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Abstract

Division of labour is a necessary ingredient for any complex software sys-
tem. However, such division of labour comes at a price: There is a need for
coordination. Especially the integration of separately developed software
pieces into one system proved problematic historically. The continuous integ-
ration method avoids typical integration issues via automation and frequent
repetition. Instead of performing tedious and error-prone integration steps
manually at rare instances they are performed frequently and automatically.

This thesis describes the maintenance of the Jenkins continuous integra-
tion system for the free and open source software project Catrobat, which
includes two Android applications. After changes to external Android de-
pendencies in 2015 the Catrobat tests did not work reliably anymore, leading
to unstable Jenkins builds and practically an abolishment of continuous
integration.

The main part of this thesis focuses on how these dependencies can be
handled, so that stable builds are possible again. This includes the use of
the modern container technology Docker to isolate resources, such as the
Android Emulator, between concurrent build jobs. The installation of the
Android dependencies as well as the management of the Android Emulator
are investigated too.

Another key aspect of the thesis is improving the maintainability of the
Catrobat Jenkins system. The best practice of configuration as code is applied
to create the build jobs on Jenkins. The importance of documentation and
policies is also discussed.

With continuous integration for Catrobat operating again further needs
of the developers and product owners like performance of build jobs and
code coverage tracking are considered.

This thesis highlights the complexity and fragility of continuous integra-
tion for Android applications and also emphasises the necessity of consider-
ing both the requirements of users of a continuous integration system and
its maintainability.
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Kurzfassung

Arbeitsteilung ist eine Voraussetzung für komplexe Softwaresysteme. Die-
se Arbeitsteilung hat jedoch einen Preis: Es entsteht Koordinierungsauf-
wand. Historisch betrachtet führte vor allem die Integration unabhängig
entwickelter Software in ein System zu Problemen. Continuous Integration
automatisiert diesen Integrationsprozess in Form von Builds und erhöht
dessen Frequenz wodurch Integrationsprobleme vermieden werden können.
Mühsame und fehleranfällige manuelle Integrationsschritte fallen weg.

Diese Diplomarbeit beschreibt die Wartung von Jenkins, einem Conti-
nuous Integration System, für das Open-Source-Software-Projekt Catrobat.
Catrobat beinhaltet unter anderem zwei Android-Applikationen, deren Tests
nach der Änderung von externen Android-Abhängigkeiten ab 2015 nicht
mehr stabil liefen. Das führte auch zu instabilen Resultaten auf Jenkins und
praktisch der Rücknahme von Continuous Integration.

Der Hauptteil der Arbeit befasst sich mit der Verwaltung dieser Abhängig-
keiten um wieder stabile Builds zu ermöglichen. Dabei kommen moderne
Technologien wie etwa Docker zum Einsatz, was ermöglicht Prozesse, wie
den Android Emulator, zwischen gleichzeitig laufenden Build-Aufträgen
zu isolieren. Auch die Installation von Android-Abhängigkeiten und das
Verwalten des Android Emulators wird behandelt.

Ein anderer Schwerpunkt ist die Verbesserung der Wartbarkeit von Ca-
trobat Jenkins. Dafür werden bewährte Praktiken wie das sogenannte
Configuration-as-Code verwendet um die Jenkins-Build-Aufträge zu er-
zeugen, sowie die Dokumentation erweitert.

Mit schließlich wieder funktionierender Continuous Integration werden
weitere Anforderungen der Entwickler und Product Owner behandelt, wie
einer Verringerung der Build-Dauer oder das Sammeln der Testabdeckung.

Diese Diplomarbeit hat die Komplexität und Fragilität von Continuous
Integration für Android-Applikationen aufgezeigt und dabei die Notwen-
digkeit hervorgehoben sowohl auf Nutzeranforderungen als auch auf die
Wartbarkeit des Systems zu achten.
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1 Introduction

Software development is a complex endeavour. To manage the often large
teams developing software, different methodologies have been envisioned
and applied in the last decades. No matter which software development
process is used, there is a set of tools that helps developers perform their
work.

When many people work together they have to integrate their pieces
of work into a whole system. If such an integration is done rarely the
risk increases that the integration does not work flawlessly. Instead, with
continuous integration developers integrate their work regularly, ideally
multiple times a day, into the mainline of a version control system. Their
changes are then build and a set of tests is run. A continuous integration
system is used to automatically perform these steps on every change. As
such, continuous integration can be seen as a best practice in the software
development process (Leffingwell, 2007, pages 169–177), that reduces the
risks of teamwork with the help of tools that automate most of the necessary
steps (Fowler, 2006).

This thesis discusses the challenges faced and the implemented solution
approaches while maintaining a continuous integration system for the free
and open source project Catrobat. Most parts of the challenges as well as the
solutions apply to any continuous integration system and not just Jenkins1,
which was used here.

1Jenkins website: https://jenkins.io
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1 Introduction

1.1 Motivation

The motivation of this thesis is twofold. On the one hand the motivation
is to provide developers a continuous integration system that helps them
again in their workflow, that even becomes an integral part of that workflow.
On the other hand the motivation is to ensure that the resulting continuous
integration system is maintainable, and therefore feasible in the long-run.

Jenkins was used as continuous integration system for Catrobat (Reisen-
berger, 2014). Yet by the end of 2016 the Catrobat Jenkins system was in
disarray. Many of the build jobs took hours to complete with hundreds of
failed tests. The build results were mostly ignored by developers. At the
same time the Jenkins version was outdated, as were its plugins, and the
used operating systems, which posed security issues. So while the system
was once usable and beneficial it deteriorated due to lack of maintenance
and rigour.

This highlights that there are trade-offs between providing a usable system
that is also maintainable. Programmers have to face similar trade-offs: They
have to provide their customers with new features in the short term and at
the same time ensure that they will be able to do so in the foreseeable future.
In the case of continuous integration the customers are the developers and
managers whose programs are built and tested on the system. For the
Catrobat project the developers are internal customers and the continuous
integration system is not a product on its own. Therefore, adding new
features to the continuous integration system is part of maintenance.

The concept of technical debt introduced by Ward Cunningham also
applies to continuous integration when loosening the meaning of code:

“Shipping first time code is like going into debt. A little debt
speeds development so long as it is paid back promptly with a
rewrite. [...] The danger occurs when the debt is not repaid. Any
minute spent on not-quite-right code counts as interest on that
debt.” (Cunningham, 1993)

This notion was considered in most decisions that lead to this thesis, bal-
ancing the promptly implementation of new features with long-term main-
tainability.
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1.2 Thesis Outline

1.2 Thesis Outline

The following chapter describes continuous integration with a definition
first, preconditions for continuous integration second, and finally benefits
of continuous integration like the possibility for continuous delivery.

Chapter 3 describes the Catrobat project and introduces the Catrobat
Jenkins team and their focus of activities.

The main part of the thesis is Chapter 4, which discusses a subset of the
challenges faced maintaining the continuous integration system for Catrobat.
It highlights that documentation and policies have a place, even in agile
teams, countering possible knowledge loss due to high turnover. Section 4.2
shows that configuration as code can help reduce documentation and at
the same time lead to better maintained systems. Section 4.3 focuses on
how to configure build jobs a maintainable way. Following sections discuss
the measures taken to improve the stability of the build jobs by detecting
and handling flaky tests, making the build jobs more independent, and by
improving the interaction with the Android Emulator. Section 4.7 describes
the steps taken to improve the performance of the build jobs.

In Chapter 5 a conclusion of the thesis is given.
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2 Continuous Integration

This chapter provides an overview of continuous integration. A definition,
preconditions, and benefits of continuous integration will be discussed.
Consequently, this chapter provides a foundation for the rest of this thesis.

2.1 Definition

Continuous integration is a high-level term. Its meaning and scope evolved
over time (Duvall, Matyas and Glover, 2007, pages 36–37). Yet despite of the
time, the main issue is how multiple people work together on one project or
product, without causing each other too many issues. Especially when they
combine the results of their work to create one system. This is one of the
drawbacks of division of labour: People are working mostly independently
on software components that have to be integrated at some point into a
whole system.

This notion is reflected in what Brooks Jr (1995, page 133) refers to as
integration. In the Mythical Man-Month integration is to integrate a small
program or software component a person works on into a whole system.
The system can then be tested and deployed.

A similar sentiment is also shared by Beck and Andres (2005, pages 49–50).
For them division of labour in programming is a “divide, conquer, and
integrate problem” where integration is the most riskiest aspect. To reduce
that risk Beck and Andres (2005) suggest to integrate every couple hours,
which they call continuous integration. After committing (integrating) code
changes to the mainline a build is triggered automatically. Such a build
includes building the most recent state of the mainline and running tests
automatically. On build failures the responsible developer, the one who
committed the changes, is ideally informed automatically. Nonetheless,
having working builds is the responsibility of the whole team, fixing broken
builds has highest priority. To be able to integrate every few hours the work
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2 Continuous Integration

needs to be split into small parts that can each be tackled on their own. This
is where the other extreme programming practices come into play.

So instead of performing the cumbersome task of integration even less fre-
quently continuous integration suggests the opposite. This follows a notion
of Fowler (2011b): “if it hurts, do it more often”. Only then measures will
be implemented to reduce the burden of integration. The higher frequency
of integration provides fast feedback leading to further improvements, in-
creased experience, and enhanced automation.

Yet continuous integration is not just committing source code changes to
mainline. It also includes the steps triggered automatically by the commit
(Fowler, 2006). An integration can only be considered successful if the
integrated code built, if all the tests kept working, and if any further checks
succeeded. Nonetheless, continuous integration does not relieve developers
of the responsibility to try and test their code changes locally. Otherwise,
there would be many failed builds.

There are tools that help with tasks related to continuous integration,
which in general run on a their own server. Such a continuous integration
system supports developers with far-reaching automation, avoiding tedi-
ous and error-prone manual work. The terms continuous integration and
continuous integration system are often used interchangeable. This thesis
tries to differentiate between the two, considering continuous integration as
concept that is practically applied with the help of a continuous integration
system. The used references are often not that strict, which leads to some
compromises in this regard.

2.2 Preconditions

For continuous integration to work several preconditions have to be fulfilled
in practice (Duvall, Matyas and Glover, 2007, pages 3–12):

1. A stand-alone script is used to build the software.
2. A version control system is applied.
3. A continuous integration system runs round-the-clock, therefore on

its own server.
4. Feedback mechanisms are in place.
5. Developers abide by basic processes.
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2.2 Preconditions

2.2.1 Build Script

Continuous integration systems need to build software, execute tests, per-
form static analysis and further checking. All of these steps have to be
automated. These steps should also work on local machines, so that de-
velopers can run them easily during development. Having support directly
in an integrated development environment such as IntelliJ Idea1is also
beneficial for productivity.

This is where build scripts (Duvall, Matyas and Glover, 2007, page 10),
also called build automation tools, come in. They are used for all of these
steps. Some of the build automation tools even handle the retrieval and
installation of dependencies, which is especially useful for continuous
integration systems. There are many different build automation tools, often
directly related to a single programming language. Gradle2, Apache Maven3,
and Apache Ant4 are commonly used for the Java programming language
and also for languages relying on the Java Virtual Machine.

For example, with Gradle assembling the programs can be done via
the gradle assemble command (Nizet et al., 2018). Executing all tests is
done with the intuitive command gradle test, while gradle check addi-
tionally also executes static analysis. The gradle build command includes
assembling, testing, and also static analysis.

2.2.2 Version Control System

Continuous integration only works when changes to the source code are
detected automatically. Naturally the integration process, including building
and testing the software, would not be triggered otherwise.

The attribution of changes is also important for continuous integration:
Who changed what, and when? This information is necessary to inform the
originator of a change that broke a build.

Version control systems provide both of these features and multiple more.
A version control system keeps track of all the files under its supervision
in the form of a repository. Developers, and also a continuous integration

1IntelliJ Idea website: https://www.jetbrains.com/idea
2Gradle website: https://gradle.org
3Apache Maven website: https://maven.apache.org
4Apache Ant website: https://ant.apache.org
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2 Continuous Integration

system, can retrieve the current state of the software from a version control
system by performing a checkout. Changes are tracked in the form of
commits. A commit consists in general of the following information:

• A unique identification of the commit, for example, in the form of an
increasing revision number or a unique checksum.

• The author who performed the commit.
• A timestamp when the commit was performed.
• The changes, that is the addition of new files and the removal or

modification of existing files.

Commits can be reverted, which is especially useful for commits that
broke builds and where writing a proper fix for the build would be too time
consuming.

Continuous integration systems can be informed of changes directly by
version control systems such as git5 via hooks (Chacon, 2009, pages 190–202).
As fallback version control systems can be polled frequently to check for
new changes, in case they do not provide hooks or writing hooks is too
complicated.

Most version control systems support independent work in the form of
branches. There is a mainline branch, often called trunk, master, or develop,
that will be used as base for future releases. At the same time developers can
work in other branches, without affecting the mainline. Like any changes
branches can be integrated themselves into other branches, which is called
merging.

Merging branches was very complicated historically, especially for long-
lasting branches. This was caused by so called merge conflicts that arise, for
example, when files were modified at similar locations in both the target
branch of the merge and the branch to merge. For the version control system
it is not clear which change to apply. The user has to decide in such cases.
Newer version control systems like git improved these merge algorithms
leading to fewer conflicts compared with older version control systems like
Subversion6 (Chacon, 2009, page 57).

Traditional version control systems such as Subversion were centralized
(Chacon, 2009, page 3), that means there was a dedicated server with the

5Git website: https://git-scm.com
6Subversion website: https://subversion.apache.org
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2.2 Preconditions

version control system. This server contained the complete commit history
and was considered the single source of truth for the code. Everyone else
had only the current state locally and committed their changes directly
to this server. Newer systems like git are distributed (Chacon, 2009, page
4–7). Every checkout contains the complete history. Developers can commit
locally and also create branches locally.

With the newer tools also new workflows evolved. For example, the pull
request feature introduced by code hosting sites (Gousios, Pinzger and
Deursen, 2014). A pull request is when users work in their own branches
and even repositories and then do not integrate these branches into the
mainline or a different branch themselves. Instead they request others to
integrate their changes in form of a pull request they create on a code
hosting site.

The git-based hosting service GitHub7 creates an internal branch for each
pull request which acts as copy of the target branch with the changes integ-
rated. Continuous integration systems can then build these pull requests
and detect issues before they affect the mainline. The changes can also be
reviewed by maintainers, before they enter the mainline. All modifications
to the target branch are tracked. Thus merge conflicts that did not exist
initially but were later caused by interim commits are detected. When all
issues have been ironed out the pull request is accepted and merged into
the mainline. Therefore, pull requests can be thought of as a transparent
dry run of an integration with increased transparency and opportunities for
communication and community interaction.

There are discussions whether creating branches for features can still
be considered continuous integration, as they result in committing to the
mainline less regularly, often not daily anymore (Fowler, 2009). The same
arguments could apply to pull requests. Yet pull requests are a form of
integration themselves. And this discussion was lead in the late 2000s
when pull requests were a very new feature. Since then pull requests have
been applied industry-wide and are commonly supported by tools like
GitHub, Bitbucket8, and GitLab9. All of these tools support the interaction
of continuous integration systems with pull requests, including checking

7GitHub website: https://github.com
8Bitbucket website: https://bitbucket.org
9GitLab website: https://about.gitlab.com
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2 Continuous Integration

out the code and updating the pull request with the build job status. The
author of this thesis considers a pull request workflow still as continuous
integration. Provided that pull requests do not stay open for too long.
When multiple open pull requests accumulate the risk of integration issues
between them increases again. Pull requests can be a considered a trade
off between having a mainline that potentially always works and the fast
integration of changes. Thus continuous integration not only depends on
the tooling but also on the way the tooling is applied, see also Section 2.2.5

In conclusion, version control systems are not only a necessity for con-
tinuous integration, they are also a best practice for software development
in general (Hunt and Thomas, 2000, pages 86–89).

2.2.3 Continuous Integration System

As discussed above continuous integration involves many steps. These steps
have to run automatically. Therefore, a system to execute them is necessary.
This continuous integration system could be realised with custom scripts, or
better, existing continuous integration systems can be used (Duvall, Matyas
and Glover, 2007, pages 8–9). In any case a continuous integration system
has to run round-the-clock. This alone mandates a dedicated computer, a
server, to run the software.

There are many different continuous integration systems, some run on
dedicated machines, others run in the cloud10, while some can combine both
modes of operation. Also, the feature set and pricing models differ. There
are more than 50 systems available (Stackify, 2017), for example: Jenkins11,
Travis12, TeamCity13, and CircleCI14.

This thesis will focus on the application of the very popular free and open
source software Jenkins.

For continuous integration one of the many existing systems should be
selected, instead of writing a customised solution. This both safes time and
gives access to the large communities of existing users

10For a definition of cloud computing refer to Mell and Grance (2011).
11Jenkins website: https://jenkins.io
12Travis website: https://travis-ci.org
13TeamCity website: https://www.jetbrains.com/teamcity
14CircleCI website: https://circleci.com
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2.2 Preconditions

Figure 2.1: The continuous integration job failed for this Catroid pull request. [Screenshot
taken by the author of this thesis.]

2.2.4 Feedback Mechanisms

In case of a build failure or when a given quality threshold is breached it
is important to inform the right people as fast as possible (Duvall, Matyas
and Glover, 2007, pages 10–11, pages 203–222). Duvall, Matyas and Glover
(2007) call this continuous feedback. Therefore, it is even beneficial to give
feedback right away and not to wait for a build to finish if issues were found
already. That way the right people can take action to resolve an issue as
early as possible.

The feedback can be provided by different means, for example, via e-mail,
RSS-feeds, hooks in collaboration systems such as Slack15, or directly in the
web interface of a source hosting platform such as GitHub.

Especially the integration with pull requests is useful as there is a small
and accurate target audience for the feedback. The right person is informed.
Figure 2.1 shows an example for a pull request where the Jenkins build
failed. This information is placed at the bottom of the pull request and
therefore reaches the correct audience: The person working on the pull
request, potential reviewers, and the person to merge the pull request.
GitHub also shows check marks in the commit history for each commit built
by the continuous integration system. In Figure 2.2 a Paintroid commit is
shown that built without issues on Jenkins. Both of these communication
channels are subtle and directed, which makes them comfortable to work
with. In these cases Jenkins for Catrobat provides the information as soon
as an issue is detected, even before the build finished. This reduces the time
developers have to wait before they are informed of problems they have to
fix.

Informing the right people in cases of build failures or other issues
is important. Otherwise, the mainline might be broken for long durations

15Slack website: https://slack.com
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2 Continuous Integration

Figure 2.2: For this specific Paintroid commit all the checks on Jenkins passed which is
shown by the green check mark. Clicking the check mark provides more details,
such as a direct link to the build results. In case of a build error there would be
a red cross. [Screenshot taken by the author of this thesis.]

before people recognise. All relevant continuous integration systems provide
ample ways of informing its users.

2.2.5 Developers

At the heart of any process are the people executing it. Despite all the
automation continuous integration is no exception. The developers have to
follow many practices for continuous integration to work (Duvall, Matyas
and Glover, 2007, pages 39–45).

For continuous integration to work properly developers have to build the
code locally and also execute tests locally before committing any changes to
mainline. This practice is called private build (Duvall, Matyas and Glover,
2007, pages 26–28). Broken code should never be committed. Otherwise,
the mainline would be in a state of constant breakage if people used it as
testbed. Developers would have to take care to avoid updating to a broken
version of the mainline. Very important in this regard is that developers
write tests for their code. The benefits of continuous integration heavily rely
on the quality and quantity of tests written. If there are only few tests it is
unlikely that the continuous integration system will detect issues.

Whenever a build is broken it has to be fixed immediately. Broken builds
should be the exception, not the norm. As mentioned above private builds
and pull requests are a preventative measure in this regard. The continuous
integration system will only be recognised by developers if the builds are in
working state in general. If the builds always fail developers will start to
ignore the build results.

Another important aspect is to limit the size of changes. This makes
reviewing the code easier and also decreases the risk of long lasting fea-
ture branches. These small changes should regularly be committed to the
mainline or integrated via pull requests. When pull requests take long to be

12



2.3 Benefits

merged there is a risk that their size increases: When a developer is blocked
by an unmerged pull request they continue their work, accumulating more
code that has not been integrated yet. Therefore, it is important that pull
requests are acted upon quickly.

In summary, continuous integration is a practice that requires discipline
and constant reflection. What was continuous integration yesterday might
silently deteriorate into a different practice with fewer benefits.

2.3 Benefits

Continuous integration provides many benefits (Duvall, Matyas and Glover,
2007, pages 29–32, pages 39–40, pages 47–63), some of them are explored in
this section.

Probably the most apparent benefit is automating otherwise tedious,
mundane, and error prone tasks. People can work on value generating tasks
instead. This automation also enables further practices that were not possible
before. For example, trends can be tracked reliably: Is the code quality
corresponding a given measure improving? Is the test coverage increasing? Is
the time between broken builds increasing? Continuous integration systems
even support thresholds for quality metrics. A build would fail if static
analysis tools detected issues.

This leads to better transparency and understanding of the quality of
a product and also to increased trust in the product. This transparency
reduces risks in planning, helps managers to form decisions and can also
lead to more satisfied customers. Furthermore, the increased quality can
have positive effects on motivation of the staff as DeMarco and Lister (2013,
pages 19–23) pointed out.

Performing the integration frequently reduces the integration related risks,
like merge conflicts. At the same time the number of commits increases,
while their size decreases. These smaller commits make the changes easier
to review, they tell a clear story of what was changed. When an issue was
introduced reverting such a small commit keeps the negative side-effects
low.

Rapid feedback is also a huge benefit: Issues are detected very early and
the correct people are informed. That way the developers can fix an issue
while they are still familiar with the relevant source code. The confidence of
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all stakeholders in the product increases. For developers it is some form of
insurance that their changes did not break any of the tested functionality.
Especially for refactoring tests in combination with continuous integration
act as safety-net (Fowler, 1999, page 7).

The jobs of a continuous integration systems are executed in a defined
environment. That reduces the risks of misconfiguration or stale caches that
exist on local machines. Given well written tests this leads to reproducible
builds (Fowler, 2010), see also Section 4.5. Continuous integration can even
help detect the case when developers forgot to commit some necessary files.

Especially for management it is important to know if their product can
be released. Here continuous integration gives indications with broken
or working builds. Artefacts of the the build, such as executables, can be
tested manually, deployed to test machines, and even deployed directly to
customers.

The practice to also automate the deployment pipeline is called continuous
delivery (Humble and Farley, 2010, pages 3–4). Continuous delivery can
be thought of as continuous integration with additional release steps, such
as releasing an alpha version that can then be promoted to a beta or even
a release version directly in the continuous integration system. Suddenly
releases become a regular event that is one or a few mouse clicks away,
instead of massive endeavours in the last moments of a project. Of course, as
mentioned before, the quality of tests and their coverage is very important
in this regard.

Overall, continuous integration leads to reduced risk and increased trans-
parency. Managers and developers can have confidence in their software.
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The Catrobat project1 is an agile free and open source software (Free Soft-
ware Foundation, 2017) project started in 2010 (Slany, 2012). Mostly students
of the Technical University of Graz are working on Catrobat (Müller, Schind-
ler and Slany, 2019).

The main products of the project are the Pocket Code and Pocket Paint
applications. The focus of Pocket Code is to introduce children into the
world of programming, using the Catrobat visual programming language
(Slany, 2012). With Pocket Paint pictures can be drawn that can then be used
in Catrobat programs, for example, drawing the content of a small Tic Tac
Toe game.

Pocket Code can be run as an Android application2, called Catroid intern-
ally, or from within the web browser, there is also a version for iOS3 called
Catty internally. The Android version of Pocket Paint4 is called Paintroid
internally.

In support for the developers there is a Jenkins team that works on con-
tinuous integration. Previous members include Burtscher (Burtscher, 2016)
and Reisenberger (Reisenberger, 2014). The author of this thesis started
working on the Jenkins team in November 2016 with a roughly six month
hiatus at the end of 2017. During most of the time in the project the author
had the role as coordinator, setting goals and tasks for the Jenkins team,
coordinating its members, communicating with other teams, and of course
also working on these tasks. The main focus was continuous integration,
which is also discussed in this thesis. Michael Musenbrock, who was co-
ordinator during the hiatus of the author, and further team members had a

1Catrobat website: https://www.catrobat.org
2Pocket Code for Android: https://play.google.com/store/apps/details?id=org.

catrobat.catroid
3Pocket Code for iOS: https://itunes.apple.com/app/pocket-code/id1117935892
4Pocket Paint for Android: https://play.google.com/store/apps/details?id=org.

catrobat.paintroid
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similar focus. Kirshan Kumar Luhana (Luhana, Schindler and Slany, 2018)
and Rainer Lankmayr focused instead on support for continuous delivery
of Pocket Code and also Pocket Paint.

The Catrobat staff consists mostly of students performing their work in
the course of a practical, a thesis, or a bachelor’s project. In general this leads
to a short and defined participation within the project. The amount of time
people invest weekly heavily depends on the current state of their studies
and their personal motivation. At the same time there are moments when
smaller Catrobat teams have barely any members. As a result, successful
knowledge transfer is especially important and training new team members
is common. This adds additional challenges, not regularly faced in the
industry.
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Despite all efforts, at the end of 2016 the Jenkins system for the Catrobat
project was in a state of disarray. This chapter describes issues that the
Catrobat Jenkins team faced and measures that were taken to improve the
situation.

At the beginning of any change there needs to be an assessment of the
current situation. These were some of the encountered issues:

• The installed version of Jenkins had not been updated in over a year.
• The installed plugins were out-of-date.
• Different Linux distributions were used for the Jenkins master and

Jenkins slave installations.
• The configuration needed for the master and the slaves was not fully

documented.
• The configuration steps needed for Jenkins were not fully documented.
• The jobs were manually created and had little common behaviour.
• What jobs were still needed was not clear, neither who created them

initially and for what purpose.
• Most of the jobs had not run successfully in months. They failed

constantly.
• Unclear direction of the project.
• Unclear what people were working on.
• The Android Emulator used was outdated since the current version

was not supported by the used Jenkins plugin.
• The Android Emulator crashed regularly during the execution of tests.
• There were hundreds of failing tests for Catroid.
• A custom test runner was used for Catroid to avoid issues during test

result collection and merging faced on Jenkins with the default test
runner. This blocked progress to move to more modern test runners.

• The jobs had very long execution times, ranging to many hours, occa-
sionally even more than a day.

17



4 Practical Challenges

• Jobs were influencing each other.

Most of these issues impacted the usefulness of Catrobat Jenkins. Espe-
cially tests that had worked before did not work anymore. The problem of
broken and flaky tests started to rapidly increase in 2015. Analysis was dif-
ficult but it was at least related to updates for the Android SDK, which also
contains the Android Emulator, in combination with the custom test runner
and to issues with the Android Emulator Jenkins plugin1. The success of
tests also depended on the Android API in use. Tests would fail both locally
and on Jenkins with a given API while the same set of tests would work
with another.

The issues lead to long debugging sessions where different solution
approaches were tried. Unfortunately, continuous integration could not be
practised anymore. Without continuous integration regressions were not
found automatically and thus the quality of both tests and code decreased.

The outdated version of Jenkins and the plugins also had security implic-
ations: Having up-to-date installations of Jenkins is essential for security,
given the regular disclosures of security issues and their fixes (Jenkins Team,
2018). Yet updating these plugins was made harder by interdependencies

4.1 Policies and Transparency

Most of the issues the Catrobat Jenkins team faced were of a technical nature.
The issues themselves and progress on their solution was discussed during
meetings. The outcomes were tracked in the meeting notes. There was no
overview of all the problems faced and the approaches already taken, which
made it harder for newcomers to understand the whole scope of issues. At
the same time there was no overview of the jobs on Jenkins, the installed
plugins, and the configuration. The measures taken to improve transparency
and visibility are described below.

Many of the encountered issues were not new, they were known. Yet the
issues were not documented at a single location. Instead the issues were
part of meeting notes. As a result, starting with the end of 2016 the Catrobat
Jenkins team documented the issues on an own challenges page in the wiki
software Confluence, see Figure 4.1 for an extract. Each of these tasks has

1For example: https://issues.jenkins-ci.org/browse/JENKINS-27456
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Figure 4.1: An extract of the the Confluence page to collect areas of improvement for
Catrobat Jenkins. [Screenshot taken by the author of this thesis.]

a summary, a priority, zero or more assignees, and a detailed description.
The idea of the challenges page was to support planning by providing an
overview. Additions to the challenges were welcome and the overhead to
add them was low. This helped communicating the vision of the project and
gaining support of the team to realise that vision (Kotter and Cohen, 2012,
page 83). The issue tracking software Jira2 was specifically not used to track
the challenges. Since the focus of the challenges page was planning, giving
an overview and communication, Confluence was preferred over the issue
tracking software Jira. The work on these challenges was then tracked on
Jira.

The challenges page already improved transparency. Most of them were
realised, like code quality measurements, automated configuration of slaves,
and nightly build jobs.

For keeping an overview of a project is is important to know what the
team members are working on. Seventy issues were created before 2017 on
Catrobat Jira for Jenkins, the first in 2014. In the following two years alone
nearly 200 further issues were added, of which 155 were resolved in the
same time span. Participation on Jira increased. Consequently, what team
members were working on became more transparent.

Another area with little documentation was research done by the team.
With technology constantly advancing research is needed to figure out
which technologies exist and whether they are feasible in their current
state for Catrobat Jenkins. Without documentation of research findings the

2Website of Catrobat Jira: https://jira.catrob.at
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Figure 4.2: The parent page of the research space highlights the benefits of documenting
research related to Catrobat Jenkins. [Screenshot taken by the author of this thesis.]

knowledge is not persisted and might be lost easily. Especially in a university
project like Catrobat with a high turnover. The reasons why a technology
was not used might be forgotten, potentially leading to confusion and extra
work.

As a result, the author created a specific research space on Confluence to
track research findings. Figure 4.2 shows the text of the homepage of the
research space. It highlights that the focus is to share and gain knowledge
and to avoid redundant research.

Consider the research on Firebase Test Lab for Android (Google De-
velopers, 2018e) in November 2016 as an example. Firebase Test Lab provides
the ability to run tests on physical or virtual devices in a Google data centre.
The large amount of physical devices available3 makes this an interesting
option to test applications in a realistic setting. There were different pricing
plans, including a free option for hobbyists4. The free option had a restricted
daily quota of devices and practically also time the devices could be used.
The result of that research was that Firebase Test Lab was not feasible for
Catrobat. The free option was too restricted, especially with Catrobat test
execution times of multiple hours at that time. The other pricing options
were too expensive. In the future the conditions for Firebase Test Lab might
change making it feasible for Catrobat. To aid such future research all find-
ings were documented on Confluence. Figure 4.3 shows an excerpt of the
Firebase Test Lab research. At the top of the page emphasis is given on
when the research was performed and that the research results might be
different now. Thus the research of a technology is not seen as one-time

3Physical devices for Firebase Test Lab: https://firebase.google.com/docs/test-lab/
android/available-testing-devices

4Firebase pricing: https://firebase.google.com/pricing
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Figure 4.3: An excerpt of the Confluence page that tracked the research on Firebase Test
Lab for Android. All findings of the research, including the outcome and its
motivation are documented to ease future research, to share knowledge, and to
avoid redundant work. [Screenshot taken by the author of this thesis.]

event, taking into consideration that technologies evolve with time.
As previously mentioned the team faced multiple issues at the end of

2016. With so many issues to combat the author decided it would be best to
sidestep them all together and work on a new Jenkins system from scratch.
That system would be well documented as a whole from the beginning.
The system was installed on a test server and was supposed to replace the
operational Jenkins when completely configured. The transition to the test
server never happened though. As it turned out it was easier to clean up
the operational server instead, keeping it available.

To improve the documentation and to avoid jobs with unknown origin
or obsolete jobs one of the first steps for the test server was to introduce
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policies that every Catrobat Jenkins team member had to follow. Each
policy had a short name and a detailed description. The policies should
be self-explanatory, therefore very easy to understand and follow. Policies
should not incur too much complexity, as that would have adverse effects
(Morieux, 2011). To increase acceptance reasons for the policies were given.
The policies should lead to a system that is better understood by the team.
Figure 4.4 shows an excerpt of the initial policies. Already with the initial
version it was highlighted that the policies are not set in stone, that they are
open for discussion. It was understood that the policies will change with
gained knowledge, changes in technology, changes to the team structure,
and the state of Jenkins Catrobat. Such an approach is similar to continuous
improvement of lean methods, like Kanban (Kim et al., 2016, page 6).

It was very important to have as few policies as necessary. The policies
should never become an end in themselves. Otherwise, this might lead to
frustration, show a lack of trust, and reduce productivity eventually (Biro,
2018). If there are too many policies some of them might be ignored, or even
worse there could be malice compliance. Such malice compliance refers to
working by the book, which can even stop any progress while showing the
abundance of useless policies (DeMarco and Lister, 2013, page 176). As a
result, it is very important to keep the number of policies to the absolute
minimum.

Initially there were eight policies:

• Document Non-Plugin Configuration: This refers to document any config-
uration needed that is not related to plugins. A link to the Confluence
page to track the configuration is provided in the policy description.

• Document Plugins: In 2016 a vast amount of plugins was installed. Many
of them unused or used by jobs that did not run for a long time. Why a
plugin was installed initially or what steps were necessary to configure
it was not documented. With this policy every newly installed plugin
needs to be documented. The documentation includes a link to the
plugin, its identifier, who installed the plugin and why, and what
configuration steps are necessary to use the plugin. Plugins that are
not documented on this page and are not required as dependencies
can be removed without notice, to ensure that Jenkins remains clean.
Later not only installed plugins were documented but also plugins
that had been uninstalled. That way reasons of why a plugin is not
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Figure 4.4: An excerpt of the initial policies for the Catrobat Jenkins team. Emphasis was
given that policies are not in a steady state. Instead they would be adapted
depending on feedback and needs. [Screenshot taken by the author of this thesis.]

used anymore would be kept.
• Use Maintained Plugins: Jenkins has more than 1000 plugins5. Many

of these plugins are unmaintained or have few users. Hardly used
plugins or unmaintained plugins can lead to security issues or they
might become incompatible with Jenkins in the future. Therefore, this
policy was added to only rely on maintained and somewhat popular
plugins.

• Own Views: In 2016 and 2017 the jobs were created on the top-level of
Jenkins and then grouped via views into related units, like Catroid,
Paintroid, LeeroyCatroid, and LeeroyMultiJobs. To track who is re-
sponsible for a job each Jenkins team member would create a view of
the form FirstnameLastname, for example, MatthiasFuchs, that listed
all the jobs they were responsible for. With the retirement of a member
it would be clear when jobs would need a new maintainer or could be
removed.

• Life-Time: In 2017 there were more than 80 jobs. Most of them had not

5Jenkins plugins: https://plugins.jenkins.io
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been run on that installation in months. Some of the jobs had been
created years ago for testing purposes but were still kept around. This
lead to the idea of life-times. Each job on the test system should have
an associated life-time. The life-time would specify when a job could
be removed. For example, with a life-time of two months a job could
be removed if it did not run in the last two months. This measure
should help reduce the amount of unmaintained jobs.

• Job Description: Each job should have a description that describes its
purpose, its life-time, and possible shortcomings.

• Consistent Styling: The job description should have a consistent styling
to emphasise whether a job is broken, undergoing rework, or working
as intended.

• Commit Finished Jobs: When work on a job was finished and it worked
as intended it should be moved to the corresponding view. For exam-
ple, initially the job would be shown in the MatthiasFuchs view as
mentioned above. When ready for the public it should be shown in the
Catroid view. Before doing such a commit a discussion should happen
with the affected stakeholders: The other Jenkins team members and
representatives of the team who would use the job in the future.

Over the following months five policies were added, four policies were
removed and many of the polices were refined. Overall, there were never
more than nine policies active at the same time. The following list describes
the added and removed policies:

• Job DSL: Initially all jobs were configured directly in the web interface
of Jenkins, most of them were freestyle jobs. In mid of 2017 all jobs were
configured via the Job DSL. That enabled to put the job configuration
in the Catrobat Jenkins repository6. The jobs were still freestyle jobs,
but Job DSL enabled to share code and make the jobs more similar.
Now it would also be clear who added a job, due to the version control
system used. At the same time the own views policy was removed,
since now it would be clear who created a job. It was also encouraged
to develop new jobs on a local Jenkins installation and performing
a pull-request when finished. At that point also folders were used

6Job DSL definitions for Catrobat Jenkins: https://git.io/fhZMV
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to group jobs. This lead to shorter names of the jobs as the project
prefixes were not needed anymore.

• Pipeline/Jenkinsfile: In 2018 Michael Musenbrock converted the freestyle
jobs to pipeline jobs specified via Jenkinsfiles placed next to the Catroid
and Paintroid source code, see Section 4.3. To signify this change a
policy was added to mandate that future jobs should be specified in
a Jenkinsfile. The Job DSL would then be used to create the pipeline
jobs.

• Test Jobs: Michael Musenbrock also added a policy that specified how
to add prototype jobs on Jenkins. They should be placed in a lab
directory and either should be prefixed with FirstnameLastname or
be placed in a folder FirstnameLastname. Jobs that are not managed
by Job DSL and not placed in the lab folder would be removed.

• Working with Catroid/Paintroid Team: Both the Catroid and Paintroid
team started to use a new workflow in fall 2018 that mandates heavy
involvement of product owners. This policy describes the necessary
steps so that changes to the Jenkinsfile in the Catroid and Paintroid
repositories can be merged.

• Security Updates / Updating Jenkins: Describes the necessary steps to
update Jenkins, especially in case of security updates. There is also an
automatic notification of Jenkins security advisories on the internal
Slack channel of the Catrobat Jenkins team.

• Job Description: The job description policy was later merged with the
Job DSL policy. The description of jobs should be done via the Job
DSL. Jobs in the lab directory do not need a description.

• Life-Time: The life-time policy was removed later as well, since it
became redundant with the job configuration being in a git repository.

To further emphasise the importance of communication, especially when
mistakes happen, the author added a further introductory paragraph to the
policies page as shown in Figure 4.5. The notion is that errors are part of
a learning process that is enhanced by communication. This is similar to
what DeMarco and Lister (2013, page 8) described as quota for errors in
Peopleware. Punishing errors only leads to defensiveness and reduction in
communication.

The test system never replaced the operation system as that would have
been a huge change. Instead with the knowledge gained of working on the
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Figure 4.5: Text block added at the beginning of the policies page to emphasis that mistakes
are part of a learning process. Communicating own mistakes can lead to overall
improvements. [Screenshot taken by the author of this thesis.]

test system the operational system was adapted. So instead of transitioning
directly to the test system smaller steps were performed directly on the
operational system, mostly by Michael Musenbrock and Kirshan Kumar
Luhana. Eventually this lead to a cleaned-up system. The policies were then
applied to the operational system, changing the way of how to work with
Jenkins. The end result was a well maintained Jenkins installation with a
quite thorough documentation. This lead to more transparency and made it
also easier for newcomers to the team to understand Jenkins and set up a
local Jenkins instance themselves.

4.2 Configuration as Code

The previous section highlighted the importance of documentation to im-
prove the situation. This section describes an approach that can avoid much
of the documentation by treating configuration as code.

Despite all the improvements realised by documentation, documentation
also has some disadvantages that have to be considered. A very common
problem is that documentation becomes outdated. For example, by not
documenting newly installed Jenkins plugins and their configuration, or
not documenting configuration changes on the slaves.

Programmers have to face similar issues with comments in their code.
In that case Martin (2008, pages 53–74) suggests to avoid most comments
and to write self explanatory code instead. Unfortunately, for very long
there was no way to translate the same approach to configuration. This is
where configuration management, infrastructure as code, or more generally
configuration as code came in.
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Configuration as code refers to putting the configuration of something, for
example, infrastructure, on a repository itself. There the configuration is not
necessarily stored in its native format. Instead, domain-specific languages
can be used to simplify writing configurations and to facilitate code reuse.
When used correctly configuration as code makes it easier to recreate a
system than trying to repair it (Kim et al., 2016, pages 118–119). Simply
because setting up the system became easy.

Ansible7, Chef8, and Puppet9 are very popular tools to manage the setup
of systems, such as the Jenkins server infrastructure. With a domain specific
language all common administrative tasks for a system can be handled,
among others: The systems can be configured, packages can be installed,
services such as Jenkins can be started, or users can be created on the
system.

After research it was decided to manage the configuration of the test
system10, introduced in Section 4.1, with Ansible. The main advantage
of Ansible in this regard was that it did not require a server to run and
did not need specific software installed on the managed systems, other
than Python. Instead Ansible could be triggered from any machine. Yet the
resulting Ansible configuration was only used for the test system, but not
the operational system. Much of the infrastructure of the Catrobat team was
managed with Puppet, which was unfortunately not maintained well. With
the creation of a designated infrastructure team for Catrobat in 2018 the
process started to move the configuration of the Jenkins infrastructure to
Puppet. The complete Jenkins infrastructure then used the Debian Linux
distribution, reducing the complexity of the system. The complexity might
be further reduced by relying on the Jenkins Evergreen project11 once it
leaves its beta phase. This project was started by the Jenkins team to reduce
the burden of keeping Jenkins up to date and simplifying its maintenance.

While these tools work well to configure a system their support to con-
figure Jenkins itself is lacking. Jenkins, as well as its plugins, are written in
Java or languages supported by the Java Virtual Machine. With the script

7Ansible website: https://www.ansible.com
8Chef website: https://www.chef.io
9Puppet website: https://puppet.com
10Ansible configuration of the test system: https://git.io/fhXa9
11https://jenkins.io/projects/evergreen
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console12 Groovy scripts can be executed that directly interact with Jen-
kins. For a proof of concept the author wrote Groovy scripts that would
configure some parts of Jenkins, see also Listing 4.1. In this case the usage
statistics would be turned off, but only if they are turned on right now. So
the configuration is only modified when changes are necessary. Writing
such configuration requires detailed knowledge of Jenkins and the involved
plugins. There is a risk that this code would be broken by future changes to
the plugins and Jenkins. As a result, this approach was discontinued early
on.

config(’Not Sending Usage Statistics ’,

{ it.isUsageStatisticsCollected () },

{ it.setNoUsageStatistics(true) })

Listing 4.1: Excerpt of the code needed to configure parts of Jenkins with the Groovy
programming language. [Source code taken from a commit by author of this thesis:
https://git.io/fhXwC]

There was a common need for configuration as code and by the end of
2017 an enhancement proposal for Jenkins JEP201 was made to remedy this
situation (Wilkosz, 2017). Eventually this lead to the development of the
Jenkins Configuration as Code plugin13 that saw a release of version 1.0 in
September 2018. Using this plugin Jenkins can be configured with files in
the YAML14 format. Currently there are plans to use the plugin to configure
Jenkins for Catrobat.

Closer communication with the Jenkins community would have avoided
the research that lead to Listing 4.1, instead waiting for JEP201 to become
usable. Similarly, it might have made sense to try and improve the situation
of Puppet in use for Catrobat instead of experimenting with Ansible. Non-
etheless, working on configuration as code provided many insights and
underlines the future of how servers will be configured.

With the help of configuration as code the amount of documentation
can be reduced. At the same time the Jenkins infrastructure will be easier
to set up, both locally and on the servers. Eventually there will be one

12https://wiki.jenkins.io/display/JENKINS/Jenkins+Script+Console
13Website for the Configuration as Code Jenkins plugin: https://plugins.jenkins.io/
configuration-as-code

14YAML format: https://yaml.org
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single source of truth for the configuration of the Jenkins infrastructure.
This leads to a reduction of manual steps needed and thus to well defined
environments, avoiding snowflake servers (Fowler, 2012a). There is still
much work needed before the full potential can be applied to Catrobat
Jenkins. Especially considering the vast improvements the configuration
as code plugin saw in the last months. Overall, configuration as code will
make the Jenkins system more maintainable.

4.3 Configuring Build Jobs

As with any other continuous integration system the main focus of Jenkins
are the jobs that it runs. Therefore, configuring these jobs is an integral
part of maintaining Jenkins. For the users of Jenkins running the jobs and
checking their results is the most common task. A clear structure of the jobs
and a similarity between the jobs is not only important for users of Jenkins
but also for its administrators. This section focuses on the configuration of
the build jobs. Advantages and disadvantages of different approaches are
discussed using issues faced by the Catrobat Jenkins team as example.

From the perspective of users jobs shall provide all the functionality they
need. This includes building the source, running tests, running static ana-
lysis tools, providing artefacts such as executables that were built, collecting
code coverage, collecting other statistics like the size of the resulting ex-
ecutable, checking dependencies for security issues, and of course all with
decent performance. Usually users are not aware of the capabilities of the
tools available, including continuous integration systems. They might use
them, yet they do not want to create jobs themselves. Instead their focus
is naturally the actual software they work on. As a result, the maintainers
of the continuous integration system, also in the case of Catrobat Jenkins,
create the build jobs and add further steps to them when needed. Therefore,
a key to useful jobs is communication and close interaction between the
people providing the jobs and its users. This includes reacting to requests
by users, but also to suggesting tools users might not be aware of.
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Figure 4.6: Small parts of the configuration of a freestyle Jenkins job. Further build steps
can be added by selecting them from a drop-down menu. This adds additional
forms that have to be filled in. The forms of even the simplest freestyle job need
multiple screens for the whole configuration. [Screenshot taken by the author of this
thesis.]

4.3.1 Configuration with the Jenkins User Interface

Historically the way to create jobs in Jenkins was via its web browser user
interface. A job type, such as a freestyle job, has to be selected, a name
provided, and the steps of the job have to be specified in HTML15 forms
(Laster, 2018, page 1) such as in Figure 4.6. Everything would be done
directly in the web browser by filling in a huge amount of forms. The
configuration of the resulting job is then stored on Jenkins master as XML16

files. This lead to some practical issues the Catrobat Jenkins team faced:

• Who is the owner of a job?
• What is the purpose of a job?
• How to revert configuration changes that lead to faulty jobs?
• How to backup jobs?
• How to avoid snowflake jobs?
• How to provide the needed functionality without incurring too much

complexity in the resulting jobs?

15World wide web consortium HTML website: https://www.w3.org/html
16XML standard: https://www.w3.org/TR/2006/REC-xml11-20060816
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Attributing the owner and purpose of a job can be done via a policy, see
also Section 4.1. Of course policies can be ignored or forgotten, therefore
automation is desirable.

The JobConfigHistory17 plugin helps to attribute who changed what and
when of the configuration of a job. This plugin compares the resulting XML
file of the job after a configuration change with a previous state. Faulty
changes can be reverted directly in the user interface of the plugin.

Yet looking directly at the differences of the XML files forces implementa-
tion details upon the user. Suddenly they are confronted with how Jenkins
stores the jobs and what each step looks like in XML. Especially when many
configuration changes were made the differences between the XML files
become overwhelming.

Unfortunately, any change to the XML file is treated as configuration
change, which leads to many entries in the job configuration history. For
example, some plugins write their version to the configuration file. Updates
of the plugin lead to updated job configuration XML files, which leads to
new entries in the job configuration history view. Even worse is the Job DSL
plugin, see below, which changes the XML files regularly.

For the Catroid job there were more than 250 entries in the job configura-
tion history between its creation in February 2018 and January 2019. Only
29 of these changes were performed by actual users, all the other changes
were performed automatically by Jenkins.

The usefulness of the JobConfigHistory therefore depends on what plu-
gins are installed, how often the plugins are updated, and on the amount of
changes to the structure of the XML file.

Whenever manual steps are needed to configure something there is a
high risk that similar systems are configured differently. Fowler describes
snowflake servers as servers with a different configuration each. Their
configuration is not reproducible since it is not clear what was configured
manually in the first place. The same applies not only to servers, but to
configuration in general. For instance, many jobs on Catrobat Jenkins could
have been considered snowflake jobs.

In 2017 there were more than 80 jobs on Jenkins. All of them were placed
on the top-level of Jenkins with no hierarchical structure, other than views.

17Plugin for Jenkins to track changes to the job configuration: https://plugins.jenkins.
io/jobConfigHistory
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All of the jobs were configured manually via the Jenkins user interface.
This lead to snowflake jobs. Some of the jobs automatically cleaned up
the workspace before builds, leading to reproducibility. Other jobs ensured
that each log line in the build log was timestamped. Some jobs only kept
a history of the 30 last builds, while others did not have a limit. Another
common distinction was that jobs had different security settings.

All the solutions described above work somewhat. They share a common
disadvantage though: All of them rely directly on Jenkins. That means
everything has to be done in the Jenkins user interface. There is no single
place to handle all these issues at once. Different plugins have to be installed
and configured, different policies have to be enforced. These solutions do
not cover a catastrophic failure of the Jenkins infrastructure. For example,
when the hard drives fail the configuration as well as the backups created by
Jenkins18 might be lost. This is where configuration as code can be applied.

4.3.2 Job DSL

The Job DSL plugin provides a domain-specific language using Groovy19 to
specify jobs in a configuration as code manner. Basically any kind of Jenkins
job can be represented, including freestyle jobs.

The basic workflow is to create Groovy files in a version control system
that contain the specification of the jobs and views. These Groovy files are
then executed on Jenkins creating these jobs and views. The execution is
done by a specific job which is in general called seed job (Spilker, 2016). The
seed job itself has to be created manually first, but can then also be created
via the Job DSL, which allows bootstrapping.

To support the development of configuration as code an interactive ref-
erence is included in the user interface. Furthermore, a public reference20

is available. The reference includes documentation for Job DSL methods,
depending on the installed plugins.

Since Groovy is a regular programming language best practices of soft-
ware development can be employed. This includes avoiding repetition by

18Plugin for Jenkins to backup the configuration: https://plugins.jenkins.io/

thinBackup
19Groovy programming language: http://groovy-lang.org
20Job DSL reference: https://jenkinsci.github.io/job-dsl-plugin
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using abstractions like functions and classes, which is often referred to as
don’t repeat yourself (DRY) principle (Hunt and Thomas, 2000, pages 26–33).
Common code can be placed into own Groovy files that can then be included
automatically by the Job DSL plugin.

Listing 4.2 gives an example for the Job DSL syntax. A freestyle job
is created that retrieves the source code from a git repository, builds the
project, and runs the tests. The git repository is checked every 15 minutes
for changes.

job(’DSL -Tutorial -1-Test ’) {

scm {

git(’git :// github.com/quidryan/aws -sdk -test.git ’)

}

triggers {

scm(’H/15 * * * *’)

}

steps {

maven(’-e clean test ’)

}

}

Listing 4.2: A Job DSL example for a freestyle job that checks a git repository every 15

minutes for changes, builds the source, and executes tests (Spilker, 2016).

The Job DSL resolves all issues identified before. The specification of all
build jobs, except the initial seed job, can reside externally of Jenkins in an
own source repository. With a version control system in place it is easy to
attribute who changed what for a given job. Of course then it is also easy
to undo faulty changes. Policies like good commit messages can also be
enforced manually when reviewing pull requests. Creating own Groovy
abstractions makes it possible to create jobs with similar settings, avoiding
snowflake jobs altogether.

When managed properly the resulting job specifications can be clearer
than the configuration created directly in the Jenkins user interface. The
latter relies on many check boxes, text fields, advanced settings hidden
behind buttons, and further forms which do not fit on a single screen.
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4.3.3 Jenkins Pipeline

With Jenkins 2 pipelines have been added as preferred way of creating jobs
(Laster, 2018, pages 1–22). Jenkins pipelines are a domain-specific Groovy
language that makes the creation of complex jobs possible. The definition
of a job can be put into a so called Jenkinsfile directly in the source code
repository, next to the source that it will build. New job types have been
added that read these Jenkinsfiles and execute their build steps. To avoid
repetition common pipeline code can be placed in an own library that is
then shared between jobs (Laster, 2018, page 185) . Jenkins pipeline adds a
flexibility to Jenkins that was previously unachievable. This is also the main
contrast to Job DSL. The Job DSL is not a job type itself and therefore does
not add any flexibility on its own. It is constrained by the types of jobs it
creates.

In Jenkins 2 there are three new job types directly related to pipeline:

• Pipeline
• Multibranch Pipeline
• GitHub Organisation

The Pipeline job works either on a Jenkinsfile in a specified branch of
a repository or has the pipeline domain-specific language embedded. In
contrast, the Multibranch Pipeline job always needs a repository. The job
then automatically detects all branches with a Jenkinsfile and creates jobs
for them. As such the multibranch job acts as if it was a folder, only that all
elements of that “folder” are added automatically and cannot be modified
manually. With the correct settings even pull requests are detected and
cleaned-up after merging. Webhooks can be created automatically too. That
way GitHub informs Jenkins whenever there was a change to the repository
or any of the pull requests. The GitHub Organisation job is similar to the
multibranch pipeline job. The difference is that it works on all repositories
of a GitHub organisation and not just on a single repository. In terms of the
folder analogy there would be a top-level folder for the organisation with
a sub folder for each repository, which in turn consists of the jobs for all
branches and pull requests.

What these jobs enable is to have one repository of truth (Kim et al., 2016,
pages 115–119). This repository would then not only include the source code
but also a Jenkinsfile that specifies all the steps necessary for continuous
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integration and continuous deployment. Changes to the Jenkinsfile in one
branch do not affect other branches. Consequently, older branches will
continue to work in the future. No additional versioning is required. Of
course there are some limitations, for example, when jobs share external
resources like directories. Nevertheless in general jobs should not share any
resources, as is explored in Section 4.5. Another huge advantage of these
job types is the automatic detection of branches and pull-requests. There
only needs to be one job that can handle most if not all use cases.

There are two different syntaxes for Jenkins pipeline (Laster, 2018, pages
4–5):

• Scripted Pipeline
• Declarative Pipeline

Scripted pipelines enforce little structure and are executed top-down, like
any other Groovy script. The stages of a build are executed on specific nodes.
Regular Groovy can be used in the scripts, including its stages. Therefore,
flow control with if-conditions and loops is possible. Error handling is done
by acting on exceptions, for example, catching an exception to then inform
people via mail of the failed build.

Each build stage consists of the build steps to execute, such as sh to
execute shell commands and junit to collect and publish the JUnit21 test
results. Each Jenkins plugin can provide pipeline steps, like the JUnit plu-
gin22 with the junit step.

The flexibility of scripted pipeline makes it useful for very complex jobs
but incurs additional work for regular tasks. For example, typical post-build
actions like collecting JUnit results, informing people of the build result,
and publishing coverage results have to be handled manually. They have
to be in the finally-block of a try-catch-finally to be always executed,
while steps that should only be executed on success have to be placed inside
of the try. Listing 4.3 illustrates such a pipeline that executes tests within
a given environment on a node (Laster, 2018, pages 32–34) with the label
or name java. The test results are always collected, even if the Gradle step
fails.

21JUnit test framework: https://junit.org
22Plugin for Jenkins to collect JUnit test results: https://plugins.jenkins.io/junit

35

https://junit.org
https://plugins.jenkins.io/junit


4 Practical Challenges

node(’java ’) {

stage(’Test ’) {

try {

withEnv ([" GRADLE_USER_HOME =/. gradle/

$EXECUTOR_NUMBER", ’ANDROID_SDK_ROOT =/usr/

local/android -sdk ’]) {

sh ’./gradlew test ’

}

} finally {

junit ’**/* TEST*.xml ’

}

}

}

Listing 4.3: Scripted pipeline that runs on a node named java or on any node that has
a java label. There is one stage that executes tests whose results are always
collected by the junit step. Gradle is executed within a specified environment.
[Source code written by the author of this thesis.]

With pipeline version 2.5 the declarative syntax was added (Bayer et al.,
2018). In contrast to scripted pipeline some of the flexibility is sacrificed by
enforcing a clear structure that aims to represent typical Jenkins workflows.

To illustrate the declarative syntax the scripted pipeline example of List-
ing 4.3 was rewritten declaratively in Listing 4.4. In this case the resulting
code is longer, though the intent is arguable clearer. Notably the same build
steps can be used in both the scripted and the declarative pipeline.

All the build steps are placed in a hierarchical structure. A stages-block
contains at least one stage-block that in turn contains build steps grouped in
a steps-block. Further structuring is possible by nesting multiple sequential
stages inside of a stage or by employing parallelism to some degree.

The agent directive specifies where to execute the build, which could
include a Docker container as is described in Section 4.5. Above all each
stages- and stage-block can have its own agent to execute on. This makes
it very easy to, for instance, execute stages on different operating systems.

There is a specific environment-block where the environment variables are
set for the whole build. In the same way there can be an environment-block
for each stage and stages, furthermore withEnv can still be used.

With the post block it is clear which steps are part of the post processing,
such as collecting test results or code coverage results. In this case the junit

step is always executed, even on failure, which is made explicit. A multitude
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of different conditions is supported, for instance, always, failure, success,
changed, and fixed.

pipeline {

agent {

label ’java ’

}

environment {

GRADLE_USER_HOME = "/. gradle/$EXECUTOR_NUMBER"

ANDROID_SDK_ROOT = ’/usr/local/android -sdk ’

}

stages {

stage(’Test ’) {

steps {

sh ’./gradlew test ’

}

post {

always {

junit ’**/* TEST*.xml ’

}

}

}

}

}

Listing 4.4: Declarative pipeline that runs on an agent with the label java. There is one
stage that executes tests whose results are always collected by the junit step
in the post-block. The whole build is executed within a specified environment.
[Source code written by the author of this thesis.]

Development of both scripted and declarative pipelines is aided by refer-
ences accessible in the user interface, including generators for build steps.
Another form of creating basic declarative pipelines is the Blue Ocean Editor
(Laster, 2018, pages 344–378) as part of the recently introduced Blue Ocean
interface (Laster, 2018, pages 317–379).

The Blue Ocean interface is a new graphical interface with the goal to
be cleaner than the traditional Jenkins interface. Although it does not yet
support all features like displaying code coverage, displaying the results of
static analysis, or creating complex declarative pipelines. Yet it provides a
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Figure 4.7: The structure enforced by freestyle jobs. [Screenshot taken by the author of this thesis.]

graphical view of the pipeline in form of a graph, which makes its structure
clearer.

The newer declarative pipeline is somewhat endorsed in the official
Jenkins documentation by describing it first and often hiding scripted
pipeline examples behind an additional mouse click (Gaskell et al., 2018).
Clearly an advantage of the declarative pipeline is that the Blue Ocean
Editor is supported and that its structure helps in common tasks and is also
familiar with freestyle jobs (Laster, 2018, pages 25–26, pages 218–219).

Figure 4.7 shows the structure of a freestyle job. There are different
sections like build triggers, build environment, build, and post-build actions
that can be mapped directly to sections in the declarative pipeline. Such
direct mapping is not possible for scripted pipeline, which is closer to
imperative programming.

In contrast, the scripted pipeline is often mentioned in combination with
advanced and complex build jobs. It provides more flexibility than the
declarative pipelines due to its simpler structure (Bayer et al., 2018).

The Jenkins pipeline is a good way to avoid the limitations of freestyle
jobs altogether. While the Job DSL can mitigate some of the limitations of
freestyle jobs, freestyle jobs in themselves remain inflexible. Consequently,
it is beneficial to use Jenkins pipeline for all kind of jobs and only to rely on
the Job DSL to create these pipeline jobs. Probably a sensible approach is to
start with declarative pipeline first and to only use scripted pipeline when
not possible otherwise.

4.3.4 Build Jobs on Catrobat Jenkins

At the end of 2016 there were roughly 50 freestyle jobs with either Ca-
troid or Paintroid in their name grouped into multiple views. The views
had names like Catroid, Catroid-multi-job, LeeroyCatroid, Paintroid, and
Paintroid NEWView. There was no further indication about the state of
these jobs. All the jobs were configured via the Jenkins user interface. None
of the jobs were stored in a repository. Therefore, improving the situation
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was an early goal.
Transforming existing jobs to pipeline jobs was a natural contender with

all its advantages mentioned above. Yet in the beginning of 2017 Jenkins
pipeline was still relatively new. For instance, Blue Ocean did not exist yet.
Furthermore, the Android Emulator Jenkins plugin that was used was not
supported yet. This plugin managed everything related to the emulator,
including the installation of its dependencies.

For this reason it was decided to stick with freestyle jobs and to configure
them via the Job DSL as a stopgap measure. The hope was that the Android
Emulator plugin would be supported in the near future, as was planned by
its maintainer, making a seamless transition to pipeline possible. Section 4.6
discusses the issues faced with the Android Emulator, explains in more de-
tails the reasoning to select Job DSL at first, and describes further measures
taken to work with the emulator.

To remedy the situation of too many jobs with unknown purpose only
jobs with a known purpose that were actually used were deemed to be
created by the Job DSL. Nonetheless with freestyle jobs many specialised
jobs were used. This was partially done since it was easier to have small
freestyle jobs with as little conditional logic as possible. Otherwise, the
jobs would become very complex and confusing. In October 2017 Job DSL
managed 10 freestyle jobs for Catroid in an own folder on Jenkins23:

• SingleClassEmulatorTest executed a test class of the parameterised
git branch and repository on the Android Emulator.

• SinglePackageEmulatorTest same as SingleClassEmulatorTest only
that here a test package was executed in contrast to a test class.

• PullRequest executed the instrumented unit tests for Catroid pull
requests.

• PullRequest-Standalone ensured that standalone APKs could still be
created for pull requests.

• PullRequest-UniqueApk built for every pull request a Catroid APK
with a unique application name. This enabled parallel installation of
multiple versions of the Catroid application.

• PullRequest-Espresso ran Espresso user interface tests for every pull
request.

23Catroid build jobs in October 2017: https://git.io/fhGbo
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• Nightly ran tests and static analysis for Catroid every day at midnight
and made the generated APK accessible.

• Continuous ran on any change to the develop branch of the Catroid
repository. Similar to the nightly, but did not make the resulting APKs
accessible.

• Standalone was triggered automatically by the Pocket Code website24

to build and publish APKs for user generated applications.
• Standalone-Nightly built the same user application of the Pocket

Code website every midnight to ensure that standalone applications
could still be built.

At the same time five freestyle jobs were managed for Paintroid, with
similar naming and meaning25:

• SingleClassEmulatorTest

• SinglePackageEmulatorTest

• PullRequest

• Nightly

• Continuous

This means that during 2017 it was possible to reduce the number of jobs
in views for Catroid and Paintroid from roughly 50 jobs to 15. All managed
with the Job DSL and all with a documented purpose. Initially these jobs
only existed on a test server, to avoid negative effects on the operational
system.

Listing 4.5 shows the code necessary to create the Continuous job for
Paintroid. That only 12 lines of code are necessary is made possible by
abstractions implemented on top of the Job DSL. Without these abstractions,
in plain Job DSL syntax, the same job would need more than 100 lines of
code. Instead the resulting job definition is very readable and compact. The
Job DSL was also used to create the seed job in a bootstrapping fashion.

24Pocket Code website: https://share.catrob.at
25Paintroid build jobs in October 2017: https://git.io/fhGbK
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paintroid.job(" Continuous ") {

htmlDescription ([’Job runs continuously on changes .’])

jenkinsUsersPermissions(Permission.JobRead)

git()

continuous ()

androidEmulator ()

gradle(’connectedDebugAndroidTest ’,

’-Pjenkins -Pandroid.

testInstrumentationRunnerArguments.class=org.

catrobat.paintroid.test.espresso ’)

junit ()

}

Listing 4.5: Job DSL definition of the continuous job for Paintroid. [Source code written by the
author of this thesis.]

The transition to pipeline jobs triggered by Michael Musenbrock fur-
ther reduced the number of jobs needed. Eventually for Paintroid a single
Multibranch Pipeline job remained26 handling pull requests, nightlies, and
building on changes. The need for further jobs to build specific branches was
reduced, since the Multibranch Pipeline job detects branches and all pull re-
quests automatically. At the same time the Paintroid team improved its tests,
which is why SingleClassEmulatorTest and SinglePackageEmulatorTest

were not needed anymore.
For Catroid four pipeline jobs remained27:

• Catroid is a Multibranch job handling pull requests, branches, night-
lies, continuous integration, and optionally building APKs for all
flavours that can be installed in parallel.

• Catroid-SensorBoxTests a new Multibranch job to run a subset of
tests on a real Android device connected to a sensor box. This sensor
box (Lesser, 2018) detects hardware effects like flash activation and
vibration of the device.

26Paintroid build jobs in December 2018: https://git.io/fhGbP
27Catroid build jobs in January 2019: https://git.io/fhDxE
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• Catroid-ManualEmulatorTest takes user input in the form of a git
branch and repository, Android Emulator parameters, as well as the
test class or test package to execute.

• Build-Standalone job with the same behaviour as the Standalone job
previously.

The flexibility of pipeline lead to three jobs where there had been 10 before
with the addition of the new job Catroid-SensorBoxTests, which had no
counterpart before the transition. The jobs also provided more functionality.

An early goal when introducing pipeline jobs was to keep the Catroid
and Paintroid jobs similar. Initially this resulted in similar, but not identical,
build stages. The main difference was in the environment section where
the differences were mapped to environment variables with project specific
values, see Listing 4.6 for Catroid. These environment variables were then
referred in the build steps. With increasing work the build steps of both
Catroid and Paintroid diverged, especially since Catroid supports different
flavours and has its tests structured differently. The environment variables
were only used in the Jenkinsfile, while they were also accessible from within
the build. They polluted the environment of the build and also made the
build steps harder to understand. Many of the steps were also duplicated,
increasing the size of the Jenkinsfile. As there are multiple Jenkinsfiles for
Catroid to realise the different jobs there was also duplication.

The Jenkinsfile was refactored by creating helper functions and using reg-
ular Groovy variables instead of environment variables. Basically applying
best practices of programming. Eventually no environment variables were
needed directly in the Jenkinsfile, instead some of them were moved to the
Dockerfile, see Section 4.6.

Further work by the author of this thesis included nightlies for the develop
branch, code coverage collection, support to trigger builds directly from
comments on GitHub, optionally building all Catroid flavours, building
Catroid packages that point to the test server instead of share.catrob.at,
improved independent APKs, and general cleanup.

Some of these features were added to support the needs of the stakehold-
ers, for example, the Catrobat Web Team can now test the compatibility
of Catroid with changes they made on their test server. Instead of hoping
that changes to their live system are compatible with Catroid they can try
beforehand on their test server, thereby reducing the risk drastically.
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//////// Build specific variables ////////

//////////// May be edited by the developer on changing the

build steps

// modulename

GRADLE_PROJECT_MODULE_NAME = "catroid"

// APK build output locations

APK_LOCATION_DEBUG = "${env.GRADLE_PROJECT_MODULE_NAME }/build

/outputs/apk/catroid/debug/catroid -catroid -debug.apk"

APK_LOCATION_STANDALONE = "${env.GRADLE_PROJECT_MODULE_NAME }/

build/outputs/apk/standalone/debug/catroid -standalone -

debug.apk"

JACOCO_XML = "${env.GRADLE_PROJECT_MODULE_NAME }/build/reports

/coverage/catroid/debug/report.xml"

JACOCO_UNIT_XML = "${env.GRADLE_PROJECT_MODULE_NAME }/build/

reports/jacoco/jacocoTestCatroidDebugUnitTestReport/

jacocoTestCatroidDebugUnitTestReport.xml"

// place the cobertura xml relative to the source , so that

the source can be found

JAVA_SRC = "${env.GRADLE_PROJECT_MODULE_NAME }/src/main/java"

Listing 4.6: Parts of the environment section of the Catroid Jenkinsfile in August 2018.
[Source code taken from https://git.io/fhSpH]

Independent APKs were a feature introduced with the Job DSL and
further improved for the pipeline jobs. A common use case of the Catroid
and Paintroid product owners was to install the APKs of a pull request
to try out the changes. Android only allows to have one installation of
an application. The solution was to assign each APK a unique application
name, so that they could be installed independently of APKs provided by
other builds. For the pipeline job the naming was improved by considering
the flavours and using a name that easily identifies the relevant branch or
pull request that an installed application originated from.

Performance of the build jobs was also improved, see Section 4.7. Fur-
thermore, Kirshan Kumar Luhana (Luhana, Schindler and Slany, 2018) and
Rainer Lankmayr introduced support to deploy Catroid and Paintroid dir-
ectly to the Google Play Store, drastically reducing the manual steps needed.
During all this work the complexity of the Jenkinsfile increased, yet the jobs
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are still easy-to-use.
Configuration as code for build jobs proved a success. In hindsight it

would have made more sense though to directly use Jenkins pipeline and
not to hope that the Jenkins Android Emulator plugin would be supported
in the future. Nonetheless, configuration as code made transparent what
the configuration of a job is and who created that configuration. Placing
the job configuration next to the source code of the builds means that even
older branches can be build in the future, no matter if the most recent job
configuration would be incompatible. Notable of the build job definitions is
that they were actively maintained by adding more features, refactoring the
code, and improving performance and stability. Excluding merge commits
there were more than 40 git commits that modified any of the Jenkinsfile
for Catroid and more than 35 for Paintroid, which is a testament to a well
maintained and actively used system.

4.4 Flaky Tests

For both Catroid and Paintroid tests are executed on Jenkins. In 2016 most
of these tests were executed on the Android Emulator. Unfortunately, many
tests failed and one reason brought forward by the Catroid team was
that they were flaky. This section describes the problem of flaky tests and
discusses the steps taken by the Jenkins, the Catroid, and Paintroid teams
to understand and improve the situation.

4.4.1 Impact of Flaky Tests

Tests are at the core of continuous integration: All tests have to succeed for a
build to pass (Duvall, Matyas and Glover, 2007, page 42). The precondition
is that tests are deterministic. That means without a change to the system
under test the test will either always succeed or always fail. Tests that are
non-deterministic are often called flaky tests (Luo et al., 2014). Such flaky
tests are a common problem as Luo et al. (2014) found out: Industry leaders
like Google are affected as are open source projects like Jenkins.

Flaky tests have a very negative impact (Fowler, 2011a). Tests are supposed
to act like a safety guard that detects regressions. Thus when a build
failed the developer whose source code changes were built is supposed to
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investigate the failing tests. Developers lose trust in the tests when it turns
out that their own source code changes were unrelated to the failing tests,
that the tests were flaky. Eventually developers will ignore the results of
alleged flaky tests. These flaky tests would then not act as safety guard
anymore. Bugs could be introduced without anyone noticing. Even worse,
developers might start to ignore all tests results. For them it might be a
waste of time to check the test results to always find the same set of tests
failing. This is why Fowler (2011a) calls flaky tests virulent. They degrade
the value of any test suite.

4.4.2 Causes for Flaky Tests

There are multiple causes for flaky tests like the so called asynchronous
wait (Luo et al., 2014). An asynchronous call is performed to then check the
results. The test fails when the result of the asynchronous work is checked
before it finished, which in general is referred to as race condition. Such race
conditions can easily happen when testing user interfaces (Thorve, Sreshtha
and Meng, 2018), as they are often run in their own thread.

In a typical flaky test first a user interface action is scheduled in the user
thread. Second the test thread is manually paused for a given time, ideally
sufficient time for the user interface thread to complete its work. Such a
pause is called sleep. After the sleep the results are checked in the user
interface.

Listing 4.7 shows code of the Paintroid project that had this issue. If the
sleep is too short the following assertion will fail, since the asynchronous
work is not finished by then. Therefore, the test depends on the performance
of the machine it is executed on. Continuous integration systems are often
under heavy load, thus a longer sleep might be needed. A longer sleep
increases the overall test execution time which is detrimental for overall
performance. In general tests should work independently of the performance
of the machine they are executed on.

Another cause for flakiness can be lack of isolation (Fowler, 2011a). This
refers to tests depending on each other to some degree, for example, when
a test does not reset some global state, like resources, after its execution.
With such a dependency one test might handle resources incorrectly which
then affects another test. Suddenly the test execution order matters. This
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behaviour was often witnessed in the Paintroid drawing application when a
test did not correctly reset the colours and brushes used.

mSolo.drag(bottomrightCanvasPoint.x / 2,

bottomrightCanvasPoint.x / 2, bottomrightCanvasPoint.y /

2, bottomrightCanvasPoint.y / 2 + canvasCenterTollerance ,

1);

PointF canvasCenter = new PointF (( bottomrightCanvasPoint.x +

widthOverflow) / 2, newBitmapHeight / 2);

mSolo.sleep(SHORT_SLEEP);

assertTrue("Center not set", PaintroidApplication.

drawingSurface.getPixel(canvasCenter) != Color.TRANSPARENT

);

Listing 4.7: Segment of the BitmapIntegrationTest.java file of the Paintroid project in
March 2017. The sleep used might be too short in some cases leading to flaky
tests. [Source code taken from https://git.io/fhZpR]

An often overlooked cause for flakiness are external dependencies (Thorve,
Sreshtha and Meng, 2018). Both Catroid and Paintroid used the Robotium28

test framework. Unfortunately, Robotium tests tended to be slow and flaky
(Genco, 2015). One cause was usage of sleep as mentioned above but also
the framework itself. Another cause for flakiness is the Android Emulator.
The Android Emulator is started once, then all tests are executed on the
emulator instance. Consequently, the emulator can be regarded as global
state that is shared between all tests. Since the emulator is complex software
itself, bugs can lead to flaky tests. Unfortunately, the lack of isolation in case
of the emulator is mandated by performance and practical considerations.

A typical source for flakiness are also tests that rely on the network
(Thorve, Sreshtha and Meng, 2018). The Catroid team had some network re-
lated tests that tendend to be flaky, like the testLoginWithNotExistingUser

in ServerCallsTest that tried to login on the test version of the Pocket Code
Website29 with an invalid account.

28Robotium: https://github.com/RobotiumTech/robotium
29Pocket Code website: https://share.catrob.at
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4.4.3 Handling Flaky Tests

There are different ways of handling flaky tests. Some of the approaches
try to fix the underlying issue, while other approaches can be considered a
workaround.

One common workaround is to mark flaky tests as such. When a marked
test fails it is rerun a couple of times up to a limit and treated as passed if
any of the test runs succeeded (Luo et al., 2014). Such a test would still find
bugs that always lead to a test failure. Bugs with flaky behaviour themselves
would not be found by such a test. Another approach is to remove flaky
tests, since they have questionable benefit. As Fowler (2011a) points out
this can lead to test removal as habit when developers lose discipline and
do not analyse the test results anymore. A further workaround is to move
flaky tests into an own quarantine test suite (Fowler, 2011a), to separate
between deterministic and non-deterministic tests. The danger exists that
this quarantine suite grows and failures there are discarded as flaky and
are not investigated at all.

Up until 2017 whole test packages with failures were rerun for Catroid.
This increased the test execution time dramatically to five hours on average.

With actual flakiness it becomes likely that a test package with many flaky
tests will never succeed. Rerunning the whole package would only work if
there were very few flaky tests. Suppose every flaky test has a probability of
failure pt f and that the flakiness for each test is independent. With pt f = 0.2
and n f t = 5 flaky tests the probability of the test package to succeed would
be pps = (1 − pt f )

n f t = (1 − 0.2)5 = 33%. The probability that a package
succeeds at least once in three runs would then be ps = 1 − (1 − pps)3 and
in the example 69.6%. So in this example the test package would show as
failed for roughly 30% of the builds, leading to additional overhead. The
problem of test execution times becomes more apparent when test packages
contain tests that always fail, which unfortunately was the case.

In 2018 a quarantine test suite was added for Catroid that included very
flaky tests. This test suite was only run during nightlies, since there were
always failures. The quarantine test suite even lead to Android Emulator
crashes more than half of the time.

Then there are the actual solutions. That means improving the tests to
some degree (Thorve, Sreshtha and Meng, 2018). Listing 4.7 gave an example
of potential race conditions and wasted test performance. Instead of having
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one sleep which might be too short or way too generous polling could be
used. Robotium provides wait functions to wait for a certain outcome (Joshi,
2014). These wait functions check a condition and if the condition is false
wait for a short amount of time to check again. The wait functions try this
until success or a timeout is reached. This leads to two advantages: First the
overall timeout can be very high, which reduces the risk of failures on slow
machines. And second the interval between checking the condition can be
low. That reduces the overall test duration as less time is spent sleeping.
Listing 4.8 is adapted to use these wait functions. Now no manual sleep is
necessary anymore. Albeit the code grew a little bit, which is a hint that
refactoring is needed. Common use cases should be put in the test base
class, for example, an assertCondition or even an assertColorUnequalAt

function could be provided.

mSolo.drag(bottomrightCanvasPoint.x / 2,

bottomrightCanvasPoint.x / 2, bottomrightCanvasPoint.y /

2, bottomrightCanvasPoint.y / 2 + canvasCenterTollerance ,

1);

PointF canvasCenter = new PointF (( bottomrightCanvasPoint.x +

widthOverflow) / 2, newBitmapHeight / 2);

assertTrue("Center not set", mSolo.waitForCondition(new

Condition () {

@Override

public boolean isSatisfied () {

return PaintroidApplication.drawingSurface.getPixel(

canvasCenter) != Color.TRANSPARENT);

}

}));

Listing 4.8: Adapted test code of Listing 4.7 to not rely on sleeps and thereby removing the
race conditions. The resulting code could be refactored to move common assert
checks into the base class. [Source code written by the author of this thesis.]

Yet, even with polling, the tests were not running stable. Robotium was
not stable. So both the Catroid and the Paintroid team moved to a differ-
ent testing framework: Espresso. Espresso has a different approach from
Robotium. Instead of polling, callbacks can be registered that are called
automatically on defined events. This speeds up test execution drastic-
ally as there is no sleeping involved. Furthermore, Espresso leads to more
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stable tests than Robotium (Genco, 2015), which was also experienced in
the Catrobat project. The changes also included usage of JUnit 4 and the
official JUnit test runner. Previously a custom test runner had been used
due to deficits of Jenkins in the test result collection, that were not relevant
anymore.

Finally, the test structure can be changed: Writing more unit tests rather
than the brittle user interface tests. This can be seen both as workaround
or as proper solution. As workaround since the actual tests are not fixed,
but as a proper solution since the program is still tested but there are fewer
flaky tests.

Cohn (2010, pages 311–314) coined the term test automation pyramid. At
the base of the test automation pyramid in Figure 4.8 are unit tests. Cohn
(2010) places service tests in the middle of the pyramid, it is also common
to place integration tests and component tests in the middle (Genco, 2015).
For Cohn (2010) a service is anything that is done in response to user input,
for example, parsing a string. At the top of the pyramid are user interface
tests and often also end-to-end tests (Genco, 2015). End-to-end tests test the
whole system which can include user interface tests (Vocke, 2018). Most
tests should be unit tests as they are in general cheap to write (given testable
code), they run stable, and execute very fast. In contrast, user interface tests
tend to be brittle: When the user interface changes many tests need to be
adapted. User interface tests using the Android Emulator are also very flaky
and take long to execute (Genco, 2015).

In practice there is often a reverse pyramid in the form of an ice-cream
cone (Fowler, 2012b). That means most tests are user interface tests or
end-to-end tests with very few unit tests.

The Test test structure of both Catroid and Paintroid were in the form
of such ice-cream cones. Most existing unit tests required the Android
Emulator, so-called instrumented unit tests (Google Developers, 2018c), and
thus were very similar to user interface tests. There was also a massive
amount of user interface tests. This lead to the aforementioned issues.

For unit tests to be easy and therefore cheap to write the source code
needs to be testable. Making existing code testable can be quite laborious
but leads to better designs and improves the product overall as Feathers
(2004) pointed out in Working Effectively With Legacy Code.

The Paintroid team invested heavily in improving their code to make it
more testable. This lead to roughly 250 unit tests and 370 end-to-end tests
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Unit

Service

UI

Figure 4.8: Test automation pyramid as described by Cohn (2010, pages 311–324). The
focus should be mostly on unit tests. In contrast, user interface tests are brittle,
expensive to write and need longer to execute. [Diagram drawn by the author of this
thesis.]

which improved the test execution speed. Google itself suggests a share of
70% unit tests, 20 % integration tests, and 10% user interface tests, so there
is still much room for improvement (Google Developers, 2018f).

To avoid long transitions to more unit tests a framework like Robolectric30

can be used. This framework simulates a subset of the Android API, allowing
to write user interface tests without any connected device. Tests that rely
on functionality not supported by Robolectric would still be written as
regular user interface tests to run on a device. For these remaining tests
using Android Test Orchestrator can be useful to reduce the shared state
between tests, since the instrumentation is not shared and application data
is cleared between test runs (Zawadzki, 2018). In 2018 neither the Android
Test Orchestrator not Robolectric were used by the Catrobat project.

4.4.4 Detection of Flaky Tests

With a description of what flaky tests are and how to handle them the
question still remains of how to detect them on Jenkins. For example,
in 2016 the build job CatroidEmulatorAllTestsSerialNightly executed
roughly 2500 tests of which 40% failed every time. Both the total number
of executed tests and the number of failing tests varied during build runs.
This could be an indication of Android Emulator crashes. Yet, just by these
numbers it is not clear how many of these tests were actually flaky. This
sections investigates one manual method to detect flaky tests that can be
used on Jenkins.

30Robolectric framework: http://robolectric.org
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Figure 4.9: The test results overview provides insufficient information to determine whether
the failed testLoginWithNotExistingUser test was flaky or not. [Screenshot taken
by the author of this thesis.]

Figure 4.10: The test results view only refers to the current and the previous build. For test
failures it tracks for how many builds the test was failing. In this case the age
of testLoginWithNotExistingUser is one, since the test ran successfully in
the previous build. [Screenshot taken by the author of this thesis.]

Figure 4.9 shows the test section of the build results. For this specific
build there was one failed test overall. That test did not fail in the previ-
ous build which is indicated by the +1. This might be an indication for
flakiness but could also indicate a bug. The test overview is insufficient
to determine whether there are flaky tests or not. The detailed test results
view in Figure 4.10 does not help in this regard either. It shows an age for
failed tests, which is the continuous number of builds the test failed. Since
testLoginWithNotExistingUser succeeded the previous build the age is
one. Clearly more information is needed to determine flaky tests.

To determine whether a test is probably flaky more historic information
is needed. Especially the state changes from passing to failing are important.
This is where the test results analyzer plugin31 comes in.

By default the test results analyzer provides an overview of the last ten
builds as in Figure 4.11, which shows the results for an example project

31Test Results Analyzer plugin for Jenkins: https://plugins.jenkins.io/test-results-
analyzer
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Figure 4.11: View of the aggregated test results of the last ten builds of an illustrative
example for flaky tests. Tests failed in packagea while there were no failures
in packageb. Detailed information can be shown by pressing the plus icon in
the See children column. [Screenshot taken by the author of this thesis.]

Figure 4.12: View of all failing tests of the last ten builds using the test results analyzer
Jenkins plugin on an illustrative example. The package and the test classes
were manually expanded to show the failing tests. The resulting view can be
helpful in finding potential flaky tests as the history of the last ten builds is
included. [Screenshot taken by the author of this thesis.]

to illustrate flaky tests. There the aggregated results of the executed test
packages are shown. If one test in a package failed then the whole package
is treated as failed. In the example packagea had failed in the current build
15, which is indicated by the warning sign, and also failed regularly before.
It might be that there are flaky tests in packagea.

To investigate a test package with failures in more detail the view can
be expanded, see Figure 4.12. The test testFlaky2 in the class FlakyTest

appears to be flaky since there were many transitions from pased to failed
and vice versa. This is not clear for both testFlaky1, for these tests the
history needs to be increased to consider more than ten builds, which can
be configured. In any case the failed tests need to be investigated further to
determine the actual issues, which can be done by clicking on the FAILED

text.
When only few tests fail overall then the top 10 most failed tests view

shown in Figure 4.13 is very useful. It can be sufficient to manually detect
probable flaky tests.
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Figure 4.13: View of the top 10 most failed tests of the test results analyzer Jenkins plugin.
A project is used that illustrates flaky tests. [Screenshot taken by the author of this
thesis.]

The test results analyzer plugin for Jenkins is a useful tool for finding
probable flaky tests as it includes previous builds in its visualisations. There
were some disadvantages though in version 0.3.4 of the plugin:

• There was no information on the number of transitions from failed to
passed and vice versa. Users had to retrieve that information manually.

• There was no indication in the collapsed view of how often a test
package, a test class, or a test failed in the investigated builds. The
test package needed to be expanded to retrieve that information by
manually looking at previous builds.

• Moreover, in the collapsed view there was no indication of how many
tests of a package failed. In this case also expanding the test packages
and test classes was necessary to then manually determine the severity
of the number of failed tests.

• The user interface was not very compact. Much space was wasted by
the new failures and the see children column. This became impractical
when viewing more than just the last ten builds as vertical scrolling
was necessary.

• The performance of the user interface was detrimental for projects
with a large number of test, like Catroid.

• The performance on Jenkins master was also bad for for projects like
Catroid.

• The test results were not collected for Jenkins jobs that start child jobs
to delegate the work. The CatroidEmulatorAllTestsSerialNightly

was such a build flow job that delegated the work to child jobs. The
plugin could not be used for that case. Even though it would have
been especially useful there to investigate the over 2500 tests with over

53



4 Practical Challenges

1000 failing ones.

The test results analyzer plugin is released under the Apache license,
which supports users modifying its code (Apache Software Foundation,
2004). The author of this thesis created pull requests to improve the plugin.

One of the first pull requests made the plugin work with the Catroid-

EmulatorAllTestsSerialNightly job by aggregating tests of child jobs32.
Afterwards the focus moved to the performance of the plugin. The cre-

ation of the JSON file consumed by the clients took seconds on Jenkins
master. The performance was improved by removing unused content and
by reducing indirections33. Notably, the changes even lead to clearer code
including unit tests.

Some of the user interface interactions were very slow too, which was
improved by applying more efficient algorithms34. For example, collapsing
the root node with a fully expanded tree improved from 50 seconds to 250

milliseconds. Some interactions such as expanding all nodes also improved,
but to a smaller degree: From more than eight seconds to roughly three
seconds. The performance of the plugin could be further improved for better
interactivity, but at least the plugin became usable.

The user interface was also improved as shown in Figure 4.14. Tooltips
describe each element, enabling simplified user interfaces. For example,
the New Failures and the See children columns were combined with the
Package/Class/Testmethod column35. Two new columns were added as
well: A Passed and a Transitions column. The passed column shows the
percentage of succeeding runs of the test package, the test class, or the tests.
In the parenthesis the percentage of all succeeding tests that belong to the
node is shown. Users can look at the passed column to identify packages
with a low percentage of succeeding tests or packages that succeeded
rarely. The transitions column lists the number of transitions from failed to
succeeding and vice versa, which can be used as indication for flakiness.

With the help of the test results analyzer it turned out that most of the
more than 1000 failing Catroid tests were not flaky. They never worked. This
is an example of how the quality of a project deteriorates when continuous

32Pull request by the author of this thesis: https://git.io/fhDFI
33Pull request by the author of this thesis: https://git.io/fhDFs
34Pull request by the author of this thesis: https://git.io/fhDF2
35Pull request by the author of this thesis: https://git.io/fhDFo
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Figure 4.14: The author made some user interface improvements compared with Figure 4.12.
More information is included while the view became more compact at the
same time. [Screenshot taken by the author of this thesis.]

integration is not practised anymore. A combination of bad maintained tests
and a bad maintained continuous integration system with changes of the
environment such as newer Android versions lead to this state.

The test results analyzer is a useful tool to investigate test failures and
to detect flaky tests. Its free and open source software license made im-
provements easy to realise. With its help it could be shown that many flaky
test candidates were not flaky anymore by the end of 2016. They always
failed. The plugin also proved useful in finding flaky tests created with
the Espresso framework. Overall, the stability of the tests was improved
massively, mostly by using the Espresso test framework and by applying
better testing patterns.

4.5 Independent Jobs

Independent build jobs are a necessity for continuous integration. Reprodu-
cible builds are not achievable without them. For Martin Fowler reprodu-
cible builds are not a key practice, they are an underlying assumption of
continuous integration (Fowler, 2010). If one build job can negatively affect
a different build job or even the same build job running at a different time
then there is a dependency. Such dependencies need to be avoided.

In 2016 the Catrobat build jobs ran directly on the Jenkins slaves. Many
resources were shared between the build jobs:

• user home directory
• Gradle
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• Android

All jobs on a slave shared the same user home directory. In that directory
programs store their configuration and quite often also persistent data that
is created during the usage of the program. This includes, for example, the
$HOME/.java directory.

Gradle does not only build the Android projects but also handles depend-
encies. The GRADLE_USER_HOME environment variable contains the location
where gradle stores its cache, like dependencies it downloaded. If this en-
vironment variable is not set then Gradle stores its cache automatically at
$HOME/.gradle, that means a .gradle directory in the user’s home directory.
Furthermore, the jobs share the Gradle daemon if possible. So instead of a
distinct Gradle process per build the builds shared a single Gradle daemon.

There are multiple resources related to Android. The ANDROID_SDK_ROOT

and the ANDROID_HOME environment variables point to the location where
the Android SDK is stored. At that location there is also the Android
NDK and packages that were installed with the sdkmanager executable
provided by Android SDK. Some of these Android SDK packages are
installed automatically by Gradle using the sdkmanager executable (Google
Developers, 2018b). The SDK also includes executables that are used during
building, and executables that are used to start the Android Emulator and
interact with all running devices, including emulators. Then there is also
the $HOME/.android directory:

• It contains by default the Android Virtual Devices (AVDs), unless the
ANDROID_AVD_HOME environment variable is set. An AVD represents a
mobile device to emulate, including configurations, the system image,
and so forth (Google Developers, 2018d).

• The Android specific build cache (Google Developers, 2018a).
• Settings and keys.

Sharing resources can be harmful. For example, when the most recent
version of a resource is not compatible with older versions and thereby
breaks the build for old branches.

The r18 release of the Android NDK in 2018 caused build errors when
the Android Gradle plugin used was of version 3.0 or older (Prichard and
Albert, 2018). This affected Catroid, even though Catroid did not need the
Android NDK, simply because the Android NDK was installed.
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Per Jenkins slave multiple build jobs can run concurrently, potentially all
accessing these shared resources at the same time. To work reliable Jenkins
depends on all these resources to implement concurrent access correctly, for
present and future versions. If builds fail sporadically is this caused due to
bad tests, or maybe due to concurrency issues affecting the shared resources?
Analysing such cases increases the maintenance load and uncertainty.

As previously mentioned, in 2016 the builds were very unstable, with
roughly 1000 Catroid test failures every nightly. The failure causes were
unclear, especially since there was a time when the tests had worked.

There were different theories of what caused these issues. Possible causes
were newer versions of the Android SDK, the old Android Emulator used
by the Android Emulator Jenkins plugin (see Section 4.6), Gradle causing
issues when runnning concurrently, and the possibility of increased resource
requirements by the newer versions of the software. Also graphic driver
updates increased the instability. Another theory was that the adb daemon,
part of the Android SDK, was handled incorrectly by the Android Emulator
plugin, which often stopped adb while jobs were still running. The long job
execution times also made it hard to investigate the issue, especially since
they could not be reproduced consistently. At the same time the tests were
not maintained well and often depended on timing, see Section 4.4

When the cause of a problem is not clear it is often helpful to simplify
the problem by eliminating some possible causes, following the process
of elimination. As a result, the author started to research Docker as one
method to isolate jobs.

4.5.1 Docker

Docker is a software that supports the isolation of processes from each other
by running them in a container. The initial release was in 2013, since then
Docker saw huge growth and is very popular today (Cito et al., 2017).

In contrast to virtual machines containers share the kernel of the host
system (Docker Inc, 2018c) and do not run a full-fledged operating system
(Merkel, 2014). As a result, a Docker container is arguable less secure than a
virtual machine, but still quite secure (Docker Inc, 2018b; Walsh, 2014). Yet
at the same time sharing the kernel leads to better performance compared
with virtual machines (Herrera-Izquierdo and Grob, 2017) and performance
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comparable to running software directly on the host (Preeth et al., 2015).
On Linux Docker uses the namespace feature of the Linux kernel (Kerrisk

and Biederman, 2018) to isolate the processes within a container from
processes of other containers or processes running directly on the host
system (Agarwal, 2017). That way processes can have the same process
identifier and also provide the same network ports in multiple containers.
This leads to simpler deployments. For example, a server process can run
in multiple containers and use the same port everywhere, simplifying the
code that interacts with the server.

To keep the host filesystem untouched each docker container has its own
filesystem that is provided by the image it is based on. Such an image
contains everything that is needed to run the desired process, like system
libraries and in the case of a Linux image a Linux distribution installed on
its root. Many of the Linux images use Debian Linux or Alpine Linux as
their base, for example, the OpenJDK images36.

Docker applies copy-on-write to efficiently share the filesystem of one
image. Multiple containers that all use the same image can be started at the
same time. These containers cannot affect each others files. Any change to
a file is done solely in the container instance where the change originated
(Agarwal, 2017).

Docker also supports the rationing of system resources using the so called
cgroups provided by Linux (Agarwal, 2017). The system memory, swap
memory, and CPU time a Docker container uses can be limited, enabling to
partition the overall resources of a system. In Section 4.7 the cgroups feature
is used to provide better overall performance a deterministic way.

In summary, Docker provides the isolation of processes that is desirable
for a continuous integration system. This is the reason why many continuous
integration systems like Jenkins (Croy et al., 2018) and Bamboo (Prichard,
2018) support Docker.

A huge benefit of Docker is the ease of creating and running custom-
tailored Docker images (Merkel, 2014). The most common approach is to
use a Dockerfile that describes the necessary steps for the image creation,
so that the image includes all necessary dependencies. Such a Dockerfile
can be considered as infrastructure as code.

Listing 4.9 shows a Dockerfile that creates an image based on the Debian

36Official OpenJDK Docker images: https://hub.docker.com/_/openjdk
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Linux distribution version 9.5 and installs the Java 8 SDK using the distribu-
tion provided apt-get package manager.

FROM debian :9.5

RUN apt -get update && apt -get install -y --no -install -

recommends openjdk -8-jdk && rm -rf /var/lib/apt/lists /*

Listing 4.9: Dockerfile that describes an image based on the Debian Linux distribution with
Java 8 installed. [Source code written by the author of this thesis.]

The image can then be created by running docker build -t my_java8:1 .

in the directory where the Dockerfile is placed. To start a container docker
run can be used, for example, docker run -ti my_java8:1 /bin/bash starts
the container and provides an interactive shell for the user.

Docker Hub provides an even easier way to retrieve an image with Java 8

installed: Using one of the official openjdk images37 directly or as base, for
example, FROM openjdk:8-jdk. On Docker Hub there are many official and
custom images of common software, which simplify deployment of custom
applications relying on them.

An import feature of docker run is to mount directories or files of the
host into the Docker container (Docker Inc, 2018a). This can be done with
the --volume /HOST-DIR:/CONTAINER-DIR parameter or -v in short where
/HOST-DIR is an absolute path to a directory or file on the host that will be
readable and writable from the absolute path /CONTAINER-DIR inside of the
container. The --device parameter exposes specific devices to the container,
for example, --device /dev/kvm:/dev/kvm exposes the kernel-based virtual
machine used by the Android Emulator to the container.

Docker containers isolate processes leading to more security than running
the same processes directly on the host machine. The images these containers
are based on can be specified easily in a textual configuration format stored
in a so called Dockerfile. Therefore, Docker can also be used for packaging
all necessary dependencies in the images. On the central Docker Hub
repository official images are available for common use cases and custom
images can be uploaded as well. Overall, Docker is a very popular and
useful software that provides way more than just isolation of processes.

37Official OpenJDK Docker images: https://hub.docker.com/_/openjdk
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4.5.2 Docker and Jenkins

Jenkins 2 provides different ways to interact with Docker (Laster, 2018, page
499):

1. A cloud can be used as Jenkins node to provide Docker containers on
the fly as agent to execute jobs.

2. Docker agents can be started automatically on existing Jenkins nodes
to run the steps of a declarative pipeline.

3. Global variables exposed by Jenkins can be used to interact with
Docker, or alternatively shell commands can be used to interact with
Docker directly. This is more complicated than interacting with Docker
agents and thus not of interest here.

Once a cloud service has been configured using it from within a Jenkinsfile
is as easy as specifying a label in the agent directive (Laster, 2018, pages
499–511). Based on the label the cloud service would provide a Docker
container on the fly. Such a cloud node has a dynamic number of executors.
When more performance is needed only the capabilities of the cloud need
to be extended. For an external cloud provider this would be as simple as
changing the cloud configuration or switching to a different payment plan.

agent {

docker {

image ’openjdk:8-jdk ’

}

}

Listing 4.10: Agent directive in a Jenkinsfile that runs the build steps inside of the Docker
container based on the image named openjdk:8-jdk. In this case the image is
retrieved from Docker Hub automatically. [Source code written by the author of this
thesis.]

The declarative pipeline, see Section 4.3.3, provides very convenient ways
to interact with Docker (Laster, 2018, pages 511-513). In Listing 4.10 the agent
directive of a Jenkinsfile is shown. With this directive all build steps would
run automatically inside of the Docker image openjdk:8-jdk retrieved from
Docker Hub. Next to the image function call further functions are possible,
such as handing the arguments to docker run via the args function. Jenkins
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then runs the Docker container automatically by calling the command
docker run in the background.

agent {

dockerfile {

dir ’docker ’

filename ’Dockerfile ’

}

}

Listing 4.11: Agent directive in a Jenkinsfile that runs the build steps inside of the Docker
container created from a Dockerfile that is placed in a directory called docker.
[Source code written by the author of this thesis.]

The image invocation relied on an image existing already, either locally
or on a Docker registry like Docker Hub. It is also possible to dynamically
create an image based on a Dockerfile, which is shown in Listing 4.11. Here
the Dockerfile is placed inside of the repository that is checked out and built
by Jenkins in the directory called docker.

When building a Docker image Docker includes all files and directories as
part of its build environment. These files are not part of the resulting image,
unless otherwise specified. Yet including the files in the build environment
takes time, depending on their number and size. Therefore, it is beneficial
to place the Dockerfile in its own directory to reduce the Docker build
environment, as was done above.

Jenkins automatically builds a Docker image using the docker build

command in the background. Further arguments can be provided to docker

build with additionalBuildArgs. In this case the args call is supported
for docker run as well. Building the Docker image is a one-time cost. Once
it was built further calls to docker build will use the existing image auto-
matically. Docker also detects modifications to the Dockerfile, which would
lead to the creation of a new image.
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4.5.3 Docker and Catrobat

Initial Docker support for Catrobat was introduced by relying on a custom
image hosted on DockerHub38. Later a Dockerfile located in the repository
was used39, with the benefits described above.

One of the disadvantages of this solution was that many resources were
still shared, as can be seen by the very long list of arguments handed to
docker run in Listing 4.12. Resources such as the Android SDK were shared,
as well as the Gradle cache, the Java home, the Android home, and further
files.

args "--device /dev/kvm:/dev/kvm -v /var/local/

container_shared/gradle /:/. gradle -v /var/local/

container_shared/android -sdk:/usr/local/android -sdk -v /

var/local/container_shared/android -home :/. android -v /var/

local/container_shared/emulator_console_auth_token :/.

emulator_console_auth_token -v /var/local/container_shared

/analytics.settings :/ analytics.settings"

Listing 4.12: Arguments handed to the docker run command. [Source code taken from a commit
by Michael Musenbrock: https://git.io/fhDhK]

To ensure that these resources were actually used inside of the container
and that the build job could run successfully, environment variables were
set in the environment directive of the Jenkinsfile shown in Listing 4.13.

One reason to share so many files and directories was the location of the
home directory inside of the Docker image. By default the home directory
is set to the root directory /. Yet the user inside of the Docker container
used by Jenkins only had reading rights for /. When the build job tried to
create files in its $HOME, such as $HOME/.java it failed. So all the locations
the build job tried to write to were handed in and thereby shared between
the build jobs.

Another reason for sharing directories with the container are performance
considerations. Recreating the Gradle cache and redownloading the Android
SDK for every build would take very long. So it is sensible to benefit of
caching instead.

38Commit for Paintroid by Michael Musenbrock: https://git.io/fhDhK
39Commit for Paintroid by Michael Musenbrock: https://git.io/fhDhD
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ANDROID_SDK_ROOT = "/usr/local/android -sdk"

// Deprecated: Still used by the used gradle version , once

gradle respects ANDROID_SDK_ROOT , this can be removed

ANDROID_HOME = "/usr/local/android -sdk"

ANDROID_SDK_HOME = "/"

// This is important , as we want the keep our gradle cache ,

but we can ’t share it between containers

// the cache could only be shared if the gradle instances

could comunicate with each other

// imho keeping the cache per executor will have the least

space impact

GRADLE_USER_HOME = "/. gradle/${env.EXECUTOR_NUMBER }"

// Otherwise user.home returns ? for java applications

JAVA_TOOL_OPTIONS = "-Duser.home=/tmp/"

Listing 4.13: Environment variables used in the Jenkinsfile so that the handed in arguments
of Listing 4.12 are found by the build job inside of the container. [Source code
taken from a commit by Michael Musenbrock: https://git.io/fhDhK]

What is also notable in Listing 4.13 is the comment for the Gradle cache
environment variable GRADLE_USER_HOME. Each executor of a Jenkins node
needs its own Gradle cache. Gradle does not support concurrent access to
its cache across Docker containers40.

The easiest way to reduce the amount of shared resources was to change
the location of the home directory inside of the container to a location that
is writable by the user. Further sharing could be avoided by moving the
Android dependencies inside of the container, see Section 4.6. Eventually
this lead to the simplified list of arguments shown in Listing 4.14. None
of the environment variables of Listing 4.13 were needed in the Jenkinsfile
anymore. The Gradle cache is still shared, though a different host location
has to be used as the Gradle cache is also not relocatable41.

The usage of Docker for Catrobat changed quite a bit from its introduction
to the current state. This highlights the importance of constantly improving
the infrastructure whenever issues or possibilities for refactoring arise.

40Gradle issue report: https://git.io/fhye0
41Gradle issue report: https://git.io/fhyvf
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args ’--device /dev/kvm:/dev/kvm -v /var/local/

container_shared/gradle_cache/$EXECUTOR_NUMBER :/home/user

/.gradle ’

Listing 4.14: Reduced number of arguments handed to the docker run command. [Source
code taken from a pull request by the author of this thesis: https://git.io/fhZDC]

Docker proved very beneficial for Jenkins Catrobat. The build dependen-
cies became transparent, independent of other build jobs, and with Docker-
file also tied to the source code to build. Thereby there is one single source
of truth.

Section 4.6 will describe how Docker can be used for Android depend-
encies, while Section 4.7 will further investigate Docker usage to achieve a
more deterministic and improved performance of the build jobs.

4.6 Android Emulator Handling

Typical Android integration tests and user interface tests need a device to
be executed on (Google Developers, 2018f). This can be a physical, therefore
real, device or alternatively an emulated device. In the case of Catrobat most
devices were emulated.

Emulating devices makes scaling easier, for example, testing different
form factors or growing the infrastructure by adding new slaves, without
having to bother acquiring new Android devices. Furthermore, managing
real devices adds own burdens, such as failing batteries, or state that is kept
between build jobs. Of course, emulated devices also have disadvantages,
such as emulation bugs, or hiding behaviour real devices exhibit.

Handling the Android Emulator was surprisingly complicated though.
The emulator and its dependencies have to be installed, kept up-to-date,
configured, and have to be booted and shut-down correctly.

How parts of the dependencies can be managed was already described
in Section 4.5. This section focuses on the Android Emulator and its direct
dependencies. Different approaches and considerations of how to manage
the emulator will be investigated, leading to the solution that is used today.
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4.6.1 Android Emulator Jenkins Plugin

For Jenkins there is the Android Emulator plugin that handles all emulator
related tasks (Orr, 2017). The plugin can install the Android SDK automat-
ically, create the emulator, start the emulator, remove previously installed
APKs, and can also stop the emulator. The plugin has some issues on its
own though, which affected Catrobat.

The plugin installed an old version of the Android SDK, which also
lead to an old version of the emulator. Stability fixes and performance
enhancements of future Android SDK versions were not accessible on
Jenkins42. There were also issues43 when trying to use newer versions of the
Android build tools.

A disheartening situation resulted where the software used to execute
the tests would differ between Jenkins and setups of Catrobat developers.
The Catrobat developers would use newer versions of the Android SDK,
the emulator, and other Android dependencies, compared with the versions
used by the Android Emulator plugin on Jenkins.

This inconsistency made debugging test failures on Jenkins harder and
lead to distrust of the Jenkins results. Michael Musenbrock improved the
plugin by transitioning to newer versions of the dependencies, which turned
out to be a massive endeavour that fixed many long-standing issues44.

Occasionally the Android Emulator did not shut down correctly, leading
to defunct processes. The Android Emulator plugin did not forcefully clean
up these processes (Orr, 2017), which lead to resource outages on long
running Jenkins slaves.

Probably the most significant issue was that the plugin did not support
pipeline jobs. It only worked with freestyle jobs.

This known issue was supposed to be fixed in early 2017
45 after the Free

and Open Source Software Developers’ European Meeting46. Yet no progress

42Story to track support for newer Android Emulators in the Android Emulator Jenkins
plugin: https://issues.jenkins-ci.org/browse/JENKINS-40178

43Bug for incompatibilities between the Android build tools 26.0.2 and the Android Emu-
lator Jenkins plugin: https://issues.jenkins-ci.org/browse/JENKINS-44490

44Pull request by Michael Musenbrock to add Android Emulator 2.0 support to the Android
Emulator Jenkins plugin: https://git.io/fhZDg

45Story to track Jenkins pipeline support for the Android Emulators plugin: https://
issues.jenkins-ci.org/browse/JENKINS-33156

46Post FOSDEM 2017 Hackathon agenda: https://bit.ly/2ZymFYp
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was made due to colliding ideas of the implementation of some necessary
dependencies47 as the author of the plugin Christopher Orr mentioned in
the Internet Relay Chat of Jenkins.

The author of this thesis initially intended to convert the freestyle jobs
to pipeline jobs using Jenkinsfile, since the latter was the preferred way of
creating jobs in Jenkins 2 (Laster, 2018, page 2). The only obstacle was the
Android Emulator plugin dependency that did not support pipeline jobs.

With no progress on the pipeline support of the plugin at the beginning
of 2017 it was necessary to decide whether the Catrobat Jenkins team should
manage the emulator and everything related themselves, or whether to wait
for the support to arrive.

To avoid additional maintenance costs it was decided to keep using the
Android Emulator plugin in the hopes that support would arrive later in
2017. As a stop-gap measure the jobs would be managed with the Job DSL
instead, see Section 4.3.

4.6.2 Managing the Android Emulator with Bash and
Python

In 2018 Michael Musenbrock decided to port the existing jobs to pipeline
jobs. As a result, the Jenkins Android Emulator plugin could not be used
anymore, as there still was no pipeline support present. Instead Bash scripts
were written by Musenbrock to perform the necessary steps48.

These Bash scripts could also run on the machines of the developers. Yet
Windows was not supported by default, as it does not come with a Bash
installation. This lead to porting the scripts to Python to add Windows
support.

Listing 4.15 provides an example of the usage of the Bash helper scripts
to manage the emulator. There are steps to create the AVD for the emulator
which is then started to, finally, execute some tests. Not shown here are the
steps to install the Android SDK and other dependencies which was also
done by the helper scripts.

47See pull request: https://git.io/fhZDM
48See the source code at https://git.io/fhDXV.
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// create emulator

sh "jenkins_android_emulator_helper -C -P ’hw.camera:yes ’ -P

’hw.ramSize :800’ -P ’hw.gpu.enabled:yes ’ -P ’hw.camera.

front:emulated ’ -P ’hw.camera.back:emulated ’ -P ’hw.gps:

yes ’ -i ’${ANDROID_EMULATOR_IMAGE}’ -s xhdpi"

// start emulator

sh "jenkins_android_emulator_helper -S -r 768 x1280 -l en_US -

c ’-gpu swiftshader_indirect -no-boot -anim -noaudio ’"

// wait for emulator startup

sh "jenkins_android_emulator_helper -W"

// Run Unit and device tests for package: org.catrobat.

catroid.test

sh "jenkins_android_cmd_wrapper -I ./ gradlew test

connectedCatroidDebugAndroidTest -Pandroid.

testInstrumentationRunnerArguments.package=org.catrobat.

catroid.test"

Listing 4.15: Parts of a Jenkinsfile to create and start the Android Emulator via Bash helper
scripts. [Source code taken from https://git.io/fhZpM]

To simplify the steps needed for AVD creation a config file was created,
as shown in Listing 4.16, that would be read by the Python helper scripts.
The Python helper scripts were placed alongside the project they were used
on. That means they were both placed in the Catroid and the Paintroid
repositories. To make it easier to run the same steps locally and on Jenkins all
the steps were moved into their own scripts. Now the code from Listing 4.15

could be simplified to just one line as shown in Listing 4.17.
This solution worked very stable. It allowed to transition the jobs to

Jenkins pipeline. Yet there were also some disadvantages. The most ob-
vious disadvantage was that Python, an external dependency, needed to
be installed. In general Python is installed on Linux machines, while it
is absent by default on Windows installations. Developers who want to
use these scripts on Windows need to install and configure Python them-
selves. Another disadvantage was that the scripts existed in both the Catroid
and Paintroid repository. This duplication made maintenance harder, since
issues needed to be fixed in both repositories. Furthermore, only one config-
uration could be specified at once. For a different emulator configuration
the emulator_config.ini file needed to be modified. The complexity of
build jobs increased when they performed modifications of the emulator
configuration.
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# AVD creation

system_image=system -images;android -24; default;x86_64

## properties written to the avd config , prefix here with

prop , so the script knows where to use them

prop.hw.camera=yes

prop.hw.ramSize =2048

prop.hw.gpu.enabled=yes

prop.hw.camera.front=emulated

prop.hw.camera.back=emulated

prop.hw.gps=yes

prop.hw.mainKeys=no

prop.hw.keyboard=yes

prop.disk.dataPartition.size =512M

## dpi

screen.density=xxhdpi

## sdcard

sdcard.size =200M

## AVD startup

screen.resolution =1080 x1920

device.language=en_US

Listing 4.16: Configuration for Android Emulator used by the Python helper scripts.
[Configuration taken from https://git.io/fhZpw]

"./ buildScripts/build_step_run_tests_on_emulator__test_pkg"

Listing 4.17: Parts of a Jenkinsfile to create and start the Android Emulator via
Python helper scripts. The code is simpler compared with the initial
Bash implementation in Listing 4.15. [Source code taken from a commit by Michael
Musenbrock: https://git.io/fhZpH]

The Python implementation was basically a direct port from Bash. There
were many global variables and the code was both hard to read and main-
tain. Just by looking at the Jenkinsfile it was unclear which steps were
performed. For example, in Listing 4.17 it was not clear which gradle tasks
were executed. For this the code had to be executed, or the scripts had to be
investigated manually.
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4.6.3 Managing the Android Emulator with Gradle

To avoid the disadvantages of the Bash and Python implementations the
author of this thesis decided to implement the management of the Android
Emulator directly within a Gradle plugin.

At first the already existing Gradle plugin android-emulator-gradle49

was investigated for its feasibility. Unfortunately, it did not provide sufficient
features. The plugin did not handle the installation of the Android SDK and
the Android NDK, furthermore only one emulator could be specified at the
same time.

In the first iterations the plugin was only implemented for Paintroid.
The Groovy code was placed inside the buildSrc directory of the Paintroid
repository. This buildSrc directory is recognised by Gradle automatically
and can then be used in the other Gradle build files (Wendelin et al., 2018).
Later the plugin was implemented as its own project50 that was released on
JFrog Bintray51 and also accessible on JCenter.

To use the plugin only an additional dependency needs to be added to
the build.gradle file. As a result, there is no duplication between Catroid
and Paintroid, both projects rely on released versions of the plugin.

The Gradle plugin does not add any further external dependencies, Py-
thon is not necessary anymore. Similar to the Bash and the Python code the
plugin can install the Android SDK, the Android NDK and other depend-
encies like the Android Emulator. The emulators to use can be managed
directly in the build.gradle file using a custom domain-specific language
shown in Listing 4.18.

For clarity the configuration of an emulator is split into an avd and a
parameters part. The avd part rerfers to the parameters for the AVD image
creation, while parameters refers to the parameters the emulator is then
started with.

With the Gradle plugin the Jenkinsfile could be cleaned up as well. In
Listing 4.17 the work of the build step was delegated to a shell script. This
is not necessary anymore. The Jenkinsfile becomes clearer by directly calling

49Gradle plugin for Android Emulator: https://github.com/gocal/android-emulator-
plugin

50Gradle project for Catrobat initiated: https://github.com/Catrobat/Gradle
51Android Emulators Gradle plugin published on JFrog Bintray: https://bintray.com/
catrobat/Gradle/org.catrobat.gradle.androidemulators
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Gradle, see Listing 4.19. The plugin reduces code duplication and also
makes it possible for external projects to rely on its functionality.

apply plugin: ’org.catrobat.gradle.androidemulators ’

emulators {

install project.hasProperty(’installSdk ’)

dependencies {

sdk()

ndk()

}

emulator ’android24 ’, {

avd {

systemImage = ’system -images;android -24; default;

x86_64 ’

sdcardSizeMb = 200

hardwareProperties += [’hw.ramSize ’: 800, ’vm.

heapSize ’: 128]

screenDensity = ’xhdpi ’

}

parameters {

resolution = ’768x1280 ’

language = ’en’

country = ’US ’

}

}

}

Listing 4.18: Configuration of the Android Emulator in the build.gradle file of Paintroid
using the Gradle plugin. All necessary steps are specified via a Groovy domain-
specific language. No additional configuration, like in Listing 4.16, is necessary.
[Source code taken from a pull request by the author of this thesis: https://git.io/fhZpK]

Multiple emulators can be specified in the build.gradle file. The desired
emulator is then selected via the -Pemulator Gradle parameter as is done in
Listing 4.19 with -Pemulator=android24. The same build can use different
emulators, for example, to perform regression tests for a specific Android
version only.
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sh ’’’./gradlew -PenableCoverage -Pemulator=android24

startEmulator createCatroidDebugAndroidTestCoverageReport

\

-Pandroid.testInstrumentationRunnerArguments.package=org.

catrobat.catroid.test ’’’

Listing 4.19: Parts of a Jenkinsfile to create and start the Android Emulator via the android-
emulators-gradle plugin. In contrast to Listing 4.17 the necessary Gradle
parameters are transparent, since there are no external dependencies. [Source
code taken from a pull request by the author of this thesis: https://git.io/fhZpP]

When defining emulators templates can be used for common settings.
Such a template is specified exactly like an emulator, but instead of the
function emulator in Listing 4.18 the function emulatorTemplate has to be
called. To refer to a template the emulator function also accepts a third
parameter: The name of the template. An example is shown in Listing 4.20

where an emulator with the name android19 is created. The emulator
inherits the settings of the template with the name template1 and only
specifies a system image for Android 19. The templates themselves can
also be based on other templates. Emulators can be treated as templates
themselves, so it is possible to base an emulator android20 on android19

of Listing 4.20. This supports complex scenarios directly via the domain-
specific language and enables the usage of groovy abstractions where further
complexity is needed.

emulator ’android19 ’, ’template1 ’, {

avd {

systemImage = ’system -images;android -19; default;x86 ’

}

}

Listing 4.20: Creating an emulator android19 based on a previously defined template
template1. Every setting of the template is inherited, just the systemImage
is overriden. [Source code taken from a pull request by the author of this thesis: https:
//git.io/fhZpP]

Another change compared with the previous solutions is the existence
of tests. Parts of the code are unittested and were written in a test driven
design fashion. As such best practices can also be applied to this repository.
This includes the presence of continuous integration support. Pull requests
trigger automatic builds that run the unit tests and archive the resulting
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plugin. Further work is needed to both track the test coverage and to increase
the coverage.

Yet the Gradle plugin has some disadvantages itself. Now it is not possible
to run the same emulator concurrently. This disadvantage is alleviated by
running the builds in Docker. As Docker isolates the builds multiple builds
can use an emulator with the same specification, see Section 4.5.

4.6.4 Android Dependencies in Docker

So far, it was described how the Android dependencies are installed. This
section highlights were these dependencies are installed to, how the build
jobs access them, what trade-offs to consider, and how Docker can improve
the situation.

The Android SDK, the Android NDK, the emulator and other Android
dependencies are searched for at the location specified by the environment
variable ANDROID_SDK_ROOT outlined in Section 4.5. This is also the location
these dependencies are installed to by the scripts and the Gradle plugin
described above.

Part of the issue with the install location is how to manage different
builds. Section 4.5 emphasised the importance of independent builds. At
the same time performance is crucial for the acceptance of a continuous
integration system. Therefore, not every build can download and install
these dependencies. There needs to be some form of sharing the Android
dependencies to improve the performance.

The first step of sharing the Android installation was by defining one
ANDROID_SDK_ROOT per slave. With a single location for multiple jobs concur-
rent access needs to be managed though. There would be race conditions
otherwise. The Android Emulator Jenkins plugin took care of this by em-
ploying a mutex to only allow exclusive access during installation of the
dependencies52. Users of the plugin do not need to adapt their jobs to
avoid race conditions. In contrast, job modifications are needed for the
solutions relying on the Bash scripts, the Python scripts, and the Gradle
plugin discussed previously.

52Confer the code in SdkInstaller.java: https://git.io/fhZDd
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stage(’Setup Android SDK ’) {

steps {

// Install Android SDK

lock("update -android -sdk -on -${env.NODE_NAME }") {

sh ’./gradlew -PinstallSdk ’

}

}

}

Listing 4.21: Stage of the Catroid Jenkinsfile to install Android dependencies with the
android-emulators-gradle plugin. The installation step is protected by a lock
on that slave (node). This avoids race conditions of multiple jobs performing
the installation at the same time. [Source code taken from https://git.io/fhnfm]

An own stage in the Jenkinsfile takes care of locking the resource. The
resource in this case is the ANDROID_SKD_ROOT directory per slave. In List-
ing 4.21 the resource is locked to then perform the installation of the de-
pendencies with the Gradle plugin. Such an extra step adds complexity to
the Jenkinsfile and thus makes creating jobs with Jenkins pipeline harder.
Forgetting to manually lock the correct resources for just one job can lead
to a corrupted installation of the Android dependencies which might re-
quire manual intervention. Even when locking the resources during in-
stallation there is a potential of race conditions: Only the writing to the
ANDROID_SKD_ROOT directory is locked, not the usage of files in that directory
when creating and starting the emulator. This race condition did not lead
known to issues yet though.

Another disadvantage of having just one location per slave for the An-
droid dependencies was discovered early. Catroid and Paintroid might have
different requirements for the dependencies, for example, recent Catroid
does not need the Android NDK, or a different version for the Android
SDK might be necessary. This resulted in three directories per slave for the
Android dependencies:

• android-sdk was initially used by both Catroid and Paintroid. The
Android NDK version was fixed to r16. Newer versions of the NDK
did not support MIPS53 which was necessary for Catroid (Albert,
2018).

53MIPS processors: https://www.mips.com/products
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• android-sdk-paintroid supported the newest Android NDK for Paint-
roid. Paintroid did not have the MIPS support issues and thus could
support newer NDK versions already.

• android-sdk-ndk-latest used later by both Catroid54 and Paintroid55.
Paintroid did not face the MIPS support issues and with the MIPS sup-
port removed from Catroid56 both could share the same dependencies
again.

Even worse was the situation when the newer version r18 of the Android
NDK was incompatible with the current source code (Prichard and Albert,
2018). In android-sdk-ndk-latest always the latest version of the Android
NDK was installed. That lead to build errors on Jenkins. A fix to the source
code for Paintroid57 sorted out the build errors. Of course the fix only
affected the source code after and including that commit. Unfortunately,
older Paintroid source code cannot be built on Jenkins anymore. The exact
same issue also applied to Catroid58.

One reason for placing the Jenkinsfile in the source code repository
was to keep older revisions of the code working on Jenkins. The Android
dependencies though worked against backward compatibility. To solve this
issue all the dependencies were moved to the Docker file.

Thus the android-emulators-gradle plugin was only used to create the
emulator and to start and stop it. It is not used anymore to install the
dependencies for Catroid59 and Paintroid60.

The version of the Android SDK and the Android NDK are pinned inside
of the Docker image. Other Android dependencies, like the version of the
emulator, are not pinned at this time, as no version incompatibilities have
been found there so far. Pinning the version of a dependency is much work
that is better avoided when not necessary.

54Confer pull request for Catroid by Michael Musenbrock: https://git.io/fhZDy
55Confer pull request for Paintroid by Michael Musenbrock: https://git.io/fhZDS
56Pull request by Thomas Schwengler to remove MIPS support from Catroid: https:
//git.io/fhZDu

57Pull request by Thomas Schwengler to make Paintroid work with Android NDK r18:
https://git.io/fhZD0

58Commit by Thomas Schwengler to make Catroid work with Android NDK r18: https:
//git.io/fhZDB

59Pull request for Catroid by the author of this thesis: https://git.io/fhDAH
60Pull request for Paintroid by the author of this thesis: https://git.io/fhZDC

74

https://git.io/fhZDy
https://git.io/fhZDS
https://git.io/fhZDu
https://git.io/fhZDu
https://git.io/fhZD0
https://git.io/fhZDB
https://git.io/fhZDB
https://git.io/fhDAH
https://git.io/fhZDC


4.6 Android Emulator Handling

Now it is transparent which version of the SDK and the NDK is used for
a given source code revision. Pull requests can try to increase the version of
the SDK or NDK without affecting any other builds. Consequently, issues
like encountered with Android NDK r18 are avoided. Furthermore, these
changes simplified the local replication of the environment that is used on
Jenkins, without needing multiple ANDROID_SKD_ROOT directories. A further
advantage is that no new release of the android-emulators-gradle plugin
is necessary to pin newly released versions of the Android SDK or the
Android NDK.

Race conditions for the Android dependencies are impossible now, as they
are not shared anymore. This decreases the complexity of the Jenkinsfile, as
no locking of Android dependencies is necessary anymore. A disadvantage
is the increased complexity of the Dockerfile. Changes of the Android
dependencies have to be placed there in contrast to the build.gradle file.

4.6.5 Discussion

The Android Emulator proved to be a main source of issues. On the one
hand it often ran very unstable and unpredictable, depending on the version
used, which lead to flaky tests and even crashes. Updates to the related
Jenkins plugin improved the situation a bit.

On the other hand the emulator was hard to manage. The emulator was
not directly supported by Jenkins pipeline, which slowed down the adoption
of Jenkins pipeline. The alternative, for the team to manage the emulator
and all its dependencies, was very complex and time consuming. Testament
to this complexity are the four different approaches tried: First using Bash
scripts to manage the emulator, then Python, then Gradle, and finally Gradle
in combination with Docker.

The complexity of the build jobs increased by directly managing the An-
droid Emulator. At the same time that step proved successful: The emulator
became more stable, different versions of the dependencies could be used,
and a transition to Jenkins pipeline was possible.

While in hindsight relying directly on Docker and Gradle would have
saved time it would have been very unlikely for such a complex solution to
be considered initially. The gained experience was key in devising the final
solution.
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4.7 Performance

Build performance is crucial for continuous integration. Duvall, Matyas and
Glover (2007, pages 87–88) even suggested that no build should take more
than 10 minutes to complete. In contrast, the CatroidEmulatorAllTests-

SerialNightly job took five hours on average to execute. With multiple-hour
build times and all the other issues it is no surprise that continuous integra-
tion was not really practised in 2016. This section discusses improvements
to the build performance and provides outlooks for further improvements.

Profiling is at the starting point of optimisations. For both Catroid and
Paintroid most of the build time was used for end-to-end tests. Improving
their performance would have the greatest potential.

Trying to use the build infrastructure more efficiently might sound like the
best approach to improve performance in general. For example, executing
tests in parallel to benefit from the multiple CPU cores modern servers have.
Not surprisingly though better hardware or better utilisation of hardware
only leads to linear improvements of performance: Work performed on one
single CPU core will take at best one fourth of the time if performed on
four CPU cores. For computation-heavy tasks often the most significant
performance gains can be achieved by using better algorithms, not better
hardware (Skiena, 2008, pages 51–54).

Applied to testing this means to use a different and especially faster test
that performs equivalent checks. So instead of writing slow end-to-end tests
rather unit tests should be written, as mentioned in Section 4.4. In 2019 the
250 Paintroid unit tests took roughly 10 seconds to execute, while the 370

end-to-end tests took more than 10 minutes, a difference of two orders of
magnitude.

When unit tests are not feasible using faster test frameworks is beneficial.
Both Catroid and Paintroid transitioned their end-to-end tests to the Es-
presso framework. This not only improved the stability of the tests but also
significantly improved the performance. With Espresso a Catroid build with
more than 1500 tests took roughly 30 minutes, half of which was spend on
end-to-end tests. With Robotium in 2016 this still took five hours on average,
though packages with failing tests were rerun back then, see Section 4.4.

Parallelism can only be beneficial if enough hardware is available. In
general parallelising tasks incurs an overhead, perfect scaling is hardly
achievable. Up until 2017 each Jenkins node had six executors and thus
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could theoretically execute six build jobs at once. Unfortunately, hardware
requirements increased. This was probably caused by newer Android and
Gradle versions being more demanding and by performance degradations
caused by fixes for hardware related security issues such as Meltdown (Lipp
et al., 2018) and Spectre (Kocher et al., 2019).

By the end of 2018 each node was restricted to just one executor. Us-
ing more executors lead to unstable builds as the 16 gigabyte of system
memory was insufficient. With just three nodes available for both Catroid
and Paintroid continuous integration jobs the potential benefits of paral-
lelism were rather low. Furthermore, Gradle, Java, as well as the Android
Emulator already benefited from multiple CPU cores. That meant that run-
ning more tasks on a single Jenkins slave would reduce the performance of
each task, but might lead to better performance overall.

As previously mentioned the build jobs were very greedy in terms of sys-
tem memory, prohibiting two concurrent jobs on a single slave. Restricting
the system memory available to the build jobs was necessary to increase the
number of executors to two per slave. This can be done by a Docker feature
that abstracts cgroups provided by the Linux Kernel. With the docker run

parameter --m=6.5G a container would use at most 6.5 gigabyte of system
memory. Java version 8 used inside of the Docker container does not recog-
nise this value, it needs additional settings inside of the Docker file (Smith,
2017). With these adaptations two jobs could run concurrently without
stability issues61.

At the beginning of 2019 a Catroid build took between 26 and 30 minutes:
The end-to-end tests took between 14 and 16 minutes, the static analysis
between 5 and 8 minutes, instrumented unit tests around 2 minutes, code
coverage collection roughly 1:30 minutes, and the rest was used by the
remaining tasks such as APK generation.

The end-to-end tests set the limit of what could be achieved by paral-
lelising the tasks of the Catroid job. One improvement was to execute the
end-to-end tests on one node and all the other tasks on another62. This lead
to build times between 15:30 and 17:30 minutes, as the code coverage report
still had to be done at the end of the build job.

The code coverage is collected by a plugin for Gradle. This plugin creates

61Commit for Catroid by the author of this thesis: https://git.io/fhSaU
62Commit by the author of this thesis: https://git.io/fhSnS
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an HTML and an XML report. Jenkins read this XML report and then created
its own HTML report by also reading all the source files. A change was
to publish the HTML report directly instead63, which had some usability
restrictions, but saved 1:30 minutes.

Finally, an improvement was to optimise settings for the Android Emu-
lator, for example, reducing the resolution, which lead to end-to-end tests
completing in 13 to 15 minutes. The builds themselves also completed in
this time, thus the build times were cut in half.

Paintroid jobs already finished in 14 minutes after the transition to Es-
presso end-to-end tests. Further speed-ups would be possible by parallel-
ising the tests themselves. This can either be done by putting them manually
into multiple test suites, each with roughly the same amount of work, or
by relying on Jenkins to split up the tests with the Parallel Test Executor
plugin64. Combining both approaches does not work, as that plugin does
not work with test suites, such as used for Catroid. Unfortunately, a bug
for the JUnit Jenkins plugin undermined the usability of parallelising tests.
Even though the bug had been fixed65 it took very long for the changes to
be merged. In the future also the performance of the Paintroid job can be
improved, potentially leading to builds below 10 minutes.

The build performance of the Catroid and Paintroid jobs improved vastly
over the last years. The most significant gains were caused by improved
tests, which is also the area with most potential still. Further optimisations
and better utilisation of the resources available lead to jobs that execute
in less than 15 minutes. With additional hardware it should be feasible to
achieve builds in under 10 minutes.

63Commits by the author of this thesis: https://git.io/fhSnH, https://git.io/fhSn7
64Parallel Test Executor Jenkins plugin: https://plugins.jenkins.io/parallel-test-
executor

65Pull request by the author of this thesis: https://git.io/fhSam
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5 Conclusion

The origin of this thesis was the dire state the Jenkins system for Catrobat
was in at the end of 2016. At that time the method of continuous integration
was practically not applied anymore due to technical issues. Therefore, the
goal was to provide a continuous integration system that would be used
again and that would stay maintainable at the same time. The maintainability
should enable a system that would be feasible in the long run. Of course,
key for the usability of a system would be close cooperation with its users.

Chapter 2 described the concept of continuous integration, highlighting
the necessary preconditions, and listing benefits. For continuous integration
to work properly a system, like Jenkins, would execute jobs that build and
test software on any change. Such a build would only be treated as success
when all tests and additional checks passed.

For Catrobat the focus was on the Android applications Catroid and
Paintroid, described in Chapter 3 along with the Catrobat project.

The main part of the thesis was Chapter 4, which focused on the issues
faced by the Catrobat Jenkins team and the solutions devised. One of the
first steps taken was to improve the documentation and to add a small set of
policies to avoid similar situations in the future, as described in Section 4.1.

The amount of issues seemed overwhelming, which is why a separate test
server was installed, to create a clean Jenkins configuration from scratch.
At a later stage the knowledge gained was transferred to the operational
Jenkins system. An advantage of that approach was the learning experience
for the team. Nonetheless, a disadvantage was the long time it took to
translate the introduced changes to the operational server to benefit the
users. Especially, since the test server was only intended for the Catrobat
Jenkins team. As a result, both the operational and the test server were long
in a state that did not support the continuous integration needs of the users.
A potentially better approach would have been to clean up the operational
server directly.

Configuration as code was researched for the server infrastructure and
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Jenkins configuration in Section 4.2 and for build jobs in Section 4.3. This
approach lead to better accountability of configuration changes, decreased
the number of jobs required, and also reduced the amount of necessary
documentation. There were two domain specific languages to configure
Jenkins jobs: The Job DSL and Jenkins pipeline.

The Jenkins pipeline was the recommended system to create jobs for
Jenkins version 2. Unfortunately, it did not support the Android Emulator
Jenkins plugin used by the existing jobs. As a result, the Job DSL was used
initially. The hope was to transition to Jenkins pipeline once the plugin
was supported, which was planned for 2017. However, support was never
added. The Catrobat Jenkins team still transitioned to pipeline, with the
increased burden of managing the Android Emulator with custom scripts,
as described in Section 4.6. In retrospect, using Job DSL was beneficial, yet
even better would have been to apply Jenkins pipeline directly and only
using Job DSL to create these pipeline jobs, as is the current state.

Probably the main issue from the perspective of the users was that a
tremendous amount of Catroid and Paintroid tests failed on Jenkins, lead-
ing to broken builds. With more than 1000 Catroid test failures and very
long execution times continuous integration was not practised anymore.
Initially it was believed that most test failures were caused by flaky tests.
Consequently, it was investigated in Section 4.4 whether the tests were flaky
or broken.

Most of the flaky test candidates failed always at the end of 2016, they
were thus not flaky. Although it was unclear what the cause was, since they
had worked once. Most likely the Android Emulator and changes to the
Android SDK caused these issues. To reduce the potential causes of test
failures it was tried to make the build jobs as independent of each other as
possible, which was the focus of Section 4.5. The container system Docker
was applied to reduce the resources shared between the build jobs.

Much work was put into improving the situation of the Android Emulator,
see Section 4.6. This included work by Michael Musenbrock on the Android
Emulator Jenkins plugin, as well as his work on managing the emulator
directly via Bash and Python scripts. Eventually the emulator was managed
directly with a Gradle plugin inside of a Docker container.

Section 4.7 highlighted the importance of performance of build jobs.
Measures were described that halved the Catroid build times. Above all, the
most beneficial improvement was the transition of the Catroid and Paintroid
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teams to the Espresso test framework, which not only reduced the test
execution times but also increased the test stability.

Although the initial scope seemed well-defined the existing issues lead to
researching many different technologies, which was very time-consuming.
For instance, technologies to manage the server installations and their
configuration. Probably better would have been to postpone the setup of the
servers and to focus solely on the job stability first, although it was unclear
initially whether these were related. In contrast, using configuration as
code for the build jobs worked very well. It enabled a previously unknown
traceability and flexibility that could be considered future-proof. Providing
users with new functionality became easy. Docker also proved successful in
serving build environments, that were independent of the slaves and other
build jobs. This was especially useful for isolating the Android Emulator
and also for installing the complex dependencies of the release jobs.

In the future Docker will support continuous integration for the Catrobat
web infrastructure, which was already planned for 2018, but then postponed
due to a lack of resources in the web team. Recent developments in the
Jenkins community will probably be beneficial as well and would have
saved much research time if they existed two years ago. For example, the
Jenkins Evergreen project might save time to keep Jenkins updated and well
maintained. Jenkins configuration as code will help to keep track of the
configuration. Another interesting area of research that was not pursued
due to lack of time is running Jenkins on the cloud for better scaling.

From 2016 to 2019 the situation of Jenkins for Catrobat improved massively.
Continuous integration was practised again. The different stakeholders were
also provided with tools that made their work easier and more enjoyable.
Some of the Catrobat Jenkins team even implemented the foundations for
continuous deployment, which already improved the release process. At
the same time the system became well documented and there were steps
in process to improve the situation even further. There was a long journey
from a dysfunctional system to a functional one, including fruitless ap-
proaches and numerous hours of debugging, research, and implementation
efforts. The end result is a quite satisfactory continuous integration system
for both its users and maintainers that provides the foundation for future
developments.
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