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Abstract 

The Institute of Particle and Process Engineering of the TU Graz is developing a lattice Boltzmann 

method (LBM) based CFD simulation and modeling framework with fully parallel computation 

on GPUs for aerated stirred industrial scale fedbatch bioreactors. The simulation of the liquid 

temperature is a feature that is defining for the modeling of liquid viscosity, biological growth, 

production rate as well as oxygen solubility and mass transfer kinetics in the reactor. The work of 

this master’s thesis includes the implementation and testing of a parallelizable LBM based 

algorithms for the calculation of transient and locally resolved temperature distribution that can be 

integrated in the existing simulation framework. The single relaxation time double distribution 

function SRT-DDF algorithm proposed by Peng et al. in 2003 resulted in numerical instabilities 

for the heat transfer in water at typical Peclet numbers of 𝑃𝑒 ≈  105 and lattice Mach number of 

Ma < 0.02 . Since the numerically stable region of this approach lies at unphysically high Prandtl 

numbers the alternative LBM based algorithm for purely advective transport of scalars proposed 

by Osmanlic et al. in 2016 was investigated. An analytical derivation of the numerical diffusivity 

of the highly stable and conservative algorithm for hot bulks advected by constant fluid velocity 

shows that the numerical diffusivity is proportional to the velocity in lattice units in the system. 

The numerical diffusivity is in the range of the physical thermal diffusivity of water substance at 

about 0.1% of the stirrer’s blade tip speed. For the application of the simulation tool for bioreactors 

heating jackets and tube bundle heat exchangers can be initialized as constant heat sources or sinks. 

The code structure introduces the heat due to reaction by microorganisms which are represented 

by a Lagrangian parcel approach. Moreover, the heat due to viscous dissipation calculated by the 

LES Smagorinsky model is taken into account. The simulation of temperature was coupled to the 

fluid field simulation by applying the Vogel-Tamman-Fulcher temperature-viscosity model for 

pure water substance. 
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Kurzfassung 

Das Institut für Prozess und Partikeltechnik der TU Graz entwickelt eine auf der Lattice-

Boltzmann-Methode basierende CFD Modell- und Simulationsumgebung für begaste, gerührte, 

industrielle Fed-Batch Bioreaktoren, dessen Rechenschritte voll parallelisiert auf GPUs operieren. 

Hierbei ist die Simulation der Flüssigkeitstemperatur ein wichtiger Bestandteil für die 

Modellierung von Viskosität, biologischem Wachstum, Produktionsraten sowie 

Sauerstoffsättigung und Stoffübergangskinetik. Diese Masterarbeit enthält das Implementieren 

und Testen von parallelisierbaren, auf der Lattice-Boltzmann-Methode basierenden Algorithmen 

für die Berechnung von instationärer, lokal aufgelöster Temperaturverteilung, welche in die 

existierende Simulationsumgebung integriert werden können. Die sogenannte Single-Relaxation-

Time-Double-Distribution-Function SRT-DDF Methode von Peng et al. von 2003 führt zu 

numerischer Instabilität bei gegebener Pecletzahl um 𝑃𝑒 = 105 and Lattice-Machzahlen von 

𝑀𝑎 < 0.02. Da der stabile Bereich dieses Ansatzes bei unpyhysikalisch hohen Prandtlzahl liegt, 

wurde der von Osmanlic et al. im Jahr 2016 vorgeschlagene alternative, auf LBM basierende 

Algorithmus für den rein advektiven Transport von Skalaren untersucht. Eine analytische 

Herleitung der numerischen Diffusivität des stabilen und konservativen Algorithmus für 

Warmzonen bei konstanter Strömungsgeschwindigkeit zeigt, dass die numerische Diffusivität 

proportional zur Geschwindigkeit in Latticeeinheiten im System ist. Die numerische Diffusivität 

liegt im Bereich der physikalischen Temperaturleitfähigkeit von Wasser bei etwa 0,1% der 

Schaufelspitzengeschwindigkeit des Rührwerks. Für den Einsatz des Simulationstools für 

Bioreaktoren können Heizmäntel und Rohrbündelwärmetauscher als konstante Wärmequellen 

oder Senken initialisiert werden. Die Codestruktur ermöglicht die Einbringung von Wärme durch 

Reaktion von Mikroorganismen, die durch den Parcel-Ansatz bei Lagrangescher 

Betrachtungsweise repräsentiert werden. Darüber hinaus wird die mit dem LES Smagorinsky-

Modell berechnete Wärme aufgrund der viskosen Dissipation berücksichtigt. Die 

Temperatursimulation wurde mit der Fluidsimulation gekoppelt, indem das Vogel-Tamman-

Fulcher Temperatur-Viskositätsmodell für Wasser angewendet wurde. 
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Nomenclature 

Abbreviations 

AD, ADE advection-diffusion (equation) 

API application programming interface 

BC boundary condition 

BGK Bhatnagar, Gross and Krook 

CFD computational fluid dynamics 

CPU central processing unit 

CUDA compute unified device structure by NVIDIA® 

DDF double distribution function 

DNS direct numerical simulation 

GPU graphics processing unit 

IE internal energy, internal energy formulation 

LB, LBM lattice Boltzmann (method) 

LHS left hand side of an equation 

LES large eddy simulation 

LU lattice units 

MRT multi relaxation time 

NS, NSE Navier-Stokes (equations) 

RANS, RANSE Reynolds-averaged Navier-Stokes (equations) 

RHS right hand side of an equation 

SRT single relaxation time 

TBHE tube bundle heat exchanger 

TLBM thermal lattice Boltzmann method 

  

  

Legend of Symbols 

𝑎 scalar 

𝒂 vector (bold) 

𝑨 matrix (capital bold) 

𝑎(𝑏) quantity a is a function of quantity b 
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𝐷𝑥

𝐷𝑡
 material or substantial derivative of x 

𝜕𝑥

𝜕𝑡
 partial derivative of x 

𝒂 ⋅ 𝒃 scalar or dot product of vector a and b 

𝒂⊗ 𝒃 tensor or outer product of vector a and b 

  

Latin Symbols 

𝐴  amplitude 

𝑎 [
𝑚

𝑠2
] acceleration 

𝑐 [
𝑚

𝑠
] velocity 

𝑐𝑣 [
𝐽

𝑘𝑔 ⋅ 𝐾
] mass specific heat capacity for constant volume 

𝐶 [𝑚], [𝑠], [𝑘𝑔] conversion factor or constant 

𝑑 [𝑚] diameter 

𝑒 [𝐿𝑈] lattice velocity vector 

𝐸𝑐 [−] Eckert number 

𝑓 [
𝑘𝑔 ⋅  𝑠3

𝑚6
] , [𝐿𝑈] (particle) density distribution function, “f-value” 

𝑔 [𝐿𝑈] energy distribution function 

𝑘 [
𝑊

𝑚𝐾
] heat conductivity 

𝑀 [𝑘𝑔] fluid mass 

𝑚 [−] total number of lattice velocity vectors 

𝑀𝑎 [−] Mach number 

𝑁 [−], [
𝑟𝑎𝑑

𝑠
] number, rotational speed 

𝑛 [−] order of spatial dimension 

𝑂 [−] order of magnitude 

𝑃 [𝑊] power 

𝑃𝑒 [−] Peclet number 

𝑃𝑟 [−] Prandtl number 
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𝑄 [𝐿𝑈] momentum flux 

�̇� [
𝑊

𝑚3
] volume specific heat source 

𝑟𝑑 [−] relative error 

𝑅𝑒 [−] Reynolds number 

𝑠 [−] solid fraction 

𝑇 [𝐾] temperature 

𝑡 [𝑠] time 

𝑢 [
𝑚

𝑠
] macroscopic fluid velocity 

𝑉 [𝑚3] volume 

𝑥 [𝑚] spatial position 

   

Greek Symbols 

𝛼 [
𝑚2

𝑠
] thermal diffusivity 

𝜀 [
𝐽

𝑘𝑔
] internal energy 

𝜉 [
𝑚

𝑠
]  microscopic particle velocity 

𝜇 [𝑃𝑎 ⋅  𝑠], [−] dynamic viscosity, mean value of distribution 

𝜈 [
𝑚2

𝑠
] kinematic viscosity 

𝜌 [
𝑘𝑔

𝑚3
] density 

𝜎 [−] standard deviation 

𝜏 [𝑠], [𝑃𝑎] relaxation time, shear stress 

Φ [
1

𝑠2
] viscous dissipation term 

Ω  [
𝑘𝑔

𝑚3𝑠
] collision operator 

   

Subscripts 

* updated value 
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0 initial value 

2D in two spatial dimensions 

3D in three spatial dimensions 

act actual, true value 

d dissipation 

D Dirichlet condition 

f density distribution function 

g energy distribution function 

i index of discrete LBM velocity set 

l length 

m mass 

P pellets 

p constant pressure, isobaric 

R tank reactor 

rot rotation 

s sound 

SM Smagorinsky 

stirr stirrer of the tank reactor 

t time 

tot total 

T turbulence 

v constant volume, isochoric 

x spatial cartesian x-coordinate 

y spatial cartesian y-coordinate 

z spatial cartesian z-coordinate 

  

Superscripts/ Accents 

* physical quantity with units 

^ post (after) collision 

. rate (change of quantity per time) 

~ dimensionless units 
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B body 

eq equilibrium 

HJ heating jacket 

Os Osmanlic (algorithm) 

S schemes 
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1 Introduction 

1.1 Bioreactor Simulation 

In chemical and process engineering the use of computational fluid dynamics (CFD) tools have 

emerged to be a superior approach to experimental testing and optimizing in terms of financial 

costs, expenditure of time and often quality of results. On top CFD tools allow for an insight 

into spatial and time dependent physical quantities such as temperature or soluble compound 

concentrations that are often inaccessible via measurement in the industrial apparatus. 

In the field of bioprocess engineering the aerated stirred batch bioreactor is an exemplary 

industrial apparatus that combines complex physical phenomena such as multiscale turbulent 

fluid flow, heat transfer, mass transfer and biochemical reactions. Intensive experimentation 

would be required to vary geometrical and operational parameters that influence these 

phenomena to be able to optimize them. Still, the decision to use simulation is associated with 

challenges: The large volume of industrial scale bioreactors (> 10𝑚3) with multiscale turbulent 

fluid flow caused by the rotating stirrer leads to the necessity of highly resolved computational 

domains (grids) which in turn requires the usage of powerful but cost intensive CPU clusters. 

Moreover, simultaneous simulation of moving gas bubbles and microorganisms further increase 

these computational costs. The alternative use of coarser grids in combination with the broadly 

applied Reynolds-averaged Navier-Stokes (RANS) approach cannot satisfy the need for the 

description of small scale anisotropic turbulence. In this conflict of computational costs and 

quality of the simulation results of the bioreactor the lattice Boltzmann method (LBM) makes a 

reasonable alternative to the common Navier-Stokes equations (NSE) solvers. The crucial 

reason is that the highly parallelizable LBM algorithm is very suitable for the large number of 

computational units (threads) on graphic processing units (GPUs).  

The Institute of Particle and Process Engineering of the TU Graz is developing an LBM based 

modeling and simulation framework that is able to describe the mentioned phenomena in an 

aerated stirred batch bioreactor. In the current state the tool is developed via the C++ based 

CUDA interface and operates on NVIDIA GPUs. Regarding CFD the tool applies the large eddy 

simulation (LES) turbulence models with a sub-grid model for isotropic turbulences and covers 

the anisotropic turbulence of the flow field directly by simulation (see Section 1.3). 

Furthermore, the movement of gas bubbles or microorganisms is determined by an Euler-
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Lagrange approach and the spatial and time dependent evolution of soluble compounds such as 

oxygen or substrate are simulated. These simulation units are complemented with the modeling 

of gas bubble breakage & coalescence, mass transfer models and bioreaction kinetic models.  

The aim of this master’s thesis is to add a simulation unit to the existing modeling and simulation 

framework that describes the spatial and time dependent distribution of the fluid temperature in 

the reactor. For this two LBM based algorithms have been implemented and investigated 

(Chapter 2). Basic features such as the initialization of a heating jacket or the coupling of 

temperature and fluid field calculation were added to the simulation code (Chapter 3). 

1.2 Introduction to the Lattice Boltzmann Method 

1.2.1 Boltzmann Kinetic Theory 

To describe the behavior of a fluid different approaches exist. In the first, so called macroscopic 

approach the fluid is described as a continuum without the insight into molecular interactions. 

On this coarse level, macroscopic quantities such as thermal conductivity, density, viscosity or 

heat capacity are used to solve the equations of fluid mechanics. The microscopic approach aims 

to gain fluid properties by describing the mass, position and velocity of each molecule. On top 

the internal state by vibration or rotation and the intra molecule interactions are modeled. Since 

both approaches describe the same physical system there are ways to link them such as the 

Boltzmann kinetic theory. Without further derivation at this point, the Boltzmann kinetic theory 

is based on following particle density distribution function 𝑓 for gases: 

 𝜌(𝒙, 𝑡) = ∫𝑓(𝒙, 𝝃, 𝑡) 𝑑3𝜉 

Eq. 1-1 𝜌…𝑚𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝒙 𝑎𝑛𝑑 𝑡𝑖𝑚𝑒 𝑡 [
𝑘𝑔

𝑚3
] 

𝝃…𝑚𝑖𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 [
𝑚

𝑠
] 

 

As stated in Eq. 1-1 the density can be calculated by a total integral over the velocity space and 

thereby considering the contribution of all possible microscopic velocities of the particles 𝝃 at 

position 𝒙 and time 𝑡. If the integration is weighted by the particles’ velocity 𝝃, the moment of 
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the distribution function 𝑓 will lead to the momentum density 𝜌(𝒙, 𝑡)𝒖(𝒙, 𝑡) (Eq. 1-2). The 

mean velocity 𝒖(𝒙, 𝑡) [
𝑚

𝑠
] at position 𝒙 and time 𝑡 equals the macroscopic fluid velocity. 

 𝜌(𝒙, 𝑡)𝒖(𝒙, 𝑡) =  ∫𝝃 ⋅ 𝑓(𝒙, 𝝃, 𝑡) 𝑑3𝜉 Eq. 1-2 

Theoretically, the knowledge about the position and momentum of all particles in the fluid at a 

certain time should allow for the prediction of all future states. The evolution of the particle 

density distribution function 𝑓over time is given by the Boltzmann equation (Eq. 1-3) which is 

very similar to an advection equation (Eq. 1-4). 

 
𝑑𝑓

𝑑𝑡
= Ω(𝑓) 

Eq. 1-3 Ω(𝑓)…𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 

𝑑𝑓

𝑑𝑡
… 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑓 𝑓 𝑖𝑛 𝑡𝑖𝑚𝑒 

 

𝜕𝑓

𝜕𝑡
+ 𝝃 ⋅

𝜕𝑓

𝜕𝒙⏟      
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

 + 𝒂𝑩 ⋅
𝜕𝑓

𝜕𝝃⏟    
𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒

= Ω(𝑓)⏟
𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚

 

Eq. 1-4 

𝑎𝐵 …  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑏𝑜𝑑𝑦 𝑓𝑜𝑟𝑐𝑒 [
𝑁

𝑘𝑔
] 

 

The collision operator 𝛺(𝑓) contains the information about the outcomes of all two-particle 

collisions in the gas. However, this complex integro-differential term makes the Boltzmann 

equation unsuitable for CFD calculation [1]–[3]. 

1.2.2 Lattice Boltzmann Method Algorithm 

In this section a brief introduction to the LBM is given that links the Boltzmann kinetic theory 

from previous Section 1.2.1 to the final algorithm suitable for CFD. 

The BGK Approximation 

In 1954 Bhatnagar, Gross and Krook (BGK) introduced a simplified model for the collision 

operator 𝛺(𝑓) [4]. It determines the time of relaxation of the density distribution function 𝑓 

towards the equilibrium function 𝑓𝑒𝑞 .  
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 𝛺(𝑓) =  −
1

𝜏𝑓
⋅ (𝑓 − 𝑓𝑒𝑞) 

Eq. 1-5 
𝜏𝑓…𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

𝑓𝑒𝑞…𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑜𝑟 𝑀𝑎𝑥𝑤𝑒𝑙𝑙 − 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Inserting the BGK collision term into Eq. 1-4 and dropping the body force term leads to Eq. 1-6.  

 
𝜕𝑓

𝜕𝑡
+ 𝝃 ⋅

𝜕𝑓

𝜕𝒙
=  −

1

𝜏𝑓
⋅ (𝑓 − 𝑓𝑒𝑞) Eq. 1-6 

 

In LBM the equation is discretized along specific velocity directions 𝝃𝒊 (or 𝒆𝒊 in standard LBM 

terminology) in the 2D or 3D simulation domain which leads the topic to the lattice 

arrangements. 

 
𝜕𝑓𝑖
𝜕𝑡
+ 𝒆𝒊 ⋅

𝜕𝑓𝑖
𝜕𝒙
=  −

1

𝜏𝑓
⋅ (𝑓𝑖 − 𝑓𝑖

𝑒𝑞) Eq. 1-7 

 

Lattice Arrangement 

Similar to conventional NSE solvers the simulation domain is split into discrete cells which is 

called the lattice. In LBM the common terminology is to refer to the dimension n of the domain 

and to the number of discrete velocity directions (including one memory term) m with DnQm. 

Examples for the two and three-dimensional case respectively are D2Q9 and D3Q19 (Figure 

1-1). 
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Figure 1-1: A) D2Q9 - a quadratic cell with center node and 9 discrete velocity vectors 𝑒𝑖 
B) D3Q19 – a cubic cell with 19 discrete velocity vectors 𝑒𝑖 either pointing to the center of a side or to the center 

of an edge 

 

 

Table 1-1: discrete velocity set (D3Q19) – the lattice velocity vector 𝒆𝒊 for the respective index i 

𝑖 0 1-2 3-4 5-6 7-10 11-14 15-18 

𝒆𝒊 (0,0,0) (±1,0,0) (0,±1,0) (0,0,±1) (±1,±1,0) (±1,0,±1) (0,±1,±1) 

 

So, in LBM the particle density distribution function 𝑓𝑖(𝒙, 𝑡) is discretized in 𝑚 directions for 

each lattice node at position 𝒙 and time t. 

Collision and Streaming 

One remaining quantity to discretize is the Maxwell-Boltzmann distribution 𝑓𝑒𝑞. The applied 

method is to use the Gauss-Hermite quadrature to approximate the distribution 𝑓𝑒𝑞 after a Taylor 

expansion of second order. This leads to: 

 𝑓𝑖
𝑒𝑞 = 𝜌𝑤𝑖 ⋅ (1 +

𝒆𝒊𝒖

𝑐𝑠2
+
(𝒆𝒊𝒖)

2

2𝑐𝑠4
−
𝒖2

2𝑐𝑠2
) 

Eq. 1-8 𝑤𝑖 …𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑓𝑖  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 

𝑐𝑠… 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑, 𝑐𝑠
2 =

1

3
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The sum of all weights for the discrete velocity set equals unity.  

Table 1-2: weights  𝑤𝑖  for the respective index 𝑖 (D3Q19) 

𝑖 0 1-6 7-18 

𝑤𝑖 1/3 1/18 1/36 

 

Finally, the evolution of f-values in time stated by Eq. 1-7 can be written in a discrete LBM 

manner: 

 
𝑓𝑖(𝒙 + 𝒆𝒊Δ𝑡, 𝑡 + Δ𝑡 )⏟            

𝑎𝑑𝑣𝑒𝑐𝑡𝑒𝑑 𝑓𝑖

– 𝑓𝑖(𝒙, 𝑡) =  −
Δ𝑡

𝜏𝑓
⋅ (𝑓𝑖 − 𝑓𝑖

𝑒𝑞)
⏟          

𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 (𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠)

 
Eq. 1-9 

 

The Eq. 1-9 contains two essential steps - collision (1) and streaming (2). These distinct steps 

are implemented and processed separately in the simulation code (Eq. 1-10, Eq. 1-11). 

1) 𝑓�̂�(𝒙, 𝑡) =  𝑓𝑖 −
Δ𝑡

𝜏𝑓
⋅ (𝑓𝑖 − 𝑓𝑖

𝑒𝑞) 
Eq. 1-10 

 𝑓�̂�(𝒙, 𝑡) …𝑝𝑜𝑠𝑡 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

   

2) 𝑓𝑖(𝒙 + 𝒆𝒊Δ𝑡, 𝑡 + Δ𝑡 ) = 𝑓�̂�(𝒙, 𝑡) 

Eq. 1-11  𝑓𝑖(𝒙 + 𝒆𝒊Δ𝑡, 𝑡 + Δ𝑡 ) 

…𝑝𝑜𝑠𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

 

In the collision step (1) the density distribution function values 𝑓𝑖 are calculated for the current 

time 𝑡 with the equilibrium distribution function values 𝑓𝑖
𝑒𝑞

 from Eq. 1-8. For the BGK 

approximation the relaxation time 𝜏𝑓 is defined by the kinematic viscosity of the fluid 𝜈 (Eq. 

1-12). Since the 𝜏𝑓 is the same for every direction of the lattice velocity set the BGK-LBM is 

also called a single relaxation time lattice Boltzmann method (SRT-LBM). 

 𝜏𝑓 = 3 ⋅ 𝜈 +
1

2
 Eq. 1-12 
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In the streaming step (2) the post collision density distribution 𝑓�̂�(𝒙, 𝑡) values at position 𝒙 are 

advected (moved) to the neighboring nodes along their specific lattice velocity vector 𝒆𝒊 (see 

Figure 1-2). After collision and streaming boundary conditions for e.g. steady or moving solid 

boundaries are applied which results in one simulated time step of the LBM. 

 

Figure 1-2: D2Q9 - Scheme of streaming step of a post collision 𝑓5̂(𝒙, 𝑡)-value (arrow with solid line), streamed 

𝑓5̂(𝒙, 𝑡)-value equals post streaming  𝑓5(𝒙 + 𝒆𝟓𝛥𝑡, 𝑡 + 𝛥𝑡 )-value (arrow with dashed line) 

 

Calculate velocity and density 

Analogous to Eq. 1-1 and Eq. 1-2 the fluid density 𝜌(𝒙, 𝑡) and macroscopic velocity 𝒖(𝒙, 𝑡) can be 

calculated straightforward: 

 𝜌(𝒙, 𝑡) =∑𝑓𝑖(𝒙, 𝑡)

𝑚

𝑖=0

 Eq. 1-13 

 𝜌(𝒙, 𝑡) ⋅ 𝒖(𝒙, 𝑡) =∑𝒆𝒊 ⋅ 𝑓𝑖(𝒙, 𝑡)

𝑚

𝑖=0

 Eq. 1-14 

 

LBM code implementation 

The implementation of an LBM CFD code requires following steps: 

1) Initialization of the simulation domain (fluid properties, spatial domain, …) 

2) Simulation via LBM for given time steps 𝑁𝑡 

a. Collision (ρ(𝐱, t), 𝐮(𝐱, t), fi(𝐱, t), τf) 

b. Streaming (fi(𝐱, t)) 

c. Boundary conditions (𝐮𝐁𝐂(𝐱𝐁𝐂, t), fi(𝐱, t)) 
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d. Calculate velocity and density (fi(𝐱, t)) 

e. t = t + Δt, repeat a.−e.  if t < Nt  

3) Output and visualization 

Between step 1) and 2) a lattice unit conversion is carried out that converts the physical units of 

quantities e.g. 𝜈 [
𝑚2

𝑠
] to non-dimensional lattice units to be used for example in Eq. 1-12. 

1.2.3 Lattice Unit Conversion 

Before the computation of the flow field by the LBM the units of physical quantities that define 

the system must be converted to so called lattice units LU. The reason is that the numerical 

solving of the LBM equation system is processed with discrete time and space steps. For 

simplicity, the arbitrarily chosen value of the steps is unity and in turn the conversion factors 𝐶 

of time 𝐶𝑡 [𝑠], space 𝐶𝑙  [𝑚] and mass 𝐶𝑚 [𝑘𝑔] are introduced to fulfill the chosen unity of time 

and space steps. One restriction to the unit conversion is that according to the law of similarity 

the dimensionless characteristic values that define the solution to the problem must stay the 

same. Using the dimensionless form of the NSE without body forces one can see that the 

transient solution of the flow field 𝒖(𝒙, 𝑡) solely depends on the Reynolds number 𝑅𝑒 =  
𝑢𝑑𝑅

𝜈 
 

and the geometric ratio/ratios. Concerning the solution to the internal energy equation without 

viscous dissipation the Prandtl number 𝑃𝑟 =  
𝜈

𝛼
 must be added to the set of characteristic 

numbers. Moreover, the stability of LBM constrains the Mach number 𝑀𝑎 to be 

𝑀𝑎 <  0.35 [1]. The accuracy requirement of hydrodynamic simulations often force the Mach 

number to be 𝑀𝑎 <  0.05 to avoid compressibility effects that scale with 𝑀𝑎2 [1] [5]. In the 

following, one procedure for LB unit conversion is carried out. Note that all quantities with 

physical units are signed with *. 

 𝐶𝑙 =
𝑑∗

𝑁𝑙
 

𝑑 …𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑙𝑒𝑛𝑔𝑡ℎ 𝑒. 𝑔. 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 [𝑚] 

𝑁𝑙 …𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑓𝑜𝑟 𝑙𝑒𝑛𝑔𝑡ℎ 𝑑 [−] 
Eq. 1-15 

 

Typically, a certain Mach number 𝑀𝑎 or a certain relaxation time 𝜏𝑓 is predefined to calculate 

a conversion factor of time. Due to diffusive scaling it is reasonable to obtain 𝐶𝑡 =̃ 𝐶𝑙
2. 

 𝑢 = 𝑐𝑠 ⋅ 𝑀𝑎 𝑢…  𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 [𝐿𝑈] Eq. 1-16 
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 𝑢∗ = 𝑢 ⋅  
𝐶𝑙
𝐶𝑡

 Eq. 1-17 

 

The conversion factor of mass 𝐶𝑚 is obtained by choosing the value to the lattice density 𝜌 

arbitrarily, which is typically unity for single-phase flow and not unity for the continuous phase 

in multi-phase flow simulations. 

 𝜌∗ = 𝜌 ⋅  
𝐶𝑚

𝐶𝑙
3  Eq. 1-18 

 

With the given conversion factors of time 𝐶𝑡, length 𝐶𝑙 and mass 𝐶𝑚 further mechanical 

quantities such as kinematic viscosity 𝜈∗ [
𝑚2

𝑠
], pressure 𝑝∗[𝑃𝑎] or internal energy 𝜀∗ [

𝐽

𝑘𝑔
] can be 

converted to lattice units (Eq. 1-19, Eq. 1-20). The value of the relaxation time 𝜏𝑓(𝜈) is 

dependent on the physical value of the kinematic viscosity 𝜈∗and the conversion factor of time 

and space (Eq. 1-20). So, the stability of SRT-LBM affected by 𝜏 is strongly coupled to the 

choice of numerical parameters such as node number 𝑁𝑙 and Mach number 𝑀𝑎 as well as system 

parameters such as the Reynolds number 𝑅𝑒 =
𝑑∗𝑢∗

𝜈∗
. 

 𝜀 =  𝜀∗ ⋅
𝐶𝑡
2

𝐶𝑥2
  Eq. 1-19 

 𝜏 =
1

3
⋅ (𝜈∗ ⋅

𝐶𝑡

𝐶𝑙
2 − 0.5)  Eq. 1-20 

 

Since the discrete time step in lattice units equals unity (Δ𝑡 = 1), the total simulated time equals: 

 𝑡𝑠𝑖𝑚 = 𝑁𝑡 ⋅ 𝐶𝑡 𝑁𝑡 …𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 [−] Eq. 1-21 

 

1.3 Turbulence Model 

Since the NSE can be recovered using the Chapman-Enskog theory, it is proven that the physics 

of hydrodynamic phenomena can be described mechanistically by the LBM. As shown in 

Section 1.2.2, the velocity (flow) field 𝒖(𝒙, 𝑡) can be obtained for the given lattice with the 

discrete three-dimensional position vector 𝒙 = (𝑥, 𝑦, 𝑧). If the lattice is quasicontinuous (𝐶𝑙 →
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0), the temporal and spatial dependencies of the flow field can be described exactly. In the field 

of CFD this method is referred to as direct numerical simulation (DNS). As this method cannot 

be applied at scales of industrial bioreactors due to immense computational costs a coarser grid 

is applied and a sub-grid model is used for the detailed smaller structural elements of the flow 

field that are not directly simulated. 

To distinguish between the simulated and modelled elements in flow fields the concept of 

anisotropic and isotropic turbulence is used (Figure 1-3). 

 

Figure 1-3: left) isotropic turbulence – the depicted flow field is independent from any direction or macroscopic 

geometries, right) anisotropic turbulence – the depicted flow field shows large-scale vortexes (eddies) which are 

dependent on the upward direction and are influenced by the macroscopic oblong geometry [6] 

The basic idea of the large eddy simulation (LES) turbulence model is that the anisotropic 

turbulence (large eddies) are simulated while the isotropic small-scale eddies are modelled. The 

premise of LES is that the lattice (grid) spacing and time step in the simulation must be small 

enough to cover the large eddies and their transient behavior over time. The small-scale eddies 

do have a dissipative characteristic and only marginally influence the anisotropic flow field 

which justifies the approach to model all sub-grid isotropic turbulences [4] [5].  

The Smagorinsky model [8] is the most prominent approach in LES because of its simplicity 

and numerical stability. This method is used in the current simulation framework [9] and its 

main goal is to model the dissipation energy to be withdrawn from the kinetic energy of the 
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large-scale fluid field by increasing the physical fluid viscosity 𝜈0(𝜏𝑓,0) by a turbulent (eddy) 

viscosity 𝜈𝑇. The calculation of this eddy viscosity is based on the momentum flux scalar 𝑄𝑡𝑜𝑡: 

 𝑸 =∑( 𝒆𝒊⨂𝒆𝒊 ⋅ (𝑓𝑖 − 𝑓𝑖
𝑒𝑞) )

𝑚

𝑖=1

 Eq. 1-22 

𝑸…3𝑥3 𝑡𝑒𝑛𝑠𝑜𝑟 𝑓𝑜𝑟 𝑡ℎ𝑟𝑒𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑛 = 3)  

 𝑄𝑡𝑜𝑡 = √2 ⋅∑∑𝑄𝑗𝑘𝑄𝑗𝑘

𝑛

𝑘=1

𝑛

𝑗=1

 Eq. 1-23 

 

𝜈𝑇 =
1

6
(√𝜏𝑓,0

2 + 2√2(𝐶𝑆𝑀)2 ⋅
9𝑄𝑡𝑜𝑡

𝜌
− 𝜏𝑓,0) with  

𝜏𝑓,0 = 3 ⋅ 𝜈0  +
1

2
 

Eq. 1-24 

 
𝜏𝑓∗ = 3 ⋅ (𝜈0 + 𝜈𝑇) +

1

2
 Eq. 1-25 

 

The Smagorinsky constant 𝐶𝑆𝑀 is typically set to 0.1 as proposed in [10]. The updated relaxation 

time 𝜏𝑓∗ for each respective node in the lattice is used in the collision step. 

The energy dissipation rate 𝜀�̇� can be calculated by the strain rate tensor 𝑺 [10]: 

 𝑺 = −
1

2 𝜌0 𝜏𝑓∗ 𝑐𝑠2
⋅ 𝑸 Eq. 1-26 

 𝜀�̇� =  2 (𝜈0 + 𝜈𝑇) ⋅∑∑𝑆𝑗𝑘𝑆𝑗𝑘

𝑛

𝑘=1

𝑛

𝑗=1

 Eq. 1-27 

Using the definition of 𝑺 from Eq. 1-26 in Eq. 1-27 leads to: 

 𝜀�̇� =
9 (𝜈0 + 𝜈𝑇)

2 𝜌0
2 𝜏𝑓∗

2 ⋅∑∑𝑄𝑗𝑘𝑄𝑗𝑘

𝑛

𝑘=1

𝑛

𝑗=1

 Eq. 1-28 
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1.4 Energy Equation 

The internal energy equation for a compressible homogeneous medium can be derived by an 

energy balance of a moving, infinitesimal small, fluid volume element. This evolution equation 

of the scalar internal energy 𝜀 =  ∫ 𝑐𝑣𝑑𝑇
𝑇

0
 is an advection-diffusion equation ADE and contains 

following terms [6] [11]: 

 
[
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒
𝑣𝑜𝑙𝑢𝑚𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

]  =  [
𝑁𝑒𝑡 𝑓𝑙𝑢𝑥 𝑜𝑓
 ℎ𝑒𝑎𝑡 𝑖𝑛𝑡𝑜
𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

]  +  [

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑜𝑛
𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑏𝑜𝑑𝑦
𝑎𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠

] 

                𝐴                       =              𝐵              +                        𝐶 

Eq. 1-29 

 

Similar to the continuity equation the term 𝐴 can be expressed mathematically as: 

 𝐴 =
𝐷(𝜌 𝜀)

𝐷𝑡
=
𝜕(𝜌 𝜀)

𝜕𝑡
+ 𝛁 ⋅ (𝜌 𝜀 𝒖) Eq. 1-30 

 

The term 𝐵 covers the heat flux due to thermal conduction and volumetric heating such as 

absorption of radiation or heat of chemical reaction: 

 𝐵 =  �̇� + 𝛁 ⋅ (𝑘 𝛁 𝑇) 

Eq. 1-31 �̇� …ℎ𝑒𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 [
𝑊

𝑚3
] 

𝑘 …ℎ𝑒𝑎𝑡 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 [
𝑊

𝑚𝐾
] 

 

The term 𝐶 includes the compression and dissipation term. Note that body forces are not 

considered because they do not influence the internal energy of the volumetric element. 

 𝐶 = −𝑝 (𝛁 ⋅ 𝒖) + 𝜌 𝜈 Φ  

Eq. 1-32 
Φ…𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 [

1

𝑠2
] 

 
𝐶 =  −𝑝 (𝛁 ⋅ 𝒖)⏟      

= 0 𝑓𝑜𝑟 𝜌=𝑐𝑜𝑛𝑠𝑡

+ 𝜌 𝜀�̇� Eq. 1-33 
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Firstly, the viscous dissipation 𝜀�̇� = 𝜈 Φ has to be modelled as explained previously in 

Section Turbulence Model1.3 (see Eq. 1-28) and can be put together with all other sources �̇�. 

Secondly, the compression term −𝑝 (𝛁 ⋅ 𝒖) can be neglected for incompressible flows. Inserting 

the three terms 𝐴, 𝐵 and C into Eq. 1-29 leads to: 

 

𝜕(𝜌 𝜀)

𝜕𝑡
 +  𝛁 ⋅ (𝜌 𝜀 𝒖)⏟      

𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= 𝛁 ⋅ (𝑘 𝛁 𝑇)⏟      
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

 +   𝜌 𝜀�̇� + �̇�⏟    
𝑠𝑜𝑢𝑟𝑐𝑒

     with 

𝜀 =  ∫ 𝑐𝑣(𝑇) 𝑑𝑇
𝑇

0

 
𝑐𝑣 = 𝑐𝑜𝑛𝑠𝑡 
→        𝜀 = 𝑐𝑣 ⋅ 𝑇 

Eq. 1-34 

 

The final equation (Eq. 1-34) is very similar to the NSE and has following dimensionless form: 

 
𝜕(�̃� �̃�)

𝜕�̃�
 +  �̃� ⋅ (�̃� �̃� �̃�)  =

1

𝑃𝑟 ⋅ 𝑅𝑒
 �̃� ⋅ (�̃� �̃�) +

𝐸𝑐

𝑅𝑒
  Φ̃ +  �̃̇� Eq. 1-35 

 

The dimensionless form shows that with high Peclet numbers 𝑃𝑒 = 𝑅𝑒 ⋅ 𝑃𝑟 the advective 

effects outweigh diffusive (conductive) effects in the thermal fluid flow. Moreover, with low 

Eckert 𝐸𝑐 =
𝑢2

𝑐𝑣⋅Δ𝑇
 and high Reynolds number 𝑅𝑒 the advection outweighs the viscous 

dissipation. 

1.5 Reactor Geometries 

As mentioned in Section 1.2.3 the Reynolds number and geometric ratios are the only 

parameters that influence the solution of the single-phase flow field. Except for the kinematic 

viscosity all other information for the solution must be given by the reactor geometries that 

define the moving or steady solid parts of the computational domain. Figure 1-4 depicts an 

example of a stirred tank reactor whose parts are described in the following. 
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Figure 1-4: left) top view of the stirred tank reactor with Rushton stirrer, right) isometric front view, 

blue) steady solid parts of reactor, red) steady solid parts of stirrer, grey) moving solid parts of stirrer 

1) wall of the reactor, 2) baffles, 3) shaft of the stirrer with rotating disks, 4) blades of the stirrer, 5) gas sparger 

 

1) Wall of the reactor 

A cylinder with certain diameter and height/ volume defines the reactor wall. The staircase 

approximation is used for the curved surface.  

2) Baffles 

Typically, four upright rectangular baffles are installed in the reactor with equal spacings. The 

purpose is to partially convert the tangential flow produced by the rotation of the stirrer blades 

into an axial flow. 

3) Stirrer Shaft 

The cylindric stirrer shaft simply transfers the torque of the rotating motor to the stirrer blades.  

4) Blades 

Figure 1-4 shows in total 3 Rushton stirrers with 6 blades each. Currently the simulation 

framework supports different blade shapes such as the depicted Rushton, propeller or elephant 

3 

2 

1 

4 

5 

3 
4 

1 2 
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ear blades. Moreover, the number of the blades can vary both by the number on each level as 

well as by the number of stirrers on the shaft. The axial distance of the stirrers on the shaft can 

be varied too. 

5) Gas Sparger 

The torus-shaped gas sparger at the bottom of the reactor flushes and disperses a gas phase such 

as air or pure oxygen into the reactor. This is necessary to provide the required oxygen for the 

metabolism of the microorganisms. 
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2 Energy Transport Algorithm 

In the field of thermal lattice Boltzmann methods (TLBM) three methods to simulate the 

evolution of the internal energy or temperature distribution in fluids by solving the ADE are 

common [1][12][13]. 

In the multi-speed approach, the very same density distribution function 𝑓 is used to solve both 

the NSE and the ADE of the internal energy. This is physically valid since the Boltzmann 

equation can as well describe the macroscopic energy in a system by moments of the density 

distribution. However, there are several drawbacks of this approach such as the requirement of 

a large set of discrete velocities (e.g. D3Q40) which requires a significant change to the current 

fluid flow calculation and large computational storage costs. Moreover, the method suffers from 

stability issues and require a difficult implementation of boundary conditions for the large set 

of discrete density distribution values. Larger temperature differences and an adaptable Prandtl 

number 𝑃𝑟 are not easily achievable.  

The second more popular hybrid method solves the NSE by LBM and the internal energy ADE 

by direct finite volume discretization of the ADE. On the one hand the method is more stable 

than the multi-speed approach, but on the other hand the calculation is less parallelizable 

especially on GPUs. One major advantage to the pure LB approach is that the pressure can be 

coupled with the temperature explicitly which is not vital in liquid flows though. 

The third so called double distribution function DDF method uses a separate second distribution 

function 𝑔 that is used to calculate the temperature, internal or total energy distribution in the 

system. Advantages of the approach are that the Prandtl number can be easily adapted due to 

the explicit and decoupled algorithm and the better stability compared to the multi-speed 

approach. Moreover, the algorithm can be implemented and verified more independently to the 

existing implemented and already tested parts of the simulation framework. In the literature of 

the recent 10 years most TLBM applications and development are based on DDF-TLBM [14]–

[17]. As the LBM for the flow field the DDF-TLBM algorithm can be parallelized the same 

way. Due to the given advantages and shortcomings of each respective method the DDF was 

chosen to be implemented as an energy transport algorithm to describe the temperature 

distribution in a stirred tank reactor. Further explanation, showcase of implementation and 

verification cases are given in following Section 2.1 and Appendix 8.1. 
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2.1 Double Distribution Function Method 

The DDF approach is based on the work of He et al. 1998 [18] who introduced a coupled model 

that takes the compression and dissipation energy into account by making them a function of 

spatial velocity derivatives. This term however restricts the simple bounce-back boundary 

condition [19] implementation and is known to cause numerical instabilities [12]. An often used 

adaption of this first approach is the simplification by Peng et al. 2003/2004 [19] [20] who 

neglected the compression/dissipation term which often marginally influences the flow and 

temperature field. A dissipation energy can be added via a source term in the collision step 

though (see Eq. 2-2). The method calculates the temperature distribution in the domain by 

simulating the evolution of the internal energy IE by its distribution 𝑔. The following scheme 

shall clarify the simulation procedure including the lattice unit conversion (see Section 1.2.3) 

where quantities with physical units are signed with superscript *. 

𝑇𝑖𝑛𝑖𝑡
∗

𝑐𝑣(𝑇)
→    𝜀𝑖𝑛𝑖𝑡

∗
𝐶𝑙,𝐶𝑡
→   𝜀𝑖𝑛𝑖𝑡

𝑇𝐿𝐵𝑀 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
→             𝜀𝑜𝑢𝑡  

𝐶𝑙,𝐶𝑡
→   𝜀𝑜𝑢𝑡

∗
𝑐𝑣(𝑇)
→   𝑇𝑜𝑢𝑡 

∗  

 

Collision and Streaming 

The SRT-DDF-IE-TLBM by Peng et al. [20] follows an analogous sequence as the SRT-LBM 

approach with the BGK collision operator for the flow field (see Section 1.2.2). The following 

formulas are based on the D3Q19 lattice arrangement. 

 

𝑔0
𝑒𝑞 = 𝜌 𝜀 𝑤0 ⋅ (−

3 𝒖2

2
) 𝑓𝑜𝑟 𝑖 = 0 

Eq. 2-1 𝑔𝑖
𝑒𝑞 = 𝜌 𝜀 𝑤𝑖 ⋅ (1 +

𝒆𝒊𝒖

𝑐2
+
9(𝒆𝒊𝒖)

2

2𝑐2
−
3𝒖2

2𝑐2
) 𝑓𝑜𝑟 𝑖 = 1, 2, … 6 

 

𝑔𝑖
𝑒𝑞 = 𝜌 𝜀 𝑤𝑖 ⋅ (2 +

4 𝒆𝒊𝒖

𝑐2
+
9(𝒆𝒊𝒖)

2

2𝑐4
−
𝟑𝒖2

2𝑐2
) 𝑓𝑜𝑟 𝑖 = 7, 8, … 18 
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1) 𝑔�̂�(𝒙, 𝑡) =  𝑔𝑖 −
Δ𝑡

𝜏𝑔
⋅ (𝑔𝑖 − 𝑔𝑖

𝑒𝑞) + 𝑤𝑖 ⋅ 𝜌𝜀�̇� + �̇�⏟    
𝑠𝑜𝑢𝑟𝑐𝑒

⋅ Δ𝑡 
Eq. 2-2 

 𝑔�̂�(𝒙, 𝑡) …𝑝𝑜𝑠𝑡 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

   

2) 𝑔𝑖(𝒙 + 𝒆𝒊Δ𝑡, 𝑡 + Δ𝑡 ) = 𝑔�̂�(𝒙, 𝑡) 

Eq. 2-3  𝑔𝑖(𝒙 + 𝒆𝒊Δ𝑡, 𝑡 + Δ𝑡 ) 

…𝑝𝑜𝑠𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

 

The thermal relaxation time 𝜏𝑔 is linked to the thermal diffusivity 𝛼 =
𝑘

𝜌𝑐𝑣
 of the fluid: 

 𝜏𝑔,0 =
9

5
𝛼0 +

1

2
 Eq. 2-4 

 

The Prandtl number is 𝑃𝑟 =
𝜈0

𝛼0
=
3

5
⋅  
(𝜏𝑓,0−0.5 )

(𝜏𝑔,0−0.5)
   . The effective thermal relaxation time 

𝜏𝑔∗ =  
9

5
(𝛼0 + 𝛼𝑡) + 0.5 can be made a function of the turbulent Prandtl number 𝑃𝑟𝑡 =

𝜈𝑡

𝛼𝑡
, the 

effective relaxation time 𝜏𝑓∗ and the initial relaxation time 𝜏𝑓,0 [21]: 

 𝜏𝑔∗ =
3

5
⋅ [
1

𝑃𝑟
(𝜏𝑓,0 − 0.5) +

1

𝑃𝑟𝑡
(𝜏𝑓∗ − 𝜏𝑓,0)] + 0.5  Eq. 2-5 

 

Calculate internal energy 

Analogous to the density (mass per volume) calculation by f-values, the internal energy times 

the density (energy per volume) can be calculated as the sum of all distribution values 𝑔𝑖 for the 

given node at position 𝒙. 

 𝜌(𝒙, 𝑡)𝜀(𝒙, 𝑡) =∑𝑔𝑖(𝒙, 𝑡)

18

𝑖=0

 Eq. 2-6 

 

TLBM code implementation 
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In DDF-TLBM the calculation of the thermal field 𝜀(𝒙, 𝑡) is carried out after the flow field 

𝒖(𝒙, 𝑡) in the same explicit manner (see Section 1.2.2.) 

1) Initialization of the simulation domain (fluid properties, spatial domain, …) 

2) Simulation via TLBM for given time steps 𝑁𝑡 

a. Flow field: Collision, Streaming, Boundary condition, Calculate velocity and density  

b. Thermal Collision 

c. Thermal Streaming 

d. Thermal Boundary condition 

e. Calculate internal energy 

f. t = t + Δt, repeat a.−f.  if t < Nt  

3) Output and visualization 

2.1.1 Boundary Handling 

Since the DDF-TLBM approach is based on a separate probability function 𝑔 the algorithm 

requires a separate handling of (thermal) boundary conditions (BC). In LBM generally, after the 

streaming step 𝑔𝑖 or 𝑓𝑖-values of fluid nodes next to a solid node (e.g. reactor wall) are missing 

as no g-values are streamed from solid nodes to the fluid boundary nodes in the streaming step. 

Since a complete set of g-values for each node in the fluid domain is required in the collision 

step of the next timestep, a boundary condition is used to calculate the missing g-values after 

the streaming step (see Section 2.1 ‘TLBM code implementation ‘). 

 

Figure 2-1: Example of g-distribution set after streaming step, the ‘fluid boundary nodes’ are missing g-values 

(dashed arrows), all streamed values (solid arrows) were streamed from neighboring fluid nodes, missing g-

values must be calculated by boundary condition 

In the field of TLBM three common methods have emerged to handle boundary conditions: 
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1) Bounce back alike BC (introduced in [22]) 

2) Simple weighted splitting method (studied in e.g. [16]) 

3) Splitting method with taking streamed values into account (introduced in e.g. [23]) 

The first approach is based on a calculation of missing g-values by post collision g-values of the 

local node itself and neighboring nodes plus the value of the Dirichlet condition 𝜀𝐷. In the simple 

second approach all g-values of boundary nodes are set according to their weighting factor by 

𝑔𝑖 = 𝑤𝑖 ⋅ 𝜌𝜀𝐷. In the similar third method the amount that is left to fulfill the Dirichlet condition 

is determined and distributed to the missing values according to their weighting factor. The 

already streamed g-values are retained. The basic formula is given in Eq. 2-7. Different 

‘schemes’ are given in literature [23] which uses the base value 𝑔𝑖
𝑆 for the calculation of the 

missing g-values 𝑔𝑖,𝑚𝑖𝑠𝑠𝑖𝑛𝑔. 

𝑔𝑖,𝑚𝑖𝑠𝑠𝑖𝑛𝑔 = 𝑔𝑖,𝑚𝑖𝑠𝑠𝑖𝑛𝑔
𝑆 +

𝑤𝑖,𝑚𝑖𝑠𝑠𝑖𝑛𝑔
∑ 𝑤𝑖,𝑚𝑖𝑠𝑠𝑖𝑛𝑔
𝑚
𝑖=1  

⋅ (𝜌𝜀𝐷 −∑(𝑔𝑖,𝑠𝑡𝑟𝑒𝑎𝑚𝑒𝑑 + 𝑔𝑖,𝑚𝑖𝑠𝑠𝑖𝑛𝑔
𝑆 ) 

𝑚

𝑖=1

− 𝑔0) 

Eq. 2-7 𝑔𝑖 , 𝑔0…𝑝𝑜𝑠𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑆𝑐ℎ𝑒𝑚𝑒 𝐶: 𝑔𝑖,𝑚𝑖𝑠𝑠𝑖𝑛𝑔
𝑆 = 𝑔𝑖

𝑒𝑞
 

𝑆𝑐ℎ𝑒𝑚𝑒 𝐷: 𝑔𝑖,𝑚𝑖𝑠𝑠𝑖𝑛𝑔
𝑆 = 0 

 

Neumann boundary conditions can be easily converted to Dirichlet conditions by finite 

difference method. For example, if the gradient is known at the beginning of a domain:  

𝜀𝐷(𝑥 = 0) =
2

3

𝜕𝜀(𝑥 = 0)

𝜕𝑥
+
4

3
 𝜀(𝑥 = 1) −

1

3
𝜀(𝑥 = 2) 

The third method was implemented in the simulation framework since it is a simple local node 

method but still remains more information of the thermal field compared to method 2). 

2.1.2 Implementation in MATLAB 

The LBM algorithm for fluid flow and temperature distribution explained in Section 1.2.2 and 

2.1 respectively, have been implemented via the MATLAB computing environment. The DDF 

method for the temperature distribution and the LBM algorithm for fluid flow were tested using 

a D2Q9 lattice arrangement by the thermal Couette and lid driven cavity flow experiment. The 

MATLAB source code for the lid driven cavity simulation is given in the Appendix 8.1. For the 
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boundary conditions of the fluid flow field the common Halfway Bounce Back method,  

Zhou & He method and periodic boundary condition were used. These methods can be looked 

up in detail in section 4.4 ‘Boundary Conditions’ of [24]. 

2.1.2.1 Thermal Couette Flow 

The incompressible Couette flow equals a flow of a fluid that is embedded between two walls. 

The top wall moves with a constant velocity that sets in at the beginning of the experiment. 

Additionally, in the thermal Couette flow experiment the two walls are set to constant 

temperature. The top wall is hotter than the bottom wall. 

 

Figure 2-2: Scheme of the thermal Couette flow experiment, the hot top wall is constantly moving, the 

temperature difference between hot top wall and cool bottom wall is constant over time 

The simulation code can be tested for different Prandtl numbers 𝑃𝑟: If the Prandtl number equals 

𝑃𝑟 = 1, the normalized solution of the flow field and the temperature distribution shall coincide. 

In addition to that the solution can be compared to the transient analytic solution and to the 

steady state analytic solution for 𝑡 → ∞ (Eq. 2-8 and Eq. 2-9). Note that the given transient 

solution in Eq. 2-8 does not hold the no slip condition at the bottom wall and deviates from the 

correct solution when 
𝑑𝑢(𝑦,𝑡)

𝑑𝑦
|
𝑦=0

 >  0. 

transient solution: 

𝑢(𝑦, 𝑡)

𝑢𝑢𝑤
= (1 − erf (

𝐻 − 𝑦

2√𝜈 ⋅ 𝑡
))  𝑜𝑟 

𝑇(𝑦, 𝑡) − 𝑇𝑏𝑤
𝑇𝑢𝑤 − 𝑇𝑏𝑤

= (1 − erf (
𝐻 − 𝑦

2√𝛼 ⋅ 𝑡
)) 

Eq. 2-8 

steady state solution 

𝑡 → ∞: 

𝑢(𝑦, 𝑡)

𝑢𝑢𝑤
=
𝑦

𝐻
 𝑜𝑟 Eq. 2-9 
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𝑇(𝑦, 𝑡) − 𝑇𝑏𝑤
𝑇𝑢𝑤 − 𝑇𝑏𝑤

=
𝑦

𝐻
 

𝑇𝑢𝑤…𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑜𝑝 (𝑢𝑝𝑝𝑒𝑟) 𝑤𝑎𝑙𝑙 

𝑇𝑏𝑤…𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚 𝑤𝑎𝑙𝑙 

𝐻…𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑡ℎ 𝑝𝑙𝑎𝑡𝑒𝑠 (𝑤𝑎𝑙𝑙𝑠) 

 

The performance of the simulation of the thermal Couette flow is depicted in Figure 2-3 and 

Figure 2-4 and compared to the transient and steady state solution respectively. 

 

Figure 2-3: Thermal Couette flow field and temperature distribution for Re=1, Pr=1, nodes in y-coordinate: 100, 

temperature and velocity profiles after t=0.15s, t=0.30s and t=0.45s, comparison to transient solution of the 

thermal Couette flow 

The simulation slightly overpredicts the viscous effects and thereby leads to a positive deviation 

to the analytic solution. The simulation results are in a good agreement with the transient 

analytic solution though. The velocity and temperature profiles coincide for the Prandtl number 

of 𝑃𝑟 = 1 and verify the correct implementation of the temperature distribution and flow field 

calculation. 
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Figure 2-4: Thermal Couette flow field and temperature distribution for Re=1, Pr=1, nodes in y-coordinate: 

100, temperature and velocity profiles after t=1.5s, t=2.25s, t=3.0s, t=3.75s and t=4.5s, comparison to steady 

state solution of the thermal Couette flow 

 

Figure 2-5: Square scope from 0.4 to 0.6 of Figure 2-4 

The temperature and velocity profiles converge to the expected steady state analytic solution for 

longer simulated time. 

2.1.2.2 Lid Driven Cavity Flow 

Although the thermal Couette flow experiment was simulated in a two dimensional domain with 

periodic boundary conditions for the left and right domain boundaries respectively, the physical 

problem is one dimensional. For this reason, the common lid driven cavity flow experiment was 
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chosen as a 2D benchmark problem for the simulation code. The lid driven cavity flow 

experiment equals a fluid embedded in a solid square. The top wall is moving with a constant 

velocity. The movement is started at the beginning of the experiment (Figure 2-6). The solution 

of the simulation can be verified by benchmark data given in the literature [25]. 

 

Figure 2-6: Scheme of the lid driven cavity experiment, the top wall (wall) is constantly moving, the three 

remaining walls are stationary 

There are two common approaches to verify the correctness of the simulation: 

1) Vector plot of the 2D flow field with vortex center 𝒖(𝑥𝑣𝑐, 𝑦𝑣𝑐) = 𝟎 (see Figure 2-7) 

2) Velocity profile of x-component velocity at the horizontal middle of the cavity 

𝑢 (𝑥 =  
1

2
𝐻, 𝑦) (see Figure 2-8) 

The applied input and simulation parameters are given in Table 2-1 

Table 2-1: Input and simulation parameter of the lid driven cavity flow simulation 

Physical Quantity Test Case Physical Quantity Case  

velocity of lid 𝑢𝑤 0.01
𝑚

𝑠
 number of nodes 41 𝑥 41 = 1681 

side length H 0.01 𝑚 relaxation time 𝜏 0.623 

kin. viscosity 𝜈 1 ⋅ 10−4
 𝑚2

𝑠
   time step Δ𝑡∗ 2.439 ⋅ 10−5𝑠 

Reynolds number 𝑅𝑒  1 total simulated time 𝑡𝑠𝑖𝑚  0.2439 s 

density 𝜌 1000 
𝑘𝑔

𝑚3
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Figure 2-7: Vector plot of the lid driven cavity flow problem (left) and streamline plot (right), the vortex center 

location (𝑥𝑣𝑐  , 𝑦𝑣𝑐) = (0.5,0.75) agrees with the collection of literate data for 𝑅𝑒 ≤ 1 [25], numerical artifacts 

remain at the upper corner where bounce back and Zhou & He BC are adjacent 

The center location of the vortex agrees with the data given in the literature [25]. The solution 

of the flow field contains artifacts at the upper corner of the cavity. The reason might be the 

interaction of Bounce Back BC and Zhou & He BC at these corners. 

 

Figure 2-8: X-component velocity u plotted along the height of the cavity at the horizontal middle of the cavity 

The steady state velocity profile at the horizontal middle of the cavity is in good agreement with 

the literature data [25]. 
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2.1.3 Implementation in CUDA 

The SRT-DDF-IE-TLBM was ported to the C++ based CUDA API simulation framework and 

in terms of LB adapted to the D3Q19 lattice arrangement. The coded energy transport algorithm 

shall be able to correctly simulate the transient advection and diffusion of energy with given 

local and transient energy sources. 

2.1.3.1 Verification: Heat Diffusion in a Cylinder with Steady Fluid 

For the verification of the method a heat diffusion in a cylinder with constant hot wall 

temperature and resting water is simulated. This case was chosen to independently check for 

stability issues that may arise by the value of the relaxation time 𝜏𝑔 that is linked to the thermal 

diffusivity 𝛼 of the fluid (see Eq. 2-4). Note that the viscosity 𝜈 of the water is set to 

𝜈 =  1 ⋅  10−6
𝑚2

𝑠
 and the true physical Prandtl number is about 𝑃𝑟 =

𝜈

𝛼
~ 5. The following 

overview of the simulation setup (Figure 2-9), simulation parameters and graphs (Figure 2-10 - 

Figure 2-13) illustrate the stability limit of the method. 

 

Figure 2-9: Initial setup of the verification case, the boundary nodes of the cylinder are set to a constant 

temperature of 300K (𝜀 = 1.2 ⋅ 106
𝐽

𝑘𝑔
, 𝑐𝑝 = 4000

𝐽

𝑘𝑔⋅𝐾
 ),the bulk nodes are set to a temperature of 0 K, the heat 

diffusion is investigated along a plot axis (white arrow in z-coordinate), diameter: 1 m, height: 0.332 m, 100 

nodes per meter 
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𝝉𝒈 = 𝟎. 𝟓𝟏𝟐, 𝑷𝒓 = 𝟑. 𝟐 ⋅ 𝟏𝟎
−𝟒 

 

Figure 2-10: 𝒕𝟏 = 𝟐𝟓𝟎, 𝒕𝟐 = 𝟓𝟎𝟎, 𝒕𝟑 = 𝟕𝟓𝟎, 𝒕𝟒 = 𝟏𝟎𝟎𝟎 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔, the algorithm shows a stable 

evolution of the heat distribution in the system 

 

 

𝝉𝒈 = 𝟎. 𝟓𝟏𝟎, 𝑷𝒓 = 𝟑. 𝟗 ⋅ 𝟏𝟎
−𝟒 

 

Figure 2-11: the stability limit is reached – a closer view of the data reveals slight instabilities (see Figure 

2-12) 

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

0 2 4 6 8 10 12 14

In
te

rn
al

 e
n
er

g
y
 [

J/
k
g
]

z [node number]

t1

t2

t3

t4

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

0 2 4 6 8 10 12 14

In
te

rn
al

 e
n
er

g
y
 [

J/
k
g
]

z [node number]

t1

t2

t3

t4

t1 scope 



2. Energy Transport Algorithm 

28 

 

Figure 2-12: Nonphysical results of the method – towards the middle of the cylinder the temperature rises, 

although the heat gradient should be negative towards the middle (hotter wall, cold bulk) 

 

 

𝝉𝒈 = 𝟎. 𝟓𝟎𝟖, 𝑷𝒓 = 𝟒. 𝟗 ⋅ 𝟏𝟎−𝟒 

 

Figure 2-13: The stability limit is exceeded – the temperature starts to oscillate and reaches huge values after 

𝒕𝟒 = 𝟏𝟎𝟎𝟎 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔 

 

The Figure 2-10 to Figure 2-13 show that the method is unstable for a relaxation time 𝜏𝑔 below 

0.512. This limit equals a Prandtl number of 𝑃𝑟 = 3.2 ⋅ 10−4 that is four magnitudes lower than 

the physical Prandtl number of common fluids such as water, which in turn implies that the 

method is only stable if the heat diffusivity 𝛼 is four magnitudes larger than the physical one. It 
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stands to reason that this considerable mismatch demands for an alternative or adapted method 

to describe the temperature distribution correctly. 

2.1.3.2 Stability Issues 

In the current literature the stability of the BGK-SRT-LBM for the flow field is well studied and 

guidelines are given to choose a stable pair of 𝑢𝑚𝑎𝑥 and 𝜏𝑓 which is well summarized in Section 

4.4 of [1]. However, the literature lacks in number-based guidelines for 𝑢𝑚𝑎𝑥 and 

𝜏𝑔 =  𝑓(𝑃𝑒,𝑀𝑎,𝑁𝑑) which determine the stability of the (SRT- ) TLBMs.  

One crucial factor is the choice of the boundary condition handling [12]. The chosen method for 

boundary handling (see Section 2.1.1) leads to negative equilibrium values 𝑔𝑒𝑞 if the thermal 

relaxation time 𝜏𝑔 reaches values of about 0.52. At least for the fluid flow BGK-SRT-LBM the 

non-negativity of all equilibrium values 𝑓𝑒𝑞 is a sufficient criterion for the stability. 

Papers from year 2013-2018 such as [13], [26], [27] propose more complex methods which are 

often based on the multi relaxation time lattice Boltzmann method MRT-LBM that attempt to 

overcome the known limited stability of the SRT-TLBM.  

Still for the given problem of a stirred tank reactor with aqueous solution a purely advective LB 

based algorithm can be a reasonable choice to describe the transient temperature distribution 

which is explained and investigated in the following Section 2.2. 

2.2 Direct Advection of Internal Energy by Density Distribution Function 

Because of the instability issues and the large mismatch between the achievable Prandtl number 

and the real Prandtl number of liquids an alternative approach to the DDF-TLBM must be used.  

In fact, the thermal diffusion modelled in the collision step of the 𝑔-distribution caused the 

numerical instabilities and it is questionable whether the advective effects may outweigh the 

diffusive effects in a stirred tank with aqueous liquids. As stated before the Peclet number 

𝑃𝑒 =  𝑅𝑒 ⋅  𝑃𝑟 provides information whether the diffusive term in the internal energy equation 

is negligible or not (see Eq. 1-35). The mixing Reynolds number of stirred tanks is defined as 

𝑅𝑒 =  
𝑁𝑟𝑜𝑡[

𝑟𝑎𝑑

𝑠
] ⋅𝐷𝑠𝑡𝑖𝑟𝑟

2

𝜈
 and is typically in the range of 105 ÷ 106. With a Prandtl number of about 

100.5 the Peclet number is larger than 105 which makes it reasonable to cancel diffusion in the 

temperature distribution simulation of the stirred bioreactor (Eq. 2-10). This implies that all 



2. Energy Transport Algorithm 

30 

effects such as external cooling/heating must be modelled as sinks/sources and the heat in the 

reactor is only advected by the flow field. 

 
𝜕(�̃� �̃�)

𝜕�̃�
 +  �̃� ⋅ (�̃� �̃� �̃�)  =

1

𝑃𝑟 ⋅ 𝑅𝑒
 �̃� ⋅ (�̃� �̃�)

⏟          
≪1

+
𝐸𝑐

𝑅𝑒
  Φ̃ +  �̃� �̃̇� Eq. 2-10 

In 2016 Osmanlic et al. [28] introduced a purely advective transport equation that can as well 

be used to transport scalars in the fluid field such as the temperature 𝑇 in the equation above 

[29]. The model is based on the calculation of a net flux into or out of a cell at 𝒙 =  (𝑥, 𝑦, 𝑧) by 

a balance of mass flow between the node and all its neighboring nodes 𝑖 at 𝒙 + 𝒆𝒊 (Eq. 2-11).  

  Δ𝑚𝑖  = 𝑓−𝑖(𝒙 + 𝒆𝒊Δ𝑡, 𝑡) − 𝑓𝑖(𝒙, 𝑡) Eq. 2-11 

𝑓𝑖 …𝑝𝑜𝑠𝑡 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑓−𝑖 …𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓�̂� 
 

 

The internal energy is either advected into the node by a neighboring node 𝑖 (Δ𝑚𝑖 > 0) or 

advected from the node to the corresponding neighboring node 𝑖 (Δ𝑚𝑖 ≤  0). Summing up all 

energy balances 
Δ𝑚𝑖⋅𝜀 

𝜌
 and adding the energy of the last timestep plus the heat source/sinks gives 

the updated post streaming internal energy of the node 𝜀(𝒙, 𝑡 + Δ𝑡): 

𝜀(𝒙, 𝑡 + Δ𝑡) =  𝜀(𝒙, 𝑡) + ( 𝜀�̇�(𝒙, 𝑡) +
1

𝜌
�̇�(𝒙, 𝑡))  Δ𝑡 +∑Δ𝑚𝑖 ⋅

{
 
 

 
 𝜀(𝒙 + 𝒆𝒊Δ𝑡, 𝑡)

𝜌(𝒙 + 𝒆𝒊Δ𝑡, 𝑡 + Δ𝑡)
,  Δ𝑚𝑖 > 0

𝜀(𝒙, 𝑡)

𝜌(𝒙, 𝑡 + Δ𝑡)
,  Δ𝑚𝑖 ≤  0

𝑚

𝑖=1

 

… Eq. 2-12 

 

The major advantage of the method is that the calculation of the net flux ensures that no energy 

can be created or lost by numerical calculation of the energy itself by Eq. 2-12. However, the 

numerical diffusion or/and oscillation cause deviations from the analytical solution. 

Regarding computational costs the calculation is processed in one step compared to the two 

steps of streaming and collision and concerning storage costs the algorithm does not require 

extra computation fields like the g-distribution in the case of DDF-LBM. 
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2.2.1 Verification: Advection of Gauss Distribution 

In this test case the implemented (energy) transport algorithm shall be verified for its correct 

simulation of a 1D Gauss distribution advection with constant fluid velocity. The four critical 

factors that are observed are  

1) the correct shift of the peak of the distribution (mean of distribution),  

2) the conservation of the overall integral, 

3) the existence of numerical oscillations and retaining the non-negativity constraint and 

4) the degree of numerical diffusion (reduction of amplitude, increase of standard 

deviation). 

 

These factors are used to assess the applicability of the transport model with respect to the 

physical solution. The first constraint is that the advection velocity of the transported quantity 

coincides with the fluid velocity. Secondly, mass has to be conserved and thirdly, no negative 

values shall arise due to instabilities. Lastly the degree of numerical diffusion is evaluated and 

compared to the physical diffusion and other transport models. 

The setup of the test case was adopted from a comparison of scalar transport algorithms in the 

field of LBM by Küng et al [29]. The 3D simulation domain equals a cuboid with only fluid 

nodes and periodic boundary conditions in all spatial directions. The initial Gauss distribution 

is given in Eq. 2-13: 

 𝜀𝐺𝑎𝑢𝑠𝑠(𝑧) = 𝐴 ⋅ exp(−
1

2

(𝑧 − 𝜇𝑧)
2

𝜎2
) = 1 ⋅ exp (−

1

2

(𝑧 − 500)2

502
) Eq. 2-13 

𝐴…𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒, 𝜇𝑧…𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒, 𝜎 … 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  

 

This initial energy distribution is advected along the z-coordinate with constant lattice velocity 

of 𝑢𝑧,0 =  0.01 by setting all f-values in the domain as their equilibrium distribution values 

𝑓𝑖(𝑥, 𝑡) =  𝑓𝑖
𝑒𝑞 (𝑢 = (0,0, 𝑢𝑧,0 )). The choice of 𝑢𝑧,0 =  0.01 in the test case is appropriate for 

the stirred bioreactor simulation since it equals the chosen lattice tip velocity of the stirrer and 

thus represents the highest velocity magnitude in the simulation. The Figure 2-14 depicts the 

result of the verification case:  
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Figure 2-14: A 1D Gauss distribution (amplitude of 1, standard deviation of 50 and mean value of 500) is advected 

by a constant fluid velocity of 𝑢𝑧 = 0.01 for 50000 timesteps. The dashed curve shows the Gauss distribution after 

the simulation which has a reduced amplitude of 0.9136 and an increased standard deviation due to numerical 

diffusion. 

1) The implemented Osmanlic transport algorithm moves the initial distribution without relative 

shift.  

2) The energy in the system represented by an overall integral in z-coordinate stays the same: 

Table 2-2: Calculation of the overall integral for different timesteps. The integral provides a measure for the total 

energy in the system. The value of the integral stays about the same. The error may be caused by numerical 

integration (trapezoidal rule, 1000 increments from z=0 to z=1500) 

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 0 50 000 100 000 

∫ 𝜀𝐺𝑎𝑢𝑠𝑠(𝑧) 𝑑𝑧
1500

𝑧=0

 125.3314 125.3315 125.3303 

𝑒𝑟𝑟𝑜𝑟[%] - 0.91 ⋅ 10−4 0.93 ⋅ 10−3 

 

3) The algorithm does not oscillate and does not give negative results. 

4) Compared to other solvers such as the common Lax-Wendroff method the numerical 

diffusion is less for the set fluid velocity of 𝑢𝑧 = 0.01. The decay of the Gauss amplitude can 

be calculated by Eq. 2-14 and Eq. 2-15 (see [29], Eq. 16, 17). For the 1D Osmanlic algorithm 
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the numerical diffusion coefficient 𝐷𝑂𝑠  is dependent on the lattice velocity of the fluid and is a 

parabola with zeroes at 𝑢 = 0.0 and 𝑢 = 1.0 and maximum at 𝑢 = 0.5: 

 𝐷𝑂𝑠 =
1

2
(1 − 𝑢) ⋅ 𝑢 = 0.00495 Eq. 2-14 

 𝐴(𝑡) = 𝐴0√
𝜎0
2

𝜎0
2 + 2𝐷𝑂𝑠𝑡

= 1 ⋅ √
502

502 + 2 ⋅ 0.00495 ⋅ 50000
= 0.9136 Eq. 2-15 

𝐴0…  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒, 𝜎0… 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛,

𝐷𝑂𝑠…  𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑡 … 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 
 

 

The respective Gauss amplitude of the simulation and the decayed amplitude given by the above 

analytic equations at timestep 𝑡 =  50000 are exactly the same. The results of Küng et al 

depicted in Fig 2 of paper [29] show an even higher decay of the amplitude which contradicts 

with the results of the stated equations given in the same paper (see [29], Eq. 16, 17). 

All in all, the result of the verification test provides physically meaningful results. The value of 

the simulated numerical diffusion can be verified by analytic formulas. 

2.2.2 Comparison of Numerical and Physical Diffusion 

As mentioned in Section 2.2.1 the numerical diffusion coefficient of the 1D Osmanlic transport 

algorithm can be described by a second order polynomial (parabola) of fluid velocity in lattice 

units. The numerical diffusivity is solely driven by fluid velocity and therefore does not exist 

for a steady fluid. Currently there are no references given in the literature that describe the 

numerical diffusion in a 3D fluid domain whose magnitude and (an)isotropy shall be compared 

to the true physical diffusion of heat in a fluid. For following flow and LB conditions, the 

numerical diffusion coefficient 𝐷𝑂𝑠 and additional error terms of the algorithm are derived. The 

detailed derivation can be looked up in the Appendix (Section 8.2). The derivation is valid for 

following assumptions: 

• Steady-state fluid flow → 𝑓𝑖 = 𝑓𝑖
𝑒𝑞

 

• 𝑢𝑥 ≥ 𝑢𝑦 ≥ 𝑢𝑧 ≥ 0 

• BGK collision operator with second order equilibrium distribution function (see Eq. 1-5 

and Eq. 1-8) 
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• D3Q19 lattice arrangement  

• Node at 𝒙 = (𝑥, 𝑦, 𝑧) whose 18 neighboring cells have the same component velocities 

𝒖(𝒙) =  (𝑢𝑥, 𝑢𝑦 , 𝑢𝑧) 

With the assumption that the fluid density 𝜌 and heat capacity 𝑐𝑣 are constant the physical 

advection-diffusion equation for the internal energy 𝜀 can be written as follows: 

𝜕(𝜌 𝜀)

𝜕𝑡
 +  𝛁 ⋅ (𝜌 𝜀 𝒖)⏟      

𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= 𝛁 ⋅ (𝑘 𝛁 𝑇)⏟      
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

       𝑤𝑖𝑡ℎ 𝜀 = 𝑐𝑣𝑇 𝑎𝑛𝑑 𝛼 =
𝑘

𝜌𝑐𝑣
 

 
𝜕𝑇(𝒙, 𝑡)

𝜕𝑡
 + 𝑢𝑥 ⋅

𝜕𝑇(𝒙, 𝑡)

𝜕𝑥
+ 𝑢𝑦 ⋅

𝜕𝑇(𝒙, 𝑡)

𝜕𝑦
+ 𝑢𝑧 ⋅

𝜕𝑇(𝒙, 𝑡)

𝜕𝑧

= 𝛼(
𝜕2𝑇(𝒙, 𝑡)

𝜕𝑥2
+
𝜕2𝑇(𝒙, 𝑡)

𝜕𝑦2
+
𝜕2𝑇(𝒙, 𝑡)

𝜕𝑧2
) 

Eq. 2-16 

The derivation of the numerical diffusion of the Osmanlic transport algorithm leads to following 

form of the advection diffusion equation: 

𝜕𝜀(𝒙, 𝑡)

𝜕𝑡
 + 𝑢𝑥 ⋅

𝜕𝜀(𝒙, 𝑡)

𝜕𝑥
+ 𝑢𝑦 ⋅

𝜕𝜀(𝒙, 𝑡)

𝜕𝑦
+ 𝑢𝑧 ⋅

𝜕𝜀(𝒙, 𝑡)

𝜕𝑧
=

=

(

 
 
 

−
1

2
𝑢𝑥
2 +

1

2
𝑢𝑥

−
1

2
𝑢𝑦
2 +

1

3
𝑢𝑦 +

1

6
𝑢𝑥

−
1

2
𝑢𝑧
2 +

1

6
𝑢𝑧 +

1

6
𝑢𝑥 +

1

6
𝑢𝑦)

 
 
 

⋅

⏟                      

𝑫𝑶𝒔
(

 
 
 
 

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥2

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑦2

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑧2 )

 
 
 
 

+

(

 
 
 

1

3
 𝑢𝑦

1

3
 𝑢𝑧

1

3
 𝑢𝑧)

 
 
 

⋅

(

 
 
 
 
 

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥𝜕𝑦

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥𝜕𝑧

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑦𝜕𝑧 )

 
 
 
 
 

⏟              
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚

 

… Eq. 2-17 

The numerical diffusion is anisotropic with stronger diffusion towards the larger spatial 

component velocity 𝑢𝑥 , 𝑢𝑦  or 𝑢𝑧 which is in this case the x-component. The x-component of 

the numerical diffusion coefficient remains the same as in the 1D case (see Eq. 2-14). The bigger 

spatial component velocities affect the diffusion components of smaller component velocities 

but not vice versa. This is for example represented by the 
1

6
ux +

1

6
uy term in the z-component 

of the diffusion coefficient vector 𝑫𝑶𝒔. 

The description of the numerical diffusion for a random fluid node in a stirred bioreactor is 

obviously more complex, depending on 36 different f-values of the fluid node (18) and its 
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neighboring nodes (+18) instead of three constant spatial component velocities. The derived 

diffusion coefficient vector 𝑫𝑶𝒔 allows for a comparison of order of magnitudes of physical and 

numerical diffusion though (Figure 2-15). 

 

Figure 2-15: Comparison between physical and numerical diffusion of the Osmanlic transport algorithm. The 

physical diffusion coefficient is given by 𝛼[𝐿𝑈] =
𝐶𝑡

𝑃𝑟⋅𝐶𝑙
2 ⋅ 𝜈

∗ [
𝑚2

𝑠
] which is for water in a plausible range of 

[𝛼𝑚𝑖𝑛[𝐿𝑈] = 0.1 ⋅ 10
−6, 𝛼𝑚𝑎𝑥  [𝐿𝑈] = 2 ⋅ 10

−6]. For reasons of simplicity of the comparison the y and z 

component velocity are given by the x component velocity 𝑢𝑦 =  
2

3
𝑢𝑥 , 𝑢𝑧 =  

1

3
𝑢𝑥. The x-axis of the plot is given 

by the magnitude of the velocity vector. 

The plot shows that the numerical diffusion is already greater than the physical diffusion at order 

of magnitudes of |𝐮| >  10−6 =  0.01% ⋅ umax. As previously mentioned the maximum 

velocity umax is given by the tip-velocity of the stirrer blades and is set to 0.01 in the lattice unit 

conversion. 

So, although the advective algorithm does not formulate physical diffusion its numerical 

diffusion is larger than the physical diffusion for a wide range of fluid velocities. For the given 

derivation and assumptions above the numerical diffusion can be about four magnitudes larger 

if the fluid velocity is equal to the tip-velocity of the stirrer. If the fluid is steady, the numerical 

diffusion vanishes. 
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2.2.3 Verification: Numerical Diffusion Normal to Fluid Velocity Vector 

In previous Section 2.2.3 the diffusion along the fluid velocity vector  𝒖 was investigated for a 

Gauss distribution. Since the numerical diffusion appears normal to the fluid velocity vector as 

well (see Eq. 2-17), three further verification cases were carried out to confirm this 

quantitatively. 

The first setup is a 1D top hat function of the internal energy 𝜀(𝑧) that is advected in the y- or 

x-coordinate. The numerical diffusion of the initial function is investigated along the z-axis. In 

this simple case the velocity vector aligns with the cubic discretized cells. 

The second setup is analogous to the 1D top hat function. The step from 𝜀 = 0 to 𝜀 = 1 is set at 

a 2D plane 𝐸2𝐷 along the (1,1,0) square diagonal. 

The third setup is a 3D case again analogous to the 1D top hat function. This time the step from 

𝜀 = 0 to 𝜀 = 1 is set at a 3D plane 𝐸3𝐷 along the (1,1,1) space diagonal. 

In the following, the results and setup of the 1D verification case is shown on the left, the 2D 

verification case in the middle column while the 3D verification case is shown on the right.
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Initial distribution setup (left 1D, middle 2D, right 3D) 

 

Figure 2-16: Initial setup for investigation of 1D 

numerical diffusion in z-axis, fluid flow towards x-

axis (aligned with lattice structure) 

 

Figure 2-17: Initial setup (set image threshold at 

𝜀 =  1.0) for investigation of 2D numerical 

diffusion normal to plane E2D, fluid flow towards 

the square diagonal (1,1,0) 

 

Figure 2-18: Initial setup (set image threshold at 

𝜀 =  1.0) for investigation of 3D numerical 

diffusion normal to plane E3D, fluid flow towards 

the space diagonal (1,1,1) 

Final distribution after simulation 

 

Figure 2-19: Numerical diffusion visible after 

50000 timesteps at initial step in the middle of the 

domain (z=100 nodes) 
 

Figure 2-20: Numerical diffusion visible after 

9000 timesteps (set image threshold at 𝜀 =  0.3), 
diffusion is observed along the normal vector of 

the plane (white line normal to plane E2D) 

 

Figure 2-21: Numerical diffusion visible after 

9000 timesteps (set image threshold at 𝜀 =  0.3), 
diffusion is observed along the normal vector of 

the plane (white line normal to plane E3D) 
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Velocity vector, initial energy distribution, numerical diffusion coefficient, analytical solution 

|𝑢| = 0.01, 𝒖 = (0.01,0,0) |𝑢| = 0.01, 𝒖 = (
0.01

√2
,
0.01

√2
, 0) |𝑢| = 0.01, 𝒖 = (

0.01

√3
,
0.01

√3
,
0.01

√3
) 

   

𝜀(𝑧, 𝑡 = 0) = {
0,  z >

1

2
𝑧𝑚𝑎𝑥

1,  z ≤
1

2
𝑧𝑚𝑎𝑥

 

𝐸2𝐷 = {(𝑥, 𝑦, 𝑧) 𝜖 ℝ| − 𝑥 + 𝑦 = 0} 

𝜀(𝑥, 𝑦, 𝑧, 𝑡 = 0) = {
0,  0 ≤ −𝑥 + 𝑦
1,  0 > −𝑥 + 𝑦

 

𝐸3𝐷 = {(𝑥, 𝑦, 𝑧) 𝜖 ℝ| −
1

2
𝑥 −

1

2
𝑦 + 𝑧 = 0} 

𝜀(𝑥, 𝑦, 𝑧, 𝑡 = 0) = {
0,  0 ≤ −

1

2
𝑥 −

1

2
𝑦 + 𝑧

1,  0 > −
1

2
𝑥 −

1

2
𝑦 + 𝑧

 

   

𝐷𝑧
𝑂𝑠 =

1

6
𝑢𝑥 = 0.00167 𝐷𝑥𝑦

𝑂𝑠 = −
1

2
𝑢𝑥𝑦
2 +

1

2
uxy = 0.00351 𝐷𝑥𝑦𝑧

𝑂𝑠 = −
1

2
𝑢𝑥𝑦𝑧
2 +

1

2
uxyz = 0.00287 

   

𝜀(𝑧, 𝑡) =
1

2
⋅ (1 − erf (

𝑧 −
1
2 𝑧𝑚𝑎𝑥

2 ⋅ √𝐷𝑧
𝑂𝑠𝑡
)) 

𝑛2𝐷 …𝑝𝑙𝑜𝑡 𝑎𝑥𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒 𝐸2𝐷 

𝜀(𝑛2𝐷 , 𝑡) =
1

2
⋅

(

 1 − erf

(

 
𝑛2𝐷 − 𝑛𝑝𝑙𝑎𝑛𝑒

2 ⋅ √𝐷𝑥𝑦
𝑂𝑠𝑡

)

 

)

  

𝑛3𝐷 …𝑝𝑙𝑜𝑡 𝑎𝑥𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒 𝐸3𝐷 

𝜀(𝑛3𝐷 , 𝑡) =
1

2
⋅

(

 1 − erf

(

 
𝑛3𝐷 − 𝑛𝑝𝑙𝑎𝑛𝑒

2 ⋅ √𝐷𝑥𝑦𝑧
𝑂𝑠 𝑡

)

 

)
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Analytical vs. simulated solution of numerical diffusion (top: 1D, 2D, 3D case; bottom: 2D, 3D case diffusion in x-coordinate) 
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Figure 2-22: 1D 

 

Figure 2-23: 2D diffusion normal to 𝐸2𝐷 

 

Figure 2-24: 3D diffusion normal to 𝐸3𝐷 

- 

 

Figure 2-25:2D diffusion in x-coordinate 

 

Figure 2-26: 3D diffusion in x-coordinate 
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The 1D case simulation (see left column) results in a perfect agreement with the analytical 

solution of the numerical diffusion which is depicted in the plot at the bottom of the column 

(Figure 2-22). This further proves the correct implementation of the algorithm and the correct 

derivation of the numerical diffusion. 

Compared to the analytical solution of the numerical diffusion both the 2D and 3D case (see 

middle and right column) show a reduced diffusion perpendicular to the plane that aligns with 

the fluid flow vector but not with the cubic lattice structure. This disparity can be seen in the 

upper line of the plots at the bottom of the column (Figure 2-23 and Figure 2-24) as well as in 

the thermal image of the simulation output (Figure 2-27). Still, the diffusion towards the space 

coordinate which aligns with the cubic lattice structure coincides with the analytical solution 

(Figure 2-25 and Figure 2-26). The data for Figure 2-25 and Figure 2-26 was taken from a 

vertical plane that aligns with the lattice structure (see for 2D case left arrow Figure 2-27). 

Seemingly, there is a dependency whether the direction of the diffusion aligns with the lattice 

structure. If the diffusion direction aligns with lattice structure, the solution can be verified by 

an analytical solution which can be proven for the 1D, 2D and 3D velocity vectors respectively. 

If the direction of the diffusion does not align with the cubic lattice structure the diffusion is 

reduced which is shown in the 2D and 3D test case simulations.  

 

Figure 2-27: Numerical Diffusion for 2D Case at 7000 timesteps, the numerical diffusion can be determined for 

diffusions along the cubic lattice structure, the diffusion across the lattice structure (e.g. square diagonal) is 

reduced 
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One straightforward attempt at an explanation for the reduced diffusion across the lattice 

structure is that the diffusion does only behave as derived if the direction of the diffusion aligns 

with the lattice structure. Thus, the diffusion across the lattice grid such as in square diagonal or 

space diagonal direction is solely a result from diffusion that aligns with the lattice structure. 

See Figure 2-28 for a schematic explanation. 

 

Figure 2-28: Diffusion that aligns with the lattice structure is represented by the vertical or horizontal black 

arrows, the diffusion across the lattice structure in square diagonal direction does only result from diffusion that 

aligns with lattice structure in x and y coordinate 

According to Figure 2-28 the effective diffusion across the lattice grid can be described by the 

x and y coordinate in the 2D case: 

 𝐷2𝐷,(−1,1,0) = √(
1

2
𝐷𝑥𝑦
𝑂𝑠)

2

+ (
1

2
𝐷𝑥𝑦
𝑂𝑠)

2

=
1

2
√2 ⋅ 𝐷𝑥𝑦 Eq. 2-18 

Analogous to the 2D case the corrected diffusion can be stated for the 3D case: 

 𝐷
3𝐷,(−

1
2
,−
1
2
,1)
= √(

1

2

1

2
𝐷𝑥𝑦𝑧
𝑂𝑠  )

2

+ (
1

2

1

2
𝐷𝑥𝑦𝑧
𝑂𝑠 )

2

+ (
1

2
𝐷𝑥𝑦𝑧
𝑂𝑠 )

2

 Eq. 2-19 

 

The analytic solutions can be corrected by inserting the effective diffusion coefficients: 

𝑢𝑥𝑦 
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𝜀(𝑛2𝐷 , 𝑡) =
1

2
⋅ (1 − erf (

𝑛2𝐷 − 𝑛𝑝𝑙𝑎𝑛𝑒

2 ⋅ √𝐷2𝐷,(−1,1,0)𝑡
))  𝑜𝑟 

 𝜀(𝑛3𝐷 , 𝑡) =
1

2
⋅

(

 1 − erf

(

 
𝑛3𝐷 − 𝑛𝑝𝑙𝑎𝑛𝑒

2 ⋅ √𝐷3𝐷,(−1
2
,−
1
2
,1)
𝑡
)

 

)

  

Eq. 2-20 

 

Finally, the comparison previously shown by Figure 2-23 and Figure 2-24 is depicted in Figure 

2-29 and Figure 2-30 with the corrected effective analytic solutions given by Eq. 2-20. 

 

Figure 2-29: 2D numerical diffusion across lattice 

structure compared to analytical solution with 

corrected effective diffusion coefficient 

 

Figure 2-30: 3D numerical diffusion across lattice 

structure compared to analytical solution with 

corrected effective diffusion coefficient 

 

The deviation of analytical and simulation results is less compared to the deviation depicted in 

Figure 2-23 and Figure 2-24 for the 2D and 3D case respectively.  
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3 Bioreactor Implementation 

The Osmanlic transport algorithm (Section 2.2) for scalars allows to implement conditions that 

describe the thermal distribution problem: 

• Set absolute internal energy value to a certain value at certain position and time (e.g. 

initial temperature, temperature measurement) 

• Set arbitrarily chosen or physically modelled values of internal energy sources or sinks 

(e.g. external heating or cooling devices, heat generated by biosynthesis) 

In the following Figure 3-1 an overview is of the code structure is given. 

 

Figure 3-1: Overview of the thermal distribution calculation, solid lines represent implemented features, dashed 

lines represent possible coupled models 

The respective subsections of this chapter explain the implementation of different features to 

describe the temperature distribution in an industrial stirred tank bioreactor. 

3.1 Heating Jacket 

3.1.1 Implementation Method 

The general task is to implement a heating jacket with a predetermined total heat power �̇�𝐻𝐽[𝑊] 

at a certain vertical position and height. The approach is to model the heating jacket as a heat 
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source to the fluid nodes that it encloses. The implementation was split into following three 

steps with short description below: 

1) Define heating jacket nodes that have heat source �̇�𝐻𝐽 [
𝑊

𝑚3
] due to the heating jacket   

2) Count the number 𝑁𝐻𝐽 of these nodes 

3) Uniformly split the total heat power �̇�[𝑊] to these nodes and add the heat source 

�̇�𝐻𝐽 [
𝑊

𝑚3
] to the overall heat source field �̇�(𝑥, 𝑦, 𝑧, 𝑡) for the given heat up time 𝑡ℎ𝑢 

The heating jacket nodes are the boundary fluid nodes that are in in direct contact with the tank 

wall of the fluid and limited vertically by an upper limit 𝑧𝐻𝐽,𝑢𝐿 and a lower limit 𝑧𝐻𝐽,𝑙𝐿. Both 

limits can be adapted in the input parameter sheets and are defined by the ratio of the vertical 

length from the bottom to respective limit divided by the total height of the reactor. Accordingly, 

a heating jacket from the middle of the reactor to its top is initialized by 𝑧𝐻𝐽,𝑢𝐿 = 1 and 𝑧𝐻𝐽,𝑙𝐿 =

0.5. The boundary fluid nodes are determined in the initialization procedure of solid tank nodes. 

The given total power �̇�𝐻𝐽[𝑊] is split to all heating jacket nodes as a uniform heat source 

�̇�𝐻𝐽 [
𝑊

𝑚3
] that contributes to the overall heat source field �̇�(𝒙, 𝑡) in the set heat up duration 𝑡ℎ𝑢. 

 

Figure 3-2: Simulation setup with active heating jacket, red cells represent the heat jacket nodes with heat source 

�̇�𝐻𝐽 [
𝑊

𝑚3
] that form a ring with set vertical position and height. The nodes are in contact with the tank wall (blue 

cells). 
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3.1.2 Verification Method 

The correct implementation is verified by calculating the average fluid temperature in the 

simulation of the stirred tank reactor with set heating jacket power and compare it to the analytic 

solution of the temperature of an ideally mixed system with the very same heat source (Eq. 3-2). 

 
𝑑(𝜌𝑐𝑣𝑉𝑓𝑙𝑢𝑖𝑑𝑇)

𝑑𝑡
= �̇�𝐻𝐽 

Eq. 3-1 𝑤𝑖𝑡ℎ 𝑐𝑣 = 𝑐𝑜𝑛𝑠𝑡 

𝑤𝑖𝑡ℎ 𝑇(𝑡 = 0) = 𝑇0 

𝑤𝑖𝑡ℎ 𝑇 … 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑎𝑛 𝑖𝑑𝑒𝑎𝑙𝑙𝑦 𝑚𝑖𝑥𝑒𝑑 𝑓𝑙𝑢𝑖𝑑 

 𝑇(𝑡) =
�̇�𝐻𝐽

𝜌𝑐𝑣𝑉𝑓𝑙𝑢𝑖𝑑
⋅ 𝑡 + 𝑇0 Eq. 3-2 

 

The heating jacket will be active from the beginning of the simulation for the set heat up duration 

and meanwhile provides a set constant thermal energy to the system. The verification should 

prove that the average temperature in the system is the same as the one of an ideally mixed 

system and that the energy is the system stays constant after the heat up duration. The latter 

approves that the general evolution of the energy is correctly implemented in the coded 

algorithm and the former approves the correct initialization of the heating jacket. 

Following input parameter were chosen in the two verification cases 1 and 2: 
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Table 3-1: Set input parameter for the test cases with constant heat jacket power, 1:due to staircase approximation 

of the circular cross-section of the cylindric reactor and installation volume (e.g. baffles) the actual mass is reduced 

Physical Quantity Case 1 Case 2 Physical Quantity 
Case 1 & 

Case 2 

fluid volume 𝑉 0.050 𝑚3 0.035 𝑚3 spec. heat capacity 𝑐𝑣 4000 
𝑘𝑔

𝑚3
 

actual fluid 

volume1 𝑉𝑎𝑐𝑡 
0.046241 𝑚3 0.032708 𝑚3 

total heating jacket 

power �̇�𝐻𝐽 
1 000 000 𝑊 

upper limit 𝑧𝐻𝐽,𝑢𝐿 0.75 1.0 stirrer speed 𝑁𝑠𝑡𝑖𝑟𝑟 190 
𝑟𝑒𝑣

𝑚𝑖𝑛
 

lower limit  𝑧𝐻𝐽,𝑙𝐿 0.2 0.0 initial temperature 𝑇0 300 𝐾 

nodes per meter 200 150 density 𝜌 1000 
𝑘𝑔

𝑚3
 

diameter 𝑑𝑅 0.30 𝑚 0.35 𝑚 viscosity 𝜈 1 ⋅ 10−6
𝑚2

𝑠
 

total heat up time 

𝑡ℎ𝑢 
8 𝑠 10 𝑠   

 

The results of the verification case are depicted in Figure 3-3 and Figure 3-4. 

 

Figure 3-3: Heating curves of both verification cases with constant heating power over set time compared to the 

respective analytical solution 
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Figure 3-4: Absolute difference of the analytic and the simulated temperature for both verification cases 1 and 2 

with constant heating power over time 

For both test cases 1 and 2 the average temperature in the system during the heat up duration of 

𝑡ℎ𝑢 = 8 𝑠 and 𝑡ℎ𝑢 = 10 𝑠 is in exact agreement with the analytical solution and stays constant 

afterwards. The slight oscillation of the temperature in case 1 at about 12 𝑠 and 15 𝑠 is caused 

by floating point error. This does not affect the calculation of the thermal distribution because 

the internal energy 𝜀 in the system which is initialized with double precision instead of single 

precision stays the same. After this oscillation the temperature settles and does not diverge. The 

maximum relative error 𝑟𝑑 of both cases equals 

𝑟𝑑 =
max(|𝑇𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐−𝑇𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛|)

𝑇(𝑡=𝑡ℎ𝑢)−𝑇(𝑡=0)
=
0.0003589 𝐾

76.433 𝐾
= 4.7 ⋅ 10−4 %. 

Overall, both cases verify the correct implementation of the heating jacket as a heat source in 

the thermal simulation framework. 

3.1.3 Thermal Distribution Example Heating Jacket 

In the overview Figure 3-5 and its subfigures an example of a stirred tank with heating jacket is 

depicted. The arbitrarily set large heating jacket power �̇�𝐻𝐽 is chosen to obtain obvious 

temperature gradients in the stirred fluid. 
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 𝑡 = 3.43 𝑠 𝑡 = 6.86 𝑠 𝑡 = 10.28 𝑠 

Figure 3-5: Example of a stirred tank with initialized heating jacket , significant input parameters: initial 

temperature 𝑇0 = 300𝐾, heating jacket power �̇�𝐻𝐽 = 2000 𝑘𝑊, actual fluid volume 𝑚𝑎𝑐𝑡 = 142.1 𝑘𝑔, ℎ𝐻𝐽,𝑢𝐿 =

0.761 𝑚, ℎ𝐻𝐽,𝑙𝐿 = 0.254 𝑚, diameter 𝑑𝑅 = 0.44 𝑚, tank height ℎ𝑅 = 1.015 𝑚, kinematic viscosity 𝜈 = 1 ⋅

10−6
𝑚2

𝑠
, stirrer speed 𝑁𝑠𝑡𝑖𝑟𝑟 = 190

𝑟𝑒𝑣

𝑚𝑖𝑛
 

Over time a heat up of the overall liquid is observable. The typical double vortexes between the 

three vertical arranged Rushton impellers allow for an effective horizontal heat distribution but 

inhibit the vertical distribution in the tank. This is recognisable by the cold bottom and top liquid 

compartments. 

3.2 Tube Bundle Heat Exchanger 

In the current simulation framework tube bundle heat exchanger TBHE can be initialized in the 

simulation. The individual tubes of a bundle cannot be represented individually since their 



3. Bioreactor Implementation 

49 

dimensions are of smaller or similar scale as the lattice width Δ𝑥∗ = 𝐶𝑙. This is the reason why 

the TBHEs are initialized as a porous media with given solid tube fraction 𝑠𝑡 that partially stems 

the flow through them. The principle of the method is a partial or probabilistic bounce back of 

poststreamed density distribution function. The details of the used method are given by 

McCloskey/Dardis [30] and Sukop et al. [24]. As a first simple approach the identified nodes of 

the vertical TBHE(s) are set to a uniform chosen cooling or heating rate �̇�𝑇𝐵𝐻𝐸 [
𝑊

𝑚3
] that is 

determined by the set heat rate of a TBHE in the reactor �̇�𝑇𝐵𝐻𝐸[𝑊]. An example of four THBEs 

with constant 90° circumferential shift is depicted in Figure 3-6. 

 

Figure 3-6: Initialization of four tube bundle heat exchanger (red) as set heat sources or sinks in the stirred tank 

bioreactor 

3.2.1 Thermal Distribution Example TBHE 

In the overview of Figure 3-7 an example of fluid flow and the respective thermal image is 

depicted for two TBHEs left and right of the stirrer. For each snapshot of the thermal state an 

image of the velocity magnitudes is given underneath. All sectional views of the stirred tank are 

given at a height of the second (middle) Rushton impeller ℎ𝑧 = 0.46 𝑚. 
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𝑡 = 6.86 𝑠 

𝑡𝑇𝐵𝐻𝐸 = 4.86 𝑠 

𝑇𝑚𝑒𝑎𝑛 = 301.3 𝐾 

𝑡 = 13.71 𝑠 

𝑡𝑇𝐵𝐻𝐸 = 11.71 𝑠 

𝑇𝑚𝑒𝑎𝑛 = 303.1 𝐾 

𝑡 = 20.56 𝑠 

𝑡𝑇𝐵𝐻𝐸 = 18.56 𝑠 

𝑇𝑚𝑒𝑎𝑛 = 304.9 𝐾 

Figure 3-7: Example of a stirred tank with two initialized heat exchangers , significant input parameters: initial 

temperature 𝑇0 = 300𝐾, actual fluid volume 𝑚𝑎𝑐𝑡 = 142.1 𝑘𝑔, heat exchanger power �̇�𝐻𝐸𝑠 = 2 ⋅ 75 𝑘𝑊, TBHEs 

active after 2s, TBHE diameter 𝑑𝑇𝐵𝐻𝐸 = 0.05 𝑚, solid tube fraction 𝑠𝑇𝐵𝐻𝐸 = 0.05, tank diameter 𝑑𝑅 = 0.44 𝑚, 

tank height ℎ𝑅 = 1.015 𝑚, kinematic viscosity 𝜈 = 1 ⋅ 10−6
𝑚2

𝑠
, stirrer speed 𝑁𝑠𝑡𝑖𝑟𝑟 = 190

𝑟𝑒𝑣

𝑚𝑖𝑛
 

3.3 Viscous Dissipation 

The irreversible energy dissipation of kinetic fluid energy into heat caused by inner viscous 

friction of the fluid is in the field of fluid dynamics referred to as viscous dissipation. This 

depletion of kinetic energy occurs in all large and small vortexes (eddies) of the fluid field and 

is formulated in Section 1.3 Turbulence Model. The viscous dissipation that takes place in the 

small eddies below the resolved lattice width is considered in the applied Smagorinsky model 
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by increasing the physical viscosity of the fluid 𝜈 by a turbulence viscosity 𝜈𝑇. The resulting 

energy dissipation rate 𝜀�̇�(𝒙, 𝑡) [
𝑊

𝑘𝑔
] = 𝑓(𝒇𝒊, 𝜈, 𝜈𝑇 , 𝒖)  can be added to the overall heat source 

field �̇�(𝒙, 𝑡) [
𝑊

𝑚3
]  =  𝜌0𝜀�̇�(𝒙, 𝑡). 

3.3.1 Floating Point Error Handling 

If considering small heat sources such as the viscous dissipation heat or heat produced by 

microorganisms in the thermal distribution simulation kernel, the following floating point error 

occurs. This subsection should clarify the approach to diminish this error. 

The initialisation of internal energy in the system is given by 𝜀(𝒙, 𝑡 = 0) = ∫ 𝑐𝑣
∗𝑑𝑇∗

𝑇0

𝑇𝑧𝑝=273.15𝐾
⋅

𝐶𝑙
2

𝐶𝑡
2 and is typically of order of magnitude 𝑂(𝜀(𝒙, 𝑡 = 0)) = 1 ÷  3. As stated in Eq. 2-12 the 

internal energy is updated every timestep of the LBM fluid field calculation with heat 

sources/sinks and the advection term. If heat sources 
�̇�(𝒙,𝑡)

𝜌0
 at certain time 𝑡𝑜 and position 𝒙𝒐 are 

of order  

 𝑂(
�̇�(𝒙𝒐, 𝑡𝑜)

𝜌0
) ≤ 𝑂(𝜀(𝒙, 𝑡)) − 16 

Eq. 3-3 

16 … significant numbers of double precision floating point numbers 

and are added to the internal energy with double precision, the heat source energy 
�̇�(𝒙𝒐,𝑡𝑜)

𝜌0
⋅ Δ𝑡 

will actually not be added to the internal energy due to the limited accuracy of the floating point 

number. A straightforward solution to this floating point error problem would be the initiation 

of quadruple or long double precision for the internal energy 𝜀. In the currently used GPU 

architecture there is no full long double precision support though. One typical handling to this 

problem is to add the floating point numbers in ascending order. The currently applied method 

follows an analogous principle: The heat sources are sorted in two classes by a order of 

magnitude threshold value 𝑡ℎ. 

 𝑡ℎ = 10𝑠+𝑂(𝜀(𝒙,𝑡))−16 
Eq. 3-4 

𝑠 … 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠 ℎ𝑒𝑎𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 

 �̇�𝐿(𝒙, 𝑡) ≥ 𝑡ℎ > �̇�𝑆(𝒙, 𝑡) Eq. 3-5 
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The heat source energy of the larger class 
�̇�𝐿(𝒙,𝑡)

𝜌0
⋅ Δ𝑡 is considered to be large enough to be 

added to the internal energy of the respective node at each timestep of the LBM simulation 

without the floating point error. The number of effective significant digits of 
�̇�𝐿(𝒙,𝑡)

𝜌0
 is at least 

𝑠 + 1. The heat source of the smaller class is not added to the internal energy at each timestep 

of the LBM simulation but stored in a buffer and summed up for all timesteps until its sum for 

the given node 𝒙 at time 𝑡 is larger than the set threshold value 𝑡ℎ. If this is the case, the buffer 

value is added to the internal energy of the respective node and reset to zero. This approach 

ensures that the small heat sources �̇�𝑆(𝒙, 𝑡) are added to the internal energy with 𝑠 + 1 

significant digits with the drawback that the individual heat sources that contribute to this buffer 

are released at a delayed instant of time. 

3.4 Microorganisms 

In the current simulation framework, the microorganisms in the liquid are represented by so 

called pellets. The number of pellets that can be simulated is of order 106 which means that this 

approach assumes that the number of pellets is sufficient to represent the transport of 

microorganisms in the reactor whose number is by far larger. The pellets are passively carried 

by the fluid flow field, which means that they do not affect the flow field by any force such as 

for example a drag force. Each individual initialized pellet is trackable due to the use of the 

Lagrangian method. Accordingly, the heat produced due to product generation or metabolism 

processes can as well be modelled for the representative tracked pellets and passed to the 

Eulerian field of heat sources �̇�(𝒙, 𝑡). So, at each timestep the pellets are located with Cartesian 

coordinates and their local heat power is passed to Eulerian calculation of temperature.  

As a simple verification case all pellets in the system are initialized with a constant heat source 

power 𝑃𝑝[𝑊] over their total lifespan. In the discharge period the pellets are continuously 

inserted into the system at a certain rate until the set maximum number of pellets is reached 

(Figure 3-8). After this discharge period each pellet releases its heat source power 𝑃𝑃[𝑊]. The 

occurrence of death or proliferation of microorganisms (pellets) is not considered. In Table 3-2 

the key parameters of verification case are summarized. 
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Table 3-2: Set input parameter for the test cases with heat release by pellets (microorganisms), 1:due to staircase 

approximation of the circular cross-section of the cylindric reactor and installation volume (e.g. baffles) the actual 

mass is reduced 

Physical Quantity Case Physical Quantity Case  

fluid volume 𝑉 0.15433 𝑚3 spec. heat capacity 𝑐𝑣 4000 
𝑘𝑔

𝑚3
 

actual fluid volume1 𝑉𝑎𝑐𝑡 0.14401 𝑚3 initial temperature 𝑇0 300 𝐾 

nodes per meter 179 pellet power 𝑃𝑃[𝑊] 0.1 

diameter 𝑑𝑅 0.44 𝑚 
number of discharged 

pellets 𝑁𝑃,𝑡𝑜𝑡 
500 000 

stirrer speed 𝑁𝑠𝑡𝑖𝑟𝑟 300 
𝑟𝑒𝑣

𝑚𝑖𝑛
 actual discharge rate 51870 𝑝𝑒𝑙𝑙𝑒𝑡𝑠/𝑠  

density 𝜌 1000 
𝑘𝑔

𝑚3
 

actual discharge period 

𝑡𝑑,𝑡𝑜𝑡 
9.64 𝑠 

kin. viscosity 𝜈 1 ⋅ 10−6
𝑚2

𝑠
 

effective heat up period 

𝑡ℎ,𝑡𝑜𝑡 
16.41 𝑠 

  total simulation time 26.05 𝑠 

 

In the following overview (Figure 3-8) the discharge period is depicted: The pellets are released 

at a set point in the reactor and distributed by the turbulence caused by the stirrer blades. After 

the total amount of pellets of 𝑁𝑃,𝑡𝑜𝑡 = 500000 is reached at 𝑡 = 9.64 𝑠 each pellet releases a 

heat source power of 𝑃𝑃 = 0.1 𝑊. 
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𝑡 = 0.72 𝑠 

𝑁𝑃 = 37610 

𝑡 = 3.62 𝑠 

𝑁𝑃 = 187539 

𝑡 = 6.51 𝑠 

𝑁𝑃 = 337655 

𝑡 = 9.41 𝑠 

𝑁𝑃 = 487941 

Figure 3-8: In the discharge period (9.64 s) the pellets (blue) are continuously added to the bioreactor at a set 

position. The pellets are distributed in the reactor by the fluid flow. 

The overview of Figure 3-9 depicts the heat up of the fluid caused by the pellets. 

 

    

𝑡ℎ = 0.00 𝑠 

𝑡 = 9.41 𝑠 

𝑡ℎ = 4.83 𝑠 

𝑡 = 14.47 𝑠 

𝑡ℎ = 9.90 𝑠 

𝑡 = 19.54 𝑠 

𝑡ℎ = 14.96 𝑠 

𝑡 = 24.60 𝑠 

Figure 3-9: Temperature distribution for a total heat source power of 𝑃 = 𝑁𝑃,𝑡𝑜𝑡 ⋅ 𝑃𝑃 = 50000 𝑊 released by the 

microorganisms represented by pellets in the reactor. 
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The energy that is given to the system can be verified by comparing the temperature of an ideal 

mixed system with same energy source P = NP,tot ⋅ PP to the average temperature in the reactor 

(Figure 3-10). 

 

Figure 3-10: Analytical solution of ideal mixed temperature vs. average temperature in the reactor. The solution 

of the simulation seems to be in good agreement with the analytical solution. 

 

Figure 3-11: Relative error 𝑟𝑑 =
|𝑇𝑠𝑖𝑚−𝑇𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙|

𝑇𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙
 over time. The linear error indicates an offset error in the heat 

source term. 

Figure 3-10 and Figure 3-11 show that the simulation slightly deviates from the correct solution. 

During the simulation test cases the Eulerian heat source field of the pellets �̇�𝑷(𝒙, 𝑡) and the 
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Lagrangian pellet number were consistent. However, the overall heat source field �̇�(𝒙, 𝑡) 

deviated from the heat source field of the pellets �̇�𝑷(𝒙, 𝑡) if solid nodes (e.g. tank wall or stirrer 

shaft) were excluded while passing the Eulerian data of �̇�𝑷(𝒙, 𝑡) (see step 1) in Figure 3-1). This 

deviation suggests that single Pellets may enter the solid boundary for certain configurations for 

a short amount of time and is not caused by the thermal energy transport algorithm itself. 

3.5 Fluid-Phase Coupling 

3.5.1 Liquid Viscosity 

For constant fluid density the kinematic viscosity is the only relevant factor except the given 

geometric boundaries and boundary velocities that influences the solution of the fluid flow field. 

In general, the viscosity of liquids can be dependent on shear rate, temperature and pressure. 

 𝜏 = 𝜇(𝑝, 𝑇, �̇�) ⋅ �̇� with 

Eq. 3-6 

𝜏 … 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 [𝑃𝑎] 

𝜇…𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 [𝑃𝑎 ⋅ 𝑠] 

�̇� … 𝑠ℎ𝑒𝑎𝑟 𝑟𝑎𝑡𝑒 [
1

𝑠
]  

 

While the effect of pressure below 𝑝 < 1000 𝑏𝑎𝑟 is negligible [31] in a common stirred 

bioreactor with aqueous broth the effect of temperature is often prevailing. As an example, the 

viscosity of pure water at 20°C differs from the one at 50°C by more than 40% (see Figure 

3-14). If the liquid broth in the bioreactor is a non-Newtonian fluid the local shear stress �̇� 

simultaneously affects the viscosity of the fluid which is common for aqueous broths with 

microorganisms (Figure 3-12 and Figure 3-13). 
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Figure 3-12: Shear stress over shear rate, for non-

Newtonian fluids the viscosity is dependent on the local 

shear rate �̇� 

Figure 3-13: Temperature dependency of fluids, for 

liquids the viscosity decreases with higher 

temperature 

 

The objective is to take the effect of local temperature and local shear stress on the liquid 

viscosity into account by coupling the solution of the temperature distribution with the fluid 

field calculation with a model. 

3.5.2 Temperature and Shear Rate Models for Liquid Viscosity 

Viscosity Model: Shear Rate 

One common method is to assume a simple power law relation which covers the shear 

thickening or thinning behaviour of the non-Newtonian fluid. 

 
𝜏 = 𝜇0 ⋅ �̇�

𝑛   or   𝜏 = 𝜇𝑒𝑓𝑓 ⋅ �̇� 

with   𝜇𝑒𝑓𝑓 = 𝜇0�̇�
𝑛−1 

Eq. 3-7 

 

For LBM based CFD the local shear rate �̇� is represented by the characteristic filtered rate of 

shear 𝑆 and is calculated by the mean filtered momentum flux 𝑄𝑡𝑜𝑡 (Eq. 1-23 and Eq. 3-8). 

 �̇� ≅ 𝑆 =
1

2 𝜌0 𝜏𝑓∗ 𝑐𝑠2
⋅ 𝑄𝑡𝑜𝑡 Eq. 3-8 
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Viscosity Model: Temperature 

The temperature dependency can be modelled by an additional factor 𝜇(𝑇, �̇�) = 𝜇0�̇�
𝑛−1 ⋅ 𝑓(𝑇) 

since temperature and shear rate influence the viscosity independently. Both the power law and 

the temperature function 𝑓(𝑇) have to be based on the same coefficient 𝜇0.  

There is a variety of viscosity-temperature models for liquids which can be compared for pure 

water substance to the current benchmark model published by the International Association for 

the Properties of Water and Steam IAPWS revised in year 2008 [32]. For mixtures of chemical 

compounds physical and group contribution methods exist [33]. For pure liquids between 

freezing point and boiling temperature it is recommended to use empirical fitted Arrhenius like 

correlations [33] (Eq. 3-10 and Eq. 3-11). Moreover, a simple exponential decay (“Reynolds”) 

approach is tested (Eq. 3-9). It has been shown that the choice between these models has great 

influence on the solution of the fluid field [34]. In Figure 3-14 and Figure 3-15 the performance 

of following models are compared to the IAPWS benchmark data for pure water. 

Exponential: 𝜇(𝑇) = 𝜇0 ⋅ exp(−𝐵𝑇)   or   𝜇0 ⋅ 10^(−𝐵𝑇) Eq. 3-9 

 𝜇(𝑇[𝐾]) = 0.62625 ⋅ exp(−0.02180 𝑇) 𝑃𝑎 ⋅ 𝑠  

   

Andrade: 𝜇(𝑇) = 𝜇0 ⋅ exp (
𝐵

𝑇
)   or   𝜇0 ⋅ 10^ (

𝐵

𝑇
) Eq. 3-10 

 𝜇(𝑇[𝐾]) = 1.69132 ⋅ 10−6 ⋅ exp (
1877

𝑇
)  𝑃𝑎 ⋅ 𝑠 

 

   

Vogel-Tamman-Fulcher: 𝜇(𝑇) = 𝜇0 ⋅ exp (
𝐵

𝑇+𝐶
)   or   𝜇0 ⋅ 10^ (

𝐵

𝑇+𝐶
) Eq. 3-11 

VTF Fit1 [35] 𝜇(𝑇[𝐾]) = 2.414 ⋅ 10−5 ⋅ 10^ (
247.8

𝑇 − 140
)  𝑃𝑎 ⋅ 𝑠  

VTF Fit2 [36] 𝜇(𝑇[𝐾]) = 2.4263 ⋅ 10−5 ⋅ exp (
578.919

𝑇 − 137.546
)  𝑃𝑎 ⋅ 𝑠  
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Figure 3-14: Empirical models vs. IAPWS benchmark model of dynamic viscosity of pure water 

 

 

Figure 3-15: Relative error 
|𝜇𝐼𝐴𝑃𝑊𝑆−𝜇𝑚𝑜𝑑𝑒𝑙|

𝜇𝐼𝐴𝑃𝑊𝑆
 of temperature-viscosity models compared to IAPWS standard  

Figure 3-14 and Figure 3-15 show that the exponential decay (Eq. 3-9) and the Andrade model 

(Eq. 3-10) deviate from the benchmark data by more than 8% for the temperature range of 𝑇 =

[273𝐾; 373𝐾]. Both parameter sets for the VTF model (Eq. 3-11) deviate by up to 3% for the 

same temperature range. For smaller range of 𝑇 = [283𝐾; 373𝐾] the relative error stays below 

1%. The first parameter set of the VTF model (Figure 3-14: “VTF Fit1”) is a in a good agreement 

with the benchmark data and will be used as a model in the simulation code (Eq. 3-12). 
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 𝜈(�̇�) =
𝜇0�̇�

𝑛−1

𝜌
→  𝜈(�̇�, 𝑇) =

𝜇0�̇�
𝑛−1

𝜌
⋅
𝐴

𝜇0
 10

𝐵
𝑇+𝐶 Eq. 3-12 

 

3.5.3 Verification: Viscosity Distribution for Spatial Linear Increase of Temperature 

The implementation is tested for a linear increase of the temperature from the bottom to the top 

of the reactor from 𝑇(𝑧 = 0) = 280𝐾 to 𝑇(𝑧 = 𝐻𝑅) = 370𝐾. The implementation of 

temperature dependent kinematic viscosity calculation in the simulation can be verified (Figure 

3-16 and Figure 3-17). 

 

Figure 3-16: Reactor with constant 

spatial temperature gradient in z-

coordinate, left: temperature, right: 

kinematic viscosity calculated with 

VTF model 

 

Figure 3-17: Simulation output of kinematic viscosity, the 

calculation can be verified 
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4 Summary and Outlook 

The distribution of temperature in a stirred bioreactor can be described by solving the ADE of 

internal energy for the liquid phase. The double distribution function approach DDF proposed 

by Peng et al. in 2003 was chosen as a first common algorithm to solve the ADE of internal 

energy because of its fast computation and better stability compared to alternative algorithms 

given in the literature. For simple two dimensional problems such as the (thermal) Couette flow 

or lid driven cavity flow this algorithm provided reasonable results. The 2D domain algorithm 

using the CPU calculated the flow field and temperature distribution which were successfully 

verified by analytical or benchmark data. The ported 3D domain code based on parallel 

calculation on GPU was tested by a purely diffusive problem in resting water. The lower limit 

of the thermal diffusivity that led to a loss of stability was four orders of magnitude higher than 

the true thermal diffusivity of water. In addition to this limited stability the algorithm requires 

for complex boundary handling that often leads to unexpected energy loss in the system. In 

literature the use of multi relaxation time DDF or the use of varying boundary conditions to 

handle stability issues is proposed. The alternative advective transport algorithm for scalars 

based on LB methods proposed by Osmanlic et al. in 2016 is a stable and conservative method 

that does not require complex boundary condition handling. The method is based on the balance 

of the scalar transport between the cell and neighboring cells by advection. This method was 

investigated by a simple advection of a 1D Gauss distribution in the 3D computational domain. 

The algorithm led to an exact transport of the peak of the distribution without numerical 

oscillations and with conservation of energy. The numerical diffusion of the simulation perfectly 

agrees with a 1D analytical derivation of the numerical diffusivity that depends on the velocity 

of the fluid in lattice units. The thermal diffusivity for a hot bulk that is advected without 

turbulence in a certain spatial direction was derived for the 3D case. This derivation was tested 

in simulations by the advection of hot liquid bulks and can be perfectly verified when the 

direction of the numerical diffusion aligns with the lattice of the domain. If the direction of the 

diffusion is across the lattice, the diffusion is smaller than the analytical solution which can be 

mostly recovered by geometric correction factors. A comparison of the numerical diffusion and 

the true physical thermal diffusivity of water shows that for the currently applied range of lattice 

unit conversion factors and Mach number the numerical diffusion is at least three orders of 

magnitude higher than the true thermal diffusivity if the velocity in lattice units equals the 
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stirrer’s blade tip speed. At 0.01%-0.1% of the stirrer’s blade tip speed the numerical diffusivity 

is in the range of the thermal diffusivity. If the fluid is steady the numerical diffusion is absent. 

For the application of the transport algorithm for stirred industrial bioreactor a heating jacket 

with variable height, vertical position, heating time and heating power can be initialized. 

Moreover, the already initialized tube bundle heat exchanger (TBHE) can release a constant 

heat power as a spatially uniform heat source for the identified TBHE cells. The viscous 

dissipation in the fluid due to the shear stress caused by the rotating stirrer is calculated in the 

LES turbulence modeling process and coupled to the thermal simulation unit. Pellets that 

represent the microorganisms in the system are initialized and attributed with a heat power 

whose evolution over time can be determined for each individual pellet via the Lagrange 

approach and passed as Eulerian data to the thermal simulation unit. The simulation of the 

temperature distribution was successfully coupled to the calculation of the fluid field by making 

the viscosity a function of temperature. For this the Vogel-Tamman-Fulcher viscosity model 

was chosen as an empirical model that is able to correctly recover the benchmark data given by 

the IAWPS for the correlation of viscosity and temperature for pure water substance.  

 

For the further development of the thermal simulation unit for industrial stirred bioreactors the 

integration of biokinetic reaction models that estimate the heat generated by microorganisms is 

necessary. The Lagrangian temperature, shear rate, oxygen and substrate data can be recorded 

for each simulated parcel of microorganisms over time and passed as input parameter to the 

reaction models. The implementation of technical cooling or heating units such as heating 

jackets does not yet make use of locally modelled heat sources. For the modeling of these 

transient and locally resolved heat sources or sinks the local temperature differences and local 

fluid velocities can be made use of with forced convection heat transfer models. Moreover, 

additional features such as the cooling of the liquid by heat of evaporation due to humidification 

of the gas bubbles or by heat up of the gas bubbles can be taken into account by kinetic models. 

The given temperature distribution can be used for accurate description of oxygen solubility in 

the broth and oxygen transfer kinetics. 
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8 Appendix 

8.1 MATLAB Source Code of Double Distribution Function Thermal LBM D2Q9: 

Square Cavity Problem 

8.1.1 Main Script 

%------------------------------ 

%------------------------------ 

% Thermal Square Simulation,  D2Q9 LBM DDF SRT, internal energy formulation  

% Simon Rustige 

% May 2018, IPPT, TU Graz 

%------------------------------ 

%------------------------------ 

 

% 01.) calc equilibrium distributions 

% 02.) calc f post collision 

% 03.) calc f post stream 

% 04.) add boundary conditions 

% 05.) calc density 

% 06.) calc velocities in x-axis and y-axis 

% 07.) calc g equilibrium distributions 

% 08.) calc g post collision 

% 09.) calc g post stream 

% 10.) add  g boundary conditions 

% 11.) calc internal energy in x-axis and y-axis 

%------------------------------ 

 

% clc 

% close all 

clear variables 

 

 

 

%Definitions 

Ny=MC.Ny; 

Nx=MC.Nx; 

uw=MC.uw; 

timesteps=MC.timesteps; 

mytitle=['tsim(sec)=' int2str(MC.t_sim) ' - iter=' int2str(timesteps) ' - grid y=' int2str(Ny) ', 

x=' int2str(Nx) ' - Re=' int2str(MC.Re) ' - Pr=' int2str(MC.Pr)]; 

t_Start=tic; % to optain elapsed time in script, see toc command 

 

%% ------------------------------ 

% ----Init-----% 

% ------------------------------ 

 

% x ... counter in x-axis 1,2,3 ... Nx 

% y ... counter in y-axis 1,2,3 ... Ny 

% i ... counter in discrete directions of lattice 1,2,3 ... 9 for D2Q9 

 

%-----------------MassFlow--------------------- 

% u, v, rho 

u=zeros(Nx,Ny); 

v=zeros(Nx,Ny); 

rho=ones(Nx,Ny); 

 

% Init feq(u,v) 

feq=zeros(Nx,Ny,MC.Dir); 

for x=1:Nx 

    for y=1:Ny 

        for i=1:MC.Dir 

            feq(x,y,i)=fun_feq(u(x,y),v(x,y),rho(x,y),i); 

        end 

    end 

end 

 

% Init f 
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f=feq; 

 

%-----------------ThermalFlow--------------------- 

% epsilon (internal energy) 

eps=MC.eps_init.* ones(MC.Nx,MC.Ny); 

eps(1:round(Nx/2),1:round(Ny/2))=MC.eps_init*1.2; 

% % eps(round(Nx/2)-round(Nx/4):round(Nx/2)+round(Nx/4),1:round(Ny/2))=MC.eps_init/2; 

% eps(1:round(Nx/2),:)=MC.eps_init/2; 

Tmean_init=mean(mean(eps))  *MC.C_x^2 ./ MC.C_t^2/MC.cv_real ; 

 

 

%colormap for initial setup 

figure(); 

imagesc([0 1],[0 1],rot90(fliplr(eps.*MC.C_x^2 ./ MC.C_t^2./MC.cv_real))); 

set(gca,'YDir','normal') 

colorbar 

title(['INITIAL SETUP: ' mytitle],'Fontsize',12,'Interpreter','latex');  

xlabel(gca,' $x$' ,'Fontsize',12,'Interpreter','latex'); 

ylabel(gca,' $y$ ' ,'Fontsize',12,'Interpreter','latex'); 

 

 

% Init geq(eps,u,v) 

geq=zeros(Nx,Ny,MC.Dir); 

for x=1:Nx 

    for y=1:Ny 

        for i=1:MC.Dir 

            geq(x,y,i)=fun_geq(eps(x,y),u(x,y),v(x,y),rho(x,y),i); 

        end 

    end 

end 

 

 

%Init g 

g=geq; 

 

 

%% ------------------------------ 

% ----MainLoop-----% 

%------------------------------ 

     

fig_snap=figure('Name','u and eps profiles'); hold all 

 

snapinterval=0.05; %sec ...interval for plots in mainloop (simulated time) 

pic=1:snapinterval/MC.C_t:timesteps; % snapshots (plots) for different timestep with constant 

time intervalls 

 

 

for timestep=1:timesteps 

%     pause()  

%     eps 

%     var(eps) 

%     timestep 

 

    % Plot u and eps-profiles for different timesteps 

    if (any(round(pic)==timestep)) 

        figure(fig_snap)  

        plot(u(round(Nx/2),:)./uw,  0:1/(Ny-1):1) 

        plot(eps(round(Nx/2),:)./MC.eps_ref, 0:1/(Ny-1):1,':') 

        timestep 

    end 

     

    %-----------------MassFlow--------------------- 

    % --Calc feq(u,v)-- 

    for x=1:Nx 

        for y=1:Ny 

            for i=1:MC.Dir 

                feq(x,y,i)=fun_feq(u(x,y),v(x,y),rho(x,y),i); 

            end 

        end 

    end 

     

    % --Collision-- 

    for x=1:Nx 
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        for y=1:Ny 

            for i=1:MC.Dir 

                f(x,y,i)=fun_coll(feq(x,y,i),f(x,y,i),MC.tau); 

            end 

        end 

    end 

    

 

    % --Streaming-- 

    f_prestream=f; % save old values (before streaming) for boundary conditions 

    f=fun_stream(f_prestream); %boundary nodes x=1 and x=Nx, y=1 and y=Ny are "missing" (not 

streamed) 3 or 5 (corner) f-values 

     

    % --Boundary Conditions-- 

     

    % Calculate nodes that are missing 

    %        C7  C3  C6       ^ y 

    %          \ | /          | 

    %        C4-C1-C2         |  

    %          / | \          |  

    %        C8  C5  C9         -----> x 

     

    % bottom: Bounce Back BC 

    f(:,1,3)=f_prestream(:,1,5); 

    f(:,1,6)=f_prestream(:,1,8); 

    f(:,1,7)=f_prestream(:,1,9); 

     

    % left side: Bounce Back BC 

    f(1,:,2)=f_prestream(1,:,4); 

    f(1,:,6)=f_prestream(1,:,8); 

    f(1,:,9)=f_prestream(1,:,7); 

     

    %right side: Bounce Back BC 

    f(Nx,:,4)=f_prestream(Nx,:,2); 

    f(Nx,:,7)=f_prestream(Nx,:,9); 

    f(Nx,:,8)=f_prestream(Nx,:,6); 

     

%     %top side: Bounce Back BC 

%    f(:,Ny,5)=f_prestream(:,Ny,3); 

%    f(:,Ny,8)=f_prestream(:,Ny,6); 

%    f(:,Ny,9)=f_prestream(:,Ny,7); 

     

     % top: Zhou He BC: u=uw, v=0,rho=sum(f), f3_neq=f5_neq -> solve rho, f5, f8, f9    

     for x=1:Nx 

          if x==1 

              %remain BB for corners 

              f(x,Ny,5)=f_prestream(x,Ny,3); 

              f(x,Ny,8)=f_prestream(x,Ny,6); 

              f(x,Ny,9)=f_prestream(x,Ny,7); 

          elseif x==Nx 

              f(x,Ny,5)=f_prestream(x,Ny,3); 

              f(x,Ny,8)=f_prestream(x,Ny,6); 

              f(x,Ny,9)=f_prestream(x,Ny,7); 

          else 

             Zhou He 

             f(x,Ny,9)=f_prestream(x,Ny,7); 

             rho(x,Ny)=f(x,Ny,1) + f(x,Ny,4) + f(x,Ny,2) + 2 .* ( f(x,Ny,3) + f(x,Ny,6) + 

f(x,Ny,7) ); 

             f(x,Ny,5)=f(x,Ny,3); 

             f(x,Ny,8)=f(x,Ny,6) + 0.5.*(f(x,Ny,2)-f(x,Ny,4)) -  0.5.* rho(x,Ny) .* uw ; 

             f(x,Ny,9)=f(x,Ny,7) + 0.5.*(f(x,Ny,4)-f(x,Ny,2)) +  0.5.* rho(x,Ny) .* uw ; 

          end 

     end 

     

     

    % --Calculate density--  

    rho=sum(f,3); 

     

     

    % --Calculate u,v -- 

    for x=1:Nx 

        for y=1:Ny 

            sum_u=0; 
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            sum_v=0; 

            for i=1:MC.Dir 

                sum_u=sum_u + MC.cx(i)*f(x,y,i); 

                sum_v=sum_v + MC.cy(i)*f(x,y,i); 

            end 

            u(x,y)=sum_u/rho(x,y); 

            v(x,y)=sum_v/rho(x,y); 

        end 

    end 

     

    %-----------------ThermalFlow--------------------- 

     

    % --Calc geq(u,v)-- 

    for x=1:Nx 

        for y=1:Ny 

            for i=1:MC.Dir 

            geq(x,y,i)=fun_geq(eps(x,y),u(x,y),v(x,y),rho(x,y),i); 

            end 

        end 

    end 

     

     

    % --CollisionEps-- 

    for x=1:Nx 

        for y=1:Ny 

            for i=1:MC.Dir 

                g(x,y,i)=fun_coll_wSource(geq(x,y,i),g(x,y,i),MC.tau_g,i); 

            end 

        end 

    end 

     

    % --StreamingEps-- 

    g_prestream=g; % save old values (before streaming) for boundary conditions 

    g=fun_stream(g_prestream); %boundary nodes x=1 and x=Nx, y=1 and y=Ny are "missing" (not 

streamed) 3 or 5 (corner) f-values 

     

     

    % --Boundary ConditionsEps-- 

     

    % Calculate nodes that are missing 

    %        C7  C3  C6       ^ y 

    %          \ | /          | 

    %        C4-C1-C2         |  

    %          / | \          |  

    %        C8  C5  C9         -----> x 

     

     

     

    %top:  thermal boundary condition see Liu2010 

    for x=1:Nx 

%        g(x,Ny,:)=g(x,Ny-1,:); 

                 

         eps_top=3./3 .* sum(g(x,Ny-1,:))/sum(f(x,Ny-1,:));%-1./3*sum(g(x,Ny-2,:))/sum(f(x,Ny-

2,:)) ; %adiabatic Neummann; 

 %         eps_top=3./3 .* eps(x,Ny-1); %-1./3*eps(x,Ny-2) ; %adiabatic Neummann; 

 %         eps_top=0; 

         

g(x,Ny,:)=fun_ThermalBCDirichlet_D2Q9_Liu2010_wCorners(eps_top,rho(x,Ny),g(x,Ny,:),zeros(9),x,Ny)

; 

    end 

     

 

    %bottom:  thermal boundary condition see Liu2010 

    for x=1:Nx 

%        g(x,1,:)=g(x,2,:); 

         eps_bottom= 3./3 .* sum(g(x,2,:))/sum(f(x,2,:));%-1./3*sum(g(x,3,:))/sum(f(x,3,:)) ; 

%adiabatic Neummann; 

 %         eps_bottom= 3./3 .* eps(x,2); %-1./3*eps(x,3) ; %adiabatic Neummann; 

 %         eps_bottom=0; 

         

g(x,1,:)=fun_ThermalBCDirichlet_D2Q9_Liu2010_wCorners(eps_bottom,rho(x,1),g(x,1,:),zeros(9),x,1); 

    end 
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    %left side:  thermal boundary condition see Liu2010 

    for y=1:Ny 

%        g(1,y,:)=g(2,y,:); 

         eps_left=3./3 .* sum(g(2,y,:))/sum(f(2,y,:));%-1./3*sum(g(3,y,:))/sum(f(3,y,:)) ; 

%adiabatic Neummann; 

 %         eps_left=3./3 .* eps(2,y); %-1./3*eps(3,y)  

 %         eps_left=0; 

         

g(1,y,:)=fun_ThermalBCDirichlet_D2Q9_Liu2010_wCorners(eps_left,rho(1,y),g(1,y,:),zeros(9),1,y);   

    end 

     

    %right side:  thermal boundary condition see Liu2010 

    for y=1:Ny 

%        g(Nx,y,:)=g(Nx-1,y,:); 

         eps_right=3./3 .* sum(g(Nx-1,y,:))/sum(f(Nx-1,y,:));%-1/3*sum(g(Nx-2,y,:))/sum(f(Ny-

2,y,:)) ; %adiabatic Neummann; 

 %         eps_right=3./3 .* eps(Nx-1,y); %-1./3*eps(Nx-2,y)  

 %         eps_right=0 

         

g(Nx,y,:)=fun_ThermalBCDirichlet_D2Q9_Liu2010_wCorners(eps_right,rho(Nx,y),g(Nx,y,:),zeros(9),Nx,

y); 

  

    end 

     

 

     

    % --Calculate eps -- 

    for x=1:Nx 

        for y=1:Ny 

            sum_eps=0; 

            for i=1:MC.Dir 

                sum_eps=sum_eps + g(x,y,i); 

            end 

            eps(x,y)=sum_eps/rho(x,y);          

        end 

    end 

 

 

end 

%% ------------------------------ 

% ----Plots-----% 

%------------------------------ 

% plot for last timestep 

 

figure(fig_snap)  

uplot=plot(u(round(Nx/2),:)./uw, 0:1/(Ny-1):1) ; 

epsplot=plot(eps(round(Nx/2),:)/MC.eps_ref, 0:1/(Ny-1):1,':'); 

 

 

 

% plot cosmetics 

figure(fig_snap) 

xlabel(gca,' $\frac{u}{u_{w}}~or~\frac{eps}{eps_{w}}$' ,'Fontsize',12,'Interpreter','latex'); 

ylabel(gca,' $\frac{y}{H}$ ' ,'Fontsize',12,'Interpreter','latex'); 

grid on; box on; 

legend([uplot, epsplot],'u','eps'); 

title(mytitle,'Fontsize',12,'Interpreter','latex'); 

 

% colormap plot for thermal 

figure('Name','eps'); 

imagesc([0 1],[0 1],rot90(fliplr(eps.*MC.C_x^2 ./ MC.C_t^2./MC.cv_real))); 

set(gca,'YDir','normal') 

colorbar 

title(mytitle,'Fontsize',12,'Interpreter','latex');  

xlabel(gca,' $x$' ,'Fontsize',12,'Interpreter','latex'); 

ylabel(gca,' $y$ ' ,'Fontsize',12,'Interpreter','latex'); 

 

% vector plot for velocity and streamline plot 

[x,y] = meshgrid(0:1/(Nx-1):1,0:1/(Ny-1):1); 

figure(); 

quiver(x,y,rot90(fliplr(u)),rot90(fliplr(v))) 
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yStart=0.1:0.1:0.9; 

xStart=0.5*ones(size(yStart)); 

streamline(x,y,rot90(fliplr(u)),rot90(fliplr(v)),xStart,yStart) 

axis([-0.05 1.05 -0.05 1.05]) 

title(mytitle,'Fontsize',12,'Interpreter','latex');  

xlabel(gca,' $x$' ,'Fontsize',12,'Interpreter','latex'); 

ylabel(gca,' $y$ ' ,'Fontsize',12,'Interpreter','latex'); 

 

% colormap plot for rho 

figure('Name','rho'); 

imagesc([0 1],[0 1],rot90(fliplr(rho*MC.C_m./MC.C_x.^3))); 

set(gca,'YDir','normal') 

colorbar 

title(mytitle,'Fontsize',12,'Interpreter','latex');  

xlabel(gca,' $x$' ,'Fontsize',12,'Interpreter','latex'); 

ylabel(gca,' $y$ ' ,'Fontsize',12,'Interpreter','latex'); 

 

%interesting values 

epsmean=mean(mean(eps)); 

Tmean=mean(mean(eps))  *MC.C_x^2 ./ MC.C_t^2/MC.cv_real ; % K 

% -------------TheEnd------------ 

t_Elapsed=toc(t_Start);  

 

8.1.2 Input Script 

classdef MC 

   properties (Constant) 

    % ----------D2Q9------------------        

    w=[4./9,1./9,1./9,1./9,1./9,1./36,1./36,1./36,1./36]; 

    cx=[0.0,1.0,0.0,-1.0,0.0,1.0,-1.0,-1.0,1.0]; 

    cy=[0.0,0.0,1.0,0.0,-1.0,1.0,1.0,-1.0,-1.0]; 

    Dir=9; 

 

    % ----------Domain------------------     

    Ny=20; 

    Nx=20; 

    timesteps=3000; 

     

    % ----------MassFlow------------------  

    uw=0.001; %chosen for low Ma  .. in lu 

    rho=1; %in lu 

     

    H_real=0.1 %m 

    nue_real=1e-3 %mÂ²/s 

    uw_real=0.01 %m/s 

    rho_real=1000 %kg/mÂ³ 

     

    Re=MC.H_real*MC.uw_real/MC.nue_real 

    nue=MC.Ny*MC.uw/MC.Re;  

    tau=3*MC.nue+0.5; 

     

     

     

    %Unit Conversion 

    C_x=MC.H_real/MC.Ny; %  m 

    C_t=MC.uw*MC.C_x/MC.uw_real % s 

    C_m=MC.C_x.^3*MC.rho_real./MC.rho; % kg 

    

    % ----------ThermalFlow------------------  

     

     

    Pr=1; 

    alpha=MC.nue./MC.Pr 

    tau_g=3/2*MC.alpha+0.5 %Liu2010; 

    tau_g_passive=3*MC.alpha+0.5 

     

    cv_real=4.19e3 %J/(kg K) 

    T_ref_real=273.15 % K 

    eps_ref=MC.T_ref_real*MC.cv_real.* MC.C_t^2 ./ MC.C_x^2 

     

    T_init_real=1.0*273.15 % K 

    eps_init_real = MC.cv_real .* MC.T_init_real  % J/kg 12282985.5 equals energy of water with 

293.15 K (cv=const=4.19kJ/(kg K))  
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    eps_init = MC.eps_init_real .* MC.C_t^2 ./ MC.C_x^2 ; 

     

    Qdot_real=0*4.19e7 % J/(mÂ³s)... 4.19e7 changes the temperature of water by 10K each second 

    Qdot=MC.Qdot_real*MC.C_x*MC.C_t^3/(MC.C_m) 

     

     

    %------------------------ 

    t_sim=MC.timesteps*MC.C_t % seconds 

    t_calc=965/3600*MC.Ny*MC.Nx/900*MC.timesteps/600 % hours estimated time of calculation 

 

   end 

end 

 

8.1.3 Functions 

8.1.3.1 Equilibrium Distribution Function 

function [feq] = fun_feq(u,v,rho,i) 

% i... counter for dirctions e.g. 1,2...9 for D2Q9 

% Calculates one feq in one direction of one node 

t1= u.^2+v.^2; 

t2= u.*MC.cx(i)+v.*MC.cy(i); 

 

feq=rho*MC.w(i).*(1.0 + 3*t2 + 4.5.*t2.^2 - 1.5*t1); 

end 

 

8.1.3.2 Collision 

function [f_postcoll] = fun_coll_wSource(feq,f,tau,i) 

f_postcoll = f-(1./tau)*(f-feq) + MC.w(i) *MC.Qdot; 

end 

 

8.1.3.3 Streaming 

function [f_poststream] = fun_stream(f) 

    %Streaming of the fluid nodes (1:Ny , 1:Ny) 

    %        C7  C3  C6       ^ y 

    %          \ | /          | 

    %        C4-C1-C2         |  

    %          / | \          |  

    %        C8  C5  C9         -----> x 

    f_poststream=NaN(size(f)); 

     

    % C1 

    f_poststream(:,:,1)=f(:,:,1); 

     

    % C2 

    for x=1:MC.Nx-1 

        for y=1:MC.Ny 

            f_poststream(x+1,y,2)=f(x,y,2); 

        end 

    end 

     

    % C3 

    for x=1:MC.Nx 

        for y=1:MC.Ny-1 

            f_poststream(x,y+1,3)=f(x,y,3); 

        end 

    end 

     

    % C4 

    for x=2:MC.Nx 

        for y=1:MC.Ny 

            f_poststream(x-1,y,4)=f(x,y,4); 

        end 

    end 

     

    % C5 

    for x=1:MC.Nx 

        for y=2:MC.Ny 

            f_poststream(x,y-1,5)=f(x,y,5); 
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        end 

    end 

     

    % C6 

    for x=1:MC.Nx-1 

        for y=1:MC.Ny-1 

            f_poststream(x+1,y+1,6)=f(x,y,6); 

        end 

    end 

     

    % C7 

    for x=2:MC.Nx 

        for y=1:MC.Ny-1 

            f_poststream(x-1,y+1,7)=f(x,y,7); 

        end 

    end 

     

    % C8 

    for x=2:MC.Nx 

        for y=2:MC.Ny 

            f_poststream(x-1,y-1,8)=f(x,y,8); 

        end 

    end 

     

    % C9 

    for x=1:MC.Nx-1 

        for y=2:MC.Ny 

            f_poststream(x+1,y-1,9)=f(x,y,9); 

        end 

    end 

end 

8.1.3.4 Boundary Handling 

function [g_bound] = fun_ThermalBCDirichlet_D2Q9_Liu2010_wCorners(BC_eps, rho, g, g_Scheme,x,y) 

     

 

% Calculates missing prob values at boundary nodes for given condition and location and 

calculation scheme (by Liu2010) 

%  

%------OUTPUT------ 

% g_bound [vector] ... calculated  prob values for boundary node (for D2Q9 a vector with 9 

values) 

%  

%------INPUT------ 

%  

% BC_eps ... [scalar] value of internal energy at given boundary 

% rho ... [scalar] density at boundary node 

% g ... [vector] propability values for the boundary node  (for D2Q9 a vector with 9 values, with 

missing values) 

% g_Scheme ... [vector] prob values needed to calc g_st (see Liu2010)   (for D2Q9 a vector with 9 

values) 

% x,y ... cooradinates to determine/distinguish Edge or Corner 

% Date: 29.05.2018 

 

     

    %        C7  C3  C6       ^ y 

    %          \ | /          | 

    %        C4-C1-C2         |  

    %          / | \          |  

    %        C8  C5  C9         -----> x 

     

% abc ... index of missing prob values 

% d1,d2 etc. ... index of known prob values 

 

% ---------Check if Corner--------- 

 

if x==MC.Nx && y==MC.Ny %upper right corner 

    Corner=1; 

    a1=4; 

    a2=5; 

    a3=7; 

    a4=8; 

    a5=9; 
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    d1=2; 

    d2=3; 

    d3=6; 

    d4=1; 

elseif x==1 && y==1 % lower left corner 

    Corner=1; 

    a1=2; 

    a2=3; 

    a3=6; 

    a4=7; 

    a5=9; 

    d1=4; 

    d2=5; 

    d3=8; 

    d4=1; 

elseif x==1 && y==MC.Ny % upper left corner 

    Corner=1; 

    a1=2; 

    a2=5; 

    a3=6; 

    a4=8; 

    a5=9; 

    d1=3; 

    d2=4; 

    d3=7; 

    d4=1; 

elseif x==MC.Nx && y==1 % lower right corner 

    Corner=1; 

    a1=3; 

    a2=4; 

    a3=6; 

    a4=7; 

    a5=8; 

    d1=2; 

    d2=5; 

    d3=9; 

    d4=1; 

else 

    Corner=0; 

end 

 

    %        C7  C3  C6       ^ y 

    %          \ | /          | 

    %        C4-C1-C2         |  

    %          / | \          |  

    %        C8  C5  C9         -----> x 

 

% ---------Check if Edge--------- 

 

if Corner==0 

 

if x==MC.Nx 

        Edge=1; 

        a=4; 

        b=7; 

        c=8; 

        d1=1; 

        d2=2; 

        d3=3; 

        d4=5; 

        d5=6; 

        d6=9; 

elseif y==MC.Ny 

        Edge=1; 

        a=5; 

        b=8; 

        c=9;   

        d1=1; 

        d2=2; 

        d3=3; 

        d4=4; 

        d5=6; 

        d6=7; 
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elseif x==1 

        Edge=1; 

        a=2; 

        b=6; 

        c=9; 

        d1=1; 

        d2=3; 

        d3=4; 

        d4=5; 

        d5=7; 

        d6=8; 

elseif  y==1 

        Edge=1; 

        a=3; 

        b=6; 

        c=7; 

        d1=1; 

        d2=2; 

        d3=4; 

        d4=5; 

        d5=8; 

        d6=9; 

         

else 

    Edge=0; 

end 

 

end 

 

g_bound=zeros(size(MC.w)); %init 

 

 

if Corner %BC for Corner 

    eps_st= 1 ./ rho .*  ( g(d1) + g(d2) + g(d3) +g(d4)  + g_Scheme(a1) + g_Scheme(a2) +  

g_Scheme(a3) + g_Scheme(a4) + g_Scheme(a5) );    

     

    G_c=rho.* ( BC_eps - eps_st )./( MC.w(a1) + MC.w(a2) + MC.w(a3) + MC.w(a4) + MC.w(a5)); 

     

    g_bound(a1) = g_Scheme(a1) + MC.w(a1).*G_c ;  

    g_bound(a2) = g_Scheme(a2) + MC.w(a2).*G_c ;  

    g_bound(a3) = g_Scheme(a3) + MC.w(a3).*G_c ; 

    g_bound(a4) = g_Scheme(a4) + MC.w(a4).*G_c ; 

    g_bound(a5) = g_Scheme(a5) + MC.w(a5).*G_c ; 

    g_bound(d1) = g(d1); 

    g_bound(d2) = g(d2); 

    g_bound(d3) = g(d3); 

    g_bound(d4) = g(d4); 

 

elseif Edge %BC for Edge 

   

        

    eps_st= 1 ./ rho .*  ( g(d1) + g(d2) + g(d3) + g(d4) + g(d5) + g(d6) +  g_Scheme(a) + 

g_Scheme(b) + g_Scheme(c) );    

     

    G_c=rho.* ( BC_eps - eps_st )./( MC.w(a) + MC.w(b) + MC.w(c) ); 

     

    g_bound(a) = g_Scheme(a) + MC.w(a).*G_c ;  

    g_bound(b) = g_Scheme(b) + MC.w(b).*G_c ;  

    g_bound(c) = g_Scheme(c) + MC.w(c).*G_c ; 

    g_bound(d1) = g(d1); 

    g_bound(d2) = g(d2); 

    g_bound(d3) = g(d3); 

    g_bound(d4) = g(d4); 

    g_bound(d5) = g(d5); 

    g_bound(d6) = g(d6); 

else 

    error('Node is not a boundary node') 

     

end 

end 
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8.2 Derivation: Numerical Diffusion of Osmanlic Transport Algorithm 

The numerical diffusion is developed for a D3Q19 lattice arrangement and the Osmanlic transport 

algorithm for scalars. The derivation is carried out for a cell node 𝒙 = (𝑥, 𝑦, 𝑧) and its neighbouring 

nodes  𝒙𝒊 = 𝒙 + 𝒆𝒊 with fixed velocity vector 

𝒖(𝒙) = 𝒖(𝒙 + 𝒆𝒊) =  (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) , 𝑢𝑥 > 𝑢𝑦 > 𝑢𝑧 > 0. 

The density distribution values 𝑓𝑖 are set equal to the corresponding BGK equilibrium density 

distribution 𝑓𝑖  =  𝑓𝑖
𝑒𝑞

. 

The normalized mass flow balances Δ𝑚𝑖′ =
1

𝜌
(𝑓−𝑖
𝑒𝑞(𝒙 + 𝒆𝒊Δ𝑡, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡)) are: 

Δ𝑚1′ = −6 18 ⁄ 𝑢𝑥 Δ𝑚7
′ = −6 36 ⁄ (𝑢𝑥 + 𝑢𝑦) Δ𝑚8′ = 6 36 (𝑢𝑥 + 𝑢𝑦)⁄  

Δ𝑚2′= 6 18 ⁄ 𝑢𝑥 Δ𝑚9′ = −6 36 ⁄ (𝑢𝑥 − 𝑢𝑦) Δ𝑚10′ = 6 36 ⁄ (𝑢𝑥 − 𝑢𝑦) 

Δ𝑚3′ = −6 18 ⁄ 𝑢𝑦 Δ𝑚11′ = −6 36 ⁄ (𝑢𝑥 + 𝑢𝑧) Δ𝑚12′ = 6 36 ⁄ (𝑢𝑥 + 𝑢𝑧) 

Δ𝑚4′ = 6 18 ⁄ 𝑢𝑦 Δ𝑚13′ = −6 36 ⁄ (𝑢𝑥 − 𝑢𝑧) Δ𝑚14′ = 6 36 ⁄ (𝑢𝑥 − 𝑢𝑧) 

Δ𝑚5′ = −6 18 ⁄ 𝑢𝑧 Δ𝑚15′ = −6 36 ⁄ (𝑢𝑦 + 𝑢𝑧) Δ𝑚16′ = 6 36 ⁄ (𝑢𝑦 + 𝑢𝑧) 

Δ𝑚6′ = 6 18 ⁄ 𝑢𝑧 Δ𝑚17′ = −6 36 ⁄ (𝑢𝑦 − 𝑢𝑧) Δ𝑚18′ = 6 36 ⁄ (𝑢𝑦 − 𝑢𝑧) 

 

With the balances above the Osmanlic transport algorithm (without sources) is given by: 

𝜀(𝒙, 𝑡 + Δ𝑡) =  𝜀(𝒙, 𝑡) +∑Δ𝑚𝑖′ ⋅ {
𝜀(𝒙 + 𝒆𝒊, 𝑡),  Δ𝑚𝑖 > 0

𝜀(𝒙, 𝑡), Δ𝑚𝑖 ≤  0

18

𝑖=1

 Eq. 8-1 

𝜀(𝒙, 𝑡 + 1) =  𝜀(𝒙, 𝑡) + 6 18 ⁄ 𝑢𝑥 ⋅ [−𝜀(𝒙, 𝑡)⏟    
𝑖=1

+ 𝜀(𝑥 − 1, 𝑦, 𝑧, 𝑡)⏟          
𝑖=2

] + ⋯ 

 + 6 18 ⁄ 𝑢𝑦 ⋅ [−𝜀(𝒙, 𝑡) + 𝜀(𝑥, 𝑦 − 1, 𝑧, 𝑡)] + ⋯ 

 + 6 18 ⁄ 𝑢𝑧 ⋅ [−𝜀(𝒙, 𝑡) + 𝜀(𝑥, 𝑦, 𝑧 − 1, 𝑡)] + ⋯ 

 + 6 36 ⁄ (𝑢𝑥 + 𝑢𝑦) ⋅ [−𝜀(𝒙, 𝑡)⏟    
𝑖=7

+ 𝜀(𝑥 − 1, 𝑦 − 1, 𝑧, 𝑡)⏟            
𝑖=8

] + ⋯ 

 + 6 36 ⁄ (𝑢𝑥 − 𝑢𝑦) ⋅ [−𝜀(𝒙, 𝑡) + 𝜀(𝑥 − 1, 𝑦 + 1, 𝑧, 𝑡)] + ⋯ 

 + 6 36 ⁄ (𝑢𝑥 + 𝑢𝑧) ⋅ [−𝜀(𝒙, 𝑡) + 𝜀(𝑥 − 1, 𝑦, 𝑧 − 1, 𝑡)] +⋯ 

 + 6 36 ⁄ (𝑢𝑥 − 𝑢𝑧) ⋅ [−𝜀(𝒙, 𝑡) + 𝜀(𝑥 − 1, 𝑦, 𝑧 + 1, 𝑡)] +⋯ 

 + 6 36 ⁄ (𝑢𝑦 + 𝑢𝑧) ⋅ [−𝜀(𝒙, 𝑡) + 𝜀(𝑥, 𝑦 − 1, 𝑧 − 1, 𝑡)] + ⋯ 
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 + 6 36 ⁄ (𝑢𝑦 − 𝑢𝑧) ⋅ [−𝜀(𝒙, 𝑡) + 𝜀(𝑥, 𝑦 − 1, 𝑧 + 1, 𝑡)⏟            
𝑖=18

] 

 

The forward in time and backward/forward in space values are approximated by a Taylor 

polynomial of second order: 

 𝜀(𝒙, 𝑡 + 1) =  𝜀(𝒙, 𝑡) +
𝜕𝜀(𝒙, 𝑡)

𝜕𝑡
Δ𝑡 +

1

2

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑡2
Δ𝑡2, Δ𝑡 = +1 Eq. 8-2 

Example for mixed backward/forward in space approximation: 

𝜀(𝑥 − 1, 𝑦 + 1, 𝑧, 𝑡) =  𝜀(𝒙, 𝑡) +
𝜕𝜀(𝒙, 𝑡)

𝜕𝑥
Δ𝑥 +

𝜕𝜀(𝒙, 𝑡)

𝜕𝑦
Δ𝑦 +⋯ Eq. 8-3 

 
+
1

2

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥2
Δ𝑥2 +

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥𝜕𝑦
Δ𝑥Δ𝑦 +

1

2

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑦2
Δ𝑦2 

 Δ𝑥 = −1 𝑎𝑛𝑑 Δ𝑦 = +1   

 

 

Inserting the Taylor polynomials (see Eq. 8-3 and Eq. 8-2) into the Osmanlic transport algorithm 

(Eq. 8-1) leads to following term: 

Note that LHS refers to the left-hand side and RHS to the right-hand side of Eq. 8-1. The terms 

are sorted by derivatives of internal energy starting with the derivatives that are multiplied by the 

velocity in the same spatial direction. The nine 𝜀(𝒙, 𝑡) values on the RHS of Eq. 8-1 in the squared 

brackets are already cancelled out. 

𝐿𝐻𝑆 = 𝜀(𝒙, 𝑡) +
𝜕𝜀(𝒙, 𝑡)

𝜕𝑡
+
1

2

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑡2
= 

𝑅𝐻𝑆 = 𝜀(𝒙, 𝑡) +𝑢𝑥 ⋅
𝜕𝜀(𝒙, 𝑡)

𝜕𝑥
⋅ (−

6

18
− 4 ⋅

6

36
)

⏟          
−1

+⋯ Term 1 

 +𝑢𝑦 ⋅
𝜕𝜀(𝒙, 𝑡)

𝜕𝑦
⋅ (−

6

18
− 4 ⋅

6

36
)

⏟          
−1

+⋯ Term 2 

 +𝑢𝑧 ⋅
𝜕𝜀(𝒙, 𝑡)

𝜕𝑧
⋅ (−

6

18
− 4 ⋅

6

36
)

⏟          
−1

+⋯ Term 3 

 
+𝑢𝑥 ⋅

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥2
⋅ (+

3

18
+
3

36
+
3

36
+
3

36
+
3

36
)

⏟                  

+
1
2

+⋯ 
Term 4 
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 +𝑢𝑦 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑦2
⋅ (+

3

18
+
3

36
−
3

36
+
3

36
+
3

36
)

⏟                  
+1/3 

+⋯ Term 5 

 +𝑢𝑧 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑧2
⋅ (+

3

18
+
3

36
−
3

36
+
3

36
−
3

36
)

⏟                  
+1/6

+⋯ Term 6 

 
+𝑢𝑥 ⋅

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑦2
⋅ (+

3

36
+
3

36
)

⏟        

+
1
6

+⋯ 
Term 7 

 
+𝑢𝑥 ⋅

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑧2
⋅ (+

3

36
+
3

36
)

⏟        

+
1
6

+⋯ 
Term 8 

 +𝑢𝑦 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥2
⋅ (+

3

36
−
3

36
)

⏟        
0

+⋯ Term 9 

 
+𝑢𝑦 ⋅

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑧2
⋅ (+

3

36
+
3

36
)

⏟        

+
1
6

+⋯ 
Term 10 

 +𝑢𝑧 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥2
⋅ (+

3

36
−
3

36
)

⏟        
0

+⋯ Term 11 

 +𝑢𝑧 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑦2
⋅ (+

3

36
−
3

36
)

⏟        
0

+⋯ Term 12 

 +𝑢𝑥 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥𝜕𝑦
⋅ (+

6

36
−
6

36
)

⏟        
0 

+⋯ Term 13 

 +𝑢𝑥 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥𝜕𝑧
⋅ (+

6

36
−
6

36
)

⏟        
0 

+⋯ Term 14 

 +𝑢𝑦 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥𝜕𝑦
⋅ (+

6

36
+
6

36
)

⏟        
+1/3 

+⋯ Term 15 

 +𝑢𝑦 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑦𝜕𝑧
⋅ (+

6

36
−
6

36
)

⏟        
0 

+⋯ Term 16 

 +𝑢𝑧 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥𝜕𝑧
⋅ (+

6

36
+
6

36
)

⏟        
+1/3 

+⋯ Term 17 
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 +𝑢𝑧 ⋅
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑦𝜕𝑧
⋅ (+

6

36
+
6

36
)

⏟        
+1/3

 Term 18 

 

Terms 1-3 on the RHS are shifted to the LHS. The 
1

2

𝜕2𝜀(𝒙,𝑡)

𝜕𝑡2
 term of the LHS can be replaced 

according to the advection equation (time derivative of advection equation) and is shifted to the 

RHS: 

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑡2
 =  ux

2 ⋅
∂2ε(𝐱, t)

∂x2
+ uy

2 ⋅
∂2ε(𝐱, t)

∂y2
+ uz

2 ⋅
∂2ε(𝐱, t)

∂z2
 

Note that Term 9, 11, 12, 13, 14 and 16 are zero as well as the six “mixed” terms of component 

velocity and first order space derivatives (e.g. uz ⋅
∂ε(𝐱,t)

∂y
) which are not listed on the RHS. 

This leads to: 

𝜕𝜀(𝒙, 𝑡)

𝜕𝑡
+ 𝑢𝑥 ⋅

𝜕𝜀(𝒙, 𝑡)

𝜕𝑥
+ 𝑢y ⋅

𝜕𝜀(𝒙, 𝑡)

𝜕y
+ 𝑢z ⋅

𝜕𝜀(𝒙, 𝑡)

𝜕z⏟                            
𝑇𝑒𝑟𝑚 1−3

=

=

(

 
 
 
 
 
 

−
1

2
𝑢𝑥
2 +

1

2
𝑢𝑥⏟

𝑇𝑒𝑟𝑚 4

−
1

2
𝑢𝑦
2 +

1

3
𝑢𝑦⏟

𝑇𝑒𝑟𝑚 5

+
1

6
𝑢𝑥⏟

𝑇𝑒𝑟𝑚 7

−
1

2
𝑢𝑧
2 +

1

6
𝑢𝑧⏟

𝑇𝑒𝑟𝑚 6

+
1

6
𝑢𝑥⏟

𝑇𝑒𝑟𝑚 8

+
1

6
𝑢𝑦⏟

𝑇𝑒𝑟𝑚 10)

 
 
 
 
 
 

⋅

⏟                        
𝑫𝑶𝒔

(

 
 
 
 

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥2

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑦2

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑧2 )

 
 
 
 

+

(

 
 
 
 
 
 

1

3
𝑢𝑦⏟

𝑇𝑒𝑟𝑚 15

1

3
𝑢𝑧⏟

𝑇𝑒𝑟𝑚 17

1

3
𝑢𝑧⏟

𝑇𝑒𝑟𝑚 18)

 
 
 
 
 
 

⋅

(

 
 
 
 

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥𝜕𝑦

𝜕2𝜀(𝒙, 𝑡)

𝜕𝑥𝜕𝑧
𝜕2𝜀(𝒙, 𝑡)

𝜕𝑦𝜕𝑧 )

 
 
 
 

⏟                
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑡𝑒𝑟𝑚

 

… Eq. 8-4 

Despite the stated nomenclature of this thesis (see page VI) the capital bold 𝑫𝑶𝒔 refers to a vector.  

 


