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Abstract 

Introduction & Background: The detection of rare variants is of utmost importance in a variety 

of clinical scenarios, in particular for the analysis of cell-free circulating tumour DNA (ctDNA) 

from blood. As tumour-derived cell-free DNA is often underrepresented and massively diluted by 

DNA from normal cells, high resolution approaches are needed for the detection of somatic 

mutations, which are often present at frequencies below 1%. Therefore, high-resolution methods 

for mutation detection are needed which are able to distinguish mutations from background noise. 

To this end, unique molecular identifiers (UMIs) are used with Next Generation Sequencing (NGS) 

approaches in order to tag each template molecule in library preparation for a subsequent 

correction of PCR and sequencing errors. However, the bioinformatic downstream analyses are 

not well established and there is no pipeline available which enables a generalized analysis of various 

UMI-based approaches from different vendors. Therefore, it is unclear which combination of UMI 

protocol and variant calling software is most sensitive for detecting rare variants. 

Methods: In this thesis, aspects critical to error suppression of various commercially available 

UMI-based NGS approaches were explored. A variant calling pipeline was developed and 

optimized. To this end, a well-characterized reference DNA was used as a ground truth for variant 

validation. Visualization of alignment clusters was used to assess the validity of a heuristic clustering 

procedure, which was developed for the analysis. 

Results: Including UMI information in data pre-processing for variant calling only following 

general rules of thumb would have led to severe errors for certain UMI tagging protocols. A 

similarity-based clustering approach was developed which performed almost as good as a variant 

calling analysis conducted by QIAGEN, Venlo, NL. The performance was consistently high 

regardless of the utilized UMI tagging protocol or variant caller. SmCounter, a UMI-aware variant 

caller, was found to have a 10-fold lower detection limit than the well-known Mutect variant caller 

in tumour only mode. Somatic mutations with variant allele fractions of 0.125% were detected 

from 100 ng DNA samples. It was shown that ground truth variants were less affected by 

increasingly permissive clustering than the ambiguous background portion of variant calls. 

Significance: These findings provide information on how to avoid pitfalls in processing UMI 

tagged paired-end sequencing data with respect to the applied tagging and targeting protocols. It is 

not always wise to apply rules of thumb for processing UMI-tagged sequencing data. Applying 

these rules would fail to correct for artefacts like premature strand synthesis termination. The 

clustering approach presented here also corrects for these artefacts and ensures a better reduction 

of alignments to the original library state.  
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Kurzfassung 

Einführung & Hintergrund: Die Detektion von seltenen genetischen Varianten ist in vielen 

klinischen Anwendungen von großer Wichtigkeit, speziell bei Analysen von zellfreier Tumor-DNS 

(ctDNA) aus Blut. Da ctDNA durch DNS aus normalen Zellen stark verdünnt ist, werden 

hochauflösende Methoden zur Detektion benötigt, um Mutationen von Hintergrundrauschen 

unterscheiden zu können. Zu diesem Zweck werden eindeutige molekulare Identifikatoren (UMIs) 

in Kombination mit Next Generation Sequencing (NGS) Lösungen verwendet, um jedes DNS-

Molekül während der Erstellung der Sequenzierbibliothek für eine spätere Korrektur von PCR-

Fehlern und Sequenzierfehlern zu markieren. Die nachfolgende bioinformatische Analyse ist 

allerdings wenig etabliert. Weiters steht keine Software zur Verfügung, welche die generalisierte 

Analyse von UMI-basierten Lösungen verschiedener Anbieter ermöglichen würde. Ebenso ist 

unklar welche Kombination aus UMI-Protokoll und Variantenbestimmungssoftware (VBS) am 

empfindlichsten wäre um seltene Varianten zu detektieren. 

Methoden: In dieser Arbeit wurden Aspekte der Fehlerunterdrückung durch kommerziell 

verfügbaren UMI-basierten NGS-Lösungen untersucht. Es wurde eine Softwarepipeline entwickelt 

und optimiert. Zu diesem Zweck wurde Referenz-DNS herangezogen um einen Satz an wahren 

Varianten zu erhalten. Visualisierungen von Clustern aus gemappten Sequenzreads wurden 

verwendet, um den entwickelten heuristischen Gruppierungsvorgang zu validieren. 

Resultate: Die Verarbeitung der UMI-Information gemäß Faustregeln würde für manche 

Markierungsprotokolle zu Fehlern führen. Es wurde eine ähnlichkeitsbasierte Herangehensweise 

zur Gruppierung entwickelt, die vergleichbare Resultate in der Variantenbestimmung erzielte wie 

eine Analyse von QIAGEN, Venlo, NL. Die Leistungsfähigkeit dieser Gruppierung war 

unabhängig vom verwendeten UMI-Protokoll und der verwendeten VBS. SmCounter erreichte ein 

zehnmal niedrigeres Detektionslimit als die bekannte Mutect VBS im Nur-Tumor-Modus. 

Somatische Mutationen mit einer Variantenallelfrequenz von 0.125% konnten aus 100 ng DNS-

Proben detektiert werden. Es wurde gezeigt, dass bekannte wahre Varianten weniger durch 

tolerantere Gruppierung beeinflusst werden als Hintergrundvarianten. 

Signifikanz: Die hier präsentierten Erkenntnisse bieten wichtige Informationen, um 

Verarbeitungsfehler von UMI-markierten, gepaarten Sequenzread-Daten unter Berücksichtigung 

der angewandten Markierungsprotokolle zu vermeiden. Würden in der Praxis nur Faustregeln zur 

Datenverarbeitung angewendet, so würden Artefakte wie vorzeitiger Syntheseabbruch nicht 

korrigiert. Der vorgestellte Gruppierungsalgorithmus korrigiert auch diese und bietet eine bessere 

Rückrechnung der Sequenzierdaten auf den Ursprungszustand der Sequenzierbibliothek. 
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1. Introduction 

The Human Genome 

Assembling the complete sequence of the human genome was pursued by the human genome 

project. This goal was officially achieved in 2003 [1, p. 54]. Since then, obtaining deoxyribonucleic 

acid (DNA) sequence information from patients has gained tremendous importance for diagnostics 

and treatment of various diseases. The cost of sequencing an entire human genome has decreased 

from $100 million in 2001 (4) to around $1,500 in 2017 [2] and might decrease further in the future. 

Studies in the field of ‘omics’ technologies combined with systems biology approaches thrive to 

describe the aggregated information of an organism with respect to its DNA methylation status, 

its genes, encoded RNA transcripts, translated proteins, as well as other sources of molecular 

information such as lipids and metabolites. Insights from omics, ontologies and molecular 

pathways greatly furthered our understanding of the human biology from a molecular to a system-

wide scope. For example, a successful application of omics technologies was reported in a study 

that investigated drug induced cell stress [3, p. 11]. 

In medicine, omics technologies have helped in moving the focus from symptom-based treatment 

to patient-centred approaches. The massive accumulation of comprehensive knowledge about the 

human organisms allows for accurate interpretation of easily accessible molecular profiles and 

metabolite levels amongst other biomarkers such as small variations of the DNA sequence. 

International efforts successfully established comprehensive databases to catalogue variants in 

special contexts like OMIM [4] (genetic disorders), to aggregate data of certain types like  

gnomAD [5, p. 16ff] (exon and genome sequencing data), or various tumours, which aid in the 

interpretation of disease-associated genetic alteration such as single nucleotide variants (SNVs), 

short deletions or sequence insertions (indels), somatic copy number alterations (CNAs), and gene 

fusions. 

 

Genetic Variation and Variant Detection 

As a result of the 1000 Genomes Project, the average healthy human individual was estimated to 

carry around 180 sites with protein truncating variants, up to 12,000 variants altering peptide 

sequence, up to 2,500 structural variants, and more than half a million variants overlapping with 

known regulatory regions [6, p. 1f]. The number of bases affected by structural variation was 

estimated to be around 18.4 Mbp [7, p. 5]. Therefore, it is of utmost importance to distinguish 

harmless mutations from those that have the potential to act in tumorigenesis or cause genetic 

disorders. Nevertheless, healthy individuals might also carry disease-associated variants which 
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predispose to certain diseases. It was estimated that approximately 60 missense variants that 

severely damage protein structure and approximately 100 loss-of-function variants are carried by 

each healthy individual [8, p. 9]. 

The identification of genetic variants is based on complex bioinformatics algorithms and the default 

analysis pipeline for detecting mutations can be simplified as a sequence of the following steps: 

1) sampling and purifying DNA material from an affected individual 

2) determining the base sequence of sample DNA material through sequencing 

3) applying quality checks and pre-processing to obtained sequence reads 

4) mapping reads to the organism’s reference genome involving sequence alignment 

5) alignment processing (e.g. marking duplicates) 

6) application of a variant calling algorithm to: 

a) determine sequence deviations from the reference genome or 

b) region copy number aberrations relative to other sample regions. 

 

Cancer 

Cancer comprises a large group of multifactorial, complex diseases that involve abnormal cell 

growth. During a lifetime, cells accumulate a variety of mutations and if these mutations affect so 

called cancer genes, tumours might arise. There are two types of genes involved in tumorigenesis: 

tumour suppressor genes, which control the cell cycle or initiate apoptosis, and (proto-)oncogenes, 

which normally promote cell growth, proliferation or inhibition of apoptosis. According to the 

two-hit hypothesis, at least two mutational events must occur in a tumour suppressor gene in a cell 

for it to start malignant tumour growth. In contrast, for the activation of an oncogene, a single 

mutation is sufficient to confer a growth advantage. In late stage cancers, tumour cells may also 

migrate to tissues distant to the primary tumour site in a process called metastasis formation. 

An example of a tumour suppressor gene commonly mutated in tumours is TP53. In healthy 

individuals, the expression of the unstable p53 protein is stabilized upon DNA damage which leads 

to senescence allowing for repair mechanisms to act. In case that the DNA repair mechanism failed, 

stabilized p53 protein induces apoptosis [9, p. 1f]. 
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Precision Oncology and Liquid Biopsies 

Although treatment advances have led to improved response rates and survival for a variety of 

tumour types, early detection and longitudinal monitoring of patients is the only means to 

accomplish the best possible treatment outcome. 

Most cancers would be curable if detected early [10, p. 29]. Currently, screening routines capable 

of detecting cancer in early stages are only established for breast, cervical, colorectal, and prostate 

cancer. In some cases, the benefit is under debate because of overdiagnosis and treatment side  

effects [11, p. 4f] [12, p. 7ff]. Aside of a wider repertoire of screening tests, also the availability of 

a cost-effective monitoring of tumour response to treatment would help in quick adaptation of 

medication. In this context, the use of so-called liquid biopsies, which include the analysis of 

circulating tumour components such as cells or cell-free DNA, is a promising tool for early cancer 

detection or early detection of recurrence, and identification of actionable targets or resistance 

mechanisms [13, pp. 1-3]. Therefore, biomarkers accessible from liquid biopsies such as blood or 

urine samples might become an alternative to invasive solid tissue biopsies in diagnosis and tumour 

classification. Moreover, in some cases, solid biopsies were shown to accelerate migration of 

tumour cells into neighbouring tissues and distant metastasis formation [14, p. 8] 

Liquid biopsies were shown to be of diagnostic value in non-invasive therapy monitoring and 

detection of cancer-causing mutations 1 up to 2 years in advance of diagnosis [15, p. 5]. In a 

successful therapy monitoring example, response of a metastatic prostate cancer to treatment with 

two androgen receptor axis-targeting drugs could be detected by keeping track of region copy 

numbers assessed from shallow sequenced plasma-Seq samples [16, p. 6f]. 

 

Liquid Biopsy Challenges 

Circulating tumour DNA (ctDNA) is released into the circulation through several mechanisms [17, 

p. 2] [18, p. 3] [19, p. 5f] [20, p. 3ff]. ctDNA can be used as a biomarker in clinically informative 

genomic profiling. This is done by extracting information present in DNA fragments like SNVs 

and indel variants of cancer-associated genes as well as detection of fusion genes. The amount of 

KRAS alleles circulating tumour DNA was found to correlate with tumour burden and, therefore, 

increase over the four tumour stages. Furthermore, the amount of detectable ctDNA depends on 

the type of cancer [21, pp. 2f, 5]. These circumstances highlight the necessity of detecting low 

tumour variant allele frequencies (VAFs) from liquid biopsy samples in early cancer detection. 

A further limitation of ctDNA is the relatively low amount of material released from early stage 

tumours and certain types of cancers. The amount of ctDNA seems to depend on tumour  
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size [22, p. 6]. For example, the number of circulating KRAS mutated alleles was found to correlate 

with tumour burden and, therefore, increases with advanced tumour stages [23, p. 4f]. To observe 

a mutant DNA frequency of 0.1%, a spherical tumour would need to reach a volume  

of 10 cm³ [24, p. 5]. 

This aggravates the use of ctDNA of early cancer detection [25, p. 4] [26, p. 4]. The screening for 

single or few mutations alone does not reach sufficient sensitivity. However, combinations of 

biomarkers were shown to increase sensitivity of detecting pancreatic adenocarcinoma [27, p. 4] 

and ovarian cancer [28, p. 5] compared to tests relying on a single type of biomarkers. The detection 

of tumour-specific methylation patterns [29, p. 8f] was also described to be useful in early diagnosis 

of disseminated breast cancer up to one year in advance of conventional diagnosis [30, p. 7f]. Also, 

ovarian cancer could be correctly diagnosed up to two years in advance [31, p. 12]. Methylation 

patterns can be used in tissue deconvolution to identify the tissue of origin in cases of cancers with 

unknown primary tumour site [32, p. 9]. 

Furthermore, the amount of detectable ctDNA depends on the type of cancer and not all tumour 

types are equally suited for ctDNA-based analyses [21, pp. 2f, 5]. 

 

UMI-Based Approaches 

The above-mentioned liquid biopsy challenges highlight the necessity of detecting low tumour 

VAFs. Using NGS-approaches, the VAFs in many ctDNA samples is in the range of background 

noise. To be able to distinguish DNA replication errors from true variants, methods involving 

tagging of the original unamplified sequencing library with so-called unique molecular identifiers 

(UMIs) were developed. Other terms describing molecular identifiers may be encountered in 

literature: molecular tag, molecular barcode, or simply barcode. Targeted sequencing panels can be 

combined with these products to reduce sequencing to regions of interest which increases cost and 

time efficiency. 

Currently, tests relying on the detection of low VAF variants without making use of noise filters or 

suppressing measures are unlikely to reach clinical validity, even if an effective molecular tagging 

strategy is combined with sensitive variant calling. It was only recently that the required quality of 

variant calling results was obtained by applying deep learning methods for sequence specific noise 

suppression and removal. The corresponding computational error suppression approach was 

presented by Newman et al. [33, p. 4]. 

Several other successful applications of UMI protocols for detection of variants with VAFs  

below 1% from liquid biopsy samples were recently reported [34, p. 1]. The focus of these 
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publications was often put on the validity of the protocol and not on the validity of UMI tagged 

data processing. In many cases, an ideal data situation was outlined and used to justify simplified 

bioinformatic approaches. While - in some cases - this might be valid [35, p. 2f], detailed 

descriptions and validations of bioinformatic approaches like alignment grouping and filtering were 

missing in others [36, p. 3]. Furthermore, investigations of clustering strategies including parameter 

optimization were not available at beginning of this thesis. 

 

Aims and Expected Results 

It was the main goal of this thesis to shed light into the ambiguous area of processing UMI tagged 

circulating cell-free DNA (cfDNA) sequencing data and to develop recommendations based on 

variant calling validation. Also, the suitability of different combinations of UMI tagging protocols 

and variant callers was to be validated based on their variant calling performance. Finally, a piece 

of software implementing the developed recommendations was to be created. 

It was expected to observe non-ideal UMI group size distributions in empirical data that greatly 

differ from a perfectly constant group size across all UMI groups. Polymerase errors and 

sequencing errors were expected to distort the group size distribution by creating new, erroneous 

UMI sequences. In addition to single base substitutions, insertions and deletions should be 

identifiable to cause UMI sequence alterations. Thus, the error rate of alignments governed by a 

UMI group was expected to exhibit some variability. 

Unravelling the nature of UMI-altering artefacts and increasing the specificity of alignment 

reduction should yield an improved tumour-only variant calling performance. This measure is 

mainly defined by ground truth variant (GTV) recall and by the number of background calls. The 

variant calling optimization can be analysed after the error correction step and after the complete 

library reduction by using two types of variant callers: 

• a barcode-aware variant caller 

• a variant caller that requires in silico reduction of the amplified sequencing library data 

A comparison of these variant callers was expected to show an advantage of using the more recent 

barcode-aware variant caller. 

Molecular noise in liquid biopsy sequencing experiments using Illumina platforms mainly consists 

of sequencing errors and base substitution errors occurring during amplification of the sequencing 

library. The latter were shown to depend on the library preparation method [37, p. 7ff]. Rare 

formations of chimeric sequences may occur prior to sequencing in amplification by polymerase 
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chain reaction (PCR). In case of targeted sequencing approaches, sequence-dependent errors may 

accumulate at certain reference positions which can lead to false positive variant calls. 

In theory, base calling errors along with molecular noise could be eliminated by creating multiple 

copies of template molecules from the original (unamplified) state of the biopsy sample. These 

copies had to share a unique label which was added during the unamplified state of the sequencing 

library. 

The goal of the UMI tagging approach combined with subsequent bioinformatic analysis was to 

obtain a better picture of the original sequencing library state compared to standard procedures 

which do not correct for polymerase errors or base calling errors. Before attempts were made to 

use UMI information for noise suppression, it was common practice to carry out deduplication. 

This procedure omits all copies of a template molecule but one. Therefore, deduplication is more 

of an error avoiding strategy rather than an active error correction method. Polymerase errors and 

base calling errors are indistinguishable from true variants that occur at low frequency and are 

therefore the major complication in computing the original state of the sequencing library. 

There are two prerequisites for variant calling in the low variant frequency domain: 

• full correction of base calling errors and molecular noise 

• preservation of the original mutant allele to normal allele ratio 

In practice, this is not the case which results in false positive and missed variant calls as well as 

VAF distortions. False positive calls may result in an overestimation of GTV recall. Therefore, the 

extent of false positive calls must be corrected or at least estimated. Recall and allelic frequency 

accuracy as the most important performance measures amongst others collectively form the 

performance of variant calling approaches on UMI tagged liquid biopsy data. 

Control data sets allow for an estimation of the level of false positive GTV calls which is innate to 

the whole analysis procedure from drawing the sample to variant calling. Thus, an uncertainty 

measure for the conducted analysis based on a dilution series was introduced. Ideally, a control 

dataset would yield no GTV calls. Such an analysis can then be viewed as unbiased in a sense that 

all observed GTV calls are due to an efficient wet lab approach that was paired with performant in 

silico suppression or even removal of noise. In the opposite case, the number of artefacts that may 

have been caused by sample contamination, uncorrected molecular noise, and/or base calling 

errors can be estimated. 
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2. Materials and Methods 

In this thesis, different UMI tagging procedures were used for library preparation. The individual 

variant calling performance resulting from their use was assessed. To ensure uniform bioinformatic 

analysis, a variant calling pipeline was developed and optimized. Pipeline optimization across 

samples was carried out to erase any occurring bias introduced by in silico analysis. Reference DNA 

material was used to obtain a priori knowledge of variants contained in each sample. These variants 

formed a ground-truth set which is used in variant calling validation. The use of a set of ground-

truth variants and an optimized pipeline rendered results comparable. Variant calling was tested 

for two callers: Mutect and smCounter. 

At first, a minimalistic exploratory analysis was conducted to identify problems of UMI integration 

and exploitation for noise reduction in an analysis pipeline for somatic variant calling. This pipeline 

was derived from the Broad Institute’s best practices for somatic variant calling using their genome 

analysis toolkit (GATK) software. Best practices were developed by the GATK team [38]. The 

GATK contains the Mutect variant caller. 

Findings from the exploratory analysis were incorporated in the development process of a variant 

calling pipeline. This software was used in reanalysis to assess performance measures for data 

created by an Illumina NextSeq sequencing machine and to choose the best suited UMI tagging 

procedure. Pipeline parameters were optimized based on variant calling performance. The variant 

caller best suited for low VAF variant calling was chosen based on these performance results. These 

were then benchmarked against results of a data analysis service offered by QIAGEN, Venlo, NL. 

 

2.1. Reference DNA Material 

To assess the analytical sensitivity and specificity of a test, usually reference materials are used as 

ground truth. In the context of next generation sequencing and the detection of rare variants, 

mostly cell line DNA or synthetic DNA oligonucleotides with defined variant allele frequencies are 

used. Here, standard material from two different vendors, i.e. Horizon and SeraCare, was used. 

These materials include clinically-relevant single nucleotide variants (SNVs) and indels (for details 

see table 2.1 and 2.2). 

The Tru-Q HDxTM number 4 (‘TruQ4’) standard is based on three colon-carcinoma cell lines: 

RKO (ATCC®, Virginia, USA: CRL-2577™), SW48 (ATCC®: CCL-231™), and HTC 116 

(ATCC®: CCL-247™). SW48 and RKO are cell lines from female individuals, while HTC 116 

stems from a male sample. The cfDNA of an anonymous person was used as a wildtype control 
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for experiments including the TruQ4 reference material. This individual was diagnosed healthy 

after being screened for various types of cancer and, thus, this cfDNA was regarded as ctDNA-

free. 

Table 2.1: details of reference materials used in sequencing experiments. 

Reference 

Material Name 

Manufacturer Number of 

Variants 

VAF Range VAF 

Deviation1 

WT2 

Control 

Tru-Q HDxTM 

number 4 

Horizon Discovery 

Group plc, 

Cambridge, UK 

14 5% - 30% 1% - 3% No 

SeraseqTM ctDNA 

Reference Material 

v2 

SeraCare Life 

Sciences, Inc., 

Milford, MA, USA 

42 0.125% - 2% - Yes 

1 The VAF deviations of the Horizon Discovery reference are given in absolute VAF and depend on the VAF of each 

variant (extremes shown). SeraCare publishes the VAFs measured with digital droplet PCR (ddPCR) for every batch. 
2 WT, wild type 

 

In contrast, the SeraCare reference standard was manufactured from a single reference cell line 

GM24385 (Coriell Institute for Medical Research, Camden, USA), a male B lymphocyte sample, 

along with synthetic DNA constructs. The SeraseqTM ctDNA Reference Material v2 (‘Seraseq’ 

reference material) is available at several VAF levels, i.e. all contained variants share the same VAF. 

The VAF levels used in the Seraseq dilution series are as follows: 2%, 1%, 0.5%, 0.25%, 0.125%, 

and 0% (WT) control. 

For the validation of the next generation sequencing (NGS) assays, two DNA mixtures were 

created from the TruQ4 reference material and the wildtype control DNA: 25% TruQ4 plus 75% 

wildtype DNA, and 50% each. Both mixtures along with 100% TruQ4 reference material and 100% 

wildtype control form the samples of the NEBNext [39] TruQ4 dilution series (percentages 

tumour/wildtype: 100/0, 50/50, 25/75, 0/100). The smMIP [40] TruQ4 dilution series, in contrast, 

did not include a 100% wild type control sample. 

Quality control of GTV VAF of DNA reference materials was carried out per batch by the 

corresponding manufacturer utilizing ddPCR. As a result, a pool of GTVs at certain allelic 

frequencies with limited variability could be used for validation of variant calls. 
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Table 2.2: variants detectable by utilized variant callers covered by reference materials. 

Genes DNA Reference Material Chromosome Variant Type1 

 Tru-Q HDxTM 

number 4 

SeraseqTM ctDNA 

reference material v2 
  

MPL - Covered 1 SNV2 

NRAS Covered Covered 1 SNV S, T 

IDH1 - Covered 2 SNV 

PIK3CA Covered Covered 3 INS S, SNV S, T 

CTNNB1 - Covered 3 SNV 

FGFR3 - Covered 4 SNV 

PDGFRA Covered Covered 4 INS S, SNV S, T 

KIT Covered Covered 4 SNV S, T 

APC - Covered 5 INS, SNV 

NPM1 - Covered 5 INS 

EGFR Covered Covered 7 DEL S, INS S, SNV S, T 

BRAF Covered Covered 7 SNV S, T 

JAK2 - Covered 9 SNV 

GNAQ - Covered 9 SNV 

ABL1 Covered - 9 SNV 

RET - Covered 10 SNV 

PTEN - Covered 10 DEL, INS 

ATM - Covered 11 DEL 

KRAS Covered Covered 12 SNV S, T 

FLT3 - Covered 13 SNV 

AKT1 - Covered 14 SNV 

IDH2 Covered - 15 SNV 

TP53 - Covered 17 DEL, SNV 

ERBB2 - Covered 17 INS 

SMAD4 - Covered 18 INS 

GNA11 - Covered 19 SNV 

GNAS - Covered 20 SNV 

1 In case both reference materials cover a gene listed in this table, the respective variant types for each reference 

material are labelled by superscript letters: ‘S’ for Seraseq and ‘T’ for TruQ4. Gene fusions were omitted. 
2 SNV, single nucleotide variant 

 

Reference DNA was manufactured from engineered cell lines and technical constructs. Mechanical 

shearing ensured obtaining the desired fragment length distribution. After DNA mixing, the mix 

was stabilized for shipment and subsequent use. Additional test methods for fragmentation size 
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and quantification of the product from Horizon Discovery were D1000 DNA ScreenTape assay 

and Qubit dsDNA BR Assay (post-fragmentation) respectively [41]. 

 

2.2. Sample Preparation 

All data used in this thesis were generated at the D&R Institute of Human Genetics at the Medical 

University Graz (MUG). A total of 4 different NGS assays including one hybrid capture based 

protocol and 4 amplicon-based protocols were tested. 

Wet lab work was performed by employees of the D & R Institute of Human Genetics. The 

generalized procedure of sample preparation was as follows: 

1. cfDNA extraction from reference DNA samples according to the plasma-Seq  

protocol [42, p. 9] (no shearing or lysis of exosomes) 

2. capture (extra step required for ThruPLEX® protocol [43]) and UMI tagging of isolated 

cfDNA molecules including 1 to 3 rounds of PCR according to the chosen molecular 

tagging procedure 

3. pre-sequencing amplification step with several PCR cycles also depending on the tagging 

procedure of choice to achieve high amplification of tagged templates (see table 2.3) 

4. sequencing with one of the platforms described in subsection ‘Sequencing’ 

To describe the state of order of the sequencing library prior to UMI tagging, the term ‘original 

state’ will be used. This term is intended to describe a state of order where all molecules are 

considered flawless regarding the base sequence as found within the liquid biopsy sample (here: 

DNA reference material) and, thus, represents the true or ‘original’ information contained in the 

sample. Information entropy [44, p. 14ff] of the sequencing library is increased with every cycle of 

amplification due to DNA polymerase errors which mutate copies of original template molecules 

during synthesis. The attempt to compute the original state from the disordered amplified state, 

which would be equivalent to solving an inverse problem, will be termed ‘alignment reduction’ to 

distinguish it from deduplication. 

 

2.3. Sequencing Panels and Tagging 

Four UMI tagging protocols were used in sample preparation (table 2.3). Each procedure differs 

in the method of UMI ligation or hybridization, the amount of UMI sequences per tagged 

molecule, and the number of bases per UMI tag as well as the enrichment of target regions. 
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NEBNext, QIASeq [45], and smMIP protocols involve either a single capture probe or gene 

specific primers. These protocols create an amplicon-like alignment distribution after read 

mapping. The ThruPLEX protocol, in contrast, is an untargeted tagging procedure and simply tags 

every DNA template. However, a set of genes was enriched using a custom Rapid Capture  

Panel (Illumina). 

Table 2.3: summary of molecular tagging protocols. 

Protocol Name Manufacturer Capturing Method UMI 

Bases 

Enrichment 

Cycles 

NEBNext® Ultra 

II DNA Library 

Prep for Illumina 

New England 

BioLabs®, Inc., 

Ipswich, USA 

Hairpin loop adapter 

ligation, complementary 

UMI adapter ligation 

8 or 12 4 - 9 

QIASeqTM 

Targeted DNA 

Panel 

QIAGEN,  

Venlo, NL 

5’-end UMI adapter 

ligation, gene specific 

primer 

12 7 - 9 

smMIP 

D & R Institute of 

Human Genetics, 

(in-house replicate) 

Molecular inversion 

probe 
10 26 

ThruPLEX® 

Tag-seq Kit 

Takara Bio USA, Inc., 

Mountain View, USA 

None 

(5’ and 3’ stem-loop 

adapter ligation) 

12 4 - 11 

 

The number of PCR cycles required for sufficient amplification depends on the amount of input 

material. For example, the NEBNext protocol requires 9 enrichment cycles for 1 ng input material 

and 4 cycles in case of 100 ng input material for optimal yield. The amount of cycles required for 

the ThruPLEX and the smMIP protocol also needs adaptation depending on the amount of input 

DNA. The smMIP protocol was replicated at the D & R Institute of Human Genetics following 

instructions described by Hiatt and colleagues [40, p. 9ff]. 

 

2.4. Sequencing 

All libraries were sequenced in a paired-end mode at the D & R Institute of Human Genetics on a 

MiSeq and/or NextSeq machine (both Illumina, Inc., San Diego, USA). Sequencing run and output 

parameters of these platforms are shown in table 2.4. 

For NEBNext data sets, a workaround for in silico UMI sequence extraction was used. The 

functionality of Illumina devices to write sample index sequences to a separate file was adapted to 

extract the UMI sequence. To achieve an offset effect, upstream bases were ‘N’-masked. For data 
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of other tagging protocols, the UMI sequence had to be extracted from the read-sequence during 

bioinformatic analysis. Both UMI sequence extraction methods disregarded the possibility of early 

indel artefacts or other sequence shift artefacts. 

Table 2.4: expected run and output parameters of Illumina sequencing platforms and paired-end 

reads. 

Platform2 Read Length Approximate 

Total Time 

Output Reads 

Passing 

Filters1 

Average Base 

Quality Scores 

Above Q30 

MiSeq 2 x 150 bp 24 h 4.5 - 5.1 Gb 24-30 M >80% 

NextSeq 2 x 150 bp 26 h 32.0 -39.0 Gb 260 M >70% 

1 Reads passing filters is based on Illumina PhiX control library with supported cluster densities at 865-965 k/mm² 

and 129-165 k/mm² for the MiSeq and NextSeq instrument respectively. 
2 Manufacturer information was taken from the Illumina website [46]. 

 

2.5. Data Sets 

Depending on the six factors ‘reference material type’, ‘amount of input material’, ‘tagging 

protocol’, ‘sequencing device’, ‘replicate’, and ‘dilution series’, sequencing data was organised in 

several data sets (see table 2.5). In general, data sets with TruQ4 reference material were mainly 

used in the exploratory data analysis. Seraseq reference material data sets, which became available 

later during the thesis, were utilized in a reanalysis for parameter fine-tuning, performance 

assessment and analysis pipeline benchmarking. 

Table 2.5: information on data sets created for this thesis. 

Data Set Name Reference 

Material 

Input 

Material 

Amount 

Tagging 

Protocol 

Sequencing 

Device 

Replicate Mix 

Levels 

QIASeq TruQ4 TruQ4 10 ng QIASeq MiSeq - - 

NEBNext 10 ng TruQ4 10 ng NEBNext MiSeq - - 

NEBNext 100 ng TruQ4 100 ng NEBNext MiSeq - - 

NEBNext TruQ4 TruQ4 100 ng NEBNext MiSeq - 4 

ThruPLEX MiSeq TruQ4 100 ng ThruPLEX MiSeq - - 

ThruPLEX NextSeq TruQ4 100 ng ThruPLEX NextSeq - - 

smMIP TruQ4 10 ng smMIP MiSeq 1 3 

NEBNext Seraseq Seraseq 100 ng NEBNext NextSeq - 6 

QIASeq Seraseq Seraseq 100 ng QIASeq NextSeq - 6 

 

Dilution series were used to assess the performance degradation for decreasing GTV VAFs. 

Replicates were used to test concordance of repeated analyses. Control data was utilized to estimate 
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the number of false positive variant calls. The ten-fold input material difference between two 

NEBNext data sets was intended to show the influence of the input DNA amount on the variant 

calling outcome. 

 

2.6. Development Environment 

Hardware 

The analysis software was developed on a LenovoTM ThinkPad E470 notebook, subsequently 

named ‘local hardware’. Computationally inexpensive read data quality checks and other statistical 

analyses including variant calling validation were performed on this hardware. 

All full data analyses including variant calling were carried out on a HP DL580 server of the seventh 

generation (512 GB RAM, 32 cores, 1 PB conventional disc space, 12 TB SSD array in RAID-0 

configuration). This server was property of the Institute for Computational Biotechnology (ICBT) 

at the University of Technology Graz (TUG). Contamination checks, which required mapping of 

reads to several genomes, were also carried out on the server. 

The operating system (OS) for the local hardware was chosen according to the most common OS 

used for bioinformatic analyses at the D & R Institute of Human Genetics. An Ubuntu 16.04 OS 

(64-bit) was set up on the local hardware accordingly. The server’s OS was CentOS Linux  

release 7.5.1804 (Core). 

The programming language Python, version 2.7 [47], was a prerequisite defined by the D & R 

Institute of Human Genetics for the development of a variant calling pipeline. This software must 

be capable of processing UMI-tagged paired-end reads for variant calling. In this thesis, open-

source software and freeware was preferred over closed source, proprietary software in application 

programming interfaces (APIs) selection. 

 

Software and Requirements 

An overview of software dependencies, licenses, versions, and references of tools and packages 

used in this thesis is given in table 2.7. References for non-standard library Python packages are 

listed in table 2.6. 

A variety of publicly available tools were used for data quality examination that were not 

incorporated in the developed Python analysis pipeline. The sequencing quality of received paired-

end read data and optional associated UMI data were checked using Babraham Bioinformatics’ 

FastQC software [48]. The FastQ Screen software [49] was used for impurity screening, i.e. 
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searching for reads mapping only to a genome other than the human genome or which are 

completely unmapped. The Python-based summarising tool MultiQC [50] was used to aggregate 

FastQC and FastQscreen output. Quality checks were carried out manually using the UNIX 

command line or graphical user interfaces if available. Furthermore, the statistical programming 

language R [51] along with the visualisation R-package ggplot2 [52] were used in variant validation 

result visualization, which was implemented in a separate script. 

There are four types of requirements for running the developed analysis pipeline: a computer with 

a UNIX OS, Python version 2.7, non-standard library Python packages accessible for the required 

Python version and their non-Python dependencies must be installed. The nine command-line 

tools mentioned below must be available (see table 2.7). The modified smCounter code must reside 

in a callable location from within a Python environment. Tools were made available from anywhere 

on the system by manually creating a soft link (or symbolic link) inside a ‘bin’ folder (e.g. ‘/usr/bin’), 

or by adding an export entry containing the path of the executable to the hidden ‘bashrc’ file in the 

user’s home directory. Both measures require root access. 

Table 2.6: Python packages used in the analysis pipeline code. 

Package Name Imported Functions1 Version License Reference 

matplotlib 
patheffects; pyplot, ticker: 

MaxNLocator; use 
2.2.3 BSD, PSF2-based [53] 

natsort humansorted 5.4.1 MIT [54] 

numpy 

amax; amin; arrange; array; float64; 

isin; log2; log10; mean; median; std; 

unique; vectorize; where 

1.15.1 BSD [55] 

pandas DataFrame 0.23.4 BSD [56] 

pysam AlignmentFile 0.15.0 MIT [57] 

pyvcf * 0.6.8 BSD, MIT [58] 

scipy 
stats.stats: kendalltau, linregress, 

pearsonr, spearmanr 
1.1.0 BSD [59] 

seaborn * 0.9.0 BSD [60] 

1 An asterisk denotes an import of the whole package. A bold name preceding a colon followed by a list of imports 

denotes a module name inside a package which contains the list of imported functions and/or objects. 
2 Python Software Foundation 

 

In case of smMIP data sets, adaptor trimming of reads was required. Trimming was carried out 

using the cutadapt software. Reads were aligned to the latest release of the human reference 

genome version GRCh37.p13 (hg19) with the BWA short read aligner [61]. The versatile SAMtools 
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software [62] was used for conversions between sequence alignment/map (SAM) and binary 

alignment/map (BAM) representations of mapped paired-end read data, for creation of BAM index 

files, and to gather mapping statistics. The BAMtools toolkit [63] was also used to gather mapping 

statistics of BAM files. The Picard toolkit [64], another set of useful command-line tools from the 

Broad Institute, was employed for SAM file sorting. Overlapping target regions as defined in the 

input browser extensible data (BED) file were merged using the utility software BEDTools [65]. 

Furthermore, the sort command of Ubuntu, a command included in the GNU Core Utilities 

package called ‘coreutils’, was applied to lexicographically sort regions inside BED files, which is 

required for chromosome files larger than 512 Mb, as stated on the BEDTools website [66]. Group-

wise UMI sequence errors were corrected using the novel UMI-tools software. 

Table 2.7: details of tools used in this thesis. 

Tool/Software1 Version Dependencies2 License Reference 

FastQC 0.11.5 Java RE GPL3 v3 or later [48] 

FastQ Screen 0.11.4 

BWA, Bowtie, Bowtie2, or 

Bismark, 

Perl, GD-Graph* 

GPL v3 or later [49] 

MultiQC 1.3 Python 2.7 or later GPL v3 or later [50] 

cutadapt 1.14 Python 2.7 or later MIT4 [67] 

BWA6 0.7.12 - r1039 - GPL [61] 

SAMtools 
0.1.19 -

96b5f2294a 
HTSlib* MIT/Expat [62] 

BAMtools 2.5.1 CMake*, JsonCpp* MIT [63] 

Picard toolkit 1.128 Java RE, HTSlib* MIT [64] 

BEDTools 2.25.0 zlib* GPL v2 [65] 

UMI-tools 0.5.4 
Python 2.7 or later, various 

Python packages 
MIT [68] 

Mutect 4.0.8.1 Java 8 RE BSD5 [69] 

smCounter 

Modified online 

version of 

August 8th 2017 

Python 2.7 or later, 

BEDTools 
MIT [70] 

1 All GATK tools of the listed version require Java runtime environment version 8. 
2 Dependencies marked with an asterisk may not be required in all cases because they are either required only for 

newer versions, packed with a precompiled version of the software/toolkit, or are part of most UNIX-based 

operating systems. 
3 GNU General public license 
4 Massachusetts Institute of Technology 

5 Berkeley Software Distribution 

6 Burrows-Wheeler aligner 
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Two variant callers were tested: Mutect [69], distributed by the Broad Institute as part of the GATK 

and capable of tumour-only variant calling, and the novel smCounter software by Qiagen Sciences, 

Inc., Frederick, USA [70]. The original code of smCounter was adapted for reasons of pipeline 

output control. Minor changes were included to comply with the pipeline’s mode of calling external 

tools and to redirect error output according to the pipeline’s folder structure. The core code 

implementing the variant calling process was not changed. 

Package imports were limited to keep a clean namespace for faster lookup in Python. Two non-

standard packages were used for visualization of analysis statistics: matplotlib and seaborn. The 

latter requires data organization using pandas DataFrame objects. The humansorted function 

imported from the natsort package allowed for sorting more complex strings following a human-

like logic. The pysam package is a Python port of the HTSlib C programming language API [71] 

which was useful for SAM/BAM file processing. It required the HTSlib 1.7 to be installed. The 

scipy package, a library for scientific computing, was used in variant call validation for linear 

regression analysis and for calculating different correlation measures. The validation of called 

variants was implemented in a separate script due to its intended use of validating multiple variant 

calling format (VCF) files which form a combined result of a dilution series analysis. 

 

2.7. Data Quality Control 

Prior to exploratory analysis, data quality checks were carried out on all data sets. Automatic 

evaluations of FastQC quality check modules must be put into perspective in case of atypical library 

construction or special sequencing conditions and interpreted accordingly. 

Though screening for contaminants of known sequence could have been carried out by using the 

FastQC tool, an impurity screening for non-human organism DNA required a more potent 

approach. Therefore, the software FastQ Screen was used for screening for common wet lab 

contaminants. Reference genomes of the following organisms along with the latest patch release 

of the human reference genome GRCh37.p13 (original release February 2009, patch release June 

2013) [72] were downloaded from the University of California, Santa Cruz (UCSC) genome 

browser file transfer protocol (FTP) server [73]: cat (Felis catus), mouse (Mus musculus), dog (Canis 

familiaris), Escherichia coli, lettuce (Lactuca sativa), tomato (Solanum lycopersicum). Furthermore, the 

Coliphage phi-X174 sensu lato genome (accession.version: NV_001422.1) was downloaded from 

the National Center for Biotechnology Information (NCBI) nucleotide database [74]. 
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Index files for downloaded FASTA reference sequences were created using Picard and SAMtools. 

FastQ Screen was configured to use the BWA aligner to map reads of query data sets to each of 

the reference genomes. 

 

2.8. Software Development Process 

The freeware community edition of the PyCharm Integrated development environment (IDE) [75] 

was used for creating Python code. For local software development, data sets were subsampled to 

a custom amount of per mill using a Python script in an automated fashion. Subsampling kept 

correspondences between mate pairs and UMI sequence files. MiSeq data sets were subsampled to 

one and ten per mill. NextSeq data sets were subsampled to one per mill only. 

Access was granted to the private github [76] account of the D & R Institute of Human Genetics. 

A repository was created for this thesis using the account. The git [77] (GPLv2 license) version-

control system was used for pipeline development. The analysis pipeline code and accessory scripts 

were regularly uploaded to the repository. 

Code was transferred between the local hardware and the server hardware using the open source 

FileZilla freeware [78]. It is distributed under the GPL license. 

Mapping results and manipulated BAM files were visualized manually for consistency checks and 

means of debugging using the open source integrative genomics viewer (IGV) [79] [80] version 

2.4.10 which requires Java version 8. The use of the IGV software is granted under the MIT license. 

 

2.9. Performance Measures 

All measures described below collectively form the performance of the analysis approach from 

sample drawing to variant calling. In this thesis, the focus was placed on the total amount of 

detected GTVs. This number divided by the total amount of possible GTV calls can be interpreted 

as a sample-based estimate of the classical (Bayesian) probability of calling a GTV using a certain 

analysis approach. 

A more frequently used measure for variant calling performance assessment is recall. Recall is 

simply defined as the number of called GTVs (true positives) over the total amount of GTVs in 

the dataset (true positive calls plus false positives). Hence, it can be viewed as the representation 

of GTV calling probability as a fraction (i.e. value range: 0 to 1). GTV recall will be used 

subsequently. 
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The VAF-dependent deviation (precision and trueness) of the called VAF from the target VAF 

represents another performance measure, simply termed ‘VAF accuracy’. This measure is mostly 

investigated using plots since variability is comprehended best visually.  

Two thresholds were assessed: the lowest called VAF in a data set which was used as an estimate 

for the lowest VAF of a detectable GTV (limited by coverage), and the VAF at which GTV recall 

was interpolated to be 0.5. The last measure was used to describe the usability of a sample analysis 

approach. In case of few GTVs, the last measure required the expected GTV VAFs to be identical 

and, thus, could not be assessed for the TruQ4 reference material. The TruQ4 reference material 

only covered GTV VAFs from 5% to 30%. The 50% GTV observation VAF threshold was 

estimated from a linear interpolation using GTV observation counts and target VAF levels of the 

two data sets achieving more and less than 50% GTV detection. 

Lastly, the overall amount of variant calls was assessed to describe the susceptibility to noise. Fewer 

calls indicate fewer calls due to uncleared base noise especially in data with short amplicons. 

 

2.10. Exploratory Data Analysis 

The exploratory data analysis investigated short indel and SNV calling performance of both Broad 

Institute’s Mutect and Qiagen Science’s smCounter variant callers. The smCounter variant caller 

was specifically developed to make use of the UMI-annotation of alignments while the Mutect 

caller does not regard any kind of UMI annotation. Therefore, either a basic removal of technical 

DNA template replicates (‘deduplication’) or a UMI group consensus formation was required for 

the Mutect analysis to obtain a representative single alignment per UMI. Sequence-based 

deduplication could be carried out like in conventional NGS analysis (which does not make use of 

UMIs) via the Picard toolkit. Nevertheless, a consensus formation approach for UMI groups was 

pursued to achieve noise suppression and to obtain a less distorted picture of the original state of 

the sequencing library. In contrast, no deduplication was required for the smCounter analysis. 

Instead, a proper alignment annotation was of utmost importance. 

The exploratory data analysis was implemented as a Python module. The UMIRead and 

UMIReadGroup classes were implemented in a separate file. The module provides a UMIanalyst 

class implementing all analysis steps. The pipeline is started through the analyst’s null parameter 

method run_analysis. The whole module can also be used through a command line interface. 

An argument parser was implemented to convey attributes to the UMIanalyst’s __init__ 

method. 
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Checks were implemented for received user 

arguments. For certain parameters, advanced 

checks trying to compensate user errors were 

implemented. The analysis was shut down in case 

of violations which could not be circumvented. 

Meaningful warning and error messages were 

prompted to the user to correct erroneous 

arguments more easily. 

Paired-end read data line consistency was also 

checked. Read pairs, where one or more reads 

failed this check, were omitted. 

Besides the main analysis steps, file and folder 

control methods were implemented to give the 

analysis module a structured output. All files 

produced by the analysis code were saved to a 

destination defined by the user. This folder – the 

project directory - was named after the analysis 

sample. Logfiles were saved to a separate folder 

inside the project directory. Descriptive statistics 

of read groups and alignment maps were saved to 

separate text files in the project directory. 

References to reads and read groups were deleted 

along with a globally accessible UMI list of the 

UMIRead class at the end of every analysis. 

 

Structure 

The exploratory minimal approach (see figure 2.1) tried to exploit the UMI tags as early as possible 

so the rest of the bioinformatic analysis could be carried out as usual. For this purpose, UMIRead 

objects were created linking the UMI information to the paired-end read data. Read groups were 

formed based on UMI sequences afterwards. A multiple sequence alignment of reads forming a 

group was omitted for simplicity. 

Subsequently, a consensus sequence was computed for each read group. Consensus formation was 

implemented as a majority vote over the observed bases at a certain position within the read group. 

Figure 2.1: structure of the exploratory data 

analysis. The turquoise box depicts the last variant 

validation step which was implemented in a separate script. 

Steps marked with an asterisk are either optional 

depending on the analysed data set (adapter trimming) or 

were disabled during optimization (mate merging). For 

alignment annotation of the non-consensus read path, 

information from the consensus read path was used. Figure 

created with Microsoft Word. 
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After computing the relative portions of each base, the first type of nucleobase exceeding the 

threshold count in the order of adenine (A), thymine (T), guanine (G), and cytosine (C) was 

declared as the consensus base type. In case no base type exceeded the threshold count, the base 

was left undefined using an ‘N’ symbol in the consensus read sequence. 

After read pre-processing, reads were mapped to the human reference genome using the BWA 

mem algorithm. Alignments were filtered based on their mapping score and the pair  

orientation (i.e. proper pairs). 

The implementation of the alignment annotation in the non-consensus read path followed the 

requirements defined in the supplementary materials of the smCounter paper [36, p. 3]. A sequence 

of strings was added to the query name of every alignment describing the mapping location of the 

plus-strand-relative, leftmost mapped base of the entire UMI group of an alignment. 

A template for the annotation string is given between quotation marks which are not part of the 

annotation: 

‘:reference_contig_name-strand-position-UMI_after_clustering:UMI_before_clustering’ 

Individual strand annotations were extracted from the SAM flag of each alignment. The leftmost 

mapping position inside the UMI group was estimated by using the mapping position of the 

corresponding UMI’s consensus read alignment. 

The UMI-tools software was used to compensate for UMI errors. Four error correction  

approaches ‘percentile’, ‘cluster’, ‘adjacency’, and ‘directional adjacency’ were tested on the  

NEBNext 100% TruQ4 data set. The best performing ‘directional adjacency’ approach was then 

applied to all data sets. In short, a UMI network was created for every covered genome position 

and solved by merging two UMI alignment groups, if their UMIs were within edit distance of one 

and if the larger group’s size was at least twice the size of the smaller group minus one. Detailed 

statistics about the Hamming distance of observed UMI sequences per position were created along 

with the UMI reassignment suggestions. These suggestions were used to change alignment 

annotations. Commands for UMI error correction and variant calling were manually applied to 

filtered BAM files. Mutect variant calling results of the non-consensus BAM file before and after 

UMI-error correction with UMI-tools were compared. 

Finally, variant calling with specific callers for each analysis path was carried out. Variants of 

collapsed reads were called with Mutect with default parameters. Using the smCounter variant 

caller required computation of statistics concerning mean UMI depth and mean read pairs per 

UMI. The BEDTools’ genomecov command was utilized for UMI depth computation on the 
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alignment file of the collapsed analysis path. Mean read pairs per UMI were calculated from the 

non-consensus alignment file using custom code. Furthermore, a file for tandem repeat regions 

and a repeat masker subset file had to be provided to the caller which were used for identifying 

and masking repeat regions. These files can be downloaded from the University of California, Santa 

Cruz (UCSC) website for each release of the human genome. A BED file containing regions of 

interest was passed to both variant callers. VCF files were obtained from the variant calling process. 

 

Variant Validation and Performance Assessment 

Variant calls of dilution series were validated using the tumour levels in the corresponding sample 

and the ground truth variant table corresponding to the sequenced reference DNA. Variant ground 

truth tables were taken from the manufacturers’ websites. Stand-alone VCF files were only analysed 

regarding GTVs. 

For dilution series data sets, a variant trace was carried out saving the occurrences (trace depth) 

and VAFs of a given variant in VCF files of a dilution series. The ambiguous background portion 

of variant calls was estimated as the number of calls occurring only once throughout a dilution 

series. These variants were labelled ‘untraceable’. Correlation measures and a linear regression were 

computed. In case a variant occurred only twice, the regression result was labelled ‘trivial’ (i.e. a line 

defined by two points). The linear regression slope was compared to the expected decrease in VAF 

(based on the tumour DNA percentage in the sample) given the GTV VAF decrease relative to the 

last data set that called the same variant. Variants were categorized as either tumour (observed VAF 

decreases with decreasing tumour level), wildtype (vice versa), or left uncategorized in case the 

regression slope was too flat (default: 20% slope or lower). Afterwards, the regression slopes of 

categorized variants were compared to the expected increase or decrease. 

Variants were omitted for the final steps of validation, if they were located outside of target regions. 

This was done to disregard low coverage artefacts at the margins of enriched regions. 

For smMIP, the concordance between variant calling results of replicates was assessed using the 

intersect command of BEDTools. 

 

2.11. Reanalysis Software 

The code of the final analysis pipeline is based on the exploratory analysis code. It makes use of 

the UMIRead and UMIReadGroup classes as well as the UMIalignment, UMIalignmentGroup, and 

UMIalignmentGroupCluster classes. Improvements mentioned in subsections 2.12 and 2.13 
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were implemented among other usability improvements including enhanced parameter 

customization, standardized message formatting, a central master logfile, more descriptive statistics 

and plots, exception handling, optional debugging output, improved folder structure, and file 

handling of intermediate and final results. Clustering was implemented as a single-pass algorithm 

iterating over clusters only once. In contrast, an algorithm described by Peng et al.  

in 2015 [81, p. 11] clusters more rigorously by using more passes and gradually increasing the 

allowed UMI sequence difference. 

 

Structure  

Individual steps of the reanalysis software roughly 

follow the exploratory analysis’ structure but are called 

consecutively (figure 2.2). Schematic representations of 

UMI-enhanced bioinformatic information units used in 

the analysis are depicted in table 2.8. 

Reads were filtered according to their length. Reads 

below the minimum trimmed read length threshold 

(default: 45 bases) were omitted. UMIRead and 

UMIReadGroup objects were created subsequently. Read 

groups were primarily used for creating the initial 

alignment annotation and were deleted afterwards. 

Following read grouping, optional adapter trimming and 

subsequent mapping using the BWA mem  

algorithm [82, p. 1f] was carried out. 

Alignment filtering was reimplemented as a two-step 

filter to increase remaining coverage and to avoid region 

border artefacts (i.e. artefacts resulting from decreasing 

coverage). Alignments were processed as pairs and 

categorized as either leftmost or rightmost alignment 

relative to the chromosome’s plus strand. A separate 

alignment file was created for every filtering category to 

simplify debugging. In case an alignment failed a primary 

filter, it was immediately rejected along with its mate. 

Failing the secondary filter criterion lead to pausing the 

alignment. In case the second alignment in pair also failed the secondary filter, the whole pair was 

Figure 2.2: consecutive steps of the 

final variant calling pipeline. Steps 

marked with an asterisk are optional. Variant 

validation was implemented in a separate script. 

Figure created with Microsoft Word. 
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rejected. Primary filtering categories were: alignment not mapped to reference, alignment unpaired 

or not in a proper pair, is secondary alignment, reads of pair mapped to different 

chromosomes/contigs. The secondary filter tested alignment pairs for the following cases: 

alignment outside target regions, alignment exhibits inferior quality. Statistics about chimeric 

alignment tags observed in primary alignments as well as statistics concerning alignments of a pair 

mapping to different chromosomes were saved. 

 
Figure 2.3: alignment group-based UMI correction with UMI-tools. The UMI sequences are depicted as 

rounded yellow rectangles between alignments of a pair. Base substitution errors inside the UMI sequence are displayed as 

coloured vertical lines. Alignment group reassignment suggestions produced by UMI-tools are indicated by black arrows pointing 

towards the absorbing group. Regrouping suggestions were filtered by mate mapping position (vertical arrows). Red and green 

areas indicate mate mapping position windows which were calculated from the standard deviations of mate mapping positions 

of the absorbing group. Red/green area plus the corresponding arrow denote a rejected/accepted reassignment. In the depicted 

scenario, only the UMI of group 4 would be reassigned. Although group 3 could originate from group 1, UMI-tools disregards 

this option due to the different leftmost mapping positions. 

 

UMIRead objects were enriched by their corresponding alignment pair’s leftmost mapping position 

taken from the filtered BAM file. Alignments were assigned to their UMI groups according to the 

UMI information retrieved from the corresponding UMIRead objects using a list of object 

references. Afterwards, references to UMIalignment objects were sorted according to their 

expected sequencing errors in ascending order. The number of expected sequencing errors was 

calculated from read quality values following equation (2.1). All alignments listed after the user-

defined subsampling  

value (default: 32) were deleted from the group’s alignment list. A subsampled alignment file was 

written to disc for subsequent UMI sequence error correction with UMI-tools (figure 2.3). 

 

 

𝑃𝑒𝑟𝑟 = 10− 
𝑀𝐴𝑃𝑄

10  (2.1) 
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Table 2.8: information unit schematics for the alignment reducing procedure. 

UMI Information Unit Schematic 

read pair 

 

alignment1 

 

alignment groups2 

 

identity clusters 

 

advanced clusters 

 

1 Extracted UMIs act as labels and are indicated by coloured dots between alignments. 
2 The cyan line within the yellow dot denotes a single base error within the UMI. Group diversity and UMI similarity 

found in real data is more closely mimicked by groups one, two, and three. 

 

The size relation between absorbing and absorbed alignment group was defined in the UMI-tools 

paper [68, p. 3]. Groups of size one can also absorb other groups. Mean mate mapping position 
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windows were calculated from the absorbing group’s mean mate mapping position (rounded to the 

nearest integer). For every reassignment suggestion, the mate mapping position of the alignment 

in question was checked. The mate mapping position had to be inside the window for accepting a 

reassignment. A new alignment file with updated UMI fields in the alignment name annotations 

was written to disc. 

Following UMI correction, alignment groups were clustered (figure 2.4). Basic clustering searched 

for alignment groups with identical UMI sequence with deviating leftmost GTV mapping positions 

in close vicinity. UMIalignmentGroupCluster objects were created which held references to 

successfully clustered UMIalignmentGroup objects. 

 

Figure 2.4: clustering procedure for merging alignment groups into identity clusters. UMI sequences 

are represented by yellow rounded boxes. Red or green areas underneath leftmost-in-pair alignments indicate identity windows. 

Using position windows allows for bridging mapping position deviations. Position-sorted alignment groups with a leftmost 

mapping position inside this window and identical UMI sequences are merged into an identity cluster (green area). If an identity 

cluster already exists for the seed group, newly found groups are merged to that cluster instead of creating a new one. Red areas 

indicate that no alignment group was found for merging. After a match is found, the search process for the current seed group is 

halted at the current position. After all alignment groups mapped to the position are processed, the focus is passed on to the next 

alignment group. The focus can also be passed to alignment groups that are already inside a cluster. 

 

The optional advanced clustering used a list of identity clusters which was sorted in descending 

order regarding the non-subsampled alignment count (figure 2.5). Three specific UMI error 

categories, which can be disabled or customized by the user, were implemented. The first category 

was a shift of the UMI sequence towards the 5’-end of the plus strand (‘left shift’). The second 

error category described UMI sequences being shifted towards the 3’-end of the plus strand (‘right 

shift’). Left shifted UMI sequences are expected to occur more frequently than right shifted UMI 

sequences. Both categories should not be dominant in a standard experiment though. Shift artefacts 
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are depicted in table 2.9. Finally, clusters were also checked for random PCR errors in their UMI 

sequences in advanced clustering. 

 
Figure 2.5: optional advanced clustering procedure. Identity clusters are indicated by rounded orange boxes. The 

grey background visualizes the template window. Vertical dotted grey lines indicate different window settings. The largest identity 

cluster is used as the initial focus cluster. All identity clusters inside the template size window smaller than a certain threshold 

are tested for merging. These clusters are checked for mapping position and template size similarity. For this purpose, a template 

window is computed. The green area indicates a passed check for mate mapping position while the red area shows a hypothetical 

case where a mate mapping position check would fail. However, the bottom identity cluster would fail the previous template size 

window check first. If both checks are passed, the smaller identity cluster is investigated for UMI sequence artefacts. After all 

merge candidate clusters are processed, the focus is passed on to the next smaller identity cluster until the first cluster of size one 

is reached. In the shown example, the top and the middle identity clusters would be merged to an advanced cluster correcting the 

putative substitution error in the absorbed cluster’s UMI sequence. 

 

After final alignment clusters had been determined, clusters were initialized. Initialization produced 

several descriptive statistics about the cluster, calculated the consensus sequence, and calculated an 

optimistic estimate of the consensus base quality values. The latter was carried out following the 

considerations on quality computation for read pair merging based on Bayes’ theorem as stated in 

the USEARCH algorithm paper [83, p. 2f]. The base quality values were limited to a maximum 

error probability of one (quality value zero) and a minimum error probability of 6 substitution 

errors in 100,000 bases which corresponds to a quality value of 42. Concerning CIGAR notation 

(CIGAR stands for ‘Compact Idiosyncratic Gapped Alignment Report’), all non-match alignment 

information was included in the cluster consensus formation primarily following an information 

maximization principle and an error suppression principle secondly. 

Sequence consensus formation was carried out by counting the most frequent nucleobase at a 

certain position inside the insertion-free base matrix. In case of deletions, the respective positions 

were padded by Ns. If a deletion was most frequently observed, the deletion was added to the 
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consensus CIGAR. Consensus insertions were calculated separately. An insertion was included in 

the consensus sequence, if and only if the exact same insertion sequence was present at the same 

base position relative to the reference genome in a number of alignments equalling or exceeding 

the required consensus threshold. If more than one distinct insertion sequence was observed 

equally often at a certain position, the longest insertion sequence was chosen. In the unlikely event 

of observing two equally long and equally often observed insertion sequences, the one exhibiting 

the lowest expected error was chosen. If there would be still more than one candidate insertion 

sequence, a sequence was chosen at random. In case of initial or terminally soft-clipped sequences, 

a ‘consensus soft-clip’ was created. The longest, most frequently observed soft-clip was chosen if 

any was present. Hard-clipped bases were omitted by default since the BWA mem algorithm only 

marked hard-clipped bases in the CIGAR string and removed them in the base and quality 

sequences. The CIGAR string was created according to the consensus soft-clip, consensus bases, 

consensus deletions and consensus insertion sequences. 

Table 2.9: UMI shift artefacts corrected by advanced clustering. 

 

UMI Artefact Construct Schematic 

left shift 

 

right shift 
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Representative values for the remaining eight fields of the SAM format specification [62, p. 2] were 

either chosen or computed from the information present in the cluster. If specified, a bitmap 

representation of cluster consensus matrices without insertion sequences and with both types of 

clipped sequence parts removed were computed. 

An annotated or an artificial BAM file was created according to the variant caller selected by the 

user. In case of an activated ‘omit error-prone clusters’-flag, only alignments of clusters surpassing 

the user-defined ‘single error non-ambiguous consensus base’-threshold were written to disc. If the 

experimental mode was activated, all four versions were output for variant calling with both callers. 

Validation of single VCF files and calling results for whole dilution series was carried out by calling 

the corresponding analysis script. 

 

2.12. Parameter Optimization 

Mapping, Mate Merging, and Omitting Error-Prone Clusters 

To optimize data pre-processing prior to variant calling with respect to GTV recall, the influence 

of selecting different quality thresholds and mapping parameters, and the influence of certain 

optional steps in the analysis procedure were tested. 

The effect of mate merging on the outcome of read mapping was tested. The portion of read pairs 

which could be merged was assessed using the fastq_mergepairs command of the USEARCH 

software [83]. To avoid coverage problems caused by mapping which might reduce GTV recall 

and/or decrease VAF accuracy, BWA versions 0.6 and 0.7 were tested. The mapping quality 

threshold of the alignment filter and the minimum allowed trimmed read length was varied to find 

satisfactory values for excluding alignments that negatively affect performance measures. 

The trimmomatic software [84] was used to assess the portion of reads that can be successfully 

trimmed for adapter contaminants. 

Variant calling with Mutect on the NEBNext dilution series was carried out using version 4 and 

the last release of version 3. Furthermore, Mutect calling was tested on the hundred percent tumour 

sample of the TruQ4 dilution series NEBNext data set with a variation of the following settings: 

variant calling regarding and disregarding soft-clipped bases, and optimizations either activated or 

deactivated. 
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Clustering 

Several settings of identity and advanced clustering parameters were tested to optimize default 

parameters with respect to GTV recall (summary in table 2.10). The optimization relied on Seraseq 

data sets only since they had the largest dilution series with the lowest VAFs. Both QIASeq and 

NEBNext tagging protocol data sets were included. Parameters tested for optimization were: 

required cluster size difference in advanced clustering, clustering permissiveness (i.e. sizes of 

identity and advanced clustering windows), the option to disable advanced clustering, and the 

option to remove clusters containing an insufficient amount of alignments for the formation of 

non-ambiguous consensus bases in case of a single base error. Clusters of size one and two were 

omitted in the latter case. 

Statistics about observed advanced UMI error category cases were recorded along with the actual 

number of corrected artefacts. An error category prioritization was implemented for the advanced 

clustering procedure: 5’-shift first, then 3’-shift, and lastly random PCR errors. This artefact 

prioritization order was chosen to have an optimistic estimate of the shift error occurrences since 

it was unclear whether these kind of UMI alterations occur at all. 

Table 2.10: clustering settings and associated parameter values. 

Clustering 
Setting 

Identity 
Clustering 

Window Size 

Mate Mapping 
Position Window 

Size1 

Advanced 
Clustering 

Window Size 

Advanced 
Error Extent 
Corrected2 

Shift 
Artefacts 
Corrected 

moderate 3 bases 1SD 0 bases 1 no 

permissive 5 bases 3SD 3 bases 2 yes 

1 Parameters other than identity clustering window size and mate mapping position window take effect in advanced 

clustering. 
2 The mate mapping position window extends in both 5′ and 3′ directions and defaults to 10 bases in each direction, if 

the focus cluster’s mate mapping position standard deviation (SD) is below 5. 
3 The advanced error extent defines the number of allowed UMI base differences and bases a UMI may be shifted and 

will still be merged with the focus cluster. 

 

Variant Caller 

For smCounter, the automated detection threshold selection was deactivated to use a more 

sensitive setting which allows for a single alternative base observation leading to a variant call. This 

setting was used after initial calling tests on NEBNext resulted in a much lower GTV recall than 

was achieved by the most sensitive setting. This also allows for a more direct investigation of the 

effects of clustering efforts on noise suppression. 

The decision on the best suited variant caller for low VAF variant calling was made based on the 

results of the Seraseq dilution series analyses, which were computed with the reanalysis pipeline. 

Performance measures were prioritized in the following order from most important to least 
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important: GTV recall, VAF accuracy, lowest callable VAF, susceptibility to noise, and 0.5 recall 

VAF threshold. 

 

2.13. Computational Optimization 

The use of the C-based pysam module was a countermeasure to improve alignment file interfacing 

performance in cases where commands of external tools were not suited for a desired task. Custom 

code was required for successfully applying filters which used the UMI tag and the mean mate 

mapping position as additional criteria. In case of the read length filter, the islice command of 

Python itertools module was used to exploit the regular structure of FASTQ files. 

To speed up clustering, a decision was made to create statistical plots only in cases where a cluster 

reached a certain alignment or alignment group threshold. Consensus matrices were only output 

as bitmap pictures, if there were more than 19 alignments or more than 4 alignment groups in a 

cluster. Thresholds were chosen rather permissive and combined with an upper threshold for the 

number of plots that were allowed to be created for every reference contig. 

Alignment groups were subsampled to a maximum of 32 alignments per default to reduce the 

runtime of UMI-tools and to limit group absorption to smaller alignment groups which was 

reasoned to keep the impact on the original allele distribution to a minimum. 

A fast Python solution was implemented to compute consensus representations of alignment group 

clusters. The implicit element-by-element nature (i.e. ‘broadcasting’) of operations of the numpy 

module along with vectorization were utilized by using the array data structure and the 

vectorization function vectorize. This function allows to translate the standard Python code of 

the per-position consensus bases computation into code that uses numpy broadcasting. Since it 

was unclear whether a cluster will end up containing only one alignment or several thousand, the 

consensus computation had to be extensively optimized. 

Main memory usage was reduced by enforcing full garbage collection during pipeline execution in 

situations where objects occupying loads of memory had just been deleted. In addition, multiple 

analyses were called successively through a separate Python process through a driver script to avoid 

any kind of incomplete garbage collection which might have unnecessarily increased memory usage 

over time. 

Alignments were extensively filtered prior to alignment object creation. Only alignments mapping 

to target regions and matching further criteria were kept. To reduce the impact of alignment object 

instantiation on main memory, read objects were deleted after the alignment annotation step. To 
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avoid a state of the analysis pipeline where read objects and alignment objects coexist in main 

memory, the alignment enrichment procedure was carried out without the use of alignment objects. 

To avoid data redundancies, alignment group and alignment group cluster objects only referred to 

alignment instances rather than copying their contained information. 

In general, when operating on huge data structures, an emphasis was given to reduce the steps 

required for carrying out a task. List comprehensions and generator expressions were used for 

faster iteration whenever possible. The creation of large objects for iteration like lists or dictionaries 

was circumvented by using generator expressions and iterators over existing iterable objects. 

 

2.14. Noise, False Positive Estimation and Correction 

To establish a minimalistic model for polymerase errors during DNA synthesis, the error base 

incorporation characteristic was approximated as white noise. This very simple model was used to 

describe how noise affects GTV calls with low VAF. An error occurring at a GTV position in a 

DNA fragment carrying the reference allele can lead to one of the following situations: the error 

either supports the GTV allele or a non-GTV allele. In the first case, the error increases the GTV 

VAF. In the second case, it supports one of two non-GTV alternative alleles equally likely because 

of the adopted noise characteristic. This means that observing any non-GTV alternative allele is 

twice as likely as observing the expected alternative allele in case of a polymerase error. 

Table 2.11: possible combinations for alternative allele observations in the event of two base errors 

at GTV-supporting positions. 

Non-reference Allele Observations Cases Supporting 
Outcome Type 

Variant Called 
(assumed) 

Base 1 Base 2 

GTV GTV 1 Yes 

Non-GTV A Non-GTV A 
2 Yes 

Non-GTV B Non-GTV B 

GTV Non-GTV A 

6 No 

GTV Non-GTV B 

Non-GTV A GTV 

Non-GTV B Non-GTV A 

Non-GTV B GTV 

Non-GTV A Non-GTV B 

 

In case an error occurs in a template which supported the expected GTV allele, the similar 

considerations can be made. According to the model, the incorporation of a base supporting a 
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non-GTV allele would be twice as likely as the incorporation of the reference allele-supporting 

base. If the GTV allele frequency is small (≤1%), the portion of errors resulting from these GTV 

allele supporting reads can be omitted as a first approximation. Hence, the level of molecular noise 

could be determined solely by the number of non-GTV alternative allele observations. The 

practical signal level would then be the observed VAF of the GTV allele minus half the number of 

observations supporting other alternative alleles. 

Considerations like the above can be made for variant calls which are supported by two alternative 

allele observations under the assumption that they resulted from uncleared polymerase errors (see  

table 2.11). Again, observing any non-GTV, non-reference allele is twice as likely as observing the 

GTV allele. Under the assumption that variants are only called if the same nucleobase was observed 

twice, the portion of base error combinations resulting in calls is only one third of the portion for 

single alternative allele observation calls. Thus, dual observation-supported variant calls due to 

polymerase errors are expected to be made less frequent. 

A simple noise level classification for false positive estimation was applied to VCF data using to 

two binary criteria. These criteria consider the relation between GTV signal level (VAF) and 

coverage dictated noise level. The first criterion is met if the noise level is approximately equal to 

(≥90%) or higher than the signal level (SNLR criterion). The second criterion is met if the noise 

level is higher than half the signal level (HSNLR criterion). The signal level was defined as the data 

set’s  

expected (theoretical) GTV VAF. The coverage-dictated noise level was defined as the lowest 

observed VAF of any variant call in the corresponding VCF file. 

A trade-off based on observed variant calls was made to reduce the number of GTV calls by a 

reasonable amount but still allow for GTV calls in situations where expected variant signal and 

coverage dictated (estimated) noise levels are comparable (i.e. SNLR criterion met). The number of 

true positive ground truth variant calls of a VCF file (part of a dilution series), was reduced based 

on: 

• the number of alternative calls at GTV sites in the control data set of the dilution series 

• the estimated noise level of a data set belonging to the same dilution series (SNLR and 

HSNLR criteria) 

• the amount of UMIs supporting a GTV call of the given non-control data set 

In case the SNLR and the HSNLR criteria were not met (i.e. noise level below half signal level), 

simply all single and double observation supported GTV calls were regarded as false positives due 

to the large gap between signal and estimated noise. If the HSNLR criterion was met but the SNLR 
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criterion not (i.e. noise level between 50% and 90% of signal level), all single UMI-supported GTV 

calls were regarded as false positives along with a portion of the dually supported GTV calls. This 

portion was estimated to be half the number of dual UMI-supported alternative calls at GTV sites 

in the control data set. This was observed to be a good estimate for false positive GTV calls in 

both control data sets of NEBNext and QIASeq Seraseq analyses which did not make use of 

advanced clustering and, thus, were thought to have resulted in more noisy calls. The number of 

removed dual UMI-supported GTV calls was limited to the total amount of dual UMI-supported 

GTV calls in a given data set. For example, if the noise level in a given data set was 65% of the 

expected signal level and there were twelve dual UMI-supported GTV calls in said data set, and if 

there were ten alternative calls at GTV sites in the control data set, the number of dually supported 

GTVs to be removed would be five, leaving seven dually-supported GTV calls as true positives in 

the data set. 

If the noise level is approximately or above the signal level, instead of removing all single UMI-

supported GTV calls, the procedure for estimating the false positive portion of dually supported 

GTV calls was also applied to single UMI-supported GTV calls. The number of false positive single 

supported GTV calls was estimated from half of the number of single UMI-supported alternative 

calls at GTV sites in the control data set. The portions of false positive single and dually UMI-

supported GTV calls are subtracted from the data set’s number of single and dually supported 

GTV calls. 

Although this procedure gives a better estimate of the actual number of alternative allele-carrying 

templates captured by the tagging approach, it cannot be used to select the true positive GTV calls 

from the pool of single and dually-supported GTV calls of a data set. Also, this procedure fails, if 

the number of alternative calls at GTV sites in the control data set is rendered non-informative due 

to successful error suppression. 

To regard rare false positive GTV observations in the control data analysis which do not stem from 

the single and dual observation portion of variant calls, a supplementary approach was added. In 

addition to the false positive estimation based on the signal-to-noise level relation, if a non-SOC, 

non-DOC GTV was observed in the control data set, the exact same variant is removed as 

systematic false positive call from any non-control data set in which it occurs at similar VAF. The 

maximum VAF deviation allowed for a GTV to be counted as systematic false positive was defined 

as 25% to allow for UMI coverage variations between data sets. 

The combined GTV recall correction measures described above are named ‘estimated false 

positives filter’ subsequently.  
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3. Results 

3.1. Quality Control 

A minor quality degradation towards the 3′-end of reads was frequently observed for all data sets. 

Second in pair reads exhibited lower overall quality compared to first in pair reads. Notable 

abnormal results are presented below (see figure 3.1). 

 

Per sequence GC-content distributions for different tagging and targeting methods are shown in 

figures 3.2, and 3.3. The spread of per 

sequence GC-content distributions was 

shortest for smMIP (30-40%), followed by 

QIASeq (around 40%). ThruPLEX showed 

an intermediate GC-content coverage of 

about 50%. NEBNext exhibited the largest 

GC-content spread of approximately 55%.  

As expected, sequence duplication statistics 

showed alternating base composition per 

position and non-uniform amplification of a 

multitude of sequences (and k-mers). The 

estimated sequence duplication levels for 

Figure 3.1: abnormal quality check result for QIASeq Seraseq dilution series. (A) Mean quality scores 

per position of QIASeq mix data sets. A warning was output for every QIASeq R1 FASTQ file of the Seraseq dilution 

series (orange lines) because read quality degraded towards the 3′-end below a quality value of 30. The R2 FASTQ files 

failed the quality check (red lines) because of the steep decline in quality after the 9th base to a mean quality value to 18. The 

quality degradation was very similar for all QIASeq Seraseq samples because they were sequenced simultaneously. The plot 

was created with MultiQC. (B) Per tile quality score deviation from the average quality score per base position of one R2 

FASTQ file of the QIASeq Seraseq dilution series. Blue colours denote tiles with mean quality scores equal to or higher 

than the average score. Red colours depict lower mean quality scores. The plot was created with FastQC. 

QIASeq mix AF1 R2 QIASeq mix A B 

Figure 3.2: per sequence GC-content of QIASeq 

Seraseq data sets. All QIASeq Seraseq R2 data (orange 

curves) exhibit a more Gaussian-like, smoothed version of red 

R1 distributions. QIASeq distributions exhibit a negative 

skew. The plot was created with MultiQC. 

QIASeq Seraseq 
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NEBNext read pairs (figure 3.4) differed from the estimated duplication levels for corresponding 

UMI sequences which were available as separate FASTQ files. Usually, UMIs showed a three to 

five percent higher duplication level compared to read sequences of the same sample.  

 

 

Notable contamination with Illumina universal adapter sequence was found in the NEBNext 10 

ng data set (~5%) and the NEBNext 100%TruQ4 mix data set (~2.5%). Traces (≤ 1%) of the 

same sequence were found in all other NEBNext and both ThruPLEX data sets. Traces of the 

nextera transposase sequence were found in the QIASeq TruQ4 data set and all non-control data 

sets of the QIASeq Seraseq dilution series.  

  

NEBNext Seraseq mix 

 2% VAF 
 1% VAF 
 0.5% VAF 
 0.25% VAF 
 0.125% VAF 
 WT 
  

ThruPLEX B 

 10 ng 
 100 ng 
 100% TQ4 
 50% TQ4 
 25% TQ4 
 WT 

NEBNext TruQ4 mix 
C D 

smMIP 
A 

Figure 3.3: per sequence GC-content distributions. (A) smMIP data sets: no normal distribution was observed 

for any of the smMIP data sets and, thus, the red colouring due to the failed quality check. (B) ThruPLEX data sets: all 

distributions of ThruPLEX data are almost identical, smooth and exhibit a mode at 41% GC. Nevertheless, a warning 

was output by the MultiQC software (orange colour) because the distributions were shifted relative to a reference normal 

distribution which was calculated from the data set. (C) NEBNext TruQ4 data sets: the yellow distribution of the 

NEBNext 10 ng input material data set shows a sharp peak around 43% GC and an additional mode at 53% GC. 

Distributions for NEBNext data sets using the TruQ4 reference DNA are slightly positively skewed. All data sets failed 

the quality check module. Curves with identical colour represent data from R1 and corresponding R2 FASTQ files. (D) 

NEBNext Seraseq data sets: distributions for NEBNext Seraseq data sets are more symmetrical than the GC-content 

distributions of NEBNext TruQ4 data sets. Deviations from a normal distribution due to region targeting and template 

amplification are also clearly visible. All data sets failed the quality check module. Plots were created with MultiQC. 
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3.2. Impurity Screening 

Impurity screening results of ThruPLEX reads, NEBNext Seraseq reads (figure 3.5, B), and 

QIASeq TruQ4 reads showed adapter contamination and reads without hits on any of the screened 

genomes below 2% of all reads. NEBNext TruQ4 reads showed higher adapter contamination 

Figure 3.5: impurity screening results for NEBNext reads of both TruQ4 and Seraseq reference 

material. Red portions of reads shared between mammalian genomes indicate homologous captured regions and do not 

indicate contamination. The few reads aligning against lettuce in both cases were either single or multiple hits on multiple 

genomes and were therefore not viewed as true impurities. (A) Sample order (left to right) is: 100 ng, 10 ng, WT, 100% 

TruQ4, 25% TruQ4, and 50% TruQ4. Mate order is R1 reads before R2 reads. The portion of reads mapping to the 

human genome varied between 78.9% (10 ng data set) and 98.7% (100 ng data set). The number of R2 reads without 

any hits were systematically higher than the number for R1 reads but did not exceed 2% of all reads of the individual data 

set. Notable Illumina universal adapter contaminations are clearly visible. (B) Sample order (left to right) is: 100 ng, 10 

ng, WT, 100% TruQ4, 25% TruQ4, and 50% TruQ4. Mate order is the same as for TruQ4 results. Adapter 

contamination did not exceed 2%. The portion of reads mapping to the human genome varied only between 97.8% and 

98.9%. Plots were created with MultiQC. 

NEBNext: TruQ4 Reads NEBNext: Seraseq Reads 
B 

 

A 

  

NEBNext Seraseq 

 2% VAF 
 1% VAF 
 0.5% VAF 
 0.25% VAF 
 0.125% VAF 
 WT 
 

NEBNext TruQ4 mix 

 10 ng 
 100 ng 
 100%TQ4 
 50% TQ4 
 25% TQ4 
 WT 

A B 

Figure 3.4: estimated duplication levels for NEBNext data sets of TruQ4 and Seraseq dilution 

series. Curves with identical colour represent data from R1 and corresponding R2 FASTQ files. For both dilution series, 

R2 reads were estimated to have higher sequence duplication levels than R1 reads. The initial portion of supposedly unique 

sequences stemmed from both first and second-in-pair reads. (A) NEBNext TruQ4 mix data sets: duplication estimates 

were more homogenous for R2 data. (B) NEBNext Seraseq mix data sets: the initial portion of unamplified sequences was 

lower than for TruQ4 mix data sets. There were more highly duplicated sequences than for the TruQ4 dilution series. Plots 

were created with MultiQC. 
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with Illumina universal adapter than Seraseq data sets. This resulted in a lower yield of reads 

aligning against the human genome (see figure 3.5, A). 

A small subset of reads of the 

NEBNext TruQ4 100 ng sample 

which showed no hits on any 

screened genome were used in a 

web basic Local Alignment Search 

Tool (BLAST) search on the 

NCBI website. Searches with the 

BLASTN program [85] version 

2.8.1 were optimized for different 

sequence similarities (megablast, 

discontiguous megablast, and 

blastn). The best search result 

consisted of 100 hits on artificial 

sequences with the top 40 hits 

having scores between 121 and 135. Query coverages ranged from 65% to 100%. Among hits were 

mammalian expression vectors of type pCI-NEO-FLAG-SMNdelta, and cloning vectors of types 

L1R1-neo-Scal, 1446_neo, pCI-neo, and GloSponge. Other cloning and expression vectors were 

also found but exhibited lower quality values and query coverages. 

Between 4.2% and 5.9% of R2 data of each QIASeq Seraseq data sets did not align against any 

screened genome. R1 data aligned better with 1.8% up to 3.1% not aligning to any genome. The 

fraction of reads mapping to the human genome varied between 96.9% and 98.2% for R1 data and 

between 93.9% and 95.7% for R2 data. 

Screening results for smMIP (see figure 3.6) showed unusually high percentages of unmapped reads 

per data set which reached almost 40% in some cases. Web BLAST searches using a small subset 

of unmapped smMIP reads against the human genome and non-human nucleotide databases with 

the BLASTN program yielded hits with low scores between 35 and 75. Query coverages were also 

low (between 20% and 27%). Organism results ranged from bacteria and fungi to fish. 

 

Figure 3.6: impurity screening results for smMIP data sets. 

Sample order from left to right is: 100% TruQ4, 25% TruQ4, and 50% 

TruQ4. Replicate one before replicate two. Mate order inside replicate is read 

1 before read 2. Between 15.6% and 37.7% of each FASTQ file did not 

map to any genome. The plot was created with MultiQC. 

smMIP: TruQ4 Reads 
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3.3. Data Processing Optimization 

Read Pre-Processing 

Merging read pairs resulted in a decrease of mapped reads for all data sets. The overall number of 

mapped reads also decreased which ultimately resulted in a disadvantageous higher detection limit 

in variant calling (see table 3.1). One reason for this was the amount for mergeable read pairs, 

especially in case of NEBNext for which only approximately 10% to 20% of all read pairs could 

be merged. Approximate percentages of mergeable read pairs for other data sets were 90% for 

QIASeq, 85% for smMIP, and 75% for ThruPLEX. Using a combination of merged reads and 

paired reads in a single analysis was avoided for simplicity. Based on characteristic amplicon 

structures, the mate merging was expected to work best for smMIP data sets. 

 

Illumina Adaptor Trimming and Mapping 

For QIASeq and ThruPLEX MiSeq data sets, the attempt to trim adapter sequences from reads 

resulted in no trimmed bases. For the NEBNext 100% TruQ4 data set, 2.71% of R1 bases and 

0.15% of R2 bases were trimmed. 

Table 3.1: influence of mate merging with FLASH on mapping. 

Sample1 Read 
Information 

Mapped Reads Count Mapped Reads 
Percentage2 

NEBNext 25% TruQ4 
pairs 5,363,350 95.82 

merged 232,462 54.14 

smMIP 25% TruQ4 
replicate 2 

pairs 1,980,374 77.63 

merged 41,551 31.50 

QIASeq 
pairs 3,690,037 99.42 

merged 104,532 83.97 

ThruPLEX MiSeq 
pairs 2,908,475 99.88 

merged 1,709,115 98.48 

ThruPLEX NextSeq 
pairs 27,572,258 99.84 

merged 5,158,400 97.61 

1 Only samples yielding the maximum number of variant calls per tagging procedure are shown. 
2 For merged reads: mapped reads percentage calculated from portion of successfully merged read pairs. 

 

The choice of the best suited BWA version was made based on the capability to use hard-clipping 

to remove substantial terminal portions of reads which did not align against the reference. Hard-

clipping also renders short read trimming by potential adaptor contaminants obsolete (assumption: 

short adapter portion in reads). No notable differences in GTV recall could be reported after 
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comparing BWA version 0.7 to the latest release of version 0.6. Thus, the newer version 0.7 of 

BWA was used to map reads. 

The mapping quality threshold of the alignment filter was lowered from 17 to 15 and the minimum 

allowed trimmed read length was lowered from 30 to 25 bases. Both measures resulted in a mild 

increase of alignments after applying the filter. No effect on GTV recall or GTV VAF variability 

was observed though. The lower values were used for both thresholds in subsequent analyses 

involving TruQ4 data sets. For Seraseq data sets, a minimum read length of 45 and a minimum 

mapping quality of 17 was used. 

 

Mutect Variant Calling Parameters 

There was no difference of GTV recall observed when comparing variant calling results for the 

latest releases of the Mutect-containing GATK versions 3 and 4. The amount of alternative calls 

at sites of uncalled GTVs decreased from two to zero. This reduction was an improvement because 

issuing variant calls other than expected GTV calls indicated noise levels at the GTV site being 

higher than the signal level (i.e. higher than the frequency of alternative allele observations 

supporting the GTV). Based on these results, the latest release available of GATK version 4 was 

used for Mutect variant calling. 

Omitting soft-clipped bases for Mutect variant calling resulted in fewer variant calls compared to 

the results obtained using default settings (for details see table 3.2). Insertion calls decreased by 

62.5% and deletion calls decreased by 31.8%. Thus, the option to disregard soft-clipped bases was 

not used. 

Table 3.2: effect of disregarding soft-clipped bases on variant calling outcome for Mutect version 

4. 

Activated Mutect Options SNVs Insertions Deletions Total Calls 

Default 271 8 22 301 

Disregard soft-clipped bases 254 3 15 272 

 

The option to deactivate optimizations had no effect on GTV recall. Effects on GTV VAF 

variability were minimal. Therefore, the option to disable optimizations was also not used in 

subsequent variant calling experiments. 
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3.4. Exploratory Analysis 

Profiling 

A listing of execution times per data set measured by the Python driver script is shown in table 3.3. 

All analyses were started with a maximal usage of 8 threads. The ThruPLEX MiSeq data set showed 

the longest and the smMIP data sets the shortest execution durations (total and per mega base). 

The total execution time of the exploratory analysis can be divided according to the following main 

tasks: read pre-processing, mapping, alignment processing, and variant calling. The total execution 

time was approximately distributed over these tasks as follows: 20% read pre-processing, 13% 

mapping, 20% alignment processing, and 47% variant calling. Times were computed from time 

stamps of the console output of conducted exploratory analyses. Because both variant calling paths 

were executed per default, the variant calling task could be further divided according to the utilized 

variant caller. The smCounter variant calling made up 30% of total execution time while the Mutect 

caller required 17%. By using a BED file for region filtering, computation time required for variant 

calling with the smCounter software was drastically reduced. 

Read pre-processing, alignment processing, and variant calling using smCounter made up about 

70% of the total execution time. These tasks were carried out mainly using Python code. 

Table 3.3: total execution times of exploratory analyses without UMI-tools error correction. 

Data Set1 Read 
Pairs 

Max. Read 
Length 

Total Duration2 Duration per Read 
Mega Base 

QIASeq TruQ4 1,808,103 151 bp 1 h 32 m 33 s 10.17 s 

NEBNext 10 ng 3,976,440 75 bp 1 h 03 m 24 s 6.38 s 

NEBNext 100 ng 2,886,909 75 bp 53 m 00 s 7.34 s 

NEBNext 100% TruQ4 mix 2,271,218 76 bp 1 h 01 m 19 s 10.66 s 

NEBNext 50% TruQ4 mix 2,182,469 76 bp 58 m 54 s 10.49 s 

NEBNext 25% TruQ4 mix 2,798,019 76 bp 1 h 12 m 19 s 10.20 s 

*NEBNext 0% TruQ4 mix 2,731,760 76 bp 23 m 08 s 3.33 s 

ThruPLEX MiSeq 1,451,625 151 bp 3 h 59 m 39 s 32.80 s 

ThruPLEX NextSeq 13,762,371 151 bp 20 h 40 m 47 s 17.91 s 

smMIP 100% TruQ4 mix 
rep1 

788,977 
151 bp 

18 m 52 s 4.75 s 

smMIP 50% TruQ4 mix rep1 767,418 151 bp 18 m 32 s 4.80 s 

smMIP 25% TruQ4 mix rep1 810,676 151 bp 18 m 59 s 4.65 s 

smMIP 100% TruQ4 mix 
rep2 

1,097,521 
151 bp 

25 m 53 s 4.69 s 

smMIP 50% TruQ4 mix rep2 732,203 151 bp 19 m 02 s 5.16 s 

smMIP 25% TruQ4 mix rep2 1,460,267 151 bp 29 m 36 s 4.03 s 

1 Terminated analyses are marked with an asterisk. 
2 Total durations were measured by a Python driver script (server loading not monitored). 
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The NEBNext control data set terminated prematurely. There were only 25 different UMIs for 

this sample with 24 UMIs occurring only once (see figure 3.7). All other read pairs were associated 

with the same UMI sequence. This sequence was identical to the Illumina TruSeq CD  

Index 1 (i7) adapter sequence D712 [86, p. 19]. The missing UMI sequence diversity caused the 

exploratory analysis of the whole sample to fail because nearly all reads were collapsed into a single 

sequence. After mapping, the remaining 25 consensus read alignments did not pass the alignment 

filter which resulted in analysis termination. 

An attempt to use UMI error correction on data sets which were not part of this thesis by applying 

the directional-adjacency approach of UMI-tools failed due to an extremely high run time 

compared to data sets used in the exploratory analysis. UMI sequence error correction was found 

to take at least two days for a deep sequenced amplicon data set. The execution of the program 

was terminated manually after 48 hours. 

 

Amplicon structure 

The smMIP data sets exhibited the shortest amplicons which were approximately only one read 

long (i.e. 150 bases). Each region was targeted by a forward and a reverse primer. The smMIP 

coverage track can be interpreted as the addition of two slightly shifted uniform  

coverages (figure 3.8). 

Figure 3.7: per base sequence content of the NEBNext TruQ4 mix data sets. The base colouring 

scheme was: G=black, A=green, T=red, C=blue. The resulting colour of every tile in the plot is a weighted additive mixture 

of all four base colours according to their occurrence in the data set at the corresponding position. Sample order from top to 

bottom is: 100 ng, 10 ng, WT control, 100% TruQ4, 25% TruQ4, and 50% TruQ4. Three successive lines belong to 

one sample and are displayed in the following order (top to bottom): UMI sequences, first-in-pair read sequences, and second-

in-pair read sequences. The UMI sequences of the WT control were extremely homogeneous. The colour code reveals the 

sequence: AGCGATAG. The plot was created with MultiQC. 

NEBNext TruQ4 mix Data sets: Per Base Sequence 
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The NEBNext and the ThruPLEX data sets exhibited the largest amplicons of about 800 bases. 

The size of displayed ThruPLEX targeted regions were approximately half the size of regions 

targeted by the NEBNext protocol (for details see table 3.4). 

Amplicons of NEBNext and QIASeq data sets were created by targeting overlapping sub-regions 

using multiple primers which led to large contiguous regions (figure 3.8). Coverage tracks of both 

tagging protocols showed additively overlapping individual coverages of truncated, approximately 

Gaussian-like shape. 

The highest region targeting efficiency was observed in smMIP data sets followed by QIASeq data 

sets. Alignments in the immediate vicinity of targeted regions stretched out approximately 100 

bases in QIASeq data sets. For the NEBNext protocol, coverage was still observed up to 250 bases 

away from target regions. In ThruPLEX data sets, coverage was still observed 300 bases away from 

targeted regions. 

The ratio of observed covered bases over targeted bases was highest for NEBNext (e.g. 37.7), 

followed by QIASeq (e.g. 11.7), ThruPLEX (e.g. 7.7), and finally smMIP (e.g. 2.3). These values 

correspond to the examples used in table 3.4. 

Table 3.4: statistics of targeted regions for all tagging procedures. 

Tagging 
Protocol 

Initial 
Regions 

Regions After 
Merging 

Mean Region 
Base Width1 

Total Bases 
Inside Regions 

Example of 
Covered Bases2 

QIASeq 4,832 1,832 309 566,976 6,643,582 

NEBNext 190 12 3,062 36,747 1,385,086 

ThruPLEX 745 671 752 504,652 3,880,446 

smMIP 11 11 17 1,584 3,610 

1 Mean region base width and total bases refers to merged regions. 
2 Data sets used as coverage examples: QIASeq TruQ4, NEBNext 100% TruQ4, ThruPLEX MiSeq, and smMIP 

100% TruQ4, replicate 1. The non-consensus, alignment filtered version of each BAM file was used. 

 

Read Grouping 

Read group sizes were visualized as rank size plots as described in [87, p. 4]. The size of a read 

group was defined as the number of read pairs that shared the group’s UMI sequence. The height 

difference of hypothetical plateau regions observed for NEBNext and QIASeq is likely due to the 

10-fold difference in input DNA material (figure 3.9). 
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Figure 3.8: amplicon structures of investigated tagging protocols. Alignment filters were applied. Reads 

are displayed as pairs (dark grey overlap) except for ThruPLEX. Only a portion of alignments is shown. Coverage tracks 

are marked with ‘CT’. Blue bars below alignments indicate targeted regions. Tick marks are placed at a 100-base distance. 

Coloured dots label alternative base observations. (A) Structure of a NEBNext amplicon of the 100% TruQ4 sample. (B) 

Three amplicons from the QIASeq TruQ4 data set. (C) Two amplicons of the smMIP 100% TruQ4 sample, replicate one. 

(D) Three partially overlapping amplicons of the ThruPLEX MiSeq data set. Amplicon depictions were adapted from 

BAM visualizations from the IGV software. 

A 100 bases 

CT 

B 

CT 

C 

CT 

D 

CT 
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Based on the group rank plots for ThruPLEX and smMIP (figure 3.10), the number of observed 

read groups can be viewed as wildly inflated compared to the underlying true amount which can 

only be estimated. 

  

Figure 3.10: typical UMI group size rank plots of ThruPLEX and smMIP data sets. Grouping was 

based on UMI sequences only. No plateau or shoulder region is visible. The sequence abundances can be fully characterized 

by a steep initial peak which directly goes over to a dominant tail region. The maximum observed read group size was around 

43 for ThruPLEX while smMIP exhibited read group sizes up to 40,000. More than 50% of all read groups were formed 

by a single read pair. Plots were created in Python using matplotlib. 

Figure 3.9: typical UMI group size rank plots for NEBNext and QIASeq data sets. Grouping was 

based on UMI sequence only. Hypothetical plateau regions as would result from perfect amplification are drawn as red dashed 

lines. An extreme initial peak is present for NEBNext which is over three orders of magnitude higher than the pronounced 

shoulder region. The peak for QIASeq is only one order of magnitude higher than UMI groups forming the less pronounced 

shoulder region. The hypothetical plateau region of the QIASeq data set is shorter (approximately 6,000 read groups) and 

higher (around 300 copies) compared to the NEBNext plateau. This ideal NEBNext plateau is formed by 50,000 UMI 

groups and 30 copies per read group. Long tail regions are present for both data sets. These make up approximately 75% of 

NEBNext read groups and 90% of QIASeq read groups. Plots were created in Python using matplotlib. 
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Tagging Protocol Performance 

The number of covered ground truth variants differed for each of the tagging procedures (for 

details see table 3.5). Statements about performance measures are based on Mutect variant calling 

results because Mutect outperformed smCounter in the exploratory analysis. The exception to this 

was smMIP which exhibited better variant calling performance with smCounter. 

The highest GTV detection probabilities were observed for data sets of the ThruPLEX and the 

NEBNext protocols. Target regions of NEBNext exhibited the largest GTV coverage. 

Accordingly, the NEBNext pool of callable GTVs across all samples was approximately 8-times 

larger than the number of ThruPLEX GTVs (70 vs. 9). In summary, 13 out of 14 possible GTVs 

were detected in the NEBNext dilution series. The lowest VAFs of detected GTVs were observed 

for the 25% TruQ4 samples of smMIP and NEBNext at 1.00% and 1.05% for smCounter and 

Mutect respectively. 

Table 3.5: GTV-based validation results for single data sets and dilution series. 

Data Set Variant 
Caller 

Covered 
GTVs 

GTV Recall2 Lowest VAF 
of Detected 

GTV 

GTVs 
Never 
Called 

GTVs 
Classified as 

Tumour 

QIASeq 
Mutect 

7 
0.286 16.70% 5 - 

smCounter 0.000 - 7 - 

NEBNext 
10 ng 

Mutect 
14 

0.571 4.00% 6 - 

smCounter 0.429 5.00% 8 - 

NEBNext 
100 ng 

Mutect 
14 

0.857 4.00% 2 - 

smCounter 0.357 5.00% 9 - 

NEBNext 
TruQ4 
dilution 
series 

Mutect 

14 

0.738 1.05% 1 61.5% 

smCounter 0.310 1.05% 6 31.7% 

ThruPLEX 
MiSeq 

Mutect 
9 

1.000 4.00% 0 - 

smCounter 0.111 30.00% 8 - 

ThruPLEX 
NextSeq 

Mutect 
9 

1.000 4.00% 0 - 

smCounter 0.667 5.00% 3 - 

smMIP1 
Mutect 

11 
0.091 2.50% 10 0.0% 

smCounter 0.424 1.00% 6 68.8%  
1 Average values across replicates were used for smMIP. 
2 Recall values were not corrected. 

 

The portion of initial alignments, which were still available for variant calling after applying the 

alignment filter, was 91.9% for the NEBNext 100 ng data set. In the ThruPLEX MiSeq analysis, 

approximately one third of initial alignments were removed by the alignment filter (i.e. off-target, 
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unmapped, not in proper pair, or reads of a pair mapped to different chromosomes). The portion 

of off-target reads made up the majority of removed reads. 

For the NEBNext 100 ng input DNA material data set in combination with Mutect variant calling, 

GTV recall was 1.5-times higher than for the 10 ng Mutect analysis. There was no observable effect 

on the GTV VAF detection limit for these two data sets though. Compared to both NEBNext 

data sets, the GTV detection performance was worse for the 10 ng QIASeq data set. Mutect could 

only detect 2 GTVs, both exhibiting a VAF deviation of +15%. 

The ThruPLEX MiSeq sample showed GTV VAF deviations below 6% around the expected 

values. Maximum deviations called for the ThruPLEX NextSeq sample were slightly higher. The 

NEBNext dilution series exhibited GTV VAF deviations similar to the ThruPLEX MiSeq sample. 

Few exceptions of higher deviations might be attributed to the higher overall number of issued 

GTV calls. The largest deviation of +9.5% VAF for this dilution series was observed for a GTV 

which was expected at 8% VAF. However, the main portion of GTVs were of acceptable accuracy 

in terms of VAF variability (see figure 3.11). 

 
Figure 3.11: VAF of GTVs called by Mutect for the NEBNext dilution series and the ThruPLEX 

MiSeq data set. Red lines indicate perfect concordance. Only GTV calls which could be identified automatically are shown. 

Expected variant allele frequencies taken from manufacturer homepage. Plots were created in Python using matplotlib. 

 

In case of Mutect variant calling on smMIP data sets, only 2 GTVs were called for replicate one 

and 4 GTVs for replicate two. These are the lowest results in terms of GTV recall for any 

conducted analysis involving the Mutect caller. Deviations of called GTV VAF from the expected 

values were between -17.5% and +0% VAF for replicate one and between -21.5% and +37.5% 

VAF for replicate two. The latter dilution series showed the largest deviations from expected VAF. 

ThruPLEX MiSeq Mutect GTV 

Calls 

NEBNext Mutect GTV Calls 
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For smMIP, the amount of Mutect variant calls per replicate and dilution series was also low: 14 

for replicate one and 11 for replicate two. Only one GTV call of replicate two was observed in 

another data set of the dilution series. Replicate one yielded no traceable variants. For smCounter, 

26 and 14 variants were observed more than once in dilution series results of replicate one and 

replicate two respectively. 

The smCounter results showed an increased GTV recall compared to Mutect results for  

smMIP (see figure 3.12). For replicates one and two, 18 and 10 GTVs out of 33 possible were 

called. Observed VAF variability was maximal for replicate two with deviations between -10% and 

+70%. The lowest expected VAFs of detected GTVs were 1% and 2% for replicates one and two 

respectively. 

In replicate two, the lowest called variant allele frequency of a variant, which was observed more 

than once and classified as putative tumour, was 0.32% for Mutect and 0.26% for smCounter. 

 
Figure 3.12: VAF of called GTVs of the smMIP replicate two dilution series. Mutect and smCounter 

results shown. Red lines indicate perfect concordance. Only calls which could be identified automatically are shown. Expected 

variant allele frequencies taken from manufacturer homepage. Plots were created in Python using matplotlib. 

 

Concordance checks between Mutect calls of replicates resulted in a single shared variant call 

between replicates of the 100% and the 25% TruQ4 data sets. This equalled 23.8% and 25.0% on 

average of all made calls of the 100% and the 25% TruQ4 data sets. No shared variant was found 

between the 50% TruQ4 data sets. Shared calls were remarkably higher for the smCounter calling 

results. Eleven calls were shared between replicates of each TruQ4 dilution level which  

equals 8.8%, 7.3%, and 7.8% of all calls on average for the 100%, 50%, and 25% data sets 

respectively. 

smMIP Replicate 2 Mutect GTV Calls smMIP Replicate 2 smCounter GTV Calls 
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Validation results not based on GTV calls are listed in table 3.6. The highest amount of variant 

calls was observed for the ThruPLEX NextSeq data set. The number of total variant calls was 1.3-

times higher than for the NEBNext dilution series, which exhibited the second highest amount of 

variant calls. NEBNext yielded more variant calls than the ThruPLEX MiSeq analysis despite 

regions targeted by ThruPLEX covered 13.7-times more bases than targeted regions of the 

NEBNext protocol (see table 3.4). The number of variant calls made with the QIASeq-Mutect 

combination was comparable to the amount of NEBNext 100 ng Mutect calls. The smMIP dilution 

series experiment resulted in the lowest number of variant calls albeit including results of three 

VCF files. 

Table 3.6: variant call validation results based on ambiguous calls. 

Tagging 
Protocol 

Best 
Variant 
Caller 

Unique 
Variants1 

Calls per 
Region Kilo 

Base and 
VCF File 

Traceable 
Variants2 

Putative 
Tumour 

Very 
Strong 
Linear 

Relation3 

Flat 
Reg. 
Slope 

QIASeq Mutect 470 0.8 - - - - 

ThruPLEX 
MiSeq 

Mutect 2,689 5.3 - - - - 

ThruPLEX 
NextSeq 

Mutect 4,468 8.9 - - - - 

NEBNext 
10 ng 

Mutect 380 10.3 - - - - 

NEBNext 
100 ng 

Mutect 439 11.9 - - - - 

NEBNext Mutect 3,532 32.0 17.1% 39.3% 8.3% 14.9% 

smMIP4 
Sm-

Counter 
176 37.0 11.1% 42.3% 25.0% 9.6% 

1 The term ‘unique variant’ refers to the indicated variant itself and not the individual variant call. 

2 Trace-based results are only available for dilution series. 

3 Strength of linear relation refers to VAF of traceable variants with more than two observations. 

4 The average across replicates is shown for smMIP. 

 

The number of variants which were called more than once over different tumour dilution levels 

was higher for the NEBNext dilution series than for the smMIP series but fell short of 

expectations. Likewise, the percentage of variants categorized as originating from the tumour 

portion was below expectations for both series. The portion of variant traces which showed a very 

strong linear relation between dilution levels was low in all cases. The average number of 

unfavourable variant traces which exhibited only minor changes in VAF over dilution levels (i.e. 

flat regression slope) was 1.5-times higher for NEBNext than the smMIP average. 
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Due to the length of UMI sequences used by the NEBNext tagging protocol, 412 equalling 

16,777,216 different UMI sequences were possible for every data set. Only 79,072 UMI sequences 

were observed for the NEBNext 100% TruQ4 data set which corresponds to 0.47% of all possible 

UMI sequences. Therefore, observations of highly similar UMI sequences at the same mapping 

location (i.e. low edit distance at the same 5′-most covered base) should be rare. 

 

UMI Error Correction 

The error reduction performance of four approaches was tested on the NEBNext 100% TruQ4 

data set. An edit distance distributions per mapping position between UMI sequences of alignments 

was calculated by UMI-tools (figure 3.13). The directional-adjacency performed best in reducing 

UMI sequence errors in this thesis and in the UMI-tools paper. 

Corrected results for all approaches showed a bi-modal edit distance distribution. Results for the 

two best performing approaches (directional-adjacency and cluster) were highly similar. 

 

After applying the directional-adjacency correction method, the number of observed UMI groups 

of size one and two decreased the most (figure 3.15). Observations of group sizes above 5 changed 
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Figure 3.13: results of the test of UMI error correction approaches on the NEBNext 100% TruQ4 

data set. Spline interpolation curves were drawn to increase visibility of individual edit distances trends. The UMI edit 

distances per position after correction are shown. The expected distribution was assumed to be ideal. The plot was created with 

Microsoft Excel. 
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only to a minor extent (figure 3.14). Larger variations observed for higher group sizes are due to 

smaller absolute numbers of observations. 

Based on the findings above and the recommendation by the UMI-tools paper, the directional-

adjacency approach was used in the final variant calling pipeline. 

 

Figure 3.14: changes in UMI group size observations after applying the directional-adjacency 

UMI error correction. Group size is the number of alignment pairs with identical mapping positions that share the 

group’s UMI. Observations are relative to the size count before UMI-tools correction. The green 100% line denotes no change 

in observations of UMI group size. The blue curve is a polynomial fit of degree 6 to indicate the size change trend. Light grey 

lines were drawn to increase the visibility of the reduction trend. The plot was created with Microsoft Excel. 
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Figure 3.15: detail of changes in low UMI group size observations due to applying the directional-

adjacency correction method of UMI-tools. Group size is the number of alignment pairs with identical mapping 

positions that share the group’s UMI. Observations are relative to the size count before UMI-tools correction. The green 

100% line denotes no change in observations of UMI group size. Light grey lines were drawn to increase the visibility of the 

reduction trend. Observations of UMI groups of size one are reduced to approximately 50% compared to the uncorrected 

BAM file. The plot was created with Microsoft Excel. 
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Recall decreased for the NEBNext dilution series from 0.881 for the uncorrected BAM file to 0.643 

for the corrected BAM file after deduplication by UMI-tools. Instead of 5 missed calls, 15 GTV 

calls were missed after the correction which equals an increase in GTV detection loss of a factor 

of 3. The amount of variant calls was reduced from 883 for the non-consensus Mutect analysis to 

272 for the corrected and deduplicated analysis. This equals a reduction factor of 3.2. For 

comparison, the exploratory analysis for NEBNext without UMI error correction of the collapsed 

reads resulted in 3,532 unique variants (table 3.6) and a GTV recall of 0.738 (table 3.5). 

The GTV VAF variability mildly decreased on average after correction for variants with an 

expected VAF over 5% (figure 3.16). The average decrease was less pronounced for variants  

below 5%. 

 

Background Estimation 

Variant calling results of the NEBNext TruQ4 dilution series were used to investigate the large 

portion of ambiguous variant calls. Two categories of these ambiguous calls were of special interest: 

variants which were called only once in all data sets of the dilution series (‘untraceable’ variants) 

and ‘traceable’ variants (i.e. observed more than once) which exhibited only a minor change in VAF 

over different tumour levels. This means that linear regressions for the VAF of these traceable 

variants exhibited flat-angled slopes below 20%. For example, if between the 100% TruQ4 data 

set and the 50% TruQ4 data set a variant’s VAF changed by less than 10% (a change of 50% would 

have be expected), the variant was labelled unclassifiable. 

A major portion of approximately 70% of all 4,438 variant calls were untraceable, i.e. background 

variants (figure 3.17). In contrast, only one out of 13 GTVs fell into the untraceable category. 

Of 605 traceable variants, 90 exhibited a flat regression slope and could not be classified as either 

tumour or wildtype. This equals 14.9% (see table 3.6). Four out of 13 GTVs exhibited a linear 

regression slope below 20%. 

Therefore, the untraceable category might be a better classification of erroneous calls than the 

unclassifiable category. 

Other source-classifiable ambiguous variants were investigated to answer the question whether 

their observed VAF could be predicted by a downward trace linear regression (figure 3.18). 
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Variants were observed more 

frequently at higher VAFs than at 

lower VAFs compared to the 

expected VAF as calculated by 

regression. This is because of a 

simplification that was made 

during the estimation of the 

expected VAF by using a 

downward trace that assumed 

perfect accuracy for the highest 

VAF of a traceable variant.  

The variability of expected VAFs 

of ambiguous variants was higher 

than for NEBNext dilution series 

GTVs (compare results of  

figures 3.18 and 3.11, left side). 

Figure 3.16: VAF deviations before and after UMI sequence error correction with UMI-tools’ 

directional-adjacency approach. The blue curve was interpolated using locally estimated scatterplot  

smoothing (LOESS). The dark grey area around the interpolated curve is the curve’s 95% confidence interval. The results 

on the left were obtained with the annotated non-consensus BAM file. Error corrected results were obtained from the 

deduplicated BAM file which was created with UMI-tools. Plots were created in R using the ggplot2 package. 

Figure 3.17: traceability of Mutect variant calls per data set 

of the NEBNext dilution series. Variants occurring only once 

throughout the dilution series were labelled ‘background’. The plot was created 

in Python using matplotlib. 
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A slight majority of 53.6% of source-classifiable variants were classified as putative wildtype 

variants. In contrast, all traceable and source-classifiable GTVs were correctly classified as putative 

tumour. 

 

Improvements for Reanalysis 

The mate-merging step was removed to maximize coverage and to avoid an additional, potentially 

read sequence-altering error source. Alignments were filtered more lenient to increase coverage as 

described in the paragraph ‘Structure’ of subsection 2.11 and paragraph ‘Illumina Adaptor 

Trimming and Mapping’ of subsection 3.3. 

To eliminate read group mapping position annotation errors, the UMI group mapping position 

annotation was applied after read mapping. Annotation errors manifested as unsatisfactory GTV 

detection performance for smCounter variant calls for data sets with a larger range of possible 

mapping positions per amplicon (i.e. data sets created with a tagging protocol other than smMIP). 

UMI error correction using the UMI-tools software was made mandatory because of the positive 

impact on background variant call reduction and the notable reduction of single alignment pair 

clusters. The directional-adjacency error correction was refined by adding a mate mapping position 

criterion to enhance specificity. 

The UMI coverage-dependent runtime of the UMI error correction posed a problem in cases where 

deeper sequenced amplicons had to be computed. Since this was the case for most data sets in this 

Figure 3.18: observed and expected VAF of traceable ambiguous variants. Expected VAF estimated 

from the highest VAF of each traceable variant. Only estimates for calls below the highest observed VAF are depicted. The 

red line marks perfect concordance. Blue dots mark putative wildtype variants. Putative tumour variants are green. Observed 

VAF deviations vary between approximately -50% and +400% of the expected VAF. Most ambiguous variants were 

observed below 15% VAF and of that subgroup, the majority was observed below 5% VAF. Plots were created in Python 

using matplotlib. 
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thesis, the need for a practical workaround arose. A solution was found by sorting alignments 

according to their expected sequencing error in an ascending manner followed by subsampling. 

To implement additional approaches for alignment reduction based on UMI group similarity, two 

additional clustering steps were added after UMI-tools alignment grouping correction. Clustering 

of alignment groups allowed for combined reduction of alignments with an identical UMI and 

slightly different template lengths. The first ‘basic’ clustering acted as a technical duplicate detection 

in case of mapping position deviations which were frequently observed in reads with an initial 

homopolymer sequence which is prone to indel errors. The second ‘advanced’ clustering allowed 

for correction of three types of template molecule altering error events that might occur during a 

single synthesis step. Since this was expected to happen very rarely, the advanced clustering was 

made optional. 

 

3.5. Reanalysis 

Profiling 

The reanalysis procedure was divided into the following tasks for profiling: read pre-processing, 

mapping, alignment processing, UMI error correction, clustering, and variant calling. The 

proportions of every task’s contribution to the overall execution time could only be approximated, 

because server load in terms of main memory usage and file access operations varied highly. This 

exerted a higher impact on the overall longer reanalyses compared to the exploratory analyses. 

Execution times were computed from time stamps which were documented in master log  

files (table 3.7). 

Table 3.7: total execution times of reanalyses.  

Data Set1 Read 
Pairs 

Mean Read 
Length 
After 

Filtering 

Total Duration2 Duration 
Per Read 

Mega Base 

Duration 
Increase 
Factor3 

QIASeq TruQ4 1,808,103 144.4 bp 
1 d 17 h 41 m 40 

s 
287.4 s 28.3 

QIASeq 2% VAF 
Seraseq 

28,634,852 138.4 bp 15 h 23 m 46 s 7.0 s - 

QIASeq 1% VAF 
Seraseq 

20,747,543 136.8 bp 10 h 29 m 24 s 6.7 s - 

QIASeq 0.5% VAF 
Seraseq 

23,177,862 138.3 bp 11 h 49 m 39 s 6.6 s - 

QIASeq 0.25% VAF 
Seraseq 

18,369,432 136.3 bp 9 h 11 m 05 s 6.6 s - 

QIASeq 0.125% VAF 
Seraseq 

18,862,323 138.1 bp 9 h 52 m 26 s 6.8 s - 

QIASeq WT Seraseq 24,576,543 137.5 bp 12 h 43 m 32 s 6.8 s - 
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NEBNext 10 ng 3,976,440 75 bp 2 h 03 m 20 s 12.4 s 1.9 

NEBNext 100 ng 2,886,909 75 bp 2 h 21 m 42 s 19.6 s 2.7 

NEBNext 100% 
TruQ4 mix 

2,271,218 76 bp 3 h 20 m 53 s 34.9 s 3.3 

NEBNext 50% 
TruQ4 

2,182,469 76 bp 3 h 06 m 15 s 33.7 s 3.2 

NEBNext 25% 
TruQ4 

2,798,019 76 bp 3 h 44 m 29 s 31.7 s 3.1 

NEBNext 0% TruQ4 2,731,760 76 bp 4 h 55 m 32 s 42.7 s - 

NEBNext 2% VAF 
Seraseq 

26,397,020 74 bp 5 h 39 m 30 s 5.2 s - 

NEBNext 1% VAF 
Seraseq 

24,788,285 74 bp 5 h 14 m 25 s 5.1 s - 

NEBNext 0.5% VAF 
Seraseq 

26,344,790 74 bp 6 h 05 m 50 s 5.6 s - 

NEBNext 0.25% 
VAF Seraseq 

23,817,414 74 bp 5 h 02 m 44 s 5.2 s - 

NEBNext 0.125% 
VAF Seraseq 

23,806,898 74 bp 5 h 10 m 57 s 5.3 s - 

NEBNext WT 
Seraseq 

23,532,247 74 bp 5 h 10 m 38 s 5.4 s - 

ThruPLEX MiSeq 1,451,625 147.3 bp 
2 d 07 h 40 m 08 

s 
468.6 s 14.3 

*ThruPLEX NextSeq 13,762,371 - - - - 

smMIP 100% 
TruQ4 rep1 

788,977 129.2 bp 31 m 00 s 9.1 s 1.9 

smMIP 50% 
TruQ4 rep1 

767,418 129.9 bp 47 m 54 s 14.4 s 3.0 

smMIP 25% 
TruQ4 rep1 

810,676 129.7 bp 49 m 39 s 14.2 s 3.1 

smMIP 100% 
TruQ4 rep2 

1,097,521 129.3 bp 37 m 09 s 7.9 s 1.7 

smMIP 50% 
TruQ4 rep2 

732,203 130.0 bp 44 m 34 s 14.0 s 2.7 

smMIP 25% 
TruQ4 rep2 

1,460,267 129.7 bp 1 h 05 m 19 s 10.3 s 2.6 

1 Terminated analyses are marked with an asterisk. 

2 Total durations were measured by a Python driver script (server loading not monitored). 

3 Duration increase was computed relative to exploratory analyses. 

 

The total execution time per analysis was approximately distributed over these tasks as follows: 5% 

read pre-processing, 5% mapping, 20% alignment processing, 5% UMI error correction, 50% 

clustering, and 15% variant calling. These percentages varied by up to 65% due to server loading 

which frequently led to suspending the main analysis thread. For example, variant calling step took 

longest (approximately 70%) in the ThruPLEX MiSeq reanalysis, while read processing took 
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longest for the QIASeq 0.5% GTV VAF Seraseq reanalysis. In contrast, clustering took about 90% 

of the QIASeq TruQ4 reanalysis. Factors of overall duration increases ranged from 1.7 to 28.3. 

 

The variant calling duration was reduced by using a separate BED file which defined targeted 

regions around GTVs including a border region width of 10 bases. 

The ThruPLEX NextSeq analysis was terminated by the server because of excessive main memory 

usage during clustering. At the time of termination, the analysis process accumulated nearly 500 

GB of memory usage. 

 

Seraseq Alignment Group Sizes 

After UMI error correction, more than 60% of alignment groups of the NEBNext 100% TruQ4 

data set were of size 3 or more and, thus, could safely compensate a single base error per position 

during consensus formation (i.e. clusters were not error-prone). The ranks of UMI error corrected 

alignment groups of two NEBNext data sets are displayed in figure 3.19. 

In the ThruPLEX MiSeq data set, the UMI error correction had no effect on the shape of the size 

ranking besides the reduction of UMI groups of size one. In the QIASeq TruQ4 data set, the UMI 

error correction and subsequent clustering led to exponentially decreasing ranked sizes of UMI 

groups which did not exhibit any kind of plateau region. In smMIP data sets, the alignment 

reduction steps resulted only in minor changes. The majority of UMI groups were still formed by 

a single alignment pair. An example for UMI group size ranks of smMIP and QIASeq data sets is 

displayed in figure 3.20.  

Figure 3.19: ranked UMI group sizes of subsampled and UMI error corrected TruQ4 and Seraseq 

NEBNext data sets. Grouping was based on mapping position and UMI sequence. Plots were created in Python using 

matplotlib. 
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The results for Seraseq data sets either created with the QIASeq or the NEBNext tagging procedure 

responded better to alignment reduction by grouping, UMI error correction, and clustering. Besides 

the TruQ4 NEBNext data set, data sets of both Seraseq dilution series exhibited the most 

pronounced plateau regions after subsampling and UMI error correction. Approximately 20% of 

all NEBNext and 45% of all QIASeq alignment groups and subsequently created alignment clusters 

were of size three or larger and, thus, not error prone in consensus formation. Nevertheless, this 

still left 80% final NEBNext and 55% final QIASeq clusters error-prone. 

Although some of the presented UMI group size ranking results responded quite well to UMI error 

correction, a notable portion of all data sets remained in tail regions which consisted mostly of 

UMI groups of size one. 

 

Tagging Protocol Performance 

Results of variant call validations are listed in table 3.8. No results could be obtained for the 

ThruPLEX NextSeq data set because of excessive usage of main memory which repeatedly led to 

the termination of the analysis. 

For TruQ4 analyses with Mutect, no change in GTV recall was observed for the NEBNext 100 ng 

data set. GTV recall increased by 0.143, 0.095, and 0.016 for the QIASeq, NEBNext TruQ4 

dilution series, and smMIP data sets respectively for Mutect. Minor changes of minimum called 

GTV VAF (detection limit) were observed. In summary, the NEBNext and ThruPLEX tagging 

Figure 3.20: ranked UMI group sizes of a subsampled and UMI error corrected smMIP and a 

QIASeq Seraseq data set. Grouping was based on mapping position and UMI sequence. Plots were created in Python 

using matplotlib. 
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protocols outperformed QIASeq and smMIP for TruQ4 data sets. The lowest detection threshold 

was achieved with NEBNext and smMIP in combination with the smCounter caller. 

Table 3.8: GTV-based validation results for single data sets and dilution series. 

Data Set Variant 
Caller 

Error-
Prone 

Clusters1 

Covered 
GTVs 

GTV 
Recall2 

Lowest 
VAF of 

Detected 
GTV 

GTVs 
Never 
Called 

GTVs 
Classified 

as 
Tumour 

QIASeq 
Mutect Included 

7 
0.429 16.700% 4 - 

smCounter Included 0.714 4.200% 2 - 

NEBNext 
10 ng 

Mutect Included 
14 

0.500 4.000% 8 - 

smCounter Included 0.929 4.000% 1 - 

NEBNext 
100 ng 

Mutect Included 
14 

0.857 4.000% 2 - 

smCounter Included 0.857 4.000% 2 - 

NEBNext 
TruQ4 
dilution 
series 

Mutect Omitted 

14 

0.833 1.050% 0 76.9% 

smCounter Included 0.952 1.000% 0 100.0% 

ThruPLEX 
MiSeq 

Mutect Included 
9 

0.666 4.200% 3 - 

smCounter Included 1.000 4.200% 0 - 

smMIP3 
Mutect Included 

11 
0.107 1.250% 8 50.0% 

smCounter Included 0.727 1.000% 1 75.0% 
NEBNext 

Seraseq 
dilution 
series 

smCounter Included 37 0.530 0.125% 4 49.2% 

QIASeq 
Seraseq 
dilution 
series 

smCounter Included 26 0.677 0.125% 3 95.7% 

1 The best results regarding parameter settings are displayed. These results were achieved with an optimized cluster 

merging 

size threshold of 1.4. Optimal results of Seraseq analyses were created with deactivated advanced clustering. All 

TruQ4 analyses were carried out with permissive advanced clustering. 

2 Recall values were not corrected. 

3 The average across replicates is shown for smMIP. 

 

For Seraseq analyses, the QIASeq protocol outperformed the NEBNext tagging procedure in 

terms of GTV recall, detection limit, fraction of traceable variants, percentage of variants classified 

as tumour, and 50% GTV observation VAF threshold (see table 3.10). The NEBNext Seraseq 

analysis yielded better results for false positive GTV observations in the control data set and 

number of total calls. It is debatable whether a smaller number of absolute calls in case of lower 

GTV recall indicates only lower noise or is also a reason for the recall difference. 
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The initial read length filter affected tagging procedure data sets differently. For QIASeq data sets 

including the Seraseq reference material (NextSeq sequencing platform), about 30,000 to 70,000 

read pairs per data set (0.28% of QIASeq Seraseq WT and 0.16% of QIASeq Seraseq 1% VAF) 

were observed with at least one read sequence in pair being shorter than the read length threshold 

of 45 bases. All reads of NEBNext, smMIP, ThruPLEX, and the QIASeq TruQ4 data sets passed 

the read length filter. 

 

Variant Caller Performance 

As presented in table 3.8, the results for all data sets obtained with smCounter greatly increased in 

GTV calling performance compared to the exploratory analysis. smCounter performed better than 

Mutect in most cases. An exception to this was the NEBNext 100 ng data set for which smCounter 

and Mutect performed equally well. 

GTV recall achieved with Mutect decreased for the NEBNext 10 ng and the ThruPLEX MiSeq 

data set by 0.071 and 0.333 respectively. 

As displayed in figure 3.21, variant calling with smCounter resulted in a much larger number of 

variant calls than Mutect variant calling for the same dilution series. Between 20 to 33-times more 

variants were called with smCounter. The fraction of traceable variants called with smCounter was 

lower for the NEBNext TruQ4 dilution series than for the Seraseq dilution series (see figure 3.24). 
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NEBNext TruQ4 dilution series 
smCounter variant traceability 

Figure 3.21: traceability of Mutect and smCounter variant calls per data set of the best performing 

NEBNext dilution series analysis with permissive advanced clustering. Erroneous clusters were omitted 

for Mutect and included for smCounter. Variants occurring only once throughout the dilution series were labelled ‘background’. 

Plots were created in Python using matplotlib. 
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It is evident from trace results that the detection limit for smCounter was approximately 10-fold 

lower than for Mutect (figure 3.22). Also, the majority of smCounter variants were called at VAFs 

below 5%. Higher sensitivity of smCounter is also indicated by the portion of trace results of 

Seraseq analyses that exhibited a flat regression slope (see table 3.9). 

 

  

Figure 3.23: VAF deviations of called GTVs. Best Mutect and smCounter results are shown for permissive clustering. 

The blue curve is an interpolation that uses LOESS. The dark grey area is the curve’s 95% confidence interval. Error-prone 

clusters were omitted for Mutect and included for smCounter. Mutect frequently called GTVs with a deviation between 100% 

and 200% below 5% absolute VAF. SmCounter showed a more symmetrical deviation behaviour around the expected VAF. 

With few outliers, deviations were lower than 100% of the expected VAF. Plots were created in R using the ggplot2 package. 

Figure 3.22: observed and expected VAF of traceable ambiguous variants of the Mutect and 

smCounter reanalyses. Permissive advanced clustering was used. Error-prone clusters were omitted for Mutect and 

included for smCounter. Expected VAF estimated from the highest VAF of each traceable variant. Only estimates for calls 

below the highest observed VAF are depicted. The red line marks perfect concordance. Blue dots mark putative wildtype 

variants. Putative tumour variants are green. Plots were created in Python using matplotlib. 
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Only the smCounter software was used for variant calling in Seraseq analyses because of the 

findings on caller performance obtained from TruQ4 analyses. The portion of background calls 

decreased immensely after pairing the smCounter caller with the QIASeq tagging  

procedure (figure 3.24). In general, VAF deviations and the detection limit were smaller for 

smCounter (figure 3.23). 

 

Detection Limit Estimation 

The absolute detection limit was estimated from the VAFs of single UMI-supported variant  

calls (SOCs) of a data set. It must be noted that at this VAF level, base noise and true GTVs were 

not distinguishable. Only statistical estimations about the portion of true SOC GTVs could be 

made. Individual detection limits of Seraseq data sets depending on the clustering settings (table 

3.10), were estimated based on SOC VAF distributions (see figure 3.25). 

The estimated detection limits of NEBNext Seraseq data sets increased and their VAF variability 

decreased only marginally by applying clustering settings with increased permissiveness. Only for 

the 0.125% Seraseq and the control data sets, an almost homogeneous detection limit with 

exception of a few outliers was observed. 

The estimated detection limit increased by a factor of two between basic clustering and permissive 

clustering for QIASeq Seraseq data sets. In case of permissive clustering, UMI coverages were 

comparable over target regions. No variability was observed for the estimated detection limit. 

Figure 3.24: traceability of variant calls of the Seraseq analyses. The NEBNext 1% GTV VAF data 

set was called with a narrower border region around the GTV loci of 3 bases instead of 10 for parameter optimization and 

should be disregarded for discussing the aspect of variant traceability. Variants occurring once in all dilution series data sets 

are labelled ‘background’. Plots created in Python with matplotlib. 
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While for basic and moderate clustering the main portion of NEBNext SOC VAFs reached the 

expected GTV VAF at 0.25%, the estimated detection limits for the same clustering settings of 

QIASeq reached the expected GTV VAF level one dilution level lower at 0.125% VAF. The 

detection limits for permissive clustering were approximately equal at 0.25% VAF for NEBNext 

and QIASeq. 

Table 3.9: ambiguous variant call validation results. 

Tagging 
Protocol 

Variant 
Caller 

Unique 
Variants1 

Calls per 
Region 

Kilo 
Base and 
VCF File 

Traceable 
Variants2 

Putative 
Tumour 

Very 
Strong 
Linear 

Relation3 

Flat 
Regression 

Slope 

QIASeq 
Mutect 957 2.1 - - - - 

smCounter 18,533 41.2 - - - - 

NEBNext 
10 ng 

Mutect 141 3.8 - - - - 

smCounter 2,105 57.3 - - - - 

NEBNext 
100 ng 

Mutect 267 7.3 - - - - 

smCounter 1,471 40.0 - - - - 

NEBNext 
TruQ4 
dilution 
series 

Mutect 330 4.2 25.5% 63.1% 12.8% 15.5% 

smCounter 10,185 112.4 16.7% 40.8% 4.2% 22.2% 

ThruPLEX 
MiSeq 

Mutect 8,226 16.6 - - - - 

smCounter 299,883 605.8 - - - - 

smMIP4 
Mutect 19 14.8 11.0% 75.0% 0.0% 25.0% 

smCounter 427 332.6 23.8% 53.2% 4.7% 15.3% 

NEBNext 
Seraseq 
dilution 
series 

smCounter 693 170.1 26.5% 49.2% 8.6% 16.0% 

QIASeq 
Seraseq 
dilution 
series 

smCounter 1,030 358.3 49.4% 95.7% 7.1% 21.2% 

1 The term ‘unique variant’ refers to the indicated variant itself and not individual variant calls. 
2 Trace results are only available for dilution series. 
3 The strength of linear relation refers to linear regression results of a variant’s observed VAFs. 
4 The average across replicates is displayed for smMIP. 

 

Thus, the estimated detection limits for basic and moderate clustering were lower for QIASeq than 

for NEBNext approximately by a factor of two. 

Linear interpolations for the 50% GTV detection thresholds (table 3.10) resulting from the  

SOC-filtered GTVs were also found to be 3.5 to 4.0-times higher for NEBNext than for QIASeq. 
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Clustering 

More permissive clustering settings increasingly reduced the amount of called variants as can be 

seen from the results listed in table 3.10. While clustering did not affect the estimated detection 

limit for NEBNext, the 50% GTV observation VAF threshold did increase with more permissive 

clustering settings for both tagging protocols. The amount of false positive GTV calls in control 

data sets was only reduced for QIASeq by 50% when comparing basic and permissive clustering 

results. 

  

Figure 3.25: VAF distribution of SOCs of the NEBNext and the QIASeq Seraseq dilution series. 

The expected VAF level of GTVs is displayed as a red line for each data set. In general, the estimated detection limit was 

lower for QIASeq analyses than for NEBNext analyses. Also, the VAF variability was generally lower for QIASeq 

SOCs than for NEBNext SOCs. Plots were created in R using the ggplot2 package. 
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Measures describing corrected UMI artefacts, UMI coverage and cluster reduction are listed in 

table 3.11 for examples of Seraseq data sets. An estimate of expected errors per sequenced UMI 

was relatively constant 1 erroneous base in 100 sequences across NEBNext Seraseq data sets. For 

QIASeq Seraseq data sets, 1 in 30 UMIs was expected to carry a single base error. The estimation 

was based on the overall amount of expected base errors in filtered alignments, i.e. sum of translated 

base call quality values, and the ratio of UMI length to combined read length. Small leftmost 

mapping position deviations of groups with identical UMIs were observed approximately half as 

frequent up to equally frequent as random UMI base errors for QIASeq (results not listed in  

table 3.11). These mapping position deviations were observed less frequent for NEBNext Seraseq 

data sets. Mapping deviation observations ranged from 2 to 3 orders of magnitude lower up to one 

fourth of the number of corrected UMI base errors. 

The estimated UMI base error frequencies for TruQ4 data sets were as follows: 1 base in 170 UMIs 

for ThruPLEX MiSeq and smMIP 100% TruQ4 replicate two, 1 base in 115 sequences for QIASeq 

TruQ4, and 1 base in 25 UMIs for NEBNext 100% TruQ4. 

Table 3.10: performance measures for Seraseq dilution series and different clustering settings. 

Data Set Advanced 
Clustering 

GTV 
Recall1 

Number 
of Unique 
Variants 

Estimated 
Detection 

Limit2 

VAF threshold 
50% GTV 

observations 

WT False 
Positive GTV 

Calls 

NEBNext 

off 0.530 693 0.200% 0.687% 
3 

(8.1%) 

basic 0.524 682 0.200% 0.750% 
3 

(8.1%) 

permissive 0.481 336 0.200% 0.844% 
3 

(8.1%) 

QIASeq 

off 0.677 1,030 0.112% 0.188% 
6 

(23.1%) 

basic 0.654 1,006 0.125% 0.189% 
5 

(19.2%) 

permissive 0.615 870 0.225% 0.229% 
3 

(11.5%) 

1 No noise filter was applied to GTV recall results. 

2 The detection limit was estimated based on the SOC VAF distributions. 

 

Shift artefacts were only frequently observed in QIASeq data sets and were negligible for other 

tagging procedures. In all cases, singleton clusters were reduced more than the overall reduction of 

cluster counts. The best overall cluster reduction and singleton cluster reduction was observed for 

QIASeq Seraseq data sets followed by smMIP. Also, the number of read pairs per UMI and the 

UMI coverage in case of moderate clustering was highest for QIASeq Seraseq data sets. 
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A comparison of the SOC-filtered Seraseq reanalysis results for different clustering settings and 

results obtained by standard analyses of the QIASeq and NEBNext Seraseq dilution series from 

the D & R Institute of Human Genetics are displayed in figures 3.26 and 3.27 respectively. For all 

clustering settings and QIASeq and NEBNext reanalyses, three single observation supported false 

positive calls were present at GTV sites in control data sets. 

Table 3.11: corrected UMI artefacts and clustering measures.  

Data Set Advanced 
Clustering1 

Mean 
UMI 

Coverage 

Mean 
Read 
Pairs 
per 

UMI 

Cluster 
Red.2 
Factor 

Singleton 
Cluster 

Red. 
Factor 

Random 
Base 

Errors 

5′-
Shift 

3′-
Shift 

NEBNext 
2% 

Seraseq 

moderate 370.7 8.1 1.05 1.11 1,805 - - 

permissive 359.5 8.4 1.09 1.17 2,270 36 0 

NEBNext 
0.125% 
Seraseq 

moderate 418.6 9.7 1.03 1.05 1,124 - - 

permissive 377.0 10.8 1.14 1.27 4,355 131 9 

QIASeq 
2% 

Seraseq 

moderate 469.9 24.1 1.34 1.47 5,095 - - 

permissive 252.8 47.7 2.25 2.81 7,022 1,298 0 

QIASeq 
0.125% 
Seraseq 

moderate 375.1 25.0 1.34 1.45 3,840 - - 

permissive 208.7 48.3 2.16 2.61 5,179 5,805 986 

Thru-
PLEX 
MiSeq 

permissive 181.2 1.7 1.01 1.01 2,120 3 0 

smMIP 
100% 
TruQ4 

replicate 2 

permissive 141.3 9.1 1.62 1.72 514 11 3 

NEBNext 
100% 
TruQ4 

permissive 78.1 16.9 1.08 1.15 4,761 112 4 

QIASeq 
TruQ4 

permissive 19.0 15.7 1.50 1.91 16,624 6,265 118 

1 No checks for shifted UMI sequences were carried out in moderate clustering. 
2 Cluster reduction factor 
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The QIASeq results from the D & R Institute of Human Genetics were produced with a data 

processing service offered by QIAGEN. The QIAGEN analysis results were validated and kindly 

provided by Sabrina Weber, MSc, from the D & R Institute of Human Genetics at the MUG. The 

NEBNext results were created with a standard in-house low VAF variant calling analysis pipeline 

using Mutect. Therefore, the NEBNext results lack comparability. 

 
Figure 3.26: GTV call decay over GTV VAFs of the QIASeq Seraseq analyses. Three advanced clustering 

settings were used. The grey data series is a QIAGEN analysis result using the smCounter software which was carried out for 

the D & R Institute of Human Genetics. Single observation GTV calls were removed from all results. Per dilution level 

results for QIASeq show a nearly linear GTV detection decline down to 0.25% VAF. Results of lower VAF show a contra 

intuitive increase in GTV calls. Control results have two and three false positive GTV calls for moderate and basic clustering 

settings respectively. Permissive clustering exhibits zero false positive GTV observations in the control but also an overall 

reduced capability to call GTVs except for the 2% VAF data set. The QIAGEN analysis has a better GTV recall in 

higher VAFs until 0.5% GTV VAF at which basic clustering of the reanalysis performs equally well. Results for the basic 

and moderate clustering setting exhibit slightly higher GTV detection performance than QIAGEN results below 0.5% VAF. 

Higher GTV recall obtained with the reanalysis for the 0.125% GTV VAF data set are questionable because of the higher 

false positive rates for basic and moderate clustering and the contra intuitive detection increase. The chart was created with 

Microsoft Excel. 

 

Based on these results, only moderate clustering settings can be recommended for QIASeq data 

sets in combination with the smCounter caller. 

Details of VAF distributions of GTV calls and ambiguous multiple UMI-supported variant 

calls (MOCs) are displayed for NEBNext and QIASeq Seraseq data sets and for different clustering 

settings in figure 3.28 and figure 3.29 respectively. The SOC portion was removed due to the notion 

that SOCs are mainly due to uncleared base noise with no underlying true variant. 
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Figure 3.27: GTV call decay over GTV VAF of the NEBNext Seraseq analyses. Three advanced clustering 

settings were used. The grey data series is an analysis result created at the D & R Institute of Human Genetics using the 

Mutect variant caller. This analysis was validated by an employee of the D & R Institute of Human Genetics. Single 

observation GTV calls were removed from all results. Results of the NEBNext Seraseq reanalysis show a better performance 

than the Mutect analysis of the D & R Institute of Human Genetics. Up to 12 additional GTVs could be detected by the 

reanalysis compared to the Mutect analysis. Basic and moderate clustering settings resulted in identical GTV call numbers. 

For permissive clustering, up to three GTVs are missing compared to other clustering settings. The chart was created with 

Microsoft Excel. 

 

For NEBNext, not only the lowest VAF of ambiguous calls was reduced by clustering (see 0.25% 

VAF data set results) but also calls of higher VAF were affected as evident from the reduced 

number of outliers in data sets of GTV VAFs below 1% especially in case of permissive  

clustering (see figure 3.28). 

Results for QIASeq showed that ambiguous MOCs were dominated by dual UMI-supported calls 

and triple UMI-supported calls (see figure 3.29). The lower portion of ambiguous MOCs could be 

successfully reduced only by permissive clustering. In higher GTV VAF data sets, ambiguous calls 

of higher VAF persisted. Dual UMI-supported calls remained even after permissive clustering in  

the 0.25% GTV VAF data set, 0.125% GTV VAF data set, and the control data set. 
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Figure 3.28: VAF distribution comparison of multiple observation GTV calls and ambiguous 

calls of the NEBNext Seraseq dilution series for different clustering settings. Details below 5% 

VAF are shown. Boxplots and jittered dots represent identical data. Plots were created in R using the ggplot2 package. 
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Figure 3.29: VAF distribution comparison of multiple observation GTV calls and ambiguous 

calls of the QIASeq Seraseq dilution series for different clustering settings. Details below 3.5% 

VAF are shown. Boxplots and jittered dots represent identical data. Plots were created in R using the ggplot2 package. 
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In total, the VAF variability of multiple observation GTV calls and ambiguous MOCs were higher 

for NEBNext than for QIASeq. QIASeq yielded more ambiguous calls than NEBNext. Permissive 

clustering was effective in reducing ambiguous calls while also exerting a disadvantageous effect 

on GTVs with VAFs below 2% especially for the QIASeq protocol. 

 

False Positive Estimation 

The equally distributed errors assumption would suggest that the abundance of pure noise dual 

UMI-supported variant calls (DOCs) can be determined by taking one third of SOC occurrences. 

An analysis of alignment counts supporting a variant call yielded a different result (figure 3.30). 

Moderate clustering resulted in DOCs being 35% to 45% as frequent as SOC calls. Permissive 

clustering resulted in the highest variability of the DOC to SOC ratio: DOCs were observed  

at 15% to 60% of the frequency of SOCs.  

As expected, the majority of variant calls could be attributed to single or dual observation calls. In 

all cases, SOCs were the most frequent variant calls. Furthermore, the observed ratio of DOCs 

over SOCs was higher than would be expected from raw base noise based on the equally distributed 

base errors assumption in most cases. This is reasonable because of the employed template material 

amplification and subsequent in silico alignment reduction which alters the state of the sequencing 

library the equally distributed base errors assumption tries to describe. 

 

 

QIASeq Seraseq basic clustering 

 

Figure 3.30: extremes for distributions of variant allele supporting observations for the QIASeq 

Seraseq dilution series with deactivated advanced clustering. The number of DOCs was observed to be 

between 45% and 60% of SOCs contrasting the equally distributed errors assumption. Plots were created in Python with 

matplotlib. 
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Figure 3.32: GTV call decay over GTV VAF of the NEBNext Seraseq analyses. Three advanced 

clustering settings were used. The grey dashed data series is an analysis result created at the D & R Institute of Human 

Genetics using the Mutect variant caller. This analysis was validated by an employee of the D & R Institute of Human 

Genetics. The estimated false positives filter was used on reanalysis results. The chart was created with Microsoft Excel. 

 

2 1 0.5 0.25 0.125 0 (WT)

0

5

10

15

20

25

30

35

target VAF of GTVs / %

ca
lle

d
 G

TV
s 

/ 
1

NEBNext Seraseq smCounter GTV calls
estimated false positives filtered

HumGen analysis
(Mutect2)
permissive
clustering
moderate clustering

basic clustering

Figure 3.31: GTV call decay over GTV VAF of the QIASeq Seraseq analyses. Three advanced clustering 

settings were used. The grey dashed data series depicts a QIAGEN analysis result created with the smCounter software for 

the D & R Institute of Human Genetics for which SOCs were removed. This analysis was validated by an employee of the 

D & R Institute of Human Genetics. The estimated false positives filter was used on results of different clustering settings. 

The chart was created with Microsoft Excel. 
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Basic clustering was the only setting that 

showed monotonically decreasing GTV 

call numbers without a contra intuitive 

increase (figure 3.31). Therefore, the basic 

clustering result is viewed as the only 

trustworthy result. In most cases, the 

QIAGEN analysis yielded more GTV calls 

than the false positives filtered reanalysis 

results. 

The same GTV correction tendency for 

different GTV VAF levels was observed 

for the NEBNext Seraseq reanalysis 

(compare figures 3.27 and 3.32). GTV 

recall differences between clustering 

settings were still small. The contra 

intuitive rise in GTV calls at low VAFs was 

smaller compared to the SOC filter results. 

Cluster noise was visualized by created 

insertion and soft clip-free consensus 

matrices. Examples are displayed in  

figures 3.33, 3.34, 3.36, and 3.35 for 

ThruPLEX, smMIP, QIASeq, and NEBNext respectively. Base colouring was: A=yellow, T=red, 

C=green, G=blue, deletion=grey, N=black. 

Horizontal accumulations of alternative bases indicate high-frequency base error template 

molecules. Mate sub-clusters which frequently exhibited a higher error rate and an increased 

Figure 3.33: exemplary ThruPLEX cluster taken from the MiSeq analysis. Second in pair reads formed 

leftmost alignments for this cluster. Mates overlap for the last 18 bases. The initial poly-T sequence led to 6 different mapping 

positions. Pair orientation was F1R2. The depicted mate clusters are outward facing. Alignment copy numbers are very low. 

Cluster representations were created in Python. 

ThruPLEX MiSeq Cluster 
CCACGAGTTCCC chr21:39,957,462 

(6 groups, 7 alignments) 

leftmost mate 

rightmost mate 
(overlapping) 

Figure 3.34: exemplary smMIP cluster. Mates overlap. 

Rightmost mates are mostly R2 reads. Pair orientation is F1R2 

Second in pair reads are lacking the full-length sequence more 

frequently than first in pair reads. Clusters of smMIP data sets 

exhibit high base noise. This is especially pronounced in R2 sub-

clusters. Cluster representations were created in Python. 

smMIP Cluster CCAGGTCGAC chr12:25398260 
(28 groups, 282 alignments) 

leftmost mate 
rightmost mate 
(overlapping) 
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frequency of prematurely terminated sequencing reactions were usually formed by second in pair 

mates. 

 

NEBNext TruQ4 Cluster  
TAGGTGAGCGTA chr3:10,183,512 

(1 group, 57 alignments) 

leftmost mate leftmost mate 

NEBNext Seraseq Cluster 
ATCCAATTTCAC chr5:170,837,513 

(3 groups, 71 alignments) 

rightmost mate 

rightmost mate 
(overlapping) 

Figure 3.35: exemplary clusters for NEBNext TruQ4 and Seraseq dilution series. Leftmost in pair 

alignments are formed by second in pair reads. Pair orientation is F2R1 for both clusters. The cluster on chromosome 5 shows 

small leftmost mapping position deviations due to the poly-T sequence. Cluster representations were created in Python. 

 

Figure 3.36: exemplary clusters for the QIASeq TruQ4 tagging protocol. For the cluster on chromosome 

13, leftmost alignments are second in pair alignments. Pair orientation is F2R1. The mate sub-cluster overlap ranges from 

approximately 50% to full overlap (bottom alignments). The cluster on chromosome 7 has fully overlapping mate sub-clusters. 

A template molecule length decay is visible for the QIASeq clusters. Cluster representations were created in Python.

QIASeq TruQ4 Cluster 
AAATTGTTTTTC chr13:32,972,501 

(97 groups, 250 alignments) 

leftmost mate 
rightmost mate 
(overlapping) 

QIASeq TruQ4 Cluster 
CACCTTGGAGCC chr7:151,970,822  

(74 groups, 431 alignments) 

leftmost mate 
rightmost mate 

(full overlap) 
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4. Discussion 

4.1. Data Quality 

The sequencing data used in this thesis were of sufficient quality for variant calling validation 

experiments as FastQC quality checks showed. Variability of per base and per tile sequence quality 

may be attributed to high loading conditions. Another source of variability might be the limited 

diversity of UMI-tagged libraries because of extensive amplification. This was especially 

pronounced in smMIP data sets. Per base sequence quality, per sequence quality scores, and per 

tile sequence quality give a rough picture of the loading situation of the flow cell. High loading 

conditions manifested as light blue to red tiles in the per-tile sequence quality map. Furthermore, 

the per base sequence quality was found to decay stronger towards read ends in these cases. This 

circumstance partially justifies read clipping in sequence duplication statistics calculation by FastQC 

to obtain a better estimate of the true duplication situation. 

The quality drop observed for all QIASeq Seraseq R2 read data in conjunction with low sequence 

quality per tile indicates a transient, locally confined problem on the flow cell during the sequencing 

run. As evident from figure 3.1 panel B, the low-quality tiles were located on one edge and both 

sides of the flow cell. This supports the notion that either bubbles going through the flow cell or 

debris inside the flow cell lane may have caused the severe quality drop in R2 reads [48]. UMIs 

were extracted from R1 FASTQ files for QIASeq data sets. Therefore, the steep initial quality 

decline in Seraseq R2 data did not affect sequencing of UMIs. 

Although the transient problem introduced a multitude of sequencing errors in R2 data, validation 

results for the dilution series confirmed the robustness of the analysis. An increase of variant calls 

due to sequencing errors is expected for the QIASeq Seraseq dilution series though. The GC-

content distribution differences between R1 and R2 data for QIASeq Seraseq data sets (i.e. R2 

distributions resemble smoothed versions of R1 distributions) indicate that the transient problem 

did introduce a considerable amount of random-base sequencing errors (figure 3.3). Therefore, the 

QIASeq tagging procedure might be able to produce less noisy results in case of normal, 

complication-free sequencing runs. 

Notable contamination with Illumina universal adapter was only detected in the NEBNext 10 ng 

data set of approximately 5%. The per sequence GC-content showed two modes. One mode most 

likely originated from the adapter contamination. 

Inferring quality statistics of the sequencing library’s original state from statistics provided by 

FastQC (e.g. GC-content, overrepresented sequences) may be misleading to even non-informative, 

because of the excessive amplification, limited library diversity, and amplicon structures. The 
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categories involving sequence duplication levels yielded only a rough estimate of the amplification 

situation in the data set because input files were down-sampled to the top 100k sequences for 

respective modules by FastQC. Moreover, sequences longer than 75 bases were clipped to 50 bases 

which removed up to two thirds of the information present in QIASeq, ThruPLEX, and smMIP 

reads. Highly different sequence duplication levels for R1 and R2 data are thought to have resulted 

from capture strategies which utilized a single primer for region targeting. Whether DNA molecules 

are technical duplicates or biological ones, reads starting at the primer terminus are highly similar 

in either case. Thus, reported duplication level of mates containing a sequence which was targeted 

by a primer were highly inflated. On the other template end, length altering replication errors may 

decrease sequence duplication values issued by FastQC. These were predominantly present in 

QIASeq data sets. Comparing sequence duplication level distributions of R1 and R2 read data 

created by FastQC for NEBNext and QIASeq Seraseq data sets, QIASeq R1 and R2 data 

duplication levels were clearly different from each other while R1 and R2 sequence duplication 

level distributions overlapped in the 50 up to 5k region for NEBNext. This supports the idea that 

sequence length altering replication errors might affect the sequence duplication estimation by 

FastQC. 

Differences of reported read sequence and UMI sequence duplication levels also show the limited 

usability of the FastQC sequence duplication values for amplified UMI libraries. While inherently 

shorter UMI sequences (which are normally positioned at the sequencing start of the tagged DNA 

molecule) accumulate fewer errors during PCR, estimated read sequence duplication is affected by 

bias introduced by the utilized capturing approach in addition to the higher number of accumulated 

errors. Therefore, UMI sequence duplication values were regarded as most trustworthy for UMI 

data. 

Comparing library diversities resulting from 10 ng and 100 ng DNA input material of NEBNext 

TruQ4 experiments, a reduced R1 and R2 sequence diversity was well visible in the per-base 

sequence duplication plot for the 10 ng input material sample (see figure 3.7). UMI sequences of 

the NEBNext wildtype data set are an extreme example of sequence similarity. Based on the 

colours, the UMI sequence ‘AGCGATAG’ can be read from the plot for this data set. UMI 

sequences of all non-wildtype datasets showed a higher guanine proportion of approximately 40% 

compared to read sequences which resulted in a darker grey tone. 

Another quality check module with limited usability for UMI data was the overrepresented 

sequences category. This category tended to be filled with strongly amplified sequences since a 

fraction of one tenth of a percent of the whole data set suffices for a sequence to be reported. In 
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case of low contamination levels or high amplification levels, this may prevent sequences of adapter 

contaminants to appear in the overrepresented sequences category. 

For targeted amplicon sequencing, the per sequence GC-content plots give an idea of the impact 

of sequence errors on the data set as the example of QIASeq Seraseq dilution series showed. GC-

content distributions were smooth and less extreme for R2 data which contained a high amount of 

sequencing errors compared to R1 data (figure 3.1, A). 

 

4.2. Impurities and Contaminations 

In general, no contaminations originating from non-human organisms could be identified for any 

of the data sets. Screening results like obtained for NEBNext Seraseq data sets with a tolerable part 

of non-aligning reads below 3.5% were within expected limits. Aside from identified adapter 

contaminations in the NEBNext TruQ4 data sets, the majority of reads not aligning against the 

human reference genome most likely stemmed from polymerase errors introduced during 

amplification combined with sequencing errors. Screening results showed more R2 reads not 

mapping to the human genome than R1 reads which is in accordance with lower R2 quality 

compared to R1. In this thesis, this circumstance was commonly observed for Illumina paired-end 

sequencing data and is most likely caused by the lower sequencing accuracy after bridging the 

forward read for sequencing of the reverse sequence (R2). Lower R2 quality is therefore not due 

to some sort of contamination or impurity. 

In case of smMIP data sets, the amount of reads not aligning against the human genome was 

unusually high. This could indicate a systematic contamination of all smMIP samples or purification 

associated problems that occurred upstream to the tagging step (most likely molecular inversion 

probe synthesis) and resulted in contaminated tagging reagent. The possibility of severe sequence 

degradation might have also resulted in a considerable amount of reads not aligning against the 

human reference genome. Since no high-quality hits with high query coverage were found for non-

aligning reads in the BLAST search, the possibility of systematic contamination is considered to be 

highly unlikely. 
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The relatively high base error rate in smMIP clusters supports the notion that the decrease in reads 

aligning to the human genome originated from accumulated base and sequencing errors (see  

figure 4.1). This observation of suboptimal read quality and/or purification difficulties alone can 

be used to advise against the use of in-house produced tagging material. From an economical point 

of view, sequencing a substantial number of templates which are unusable in downstream analysis 

would render the whole procedure cost-ineffective compared to experiments utilizing other tagging 

protocols. In the best case where observed low quality would result from non-systematic, 

transiently occurring interference or human error, the varying quality would render the whole 

diagnostic procedure unreliable and, thus, unfavourable. The clinical usability would not be given 

because of inconsistent results after repeated testing. 

Aside from polymerase and sequencing error induced reduction of reads aligning against the human 

genome, ending up with approximately 1% of unmappable reads from human plasma samples (e.g. 

NEBNext TruQ4 dilution series) were considered normal because of cfDNA from human viruses 

and other micro-organisms contributing to cfDNA through various mechanisms [88, p. 1]. 

ATACGTGTGG chr3:178,952,036 (2 groups, 33 alignments) 

CAAAATCTTC chr7:55,241,625 (4 groups, 26 alignments) 

smMIP per cluster error variability 

CGTGCTTACT chr7:55,241,653 (26 groups, 65 alignments) 

Figure 4.1: varying error levels of smMIP clusters. Leftmost sub-clusters are positioned on the left, rightmost on 

the right. Sub-clusters overlap for all cases. Base errors and strand termination artefacts are present at different frequencies in 

different cluster. Error frequencies and artefact frequencies inside clusters also vary. Plots were created in Python. 
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Nevertheless, the origins of only a minor portion of non-aligning reads could be identified via 

BLAST search. Identified cloning vectors and expression vectors are expected to be remnants from 

reagent or reference DNA material production. 

 

4.3. Profiling 

After the exploratory analysis, it was concluded that the UMI-tools software should not be 

integrated into the final analysis pipeline without a suitable countermeasure that limits execution 

time of the UMI error correction step. The problem of high UMI-tools run times when dealing 

with deep sequenced amplicon regions in particular was successfully circumvented by subsampling 

alignment groups. This countermeasure also sped up subsequent computations like variant calling. 

Disregarding profiling results of reanalyses which were clearly affected by thread suspending, it can 

be stated that reanalyses took around three times longer than corresponding minimal exploratory 

analyses. This was mostly due to the thorough read and alignment processing which was carried 

out mainly using Python code. The clustering task was especially time consuming. Nevertheless, 

the overall better variant calling performance of the reanalysis compared to the exploratory analysis 

justifies longer analysis durations at least to some extent. While most execution times (e.g. NEBNext 

TruQ4 dilution series) were acceptable, a more performant code would be preferable still. 

Redesigning the pipeline towards parallelized and contig-wise data processing would supposedly 

shorten the overall analysis duration and reduce main memory requirements (currently  

about 300 GB) by a factor of 4 to 8 depending on the capabilities of the executing machine. 

 

4.4. Shortcomings of the Exploratory Analysis 

The enforced grouping of reads entirely based on UMI sequences deviated from the clustering 

method used in the smCounter paper. This substantial simplification was thought to be acceptable 

for a minimal approach at first. The observed overall poor to at most moderate GTV recall for 

Mutect and smCounter led to a different view on read grouping. One cause of the poor variant 

calling performance was the compromise of N-masking bases at which no clear consensus base 

could be found (e.g. two bases were observed equally often). This was thought to be valid because 

of the supposedly rare occurrence of this case. Nevertheless, this posed a problem in groups 

formed only by two reads which occurred more frequently than expected (see figures 3.8 and 3.10]). 

In the subgroup of consensus reads computed from groups of two, base substitution errors 

introduced undefined bases at locations potentially carrying a variant signal. Indel errors, which are 

known to be rare for Illumina platforms, had a more severe impact on consensus formation. They 
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led to N-masking of large parts of the consensus sequences, starting at the position of the individual 

indel and ranging to the last overlapping position between read sequences of the group. These two 

effects led to removal of base information due to somewhat frequent single base errors and 

supposedly true SNVs and less frequent indel errors. 

Furthermore, the naïve read grouping approach utilized in the exploratory analysis turned out to 

be not suitable for tagging procedures that produce non-trivial amplicon structures. The negative 

impact was particularly pronounced for data sets like QIASeq TruQ4 where mapping positions of 

grouped reads were frequently distributed over a short stretch of reference genome positions. 

Errors introduced by inaccurate alignment annotation from the highly error-prone consensus 

analysis branch of the exploratory analysis to the non-consensus branch posed a systematic 

problem. This had severe effects on variant calling with smCounter which relied on point-accurate 

mapping position annotations. 

Extensive consensus sequence alteration by erroneously assuming identical starting positions of 

grouped reads led to nonsense consensus sequences which often turned out not to align against 

the human genome anymore. This was one of the major effects negatively influencing the 

consensus analysis branch and, thus, Mutect variant calling performance. 

Mostly due to the distortions induced by the naïve grouping approach, Mutect still performed 

better than smCounter. This indicates that errors introduced by erroneous alignment annotation 

were more severe than the influence of N-masked bases and nonsense consensus sequences 

combined. 

In summary, exploratory analysis results obtained with the naïve approach which also did not make 

use of UMI error correction and proper identity clustering were unsatisfactory in terms of GTV 

recall, detection limit, and VAF accuracy. Due to in silico-induced distortions which disrupted 

smCounter variant calling, NEBNext data sets in combination with the Mutect caller performed 

best in the exploratory analysis. This indicates that the NEBNext protocol produced a negligible 

number of in-group mapping position deviations and had the smallest amount of groups of size 

two. This is concordant with reported UMI artefact corrections in the reanalysis (table 3.11) and 

the group size distribution (figure 3.8). 

 

4.5. UMI Group Size Distributions 

In theory, a sequence abundance plot like the read group rank size plots created in this thesis would 

show a constant duplicate count across all groups for perfect PCR amplification. Deviations from 

this ideal plateau shape are thought to be caused by polymerase errors inside the UMI sequence, 
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PCR stochasticity and GC amplification bias. The latter would result in reduced amplification of 

GC-rich templates. PCR stochasticity during the first few cycles of amplification and GC bias to a 

lesser extent were shown to result in a shoulder-like region where sequence abundance drops 

steeply. Polymerase errors create new sequences which are predominantly abundant at low copy 

numbers after amplification. These errors result in pronounced tail regions [87, p. 14]. 

The observed pronounced tail regions in all read group and alignment cluster size rank plots 

indicate PCR errors being the primary source of UMI errors, especially in smMIP and ThruPLEX 

data sets where no shoulder regions were observed. Even after UMI error correction and 

permissive alignment clustering, the majority of clusters remained to be of size 1 or 2. The 

persistence of tail regions in all cases illustrates the limitations of applied error correction 

approaches and the utilized extended UMI artefact model. 

After comparing the total amount of bases inside targeted regions for smMIP and QIASeq TruQ4 

data sets, it is evident, that a much smaller number of read groups should have been observed for 

smMIP than for QIASeq. Although the ratio of QIASeq over smMIP read pairs was 2, QIASeq 

reads covered approximately 2,000-times more bases. This means that the expected read group 

diversity should be much higher for QIASeq data sets than for smMIP because of the 

approximately equal amount of input reference DNA material used for both tagging procedures. 

The observed ratio of UMI group numbers of QIASeq over smMIP seems to be close to the ratio 

for read pairs which might be due to a predominantly observed UMI group size of 1. Moreover, 

the highest observed amplification for smMIP UMI groups was approximately 6-times higher than 

the maximum observed amplification for QIASeq UMI groups which also indicates that the 

theoretical ideal plateau should be higher and shorter for smMIP than for QIASeq. These 

considerations in addition to the observed variability in cluster sequence quality as already discussed 

in subsection 4.2 lead to the conclusion that smMIP results were strongly affected by a relatively 

high UMI error rate. This renders the use of in-house synthesized smMIP material barely usable. 

The amount of sequence amplification observed for the ThruPLEX MiSeq data set fell short of 

expectations. Low achieved duplication levels of at most 40 duplicates quickly dropped to 3 

duplicates after the first ninth of ranked UMI groups. This renders the tagging procedure almost 

unusable for the pursued noise reduction approach of finding consensus bases across duplicates 

based on the majority rule. Due to the similar sequence abundance shapes of smMIP and 

ThruPLEX, usability considerations based on the dominant tail region for smMIP also  

apply to ThruPLEX 
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4.6. Extended UMI Artefact Model and Corrective Measures 

Ideally, PCR amplification should yield groups with identical template length and highly similar 

UMI sequences which would be easy to reduce. Also, UMIs found at any given position of different 

UMI groups should be dissimilar, i.e. two UMIs should have intermediate to high Hamming 

distance. Nevertheless, high UMI similarity contradicting UMI space occupation and in-group 

template length and leftmost mapping position variability were frequently observed in the data. 

Hence, the leftmost mapping position-based single base substitution error correction within UMI 

sequences by UMI-tools had proven to be insufficient in the exploratory analysis. 

Based on this insight, an extended error model was developed for the reanalysis pipeline to correct 

for a larger variety of errors that might affect the alignment reduction. This should lead to a more 

accurate representation of the original state of the amplified library. Though being an extension to 

the model used by the UMI-tools software, the extended model was kept simple and convenient. 

The extended error model relies on three assumptions concerning PCR and sequencing errors in 

5'-regions of alignments which interfere with UMI grouping and subsequent alignment reduction: 

1. Base substitution errors occur 

2. Small length altering errors occur 

3. Errors are infrequent 

If error sources other than substitutions are disregarded, single substitution error correction as 

performed by UMI-tools would be sufficient for obtaining the original state of the amplified library. 

Since the UMI-tools correction was found to also reduce the number of called GTVs in the 

exploratory analysis, an additional template length criterion was implemented to improve 

distinguishing supposedly true UMI errors from similarities occurring by chance. The size of the 

standard deviation-based window was limited to a maximum of nine bases and a minimum size of 

three bases around the mean mate mapping position. 

For this criterion to work properly, only certain read pair orientations are allowed. In Illumina 

paired-end sequencing, one read should map to the plus strand in 5′ → 3′ orientation while the 

other read of the pair should map to the minus strand in the same orientation relative to the minus 

strand. The reason for this is the elongation of synthesized DNA towards its 3’ end. In most cases, 

paired-end reads should therefore ‘point’ towards each other, a characteristic which is also called 

‘inward facing’. Possible causes for an alignment pair to exhibit an unexpected orientation are 

repetitive sequences, assembly flaws (which can be mostly ruled out for the current versions of the 

human reference genome), and reads mapping to palindromic regions or inversions. The latter may 

occur in tumour cells as a result of extensive mutation or in healthy individuals as structural germ 

line variants. In all other occasions where paired-end reads are found inward facing, the template 
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length similarity criterion was expected to work. This was observed to be the case for the clear 

majority of aligned read pairs. 

On top of single base UMI errors, infrequent small indel errors predominantly occurring in 

homopolymer stretches were expected to cause only short five-prime mapping position deviations. 

This depends on terminal sequences of the duplicated template molecule and the base diversity 

inside the UMI sequence. Identity clustering was employed as corrective measure for all artefacts 

that alter template length but do not induce UMI sequence shift artefacts. 

Indels may also occur in or adjacent to UMI sequences which would cause a part of or the whole 

affected UMI sequence to be shifted relative to its original location. These errors may occur due to 

the assumption that had to be made in data processing: the actual UMI sequence is always located 

at the same position inside reads. In theory, shift errors could also occur due to ligation of a 

degraded sequencing primer to the tagged template molecule or because of degeneration of the 

initial spacer or the UMI sequence itself (in absence of a spacer). The first type of error is thought 

to occur rarely since sequencing primers are highly stable and - if at all - tend to break randomly in 

case they had undergone too many cycles of freezing and unfreezing which is expected to prevent 

hybridization. The second type of error might occur due to insertion errors either occurring in the 

initial spacer, or at the start of the UMI sequence. For example, Taq polymerase exhibits a 3′-end 

adenylation activity. Using this polymerase in PCR might alter synthesized molecules accordingly. 

To correct for shift artefacts that affect the entire UMI sequence, advanced clustering was 

employed. 

Another artefact in the context of altering synthesized molecule length is premature synthesis 

termination. Termination events are thought to happen more frequently in later rounds of 

replication because of reaction conditions changing towards inadequate concentrations of deoxy 

nucleotide triphosphates (dNTPs). This may be caused by unequal base distribution of the template 

material which also leads to increasing amplification bias with every PCR cycle. Termination may 

happen during replication of the forward or backward strand which would cause synthesized 

molecules to shrink from both ends compared to the original template. In case of 5’-end located 

UMI sequences and reverse strand termination, the bioinformatical UMI extraction frame would 

be shifted according to the number of missing terminal bases in the reverse strand and propagated 

to the forward strand after another PCR cycle. This would result in artificial UMIs with likely high 

Hamming distance and small edit distance up to completely new UMIs depending on the number 

of missing bases. Besides PCR and sequencing errors, minimal contamination of the sample with 

nucleases may cause non-uniform length degradation across all templates. 
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For tagging protocols like NEBNext, which showed high stability of template molecules inside 

clusters, premature synthesis termination was thought to induce only a negligible number of 

artefacts. Nuclease contamination were ruled out because of the high standards for wet lab work 

and quality assurance that are in place at the D & R Institute of Human Genetics. Furthermore, no 

nuclease contamination was reported for any of the conducted experiments. 

Template switching errors result in chimera formation and are not regarded by the extended error 

model, since they are resolved in the mapping step which finds the best alignment for one of the 

subsequences of the chimera. The rest of the chimeric sequence is hard-clipped and, thus, omitted. 

Therefore, chimera formation acts as an information loss increasing factor for both origin 

molecules contributing to a chimeric molecule. Furthermore, the created artificial molecule 

ultimately leads to a new alignment cluster. Since shorter sequences may be mapping ambiguously 

which reduces the quality of the alignment, the minimum quality criterion of the alignment filter 

may remove an extensively hard-clipped alignment. 

The infrequent errors assumption dictates that simultaneous occurrences of base errors, indel 

errors, and template length altering errors would be extremely rare during synthesis of a single 

UMI-relevant region of a template molecule. Following the assumptions made in the extended 

error model, a whole history of errors occurring throughout multiple replication cycles of the origin 

molecule and its copies should be easily identifiable using the specificity-increased UMI-tools 

approach in combination with clustering. The resulting UMI group size rank plot would show a 

distribution which could almost entirely be characterized by a plateau region. Only a small initial 

peak, a much less pronounced shoulder region and a tail region of negligible length should be 

visible after successful alignment reduction. 

 

4.7. UMI Error Correction 

The necessity of accounting for UMI errors was recognized after investigating the UMI group sizes 

distribution and the observed Hamming distance of UMI sequences per position. To achieve the 

expected distribution calculated by UMI-tools would mean that the utilized error correction 

approach successfully described and corrected for all UMI sequence errors. Moreover, the 

computation of the ideal edit distance distribution would have been based on the correct 

assumptions in such a case. 

Especially the percentile and the adjacency approach to a lesser extent were inferior to the 

directional-adjacency and cluster approaches as evident from the results displayed in figure 3.13. 

Nevertheless, all approaches failed to entirely remove UMI errors. All approaches provided by 
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UMI-tools showed a second mode at the lower end of the edit distance scale which deviated greatly 

from the supposedly ideal distribution. Thus, the error model employed by UMI-tools regarding 

the underlying mechanisms of UMI sequence alteration was regarded as insufficient for obtaining 

the original library state. 

Though the variant call reduction after applying UMI-tools was remarkable compared to the old 

approach which did not implement UMI error correction, the decrease in GTV recall was not 

satisfactory. The rigorous UMI error correction by UMI-tools may have resulted in an over 

correction of UMI sequence similarity due to supposedly missing specificity in determining 

sequence similarity. The directional-adjacency approach only considered UMI group characteristics 

involving the UMI sequence and the group size but did not include any measures describing 

alignment pairs inside the UMI group. 

Obtaining unsatisfactory results after including the UMI-tools error correction into the exploratory 

analysis was realized as an opportunity to reconsider the range of possible UMI sequence artefacts 

for correction. Specificity increase by considering the mate mapping position had only a minor 

effect. About 2% of regrouping suggestions created by UMI-tools were rejected for each data set. 

Another filter criterion checking for similarities of indel positions based on CIGAR strings of 

absorbing and absorbed UMI group was tested. This criterion did not enhance UMI error 

correction specificity and, thus, was omitted. 

UMI artefacts defined by the extended error model and corrected by clustering had a far greater 

impact. Small leftmost mapping position deviations were frequently observed for data sets created 

with the QIASeq protocol. However, the tail regions of UMI group size rank plots were still 

dominant after clustering for most analysed data sets. This indicates that either the extended error 

model failed to describe other major error sources, or that the employed error correction 

approaches were insufficient in reducing substitution errors in UMI sequences. The latter case is 

deemed more likely because of the causes of tail regions in sequence abundance plots that were 

described by Kebschull and Zador [87, p. 11]. 

As an alternative to UMI-tools, a software called UMI-reducer was available for carrying out UMI 

network-based deduplication. The authors defined duplicates as reads sharing the same UMI 

sequence and mapping position. This definition was already obtained to be insufficient for error 

correction with UMI-tools. Also, because an implementation of substitution error correction was 

missing in this software [89, p. 3f], and the fact that duplicate removal would rule out consensus 

formation, this software was not investigated further for variant calling validation. 
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4.8. Variant Caller Performance 

The Mutect and the smCounter variant caller were compared based on the performance measures: 

GTV recall, VAF calling accuracy, detection limit, portion of tumour-classifiable variants, 

proportion of untraceable background calls, total amount of variant calls, and the fraction of 

unclassifiable variants. 

For variant calling validation, the portion of non-GTV calls was regarded as an ambiguous mixture 

of calls solely originating from uncleared molecular noise, and in case of the TruQ4 dilution series, 

heterozygous/homozygous germline variants from the wildtype control material. These ambiguous 

variants constituted the larger portion of calls for all data sets. 

For the discussion of GTV recall, only the results from the reanalysis shall be considered due to 

the systematic error in the alignment annotation of the exploratory analysis which led to extremely 

low numbers GTV detections for smCounter. 

As evident from GTV recall results (table 3.8), smCounter showed superior performance compared 

to Mutect for all tagging procedures. The differences were highest for smMIP and lowest for 

NEBNext. 

In terms of VAF accuracy, which was assessed mainly based on GTV calls, smCounter performed 

better than Mutect, especially for low VAF calls. This is evident from GTV VAF deviation plots 

(see figure 3.23). 

The proportion of background variant calls (figure 3.21) indicates a higher level of uncleared noise 

for smCounter than for Mutect. Moreover, the majority of variants were called below 5% VAF for 

the NEBNext Seraseq data set which also indicates that smCounter might be prone to calling 

variants on uncleared noise. This points towards the necessity of pairing sensitive callers like 

smCounter with effective variant call filters. However, the number of traceable variants was stable 

across data sets of the Seraseq dilution series indicating valid calls. Error-prone clusters were 

omitted for the Mutect analysis which likely reduced the portion of untraceable background calls 

for this dilution series. Therefore, the comparison of these calling results could be  

misleading (figure 3.21). 

Another aspect that needs to be considered is the lower detection limit of smCounter. Mutect 

might be unable to detect variants below a certain VAF (see figures 3.22 and 3.23). Mutect called 

the GTVs with an expected VAF below 5% at increasingly higher VAFs for decreasing expected 

VAF. The blue GTV VAF LOESS curve for smCounter showed this tendency only to a much 

smaller extent. 
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The increase or decrease of a regression slope computed for every variant from the variant calling 

results of a dilution series was used to classify variants according to their supposed origin. The 

percentage of variants categorized as originating from the tumour portion (negative slope with 

decreasing tumour content per data set) should be close to 100% in a scenario where only few 

heterozygote (~50% VAF) or homozygote (~100% VAF) germline variants are present. A flat 

regression slope, in contrast, does not allow for a clear classification of a variant’s putative source. 

These variants most likely originate from systematically incorporated base errors by error-prone 

amplification in a sequence dependent manner and/or sequence dependent sequencing errors and, 

thus, should not change by a considerable amount for different tumour fractions. Ideally, this 

portion of unclassifiable variants should be zero. Alignment reduction through consensus 

formation using the majority rule cannot not remove these artefacts which might explain the 

persisting observation of these variants for all dilution series in the reanalysis. 

Tables 3.8 and 3.9 list the putative tumour fraction and the portion of variants which could not be 

classified with respect to their putative source (i.e. flat regression slope). The percentage of 

unclassifiable variants was lower for Mutect in the NEBNext TruQ4 dilution series and higher for 

the smMIP dilution series. It is difficult to interpret these results since for the NEBNext TruQ4 

dilution series, error prone clusters were omitted which likely removed low VAF variants exhibiting 

a flat linear regression slope. In total, percentages of unclassifiable variants varied between 15% 

and 25% of traceable variants. This percentage depends on the definition of ‘flat’ for regression 

slopes though. 

The smCounter caller exhibited higher tumour percentages of source-classifiable GTV variants and 

lower tumour percentages for ambiguous calls compared to Mutect. This might be in part due to 

the higher VAF accuracy of smCounter and due to the lower detection limit, which might have 

allowed for the detection of more variants from the tumour material. 

The high amount of variant calls for smCounter may in part also be because of the lower detection 

limit but also due to uncleared molecular noise. Therefore, the observed high number of variant 

calls at low VAF emphasises the need of potent noise suppression and application of variant filters 

after calling. 

In summary, the smCounter caller performed better than the Mutect caller in detecting GTVs and 

determining their VAFs. In terms of being impacted by uncleared molecular noise, Mutect was 

more robust than smCounter. 
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4.9. Tagging Protocol Performance 

Comparison of validation results is tricky since the enriched regions differ between tagging 

protocols. Therefore, the recall result for NEBNext was regarded as more representative than the 

smMIP result in the exploratory analysis. Seraseq dilution series were most representative for the 

underlying tagging protocol performances due to the high number of available GTVs compared to 

data sets available in the exploratory analysis. 

Due to the low duplication numbers per template and the inferior region targeting efficiency, the 

ThruPLEX protocol was found to be unfavourable for low VAF variant calling and massively 

parallel sequencing since approximately one third of all reads remain unused. Also, the 

extraordinary high number of unique variants called with smCounter indicating a large portion of 

uncleared noise for the MiSeq sample shows that the achieved duplication was insufficient. 

In case of smMIP, the results for lowest called VAFs indicate that the ultra-deep amplicons could 

be very useful for low allelic frequency variant calling. Nevertheless, concordance between 

replicates was low. As discussed in subsection 4.2, the portion of reads not aligning against the 

human genome was unfavourably high which could be explained in part by the high variability in 

accumulated errors per cluster. After alignment reduction, group size rank plots indicated that the 

majority of UMI groups, which were formed by a single alignment pair, could not be reassigned 

back to the group they originated from. These groups are thought to be the cause of the low variant 

calling performance. When comparing the estimates of errors per smMIP UMI sequence to 

estimates for QIASeq and NEBNext, it becomes obvious that sequencing errors could not be the 

cause of UMI groups being irreducible. NEBNext exhibited the highest rate of estimated 

sequencing errors per UMI yet exhibited the best reducibility. This also applies to ThruPLEX 

results which exhibited an error rate per UMI similar to smMIP. Therefore, it can be supposed that 

errors causing strong UMI sequence alterations which led to pronounced tail regions in rank plots 

were introduced during PCR amplification. The amount of UMI errors might be lower, if inversion 

probes would be available from an independent manufacturer which can guarantee for the quality 

and stability of the product. In any case, smMIP should not be used in conjunction with Mutect 

variant calling due to the caller’s alignment handling. Examples are local rearrangement which takes 

the targeting approach resulting in narrow amplicons ad absurdum, and default downsampling per 

position to a maximum coverage of 1,000 reads which should not be changed as stated by the staff 

of the broad institute [90]. UMI coverage was observed to reach values above 3,000 which means 

that Mutect eliminates information from well covered sites. Moreover, downsampling renders 

detection of variants below 0.1% VAF impossible. 
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NEBNext exhibited stable clusters and high performance in the exploratory analysis. Cluster 

stability was demonstrated by the minor influence of different clustering settings on GTV recall 

and number of corrected artefacts (see table 3.10). However, for GTVs of the Seraseq dilution 

series below 1% VAF, the number of GTV calls decreased in an unfavourable manner (figures 3.27 

and 3.32). This may have been caused by either loss of product during the elaborate and timing 

sensitive wet lab procedure, as employees of the D & R Institute of Human Genetics stated, or 

due to a limited capturing and/or tagging efficiency. The true cause for the unfavourably low GTV 

recall below 1% VAF could not be determined in silico though. Thus, NEBNext should not be used 

for the detection of variants with a VAF below 1%. 

QIASeq clusters exhibited a lower stability by continuously decreasing in size from the end distal 

to the capture primer. This manifested in QIASeq GTV recall results and detection limits being 

sensible to different clustering settings. Furthermore, the absolute number as well as the types of 

different artefacts corrected during clustering was higher compared to NEBNext results. 

Nevertheless, QIASeq performed better for lower GTV VAFs. This is evident from the detection 

limits (figure 3.25) and the 50% GTV observation VAF threshold (table 3.10). Based on the 

usability threshold at which 50% of GTVs were theoretically detected, QIASeq should only be 

used for detection of variants down to a VAF of 0.25% for basic and moderate clustering. In 

contrast to NEBNext results, a monotonously declining characteristic was observed for false 

positives filtered GTV detection results of QIASeq combined with basic clustering. 

The optimal combination of caller and tagging procedure was found to be smCounter and QIASeq 

which is emphasized by the high percentage of correctly classified GTVs (table 3.9). 

 

4.10. Clustering 

A paper from Peng et al. (2015) described an alignment reduction approach using multiple rounds 

of UMI-based clustering [81, p. 11]. UMI groups are divided into a group of supposedly true UMIs 

and an ambiguous group based on group size. UMIs of the ambiguous group are merged to the 

largest supposedly true UMI group with an UMI sequence within an edit distance of one. The 

allowed edit distance is incremented for each round of clustering. 

In this thesis, an attempt was made to circumvent the necessity of carrying out multiple rounds of 

clustering to increase computational performance. The achieved computation times and the main 

memory usage, though being acceptable for most data sets, could still be improved. The remaining 

VAF variability might be due to not dividing UMI groups in absorbing and erroneous groups for 

incorporation. Basically, all UMI groups other than the largest one were regarded as being 
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potentially formed by an erroneous UMI sequence. The measure of dividing UMI groups into two 

sets would likely also speed up clustering. Furthermore, subsampling disabled the correction of 

early UMI errors for identity clusters with original size of 32 and larger. Therefore, after splitting 

up clusters in two groups, the large cluster portion should also be checked for error events based 

on the original size. 

During code development, using an overly permissive window was observed to highly inflated 

mate mapping position variability which reduced the resulting advanced clustering specificity. The 

values chosen for mate mapping position windows were observed to subsequently reduce the 

formation of large ‘divergent’ clusters. Divergent clusters are characterized by high variation of 

mapping positions at the end distal to the capture primer with only few duplicates occupying 

individual mapping positions (in case a single primer was used for capture per region). Occurrence 

of divergent clusters were associated with runtime problems in clustering. 

Based on the results obtained for different clustering settings, a suggestion can be formulated based 

on the decreased number of GTV calls to not use the QIASeq protocol in combination with 

permissive clustering for detection of variants below 0.5% VAF. For deactivated advanced 

clustering and mild clustering settings, variants down to a VAF of 0.25% may be only mildly 

affected by the low VAF supressing clustering effect. Variants below these thresholds should be 

omitted due to the influence of uncleared noise on the variant calling process. In contrast to 

QIASeq, NEBNext should only be used for detection of variants as low as 1% VAF in all cases. 

VAF distributions of ambiguous calls were affected more by clustering than GTV VAF 

distributions for both the NEBNext and the QIASeq tagging protocols (see figures 3.28 and 3.29). 

This supports the notion that a considerable portion of ambiguous MOCs stems from insufficiently 

suppressed noise. Exceptions to this are the results obtained with permissive clustering for QIASeq 

Seraseq data sets below 0.5% expected GTV VAF. Permissive clustering also greatly reduced the 

number of GTV calls for these data sets. This indicates an overly permissive use of clustering which 

resulted in a reduced GTV signal. Furthermore, it cannot be ruled out that a major portion of GTV 

calls below 0.5% VAF were caused by noise. This was also supported by the contra intuitive 

increases in GTV call numbers at low GTV VAFs for both tagging protocols (see figures 3.26  

and 3.27). 

A major limitation of the employed clustering approach is clearly the use of loci- and sequence-

independent parameter values. This represents an oversimplification of the underlying situation in 

the sequencing data. For example, the identity cluster window size was found to be too stringent 

in some cases. In Seraseq analyses with deactivated advanced clustering, several larger clusters with 

identical UMI sequence were found in close proximity to each other. In the QIASeq 2% Seraseq 
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data set, 17 larger clusters (i.e. at least three UMI groups per cluster and 100 alignments) mapping 

to chromosome four exhibited identical UMIs with leftmost mapping positions being distributed 

over 164 bases. The largest cluster contained 111 UMI groups with 3,320 alignments (subsampled 

count). The largest observed leftmost mapping position distance between two incompletely 

clustered identity groups was 47 bases. Therefore, it is recommended to choose the identity window 

size in a more permissive way in contrast to the advanced clustering window. This identity 

clustering deficiency is thought to have contributed to GTV VAF deviations by either inflating the 

number of alternative allele observations in cases where incompletely clustered UMI groups carried 

an alternative allele, or to decreasing the GTV VAF in the opposite case. 

To improve alignment reduction by clustering, a sequence- and cluster-specific model for choosing 

parameters also regarding the UMI of the absorbing cluster (i.e. larger advanced clustering window 

for UMIs containing larger homopolymer stretches) would be beneficial. Training such a model 

would require the availability of several wildtype data sets created with the same wet lab procedure 

as the investigated data set as was done for another background polishing approach [33, p. 21f]. 

This kind of data was not available for this thesis. The results of training a neuronal network would 

be specific to the employed sampling method, targeting strategy, molecular tagging protocol, and 

sequencing platform and chemistry though. This means that changing a parameter of the setup 

may render the established model obsolete. Moreover, creating a well generalizing model requires 

extremely expensive sequencing of large control groups in the size of several hundreds. Thus, 

establishing a noise filter using deep learning seems to be hard to establish despite its benefits which 

are out of the question. 

 

4.11. Error Prone Cluster Handling 

Removing ambiguous information from the analysis (e.g. omitting error-prone clusters) resulted in 

most cases in a severe drop of GTV recall. Therefore, the removal of information per default 

cannot be recommended. 

The NEBNext dilution series combined with Mutect variant calling was the only case where 

removing error prone clusters turned out to be beneficial. After UMI error correction, about 60% 

of UMI groups of the NEBNext 100% TruQ4 data set were composed of 3 or more alignment 

pairs. The majority of clusters not being error-prone is thought to be the reason why omitting 

error-prone clusters resulted in a higher GTV recall than including them for this dilution series. 

For other data sets and dilution series, after error correction, still 80% of NEBNext Seraseq and 

55% of QIASeq Seraseq clusters were error prone. This also explains in part the large number of 

variant calls per kilo base for these data sets. Moreover, the GTV calling performance being higher 
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with error-prone clusters being included can be reasoned by incomplete separation of noisy 

alignments and GTV allele supporting alignments after clustering. 

It can be concluded that for every tagging procedure there may be a threshold for the percentage 

of error-prone cluster removal which turns out to be beneficial in terms of GTV recall. To this 

end, at most 40% of clusters being error prone can be suggested as a requirement for omitting 

error-prone clusters to exerting a positive effect on variant calling performance at least for the 

NEBNext protocol. 

 

4.12. False Positives Estimation 

As the investigation of overall allelic frequency distributions of dilution series datasets showed, the 

vast majority of variant calls were due to single UMI-supported alternative allele observations and, 

thus, exhibited small VAFs below 5% (see figures 3.30 and 3.22). Therefore, the assumption was 

made that molecular noise and base calling errors mostly affect the lower end of the observed allelic 

frequency scale. A further assumption was made, that the expected noise level can be estimated 

from the lowest allelic frequency occurring in a dataset. This assumes a peak-like distribution of 

noise which could not be observed for investigated data sets. Noise distributions usually followed 

a right-tailed gaussian-like curve slightly extending into higher allelic frequencies overlapping the 

signal distribution and, thus, was not limited to the lowest observed variant allele frequency. 

A portion of additional randomness is added on top of the molecular noise distribution by base 

calling errors. This portion was completely disregarded in earlier considerations because applied 

alignment filters and subsampling of sequencing error-sorted alignments was thought to correct 

the majority of base calling-induced errors. In practice, both the equally distributed errors 

assumption and the sequence independent errors assumption are violated though. It is well known 

that DNA polymerases exhibit a sequence-dependent error probability influenced by GC-content 

with especially low replication accuracy for short repeats and homopolymer stretches resulting in 

single nucleotide polymorphisms or altered sequence lengths. Thus, base incorporation errors are 

non-random. It has also been described that the frequency of alternative base observations, which 

depends on the utilized DNA polymerase [91, p. 5f] [92, p. 4], is not equally distributed over all 

possible alternative bases with transitions being more frequent than transversions [93, p. 4]. For 

the sake of simplicity and due to limitations dictated by the experiment design, the equally 

distributed errors assumption for the three outcome scenarios was still adopted. 

As expected, the estimated false positives (EFP) filter led to a more conservative estimate of the 

true GTV recall for higher GTV VAF data sets and a more liberal estimate for lower GTV VAF 
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data sets. The EFP filter allowed for portions of SOCs and DOCs in case of low signal to noise 

level relations which yielded lower GTV recall results compared to filtering all SOCs for basic and 

moderate clustering. Exceptions were the 0.25% GTV VAF data sets which showed a contra 

intuitive increase in GTV detections for the moderate and permissive clustering settings. The 

supposed reason for this were missing dual observation alternative calls and the small number of 

single observation alternative calls in the control data set for both clustering settings. This 

circumstance led to an overall smaller estimated number of false positive single- and dual UMI-

supported variant calls. This illustrates the limitations of the utilized false positive GTV call 

estimation for validation experiments which use small truth sets. 
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5. Conclusion 

In this thesis, bioinformatic ways of harnessing molecular barcoding protocols for the detection of 

somatic mutations were investigated. Ultimately, a software solution in form of a variant calling 

pipeline was implemented and its parameters optimized. This pipeline is suitable for analysing any 

paired-end read data created from liquid biopsy samples that were prepared with any UMI protocol. 

The provided solution was demonstrated to be applicable for detection of variants exhibiting a 

VAF as low as 0.25%. The lowest detected VAFs were 0.125% for the NEBNext and the QIASeq 

tagging protocols. 

The usability of four barcoding protocols regarding the described variant calling application was 

assessed. The ThruPLEX and smMIP protocols were found to have only a limited usability for the 

pursued variant calling approach. 

Aspects crucial to solving the inverse problem of reducing an amplified library to its original state 

were identified. It could be shown that applying simple rules of thumb like suggested in the 

supplements of the smCounter paper [36, p. 3] would lead to poor reduction of the amplified 

library. The presented clustering approach adapted better to the given data regardless of the library 

construction and yielded optimized library reduction per covered base. Earlier findings from Peng 

et al. (2015) were experimentally confirmed and used to rule out sequencing errors as the major 

cause for uncleared noise ultimately leading to false positive variant calls. Errors introduced during 

library amplification were found to describe the clear majority of noise that affected variant calling. 

Light was shed on the large portion of ambiguous variant calls by investigation the extent of 

uncleared base noise in UMI sequences and its contribution to false positive variant calls. This 

unfortunately large portion could be reduced by fine tuning the developed clustering approach. 

Estimates of false positive variant calls were used to define limits of uncertainty for the NEBNext 

and QIASeq tagging protocols in the context of different alignment clustering settings. 

The power of visualization was demonstrated by incorporating depictions of alignment clusters 

prior to consensus formation in error source and UMI artefact search. The inhomogeneous 

distribution of base errors and sequencing errors inside alignment clusters were hypothesized to be 

a result of changing reaction conditions becoming suboptimal during later cycles of the library 

amplification. Methods to regard UMI artefacts during alignment reduction were also implemented 

considering these visualization results. Further research concerning PCR-induced base errors, 

sequencing artefacts, and also UMI artefacts may be conducted on the basis of cluster visualizations 

using image processing. 
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The performance of two variant callers which are capable of tumour-only variant calling was 

investigated. It was found that smCounter exhibited an approximately 10-fold lower detection limit 

than Mutect in tumour-only mode. Combining the QIASeq protocol with the smCounter variant 

caller resulted in the highest GTV recall and the best results for GTV VAFs below 1%. Limitations 

of the Mutect caller in somatic mutation detection of variants exhibiting low VAFs were pointed 

out. 

An empirical threshold for omitting error prone clusters could be defined for the NEBNext 

protocol to obtain an increased variant calling performance. Despite attempts to extend the UMI 

error model used in the UMI-tools publication [68, p. 1f], in most cases, a considerable amount of 

information remained in error-prone clusters which also could not be omitted without 

simultaneously reducing GTV calling performance. As a result, the amount of ambiguous variant 

calls remained high. These findings emphasize the importance of using effective noise filtering or 

suppressing strategies when pursuing the detection or monitoring of low VAF mutations. 

A future goal should be to extend the usability of the implemented UMI analysis pipeline by 

increasing its performance, especially in terms of noise suppression and computational efficiency. 

Runtime and memory usage should be reduced considerably by implementing parallelization in 

conjunction with contig-wise data segmentation. The quality of variant calling results needs to be 

enhanced by increasing sensitivity through addition of a UMI-aware variant filter. Such a filter 

could make use of information gained from cluster consensus formation combined with the quality 

value emitted for each variant call by smCounter. 
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