-cycling functionality. At the bottom of the network stack is the framer and the
radio layer: the latter implements functionality such as transmission and reception of radio
packets, while the framer is responsible for parsing the transmission data. Furthermore, the
radio layer possesses the ability to trigger an interrupt if a packet was received correctly.
It also performs some low-level functions such as handling the initialization procedure.

2.2.2 Protothreads

Commonly, on memory-constrained devices, processes and threads are implemented by
an event-driven architecture. One benefit of such an approach is that since there are no
multiple threads or processes running concurrently, they do not need an individual stack,
thus conserving valuable memory space by sharing the same stack.

Another benefit is that event-driven systems can get away with not implementing
locking mechanisms, e.g., semaphores, because there should be only one instance of an
event handler running at a given time.

However, most of those systems based on events are non-intuitive to work with or
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Figure 2.11: Operation principle of X-MAC, retrieved from [4].

write code for, as it can be hard to express code as a state machine. Some applications
simply can not be expressed within a pure event-based mechanism. This is where multi-
threaded approaches have an advantage. The Contiki OS combines the advantages of
both approaches within so-called ’protothreads’. Those protothreads are based on an
event-driven system with preemptible threads using an event-driven kernel and a user
library providing multi-threading functionality. The Contiki kernel dispatches events to
run processes by calling the polling handler of the respective process. Each called polling
handler runs to completion and cannot be preemptively stopped by the kernel [36] [18].

2.2.3 MAC protocols within the Contiki OS

This Section briefly describes some of the MAC protocols that are built into the current
Contiki versions.

Nullmac. The first, and most rudimentary MAC protocol a developer can chose to use is
nullmac, located at ../core/net/mac/nullmac.c. Indirectly implied by its name it does
not really provide any MAC functionality at all. Its main duty is to call the corresponding
RDC layer functions, such as turning the radio on and off, thus providing the user with
pass-through functionality.

X-MAC. The implementation for this MAC protocol within the Contiki OS is called
CX-MAC and is located at ../core/net/mac/cxmac.c. Despite the different name, which
simply inherits the affiliation to Contiki, the fundamental idea is the same as in the original
X-MAC, namely: employing a strobed preamble approach by transmitting a series of short
preamble packets [4], and waiting for the reception of an Acknowledgement (ACK) packet
as a response to said preamble before transmitting data. A visual representation on the
operation of X-MAC can be seen in Figure 2.11. Furthermore, ”it allows conserving of
energy by truncating those strobed preamble messages, at both the transmitter and receiver
and allows for lower latency. Non-target receivers which overhear the strobed preamble
can go back to sleep immediately, rather than remaining awake for the full preamble as in
conventional Low Power Listening (LPL) approaches” [4].

ContikiMAC. Introduced by Dunkels in 2011, ContikiMAC (located at:
../core/net/mac/contikimac within the Contiki OS) makes use of the concept of pe-
riodical wake ups as already used in e.g., X-MAC and combines it with a Clear Channel
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Figure 2.12: ContikiMAC’s operation principle, nodes mostly sleep and use periodical
checks to detect radio activity, retrieved from [5].

Assessment (CCA) mechanism as well as a transmission phase lock [5]. The basic func-
tionality of this protocol is illustrated in Figure 2.12 and evolves around the idea that
a sender repeatedly sends its data messages until it receives an ACK message from the
receiver. Moreover, a CCA is used to get information about the current channel: if the
current measurement of the Received Signal Strength Indicator (RSSI) is above a certain
threshold there is activity on the given channel which lets the receiver make a decision
about if he is required to stay awake for packet reception. On the other hand, it allows
the receiver to briefly go back to sleep if currently no activity is detected. Furthermore,
ContikiMAC makes use of an approach called ’transmission phase-lock’, this allows for a
sender to learn the wake up phases of a receiver. With this knowledge the sender may
reduce its periodically transmitted data packets to be synchronized with the wake up
phase of the receiver, which directly relates to a lesser number of packets that have to be
transmitted [5].

TDMA in the Contiki OS Commonly used in systems with limited resources, e.g.,
wireless cellular radio systems, such as 2G [37], TDMA is a well-known classical accessing
control mechanism. While not being included by default in more recent releases of Contiki,
its implementation is located at ../core/net/mac/tdma mac for older versions such as
2.6. This protocol within Contiki implements the general idea behind TDMA, a visual
representation of this function principle can be seen in Figure 2.13. The main function of
TDMA is to split a limited resource (e.g. carrier frequency) into individual frames, that
are repeated periodically. Those frames are then split into individual slots that each are
assigned to a single user. However, a user is not limited to one slot per frame, in some
cases a user might be assigned with multiple slots to prioritize its transmissions. Within
their slot, users can carry out its communications. This arrangement into slots allows
for multiple participants to use a limited resource, without interfering with each other
or risking the loss of data due to transmission collisions [37] [38]. There are a plethora
of use cases where TDMA or a combination of TDMA with another channel accessing
method is applied (e.g., GSM and IS-136 [39] combine TDMA with other channel accessing
methods, such as Frequency Division Multiple Access (FDMA) and Frequency Division
Duplex (FDD)). For example: Hong et. al. propose a TDMA based approach to suit the
requirements of underwater sensor networks [40]. Even in neural networks TDMA can be
applied: Mennes et. al. propose the use of a Multiple Frequencies Time Division Multiple
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Figure 2.13: Rough functionality of a TDMA protocol, frames are divided into slots for
each individual participant.

Access (MF-TDMA) approach to realize a scheduler for collaborative wireless networks
[41].

2.3 Hardware

This section will give a more detailed view on the hardware platforms used in this thesis.
The STM32L152 Nucleo-64 by STMicroelectronics is presented in Section 2.3.1, while
Section 2.3.2 will introduce the Semtech SX1272.

2.3.1 STMicroelectronics STM32L152 Nucleo-64

The base device used in this thesis is the STM32L152 Nucleo-64 from STMicroelectronics.
Figure 2.14 shows the layout of the device. Equipped with an ARM Cortex M3 processor
that operates at 32 MHz, 512KB of flash memory and 80KB SRAM, the Nucleo provides
sufficient computational power as well as memory space to operate as a base for an IoT
application. Additionally, this device provides a reset and a user button, a LED, as
well as an embedded ST-Link debugger/programmer. This combination of debugger and
programmer allows for almost effortless programming of the Nucleo.

If this platform is used in combination with the STM32-Workbench environment [42],
the developer has the potential to debug the developed programs on the Nucleo itself and
step through his program by using breakpoints and other debugging tools. This System
Workbench toolchain is an Eclipse-based Integrated Development Environment (IDE)
provided by a third party not affiliated to STMicroelectronics under the name Ac6 [43],
which is a service company providing training and consultancy on embedded systems [42].

Furthermore, one of the major advantages of the Nucleo is that it is equipped with
standardized Arduino headers. The pin-out of those headers is shown in Figure 2.15.
This is particularly convenient, since the LoRa transceiver we want to use in combination
with the Nucleo, is the SX1272 from Semtech. The layout and pin-out of the SX1272 is
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shown in Figure 2.16: as for it also makes use of Arduino connectors, thus making the
interconnection of both devices effortless.

Figure 2.14: Nucleo-64 STM32L152 layout, from [6].

Another asset of the Nucleo and the Semtech SX1272, which will be described more in
detail in Section 2.3.2, is that they are supported by the MBED operating system, which also
provides an online compiler environment for quick code development and deployment [44].
The latter was used for additional verification and testing purposes of our implementation
in Contiki, which will be described in detail in Section 3.

2.3.2 Semtech SX1272

For this thesis the Semtech SX1272 LoRa transceiver is used. This radio is equipped
with both a standard FSK and a LoRa modem, which can be operated independently.
Depending upon the selected mode, either conventional OOK, FSK modulation, Gaussian
Frequency Shift Keying (GFSK), Minimum Shift Keying (MSK), Gaussian Minimum Shift
Keying (GMSK) or LoRa spread spectrum may be employed [45]. The high sensitivity of
up to -137dBm, combined with an integrated power amplifier that operates at +20dBm,
yields a maximum link budget of 157dB, which is optimal for any application requiring
long range and robustness [45]. In this thesis, the traditional FSK modem was neglected,
while the LoRa functionality was fully implemented.
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Figure 2.15: Arduino and Morpho headers of the Nucleo, from [6].

• Some other key features of the SX1272 are [45]:

– Low RX current of 10mA;

– 127 dB Dynamic Range RSSI;

– Automatic Radio Frequency (RF) Sense and Channel Activity Detection (CAD);

– Built-in temperature sensor and low battery indicator.
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Figure 2.16: Pin layout of the Semtech SX1272, from [7].



Chapter 3

Porting LoRa to the Contiki OS

This chapter presents the process of porting a popular LoRa platform to the Contiki
operating system, which was the first step of this thesis. Section 3.1 gives a short overview
of related work in regard of porting LoRa to Contiki. Section 3.2 briefly introduces the
used software and the required versions of each component. In Section 3.3 we provide more
detailed information on the code itself and what parts had to be replaced in the Contiki OS
architecture. We further give some reasoning on why we decided to create a separate port.

3.1 Related Work

This section presents work related to this thesis, particularly in context with our port of
the SX1272 based LoRa platform to Contiki.

In 2016, Aerts [46] presented an approach to integrate LoRa into the Contiki operating
system. The authors use the LoRaMAC project on GitHub [47] as a base. This project is
administered and maintained by the LoRa-Alliance and provides a LoRaWAN compliant
base system for several hardware platforms. It also includes preconfigured project files for
a few Integrated Development Environments, such as KDevelop [46]. In their publication,
Aerts further presents a guide, listing several important steps when porting new hardware
platforms to the Contiki OS.

The hardware used to validate the results presented in their approach is the Zolertia
Z1 sensor node as well as a LoRaMote. The latter is a demo platform equipped with a
SX1272 radio chip. Furthermore, the LoRaMote platform is fitted with various sensors
which provide a variety of application [48].

However, this implementation has some drawbacks: the source project is only compatible
to a few platforms and it implements only the end device of a LoRaWAN network. Therefore,
a gateway node has to be obtained by other means. Furthermore, LoRaWAN itself is not
open source and thus does not allow for adaptation by a multitude of developers.

3.2 Software

The foundation of our implementation was a clone of the official Contiki OS, version 3.0,
since this release already provides support for the Nucleo-64 STM32L152 which is, as
described in Section 2.3.1, one of the hardware platforms this Thesis is based on. However
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in this Contiki version the Nucleo is only supported in combination with the Spirit1, a
different radio module for the Nucleo-64. For the development, Visual Studio Code in
combination with the ARM compiler arm-none-eabi-gcc, version 4.8.4, was used. As an
additional tool for correctly flashing and verifying our device the ’STM32 ST-LINK Utility’
by STMicroelectronics was used [49].

3.3 Implementation

In this section we describe the main tasks that had to be accomplished in order to port
the SX1272 radio in combination with the Nucleo-64 to Contiki. As stated in Section 3.1,
Aerts et. al. [46] proposed a port for the LoRaMote platform to Contiki. However, since
this port uses LoRaWAN as its MAC layer application, it did not fit our requirements
since it is closed source and provides little freedom to the developer. Furthermore, we
desired to use a single type of hardware for both gateway and nodes, which was not possible
with a LoRaWAN port. Finally, the used device in [46] did not match any candidate
for our use case, thus it was not an optimal starting point for our approach. As already
described in Section 3.2, a fork of Contiki version 3.0 was the perfect foundation, supplying
the basic functionality of our desired platform where we could build our radio driver
upon. Considering this version included an official port of the Nucleo in combination with
the Spirit1, a low-power RF transceiver by STMicroelectronics, intended for RF wireless
applications in the sub-1 GHz band [50]. The main challenge however, that came up while
building upon this version of Contiki, was stripping the unwanted code segments from the
essential base parts of the Nucleo implementation, since those were deeply interwoven.

Figure 3.1 shows the general layout of the Contiki directory tree and is used to facilitate
understanding where files need to be altered or added in the porting process.

Separating Nucleo and Spirit1 code. As a first step, we altered the existing Nucleo
and Spirit1 code, such that the Nucleo and its functions would be available without depend-
ing on any Spirit1 code, to obtain that goal, we took the provided example code, located at
./contiki/platform/stm32nucleo-spirit1 and ./contiki/examples/stm32nucleo-spirit1

and made changes such that the code would work just with the Nucleo, discarding all the
Spirit1 exclusive code. Towards this goal, we disconnected the SX1272, since it was not
needed at this early stage. Since the Spirit1 code is deeply interwoven into the basic configu-
ration of this platform implementation, finding all related code parts turned out to be a cum-
bersome task, mainly of commenting out or removing unwanted code, recompiling and check-
ing for functionality on the device. Besides the Makefile (Makefile.stm32nucleo-spirit1)
and all the obvious Spirit1 related files within ./platform/stm32nucleo-spirit1, the
main files that needed to be modified were: ../stm32cube-prj/Src/stm32l1xx it.c/.h,
../stm32cube-prj/Src/spirit1 appli.c/.h,
as well as ./platform/stm32nucleo-spirit1/st-lib.h within the Spirit1 platform struc-
ture.

We also had to change Contiki-specific code, mainly the platform-conf.h, hw-config.h
and contiki-conf.h files, specifying the desired protocols, such as nullmac driver, and
other platform-specific parameters. Since we aimed for full functionality of the Nucleo, in-
cluding the LEDs on the board and the button sensor, the callback for the button event had
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contiki

apps

core

...

examples

platform

...

stm32nucleo-stsx1272

dev

stsx1272

stsx1272-radio

stsx1272-Regs-LoRa

...

contiki-stsx1272-main

stm32cube-lib

stsx1272-arch

stsx1272-radio-gpio

stsx1272-radio-spi

...

Figure 3.1: Contiki’s directory structure with the SX1272 implementation.

to be rewritten, because for the Spirit1 it was implemented within ../spirit1 appli.c,
which, for our approach, is no longer included. At last, a small basic test program was
written to assure the correct operation of the Nucleo.

Implementation of the SX1272 radio driver. After that, the integration of the
SX1272 radio and thus the implementation of a radio driver was started. Subsequently,
after communication with the SX1272 via Serial Peripheral Interface (SPI) and General
Purpose Input/Output (GPIO) interfaces was possible, we handled the transmission and
reception of packets, hence also providing interrupt handling.

After that, we continued with the integration of the SX1272 radio. For this task
we first specified the general structure of the radio-related source files and where they
would fit within the Contiki OS structure. Looking at the existing Contiki network
stack, illustrated in Figure 2.10, we decided that, as a first step, exchanging the ra-
dio layer with the LoRa radio would be sufficient. Thus, we used the default con-
figuration within contiki-conf.h: #define NETSTACK CONF RDC nullrdc driver and
#define NETSTACK CONF MAC nullmac driver, which performs no duty cycling optimiza-
tion, nor carries out retransmissions. For the network layer, we decided to use the existing
RIME stack (Figure 2.10) functionality.

With this knowledge, we decided upon a prototype structure for newly generated and
SX1272 radio related files within Contiki as shown in Figure 3.1.

The first file that needs to be adapted is ./contiki-stsx1272-main.c, since it handles
the start-up of the device. Within the main routine, one can observe that GPIO and SPI in-
terfaces are initialized right after the Hardware Abstraction Layer (HAL). Thus, we started
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Figure 3.2: Extension connectors of the Nucleo-64, from [6].

to port the GPIO and SPI interface of the SX1272. Defining the files sx1272-radio-gpio
and stsx1272-radio-spi. These files embed the GPIO pin/port configuration to inter-
connect the Nucleo with the radio device. The relevant GPIO pins and ports can be found
when looking at the extension connectors of the Nucleo-64, specified in the user manual [6].
An illustration of the extension headers can be found in Figure 3.2, with the relevant pins
marked with a red rectangle.

Another important part of the GPIO files is the definition of how specific events (rising or
falling edge) on the individual pins should be handled. In the case of the SX1272, we defined
that rising edge events on GPIO pin 0 and GPIO pin 1 should be handled as an interrupt
and thus be managed by an interrupt-handler, implemented in ../dev/stsx1272-radio.
An example of how this is specified can be found in Listing 3.1.

Listing 3.1: Example GPIO pin/port configuration.

1 #define RADIO GPIO 0 PIN GPIO PIN 10
2 #define RADIO GPIO 0 EXTI MODE GPIO MODE IT RISING
3 . . .
4 RadioGpioInit (RADIO GPIO 0 , RADIO MODE EXTI IN) ;
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The next step was to configure the SPI interface, in order to enable write and read
functionality to and from the radio registers of the SX1272. Again, the basic definition
of pins and ports can be found in stsx1272-radio-spi.h, while stsx1272-radio-spi.c

implements further SPI functionality, such as writing and reading from specific addresses.
A peculiarity of the SX1272 radio is the First In First Out (FIFO) data buffer that is used
in LoRa mode to write data when sending or receiving data. Thus, we needed to extend
the standard spi read and spi write functionality by an adding the readFifo() and
writeFifo() functions, which basically issue a read/write to the SPI on address 0. All of the
SPI functions mentioned above are then used by ../dev/stsx1272, implementing dedicated
SX1272 read/write functions (STSX1272Write(), STSX1272Read(), STSX1272WriteFifo()
and STSX1272ReadFifo()) in order to keep the general structure of the project. Thus,
strictly radio related code is placed within ../dev/..., whereas code files that also
implement Nucleo functionality are placed in the parent folder ../stm32nucleo-stsx1272.

While testing and verifying the functionality of the SPI communication, an interesting
pitfall could be observed. For debugging reasons, our first implementation included toggling
the LED, if the user button was pressed. After that, we could observe that a SPI reset was
triggered. This was due to the issue that the GPIO pin/ port configuration of the LED on
the Nucleo is the same as the SPI reset, which can be seen when looking at the extension
connectors in Figure 3.2. To fix this issue we had to remove the LED functionality from
the current version of the code.

The final step was to implement the general radio functionality, where some parts were
reused from the MBED interface [44]. This is done within the file stsx1272radio.c. This
file implements all necessary radio functions, such as: initializing the radio, preparing
a packet for dispatching (stsx1272 prepare()), sending a packet (stsx1272 send()),
or configuring the interrupt handler (stsx1272 radio interrupt handler()) that gets
called upon packet reception and that notifies the upper layers. The aforementioned
functions responsible for transmitting a packet were implemented to be compliant with
the standard Contiki NETSTACK RADIO nomenclature. A list of the structure of a device
driver for a radio in Contiki can be found in the following itemization [36]. Furthermore,
an example function (stsx1272 init()) can be seen in Listing 3.2.

• int (* init)(void);

Initializes the radio hardware.

• int (* prepare)(const void *payload, unsigned short payload len);

Prepares a packet to be sent by the radio.

• int (* transmit)(unsigned short transmit len);

Sends the previously prepared packet.

• int (* send)(const void *payload, unsigned short payload len);

Prepares & transmits a packet.

• int (* read)(void *buf, unsigned short buf len);

Copies a received packet to Contikis input buffer.
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• int (* channel clear)(void);

Performs a Clear Channel Assessment (CCA) to find out if another device is
currently transmitting.

• int (* receiving packet)(void);

Checks if the radio driver is currently receiving a packet.

• int (* pending packet)(void);

Checks if the radio driver has just received a packet.

• int (* on)(void);

Turns the radio on.

• int (* off)(void);

Turns the radio off (or go to into Low Power Mode).

Listing 3.2: SX1272 Init function.

1 int s t s x 1 2 7 2 i n i t (void )
2 {
3 STSX1272 Current Config . S e t t i n g s . o n o f f = 1 ;
4 s t sx1272 on ( ) ;
5 p r o c e s s s t a r t (& rad i o p ro c e s s , NULL) ;
6 return RADIO RESULT OK;
7 }

3.3.1 PHY Settings Configuration

As already stated in Section 2.1, the four main configuration parameters of a LoRa radio are:
carrier frequency, spreading factor, bandwidth and coding rate. All of those parameters can
be set with the function radio result t stsx1272 set value(radio param t param,

radio value t value), respectively. This implementation provides an added value, since
each relevant parameter can be tuned by the programmer to fit the current use-case. This
flexibility can be used to influence the communication range or robustness. A short example
for parameter configuration can be seen in Listing 3.3.

Listing 3.3: Fully configurable LoRa parameters.

1 NETSTACK RADIO. s e t v a l u e (RADIO PARAM LR BANDWIDTH, LORABANDWIDTH) ; // 500
kHz

2 NETSTACK RADIO. s e t v a l u e (RADIO PARAM LR DATARATE, LORA SPREADING FACTOR) ;
// [ SF7 . . SF12 ]

3 NETSTACK RADIO. s e t v a l u e (RADIO PARAM LR CODERATE, LORACODINGRATE) ;
4 . . .



Chapter 4

MAC Layer Design

This chapter describes the steps taken in order to design and implement a MAC layer
protocol for our previously ported LoRa devices within the Contiki operating system. In
Section 4.1 the requirements of the sought MAC protocol will be elucidated, while Section
4.2 will showcase the design of the DeFiL-MAC protocol. Section 4.3 will present the
detailed implementation of this protocol and its integration into the Contiki operating
system.

4.1 Requirements

The following paragraphs list the requirements for the sought low-power MAC protocol, as
well as emphasize the reasoning behind them.

Efficiency. First and foremost a low-power MAC protocol should be efficient, as it is
one of the primary factors why such protocols are used within the IoT and its devices.
Thus, there is the need for the design to be efficient in terms of power consumption, which
directly relates to it being efficient in terms of the amount of time a node spends in its
’active’ state, since generally a node requires substantially less energy when it is in its ’sleep’
state. Therefore, the MAC is designed to be duty-cycled. Moreover, since a master-slave
approach is commonly used for LoRa and slave-to-slave communication is usually not
intended, the use of a TDMA based approach is a natural fit. Furthermore, those concepts
have proven to be fairly efficient in terms of active time, considering a participant has only
to be active within its dedicated slot [51] [52].

Reliability. A major aspect of LoRa and LPWAN applications is that, due to its long
range capabilities, they can be deployed in hardly accessible terrains and/or spread far
apart from each other, which increases the difficulty for physical error handling at the node
directly, thus further enhancing the need for reliable transmissions. The importance of
transmission reliability is emphasized by the factor that the employed radio technology
uses a small bit rate, thus only sending little data at a time, often with a substantial
amount of delay in between. For this reason, it is important to achieve a high transmission
reliability to minimize delays due to retransmissions, which can be high due to the duty
cycle regulations [20].

29
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Another requirement, or sub-requirement, that is directly tied to the first specification
for the protocol being efficient, is that LoRa’s special properties should be used capitalized
to its full potential. The unique ability to fine-tune the physical parameters (as explained
in detail in Section 2.1.2) of the radio technology, not only to have a direct influence on
the communication and range performance but also altering the power consumption of
the system, must not be left unused. Therefore, a defined requirement is to implement an
adaptive mechanism to capitalize on the previously stated benefits.

Scalability. Since applications within the IoT are rarely static and have a fixed number
of participants, it is also required for our designed MAC to support a flexible amount of
members. Furthermore, to enhance its scalability, it is required that the protocol is able to
autonomously handle nodes leaving/joining the network.

Compliance to the duty-cycle regulations. As already briefly mentioned in previous
sections, when using the license-free sub-gigahertz radio frequency bands,(i.e., 868 MHz in
Europe and 915 MHz in North America) users have to be compliant to some regulations
defined in the European Standard (Telecommunications Series) [20] for Europe and by the
Federal Communications Commission (FCC) for North America. That regulation states,
that a device within that frequency band can only be actively sending for 1% of the time,
99% of the time it can only be inactive (e.g., listen or sleep). As this regulation applies
to both gateways and nodes, this limiting factor has to be taken into consideration while
designing the MAC protocol in order to stay compliant. Furthermore, this regulation limits
the amount of nodes that can join a DeFiL-MAC network, since no more nodes are allowed
to join if the current members already make use of the 1% active time.

Open-source. One of the features we aim to achieve is to develop a MAC protocol for
the open source community. Amongst other benefits, it also brings more attention to the
field of LPWANs and LoRa itself, by encouraging developers to set up their own efficient
and versatile LoRa network by operating it with DeFiL-MAC.

4.2 DeFiL-MAC: Design

As already discussed in Section 2.1.3 there is an existing MAC protocol for LoRa networks.
Therefore, it is not the lack of existence of a MAC protocol why we decided to implement
our own, but much more the drawbacks that come with the existing solutions, as well as
the desire to specify our individual requirements.

Thus, in this thesis we present DeFiL-MAC. Its name derives from its key features:
DeFiL-MAC is a Duty-cycled and eFficient MAC protocol for LoRa. Since a master-slave
approach is commonly used for LoRa, and slave-to-slave communication is usually not
intended the use of a TDMA based approach is a natural fit. Already defined in the
requirements, we desired to provide DeFiL-MAC to the open-source community, and
thus implementing DeFiL-MAC within the popular and well-known open-source operating
system Contiki was a perfect match.

The starting point of our MAC protocol was to take some of the advantages that
LoRaWAN provided and combining them with a conventional duty-cycled, TDMA - MAC
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design. Figure 4.9 illustrates where within the Contiki network stack our MAC and its
components should be placed, a more detailed overview of the implementation will later
be given in Section 4.3. We also decided, that the MAC should handle turning on and
off the radio, i.e. do the work of the RDC layer, which makes an implementation within
the RDC-layer redundant, thus keeping the built-in nullrdc in place (which provides no
functionality to switch the radio on or off at all), while still providing radio duty cycling
functionality within the MAC-layer.

Generally, there are two different participants in the composition of this MAC: a master
(aka. gateway) and a slave (aka. node). The hardware used for gateway and node can
be identical, however the master node is assumed to not be battery powered, thus energy
consumption is not the focus for those node types.

For energy efficiency reasons, and the assumption that the master is not battery powered,
most of the computations as well as the decisions are done on the master node. A master
node is considered to be always on, thus being either in receiving, transmitting or idle state.
Figure 4.1 illustrates the operation of DeFiL-MAC by an example with three participants.
A master node, that is the central director of the whole LoRa network and in this case,
two slave nodes.

The master is responsible for the coordination of the network and also for processing
the data received by the single nodes. As we can see in Figure 4.1, the time frame where
every communication within the protocol happens is called a ’SuperSlot’, the length of
this SuperSlot can be programmed by the developer in order to suit the needs for the
application. Furthermore, duty cycle regulations state that the radio can only be active
(i.e., actively transmitting) for 1% of the time. In our application this is also expressed
with the SuperSlot, so the total active radio time is calculated by calculating 1% of the
SuperSlot, e.g., for a SuperSlot of five minutes, the radio can be active for three seconds,
referred to as ’ActiveSlot’. Directly dependent on that ActiveSlot is how many nodes can
be supported within the current network and how much time each node gets to transmit
its data to the gateway. The amount of time the gateway uses to advertise by sending
so called ’beacon’ messages to nodes is a fixed parameter, specified by the ’BeaconSlot’ -
parameter.

Join process and data exchange. If a node wants to join the network managed by
a given gateway, it has to respond to a received beacon message, which basically is a
very short, broadcast message that is always sent with the most reliable physical settings
possible, which simultaneously consume the most energy. The communication steps of such
a join process can be seen in Figure 4.2.

In the example overview, Figure 4.1, Node 2 is already part of the network where Node
1 is trying to acquire an available slot. A situation where multiple nodes try to join the
network at the same time is illustrated in Figure 4.3.

Only one node can join per cycle: in particular, the node from which the join request
message is received first by the master, is accepted into the network. If a free slot is still
available, a confirmation message containing the assigned slot will be immediately sent to
the node, which is required to confirm the reception by sending an empty message back to
the master. If a nodes join request is not accepted by the master, it will back off and try
again upon reception of the next beacon. If, for whatever reason, the node is not accepted
a second time, it will back-off and try to join the network again on every 2nth received
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Figure 4.1: General layout of DeFiL-MAC. A beacon message is represented by a red
rectangle, while blue depicts a message transmission. Grey areas illustrate idle or sleeping
phases of the nodes.
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Figure 4.2: Communication process in which node attempts to join a network. The
acknowledgement also contains information about the slot a node has been assigned to.

Figure 4.3: Operation of DeFiL-MAC when multiple nodes try to join the network at the
same time. Node 2 is accepted into the network, while Node 1 will try to join again upon
reception of the beacon within the next cycle.
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Figure 4.4: Communication steps between master and slave node when successfully ex-
changing data.

beacon. Furthermore, as each node has an unique identification number within the network,
this is used to offset the sending of a join request after the reception of each of the 2nth
received beacons. This avoids collisions as well as blocking the master node for requests of
other nodes in the occasion that the downlink (messages from master to slave) is faulted.

A node is classified by an unique identifier (e.g. a node ID) within the network, which
is on the one hand used by the master to direct its messages to certain nodes, as well as by
all other nodes within the network to distinguish between messages relevant and irrelevant
to them. Generally, all messages within the network can be received by all nodes operating
on the same PHY settings and all nodes that join a network use the most reliable settings
as their default, this matter will be of vital importance when we introduce variable PHY
settings for nodes, which will be introduced later.

Once a node has joined the network, it has its fixed slot where it can send data to the
master. The detailed communication process can be seen in Figure 4.4, as soon as the
gateway finishes advertising the network within the BeaconSlot it sends a specific message
to the nodes in their corresponding slots, this message is called a ’ping’ and confirms to
the slave that the gateway is ready to receive and process its data.

If a ping is received by a node and the id contained in the message corresponds to its
own, the node sends either data or a keep-alive message to the gateway. Each node has a
queue for outgoing messages: if this queue is empty a keep-alive message is sent, in order
to inform the gateway of its existence. After correctly receiving the message from the slave,
the master responds with a short ACK message. After reception of said message, the slave
will return to sleep. In the case that the slave does not receive an ACK or the ACK is lost,
it will try to resend the data to the master, within its current slot. If this resending of data
is enabled, DeFiL-MAC has to assume that a node has to use the maximum configured
resend tries to receive an ACK. What has to be taken into consideration here is, that
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enabling resending of data and increasing this resend count will increase robustness of the
transmission, as it is freely configurable by the developer. However, it will also heavily
increase the slot time per node, which will reduce the amount of nodes that can be supplied
within the network.

The master keeps track if a slave does not respond to a ping, and after a set amount of
missed pings, the node will be removed from the network, freeing up the slot for a new
node. The amount of pings that have to be missed is also fully configurable by altering the
NODE NO RESPONSE MAX parameter. The same procedure is also pursued if a node wants to
leave its current network: within its slot, the node sends a specific message to the gateway
which then removes the node from its internal list and frees up the slot. The gateway does
not confirm this request by sending an ACK, since in the worst case if the request to leave
is lost, the node still leaves the network and will not respond to future pings from the
gateway, thus will be removed after NODE NO RESPONSE MAX missed pings.

A successful data exchange between gateway and node is illustrated in Figure 4.4, after
that, if there are more nodes in the network the same procedure is repeated initiated by
a ping of the master. If no more nodes are present within the network the master will
idle for the remaining time of the SlaveSlot (see Figure 4.1), before starting to advertise
the network again by sending its beacon message. All slaves already in the network will
wake up to receive this beacon message and each beacon in the following cycles, in order to
synchronize their timers, e.g., adjust for possible clock drift, and verify the correct delay to
the starting time of their individual slot. For this purpose, a timestamp of the last received
beacon is compared to the timestamp of the currently received beacon. As the target delay
between two beacons is a known parameter, a slave node can compute the given offset to
its master and thus adapt its sleep cycle accordingly.

A state chart for gateway and node can be seen in Figure 4.5 and Figure 4.6 respectively,
to further fathom the functionality and states each type of node can go through.

Adaptation of physical layer settings. With the basic functionality of DeFiL-MAC
described, we want to introduce another of its key features, which is the ability to automat-
ically adjust PHY settings depending on the current performance of the communication.

Basically, the gateway of the network is responsible for the coordination of this addi-
tional functionality. It keeps track of the current communication performance with each
individual node. For this purpose, each time the gateway receives a message from one
of its network participants, it calculates the current RSSI and SNR values as well as the
Packet Reception Ratio (PRR) for said node. RSSI and SNR values are extracted from
the SX1272 register map, by reading RegPktRssiValue and RegPktSnrValue respectively.
The PRR is estimated by the gateway by dividing the number of messages sent to a specific
node by the amount of received messages from that node.

Additionally, each time a slave sends its data to the gateway, it includes the accumulated
RSSI and SNR values from the gateway’s messages, since those parameters are dependent
on the direction (e.g., uplink can be flawless, while downlink has interferences). A more
detailed description on how those values are accumulated and how they are computed into
a representative value will be presented in Section 4.3.

The entire decision and computation if and when to change the PHY settings is kept at
the gateway, since, as already mentioned, it is assumed to be more computational powerful
and to have no limitation to its power supply. This decision is usually based upon the



CHAPTER 4. MAC LAYER DESIGN 36

Figure 4.5: State chart of a gateway.
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Figure 4.6: Different states a slave node cycles through while operation.
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amount of packets that has been received from a specific node, and if the RSSI and/or the
SNR is below/above a programmed threshold. This decision to change the PHY settings of
a node can either be to improve energy efficiency, by proposing faster, less reliable settings,
or to increase robustness at the cost of energy by proposing more reliable settings. If the
gateway decides a change of parameters is suitable for an individual node, it sends a special
ping message (see Figure 4.1) to the affected node. This ping has a distinct message header
and contains, beside the id of the targeted node, an id of the proposed PHY settings.
Those ids and their related settings are freely programmable by the developer. However,
for evaluation purposes, those settings and their ids are defined by energy consumption
from high to low, and will be explained more in detail in Section 4.3, which will also give
overview of all message types available in the MAC protocol.

Figures 4.7 and 4.8 further emphasize the process of the PHY switch. After the
successful reception of the ping message, the node changes its physical settings to the
ones proposed by the master node before sending its data. In the meantime, the gateway
changes its settings as well, expecting incoming data on the newly communicated settings.
If it correctly receives the packet, it saves that this slave is now using the proposed settings
and sends an ACK message to the node, before continuing with the next node in the list.
Upon reception of the ACK message, the slave also saves that the master expects data
from it on the proposed settings and goes back to sleep. Thus, both participants have an
up to date information about the current settings they agreed on. This process can be
seen in Figure 4.7. If, after the PHY change, data from the slave gets lost, the slave tries
to revert its settings to the previous ones and resends the data. This case is displayed
in Figure 4.8. The gateway also reverts its settings to the ones used by the slave before
a PHY change was proposed, after not receiving data on the newly proposed ones for a
certain amount of time (defined by the slot time that is available per node, see Figure 4.1).
If the data then is received correctly, both nodes will save the currently used settings as
the expected ones. In the event that still no data is received, thus no ACK is being sent by
the master, both nodes will know to revert their settings to the ones defined by default
(the most reliable settings), losing the progress towards becoming more energy efficient,
but increasing reliability of the protocol because the node is not lost from the network. In
both cases, if the change of settings is successful or unsuccessful, the master will try to
re-evaluate its decision for that individual node after the minimum amount of packets for
a PHY change have been exchanged again.
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Figure 4.7: Communication sequence between gateway and node, successful adaptation of
PHY settings.

Figure 4.8: Failed PHY switch, communication between master and slave node.

Design Challenges. As already previously stated DeFiL-MAC applies the concepts of
TDMA, which implies that the timings when nodes are waking up or between node slots
need to be fairly precise. Thus, the main challenge while designing DeFiL-MAC was to
coordinate and synchronize this timing among all nodes as well as the central gateway
node. If, for example, a node misses a beacon or its dedicated slot by waking up 200 ms
too late, it can lose its slot within the network or miss its opportunity to optimize its
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physical settings. Hence, the difficulty lies in finding the trade off between waking up early
to avoid missing vital packets and achieving the sought efficiency by waking up as late as
possible. One possible solution would have been to always include the current timestamp
of the master’s clock with each message transmitted to allow slaves to synchronize to it.
However, this would further reduce the data rate, allowing for only very little data packets.
Thus, this solution was not chosen. Instead, we use the known timings of each slot and the
known delay between beacons to estimate the timing offset to the gateway. By improving
this offset with each received beacon, we can iteratively minimize the time a node needs to
stay awake.

4.3 DeFiL-MAC: Implementation

In this section we present our DeFiL-MAC and give a detailed explanation of the imple-
mentation process within the Contiki operating system.

Integration into Contiki. The general directory structure of Contiki was already briefly
mentioned in Section 3.3 in Figure 3.1, the source files for our MAC were placed within the
’core’ folder of Contiki, a more explanatory view is shown in Figure 4.10. Furthermore, in
Figure 2.10 the provided protocol stack within the Contiki OS was shown, Figure 4.9 gives
a more explicit view on which protocols were exchanged for the integration of DeFiL-MAC.

Figure 4.9: Network protocol stack of the Contiki OS, illustrating where implementations
have been made.

For a MAC protocol to be to be compliant with the Contiki MAC layer driver interface,
a few functions are mandatory to implement, those are:
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contiki

apps

core

net

mac

defilmac

defilmac

defilmac-gateway

defilmac-node

...

examples

platform

...

stm32nucleo-stsx1272

dev

stsx1272

...

contiki-stsx1272-main

...

Figure 4.10: Contiki’s directory structure with the rough layout of the MAC protocol
implementation.

• static void init(void);

Initializes the MAC driver.

• static void send packet(mac callback t sent, void *ptr)

Sends a packet and calls the ’sent’ callback function.

• static void packet input(void)

Informs the upper layers (e.g. Link Layer Security (LLSEC), or Network Layer)
of an incoming packet.

• static int on(void)

Turn the MAC layer on.

• static int off(int keep radio on)

Turn the MAC layer off.

• static unsigned short channel check interval(void)

Returns the channel check interval, expressed in clock time t ticks.

All of those functions and their intended functionality have been implemented within the
defilmac.c file, as it serves as the centralized originator for the further implementations.
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Figure 4.11: Message format used within the DeFiL-MAC.

DeFiL-MAC message structure and message types. Since for LoRa all messages
are broadcasts and can be received by all nodes on the same physical settings as the
originator, it is important to identify if a specific message is addressed at a certain node.
For that reason, all nodes within the network are assigned a unique identifier, and if a
message is sent from the master to a specific node this identified is included within the
header of the message. If a message is received by a node, it can definitely distinguish if this
directive (e.g., a ping) is targeted for it. Furthermore, there are several specific message
identifiers at the start of a transmitted message, again to simplify the identification of the
purpose of the message. The general structure of such messages used within DeFiL-MAC
is illustrated in Figure 4.11. A table of all the messages used for communication in DeFiL-
MAC is shown in Table 4.3. It can be observed that messages from gateway to node are
encoded with a starting zero in their identifier, e.g., 0b001 marks a message type ping from
master to a slave node. Messages sent from an end node to its gateway are flagged with a
leading one in their encoding, e.g. 0b100 is the identifier for a join request from node to
gateway within the advertising period.

Initialization phase. As soon as Contiki is within its start-up routine, and DeFiL-MAC
is selected, the init function is called. Before the MAC protocol is switched on, there are
several things that have to be verified within this init function. One of the main conditions
that has to be established is, whether the duty cycle regulations and the necessary network
timings can be met with the parameters set by the developer. This is done within the
function calculateDutyCycleSpecs(). Among other parameters, this function takes
the defined ’SuperSlot’ duration to calculate other mandatory slot lengths and further
network statistics (see Figure 4.1). Furthermore, it is at this point where it is decided
how many nodes can be supported by DeFiL-MAC under the assumption of the default
(most reliable) physical settings as well as the other currently programmed parameters,
such as the SuperSlot duration, the duration of the BeaconSlot, or if the retransmission of
failed data packets is enabled and if this is the case, how many retransmissions have to be
accounted for in the worst case.

Another important part of those calculations is to forecast a ’worst case’ prediction on
the time-on-air of a packet with the maximum data length (the LoRa Alliance advises to
limit the payload to a maximum of 59 bytes for low data rates e.g., SF = 11 [17]) allowed,
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Encoding Message identifier Description

0b000 MSG BEACON
Beacon message, used for advertising
the network and signaling nodes that
the join period is now.

0b001 MSG PING
Message used to ping a specific node,
requesting data or a simple reply
from it.

0b010 MSG PING PHY
Request data from a slave and order
a change of PHY settings. Contains
the ID of the proposed settings.

0b011 MSG ACK
Signals the node that the most recent
transmission was received correctly
by the gateway.

0b100 MSG JOIN REQUEST
Sent by the node to request a slot
within a network. Sent directly after
reception of a beacon.

0b101 MSG SLAVE DATA
Message containing the data col-
lected by the node.

0b110 MSG SLAVE KEEPALIVE

Message used to confirm reception
of an ACK from the gateway, or in
place of data, if no data has yet been
acquired.

0b111 MSG SLAVE LEAVE
Message used by a slave node if it
desires to leave its current network.

Table 4.1: Different types of messages exchanged by gateway and node.

and thus, derive the minimum slot length for each slave from this value. This calculation
is illustrated in Eq. 4.1, Eq. 4.2, and Eq. 4.3 respectively, which are derived from [53].
Equation 4.1 determines how many symbols are needed to transmit a certain amount of
payload, where Eq. 4.2 calculates the amount of time it takes to transmit one symbol.
Finally, in Eq. 4.3 the time-on-air for an entire packet, including its preamble can be
estimated. As shown, the duration per transmitted symbol is directly dependent on some
of the PHY settings used, such as Coding Rate (CR), SF and bandwidth.

payloadSymbNum = 8 + max

(
ceil

(
8PL− 4SF + 28 + 16− 20H

4(SF − 2DE)

)
(CR+ 4), 0

)
(4.1)

where: PL = number of payload bytes
SF = used spreading factor
H = 0 if header enabled, H = 1 if header disabled
DE = 0 low data rate optimization
CR = used coding rate
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Tsym =
2SF

BW
(4.2)

where: SF = used spreading factor
BW = used bandwidth

Tpayload = payloadSymbNum · Tsym
Tpacket = Tpreamble + Tpayload

(4.3)

Furthermore, Tpacket is used in combination with the programmed SuperSlot duration,
as well as the BeaconSlot duration to determine how many slaves can be supported within
the current DeFiL-MAC network, and how much time each individual slave is assigned to
send its data. This calculation can be seen in Eq. 4.4. If either the duty-cycle regulations
cannot be met, or there is not enough time for one node within the network, the init

function will stop, and return an error to the user since a reasonable functionality of
DeFiL-MAC is not possible with the programmed parameters.

TtotalActive = TSuperSlot · 0.01

TtotalSlaves = TtotalActive − TBeaconSlot

TminPerNode = dTpacket + ∆safetye

NMaxNodes = b TtotalSlaves
TminPerNode · resendCount

c

(4.4)

where: TSuperSlot = programmed duration of the SuperSlot
TBeaconSlot = programmed duration of the BeaconSlot
∆safety = time added for safety, up to 250ms
resendCount = amount of retries for data transmission

If those initial checks have been concluded successfully, two lists are initialized, a
’packet queue’ - list (packets to be sent) as well as a ’slave member’ - list(nodeList).
The packet queue list is necessary in the case that no network has yet been established,
but a program is actively calling the send method. If a program within Contiki issues a
call to NETSTACK MAC.send packet(), send packet() within the DeFiL-MAC main file
(defilmac.c) will be called. As we only want to send packets if our node has already
joined a network, this send packet() will check if the node has an active network that it
is part of. Furthermore, since we can not send data whenever it is ready, but only within
our dedicated slot, the packet is added to a packet queue. The size of this queue can be
defined by the developer and consists of N packets with the length of MAX PAYLOAD LEN

each. If a node is allowed to send data, it will then send the first packet in the queue.
If there are currently no packets in this queue the node will send an empty ’keep alive’

message (message identifier 0b110 - MSG SLAVE KEEPALIVE 4.3) to inform the master of
its presence within the network. The ’slave member’ list, however, contains a list of all
slave nodes currently in a network and is actively used by the master do communicate with
its nodes and implements some basic list functionality such as: createAndInsertAtHead(),
createAndInsertAtTail(), getNodeById(uint8 t searchId) or removeNodeFromList(uint8 t

Id). A member object of this list and its variables can be found in Listing 4.1.
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Listing 4.1: A member object of the LoRa node list.

1 struct loraNode
2 {
3 u i n t 8 t i d ; // unique i d e n t i f i e r
4 u in t 16 t s l o t ; // as s i gned s l o t
5 u i n t 8 t phySet t ings ; // cu r r en t l y used s e t t i n g s
6 i n t 1 6 t r s s i ; // accumulated r s s i va lue
7 i n t 8 t sn r ; // accumulated snr va lue
8 i n t 1 6 t Mrss i ; // accumulated r s s i va lue o f master to s l a v e connect ion
9 i n t 8 t Msnr ; // accumulated snr va lue o f master to s l a v e connect ion

10 u in t 16 t pktCount ; // number o f r e c e i v ed packe t s
11 u in t 16 t txPktCount ; // number o f packe t s sen t to
12 u i n t 8 t miaCnt ; // number o f c y c l e s node i s miss ing f o r
13 u i n t 8 t p r r ; // packe t r e c ep t i on ra t e
14 struct loraNode ∗next ; // next node in network
15 struct loraNode ∗prev ; // prev ious node in network
16 } ;

The final step within the initialization sequence of the MAC is a call to the on function,
which will handle the further operation.

Main process flow. As illustrated in Figure 4.10, and when recalling Figures 4.5 and
4.6, the main functionality of DeFiL-MAC is split into two separate structures: one for the
gateway and one for the node. Depending on whether the current compilation is done for
a slave node or for a gateway node, the corresponding processes and threads are started.
This differentiation can be made by setting the IS MASTER flag within project-conf.h of
the current Contiki project (e.g., ../examples/stm32nucleo-stsx1272/defilmac-demo)
to either true or false.

Basic functionality of the main master process. For the master node, the main
process (defilmac master process) handles the basic functionality of the gateway such
as advertising the network by sending beacon messages at the programmed delay, handling
the reception of possible join requests and assuring the correct sleep cycles in order to be
compliant with the duty-cycle limitations. The beacon messages are always sent with the
most reliable PHY settings possible, to maximize the probability for its reception amongst
all nodes.

Within its advertisement phase and after a beacon has been sent, the master waits
for a specified amount of time, if the pending packet flag gets set by the radio driver.
If this flag is set, the master handles reception of the packet and verifies if the latter
has the correct message format of a join request (see Table 4.3). If those checks are
successful, the master verifies if there is still space available in the network by checking
if the counter CurrentNodesInNetwork is smaller than MaxNodesInNetwork. On success,
the requesting node will be added to the previously initialized list. The master’s main
process will then spawn a separate protothread (m slot operation pt) that handles the
direct communication with each individual node, making sure to return control to the main
process for the purpose of sending beacons and handling join requests. The behaviour and
main states as well as decisions of this protothread are illustrated within Figure 4.5, where
the main process is represented by blocks in blue and the protothread by blocks in orange.
At this stage no more nodes are allowed to join the network until the next advertising
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period. This is done to ensure that the master is not blocked by a node requesting access
to the network within another node’s communication slot.

Master: Slotted Operation Protothread. After being spawned by the main process,
this protothread retrieves the previously set up list of all nodes currently within the network.
As this list is sorted by assigned slots in an ascending fashion, the node in the first occupied
slot is always head of the list. Thus, the slot operation protothread grabs the head of
the list and assures that the correct delay for its individual ping is set correctly. This is
especially important if we consider that a node in slot 0 has left the network, therefore
slot 0 is not allocated and the first slot that expects its ping is in slot 1 so the gateway
needs to wait for the exact delay until it can ping the node in slot 1, as otherwise this
node will be not listening and thus synchronization is lost. After this, the protothread
verifies that the PHY settings of the current node match those used on the master. If not,
possibly the ping can not be received by the node. As already illustrated in Listing 4.1
the list of nodes contains the value of the settings that are currently used on the slave
node: as this list is always kept up to date while communicating with the slave, the master
can relatively easily verify the use of the correct settings. In the event of detecting a
discrepancy between the settings used on the gateway and the node, the gateway makes
sure to change its own parameters before sending a ping, as this changing of parameters
takes less than 50ms it has virtually no effect on the remaining timings. This behaviour
gains increased importance as soon as the adaptation of the physical settings is introduced,
where, there could be cases where each node uses different individual settings.

Runtime adaptation of PHY settings. The decision if a change of parameters is
issued for a specific slave is done by the master. For the master to be able to make that
decision it calculates and stores the link metrics, RSSI, SNR and PRR, for that specific
node. As RSSI and SNR values can be very volatile, they are combined into their average
values by using the Exponential Weighted Moving Average (EWMA), it is depicted in Eq.
4.5.

St =

{
Y1, t = 1
α · Yt + (1− α) · St−1, t > 1

(4.5)

where: Y1 = initialization value at time t
α = degree of weighting decrease, constant factor between 0 and 1.

The advantage this method brings is that, with the α parameter, the developer can
have a direct influence on the behaviour of the averaging process. By selecting an α that is
closer to 1, the averaged sum values more recent measurements higher and is hence more
reactive. Thus, within our use case, a higher α (e.g., in the range of 0.6 to 0.8) can be used
to react to things that have an influence on the link quality between master and node (e.g.,
a moving obstruction in front of a node) without losing the general benefits of an average
sum, such as the bad influence of outliers. Naturally, the more packets are exchanged
between the master and a node, the more precise this calculation gets, thus the minimum
amount of packets that need to be transferred for the master to decide about a change of
the physical settings can be freely set by the developer. In our current implementation of
DeFiL-MAC we used a value of α to be 0.8, wielding satisfactory results.
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Figure 4.12: Decision graph of the master node, evaluating if a PHY change should be
performed.

After the master has received the defined amount of packets (can be chosen by the
developer by altering the MIN PACKETS TO PHYCHANGE define) from the current node and
the averaged values for RSSI and SNR as well as the PRR have been calculated, the
decision if a PHY change should be ordered is made. This judgement is furthermore
based on whether the parameters are above or below their respective defined thresholds,
PRR being the most decisive. For evaluation purposes we required a threshold of 95% for
the PRR, the RSSI threshold was set to -70 dBm, while SNR was required to be 5 dB.
Thus, for a more conservative setting to be proposed a PRR above 95%, a RSSI larger
than -70 dBm and a SNR larger or equal to 5 dB is required. RSSI and SNR can be
directly read from the SX1272 register map, by reading the registers RegPktRssiValue

and RegPktSnrValue respectively. For those values to be representative, the following
formulas have to be applied:

SNR[dB] =
Snr[twos complement ]

4
(4.6)

where: Snr = value in RegPktSnrValue

RSSI[dBm] =

{
−139 +Rssireg, SNR ≥ 0
−139 +Rssireg + SNR · 0.25, else

(4.7)

where: Rssireg = value in RegPktRssiValue

Figure 4.12 illustrates a more detailed decision graph on the proposal of PHY settings
at the gateway.
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Basically, the master checks the PRR value for the current node: if this value is below
a set threshold the master will propose more robust settings. If the PRR is above the
threshold, RSSI and SNR will be observed, and based on their relation to the programmed
threshold more robust or more conservative settings will be proposed. A table of the
physical settings used within this thesis and the reasoning why they were chosen will be
given at a later part of this section.

The master then either sends a general ping to the current slave, or a ping that includes
the id of the newly proposed settings. If new settings were proposed, the master switches
to the new settings and expects data from the slave. If there was no proposal, the master
expects to receive the data on the current settings of the slave. If, after a defined period
of time there is no response from the slave, a counter ( miaCnt, see Listing 4.1) will be
incremented: if this counter reaches a threshold, the current node will be eliminated from
the network, assuming it has left or has no more data to send. The expelled node will then
have to rejoin the network after the reception of one of the beacons in the following cycles.
If there was a proposal for new physical settings, the master will listen for data on those
new settings. However, if there is no response the master will switch back to the previous
settings and listen for data again. If data is received on the previous settings, those settings
are saved as the current ones and the communication performance is evaluated again at a
later point in time. If there is no answer from the slave, the counter is increased again
and the slave is expected to send its data on the most reliable settings in the next cycle.
In both cases, if the master receives a response from the slave, he sends back an ACK
message, to confirm the reception. With this message the slot of the current slave is over
and the master continues with the next node in the list, if there are any remaining. If no
more nodes are in the network, the protothread hands back control to the main process,
for sending the beacon and handling join requests, as the protothreads tasks are fulfilled.

Basic functionality of the slave process. Similar to the structure of a gateway
node, a slave node has a main process (defilmac slave process) and two protothreads
(defilmac scan and s slot operation) that handle the functionality (see 4.6. Differently
from the master’s main process, the slave’s main process is only responsible for starting
the protothreads. The code snippet for the main slave process can be seen in Listing 4.2.

Listing 4.2: Main process of a node.

1 PROCESS THREAD( de f i lma c s l a v e p r o c e s s , ev , data )
2 {
3 stat ic struct pt s l i s t e n p t ;
4 stat ic struct pt s s l o t o p e r a t i o n p t ;
5
6 PROCESS BEGIN( ) ;
7
8 p r i n t f ( ”DeFiLMAC: Slave Main proce s s s t a r t ed .\ r \n” ) ;
9

10 PT INIT(& s l i s t e n p t ) ;
11 PT INIT(& s s l o t o p e r a t i o n p t ) ;
12
13 while (1 )
14 {
15 while ( ! d e f i lm a c i s j o i n e d )
16 {
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17 /∗ S ta r t scanning , at tempt to j o i n when r e c e i v i n g beacon message ∗/
18 PROCESS PT SPAWN(& s l i s t e n p t , d e f i lmac s can (& s l i s t e n p t ) ) ;
19 }
20 p r i n t f ( ” S ta r t i ng s l o t opera t i on f o r s l a v e node\ r \n” ) ;
21 PROCESS PT SPAWN(& s s l o t o p e r a t i o n p t , d e f i lm a c s l a v e s l o t o p (&

s s l o t o p e r a t i o n p t ) ) ;
22
23 p r i n t f ( ”We need to re−synchron ize .\ r \n” ) ;
24 }
25 PROCESS END() ; // not reached
26 }

As illustrated, an important flag of this process is defilmac is joined: this flag is set
to true if the node has successfully received a beacon and has joined a network. In the
case that a node is removed from its network or has lost synchronization to its master, this
flag is be set to false, forcing the node to start scanning for a beacon again and begin the
join process anew.

The first protothread that is started as soon as initialization is done is defilmac scan.
The latter is responsible for putting the node into its active receiving mode, thus per-
manently listening on the most reliable settings (settings with id 0, see Table 4.3) for a
beacon. For the reception of this initial beacon, the node has to stay permanently awake.
If a beacon has been received, this protothread will send a join request message to the
gateway node and await a response. Furthermore, it will save the timestamp at reception
of that beacon, which is used to set the timer for the expected next beacon as well as
for clock correction. If there is no response, the node will assume that it either did not
get an available slot, or its message has been lost. It will try to join the network again
upon reception of the next beacon. However, a node will not try indefinitely to join upon
receiving a beacon: there is an exponential back-off in place to avoid that a single node
blocks the master in the advertisement phase each cycle. Thus, a node will try to join the
network immediately after the reception of the first two beacons: after that it will only
try after each 2nth received beacon, including an offset that is based on the unique node
id. If, however, a node receives a slot in a network, it will receive an ACK message that
includes the id for its slot from the master. To finish the join process, the node will send a
message containing only the message identifier but no payload to the master, confirming
the reception of the ACK and the slot id. A slave node will furthermore use the same list
of nodes (implemented in ../mac/defilmac/nodelist.c) as the master, however it will
only add one entry to it, which is the master node. Upon receiving any message from the
master, it will update the link metrics within that entry as well as keep track of the current
PHY settings of the master. If, by chance, a node receives a message from another node, it
will be immediately discarded, as the message’s identifier is different for master and slave
nodes. Thus, a node will ignore any message with an identifier that starts with a leading 1
e.g., 0b100 (see Table 4.3). After this, the node will enter its sleeping phase, as control is
shifted to the s slot operation protothread. The amount of time a node sleeps before
waking up to receive its ping, is determined by the assigned slot id. A node calculates its
sleeping time as shown in Eq. 4.8:

Tsleep = Trecv ack − Trecv beacon + Tbeacon slot − Tsafety + assignedID · Tnode (4.8)
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where: Trecv ack = Time at ACK reception
Trecv beacon = Time at beacon reception
Tbeacon slot = Duration of the whole advertising phase
Tnode = Duration of the slot per node
Tsafety = Safety offset, early wake up

Synchronization. Note that Tsafety is set to be a constant factor at initialization.
However, each cycle every node, also the ones that have already joined a network, wake up
to receive the beacon. This is done in order to ensure the correct delay until the start of
each individual node slot and also to refine the safety offset value to be closer to the true
offset to the clock of the master node, since clock drifting [54] [55] has to be taken into
the equation, especially with the large delays with LoRa (e.g., delay between beacons of
around 30 minutes or more). Thus, at each beacon, the slave will calculate a new offset
to the masters clock and from that derive a more refined safety timing. For this purpose
the timestamp at each beacon reception is saved, and compared to the timestamp at the
reception of the previous beacon. Since the programmed time between two beacons is also
known by the slave, it can calculate an estimation of the offset to the master node. Under
the consideration of a safety timing (in our current DeFiL-MAC implementation set to
roughly 500ms) a slave node can then alter the initial constant factor to be closer to the
real offset to the master’s clock. By refining this value over time we gain a good estimation
of the true offset. Hence, it allows for a longer sleep time, resulting in a positive effect
regarding overall efficiency. More information on this refinement and its results will be
given in Chapter 5.

Slave: Slotted Operation Protothread. After its sleeping period, the node will wake
up and immediately switch into receiving mode, expecting a ping. If, after a defined
amount of time, the node does not receive a ping, it will assume that its timing is out
of synchronization with the master and goes back to sleep until the next beacon, trying
to re-synchronize. The slave also uses the miaCnt counter to keep track of the missed
pings: if this counter reaches a set threshold, or the next beacon is also missed it will
leave the network and try to rejoin again, handing control back to the main process,
defilmac slave process.

If a ping is successfully received within the reception window, depending on the
type of ping received, the node will execute two different scenarios. In the case that
the ping is a general ping with no additional information (message identifier 0b001 -

MSG PING), the node will send the first packet within its packets to be sent queue. If
there are not yet packets within this list, the node will send a message with identifier
0b110 - MSG SLAVE KEEPALIVE to avoid increasing the counter for missed responses. After
transmission, it will listen for an ACK from the master, and, upon reception of said message,
it will return to sleep mode, until the next beacon. If no ACK is received the node will
attempt to send the same data packet again in the next cycle. If however the optional
resending of packets is enabled (by setting the RESEND COUNT define to > 1), a node will
attempt to send its data again within its dedicated slot. It should however be noted that
this option, while increasing reliability of transmission, is very costly in terms of available
node slots within the network, because each slot has to account for the worst case, which is
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that a node has to send its data for RESEND COUNT amounts of time. Usually the minimum
slot length is calculated by assuming the time-on-air for the maximum payload length
with the most reliable (largest time-on-air) PHY settings, including some safety time,
however with resending enabled, that worst case time estimation has to be multiplied with
RESEND COUNT increasing the reserved time per node substantially. Therefore, a developer
can decide if he rather have less nodes in the network but receive data more reliable, or
account for more nodes tolerating the possible data loss.

If the node receives a ping that includes the order to change its PHY settings (message
identifier 0b010 - MSG PING PHY, Table 4.3) it will change to the new settings before
sending a data packet from its queue. Besides the data, a node always includes the link
quality statistics within its data message, since those are used by the master to make a
decision if a change of settings is feasible. To achieve a good estimation of the quality of
the transmission, RSSI and SNR are again averaged using the EWMA, as described in
Eq. 4.5. The general behaviour then is the same as for the general ping, as the node waits
for an ACK. If the data is confirmed by the master, the node will save the new settings
as being expected and go back to sleep until the next beacon. If no ACK is received,
and resending is enabled, it will switch back to its previous settings before sending data
again. This procedure has to be performed to avoid using different settings on master and
slave node, which would cause the slave to lose synchronization with the master and thus
being removed from the network. As soon as the data is then confirmed by the master,
the slave accepts the current settings and enters the sleep cycle. If then the data still is
not confirmed by the master, the node will assume some more issues, at which point it
will roll-back its settings to the default settings with id 0 (most reliable) and go to sleep
until the next beacon, since this timing is still known. While this roll-back does lose the
progress of establishing more efficient settings, it does avoid the removal of the node from
the network which can be more painful than losing the progress of the physical adaptation.
Furthermore, the link quality measurements are kept in storage, which is beneficial when
starting the adaptation process again since there is a plethora of link quality data available.

Selection of proposed parameters. For verification and evaluation purposes, we
defined and introduced ten possible configurations of settings, where each of the relevant
PHY parameters of LoRa is represented. A representation of the selected combinations for
physical parameters can be seen in Table 4.3. Setting with id 0 represents the most reliable
transmission parameters possible, which is also the default setting for the beacon, since it
is desired that the probability for receiving a beacon is as high as possible and furthermore
even nodes that are the furthest away should be able to receive a beacon and thus join
the network. The remainder of settings and their individual composition of physical layer
parameters can be freely chosen, however a setting with a higher identification is considered
to be more energy conserving. Table 4.3 displays the selection of combinations we chose in
order to achieve a good overview of the performance and behaviour of DeFiL-MAC.

Each consolidation of parameters is encoded into a two byte hexadecimal number, by
shifting each binary representation of every relevant parameter to its designated position.
The un-encoded parameters and each of their specific position for setting with id 0 can be
seen in Table 4.3.

The reasoning behind why those settings were chosen that way can be seen when
referring to Figures 4.13 and 4.14 respectively. Figure 4.13 illustrates how BW, SF and
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Setting ID TX Power
Spreading

Factor
Coding
Rate

Bandwidth Encoding

0 14 dBm 12 4/8 125 kHz 0xA30E

1 14 dBm 12 4/8 250 kHz 0xA70E

2 14 dBm 12 4/8 500 kHz 0xAB0E

3 14 dBm 11 4/7 500 kHz 0x8A0E

4 14 dBm 10 4/7 500 kHz 0x6A0E

5 14 dBm 9 4/7 500 kHz 0x4A0E

6 13 dBm 8 4/7 500 kHz 0x2A0D

7 13 dBm 7 4/7 500 kHz 0x0A0D

8 11 dBm 7 4/6 500 kHz 0x090B

9 9 dBm 7 4/5 500 kHz 0x0809

Table 4.2: Combinations of physical parameters chosen for verification. Setting with id 0
is considered as default and is therefore used initially by each node.

SF BW|CR reserved power

1010 00|11 0000 1110

Table 4.3: Un-encoded composition of physical parameters for setting with id 0.

CR scale in comparison to the estimated time-on-air, receiver sensibility and link budget
respectively. Transmission power has no direct influence on each of the measurements in
Figure 4.13 and is therefore not represented, however it will be examined independently in
Figure 4.14 in relation to the estimated power cost when transmitting. The first row of
plots in Figure 4.13 compares each of the parameters that have an impact on the estimated
time-on-air. When examining those plots, it can be observed that spreading factor and
bandwidth reduce the time-on-air by a substantial amount. While the coding rate does
have an influence on the time-on-air, compared to the other two settings it is relatively
small. Thus, in settings 0 to 2 (see Table 4.3) we first lower the used Bandwidth and
then Spreading Factor in addition to coding rate, in order to achieve a noticeable drop
in time-on-air. However, this reduction in time does come at a prize, as shown in the
remaining two rows of Figure 4.13, increasing the bandwidth or the spreading factor does
have an influence on the available receiver sensibility (lower is better) as well as the available
link budget (higher is better) for the communication. Thus, the remaining settings 3 to 9
in Table 4.3, are a combination of altering the various settings, where the setting with id 9
is the one with the largest potential energy saved. As discussed earlier, the programmed
transmission power does not have a direct influence on any of the metrics displayed in
Figure 4.13, however it does directly influence the consumed power at transmission, this
can be seen in Figure 4.14. This comparison reveals, that while keeping the programmed
power as high as possible, the most potential saving can be achieved when using a power
of 13 or 9.
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Figure 4.13: Scaling of each individual PHY parameter in regard to time-on-air, receiver
sensibility and link budget.

Figure 4.14: Transmission cost in relation to output power.
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4.4 Limitations

The designed protocol presented in this thesis has the following limitations:

Worst-case calculations. At the initialization phase of DeFiL-MAC the current pro-
grammed parameters for the SuperSlot duration and the BeaconSlot duration are utilized to
compute how much active time is available for the nodes in the network. Those parameters
are fixed and have to be known beforehand by the gateway as well as all nodes, which
limits the flexibility and the ability to adapt to network changes at runtime.

Furthermore, the amount of slaves that can be supported in a DeFiL-MAC network
and the amount of time that is available per node for its transmissions is calculated under
the assumption that the most reliable physical settings are used. Since those settings also
use the most time-on-air this is a ’worst-case’ estimation. Thus, the calculated timings
are kept generous, which does not make the best use of the unused time. This becomes
particularly clear if resending of data is enabled. In this case the worst-case amount of
retries for data transmission has to be accounted for, which increases the time per node
significantly and on the other hand reduces the number of nodes that can be supported by
DeFiL-MAC.

Possible solutions for improving some of these limitations will be given in Section 6.1.

Limited scalability. While the implementation of DeFiL-MAC is fully scalable for a
large network of nodes, for this thesis we only had three total hardware devices available.
Thus, with only two devices available to fulfil the role of slaves within a network, an
evaluation for true scalability could not be accomplished. Nevertheless, the scalability
of DeFiL-MAC was verified: both nodes join a network then their unique network id is
reprogrammed and the nodes are reset, thus they join the network again with a different
id. While this does work, the ’old’ nodes are removed from the network after they miss a
certain amount of pings.



Chapter 5

Evaluation

This chapter presents the evaluation of DeFiL-MAC. Section 5.1 validates the functionality
of DeFiL-MAC by presenting test results as well as power measurements. Furthermore,
Section 5.2 provides an evaluation on the reliability as well as efficiency of DeFiL-MAC.

5.1 De-FiL-MAC: Validation

This section presents and validates the correct functionality of DeFiL-MAC by first
describing the experimental setup in Section 5.1.1. Section 5.1.2 illustrates and validates
the correct communication between the master and a slave while Section 5.1.3 displays
the compliance to the duty-cycle regulations as well as evaluates measured and calculated
time-on-air for data packets within DeFiL-MAC.

5.1.1 Experimental Setup

For this validation, three STMicroelectronics STM32L152 Nucleo-64 in combination with
the SX1272 were set up in a laboratory environment roughly 2 meters apart from each
other. All of the devices used the default SMA antennas that the SX1272 is supplied with.
One device was programmed to function as gateway, while the other two would take on
the role of a slave node. To achieve precise measurements, one of the nodes was connected
to a High Voltage Power Monitor by Monsoon Solutions Inc. (Type: AAA10, [56]). This,
in combination with the corresponding software (PowerTool Version 5.0.0.25, by Monsoon
Solutions Inc.), allowed us to measure the power consumption as well as observe the timings
when the device was sending a packet or going into sleep mode. The master and the other
nodes were directly connected to a PC, where with the help of a COM-port communication
tool, the transmissions between the network participants could be observed and validated.
Thus, all nodes had a wired power connection on the one hand for reproducibility and on
the other to avoid failures due to depletion of batteries.

5.1.2 Master and Slave operation

This section shows the validation of the correct communication process between a master
and a slave node. For this purpose, a demo application was set up, where the node uses a
duty-cycle of 20% to avoid cycle times of around 20 minutes with a 1% duty-cycle, which
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is furthermore caused by the high time-on-air when using the most reliable PHY settings.
The SuperSlot duration is set to 120 seconds, which results in an active time of 24 seconds.
Furthermore, the test application of a slave node is programmed to try to send a dummy
data packet with 20 bytes of data every 15 seconds, however, as the node only is allowed
to send data when within its slot, those packets are added to the packet queue and sent at
the appropriate timing.

The behaviour of a slave node can be seen in Figure 5.1, which shows the joining process
as well as the transmission of data between the slave and its master. In the first third
of the figure, the slave node is initialized before it actively listens for the reception of a
beacon. As soon as the beacon is received, the slave changes into transmitting mode and
sends a join request to the master. This request is almost immediately confirmed by the
master, since, as illustrated in Figure 5.1, after the join request, the node sends another
very short message. This message is the confirmation of the received ACK including a slot
id that was sent by the master. After this transmission, the node enters sleeping mode,
which is illustrated by the lower power consumption than in the first third of the figure.
After a short sleeping period, the node wakes up to receive its ping, which is the signal for
the slave to send its data. Right after receiving the ACK from the master, that its data
was received, the node will go back into sleep mode until the next beacon is due, which
can be seen in the last third of Figure 5.1, where data is exchanged again, before the node
goes back to sleep.

When comparing the measured power consumption in active listening and sleeping
mode to the data sheet of the SX1272 [45], we can further validate the correct behaviour
of the DeFiL-MAC slave: the supply current draw of the SX1272 when in receive mode is
either 9.7 mA (for a used bandwidth of 125 kHz), 10.5 mA (for a used bandwidth of 250
kHz) or 12 mA (for a used bandwidth of 500 kHz), if multiplied with the output voltage of
the Monsoon Power Monitor of 4.2V this results in an power consumption for the active
listening of 40.74 mW, 44.1 mW and 50.4 mW, respectively (Power = V oltage ·Current).
If we add this consumption to the base consumption of the Nucleo (236.86 mW, see Figure
5.5), the result is 280.96 mW, which conforms with the measured averaged consumption
(surging in power consumption is due to LED on ST-LINK, thus average is used) in Figure
5.1, for a used bandwidth of 250 kHz and while in active receiving mode. If the radio goes
to sleep mode we can observe a drop in power consumption, which is to be expected and
can be verified with the measurements shown in Figure 5.5, as well as the data sheet of
the SX1272 [45].

Both, the measured power consumption and the COM log verify the correct functionality
of DeFiL-MAC communication between the master and slave.

A noticeable aspect of this power measurement is that power consumption is fairly
high as well as constantly surging, even with the node in its sleep mode. However, both of
those observations can be traced back to the integrated programmer/debugger combination
(ST-LINK [49]) on the Nucleo. On the one hand, it is responsible for the increased energy
demand and, on the other hand, it is equipped with a tricoloured LED that provides visual
feedback of the ST-LINK communication. Since this LED is constantly blinking while the
Nucleo is connected to the Power Monitor, it causes the power consumption to surge.
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Figure 5.1: Functionality of a node in DeFiL-MAC.
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Figure 5.2: 1% duty-cycle of a slave communication, dashed lines mark the reception of a
beacon.

5.1.3 Duty-cycle Regulations and Packet Time-on-Air

Duty-cycle. In a second evaluation setup, we validated the compliance to the duty-cycle
regulations, therefore we altered the test application to use the required duty-cycle of 1%,
with a programmed SuperSlot of 10 minutes. For this measurement, only two devices
were used, one master and one slave node, due to the total available active time across
all devices of only 6 seconds. Figure 5.2 illustrates the joining process and the exchange
of two data packets between slave and master, measured at the slave node. As stated
previously, the surging of the power consumption in the sleeping phases of the node is due
to the blinking LED on the ST-LINK of the Nucleo.

The two dashed lines in Figure 5.2 mark the reception of a beacon, and thus the start
of the total active time. Every transmission, from beacon reception to the sending of
data and the reception of the ACK for the data, has to happen within this active time,
which in this case is roughly 6 seconds. After that the slave sleeps and is inactive until the
second beacon, its reception is marked by the second dashed vertical line in Figure 5.2.
With a sleeping time of roughly 590 seconds and the active time of about 6 seconds, for a
programmed SuperSlot duration of 600 seconds. Although there is a small discrepancy
between the expected (594 second sleep / 6 second active) and the measured durations
we can validate the compliance to the 1% duty-cycle regulation for this communication
channel. The reason for this divergence is due to the extended length of this measurement
and the error propagation of the time measurement within the Monsoon Power Monitor
[56]. When testing with a larger duty cycle of e.g., 20% (as in Section 5.1.2) the timings
were much more precise, as the measurement was not as prolonged.

Evaluating packet time-on-air. After evaluating the correct basic functionality of
DeFiL-MAC, we validated that the calculated time-on-air estimations for our data packets
were correct. For that purpose, we used a test application to send a data packet with
20 bytes of dummy data, which was repeated for each of the settings that were proposed
in Table 4.3. Each measurement consists of the averaged time-on-air values of 30 sent
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Figure 5.3: Comparison of calculated vs. measured time-on-air for a 20 bytes data packet
with

messages. Figure 5.3 illustrates the comparison between measured values, which were
acquired with the use of the Monsoon Power Monitor [56] and the calculated values. The
calculations were done with Eq. 4.1 and Eq. 4.3 given in the data sheet of the SX1272 [45].

From Figure 5.3 it is noticeable that the difference between measured and calculated
time-on-air increases with the total time-on-air of the packet, such, for example the difference
for the most reliable settings is roughly 18% at an increase of 160 ms. However, for some
fast settings e.g., setting with id 5, this discrepancy is below 0.4% which corresponds
to roughly 3 ms. Nevertheless, as the calculated values only represent an estimation, a
discrepancy between measured and calculated values is to be expected. Thus, for more
reliable settings a safety timing of roughly 20% of the estimated time-on-air needs to be
accounted for when estimating the amount of time a node needs for packet transmission
while for faster settings a safety timing of around 15% of the estimated time-on-air is
sufficient.

5.1.4 Synchronization

As already stated previously, DeFiL-MAC is based on TDMA, which requires fairly precise
timings to avoid wasting energy due to long, unnecessary listening periods instead of
sleeping phases. For this evaluation, two nodes were set up with a test program that would
execute the default behaviour of DeFiL-MAC: join a network, listen for each periodical
beacon, send data within the assigned slot, and then sleep until the next beacon. The delay
between two beacons was specified to be 2 minutes. As already discussed in Section 4.2, a
slave uses the periodical beacons to adjust the time at which it will wake up to receive the
next beacon as well as the ping from the master. For the purpose of adjusting this wake
up time, the slave compares the time stamp of the previously received beacon with the
current one, from this difference, the new sleeping time until the next beacon is estimated.
Starting with a programmed wake up time of 2 seconds earlier to the expected reception of
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Figure 5.4: Wake up (clock drift) offset correction.

a beacon. This value will gradually be improved, and thus the sleeping time will increase.
However, in our measurements we determined that a minimum time of 400 ms before the
actual reception of a beacon is required for constant and reliable reception. Thus, in the
first graph of Figure 5.4, the offset converges roughly to a value of 400 ms. This time
is needed in order to guarantee that the node has woken up correctly and switched into
receiving mode, as well as give the radio process enough time to prepare the reception of a
packet. Since this behaviour can be observed the better the longer DeFiL-MAC is running,
this measurement was done over a time period of roughly 7 hours. In this setup only one
of the two nodes uses this wake-up adjustment: the other node uses a fixed programmed
offset of 2 seconds before every beacon.

An illustration of this measurement can be seen in Figure 5.4. The topmost graph
shows the delay between the wake up of a node and the actual reception time of a beacon.
The node without the correction is illustrated by the orange line, while the node that is
correcting its wake up is displayed by a blue line. The dashed line depicts the detection
threshold of the beacon, if a node’s offset between waking up and beacon reception is above
that threshold the beacon can not be detected any more.

As illustrated in the first graph of Figure 5.4, both nodes start with a delay between
wake up and actual beacon reception of roughly 2 seconds, the node that applies the
correction (blue line) is able to extend its sleeping cycle noticeably. Not only is this having
a positive effect on the energy consumption, but this correction is furthermore used to
account for possible clock differences between the master and its nodes, by keeping a
constantly improving synchronization of the beacon and wakeup timings. The effect of
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this clock drifting can be observed in the last third of the first graph: the node that uses
constant wake up timings loses synchronization with its master, since the delay between
wake up and beacon reception became longer than the listening phase of the slave.

The second graph within Figure 5.4 illustrates how the correction factor is altered over
time, while this factor is fairly large at the beginning of the measurement, it improves and
adapts over time, stabilizing at around 150 ms.

Finally, the third graph of Figure 5.4 illustrates the time that is effectively saved by
choosing to adapt the wake up time versus using a constant time to wake up before the
reception of a beacon. Considering that the Nucleo with the SX1272 has a combined energy
consumption of roughly 234.18 mJ/s in sleep mode, while in its active listening state it has
an energy consumption of roughly 283.4 mJ/s, this saved time translates directly into saved
power. Considering our measurement, the average time a node can stay longer in sleep
mode saving is roughly 1.3 seconds, which translates to a power consumption of 502.814
mJ with sleep time correction and 566.8 mJ without correction, prior to each beacon, in
addition to the reliability gained by not losing the synchronization to the master, after
long run times of the network.

5.2 De-FiL-MAC: Reliability and Efficiency

This section evaluates the gained reliability and efficiency by using DeFiL-MAC. In Section
5.2.2 we present the measured energy consumption of the devices with DeFiL-MAC while
using the different PHY settings presented in Table 4.3. Finally, Section 5.2.3 evaluates
the benefits of the switching of PHY parameters at run time.

5.2.1 Experimental Setup

For the evaluation of the energy consumption of each combination of settings from 0 to 9
(see Table 4.3), a slave node was programmed with a test application. In this application
the slave is programmed to use one of the 10 proposed combinations of PHY settings, and
then send a packet of 20 bytes of data every 5 seconds for a total test duration of 5 minutes.
This resulted in 60 total packets sent for each of the different settings. Furthermore,
the slave node was connected to the Monsoon Power Monitor [56], to measure its power
consumption.

The evaluation in Section 5.2.3 required a slightly different experimental set up. In
order to be able to simulate different network conditions and link qualities, a programmable
attenuator was added to one of the slave nodes. The programmable attenuator was a
RCDAT-8000-90 by Mini Circuits [57], which can be connected to the SMA antenna of
the slave. If the attenuator is connected via USB to a PC, a user can freely program the
attenuation between 0dB and 90dB with a resolution of 0.25 dB, as well as program a
sequence of attenuations that should be applied. Furthermore, the master and another
slave node were connected to the PC, which allowed for data and transmission log collection.
The Contiki application for both slave nodes was programmed to join the network of a
master and send data packets with 20 bytes of dummy data. The master node’s application
is programmed to evaluate the link quality of a slave connection every 5 packets received
by the slave (MIN PACKETS TO PHYCHANGE = 5), with a threshold for RSSI of -70 and a
PRR of 95%. Usually, the SNR would also be taken into consideration for this decision,
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however the programmable attenuator only allowed a reproducible influence on the RSSI
values, thus SNR was left out of the equation.

5.2.2 Energy consumption of individual PHY settings

The results of the measured energy consumption of each of the proposed settings can be
seen in Figure 5.5. In addition to the measurement of each of the settings, we also measured
the power consumption of the Nucleo platform on its own, without the SX1272 connected.
This can be seen in the top graph of Figure 5.5, in comparison to the power consumption
of the Nucleo with the SX1272, the combination of both in sleep/idle state, as well as the
power consumption of the device in its active receiving mode for PHY setting 0. As shown,
the power consumption of the SX1272 in idle/sleep mode is relatively small at roughly
1 mW, as soon as the radio is switched into listening mode, the power consumption is
increased to roughly 46.5 mW, which conforms with the expected consumption of 44.1 mW
specified within the data sheet [45]. The small discrepancy in power consumption is to be
expected due to the Nucleo and the ST-LINK. The relatively high base power consumption
of the Nucleo is a result of the integrated ST-LINK programmer/debugger [49].

The second graph in Figure 5.5 illustrates the measured power consumption of the
device in transmission mode, while using each of the proposed settings in Table 4.3. Each
of the measurements consists of 60 sent packets over the duration of 5 minutes. The
illustrated values represent the average consumed power during that time period. The
data sheet [45] specifies expected values for transmission current draw to be 28 mA for a
programmed power of 13 dBm, which results in a power consumption of 117.6 mW for
the SX1272. Since our measurement in Figure 5.5 is done over a duration of 5 minutes,
and the idle time between packets is also a part of the measurement, those values can not
be directly compared to the expected values in the data sheet. Thus, this measurement
has to be seen as a comparison between the individual settings. Furthermore, it is clearly
visible, that more efficient settings require more energy. This increased energy demand is
to be seen in combination with the longer time-on-air, that was measured and illustrated
in Figure 5.3 , which points out the increased overall efficiency for settings with a higher
id. However, when measuring the peak power consumption in transmission mode for a
programmed power of 14 dBm, as illustrated in Figure 5.1, and subtracting the power
consumption of the Nucleo, the measured power consumption of the SX1272 (at roughly
122,51 mW) is within the expected range of the values specified in the data sheet.

5.2.3 Adaptation of PHY parameters at runtime

For the evaluation of DeFiL-MAC’s performance we established the experimental setup as
described in Section 5.2.1. In total, two slightly different experiments were conducted.

In the first experiment, the programmable attenuator was set up to execute four different
scenarios, which are illustrated by the four dashed vertical lines in each sub plot of Figure
5.6. Furthermore the figure is split into five individual graphs for their measurements
respectively. Each tick on the x-axis represents a decision of the master node, that is made
after MIN PACKETS TO PHYCHANGE received packets, if a switch for the node in question is
suitable. The first graph illustrates the measured RSSI values of the slave node with the
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Figure 5.5: Measured energy consumption of the different physical settings applied in
DeFiL-MAC, as well as base energy consumption of the Nucleo and the SX1272.
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Figure 5.6: Measurement to evaluate the behaviour of DeFiL-MAC: a programmable
attenuator is connected to a node to simulate changing link qualities and observe the run
time adaptation of the physical settings.

programmable attenuator measured by the master. Those RSSI values are split into two
separate measurements: rssi depicts the link quality from the slave to the master, while
m-rssi is the quality of the link from master to slave. The dashed horizontal line in red
illustrates the programmed RSSI threshold that is used in combination with the PRR to
decide if a change of PHY settings is desirable.

The second graph of Figure 5.6 is an illustration of the settings id used by the slaves.
The lines in orange and green depict the settings used by the node that is not applying
the active PHY settings switch. In the third graph the behaviour of the programmable
attenuator is shown, while the fourth graph illustrates the PRR of slave nodes that do
not make use of the PHY setting adaptation in comparison to the one slave that actively
changes its settings. Furthermore, the fifth graph is the averaged energy consumption of
each of the nodes that utilize a constant setting, as well as the node with adaptive settings.

As already stated, the attenuator was programmed to go through four different scenarios.
In the first phase (separated by dashed lines) of Figure 5.6 we can see that the attenuator
was programmed to have no influence on the link quality at all, thus being operated at
0 dB. Since all the decisive parameters are within their respective thresholds the master
node of the DeFiL-MAC network orders the node to gradually alter its currently used
parameters up to the most efficient setting possible.
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After reaching setting with id 9, in the second phase, the attenuation is gradually
increased up to 60 dB. As illustrated, as soon as the RSSI measurements are below the
programmed threshold, the master proposes different settings to the slave in order to
increase robustness at the cost of a higher power consumption. If we compare those results
to a node that uses a single setting (e.g., setting 0 or setting 4 as illustrated in Figure
5.6), the advantages of the active adaptation of PHY settings becomes evident: if the most
reliable setting is chosen, the energy consumption is constantly high, even if the link quality
does not require such robust settings. However, if the link quality suddenly decreases by a
substantial amount (e.g., moving a node behind an obstruction), the loss of packets can
not be fully prevented. If the node constantly uses a less robust setting, as depicted by
the green lines in Figure 5.6, the difference in energy consumption to the node applying
the PHY switch is not as bad. However, as illustrated in the fourth graph, more packets
are lost in the transmission process. After reaching its peak attenuation at 60 dB, the
attenuator is gradually lowered to 0 dB again. As the RSSI improves, the master proposes
more efficient settings to the slave again.

In the third phase, the attenuation is progressively raised to a mid-range interference,
and, again, as the RSSI drops below the programmed threshold, a PHY switch is proposed
from the master. As this attenuation is not as large as in the second phase, there are less
packets lost for the node with constant setting 4 and no packets lost for the node with
setting 0.

Within the fourth phase, the attenuation is instantaneously raised to 20 dB and then
kept at this level. This causes a similar behaviour to the one shown in the previous
phases. As the RSSI dips below the threshold, the node that is ordered to change its PHY
settings prevents the loss of packets by changing to more robust settings. Lastly, the attenu-
ation is reduced to 0 dB, which causes the node to gradually switch to more efficient settings.

For the second experiment, the programmable attenuator was set to a constant attenu-
ation of 40 dB, after an initialization phase. The measured results for this evaluation set
up can be seen in Figure 5.7. The node with the attenuator is represented by the orange
line in each graph respectively. As illustrated, after the phase where the attenuation was
set to 0 dB, both nodes follow the same behaviour.

As the programmed threshold of -60 dBm is not reached, both nodes adapt their
settings to be more energy efficient. Again, each of the ticks on the x-axis represents a
decision by the master, after MIN PACKETS TO PHYCHANGE were received by the respective
node. After a certain time, the node with no attenuation has reached the most efficient
setting possible. Since its position is fixed, the link quality is fairly constant, thus the
node can operate with the proposed, highly efficient settings. The node that is connected
to the attenuator, however, experiences a drop in its link quality to the master, which
causes the RSSI to drop below the programmed threshold. At this point, the master
proposes more reliable settings, in order to prevent packet loss or the loss of the node
in general. This switch to more reliable and robust settings causes the link quality and
RSSI measurement to be above the threshold, which instructs the master to propose a
more efficient settings, after the next MIN PACKETS TO PHYCHANGE number of packets were
received. However, since the attenuation is still set to 40 dB, this switch to a less robust
parameter causes the packet to not be received by the master. As this decreases the PRR,
the master proposes a more reliable setting, causing the RSSI to climb above the threshold
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Figure 5.7: Behaviour of DeFiL-MAC’s PHY setting adaptation when constant attenuation
is applied: the aim to find the most efficient settings possible can cause loss of packets.
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again. Since in this measurement the retransmission of packets is not enabled, the packet
has to be retransmitted in the next cycle. If retransmission is enabled, this packet would
be retransmitted by the slave after a switch to the more reliable settings. Thus, the cost
for this attempt to change to a more efficient setting is an additional transmission with a
more reliable setting.

As illustrated in Figures 5.6 and 5.7, the loss of packets can actively be prevented
by observing the link metrics of a connection and the well-timed alteration of physical
settings. Naturally, this is a trade off between power consumption and reliability, as it is
the nature of an adaptive MAC protocol such as DeFiL-MAC to investigate more efficient
settings over time. While the energy consumption can be lower when constantly using a
less reliable setting, the loss of packets cannot be prevented.
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Conclusions and Future Work

In this thesis we present a port of the STM32L152 Nucleo-64 in combination with the
SX1272 LoRa transmitter into the open-source Contiki operating system, and DeFiL-MAC,
a duty-cycled and efficient MAC protocol for LoRa within Contiki, that provides a mecha-
nism for the active alteration of LoRa’s physical settings at runtime.

Port of a popular LoRa platform to the Contiki OS. The porting approach
introduced in Chapter 3 integrates the STM32L152 Nucleo-64 from STMicroelectronics
in combination with the Semtech SX1272 LoRa transmitter to the open-source Contiki
operating system. Since this port is kept in compliance with the required interfaces within
Contiki a developer is able to utilize the default instructions to communicate to the newly
ported platform.

DeFiL-MAC: a duty-cycled and efficient MAC protocol for LoRa. In Chapter
4 we present DeFiL-MAC: a MAC protocol for the wireless transmission technology LoRa
implemented in the Contiki operating system. Since for LoRa a master-slave approach is
commonly used, and slave-to-slave communication is not intended, DeFiL-MAC is based on
a TDMA approach. Moreover, by introducing duty-cycling, DeFiL-MAC provides efficiency,
reliability as well as scalability while being compliant to the duty-cycle regulations for the
license-free, sub-gigahertz, 868 MHz radio frequency band. Furthermore, to fulfil these
key-features, and to capitalize on the ability to fine-tune the communication performance
and range capabilities of LoRa by altering its physical parameters, DeFiL-MAC implements
a mechanism to adapt the physical settings based on link quality. This adaptation allows
DeFiL-MAC to avoid packet loss, while improving efficiency in terms of time-on-air and
energy consumption by proposing more robust or more economical settings.

Evaluation. The evaluation in Chapter 5 showed that DeFiL-MAC can improve the
efficiency of a network and also boost its reliability by applying the proposed adaptation
of LoRa’s physical layer settings.

68
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6.1 Future Work

Future work revolves mostly around the improvement of DeFiL-MAC’s efficiency, as well
as addressing and providing possible solutions to the limitations specified in Section 4.4.

Revising limitations. One of the drawbacks that were briefly addressed in Section 4.4
was that at the initialization phase the SuperSlot and other durations have to be fixed and
known by the master and all nodes in the network. A possible solution to this would be to
use the master and its periodical beacons to advertise the current network statistics to
its members as well as new nodes that intend to join the network. This would allow for
more flexible timings, as the master can dynamically react to nodes joining and leaving
the network.

Additionally, if resending is enabled DeFiL-MAC expects the worst-case amount of
retries for data transmission, which in most cases is not needed, thus allocating time that is
not used and therefore significantly decreasing the number of supported nodes. A solution
to this drawback would be to: (i) disable retransmissions, which would reduce reliability,
but could be suitable for networks where reliability is not as important as amount of nodes,
or (ii) if a transmission was not successful, the master could propose some time (e.g., an
unused slot) where the current slave can retry to send its data, if there are no free slots
available, resending is not possible.

A further proposal to improve the utilization of available time is that nodes that are
proposed faster settings could inform the master that they require less time for their data to
be transmitted, freeing up some time within their slot for possibly other nodes. Moreover,
this information could be used by a node itself: a node knows how long its slot is and how
much data it wants to transmit, if faster settings are proposed the node might be able to
transmit data twice within its slot, increasing its throughput.

However, as this would significantly increase the complexity as well as number of
messages that need to be exchanged between gateway and nodes, the implementation was
not considered for this thesis. Furthermore this behaviour would elicit new issues: nodes
would need to request for a re-assignment of their slot time if they need to change to a
slower, more reliable setting due to decreasing link quality.

Algorithm for proposing PHY settings. In the current implementation state of
DeFiL-MAC, the decision if a change of PHY settings is suitable for a certain node is based
on if a relevant link quality value is above or below a programmed threshold. In their work,
Bor et. al. [33] present the implementation of an algorithm based approach, that allows for
the discovery of the current optimal settings for a LoRa node. Thus, the implementation
of a similar algorithm into DeFiL-MAC would possibly improve and optimize the adaptive
PHY parameters selection.

Optimize listening time for initial beacon. In its current implementation, if a node
has the intention to join a DeFiL-MAC network, it has to permanently listen for the initial
beacon. As this listening mode consumes a fair amount of energy, this is not optimal
and ideally the amount of time in this state should be kept as short as possible. Thus, a
possible solution would be to modify the gateway’s implementation such that it can use the
currently open slave slots in its network to broadcast ’intermediate’ beacons, which include
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the current delay until the next beacon. If a node receives this intermediate beacon, it can
use the provided information to go into sleep mode until the ’real’ beacon is sent and then
issue a request to join the network.
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