
Felix Kirchengast, BSc

Secure Network Interface with SGX

Master’s Thesis
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Computer Science

submitted to
Graz University of Technology

Institute for Applied Information Processing and Communications

Advisor: Samuel Weiser
Assessor: Stefan Mangard

Graz, May 2019

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated all
material which has been quoted either literally or by content from the sources
used. The text document uploaded to TUGRAZonline is identical to the present
master‘s thesis.

Graz,

Date Signature

i

Abstract

Edge computing is increasingly used to provide remote access to security-critical
infrastructure like industrial equipment, which is placed in a separate local net-
work. Edge computing devices act as a gateway between the local network and
the Internet. Therefore, edge computing creates new security threats that have
not existed previously. If an edge computing device is compromised by malware,
then the security of the entire network is threatened. This raises the challenge of
securing edge computing devices against remote attacks.

In this thesis, we use a Trusted Execution Environment (TEE) to prevent attacks
via an edge computing device. More specifically, we demand that a TEE validates
all network packets that are sent to the local network. This provides security at
the level of individual packets. Instead of moving a large amount of code into a
TEE, we make use of untrusted network stacks by validating the untrusted network
stacks at run-time. With this so-called outsource-and-verify approach we shrink
the trusted code base of our TEE. We describe security validations inside a TEE
for several widely used network protocols, including TCP/IP, SNMP, S7COMM+,
PROFINET DCP. We use Intel SGX as TEE and forward the validated packets via
MACSec to the local network. We propose alternative MACSec cipher suites and
identify a vulnerability in the MACSec replay protection. Finally, we address the
problem of authenticating an SGX enclave towards a trusted I/O device: Firstly,
we improve the SGX-USB protocol of Jang [27]. Secondly, we present a protocol
that provides mutual authentication between an enclave and a trusted I/O device.

Keywords: Trusted Execution Environments, Network Protocol Validations,
Outsource-and-verify, Trusted I/O, Intel SGX, Device Authentication

ii

Kurzfassung

Edge Computing wird verstärkt verwendet um Fernzugriff auf sicherheitskritische
Infrastruktur zu ermöglichen, beispielsweise industrielle Ausrüstung welche sich
in einem separaten lokalen Netzwerk befindet. Edge Rechner fungieren als Gate-
way zwischen dem lokalen Netzwerk und dem Internet. Deshalb entstehen durch
Edge Computing neue Sicherheitsbedrohungen, welche es früher nicht gegeben hat.
Wenn ein Edge Rechner von Schadsoftware befallen ist, dann ist die Sicherheit des
gesamten Netzwerks gefährdet. Deshalb ist es notwendig, Edge Rechner gegen
Netzwerk-Angriffe abzusichern.

In dieser Arbeit verwenden wir ein Trusted Execution Environments (TEE) um
Angriffe über einen Edge Rechner zu verhindern. Genauer gesagt fordern wir, dass
ein TEE jedes Netzwerk-Paket validiert bevor es zum lokalen Netzwerk gesendet
wird. Dadurch erreichen wir Sicherheit auf der Ebene von einzelnen Paketen.
Anstatt eine große Menge an Code in ein TEE zu verschieben, validieren wir
Netzwerk-Stacks welche außerhalb des TEEs laufen, um die korrekte Operation
der Netzwerk-Stacks zu erzwingen. Dadurch verkleinern wir die sicherheitsrele-
vante Codebasis unseres TEEs. Wir beschreiben Sicherheitsvalidierungen inner-
halb eines TEEs für mehrere weit verbreitete Netzwerkprotokolle (TCP/IP, SNMP,
S7COMM+, PROFINET DCP). Wir verwenden Intel SGX als TEE und leiten
die validierten Pakete mittels MACSec zum lokalen Netzwerk weiter. Wir schla-
gen alternative MACSec Cipher Suites vor und identifizieren eine Schwachstelle im
MACSec Replay-Schutz. Abschließend behandeln wir das Problem, eine SGX En-
clave in Richtung eines externen Geräts zu authentifizieren. Zunächst verbessern
wir das SGX-USB Protokoll von Jang [27]. Danach präsentieren wir ein Protokoll
welches eine beidseitige Authentifizierung zwischen einer SGX Enclave und einem
externen Gerät bietet.

iii

Acknowledgements

I owe several contributors to this thesis my thanks. I thank the IAIK advisors
Samuel Weiser and Stefan Mangard. I also thank Sandra Dominikus from Siemens
for her support. All of them provided valuable inputs for both the ideas and the
implementation of this thesis.

Felix Kirchengast

iv

Contents

1 Introduction 1

2 Background 4
2.1 Trusted Execution Environments 4
2.2 Intel SGX . 5
2.3 Intel ME . 6
2.4 Trusted I/O . 7
2.5 Network Protocols . 7

3 Related Work 8
3.1 Trusted I/O with Hypervisors . 8
3.2 Trusted I/O with Cryptographic Channels 8

4 Concept for an SGX-secured Network Interface 10
4.1 Packet Flow . 11
4.2 Threat Model . 12
4.3 Authentication and Key Exchange 12

4.3.1 One-way Authentication . 13
4.3.2 Mutual Authentication . 13

4.4 Outsource-and-verify . 14

5 MACSec 15
5.1 Background . 15
5.2 Standard Amendments . 17
5.3 Nonce Reuse Attacks . 17

5.3.1 Susceptibility to Nonce Reuses 17
5.3.2 Proposal for Alternative Cipher Suites 18
5.3.3 Session-based MACSec Keys 19

5.4 Replay Protection . 19
5.4.1 Replay Protection Window 20
5.4.2 Integer Overflow Attack . 21

v

6 SGX Embedded Remote Attestation 23
6.1 Regular SGX Remote Attestation Protocol 24
6.2 SGX-USB from Jang . 25
6.3 Replay Attack against SGX-USB 27
6.4 Limitations of SGX Embedded Remote Attestation 28

6.4.1 Security . 28
6.4.2 Reliability . 29

7 SGX Mutual Authentication 31
7.1 Initial Key Installation . 31
7.2 Fake Key Installations . 32
7.3 Key Installation with Monotonic Counters 33
7.4 Key Installation with Signing Facility 33

8 Outsource-and-verify for Network Protocol Stacks 36
8.1 ARP/IP Validation . 36
8.2 TCP/IP Stack Validation . 38

8.2.1 Outgoing Data Flow . 39
8.2.2 Incoming Data Flow . 41
8.2.3 TCP Header Validation . 45
8.2.4 Payload Confidentiality . 48

8.3 PROFINET DCP Validation . 48
8.4 SNMP Validation . 49
8.5 S7COMM+ Stack Validation . 49

8.5.1 Protocol Stack Description 49
8.5.2 S7COMM+ Security Validations 50
8.5.3 ISO-TCP . 51

9 Implementation Details 52
9.1 Component Description . 52
9.2 TCP Optimizations . 54

10 Evaluation 56
10.1 Security . 56
10.2 Performance . 57
10.3 Benefits of Outsource-and-verify . 60

11 Conclusion 61

vi

List of Figures

4.1 High level concept for an SGX-secured network interface. 11

6.1 Regular SGX remote attestation protocol. 25
6.2 SGX-USB from Jang [27], with permission obtained from the author. 26

7.1 Installation of pre-shared MACSec keys. 32
7.2 Key installation with signing facility. 34

8.1 Packet validation for untrusted legacy applications. 38
8.2 Data flow for outgoing TCP traffic. 40
8.3 Data flow for incoming TCP traffic. 43

9.1 Layered system architecture. 53

vii

List of Tables

5.1 Description of a MACSec packet. 16

8.1 TCP header validation. 45
8.2 S7COMM+ protocol stack. 50

10.1 Code size comparison between outsource-and-verify and picotcp [1]. 57
10.2 Code size of our trusted network library. 57
10.3 15 000 UDP round-trips benchmark results. 59
10.4 7 500 HTTP requests benchmark results. 59
10.5 50MB bulk data benchmark results. 60

viii

Chapter 1

Introduction

In the face of Internet of Things applications and industrial communication, there
is an increasing need to secure edge computing devices. An edge computing device
acts as a gateway between a local network and the Internet. Edge computing
devices facilitate remote monitoring and remote maintenance for security-critical
devices. For instance, security-critical devices are placed in a production net-
work that has been historically separate from the Internet. These devices may
be unprotected or vulnerable against remote attacks. Attackers can exploit edge
computing devices as entry point to a security-critical local network. An edge
computing device is a permanent security threat if it is compromised by malware.
Due to the fact that edge computing devices are permanently online, attackers
can remotely explore the environment and then launch targeted attacks against
industrial equipment.

This raises the challenge of securing edge computing devices against remote at-
tacks. Software vulnerabilities within edge computing devices are a major entry
point for remote attacks. The code size and complexity of edge computing de-
vices limit security measures like code reviews, testing or formal verification. One
method for coping with software vulnerabilities is to split an edge computing device
into a small trusted part and a large untrusted part. The trusted part is executed
within a Trusted Execution Environment (TEE). In this work, we demand that a
TEE validates all packets that are sent to the local network. Thereby, a TEE pro-
vides security at the level of individual packets. Our solution meets the following
design goals:

• (G1) Security: The entire traffic of a network interface should run via
a TEE. A malicious OS should be prevented from injecting or modifying
packets.

1

• (G2) Commodity Hardware: Existing hardware should be usable since
edge computing devices are often based on commodity hardware.

• (G3) Minimal Software: The trusted code base should be as minimal as
possible.

To use a TEE for controlling the entire network traffic, one would normally run
entire network stacks inside a TEE. However, doing so increases the size and com-
plexity of a TEE. Instead, we apply an outsource-and-verify approach for network
stacks. That is, we validate the correct operation of untrusted stacks at run-time.
Outsource-and-verify shrinks the trusted code base, which is in line with goal
(G3).

We choose Intel SGX [26] as a TEE. SGX is integrated within virtually all In-
tel x86 CPUs since 2016, meeting goal (G2). SGX supports applications with a
small trusted code base, meeting goal (G3). Since SGX cannot directly access
any peripheral hardware, we need to establish a cryptographic channel between
an SGX enclave and a network interface (G1). To do so, we choose a MACSec
gateway as a network interface. MACSec [2] is a protocol for authenticating and
optionally encrypting Ethernet packets. We choose MACSec because of the avail-
ability of network hardware that already supports MACSec, which is in line with
goal (G2). We show that securing a network interface with SGX is possible with
a low performance overhead.

Contributions. This work includes the following contributions:

• We propose a concept for securing a network interface with Intel SGX.

• We make use of untrusted network stacks within a TEE, by validating the
untrusted stacks at run-time. We describe security validations for several
protocols (TCP/IP, SNMP, S7COMM+, PROFINET DCP). We provide a
proof of concept implementation.

• We analyze the MACSec protocol and propose alternative cipher suites that
are more secure. We identify a vulnerability in the MACSec replay protec-
tion.

• We address the problem of authenticating an enclave towards a trusted I/O
device: Firstly, we improve the SGX-USB protocol of Jang [27]. Secondly, we
present a protocol that provides mutual authentication between an enclave
and a trusted I/O device.

The remainder of this work is structured as follows: Chapter 2 provides back-
ground information. Chapter 3 discusses related work. Chapter 4 presents our
concept for securing a network interface with SGX. Chapter 5 proposes alterna-

2

tive MACSec cipher suites and identifies a vulnerability in the MACSec replay
protection. Chapter 6 discusses SGX embedded remote attestation and improves
the SGX-USB protocol of Jang. Chapter 7 presents a protocol that provides mu-
tual authentication between an SGX enclave and a trusted I/O device. Chapter 8
details how we validate untrusted network stacks, as well as security validations for
several protocols. Chapter 9 includes additional implementation details. Finally,
we give an evaluation in Chapter 10 and conclude in Chapter 11.

3

Chapter 2

Background

This chapter provides background information about TEEs, Intel SGX, Intel ME
and network protocols.

2.1 Trusted Execution Environments

Software vulnerabilities are still a major issue for system security. The size and
complexity of traditional systems make security paradigms like software verifica-
tion infeasible. One solution for coping with this complexity is to split the software
of a system into a “trusted part” and an “untrusted part”. The trusted part is
executed inside an isolated environment for security-critical code. The untrusted
part may run a traditional OS stack.

A Trusted Execution Environment (TEE) is an isolated environment that protects
code and data from an untrusted host system. In particular, a TEE should protect
code and data in the face of a malicious OS. Typically, a TEE provides the following
security guarantees:

• Integrity of code.

• Confidentiality and integrity of data.

On top of that, confidentiality of code might be provided in order to complicate
reverse engineering efforts and protect intellectual property. An overview of TEEs
is given by Maene et al. [33]. There exist various architectures for implementing an
isolated environment, including hardware extensions [10,19,26], hardware-software
co-designs [15, 17] and pure software designs [16]. Writing applications for TEEs
often involves a refactoring of the application architecture into a trusted part and

4

an untrusted part. Typically, applications that are running within a TEE must be
specifically unlocked (signed).

2.2 Intel SGX

Intel Software Guard EXtensions (SGX) [18] is a TEE that is integrated within
Intel CPUs. SGX has been introduced with the Intel Skylake Architecture in 2015.
In SGX terminology, the protected parts of an application are running within an
enclave. SGX isolates an enclave from the remaining parts of an Intel system. In
particular, the host OS or other enclaves cannot access the memory belonging to
an enclave. Enclaves are designed to retain integrity and confidentiality in the
face of a malicious OS. An advantage of SGX is the rather small trusted code base
since SGX does not require to run an entire OS within an enclave.

Architecture. Each instance of an enclave requires exactly one host process,
where the address space of the host process is shared with the enclave. Concep-
tually, this is similar to a dynamic library that is mapped within a host process.
An enclave can access all user-accessible pages within its host process but not vice
versa. Enclaves are running within a dedicated CPU mode on regular CPU cores.
This CPU mode is an unprivileged user mode, that is, an enclave cannot use any
privileged instructions. Moreover, an enclave cannot directly issue any system
calls.

At the hardware side, SGX uses an instruction set extension. At the software side,
the SGX Platform Software (PSW) provides a few architectural enclaves that are
signed by Intel. Architectural enclaves perform checks and protocols that are too
complex and expensive to be implemented in hardware.

ECALL/OCALL. SGX enclaves must be entered via well-defined functions that
are denoted as ECALLs. SGX uses the EENTER instruction for transferring
control from untrusted software to an enclave. An OCALL is an untrusted function
that is called from an enclave. By definition, an OCALL can be only invoked from
within an ECALL.

Sealing. With sealing, enclaves can securely persist sensitive data on untrusted
storage. SGX uses seal keys for encrypting and authenticating sensitive data. An
enclave retrieves seal keys via the EGETKEY instruction. A seal key is always
bound to a specific Intel SGX CPU, i.e. it is not possible to directly migrate sealed
data from one machine to another machine. To do so, one needs to unseal the data,
send the data to another machine, and then seal the data again [9]. Typically, a
sealed piece of data consists of the following:

5

• The encrypted data

• An authentication tag

• Meta information on how to retrieve the seal key for authenticating and
decrypting the data

Remote Attestation. An essential feature of SGX is remote attestation. Remote
attestation proves to an external party that a specific enclave is running on an
SGX-enabled system. Upon successful remote attestation, a secure channel is
established and secrets may be provisioned to an enclave. Remote attestation
makes it possible to securely outsource computations to remote parties. The SGX
remote attestation protocol involves the generation of a quote that attests the
identity of an enclave. An external challenger verifies a quote, deciding whether
an enclave is trust-worthy. This is done with the help of the Intel Attestation
Service (IAS).

2.3 Intel ME

The Intel Management Engine (Intel ME) [44] is an autonomous subsystem that
is integrated in recent Intel chipsets. Since the Intel ME is isolated from the main
OS, it can be seen as a TEE. Whereas SGX enclaves run on the main CPU cores,
Intel ME is a dedicated microcontroller. Intel ME has unrestricted access to main
memory, can send and receive network packets and runs even if the computer is
turned off.

The software that is running within Intel ME can bypass the main OS completely.
In contrast, SGX enclaves are running in unprivileged user mode. Intel ME is
restricted to specific software that is signed by Intel. The Intel Active Management
Technology [30] provides remote management functionalities that are based on Intel
ME.

In the context of SGX, Intel ME is used by the SGX Platform Software. More
specifically, Intel ME is the basis of the monotonic counters that are provided by
the SGX Platform Software. Monotonic counters provide a means for protecting
SGX enclaves against rollback attacks.

6

2.4 Trusted I/O

A trusted path represents a secure communication path between a TEE and an
external trusted I/O device. Trusted paths provide integrity and confidentiality of
I/O data in the sense that the untrusted part of a system cannot reveal or modify
the I/O data.

Unfortunately, SGX does not support any generic trusted path. SGX may be used
with proprietary trusted paths like Intel Protected Audio Video Path (PAVP),
which rely on the Intel Management Engine (ME) [44]. However, these propri-
etary trusted paths are not generic and not applicable to a network interface.
Consequently, additional measures should be taken for securing the communica-
tion between an enclave and an external I/O device. A common method for trusted
I/O architectures is to establish a cryptographic channel between a TEE and an
external I/O device [21, 24, 27, 38]. In this work, we establish a cryptographic
channel between an enclave and a so-called MACSec gateway.

2.5 Network Protocols

Ethernet [6] is a networking technology that is commonly used for local networks.
The Internet Protocol (IP) is the principal protocol of the Internet, including the
versions IPv4 [41] and IPv6 [20]. The Address Resolution Protocol (ARP) [39]
resolves IPv4 addresses into MAC addresses in Ethernet networks. The User
Datagram Protocol (UDP) [40] is a lightweight port layer on top of IP. In con-
trast, the Transmission Control Protocol (TCP) [42] provides reliable, stream-
based connections for IP-based networks. A TCP/IP stack is a software stack
that implements both TCP and IP. The Simple Network Management Protocol
(SNMP) [32] is a protocol for modifying and collecting information about network
devices. PROFINET [37] is an open protocol stack that is used for controlling and
monitoring industrial equipment. S7COMM+ [29] is a proprietary protocol stack
that is used for the communication between Programmable Logical Controllers
(PLCs) and engineering software. ISO-TCP [43] is an intermediate protocol layer
that is used by S7COMM+.

7

Chapter 3

Related Work

Several architectures for trusted I/O have been proposed. In this chapter, we
specifically discuss architectures that share similarities with this work.

3.1 Trusted I/O with Hypervisors

Trusted I/O architectures can be based on a secure hypervisor and trusted VMs,
where a hypervisor has to enforce the exclusive assignment of hardware to a cor-
responding VM. Zhou et al. [51] showed how to construct generic trusted paths
using VMs on commodity computers. SGXIO [49] is a generic trusted I/O ar-
chitecture which combines trusted VMs and SGX enclaves by binding their trust
domains together. Zhou et al. [52] used an untrusted USB protocol stack within
a trusted VM, by validating the USB protocol stack at run-time. Our approach
does not use any hypervisor or trusted VM. This has the advantage that we avoid
the implementation complexity of hypervisor-based security solutions.

3.2 Trusted I/O with Cryptographic Channels

Another line of research establishes a cryptographic channel between a TEE and
an external I/O device. Bumpy [38] and BitE [36] are trusted I/O architectures
for securing user input. Bumpy and BitE use the Flicker TEE [35] that provides
a subset of the SGX functionality for older hardware. SGX-USB [27] uses USB
dongles as a cryptographic gateway between an enclave and keyboards/displays.
Building on top of SGX-USB and Bumpy, Fidelius [24] is an SGX-based trusted

8

I/O concept for securing web applications. A core component of Fidelius is a web
enclave that communicates with a browser extension. Our concept uses a MAC-
Sec gateway instead of USB dongles. Whereas Fidelius involves user interaction
with trusted displays, keyboards and notification LEDs, our concept does not in-
volve any user interaction at all. Instead, our focus is on trusted I/O for network
interfaces.

ProximiTEE [21] proposed a distance bounding protocol which provides a distance
bounding guarantee between an SGX-enabled machine and a trusted I/O device.
The regular SGX remote attestation protocol does not provide any distance bound-
ing guarantee. Furthermore, ProximiTEE proposed a boot-time initialization pro-
tocol that establishes a shared secret between a trusted I/O device and an enclave.
In this work, we propose a protocol that achieves a similar goal with a symmetric
key.

9

Chapter 4

Concept for an SGX-secured
Network Interface

This chapter presents our concept for an SGX-secured network interface. The main
use case is to restrict a network interface to a set of well-defined actions. The high
level concept is depicted in Figure 4.1. Trusted components are highlighted with
a green color.

The host system is an SGX-enabled machine that runs an untrusted OS. We assume
that the host system acts as an edge computing device. The local network contains
potentially unsecured or vulnerable devices. The enclave is running within the
host OS and implements application-specific functionality for accessing the local
network. The untrusted host OS shall still be able to run uncritical functionality
like network discovery, but all network protocols are validated or white-listed by
the enclave.

Use cases include reading sensor data or status reports from the local network.
Other use cases include remote maintenance tasks like the deployment of firmware
updates to devices in the local network. For some protocols, it suffices to imple-
ment security validations inside the enclave while keeping application logic outside.
For others protocols, the enclave itself generates application-specific data like TCP
streams. An SGX-secured network interface shall be transparent from an applica-
tion’s perspective, e.g., by representing it as a virtual network interface within the
host OS. Thereby, an SGX-secured network interface supports untrusted legacy
applications that rely on legacy protocol stacks.

Since an enclave can access a network interface only via the (untrusted) host OS,
we need to establish a cryptographic channel between an enclave and a network
interface. In our case, a so-called MACSec gateway acts as a network interface.

10

MACSec is an industry standard protocol for authenticating and optionally en-
crypting Ethernet packets. The MACSec gateway can be a switch or router which
is supporting MACSec. Alternatively, the MACSec gateway can be an embedded
device that is integrated within the host system. Regardless of how the MACSec
gateway is implemented in hardware, the prerequisite is to establish a crypto-
graphic channel between the MACSec gateway and the enclave.

Figure 4.1: High level concept for an SGX-secured network interface.

4.1 Packet Flow

This section describes the overall packet flow, independent of the protocol and use
case. Incoming and outgoing packets are not treated symmetrically.

Outgoing Packet Flow. Outgoing packets are directed from the host system
to the local network, traversing the enclave and the MACSec gateway. The host
OS passes an outgoing packet to the enclave. The enclave executes a sequence
of protocol-specific validations. If these protocol-specific validations succeed, then
the enclave transforms the packet into a cryptographically authenticated MACSec

11

packet. The MACSec gateway verifies the authenticity of an outgoing MACSec
packet. Then the MACSec gateway transforms the MACSec packet back into its
original packet representation and forwards the packet to the local network.

Incoming Packet Flow. Incoming packets are directed from the local network
to the host system, traversing the MACSec gateway. The MACSec gateway trans-
forms incoming packets into MACSec packets and forwards them to the host OS.
The host OS may or may not forward incoming MACSec packets to the enclave.
However, the enclave only accepts incoming MACSec packets whose authenticity
can be verified. If the optional packet encryption is enabled, then the host OS
has to forward all incoming MACSec packets to the enclave in order to perform
any meaningful action. The enclave then decrypts incoming MACSec packets and
keeps the payload hidden from the host OS.

4.2 Threat Model

The asset to protect is a local network with potentially unsecured or vulnerable
devices. At the host side, we follow a standard threat model of SGX: We consider
the host OS as distrusted and compromised. Consequently, all outgoing packets
must be either directly generated or vetted by the enclave. We consider the packets
that are originating from the local network as trusted. The enclave should be able
to distinguish between packets from the local network and packets that are injected
by a malicious OS.

We consider two different scenarios: Either OS-generated traffic is vetted by the
enclave, or the enclave itself generates network traffic. The security of the packet
validation is protocol and application dependent. We require an initial trust phase
for the initial installation of MACSec keys, similar to ProximiTEE [21]. Side-
channel attacks are an orthogonal problem that we do not address in this work
[45]. Physical attacks are out of scope since an attacker can physically bypass the
MACSec gateway in any case. Denial-of-service attacks are out of scope for the
host, but we do protect the local network against denial-of-service attacks.

4.3 Authentication and Key Exchange

Our concept can be implemented either with one-way authentication or with mu-
tual authentication. With one-way authentication, we refer to the enclave au-
thenticating itself towards the MACSec gateway, but not vice versa. If mutual

12

authentication is used, then both the MACSec gateway and the enclave authen-
ticate each other. In this section, we discuss both authentication options with
respect to key exchange protocols and security implications.

4.3.1 One-way Authentication

In our context, one-way authentication means that only the enclave is authenti-
cated, whereas the MACSec gateway is not authenticated. Therefore, a malicious
OS can simulate a faked MACSec gateway. Nevertheless, one-way authentication
is still sufficient for protecting a local network against malicious packets. For ex-
ample, this ensures that remote management functionalities can be only used via
an authenticated enclave.

Key Exchange. Authenticating an enclave towards a MACSec gateway can be
done either with SGX remote attestation or with pre-shared keys. SGX remote
attestation drops the initial trust assumption, but it is unable to achieve the ex-
pected security. More specifically, SGX remote attestation is unable to identify the
physical machine that a MACSec gateway is connected to. Therefore, a malicious
OS can redirect the SGX remote attestation protocol to an attacker-controlled
platform. We discuss SGX remote attestation in Chapter 6 and pre-shared keys
in Chapter 7.

4.3.2 Mutual Authentication

Mutual authentication provides both authenticity and confidentiality for both out-
going and incoming MACSec packets. With mutual authentication, an enclave
can verify whether incoming MACSec packets are indeed originating from the as-
sociated MACSec gateway. This supports the retrieval of authenticated status
information from the local network, for example.

Key Exchange. In general, mutual authentication requires more effort to im-
plement than one-way authentication. One possibility for implementing mutual
authentication is to rely on asymmetric cryptography and deploy certificates to
a MACSec gateway. However, we consider a pre-shared (symmetric) key setting
instead. In Chapter 7, we present a protocol that provides a symmetric mutual
authentication between a MACSec gateway and an enclave. As with one-way au-
thentication, we consider SGX remote attestation as insufficient for authenticating
an enclave towards the MACSec gateway.

13

4.4 Outsource-and-verify

A major goal of our concept is to minimize the trusted code base. Outsource-
and-verify is an approach where a TEE relies on untrusted code for its operation,
and the correct operation of the untrusted code is verified at run-time. If the
verification code is significantly smaller than the outsourced code, then outsource-
and-verify shrinks the trusted code base.

In Chapter 8, we describe an outsource-and-verify approach for an untrusted
TCP/IP/ARP stack. We demonstrate that TCP/IP stacks can be validated with
fewer than 500 lines of C-code. The result is a trusted socket API that can be used
by application-specific enclave code. This approach involves a few wrapper func-
tions around (untrusted) socket system calls, as well as a packet validation interface
for both incoming and outgoing packets. Afterwards, we describe TEE security
validations for SNMP and PROFINET DCP. Finally, we describe an outsource-
and-verify approach for the S7COMM+ protocol stack.

14

Chapter 5

MACSec

MACSec [2] is a protocol for authenticating and optionally encrypting Ethernet
packets. In this chapter, we conduct a security analysis of MACSec that is specif-
ically targeted for an SGX-like setting. We discuss the risk of nonce reuse attacks
against MACSec. Nonce reuse attacks are especially relevant in an SGX-like set-
ting, where a malicious OS can influence the generation of outgoing MACSec
packets. We propose alternative cipher suites that are not only suitable for an
SGX-setting, but also more secure in general. Finally, we identify an integer over-
flow attack that breaks the MACSec replay protection.

5.1 Background

This section describes the fields of a MACSec packet as outlined in Table 5.1.

15

Table 5.1: Description of a MACSec packet.

Length
in bytes

Field Comment

6 Destination MAC Part of Ethernet header
6 Source MAC Part of Ethernet header
2 Ethertype = 0x88 0xE5, indicates the MACSec protocol
1 TCI-AN TAG Control Information and Association

Number
1 Short Length Ignored for our purposes
4 Packet Number Used for replay protection and for the ICV

computation
8 SCI Secure Channel Identifier
variable,
at least 2

Payload Payload of the original packet, including the
original Ethertype, optionally encrypted

16 ICV Integrity Check Value, authenticates the en-
tire packet

TCI-AN. The tag control information (TCI) is a 6-bit field that includes various
MACSec flags. The association number (AN) is a 2-bit field that selects one out
of four MACSec keys that may exist simultaneously.

Packet Number. The packet number is a unidirectional 4-byte-counter that is
incremented for each sent packet. The purpose of the packet number is two-fold:
Firstly, the packet number enables an optionally configurable replay protection.
Secondly, the packet number is an input for the computation of the Integrity Check
Value (ICV).

Secure Channel Identifier. The SCI is an 8-byte-identifier that uniquely iden-
tifies a unidirectional secure channel within a network.

Integrity Check Value. The ICV authenticates an entire MACSec packet. A
cipher suite specifies how the ICV is computed. The mandatory default cipher
suite is based on GCM-AES-128 (Galois Counter Mode - Advanced Encryption
Standard - 128-bit key size). Listing 5.1 illustrates the default cipher suite:

NONCE := (SCI | | Packet Number)
KEY := Secure As soc i a t i on Key
ASS .DATA := MACSec packet without t r a i l i n g ICV
PLAINTEXT := n u l l
ICV := AES−GCM(NONCE, KEY, ASS .DATA, PLAINTEXT)

Listing 5.1: MACSec default cipher suite (authentication-only).

16

Secure Association Key. A MACSec key is denoted as secure association key.
Using MACSec for bidirectional communication requires at least two secure asso-
ciation keys (one of them for each direction).

5.2 Standard Amendments

The original MACSec standard from 2006 has been amended multiple times. Those
amendments culminated into a new MACSec revision [8].

2011 - GCM-AES-256. This amendment includes 256-bit cipher suites as an
alternative option to GCM-AES-128 [3].

2013 - Extended Packet Numbering. This amendment provides 64-bit packet
numbers [4]. However, only the least significant 32 bits of the packet number are
explicitly encoded in MACSec packets. The receiver must recover the 32 most
significant bits of the packet number by using an algorithm that is specified in the
standard amendment.

2017 - Ethernet Data Encryption Devices. This amendment specifies Eth-
ernet Data Encryption Devices (EDE) [7]. An EDE is a packet forwarding device
that has exactly two physical interfaces. One interface receives and transmits un-
protected packets, whereas the packets on the other interface are protected by
MACSec. An EDE is captured by our notion of a MACSec gateway.

5.3 Nonce Reuse Attacks

This section discusses nonce reuse attacks against MACSec, threatening key re-
covery attacks and the forgery of MACSec packets. We propose alternative cipher
suites that are resilient against nonce reuse attacks. This is especially relevant if
MACSec is used in an SGX-like setting. Finally, we discuss how nonce reuses can
be prevented with session-based MACSec keys.

5.3.1 Susceptibility to Nonce Reuses

We define a nonce reuse as a set of two different MACSec packets whose ICV is
computed with the same pair of (KEY, NONCE). For a given MACSec packet, the
nonce is determined by the SCI and by the packet number.

17

The most obvious possibility for a nonce reuse is an overflow of the 4-byte packet
number at the side of the MACSec sender. Therefore, MACSec requires the sender
to use a new key after at most (232−1) sent packets. MACSec does not specify how
keys should be switched. This leaves the implementation of key switching open
to the vendor or operator of a MACSec device. If key switching is not properly
implemented or configured, then an overflow of the packet number may occur.

Apart from packet number overflows, nonce reuses can also happen in the case of
other misconfigurations: For instance, there could exist multiple associations with
the same key and the same SCI. Especially in SGX setups, there is an increased
risk of nonce reuse attacks: A malicious OS may rollback an enclave to a previous
configuration, triggering a nonce reuse.

In case of the mandatory default cipher suite GCM-AES-128, a nonce reuse is
particularly catastrophic. An attacker can extract the so-called authentication key
with only a single nonce reuse [28]. The authentication key is derived from the
actual AES-GCM key. The authentication key cannot be used to decrypt existing
messages but to authenticate arbitrary malicious data [13].

5.3.2 Proposal for Alternative Cipher Suites

We propose one of the following cipher suites in order to fix the nonce reuse
problem.

Authentication-only. If encryption is not required, then we propose the cipher
suite in Listing 5.2. This cipher suite is based on AES-CMAC instead of AES-
GCM.

NONCE := (SCI | | Packet Number)
KEY := Secure As soc i a t i on Key
ASS .DATA := MACSec packet without t r a i l i n g ICV
ICV := AES−CMAC(KEY, NONCE | | ASS .DATA)

Listing 5.2: Proposal for an authentication-only cipher suite

Authentication + Encryption. If encryption is required, then we propose to
use either a nonce misuse-resistant authenticated encryption scheme or random
nonces that are sufficiently large.

We propose to use a cipher suite that is based on AES Synthetic Initialization
Vector (AES-SIV) [25]. If a “nonce reuse” happens with AES-SIV, then an attacker
may only tell whether the same plaintext has been reused or not. In contrast to
the default cipher suite, however, a key recovery is not possible.

18

Alternatively, one could change the default cipher suite by appending random
nonces to each packet. The length of random nonces should be 256 bits to reach
a security level of 128 bits. 256-bit-nonces render birthday attacks infeasible (i.e.
a malicious OS cannot trigger random nonce collisions within any conceivable
running time). This, however, would increase the space overhead of MACSec
packets.

5.3.3 Session-based MACSec Keys

In our setup, a malicious OS can rollback an enclave to a previous state. Therefore,
it is not easily possible to maintain a persistent state for preventing nonce reuses,
e.g. maintaining a persistent packet counter. The monotonic counters that are
provided by the SGX Platform Software are too slow. According to ROTE [34],
incrementing a monotonic counter takes 80-250 milliseconds. This is far too slow
for sending network packets.

Instead of relying on a persistent state, it is possible to prevent nonce reuses with a
session-based protocol where a new session key gets established after each enclave
launch. One possibility is to use MACSec Key Agreement (MKA) [5]. For instance,
an enclave can request a fresh key from an MKA server after each enclave launch.

5.4 Replay Protection

Whereas nonce reuse attacks should be prevented by a MACSec sender, replay
protection is mainly a concern of a MACSec receiver. A replay attack injects
previously captured MACSec packets into an unexpected context. The practical
impact of a replay attack is highly dependent on the application. In this section,
we first describe the replay protection that is standardized by MACSec. Then
we discuss how an effective replay protection can be achieved in an SGX-like
setting. Finally, we identify an integer overflow attack against the MACSec replay
protection.

A particularly devastating replay attack is possible against the TCP/IP stack val-
idation that we describe in this work. With this attack, a malicious OS can craft
arbitrary malicious TCP payloads. The attack works as follows: Given a fixed
victim device in a local network, the malicious OS establishes and closes multiple
benign TCP connections to the victim device. In the context of those benign TCP
streams, the malicious OS assembles a set of TCP packets with only one byte
payload and a carefully chosen TCP sequence number. This is possible since a

19

malicious OS can choose both the initial sequence number and the packet bound-
aries of benign TCP connections. The malicious OS captures the MACSec packets
that contain the previously crafted TCP packets with only one byte payload. By
replaying those MACSec packets in the right order, a malicious OS can send a
chosen payload to the victim device.

Due to this strong attacker model of SGX, we consider replay protection as an
essential ingredient of an SGX-secured interface. Even for environments where
replay attacks are less likely to be exploited, we still consider replay protection as
sensible.

5.4.1 Replay Protection Window

MACSec configures the size of a so-called replay protection window. All packets
whose packet number is below the replay protection window are dropped. A non-
zero replay protection window copes with situations where packets are reordered
by the network. Algorithm 1 illustrates the replay protection that is specified by
MACSec. next_pn represents the packet number that is expected for the next
incoming MACSec packet.

Algorithm 1 MACSec replay protection

Input: uint32 pn← packet number of incoming MACSec packet
Input: uint32 window size← window size configuration
Global state: uint32 next pn← 1

1: if pn + window size >= next pn then
2: if pn >= next pn then
3: next pn← pn + 1

4: Accept incoming MACSec packet
5: else
6: Drop incoming MACSec packet

Only a replay protection window of zero provides an effective protection against
replay attacks. If the replay protection window is configured to any value larger
than zero, then it is already possible for an online attacker to instantly replay any
freshly sent packets. Configuring the replay protection window to zero boils down
to the simplified replay protection in Algorithm 2.

20

Algorithm 2 MACSec replay protection with zero window size

Input: uint32 pn← packet number of incoming MACSec packet
Global state: uint32 next pn← 1

1: if pn >= next pn then
2: next pn← pn + 1
3: Accept incoming MACSec packet
4: else
5: Drop incoming MACSec packet

Replay Protection for SGX. As already argued in Section 5.3.3, an enclave
cannot easily rely on a persistent state for the replay protection, e.g. the persistent
variable next_pn that is specified by Algorithm 2. However, replay protection for
incoming packets can be achieved by establishing a new session key after each
enclave launch. Thus, replay attacks across different enclave launches can be
prevented.

5.4.2 Integer Overflow Attack

We identify an integer overflow attack that breaks the replay protection of MAC-
Sec. The integer overflow of next_pn can be easily spotted in Algorithm 2 in line
2. The attack requires to capture a MACSec packet with the maximum packet
number (0xFFFFFFFF). An attacker that has captured such a MACSec packet
can trigger an integer overflow of next_pn, which resets next_pn to zero. Reset-
ting next_pn to zero allows an attacker to replay a previously captured MACSec
packet since any packet number gets accepted. Moreover, an attacker can trigger
multiple subsequent overflows of next_pn.

From an isolated viewpoint, this integer overflow is not necessarily a vulnerability
since the MACSec standard requires the sender to switch to a new key once the
maximum packet number is reached. Normally, one would expect that switching
to a new key prevents replay attacks. However, due to subtle details in the way
that MACSec keys are switched, even a system that fully conforms to the MAC-
Sec standard can be vulnerable to this integer overflow attack. The reason is that
the MACSec standard facilitates the simultaneous existence of multiple keys. By
using at least two keys simultaneously, a new key can be deployed to a production
environment while the old key is still active. A MACSec receiver is not guaran-
teed to withdraw the old key within a defined time frame. Therefore, the integer
overflow can be exploited during the time frame where the old key is still active
at the side of the MACSec receiver. Depending on the implementation, this time

21

frame might be indefinitely long. We confirmed experimentally that the attack
works against the Linux-MACSec implementation in kernel version 4.15. This is
not a bug of the Linux-MACSec implementation since the update of next_pn is
specified by Algorithm 1.

Remedies. The attack can be prevented either at the sender side or at the receiver
side. The sender can switch to a new key before the packet number would reach the
maximum value, e.g. the sender can switch to a new key once the packet number
reaches the value (0xFFFFFFFF - 1). The receiver can explicitly check for an
overflow of next_pn and invalidate the associated key immediately if an overflow
would happen. If a new key is not distributed well ahead of time, then either
solution breaks availability if there is no strict synchronization between sender
and receiver.

22

Chapter 6

SGX Embedded Remote
Attestation

As mentioned in Chapter 4, SGX remote attestation is one of the methods for
authenticating an enclave towards a trusted I/O device. A trusted I/O setting
is significantly different from the traditional remote attestation setting where a
client enclave attests its identity to a service provider via the Internet. Instead, a
trusted I/O device is either close to or integrated within the computer where the
enclave is running. Therefore, we introduce the term embedded remote attestation.
Embedded remote attestation is the process of establishing a cryptographic channel
between an enclave and a trusted I/O device, where the enclave proves its identity
to the trusted I/O device.

However, SGX remote attestation is unable to identify the physical machine that a
trusted I/O device is connected to, which is a major security issue in an embedded
remote attestation setting. Furthermore, SGX remote attestation involves inter-
action with the Intel Attestation Service (IAS), which raises reliability concerns.

In this chapter, we discuss the following protocols for embedded remote attestation:

• SGX-USB from Jang [27]. We reveal that SGX-USB is susceptible to a replay
attack.

• SGX remote attestation without a service provider, preventing the replay
attack against SGX-USB.

• SGX remote attestation with a service provider acting as a trusted third
party, also preventing the replay attack against SGX-USB.

23

6.1 Regular SGX Remote Attestation Protocol

Before going into modified embedded remote attestation protocols, we describe the
regular SGX remote attestation protocol.

As a prerequisite for SGX remote attestation, an attestation key needs to be pro-
visioned to an SGX-enabled device. Attestation keys are used for signing so-called
quotes. A quote attests the identity of an enclave. Attestation keys are provisioned
by Intel servers using the EPID join protocol [14]. To successfully complete the
EPID join protocol, an SGX-enabled device must prove the possession of a valid
provisioning key. Provisioning keys are burned into CPUs at manufacturing time.

Once the attestation key is provisioned, the regular SGX remote attestation pro-
tocol consists of the following steps as outlined in Figure 6.1:

1. The client enclave sends msg0 and msg1 to the service provider, including a
public Diffie-Hellman parameter g_a.

2. The service provider retrieves the signature revocation list SigRL from the
Intel Attestation Service (IAS).

3. The service provider sends msg2 to the client enclave, including a public
Diffie-Hellman parameter g_b. Service provider and client enclave establish
a shared secret g_a_b.

4. The client enclave generates a quote via the quoting enclave. The quote
attests the identity of the client enclave. The quote is signed with the at-
testation key. SigRL is used as input for the quote computation in order to
compute a non-revocation proof. The client enclave sends the quote to the
service provider within msg3. msg3 is authenticated via the shared secret
g_a_b.

5. The service provider sends the quote to the IAS. The IAS returns a quote
report that is signed by Intel. A quote report attests whether a quote has
been generated by a genuine Intel SGX system. Furthermore, the IAS verifies
whether the most recent version of SigRL has been used during the generation
of the quote.

6. The service provider inspects and verifies both the quote report and the quote
itself. The quote report is verified with a public key that is provided by Intel.
The quote itself is verified with application-specific policies. Typically, the
service provider verifies whether the enclave has been signed by a specific
vendor. If the service provider decides to accept both the quote and the
quote report, then msg4 may contain secrets that are provisioned to the

24

client enclave. Otherwise, msg4 should contain an error message. In contrast
to the other messages, the format of msg4 is not specified. msg4 may be
encrypted via the shared secret g_a_b.

Figure 6.1: Regular SGX remote attestation protocol.

6.2 SGX-USB from Jang

To our knowledge, SGX-USB from Jang [27] is the first embedded remote attesta-
tion protocol for SGX. SGX-USB establishes a shared secret between an enclave
and a USB forward device. The USB forward device is captured by our more gen-
eral notion of a trusted I/O device. Figure 6.2 illustrates SGX-USB from Jang.

25

Figure 6.2: SGX-USB from Jang [27], with permission obtained from
the author.

SGX-USB is a slight modification of the regular remote attestation protocol in Fig-
ure 6.1. Until step 4, the protocols are exactly the same. Starting from step 5,
SGX-USB deviates from the regular remote attestation protocol. SGX-USB de-
notes an IAS quote report as signed quote. SGX-USB uses an IAS quote report
for authenticating the client enclave towards the USB forward device. The USB
forward device verifies the IAS quote report and establishes a shared secret g_a_c
with the client enclave.

Inconsistency. Step 6 is not consistent with the way SGX remote attestation
works. SGX-USB requires to inform the USB forward device of a valid g_a. How-
ever, a quote cannot hold g_a since a quote only contains 64 bytes of report data
that can be freely chosen by an enclave developer. 64 bytes are not sufficiently
large for storing the Diffie-Hellman parameter g_a. The SGX SDK puts the fol-
lowing default value into the 64 bytes of report data:
SHA-256(g_a || g_b || VK) || {0}^32

VK is a so-called verification key that is derived from the shared secret g_a_b.

26

To fix this problem and inform the USB forward device of a valid g_a, we propose
to modify step 5 and step 6 such that the triple (g_a, g_b, VK) is sent to the
USB forward device. This triple does not reveal any secrets and can be sent in
clear. Then the USB forward device would verify g_a by recomputing the value
SHA-256(g_a || g_b || VK) and comparing this value with the quote.

6.3 Replay Attack against SGX-USB

A security issue in Figure 6.2 is the susceptibility to a replay attack. Starting
with step 6, a malicious OS can replay an old quote report, along with an old
Diffie-Hellman parameter g_a. If a malicious OS knows the private Diffie-Hellman
parameter a, then it can fully impersonate the client enclave.

Knowing the private Diffie-Hellman parameter a is a strong assumption that is
not possible without a vulnerable enclave or SGX platform. Unfortunately, this
assumption is not too far-fetched since SGX has been already broken completely
by the Foreshadow attack in 2018 [47]. By exploiting Foreshadow, an attacker
can read arbitrary enclave memory and extract attestation keys. Subsequently, an
attacker could generate a spoofed quote with attacker-chosen g_a and a. Next,
an attacker was able to send a spoofed quote to the IAS and obtain a valid quote
report. Nowadays, obtaining such a quote report is not possible anymore since the
IAS rejects platforms that are not patched against Foreshadow. However, since
the USB forward device does not verify the freshness of a quote report it is still
possible to replay an old quote report with an attacker-chosen g_a and a. On top
of that, it is possible that a similarly severe SGX vulnerability will be discovered
in the future.

This replay attack is a direct result of the protocol modification in step 6. The reg-
ular SGX remote attestation protocol prevents replay attacks since both the client
enclave and the service provider generate new randomness (g_a, g_b) and this
randomness is signed by the respective opposite party at each protocol invocation.
To counteract the replay attack, we present two alternative protocols.

Attestation without Service Provider. To solve the replay problem of SGX-
USB, the most straightforward option is to let the USB forward device act as
service provider. In that case, all relevant SGX-messages need to be processed by
the USB forward device and there does not exist a real service provider anymore.

The only deviation from the regular remote attestation protocol in Figure 6.1 is
that the communication with the IAS needs to be tunneled via the (untrusted) host
OS of the enclave. Nevertheless, this tunneling is not a security issue since IAS

27

messages are secured via two independent mechanisms: Firstly, the communication
to the IAS is secured via TLS. Secondly, IAS quote reports are signed with a private
key that is only known by Intel.

Attestation with Service Provider. Another option for solving the replay
problem of SGX-USB is to offload more responsibility to the service provider.
Once the service provider has completed the regular remote attestation flow, the
service provider could act as a trusted third party, establishing a shared secret
between an enclave and a USB forward device. This option could be implemented
with the following steps:

1. Upon successful remote attestation, establish a secure channel between an
enclave and the service provider.

2. Establish a secure channel between a USB forward device and the service
provider.

3. Run some key exchange protocol between an enclave and a USB forward
device, relying on the service provider as a trusted third party.

6.4 Limitations of SGX Embedded Remote At-

testation

Regardless of the protocol modifications, SGX embedded remote attestation has
several limitations with the current incarnation of SGX. We discuss these limita-
tions in this section, including potential future solutions.

6.4.1 Security

SGX remote attestation does not achieve the level of security that we expect for
a trusted I/O setting. Specifically, SGX remote attestation is susceptible to relay
attacks and emulation attacks [21]. Those attacks are out-of-scope for the regular
usage of SGX remote attestation, but they are relevant for embedded remote attes-
tation. A relay attack redirects the remote attestation protocol to an unintended
(attacker-controlled) platform. An emulation attack forges arbitrary remote at-
testation responses, by using a leaked attestation key that is not yet revoked.
Although emulation attacks rely on a strong assumption, leaked attestation keys
have been already discovered in the wild [47].

28

As a mitigation, ProximiTEE proposed a distance bounding protocol that extends
the regular SGX remote attestation protocol [21]. However, the distance bound-
ing protocol only protects against relay attacks, but not against emulation attacks.
The underlying issue with emulation attacks is the lack of fault tolerance. With
fault tolerance, we refer to the desired security property that the existence of a
compromised platform should not break the security of a non-compromised plat-
form. For instance, a remote platform that is compromised by Foreshadow [47]
should not threaten a trusted I/O device that is attached to a non-compromised
platform.

We speculate that a solution against emulation attacks could be introduced to
future SGX versions by leveraging the Intel Management Engine (Intel ME). Intel
ME might be able to extend the already existing local attestation mechanism to
trusted I/O devices. The Platform Services Enclave (PSE) links the trust domain
of SGX to Intel ME. For example, Protected Audio Video Path (PAVP) is a feature
that utilizes Intel ME for a trusted I/O setting [44]. Nevertheless, in Chapter 7, we
prevent both attacks with a protocol that provides mutual authentication based
on pre-shared keys.

6.4.2 Reliability

Reliability is another requirement that should be achieved by an embedded remote
attestation protocol. Therefore, it is problematic to depend on the Intel Attesta-
tion Service (IAS) for setting up trusted I/O devices. Although we do not assume
that the IAS faces any service outages, it is not guaranteed that a trusted I/O
device acting as a service provider is able to connect to the IAS. In many sce-
narios, it might even be necessary to setup trusted I/O devices without Internet
connectivity on the host machine.

Technically, SGX remote attestation depends on quotes that are generated by
the quoting enclave. Quotes are signed with the EPID group signature scheme.
Normally, it would suffice to verify a quote signature with an EPID group public
key. However, Intel encrypts the quote signatures with a largely undocumented
chain of crypto operations. According to Aumasson et al. [11], the quote generation
involves a random key that is encrypted with some 2048-bit public RSA key. This
encryption forces users and vendors to rely on the IAS. Thereby, the IAS is able
to swiftly exclude broken platforms that are affected by newly discovered SGX
vulnerabilities.

We consider the inability to locally verify remote attestation quotes as a drawback
of SGX. As a conclusion, we urge Intel to open up the quote verification to in-

29

dependent software vendors (ISVs). ISVs should have the choice of whether they
want to rely on the IAS or perform the quote verification themselves.

30

Chapter 7

SGX Mutual Authentication

In Chapter 4, we already discussed why mutual authentication between an enclave
and a MACSec gateway is desirable. In general, pre-shared keys provide mutual
authentication between two or more parties. However, this is not necessarily true
in an SGX setting since a malicious OS can repeat a key installation at any time.
In a pre-shared key setting, mutual authentication can be only achieved if enclaves
are protected against fake key installations. A fake key installation is an attack
where a malicious OS attempts to install self-chosen keys to an enclave.

In this chapter, we discuss monotonic counters as a protection method against fake
key installations. Finally, we present a protocol that provides a strong protection
against fake key installations with the help of an external signing facility.

7.1 Initial Key Installation

Figure 7.1 sketches a simplified scheme for the installation of pre-shared MAC-
Sec keys. A trusted entity generates MACSec keys and installs them to both
the enclave and the MACSec gateway (e.g. a vendor or system administrator).
The initial key installation requires an initially non-compromised environment, as
already proposed by ProximiTEE [21].

Upon successful key installation, an enclave seals the MACSec keys in an encrypted
and authenticated file. SGX uses so-called seal keys for persisting secrets in dis-
trusted storage. A seal key can only be retrieved within an enclave and should
never leave an enclave.

31

Figure 7.1: Installation of pre-shared MACSec keys.

7.2 Fake Key Installations

Sealed files do not provide any protection against fake key installations. Unless
specific countermeasures are deployed, a malicious OS can easily perform a key
installation towards the enclave with an attacker-chosen key. A successful fake
key installation breaks the mutual authentication property that we usually expect
from pre-shared keys. Once mutual authentication is broken, a malicious OS
can simulate a MACSec gateway. Thereby, fake key installations undermine the
confidentiality of outgoing data if packet encryption is enabled.

Even if mutual authentication is not strictly required, a fake key installation can
help a malicious OS to exploit additional vulnerabilities within an enclave. For
instance, a malicious OS could leverage a fake key installation for injecting arbi-
trarily crafted malicious MACSec packets into an enclave. Under normal circum-
stances, these malicious packets would be dropped immediately by the MACSec
verification code without ever reaching any protocol-specific code. These malicious
packets could lead to the exploitation of a potential buffer overflow vulnerability
within the enclave, which in turn could lead to the extraction of a seal key. Once
a malicious OS has extracted a seal key, it can decrypt the real MACSec keys.

32

7.3 Key Installation with Monotonic Counters

If an initially installed key can be protected against rollback attacks, then a ma-
licious OS cannot perform a fake key installation. One method for protecting an
enclave against rollback attacks are the monotonic counters that are provided by
the SGX Platform Software. Listing 7.1 shows how monotonic counters can be
used as a primitive countermeasure against fake key installations.

IF (monoton i c counte r ex i s t s (CONSTANT KEY ID)) THEN
r e j e c t k e y s ()

ELSE
i n s t a l l k e y s ()
monoton i c counte r c r ea te (CONSTANT KEY ID)

Listing 7.1: One-time key installation based on montonic counters

From a security perspective, monotonic counters add a considerable amount of
code and complexity to the trusted code base, namely the Intel Management En-
gine (Intel ME) and the Platform Services Enclave (PSE). The Intel ME stores
monotonic counters on chipset flash storage that is not accessible for a malicious
OS. Large portions of the Intel ME are undocumented and subject to reverse en-
gineering. To avoid monotonic counters, we propose a protocol that relies on an
external signing facility instead.

7.4 Key Installation with Signing Facility

In this section, we present a one-time key installation protocol that establishes
a shared secret between an enclave and a trusted I/O device. By preventing
a malicious OS from repeating a key installation, our protocol provides mutual
authentication based on a symmetric key.

The basic principle is that an enclave only accepts sealed keys that are signed by
an external signing facility. Signing sealed keys instead of plaintext keys provides
two additional security properties: Firstly, the signing facility never sees a key in
plaintext. Secondly, we achieve fault tolerance for the case that a key gets stolen
from a remote machine. Since we bind the signatures to sealed keys instead of
plaintext keys, each signature is only valid for exactly one SGX-enabled CPU.
This prevents a malicious OS from installing a key that has been stolen from a
remote machine.

33

Protocol Steps. The following steps describe the one-time key installation pro-
tocol as illustrated in Figure 7.2. All steps are done during an initial trust phase
within a controlled environment. The signing facility must not be publicly accessi-
ble from the Internet unless additional security measures are employed. We expect
that the signing facility is controlled by the vendor of the enclave.

1. The enclave generates a fresh key skey and installs skey to the trusted I/O
device. The trusted I/O device must enforce that a malicious OS cannot
repeat a key installation, e.g. by keeping a flag in persistent memory or
requiring physical access for a key installation.

2. The enclave seals skey to a file that we denote as seal. The enclave sends
seal to the signing facility.

3. Using its private key, the signing facility computes a signature sig over seal
and sends sig to the enclave.

During normal operation, the enclave verifies sig with the (hardcoded) public key
of the signing facility. Then the enclave unseals seal, yielding skey. Using skey,
the enclave establishes a secure channel to the trusted I/O device. The verification
of sig and the unsealing are done at each enclave launch.

Figure 7.2: Key installation with signing facility.

Security Considerations. We enforce the physical proximity of the trusted I/O
device to the enclave by using an initial trust phase, as proposed by ProximiTEE
[21]. Therefore, the major security issue of our protocol is the size and complexity
of the trusted code base during the initial key installation. To mitigate this issue,
two techniques from ProximiTEE can be reused for our protocol: Firstly, a small
and custom-tailored OS can be used for the initial key installation. Secondly,

34

a generic boot enclave supports a dynamic deployment of new enclaves without
having to repeat a key installation.

Robustness of One-time Key Installations. Storing sealed keys only locally
might be problematic if a sealed key gets lost after an OS re-installation. This
issue can be mitigated with an online backup service for sealed keys. Moreover,
by leveraging an online backup service for sealed keys, vendors can ship trusted
I/O devices along with Intel PCs without shipping any pre-installed OS image.

35

Chapter 8

Outsource-and-verify for Network
Protocol Stacks

Outsource-and-verify is an approach where a TEE relies on untrusted code for
its operation, and the correct operation of the untrusted code is verified at run-
time. If the verification code is significantly smaller than the outsourced code,
then outsource-and-verify shrinks the trusted code base. Beside of shrinking the
trusted code base, outsource-and-verify may improve the compatibility of a TEE
with existing legacy software, e.g. legacy software that relies on a specific protocol
stack that can be verified in a TEE.

In this chapter, we present a run-time validation approach for ARP as well as
TCP/IP stacks. We demonstrate that TCP/IP stacks can be validated with fewer
than 500 lines of C-code. In contrast, even lightweight implementations of TCP/IP
have several thousand lines of code [1, 23].

Moreover, we describe packet validations for SNMP, PROFINET DCP and
S7COMM+. We apply a stateless packet validation whenever it is feasible for our
intended protocol and use case. Our packet validations follow a strict whitelisting
approach: All unexpected protocols or protocol subsets are denied.

8.1 ARP/IP Validation

We apply the outsource-and-verify approach for an (untrusted) ARP implemen-
tation. Therefore, the TEE needs to validate outgoing ARP packets. Specifically,
we intend to prevent ARP spoofing and IP spoofing. With ARP spoofing, a ma-
licious OS can reroute or sniff IPv4 packets in a local network by sending forged

36

ARP replies. IP spoofing denotes IP packets with a forged source IP. A malicious
OS might combine IP spoofing with ARP spoofing to perform man-in-the-middle
attacks in a local network.

Both attacks resort to a malicious OS misusing another’s IP address rather than
its own. A TEE can prevent both attacks by knowing its only valid host IP. We
assume that the TEE knows a host IP that is either pre-configured or retrieved
from a trusted source. In many cases, it suffices that the TEE only knows the host
bits of the host IP (the least significant bits). If this assumption is met, then a
TEE can easily enforce the following security restrictions:

• The source IP of outgoing ARP packets must match the host IP.

• The source IP of outgoing IP packets must match the host IP.

These simple checks are sufficient for preventing ARP-based attacks in our setup.
Hence, the outsource-and-verify approach for ARP is very efficient in terms of code
size and code complexity.

Figure 8.1 illustrates the packet validation flow for untrusted legacy applications.
MACSec packets are highlighted with yellow arrows. Trusted components are
highlighted with a green color.

1. Untrusted legacy apps communicate with the kernel via socket system calls.

2. In response to socket system calls, the kernel generates ARP packets and IP
packets that are outbound from the virtual network interface. We forward
these packets to the packet validator, via the support library.

3. The packet validator enforces that outgoing packets conform to a known host
IP as well as other protocol-specific checks. If all checks succeed, then the
TEE transforms a packet into a MACSec packet and forwards it to the local
network (via the support library and the MACSec gateway).

We forward incoming ARP packets to the virtual network interface without per-
forming any ARP-specific security checks.

37

Figure 8.1: Packet validation for untrusted legacy applications.

8.2 TCP/IP Stack Validation

In this section, we detail our approach for outsourcing a TCP/IP stack and val-
idating TCP packets within a TEE. The result of this section is a trusted socket
API that can be used to establish trusted TCP connections to a local network.
The trusted socket API creates and maintains a shadow state for each open TCP
connection. We use the shadow state for the stateful validation of TCP packets.
We describe both the data flow of incoming and outgoing TCP traffic as well as
the validation of individual TCP packets. Furthermore, our approach supports an
optional encryption of TCP payload.

38

8.2.1 Outgoing Data Flow

The data flow for outgoing TCP traffic is depicted in Figure 8.2. Trusted com-
ponents are highlighted with a green color. MACSec packets are highlighted with
yellow arrows. Figure 8.2 comprises the following steps:

1. App-specific TEE code calls the functions connect() and send() that are
provided by our trusted socket API. The TEE is assumed to know the target
IP and port.

2. The trusted socket API inserts information into the TCP shadow state. For
the connect() function, the trusted socket API instantiates a new shadow
state. For the send() function, the trusted socket API copies the payload
data into an already existing shadow state.

3. The trusted socket API calls OS-specific socket system calls via the support
library (e.g. the system calls socket, connect, send for POSIX-compliant
systems).

4. The virtual network interface receives the data from the send system call
and creates a sequence of TCP packets. These TCP packets are forwarded
to the packet validator (via the support library).

5. The packet validator executes a sequence of TCP-specific security checks
that are based on the shadow state. Packets that do not pass the checks are
dropped.

6. The packet validator transforms TCP packets into MACSec packets. The
MACSec packets are sent to the local network, via the support library and
the MACSec gateway.

39

Figure 8.2: Data flow for outgoing TCP traffic.

Outgoing Packet Validation. Our TCP shadow state contains the following
entries for the validation of outgoing packets:

• Initial outgoing sequence number

• SYN-INIT flag

• Send buffer

We use this shadow state for matching the payload of an outgoing TCP packet with
the TCP stream that was previously stored in the send buffer. More specifically,
the validation of an outgoing TCP packet comprises the following steps:

1. Stateless TCP/IP header validation.

40

2. If the TCP packet does not have a payload and SYN is set to zero, then go
to the last step. For example, this allows ACK packets to pass without any
further security checks.

3. Find an associated shadow state based on the following packet entries:
(destination IP, source port, destination port).

4. If the packet is a SYN packet, then synchronize the shadow state if it is
not yet synchronized (i.e. store the initial outgoing sequence number into
the shadow state and set the SYN-INIT flag to 1). If the synchronization
succeeds, then go to the last step. All unexpected SYN packets are dropped.

5. Check whether the payload of the TCP packet matches the shadow state
send buffer. This check is based on the sequence number, determining the
offset within the shadow state send buffer.

6. Transform the TCP packet into a MACSec packet, authenticating the packet
with an Integrity Check Value (ICV).

Send Buffers. We are dealing with two different send buffers: A send buffer that
is maintained by the host kernel and a TEE send buffer that is used by the packet
validator. In order to perform a reliable payload validation, we need to guarantee
that all the data in the host kernel’s send buffer is also present in the TEE send
buffer. We enforce this guarantee by configuring the size of the host kernel’s send
buffer to the same size as the TEE send buffer. For POSIX-compliant systems,
the (maximum) send buffer size can be set with the SO_SNDBUF socket option.

Deallocating Shadow States. Since memory is a constrained resource a TEE
needs to deallocate TCP shadow states at some point of time. Our trusted socket
API deallocates a shadow state right after calling the (untrusted) close system
call. Therefore, we require that the close system call blocks until all data in
the send buffer has been acknowledged by the receiving end (or until a timeout
is reached). For POSIX-compliant systems, the blocking behaviour of the close

system call can be configured with the SO_LINGER socket option.

8.2.2 Incoming Data Flow

The data flow for incoming TCP traffic is depicted in Figure 8.3. This works as
follows:

1. App-specific TEE code calls the function recv() that is provided by our
trusted socket API. A valid shadow state and an open TCP connection must
already exist, that is, connect() must have been called beforehand.

41

2. The trusted socket API calls the blocking recv system call via the support
library. The support library passes a dummy buffer as the target buffer for
the recv system call.

3. In the meantime, the MACSec gateway transforms incoming TCP packets
into MACSec packets and forwards them to the packet validator.

4. The packet validator verifies an incoming MACSec packet and transforms
it into a TCP packet. Then the packet validator attempts to find a valid
shadow state.

5. The shadow state includes an associated TEE receive buffer. The packet
validator copies the payload of the TCP packet into the associated TEE
receive buffer.

6. The TCP packet is forwarded to the virtual network interface via the support
library.

7. The virtual network interface reassembles incoming TCP packets and copies
the payload into the dummy receive buffer. Since the TEE gets authenticated
data directly from the packet validator, this dummy buffer can be discarded.

8. Eventually, the recv system call returns and hands back control to the
trusted socket API.

9. Let n be the return value of the (untrusted) recv system call. n represents
the number of received bytes. The trusted socket API attempts to fetch and
remove the oldest n bytes of payload data from the shadow state.

10. The trusted socket API passes the n bytes of payload data to the app-specific
TEE code and hands back control to the app-specific TEE code.

42

Figure 8.3: Data flow for incoming TCP traffic.

Incoming Packet Validation. Although there exists only one shadow state
for each open TCP connection, the following shadow state entries are specifically
destined for the validation of incoming TCP packets:

• Initial incoming sequence number

• SYN-ACK-INIT flag

• Record of received bytes

• Receive buffer

Using this shadow state, we copy the payload of an incoming TCP packet into the
receive buffer. More specifically, the validation of incoming TCP packets comprises
the following steps:

1. Verify the MACSec packet and transform it into a TCP packet.

2. Stateless TCP/IP header validation.

43

3. If the TCP packet does not contain a payload and SYN is set to zero, then go
to the last step. For instance, this forwards incoming ACK packets without
any further checks.

4. Find an associated shadow state based on the following packet entries:
(source IP, source port, destination port).

5. If the packet is a valid SYN ACK packet, then synchronize the shadow state
(i.e. store the initial sequence number into the shadow state and set the
SYN-ACK-INIT flag to 1). All non-conforming SYN packets are discarded.

6. Copy the payload of the TCP packet into the receive buffer that is associ-
ated with the shadow state. The receive buffer offset is determined by the
sequence number.

7. Record the number and the position of the received bytes in the shadow
state.

8. Forward the TCP packet to the virtual network interface of the host kernel.

Receive Buffers. We are dealing with two different receive buffers: A TEE
receive buffer and a receive buffer that is maintained by the host kernel. The
TCP window size ensures that a receiver is able to fit incoming TCP data into a
receive buffer. However, we cannot directly control the TCP window size since it
is controlled by the host kernel. Instead, we configure the receive buffer of the host
kernel to the same size as the TEE receive buffer. For POSIX-compliant systems,
the (maximum) receive buffer size can be set with the SO_RCVBUF socket option.

Note that a TEE receive buffer should be allocated even before calling the recv

system call for the first time. Otherwise, we might run into a race condition where
an incoming packet arrives while a TEE receive buffer does not exist yet.

Record of Received Bytes. When the kernel returns from the untrusted recv

system call, our trusted socket API verifies that indeed all data has been received.
Therefore, the shadow state keeps a record of the received bytes.

We implement this record with a simple counter of the received bytes. Our im-
plementation enforces that incoming TCP packets must conform to the expected
sequence number without any gaps in between. If an incoming sequence number
is higher than expected, then this is most likely the result of a packet loss. In
case of a packet loss, not only the lost packet needs to be re-transmitted, but also
all packets that have a higher sequence number than the lost packet. Therefore,
enforcing the correct sequence number does not degrade the performance since a
re-transmission needs to happen in any case.

44

A more heavy-weight record of the received byte would be a fully-fledged TCP
reassembly buffer [22]. By using a fully-fledged reassembly buffer, the packet val-
idator can benefit from the performance of Selective Acknowledgements (SACK),
if SACK is used by the host kernel.

8.2.3 TCP Header Validation

For incoming packets, the validation of TCP headers is not security critical since
incoming packets are already authenticated via MACSec. For outgoing packets,
the validation of TCP headers is security critical since a malicious OS can create
outgoing TCP packets with malformed or unexpected TCP headers. This sub-
section details how we validate the individual fields of the TCP header, with the
main focus on outgoing TCP packets. Table 8.1 includes a complete list of the
TCP header fields and how they are handled by our packet validator.

Table 8.1: TCP header validation.

Field Treatment
Source port Shadow state
Destination port Shadow state
Sequence number Shadow state
Acknowledge number Shadow state
Data offset Sanitized
Reserved Must be zero
NC Flag Ignored, only performance-relevant
CWR Flag Ignored, only performance-relevant
ECE Flag Ignored, only performance-relevant
URG Flag Must be zero
ACK Flag Ignored for Non-SYN packets
PSH Flag Ignored for Non-SYN packets
RST Flag Ignored for Non-SYN packets
SYN Flag Shadow state, special treatment
FIN Flag Ignored for Non-SYN packets
Window size Ignored, not security-relevant
Checksum Ignored, not security-relevant
Urgent pointer Ignored, since URG must be zero
Options Whitelisting
Padding Must be zero

45

Source Port, Destination Port. In combination with the IP addresses, the
packet validator uses the ports for finding a matching shadow state for both in-
coming and outgoing TCP packets. When connecting to a socket, the source port is
not yet known since it is chosen by the untrusted TCP/IP stack. When a shadow
state gets synchronized with an outgoing SYN packet, then the packet validator
stores the source port in the shadow state.

Sequence Number. We first distinguish between SYN packets and Non-SYN pack-
ets. When a SYN packet is sent or received, we use it for synchronizing a shadow
state. That is, the packet validator stores the sequence number in the shadow state.
If the shadow state is already synchronized, then we only allow a SYN packet if the
sequence number matches the shadow state (i.e. we only allow a re-transmission
of a SYN packet if it is unchanged). A SYN packet must not contain a payload.

For Non-SYN packets, we distinguish between packets that contain or do not contain
a payload. For Non-SYN packets that do not contain a payload, the sequence
number is semantically ignored by TCP. For (Non-SYN) packets that contain a
payload, the packet validator uses the sequence number for determining the correct
payload offset in the TEE shadow state buffer (either in the shadow state send
buffer or in the shadow state receive buffer).

Acknowledgment Number. We ignore the acknowledge number for outgoing
packets. By sending a spoofed acknowledge number, a malicious OS could either
force a TCP re-transmission or the loss of packets. Both only impacts availability
but not security. Independent of the acknowledge numbers, we keep a record of
the bytes that have been received in the shadow state.

However, there exists an edge case where the acknowledge number of an incoming
packet is security-relevant. Specifically, a malicious OS can send multiple SYN

packets that only differ in the sequence numbers, by initiating and closing multiple
subsequent TCP connections. Further, a malicious OS can selectively choose which
outgoing and incoming packets reach their target. This may lead to a situation
where the sequence numbers are not in sync, that is, our shadow state and the
remote end in the local network do not agree on the same initial sequence numbers.
If the sequence numbers are not in sync, then a malicious OS might be able to
inject a legitimate payload into the context of a different TCP connection with the
same tuple of (source port, destination port, source IP, destination IP).

To prevent this kind of attacks, we combine the MACSec replay protection with a
stateful validation of handshake packets. We enforce that for new TCP connections
a valid SYN-ACK packet must be received before allowing any outgoing TCP packets
with a payload. We enforce that the acknowledge number of the SYN-ACK packet
must match the previously sent SYN packet.

46

Data Offset. Data offset holds the size of the TCP header in 4-byte words. This
is necessary to determine the size of the options field. We enforce that data offset
is greater or equal to 5, which corresponds to the minimum TCP header length of
20 bytes.

Reserved. As required by TCP, we enforce that the reserved bits are zero.

Control Flags. The control flags are: NC, CWR, ECE, URG, ACK, PSH, RST, SYN, FIN.
We ignore the flags NC, CWR, ECE since they are only relevant for performance. We
enforce that URG must be zero.

For the remaining flags, we distinguish between SYN packets and Non-SYN packets.
The SYN flag synchronizes a sequence number with the receiving end, which is the
prerequisite for sending a TCP payload and performing a stateful validation of
the TCP payload. Therefore, we treat SYN packets as a special case and perform
a stateful validation of SYN packets. We accept a SYN packet if and only if there
exists an associated shadow state that has not yet been synchronized, or if the SYN
packet is a valid re-transmission for a shadow state that is already synchronized.
Moreover, we enforce the following:

• PSH, RST, FIN must be zero for all SYN packets.

• ACK must be zero for outgoing SYN packets and 1 for incoming SYN packets.

For Non-SYN packets, we ignore the flags ACK, PSH, RST, FIN since we do not need
to track these flags for the validation of outgoing TCP payload. Normally, a ma-
licious OS could use the RST flag for TCP reset attacks [48]. A TCP reset attack
destroys legitimate TCP connections between (unrelated) peers. However, as al-
ready detailed in the section about ARP spoofing and IP spoofing, we prevent
TCP reset attacks on other peers by enforcing a known and valid source IP ad-
dress. Thus, a malicious OS can only destroy its own TCP connections with reset
attacks. The remaining security implication is that a malicious OS can send Non-
SYN packets that do not fit into the current context, e.g. sending a FIN packet
although there does not exist an open TCP connection. Nevertheless, this is not
a security issue since the TCP state machine drops bogus FIN packets or other
unexpected Non-SYN packets.

Window Size, Checksum, Urgent Pointer. These fields are not security
relevant for our setting and hence, ignored.

Options. Options is a variable-sized field in the TCP header that is used for
various options. There exist a few widely used options that are implemented by
more sophisticated TCP/IP stacks. Since we want to prevent a malicious OS from
sending malformed or unexpected options, we enforce a strict whitelisting approach

47

for the options field. Our TCP validation code accepts the following options:

• WINDOW SCALE (RFC 1323)

• TIMESTAMP (RFC 1323)

• MAXIMUM SEGMENT SIZE (RFC 879)

• SACK PERMITTED (RFC 2018)

• SACK (RFC 2018)

The outsource-and-verify approach takes advantage of these options without im-
plementing them inside a TEE. Since these options are not security-relevant by
itself we merely enforce that there are no unexpected or malformed options.

8.2.4 Payload Confidentiality

If MACSec packet encryption is enabled, then the outsource-and-verify approach
should be adapted in order to keep the TCP payload confidential. To do so, we
temporarily replace the payload of TCP packets with a dummy payload.

For outgoing TCP traffic, we replace the payload with a dummy payload in step 3
in Figure 8.2. In step 5, we replace the dummy payload with the payload that is
stored in the shadow state, before encrypting the TCP packet via MACSec. For
incoming TCP traffic, we replace the payload with a dummy payload in step 6
in Figure 8.3. The dummy payload is discarded anyway in step 7. All other steps
remain unchanged.

8.3 PROFINET DCP Validation

PROFINET Discovery and Configuration Protocol (DCP) is a part of the
PROFINET protocol stack [37]. DCP discovers PROFINET devices in a local
network. DCP also supports the assignment of device names and IP addresses to
devices.

In our scenario, we only allow the subset of DCP that is required for the discovery
functionality (read-only functionality). Thus, we want to prevent the assignment of
device names and IP addresses. More specifically, our enclave only allows outgoing
DCP packets that are DCP Identity Requests directed to the multicast address.
This effectively prevents a malicious OS from tampering with PROFINET devices,

48

while still enabling PROFINET discovery functionality. Existing software that
relies on DCP can be used without modifications.

8.4 SNMP Validation

The Simple Network Management Protocol (SNMP) [32] is a protocol for modifying
and collecting information about network devices. In our scenarios, we want to
restrict a malicious OS to the subset of SNMP that is required for collecting
information (a restriction to read-only commands). More specifically, we only
allow outgoing SNMP packets that are either GetNextRequest or GetRequest

packets. This effectively prevents a malicious OS from tampering with SNMP
devices, while still allowing to collect device information via SNMP.

An SNMP device is expected to respond to a Get(Next)Request

with a GetResponse, including a set of variable bindings. These variable bindings
provide status information that is used by untrusted legacy software. SNMP is
based on UDP (User Datagram Protocol). Therefore, we also implement a valida-
tion for UDP headers. SNMP uses the well-known UDP port 161. Hence, we only
accept outgoing UDP packets that are directed to port 161.

8.5 S7COMM+ Stack Validation

In this section, we describe an outsource-and-verify approach for the S7COMM+
protocol stack. After describing the protocol stack we detail our security valida-
tions. Finally, we outline the validation of the ISO-TCP protocol, which acts as
an intermediate layer between TCP and S7COMM+.

8.5.1 Protocol Stack Description

S7COMM+ [29] is a proprietary protocol that is used for communication between
Siemens PLCs (e.g. S7-1200, S7-1500) and industrial software (e.g. TIA Por-
tal). S7COMM+ uses protocol data units (PDUs) that start with the byte 0x72.
S7COMM+ runs on top of ISO-TCP [43], which listens on the well-known TCP
port 102. On top of S7COMM+, Siemens PLCs use the Object Management Sys-
tem Plus (OMS+). OMS+ is an architecture that provides means for creating,
manipulating and deleting objects and attributes of objects, whereas the objects

49

are placed within a (nested) tree structure. The full protocol stack is depicted
in Table 8.2.

Table 8.2: S7COMM+ protocol stack.

OMS+
S7COMM+
ISO-TCP

TCP
IPv4

Ethernet

8.5.2 S7COMM+ Security Validations

S7COMM+ exposes security-critical functionality like PLC program downloads.
A remote attacker can use S7COMM+ to disrupt or manipulate the operation of
industrial equipment [12,31,46].

A typical protection against threats via S7COMM+ is to use a firewall that blocks
TCP port 102. In this work, we follow a more elaborate security approach with
S7COMM+. We perform security checks for the S7COMM+ protocol stack such
that only signed PLC firmware updates are permitted, whereas all other function-
ality of S7COMM+ should be blocked. This can be used in the context of an edge
computing device that implements remote firmware updates.

Due to the complexity of the S7COMM+ protocol stack, this validation is only
possible with a stateful approach. In contrast to the TCP/IP stack validation,
we do not provide an intra-enclave API for interacting with S7COMM+ devices.
Instead, we generate the S7COMM+ shadow state on the fly based on the packets
that are validated. Our packet validation for S7COMM+ includes the following
steps (simplified):

• We extract S7COMM+ PDUs out of a TCP stream that is headed to port 102
(via the ISO-TCP layer). This includes the reassembly of inner fragments
to complete S7COMM+ PDUs. After the reassembly, we enforce that the
S7COMM+ headers are well-formed.

• We only allow the following functions via S7COMM+: SetVariable,
CreateSession, Explore, SetVarSubstreamed, GetVarSubstreamed,
SetMultiVariables, DeleteObject.

• Depending on the function, we only allow specific object ids. For example,

50

the functions CreateSession and DeleteObject must be only used for the
creation and deletion of a so-called session object.

• Depending on the object id’s, we only allow specific object attributes. This
includes the object id’s and attributes that are necessary for deploying a
firmware update.

8.5.3 ISO-TCP

ISO-TCP [43] is used as an intermediate layer between TCP and S7COMM+.
ISO-TCP on its own is not security-critical. Thereby, we perform a white-listing
to enforce that a well-formed ISO-TCP stream is sent to port 102. We extract
ISO-TCP chunks out of the TCP stream and pass those chunks to the higher-level
validation code for S7COMM+.

More specifically, ISO-TCP splits a TCP stream into chunks that are denoted as
Transport Protocol Data Units (TPDUs). One or more subsequent TPDUs form a
larger chunk that is denoted as Transport Service Data Unit (TSDU). We perform
the following steps for the validation of an ISO-TCP stream:

1. We enforce that an ISO Connect Request is sent right after the establish-
ment of a new TCP connection. This is the normal protocol flow and any
deviations are not expected.

2. We extract TPDUs out of the TCP stream that is headed to port 102.

3. We reassemble TSDUs out of the extracted TPDUs. Each TSDU contains a
S7COMM+ PDU that is passed to the higher-level validation code.

51

Chapter 9

Implementation Details

Our implementation is entirely written in C and requires a Linux system along with
the SGX Driver and the SGX Platform Software. For systems where SGX is not
available, our implementation supports a simulation mode for testing purposes. We
tested our implementation for interoperability with the MACSec implementation
of the Linux kernel.

9.1 Component Description

A layer representation of the system architecture is depicted in Figure 9.1. Trusted
components are highlighted with a green color. This section provides implemen-
tation details about the components and the communication between them.

52

Figure 9.1: Layered system architecture.

SGX Enclave. Beside of protocol validation code, the enclave may provide
application-specific logic for accessing the protected network.

Trusted Network Library. The trusted network library implements all the
network security functionality that is described in this work. This includes the
packet validator and the trusted socket API. The trusted socket API provides the
following TCP socket functions for app-specific enclave code: connect(), send(),
recv(), close(). The trusted network library consists of mostly self-contained C
code. The only dependencies are the trusted libraries that are shipped with the
SGX SDK. These trusted libraries implement a small subset of the C standard

53

library, as well as a few cryptographic and SGX-specific functions.

Host Application. The host application is a regular Linux process that hosts
the enclave of an SGX-secured network interface. At startup, the host application
performs the following tasks:

• Launch the enclave.

• Load the support library. The support library configures the SGX-secured
network interface and launches the packet forwarding threads.

• Load sealed MACSec keys into the enclave.

TAP Interface. A TAP interface is a virtual Ethernet interface that is imple-
mented by a Linux kernel driver. From an application perspective, a TAP interface
behaves like a regular network interface. If an application uses a TCP socket via
system calls, then the data traverses the kernel networking stack and the resulting
raw Ethernet packets may be routed to the TAP interface. Hence, even untrusted
legacy applications can open sockets whose traffic is outbound from the TAP inter-
face. From a kernel perspective, each TAP interface must be bound to exactly one
process that holds a special file descriptor for sending and receiving raw Ethernet
packets. In our case, the TAP interface is linked to the support library, which
forwards packets to packet validator.

Support Library. The support library acts as a bridge between the trusted net-
work library and the operating system. The support library holds two raw socket
file descriptors : One for the TAP interface, and one for the MACSec gateway.
Two dedicated threads forward the packets between the TAP interface and the
MACSec gateway, traversing the packet validator. We statically link the support
library within the host application.

9.2 TCP Optimizations

Our trusted socket API implements additional optimizations that are not described
in Chapter 8. The shadow state holds a TEE send buffer and a TEE receive buffer
for each open TCP connection. Normally, one would use a data structure like a ring
buffer or a linked list buffer for implementing dedicated send buffers and receive
buffers. However, our trusted socket API does not implement any dedicated send
buffer or receive buffer. Instead, our shadow state points to the original buffers
that were passed by the user of the trusted socket API.

This optimization improves the performance by avoiding an additional copy of the

54

data. On the other hand, this optimization has the following implications on the
trusted socket API: The buffer that is passed to the send() function must be kept
valid and unaltered until one of the following events occur:

• The close() function returns after closing the socket.

• The receiving end responds to the sent data, acknowledging the receipt of
the data at the application level.

Moreover, we require that the TEE pre-allocates a single receive buffer of sufficient
size that is used during the entire live time of a TCP connection. This pre-allocated
buffer must be kept valid until the close() function returns. Chapter 10 evaluates
this optimized version of the trusted socket API.

55

Chapter 10

Evaluation

This chapter evaluates our implementation with respect to code size, performance
and usage scenarios.

10.1 Security

We use a MACSec gateway for preventing a malicious OS from directly accessing
a local network. MACSec protects packets between an enclave and the MACSec
gateway. We achieve mutual authentication between a MACSec gateway and an
enclave by installing pre-shared keys. We prevent fake key installations in the
enclave by signing sealed MACSec keys via a trusted third party. The security
of outsource-and-verify critically depends on the correct validation. For instance,
our TCP validation combines a stateless validations with a stateful validation of
payload. The payload is given by a higher-level protocol, whose security should
be evaluated separately.

Code Size. A major goal of the outsource-and-verify approach is to shrink the
trusted code base. In Table 10.1, we compare the code size of our TCP/IP/ARP
validation with the code size of picotcp [1]. picotcp is a small-footprint, modular
TCP/IP stack. picotcp includes separate modules for TCP/IPv4/ARP. We only
count the code of the TCP/IPv4/ARP modules, instead of the complete picotcp

stack. For the outsource-and-verify approach, we only count code that is running
inside a TEE. All line counts are done with the cloc tool. Comments and blank
lines are excluded; all other lines are counted.

Table 10.1 clearly shows that outsorce-and-verify is effective in shrinking the
trusted code base. Our TEE code is an order of magnitude smaller than the

56

comparable modules of picotcp. A smaller trusted code base leads to a higher
level of security confidence.

Table 10.1: Code size comparison between outsource-and-verify and
picotcp [1].

Protocol Outsource-
and-verify

picotcp
stack [1]

TCP 333 2.653
IPv4 69 1.379
ARP 27 448

Table 10.2 lists the code size for all the functionality that is implemented by
our trusted network library. One can see that outsource-and-verify is feasible in
practice.

Table 10.2: Code size of our trusted network library.

Functionality Lines of code
Trusted socket API 53
TCP validation 333
IPv4 validation 69
ARP validation 27
SNMP validation 105
PROFINET DCP validation 27
ISO/TCP validation 246
S7COMM+ validation 125
OMS+ validation 158
SGX packet validation interface 90
SGX-MACSec protocol 163
SGX-MACSec key installation (sealing) 51
SGX-MACSec key loading (unsealing) 43
Utility functions 130

10.2 Performance

The goal of this section is to evaluate the individual performance overhead that is
introduced by the following aspects of our implementation:

57

• TAP forwarding: Overhead of using a TAP interface.

• SGX forwarding: Overhead of the ECALLs for copying packets from and to
an enclave.

• Trusted socket API: Overhead of the OCALLs and ECALLs that are intro-
duced by our trusted socket API.

• MACSec: Overhead of our SGX-MACSec implementation and the MACSec
gateway.

To perform this evaluation, we implemented a hierarchy of test modes that range
from a regular Ethernet interface to the full SGX-secured interface that we intro-
duced in this work.

Test Setup. We conduct this performance evaluation with two machines that are
placed in the same local network. Both machines run Ubuntu 18.04 as OS. One
machine is the SGX-secured machine; the other machine does not use SGX. The
SGX-secured machine is a SIMATIC IPC427E featuring an Intel Core i5-6442EQ
CPU (an Industrial PC). The other machine is a Fujitsu Lifebook featuring an
Intel Core i5-2520M (without SGX support).

The SGX-secured machine represents an edge computing device; the other machine
represents a device in a security-critical local network. The SGX-secured machine
acts as a client (connecting to TCP ports). The other machine acts as a server
(listening on TCP ports). The server simulates the MACSec gateway with the
Linux kernel implementation of MACSec.

Benchmark Tests. We run the following three benchmark tests for all test
modes:

• UDP round-trips: Evaluating the round-trip latency of UDP packets.

• HTTP requests: Evaluating the performance of short-lived TCP connections.

• Bulk data transfer: Large amount of data via a single TCP connection.

For each combination of test mode and benchmark test, we repeat the benchmark
test 10 times to estimate the standard deviation of the measured execution times.
All benchmark results are given in seconds.

UDP Round-trips. This benchmark measures the latency of UDP packet trans-
missions. The client sends a UDP packet to the server, and the server responds
with a UDP packet. We repeat this round-trip 15 000 times. The client generates
the UDP packets independently of the enclave. The enclave only performs the val-
idation of UDP packets. Table 10.3 shows that overheads for the TAP interface,

58

for the SGX ECALLs and for MACSec are approximately 15%. As expected, the
stateless validation of UDP packets has a negligible overhead within the standard
deviation.

Table 10.3: 15 000 UDP round-trips benchmark results.

Test mode Mean
execution
time

Standard
deviation

Diff Relative
diff

Regular interface 1.987 0.092 - -
+ TAP forwarding 2.278 0.079 0.291 14.64 %
+ SGX forwarding 2.610 0.090 0.332 16.73 %
+ UDP validation 2.616 0.099 0.006 0.28 %
+ MACSec 2.919 0.064 0.303 15.26 %

HTTP Requests. This benchmark consists of 7 500 sequential HTTP requests.
The server responds to those requests with a constant, small response. Due to the
frequent TCP handshakes and tear-downs, this benchmark measures the round-
trip latency of packets. For the trusted socket API, we generate the TCP stream
inside the enclave. Table 10.4 shows that the execution time increases according
to the hierarchy of the test modes. The overhead of our trusted socket API for
TCP/IP stacks is only 5.7%. The largest overhead stems from the SGX ECALLs
(22.54%).

Table 10.4: 7 500 HTTP requests benchmark results.

Test mode Mean
execution
time

Standard
deviation

Diff Relative
diff

Regular interface 2.337 0.054 - -
+ TAP forwarding 2.665 0.066 0.327 14.00 %
+ SGX forwarding 3.192 0.053 0.527 22.54 %
+ Trusted socket API 3.325 0.057 0.133 5.70 %
+ MACSec 3.679 0.050 0.354 15.14 %

Bulk Data Transfer. The client sends a 50MB chunk to the server via a single
TCP connection. The 50MB chunk is transferred within TCP packets of approx-
imately 1500 bytes size. Therefore, this benchmark measures the throughput in-
stead of the round-trip latency. Table 10.5 shows that the execution time increases
according to the hierarchy of the test modes. It appears that the TAP interface

59

has a small overhead for the throughput of packets (4.06%). The overhead of our
trusted socket API is expensive (42.13%). A part of this overhead is necessary
anyways because we generate the entire TCP stream within the enclave before
copying it to untrusted memory. Moreover, we suspect SGX memory latency as
reason for the slowdown since we store and compare the entire 50MB chunk within
enclave memory [50].

Table 10.5: 50MB bulk data benchmark results.

Test mode Mean
execution
time

Standard
deviation

Diff Relative
diff

Regular interface 1.067 0.030 - -
+ TAP forwarding 1.110 0.041 0.043 4.06 %
+ SGX forwarding 1.256 0.050 0.146 13.68 %
+ Trusted socket API 1.706 0.067 0.449 42.13 %
+ MACSec 2.032 0.066 0.326 30.58 %

10.3 Benefits of Outsource-and-verify

Beside of shrinking the trusted code base, outsource-and-verify may improve the
compatibility of a TEE with existing legacy software. For instance, we applied
an existing tool for deploying a firmware update through our S7COMM+ valida-
tion. With regard to TCP/IP stacks, the Linux ecosystem provides a rich facility
of network configuration and network statistics tools. The outsource-and-verify
approach takes advantage of these tools without moving the entire ecosystem into
the trusted computing base.

60

Chapter 11

Conclusion

We presented a concept for binding a network interface to an SGX enclave. We
demonstrated how outsource-and-verify for protocol stacks reduces the size and
complexity of TEE implementations. We validate all network packets inside a
TEE. Our validation code is significantly smaller than lightweight implementations
of protocol stacks. We validate TCP/IP with fewer than 500 lines of code. Our
evaluation indicates that the performance overhead of this approach is feasible.
For example, our UDP benchmark has an overhead of 31.65% for the SGX packet
validation and 15.26% for MACSec. Furthermore, we described the adoption of
MACSec for SGX and identified security issues in MACSec. Finally, we addressed
the problem of authenticating an enclave towards a trusted I/O device: Firstly, we
improved the SGX-USB protocol of Jang [27]. Secondly, we presented a protocol
that provides a symmetric mutual authentication for an SGX environment.

61

Bibliography

[1] PicoTCP. https://github.com/tass-belgium/picotcp. (accessed 2019-02-04).

[2] Ieee standard for local and metropolitan area networks: Media access control
(mac) security. IEEE Std 802.1AE-2006 (Aug 2006).

[3] Ieee standard for local and metropolitan area networks–media access con-
trol (mac) security amendment 1: Galois counter mode–advanced encryp-
tion standard– 256 (gcm-aes-256) cipher suite. IEEE Std 802.1AEbn-2011
(Amendment to IEEE Std 802.1AE-2006) (Oct 2011).

[4] Ieee standard for local and metropolitan area networks—media access con-
trol (mac) security amendment 2: Extended packet numbering. IEEE Std
802.1AEbw-2013 (Amendment to IEEE Std 802.1AE-2006) (Feb 2013).

[5] Ieee standard for local and metropolitan area networks – port-based network
access control amendment 1: Mac security key agreement protocol (mka)
extensions. IEEE Std 802.1Xbx-2014 (Amendment to IEEE Std 802.1X-2010)
(Dec 2014).

[6] Ieee standard for ethernet. IEEE Std 802.3-2015 (Revision of IEEE Std 802.3-
2012) (March 2016).

[7] Ieee standard for local and metropolitan area networks–media access con-
trol (mac) security - amendment 3:ethernet data encryption devices. IEEE
Std 802.1AEcg-2017 (Amendment to IEEE Std 802.1AE-2006 as amended by
IEEE Std 802.1AEbn-2011 and IEEE Std 802.1AEbw-2013) (May 2017).

[8] Ieee standard for local and metropolitan area networks-media access control
(mac) security. IEEE Std 802.1AE-2018 (Revision of IEEE Std 802.1AE-
2006) (Dec 2018).

[9] Alder, F., Kurnikov, A., Paverd, A., and Asokan, N. Migrating
sgx enclaves with persistent state. In 2018 48th Annual IEEE/IFIP Interna-

62

tional Conference on Dependable Systems and Networks (DSN) (2018), IEEE,
pp. 195–206.

[10] ARM, A. TrustZone. https://developer.arm.com/technologies/trustzone.
(accessed 2019-02-01).

[11] Aumasson, J., and Merino, L. Sgx secure enclaves in practice. Black Hat
USA (2016).

[12] Beresford, D. Exploiting siemens simatic s7 plcs. Black Hat USA 16
(2011), 723–733.

[13] Böck, H., Zauner, A., Devlin, S., Somorovsky, J., and Jovanovic,
P. Nonce-disrespecting adversaries: Practical forgery attacks on gcm in tls.
In 10th USENIX Workshop on Offensive Technologies (WOOT 16) (2016).

[14] Brickell, E., and Li, J. Enhanced privacy id: A direct anonymous at-
testation scheme with enhanced revocation capabilities. In Proceedings of the
2007 ACM workshop on Privacy in electronic society (2007), ACM, pp. 21–30.

[15] Champagne, D., and Lee, R. B. Scalable architectural support for trusted
software. In High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on (2010), IEEE, pp. 1–12.

[16] Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P., Wald-
spurger, C. A., Boneh, D., Dwoskin, J., and Ports, D. R. Over-
shadow: a virtualization-based approach to retrofitting protection in commod-
ity operating systems. ACM SIGOPS Operating Systems Review 42 (2008),
2–13.

[17] Chhabra, S., Rogers, B., Solihin, Y., and Prvulovic, M. Secureme:
a hardware-software approach to full system security. In Proceedings of the
international conference on Supercomputing (2011), ACM, pp. 108–119.

[18] Costan, V., and Devadas, S. Intel sgx explained. IACR Cryptology ePrint
Archive 2016 (2016), 1–118.

[19] Costan, V., Lebedev, I. A., and Devadas, S. Sanctum: Minimal hard-
ware extensions for strong software isolation. In USENIX Security Symposium
(2016), pp. 857–874.

[20] Deering, S. E., and Hinden, R. M. Internet protocol, version 6
(ipv6) specification. RFC 2460, RFC Editor, December 1998. http://www.

rfc-editor.org/rfc/rfc2460.txt.

63

http://www.rfc-editor.org/rfc/rfc2460.txt
http://www.rfc-editor.org/rfc/rfc2460.txt

[21] Dhar, A., Puddu, I., Kostianen, K., and Čapkun, S. Proximitee:
Hardened sgx attestation and trusted path through proximity verification.
IACR Cryptology ePrint Archive (2018).

[22] Dharmapurikar, S., and Paxson, V. Robust tcp stream reassembly in
the presence of adversaries. In USENIX Security Symposium (2005), pp. 65–
80.

[23] Dunkels, A. Design and implementation of the lwip tcp/ip stack. Swedish
Institute of Computer Science 2 (2001).

[24] Eskandarian, S., Cogan, J., Birnbaum, S., Brandon, P. C. W.,
Franke, D., Fraser, F., Garcia Jr, G., Gong, E., Nguyen, H. T.,
Sethi, T. K., et al. Fidelius: Protecting user secrets from compromised
browsers. IEEE Symposium on Security and Privacy (2018).

[25] Harkins, D. Synthetic initialization vector (siv) authenticated encryption
using the advanced encryption standard (aes). Tech. rep., 2008.

[26] Intel. Software guard extensions programming reference, revision 2, 2014.

[27] Jang, Y. J. Building trust in the user I/O in computer systems. PhD thesis,
Georgia Institute of Technology, 2017.

[28] Joux, A. Authentication failures in nist version of gcm. NIST Comment
(2006).

[29] Kleinmann, A., and Wool, A. Accurate modeling of the siemens s7
scada protocol for intrusion detection and digital forensics. Journal of Digital
Forensics, Security and Law 9 (2014).

[30] Kumar, A. Active platform management demystified: unleashing the power
of intel VPro (TM) technology. Intel Press, 2009.

[31] Lei, C., Donghong, L., and Liang, M. The spear to break the security
wall of s7commplus. Black Hat USA (2017).

[32] Levi, D., Meyer, P., and Stewart, B. Simple network management
protocol (snmp) applications. STD 62, RFC Editor, December 2002. http:

//www.rfc-editor.org/rfc/rfc3413.txt.

[33] Maene, P., Götzfried, J., De Clercq, R., Müller, T., Freiling,
F., and Verbauwhede, I. Hardware-based trusted computing architectures
for isolation and attestation. IEEE Transactions on Computers 67 (2018),
361–374.

64

http://www.rfc-editor.org/rfc/rfc3413.txt
http://www.rfc-editor.org/rfc/rfc3413.txt

[34] Matetic, S., Ahmed, M., Kostiainen, K., Dhar, A., Sommer, D.,
Gervais, A., Juels, A., and Capkun, S. Rote: Rollback protection for
trusted execution. In USENIX Security Symposium (2017), pp. 1289–1306.

[35] McCune, J. M., Parno, B. J., Perrig, A., Reiter, M. K., and
Isozaki, H. Flicker: An execution infrastructure for tcb minimization. In
ACM SIGOPS Operating Systems Review (2008), vol. 42, ACM, pp. 315–328.

[36] McCune, J. M., Perrig, A., and Reiter, M. K. Bump in the ether:
A framework for securing sensitive user input. In Proceedings of the annual
conference on USENIX’06 Annual Technical Conference (2006), pp. 17–17.

[37] Neumann, P., and Poschmann, A. Ethernet-based real-time communi-
cations with profinet io. WSEAS Transactions on Communications 4 (2005),
235–245.

[38] Perrig, J. M. M. A., and Reiter, M. K. Safe passage for passwords and
other sensitive data. In Proceeding of the 16th Annual Network and Distributed
System Security Symposium (2009).

[39] Plummer, D. C. Ethernet address resolution protocol: Or converting
network protocol addresses to 48.bit ethernet address for transmission on
ethernet hardware. STD 37, RFC Editor, November 1982. http://www.

rfc-editor.org/rfc/rfc826.txt.

[40] Postel, J. User datagram protocol. STD 6, RFC Editor, August 1980.
http://www.rfc-editor.org/rfc/rfc768.txt.

[41] Postel, J. Internet protocol. STD 5, RFC Editor, September 1981. http:

//www.rfc-editor.org/rfc/rfc791.txt.

[42] Postel, J. Transmission control protocol. STD 7, RFC Editor, September
1981. http://www.rfc-editor.org/rfc/rfc793.txt.

[43] Rose, M., and Cass, D. Iso transport service on top of the tcp version: 3.
STD 35, RFC Editor, May 1987.

[44] Ruan, X. Platform Embedded Security Technology Revealed: Safeguarding the
Future of Computing with Intel Embedded Security and Management Engine.
Apress, 2014.

[45] Shih, M.-W., Lee, S., Kim, T., and Peinado, M. T-sgx: Eradicating
controlled-channel attacks against enclave programs. In Proceedings of the
2017 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA (2017).

65

http://www.rfc-editor.org/rfc/rfc826.txt
http://www.rfc-editor.org/rfc/rfc826.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt

[46] Spenneberg, R., Brüggemann, M., and Schwartke, H. Plc-blaster:
A worm living solely in the plc. Black Hat Asia 16 (2016).

[47] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B.,
Piessens, F., Silberstein, M., Wenisch, T. F., Yarom, Y., and
Strackx, R. Foreshadow: Extracting the keys to the intel sgx kingdom with
transient out-of-order execution. In USENIX Security Symposium (2018),
pp. 991–1008.

[48] Watson, P. Slipping in the window: Tcp reset attacks. Technical Whitepaper
(2004).

[49] Weiser, S., and Werner, M. Sgxio: generic trusted i/o path for intel sgx.
In Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy (2017), ACM, pp. 261–268.

[50] Weisse, O., Bertacco, V., and Austin, T. Regaining lost cycles with
hotcalls: A fast interface for sgx secure enclaves. In ACM SIGARCH Com-
puter Architecture News (2017), vol. 45, ACM, pp. 81–93.

[51] Zhou, Z., Gligor, V. D., Newsome, J., and McCune, J. M. Building
verifiable trusted path on commodity x86 computers. In IEEE Symposium on
Security and Privacy (2012), IEEE, pp. 616–630.

[52] Zhou, Z., Yu, M., and Gligor, V. D. Dancing with giants: Wimpy
kernels for on-demand isolated i/o. In IEEE Symposium on Security and
Privacy (2014), IEEE, pp. 308–323.

66

	Introduction
	Background
	Trusted Execution Environments
	Intel SGX
	Intel ME
	Trusted I/O
	Network Protocols

	Related Work
	Trusted I/O with Hypervisors
	Trusted I/O with Cryptographic Channels

	Concept for an SGX-secured Network Interface
	Packet Flow
	Threat Model
	Authentication and Key Exchange
	One-way Authentication
	Mutual Authentication

	Outsource-and-verify

	MACSec
	Background
	Standard Amendments
	Nonce Reuse Attacks
	Susceptibility to Nonce Reuses
	Proposal for Alternative Cipher Suites
	Session-based MACSec Keys

	Replay Protection
	Replay Protection Window
	Integer Overflow Attack

	SGX Embedded Remote Attestation
	Regular SGX Remote Attestation Protocol
	SGX-USB from Jang
	Replay Attack against SGX-USB
	Limitations of SGX Embedded Remote Attestation
	Security
	Reliability

	SGX Mutual Authentication
	Initial Key Installation
	Fake Key Installations
	Key Installation with Monotonic Counters
	Key Installation with Signing Facility

	Outsource-and-verify for Network Protocol Stacks
	ARP/IP Validation
	TCP/IP Stack Validation
	Outgoing Data Flow
	Incoming Data Flow
	TCP Header Validation
	Payload Confidentiality

	PROFINET DCP Validation
	SNMP Validation
	S7COMM+ Stack Validation
	Protocol Stack Description
	S7COMM+ Security Validations
	ISO-TCP

	Implementation Details
	Component Description
	TCP Optimizations

	Evaluation
	Security
	Performance
	Benefits of Outsource-and-verify

	Conclusion

