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Abstract 

Background: With the ever-increasing amount of available data in the healthcare sector, there 

is also an increasing interest in computer-aided analysis and predictive models. A 

comprehensive understanding of obtained models and their predictions is indispensable for the 

development and later acceptance of such systems. 

Objectives: A general concept of a toolset that supports data scientists in the development of 

predictive models in the telehealth context had to be developed and subsequently implemented. 

Methods: Based on surveys, the user requirements were determined. The concept development 

was based on a test dataset derived from de-identified data from the ‘HerzMobil Tirol’ 

telehealth program. The implementation was conducted in MATLAB. 

Results: A list of requirements was identified, based on which an interactive viewer concept 

was developed and implemented. 

Conclusion: The developed viewer concept and its implementation facilitate a deeper insight 

and a better understanding of the development process of predictive models in the telehealth 

context. 
 

Keywords: Telehealth, Predictive Analytics, Visual Analytics, Human-in-the-loop 

 

Zusammenfassung 

Hintergrund: Mit der immer größer werdenden Menge an verfügbaren Daten im 

Gesundheitsbereich steigt gleichzeitig auch der Bedarf an computergestützten 

Analysemethoden und prädiktiven Modellen. Ein umfassendes Verständnis solcher Modelle 

und ihrer Vorhersagen ist für die Entwicklung und spätere Akzeptanz derartiger Systeme 

unerlässlich. 

Ziele: Es war ein allgemeines Konzept eines Toolsets zu entwickeln und anschließend zu 

implementieren, welches Datenwissenschaftler bei der Entwicklung prädiktiver Modelle im 

telemedizinischen Kontext unterstützt. 

Methoden: Es wurden Erhebungen hinsichtlich der Nutzeranforderungen durchgeführt. Die 

Konzeptentwicklung basierte auf einem Testdatensatz, der aus anonymisierten Daten des 

Telemedizinprogramms "HerzMobil Tirol" abgeleitet wurde. Die Implementierung wurde mit 

MATLAB durchgeführt. 

Ergebnisse: Es wurde eine Liste von Anforderungen erarbeitet, auf deren Grundlage ein 

interaktives Viewer-Konzept entwickelt und implementiert wurde. 

Schlussfolgerung: Das entwickelte Konzept und seine Implementierung ermöglichen einen 

tieferen Einblick und ein besseres Verständnis des Entwicklungsprozesses von prädiktiven 

Modellen im telemedizinischen Kontext. 
 

Schlagwörter: Telemedizin, Prädiktive Modellierung, Visual Analytics, Human-in-the-loop 
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1. Introduction 
 

New technologies and increasing digitisation are leading to huge amounts of data being 

available in the health and care sector. Affordable and portable measuring devices also enable 

continuous monitoring of patients at home in telehealth settings. In order to really benefit from 

all this data, computer-aided processing methods are increasingly applied, especially machine 

learning approaches are currently considered in many healthcare areas. While technological 

progress offers promising possibilities, fully automatic analysis and modelling approaches are 

prone to be incomprehensive solutions. To date, human involvement is still an essential part in 

the modelling process. On the one hand, specialists need to contribute their knowledge and 

skills during the development process of predictive models. On the other hand, presentation of 

modelling results needs to be comprehensible and understandable for humans in order to 

achieve legitimacy and acceptance of such systems. Therefore, interactive visual analytics tools 

are needed to fuse human intelligence with computational processing power to achieve 

optimum results. 

At the Austrian Institute of Technology (AIT), the ‘Predictive Healthcare Information Systems’ 

team is carrying out research on decision support systems and predictive analytics in the 

healthcare domain. For this purpose, a software package, called ‘Predictive Analytics Toolset 

for Healthcare’ (PATH) is being developed. A current development focus thereby lies on tools 

that support result visualization, interpretation and validation. 

The aim of this thesis was to develop and implement an interactive visualization tool that 

supports data scientists in the course of predictive model development and optimization within 

the telehealth domain. To this end, it was necessary to find out, which design and functionality 

requirements such a tool had in order to support the workflow of data scientists and to cope 

with the special characteristics of telehealth data. Based on these requirements, a viewer was 

designed and subsequently implemented in MATLAB. 

Although there is still potential for further development, the current concept and its concrete 

implementation play an essential role in gaining a deeper understanding of the model 

development process. Thus, the developed viewer makes an important contribution on the way 

to future more data-driven telehealth systems.  
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1.1. Background 
 

1.1.1. Telehealth 
 
According to the World Health Organization, telehealth involves the use of information and 

communication technologies (ICT) ‘to deliver healthcare outside of traditional health-care 

facilities’. [1] In general, the term covers thereby a wide range of application areas including 

long-distance clinical healthcare, patient and professional health-related education as well as 

public health and health administration. [2] In the context of this thesis, the term telehealth is 

used in the scope of home healthcare, where ICT technologies can be utilized to remotely 

monitor, diagnose and treat patients such as elderly or chronically ill. 

Mobile communication devices enable a two-way communication where the patient is at home 

and a health professional is at a distant site. Portable measuring devices can be used by the 

patient to collect and send data to health professionals in order to support continuous monitoring 

of health-related parameters. Telehealth in general may thereby include synchronous 

interactions as well as asynchronous interactions by using store and forward technologies. [3] 

Through improved self-care and support services, telehealth also helps patients in better coping 

with their own disease by enhancing patient self-management. 

In a time when the healthcare system is confronted with an increasing number of elderly as well 

as chronically ill people, telehealth applications offer a great deal of possibilities to improve 

healthcare. [4] 

 

1.1.2. HerzMobil Tirol 
 
A specific application of telehealth is the heart failure (HF) disease management program 

HerzMobil Tirol. It is a joint project of the province of Tyrol, Tiroler Gebietskrankenkasse 

(TGKK), Tirol Kliniken and AIT, which was established in 2012. HerzMobil is a collaborative 

post-discharge disease management program for HF patients, with a telemedical monitoring 

system that includes physician-controlled telemonitoring and nurse-led care in a 

multidisciplinary network approach. 

After being discharged from hospital the patients are provided with a Near Field 

Communication (NFC)-enabled blood pressure and heart rate monitor and a weight scale. In 

the first three to six months after discharge, the patients daily transmit data on blood pressure, 

heart rate, body weight, well-being and medication to a health data center via a NFC-enabled 

smartphone. 
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The HerzMobil Tirol network thereby realizes a closed-loop healthcare approach, where the 

cycle of HF management starts with the collection of data followed by interpretation and 

subsequent adjustments of the treatment as well as impact monitoring. 

The interconnection of all involved stakeholders is ensured by the so-called ‘Keep In Touch’ 

(KIT) solution (see Figure 1). The KIT telehealth system enables a temporally and spatially 

independent exchange of information between patients and those involved in the treatment. [5] 

 
 

 
Figure 1: The Keep In Touch (KIT) telehealth solution is a patient centered collaborative 
network including all health and care stakeholders [6] 

 
Within this system, patients can transmit their self-measurement values from the measuring 

devices to the data center via special smartphone apps. The processed and visualized data is 

provided to stakeholders and following the closed-loop healthcare principle, health 

professionals can write feedback and recommendations which are transmitted to the patient's 

smartphone. This close interconnection of all the stakeholders leads to an improvement in 

communication and therefore also in terms of integrated care. The program also includes patient 

training, to strengthen patients' self-competence and to ensure the sustainability of the program. 

The continuous monitoring makes it possible to detect an upcoming deterioration at an early 

stage and to enable early intervention. Prompt and continuous therapy optimization furthermore 

ensures a long-term stabilization of the disease and thus can lead to a reduction of hospital 

readmission. [7] 

In order to support health professionals in their workflow, computer-aided processing methods 

have already been integrated into the system. Signal processing and specific analyzing 
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algorithms already support early identification of upcoming adverse events. Automatic event 

detection in terms of missing values and off-limit measurements, highlights the need for 

therapeutic decisions and facilitates optimized allocation of resources to those patients who 

might need imminent support. [6][8]  

In the future, an extension of these computer-assisted methods will be necessary in order to 

handle the amount of data even more effectively and efficiently. On the way to an autonomous 

telehealth system, predictive analytics solutions will also play an increasingly important role. 

 

1.1.3. Predictive Analytics 
 
The term predictive analytics encompasses a variety of statistical and analytical techniques that 

are applied to retrospective data in order to develop models that predict certain events or 

behavior in the future. Technological progress and ever new technical possibilities are leading 

to more and more data being collected and stored nowadays. Finding ways to really use all this 

data in a meaningful way is becoming more and more challenging. In this context, predictive 

analytics plays an important role. With the growing amount of data being available, the 

relevance of predictive analytics increases in many industries (e.g. insurance, financial services, 

marketing etc.). [9] Also, in the health and care sector the amount of recorded and stored data 

is increasing rapidly. Therefore, the importance of predictive solutions, also with regard to the 

previously described telehealth possibilities, will increase strongly in this domain. [10] 

Predictive analytics is a multidisciplinary field, involving various techniques like data mining, 

machine learning and predictive modelling. Data mining is the process of identifying 

underlying trends, patterns, or relationships in the examined data. It is an essential step in 

predictive analytics, because the data that is singled out by the data mining process is 

subsequently used to develop predictive models. [11]  

Machine learning basically involves computer algorithms that learn from experiences (i.e. 

retrospective data). The performance of these algorithms increases with the amount of data they 

are provided with for learning. Machine learning can be divided into supervised and 

unsupervised learning (see Figure 2). 

An algorithm of supervised learning uses both a known amount of input data and known outputs 

associated with this data. The model trained with this data is then used to predict the outcome 

on the basis of new input data. Supervised learning is therefore used in cases where information 

about the outcomes is available. In supervised learning, classification and regression techniques 

are used to develop predictive models. 
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Classification techniques (e.g. Support Vector Machine, Naive Bayes, Nearest Neighbor, etc.) 

predict discrete outputs by classifying input data into categories. With regression techniques 

(e.g. Linear Regression, Decision Trees, Neural Networks, etc.) continuous outputs can be 

predicted. 

Compared to supervised learning, unsupervised learning is only based on known input data. 

These algorithms are used to search for hidden patterns or internal structures in the available 

input data. The most common technique of unsupervised learning is clustering, e.g. K-Means, 

Gaussian Mixture, Hidden Markov Model. With the help of clustering techniques, data points 

are grouped together depending on their similarity. [12][13]  

In the context of this thesis, the term predictive modelling is used to refer primarily to 

supervised machine learning techniques. Which means there is both input and output data 

available. 

 

 
Figure 2: Machine learning techniques [12] 

 
These machine learning techniques make it possible to develop predictive models using the 

ever-increasing amount of data. With the progressive use of these solutions in real-world 

scenarios, however, it is becoming increasingly important to develop more comprehensive and 

reliable models. In the context of these development and optimization processes, another field 

is becoming increasingly important, namely visual analytics. 
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1.1.4. Visual Analytics 
 
An early definition of the term visual analytics can be found in the research and development 

agenda, Illuminating the Path [14], where it is described as ‘the science of analytical reasoning 

facilitated by interactive visual interfaces’. A more recent and specific definition can be found 

in [15], which says ‘Visual analytics combines automated analysis techniques with interactive 

visualizations for an effective understanding, reasoning and decision making on the basis of 

very large and complex datasets’. 

So, the key aspect is again the large amount of data, because as already mentioned, the 

acquisition of raw data is no longer the main problem. Instead, the main challenge is to find 

appropriate methods and models to transform this data into reliable and comprehensive 

knowledge. Because the raw data itself has no value, only the information derived from it brings 

a real added value. For this it is necessary to have effective methods to exploit the potential that 

lies in the data. [15] 

A key aspect of visual analytics is to facilitate analytical reasoning by building on human 

capabilities to visually process and understand complex information. This requires appropriate 

visualizations that show the most valuable and relevant information to help the analyst better 

understand the data, discover hidden relationships, and thereby gather important insights. [16] 

In this process of information retrieval, computer-aided data processing also plays an important 

role. Methods from knowledge discovery in databases (KDD), statistics and mathematics 

together with the increasing computational capacities offer a wide range of possibilities for 

automatic data analysis. [17] 

In many cases, however, purely automated processing is not a sufficient solution. Fully 

automated methods are only appropriate for well-defined and well-understood problems. But 

the data analysis process and the way from raw data to sophisticated decisions is usually rather 

complex with several degrees of freedom. The more complex the problem, the more necessary 

is a collaborative effort of humans and computers. [16] In this context, human background 

knowledge, intuition and creativity are of crucial importance and can neither be automated nor 

replaced during the optimization of automatic processing procedures. After all, it is essential to 

integrate expert knowledge into these systems. [17]  

One important aspect is to present the results of the analysis processes in such a way that they 

are easy to understand. Since subsequent decisions are made on the basis of these results, it is 

also particularly important to be able to understand and explain more precisely the processes 

that led to these results. With the help of visual analytics, the way in which data is processed 
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and analyzed should become more transparent. The visualizations therefore go beyond a simple 

presentation of results and encompass all the processing steps involved. This insight into the 

individual stages of processing and modelling enables a comprehensive understanding of the 

situation. But visual analytics is not only about simple visualization. Visual analytics is highly 

interdisciplinary and is an integral approach which combines various related research areas such 

as visualization, statistics, data mining, data management, modelling and human factors (see 

Figure 3). [15] 

 

 

Figure 3: The visual analytics process combines visual data exploration and automated data 
analysis and includes the interaction between data, visualizations, models and derived 
knowledge [15] 

 
It is an iterative process that ranges from information gathering to data preprocessing, 

knowledge representation and interaction down to decision making. The visual representations 

and interaction functionalities thereby pose a gateway into the data. It is a semi-automated 

analytical process, where the distinct capabilities of humans and computers are combined in 

order to reach the most effective results. As the analytic process is not serial, a characteristic is 

the alternation between visual and automated methods, which leads to a continuous refinement 

and verification of produced results. [15] [17] 

The integration of automatic analysis methods before and after the interactive visual 

representations is especially important for two reasons. The datasets which are of interest often 
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are multidimensional and very complex on the one hand and too large to be directly visualized 

on the other hand. Therefore, D. Keim et al. [17] postulated the following visual analytics 

mantra: 

‘Analyse First - Show the Important - Zoom, Filter and Analyse Further - Details on Demand’ 
 
These strategies not only help data scientists analyze data and develop models but can also be 

used for explanatory purposes against third parties. Visual analytics poses therefore a promising 

approach that has the potential to make an essential contribution in dealing with the challenge 

of data and information overload. The possible areas of application include, for example the 

engineering domain, financial analysis, public safety and security as well as environmental and 

climate related topics. [17][18]  

But, of course, visual analytics is also very important in the health and care sector. These 

methods can help to derive practically relevant insights from raw data and the results of 

computational models. These insights can subsequently be used to better evaluate treatments 

and their outcomes and thus improve overall patient care. [19] 

 

1.2. State of the Art 
 

1.2.1. State of the Art in visual analytics 
 
A good overview of the state of the art in predictive visual analytics is given by Y. Lu et al. 

[20]. The field of application of visual analytics thereby is very broad. In the following, 

examples which comprehensively support the visual analytics pipeline are presented. These 

examples show how expert knowledge can be integrated into the analysis process in various 

application areas by using visual analytics methods. 

F. Heimerl et al. [21] use a visual analytics approach for the purpose of machine learning based 

text document classification. An interactive desktop is presented that facilitates visual classifier 

training. Their classifier training system thereby includes document preprocessing, 

classification feature engineering, visual analytics supported active learning and result analysis. 

In [22], J. Choo et al. present an interactive visual analytics system for classification, based on 

a supervised dimension reduction method, linear discriminant analysis (LDA). A case study is 

conducted on the basis of facial image data for the purpose of facial recognition. The system 

supports data encoding as well as other preprocessing steps, visualization of the reduced 

dimensions and cluster structures resulting from the analysis process. 
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Another visual analytics application that allows domain experts to incorporate their knowledge 

into the analysis process is the scatter/gather clustering approach of M. Hossain et al. [23]. An 

interactive visual interface enables users to iteratively restructure clustering results in order to 

meet their expectations. 

 
An application of visual analytics in the healthcare domain is described in C. Stolper et al. [24]. 

Besides a concept of progressive visual analytics, a tool for pattern analysis in a collection of 

event sequences is described. The tool, which is depicted in Figure 4, can be utilized for the 

identification of medical patterns based on the information of electronic medical records. The 

goal of the specific use case was to determine if certain sequences of surgical events correlate 

with health outcomes of patients. Besides of the investigation of how certain surgeries correlate 

with readmissions, the tool was also applied to the research question of how certain patterns 

correlate with gender, age, and length of hospital visit. The findings can subsequently be used 

for the revision or enhancement of surgical guidelines. 

The main interface of the tool includes a scatterplot view, two list views, a tree view and two 

panels for information display. In the scatterplot view the patterns are visualized. The patterns 

are thereby displayed depending on their respective rank in the form of colored circles or a heat 

map. The list view is used to list the patterns that were detected by algorithms and are sorted 

by selected ranking measures. The two instances of the list views enable the comparison of two 

different ranking methods. The tree view shows a hierarchical representation of each pattern. 

Furthermore, a number of interactive functionalities are available that allow the user to 

intervene in the analysis process. [24] 

The tool with its elements and functionalities is designed to support the concept of progressive 

visual analytics. The basic idea of progressive visual analytics is that partial results are already 

produced during the execution of the analytical process. These progressive results are then 

integrated into interactive visualizations that allow data scientists to immediately explore the 

partial results, examine new results as soon as they are produced, and manipulate certain 

parameters while the process is still running. 

Prerequisite for this is that the analytical algorithms have to be designed in a way that they 

produce meaningful partial results during execution on the one hand. On the other hand, the 

visualization procedures must be designed in a way that they enable the integration of these 

partial results as they are produced without distracting analysts by constant updates. This 

approach enables optimization measures already during the execution of the analysis process, 

which leads to an improvement and time saving in the workflow of data scientists. [24] 
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Figure 4: Interface of the progressive visual analytics tool ‘Progressive Insight’ [24] 

 
 

1.2.2. Development and implementation of a predictive model  
 
At the AIT, the ‘Predictive Healthcare Information Systems’ team is carrying out research on 

decision support systems and predictive modelling in the healthcare domain. Among other 

activities, they are dealing with the question of how a data-driven decision support system for 

health and care (DS4H) should optimally be designed and implemented. In [25], D. Hayn et al. 

describe healthcare specific requirements for such a DS4H. 

They postulate, that the development of a DS4H should follow a two-level process with two 

continuously repeating cycles, which are depicted in Figure 5. Cycle 1 is the actual modelling 

process, including data cleaning & pre-processing, feature engineering, model training, 

evaluation and visualization, interpretation & validation. Cycle 2 is intended to support the 

surrounding processes, which are present in a real-world scenario, i.e. objective definition, data 

collection & de-identification as well as deployment. This outer cycle 2 needs to be repeated in 

regular, but significantly longer intervals of time compared to cycle 1. 
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To implement the process depicted in Figure 5, a software package, called ‘Predictive Analytics 

Toolset for Healthcare’ (PATH) is currently developed. PATH is a MATLAB (The 

MathWorks, Natick, US) based predictive modelling toolset. The fundamental idea is to come 

from retrospective data to prospective predictions. PATH thereby supports the implementation 

of various scenarios, including regression models, binary and multiple classifications.  

 

 

Figure 5: Two-level process of data driven decision support in health and care. [25] 

 
The specification of the models, i.e. feature settings and all other adjustable parameters for each 

step of the modelling process is performed with the help of three Microsoft Excel files (i.e. 

Source Definition-, Feature Set Definition- and Modelling Definition file). The actual 

processing is conducted in MATLAB. 

The predictive analytics toolset supports various types of data and various relations in between 

data objects. Within the Excel Source Definition file, the different data types and their relation 

to one another (1:1, 1:N, N:M, etc.) are specified. This specification file is also used to specify 

data cleaning procedures (e.g. outlier removal) which are then performed in MATLAB. Signal 

processing algorithms (e.g. electrocardiogram (ECG) biosignal processing) can also be 

specified within this Excel settings file. 

A key aspect in the modelling process are the so-called ‘features’. These are specific attributes 

or properties of the data and are essential to the predictive model. Features can be measured 

values themselves, but features can for example also be derived from other parameters (e.g. the 

Body Mass Index (BMI) can be derived from body weight and height). The individual features 

are combined to a feature set, which corresponds to the learning dataset of the model. How this 

feature set is composed is specified in the Feature Set Definition file. 
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With the Modelling Definition Excel file, a variety of different models can be specified based 

on the predefined feature sets, including Decision Trees, Random Forests, Support Vector 

Machines, Linear Regression Models and Logistic Regression.  

Within this Excel file also sets of methods for model evaluations, which should be performed, 

can be specified. The toolset includes various statistical tools, including box plots, scatter plots, 

confusion matrices, etc. with which the results of different models can easily be compared to 

one another. PATH also ensures reproducibility of previous model results due to automated 

storage of models, results and specifications. 

PATH has already been applied to several targets including the prediction of occurrence of 

delirium in the course of hospital admissions [26], patient blood management including 

benchmarking [27][28] and healthcare resource utilization based on health insurance claims 

[29][30][31]. Furthermore, the toolset is used for the prediction of hospital re-admissions and 

adherence during telemonitoring (not published yet). 

Up to now, none of the developed models have been deployed to a real-world scenario. Since 

PATH is only used within research environments at this point, the software is not certified as a 

medical device yet. In its current state, PATH is primarily utilized for the inner cycle of the 

process illustrated in Figure 5. However, the toolset is highly adaptable to meet all the 

requirements of different healthcare scenarios. 

Among other developments, a clear focus lies on gaining a better understanding of the generated 

models. Therefore, user interfaces (UI) for result visualization, interpretation and validation as 

well as task-specific interaction functionalities are required to give more insights into data, 

results and models. 

 
An example of a recent adaptation is PATH’s ‘ECG viewer’, which was developed in the course 

of participating in the Computing in Cardiology (CinC) challenge 2017. The basic objective of 

the CinC challenge was to develop algorithms, which were able to automatically detect cardiac 

anomalies with high accuracy. [32] For this purpose Kropf et al. [33] developed a combined 

method of classical signal analysis and machine learning. 

In order to develop such an algorithm, the data scientists had to iterate through the various 

involved levels, including raw data (e.g. ECG), preprocessed data (e.g. averaged heartbeat), 

extracted features (e.g. QT interval), built models (e.g. classify as normal / pathological), 

evaluation outcome (e.g. a false positive case), and to assess the relevance of different features. 

[25] To support data scientists in this process, a MATLAB-based software package for ECG 

viewing was developed. Besides the original raw ECG, the main window of the viewer contains 
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the intervals and the classification of the detected heart beats, the averaged beats of up to four 

classes and a table of the features (see Figure 6). 

 

 
Figure 6: ECG viewer: 1) unfiltered ECG signal, 2) heart beat intervals and classification, 3) 
averaged beat view for a maximum of four classes, 4) feature table  [33] 

 
Within the viewer, quick navigation from one ECG recording to the other is enabled including 

the most important elements regarding each observation. Thus, this tool plays an essential role 

in the development of algorithms in the context of ECG analysis. However, although for ECG 

visualization and classification the ECG viewer extension is highly suitable, PATH lacks tools 

for supporting the predictive modelling process of other domains, like e.g. the telehealth 

domain. There is the need for a tool that is adequately designed to the characteristics of 

telehealth data and the related modelling process. Especially in view of the vision of an 

autonomous telehealth system, in which predictive solutions play an important role, a tool that 

supports the development and optimization of such models is required.  
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1.3. Objectives  
 
The objective of this thesis was to develop and implement a tool that supports data scientists in 

developing predictive models in the telehealth domain. This tool had to be developed on the 

basis of the predictive toolset PATH, which was introduced in section 1.2.2. The tool should be 

integrated into the model development process, which basically corresponds to the inner cycle 

of Figure 5 (see Figure 7). 

 

 
Figure 7: Integration of an interactive viewer into the PATH program 

 

It should be an interactive visualization tool that effectively supports the workflow of data 

scientists. Thus, the viewer had to cover all important process steps and through comprehensive 

visualization and interaction functionalities allow the user to gain better insights in the process 

of model development. The viewer should be developed primarily on the basis of telehealth 

data. At the same time, however, it had to be taken care of that the developed framework is 

designed as generic as possible, so that it could also be applied to other use cases. It should also 

be noted that the viewer is not intended for laymen, but for data scientists who have experience 

with the underlying tools and processes. It was necessary to find out, which design and 

functionality requirements such a tool has, in order to support the workflow of data scientists. 

The implementation based on these requirements had to be carried out with MATLAB in order 

to achieve the highest possible interoperability with the PATH program. 
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2. Methods  
 

2.1. Orientation 
 
As a preparation for the concrete realization of the objective, there was a general induction into 

the areas of predictive analytics and visual analytics. For this purpose, a first literature research 

was carried out in order to gain a certain understanding and an overview of these topics as a 

basis for the further implementation of the objective. 

Another part of the orientation phase consisted of getting a deeper understanding of the PATH 

program. In addition to viewing the individual program modules, several workshops were held 

with the developers to better understand the program processes and structures. Furthermore, the 

existing ECG visualization tool, which was described in section 1.2.2, was considered for a 

more detailed analysis of the actual state of development. In the course of this step, not only the 

existing code was analyzed, but also selective adaptations of the ECG viewer were carried out. 

These included general update routines of the tool, which were modified. Thereby a special 

focus was put on the existing program routines and the interfaces between the PATH software 

and the integrated visualization tool. 

 

2.2. Concept Development 
 
In preparation for the concept development, research on general design guidelines and 

dashboard design principles was carried out in order to make fundamental considerations in this 

regard. 

It became very clear that one of the first and most critical steps is to determine the right 

information to include on the interface. A fundamental challenge of dashboard design is thereby 

to display the most relevant information on a single screen, clearly and without distraction, in 

a way that critical aspects are quickly revealed. This can be achieved, among other things, by 

minimizing the number of objects on the screen, keeping graphical icons sparse, displaying 

context in abbreviated form, and keeping the number of utilized colors to a minimum. The 

information should thereby be presented intuitively as a combination of textual content and 

graphics. In order to avoid unnecessary distractions, it is also important to not integrate all the 

existing information in one window. Here it is important to find a compromise and work out 

solutions where more detailed information can be obtained on request. [34][35] 
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However, given that the visualization tool had to be developed and applied to support a specific 

context, the application specific requirements play an essential role. The development and 

implementation of the viewer therefore followed a user-centered design process. [36] This 

means, that the users had a major impact on the design by being deeply involved throughout 

the whole development process. The user-centered design process thereby included several 

phases. First of all, it was important to be aware of the context of use. This included the specific 

consideration of the people who will use the product, what they will use it for, and under which 

circumstances they will use it. Furthermore, in order to specify the requirements a requirements 

analysis was conducted which is discussed in more detail in section 2.3. In the course of this 

analysis, the essential elements and functionalities as well as overall user expectations, which 

had to be met for the final result, were identified. 

The considerations regarding concept and design of the viewer were strongly influenced by the 

results of the requirements analysis. It needed to be considered how all the elements and 

functionalities could best be integrated into one tool in order to achieve the greatest possible 

usability. On this basis, a first concept was worked out. Subsequently, the initial design was 

continuously adapted and refined as the implementation process advanced. 

Finally, the design also had to be evaluated. On the one hand, the design was repeatedly tested 

in the course of the stepwise overall development. On the other hand, a final evaluation was 

carried out in the course of the entire validation and test phase with the strong involvement of 

the users, which is described in more detail in section 2.6. 

 

2.3. Requirements Analysis 
 
The viewer that had to be developed should primarily be adapted to the application in the 

context of telehealth. In order to achieve broad applicability, however, the framework should 

be kept as generally applicable as possible. Thus, to get a comprehensive basis for the 

requirements analysis, the general characteristics of health data were first examined in more 

detail. Subsequently, this basis was extended and refined by taking a closer look at the specific 

projects, which currently were in progress at the AIT, in order to get a complete overview of 

potential data sources. Regarding viewer development, however, the focus was clearly on data 

from the HF telehealth program HerzMobil Tirol and the corresponding prediction of critical 

events during the monitoring period. In the course of this investigation, a focus was also on 

determining the differences compared to the specific use case of ECG classification. 
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Apart from the nature and characteristics of the underlying data, knowledge about the 

workflows and distinct steps of the predictive modelling process was a key aspect for the 

requirements analysis. In addition to the theoretical considerations regarding the predictive 

modelling process, the specific workflows of the data scientists at the AIT were analyzed in 

detail and their experiences regarding the development of predictive models were considered. 

A series of workshops were held, in which the work procedures were explained in more detail. 

There was also an in-depth exchange about expectations towards such a tool and its capabilities. 

On the basis of these investigations, the essential elements and functionalities of an interactive 

visualization tool were identified. 

The in-depth exchange with the users, which was of great importance in the initial phase of the 

work, was thereby not limited to the early stages of the thesis but was rather an important and 

ongoing component throughout the entire development and implementation process. 

 

2.4. Dataset 
 
The development of the viewer was based on a de-identified telehealth dataset from the HF 

disease management program HerzMobil Tirol. This test dataset included the records of 137 

patients. In addition to demographic data of the patients and measurements taken by the patients 

at home (i.e. body weight, heart rate and blood pressure), the dataset also included clinical notes 

of health professionals, information about medication compliance and prescriptions as well as 

information on hospital admissions. 

This data had been extracted by data scientists from the HerzMobil Tirol project, prepared for 

secondary use and made available in the form of three Excel files. One file contained all the 

metadata of the patients. The main file contained all measured values, information about 

medication, well-being as well as existing text notes of the health professionals with the 

respective time stamps. The third file contained a summary of events and interventions with 

their respective start and end times. In addition to hospitalization, this also included changes in 

medication or the patient's absence due to vacation etc. In the case of hospitalizations, a 

distinction was made between those due to HF and those that had occurred for various other 

medical reasons. 

All data had been de-identified by omitting direct patient identifiers such as first name or last 

name, and by transforming indirect identifiers (e.g. transforming date of birth to age in years, 

omitting rare diseases, etc.). 
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To suit for the development of various functionalities, the test dataset was extended by 

artificially adding ECG recordings to obtain a further data level. The ECG recordings used for 

this purpose were taken from the publicly accessible dataset of the CinC 2017 challenge. For 

the development purpose it was sufficient to add ECGs to the datasets of three selected patients. 

Therefore, a separate folder structure was added to the raw data directory (see Figure 8). 

 
 

 

Figure 8: Directory structure of added ECG recordings 

 
The first level of the directory structure shown in Figure 8 contained three folders. The ‘_def’ 

folder contained the definition files described in point 1.2.2. (i.e. Source Definition-, Feature 

Set Definition- and Modelling Definition file). The ‘_sources’ directory contained the data from 

the HerzMobil program (i.e. the above described Excel files). The ‘_raw’ directory was created 

for the ECG extension, which contained three selected patient directories. The example of 

patient 10 shows that an ECG was added for two distinct dates. The respective date was selected 

so that it lied within the monitoring period of the HerzMobil program. The ECG raw signal was 

provided in the form of a header-file and a mat-file. In the same way, ECG recordings were 

added to patient 3 and patient 16. 

 

2.5. Implementation 
 

2.5.1. Implementation tool 
 
According to the given requirements, the implementation of the viewer was carried out in 

MATLAB R2018a (The MathWorks Natick, US). [37] For the development of a graphical user 

interface (GUI), MATLAB provides two specific tools, i.e. ‘GUIDE’ (graphical user interface 

development environment) and ‘App Designer’.[38] The initial step was to decide which of 

these two tools was better suited for the implementation of the viewer. For this purpose, the two 

options were analyzed in more detail with regard to their suitability for the current problem. 



19 
 

Because even though they are similar and compatible in many ways, each of the approaches 

offers a different workflow and a slightly different set of functionalities. 

GUIDE, which has been available for many releases, is a drag-and-drop environment for laying 

out UIs. The interactive behavior of the interface is coded separately in the MATLAB editor. 

Applications created with GUIDE are compatible with almost all other releases. App Designer 

is the more recent development environment which was introduced in version R2016a. 

Compared to GUIDE, App Designer provides a larger set of interactive controls, including 

gauges, lamps, knobs, and switches. With App Designer it is for example also possible to 

directly create a tab panel, which in GUIDE is only possible with the help of workarounds.  

However, as of R2018a, not everything that is possible in GUIDE is also possible in the App 

Designer. It turned out that App Designer hereby has two major limitations compared to 

GUIDE. On the one hand this concerns the available plot functionalities. GUIDE supports all 

the graphics functionality in MATLAB, whereas in App Designer, not all graphics functionality 

is supported. This concerns among other things various restrictions concerning axes, subplots 

and heatmaps. And, since a focus of the viewer lied on the visualization of various data with 

the aim of being as flexible as possible, this posed a decisive limitation. 

Furthermore, there is a restriction regarding the availability of interactive functionality. As of 

R2018a, in App Designer there are limitations concerning mouse and keyboard callbacks for 

figures and axes. This resulted in the decision to use GUIDE for the implementation of the 

viewer.  

 

2.5.2. Implementation procedure 
 
The implementation was initially based on the framework of the ECG viewer presented in 

Section 1.2.2. This framework was subsequently further developed and generalized on the basis 

of the requirements developed according to the HerzMobil telemonitoring data. 

The first phase of the implementation included the establishment of the interfaces of the viewer 

and the PATH program. Another part of this phase was the implementation of the basic loading 

procedures in order to have data and other relevant information regarding the modeling process 

available in the viewer framework. These structures could be built mostly on the basis of the 

ECG viewer framework, under consideration of certain adaptations. 

The second phase of the implementation included the main visualization elements and the 

associated interactive functionalities. These were gradually implemented in the form of separate 

work packages. The individual elements were implemented and tested as far as possible before 
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they were fully integrated into the overall framework. In the course of this phase, other 

functionalities of the viewer, such as ‘details on demand’ concepts, were also implemented. 

The third phase of the implementation comprised the various update procedures of the viewer, 

in particular the external start-up of the viewer through callbacks from the evaluation. 

Basically, the entire implementation was conducted in such a way that, in a first step, the 

respective elements and functionalities were adapted to the specific requirements of the 

telehealth data. In a further step, it was then attempted to find a realization that could be applied 

as generally as possible. 

 

2.6. Validation and Testing 
 
The functionalities and usability of the viewer developed on the basis of the telehealth data 

were not only tested at the end, but also continuously during the development, in the course of 

joint workshops with the users. The implemented modules were presented and demonstrated to 

the users on a regular basis. In the subsequent discussions, adjustments and improvements to 

the presented tool were discussed. 

The validation of the generalized framework was carried out with a dataset containing records 

of ergometric performance tests conducted by a cohort of cardiac rehabilitation patients. This 

was a dataset of approximately 1500 patients with about 29.000 performance tests. The files 

contained parameters such as heart rate, workload curves, ECG data and blood pressure. The 

performance tests were carried out in different phases of the rehabilitation program. One 

possible research question, the viewer could be utilized for, would for example be, whether the 

patients keep a constant performance level over time. In order to answer this question, various 

visualizations would be required that allowed a more detailed analysis of the data. In Figure 9 

a draft of a viewer interface is depicted, which contains the necessary elements for this purpose. 

This draft contains a time series visualization of the performed ergometric performance tests. 

By selecting a certain performance test, the heart rate and workload curves over time are plotted 

as well as the heart rate over the workload and, also, the corresponding ECG is displayed. Data 

scientists of the AIT used the developed viewer concept to implement this setup. 
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Figure 9: Viewer interface for ergometry data (draft). (source: AIT) 
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3. Results  
 

3.1. Results of the Requirements Analysis  
 

3.1.1. Data characteristics 
 
Healthcare data in general concerns a very broad field of applications, ranging from large-scale 

population health data and whole healthcare systems to the genomics of a single patient for 

example. But even in the narrow field of patient-centered health and care applications, which 

poses the focus of this thesis, the variety and the amount of data can be enormous. Because 

healthcare data, such as in Electronic Health Records, cover not only observations about the 

condition of a distinct patient, but also information about the various treatment measures. Often 

data across years of a patient’s longitudinal medical record have to be considered to understand 

the evolution of a given medical condition. The data can thereby include all kinds of 

measurements, various medical events (e.g. diagnoses, procedures, medications, and lab tests) 

and unstructured clinical notes. In order to assess a patient’s health condition, all these data and 

information need to be analyzed collectively, and the correlations of multiple parameters have 

to be considered. 

Another essential aspect is the temporal characteristic, as a lot of the considered variables are 

temporal by nature. Medical events are unfolding over time as patient’s conditions evolve. 

Especially temporal patterns are thereby of great interest involving discrete events, interval 

events or various parameters recorded repeatedly over time. A parameter value at a single point 

in time is less informative than its evolution over time. Especially the tracking of changes in a 

patient’s condition as a reaction to applied treatments or interventions of health professionals 

are of great interest. [19][39] These characteristics can be found in most health and care 

applications and therefore must be taken into account for comprehensive considerations. 

When looking at telehealth applications respectively the specific case of the HerzMobil Tirol 

program, there is also a great variety of available data. This data includes the results of the 

measurements the patient carries out at home in the course of the telemonitoring program on a 

daily basis (e.g. body weight, blood pressure or heart rate). Additionally, there might be 

statements about the well-being of the patient. There might be information on the one hand 

about the prescribed medication and on the other hand on the actual medication intake of the 

patient i.e. related to the compliance. Furthermore, there might also be unstructured data like 

clinical notes or textual communication between the patient and the health professional. 
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Another important aspect is the different kind of events that can occur during the telemonitoring 

period as for example a hospitalization, a change in the medication or any other kind of 

intervention by a health professional, which all can have a significant impact on the patient’s 

condition. 

Alongside the data from devices which deliver a distinct value per measurement e.g. weight 

scale or a blood pressure monitor, there might also be other procedures or measurements during 

the monitoring period, that do not consist of individual values. For example, biosignals from an 

ECG recording or gait analysis from a timed up-and-go device. There might also be laboratory 

results or medical imaging data.  

 

3.1.2. Workflow of data scientists 
 
In the course of the requirements analysis survey regarding the workflow of data scientists, the 

importance of some aspects was emphasized once again. 

Predictive models are very much dependent on the raw input data and the features used to train 

the model. The features either consist of or are derived from raw data. Therefore, it is very 

important to know, analyze and prepare the data properly. Poor data or input leads to poor 

results, regardless of the utilized model approach. Particularly with health data, there are often 

incomplete data and outliers that can corrupt the result. In addition, the data often comes from 

different sources and therefore has to be merged to a compact dataset before it can subsequently 

be presented to the model. Therefore, model development involves a great deal of data analysis 

and preprocessing. 

Another important aspect is, that the human being still has an indispensable role to play in the 

development of predictive models. The human expertise on the respective subject area poses an 

essential input that has to be incorporated into the development. Furthermore, human perception 

and visual capabilities are a major asset in the daily work routine to gain new connections and 

insights. These advantages that the human factor brings must be integrated and utilized at every 

step of the development process. 

But to really benefit from these capabilities, in order to get a comprehensive understanding and 

to draw conclusions, a good overview of the available data is required. The investigation of 

single parameters is not sufficient. The interconnection of multiple parameters have to be 

observed in order to assess a patient’s health condition as well as to draw conclusion regarding 

the model development. At the same time, however, care must also be taken to ensure that the 

overview is maintained given the diversity of data. 
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Another important aspect that must be considered is the actual procedure of the development 

process. Because the process, which includes the already mentioned steps from raw data to 

signal processing, feature engineering, modelling and evaluation, is by no means straight 

forward or a single run. The individual development stages must not be considered as isolated 

steps. There are many different adjustable parameters along the different stages, which affect 

each other. This means that not only an overview of the various data is required, but also an 

overview across the various development steps to get an overall understanding and to detect 

possible interrelationships. 

The model development as well as the evaluation and optimization are an iterative procedure, 

where the data scientists repeatedly intervene in the model at different stages and repeatedly 

perform certain analysis steps. Especially when it comes to model evaluation and optimization 

it is essential to really understand the outcomes of the model. It must be possible to retrace why 

the model came to the respective result. This means that starting from the produced result, the 

individual steps of the modelling have to be reexamined repeatedly in more detail. This is a 

prerequisite for the implementation of optimization measures. Thus, the workflow of a data 

scientist is an interactive, iterative multistep process that involves trial-and-error, human 

judgment, and also intense exchange with colleagues. 

 

3.1.3. Essential elements and functionalities 
 
Based on the gained knowledge concerning the characteristics of telehealth data and the 

workflow of a data scientist, the following essential elements and functionalities of a 

visualization tool have been identified and are being described in this section (see Figure 10). 

 
Time Series 

The above mentioned surveys showed that the data in a telehealth use case as well as in 

healthcare in general consist largely of time series. Therefore, an appropriate time series 

visualization poses a core element of the requirements. The number and type of time series to 

be visualized depends very much on the respective application or the current interest of the user. 

Also, the number of axes required for the time series visualization is not always the same. The 

setup of the time series visualization should therefore be as adaptable as possible so that it can 

be adjusted to changing requirements. An additional aspect is the time range that should be 

plotted. Again, it should be possible for the user to adapt the visualized time frame to his needs, 
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so that on the one hand a complete overview is possible, but on the other hand also only a 

restricted range may be displayed.     

 

 

Figure 10: Essential elements and functionalities of the visualization tool 

 
Signal Processing linkage 

Time series as well as other data typically have to be pre-processed or transformed before they 

can be used in the modelling process. Therefore, it is necessary to support an interaction of the 

viewer and the signal processing functionality of the software. Selection of different available 

signal processing algorithms should be supported along with the possibility to launch them 

directly out of the UI combined with automatically reloading all affected viewer elements to 

keep the visualizations up-to-date. This enables a convenient environment for testing different 

algorithms and for analyzing different outcomes. 

 
Features 

As already mentioned, the features respectively the thereof composed feature set is the essential 

input of a predictive model. The feature set is the link between the raw data and the model. The 

performance of the model depends heavily on the composition of the feature set. On the one 

hand it is about the type of features selected and on the other hand about their respective 
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parameterization. In addition to that, different features are of different importance regarding 

model performance (i.e. feature importance). In the course of the model development process 

it is therefore important to test different versions of feature sets. Thus, to keep a good overview 

of the current modelling processes, all features should be at hand, which can e.g. be realized 

through presenting them as a list. 

 
Modelling result visualization 

When it comes to distinct model result visualization of a single patient, the pure listing of 

numerical values is not sufficient. The model result should be presented in an intuitive and 

comprehensive way in order to instantly provide the required information for further model 

improvement.  For example, a threshold violation could be indicated by color coding depending 

on whether it is a positive or negative outcome. Another important aspect is, that if the 

modelling results are related to a certain time interval, such as weekly intervals, the time 

synchronous relation to the underlying raw data must be given. 

 
Drill-Down 

Typical datasets for predictive modelling consist of several data levels. Along with raw data 

from measuring devices, derived data or any other kind of supplementary information on a 

measurement can be available. For example, a time series of heart rate values could have been 

derived from ECG recordings. Thus, while initially the actual heart rate values are shown, there 

should be a functionality to go further into detail and to take a closer look at the underlying 

biosignal, i.e. the ECG. Other examples would be various biosignals, lab reports or even 

imaging data. Thus, some kind of ‘drill-down’ functionality is required that allows the user to 

obtain a higher level of details if necessary. 

 
Linkage to evaluation 

Major challenges regarding the overall model evaluation are understanding why a given result 

has been obtained as well as finding potential issues, which might lead to errors or 

unsatisfactory effects. This is a prerequisite to subsequently being able to carry out measures 

for model optimization. Therefore, it should be possible to launch the viewer directly out of the 

evaluation process. A specific example would be a confusion matrix with its four cells i.e. true 

positive (TP), false positive (FP), true negative (TN) and false negative (FN).  By choosing an 

interesting cell (e.g. the FP cases only), just the chosen sub-selection of cases is presented. In 

order to then once again allow a closer look at the underlying data, the underlying 
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measurements, the features that were used for the model etc., to enable and support the process 

of gaining insights. Thus, the viewer has to have a start-up and update procedure which is 

triggered by external interactions. All the relevant elements of the viewer have to be initialized 

and/or updated according to the trigger event. 

 

3.2. Results of the Implementation  
 

3.2.1. Elements and functionalities of the viewer 
 
Figure 11 shows the interface of the ‘PATHviewer’ with loaded content. In the following, the 

individual elements and functionalities will be described in more detail. 

 

 

Figure 11: Main window of the PATHviewer 

 
Menu area 

The menu section at the top of the viewer serves as a superior selection area that contains 

various buttons and drop-down menus that are used to perform loading operations, make 

selections or carry out other actions (see Figure 12). 

With the ‘Load Feature Set’ button a feature set can be loaded. Via a file selection dialog box, 

the desired feature set is selected. This action also triggers the initial loading procedure of the 

viewer. In the course of this loading procedure, the raw dataset related to this case is 

automatically loaded. The ‘Subject’ menu is thereby filled with the respective list of patients. 
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Figure 12: Menu section of the PATHviewer 

 
Furthermore, in the course of this loading procedure, the system automatically searches for 

already existing models. If models are available that belong to the selected feature set, they are 

loaded and the drop-down menus ‘Models’, ‘EvaluationMode’ and ‘EvaluationGroup’ are 

updated accordingly. 

The ‘Record’ menu lists records associated with the currently selected patient, such as ECG 

recordings. The connection to the signal processing functionalities of the software is established 

via the drop-down menus ‘ProcessFcn’ and ‘ParameterSet’. The thereby selected signal 

processing algorithm can be applied to the respective records via the ‘process’ button. 

Via the ‘Remarks’ button, the user has the possibility to take notes. The button callback opens 

an Excel file out of the project directory, which is dedicated for this purpose. Via the ‘X Range’ 

drop-down menu, settings can be made regarding the range of the x-axis which is to be plotted. 

With the ‘TSPanel Config’ button, the ‘Time Series’ panel can be configured. Both these 

elements will be described in more detail in the ‘Time Series Panel’ section. 

 
Feature Table 

In the feature table, all the features of the currently selected patient are listed (see Figure 13). 

The first column of the table lists the names of the features. The other columns contain the 

values of the respective feature for the corresponding time intervals. In this case, these are 

weekly intervals. It is possible to select one of the features in the table by mouse click, in order 

to fix the slider position of the feature table when switching between different patients. 

 
Modelling Panel 

The modelling result panel, which is depicted in Figure 14 is for the presentation of the model 

output regarding a distinct patient. In this example, the prediction was about, whether an 

admission to a hospital will happen or not concerning the respective patient. 
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Along the x-axis, the time is plotted, which in this case are weekly intervals. The model output 

for each of these intervals is a threshold and a predicted probability, whether an admission to 

the hospital will happen. 

 

 

Figure 13: Feature table of the PATHviewer 

 

 

 

Figure 14: Modelling result panel of the PATHviewer 

 
The predicted probability is visualized on the one hand in the form of numerical values, but 

also in the form of bars with corresponding height. The red dotted line represents the threshold. 

If the predicted probability exceeds the threshold, the model indicates that there will be an 

admission. An actual admission to a hospital is indicated by a grey background of the respective 

week. The color of the bars is indicating whether the prediction was true (green) or false (red). 
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The example of Figure 14 shows the bar heights relative to the respective thresholds. Since the 

model calculates a threshold for each interval, the absolute thresholds are not the same for all 

intervals. Via a context menu of the axis the display mode can be switched between relative 

and absolute representation. 

 
Time Series Panel 

The time series panel is dedicated for the visualization of time series data (see Figure 15). Along 

the x-axis, the time is plotted, which in this case are daily time steps. The selected parameters 

are plotted on the y-axis. By right-clicking on a graph, the plot mode of the respective graph 

can be switched between stem- and line-plot. 

 

 

Figure 15: Time series panel of the PATHviewer 

 
The time series panel is implemented in such a way that it is user-configurable. The 

corresponding configuration menu can be opened either via the ‘TSPanel Config’ button in the 

menu section or by right-clicking in the panel. The configuration menu is a separate GUI, which 

consists of three tabs, i.e. ‘New’, ‘Save’ and ‘Load’. 

 

In the ‘New’ tab, the user is able to create a new configuration (see Figure 16). In a first step 

the number of axes that should be displayed in the time series panel has to be defined. 

Subsequently the axes type of all the axes objects has to be defined.  This is because the data 

structure of the PATH program is structured in such a way that the different time series are 

grouped into different categories (e.g. measured values, interventions, records). For the 

visualization, this has been implemented in such a way that each axes object must be assigned 

to one of these categories, which corresponds to the ‘AxesType’. Another parameter that has to 

be defined is the size of the respective axes. There are three different sizes available, minimum 

(min), medium (med) and maximum (max). 
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Figure 16: Time Series Panel configuration menu: New 

 
The ‘Save’ tab of the configuration menu is depicted in Figure 17. The specification of the 

current time series panel configuration, which is going to be saved, is listed in a table. This 

specification includes the axes types, the axes sizes and the plotted x- and y-variables. When 

specifying a configuration name, the system checks whether the selected name already exists 

to prevent possible name conflicts. By pressing the ‘Save Configuration’ button, the 

specifications are written to an Excel file. 

 
 

 

Figure 17: Time Series Panel configuration menu: Save 
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In Figure 18 the ‘Load’ tab is depicted. The load functionality accesses the Excel configuration 

file to which the specifications were previously saved. In a drop-down menu all the existing 

configurations are listed. In a table, a preview of the currently selected configuration is listed. 

In this preview, the different axes of the respective configuration are listed with information 

about the axes types, the axes sizes and the selected x- and y- variables. Through clicking the 

‘Load Configuration’ button, the selected configuration is loaded, and the viewer content gets 

updated depending on the currently selected patient. 

 

 

 

Figure 18: Time Series Panel configuration menu: Load 

 
The selection, which parameters are to be plotted per axes, is carried out via a separate menu, 

which is opened by double-clicking on the respective graph (see Figure 19). Under ‘Raw 

dataset’ the category of the corresponding graph is listed, which corresponds to the category of 

time series that can be plotted in it. For the x-axis, the possible time parameters are listed, of 

which one must be selected. (e.g. ‘DOV’ for Day of value, ‘WOV’ for Week of value, etc.) For 

the y-axis, on the other hand, any number of parameters can be selected, which are then plotted 

in different colors in the respective graph. 
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Figure 19: Selection of the parameters to be plotted via the time series axes data menu 

 
The time series graphs are arranged in time synchronism with the model result graph. Settings 

regarding the time range to be displayed can be made via the ‘X Range’ drop-down menu. At 

the current state, there are two different options available. On the one hand, the visualization 

can extend over the entire time range for which raw data is available. (i.e. ‘all’). On the other 

hand, the range, which is to be visualized, can be restricted to the period, for which modeling 

was performed (i.e. ‘modelled bins only’). In the case of restricted visible time range, a scrollbar 

is activated with which the user is able to shift the visible time frame along the entire time 

range. 

 
Data cursor function 

Details of the plotted data points can be displayed by a data cursor interaction. A customized 

data cursor function was implemented, which generates a text information window containing 

specific details of the selected data point (see Figure 20). The popup window shows the 

identifier (ID) of the selected data point, the patient ID, the absolute as well as the relative day 

of the value (DOV), and the data point value itself. In the example illustrated in Figure 20, an 

interaction with a data point of a time series of clinical notes is depicted. 
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Figure 20: PATHviewer data cursor information window displaying the metadata and content 
of a textual note 

 
Drill-Down Panel 

The purpose of the drill-down panel is to allow the user to take a deeper look into the data. If 

there is a time series of measurements or events, for which an underlying data level exists, the 

individual data points can be selected via mouse click. The layout and content of the drill-down 

panel then adapts to the respective measurement or event type. In the case of the example shown 

in Figure 21, it is an ECG recording with the corresponding signal analysis. The first graph 

shows the raw ECG, the second the beat intervals and the beat classification. 

The underlying program sequence is implemented in such a way that this drill-down process is 

divided into two steps. There is a ‘drill-down setup’ which defines the basic elements and layout 

of the drill-down panel. Then there is a ‘drill-down procedure’ in which various processes, 

corresponding to the respective measurement or event, are defined and which are to be executed 

in the course of the drill-down process. 
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Figure 21: Drill-Down panel of the PATHviewer 

 
 

3.2.2. Startup procedures 
 
There are two possibilities for the start-up procedure of the PATHviewer. On the one hand, the 

viewer can be opened from the MATLAB Command Window using the command 

‘PATHviewer’ (see Figure 22). The main window of the viewer appears, where all menu fields 

and panels are empty at first. 

 

 

 

Figure 22: Start PATHviewer out of the MATLAB Command Window 
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The initial step is to load a feature set via the ‘Load Feature Set’ button as described under 

‘menu area’ in section 3.2.1. As a result of this loading process, the ‘Subject’ menu is filled 

with all available patients, of which the first patient of the list is selected, and the feature table 

is updated accordingly. In the course of this loading process, the program also checks whether 

there are already existing models for the selected feature set. If this is the case, the model is 

loaded and the modelling result graph is updated accordingly. Subsequently, the time series 

panel can be configured using the configuration menu described above and all other 

functionalities can be utilized. 

On the other hand, the viewer can be called directly from the evaluation after a modeling run. 

Two scenarios of this kind are shown in Figure 23. There are two confusion matrices, one of 

which is a scatter plot representation (a) and the other a fourfold table (b). They show the 

evaluation of the model output of all patients for a specific week (i.e. week 14). This means that 

in the scatter plot representation, each data point corresponds to the prediction outcome of a 

specific patient. By selecting one of the data points from a), exactly this patient is loaded into 

the viewer and the content of the viewer elements is updated accordingly. 

In b), each field of the fourfold table represents a group of patients (i.e. FP, TP, FN, and TN). 

By clicking on one of these fields, the corresponding group of patients is loaded into the viewer. 

 

 

 

Figure 23: Load PATHviewer from confusion matrices a) scatter plot representation b) 
fourfold table 
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The cases, which have just been described are two concrete examples of how the viewer can be 

loaded from the evaluation. In the course of the implementation, however, a general load and 

update routine was implemented, which makes it possible to call the viewer from various other 

representation forms of evaluation or statistical analysis. 

However, two cases have to be distinguished here. If the viewer is opened initially through 

interaction with the evaluation, the configuration of the time series and the drill-down panel 

must be carried out in a separate step. If, on the other hand, there is an interaction with the 

evaluation when the viewer is already open, the viewer is updated including the previously 

selected configuration. 

 

3.2.3. Software architecture 
 
The basic software architecture of the viewer is shown in Figure 24. In addition to the main 

GUI ‘PATHviewer’ there are two extra GUIs. On the one hand the configuration menu of the 

time series panel and on the other hand the menu for selecting the parameters to be plotted, 

which have already been described in more detail in section 3.2.1. 

As illustrated in Figure 24, the functions of the toolset can basically be divided into four 

categories. The setup functions, such as ‘createTSAxes’ or ‘drillDownSetup’, are generally 

called only once in the course of a configuration process.  The update functions, such as 

‘plotTimeSeries’, on the other hand, are executed every time patients are switched.  These 

functions are used to update the previously established setup. 

A further category are the functions that serve the interactive functionalities. The 

‘dataCursorFcn’ function is used, for example, to retrieve and display detailed information on 

individual data points of time series. Furthermore, the drill-down process can also be started 

via this function. Then there are supplementary functions that are required for specific 

functionalities. With the help of ‘getXRange’, for example, the time range of the different 

graphs to be plotted is determined. 

 

The core element of the structure is the main interface of the viewer, the MATLAB GUI 

‘PATHviewer’. This GUI consists of an m-file, which corresponds to a MATLAB script file, 

and a fig-file, for the corresponding MATLAB figure. 

The PATHviewer figure, which is created when the program is executed, contains in its 

properties all relevant information about the main window itself as well as the handles to all 

existing children (i.e. sub-elements as buttons, drop-down menus or graphs). 
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An extract of these properties is shown in Figure 25. Additionally, to the properties, it is also 

possible to store data to the GUI and subsequently retrieve it. The PATHviewer GUI thus serves 

as a base and central storage location for all processes running in the toolset. 

 

 

Figure 24: PATHviewer software structure 

 
 

 

Figure 25: Properties of PATHviewer figure (extract) 
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Besides the MATLAB predefined processes, which are necessary for the basic structure and 

initialization of the GUI, the PATHviewer.m script also contains other program parts. This 

includes the initialization processes defined by the user. Furthermore, the basic loading 

processes, such as those of the raw data, the feature set or those of already existing models are 

performed in this script. It also contains all callback functions of the UI controls (i.e. buttons, 

drop-downs, slider, etc.). Additionally, this script also contains the load and update process, 

which enables an external launch of the viewer (e.g. from evaluation). 

In the following section, the role of the PATHviewer GUI as a central storage element is 

described in more detail. As already mentioned, various loading processes take place in the 

PATHviewer.m file. The loaded data must be saved in order to have it available in the program 

for subsequent access. In Figure 26 the respective pseudo code section is shown. To be able to 

use the PATHviewer figure as a central storage object and to be able to access it later from 

anywhere in the program, it has to be initially stored in the application data of the root object 

(i.e. command window). This is done with the ‘setappdata(0, ‘hPATHviewer’, gcf);’ command. 

‘0’ stands for the root object, ‘hPATHviewer’ for the name identifier and ‘gcf’ gets the current 

figure (i.e. PATHviewer). 

The feature set, the time series data and, if available, the model results are loaded during 

program execution. The results of the respective loading process (i.e. F, T and M) are appended 

as fields to the ‘Data’ structure. This ‘Data’ structure is then stored in the graphics object 

‘hPATHviewer’ with the name identifier 'data' using the ‘setappdata’ command.  The 

‘setappdata’ function is generally used to store data in a UI. 
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Figure 26: PATHviewer.m pseudo code example for the load and save procedures concerning 
feature set, time series and model results 

 
To retrieve the data elsewhere in the program the ‘getappdata’ function is utilized. One such 

example is shown in Figure 27 by means of the ‘plotTimeSeries’ function. First in line 7 the 

handle of the PATHviewer figure is retrieved from the root using the ‘getappdata’ function. In 

line 8 the ‘guidata’ command loads the entire handles structure of the viewer (i.e. handles of 

the children). In line 10, the previously saved ‘Data’ structure is reloaded using ‘getappdata’ 

with the name identifier ‘data’. Via dot notation all the previously saved data including the time 

series data can be accessed (line 12). 

 
 

 

Figure 27: (pseudo) code example to retrieve data from the PATHviewer figure 
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Both of these functions, the ‘setappdata’ and the ‘getappdata’ make it possible to share data 

between callbacks or between the separate GUIs. Therefore, these two functions also play an 

important role for many other parts of the program. 

An example for this, which is illustrated in Figure 28, are the metadata of the time series axes 

(i.e. axes type, axes size, x and y variables, stem mode). The settings that are made, for 

example, via the ‘TSPanelConfigGUI’ or via the ‘TSAxesDataGUI’ are combined in an 

‘AxesMetaData’ structure and assigned to the respective axes objects via ‘setappdata’ and the 

name identifier ‘amd’. Also, the stem/line-plot setting is saved in this structure. This structure 

is retrieved via ‘getappdata’ in the ‘plotTimeSeries’ function and the required parameters can 

be accessed. 

 
 

 

Figure 28: Storage and retrieval of the axes metadata of time series axes (pseudo code) 

 
The ‘User Data’ of the individual UI controls of the viewer also plays an important role in the 

functionality of the program. Each UI control element (e.g. button, drop-down, slider etc.) has 

a field ‘User Data’ in its properties. This ‘User Data’ can be used to store information and access 

it from elsewhere in the program. 

A specific example where this is the case is the slider, which determines the time range which 

should be plotted. The ‘User Data’ of the slider stores the start and end point of the range to be 

displayed. This information is then accessed by the corresponding functions (i.e. 

plotTimeSeries and updateModResAxes). 
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Another case, where the ‘UserData’ plays an important role is when the viewer is called from 

the evaluation (see Figure 29).  The figure that is created during the evaluation (e.g. confusion 

matrix) provides a structure ‘model’. It contains all relevant data and information related to the 

corresponding evaluation, including the name of the used feature set, the model name, patient 

IDs, etc. With the help of ‘getappdata’, this information is retrieved from the current figure and 

stored in ‘M’. The relevant information is stored in the ‘UserData’ of the corresponding UI 

control elements of the PATHviewer, which is subsequently called with the external update 

routine ‘UpdateExternal’. In the course of this update routine, the information stored in the 

‘UserData’ is accessed again and the viewer is loaded or updated accordingly.  

 

 

 

Figure 29: Usage of ‘UserData’ property for evaluation startup procedure 

 
Another important component of the PATHviewer is the drill-down functionality. The 

corresponding schematic program sequence is shown in Figure 30. The starting point of this 

functionality is the data cursor function of the viewer (i.e. dataCursorFcn). This function not 

only creates an info window with detailed information about the selected data point, it also 

checks, if there is a drill-down process for the respective data point. Whether such a process 
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exists for a certain data type is specified in the definition files of the PATH program. This 

specification is stored in the metadata of a data point. In the data cursor function this is being 

checked and the corresponding drill-down setup and procedure is executed accordingly. 

 
 

 

Figure 30: Process of drill-down functionality (pseudo code) 
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4. Discussion   
 

4.1. Interpretation of the results 
 
The requirements analysis regarding an interactive visualization tool for the predictive analytics 

domain was carried out primarily on the basis of telehealth data. Nevertheless, the potential 

application areas of the identified elements and functionalities described in Section 3.1.3 are 

not limited to the telehealth domain. This is because they cover many aspects that are relevant 

for a variety of applications, since the basic steps of a model development process are included. 

The concept development of a tool that supports data scientists in the development of predictive 

models in the telehealth domain also revealed many aspects that have to be considered. A major 

challenge in terms of the amount and variety of available data is finding the right balance. On 

the one hand, a good and comprehensive overall overview of the situation should be available, 

providing simultaneous visualization across several data levels. On the other hand, however, 

care must also be taken to ensure that there is no overload of information that overwhelms the 

user. 

The developed tool takes the former aspect into account by simultaneously presenting the model 

result, the underlying time series data as well as the features used for modelling on a single 

interface. Whereby the model result visualization is not a simple presentation of numerical 

values. The simultaneous representation of the probabilities as bars as well as their color coding, 

which indicates a right or wrong result, leads to the fact that multiple important information is 

contained at the same time in a visualization. This presentation of the results enables a fast and 

comprehensive perception by the user. 

Another aspect that contributes to a good overview is the time-synchronous arrangement of 

model results and time series. The fact that the time series are plotted with exact synchronization 

to the model results makes it possible to determine specific correlations between model output 

and the underlying raw data. This can especially help to identify specific patterns or anomalies 

in the data, e.g. around a hospitalization event. On the basis of these insights, existing 

hypotheses can be tested, or new hypotheses can be formulated in order to subsequently develop 

new features for the modelling process. 

An important aspect in this context is also, which time series should be plotted to achieve these 

insights. The configurable time series panel offers the user the necessary flexibility to adapt the 

visualization of the time series data to her/his current requirements and research question.  In 

addition to the number, type and order of the axes, also their size can be selected. This size 
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selection of the axes makes it possible to achieve optimal use of the limited space by adapting 

the axes to the respective data type. For the representation of binary data, for example, a small 

graph is sufficient. If, on the other hand, the data has a broad value range over the y-axis or if 

several parameters are to be displayed in one axis, a larger graph can be selected accordingly 

in order to obtain a better overview. The actual decision, which parameters are to be displayed 

in the respective axes, can be made via the separate GUI and can be adjusted later at any time. 

This and the save and load functionality give the user a high degree of flexibility in time series 

visualization. 

The second aspect mentioned before, prevention from information overload, is ensured on the 

one hand by this configurability of the viewer and on the other hand by the concept of ‘details 

on demand’. The implemented data cursor function makes it possible to provide more detailed 

information about data points. This can be used to retrieve certain metadata of the measured 

values. Another important application of this functionality is, when there is text information 

behind data points. For example, as shown in Figure 20, notes of health professionals can be 

retrieved. The insight into these notes enables the data scientist to gain a deeper understanding 

of the situation at hand and to better understand the course of treatment.  This ‘details on 

demand’ functionality is therefore an important building block to gain a comprehensive 

understanding. 

Another type of ‘details on demand’ offers the drill-down functionality. It enables the user to 

go one step deeper into the data. This functionality was developed using ECG recordings which 

were added to the test dataset. Therefore, the drill-down panel in Figure 21 consists of a graph 

for the raw ECG and a graph for the processed ECG in its current state. However, the structure 

of this functionality was implemented in such a way that it can be applied as generally as 

possible. By dividing the program sequence into a part for setup and a part for procedures, this 

panel can be easily adapted to the respective use case. Thus, this drill-down panel offers a freely 

configurable area which is of particular importance with regard to the variety of possible data 

types. 

The individual elements and functionalities of the viewer represent important building blocks 

in the work process of data scientists. Furthermore, the two available startup procedures ensure 

that the viewer can be effectively integrated into the general workflow of data scientists. The 

startup from the MATLAB command window, where the data is loaded step by step into the 

viewer and subsequently analyzed, is particularly useful for initial data analyses. Loading or 

updating the viewer from the evaluation, on the other hand, is very well suited for the model 

optimization process. The user can load specific cases or groups of patients (e.g. FP cases) into 
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the viewer in order to analyze them in more detail. This ability supports above all the iterative 

nature of a model development process in which the goal is gradually approached. 

 

The viewer was developed and designed to support data scientists in their daily work. The 

primary field of application thereby lies in the development and optimization of predictive 

models. But the developed visualization toolset, with all the presented elements and 

functionalities, allows further application scenarios. The toolset can also be used for pure data 

analysis or statistical evaluations. Because even without carrying out actual modeling, datasets 

can be visualized and interactively examined. 

However, the field of application of the viewer is not exclusively limited to data scientists. The 

tool can also be used for explanatory purposes or joint workshops with other stakeholders of a 

project. Due to the comprehensive visualization and analysis possibilities, datasets can be 

jointly discussed, and the background of developed models can be explained in more detail to 

ultimately facilitate collaborative analytical reasoning. 

 
The framework of the ECG viewer presented in section 1.2.2 was successfully extended in the 

course of the development of the PATHviewer. While the ECG viewer is a good tool for the 

specific analysis of ECG data, the PATHviewer offers visualization and analysis options for a 

wider range of applications. Due to the drill-down functionality it is thereby also possible to 

integrate certain aspects of the ECG viewer into the new tool. Because in addition to the display 

of ECG raw signals, the signal processing together with visualization of the processing results 

can be integrated in the PATHviewer. 

 
Concerning the implementation, the use of MATLAB's GUIDE provided all required types of 

visualization as well as the necessary possibilities regarding interactive functionalities. 

However, in the course of the implementation of the viewer it turned out that GUIDE has some 

drawbacks. In certain cases (e.g. fixing the slider position of the feature table) it was necessary 

to use undocumented solutions and Java to achieve the desired result. Furthermore, in some 

cases, such as the implementation of a tab concept, which is used in the configuration menu, 

workaround solutions were required. In this respect, after further updates and extensions, the 

2016 introduced App Designer could possibly provide a more convenient solution for the 

implementation of such tools in the future. 
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4.2. Limitations  
 
In the course of the testing and validation phase, certain limitations were identified regarding 

the practical use of the viewer. One issue concerns the initial start-up process of the 

PATHviewer from the evaluation. The viewer is thereby started without preset configurations. 

The setup of the time series panel as well as the drill-down panel has to be carried out by further 

interactions of the user. At this point it turned out that a default configuration would be 

beneficial, which is loaded automatically during the start-up process. 

The validation of the viewer with regard to its generic applicability has shown that the 

developed framework is basically well suited for other use cases. The concept described in 

section 2.6 was successfully implemented with the structures of the PATHviewer, especially 

the drill-down functionality. However, some adjustments were necessary in the course of this 

implementation. It was necessary to modify the code at certain points to adapt the viewer to the 

new use case. Currently, a separate individual drill-down setup and procedure has to be 

established for a new use case. For this, the PATHviewer lacks the availability of modular 

building blocks, with which a newly adapted setup can be conveniently configured. 

 
In its current state of development, the viewer concept also offers only limited interaction 

possibilities with regard to direct interventions in the model development process. The viewer 

provides comprehensive visualization and analysis capabilities across the various steps in a 

model development process. However, it is not yet possible to really navigate through the 

process step by step with the help of the viewer and to interactively intervene in the various 

process steps directly from the interface. In order to be able to implement such a concept, 

however, also adaptations to the underlying PATH program would be necessary. 

 

4.3. Outlook  
 
The viewer concept developed on the basis of the HerzMobil telehealth data has a number of 

additional application scenarios. The adaptation of the viewer to a dataset of ergometric 

performance tests of cardiac rehabilitation patients did not only served the purpose of 

validation, it also poses a real-world application of the viewer. The viewer will be used to 

analyze the available data in more detail, with the goal of drawing conclusions about the 

effectiveness of certain measures in the course of the rehabilitation program. 
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Another concrete use case is the analysis of Timed Up-and-Go (TUG) measurements. A TUG 

test is a test performed to assess the mobility and the risk of falls of a patient. At the start, the 

patient sits on a chair. After being instructed to stand up, the patient walks a certain distance, 

turns around and sits down on the chair again. A device developed by AIT measures the time 

while continuously recording the distance the patient is walking. The output of these 

measurements are movement curves of the patients. With the help of the viewer, time series of 

measurements and the corresponding movement curves can be visualized and further analyzed. 

On the basis of these analyses, models can subsequently be developed, which allow certain 

statements to be made based on these movement curves. In addition to displaying time series 

and movement curves, videos that could be recorded during the measurements might also be 

integrated into the viewer. This additional type of information would allow an even better 

interpretation of the data. 

Apart from these two concrete use cases, the viewer concept can be applied to various datasets 

that contain time series and have a multidimensional characteristic. This opens up a very broad 

field of application in the context of health and care data. 

 
In connection with the variety of possible use cases for the viewer, there are also a number of 

possible further developments of the toolset. On the one hand, adaptations are necessary to 

overcome the limitations mentioned above. This includes the implementation of a default 

configuration for the evaluation start-up procedure. Moreover, the current framework can be 

further optimized so that it becomes even more generic, in order to be able to apply the viewer 

with its current functionalities even faster to other use cases. 

If the viewer concept is not used for model development, but purely for general data analysis 

purposes, there are other priorities regarding the elements of the main interface. In order to 

enable more flexibility in this respect, further development towards a more modular setup is 

necessary. 

A long-term goal could be to further develop the viewer concept in a way that it is not only 

used as a visualization and analysis tool, but that it can also be used to actively interact with the 

modeling process. Which means that the viewer becomes a more comprehensive UI, which is 

integrated even deeper into the PATH program. This would enable direct and specific 

interventions in the various stages of the model development process. 
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5. Conclusion  
 
In the course of this thesis it became clear that, with all the possibilities predictive modelling 

brings with it, the human being still plays an indispensable role in this process. The developed 

viewer aims to combine the computational capabilities with the skills of human beings to 

achieve an optimal result. 

Even if there are still many possibilities for further development, the current state of the viewer 

already allows better management of the model development process and thereby helps to gain 

deeper insights and a better understanding regarding complex data analytics challenges. This is 

of crucial importance in two respects. On the one hand, it is a key aspect for the development 

and optimization of predictive models. On the other hand, the generated models and their results 

can be better interpreted and explained to third parties. This is especially critical regarding the 

acceptance of data-driven decision support systems in real world applications. Thus, the 

developed viewer makes an important contribution on the way to a more data-driven healthcare 

with the ultimate goal of autonomous telehealth systems. 
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