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Abstract

Shrinking geometries at integrated circuits require a higher precision and an increased
flexibility of silicon wafer fabrication equipment. In this work, novel control concepts for
so-called spin wet clean tools are proposed. The work was carried out in cooperation
with Lam Research AG, who also provided the laboratory equipment to perform the
experimental investigations.

The first part of the thesis discusses a specific approach for semiconductor rapid thermal
processing (rtp), where silicon wafers are heated to desired temperatures. Here, the
key issue is to ensure uniform wafer temperature profiles. This guarantees that the
manufactured integrated circuits, which are spread over the entire wafer, can be processed
equally. In this thesis, a mathematical model capturing the dynamic behavior of the
heating-up process is presented. It relies mainly on the well-known partial differential heat
equation, governing the temperature distribution in a given region of a given material.
Based on this, different observer types as also control laws are proposed, which in
combination turned out to be superior to conventional RTP strategies.

The second part of the thesis deals with the design of a novel chemistry supply system to
treat the surface of the rotating wafer with well-defined chemical solutions. In contrast
to state of the art supply systems, which are using large tanks in combination with a
recirculation system, the novel approach allows mixing a solution of defined ratio and
temperature online. An approach to control the corresponding flow rates is presented
and an overlain controller is designed to adjust the temperature of the mixture.

The proposed approaches are implemented and validated using laboratory setups.
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1 Introduction

Although Moore’s law, stating that the number of transistors on an integrated circuit
doubles approximately every two years, seems to start stuttering [Williams, 2017], the
demands for the semiconductor industry are still increasing rapidly. This can be attributed
to a great extent to the revolution on the consumer electronics market as well as the
progresses in the field of electromobility within the last couple of years. The corresponding
new technologies require high-tech innovations in particular to provide secure and power-
efficient applications. To account for the increasingly complex devices and shrinking
dimensions, the suppliers of silicon wafer fabrication equipment are required to provide
innovative products.

During the fabrication of a wafer, various process steps like film deposition, lithography,
plasma etch, photoresist strip and wafer cleaning are repeated multiple times. This is
illustrated in Figure 1.1. For the stripping of photoresist as well as for removing residues
and chemical impurities from the wafer, so-called “spin wet clean” products are commonly
used. In the course of this thesis, the development of model-based control schemes for
such systems is under investigation.

1.1 Functionality of a single-wafer spin clean tool

Before the early 1990s, backside layers on the wafer had to be etched off by using so-called
“wet benches”. Therein the whole cassette of wafers was put into a chemical bath. In order
to protect the front side of the wafer, it was coated either by hard-baked photoresists or
plastic foils, which had to be removed later on. To overcome this tedious procedure, the
first single-wafer spin clean tool was launched around 1990. This so-called “spin etcher”
was able to treat the backside of the wafer without etching its topside containing the
devices. The idea behind a spin clean tool was to rotate the wafer upside down. The
chemical was dispensed onto the wafer and spun off.

Through the years, the field of application for single-wafer spin tools has been expanded
significantly. Nowadays, wafer cleaning and stripping of photoresists with various chemicals
belong to the most frequently operated processes during the fabrication of an integrated
circuit. Every fourth to fifth process step belongs to these categories. The requirements
for cleaning and stripping processes are increasing continuously due to new materials,

1



1 Introduction

Figure 1.1: Wafer fabrication process steps [Lam Research Corporation, 2017]: The mostly
operated process steps belong to the key areas deposition, lithography, etch,
strip and clean. This example shows how a conducting path is created. Firstly, a
deposition process can be used to produce a thin film of an insulating material on
the wafer. With the help of the lithography it is possible to create a desired pattern
mask by resist coating, exposure and development. The unprotected areas of the
insulating layer can then be etched off. In a next step, the remaining photoresist
is stripped and the wafer is cleaned to remove residues. With the help of a second
deposition process, the created trenches can be filled with a conducting material.

smaller structures on the wafer and lower defect requirements. This forces newly launched
applications to ensure a precise control of physical process parameters like flow rates,
temperatures and so forth.

For cleaning applications, the so-called rca1 (Radio Corporation of America) standard
defines solutions to remove particles and impurities on the wafer. More precisely, sc-1
(Standard Clean One), which is a mixture of deionized water, ammonium hydroxide
(NH4OH) and hydrogen peroxide (H2O2) is applied to slightly etch the silicon surface
to undercut particles in order to lift them off. A solution composed out of deionized
water, hydrochloric acid (HCl) and hydrogen peroxide (referred to as sc-2) is widely
used to oxidize and remove metals. For the stripping of photoresist, usually mixtures
containing sulfuric acid (H2SO4) are utilized to break the carbon network in resist
polymers. Solutions containing hydrofluoric acid (HF ) are often used to remove etch
polymers by dissolution and undercut. In summary, a variety of chemicals has been
established in the past to remove unwanted substances from the wafer.

One of the latest “spin wet clean” products available on the market is depicted in
Figure 1.2. The chemistry supply together with the process modules form the core of
the spin clean tool. To supply the process modules with desired liquids, a tank-based

1Kern, 1990.
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Figure 1.2: Lam EOS [Lam Research Corporation, 2017]: The latest Lam wet clean product,
called eos, can be configured with either 8 or 16 process chambers/modules.
Within these chambers, the wafer is processed by either using reactive gasses or
by treating its surface with liquid chemicals.
For the treatment with gasses, the wafer is usually heated to temperatures above
300 ◦C (573.15 K). This work proposes a novel approach in order to control the
temperature of the wafer’s surface. For so-called “wet clean steps”, the internal
fluid delivery system provides the process modules with the liquid chemicals at a
desired temperature and flow rate. The current configuration is based on using
several large tanks together with a recirculation system to prepare the needed
chemicals. Novel concepts proposed in this work allow mixing the requested
chemical online without needing tanks and a recirculation system. This saves
space and increases the flexibility of the equipment since process parameters like
flow rate, mixing ratio and temperature can be adjusted easily.

3



1 Introduction

...

Figure 1.3: Chemistry supply system: The tank-based state of the art fluid delivery system
recirculates the chemical with the help of a centrifugal pump. A heater and a
cooler are used to set up a desired temperature. The pressure in the recirculation
line is adjusted by means of a back-pressure valve in combination with a pressure
sensor.

recirculation system is used. As the schematic representation of the state of the art
supply system shown in Figure 1.3 points out, the pre-mixed chemical is filled into a
tank and permanently circulated with the help of a centrifugal pump. The rotational
speed of the pump is set manually in order to achieve a desired, almost constant flow
rate through the recirculation system. To set up a required temperature of the mixture
in the range of 20 to 130 ◦C (293.15 to 403.15 K), a PI controller is used to adjust the
power of the heater. A cooler in a bypass line can be utilized in case low temperatures
are requested. The pressure sensor in combination with the pneumatically actuated
back-pressure valve is used to control the pressure at the measuring point. For this, a PI
controller is implemented again. Due to the large cross section of the recirculation line in
relation to the used flow rates, the pressure can be kept almost constant at the branch
connections to the process modules. Finally, the flow rate to the wafer is set manually
with the help of a needle valve by adjusting its aperture. A flowmeter, measuring the
actual flow rate, serves as a monitoring device. The shut-off valve is used to start and
stop the liquid flow to the wafer.

This chemistry supply concept has proven itself for the last couple of years. Due to the
permanent recirculation, it is easy to control, reliable and shows a good wafer to wafer
repeatability. It also has some disadvantages which become more and more significant
as the demanded flexibility for the processes rises. For example, with the state of the
art system it is not possible to quickly change the mixing ratio of the solution, which

4
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is one of the three main process parameters. Also its temperature and the flow rate
of the chemical to the wafer may change more dynamically than in the past. For that
either the tank has to be refilled, the temperature of the mixture has to be changed
via a long-lasting period of time, or the needle valve has to be readjusted manually. Of
course, this procedures are associated with a great effort and costly downtime of the tool.
This turns out to be a problem for novel processes, which already request to change the
process parameters online, i.e. during the process of one single wafer.

1.2 State of the art photoresist removal process

One critical application of a spin clean tool is the removal of hard-baked photoresist films
after ion implantation. This is usually carried out with solutions containing sulfuric acid
(H2SO4). They are dispensed onto the wafer by means of a chemistry supply described
in Section 1.1. A widely used mixture, referred to as “sulfuric peroxide mixture”, is
composed of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) in a ratio of usually
ranging from 2:1 to 4:1 at temperatures of 100 to 130 ◦C [Reinhardt and Kern, 2008;
Philit et al., 2003]. The hydrogen peroxide is often replaced by ozone. This chemical is
then called “sulfuric ozone mixture”. The process step with solutions containing sulfuric
acid is mostly followed by a treatment with sc-1 or diluted hydrofluoric acid.

The extensive usage of sulfuric acid for wafer manufacturing has become subject of
criticism in recent years. In particular, its harm to the environment is significant. Some
governments, especially those located in Asia, already limit the quantity of sulfuric acid
for companies. Therefore, novel processes with different chemicals to remove hard-baked
photoresist are sought pressingly [Patil et al., 2017].

1.3 Novel photoresist stripping process using ozone gas

A novel process to remove hard-baked photoresist without using solutions containing
sulfuric acid was developed recently. Instead of using liquid chemicals, the wafer is flushed
with ozone gas within an environmental controlled chamber. The ozone gas O3 splits into
O2 and oxygen radicals O above the wafer. These radicals then strip the photoresist on
the wafer surface in order to lift it off. To achieve desired process results, the wafer has to
be heated uniformly to temperatures above 300 ◦C (573.15 K). Figure 1.4 schematically
illustrates the stripping process. The main advantages of using ozone lie in its easy
production with an ozone generator, and its environmental friendliness. Excessive ozone,
which is not dissipated within the chamber, can be easily converted into O2 by applying
heat in a so-called “ozone destructor”.

5



1 Introduction

Figure 1.4: Photo resist stripping with ozone gas: The heated wafer is flushed with ozone gas
in order to remove hard-baked photo resist.

1.4 Post-clean step with SC-1/SC-2

In order to remove remaining photoresist particles, the stripping process is followed by
a wet clean step using sc-1 or sc-2. Instead of using the state of the art chemistry
supply system outlined in Section 1.1, a novel so-called “point of use” (pou) blending
system is intended to be used. In contrast to a tank-based recirculation system, a pou
blending system is capable of mixing a solution with a well defined temperature composed
of deionized water, hydrogen peroxide, ammonium hydroxide and/or hydrochloric acid
online in a defined ratio. As this system mixes the chemical online, its composition can
be varied from wafer to wafer or even during one process step.

1.5 Structure of the thesis and scope of work

This thesis is divided into two main parts.

The first part deals with the heating process of the wafer within the environmental
controlled chamber. A mathematical model capturing the dynamical behavior of the
heat-up process is derived. Based on that, different observer types to estimate the wafer’s
temperature profile are designed and evaluated. Control laws are proposed, which in
combination with the observer can be used to set up desired temperature profiles on
the wafer’s surface. The approaches are validated at a real world heating system with
different wafer types.

The second chapter deals with the design of the pou mixing system. Mathematical
models are derived and used to design control approaches to adjust the involved process

6
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parameters, which are flow rates, temperature and mixing ratio of the solution. The
theoretical results are reinforced with the help of experiments at laboratory tools.

1.6 Contribution of the thesis

The temperature control of silicon wafers, which is often referred to as “rapid thermal
processing”, is widely used in semiconductor industries [J. Y. Choi, Do, and H. S. Choi,
2003; Ching-An and Yaw-Kuen, 2001; Lin and Chu, 2001]. In the majority of the cases,
the wafer is heated up to desired temperatures to activate dopants or to repair damages
after ion implantation. Among these areas of use, the heating of the wafer still opens a
wide range of applications within the field of chip manufacturing.

To achieve desired process results, it is essential to set up uniform temperature profiles
on the wafer’s surface. Proposed algorithms to control the wafer’s temperature assume
the temperature profile to be known [Ebert et al., 2004]. In fact, measuring the latter
without contacting the wafer is still a problem in semiconductor industries. Devices based
on the principle of pyrometry are available to measure the temperature at one single
point on the wafer’s surface. Some approaches use multiple sensors to get an estimate
of the wafer’s temperature profile. The main drawback of this approach is the limited
space in the process chamber and the restricted resolution of the obtained temperature
profile. Other techniques combine the measurement of the wafer reflectivity and the use
of infrared cameras to obtain the wafer’s temperature profile [Maxwell, Yan, and Howell,
2007]. Again, this approach suffers from the integration of the camera in the process
chamber.

The novel approach presented in this thesis is based on measuring the temperature at
one single point of the wafer and estimating the remaining temperature profile by using
a state observer. A detailed mathematical model, which allows to design model-based
estimators and controllers for the considered systems, is presented for the first time. It
relies mainly on the well-known heat equation. By discretizing this partial differential
equation in space, a set of nonlinear ordinary differential equations can be obtained.
Apart from applying different observer approaches to this high-order finite-dimensional
system, estimator schemes designed directly for the partial differential equation are
discussed. A recently published approach [Schaum, Moreno, Alvarez, and Meurer, 2015]
is extended in such a manner that the observer dynamics can be improved significantly
by introducing a so-called measurement injection.

Based on the estimated wafer’s temperature profile, different control strategies are
proposed for setting up desired wafer temperatures in order to enable the novel photoresist
stripping process outlined in Section 1.3.

7
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In order to remove residual impurities from the wafer after this photoresist stripping
process, a novel mixing system for post-clean applications is proposed. This system allows
to control the mixing ratio, the outlet flow rates and the temperature of the solution.
Such a system entails a significant increase in flexibility compared to state of the art
tank-based chemistry supply systems.

8



2 Observer-based temperature control
of an LED heated wafer

To enable the outlined photoresist stripping process using ozone gas, the wafer has to
be heated up to temperatures in the range of 300 to 400 ◦C (573.15 to 673.15 K). The
wafer heat-up process is carried out with the help of a large number of high-power LEDs.
In the following, the hardware setup is described. Subsequently, a mathematical model is
derived, which is then used to design different observer types and control laws.

2.1 Plant description and problem formulation

The hardware setup (see Figure 2.1) considered in this section consists of a heating plate,
a rotating chuck carrying the wafer and a pyrometer to measure the wafer’s temperature
at one single position. The heating plate is equipped with more than 1000 high-power
LEDs, each emitting blue light with a wavelength of approximately 450 nm. Due to the
high spectral absorptivity and a transmissivity close to zero of silicon at this wavelength,
a setup of this kind is particularly suitable for heating. The wafer with a radius of
R = 150 mm rotates above the heating plate with an angular velocity of approximately
10 revolutions per minute. The closed process chamber is continuously flushed with ozone
gas to treat the surface of the silicon wafer. A pyrometer is integrated in the heating
plate and measures the temperature of the wafer at a distance of 40 mm from the wafer
center.

Based on a plant model, a state observer is designed to estimate the wafer’s temperature
profile by taking into account the input power to the LEDs as well as the temperature
measured by the pyrometer. The estimated temperature profile is finally used as a
feedback for a control law to set up desired wafer temperatures.

2.2 Plant model

The wafer heating process mainly relies on three physical effects: the heat transfer within
the wafer, the heat input caused by absorption of the emitted light and heat losses due

9



2 Observer-based temperature control of an LED heated wafer

Figure 2.1: Schematic representation of the hardware setup: The wafer is rotating above the
heating plate, which is equipped with a large number of high-power LEDs. A
pyrometer is measuring the temperature at one point of the wafer from the bottom
side through an aperture in the heating plate. The closed chamber is flushed with
ozone gas through multiple nozzles in the top lid.

to convection and radiation. The partial differential heat equation is studied as a means
of describing the heat transfer in the wafer. Semi-discretization techniques are applied
to derive a set of ordinary differential equations. Based on the obtained equations, the
heat input and the heat losses can be included in the model by considering geometric
properties of the system.

2.2.1 Heat transfer equation

The heat transfer equation with heat sources and losses reads as [Baehr and Stephan,
2011]

ρcp(T )
∂T (ξ, t)

∂t
= div {λc(T )grad [T (ξ, t)]}+ q(ξ, t), (2.1)

where the vector ξ is the three-dimensional space coordinate and T (ξ, t) is the wafer’s
temperature given in Kelvin as a function of ξ and time t. The temperature-dependent
coefficient λc(T ) denotes the heat conductivity, cp(T ) the heat capacity and ρ the density1

1The density of silicon can be treated as constant within the considered temperature range of 0 to
400 ◦C (273.15 to 673.15 K).
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2 Observer-based temperature control of an LED heated wafer

of the silicon wafer. Volumetric heat sources and losses are denoted by q(ξ, t). With2

div {λc(T )grad [T (ξ, t)]} =

λc(T )div {grad [T (ξ, t)]}+
∂λc(T )

∂T (ξ, t)
‖grad [T (ξ, t)]‖2

2 (2.2)

and assuming that λc(T ) changes slowly with temperature, i.e.

∂λc(T )

∂T (ξ, t)
≈ 0, (2.3)

equation (2.1) reduces to

∂T (ξ, t)

∂t
= κ(T )div {grad [T (ξ, t)]}+

q(ξ, t)

ρcp(T )
, (2.4)

where

κ(T ) =
λc(T )

ρcp(T )
. (2.5)

Rewriting (2.4) in cylindrical coordinates, i.e. the radial distance r, the angular coordinate
ϕ and the height z, leads to

∂T (r, ϕ, z, t)

∂t
= κ(T )

[
∂2T (r, ϕ, z, t)

∂r2
+

1

r

∂T (r, ϕ, z, t)

∂r
(2.6)

+
1

r2

∂2T (r, ϕ, z, t)

∂ϕ2
+
∂2T (r, ϕ, z, t)

∂z2

]
+
q(r, ϕ, z, t)

ρcp(T )
.

Due to the fact that the system is rotationally symmetrical (see Figure 2.2), i.e.

∂T (r, ϕ, z, t)

∂ϕ
= 0 (2.7)

and the temperature distribution in z direction is uniform3, i.e.

∂T (r, ϕ, z, t)

∂z
= 0, (2.8)

equation (2.6) reduces to the one-dimensional heat equation

∂T (r, t)

∂t
= κ(T )

[
∂2T (r, t)

∂r2
+

1

r

∂T (r, t)

∂r

]
+
q(r, t)

ρcp(T )
. (2.9)

2‖grad [T (ξ, t)]‖22 denotes the scalar product of grad [T (ξ, t)] with itself (see Appendix A).
3The temperature distribution in z direction can be treated as uniform since the thickness of the

wafer is up to a thousand times smaller than its diameter.

11



2 Observer-based temperature control of an LED heated wafer

Figure 2.2: Rotational symmetry: The temperature along a circle is assumed to be constant.

Figure 2.3: Equidistant spatial grid: The wafer diameter is divided into n + 1 equidistant
intervals. If n is chosen odd, an inner point is located directly in the origin, which
leads to a division by zero in the mathematical model.

2.2.2 Spatial discretization - vertical method of lines

The so-called vertical method of lines [Schiesser and Griffiths, 2009] is applied to (2.9) in
order to approximate the spatial derivatives by difference equations, i.e. a set of ordinary
differential equations can be derived out of the partial differential equation. The wafer
diameter is thus divided into n+ 1 equally spaced distances, see Figure 2.3. The resulting
equidistant spatial grid with n inner points reads as

Ω∆1 = {ri : ri = −R + i∆r; i = 1, . . . n} , (2.10)

where the distance between two points is computed as

∆r =
2R

n+ 1
. (2.11)
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2 Observer-based temperature control of an LED heated wafer

To replace the spatial derivatives in (2.9) by algebraic approximations, Taylor series of
T (r + ∆r, t) and T (r −∆r, t) are expanded at r which leads to

T (r + ∆r, t) = T (r, t) +
∂T (r, t)

∂r
∆r +

1

2

∂2T (r, t)

∂r2
(∆r)2 + . . . (2.12)

and

T (r −∆r, t) = T (r, t)− ∂T (r, t)

∂r
∆r +

1

2

∂2T (r, t)

∂r2
(∆r)2 + . . . . (2.13)

Neglecting higher-order terms and subtracting (2.13) from (2.12) yields an approximation
for the first derivative of T (r, t) with respect to r, i.e.

∂T (r, t)

∂r
≈ T (r + ∆r, t)− T (r −∆r, t)

2∆r
. (2.14)

Summing up equations (2.12) and (2.13) yields an approximation for the second derivative
of T (r, t) with respect to r, i.e.4

∂2T (r, t)

∂r2
≈ T (r + ∆r, t)− 2T (r, t) + T (r −∆r, t)

(∆r)2
. (2.15)

By introducing the abbreviations Ti = T (ri, t) and qi = q(ri, t) and exploiting ap-
proximations (2.14), (2.15), a set of n coupled ordinary differential equations can be
obtained:

dTi
dt

= κ(Ti)

[
Ti+1 − 2Ti + Ti−1

(∆r)2
+

1

ri

Ti+1 − Ti−1

2∆r

]
+

qi
ρcp(Ti)

(2.16)

Expressing ri as a multiple of ∆r, i.e.

ri := χi∆r with χi =
2i− n− 1

2
, (2.17)

leads to

dTi
dt

= κ(Ti)

[
Ti+1 − 2Ti + Ti−1

(∆r)2
+

1

χi∆r

Ti+1 − Ti−1

2∆r

]
+

qi
ρcp(Ti)

=
κ(Ti)

(∆r)2

[(
1 +

1

2χi

)
Ti+1 − 2Ti +

(
1− 1

2χi

)
Ti−1

]
+

qi
ρcp(Ti)

. (2.18)

One can easily check that a division by zero occurs in (2.18), i.e. χi = 0, in case that n
is chosen odd and i = n+1

2
. Furthermore, Ti equals Tn−i+1 due to symmetry, or in other

words, it is sufficient to evaluate the heat equation for only one half of the wafer. To
overcome these problems, an offset grid is used, see Figure 2.4. Accordingly, ∆r of the

4Equations (2.14) and (2.15) are also known as “central difference approximations”.
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2 Observer-based temperature control of an LED heated wafer

Figure 2.4: Improved grid: An offset grid is used to prevent from a division by zero in the
mathematical model.

improved grid computes as

∆r =
R

n
(2.19)

and the equidistant spatial grid changes to

Ω∆2 =

{
ri : ri =

(
2i− 1

2

)
∆r; i = 1, . . . n

}
. (2.20)

The final set of ordinary differential equations to approximate the one-dimensional partial
differential heat equation in cylindrical coordinates (2.9) can therefore be obtained by
exploiting (2.18) with

χi =
2i− 1

2
. (2.21)

In the following sections, the volumetric heat sources and losses are subdivided into three
parts, i.e.

qi = q1,i + q2,i + q3,i, (2.22)

where q1,i corresponds to the heat input due to light absorption (see Section 2.2.4). The
heat losses due to convection and radiation are denoted by q2,i and q3,i respectively (see
Section 2.2.5).

2.2.3 Boundary conditions

To solve (2.9) and (2.18) respectively, suitable initial conditions as well as boundary
conditions are required. The initial conditions are given by the wafer’s temperature profile
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2 Observer-based temperature control of an LED heated wafer

at time instance t = 0. Due to the thinness of the wafer and the associated small surface
at the edge of the wafer, heat losses in radial direction are negligible5, i.e. a Neumann
boundary condition

∂T (r, t)

∂r

∣∣∣∣
r=R

= 0 (2.23)

is suitable.

Approximating (2.23) with the forward difference equation yields

∂T (R, t)

∂r
≈ Tn+1 − Tn

∆r
= 0 (2.24)

and accordingly
Tn+1 = Tn. (2.25)

The second boundary condition at the wafer’s center results from symmetry and can also
be interpreted as a Neumann boundary condition, i.e.

T0 = T1. (2.26)

2.2.4 Heat input due to light absorption

This section discusses the heating-up of the wafer caused by absorption of the light
emitted by the LEDs. The LEDs that are used can be treated as Lambertian emitters,
i.e. they show a maximum light intensity at an angular displacement of 0◦ and a falling
intensity as the angular displacement increases. Based on this assumption and taking
into account reflections between the wafer and components mounted in the process
chamber (e.g. the heating plate), the absorption of light can be modelled with the help
of a Gaussian distribution with zero mean and a standard deviation σl. The considered
density function with respect to the distance from the LED denoted by δ therefore reads
as

D(δ) =
1

σl
√

2π
exp

(
−1

2

δ2

σ2
l

)
. (2.27)

Figure 2.5 schematically depicts the absorption of light emitted by a LED. In order to
combine the light absorption with the discretized heat transfer equation, the density
function (2.27) is also discretized with a spacing of ∆r and the abbreviation

Dµ := D(µ∆r) (2.28)

5The heat losses at the upper and lower surfaces of the wafer are discussed in Section 2.2.5.
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2 Observer-based temperature control of an LED heated wafer

Figure 2.5: Radiation characteristics of an LED: The radiation is modelled with the help of a
Gaussian distribution, meaning that the highest light intensity is at an angular
displacement of 0◦.

for µ = 0, 1, 2, . . . ∞ is introduced. In addition, the factors D0, D1, D2, . . . D∞ are
scaled such that

∞∑
µ=0

Dµ = 1. (2.29)

The single LEDs mounted on the heating plate are related to one of the n wafer annuli,
see Figure 2.6. The average heat input over time due to absorption in ring i with area Si
computes as

q1,i =
P t
i

hSi
, (2.30)

where P t
i denotes the total amount of power which is absorbed in ring i and h is the

thickness of the wafer. The area of ring i can be computed as

Si = (2i− 1)(∆r)2π. (2.31)

Note that an LED, which is located at a specific position below the wafer, radiates to all
annuli, but with different intensities. Figure 2.7 depicts exemplarily how a lamp located
in ring 3 radiates to the individual annuli of the wafer with an intensity factor of D2.
In general, the power in form of light emitted by a LED located in ring µ, which is
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Figure 2.6: Annuli division: A specific number of LEDs can be attributed to each annulus.

absorbed in ring i, can be calculated based on the given area ratios6. Thus, considering
the radiation of all LEDs, the total amount of power absorbed in ring i computes as

P t
i = η

n∑
µ=1

2n∑
ν=1

NµP
e
µDν−1

Si,µ,ν
n∑
τ=1

Sτ,µ,ν

, (2.32)

where Nµ is the number of LEDs located in ring µ, P e
µ is the electrical input power per

LED in ring µ, Si,µ,ν is the area of ring i which is irradiated by a LED in ring µ with an
outer radius

r =
2ν − 1

2
∆r (2.33)

and an inner radius of

r =

{
0 for ν = 1

r −∆r else
. (2.34)

The efficiency factor η ∈ [0, 1] describes how much of the applied electrical power is
absorbed by the wafer in the form of light and converted to heat. The value of η is
typically in the range of 0.5 and mainly characterizes ohmic heat losses of the LEDs.

6To calculate the desired area ratios, a formula to compute circle-circle intersections is used, see
Appendix B.
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2 Observer-based temperature control of an LED heated wafer

 

Figure 2.7: Light absorption: The amount of power received in one ring is related to the
summation of the absorbed light emitted by the LEDs spread all over the entire
heating plate. The intensity of the emitted light decreases as the radial distance
to the LED increases.
This sketch exemplary shows, how a LED located in ring 3 radiates with an
intensity factor of D2 to different rings of the discretized system. The irradiated
areas are calculated based on geometric considerations.
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Inserting (2.32) into (2.30) finally leads to a equation to describe the heat input over
time in ring i due to light absorption, i.e.

q1,i =
η

hSi

n∑
µ=1

2n∑
ν=1

NµP
e
µDν−1

Si,µ,ν
n∑
τ=1

Sτ,µ,ν

. (2.35)

2.2.5 Heat losses

Heat losses of the wafer are mainly caused by thermal convection and radiation. The
heat loss due to convection at radius ri is proportional to the difference between the
wafer’s temperature Ti and the ambient temperature Te, where the latter is assumed to
be constant across the wafer. Thus, the heat loss over time due to convection is given
as

q2,i =
αi
h

(Te − Ti)

= −αi
h
Ti +

αi
h
Te, (2.36)

where αi denotes the heat transfer coefficient at radius ri. Note that αi depends on the
gas flow conditions in the chamber as well as the rotational speed of the wafer.

The heat loss due to radiation can be described with the help of the Stefan-Boltzmann
law, i.e.

q3,i = −2
εσsb
h
T 4
i , (2.37)

where ε is the total emissivity of the wafer and σsb is the Stefan-Boltzmann constant.
The factor 2 results from considering heat losses at the upper as well as the lower surface
of the wafer. Since the emissivity is very sensitive to the dopant level of the wafer, ε is
associated with a high degree of uncertainty [Vandenabeele and Maex, 1991; Sato, 1967].
The process chamber is cooled down to a value close to room temperature. Thus, heat
inputs caused by radiation of the environment to the wafer are negligible.

2.2.6 State space representation

By combining heat equation (2.18), the boundary conditions (2.25), (2.26), the heat
input (2.35) and heat losses (2.36), (2.37), a set of n ordinary differential equations can
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be obtained as

dT1

dt
=
κ(T1)

(∆r)2

[(
1 +

1

2χ1

)
T2 +

(
−1− 1

2χ1

)
T1

]
+
q1,1 + q2,1 + q3,1

ρcp(T1)
(2.38)

dT2

dt
=
κ(T2)

(∆r)2

[(
1 +

1

2χ2

)
T3 − 2T2 +

(
1− 1

2χ2

)
T1

]
+
q1,2 + q2,2 + q3,2

ρcp(T2)
...

dTn
dt

=
κ(Tn)

(∆r)2

[(
−1 +

1

2χn

)
Tn +

(
1− 1

2χn

)
Tn−1

]
+
q1,n + q2,n + q3,n

ρcp(Tn)
.

The choice of the system order n is clearly related to the accuracy of the introduced spatial
approximations, i.e. the accuracy increases with an increasing system order. On the other
hand, a high system order affects the computational effort in solving the obtained set
of ordinary differential equations adversely. Depending on the type of the implemented
observers and controllers, it can happen that the system has to be discretized in space and
time frequently during processing. Furthermore, it might be the case that an optimization
problem has to be solved online for the discretized system (see e.g. Section 2.4). Taking
into account these considerations as well as the geometry of the system, a suitable choice
for the system order is 30. This means that the outermost zone consists of two rings. A
system order of 15 would also be feasible, meaning that the outermost zone contains
one ring, but in this case the accuracy of the spatial approximations turned out to be
insufficient.

The derived set of ordinary differential equations (2.38) can be written in state space
representation, where the state vector consists of the wafer’s temperatures evaluated on
the discretization grid, i.e.

x =
[
x1 x2 . . . xn

]T
=
[
T1 T2 . . . Tn

]T
. (2.39)

The heating plate is subdivided into four concentric zones as depicted in Figure 2.8,
where all LEDs in a zone receive the same electrical power, i.e. the same electrical current
flows through all LEDs in a zone. The assignment of the rings to the corresponding zones
for a system order of n = 30 is summarized in Table 2.1. The inputs to the system are

Zone Rings

1 1 - 16
2 17 - 24
3 25 - 28
4 29 - 30

Table 2.1: Zone division

20



2 Observer-based temperature control of an LED heated wafer

 

Figure 2.8: Heating plate: The heating plate is divided into four zones, whereas all LEDs in
a heating zone must be turned on together with the same amount of electrical
power.

the electrical power to the LEDs in each zone as also the ambient temperature, i.e.

u =
[
P e
z1 P e

z2 P e
z3 P e

z4 Te
]T
. (2.40)

The derived nonlinear, affine-input system then reads as

ẋ = f(x,u) = A1(x)x− εA2(x)


x4

1

x4
2
...
x4
n

+B(x)u, (2.41)

with the state-dependent matrices A1(x), A2(x) and B(x). Matrix A1(x) involves heat
conduction as well as heat losses due to convection, i.e.

A1(x) = diag

(
κ(xi)

(∆r)2

)


−1−2χ1

2χ1

1+2χ1

2χ1
0

−1+2χ2

2χ2
−2
. . . . . .

−2 1+2χn−1

2χn−1

0 −1+2χn
2χn

1−2χn
2χn

− diag

(
αi

ρhcp(xi)

)
.

(2.42)

Matrix A2(x) results from evaluating heat losses due to radiation, i.e.

A2(x) = diag

(
2σsb

ρhcp(xi)

)
. (2.43)
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Please note that the uncertain parameter ε is extracted from A2(x) to account for it
during the observer design. The input matrix B(x) reads as

B(x) =
1

ρh



ηN1

cp(x1)S1

2n∑
ν=1

Dν−1
S1,1,ν
n∑
τ=1

Sτ,1,ν

. . . ηNn
cp(x1)S1

2n∑
ν=1

Dν−1
S1,n,ν
n∑
τ=1

Sτ,n,ν

α1

cp(x1)

ηN1

cp(x2)S2

2n∑
ν=1

Dν−1
S2,1,ν
n∑
τ=1

Sτ,1,ν

. . . ηNn
cp(x2)S2

2n∑
ν=1

Dν−1
S2,n,ν
n∑
τ=1

Sτ,n,ν

α2

cp(x2)

...
...

ηN1

cp(xn)Sn

2n∑
ν=1

Dν−1
Sn,1,ν
n∑
τ=1

Sτ,1,ν

. . . ηNn
cp(xn)Sn

2n∑
ν=1

Dν−1
Sn,n,ν
n∑
τ=1

Sτ,n,ν

αn
cp(xn)


Z (2.44)

with

Z =



1 0
...
1

1
...
1

1
...
1

1
1

0 1



 related to el. power supplied to LEDs in zone 1 related to el. power supplied to LEDs in zone 2 related to el. power supplied to LEDs in zone 3

}
related to el. power supplied to LEDs in zone 4}
related to ambient temperature.

The output of the introduced system is defined as the temperatures measured at the
radial midpoint of each of the four zones as illustrated in Figure 2.9. Accordingly, the
output equation is expressed as

y =
[
y1 y2 y3 y4

]T
= Cx, (2.45)

where the output matrix for test rigs reads as

C =


cT1
cT2
cT3
cT4

 =


0T 1 0T 0 0T 0 0T 0 0T

0T 0 0T 1 0T 0 0T 0 0T

0T 0 0T 0 0T 1 0T 0 0T

0T 0 0T 0 0T 0 0T 1 0T

 . (2.46)

It mainly consists of zeros, aside a single one in each row at column indices b0.04
∆r

+ 1
2
c,

b 0.1
∆r

+ 1
2
c, b0.13

∆r
+ 1

2
c and b0.145

∆r
+ 1

2
c respectively. Please notice that only pyrometer 1, which
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Figure 2.9: Temperature sensors: Four pyrometers are used to measure the temperature at the
radial midpoint of each heating zone. Only pyrometer 1 is available at production
systems, the others are just used for validation purposes at the test rig.

is measuring the temperature of the wafer at a distance of 40 mm from the wafer center,
is available at production tools. This means that the output equation for production
tools is just

y1 = cT1 x. (2.47)

Pyrometers 2 to 4 are only available at the test rigs for validation purposes.

2.2.7 Plant model validation

To validate the mathematical model, a heating-up experiment with a so-called “highly
doped” wafer is carried out on a test rig, which is built up as described in Section 2.1. The
wafer, which is at room temperature before starting the experiment, is rotating with 10
revolutions per minute. The chamber is continuously flushed with gasses supplied at
room temperature and a flow of 10 liters per minute. Thus, the ambient temperature Te
is assumed to be 25 ◦C (298.15 K). The used model parameters are listed in Table 2.2.
Due to the small air flow and the low rotational speed, the heat loss due to convection is
assumed to be uniformly distributed across the wafer, i.e. all heat transfer coefficients
are chosen equally.

The plant is excited with a power setting as depicted in Figure 2.10. The temperatures in
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Parameter Description Value Unit

ρ density 2336 kg
m3

λc(T ) heat conductivity 150
(
T

300

)−1.3 W
mK

cp(T ) heat capacity 703 +
255

[
( T
300)

1.85
−1

]
( T
300)

1.85
+ 255

703

J
kgK

h thickness of wafer 775 · 10−6 m

η efficiency/absorptivity factor 0.5 -

σl standard deviation 0.11 m

ε total emissivity 0.65 -

α1, α2, . . . α30 heat transfer coefficients 1 W
m2K

σsb Stefan-Boltzmann constant 5.6704 · 10−8 W
m2K4

Table 2.2: Experiment, model parameters
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Figure 2.10: Input signals: The electrical power to the four heating zones is varied in order to
verify the accuracy of the mathematical model.
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Figure 2.11: Plant model validation: The wafer’s temperature measured in the four zones is
compared to the simulated output of the plant model. The “highly doped” wafer
is heated starting at room temperature. Since the pyrometers cannot be used to
measure low temperatures, the initial measurements are incorrect.

the four zones are measured with pyrometers as shown in Figure 2.9. As Figure 2.11 shows
and referring to the technical data sheet of the pyrometers, the temperature readings are
not reliable at low temperatures. This does not pose a problem for the process which
requires temperatures above 300 ◦C (573.15 K). Apart from that, it can be seen that
the derived mathematical model captures the dynamics of the system sufficiently well in
order to design model-based observers and controllers.
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Figure 2.12: Wafer sensitivity: An experiment points out different cooling down characteristics
of wafers with diverse values for their total emissivity.

2.3 Wafer sensitivity

As indicated in Section 2.2, the total emissivity ε heavily depends on the wafer type,
in particular on its dopant level and coating. The total emissivity can vary from 0.2
to 0.9. To demonstrate this dependency, an experiment7 is carried out where two contrary
wafer types, namely a “highly doped” wafer and a “bare silicon” wafer are heated to
approximately 400 ◦C. Accordingly, the cooling down of the two wafer types is analyzed.
A comparison is depicted in Figure 2.12. Referring to the experiment it can be concluded
that a “highly doped” wafer cools down much faster than a “bare silicon” wafer, i.e. the
total emissivity rises with an increasing dopant level.

To cope with the unknown total emissivity of the processed wafer, an appropriate observer

7The measurement setup remains unchanged, i.e. like described in Section 2.2.7.

26



2 Observer-based temperature control of an LED heated wafer

Figure 2.13: Total emissivity and light absorption: The dopand level of the wafer has an impact
on its reflectivity. This in turn affects the standard deviation of the Gaussian
distribution used to model the light absorption. Highly doped wafers show a
narrower light absorption than less doped wafer due to its lower reflectivity.

approach is used later on. In addition to the emissivity, it turned out that the standard
deviation of the Gaussian distribution introduced to model the light absorption is also
dependent on the wafer type. This dependency can be mainly attributed to the reflectivity
of different wafer types which is dependent on the dopant level and coating. For example,
the standard deviation to model the light absorption of a bare silicon wafer is higher than
those for a “highly doped” wafer (see illustration in Figure 2.13). Thus, the question arises
if it is possible to conclude from the emissivity on the value of the standard deviation.
Therefor, the emissivity as well as the standard deviation of the model are adjusted for
a variety of heating up experiments with different wafer types. Figure 2.14 depicts the
determined relation between the total emissivity and standard deviation. Thus, with the
help of a nonlinear regression, the standard deviation can be expressed as a function of
the total emissivity, i.e.

σl = 0.01656 ε−1.475 + 0.07674. (2.48)

Since the standard deviation is dependent on the total emissivity, in fact also the input
matrix depends on ε, i.e. the latter reads as B(x, ε) instead of B(x) subsequently.

2.4 Observer design based on classical approaches

As outlined, an observer for (2.41) with the output y1 = cT1 x is designed.
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Figure 2.14: Relationship between total emissivity and standard deviation: A mathematical
relation between the total emissivity of the wafer and the standard deviation used
to model the light absorption is found with the help of a nonlinear regression.

2.4.1 Additional estimate for the total emissivity

To account for the uncertain parameter ε, the latter is considered as an additional state
variable, i.e. the augmented state vector is defined as

x̃ :=

[
x
ε

]
. (2.49)

The additional estimation of system parameters generally leads to nonlinear models.
Since the derived plant model (2.41) is in any case nonlinear, this does not represent
additional effort, except that the system order of the augmented system is increased by
one. Under the assumption that ε is constant or at most changes slowly over time, the
augmented nonlinear system can be written as

˙̃x = f̃(x̃,u) =


A1(x)x− εA2(x)


x4

1

x4
2
...
x4
n

+B(x, ε)u

0

 . (2.50)

By introducing the state vector x̃, the output equation also needs to be adapted, i.e.

y1 =
[
cT1 0

]
x̃ = c̃T1 x̃. (2.51)
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2.4.2 Observability check

Prior to the design of the observer, the observability of the augmented system needs to
be checked. An approach discussed in [Banks, Lewis, and Tran, 2007] is thus applied,
which deals with the determination of the observability for a class of nonlinear systems,
namely systems in state-dependent coefficient form.

Rewriting (2.50) and (2.51) in such a form yields

˙̃x = Ã(x̃)x̃+ B̃(x̃)u, (2.52)

y1 = c̃T1 x̃,

with

Ã(x̃) =


A1(x) −A2(x)


x4

1

x4
2
...
x4
n


0T 0

 and B̃(x̃) =

[
B(x, ε)

0T

]
. (2.53)

As outlined in the paper, system (2.52) with system order ñ = n+ 1 is observable if the
state-dependent observability matrix

B̃y(x̃) =


c̃T1

c̃T1 Ã(x̃)
...

c̃T1 Ã
(ñ−1)

(x̃)

 (2.54)

has full rank for all x̃. Clearly, instead of checking the rank of the observability matrix,
it is also possible to check if every right eigenvector w̃(x̃) of Ã(x̃) with respect to the
eigenvalue λ̃(x̃), i.e. Ã(x̃)w̃(x̃) = λ̃(x̃)w̃(x̃), satisfies

c̃T1 w̃(x̃) 6= 0. (2.55)

This condition is not verified analytically for all possible values of x̃ within the scope of
this thesis. However, it is illustrated at least numerically that (2.55) is fulfilled for a large
number of randomly chosen vectors x̃, whose first n temperature elements are within the
considered range of 0 to 400 ◦C (273.15 to 673.15 K)8. Figure 2.15 plots the minimum
absolute value of c̃T w̃(x̃) on a logarithmic scale over the number of iterations. It points
out that min

(∣∣c̃T w̃(x̃)
∣∣) is in all cases unequal to zero. Thus, it can be concluded that

also the remaining right eigenvectors fulfill condition (2.55) and hence, system (2.41)
with output (2.45) is assumed to be observable in the considered temperature range.

8Note that the last element of x̃, namely the total emissivity, does not effect Ã(x̃).
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Figure 2.15: Numerical observability check: The observability of the introduced system in
state-dependent coefficient form is analyzed numerically by carrying out a large
number of simulations and checking if any right eigenvector of the system matrix
Ã(x̃) is orthogonal to the output vector c̃T .

2.4.3 Linearization around the estimated state vector

Similar to the extended Kalman filter, the nonlinear system (2.50) is linearized by means
of a Taylor series of f̃(x̃,u) at the estimated state vector

ˆ̃x =
[
x̂ ε̂

]T
. (2.56)

Truncating the latter after the linear term leads to

f̃(x̃,u) ≈ f̃(ˆ̃x,u) +
∂f̃(x̃,u)

∂x̃

∣∣∣∣
x̃=ˆ̃x

(x̃− ˆ̃x). (2.57)

Since the heat conductivity λc as also the heat capacity cp change slowly with temperature
and the factors Dµ used to model the light absorption change slowly with the emissivity,
the derivatives of the elements in the state-dependent matrices A1(x), A2(x) and B(x, ε)
with respect to the elements in x̃ can be treated as zero. This allows to obtain a linearized
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system (for detailed calculations see Appendices C and D)

˙̃x ≈


A1(x̂)− 4ε̂A2(x̂)


x̂3

1 0
x̂3

2
. . .

0 x̂3
n

 −A2(x̂)


x̂4

1

x̂4
2
...
x̂4
n


0T 0


︸ ︷︷ ︸

=: Ā

[
x
ε

]

+

[
B(x̂, ε̂)

0T

]
︸ ︷︷ ︸

=: B̄

u+


4ε̂A2(x̂)


x̂4

1

x̂4
2
...
x̂4
n


0


︸ ︷︷ ︸

=: f̄

. (2.58)

The output equation remains unchanged. Please note that the observability within the
considered temperature range of the linearized pair (c̃T1 , Ā) can be shown in a manner
similar to that in Section 2.4.2.

2.4.4 System discretization

It is intended to implement the observer at a programmable logic controller. Thus, the
design is carried out in discrete time. Note that the discretization must be carried out in
each sampling instance, since Ā, B̄ and f̄ depend on the estimated state ˆ̃x. Thus, the
discretized system

x̃k+1 = Φk(Ts)x̃k +Hkuk + hk, (2.59)

y1,k = c̃T1 x̃k

is treated as a time-variant.

The matrix Φk(Ts) is the state transition matrix of (2.58) evaluated at the sampling
time Ts and Hk, hk calculate as

Hk =

∫ Ts

0

Φk(τ)B̄dτ, (2.60)

hk =

∫ Ts

0

Φk(τ)f̄dτ.
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To calculate Φk(Ts), Hk and hk efficiently, the matrix exponential

Φk(t) = exp
(
Āt
)

= I + Āt+
Ā

2
t2

2!
+ . . . (2.61)

is utilized [Franklin, Workman, and Powell, 1997], i.e. the state transition matrix evaluated
at Ts computes as

Φk(Ts) = I + ĀTs +
Ā

2
T 2
s

2!
+ . . . . (2.62)

Furthermore, inserting (2.61) into (2.60) leads to

Hk =

∫ Ts

0

(
I + Āτ +

Ā
2
τ 2

2!
+ . . .

)
B̄dτ

=

(
B̄τ +

ĀB̄τ 2

2!
+
Ā

2
B̄τ 3

3!
+ . . .

)∣∣∣∣∣
Ts

0

= B̄Ts +
ĀB̄T 2

s

2!
+
Ā

2
B̄T 3

s

3!
+ . . . (2.63)

and

hk = f̄Ts +
Āf̄T 2

s

2!
+
Ā

2
f̄T 3

s

3!
+ . . . (2.64)

respectively. One can easily check that the matrix exponential

exp

Ā B̄ f̄
0 0 0
0 0 0

Ts
 =

I 0 0
0 I 0
0 0 1

+

ĀTs B̄Ts f̄Ts
0 0 0
0 0 0

+ . . . (2.65)

can be used to compute the discretized matrices asΦk(Ts) Hk hk
0 I 0
0 0 1

 = exp

Ā B̄ f̄
0 0 0
0 0 0

Ts
. (2.66)

It can numerically be shown that Ā has distinct real eigenvalues. Thus, properties such as
controllability and observability are preserved after discretization [Horn and Dourdoumas,
2004].

2.4.5 Luenberger observer design based on LQR approach

A Luenberger observer for the system (2.59) is designed9, i.e.

ˆ̃xk+1 = Φk
ˆ̃xk +Hkuk + hk + l̂k (y1,k − ŷ1,k) , (2.67)

9For the sake of readability, the argument of Φk(Ts) is omitted subsequently.
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where l̂k denotes the observer gain. The estimation error is defined as

ẽk := x̃k − ˆ̃xk. (2.68)

Consequently, the error dynamics compute as

ẽk+1 = x̃k+1 − ˆ̃xk+1

= Φkx̃k +Hkuk + hk −Φk
ˆ̃xk −Hkuk − hk − l̂kc̃T1 x̃k + l̂kc̃

T
1

ˆ̃xk

=
(
Φk − l̂kc̃T1

)(
x̃k − ˆ̃xk

)
︸ ︷︷ ︸

ẽk

.

Thus, the goal is to establish l̂k in such a manner that the estimation error converges to
zero as k tends to infinity.

Since
(
Φk − l̂kc̃T1

)
has the same eigenvalues as its transpose

(
ΦT
k − c̃1l̂

T

k

)
, designing a

Luenberger observer for (2.59) equals the design of a state feedback controller

ūk = −l̂Tk zk (2.69)

for its so-called “dual system”

zk+1 = ΦT
k zk + c̃1ūk. (2.70)

In order to find an appropriate observer gain, the lqr (linear–quadratic regulator)
approach is applied, i.e. the latter calculates as

l̂
T

k =
1

vo + c̃T1Y kc̃1

c̃T1Y kΦ
T
k . (2.71)

The matrix Y k is computed by evaluating the discrete Riccati equation for time-varying
systems

Y k+1 = W o + ΦkY kΦ
T
k −

1

vo + c̃T1Y kc̃1

ΦkY kc̃1c̃
T
1Y kΦ

T
k (2.72)

with the constant weighting factors W o < 0 and vo > 0. Please note that the convergence
of the Riccati equation is ensured if the matrix W o is chosen in such a manner that the
pair (Φk,W o) is stabilizable and the pair (c̃T1 ,Φk) is observable [Franklin, Workman,
and Powell, 1997; Phillips and Nagle, 2015].
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Zone Power per LED [W]

1 3.0
2 2.5
3 2.0
4 1.0

Table 2.3: Power setting

2.4.6 Numerical simulation

A numerical simulation is carried out to verify the designed observer. Therefor, a heat-up
scenario of a wafer with a total emissivity of 0.7 is realized by means of the constant
power setting listed in Table 2.3. The sampling time is chosen in accordance with the
update rate of the used power supply for the LED heater, which is 1.3 s. The model
parameters listed in Table 2.2 are used for the simulation model as well as for the observer.
In contrast to the open-loop experiment, the standard deviation σl to model the light
absorption is now depending on the emissivity like described in Section 2.3. The weighting
matrix W o is chosen as

W o =


10 0

. . .

10
0 0.01

 , (2.73)

vo is set to 1 and Y 0 = W o. The initial wafer’s temperature of the simulation model is
set to 25◦C (298.15 K) and the initial wafer’s temperature of the observer is set to 200◦C
(473.15 K). The estimate for the total emissivity is bounded according to its physical
limits, i.e. between 0.2 and 0.9. Its initial value is set to 0.9.

Figure 2.16 shows the simulated and estimated zone temperatures and Figure 2.17 depicts
the corresponding estimation errors over time. It can be seen that the estimation errors
with respect to temperature tend to zero. Moreover, Figure 2.18 demonstrates that the
estimated total emissivity converges to the nominal value used in the simulation model.

2.4.7 Laboratory experiments

The designed observer is applied to the laboratory plant introduced in Section 2.1. As
control unit, a programmable logic controller from Bernecker and Rainer10 is used. The

10www.br-automation.com
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Figure 2.16: Simulated and estimated zone temperatures: The simulation points out that the
estimated wafer temperature converges to the simulated one.
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Figure 2.17: Estimation error: The estimation error with respect to temperature tends to
zero.
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Figure 2.18: Emissivity estimate: The unknown total emissivity of the wafer can be recon-
structed by the observer.

sampling period is set to Ts = 1.3 s and the model parameters as well as the weighting
matrices are chosen as in Section 2.4.6. The initial values11 of the observer are set to

ˆ̃x0 =
[
473.15 . . . 473.15 0.2

]T
.

The same power setting as depicted in Figure 2.10 is applied to the test rig to heat up a
“highly doped” wafer. Four pyrometers are used to measure the wafer’s temperature in
the four zones. These temperatures are compared to the estimated ones in Figure 2.19.
As the comparison shows, it is possible to estimate the wafer’s temperature profile with
the help of the designed observer. From Figure 2.20 it can also be seen that the estimated
total emissivity tends to a value of approximately 0.8, which is feasible for a “highly
doped” wafer.

2.4.8 Comparison with Kalman filter

The calculation of the observer gain for the Luenberger observer designed in Section 2.4.5
is motivated by means of the lqr approach. There, the choice of the weighting matrices
is not straightforward and relies to a large extend on the experience of the designer.

On the other hand, the derivation of the Kalman filter, is motivated by stochastic
properties of the considered process. In the following, a Kalman filter for the derived
discrete-time system (2.59) is designed. Therefore, the latter is formally extended with
process noise ωd,k as well as measurement noise ωn,k, i.e.

x̃k+1 = Φkx̃k +Hkuk + hk + ωd,k, (2.74)

y1,k = c̃T1 x̃k + ωn,k.

11The wafer is primarily heated up from room temperature, i.e. 25◦C (298.15 K), but since the
used pyrometer cannot measure low temperatures, the initial temperature values are chosen as 200◦C
(473.15 K).
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Figure 2.19: Measured and estimated output, “highly doped” wafer: The zone temperatures
measured with the help of pyrometers are compared to the estimated ones.
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Figure 2.20: Estimated emissivity, “highly doped” wafer: The designed observer also provides
an estimate for the total emissivity of the processed wafer.
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The measurement noise is due to physical effects in the pyrometer, the process noise
being generated by the digital to analogue (D/A) converter for the zone power signals.
Thus, it can be assumed that measurement noise and process noise are uncorrelated.
Furthermore, the noise signals can be assumed to be Gaussian, white and unbiased.

The state vector is also considered as a stochastic quantity. The expectation value of the
initial state x̃0 is given as

E{x̃0} = m0 (2.75)

and its covariance matrix is given as

E{(x̃0 −m0) (x̃0 −m0)T} = M 0. (2.76)

The purpose of the Kalman filter is to find the optimal estimate ˆ̃xk such that the
expectation value of the estimation error ¯̃xk := x̃k − ˆ̃xk becomes zero, i.e.

E{¯̃xk} = 0 (2.77)

and the sum of the variances, i.e. E
{

¯̃x
T
k

¯̃xk

}
, becomes minimal. The covariance matrix

of the estimation error is defined as

Y k := E
{

¯̃xk ¯̃x
T
k

}
. (2.78)

So we are looking for a recursive scheme that can be used starting from

ˆ̃xk−1, Y k−1 and y1,k (2.79)

to determine the current estimate ˆ̃xk as well as the current covariance matrix of the
estimation error, i.e. Y k.

The widespread form of the Kalman filter [Grewal and Andrews, 2001] for the system (2.74)
can be written with the five equations

I : x̃∗k = Φk−1
ˆ̃xk−1 +Hk−1uk−1 + hk−1 , (2.80)

II : Y ∗k = Φk−1Y k−1Φ
T
k−1 +W o,k , Y ∗0 = M 0 ,

III : l̂k = Y ∗kc̃1

(
c̃T1Y

∗
kc̃1 + vo

)−1
,

IV : Y k =
(
I − l̂kc̃T1

)
Y ∗k

(
I − l̂kc̃T1

)T
+ l̂kvol̂

T

k ,

V : ˆ̃xk = Φk−1
ˆ̃xk−1 +Hk−1uk−1 + hk−1 + l̂k

(
y1,k − c̃T1 x̃∗k

)
.
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The first equation of (2.80) is based on a copy of the plant, i.e.

ˆ̃xk+1 = Φk
ˆ̃xk +Hkuk + hk + ωd,k (2.81)

and

ˆ̃xk = Φk−1
ˆ̃xk−1 +Hk−1uk−1 + hk−1 + ωd,k−1 (2.82)

respectively, where x̃k is replaced by ˆ̃xk. This first step is well known from the design of
the classical asymptotic observer. However, since the noise vector ωd,k−1 is unknown, a
further auxiliary quantity x̃∗k is introduced and the unknown term is omitted, i.e.

x̃∗k = Φk−1
ˆ̃xk−1 +Hk−1uk−1 + hk−1. (2.83)

The obtained first Kalman filter equation is referred to as the calculation of the a-priori
estimate of x̃k. Furthermore, the first Kalman filter equation can be rewritten as

x̃∗k = Φk−1
ˆ̃xk−1 +Hk−1uk−1 + hk−1 (2.84)

= Φk−1

(
x̃k−1 − ¯̃xk−1

)
+Hk−1uk−1 + hk−1

= Φk−1x̃k−1 +Hk−1uk−1 + hk−1︸ ︷︷ ︸
= x̃k−ωd,k−1

−Φk−1
¯̃xk−1.

Thus, the a-priori estimate may be interpreted as the sum of the unknown state vector
and an error, i.e.

x̃∗k = x̃k +
(
−Φk−1

¯̃xk−1 − ωd,k−1

)︸ ︷︷ ︸
error

.

The covariance matrix of the a-priori estimate can then be written as

Y ∗k = E
{

(x̃∗k − x̃k) (x̃∗k − x̃k)
T
}

(2.85)

= E
{(

Φk−1
¯̃xk−1 + ωd,k−1

) (
Φk−1

¯̃xk−1 + ωd,k−1

)T}
= E

{(
Φk−1

¯̃xk−1 + ωd,k−1

) (
¯̃x
T
k−1Φ

T
k−1 + ωTd,k−1

)}
= E

{
Φk−1

¯̃xk−1
¯̃x
T
k−1Φ

T
k−1 + ωd,k−1

¯̃x
T
k−1Φ

T
k−1 + Φk−1

¯̃xk−1ω
T
d,k−1 + ωd,k−1ω

T
d,k−1

}
= E

{
Φk−1

¯̃xk−1
¯̃x
T
k−1Φ

T
k−1

}
+ E

{
ωd,k−1

¯̃x
T
k−1Φ

T
k−1

}
+ E

{
Φk−1

¯̃xk−1ω
T
d,k−1

}
+ E

{
ωd,k−1ω

T
d,k−1

}
.

Since Φk−1 is not considered as a stochastic quantity, it can be extracted from the
expectation value and thus it results

Y ∗k = Φk−1E
{

¯̃xk−1
¯̃x
T
k−1

}
ΦT
k−1 + E

{
ωd,k−1

¯̃x
T
k−1

}
ΦT
k−1

+ Φk−1E
{

¯̃xk−1ω
T
d,k−1

}
+ E

{
ωd,k−1ω

T
d,k−1

}
.
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Due to the above-mentioned considerations that the process noise is caused by the D/A
converter, it can also be assumed that the process noise and the estimation error are
uncorrelated.

Thus, the calculation of the covariance matrix of the a-priori estimation error simplifies
to

Y ∗k = Φk−1E
{

¯̃xk−1
¯̃x
T
k−1

}
︸ ︷︷ ︸

= Y k

ΦT
k−1 + E

{
ωd,k−1ω

T
d,k−1

}

and one obtains the second Kalman filter equation, where W o,k = E{ωd,k,ωTd,k} is the
covariance matrix of the process noise.

Equations three to five can be derived in the sense of calculating the minimal variance of
the estimation error. The variance of the measurement noise is denoted by vo = E{ω2

n,k}.
For the calculation of the covariance matrix of the estimation error, various forms are
known in the literature. The one used here is called “Joseph form” [Grewal and Andrews,
2001].

For the beginning of the recursion of the Kalman equations, the initial conditions for
the a priori estimation error as well as its covariance matrix are needed. Note that the
a-priori estimation error does not take into account the current value of the output. Thus,
for the a priori estimation error, the expectation value of the initial state can also be
used for the beginning of the recursion, i.e.

x̃∗0 = E{x̃0} = m0. (2.86)

This results in the initial value of the covariance matrix of the a-priori estimation error
as

Y ∗0 = E
{

(x̃∗0 − x̃0) (x̃∗0 − x̃0)T
}

(2.87)

= E
{

(m0 − x̃0) (m0 − x̃0)T
}

= M 0.

2.4.8.1 Covariance matrix of the process noise

The process noise is assumed to exclusively stem from the D/A converter acting at
the system input as depicted in Figure 2.21, i.e. the quantization noise ω̄d,k has to
be transformed to the system output. Due to the augmentation of the system model
introduced in Section 2.4.1 to get an estimate for the total emissivity of the wafer, the
last row of Hk consists of zeros, i.e. the input matrix can be decomposed into two parts

Hk =

[
H1,k

0T

]
. (2.88)
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System
(uk)

(ω̄d,k)

Figure 2.21: Input noise due to digital to analogue converter

With

x̃k+1 = Φkx̃k +Hk(uk + ω̄d,k) + hk

= Φkx̃k +Hkuk + hk +Hkω̄d,k︸ ︷︷ ︸
= ωd,k

(2.89)

and in accordance to the decomposition of the input matrix we can define

ωd,1,k := H1,kω̄d,k. (2.90)

The covariance matrix of the quantization noise with respect to the original input matrix
H1,k, which is transferred to the system output, then calculates as

W o,1,k = E{ωd,1,kωTd,1,k}
= H1,k E{ω̄d,kω̄Td,k}︸ ︷︷ ︸

=: W o

HT
k,1 = H1,kW oH

T
1,k. (2.91)

A suitable choice for the overall covariance matrix of the process noise can finally be
stated as

W o,k =

[
W o,1,k 0

0T σ2
ε

]
, (2.92)

where the parameter σε weights the estimate for the total emissivity. Since this parameter
does not rely on stochastic properties, its value is found with the help of numerical
simulations as 0.03.

From (2.92) it can be concluded that although the quantization is treated as a stationary
stochastic process, the covariance matrix of the process noise is time-variant, since W o,1,k

is calculated as a function of the time-varying input matrix.

To obtain the values for the covariance matrix of the quantization noise W o, the D/A
converter for the electrical power signal to the four heating zones is considered. The
converter has a resolution of 12 bit and the output range is given as 0 to 4.3 W . Thus,
the least significant bit of the power signal (LSBP ) calculates as

LSBP =
4.3

212
. (2.93)
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Figure 2.22: Gaussian distribution, D/A converter: The standard deviation of a D/A converted
signal is estimated by treating the latter as a Gaussian distributed random
variable.

It is well known that a Gaussian distributed random variable with standard deviation σ lies
in the interval from −2σ to +2σ in more than 95% of cases, like illustrated in Figure 2.22.
Thus, it is reasonable to conclude that one LSBP corresponds to approximately four
times the standard deviation, i.e.

σP =
LSBP

4
. (2.94)

With the knowledge of σP , the covariance matrix of the quantization noise can be stated
as

W o =


σ2
P 0

σ2
P

σ2
P

σ2
P

0 0

 . (2.95)

Please note that the lower right zero corresponds to the variance of the ambient temper-
ature, which is not measured, but constantly set to room temperature.

2.4.8.2 Variance of the measurement noise

The standard deviation of the measurement noise can be determined similar to the choice
of the standard deviation of the quantization noise. Referring to the data sheet of the
used pyrometer, its measuring tolerance is given as ±1◦C, which is assumed to correspond
to four times the standard deviation, i.e.

2◦C =̂ 4σM . (2.96)

Accordingly, the variance of the measurement noise reads as

vo = σ2
M = 0.52 = 0.25. (2.97)
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2.4.8.3 Initial covariance matrix of the a priori estimation error

The covariance matrix of the a priori estimation error at k = 0 can be determined
by considering probable initial values for x̃k. It can be assumed that x̃k is uniformly
distributed and the initial wafer’s temperature lies in the range of 20 to 40◦C (293.15
to 313.15 K). The total emissivity of the wafer can lie in the whole range of 0.2 to
0.9. According to Appendix E, the standard deviation of the ith element of x0, i.e. xi,0,
calculates as

σxi,0 =
20√
12
. (2.98)

The standard deviation of the emissivity at k = 0 is given as

σε0 =
0.7√

12
. (2.99)

Thus, a suitable choice for M 0 is

M 0 =


σ2
xi,0

0
. . .

σ2
xi,0

0 σ2
ε0

 =


202

12
0

. . .
202

12

0 0.72

12

 . (2.100)

2.4.8.4 Laboratory experiments

The derived Kalman filter is tested with the same experiment introduced in Section 2.4.7.
As Figure 2.23 points out, the Kalman filter shows comparably accurate results as the
Luenberger observer designed in Section 2.4.5. The advantage of the Kalman filter lies in
the structured calculation of the covariance matrix of the process noise and the variance
of the measurement noise instead of choosing weighting parameters.

Figure 2.24 also shows that the estimated emissivity again tends to value of approxi-
mately 0.8. It is also conspicuous that during the heat-up phase, where the pyrometer
reading is not reliable, the emissivity cannot be estimated correctly. One possible solution
to avoid a wrong emissivity estimation during the heat-up phase could be to pause
the latter until a certain wafer temperature is reached, but this approach has not been
pursued in this work.

43



2 Observer-based temperature control of an LED heated wafer

0 50 100
0

100

200

300

400

500

ϑ
[◦
C
]

Zone 1

 

 

standard
Kalman
measured

0 50 100
0

100

200

300

400

500
Zone 2

 

 

standard
Kalman
measured

0 50 100
0

100

200

300

400

500

t [s]

ϑ
[◦
C
]

Zone 3

 

 

standard
Kalman
measured

0 50 100
0

100

200

300

400

500

t [s]

Zone 4

 

 

standard
Kalman
measured

Figure 2.23: Measured and estimated output, “highly doped” wafer, Kalman filter: The
observer designed in Section 2.4.5 is compared to a Kalman filter. The plots
show that both observer types provide accurate results.
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Figure 2.24: Estimated emissivity, “highly doped” wafer, Kalman filter: The Kalman filter
also provides a feasible estimate for the total emissivity of the processed “highly
doped” silicon wafer.
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2.5 Observers based on the late-lumping approach

The design of observers for distributed parameter systems can be carried out by either
using so-called early-lumping or late-lumping techniques [Meurer, 2013; Schlake and
Konigorski, 2009]. The observer design discussed in Section 2.4 belongs to the first
category, which means that the partial differential system is discretized in space in order
to obtain a finite-dimensional set of nonlinear, ordinary differential equations.

The nonlinear system is then linearized around the estimated state vector, which leads to
a time-varying linear system. To compute the observer gain, an optimization problem is
solved iteratively. Due to the fact that the derived linear system is of high order, the com-
putational effort to solve the optimization problem is significant and the implementation
at production tools requires powerful programmable controllers.

To reduce the computational effort, an observer approach based on the late-lumping
technique, which directly deals with the partial differential equation, is discussed. The
procedure proposed in [Schaum, Moreno, Alvarez, and Meurer, 2015] is extended and
applied to the present application. The starting point is the quasilinear one-dimensional
partial differential heat equation (2.9) in cylindrical coordinates with heat sources and
losses

∂tT (r, t) = κ(T )

[
∂rrT (r, t) +

1

r
∂rT (r, t)

]
+
q(r, t)

ρcp(T )︸ ︷︷ ︸
=: µ(T )

(2.101)

with the notation

∂t :=
∂

∂t
, ∂r :=

∂

∂r
and ∂rr :=

∂2

∂r2
. (2.102)

The nonlinear function µ(T ) involves the heat input due to light absorption as well as heat
losses due to convection and radiation. Neumann boundary conditions are introduced in
Section 2.2.3 as

∂rT (r, t)

∣∣∣∣
r=0

= ∂rT (r, t)

∣∣∣∣
r=R

= 0. (2.103)

The temperature measured by the pyrometer at radius r = ζ is denoted by

y(t) = T (ζ, t). (2.104)

By introducing the operators

A(T ) := κ(T )

[
∂rr +

1

r
∂r

]
, B0 := ∂r

∣∣∣∣
r=0

, BR := ∂r

∣∣∣∣
r=R

(2.105)
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and

CT (r, t) :=

R∫
0

δ(r − ζ)T (r, t) dr = T (ζ, t), (2.106)

where δ denotes the Dirac delta operator, system (2.101) with boundary conditions
(2.103) can compactly be written as

∂tT (r, t) = A(T )T (r, t) + µ(T ), (2.107)

B0T (r, t) = BRT (r, t) = 0,

CT (r, t) = y(t).

2.5.1 Late-lumping approach

Based upon the theory presented by Schaum, Moreno, Alvarez, and Meurer, an observer
for the system described by (2.107) can be stated as

∂tT̂ (r, t) = A(T̂ )T̂ (r, t) + µ(T̂ ), (2.108)

B0T̂ (r, t) = BRT̂ (r, t) = 0,

CT̂ (r, t)
!

= y(t),

with T̂ (r, t) denoting the estimated temperature of the wafer. The additional Dirichlet
boundary condition

T̂ (ζ, t)
!

= y(t) (2.109)

states that the estimated temperature at the sensor position is fixed to the measured
value.

In contrast to the problem outlined in the mentioned paper, the operator A here depends
on the unknown function T̂ (r, t) and thus, the given proof of the observer convergence
does not fit to the problem at hand. A new proof is discussed later on.

The main idea of the design approach is to divide the observer (2.108) into two subsys-
tems with the additional Dirichlet boundary condition at the sensor position. The two
subsystems then read as

∂tT̂1(r, t) = A1T̂1(r, t) + µ(T̂1), (2.110)

∂tT̂2(r, t) = A2T̂2(r, t) + µ(T̂2),

B0T̂1(r, t) = BRT̂2(r, t) = 0,

CT̂1(r, t) = CT̂2(r, t) = y(t),
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with

A1 := A(T̂1), A2 := A(T̂2).

The state estimate is given by

T̂ (r, t) =


T̂1(r, t), r ∈ [0, ζ)
y(t), r = ζ

T̂2(r, t), r ∈ (ζ, R]

. (2.111)

For the implementation of the observer on the laboratory system, a spatial discretization
as described in Section 2.2, as well as a time discretization, is applied to the two
subsystems (2.110). Due to the additional Dirichlet boundary condition, the estimated
temperature at the sensor position is fixed by the value of the pyrometer reading. The
remaining temperature profile is estimated by solving the two obtained sets of difference
equations at the programmable logic controller.

2.5.1.1 Proof of convergence

A mathematical proof for the convergence of the late-lumping observer (2.110), given by
Schaum, Moreno, and Meurer (2017), is discussed in the following. The idea of the proof
is to write the error dynamics in a compact form, which is similar to the introduced heat
equation (2.9). Based on that, a Lyapunov function is chosen, which enables to derive a
set of sufficient conditions to prove the convergence of the observer.

To start with, the estimation error is introduced as

e(r, t) = T̂ (r, t)− T (r, t). (2.112)

Recalling the introduced plant model (2.101) with the observer (2.108) allows to calculate
the error dynamics as

∂te(r, t) = A(T̂ )T̂ (r, t) + µ(T̂ )−A(T )T (r, t)− µ(T ) (2.113)

= κ(T + e)

[
∂rrT (r, t) + ∂rre(r, t) +

1

r
∂rT (r, t) +

1

r
∂re(r, t)

]
+ µ(T + e)− κ(T )

[
∂rrT (r, t) +

1

r
∂rT (r, t)

]
− µ(T ),

∂re(0, t) = ∂re(R, t) = 0,

e(ζ, t) = 0.
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Rearranging (2.113) yields

∂te(r, t) = [κ(T + e)− κ(T )]

[
∂rrT (r, t) +

1

r
∂rT (r, t)

]
(2.114)

+ κ(T + e)

[
∂rre(r, t) +

1

r
∂re(r, t)

]
+ µ(T + e)− µ(T ),

∂re(0, t) = ∂re(R, t) = 0,

e(ζ, t) = 0.

This enables to introduce

∆κ(e, r, t) := κ(T + e)− κ(T ), (2.115)

∆µ(e, r, t) := µ(T + e)− µ(T ),

α(T ) := ∂rrT (r, t) +
1

r
∂rT (r, t)

and

φ(e, r, t) := ∆κ(e, r, t)α(T ) + ∆µ(e, r, t), (2.116)

which allows to write the error dynamics in the compact form

∂te(r, t) = κ(T̂ )

[
∂rre(r, t) +

1

r
∂re(r, t)

]
+ φ(e, r, t), (2.117)

∂re(0, t) = ∂re(R, t) = 0,

e(ζ, t) = 0.

Further rewriting (2.117) yields

∂te(r, t) = κ̂
1

r
∂r [r∂re(r, t)] + φ(e, r, t), (2.118)

∂re(0, t) = ∂re(R, t) = 0,

e(ζ, t) = 0,

with

κ̂ := κ(T̂ ). (2.119)

Assuming the Lipschitz uniformity of φ(e, r, t) in space and time with Lipschitz constant L,
it can be expected that

e(r, t)φ(e, r, t) ≤ Le2(r, t), ∀e, r, t. (2.120)
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The Lyapunov function

V (e) =
1

2

∫ R

0

w(r)e2(r, t)dr (2.121)

with the weighting function

0 ≤ w(r), ∀r ∈ [0, R] (2.122)

is used as a candidate to show the asymptotic convergence of the estimation error. The
rate of change over time of (2.121) is given by12

dV

dt
=

∫ R

0

we∂tedr =

∫ R

0

[
we

(
κ̂

1

r
∂r(r∂re)

)
+ weφ

]
dr. (2.123)

Applying integration by parts leads to

dV

dt
= [wκ̂e∂re]

R
0 −

∫ R

0

[
∂r

(
wκ̂e

1

r

)
r∂re− weφ

]
dr. (2.124)

With

∂r

(
wκ̂e

1

r

)
r∂re = wκ̂ (∂re)

2 + ∂r

(
wκ̂

1

r

)
re∂re (2.125)

and inserting the boundary conditions

∂re(0, t) = ∂re(R, t) = 0 (2.126)

into (2.124), the latter reads as

dV

dt
= −

∫ R

0

wκ̂ (∂re)
2 dr −

∫ R

0

∂r

(
wκ̂

1

r

)
re∂redr +

∫ R

0

weφdr. (2.127)

By taking into account condition (2.120) and assuming that there exist a constant

0 ≤ wκ̂ ≤ wκ̂, ∀t ≥ 0, r ∈ [0, R] (2.128)

it follows that

dV

dt
≤ −wκ̂

∫ R

0

(∂re)
2 dr −

∫ R

0

∂r

(
wκ̂

1

r

)
re∂redr +

∫ R

0

wLe2dr. (2.129)

12Arguments are skipped occasionally for the sake of readability.
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Applying the so-called “Wirtinger inequality” [Hardy, Littlewood, and Pólya, 1952] to

−wκ̂
∫ R

0

(∂re)
2 dr = −wκ̂

[∫ ζ

0

(∂re)
2 dr +

∫ R

ζ

(∂re)
2 dr

]
(2.130)

leads to

−wκ̂
∫ R

0

(∂re)
2 dr ≤ −wκ̂

[
π2

4ζ2

∫ ζ

0

e2dr +
π2

4(R− ζ)2

∫ R

ζ

e2dr

]
(2.131)

≤ −wκ̂π
2

4
min

{
1

ζ2
,

1

(R− ζ)2

}∫ R

0

e2dr.

By inserting (2.131) into (2.129) one arrives at

dV

dt
≤ −wκ̂π

2

4
min

{
1

ζ2
,

1

(R− ζ)2

}∫ R

0

e2dr (2.132)

−
∫ R

0

∂r

(
wκ̂

1

r

)
re∂redr +

∫ R

0

wLe2dr.

Again, partially integrating

−
∫ R

0

∂r

(
wκ̂

1

r

)
re∂redr = −

∫ R

0

∂r

(
wκ̂

1

r

)
r

2
∂r
(
e2
)
dr (2.133)

results

−
∫ R

0

∂r

(
wκ̂

1

r

)
re∂redr =

[
−∂r

(
wκ̂

1

r

)
r

2
e2

]R
0

+

∫ R

0

∂r

[
r

2
∂r

(
wκ̂

1

r

)]
e2dr. (2.134)

With (2.134) an inequality for the rate of change over time of V can finally stated as

dV

dt
≤
[
−∂r

(
wκ̂

1

r

)
r

2
e2

]R
0

(2.135)

−
∫ R

0

e2

{
wκ̂π2

4
min

{
1

ζ2
,

1

(R− ζ)2

}
− ∂r

[
r

2
∂r

(
wκ̂

1

r

)]
− wL

}
dr.

Thus, it can be concluded that the estimation error converges exponentially to zero with
rate γ > 0, if the sensor position ζ is chosen such that there exists a positive function
w(r) for which the following conditions hold:

(i)

[
−∂r

(
wκ̂

1

r

)
r

2
e2

]R
0

≤ 0, (2.136)

(ii)
wκ̂π2

4
min

{
1

ζ2
,

1

(R− ζ)2

}
− ∂r

[
r

2
∂r

(
wκ̂

1

r

)]
− wL ≥ γ
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The presented convergence assessment provides two sufficient conditions, which indicate
that the stability of the observer can be proven in case a suitable weighting function for
the used position of the sensor is chosen. Unfortunately, such a function was not found
for the given position. On the other hand, this does not mean that the latter does not
exist. With this in mind, the derived convergence criterion may be nonetheless considered
as a proof for the stability of the observer, showing that this approach in principle could
work. Moreover, the used model is affected by uncertainties. Thus, the final verification
of the functionality of the observer can anyway only be checked with its implementation
at the real world system.

2.5.2 Late-lumping approach with measurement injection

The dynamics of the observer (2.110) are fixed by the choice of the sensor location and the
given plant characteristics. Approaches to additionally tune the observer dynamics have
already been considered in the literature. The observation problem addressed in [Schaum,
Moreno, Fridman, et al., 2014], for example, deals with the injection of the measurements
at the system boundaries. More precisely, the difference between the measurement and
its estimate is weighted similarly to a Luenberger observer.

This method of measurement injection cannot be adopted to (2.110), since the difference
between the in-domain measurement y(t) and its estimate ŷ(t) = T̂ (r, t)|r=ζ is equal
to zero due to the introduced Dirichlet boundary condition at the sensor position and
(2.111) respectively. To nevertheless introduce a measurement injection, the idea is to
make use of an additional estimate ỹ(t) and to extend the observer as

∂tT̂1(r, t) = A1T̂1(r, t) + µ(T̂1)− l(r) [ỹ(t)− y(t)] , (2.137)

∂tT̂2(r, t) = A2T̂2(r, t) + µ(T̂2)− l(r) [ỹ(t)− y(t)] ,

B0T̂1(r, t) = BRT̂2(r, t) = 0,

CT̂1(r, t) = CT̂2(r, t) = y(t),

with the weighting function l(r). The state estimate is again given by

T̂ (r, t) =


T̂1(r, t), r ∈ [0, ζ)
y(t), r = ζ

T̂2(r, t), r ∈ (ζ, R]

. (2.138)

For the estimate ỹ(t), the system model (2.101) is considered at the sensor position and
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fed with the estimated temperatures provided by (2.137) for r 6= ζ, i.e.

∂tỹ(t) = ∂tT (r, t)

∣∣∣∣∣∣∣∣r=ζ; T (r,t)=

 ỹ(t), r=ζ

T̂ (r,t), r 6=ζ

= [A(T )T (r, t) + µ(T )]

∣∣∣∣∣∣∣∣r=ζ; T (r,t)=

 ỹ(t), r=ζ

T̂ (r,t), r 6=ζ

. (2.139)

Considering the finite-dimensional implementation of (2.139) based on the approximation
of the spatial derivatives by difference equations outlined in Section 2.2 and dropping
time dependencies yield

˙̃y = a1,iζ ,iζ−1(ỹ)x̂iζ−1 + a1,iζ ,iζ(ỹ)ỹ + a1,iζ ,iζ+1(ỹ)x̂iζ+1 − εa2,iζ ,iζ(ỹ)ỹ4 + bTiζ(ỹ)u, (2.140)

where iζ is the index of the discretization point right at (or behind) the sensor position,
i.e.

iζ = min (i | ri ≥ ζ) . (2.141)

The factors a1,i,j and a2,i,j respectively denote the elements of the matrices A1(x) and
A2(x) of the spatially lumped model (2.41) at row i and column j. The vector bTiζ(ỹ) is

the iζ-th row of B(x) and x̂i are the estimated temperatures at radius r = ri provided
by (2.137).

Please note that in case of a perfect plant model

lim
t→∞

(ỹ − y) = 0 (2.142)

holds and the wafer temperature can be estimated exactly.

2.5.2.1 Remarks on the stability

Although the experiments, which are discussed later on, will indicate the convergence of
the designed late-lumping observer with measurement injection, its stability is not proven
within this work. Nevertheless, some remarks are given in the following and possibly
necessary preparations for future considerations are made.

To proof the convergence of infinite dimensional systems, different methods are known in
the literature. Lyapunov based approaches, like applied in Section 2.5.1.1, are frequently

52



2 Observer-based temperature control of an LED heated wafer

used for linear and nonlinear partial differential equations [Miranda et al., 2012; Ahmed-
Ali, Giri, and Krstic, 2017; Schaum, Moreno, and Alvarez, 2008]. Another possibility to
prove the stability of distributed parameter systems is based on the so-called semigroup
theory, which may be applicable to the problem at hand. In reference to linear finite
dimensional systems, where the stability can be characterized by the eigenvalues of the
system matrix, this procedure can be expanded to infinite dimensional systems. Here it
might be concluded from the spectrum of the associated linear differential operator on
the asymptotic convergence of the system.

With a view to prove the convergence of the proposed observer, the eigenvalues of the
introduced operators A1 and A2 are calculated in Appendix F.

2.5.3 Extension to estimate the wafer’s total emissivity

As discussed in former sections, the total emissivity ε of the wafer is highly dependent
on its dopant level and therefore on the wafer type. It directly affects the amount of heat
loss due to radiation. Thus, its value is of particular importance for obtaining reasonable
estimates of the wafer’s temperature. Since the wafer type is not known a priori and the
late-lumping observers are not capable of providing an estimate of the emissivity directly,
an extension is introduced. Therefor, the derived physical, nonlinear, affine-input model
(2.41) is reconsidered right at the sensor position, i.e. at a radius of r = ζ. Due to the fact
that the heat loss due to radiation and convection prevails, heat conduction is neglected
for the estimation of the total emissivity. Thus, system (2.41) evaluated at the sensor
position without considering heat conduction is given by

ẋiζ =
1

ρhcp(xiζ)

(
−αiζxiζ − 2εσsbx

4
iζ

)
+ bTiζ(xiζ)u. (2.143)

The constant αiζ denotes the heat transfer coefficient at radius r = ζ and bTiζ(xiζ) is the

ithζ row of the input matrix B(x) derived in Section 2.2, which corresponds to the heat
input at the sensor position.

To obtain an estimate for ε, different methods are conceivable. One possibility is based
on sliding mode concepts. Rewriting equation (2.143) as

ẋiζ = −
αiζ

ρhcp(xiζ)
xiζ −

2σsbx
4
iζ

ρhcp(xiζ)
ε+ bTiζ(xiζ)u (2.144)

isolates a term which includes the total emissivity. Following a copy of (2.144), a
differential equation for the estimate of xiζ can then be formulated as

˙̂xiζ = −
αiζ

ρhcp(xiζ)
xiζ + bTiζ(xiζ)u+ ηiζ sign

(
xiζ − x̂iζ

)︸ ︷︷ ︸
=: eiζ

, (2.145)
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where the unknown term including ε is omitted and the sign function weighted by a
tuning parameter ηiζ is added. The difference between the measured temperature xiζ and
its estimate is denoted by the estimation error eiζ , whose associated error dynamics is
calculated as

ėiζ = ẋiζ − ˙̂xiζ = −
2σsbx

4
iζ

ρhcp(xiζ)
ε︸ ︷︷ ︸

=: ∆

−ηiζ sign
(
eiζ
)
. (2.146)

The term denoted by ∆ is treated as an uncertainty, which is assumed to be bounded,
i.e.

|∆| ≤ ∆max. (2.147)

Then it is easy to verify that eiζ converges to zero in finite time in case the tuning
parameter ηiζ is chosen such that

ηiζ > ∆max (2.148)

holds. If so in steady state, i.e. eiζ = ėiζ = 0, it furthermore holds that

ηiζ sign
(
eiζ
)

= −
2σsbx

4
iζ

ρhcp(xiζ)
ε. (2.149)

Please note that up to now all considerations are based on the assumption that the
sign function can be operated in continuous time, i.e. with an infinitely high sampling
frequency. This is clearly neither the case in practical applications, nor in numerical
simulations. On the contrary, the present sampling interval causes the sign function to
fluctuate with a high frequency. This phenomenon is well known in sliding mode control.
Nevertheless, the low frequency components of the left-hand side of (2.149) can be used
to estimate the total emissivity, i.e. the latter can be calculated as

ε̂ = −
ρhcp(xiζ)

2σsbx4
iζ

lowpass
[
ηiζ sign

(
eiζ
)]
, (2.150)

where lowpass [ · ] denotes the lowpass filtering of the considered signal.

2.5.3.1 Estimation of ∆max and choice of ηiζ

To estimate the upper bound of the uncertainty ∆, the physical minimal and maximal
values listed in Table 2.4 are considered.
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Physical parameter Description Value [unit]

xiζ ,max Max. achievable temperature 673.15 [K]
εmax Max. total emissivity 0.9 [-]

cp(xiζ ,min) Min. heat capacity (at 300 K) 703
[

J
kgK

]
Table 2.4: Minimal and maximal physical parameters

According to (2.146) and Table 2.4, an estimate for the upper bound of ∆ computes as

∆max ≈

∣∣∣∣∣− 2σsbx
4
iζ ,max

ρhcp(xiζ ,min)
εmax

∣∣∣∣∣ = 16.47. (2.151)

Thus, choosing ηiζ = 50 should be sufficiently large in order to obtain reasonable estimates
for the total emissivity.

2.5.4 Laboratory experiment

For the implementation, the two subsystems of the derived observers (2.110) and (2.137)
respectively are discretized in space by means of the vertical method of lines discussed
in Section 2.2.2. The entire radius is divided into 30 equidistant segments, where the
temperature sensor is located above the eighth segment. Thus, the first subsystem is of
order 7 and the second one is of order 22. The modelling of the heat input as well as the
heat losses due to convection and radiation are as in Sections 2.2.4 and 2.2.5.

A direct comparison between the early-lumping and the late-lumping observers13 is
depicted in Figures 2.25 and 2.27. The comparison reveals that both late-lumping
approaches provide feasible results after about 50 seconds. Furthermore, it indicates
that both late-lumping observers provide a converging estimation error. The estimated
temperatures of the late-lumping approach without measurement injection show a slight
overshoot during the transient phase. By introducing the measurement injection, it is
possible to overcome this effect and the performance of the late-lumping observer is
identical to the early-lumping approach.

In addition, the estimate of the total emissivity, plotted in Figure 2.26, converges to a
reasonable value for a “highly doped” wafer shortly after the used pyrometer provides
reliable temperature readings.

13The weighting function of the late-lumping observer with measurement injection is chosen as
l(r) = 1.5.
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Figure 2.25: Measured and estimated zone temperatures: Comparison between early-lumping
observer (EL), late-lumping observer without measurement injection (LL) and
late-lumping observer with measurement injection (LLMI) for a “highly doped”
wafer.
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Figure 2.27: Estimation error: early-lumping observer (el), late-lumping observer without
measurement injection (ll) and late-lumping observer with measurement injec-
tion (llmi)

2.5.5 Conclusion

It turned out that the late-lumping observer with measurement injection appears to have
a performance comparable to the early-lumping observers designed in Section 2.4. The
main advantage of this alternative approach is that there is no need to iteratively solve
an optimization problem for a high-order system. This reveals a major benefit for the
implementation of the observer at real world systems, where the computational power
is limited. Thus, the use of the late-lumping observer with measurement injection is
proposed.
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2.6 Controller design

As described above, the wafer’s surface should be heated to 300 to 400 ◦C (573.15 to
673.15 K) by supplying the appropriate electrical power to the LEDs in the four heating
zones. The temperature of the radial midpoint in each zone serves as the control variables.
Only the temperature reading of the pyrometer, which is measuring in zone 1, is directly
available for feedback. To control the temperature of the other zones, the intention is to
use the estimated zone temperatures, which are provided by the observer designed in
Section 2.5.2.

To ensure feasible temperature estimates, the designed observer relies on a precise time-
varying mathematical model which incorporates temperature dependencies of parameters
as well as a light absorption which is subject to the total emissivity of the wafer. In
addition, the model is extended in order to estimate the total emissivity of the wafer. Such
a precise model is not necessary for the design of the controller. Therefore, in contrast to
the observer design addressed in Section 2.4, the nonlinear plant model (2.41) with the
output equation (2.45) is linearized around a constant state vector, whose elements are
equal to room temperature. The total emissivity is set to its maximal value of 0.9. This
results a linear, time-invariant model instead of a time-varying one, since the linearization
is carried out only once and not in every sampling instance. Subsequently, the linearized
model is discretized in time which leads to

xk+1 = Φxk +Huk + h, (2.152)

yk = Cxk.

The input vector is composed of the electrical power per LED in the four zones as well
as the ambient temperature. Since the latter represents an unmodifiable input, the input
vector is formally split into two parts, i.e.

uk =

[
uck
uc̄k

]
, (2.153)

where uck denotes the changeable inputs and uc̄k the non-changeable part. The modified
system then reads as

xk+1 = Φxk +Hcuck + hc̄uc̄k + h︸ ︷︷ ︸
=: wk

, (2.154)

yk = Cxk,

where the input matrix H is divided into two parts Hc and hc̄ according to the decom-
position of uk. Please note that the defined vector wk represents a known disturbance.
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To cope with this known disturbance by means of a disturbance rejection approach, uck
is further split into two parts, i.e.

uck = uc1,k + uc2,k. (2.155)

Accordingly, (2.154) is rewritten as

xk+1 = Φxk +Hcuc1,k +Hcuc2,k +wk, (2.156)

yk = Cxk.

The second part of the changeable input is used to vanish the expression

Hcuc2,k +wk. (2.157)

Since Hc is not invertible, the expression (2.157) is minimized in the sense of a least
squares approach. The extreme value of (Hcuc2,k +wk)

T (Hcuc2,k +wk) with respect to
uc2,k calculates as14

∂

∂uc2,k

[
(Hcuc2,k +wk)

T (Hcuc2,k +wk)
] !

= 0

∂

∂uc2,k

[
wT
kwk + (uc2,k)

T (Hc)Twk +wT
kH

cuc2,k + (uc2,k)
T (Hc)THcuc2,k

]
= 0

∂

∂uc2,k

[
wT
kwk + 2wT

kH
cuc2,k + (uc2,k)

T (Hc)THcuc2,k
]

= 0

2wT
kH

c + (uc2,k)
T
[
(Hc)THc + (Hc)THc

]
= 0

2wT
kH

c + 2(uc2,k)
T (Hc)THc = 0

(Hc)Twk + (Hc)THcuc2,k = 0. (2.158)

Solving for uc2,k then results

uc2,k = −
[
(Hc)THc

]−1
(Hc)T︸ ︷︷ ︸

pseudoinverse of Hc

wk. (2.159)

To ensure that (2.159) represents a minimum, it is sufficient to show that

∂2

∂(uc2,k)
2

[
(Hcuc2,k +wk)

T (Hcuc2,k +wk)
]

= 2(Hc)THc (2.160)

is positive definite. Since the columns of Hc are linearly independent, this implies that
(Hc)THc is positive definite and thus, (2.159) represents a minimum.

14Since wT
kH

cuc
2,k is a scalar value, it holds that wT

kH
cuc

2,k = (wT
kH

cuc
2,k)T = (uc

2,k)T (Hc)Twk.
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Under the assumption that (2.157) vanishes completely, system (2.156) simplifies to

xk+1 = Φxk +Hcuc1,k, (2.161)

yk = Cxk.

The controllability of (2.161) is checked numerically with the help of the Hautus criterion,
i.e. every left eigenvector vi corresponding to the eigenvalue λi of Φ fulfills

vTi H
c 6= 0T . (2.162)

In the following, two different control strategies, namely a PI state feedback controller and
an extended observer-based control approach, are designed for (2.161). The prerequisite
for the designed controllers is that the closed-loop response does not show a residual
steady-state control error for constant reference signals rk in the presence of constant
perturbations. The maximum electrical power supplied to the LEDs is limited to 4.3 W .
Furthermore, the LEDs should not be operated below 0.6 W to assure a long lifetime of
the used hardware. To be aware of the present input saturation, the controller should
include a suitable anti-windup strategy.

2.6.1 PI state feedback controller

State feedback controllers can not inherently guarantee a vanishing steady state control
error in the event of constant disturbances or modeling uncertainties. This requires to
extend the system (2.161) with integral action. Therefore, the latter is augmented with
the integrator states xI,k, summing up the control error rk − yk. The modified system
accordingly reads as

xk+1 = Φxk +Hcuc1,k, (2.163)

xI,k+1 = xI,k + rk − yk,
yk = Cxk.

The second difference equation ensures that the system output tracks a constant reference
signal (rk) = (r∞, r∞, . . .) in steady-state, i.e. r∞ = y∞, as long as the overall system
is asymptotically stable. The applied control law is given as

uc1,k = Kxk +KIxI,k +KP (rk −Cxk︸︷︷︸
yk

), (2.164)

where the feedback gains K, KI and KP are of appropriate dimension. Figure 2.28
schematically depicts the overall control loop.
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Figure 2.28: PI state feedback controller

In order to find suitable feedback gains, the first step is to calculate the closed-loop
system by inserting the control law into (2.163), i.e.

xk+1 = Φxk +HcKxk +HcKIxI,k +HcKP (rk −Cxk)
= (Φ +HcK −HcKPC)xk +HcKIxI,k +HcKPrk, (2.165)

xI,k+1 = xI,k + rk −Cxk.

Rewriting (2.165) in matrix notation yields[
xk+1

xI,k+1

]
=

[
Φ +Hc(K −KPC) HcKI

−C I

]
︸ ︷︷ ︸

~

[
xk
xI,k

]
+

[
HcKP

I

]
rk. (2.166)

Provided that the controller parameters are chosen such that ~ is a stable matrix, i.e.
all its eigenvalues are within the unit circle, a vanishing control error can be ensured.
Splitting this matrix into a part which is independent of the controller gains and a
gain-dependent part leads to[

Φ +Hc(K −KPC) HcKI

−C I

]
=

[
Φ 0
−C I

]
+

[
Hc(K −KPC) HcKI

0 0

]
=

[
Φ 0
−C I

]
︸ ︷︷ ︸

=: Φ̃

+

[
Hc

0

]
︸ ︷︷ ︸
=: H̃

c

[
K −KPC KI

]︸ ︷︷ ︸
=: K̃

. (2.167)

This alternative representation results in a standard eigenvalue placement problem with
the closed-loop dynamic matrix (Φ̃ + H̃

c
K̃), where

K̃ =
[
K̃1 K̃2

]
. (2.168)
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The augmented feedback matrix K̃ is assigned using the lqr approach. Thus, the latter
computes as

K̃
T

=
[
R+ (H̃

c
)TXH̃

c
]−1

(H̃
c
)TXΦ̃, (2.169)

where X is the solution of the algebraic Riccati equation

X = Q+ Φ̃
T
XΦ̃− Φ̃

T
XH̃

c
[
R+ (H̃

c
)TXH̃

c
]−1

(H̃
c
)TXΦ̃ (2.170)

with the positive semi-definite weighting matrix Q and the positive definite matrix R.
Due to the fact that the pair (Φ, Hc) is controllable, Φ has no eigenvalue at 1 and no
component of the transfer function from uc1,k to yk has a zero at 1, it follows that the

pair (Φ̃, H̃
c
) is controllable too (see Appendix G). Provided that Q is chosen such that

the pair (Q, Φ̃) is detectable, the Riccati equation has a unique solution.

The parameterKI directly results from the eigenvalue placement procedure, i.e.KI = K̃2.
On the other hand, the choice of K and KP offers some degree of freedom. A common
method of choice is to calculate KP such that the initial value of uc1,k is equal to its
expected steady-state value, which assures

y∞
!

= r∞ (2.171)

in case of an ideal plant model. Considering the steady-state of (2.161) and solving for
the state vector yields

x∞ = Φx∞ +Hcuc1,∞

(I −Φ)x∞ = Hcuc1,∞

x∞ = (I −Φ)−1Hcuc1,∞. (2.172)

Since Φ has no eigenvalues equal to 1, the matrix (I −Φ) has full rank and is invertible.
In addition, the system output for (k →∞) reads as

y∞ = Cx∞. (2.173)

Inserting (2.172) into (2.173) results in

y∞ = C(I −Φ)−1Hcuc1,∞. (2.174)

With (2.171) and rearranging (2.174), the steady-state input signal computes as

uc1,∞ =
[
C(I −Φ)−1Hc

]−1
r∞. (2.175)

Using (2.175) for the initial value of uc1,k and assuming that the initial values of xk and
xI,k are zero, it follows [

C(I −Φ)−1Hc
]−1

r∞
!

= KPr∞ (2.176)
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and thus,

KP =
[
C(I −Φ)−1Hc

]−1
. (2.177)

Finally, the remaining feedback gain can be calculated according to (2.167) and (2.168)
as

K = K̃1 +KPC. (2.178)

The designed controller is verified with the help of numerical simulations without consid-
ering the input saturation and assuming that all states are available for feedback. The
weighting matrices are chosen as

R = 5000I and Q = diag( 0.5, . . . 0.5︸ ︷︷ ︸
weighting xk

, 10, . . . 10︸ ︷︷ ︸
weighting xI,k

). (2.179)

A closed-loop step response simulating the heat-up of a “highly doped” wafer from room
temperature to 350 ◦C (623.15 K) is depicted in Figure 2.29b. As the simulation points
out, the closed-loop step response shows an undesired undershoot, because the stabilizing
part of the control law forces the wafer’s temperature towards the absolute zero point, i.e.
−273.15 ◦C (0 K). This effect may be reduced by adjusting the weighting matrices. A
systematic approach, on the other hand, is to introduce the euclidean transformation

x′k := xk − xRT , (2.180)

where the elements of the constant vector xRT are equal to room temperature, i.e. 25 ◦C
(298.15 K). Rearranging (2.180) yields

xk = x′k + xRT (2.181)

and

xk+1 = x′k+1 + xRT (2.182)

respectively. Inserting (2.181) and (2.182) into (2.154), i.e. the plant model after splitting
the input vector, results

x′k+1 = Φ(x′k + xRT ) +Hcuck +wk − xRT (2.183)

= Φx′k +Hcuck +wk + (Φ− I)xRT︸ ︷︷ ︸
w′k

,

yk = C(x′k + xRT ).

Please note that the transformed system (2.183) has the very same structure as the
original model (2.154). The only difference is that the equilibrium point after rejecting
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Figure 2.29: Simulated heat-up of a “highly doped” wafer: A PI state feedback controller
is tested with the help of a numerical simulation. Input saturations and an
anti-windup strategy are not considered yet.
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the known disturbance is now at room temperature. Thus, the outlined design procedure
involving the rejection of the known disturbance w′k as well as the design of the PI
state feedback controller can be adopted to the transformed system as it stands. The
closed-loop behaviour is again validated without considering the input saturation and
assuming that the system states are available for feedback. The weighting matrices to
solve the Riccati equation are chosen as (2.179).

Figure 2.30b shows the heat-up of a “highly doped” wafer from room temperature to
350 ◦C (623.15 K). As expected, the undershoot can be avoided with the aid of the
introduced coordinate transformation. Figure 2.30a, on the other hand, points out that
the electrical power supplied to the four heating zones still exceed the saturation limits
significantly. As a remedy, an input saturation in combination with a possible anti-windup
technique is discussed in Section 2.6.1.1.

2.6.1.1 Prevention of controller windup

The PI state feedback controller with input saturation is schematically depicted in Fig-
ure 2.31. The saturation block imposes upper and lower limits on the actuating signal uck.
The saturated power signal is denoted by ucsat,k. According to the considerations in the
previous section, the PI state feedback controller in combination with the disturbance
rejection for the plant model after the coordinate transformation reads as15

xI,k+1 = xI,k + rk − yk, (2.184)

uck = Kx′k +KIxI,k +KPrk −KPyk − (Hc)+wk.

A suitable anti-windup strategy for the given controller is the well-known “conditioning
technique” according to Hanus [Hanus, Kinnaert, and Henrotte, 1987]. The starting point
in this case is a copy of (2.184), i.e.

x̃I,k+1 = x̃I,k + rk − yk, (2.185)

uck = Kx′k +KIx̃I,k +KPrk −KPyk − (Hc)+wk,

with the new state vector denoted by x̃I,k. The idea behind Hanus’ technique is to use
an auxiliary reference signal r̃k, called realizable reference, instead of rk in case the
desired actuating signal is unequal to the saturated one, i.e. uck 6= ucsat,k. The conditioned
controller can then be represented as

x̃I,k+1 = x̃I,k + r̃k − yk, (2.186)

ucsat,k = Kx′k +KIx̃I,k +KP r̃k −KPyk − (Hc)+wk.

15(Hc)+ =
[
(Hc)THc

]−1
(Hc)T denotes the pseudoinverse of Hc.
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Figure 2.30: Simulated heat-up of a “highly doped” wafer: An additional coordinate transfor-
mation is applied in order to avoid an undershoot of the control outputs. The
input saturations are not considered.
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Figure 2.31: PI state feedback controller

The use of the conditioned reference signal forces the actuating signal to be equal to the
saturated one. To calculate the auxiliary reference signal, the difference between ucsat,k
and uck is evaluated, i.e.

ucsat,k − uck = KP (r̃k − rk) . (2.187)

Solving (2.187) for r̃k yields

r̃k = rk +K−1
P

(
ucsat,k − uck

)
. (2.188)

Inserting (2.188) into the conditioned controller (2.186) and using equation(2.185) finally
results

x̃I,k+1 = x̃I,k + r̃k − yk (2.189)

= x̃I,k + rk +K−1
P u

c
sat,k −K−1

P u
c
k − yk

= x̃I,k +K−1
P u

c
sat,k −K−1

P Kx
′
k −K−1

P KIx̃I,k +K−1
P (Hc)+wk

=
(
I −K−1

P KI

)
x̃I,k +K−1

P u
c
sat,k −K−1

P Kx
′
k +K−1

P (Hc)+wk,

uck = Kx′k +KIx̃I,k +KPrk −KPyk − (Hc)+wk.

Obviously, the matrix KP must have full rank, i.e. its inverse exists. Referring to [Hanus,
Kinnaert, and Henrotte, 1987], this condition is fulfilled, since the opposite would lead to
at least one dead time in the control action, which is not the case here. Of course, the
overall control loop is designed in such a manner that it is stable in case the saturation
is inactive. On the other hand, it is necessary that the conditioned controller (2.189) is
stable as well, i.e. the eigenvalues of the matrix (I −K−1

P KI) are within the unit circle.
Unfortunately, the calculation of the controller parameters with the weighting matrices
(2.179) show that this condition is not fulfilled. This problem is adressed in [Walgama,
Ronnback, and Sternby, 1992] and the authors propose a modification to the conditioning
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2 Observer-based temperature control of an LED heated wafer

technique. Instead of calculating the auxiliary reference signal r̃k as (2.188), the latter is
chosen as

r̃k = rk + (KP + γI)−1 (ucsat,k − uck) (2.190)

with the additional design parameter γ. Using (2.190) for the conditioned controller
(2.186) yields

x̃I,k+1 = x̃I,k + r̃k − yk (2.191)

= x̃I,k + rk + (KP + γI)−1 ucsat,k − (KP + γI)−1 uck − yk
= x̃I,k + rk + (KP + γI)−1 ucsat,k − (KP + γI)−1Kx′k − (KP + γI)−1KIx̃I,k

− (KP + γI)−1KPrk + (KP + γI)−1KPyk + (KP + γI)−1 (Hc)+wk − yk
=
[
I − (KP + γI)−1KI

]
x̃I,k +

[
I − (KP + γI)−1KP

]
rk

+ (KP + γI)−1 ucsat,k − (KP + γI)−1Kx′k +
[
(KP + γI)−1KP − I

]
yk

+ (KP + γI)−1 (Hc)+wk,

uck = Kx′k +KIx̃I,k +KPrk −KPyk − (Hc)+wk.

The designed controller (2.191) is verified with the help of a numerical simulation.
The design parameter γ is chosen as 0.2, which guarantees that the eigenvalues of[
I − (KP + γI)−1KI

]
are within the unit circle. Figure 2.32 depicts a heat-up scenario

of a “highly doped” wafer. The designed controller is now stable. However, the performance
achieved does not meet expectations and further approaches need to be evaluated.

2.6.2 Extended observer-based control approach

The designed PI state feedback controller in combination with anti-windup strategy
according to Hanus and Walgama ensures a stable feedback loop even under the presence
of an input saturation. The performance in terms of its transient behaviour, on the other
hand, is unsatisfactory and the parameter γ has to be found experimentally.

An additional control approach is thus designed and evaluated for the system (2.161).
To account for modelling uncertainties, the plant model is extended with an additional
unknown disturbance dk, which is assumed to be constant for k →∞. Furthermore, it is
assumed that the latter is acting at the system input, i.e. the model is rewritten as

xk+1 = Φxk +Hcuc1,k +Hcdk, (2.192)

yk = Cxk.
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Figure 2.32: Simulated heat-up of a “highly doped” wafer: The PI state feedback controller
is extended with a strategy according to Hanus and Walgama [Hanus, Kinnaert,
and Henrotte, 1987; Walgama, Ronnback, and Sternby, 1992] in order to prevent
the effect of controller windup. Although a windup can be avoided, the controller
performance is unsatisfactory due to a high and long-lasting overshoot.
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2 Observer-based temperature control of an LED heated wafer

In the following, a controller is designed which ensures that the control error vanishes in
steady-state. In a first step, a state feedback controller with a static pre-filter

uc1,k = Kxk +Nrk (2.193)

is considered. The pre-filter is assigned such that the output yk tracks a constant reference
signal (rk) = (r∞, r∞, . . .) asymptotically in case of a perfect plant model and no
disturbances acting, i.e. (dk) = (0, 0, . . .). Thus, the pre-filter N can be calculated by
considering the plant (2.192) with control law (2.193) in steady-state, i.e.

x∞ = (Φ +HcK)x∞ +HcNr∞ (2.194)

= [I − (Φ +HcK)]−1HcNr∞,

y∞ = Cx∞.

With

y∞
!

= r∞ (2.195)

it follows

C [I − (Φ +HcK)]−1HcNr∞
!

= r∞ (2.196)

and thus, the pre-filter computes as

N =
{
C [I − (Φ +HcK)]−1Hc

}−1
. (2.197)

The constant gain K is calculated by means of the lqr approach. Since xk is not
available, a Luenberger observer

x̂k+1 = Φx̂k +Hcuc1,k + L̂(yk −Cx̂k) (2.198)

for the time-invariant system (2.192) is designed similar to Section 2.4.5 without consid-
ering the unknown disturbance. The observer gain L̂ is computed as

L̂
T

= (V c +CY CT )−1CY ΦT , (2.199)

where Y is the solution of the algebraic Riccati equation

Y = W c + ΦY ΦT −ΦY CT (V c +CY CT )−1CY ΦT . (2.200)

Since the system is time-invariant, the Riccati equation can be solved offline.

Calculating the dynamics of the estimation error ek := xk − x̂k yields

ek+1 = (Φ− L̂C)ek +Hcdk, (2.201)
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2 Observer-based temperature control of an LED heated wafer

i.e. the steady-state estimation error is unequal to zero in the event that dk is unequal to
zero. In this case ∆yk := yk −Cx̂k = C(xk − x̂k) = Cek neither converges to zero and
it holds

e∞ = (Φ− L̂C)e∞ +Hcd∞ (2.202)[
I − (Φ − L̂C)

]
e∞ = Hcd∞

e∞ =
[
I − (Φ − L̂C)

]−1

Hcd∞

and accordingly

∆y∞ = C
[
I − (Φ − L̂C)

]−1

Hcd∞. (2.203)

Rearranging (2.203) yields the calculated disturbance in steady-state given by

d∞ =

{
C
[
I − (Φ − L̂C)

]−1

Hc

}−1

∆y∞ (2.204)

and respectively

e∞ =
[
I − (Φ− L̂C)

]−1

Hc

{
C
[
I − (Φ− L̂C)

]−1

Hc

}−1

∆y∞. (2.205)

This means that the steady-state estimation error can be calculated as a function of ∆y∞.
Thus, the idea is to introduce a corrected estimate for the state vector as

x̄k := x̂k + e∞ (2.206)

= x̂k +
[
I − (Φ− L̂C)

]−1

Hc

{
C
[
I − (Φ− L̂C)

]−1

Hc

}−1

∆y∞.

This guarantees that it holds

x∞ − x̄∞ = 0. (2.207)

In the event that the corrected state vector is used for feedback and, in addition,
subtracting (2.204) from the actuating signal yields the extended feedback law

uc1,k = Kx̄k − d∞ +Nrk (2.208)

= Kx̂k +K
[
I − (Φ− L̂C)

]−1

Hc

{
C
[
I − (Φ− L̂C)

]−1

Hc

}−1

∆y∞

−
{
C
[
I − (Φ − L̂C)

]−1

Hc

}−1

∆y∞ +Nrk

= Kx̂k +KI∆y∞ +Nrk
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with

KI :=

{
K
[
I − (Φ− L̂C)

]−1

Hc − I
}{

C
[
I − (Φ − L̂C)

]−1

Hc

}−1

.

Clearly, ∆y∞ is not measurable. Thus, ∆y∞ is replaced with ∆yk, i.e.

uc1,k = Kx̂k +KI∆yk +Nrk. (2.209)

This still guarantees that yk tracks a constant reference signal rk in steady-state, even
in the presence of unknown perturbations that are constant for k →∞.

The presented approach is also suitable in the presence of model mismatches. The
main advantage of the derived controller is that a controller windup can be prevented
systematically by applying the well-known observer technique [Hippe, 2006], i.e. the
observer (2.198) is driven by the saturated input.

2.6.2.1 Numerical simulation and laboratory experiments

The designed controller is tested with the help of numerical simulations. To simulate the
plant, the derived nonlinear, affine-input model (2.41) is used. The four outputs of the
systems are available for feedback in simulation. Table 2.5 lists the parameters for the
observer-based controller.

Parameter Value Description

Q I Controller weighting matrix
R 10I Controller weighting matrix
W c 10I Observer weighting matrix
V c I Observer weighting matrix

Table 2.5: Parameters for the observer-based controller

As shown in Figures 2.33 and 2.34, the heating of the wafer can be performed regardless
of the wafer type. Because of the higher emissivity of a highly doped wafer compared to
a bare silicon wafer, the heat losses due to radiation are higher. This goes along with a
higher amount of electrical power required to heat a highly doped wafer.

The designed observer in combination with the derived controller was also tested at the
test rig. Again, a uniform wafer temperature profile of 350 ◦C should be controlled to
achieve uniform process results across the whole wafer. As Figure 2.35 and 2.36 point
out, the designed feedback loop allows the setting up of a desired wafer temperature with
a very accurate performance independent of the wafer type.
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Figure 2.33: Simulated heat-up of a “highly doped” wafer: An extended state feedback
controller is tested with the help of a numerical simulation. The well-known
observer technique is used to prevent the effect of controller windup.
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Figure 2.34: Simulated heat-up of a “bare silicon” wafer: The proposed approach can be used
to control the surface temperature of the wafer regardless of the wafer type. The
actuating signals are kept within the saturation limits.
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Figure 2.35: Heat-up experiment with a “highly doped” wafer: An extended state feedback
controller is used to heat up a highly doped wafer to a temperature of 350 ◦C.
The hardware setup is divided into four heating zones, whereas the temperature
at the radial midpoint in zone 1 is measured with the help of a pyrometer.
An observer is used to estimate the remaining three zone temperatures. The
measured and estimated zone temperatures serve as a feedback for the controller.
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Figure 2.36: Heat-up experiment with a “bare silicon” wafer: A test rig equipped with
four contactless temperature sensors in each heating zone is used to verify the
performance of the proposed extended state feedback control law. At future
production tools just one pyrometer in zone 1 will be available. The temperatures
in the remaining heating zones will be estimated with the help of the proposed
late-lumping observer with measurement injection. The experiments point out
that the designed controller in combination with the observer can be used to
heat up a silicon wafer independent of its dopand level. The accuracy is identified
as less than ± 10 ◦C, which is known to be accurate enough to uniformly treat
the wafer surface with highly reactive gasses.
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2.7 Conclusion

In this chapter, the design of a state observer to estimate the temperature profile of
a wafer, which is heated up with a large number of high-power LEDs, is discussed. A
physical plant model is derived and discretized in space with the so-called vertical method
of lines. The resulting nonlinear, affine-input system is linearized around the estimated
state vector in every sampling instance, which provides a linear time-varying system. For
this system, a Luenberger observer based on the lqr approach and a Kalman filter are
designed and verified with the help of numerical simulations as well as at a laboratory
plant.

The so-called early-lumping approach, where the partial differential system is discretized in
space before the observer design step, leads to a high-order finite-dimensional system, for
which the online calculation of the observer gain is computationally intensive. Therefore,
an alternative late-lumping observer approach is applied, which directly deals with the
partial differential system. The derived observer, which is not discretized before the
implementation phase, is verified with the help of numerical simulations and compared
to the “standard approach” on a test rig.

The estimated zone temperatures of the wafer are used as a feedback for a controller,
which is designed in such a manner that it is able to cope with unknown disturbances and
modeling uncertainties. Among a disturbance rejection approach, the proposed controller
involves a systematic procedure to avoid the well-known effect of controller windup.
Closed-loop tests verify that the controller can be used to heat up wafers of diverse types.
The achieved accuracy lies within ±10 ◦C with respect to the reference signal, which is
known to be sufficient to achieve desired process results on the wafer.
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3 Post-clean step - design of a point
of use mixing system

In order to remove residues that have been deposited on the wafer after an etching step
or a photoresist stripping process, selected solutions are applied to the rotating wafer.
State of the art spin wet clean tools use tanks that are filled with desired chemicals
in a predefined mixing ratio. This mixture is permanently circulated through a heater
and a cooler to maintain a desired temperature. Furthermore, the pressure within the
recirculation line is kept at a nearly constant value. The flow rates to the process chambers
are adjusted manually using needle valves.

3.1 Problem formulation

A tank-based supply system has the disadvantage that varying the process parameters,
i.e. outlet flow rates, temperature and mixing ratio of the solution, requires either high
maintenance or long-running routines. A change of process parameters from wafer to wafer
or even during the processing of a wafer is not possible. However, chip manufacturers want
to do exactly that with future wet clean equipment. To increase the flexibility provided by
future tools, a novel point of use mixing system is designed to mix the solution “online”
with a desired mixing ratio, temperature and outlet flow rates. With such a mixing
system, it is also possible to change the process parameters while processing a wafer. A
schematic representation of the point of use mixing system is shown in Figure 3.1.

The main component of the point-of-use mixing system is the so-called liquid flow
controller (lfc). The hardware used for an lfc is shown in Figure 3.2. A flowmeter
measures the current flow rate in the piping. It is followed by an air-operated valve,
referred to as “pressure regulator”. The pressure loss across this component can be
adjusted by changing its control air pressure. To set a desired control air pressure, a
so-called “electro-pneumatic converter” is used, which is a device for controlling the outlet
air pressure in proportion to an electric current signal. The initial design of the lfc is
discussed in detail in [Kleindienst, 2013]. The proposed control strategy is a combination
of compensating the present input-nonlinearity and a PI controller. In addition, a Smith
predictor is used to take into account the constant dead time of the plant.
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3 Post-clean step - design of a point of use mixing system

Figure 3.1: Schematic representation of the point of use mixing system: Cold and hot deion-
ized (di) water as well as up to three chemical constituents are mixed “online” in
a defined ratio to obtain a desired mixing ratio and temperature. The outlet flow
rates can also be adjusted with the help of feedback loops.

Figure 3.2: Hardware setup of an lfc: The actuating signal is converted to a pilot air pressure,
which is fed to the pressure regulator. The pilot air pressure acts via a diaphragm
against a spring and adjusts the aperture within the flow path. The flow rate
over the pressure regulator correlates with the pressure loss over the orifice. A
flowmeter is used to measure the actual flow rate through the lfc system.
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A point of use mixing system contains up to six lfcs, i.e. one for cold water, one for
each injection of highly concentrated chemicals and one each for applying the mixture on
top and on the bottom side of the wafer.

3.2 Plant description and mathematical model

The desired dispense flow rates, the mixing ratio of the solution (water relative to the
three highly concentrated chemicals) and the desired temperature define the required flow
rates for the single lfcs. The required amount of cold water is added to the solution with
the help of an lfc, whereas the remaining amount of hot water is added automatically
due to the selected pressure conditions. The reference signal for the cold water lfc is
provided by an overlain temperature controller.

3.2.1 Blending of constituents

In a first step, the blending of cold and hot water as well as the three highly concentrated
constituents is considered in terms of their internal energy. More precisely, a mathematical
relation is sought to compute the required flow rate of cold water such that the mixture
shows a desired temperature.

The amount of heat energy transferred to or from an object is proportional to its mass m
and to its increase or decrease in temperature denoted by the temperature difference ∆ϑ,
i.e.

∆Q = c m ∆ϑ. (3.1)

Therein, ∆Q denotes the transferred quantity of heat and c denotes the specific heat
capacity. Applying (3.1) to the five inlets of the mixing system with respect to the
resulting temperature of the mixture, denoted by ϑm, yields

∆Qh = chmh(ϑm − ϑh), (3.2)

∆Qc = ccmc(ϑm − ϑc),
∆Qp1 = cp1mp1(ϑm − ϑp1),

∆Qp2 = cp2mp2(ϑm − ϑp2),

∆Qp3 = cp3mp3(ϑm − ϑp3).

The indices h (for “hot”), c (for “cold”), p1 (for “part stream 1”), p2 (for “part stream 2”)
and p3 (for “part stream 3”) are introduced to distinguish the physical quantities of the
five inlets.
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Due to the conservation of energy it holds

0 = ∆Qh + ∆Qc + ∆Qp1 + ∆Qp2 + ∆Qp3

= chmh(ϑm − ϑh) + ccmc(ϑm − ϑc) + cp1mp1(ϑm − ϑp1)

+ cp2mp2(ϑm − ϑp2) + cp3mp3(ϑm − ϑp3). (3.3)

Differentiating (3.3) with respect to time and assuming that the in- and outlet tempera-
tures as well as the heat capacities are constant results in

0 = chṁh(ϑm − ϑh) + ccṁc(ϑm − ϑc) + cp1ṁp1(ϑm − ϑp1)

+ cp2ṁp2(ϑm − ϑp2) + cp3ṁp3(ϑm − ϑp3). (3.4)

Since the densities of the inlet liquids can also be assumed to be constant over the
considered temperature range, the mass changes can be replaced by flow rates φ, i.e.

ṁh = ρhφh,

... (3.5)

ṁp3 = ρp3φp3.

This leads to

0 = chρhφh(ϑm − ϑh) + ccρcφc(ϑm − ϑc) + cp1ρp1φp1(ϑm − ϑp1)

+ cp2ρp2φp2(ϑm − ϑp2) + cp3ρp3φp3(ϑm − ϑp3). (3.6)

Due to the continuity equation, the flow rate of hot water can be expressed by

φh = φm − φc − φp1 − φp2 − φp3, (3.7)

where φm is the total flow rate of the mixture1. Inserting (3.7) into (3.6) and solving for
φc finally yields

φc =

chρh(φm − φp1 − φp2 − φp3)(ϑm − ϑh) + cp1ρp1φp1(ϑm − ϑp1)
+ cp2ρp2φp2(ϑm − ϑp2) + cp3ρp3φp3(ϑm − ϑp3)

chρh(ϑm − ϑh)− ccρc(ϑm − ϑc)
. (3.8)

The obtained mixing formula (3.8) involves the heat capacities and densities of all five
inlet fluids. However, it is very often the case that the constituents itself consist primarily
of water (e.g. a typical dilution of hydrogen peroxide consists of 70% water) or they are
at least water-like chemicals. Thus, it may be often appropriate to assume that all heat
capacities and all densities are equal, i.e.

ch = cc = cp1 = cp2 = cp3 (3.9)

1φm denotes the total dispense flow rate, i.e. the sum of the top-side and the bottom-side flow rate.

82



3 Post-clean step - design of a point of use mixing system

and

ρh = ρc = ρp1 = ρp2 = ρp3. (3.10)

In this case, equation (3.8) simplifies to

φc =

(φm − φp1 − φp2 − φp3)(ϑm − ϑh) + φp1(ϑm − ϑp1)
+ φp2(ϑm − ϑp2) + φp3(ϑm − ϑp3)

ϑc − ϑh
. (3.11)

Thus, the required amount of cold water to obtain an expected temperature of the mixture
at given flow rates and inlet temperatures can be calculated. To handle unmodeled
disturbances and uncertainties, an overlain temperature controller is intended to adjust
the reference signal for the cold water flow rate in case of a temperature deviation.

3.2.2 Liquid flow controller

The initial design of the lfc is based on the assumption that the pressure as well as the
temperature conditions at the inlet and the outlet of the system are constant. In this
case, a steady-state relation between the actuating signal u and the outlet flow rate y can
be identified. This relation can be interpreted as a static input-nonlinearity of the plant.
The initial implementation of the lfc contains an automated procedure to measure and
store the input-nonlinearity in a lookup table (lut), which is then used for compensation.
A PI controller with Smith predictor is applied to the remaining linear system.

This approach has proven itself in case that the in- and outlet conditions in terms of
pressure and temperature are almost constant. Unfortunately, this is not the case with
the point of use mixing system, where several liquids are mixed together. For example,
the pressure at the outlet of a constituent lfc, which injects into the so-called main
stream, is highly dependent on the flow rate in the main stream. Figure 3.3 compares
two luts of a constituent lfc measured at contrary main stream conditions. It points
out that a change in the main stream conditions does not significantly affect the shape
of the lut (aside from the maximal reached flow rate). On the other hand, a change in
the main stream conditions shifts the lut significantly along the axis of the abscissas.
This may have a severe impact on the control performance in case that the stored lut to
compensate the input-nonlinearity does not reflect the real-world behavior of the system.
Figure 3.4 depicts the result of a numerical simulation, where a oscillation around the
reference signal occurs, because the controller uses the red curve shown in Figure 3.3 for
compensation, but the input-nonlinearity of the plant is simulated with the black curve.

To conclude, the compensation of the plant’s input-nonlinearity is advisable if the in- and
outlet conditions at the lfc system do not change significantly. Otherwise, this approach
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Figure 3.3: Lookup tables of constituent lfc measured at two different main stream conditions:
Changing the main stream conditions of the point of use mixing system results in
a shift of the steady-state flow rate along the x-axis.
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Figure 3.4: lfc simulation with improper lookup table: Using the improper lookup table to
compensate the plant’s input-nonlinearity leads to an undesirable control behavior.
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Fuzzy-PD
∫e

ė
u̇ u

Figure 3.5: Fuzzy-PI controller: A Fuzzy-PD block, whose inputs are the control error and
its derivative, is followed by an integrator. This incremental form entails a good
disturbance suppression by integrating u̇. Furthermore, the effect of controller
windup can be prevented easily by stopping the integrator in case that the
actuating signal is outside of its saturation limits.

may lead to an undesired control performance. Thus, this section discusses a different
control approach, namely a Fuzzy-PI controller [Jantzen, 2013]. This type of controller
can be directly designed for the nonlinear plant, i.e. the input non-linearity does not
have to be compensated. The designed controller is realized in the so-called incremental
form, see Figure 3.5. Due to the present integral action, the controller vanishes a steady
state control error in case of a constant reference signal and constant disturbances.

The two inputs of the controller are the error signal e, which is defined as the difference
between the reference signal and the measured flow rate, and its derivative with respect
to time denoted by ė. The output of the Fuzzy-PD block is the derivative of the actuating
signal with respect to time, i.e. u̇. For the so-called fuzzification of the two inputs as well
as for the output membership functions are introduced as shown in Figure 3.6. The error
signal is given as a percentage of the maximal readable flow rate and the derivative of the
control signal is given in amperes per second. For the AND operation of the two inputs,
the algebraic product is used [Jantzen, 2013]. So-called “singletons” of a “Takagi-Sugeno”
system [Takagi and Sugeno, 1985] are used to implement the membership functions of
the output. The defuzzification is realized via the weighted average, i.e. the derivative of
the control signal computes as

u̇ =

k∑
i=1

µisi

k∑
i=1

µi

. (3.12)

The number of rules is denoted by k, µi is the resulting membership value of the AND
operation of the ith rule and si is the corresponding value of the singleton. The list of
rules is summarized in Table 3.1 and the used abbreviations are listed in Table 3.2.

The designed Fuzzy-PI controller is applied to the point of use mixing system, which is
built on a laboratory tool. Please note that deviating from Figure 3.1, only two highly
concentrated part streams are built up instead of three. Figure 3.7 shows the performance
of the two dispense lfcs as well as the two constituent lfcs. The top-side flow rate is
changed stepwise from 2000 ml/min to 750 ml/min and the bottom-side flow rate is
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Figure 3.6: Fuzzification: Membership functions are chosen for the two inputs e and ė as well
as for the output u̇.

u̇
e

ln sn s sp lp

ė

ln ln mn sn vsn mp
sn ln mn vsn z lp
s ln sn z sp lp

sp ln z vsp mp lp
lp mn vsp sp mp lp

Table 3.1: Fuzzy-PI, table of rules: The two inputs are each assigned five membership functions.
The table assigns the input membership functions the respective membership
function for the output.
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Figure 3.7: Point of use mixing system with lfcs based on a Fuzzy-PI controller: The de-
veloped mixing system can be used to create a mixture with a desired chemical
concentration. Based on the desired output flow rates for top-side and bottom-side
dispense to the wafer as well as the targeted concentration of the mixture, the
corresponding reference signals for the lfcs for the insertion of highly concentrated
constituents are calculated. Depending on the main stream flow rates, the back
pressure for these constituent lfcs changes.
The test demonstrates that with the aid of the Fuzzy-PI controller, the reference
signals (black dashed lines) can be tracked with convincing performance regardless
of the changing pressure conditions.
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Abbreviation Meaning

e, ė

ln large negative
sn small negative
s small
sp small positive
lp large positive

u̇

ln large negative
mn medium negative
sn small negative
vsn very small negative
z zero

vsp very small positive
sp small positive
mp medium positive
lp large positive

Table 3.2: Fuzzy-PI, abbreviations

changed from 1500 ml/min to zero. The reference signals for the two constituent lfcs
are calculated according to typical mixing ratios.

The test indicates that the lfcs based on the designed Fuzzy-PI controller show a
proper performance, i.e. the constituent lfcs are able to control the requested flow
rates independent of the main stream conditions. Furthermore, the disturbance rejection
capability is tested at the top-side lfc by changing the fluid resistance within the piping
abruptly. This is carried out by switching from a small dispensing nozzle to a larger
one and vice versa. It can be seen that the applied disturbance can be rejected quickly.
Furthermore, one recognizes also that the changed back pressure in the main stream also
makes itself felt on the constituent lfcs. Again, the disturbance rejection here is very
satisfactory.

3.2.3 Temperature sensor dynamics

To measure the temperature of the mixture, the point of use mixing system is equipped
with a temperature sensor. Its dynamic behavior can be sufficiently modeled with the
help of the first-order transfer function

Ps(s) =
1

1 + 0.45s
, (3.13)

where s denotes the complex Laplace-variable. Figure 3.8 compares a measured tem-
perature step response from approximately 20 to 60 ◦C with the simulated one. Please
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Figure 3.8: Mathematical model of temperature sensor: The dynamic behavior of the temper-
ature sensor can be modeled sufficiently with the help of a transfer function of
order one.

note that the gain of the transfer function and the initial temperature value have been
adjusted for the comparison.

3.2.4 Transport delay

The dead time LTmix between the time instance when changing the reference signal
to the cold water lfc and the time instance when the temperature sensor detects a
temperature change mainly depends on the transport time of the liquid. Provided that
the pipe between the actuator for the cold water stream and the mixing point is fully
filled with cold water when changing the reference signal to the cold water lfc, the dead
time can be computed based on the involved flow rates and pipe volumes Vp1, Vp2, Vp3, Vp4
as illustrated in Figure 3.9. Thus, the overall dead time of the point of use mixing system
computes as

LTmix = LLfc +
Vp1

φm − φp1 − φp2 − φp3
+

Vp2
φm − φp2 − φp3

+
Vp3

φm − φp3
+
Vp4
φm

, (3.14)

where LLfc denotes the dead time of the cold water lfc.

3.3 Temperature control

The previous considerations can be used to compose a plant model to design the temper-
ature controller for the point of use mixing system. As Figure 3.10 shows, the reference
signal to the cold water lfc serves as the input signal to the plant. As a measured step
response of a constituent lfc plotted in Figure 3.11 reveals, the dynamic behavior of the
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Figure 3.9: Dead time schematic: The dead time of the point of use mixing system is mainly
caused by the transport duration of the liquid from the cold water actuator to
the temperature sensor.

Figure 3.10: Overall plant model with inversion of mixing formula: The overall plant model
describing the dynamic behavior between the reference signal for the cold water
lfc and the outlet temperature of the point of use mixing system is used to
design a controller. The obtained mixing formula ahead of the plant model is a
part of the overall temperature controller.
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Figure 3.11: Constituent lfc: A measured closed-loop step response is compared to the
simulated one.

lfc can be sufficiently approximated by the transfer function2

TLfc(s) =
1

(1 + 0.2s)3
. (3.15)

The cold water flow rate is then converted to the calculated outlet temperature by
applying a rearranged form of the mixing formula (3.11). Transfer function (3.13) models
the dynamic behavior of the temperature sensor and the dead time of the overall plant
model is given in equation (3.14).

The proposed structure of the temperature controller for the point of use mixing system
is a combination of the mixing formula (3.11) and a PI controller with Smith predictor
[Smith, 1959]. The mixing formula is used to compensate the static conversion from the
cold water flow rate to the outlet temperature. Hence, the remaining overall linear plant
model used for the controller design can be written as

PTmix(s) = TLfc(s)Ps(s)e
−LTmixs =

e−LTmixs

(1 + 0.2s)3(1 + 0.45s)
. (3.16)

The Smith predictor is used in order to cope for the known dead time. For the obtained
plant model without taking into account the dead time, a PI controller

CTmix(s) =
0.25s+ 0.8

s
(3.17)

is designed based on bode plots.

2Since the dead time of the lfc is already considered in equation (3.14), its transfer function is given
without dead time.
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3.4 Laboratory experiment and conclusion

The temperature controller designed in Section 3.3 in combination with the lfcs based
on the Fuzzy-PI controller designed in Section 3.2.2 are implemented at a laboratory
tool. The used hardware is depicted in Figure 3.12. It is evident that the novel point
of use mixing system can be built much more compact than the conventional tank-
based distribution system. The experiment depicted in Figure 3.13 demonstrates the

Figure 3.12: Hardware design of the point of use mixing system: The novel mixing system
consumes much less space than the state of the art tank-based distribution
system. The number of required components can also be reduced significantly.

powerfulness of the point of use mixing system. It shows that it is possible to change the
process parameters, i.e. outlet flow rates, temperature and mixing ratio of the solution,
during the process of a wafer. This gain in flexibility will allow process engineers to
optimize the on-wafer performance significantly in future. A prospective use case of now
possible flow rate ramps as well as temperature ramps is to synchronize these changes
with the movement of the chemical dispenser. This will enable to control the etch rate
across the wafer diameter for the first time. First point of use mixing systems are already
installed at customer tools and show promising results.
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Figure 3.13: Point of use mixing including temperature control: The novel mixing system
allows to change the process parameters during the process of a wafer. Black
dashed lines are used to plot the reference signals. Possible use cases of the point
of use mixing system are: 1 Change the temperature at a constant mixing ratio
and constant outlet flow rates. 2 Maintain a constant temperature as well as
a constant mixing ratio, while changing the outlet flow rates. 3 Change the
mixing ratio stepwise, while keeping the temperature as well as the outlet flow
rates constant. 4 Carry out a stepwise temperature change, while keeping the
mixing ratio and the outlet flow rates constant.
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4 Summary and outlook

The present work deals with control concepts for the next generation of single-wafer spin
clean tools. It is divided into two main parts.

The first part of the thesis discusses the stripping of hard-baked photoresist on the wafer
surface. State of the art processes use massive amounts of solutions containing sulfuric
acid to etch off the photoresist by dispensing the solution onto the rotating wafer. Since
the usage of sulfuric acid is on the one hand expensive and on the other hand harmful
to the environment, the chip manufacturers are searching forcefully for an alternative
process. The approach presented in this thesis discusses a novel process, which is using
ozone gas to break the photoresist structure. One of the main challenges to enable this
process is the uniform heat-up of the wafer without contacting its surface. This is carried
out with a large number of high-power LEDs, whose emitted light is absorbed by the
wafer. A closed-loop approach to control the wafer’s temperature requires the latter to be
available for feedback. For this, different observer approaches are presented, which allow
to estimate the temperature profile of the wafer surface by using just one contactless
temperature sensor. Based on the estimated temperatures, possible concepts are proposed
to control the wafer’s temperature. Numerical simulations and experiments at a real
world heating system emphasize the achieved performance of the presented approaches.

The second part deals with the design of a point of use mixing system, which is intended
to be used to float off the broken photoresist with well-defined solutions. Instead of
utilizing a state of the art tank-based chemical supply system, a novel point of use mixing
system is proposed to mix the desired solution online. Such a point of use mixing system
uses several so-called “liquid flow controllers” (lfcs) to adjust the flow rates at the inlets
as well as at the outlets of the mixing system. An existing control approach for the lfcs
is discussed. Moreover, a robust solution, which is capable to suppress fluctuations of the
pressure at the in- and outlet of the lfc, is proposed. Finally, a temperature controller
is designed to adjust the temperature of the mixture. The validation of the point of use
mixing system at a laboratory tool demonstrates its strengths, especially the huge gain
of flexibility in terms of the mixing ratio, outlet flow rates and temperature.

The proposed control concepts enlarge the lab engineer’s repertoire to define recipes in
order to enable new processes for future wet clean applications. Moreover, the opportunity
of controlling the wafer’s temperature rises new possibilities to further improve the
performance of spin clean tools. One idea is to heat the wafer during the dispense of
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4 Summary and outlook

chemical solutions onto its surface. This is intended to increase the reactivity of certain
chemicals. In order to design model-based estimators and controllers, the proposed
mathematical model would have to be extended with the effect of dispensing and
spinning off liquids. The liquid flow on the wafer surface clearly impacts the temperature
of the wafer. To describe the fluid flow, the so-called transport equation can possibly be
applied in cylindrical coordinates. In this case, the overall plant model would then be an
interaction of two partial differential equations.
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Appendix A

Heat transfer equation

The heat transfer equation with heat sources and losses is given as

ρcp(T )
∂T (ξ, t)

∂t
= div {λc(T )grad [T (ξ, t)]}+ q(ξ, t). (A.1)

The term div {λc(T )grad [T (ξ, t)]} can be rearranged as follows:

div {λc(T )grad [T (ξ, t)]} = div

λc(T )


∂T (ξ,t)
∂ξ1

∂T (ξ,t)
∂ξ2

∂T (ξ,t)
∂ξ3


 = div


λc(T )∂T (ξ,t)

∂ξ1

λc(T )∂T (ξ,t)
∂ξ2

λc(T )∂T (ξ,t)
∂ξ3




=
∂
[
λc(T )∂T (ξ,t)

∂ξ1

]
∂ξ1

+
∂
[
λc(T )∂T (ξ,t)

∂ξ2

]
∂ξ2

+
∂
[
λc(T )∂T (ξ,t)

∂ξ3

]
∂ξ3

=
∂λc(T )

∂ξ1

∂T (ξ, t)

∂ξ1

+ λc(T )
∂2T (ξ, t)

∂ξ2
1

+
∂λc(T )

∂ξ2

∂T (ξ, t)

∂ξ2

+ λc(T )
∂2T (ξ, t)

∂ξ2
2

+
∂λc(T )

∂ξ3

∂T (ξ, t)

∂ξ3

+ λc(T )
∂2T (ξ, t)

∂ξ2
3

= λc(T )

[
∂2T (ξ, t)

∂ξ2
1

+
∂2T (ξ, t)

∂ξ2
2

+
∂2T (ξ, t)

∂ξ2
3

]
+
∂λc(T )

∂ξ1

∂T (ξ, t)

∂ξ1

+
∂λc(T )

∂ξ2

∂T (ξ, t)

∂ξ2

+
∂λc(T )

∂ξ3

∂T (ξ, t)

∂ξ3

= λc(T )div {grad [T (ξ, t)]}+
∂λc(T )

∂ξ1

∂ξ1

∂T (ξ, t)

∂T (ξ, t)

∂ξ1

∂T (ξ, t)

∂ξ1

+
∂λc(T )

∂ξ2

∂ξ2

∂T (ξ, t)

∂T (ξ, t)

∂ξ2

∂T (ξ, t)

∂ξ2

+
∂λc(T )

∂ξ3

∂ξ3

∂T (ξ, t)

∂T (ξ, t)

∂ξ3

∂T (ξ, t)

∂ξ3

= λc(T )div {grad [T (ξ, t)]}+
∂λc(T )

∂T (ξ, t)

{[
∂T (ξ, t)

∂ξ1

]2

+

[
∂T (ξ, t)

∂ξ2

]2

+

[
∂T (ξ, t)

∂ξ3

]2
}

= λc(T )div {grad [T (ξ, t)]}+
∂λc(T )

∂T (ξ, t)
‖grad [T (ξ, t)]‖2

2 (A.2)
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Appendix B

Circle-circle intersection

The area S of a circle-circle intersection depicted in Figure B.1 can be calculated as
[Weisstein, 2014]

S = r2
1 arccos

(
d2 + r2

1 − r2
2

2dr1

)
+ r2

2 arccos

(
d2 + r2

2 − r2
1

2dr2

)
− 1

2

√
(−d+ r1 + r2)(d+ r1 − r2)(d− r1 + r2)(d+ r1 + r2). (B.1)

Figure B.1: Circle-circle intersection
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Appendix C

Derivative of a matrix-vector-product
by a vector

Given a matrix-vector-product dependent on a vector x, i.e.

A(x)v(x) =


a11(x) a12(x) . . . a1m(x)
a21(x) a22(x) . . . a2m(x)

...
...

...
an1(x) an2(x) . . . anm(x)



v1(x)
v2(x)

...
vm(x)



=


a11(x)v1(x) + a12(x)v2(x) + . . .+ a1m(x)vm(x)
a21(x)v1(x) + a22(x)v2(x) + . . .+ a2m(x)vm(x)

...
an1(x)v1(x) + an2(x)v2(x) + . . .+ anm(x)vm(x)

 . (C.1)

The derivative of (C.1) with respect to x can be calculated as

∂[A(x)v(x)]

∂x
=

=


m∑
µ=1

[
∂a1µ(x)

∂x1
vµ(x) + a1µ(x)∂vµ(x)

∂x1

]
. . .

m∑
µ=1

[
∂a1µ(x)

∂xn
vµ(x) + a1µ(x)∂vµ(x)

∂xn

]
...

...
m∑
µ=1

[
∂anµ(x)

∂x1
vµ(x) + anµ(x)∂vµ(x)

∂x1

]
. . .

m∑
µ=1

[
∂anµ(x)

∂xn
vµ(x) + anµ(x)∂vµ(x)

∂xn

]


=


m∑
µ=1

∂a1µ(x)

∂x1
vµ(x) . . .

m∑
µ=1

∂a1µ(x)

∂xn
vµ(x)

...
...

m∑
µ=1

∂anµ(x)

∂x1
vµ(x) . . .

m∑
µ=1

∂anµ(x)

∂xn
vµ(x)

+


m∑
µ=1

a1µ(x)∂vµ(x)

∂x1
. . .

m∑
µ=1

a1µ(x)∂vµ(x)

∂xn

...
...

m∑
µ=1

anµ(x)∂vµ(x)

∂x1
. . .

m∑
µ=1

anµ(x)∂vµ(x)

∂xn

 .
(C.2)
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Remark 1: For

v(x) =


x1

x2
...
xm

 (C.3)

equation (C.2) reduces to

∂[A(x)v(x)]

∂x
=


m∑
µ=1

∂a1µ(x)

∂x1
xµ . . .

m∑
µ=1

∂a1µ(x)

∂xn
xµ

...
...

m∑
µ=1

∂anµ(x)

∂x1
xµ . . .

m∑
µ=1

∂anµ(x)

∂xn
xµ

+A(x). (C.4)

Remark 2: For

v(x) =


x4

1

x4
2
...
x4
m

 (C.5)

equation (C.2) reduces to

∂[A(x)v(x)]

∂x
=


m∑
µ=1

∂a1µ(x)

∂x1
x4
µ . . .

m∑
µ=1

∂a1µ(x)

∂xn
x4
µ

...
...

m∑
µ=1

∂anµ(x)

∂x1
x4
µ . . .

m∑
µ=1

∂anµ(x)

∂xn
x4
µ

 (C.6)

+A(x)


4x3

1 0
4x3

2
. . .

0 4x3
m

 .
Remark 3: For a constant vector

v(x) = v =


v1

v2
...
vm

 (C.7)
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equation (C.2) reduces to

∂[A(x)v(x)]

∂x
=


m∑
µ=1

∂a1µ(x)

∂x1
vµ . . .

m∑
µ=1

∂a1µ(x)

∂xn
vµ

...
...

m∑
µ=1

∂anµ(x)

∂x1
vµ . . .

m∑
µ=1

∂anµ(x)

∂xn
vµ

 . (C.8)
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Taylor series expansion

Given the nonlinear system

˙̃x = f(x̃,u) =

[
f 1(x̃,u)
f2(x̃,u)

]
=


A1(x)x− εA2(x)


x4

1

x4
2
...
x4
n


0

+

[
B(x, ε)

0T

]
u (D.1)

with

x̃ =

[
x
ε

]
∈ Rn+1, u ∈ Rm (D.2)

and matrices A1(x), A2(x), B(x, ε) with appropriate dimension. The Taylor series of
(D.1) truncated after the linear term calculates as

f(x̃,u) ≈ f(ˆ̃x,u) +
∂f(x̃,u)

∂x̃

∣∣∣∣
x̃=ˆ̃x

(x̃− ˆ̃x) (D.3)

and furthermore

˙̃x ≈


A1(x̂)x̂− ε̂A2(x̂)


x̂4

1

x̂4
2
...
x̂4
n

+B(x̂, ε̂)u

0

+

[
∂f1(x̃,u)

∂x
∂f1(x̃,u)

∂ε

0T 0

]∣∣∣∣
x̃=ˆ̃x

[
x− x̂
ε− ε̂

]

(D.4)
with

∂f 1(x̃,u)

∂x
=

∂

∂x
A1(x)x− ∂

∂x
εA2(x)


x4

1

x4
2
...
x4
n

 (D.5)
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and

∂f 1(x̃,u)

∂ε
= − ∂

∂ε
εA2(x)


x4

1

x4
2
...
x4
n

+
∂

∂ε
B(x, ε)u. (D.6)

In case the elements of the matrices A1(x), A2(x) and B(x, ε) differentiated with respect
to the elements in x as well as the elements of the matrix B(x, ε) differentiated with
respect to ε are zero, i.e.

• ∂a1,µν

∂xi
=
∂a2,µν

∂xi
= 0, ∀µ, ν, i ∈ [1, n], (D.7)

• ∂bµν
∂xi

=
∂bµν
∂ε

= 0, ∀µ, i ∈ [1, n]; ν ∈ [1,m], (D.8)

equations (D.5) and (D.6) reduce according to Appendix C to

∂f 1(x̃,u)

∂x
= A1(x)− 4εA2(x)


x3

1 0
x3

2
. . .

0 x3
n

 (D.9)

and

∂f 1(x̃,u)

∂ε
= −A2(x)


x4

1

x4
2
...
x4
n

 . (D.10)
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The linearized system can then be written as

=


A1(x̂)x̂− ε̂A2(x̂)


x̂4

1

x̂4
2
...
x̂4
n

+B(x̂, ε̂)u

0
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n


0T 0



∣∣∣∣∣∣∣∣∣∣∣
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]

=


A1(x̂)x− 4ε̂A2(x̂)
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1 0
x̂3
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0 x̂3
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2
...
x̂4
n


0


+

[
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0T

]
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A1(x̂)− 4ε̂A2(x̂)
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1 0
x̂3

2
. . .
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 −A2(x̂)
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2
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x̂4
n


0T 0
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x
ε

]

+
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B(x̂, ε̂)

0T

]
u+


4ε̂A2(x̂)


x̂4

1

x̂4
2
...
x̂4
n


0

 .
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Appendix E

Standard deviation of a uniformly
distributed random variable

The probability density function of a uniformly distributed random variable x is depicted
in Figure E.1.

The mean of x calculates as

ηx =

∞∫
−∞

αfx(α) dα =

b∫
a

α

b− a
dα =

α2

2(b− a)

∣∣∣∣b
a

=
(b2 − a2)

2(b− a)
=

(b− a)(b+ a)

2(b− a)
=

(a+ b)

2
. (E.1)

With (E.1), the variance of x can be computed as

σ2
x =

∞∫
−∞

(α− ηx)2fx(α) dα =

b∫
a

[
2α− (a+ b)

2

]2
1

b− a
dα

=
1

4(b− a)

b∫
a

[
4α2 − 4α(a+ b) + (a+ b)2

]
dα

=
1

4(b− a)

[
4α3

3
− 2α2(a+ b) + α(a+ b)2

]∣∣∣∣b
a

= . . . =
1

4(b− a)

(b− a)3

3
=

(b− a)2

12
(E.2)

and accordingly the standard deviation reads as

σx =
(b− a)√

12
. (E.3)
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Appendix E Standard deviation of a uniformly distributed random variable

Figure E.1: Uniform distribution
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Appendix F

Eigenvalues of linear differential
operators

To calculate the eigenvalues of the linear operators introduced in Section 2.5, the method
of separation of variables is applied. Therefor, the simplified1 form of the heat equation
in cylindrical coordinates

∂tTi(r, t) = AiTi(r, t), i = 1, 2 (F.1)

with operators

Ai = ∂rr +
1

r
∂r (F.2)

and boundary conditions

∂rT1(r, t)

∣∣∣∣
r=0

= T1(r, t)

∣∣∣∣
r=ζ

= 0, (F.3a)

T2(r, t)

∣∣∣∣
r=ζ

= ∂rT2(r, t)

∣∣∣∣
r=R

= 0 (F.3b)

is considered. Using the ansatz [Cain and Meyer, 2006]

Ti(r, t) = vi(r)wi(t) (F.4)

for (F.1) and skipping the arguments leads to

vi∂twi = Aiviwi. (F.5)

Dividing equation (F.5) by vi and wi results in

∂twi
wi

=
Aivi
vi

, (F.6)

1See (2.9) with κ(T ) = 1 and q(r, t) = 0.
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where its left-hand side only depends on t and its right-hand side only depends on r.
Since t and r vary independent from each other, both sides are equal to some constant
value λ, i.e.

∂twi
wi

= λi ⇒ ∂twi = λwi, (F.7a)

Aivi
vi

= λi ⇒ Aivi = λvi. (F.7b)

From this it follows that λi is the eigenvalue of the differential operator. Furthermore, vi
and wi are the corresponding eigenfunctions. To calculate the eigenvalues of the operator
Ai, equation (F.7b) is evaluated, i.e.

∂rrvi(r) +
1

r
∂rvi(r) = λivi(r)

∂rrvi(r) +
1

r
∂rvi(r)− λivi(r) = 0

r2∂rrvi(r) + r∂rvi(r)− λir2vi(r) = 0. (F.8)

Eigenvalues of the operator A1: The solution of the ordinary differential equation (F.8)
with non-constant coefficients for i = 1 depends on the value of λ1. To show that (F.8)
has no nontrivial solutions for λ1 ≥ 0, three cases are considered in the following.

Case 1 (λ1 = 0): For λ1 = 0, the differential equation reduces to the so-called Euler
equation, which has the general solution

v1(r) = C1 + C2 ln r, (F.9)

where C1, C2 are arbitrary constants. The derivative of (F.9) with respect to r is
given as

∂rv1(r) = C2
1

r
. (F.10)

Since (F.10) is unbounded at r = 0, inserting the first boundary condition of (F.3a)
yields C2 = 0. Due to the second boundary condition of (F.3a), also C1 = 0 must
hold. Since (F.9) then reduces to the trivial solution, λ1 = 0 is not an eigenvalue
of A1.

Case 2 (λ1 > 0): In case λ1 is positive, equation (F.8) is the so-called modified Bessel
equation which has the solution

v1(r) = C1I0(
√
λ1r) + C2K0(

√
λ1r), (F.11)
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Figure F.1: Modified Bessel functions of the first and second kind

where C1, C2 are arbitrary constants and I0, K0 are the modified Bessel func-
tions of the first and second kind [Kamke, 1977; Zaitsev and Polyanin, 2002].
Differentiating (F.11) with respect to r yields

∂rv1(r) =
√
λ1C1I1(

√
λ1r)−

√
λ1C2K1(

√
λ1r). (F.12)

Since K1(
√
λ1r) diverges at r = 0 and I1(

√
λ1r) vanishes at r = 0, the first boundary

condition of (F.3a) yields C2 = 0. As Figure F.1a indicates, the modified Bessel
function I0(

√
λ1r) with λ1 > 0 is unequal to zero for r 6= 0. Thus, the second

boundary condition of (F.3a) points out that also C1 = 0 must hold, which in turn
means that A1 has no positive eigenvalues.

Case 3 (λ1 < 0): For λ1 < 0, the differential equation (F.8) has the general solution

v1(r) = C1J0(
√
−λ1r) + C2Y0(

√
−λ1r), (F.13)

where C1, C2 are arbitrary constants and I0, K0 are the Bessel functions of the
first and second kind [Kamke, 1977; Zaitsev and Polyanin, 2002]. The derivative of
(F.13) with respect to r is given as

∂rv1(r) = −
√
−λ1C1J1(

√
−λ1r)−

√
−λ1C2Y1(

√
−λ1r). (F.14)

Figures F.2a and F.2b depict the Bessel functions of the first and second kind.
Figure F.2a points out that J1(

√
−λ1r) vanishes for r = 0 and Figure F.2b shows

a singularity of Y1(
√
−λ1r) at r = 0. Thus, the first boundary condition of (F.3a)

yields C2 = 0. With C2 = 0 and inserting the second boundary condition of (F.3a)
into (F.13) leads to

v1(ζ) = C1J0(
√
−λ1ζ)

!
= 0. (F.15)
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Figure F.2: Bessel functions of the first and second kind

The first five positive zeros of the Bessel function of the first kind of order zero are
given as 2.4048, 5.5201, 8.6537, 11.7915 and 14.9309. Thus, the maximal eigenvalue
of A1 calculates as√

−λ1,maxζ
!

= 2.4048

λ1,max = −
(

2.4048

ζ

)2

= −
(

2.4048

0.04

)2

= −3614. (F.16)

To verify this result, the Matlab R© function bvp4c is used, which solves a boundary value
problem for ordinary differential equations [Shampine, Gladwell, and Thompson, 2003].
Furthermore, it is possible to involve unknown parameters, i.e. in our case eigenvalues,
in the differential equation. Rewriting (F.8) for the first domain and splitting the latter
in a set of two first-order differential equations yields

∂rv1(r) = ∂rrv1(r), (F.17a)

∂rrv1(r) = λ1v1(r)− 1

r
∂rv1(r). (F.17b)

Due to the usage of cylindrical coordinates, equation (F.17b) shows a singularity at r = 0.
Extracting the singular term and rewriting (F.17) in matrix notation leads to[

∂rv1(r)
∂rrv1(r)

]
=

1

r

[
0 0
0 −1

] [
v1(r)
∂rv1(r)

]
+

[
∂rrv1(r)
λ1v1(r)

]
(F.18)

The function bvp4c requires two functions: one providing the boundary conditions and
one implementing the differential equations.
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Listing F.1: Matlab functions evaluating the boundary conditions as well as the differential
equations disregarding the singularity

f unc t i on r e s = bcs ( ya , yb , lambda )
r e s = [ ya (2 ) ; yb (1 ) ; ya (1 ) −1];

end
func t i on dydx = odes (x , y , lambda )

dydx = [ y (2 ) ; lambda∗y (1 ) ] ;
end

Note that the function bcs needs to return three boundary conditions. Therefor, the
third boundary condition is chosen without influencing the eigenvalues as

v1(0) = 1. (F.19)

The next step is to provide a structure containing the initial guess for the boundary
value solver bvp4c. This can be easily handled with the help of the function bvpinit,
which needs to get an initial mesh on the interval [0, ζ] as well as an initial guess for the
solution. The latter can either be a vector, or as used here, a function, which returns
guesses for the solution. The code of the function is given in Listing F.2.

Listing F.2: Matlab function providing guesses for the solution

f unc t i on v = guess ( x )
ze ta = 0 . 0 4 ;
v = [ cos ( p i /(2∗ zeta )∗x ) ;

−pi /(2∗ zeta )∗ s i n ( p i /(2∗ zeta )∗x ) ] ;
end

Please note that the initial guess, i.e.

v1,guess(r) = cos

(
π

2ζ
r

)
, (F.20)

and

∂rv1,guess(r) = − π

2ζ
sin

(
π

2ζ
r

)
(F.21)

respectively, is chosen such that it fulfils the three boundary conditions. The problem
can then be solved as shown in Listing F.3.
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Figure F.3: Eigenvalue calculation of the operator A1 using the Matlab R© function bvp4c,
numerical solution

Listing F.3: Matlab code to solve the given boundary problem for the operator A1 using
the function bvpinit

S = [ 0 0 ; 0 −1];
opt i ons = bvpset ( ’ SingularTerm ’ , S ) ;
ze ta = 0 . 0 4 ; % Sensor p o s i t i o n
lambda = 0 ; % I n i t i a l guess f o r the e i g enva lue
s o l i n i t = bvp in i t ( l i n s p a c e (0 , zeta , 10) , @guess ,

lambda ) ;
s o l = bvp4c ( @odes , @bcs , s o l i n i t , opt i ons ) ;
f p r i n t f ( ’ Eigenvalue : %f \n ’ , s o l . parameters ) ;

Executing the Matlab R© script verifies that the eigenvalue approximately equals −3614.
The evaluated numerical solution is plotted in Figure F.3, where it is easy to see that
the obtained solution fulfils the two boundary conditions.

Eigenvalues of the operator A2: The calculation of the eigenvalues λ2 of the operator
A2 defined on the domain (F.3b) is carried out in a similar manner as done for the
operator A1. Applying the method of separation of variables here leads to the ordinary
differential spatial equation

r2∂rrv2(r) + r∂rv2(r)− λ2r
2v2(r) = 0. (F.22)

The solution of (F.22) again depends on the value of λ2. The case-by-case analysis in the
following shows that (F.22) has no nontrivial solutions for λ2 ≥ 0.

Case 1 (λ2 = 0): The general solution of the differential equation for λ2 = 0 is

v2(r) = C1 + C2 ln r (F.23)
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with arbitrary constants C1 and C2. Its derivative calculates as

∂rv2(r) = C2
1

r
. (F.24)

Inserting the second boundary condition of (F.3b), i.e. ∂rv2(R) = 0, into (F.24)
yields C2 = 0. Due to the first boundary condition of (F.3b), also C1 = 0 must
hold. Thus, λ2 = 0 is not an eigenvalue of A2.

Case 2 (λ2 > 0): In case λ2 is positive, equation (F.22) has the solution

v2(r) = C1I0(
√
λ2r) + C2K0(

√
λ2r) (F.25)

with arbitrary constants C1, C2 and the modified Bessel functions I0, K0. Differen-
tiating (F.25) yields

∂rv2(r) =
√
λ2C1I1(

√
λ2r)−

√
λ2C2K1(

√
λ2r). (F.26)

Inserting the second boundary condition of (F.3b) into (F.26) yields

C1I1(
√
λ2R)− C2K1(

√
λ2R) = 0. (F.27)

Since I1(
√
λ2R) as well as K1(

√
λ2R) are non-negative for positive arguments, it

can be concluded that C1 and C2 must have the same sign. On the other hand,
inserting the first boundary condition of (F.3b) into (F.25) yields

C1I0(
√
λ2ζ) + C2K0(

√
λ2ζ) = 0. (F.28)

Again, I0(
√
λ2ζ) as well as K0(

√
λ2ζ) are non-negative for positive arguments, which

would now require that C1 and C2 have an opposite sign. This is a contradiction to
the previous conclusion, meaning that the only solution is the trivial solution, i.e.
C1 = C2 = 0. Thus, A2 has no positive eigenvalues.

Case 3 (λ2 < 0): For λ2 < 0, the differential equation (F.22) has the general solution

v2(r) = C1J0(
√
−λ2r) + C2Y0(

√
−λ2r) (F.29)

with constants C1, C2 and Bessel functions I0, K0. Its derivative calculates as

∂rv2(r) = −
√
−λ2C1J1(

√
−λ2r)−

√
−λ2C2Y1(

√
−λ2r). (F.30)

Inserting the boundary conditions of (F.3b) into (F.29) and (F.30) respectively
yields

v2(ζ) = C1J0(
√
−λ2ζ) + C2Y0(

√
−λ2ζ)

!
= 0, (F.31)

∂rv2(R) = −
√
−λ2C1J1(

√
−λ2R)−

√
−λ2C2Y1(

√
−λ2R)

!
= 0. (F.32)
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We now have three unknowns (C1, C2, λ2), but only two equations. Without loss
of generality a third boundary condition can be introduced as2

v2(R) = C1J0(
√
−λ2R) + C2Y0(

√
−λ2R)

!
= 1. (F.33)

The set of the nonlinear equations composed of (F.31), (F.32) and (F.33) can be
easily solved numerically (e.g. with the help of the Matlab R© function fsolve).
Again, we will find infinitely many solutions. Solving for the maximal value of λ2

yields

C1 = 0.8405, (F.34)

C2 = 1.4669,

λ2 = −118.1668,

i.e. the maximal eigenvalue of A2 is

λ2,max ≈ −118. (F.35)

The obtained result can be again verified with the help of the Matlab R© function bvp4c.
The corresponding source code is given in Listings F.4 and F.5. The initial guess for v2(r)
is again chosen such that it fulfills the boundary conditions, i.e.

v2,guess(r) = sin

(
π

2(R− ζ)
(r − ζ)

)
. (F.36)

Listing F.4: Matlab code to solve the given boundary problem for the operator A2 using
the function bvpinit

zeta = 0 . 0 4 ;
R = 0 . 1 5 ;
lambda = 0 ; % I n i t i a l guess f o r the e i g enva lue
s o l i n i t = bvp in i t ( l i n s p a c e ( zeta , R, 10) , @guess ,

lambda ) ;
s o l = bvp4c ( @odes , @bcs , s o l i n i t ) ;
f p r i n t f ( ’ Eigenvalue : %f \n ’ , s o l . parameters ) ;

2The boundary condition v2(R) = 1 does not influence the zeros of the solution v2(r).
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Figure F.4: Eigenvalue calculation of the operator A2 using the Matlab R© function bvp4c,
numerical solution

Listing F.5: Matlab functions evaluating the boundary conditions as well as the differential
equations and the initial guess

f unc t i on r e s = bcs ( ya , yb , lambda )
r e s = [ ya (1 ) ; yb (2 ) ; yb (1 ) −1];

end
func t i on dydx = odes (x , y , lambda )

dydx = [ y (2 ) ; lambda∗y (1 )−1/x∗y (2 ) ] ;
end
func t i on v = guess ( x )

ze ta = 0 . 0 4 ;
R = 0 . 1 5 ;
v = [ s i n ( p i /(2∗ (R−zeta ) ) ∗(x−zeta ) ) ;

p i /(2∗ (R−zeta ) )∗ cos ( p i /(2∗ (R−zeta ) )
∗(x−zeta ) ) ] ;

end

The obtained numerical solution is plotted in Figure F.4, which shows that the boundary
conditions are fulfilled.
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Controllability inheritance for PI state
feedback controller

Given the linear, time-invariant system

xk+1 = Φxk +Huk, (G.1)

yk = Cxk

with uk, yk ∈ Rm. Furthermore, the pair (Φ, H) is assumed to be controllable. Then,
the pair (Φ̃, H̃) with

Φ̃ =

[
Φ 0
−C I

]
and H̃ =

[
H
0

]
(G.2)

is controllable if Φ has no eigenvalue at 1 and no component of the transfer function1

from uk to yk given as

G(z) = C(zI −Φ)−1H = −C(Φ− zI)−1H (G.3)

=


G11(z) G12(z) . . . G1m(z)
G21(z) G22(z) . . . G2m(z)

...
...

. . .
...

Gm1(z) Gm2(z) . . . Gmm(z)


has a zero at 1, i.e.

Gij(z)|z=1 6= 0, ∀i, j ∈ [1,m]. (G.4)

This can be proved by applying the Hautus criterion to the pair (Φ̃, H̃), i.e. the latter is
controllable if and only if every left eigenvector vTi corresponding to the eigenvalue λi
of Φ̃ fulfills

vTi H̃ 6= 0T . (G.5)

1The discrete-time transfer function from uk to yk is given as G(z) = ȳ(z)
ū(z) , where ū(z) and ȳ(z)

denote the z-transform of uk and yk.

117



Appendix G Controllability inheritance for PI state feedback controller

According to the division of the matrix H̃ , the left eigenvector can also be decomposed
as

vTi =
[
vT1,i vT2,i

]
(G.6)

and equation (G.5) can be rewritten as

[
vT1,i vT2,i

] [H
0

]
= vT1,iH 6= 0T . (G.7)

The eigenvalue equation for calculating vTi reads as

[
vT1,i vT2,i

] [ Φ 0
−C I

]
= λi

[
vT1,i vT2,i

]
. (G.8)

Expanding (G.8) yields the two equations

I : vT1,i(Φ− λiI)− vT2,iC = 0T ,

II : vT2,i = λiv
T
2,i. (G.9)

For eigenvalues that are unequal to 1, vT2,i must be zero due to the second equation
of (G.9). The first equation of (G.9) then reduces to the eigenvalue equation with
respect to Φ and due to the controllability of the pair (Φ, H) it can be concluded that
equation (G.7) is fulfilled.

The eigenvalues of Φ̃ that are equal to 1 result from adding integrators. In this case vT1,i
calculates as

vT1,i = vT2,iC(Φ− I)−1. (G.10)

Please note that vT2,i has to be non-zero, otherwise this would lead to the trivial solution.
Furthermore, the inverse of (Φ − I) exists, since Φ has no eigenvalues equal to 1.
Multiplying (G.10) with H from the right side yields

vT1,iH = vT2,iC(Φ− I)−1H = −vT2,iG(z)|z=1. (G.11)

Since vT2,i is non-zero and due to assumption (G.4), the right-hand side of (G.11) is
unequal to zero. Thus also

vT1,iH = vTi H̃ 6= 0 (G.12)

holds and it can be concluded that the pair (Φ̃, H̃) is controllable.

118



Bibliography

Ahmed-Ali, T., F. Giri, and M. Krstic (May 2017). “Observer design for triangular
nonlinear systems in the presence of arbitrarily large output delay - a PDE based
approach.” In: American Control Conference (ACC), pp. 481–486 (cit. on p. 53).

Baehr, H. D. and K. Stephan (2011). Heat and Mass Transfer. 3rd. Berlin; Heidelberg:
Springer. isbn: 978-3-642-20020-5 (cit. on p. 10).

Banks, H. T., B. M. Lewis, and H. T. Tran (2007). “Nonlinear feedback controllers and
compensators: a state-dependent Riccati equation approach.” English. In: Compu-
tational Optimization and Applications 37.2, pp. 177–218. issn: 0926-6003 (cit. on
p. 29).

Cain, G. and G. H. Meyer (2006). Separation of Variables for Partial Differential Equations
- An Eigenfunction Approach. CRC Press (cit. on p. 108).

Ching-An, L. and J. Yaw-Kuen (Jan. 2001). “Control system design for a rapid thermal
processing system.” In: Control Systems Technology, IEEE Transactions on 9.1,
pp. 122–129. issn: 1063-6536 (cit. on p. 7).

Choi, J. Y., H. M. Do, and H. S. Choi (Nov. 2003). “Adaptive control approach of rapid
thermal processing.” In: Semiconductor Manufacturing, IEEE Transactions on 16.4,
pp. 621–632. issn: 0894-6507 (cit. on p. 7).

Ebert, J. L. et al. (June 2004). “Model-based control of rapid thermal processing for
semiconductor wafers.” In: American Control Conference, 2004. Proceedings of the
2004. Vol. 5, 3910–3921 vol.5 (cit. on p. 7).

Franklin, G. F., M. L. Workman, and D. Powell (1997). Digital Control of Dynamic
Systems. 3rd. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn:
0201820544 (cit. on pp. 32, 33).

Grewal, M. S. and A. P. Andrews (2001). Kalman Filtering: Theory and Practice with
MATLAB. Second Edition. Wiley Press. isbn: 0-471-26638-8 (cit. on pp. 38, 40).

Hanus, R., M. Kinnaert, and J.-L. Henrotte (1987). “Conditioning technique, a general
anti-windup and bumpless transfer method.” In: Automatica 23.6, pp. 729–739. issn:
0005-1098 (cit. on pp. 65, 67, 69).
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