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Abstract

While indoor positioning has been an important research topic for many
years, no dominant standard has emerged yet. The Bluetooth Low Energy
specification offers an interesting possibility for smartphone-based applica-
tions and was the chosen wireless technology for this work.

A reference environment of approximately 140 m2 was equipped with 24

Bluetooth Low Energy beacons and a fingerprint database was created by
gathering data at specific locations. A common occurrence during data
gathering is the absence of signals from remote beacons, i.e. missing data.
An Indoor Positioning System using Feedforward Neural Networks was
developed with an emphasis on integrating this missing data information.
The best performing architecture achieves a median test error of 1.624 m,
significantly outperforming a k-nearest neighbors approach.

Data gathering was done using three distinct smartphone devices. Further-
more, several ways of aggregating data for network training and inference
were investigated. The amount of received beacon signals during data gath-
ering was found to vary significantly between devices, which has a strong
impact on the Indoor Positioning System performance for hardware-specific
data sets. The implemented Indoor Positioning System achieves promising
results, but future work is needed to evaluate performance on non-stationary
devices, i.e. moving clients.
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Zusammenfassung

Obwohl Indoor Positioning bereits seit vielen Jahren ein wichtiges Forschungs-
thema ist, gibt es aktuell noch keinen dominanten Standard. Bluetooth Low
Energy bietet interessante Verbesserungen zu existierenden Standards im
Smartphone-Bereich und wurde für diese Arbeit als Drahtlostechnologie
gewählt.

Es wurde eine ca. 140 m2 große Referenzumgebung mit 24 Bluetooth
Low Energy Beacons ausgestattet und eine Fingerprint Database erstellt.
Während der Datenaufzeichnung geschieht es häufig, dass von weit entfer-
nten Beacons keine Signale empfangen werden, hierbei handelt es sich um
Missing Data. Ein Indoor Positioning System, basierend auf Feedforward
Neural Networks, wurde entwickelt. Besonderer Fokus wurde hierbei auf
die Integration von Missing Data in den Lernprozess gelegt. Das beste Mod-
ell erreicht einen Fehler Median von 1.624 m auf den Testdatensatz. Dies ist
signifikant besser als ein verglichener k-nearest neighbors Ansatz.

Die Datenaufzeichnung erfolgte mit drei unterschiedlichen Geräten. Es
wurden verschiedene Arten der Datenaufbereitung und Datenaggregation
beim Erstellen von Datensätzen für das Trainieren von Netzwerken un-
tersucht. Es zeigte sich, dass die Anzahl von empfangenen Signalen beim
Datenaufzeichnen stark vom verwendeten Gerät abhängt. Dies hatte auch
starke Auswirkungen auf die Genauigkeit des Indoor Positioning Systems
bei Hardware-spezifischen Datensätzen.

Das Indoor Positioning System erzielt bereits vielversprechende Resultate.
Weiterführende Arbeit in der Leistungsevaluierung von Datensätzen, welche
aus der Datenaufzeichnung entlang von Pfaden stammen, ist notwendig.
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1 Introduction

Determining the position of mobile devices has been an important research
area for many years. Global Navigation Satellite Systems (GNSS), such
as the Global Positioning System (GPS), have become part of daily usage
habits for many smartphone users. However, GNSS do poorly in indoor
environments, as the used signals do not penetrate buildings.

Indoor positioning Systems (IPS) aim to solve localization in these environ-
ments using a multitude of approaches. Some of the technologies and media
used are: radio (e.g. WiFi, Ultra-Wide Band (UWB) and Bluetooth), light,
audio, magnetic fields, orientation and angular velocity sensors. Solutions
focusing on WiFi signals are currently among the most commonly used,
as infrastructure (i.e. WiFi access points) is already existent in virtually all
indoor environments. Nevertheless, positioning is usually rather coarse as
increasing accuracy also means increasing the number of comparatively
expensive access points. Bluetooth has been growing as an alternative, es-
pecially with the advent of the Bluetooth Low Energy (BLE) standard. BLE
beacons are tailored specifically for indoor positioning. They are small, easy
to deploy and can run on battery power for years.

In this work, an IPS implementation using BLE beacons is examined. The
IPS makes use of location fingerprinting, which includes building a database
that maps a set of Received Signal Strength (RSS) values of BLE beacons
at a point in time to the location of the data-gathering device. This data is
used to train a feedforward neural network (FFNN). Gathered signals are
grouped together based on time windows, with the chosen window size
being a trade-off between positioning accuracy and latency. The effects of
varying window sizes is also subject of this work. Furthermore, depending
on the window size, the environment layout and the number of deployed
beacons, a client device might be missing signals from a set of beacons for
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1 Introduction

any given time window. Thus, among other traditional hyperparameters,
two approaches of incorporating information about missing data into the
FFNN are examined.

1.1 Outline

Chapter 2 explains techniques and technologies used in this work. Firstly,
general indoor localization approaches are discussed, followed by a brief
comparison of WiFi and Bluetooth technologies. Secondly, an introduction
to FFNN is given including a brief explanation of the backpropagation
algorithm. Finally, an overview of selected articles relevant to this work is
given.

Chapter 3 goes into detail concerning the processes of data gathering and
aggregation. The reference environment and devices are introduced and the
structure of the gathered data is explained in detail.

The implemented IPS is discussed in Chapter 4, starting with a discussion on
the approaches of how to incorporate missing data information. Afterwards,
the individual modules of IPS are examined.

The stepwise process of evaluating different hyperparameter values for the
IPS are discussed in Chapter 5. Furthermore, the consequences of using data
from different devices in either concatenated or strictly separated datasets
are shown. Lastly, the performance of a simple k-nearest neighbor approach
is given when applied to the same datasets as the implemented IPS.

Finally, Chapter 6 offers discussion on the results and provides an outlook
concerning future work.
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2 Background

2.1 Indoor positioning using BLE

This work investigates the use case of indoor positioning (IP) using smart-
phones. There are various techniques for IP which utilize multiple data
sources available in a typical device. This section gives an overview of
the most common approaches for IP (trilateration and location fingerprint-
ing [14]) and the data sources used, and will go into more detail about
Bluetooth Low Energy (BLE), which is the technology that is focused on by
the IP approach presented in Chapter 4.

Among the data sources that are relevant for IP and most commonly avail-
able in consumer smartphones are the following [6]:

• Radio Frequency (RF) Signals such as Wireless Local Area Network
(WLAN, often also referred to as “Wi-Fi”) and Bluetooth.
• Sensors such as Gyroscope, Accelerometer, Barometer and Magne-

tometer

Localization using received RF signals mainly rely on the two data points
gained by such a signal: the identity of the sender and the Received Sig-
nal Strength Indicator (RSSI). The latter is a numeric value measured in
decibel-milliwatts (dBm) and is proportional to the distance of sender and
receiver [20]. Ideally the distance d is related to the signal power Pr in the
inverse square law Pr ∝ d−2, but real world scenarios introduce various
sources of noise, extending the previous formula to include other factors
such as a parameter that requires the calibration of each pair of sender and
receiver [8]. While these difficulties show that the RSSI is not completely
reliable, depending on the actual environment and the level of calibration
that was done, it is still a valid basis for IP.

3



2 Background

2.1.1 Trilateration

The most direct IP approach is called trilateration and it works by first
mapping the sender identity of received signals to its position. The sender
id to position mapping needs to be maintained in some form of database
and has to be input manually during installation. Then the RSSI is used
to approximate the distance to this sender. When at least three distances
to senders are known, trilateration is used to approximate the client’s
position.

2.1.2 Fingerprinting

Another common approach is fingerprinting. This technique works in two
steps: an offline and an online step. For the offline part a fingerprint database
is build by gathering RF signals for a set of positions (ideally all available
positions) in the reference environment and storing the RSSI. These sam-
ples are often called fingerprints or calibration points and the database is
sometimes referred to as a Radio Map. The core idea of this technique is to
determine the “typical” set of signals for each location, usually in the form
of RSSI means for each sender and position. This information is then used
in the online step, which is the actual location computation. For a given
set of gathered data the fingerprint database is searched for the best match
using a defined criteria such as the Euclidean distance.

2.1.3 BLE compared to WiFi

The most commonly used RF technologies are WLAN and Bluetooth, with
the latter gaining more popularity recently and especially since the intro-
duction of the BLE standard. Some advantages of BLE over WLAN are:

• BLE beacons are generally cheaper than WLAN access points(AP).
• Lower energy consumption (BLE)
• BLE beacons are easily deployable in large numbers and thus provide

more potential for higher localization accuracies.
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Additionally there are further hindrances that WLAN faces when technical
implementation details on smartphones are factored in, such as: lower scan
interval, interference with actual network traffic and lack of access to RSSI
of non-connected APs [9].

2.2 Neural Networks

The IPS discussed in Chapter 4 makes use of feedforward neural networks
(FFNN). Neural networks (NN) in general are used to approximate some
function f ∗ with a function f (x; θ), where x is the input and θ is a set
of adjustable parameters. This is done using pairs of learning examples,
which map x to the desired output t (target). The function approximation is
improved during the training of the NN by iteratively evaluating the current
approximation f (x), computing the approximation error by comparing the
output with the given target values t and using the computed error for
adjusting the parameters θ [11].

A FFNN consists of multiple layers, where each layer consists of a set of
nodes, each being a linear combination of its input applied to a nonlinear
activation function. The “feedforward” part specifies that nodes of a layer
only have connections to nodes of subsequent layers.

The following is an exemplary definition of a two layer FFNN, with the first
layer defined as follows:

zj = h(1)
(

D

∑
i=1

xiw
(1)
j,i + w(1)

j,0

)
(2.1)

with (1) indicating the layer, xi with i = 1, ..., D indicate the FFNN input
variables, h(1)(·) being a nonlinear element-wise activation function, w(1)

j,i

are weights and w(1)
j,0 are biases. The set of adjustable parameters θ is given

by weights and biases of all layers. j = 1, ..., M indicates the number of
nodes in the current layer, with zj being output of the jth node.
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The output layer is given analogously by:

yk = h(2)
(

M

∑
j=1

zjw
(2)
k,j + w(2)

k,0

)
(2.2)

where yk with k = 1, ..., K indicate the FFNN outputs. This simple network
architecture can be extended by adding more layers of the form that is
shown in Equation (2.2) [3].

The activation function on the output layer (or simply output function) is
chosen based on what kind of output is desired by the network and what
error function is used. Common configurations include:

1 Binary classification: sigmoid output function with binary cross-entropy
(BCE) error function

2 Classification for multiple classes: softmax output function with cross-
entropy (CE) error function

3 Regression: linear output function with mean squared error (MSE)
function

In this work the desired outputs are x and y coordinates on a 2-dimensional
plane and all investigated FFNN architectures will follow the 3rd approach.

The total network function can thus be depicted as

yk = h(2)
(

M

∑
j=1

w(2)
k,j h(1)

(
D

∑
i=1

xiw
(1)
j,i + w(1)

j,0

)
+ w(2)

k,0

)
(2.3)

A graphical representation of this network is shown in Figure 2.1. Evaluating
this function for a given input is called forward propagation.

2.2.1 Activation Functions

While the Rectified Linear Unit (ReLU) is a generally recommended choice
for the activation function, there are many other choices and determining
which function yields the best results for a given problem set often requires a
process of trial and error [11] [10]. Figure 2.2 shows the activation functions
discussed in this section.
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HiddenInput
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Figure 2.1: Graphical representation of the network function shown in Equation (2.3).

ReLU

The rectified linear unit is given by f (x) = max{0, x}. The derivative for
x <= 0 is defined to be 0 and is 1 everywhere else. Its computationally
cheap and performs well across a variety of domains [10].

ELU

The exponential linear unit is given as

f (x) =

{
x if x > 0
α(exp(x)− 1) if x ≤ 0

and the derivative as

f ′(x) =

{
1 if x > 0
f (x) + α if x ≤ 0

It is identical to ReLU for positive x, but allows for negative values, which
increases learning speed [4]. In this work the hyperparameter was chosen
as α = 1.
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Figure 2.2: Activation functions discussed in Section 2.2.1

TanH

The hyperbolic tangent activation function f (x) = tanh(x) is bound by
(−1, 1) and closely related to the sigmoid function, which is also a popular
activation function. The derivative is given by f ′(x) = 1− f (x)2 [11].

Backpropagation

The key ingredient in the iterative improvement during FFNN training is the
continuous alternation between forward and backpropagation. By executing
a forward pass, the network computes an estimation y for target t based on
inputs x and adjustable parameters θ. The deviation from the desired output
is then measured using some error function E(w). With this information
backpropagation is done, consisting of two main parts:

1. Calculate the derivatives of the error function E(w) with respect to
each weight.
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2. Adjust the weight values based on the individual error derivatives and
some update scheme. The simplest technique for doing this is called
basic gradient descent.

A detailed description of the full algorithm is given in [3] and [11].

2.3 k-nearest neighbors

A k-nearest neighbors (kNN) algorithm is compared with the IPS developed
in this work in Chapter 5. The implementation of the kNN regressor in
the Scikit-learn [16] library is used for this purpose1. The kNN regressor
algorithm works on P training samples, each consisting of multidimen-
sional input and target data. It stores the P training inputs, each having S
dimensions, in matrix XTr ∈ RPxS. The P training targets, each having Q
dimensions, are stored in matrix YTr ∈ RPxQ. Regression is done for a new
data point (test input) xTe ∈ RS by finding its k nearest neighbors in XTr.
Nearness is calculated using a distance function, e.g. Euclidean distance.
The final target prediction yTe ∈ RQ is calculated by using the average of
each of the Q dimensions of the rows in YTr that correspond to the k nearest
neighbors. The pseudocode of these operations is given in Algorithm 1.

Input: Training inputs XTr and corresponding Training targets YTr
Test inputs XTe
k neighbors
Result: Test predictions YTe
foreach xTe ∈ XTe do

compute Euclidean distances to each xTr ∈ XTr
select k data point indexes with lowest distance
yTe = featurewise average of the k selected training targets yTr

end
Algorithm 1: Pseudocode for kNN regression.

1https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsRegressor.html The description in this work assumes the following parameter
choices: weights:uniform, n neighbors:10, algorithm:brute, metric:minkowski, p:2
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2 Background

2.4 Related Work

In the literature, many different approaches regarding IPS techniques have
been investigated. They generally fall into the two categories explained
above: trilateration 2.1.1 and fingerprinting 2.1.2. This section goes into
more detail on selected works.

An indoor location-aware system for an IoT-based smart museum has been
developed in [1]. The system makes use of wearable devices, which deliver
additional information about artworks at landmarks in the environment to
the visitor. They are equipped with two modules: position tracking using
BLE and image processing for recognizing nearby artworks.
The wearable gathers signal data from various landmarks in the environ-
ment, each acting as a designated BLE base station. The positioning is done
by computing a proximity index d based on the log distance path loss
model RSSI = −(10nlog10d + A). The landmark with the lowest d is then
selected as the position. Thus, this represents a proximity-based positioning
approach. The image processing module then includes the position infor-
mation when determining the observed artwork.
It was found that incorporating the position information into the artwork
determination phase yielded significant computation performance increase
(i.e. shorter processing time) and a slight increase in accuracy.

Bluepass[7] is a Bluetooth-based IPS that uses linear regression on a finger-
printing database for distance estimation and then uses a proximity-based
model to determine the position on a room level. In a reference environment,
consisting of 4 rooms in a 13m x 15m area, 80% room level accuracy was
achieved using three Bluetooth access points.

[9] analyses BLE fingerprinting and compares its BLE-based IPS with a WiFi-
based system. It is shown that the three advertising radio channels used in
BLE have different RSS mean levels and that all channels suffer of multipath
fading. To address these negative effects, fingerprints are build on time
windows, so that multiple signals from each BLE beacon are aggregated
using either median, mean or maximum.
Position computation in the IPS is done by first discretizing the environment
into cells (1m side length) and building a fingerprint database(offline phase).
In the online phase, a position is evaluated by computing the Euclidean

10
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distance to each cell and then using the Bayesian Likelihood function to
determine the most likely cell.
The testbed consisted of 19 beacons placed in a 600m2 environment. An
error of < 2.6m for 95% of the time was achieved.

[2] is a fingerprinting approach using Bluetooth. It states the importance of
Bluetooth technology for IP, while also acknowledging the inconsistencies
when using RSS values for this purpose.
The system they designed has a multilayered architecture that uses multiple
NN specialized for various user directions (i.e. the cardinal direction of a
user holding the localization device). The NN input vector consists of the
last eight RSS values for each of the five deployed Bluetooth base stations.
The various positions that a user could be in are discretized to eight distinct
2D coordinates. Thus, the NN output layer consists of eight nodes, each
representing one of the possible positions (one-hot encoding). Furthermore,
the positions are also stored as a connected graph, indicating the possible
position transitions. The graph is used to prevent rapid fluctuations in
the predicted position by only reporting a position change if it is possible
(according to the graph) or if the change has been reported a configurable
amount of times consecutively.
A Recovery Subsystem was implemented that addresses the case of Blue-
tooth base stations becoming unresponsive. This was done by training NNs
with configurations that include “turned off” subsets of Bluetooth bases
stations.
Results show significant improvement when including the adaptions for
user orientation (using multiple NNs), filtering unlikely positions (using
the connection graph) and node failure (using the recovery subsystem). Best
reported performance while walking was 90% accuracy.

[21] is a fingerprinting approach using WLAN. It mentions the dependence
of RSS-based IPS solutions on the amount of chosen reference points (RP)
and their positioning. A NN-based IPS is presented, which focuses on the
prediction of positioning errors that occur using a distance dependent algo-
rithm.
Positioning is done by first building an offline radio map which serves as
the data source for the chosen distance dependent algorithm kNN. Training
data for the NN is gathered by sampling RSS data on a selected set of
reference points with coordinates (xTr, yTr) and then estimating the posi-
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2 Background

tion for these reference points using kNN (x̂Tr, ŷTr). The estimation errors
δxTr = xTr − x̂Tr and δyTr = yTr − ŷTr are then the targets for which the NN
is trained upon.
In the online phase the IPS then calculates a position by adding NN-
predicted estimation errors (δxTe, δyTe) to kNN-predicted positions (x̂Te, ŷTe)
to obtain final positioning coordinates (x̂P, ŷP).
When compared to basic separate kNN and NN approaches (2.54m and
2.42m mean error respectively), the combined approach showed significant
improvement(1.33m mean error).

Another Bluetooth based fingerprinting approach is discussed in [19]. A set
of predefined coordinates in a reference environment of 120 m2 were selected
for data gathering with a mobile device. After this offline phase was finalized
and the fingerprint database built, positioning accuracy was evaluated in
the online phase. Finding target coordinates in the online phase is done
using kNN regression and an accuracy of 2.67 m was accomplished.

[13] gives a brief introduction of the positioning solutions for smartphones
and explain the basic workflow of the fingerprinting approach. They in-
troduced a PDR (Pedestrian Dead Reckoning) solution that makes use of
BLE (Bluetooth low energy), an accelerometer and a digital compass. BLE
was used for corridor detection. Two BLE access points were placed in
two separate corridors and by finding peaks in the time series of the RSSI
measurements, the current corridor was determined. The accelerometer was
used for step frequency estimation. Step length was estimated using an
empirical model with 3 parameters (pedestrian height, step frequency and
an optional personal parameter). Furthermore, a digital compass was used
to determine the walking direction of the pedestrian. Initial positioning is
done by setting the current position to the same as the nearest BLE access
point. Afterwards, the position is determined by tracking the movements
of the pedestrian, while also recalibrating each time an access point was
passed. The average positioning error was 1.88m.

A technique called Parallel Multilayer Neural Network (PMNN), which uses
two distinct neural networks for the x and y axis respectively, is discussed
in [5]. The 144 m2 reference environment is equipped with numerous WiFi
access points and discretized into squares with varying side lengths. A
mobile phone is used to build an initial fingerprint database. Neural network
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inputs are vectors containing the RSSI value for each beacon and the targets
are the x coordinate for one network and the y coordinate for the other. Each
network also contains a denoising section in the form of multiple layers of
a pretrained autoencoder. The autoencoder was trained by stochastically
switching inputs off (i.e. setting the RSSI value to 0) and after training,
the same autoencoder is used for denoising the inputs to both networks.
The performance is compared with a kNN approach, which is consistently
outperformed by the PMNN approach. The best configuration achieves
close to 95% accuracy for a grid of squares with a side length of 2 m.

3D indoor positioning, using spectral clustering and a weighted backprop-
agation network (SWBN), is discussed in [17]. The 3D environment is dis-
cretized to grid points (reference points) and a fingerprint database is built
by sampling RSSI values at these points (offline phase). Reference points
are grouped together in clusters and for each cluster a neural network is
trained. In the online phase, coordinates are calculated using a weighted
combination of the outputs from the various networks. Evaluation results
for the 16 m × 7.76 m × 3.25 m reference environment show a median error
of 1.48 m.
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3 Data Gathering and Aggregation

The goal of the data gathering and aggregation part of this work is to
first generate a reference dataset that lists received BLE samples and their
RSSI value for a variety of locations (encoded as x and y coordinate) and
then apply various transformation to this reference dataset and create
aggregations for further use. Furthermore, the reference dataset should also
include timestamp information as well as a dataset identifier that allows
each sample to be mapped to a specific device with which it was recorded.
Datasets created from this reference dataset are then used to train neural
networks, with the target of predicting the location for a given sample.
Furthermore, these predictions should be possible in a real word scenario,
which means that the sampling time of BLE beacon values is limited. To
incorporate this constraint into the network training process, the time binned
dataset introduced in Section 3.2.3 partitions data based on time frames.

All data was gathered in the office environment depicted in Figure 3.1. The
office consists of three rooms and one almost circular hallway. All doors
were opened up during data collection and no people other than the data
collector were present. During data collection 24 BLE beacons were active
in the environment, their location can also be seen in Figure 3.1.

3.1 Data Gathering Pipeline

This section discusses how BLE signal data was gathered and describes the
structure of the gathered data.

To be able to log received BLE signals, a custom Android application was
created (see screenshot depicted in Figure 3.2). This application was used to
create six datasets. Three devices were used and for each device a dataset
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3 Data Gathering and Aggregation

Figure 3.1: Map of the reference environment. The dark gray area depicts outside walls, the
light gray area depicts inside walls/objects and the medium gray area depicts
walkable space. The icons represent the locations of BLE beacons. The origin
0, 0 is in the left upper corner. The x coordinate runs horizontally and the y
coordinate vertically.
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3.1 Data Gathering Pipeline

was created where the data collector faced towards the northern end of the
map and one facing the southern. The following three devices were used:

• One Plus One1, henceforth the abbreviation OPO.
• Huawei P20

2, henceforth the abbreviation P20.
• Samsung Galaxy S9

3, henceforth the abbreviation S9.

The workflow of creating a dataset with the collection application is as
follows:

1. Specify dataset name.
2. Go to a location and enter the X and Y coordinate for this location in

the app.
3. Press the “Scan BLE” Button. The application now stores all BLE

signals received within the next 5 seconds and labels them with the
location specified in the previous step.

4. Repeat Steps 2. and 3. for each location.
5. Send the data to a specified server, which stores the received data in a

MongoDB database.

A set of 52 locations were selected for the creation of the datasets. These
locations are scattered throughout the environment and represent positions
that are easily accessible for a person walking through the setting. All
recordings were done with the mobile phones being held in the same height.
While all locations were sampled for the same duration with all devices, the
number of collected BLE signals varied strongly as can be seen in Figures 3.3
and 3.4. The exact reason for these differences is hard to determine and
was not further researched in this work. Some possible explanations might
be differences in the quality of the Bluetooth chipsets and Bluetooth stack
implementation differences in different Android versions.

After data was gathered for all devices in this manner, the data was exported
from the MongoDB database into a csv file. An excerpt of such a dataset
export can be seen in Listing 1. The data in this listing originates from the
northwards facing Huawei P20 dataset. To explain further what kind of data
is available at this step in the process, a description of all columns follows.

1https://www.oneplus.com/at/one
2https://consumer.huawei.com/en/phones/p20/
3https://www.samsung.com/global/galaxy/galaxy-s9/
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3 Data Gathering and Aggregation

Figure 3.2: The main view of the android data collection application. The “Server” input
specifies the location of a REST endpoint that will accept the data collected by
the application. The “SSID” field is irrelevant for this work. The “Dataset” field
specifies the value of the data set field of the logged data (see Listing 1). The “X”
and “Y” fields are manually inputted by the data collector for each location and
together they determine the position that will be used for actions triggered by
one of the buttons. Of the five depicted buttons only the one labeled “SCAN
BLE (5 SEC)” was used for the data collection purposes of this work.
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3.1 Data Gathering Pipeline

Figure 3.3: Number of BLE samples collected for each device and location. This figure
shows the first 26/52 locations.

Figure 3.4: Number of BLE samples collected for each device and location. This figure
shows the second 26/52 locations.
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3 Data Gathering and Aggregation

S.1 data set An id of the dataset that was manually inputted by the
collector. The general scheme is <shortened device name> <cardinal
direction>.

S.2 device name A string expressing information about the BLE beacon
manufacturer.

S.3 signal type The data collection android app also supports the collec-
tion of WiFi samples. Thus this field indicates if the sample was of
signal type “ble” or “wifi”.

S.4 timestamp The timestamp of collection given in UNIX time in mil-
liseconds.

S.5 ble mac The MAC address of the BLE beacon.
S.6 ble major A read and writable field of the BLE beacon. Manually set.

Should be the same for all BLE beacons of the same manufacturer.
S.7 ble minor A read and writable field of the BLE beacon. Used in con-

junction with ble major as an alternative way of uniquely identifying
beacons.

S.8 rssi The RSSI value of the received BLE sample.
S.9 pos x The x-axis coordinate of the position where this sample was

gathered. Given in meters. Manually set in data collection application
for each location by the collector.

S.10 pos y The y-axis coordinate of the position where this sample was
gathered. Given in meters. Manually set in data collection application
for each location by the collector.
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3.1 Data Gathering Pipeline

1 "data_set","device_name","signal_type","timestamp","ble_mac","ble_major","ble_minor","rssi","pos_x","pos_y"

2 "p20_north","RECO","ble","1529519080792","ED:72:88:FE:FC:7F","501","25542","-93","19","9"

3 "p20_north","RECO","ble","1529519080808","C9:48:FC:EA:75:AF","501","5277","-94","19","9"

4 ...

5 "p20_north","RECO","ble","1529519276354","DF:46:A2:D8:93:35","501","25539","-76","7.5","4.5"

6 "p20_north","RECO","ble","1529519276382","EC:FA:86:B8:9D:57","501","5257","-68","7.5","4.5"

7 "p20_north","","ble","1529519276384","20:C3:8F:C2:D7:36","4096","8449","-88","7.5","4.5"

8 "p20_north","","ble","1529519276440","20:C3:8F:C2:C1:07","4096","8450","-69","7.5","4.5"

9 "p20_north","RECO","ble","1529519276472","E5:ED:2D:4F:F0:96","501","4816","-57","7.5","4.5"

10 "p20_north","RECO","ble","1529519276532","D6:8A:F1:9D:E0:E0","501","5278","-80","7.5","4.5"

11 "p20_north","","ble","1529519276550","20:C3:8F:C2:BE:7D","4096","20480","-66","7.5","4.5"

12 "p20_north","","ble","1529519276580","20:C3:8F:C2:D7:11","4096","4113","-76","7.5","4.5"

13 "p20_north","RECO","ble","1529519295338","EE:D4:A4:CC:1F:67","501","25544","-74","7","6"

14 "p20_north","RECO","ble","1529519295399","D6:8A:F1:9D:E0:E0","501","5278","-72","7","6"

15 "p20_north","","ble","1529519295420","20:C3:8F:C2:D4:B8","4096","8192","-60","7","6"

16 ...

Listing 1: Excerpt from the the MongoDB data dump of the dataset of the
Huawei P20 device while facing north.

BLE beacon information

While the machine learning approach introduced in Section 4 does not re-
quire the actual x and y coordinates of the BLE beacon locations, a reference
list of all valid BLE beacons is still used in the data aggregation process (see
the following Section 3.2). This BLE beacon information dataset is given in
Listing 2 and the columns signify the following:

1. y The y-axis coordinate of the beacon. Given in meters.
2. beaconType A string containing information about the BLE beacon

manufacturer.
3. minor The same as described in Item S.7.
4. major The same as described in Item S.6.
5. x The x-axis coordinate of the beacon. Given in meters.
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3 Data Gathering and Aggregation

1 y,beaconType,minor,major,x

2 1.22,BLE_WELLCORE,4105,4096,18.065

3 2.455,BLE_WELLCORE,4104,4096,15.52

4 4.95,BLE_WELLCORE,4113,4096,14.922

5 2.45,BLE_WELLCORE,4101,4096,18.03

6 1.22,BLE_WELLCORE,4102,4096,19.9

7 4.95,BLE_WELLCORE,4103,4096,9.297

8 2.46,BLE_WELLCORE,4116,4096,19.89

9 4.95,BLE_WELLCORE,20480,4096,11.797

10 4.95,BLE_WELLCORE,4114,4096,20.527

11 10.57,BLE_WELLCORE,8192,4096,7.417

12 8.07,BLE_WELLCORE,8450,4096,7.417

13 10.57,BLE_WELLCORE,8449,4096,10.557

14 4.95,BLE_WELLCORE,8451,4096,18.037

15 0.58,BLE_WELLCORE,4100,4096,15.52

16 8.7,BLE_WELLCORE,8448,4096,18.627

17 0.545,BLE_RECO,5277,501,9.103

18 0.56,BLE_RECO,5255,501,0.525

19 3.06,BLE_RECO,5285,501,0.525

20 5.56,BLE_RECO,5278,501,0.525

21 0.375,BLE_RECO,5264,501,4.275

22 3.07,BLE_RECO,5256,501,4.255

23 5.56,BLE_RECO,5263,501,4.275

24 2.715,BLE_RECO,5257,501,9.143

25 3.03,BLE_RECO,22025,501,14.273

26 5.33,BLE_RECO,25540,501,7.417

27 2.9,BLE_RECO,25544,501,7.56

28 0.56,BLE_RECO,25539,501,7.56

29 2.715,BLE_RECO,25542,501,11.783

30 0.7,BLE_RECO,25543,501,11.803

31 0.54,BLE_RECO,99999999,99999999,14.273

Listing 2: The BLE beacon information dataset.

3.2 Aggregation

This section discusses the steps necessary to transform the raw data collected
in the previous Section 3.1 into datasets that are suitable for the machine
learning approaches discussed in Section 4.

3.2.1 Reference dataset

The dataset dubbed as reference dataset serves as the source for all further data
aggregations discussed in this section. It is created by first concatenating
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3.2 Aggregation

all six datasets gathered in Section 3.1 and then performing a series of
manipulations on it. In detail, the operations done in order to create the
reference dataset from the concatenations of the six individual datasets (see
e.g. Listing 1) are as follows:

1. Remove all samples whose ble minor and ble major is not listed in the
BLE beacon information dataset (see Section 3.1). This is necessary
since the android data collection application logs absolutely all Blue-
tooth signals received. This includes i.e. BLE beacons that are currently
not in use (and cannot be turned off) and various Bluetooth based
peripherals such as mice and headsets.

2. Map the Bluetooth fields ble minor, ble major and ble mac to a single
numerical ble id. This is done by simply enumerating all entries in
Listing 2 and using this value as the id.

3. Map the data set field to a numerical value.
4. Remove the columns device name and signal type since they are not

required for future use cases.
5. Do a thresholding on the rssi values. Samples with rssi ≥ −10 or
≤ −90 were discarded.

An excerpt of the resulting reference dataset can be seen in Listing 3. This
dataset now lists all received BLE signals for each hardware, location and
BLE beacon. However, to be able to train FFNNs with this data, a single
training sample should have a target position and the RSSI values for every
BLE beacon.

1 timestamp,data_set,rssi,pos_x,pos_y,ble_id

2 1529517369996,3,-80,19.0,9.0,14.0

3 1529517370029,3,-78,19.0,9.0,12.0

4 1529517370056,3,-77,19.0,9.0,4.0

5 1529517370076,3,-70,19.0,9.0,8.0

6 1529517370308,3,-75,19.0,9.0,6.0

7 ...

8 1529517675778,3,-87,8.0,5.0,19.0

9 1529517675870,3,-84,8.0,5.0,26.0

10 1529517701787,3,-75,7.5,4.5,17.0

11 1529517701847,3,-80,7.5,4.5,26.0

12 ...

Listing 3: Excerpt from the the reference dataset. The full file has 31539

samples.
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3 Data Gathering and Aggregation

3.2.2 Location Binned Dataset

The naive approach to creating a dataset that lists the RSSI values for each
position is to average all RSSI values by position and BLE beacon (the
creation process is depicted in Figure 3.5). This results in a dataset having
as many samples (rows) as there are distinct positions in the dataset and
having as many features (columns) as there are beacons. Information gained
by incorporating the timestamp data of each received signal is ignored with
this approach, but it has the advantage of having the most accurate RSSI
values that are available for each position. While the value in this approach
is purely theoretical, as it ignores the real world constraint of limited time
frame length for BLE signal collection, it serves as a comparative reference
for further approaches.

1 Beacon 2 AVG RSSI,... ,Beacon 28 AVG RSSI,X,Y

2 -89.75,... ,-85.48,1.0,1.0

3 -89.50,... ,-84.42,1.0,2.0

4 -86.48,... ,-81.71,1.0,5.0

5 ...

6 -76.72,... ,-78.87,8.0,5.0

7 00.00,... ,-89.27,8.5,10.5

8 -84.24,... ,-74.77,9.0,1.0

9 ...

Listing 4: Excerpt from the the location binned dataset. The original file has
one sample per location for a total of 52 samples. Note that while there were
24 beacons in use during data gathering, the original beacon meta data file
(see Listing 2) lists 6 older beacons that cause the offset in the beacon ids
shown in the header of this listing.

3.2.3 Time Binned Dataset

To more accurately reflect the real world scenario of limited time data
sampling, this approach groups data by time bins. The procedure of doing
so is as follows:

1. Sort the reference dataset by the timestamp column
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3.2 Aggregation

Figure 3.5: Creating the location binned dataset from the reference dataset. 1.) Group by
location. 2.) Average RSSI for same BLE-ID in location groups. 3.) Flatten to one
entry per position by moving BLE-IDs into columns.
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2. Normalize the timestamp column by subtracting tmin from each times-
tamp t, where tmin is the minimum of all timestamp values. Thus after
this operation the timestamp value cannot be mapped to an actual
date and time, instead it specifies the difference in milliseconds to the
earliest timestamp in the reference dataset (with the earliest timestamp
now having the value 0).

3. Divide timestamp field by <time-bin-size> (a time bin size of 500
milliseconds was chosen) and round down the result to the nearest
integer. The resulting number is the “time-bin-id” and indicates for
each sample the time bin it belongs to.

4. Group the data by the position and the “time-bin-id”. Each group is a
sample (i.e. row) in the resulting time binned dataset.

5. Average the RSSI values for each beacon in a group.

This process is also depicted in Figure 3.6. An excerpt of the resulting
dataset is shown in Listing 5.

The test dataset was created by randomly (uniform) selecting 20% of the
samples for each location. This was done to ensure that each location occurs
both in the training and test dataset.

1 Beacon 2 AVG RSSI,... ,Beacon 28 AVG RSSI,X,Y

2 ...

3 -80.0,... ,-89.0,17.5,5.0

4 00.0,... , 00.0,17.5,5.0

5 00.0,... , 00.0,15.5,5.0

6 -67.0,... ,-87.0,15.5,5.0

7 ...

8 00.0,... ,-71.0,7.0,6.0

9 00.0,... ,-80.0,7.0,6.0

10 -85.0,... ,-79.0,7.0,8.0

11 ...

Listing 5: Excerpt from the time binned dataset which was created using a
bin size of 500 ms. The original file has 2475 samples with a single location
having an average of 46.7 samples..
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3.2 Aggregation

Figure 3.6: Creating the time binned dataset from the reference dataset. 1.) The timestamp
column is normalized by subtracting the minimum value. 2.) Each sample is
assigned a time bin by calculating bin = bTS/bin sizec with bin size = 500. 3.)
All samples within a time bin are processed as shown for the location binned
dataset in Figure 3.5.
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3.2.4 Time Binned Dataset with Time Shifts

In order to augment the time binned dataset by boosting the number of
samples, a technique hereby defined as “time shifting” was used. This
technique builds on the fact that the time binned dataset is created from
the reference dataset by grouping the samples by time. As described in
the previous section (see list Item 2), the timestamp column is initially
normalized before grouping so that tmin = 0. However, if an offset is
added to all timestamp values after normalization, the resulting groups are
potentially made up of a different set of samples from the reference dataset.
An example for creating such a time binned dataset with an offset of 250
ms is depicted in Figure 3.7. When talking about a dataset with a time shift
of n, where n is a positive integer or zero, n specifies the amount of time
shifted datasets added to the original time binned dataset. Thus, a dataset
with time shift 0 is equivalent to the original time binned dataset. More
specifically, a dataset with time shift n consists of datasets (||ni=1dsi)||dsorig,
where ds stands for dataset, || represents matrix concatenation along the
row (sample) axis, dsorig is the original time binned dataset without an
offset and dsi is a time binned dataset created with offset oi. The offset oi
in milliseconds is given by oi = i ∗ bs

n+1 , where bs is the time bin size in
milliseconds, which was defined as 500 ms in this work(see list Item 3 in
Section 3.2.3). For example, a dataset with timeshift 4 is the concatenation
of a time binned dataset with offset 0 ms (the original time binned dataset
dsorig), one with offset 100 ms, 200 ms, 300 ms and 400 ms.

In theory this approach multiplies the sample size of the original time
binned dataset by factor n (the amount of timeshifts). In practice, however,
an increasing number of time shifts provides diminishing returns, due to
following factors:

• Data duplication. Depending on the frequency with which BLE bea-
cons were received and thus the time density of the collected data
(which varies by device, see Figures 3.3 and 3.4), a time offset will
often not make a difference in the reference dataset sample to time bin
mapping. I.e. when looking at the example of Figure 3.7, it is relatively
easy to see that any offset values between [0, 149] ms would produce
the same time bins and thus duplicate data.
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• Test dataset. Initially the test dataset was created in a similar way as in
Section 3.2.3, by selecting 20% of samples for each location. However,
the way time shifted datasets are created allows for overlaps of test and
training information, since the same sample from the reference dataset
could be included in up to n samples in the time shifted dataset. Thus
it is necessary to make sure that all samples from the reference dataset,
which were selected for the test dataset, are not included in any way in
the training dataset. This can only occur after the initial 20% sampling
per location has been done and causes the final ratio of #samples in
the test dataset to #samples in the training dataset to be skewered
towards a larger test dataset than intended. To retain the 80 : 20 ratio
of training to test data, the percentage for test data point selection
had to be adjusted manually. The lookup table for these percentages
is given in Table 3.1 and the values were found by trial and error.
For example, when a dataset with time shift 1 is created, 13, 5% of
data points are selected for the test dataset. All other data points are
assigned to the training dataset. After the training dataset has been
cleaned of overlaps as described above, the ratio of training to test
data becomes approximately 80 : 20.

Time Shifts Test Data Percentage
1 13,5
2 11,5
3 9,9
4 8,8
5 7,95

10 5,5
20 3,47

Table 3.1: Percentages used to generate test dataset for various time shifts.

3.2.5 Hardware specific Datasets

Two types of hardware (meaning mobile phone) specific time binned
datasets were created. The general procedure for doing so is the same
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Figure 3.7: Creating a time binned dataset with a time shift of 1 from the reference dataset.
This is essentially the same process as depicted for the time binned dataset in
Figure 3.6. In this figure the timestamp normalization has already been done
and is not depicted. Step 1.) is the step that illustrates the time shift by adding
a time offset of 250 ms to the timestamp column. Steps 2.) and 3.) are the same
as in Figure 3.6, except that the outcome differs because of the offset.
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as described in Section 3.2.3, except that the samples from the reference
dataset were filtered by hardware for creating time binned datasets.

1. Specific hardware only. With this approach only samples from the
same hardware device were used for creating the test and training
dataset. This results in a test and training dataset for each of the mobile
phones listed in Section 3.1.

2. Test on specific hardware. With this approach, the test dataset was
created using all the data of one specific device, while the data of the
other two devices was used for the training dataset. Again three pairs
of test and training datasets were created.
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4 Indoor Positioning System
Implementation

In this chapter the actual implementation of the Indoor Positioning System
(IPS) is discussed.

The input is given by the datasets introduced in Chapter 3: location binned,
time binned, time binned with time shifts and hardware specific. A sample
of such a dataset always consists of 24 RSSI values (features) as well as x
and y coordinates (targets).

Datasets obtained from parsing, aggregating and scaling the raw input from
data gathering (see Section 3.1), are used to train a FFNN.

The goal of this IPS is to find a robust mapping between the signal strength
of nearby BLE beacons to a specific location, which consists of an x and y
coordinate in a 2D environment..

See Figure 4.1 for a general overview of the whole implementation and its
workflow.

4.1 Missing data and Masking

The shorter the interval for data gathering, the less BLE signals will be
received. For example, the time binned dataset in Listing 5 has 55% missing
entries. If a sample has no value for a feature, because no BLE signal
was received during the selected timeframe, it is treated as missing data.
Fields of missing data are set to 0 before data scaling. However, with this
approach features that have the lowest RSSI value are treated equivalent to
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features representing missing data (for details see the following data scaling
Section 4.2.1).

To incorporate this information into the IPS the following three approaches
have been investigated:

1. Binarized Dataset: Set input data features to 0 if it is missing data and
1 otherwise. This serves as a baseline approach and is useful when
comparing to the other two approaches, which should, logically, both
perform better.

2. Input Layer Masking: The Binarized Dataset described above is
treated as a missing data matrix Xm. In the first layer of the FFNN
(and thus after any data scaling has been done) this matrix is used to
set all missing data fields of the input matrix X to 0 by X′ = X ◦ Xm
where ◦ is the Hadamard product.

3. Append Missing Data Mask: The missing data matrix Xm is simply
concatenated to the original input X, thus doubling the amount of fea-
tures. In contrast to X, Xm does not undergo data scaling as described
in Section 4.2.1.

4.2 Implementation

Prototyping was done in MATLAB using the Neural Network Toolbox. The
actual implementation was then done in Python using the Tensorflow [15]
machine learning library. For data exploration and plotting evaluation
results Jupyter Notebooks [18][12] was used.

4.2.1 Data Module

This module handles data parsing, aggregation and scaling.
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4.2 Implementation

Figure 4.1: Full workflow of all systems used in this work. Components grouped in Data
Gathering have been discussed in Chapter 3. Components grouped in Python
IPS are discussed in this chapter. More specifically, Data Module is discussed
in Section 4.2.1, Machine learning Module in Section 4.2.2 and Hyperparameter
Evaluation Module in Section 4.2.3.
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Data Parsing

This submodule reads in all raw datasets obtained from data gathering (see
example in Listing 1) and BLE information as depicted in Listing 2.

Data Aggregation

The data aggregation submodule handles the transformation of the parsed
data into the datasets described in the Aggregation Section 3.2:

• Location Binned Dataset (Section 3.2.2)
• Time Binned Dataset (Section 3.2.3)
• Time Binned Dataset with Time Shifts (Section 3.2.4)
• Hardware specific Datasets (Section 3.2.5)

Data scaling

This submodule takes the aggregated data as an input and provides three
ways of data scaling. It is also responsible for storing the missing data matrix
along with the scaled data.

RSSI values were first thresholded to the range [−90,−10] and then mapped
to positive values by xmapped = xorig + 90. If a RSSI value was not available
for a given feature for a sample, the value is kept at 0.

While the previous operations were always performed, the following data
scaling operations were treated as an optimizable hyperparameter. These
options were being investigated separately for features and targets:

1. Standardization Values are mapped to have 0 mean and 1 standard
deviation by

xscaled =
x− µ

σ
(4.1)
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2. Normalization Values are mapped into the range [0; 1] by

xscaled =
x− xmin

xmax − xmin
(4.2)

3. Binary This is the implementation of the Binarized Dataset described
in Section 4.1 Item 1. It only applies to features. Values are set to either
0 or 1 by

xscaled =

{
0 if x = 0
1 otherwise

4.2.2 Machine learning module

The FFNN architecture used is based on the definition given in equation (2.3).
The following network properties are parameterized and are evaluated in
Chapter 5:

1. Input Masking is either turned on or off. If it is active, the input to
the FFNN will be set to 0 for missing data fields, as described in
Section 4.1 Item 2.

2. Layers. The number of hidden layers. For each layer the amount of
hidden nodes and the activation function are specified individually.

3. The learning rate for the chosen optimization algorithm.
4. Weight Decay/Regularization. Specifies whether or not regularization

is done. If regularization is done, the l2 loss for all weights is computed
based on the Tensorflow function tf.nn.l2 loss1 with scaling term β
being another parameter:

l2loss =
β

2

T

∑
t=1

∥∥∥W◦2
t

∥∥∥
1

(4.3)

with T being the total number of hidden layers plus the output layer,
Wt the matrix containing all weight vectors connecting the nodes from
layer t− 1 to layer t (the input layer is layer 0), ◦ indicating Hadamard
exponentiation and ‖W‖1 is the matrix 1-norm.

1https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss
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Following network properties were fixed:

• The Mean Squared Error (MSE) was used as the loss function:

MSE =
1
U

U

∑
u
(yu − ŷu)

2 (4.4)

with U being the total number of targets. Furthermore, yu indicates
the uth row of the test dataset target matrix Y ∈ RUx2 which has two
columns representing a 2D position in the form of x and y coordinates.
Analogously, ŷu represents the corresponding row in the prediction
target matrix Ŷ ∈ RUx2.
• The bias nodes were initialized with 1
• Weights were initialized by sampling from a normal distribution with

µ = 0 and σ = 0.1.
• Following activation functions were used: ReLU, ELU and TanH (see

Section 2.2.1).
• Adam was used as the Optimization Algorithm.

Training

Training is done by reading in a train and test dataset and then performing
k-Fold cross validation on the train dataset. Actual train and test dataset
generation (handled by the data aggregation submodule 4.2.1) is done prior
to training and thus which dataset is used is indicated by which dataset
files are specified for training. The following properties concerning training
are available:

• Which dataset files are used.
• The k parameter for kFold cross validation.
• Training epochs
• Maximum validation epochs for early stopping.

4.2.3 Hyperparameter Evaluation Module

The Hyperparameter Evaluation Module generates a set of concrete config-
urations and then applies and executes them automatically. This is done
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4.2 Implementation

1 base_config = {...

2 "cfg.input.data-file": ['tb-opo-500ms-shift5', 'tb-p20-500ms-shift5'],

3 "cfg.data.append-mask-to-input": True,

4 "cfg.nn.train.max-training-epochs": [15000, 20000],

5 ...

6 }

Listing 6: Excerpt of an example base configurations. The values of prop-
erties “cfg.input.data-file” and “cfg.nn.train.max-training-epochs” are lists
and thus will be flatted out when transformed into concrete configurations.

by first specifying a base configuration, which includes lists of possible
values for any given configuration parameter. All parameters discussed in
Sections data scaling 4.2.1 and machine learning module 4.2.2 are specifi-
able, as well as some additional implementation specific parameters. The
base configuration is then flattened into concrete configurations, for which
training is performed. The results of the trained network for each concrete
configuration are collected and written to a CSV file. An example of a base
configuration and the resulting concrete configurations is given in Listings 6

and 7.
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4 Indoor Positioning System Implementation

1 generated_configs = [{...

2 "cfg.input.data-file": 'tb-opo-500ms-shift5',

3 "cfg.data.append-mask-to-input": True,

4 "cfg.nn.train.max-training-epochs": 15000,

5 ...},{...

6 "cfg.input.data-file": 'tb-p20-500ms-shift5',

7 "cfg.data.append-mask-to-input": True,

8 "cfg.nn.train.max-training-epochs": 15000,

9 ...},{...

10 "cfg.input.data-file": 'tb-opo-500ms-shift5',

11 "cfg.data.append-mask-to-input": True,

12 "cfg.nn.train.max-training-epochs": 20000,

13 ...},{...

14 "cfg.input.data-file": 'tb-p20-500ms-shift5',

15 "cfg.data.append-mask-to-input": True,

16 "cfg.nn.train.max-training-epochs": 20000,

17 ...}]

Listing 7: The four concrete configurations which result from the example
base configuration in Listing 6.
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5 Evaluation

The full evaluation of the various approaches discussed in Sections 3.2
and 4 was executed in a sequence of individual evaluation steps, where
each focused on a subset of the evaluable IPS parameters. This reduces
computational complexity when compared to a more brute force exhaus-
tive hyperparameter search approach. Performing a smaller evaluation in
these cases serves as additional support in selecting the logically favored
parameters.

Where not specified otherwise, the following settings were used for all
evaluations:

• k = 10 for kFold cross validation
• The test error was computed using the average Euclidean distance (in

meters) between the target and the prediction:

Etest =
1
N

N

∑
√
(yx − ŷx)2 + (yy − ŷy)2 (5.1)

where subscript x and y denote the x and y coordinate of the target
y and prediction ŷ and N is the total amount of samples in the test
dataset.
• Maximum training epochs were set to 20000
• Maximum validation epochs were set to 2000, i.e. after 2000 epochs

of increasing validation error, training is aborted.

While the best performing values of following parameters were found
through the evaluations discussed in the next sections, their initial values
were:

• Dataset. The time binned dataset without time shifts was used. Bin
size was 500ms. See Listing 5 for an excerpt.
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5 Evaluation

• Layers. Two hidden layers with 40 and 20 hidden nodes and hyperbolic
tangent (TanH, see Section 2.2.1) activation function were used. The
output layer had two nodes and used linear output function.
• Learning rate was set to 0.05.
• No regularization was used.

5.1 Hyperparameter evaluation for general use
case

The evaluations done in this section led to the best performing model for
datasets using all hardware models.

5.1.1 Missing data incorporation

Different ways of incorporating the information of missing data into the
learning process were evaluated. Figure 5.1 shows the results of comparing
the following techniques:

• The Original Dataset.
• Using a Binarized Dataset as input, as described in Section 4.1 Item 1.
• FFNN Masking used masking on the first layer of the FFNN, as

described in Section 4.1 Item 2.
• Missing Mask Appended uses the original dataset concatenated with

the missing data mask, as described in Section 4.1 Item 3.

As expected, the Binarized Dataset performed worst. While the perfor-
mance difference between the other three options did not vary significantly,
the Missing Mask Appended approach performed slightly better than both
FFNN Masking and the Original Dataset and was thus chosen as a fixed
parameter for further evaluation steps.
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5.1 Hyperparameter evaluation for general use case

Figure 5.1: Performance of various approaches on how to incorporate missing data infor-
mation. Depicted are the test errors from the 10 folds done during training. The
boxes are spanned from the first (Q1) to the third quartile (Q3), with the second
quartile (Q2, which is also the median) being represented as a green line. The
whiskers indicate the lowest and highest datum that is still within the first and
third quartile plus 1.5 times the interquartile range (IQR). More specifically, the
lower whisker extends to the lowest datum that is ≥ Q1 − 1.5 ∗ IQR and the
upper whisker to the highest datum that is ≤ Q3 + 1.5 ∗ IQR. Data points that
do not lie within [Q1 − 1.5 ∗ IQR; Q3 + 1.5 ∗ IQR] are considered outliers and
depicted as ”flier points” above or below the whiskers. Furthermore, the x-axis
is sorted by the median. 43



5 Evaluation

5.1.2 Data scaling

The evaluation of the following data scaling options for both features and
targets are depicted in Figure 5.2:

• Standardization as described in Section 4.2.1 Item 1. Labelled in the
Figure 5.2 with “T standardization” for target standardization and “F
standardization” for feature standardization.
• Normalization as described in Section 4.2.1 Item 2. Labelled in the

Figure 5.2 with “T normalization” for target normalization and “F
normalization” for feature normalization.

Differences in performance were not significant, but feature normalization
and target standardization were chosen as fixed parameters for future
evaluations as they performed best.

5.1.3 Time shifted datasets and regularization

The following parameters were evaluated, with the results being depicted
in Figure 5.3:

• Time Shift. While all examined datasets were time binned, the amount
of time shifts(see Section 3.2.4) varies as follows: 0, 1, 3, 5, 10, 20 (thus
time shift 0 is equivalent to the original time binned dataset as seen in
Listing 5). They are depicted in the x-axis.
• L2 Regularization as described in Section 4.2.2 Item 4. The selected

value for the β parameter is given in the title of each subplot.

It can be seen that a too large value for β severely hurts the performance,
while a small β performs best. Furthermore, a single time shift outperforms
the other datasets. Thus regularization with β = 0.00001 and the dataset
with 1 time shifts were chosen as fixed values for further evaluations.
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5.1 Hyperparameter evaluation for general use case

Figure 5.2: Performance of various data scaling approaches. An “F” prefix indicates feature
data and “T” indicates target data. “Normalization” means normalizing the
data to target range [0, 1]. “Standardization” standardizes the data to mean 0
and standard deviation 1. See Figure 5.1 for a general definition of the methods
used to generate this plot.

45



5 Evaluation

Figure 5.3: Performance of regularization and varying dataset time shifts. Each subplot
depicts the chosen value for the regularization parameter β in the title. The time
shift values of the used datasets are given in the x-axis. See Figure 5.1 for a
general definition of the methods used to generate this plot.
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5.2 Hardware specific evaluation

5.1.4 Hidden layers and learning rate

Finally, the actual network architecture and the learning rate of the optimizer
algorithm were evaluated, with results depicted in Figure 5.4:

• Hidden Layers The following hidden layer configurations were exam-
ined:

– Two hidden layers with 20 and 10 nodes.
– Two hidden layers with 40 and 20 nodes.
– Three hidden layers with 80, 40 and 20 nodes.

• The Learning rate used for the ADAM optimizer. Based on the acti-
vation function (see Section 2.2.1), the following learning rates were
evaluated:

– TanH: Learning rate either 0.01, 0.05 or 0.1
– ELU and ReLU: Learning rate either 0.001 or 0.0001.

Surprisingly, the TanH activation function seemed to outperform both ReLU
and ELU. Learning rate differences had a minor impact with the exception
of more complex networks that used TanH, for which a very small learning
rate led to worse results. Network complexity (i.e. count of hidden layers and
their nodes) yielded similar results as the learning rate comparison, showing
little variance when using the same activation function and learning rate.
The one exception proved to be the best performing variant: three hidden
layers (with 80, 40 and 20 nodes), learning rate 0.01 and TanH activation
function. This architecture achieved a 5 cm improvement when compared to
the next best architecture and was thus chosen as the final parameter. The
median and standard deviation of the test error for this architecture were
1.624 m and 0.036 m, respectively.

5.2 Hardware specific evaluation

To investigate the differences between mobile phones, further evaluation was
done on datasets that were filtered by hardware type. The IPS parameters
used in this section are the ones that were determined in the previous
sections, with the exception of the input datasets.
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5 Evaluation

Figure 5.4: Performance of hidden layer architectures and learning rates. Each subplot
depicts a fixed architecture consisting of an activation function (given in the first
line of the subplot title) as well as the number of hidden layers and their node
count (given in the subsequent lines of the subplot title). Results are given for
each architecture based on a chosen learning rate (LR, depicted in the x-axis).
See Figure 5.1 for a general definition of the methods used to generate this plot.
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5.3 kNN

5.2.1 Testing on dataset of exclusively one device

For this evaluation the network was trained on the data samples originating
from two devices, while the test dataset was comprised of samples from the
third device (see Section 3.2.5 Item 1). The results of the trained networks
on the three possible permutations of hardware datasets is depicted in
Figure 5.5.

The increased error when testing on the OPO dataset is significant and very
likely related to the fact that the OPO gathered far less data then the other
devices (see Figures 3.3 and 3.4). The median/std for the test errors for the
“P20 test dataset” and “S9 test dataset” evaluations were 1.92 m / 0.2 m and
2.026 m / 0.058 m, respectively.

5.2.2 Training and testing on data of same device

For this evaluation, both training and test dataset were created with data
originating solely from one device(see Section 3.2.5 Item 2). The results are
depicted in Figure 5.6.

The “OPO” dataset is the worst performing one by far, while the test error
for both the “P20” (median 1.66 m std 0.064 m) and “S9” (median 1.706 m
std 0.06 m) dataset is slightly worse than the best non-hardware-specific
solution discussed in Section 5.1.4.

5.3 kNN

For comparison, selected datasets were trained and tested using a k-nearest
neighbors algorithm (see Section 2.3). The results (see Figure 5.7) are signifi-
cantly worse than all other evaluated FFNN-based approaches.
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5 Evaluation

Figure 5.5: The x-axis label indicates which dataset was used for testing. E.g. “P20 test
dataset” means that network training was done using data of the S9 and OPO
while testing was done on data originating from the P20. See Figure 5.1 for a
general definition of the methods used to generate this plot.
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5.3 kNN

Figure 5.6: The x-axis label indicates which data was used for the training and test set, i.e.
“P20” means that both training and test data originated from the P20 device.
See Figure 5.1 for a general definition of the methods used to generate this plot.
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5 Evaluation

Figure 5.7: The x-axis label indicates which dataset was used. “No/1/5 Time Shift” are the
same datasets as used in Section 5.1.3. “S9/P20 and 1 Time Shift” are the same
datasets as used in Section 5.2.2
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6 Conclusion

In this work an IPS based on BLE beacons was implemented. This was
done by setting up a reference environment, outfitting it with beacons and
gathering signal data. This data was refined and aggregated and used to
build a fingerprint database. The IPS used this data to train a FFNN and
perform hyperparameter evaluation.

It has been shown that increasing the number of training samples by uti-
lizing time shifts in dataset creation, leads to increased performance up to
certain degree of time shifts (Section 5.1.3). The methods demonstrated for
incorporating missing data information into the FFNN model did not yield
significant improvement (Section 5.1.1). The best found FFNN model for the
general use case (i.e. using data of all hardware devices) achieved a median
test error of 1.624 m (Section 5.1.4).

When looking at the results concerning datasets grouped by hardware, it is
important to acknowledge the differences in the data gathering capabilities
of the devices. While the S9 and and P20 devices displayed a comparable
amount of BLE signals received for each location, the OPO generally man-
aged to sample only a fifth of the amount (see figures 3.3 and 3.4). Thus,
if the IPS is used on datasets separated strictly by device (Section 5.2.2),
both the S9 (median test error 1.706 m) and the P20 (median test error 1.66
m) come close to the general use case model, while the performance of
the OPO is far worse (median test error 2.65 m). When using the data of
two devices for training and then testing the model on data of the third
device (Section 5.2.1), the median test error for testing on the S9 (2.026 m)
and P20 (1.92 m) datasets was still somewhat competitive, while testing on
the OPO dataset yielded a significantly worse performance (median test
error 3.245 m). These two hardware-specific use cases might indicate that
using datasets consisting of data from different devices (i.e. the general use
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6 Conclusion

case mentioned above) for the IPS could be advantageous for both well
and badly performing (in terms of data gathering) devices, when compared
to hardware specific data separation. However, the low number of tested
devices has to be taken into account.

A naive kNN implementation (Section 5.3) performs worse than the IPS ex-
amined in this work for selected datasets: 3.108 m error on the dataset used
for the IPS general use case. 2.789 m and 3.231 m for datasets containing
only data from the S9 and P20 devices, respectively.

6.1 Future Work

In this work, gathered BLE signals were grouped together into time bins
using various window sizes, in order to assign a 2D position to this set of
signals. An alternative approach could be treating incoming signals as a
time series and modeling the task of positioning as a time series prediction
using a long short-term memory (LSTM) model.

Real world applications are also likely to see client devices moving during
the process of position estimation. Thus, data gathering and aggregation
could be extended to allow for capturing and labeling predefined walks
across a set of positions.

A total of three smartphone devices were used in this work, which is far
from being an exhaustive comparison to the real world. Extending the
fingerprinting database with further devices is very likely to yield better
generalization and more insights in hardware differences. Furthermore, the
process of gathering data for the fingerprinting database is currently time-
consuming, tedious and its consistency is highly dependent on the person
performing the task. Therefore, automated methods for performing this
task would be a valuable asset to the IPS training pipeline. Solutions using
free moving agents (e.g. drones or other autonomously moving robots) in
conjunction with some form of ground truth verification (e.g. an already
existing IPS as done in [9] or using QR-code stickers on designated positions)
are thinkable.
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6.1 Future Work

This work focused on using solely the RSS of received BLE signals as input
to the IPS. Presumably, incorporating other information available to devices
will improve the general performance. A non-exhaustive list of candidates
are:
• Accelerometer and gyroscope information to determine device orien-

tation and if the user is currently walking or standing still.
• Magnetometer to determine cardinal direction
• Ambient light sensors could help with detecting room changes
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