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Abstract

Frame prediction is a well studied problem in Computer Vision, but no
satisfactory results are given so far, and the road to unsupervised video rep-
resentation learning is still far. Problems are, for instance, the generation of
unrealistic scenes, the computational excess of computing pixel trajectories
and the poor visual quality of resulting images.

With recently emerged models like the Variational Autoencoder (VAE) and
the Generative Adversarial Network (GAN) the generated images look
promising, and training them became more stable since the Wasserstein
GAN (WGAN) was introduced. We present a new VAE-GAN mixture
model, named EncGAN, that is able to predict a future frame of a video
sequence when given a sequence of past frames. To take the temporal
component of the past frames into account, a convTime network layer is
used. The improved WGAN loss function is used to learn the networks in an
adversarial manner. The model extends a normal WGAN to a larger network
that comprises an Encoder, which in turn includes the aforementioned time
convolutions.

Experiments were conducted on the MNIST and moving MNIST datasets.
The network is applicable to different datasets when adapted to the image
size. The results show that the mixture model outperforms the improved
WGAN and is able to learn to generate sharp images.

Code is available at https://github.com/tanlinc/Motionganvae.
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1 Introduction

Imagine you have a robot arm and would like to program it to grasp an
arbitrarily placed item. Or you are working with autonomous cars and
should decide which direction to steer. What is common between the two is
that they rely on Computer Vision. Having one or more cameras mounted
on them, the robot and the car both produce image sequences that can be
used for the tasks. But for the decision which action should come next,
we do not only need to know the past action, but also the possible future
motions. Thus, knowing what happens next in a scene, based on a sequence
of images, is the fundamental question. However, the quality of a predicted
future frame is crucial. If it is blurry or unrealistic, its reliabilty and usage
for applications are limited. Being able to predict a sharp and realistic
future frame for a given video would enable us to synthesize a short movie
from a few initial frames, e.g., to show ideal movements of a sport action,
restore videos with missing frames, or compute super slow motion of an
existing video. A problem – but also a great chance – is that there are
multiple plausible future frames given some past frames, so judging the
realism may be difficult. On the other hand, models that are able to generate
different possible future frames may reveal interesting information about
how ambiguous a detected motion is.

By predicting motion it is possible to decide on future actions. But what
exactly is meant by motion, and how can it be described? Different ways of
describing a motion pattern are common in computer vision, depending
on the discipline and the use context. For example, it could be represented
as an optical flow field (given an image pair), as a direction vector (e.g., of
the camera movement), as a label of an action that is performed in a given
image or video, or as a sequence of (future) frames.
Thus, specifying a motion can mean to classify into labels, e.g., Skiing,
Swimming or Flying. In this way it is called action classification. A motion
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1 Introduction

can also be represented by an optical flow field. An example flow field is
depicted in figure 1.1. Usually the flow field between two consecutive frames
is estimated (flow estimation), but it is also possible to predict future flow
fields [23]. Predicting motion can also mean the generation of future frames.
In this thesis this frame prediction will be investigated. The camera motion is
not separately modeled but rather implicitly included in the objects moving
in the scene by the future frame predictor.

Figure 1.1: An example of Optical Flow on a scene from the MPI Sintel
dataset, category Market 2. The two frames in the first row, the
Optical Flow between them in the bottom left corner, visualized
by the Middlebury Flow Color Code, which is representing dif-
ferent motion directions by different colors, code key in bottom
right corner.

Predicting the future is however not unimodal. Usually more than one
possible outcome is plausible. As you can see in figure 1.2 a frame can have
multiple plausible future frames. The same is valid for a sequence of frames
– more frames may restrict the possibilities of plausible future frames, but
there is never only one realistic future frame.

This motion ambiguity can be tackled, e.g., by not predicting future frames
directly, but instead by sampling the frames from an estimated probability
distribution of the future frames. This approach is used by recently emerged
models like Variational Autoencoder (VAE) and Generative Adversarial

2



Figure 1.2: Future frame prediction is not unimodal. Given one frame (left),
there are multiple plausible future frames and movements (right).
Images are taken from MPI Sintel dataset, category Ambush 7

Network (GAN), which will be explained in more detail in section 2.2.

Current research in Computer Vision already uses these models for motion
prediction, e.g., [38] uses a conditional VAE to predict future frames up to
one second with only one past frame as input. One frame can of course not
reveal the direction of the past movement, so sampling preconditioned on a
given input frame can lead to movement in different directions, which again
shows the multimodality. This thesis will experiment with more than one
frame as input in order to make the model infer a future frame matching to
a sequence of past frames. Early GANs had problems with mode collapse,
meaning that they would only output samples from few modes of the
probability distribution and disregard other modes, as can be seen in figure
1.3.

Figure 1.3: Mode collapse problem in 2D. The desired distribution pdata in
blue has two modes, but the learned distribution pmodel in red is
only covering one mode, disregarding the other peak.

This mode collapse is claimed to be solved with the improved Wasserstein
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1 Introduction

GANs [2, 12], which makes GANs the better choice for image generation,
since they showed better image quality in terms of sharpness from the start.
Therefore the GAN model was chosen to be the basis to build on for this
thesis, with the goal to develop a more realistic and good quality future
frame prediction. In their paper Dual motion GAN for future-flow embedded
video prediction, Liang, Lee, Dai and Xing [23] are describing how they predict
frames and flow, using warped flow to improve the frame predicition as
well as estimating the flow from the predicted frame to enhance the flow
prediction, thus calling it a dual GAN. Their architecture is trained end-to-
end on large images (256x256 pixels), which is hard to achieve in a GAN
setting. At the time of writing no source code was publically available.

In this thesis we will implement a novel model combining elements of
VAEs and GANs to get the benefits of both concepts. Through adding a
temporal layer it will be possible to process several consecutive input frames
simultaneously. We will investigate if these steps help to generate plausible
future frames. For the experiments our developed model was trained on
certain datasets, namely MNIST and moving MNIST, but it can be trained
on any dataset with a sufficient number of images. Therefore any domain
of movements, also real-world scenes, become predictable. With the help of
experiments VAE and GAN will be compared, and it will be investigated
if by combining both models better images can be generated. Moreover, a
frame prediction will be built by adding conditional input, and the benefit
of a sequence of frames as input will be researched.

4



2 Basics

A digital image consists of pixels, where each pixel captures the light
intensities observed from a point in a scence. The common RGB format uses
three channels, i.e., three intensity values, one value for red, one for green
and one for blue, whereas grayscale images only have one intensity channel.
To analyze videos which consist of several frames, the changes from frame
to frame in every pixel can be evaluated. However, not only the intensity of
single pixels is important, but it also helps to look for features. These can be
edges or other regions having a big contrast in at least one direction to their
neighboring pixels and being rotation invariant. Applications like gesture
recognition, object tracking and motion estimation were made possible with
the help of manually created features. The so called Neural networks define
features implicitly, since the architecture does not restrict which feature
should be searched in the images. The networks thus learn their own filters,
which can be visualized by plotting the learned weights.

In the following part, neural networks are presented. In addition, generative
networks – special architectures of neural networks that can generate new
images – are introduced. Especially the used concepts VAE and GAN are
explained in detail, since they are the basis for the newly developed model.
Afterwards, different datasets for machine learning on images are presented
shortly, to explain why the certain datasets were chosen for our experiments.
Furthermore, the evaluation of the experiments is explained and assessed
for trustworthiness. For that, we take a closer look at image metrics and
their advantages and drawbacks. In the end, a short overview of how to
process a sequence of past frames is given, where the used time convolution
method is presented.

5



2 Basics

2.1 Neural networks

Neural networks are a model trying to imitate how a human brain works.
However, the complex biological model is only adapted in a very simplified
way. In the end, neural networks are a model able to approximate functions.
Starting from a single neuron, we will proceed to see how to build powerful
deep networks with the help of simple mathematics. We will take a look
at the training of these networks, the so called backpropagation, and the
algorithms to train them.

2.1.1 General structure

The sections 2.1.1 and 2.1.3 are based on the book [31]. The nervous system
in the brain is composed of neurons that receive signals and produce a
response. To build artificial neurons, only a few parts are adopted from
the biological model: input channels (dendrites), a cell body, and an output
channel (axon).

Signals coming from different input channels are collected in a cell. Each
signal is an all-or-none event but the number of input channels that need to
be triggered for an output signal to happen is different. Sometimes a single
input channel can push a cell to fire, but other input channels can achieve
this only by simultaneously exciting the cell.
To imitate this, we associate a weight wi with each input channel i (1 ≤ i ≤
n).
In the brain, if all n input channels are activated at the same time, the signal
which will be received is an additive one: w1 + w2 + . . . + wn. If this value
is greater than the cell’s threshold, the cell will fire a pulse.

The general structure of an artificial neuron is shown in figure 2.1. It can
be seen that each neuron collects the information from n input channels
with an integration function g : Rn 7→ R. Usually the integration function is
the sum of the inputs, i.e., the incoming real-valued xi is multiplied by the
corresponding real-valued weight wi and everything is summed up. The
output value of that unit is then determined using an activation function
f : R 7→ R. The activation function compares the sum with a threshold –

6



2.1 Neural networks

Figure 2.1: Abstract neuron with n inputs. Integration function g is usually
addition, activation function f determines the output value.

usually it is chosen such that it can produce all values between 0 and 1, e.g.,
the sigmoid function σ(x).

σ(x) =
1

1 + e−x (2.1)

If we conceive each node in an artificial neural network (NN) as a primitive
function capable of transforming its input to an output, then NNs are
nothing but networks of primitive functions. In fact, they represent a chain
of function compositions which transform an input to an output vector – a
network function Φ which is evaluated at the point (x1, x2, . . . , xn).
Assuming g is the usual summation, the network function for the simple
network consisting of one neuron in figure 2.1 can be computed as follows:

Φ(x1, x2, . . . , xn) = f (g(x1, x2, . . . , xn)) = f (w1x1 + w2x2 + . . . + wnxn)
(2.2)

The learning problem consists of finding the optimal combination of weights
so that Φ approximates the target function φ as closely as possible. However,
the target function φ may be complex and is not provided explicitly to the
network, but only implicitly through some known datapoints. Thus, the
network must learn to interpolate the input-output mapping pairs that can
be found in the training set in order to be capable of evaluating new points
that are not in the training set.

The models of artificial neural networks differ mainly in the primitive
functions used, the topology of the graph and the learning algorithm that is
used.

7



2 Basics

Figure 2.2: Layered architecture with n inputs. The green neurons are the
input layer, the blue ones build the hidden layers, and the output
layer consists of the red units.

The simplest type of connecting neurons is to build a directed graph, called
a feed-forward network. It comprises successive layers of neurons and is not
allowed to contain cycles.

Layered architectures have a set N of neurons which can be divided into
subsets building the layers. So N1, N2, . . . , Nk are the layers, and neurons
in Ni only connect to neurons in Ni+1 for 1 ≤ i ≤ k− 1. The input is only
connected to the neurons in the input layer N1, and the neurons of the output
layer Nk are the only ones connected to the output. Any other layers with
no direct connections from or to the input or output are called hidden layers.
Such a general layered network is depicted in figure 2.2. As also visible
in the figure, in layered architectures usually all neurons from one layer
are connected to all neurons in the following layer, which is called a fully
connected layer.

So to build a layered neural network, we can decide on the structure in
regard to the number of layers, the number of neurons in these layers and
the activation functions of these neurons.

2.1.2 Convolutional neural networks

Convolutional Neural Networks (CNNs), a specific kind of neural networks,
are one of the wide-spread architectures nowadays. They were already
used for recognition of handwriting in 1996 by LeCun [21]. CNNs consist
of convolutional layers, working similar to the convolution done in image
processing. In these layers a small filter kernel is moved over the whole

8



2.1 Neural networks

input and for the current window patch the filter value is computed - one
neuron is needed for each patch. The computation is still efficient, because
the weights are shared – the whole layer has the same weights for the filter
kernel. Therefore, the weights that need to be learned are not scaling up
with the resolution of the input.

There can be several convolutional layers after each other, which is then
often called a deep CNN. By stacking the CNNs, in each layer larger and
more descriptive features can be extracted, e.g., first only edges, but later
whole faces. This happens because each layer is already getting a more
descriptive input than the previous one, allowing it to extract even more
descriptive information. Furthermore, the deeper we go into the network,
the more of the input image will be reached by the neuron, since the
neurons are connected locally. Neighboring image patches are neighboring
neurons which will be both used for the next layer input. This creates a local
connectivity, similar to receptive fields in the human eye.

The most common activation function in CNNs is a rectified linear unit
(ReLU), which maps all negative input to zero, but keeps positive input as it
is.

ReLU(x) = max{0, x} (2.3)

Another version of it is the leaky ReLU, multiplying the input by a small
real constant α if the neuron outputs a value smaller than 0. That is how
it ensures to have a small positive gradient even when the neuron is not
active.

leaky ReLU(x) =

{
x if x > 0
αx otherwise

(2.4)

2.1.3 Training of neural networks

The topology of a defined network is not modified during learning, so
only an optimal combination of weights is sought. Learning takes place by
adapting the weights of the network with a numerical algorithm. A learning
algorithm is an adaptive method by which a neural network is tuned to
implement the desired behavior. This is for example done by presenting

9



2 Basics

some examples of the desired input-output mapping from the training set
to the network. A correction step of the network parameters is executed
iteratively until the network learns to produce the desired response.

Let us consider a feed-forward network with n input units, m output units
and any number of hidden units. Let the primitive functions at each node
of the network be continuous and differentiable, and the weights of the
network be real numbers that are randomly initialized. Lastly, let the training
set (x1, t1), . . . , (xp, tp) consist of p ordered pairs of n- and m-dimensional
vectors, where ti is the target vector of xi. So, when feeding xi to the network,
we expect the output to be ti.
When the input xi from the training set is presented to the network, it
produces an output vector oi different from the target vector ti. Our aim is
to make oi and ti identical for i = 1, . . . , p by using a learning algorithm.
More precisely, we want to minimize the loss function LNN of the network,
which can be, for instance, defined with the l2 loss:

LNN =
1
2

p

∑
i=1
‖ oi − ti ‖2

2 . (2.5)

When unknown inputs are presented to the network, it is expected to
interpolate. It should recognize whether a new input is similar to a learned
one and if so produce a similar output.
In order to find a local minimum of the loss function – or if possible even the
global minimum ∇LNN = 0 – the backpropagation algorithm can be used. The
gradient of the quadratic loss function, ∇LNN = ( ∂LNN

∂w1
, ∂LNN

∂w2
, . . . , ∂LNN

∂wj
), is

a continuous and differentiable function of the weights w1, w2, . . . , wj. It can
be computed recursively with the help of the chain rule, since the network
is equivalent to a chain of function compositions. We can thus minimize
LNN by using an iterative process of gradient descent, every time calculating
the gradient and using it to correct the weights.

wk+1
i = wk

i − γ
∂LNN

∂wk
i

for i = 1, . . . , j (2.6)

Each weight is adjusted by adding the partial gradient to it. γ represents the
learning rate, i.e., a parameter which defines the step length of each iteration
in the negative gradient direction.

10



2.2 Generative models

We will now take a closer look at gradient based optimization algorithms.

Standard gradient descent (batch learning) is an iterative method to find a
minimum. It works with objective functions that are composed of a sum of
differentiable functions. It sums up all gradient updates of the training set
for the specific weight before executing the update of the weight.

Stochastic gradient descent (SGD, online learning) works similarly, but the true
gradient for the specific weight is approximated by the gradient calculated
at a single example. The algorithm thus performs a weight update after
every randomly selected example of the training set. To ensure that the
algorithm converges, the training set can be passed several times, or an
adaptive learning rate can be used.

A compromise between the two approaches is to compute the gradient with
the help of more than one training example for each step (on a mini-batch).
Working on mini-batches usually leads to smoother convergence, in contrast
to the zig-zagging often seen with SGD.

Root Mean Square Propagation (RMSProp)[37] is a modified version of SGD,
and can even work with mini-batches. It adopts the learning rate to each
parameter, by using a running average of the squared gradients.

Adaptive Moment Estimation (Adam)[17] is an updated version of RMSProp.
It keeps running averages of both the gradients and the second moments of
the gradients.

2.2 Generative models

Let us assume we have a dataset and a distribution pdata that represents that
dataset. Moreover, let us assume that the distribution pdata is unknown to
us, and we can only use samples to find out more about it.
The generative models that are investigated within this work are models
that learn to produce new image samples that appear to come from the
data distribution pdata. In an unsupervised learning phase the input for the
model consist of samples from the dataset. During the training the model
learns to match the distribution pmodel to pdata. The output (when testing)

11



2 Basics

are image samples from the learned pmodel distribution.
It is obvious that generative models are of great value when the probability
distribution pdata is a very complicated distribution and very hard or even
intractable to infer. So, having a generative machine that generates samples
from pmodel that appear as if they come from pdata, without having to deal
with the complex probability distribution itself is useful. This is especially
true if we have another process that requires samples from pdata, as we can
get samples relatively cheaply using the trained model.

As mentioned before and shown in figures 1.2 and 1.3, the desired dis-
tribution pdata may be multimodal, meaning there can be many different
plausible outcomes. The samples drawn from the learned distribution pmodel
should reflect that. For instance, when the task is to produce similar images
as in the MNIST dataset (handwritten digits from 0 to 9), all digits should
be present if enough samples are generated and the style of the digits in the
output samples should differ, e.g., partly being cursive or bold similar to
the original dataset.

Generative models can also be used for tasks like single image super res-
olution (input: low resolution, output: synthesized higher resolution) [22],
text to image [42] and image to image translation (e.g., aerial photo to map)
[16].

2.2.1 Variational Autoencoder (VAE)

To understand what a Variational Autoencoder is, let us first see what an
Autoencoder is, or even simpler, an Encoder.

Encoding means to translate from one domain to another, and if desired,
with the possibility of getting the original input back, which is decoding.
This procedure is known from Cryptography, e.g., applying Caesar chiffre,
or in Image compression, e.g., run length encoding images. So having an
Encoder (and Decoder) means having a function mapping from a certain
domain to another one (and back respectively).

In image applications, encoding can be realized via convolutions, and
decoding via transpose convolutions, so the Encoder and Decoder are
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Figure 2.3: Autoencoder structure

usually neural networks. The Encoder maps an input image to a smaller
representation, namely the code vector, through a convolution or a series of
convolutions, and the Decoder can transform that code vector back to the
original image by a convolution or a series of deconvolutions. That leads to
the certain shape of an Autoencoder as can be seen in figure 2.3.

Autoencoders in general thus try to represent the data of an image in the
compact representation of a code vector. An application is to store this code
vector instead of the original image to only reconstruct the original image
later, when needed. How well they can reconstruct the input depends on
the size of the code vector, i.e., how many features can be stored, as well as
on the size and complexity of the Encoder and the Decoder networks. The
training loss for an Autoencoder is thus a reconstruction error, i.e., the error
comparing the reconstructed image to the original image with a metric like
Mean Squared Error (MSE).

However, what we would like to have is a generative model that reconstructs
an image similar to the input image, but not an Autoencoder that memorizes
the input image completely. This can be achieved by adding a regularization
term (for instance a sparsity penalty) to the training loss or by only keeping
the strongest hidden neuron activations [24].

A similar method is the Variational Autoencoder (VAE) which is useful for not
only reconstructing original images from their codes, but also generating
new similar, but not identical images by sampling from a prior distribution.
A VAE is still formally an Autoencoder, but with the additional constraint
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on the Encoder that it must generate a code which is roughly like being
sampled from a desired prior distribution. Mostly a simple distribution like
Gaussian is chosen for the prior [6]. As the goal of VAE is to be able to
generate new samples according to a given prior distribution, it is still seen
as a generative model. The VAE was invented at the end of 2013 by Kingma
and Welling [18] as well as Rezende et al. [30]. It is an unsupervised method
that can be trained with standard gradient descent-based methods.

A VAE is able to capture dependencies between pixels in an image, for
instance, pixels of the same color, identical objects, or movements in the
same direction. Because of that, the low-dimensional representation of the
data that is learned by it is not called code vector but rather latent space
or latent variable z. The latent refers to the information represented in the
code vector, which cannot be influenced directly, but if we look at the
images generated when interpolating one dimension of it, we might see
what changes in the generated images are influenced by it. However, since
the representation is intended to be very compact, it is very unlikely that
a single dimension just represents one single property. The latent variable
therefore stores the truly relevant data from the input image.
Since these latent variables are usually not designed manually, it is mostly
unknown what information exactly is stored there, and we can only get hints
about what they contain through interpolation. The latent variable is usually
multi-dimensional, but for visualization purposes we can choose a two
dimensional vector. In figure 2.4 we see that for a VAE trained to reproduce
the MNIST dataset of handwritten digits, the horizontal dimension is the
style of the handwriting – rather straight turning to rather cursive.

In the paper [29] Radford et al. train a generative network on a newly
assembled dataset of faces, and show that it is possible to do easy arithmetic
calculations in latent space with associated property labels to get a desired
output image.
[smiling woman] - [neutral woman] + [neutral man] = [smiling man].

The parameters that can be chosen for a VAE are partly architecture-related,
e.g., the number of hidden layers, the number of neurons, the activation
functions and the initialization of the network weights. On the other hand
we can choose the learning rate for the optimization algorithm, the batch
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Figure 2.4: 2D MNIST learned latent space: reconstructions interpolating in
z-space seem to get more cursive in horizontal direction

size for the mini-batches that are used for the optimization step and the
number of training epochs.

The VAE has to handle the trade-off between reconstruction accuracy of the
network versus the closeness of the latent variable z to the desired prior
distribution p(z). The loss LVAE that is optimized therefore consists of two
parts 1– the reconstruction loss Lrec and the latent loss Llatent.

LVAE := Lrec + Llatent (2.7)

The reconstruction loss Lrec (also called generative loss) is defined as the
negative log probability of the input image x under the reconstructed output
distribution of the Decoder Dec(x | z). It represents the measurement of
accuracy of the reconstruction.

Lrec := −Ez∼Enc(z|x)[log Dec(x | z)] (2.8)

1The loss can be derived from a lower bound on the data likelihood of the network
parameters [18]
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The latent loss Llatent is the Kullback-Leibler divergence (KL) between the
distribution in latent space induced by the Encoder Enc(z | x) and the prior
distribution p(z). The KL divergence is a measure of difference between two
distributions. It thus serves as a regularizer for the optimization, forcing the
latent space to be as close as possible to the chosen prior, e.g., a Gaussian
distribution.

Llatent := KL[Enc(z | x) ‖ p(z)] (2.9)

If both distributions, Enc(z | x) and p(z), are assumed multivariate Gaus-
sians, the Kullback-Leibler divergence KL can be calculated in closed form
[6]. The final latent loss is then given as:

Llatent =
1
2
(1 + log(σ2)− µ2 − σ2) (2.10)

Usually the Adam optimizer [17] is chosen to minimize the cost function.
The optimization with such a standard gradient descent algorithm is only
possible due to the reparametrization trick. Without this reparametrization,
the Kullback-Leibler divergence would not be viable for backpropagation,
and it would therefore not be possible to optimize the loss with a SGD
algorithm. The reparametrization, shown in figure 2.5, reformulates the
latent loss containing the Kullback-Leibler divergence. It tells the Encoder to
produce a vector of means µ and a vector of standard deviations σ instead
of producing a code z. A sampled z for the Decoder is obtained by summing
the mean and the product of standard deviation and a sample from a prior
distribution, changing its location and scale.

zsampled = µ + (σ · samples) (2.11)

Hence the intractable sampling operation is shifted into an input layer and
made usable for backpropagation.

This reparametrization trick in fact also generalizes the network and makes
the Encoder more efficient in generating new examples, since a random
code (not from the training set) will lead to a new decoded image.
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Figure 2.5: Reparametrization trick in the VAE: mean and standard devia-
tion vectors are used to sample z for the Decoder.

With the trained network, apart from generating new similar images, the
partial step of transforming images to latent space or the broader step of
reconstructing input images is possible. In figure 5.2(a) in the evaluation
section we can see an example reconstruction of images of the MNIST
dataset. It is visible that the reconstructed images are close to the input
images, but a bit blurry and some digit parts are missing or incomplete.

Figure 2.6: Conditional VAE: some dimensions of the latent code vector are
manually determined to represent conditional information like
labels.

Conditional VAEs (cVAEs) are an expansion of VAEs - as the name suggests,
they condition the network on something, e.g., a label. It is not standardized
in what form and when the conditional information is provided, e.g., it can
be concatenated with the code vector at the input of the Decoder or at one
or more convolutions. A rough structure is shown in figure 2.6. Sticking to
the MNIST example, we could provide the label of the digit that is shown in
the image as additional information to both the Encoder and the Decoder,
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and thus make sure that when giving the Decoder a certain latent code and
a digit label, that only that digit is produced as output. We can condition
the network on any information, not only labels, but also images or text.

To sum it up, due to the Encoder-Decoder architecture, the VAE enables
comparison of generated images to input images. For the comparison of im-
ages, different image metrics are used. With VAEs we can also do arithmetic
operations in latent space to create an image with certain features. However,
VAEs tend to give blurry outputs, since they work with the Mean Square
Error directly.

2.2.2 Generative Adversarial Network (GAN)

Another generative model is the so called Generative Adversarial Network.
It was first introduced in a NIPS 2014 paper by Ian Goodfellow et al. [10]
and rose a lot of interest from the community. In the paper Goodfellow
gives a short overview of the GAN model and its applications. Later [11] he
presents the GAN in more detail including: (1) Why generative modeling is
a topic worth studying, (2) how generative models work, and how GANs
compare to other generative models, (3) the details of how GANs work,
(4) research frontiers in GANs, and (5) state-of-the-art image models that
combine GANs with other methods. Soon also variants of the standard
GAN like Deep Convolutional GAN (DCGAN) [29] or Sequence-GAN [41]
were developed and GANs got used for many applications, as presented in
section 3.2.

As seen in figure 2.7, the structure of a GAN is like a 2-player game,
with the two players called Generator G and Discriminator D. The name
adversarial stems from there, since it can be analyzed with the tools of game
theory, where two adversaries play against each other. The Generator creates
samples, and is trained to make them look as if they were coming from the
training data (distribution). Its goal is to make its samples indistinguishable
from the training distribution samples. The Generator gets noise as input
so he will not produce the same image once he is trained but gives another
image variation for every little change in the noise input.
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Figure 2.7: Generator G creates fake images from noise. They are given to
the Discriminator D for evaluation. Discriminator D gets fake
and real images. It tries to classify all real ones as 1s and all fake
ones as 0s. Learning is converging if neither Discriminator nor
Generator can improve its performance.

The Discriminator gets in total 50% real samples from training data and 50%
fake samples from the Generator, examines one by one and has to decide if
the sample is real or fake. Ds goal is to have a low classification error. This
procedure corresponds to traditional supervised learning.

The solution to this 2-player game is a so called Nash equilibrium [13]. In
this case, we want the Generator to learn to generate samples so well that
they are drawn from the same distribution like the training data and the
Discriminator to have a 50% chance to guess right. As seen in figure 2.8, at
first the distribution of the generated samples and the original data distri-
bution do not match. However, the Discriminator will soon learn features
to distinguish real from fake samples. Through the adversarial learning,
information is backpropagated to the Generator, and the Generator can learn
to reproduce the important features. In the end, if a perfect equilibrium is
reached, the Discriminator can only guess, and the distribution represented
by the Generator matches the original data distribution from the given
dataset.

Usually both Generator G and Discriminator D are deep neural networks,
so to enable learning with backpropagation for both G and D, they must be
fully differentiable. The training consists of updates on both the Generator
and the Discriminator, either done after each other or simultaneously. Some
works recommend doing more steps for one of the players, e.g., the improved
Wasserstein GAN [12], whereas Ian Goodfellow suggests simultaneous
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Figure 2.8: Learning of a GAN. The Discriminator learns first and will in-
centivise the Generator to do so as well. If a perfect equilibrium
is reached, the Discriminator can only guess, and the distribu-
tion represented by the Generator matches the original data
distribution. Figure adapted from [10].

updates to be most successful in his GAN tutorial from 2016 [11]. The
updates are usually done as a step of Stochastic Gradient Descent, e.g., with
the Adam optimizer.

The cost function for D is chosen as a cross-entropy loss. The original
formulation of the cost from Goodfellows paper [10] is as follows:

LGAN = minG maxDEx∼pdata(x)[log D(x)] + Ez∼pz(z)[log (1− D(G(z)))]
(2.12)

For a Generator update, only the last part of the term has to be evaluated,
since the Generator is not involved in assessing the real samples. The
Generator tries to minimize the equation 2.12. If the Discriminator outputs 1
for a fake sample, the logarithm will be negative. The maximum possible – if
the Discriminator classifies all fake samples as 0s correctly – is the Generator
cost to be zero since log(1) = 0.
For a Discriminator update, the whole term is taken, and it is maximized,
trying to reach zero for both parts by classifying all real examples as 1s (first
part) and all fake examples as 0s (second part).

An improvement to the cost function was suggested by Arjovsky et al. [2] in
2017, taking the so called Earth-Mover distance (EM) or Wasserstein-1 distance
as the distance between the probability distributions. This distance gives an
estimate about the cost of transforming pdata into pmodel. The Wasserstein
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distance defined the name of the new GAN variation, namely Wasserstein
GAN (WGAN). The authors also introduced weight clamping to operate on
compact space and have k-Lipschitz functions which are differentiable.
Because of that we are able to train the Discriminator till optimality and
thus their model shows promising results to get rid of the problem of mode
collapse that the original GAN formulation had. They call the Discriminator
part critic, since it is not discriminating any more. The best critic is found by
optimizing this equation:

minG maxD∈DW(D, G) (2.13)

where D is the set of 1-Lipschitz functions and

W(D, G) = Ex∼pdata(x)[D(x)] + Ez∼pz(z)[D(G(z))] (2.14)

The authors admit that the training may become unstable if a momen-
tum based optimizer like Adam is used, or if too high learning rates are
applied.

It was shown in [12] by Guljarani et al. that Adam can actually be used and
accelerates the learning, if weight clipping is not used but instead of it an-
other method called gradient penalty is applied to ensure Lipschitz continuity
of the Discriminator. Guljarani et al. claim that weight clipping leads to
undesired behaviour, e.g., deep WGAN critics not converging and failing to
capture higher moments of the data distribution. They clarify that it occurs
because weight clipping makes the critic turn toward simpler functions,
only learning approximations of the optimal functions. They also point out
that there can be interactions between the weight constraint and the cost
function causing exploding or vanishing gradients. Moreover, they mention
that batch normalization is changing the form of the Discriminator problem
and therefore should be left out, they propose to use layer normalization
instead.

The gradient penalty, which enforces a gradient norm of 1 almost every-
where for the optimal WGAN Discriminator function puts a penalty on
the gradient norm for random samples pitpl taken form the straight lines
between points from the data distribution and the Generator distribution.
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The Discriminator will thus be 1-Lipschitz if it has a unit gradient norm
almost everywhere. This gradient penalty term is added to the Discriminator
loss of the original WGAN and is empirically given a weight of λ = 10. The
authors suggest a two-sided penalty, only forcing the gradient to go towards
1 and not having to stay below 1 at all times. The loss for the improved
WGAN training is thus looking like this:

Lwgan−gp = minG maxD W(D, G) + λEx̂∼pitpl [(‖ ∇x̂D(x̂) ‖2 −1)2] (2.15)

As mentioned earlier, the paper also suggests five Discriminator updates
for every Generator update, both networks being updated after each other
and not simultaneously. Guljarani et al. claim that their algorithm is stable
for different sizes and designs of network architecture, converging for
most models and showing a better performance than the original WGAN
formulation. The implementation of this thesis is based on the code of the
improved WGAN training.

There are so called conditional GANs, similarly structured like the conditional
VAEs that were explained earlier. The structure can be seen in figure 2.9.
The network also gets a condition as additional input, e.g., the label of the
image it is learning. Thus the GAN can for instance learn to produce a
specific digit when trained with the MNIST database and being conditioned
on labels. It means there is an additional input for the Generator next to
the noise and also the same additional input for the Discriminator next
to the real or fake image it has to classify. The Generator can and should
use the additional information to generate an image corresponding to that
label, since the Discriminator will use the information to learn to discard
any images that are not matching the condition it gets as input. When the
Generator is finally trained and noise as well as a label as condition are
given to it, it will output a corresponding handwritten digit – matching the
label – similar to those images of the digit that were in the database.

The cost function does not have to be changed, only the input for both
Generator and Discriminator. Analogously to the conditional VAE, it must
be considered how the conditional information is handled in the Generator
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Figure 2.9: Conditional GAN. Conditional information, for instance labels,
are provided to both Generator and Discriminator. The con-
ditional information gives both networks the opportunity to
learn to represent or discriminate the image with that specific
information.

and the Discriminator respectively. It can be appended to the rest of the
input or somehow processed with it.

All in all, GANs are widely used, despite some drawbacks they have com-
pared to VAEs. Comparing generated to original images is not possible
for standard GANs – the images produced by GANs are generated out of
arbitrary noise, meaning we cannot generate an image with specific fea-
tures. If the GAN gets a dataset with three different classes, for any noise
input it may give an output resembling any of the three classes. However,
as just mentioned, generating an image with specific features is possible
with conditional GANs. But apart from brute force search over the entire
distribution there is no way of determining which initial noise values would
produce a certain image from the dataset. Another problem is that GAN
only discriminates between real and fake images. There are no constraints
that an image of for instance a cat has to look like a cat. This may lead to
images where there is no actual object in the generated image, but the style
looks like the training images. On the other side, GANs tend to give sharp
output images, since the adversarial gameplay is leading them towards
good image quality, and with the improved WGAN formulation they get
more stable in training as well.
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(a) VAE (b) GAN

Figure 2.10: The Variational Autoencoder generates rather blurry images,
the Generative Adversarial Network rather sharp digits. The
models are trained on the MNIST dataset.

2.3 Datasets

There are numerous Vision datasets available online, e.g., for object recogni-
tion, classification, or Optical Flow computation. We will now take a closer
look at two of them.

2.3.1 MNIST

To accelerate the development of our novel model, the well-known MNIST
dataset that is easy and fast to learn was taken to test first implementa-
tions.

MNIST The MNIST Database, developed in 1998, shows handwritten digits
which are sorted in 10 classes representing the digits from 0 to 9. The
image size is 32x32x1 (grayscale). It consists of 60, 000 Images in total
and is used for Image Classification.
http://yann.lecun.com/exdb/mnist/

MNIST is often used in Machine Learning to develop and test new algo-
rithms. It allows proofing of concepts with reasonable effort before switching
to more difficult datasets. Thus it can be used a benchmark to demonstrate
that a new method is able to distinguish the numbers or is able to generate
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2.4 Image Quality metrics

similar numbers in case of generative models. The dataset provides labels
that can be used as condition for the networks to produce a certain type of
digit.

2.3.2 Moving MNIST

Since it is not possible to do motion prediction with MNIST, a similar dataset
to MNIST was needed, but consisting of video data.

moving MNIST The moving MNIST dataset, developed in 2015, consists of
videos generated from the MNIST database. It shows 2 handwritten
digits in motion. In total there are 10, 000 sequences with 20 frames
each, and the dataset is used for Frame or Sequence Prediction. The
image size is 64x64x1 (grayscale).
http://www.cs.toronto.edu/~nitish/unsupervised_video/

Moving MNIST is building on MNIST, showing two digits moving in
different directions in a 64x64 frame over the course of 20 frames. The
digits are sometimes overlapping, but they will never disappear, as they
always bounce from the borders. As visible in figure 2.11 the movement in
moving MNIST is not complicated, so the results can be easily checked for
plausibility.

Figure 2.11: Moving MNIST dataset. The motion is shown with frames t,
t+1, t+2, t+4, t+9.

2.4 Image Quality metrics

For the task of frame prediction, the result, i.e., the predicted frame, can
be compared to the ground truth frame to see how plausible and similar
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the prediction is. Since it is impossible to have a human comparing all
the amount of data, we need to find a metric that is as close to human
perception as possible. Up to date, no such metric that is perfectly aligned
with the human vision is developed, but there are different metrics that can
be used to compare two images with each other, or rather to measure the
similarity between them.

MSE Mean Squared Error
PSNR Peak-Signal-to-Noise Ratio
SSIM Structural Similarity Index Measure

All are full-reference metrics, i.e., they take the original (noise-free and
uncompressed) image I as reference and compare the approximated (noisy
or compressed) Ĩ to it. The three metrics will be presented in more detail in
the following sections.

2.4.1 Mean Squared Error (MSE)

MSE is highly used for machine learning tasks and uses the l2 norm. MSE is
very simple, but does not reflect human perception.
The Mean Squared Error is a summarized error, taking the sum of the
squared errors computed at every pixel. The squared error is taken because
otherwise the error can be positive at one pixel and negative at another one
and they would cancel out each other when summing up. Explicitly it is
expressed as:

MSE =‖ I − Ĩ ‖2
2 =

1
m · n

m−1

∑
i=0

n−1

∑
j=0

(I(i, j)− Ĩ(i, j))2 (2.16)

where m and n are the image width and height.
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2.4.2 Peak-Signal-to-Noise Ratio (PSNR)

PSNR is a metric for comparing signals, i.e., audio, images or video data,
especially compressed signals to the original ones. It is thus used to see how
well a lossy compression can be reconstructed.
The Peak-Signal-to-Noise Ratio is most easily defined via the MSE [3], and
the unit is decibel (dB).

PSNR = 10 log10

(
MAX2

I
MSE

)
= 20 log10 (MAXI)− 10 log10 (MSE) (2.17)

MAXI is the maximum possible pixel value of the image, e.g., when the
pixels are represented using 8 bits per sample, it is 28 − 1 = 255. If the
two images I and Ĩ are identical, the MSE is zero, and the PSNR is infinite.
PSNR can also be computed on RGB color images, for which the MSE is
summed over the channels and divided by three.

Typical values for PSNR for example in lossy image and video compressions
are between 30 and 50 dB (for MAXI = 255). Generally, the higher the PSNR
value, the better is the compression method, or rather the quality of its
reconstruction.

2.4.3 Structural Similarity Index Measure (SSIM)

SSIM was developed to improve on image and video comparison by taking
texture into account. The SSIM was designed by Wang et al. [39] in order to
indicate perceived changes in structural information of the image, trying to
be more consistent with human perception of differences. Added noise on
top of the image, lost structure or harsh smoothing will result in a lower
similarity score, which is not always the case with simpler methods like
MSE as you can see in figure 2.12.

The SSIM computation works with an index map created by sliding windows
of a fixed size. The index map shows local image quality over space – a
higher SSIM value of a certain window is depicted as a brighter pixel in the
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Figure 2.12: Comparison of MSE and SSIM values for different noise.
In the right image the same absolute value of noise is
added as positive constants. Images are generated with
the script from http://scikit-image.org/docs/dev/auto_

examples/transform/plot_ssim.html

index map. The typical window size is 8x8. By not calculating the full pixel-
by-pixel displacement throughout the image, the computation complexity
can be decreased. The window size determines the scale, the final value
is obtained by averaging over all patches and is thus depending on image
resolution. Extensions of SSIM include a multi-scale version (MS-SSIM) that
is weighting the information content of different scales. The SSIM is usually
applied on grayscale images, although a multi-channel version exists.

The formula for the index between two windows x from I and y from Ĩ is:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2.18)

where µx, µy is the mean of x or y respectively, σ2
x , σ2

y is the variance of x or y
respectively, σxy is the covariance of x and y, and c1 = (0.01 ·MAXI)

2, c2 =

(0.03 ·MAXI)
2 are two variables to stabilize the division.

The resultant SSIM index is a bounded decimal value between −1 and 1,
where the unique maximum 1 represents two identical images. The closer
to 1 the value is, the more similar are the images.
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2.5 GAN evaluation metrics

MSE, PSNR and SSIM are to this day the most commonly used metrics for
image comparison.

2.5 GAN evaluation metrics

Apart from the evaluation of the generated images with the help of the afore-
mentioned image comarison metrics, it is hard to judge on a quantifiable
basis if a GAN is performing well.

2.5.1 Inception Score

In [33] the authors introduce a metric called Inception Score (IS), as an
attempt to quantify realism in GANs. The IS is a measure of on average,
how different is the score distribution for a generated image from the overall class
balance. It can be used to measure the quality of images generated from GAN
models, correlating with human judgment, and is thus used to quantify the
performance of the GAN in general.

The formula is
IS(x, y) = e(Ex[KL[p(y|x)‖p(y)]]) (2.19)

There are two criteria:

• p(y | x) represents Saliency
how easy it is to determine what class an individual image belongs to
• p(x) represents Diversity

how well-balanced the training set is, not only showing the same object

In order to compute this score for a set of generated images a good image
classifier is required – the authors used a pretrained Inception Network for
calculating the distributions, which is why the metric is called Inception
Score.

A disadvantage of the Inception Score is that the statistics of real world
samples and synthetic samples are not compared.
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2.5.2 Fréchet Inception Distance

To improve the Inception Score, the Fréchet Inception Distance (FID) was
introduced in [13]. It is proven to be more consistent with a rising noise
level than the Inception Score.

The authors use the first two moments, namely mean and covariance, of
the feature space generated from the image. Since Gaussians represent the
maximum entropy distribution in terms of these moments, they set up the
FID to measure the difference between the synthetic images and real-world
images Gaussian distribution. They claim that the FID is consistent with
increasing disturbances and human judgment, e.g., when adding Gaussian
noise, Gaussian blur or salt and pepper noise, the disturbance level of FID
rises correspondingly.

A drawback of both Inception Score and FID is that they need a large sample
size to give good results, suggested are 50000 samples. When using fewer
samples, the FID will be overestimated, giving better results than it would
give with more samples, and the variance of the estimates increases with
less samples.

2.5.3 Limitations

In general, there is no standard evaluation method of GANs, but a variety
of measures to classify the performance, realism and diversity reached by
a GAN. There are also measures comparing two or more GANs, or tests
done with humans to evaluate image quality and realism. [3] enumerates
these measurements that were used in different papers and classifies them
into quantitative and qualitative measures. The author also states seven
desiderata of a GAN evaluation: high fidelity, diverse samples, disentan-
gled latent space and space continuity, well-defined bounds, sensitivity to
image distortions and transformations, agreement with human perceptual
judgements, as well as low sample and computational complexity. From the
analysis in the paper the measures fulfilling the most of these criteria are the
FID and Image quality measures like SSIM, but the author points out that
there is no measure that fulfills all desiderata up to this point. Therefore,
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Figure 2.13: A convTime layer for three past input frames. The output tconv
is computed by convolving the same pixel locations.

using more than one measure to evaluate the performance of a GAN is
appropriate.

2.6 Time convolution

The goal of the newly developed generative model is to have more than
one past frame as input. This information over time has to be processed.
A simple way would be to concatenate all past frames and give the result
as conditional input to the network, but the conditional input is supposed
to be small in comparison to the regular input, since usually the networks
learn better features by themselves than using manually determined ones.
There already exist different layers to deal with time information in neural
networks, of which two will be presented now.

In [7] and [8] Feichtenhofer et al. propose a convTime layer and apply it
to existing networks. Their overall task is action recognition, so they do
convolutions in time in order to recognize motions in the scenes. ConvTime
is a regular convolutional network layer, but the dimensions of the input
are transposed in a way that not spatial neighboring pixels in the image are
convolved like in CNNs, but different time points of the same pixel, as can
be seen in figure 2.13.

31



2 Basics

So the layer gets an input of [batchsize, x · y, channel, timesteps] and will
output the convolved information in the format [batchsize, x, y, channel].
The filter determines how the different time information of the same pixel is
combined. It is learned like in any other network layer, by backpropagation.
There are different variants of convTime, but only V3 includes feature
information of the pixel, i.e., the values of channel for the given pixel are
also used for the convolution.

Three versions are tested in the scope of this work:

V1 convTime without using feature information.
V2 convTime without using feature information, but having an own time

filter for each feature.
V3 convTime including feature information.

The results of the test can be found in section 5.3.

Another layer that can be used to handle time series input is the so called
convLSTM, implementing Long Short-Term Memory cells. The concept of
convLSTM for 2D images was first used in CNNs in 2015, proposed in [34],
although the principle of the Long Short-Term Memory as a way to process
time information was demonstrated already in 1997 by [14]. A LSTM cell
has gates with thresholds that decide if information is stored, passed on, or
forgotten. It always receives the last internal state as input again and uses it
for the current computation. Thus the model can be unrolled over time to
compute the latest state. In [23] a time analysis with convLSTM is done in
their so called Motion Encoder. With the help of the convLSTM layer they
calculate a mean and standard deviation map from multiple input frames,
which is then given to the Frame and Flow Generator to sample z from
mean and standard deviation. The convLSTM layer in the Motion Encoder
is located after the spatial convolutional layers, so it is the last layer before
the mean and the standard deviation are returned.

In this thesis the implementation of time processing layers was restricted to
a convTime layer due to time limitations.
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As introduced in section 2.2, VAEs and GANs can generate samples from
an unknown data distribution. These generative models can be trained to
match any data distribution. Since the developed model is based on the
idea and implementations of VAE and GAN, this chapter is splitted into
works applying VAE, GAN or a mixture of both. However, this is just a
brief overview of selected papers due to the sheer amount of VAE and GAN
papers that were published in the last five years.

3.1 Applications of VAE

Walker et al. [38] use VAEs to predict the future from a single image. They
predict the dense trajectory of pixels in a scene with the help of a conditional
VAE. Their only input is one static image. They exploit the fact that a VAE
can make multiple different predictions to account for ambiguous action
movements – the model can output several possible future frames showing
different motions.

In 2016, Pu et al. [28] use a VAE to learn images and associated labels using
deep convolutional networks. Their model can be used for semi-supervised
(with labels/captions) or even unsupervised learning (only images).

An extension of VAEs are Importance Weighted Autoencoders (IWAEs) intro-
duced in [4]. They show that the VAE objective can lead to overly simplified
representations which fail to use the network’s entire modeling capac-
ity. Thus they propose using a strictly tighter log-likelihood lower bound
derived from importance weighting with the VAE architecture. Their recog-
nition network uses multiple samples to approximate the posterior, which
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leads to increased flexibility to model complex posteriors which do not fit
the VAE modeling assumptions.

Another extension are Ladder VAEs, proposed by [35]. This model recur-
sively corrects the generative distribution by a data dependent approximate
likelihood, resembling the Ladder Network.

3.2 Applications of GAN

Denton, Chintala and Fergus [5] use the original GAN formulation to
generate higher resolution images than in the original paper by Goodfellow
[10]. They propose to build a laplacian pyramid model to upscale to higher
resolutions in several steps and learn these GANs separately. Thus the
pyramid starts with an 8x8 image, via 16x16 and 32x32, and outputs a 64x64

image.

An expansion of GANs were the so called deep convolutional GANs (DC-
GANs) presented by Radford et al. in 2015 in [29]. The authors propose
to use the success of supervised convolutional networks (CNNs) also on
unsupervised tasks by creating an architecture with certain constraints - the
convolutional networks are learned with the adversarial GAN loss. This is
claimed to make the training more stable. To gain insight into the learning,
they also visualize the filters learned by the discriminator, and do semantic
vector arithmetic to make the generators generate certain properties in the
images. With the help of this, they show that both Generator and Discrimi-
nator learn a hierarchy of representations as features, going from parts of
objects to the whole scene, and point out that these features are generalizing
well, because they can even be used for new tasks.

On the basis of the first GAN formulation, Mathieu, Courprie and LeCun
[26] developed a deep architecture to predict future frames giving a sequence
of frames as input. They use a conditional GAN approach and provide four
input frames to the Generator to predict the next frame and also providing
the last frame to the Discriminator to decide if the latest frame is from the
dataset or generated. They also recursively feed the predicted images back
to the network to predict yet another future frame.
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They use a pyramidic upscaling to obtain 64x64 images. In their appendix
they also show experiments to predict eight future frames simultaneously
from eight last input frames, but the results are worse than the four input
for one future frame. They show that compared to the standard l1 and l2
loss the GAN gives better results, since it does not average over possible
futures like l2. They also use an additional sharpening loss term, named
Image Gradient Difference Loss Lgdl , next to a ground truth and a similarity
term in order to remove the blurriness on edges of moving objects.

Lgdl( Î, I) =

∑
i,j

∣∣∣∣∣Ii,j − Ii−1,j
∣∣− ∣∣ Îi,j − Îi−1,j

∣∣∣∣∣α + ∣∣∣∣∣Ii,j−1 − Ii,j
∣∣− ∣∣ Îi,j−1 − Îi,j

∣∣∣∣∣α (3.1)

where I and Î are the two images to be compared and α ≥ 1 is an integer.

An application for motion estimation is presented by [19], learning Optical
Flow with GANs. They propose a semi-supervised algorithm to predict
motion. As opposed to former attempts of estimating Optical Flow with
CNNs, no large dataset with labels or ground truth flow fields is needed by
exploiting the structure of GANs. They show that the adversarial loss is able
to capture patterns of flow warping errors without making assumptions like
Brightness Constancy and Spatial Smoothness, which are needed by unsuper-
vised Optical Flow methods. Thus, the developed GAN algorithm makes
it possible to learn Optical Flow with the help of non-synthetic, realistic
datasets without Optical Flow ground truth, outperforming supervised and
other semi-supervised methods in experiments.

In March 2018, Wei et al. [40] proposed to improve the current WGAN
formulation with gradient penalty [12] by adding another term that they
called consistency term, to enforce the Lipschitz continuity on the real data
manifold.

LWGAN+ = W(D, G) + λ1Lgp + λ2Lct (3.2)
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where W(D, G) is the standard WGAN loss, Lgp is the gradient penalty
term with its weight λ1 = 10, and

Lct = Ex1,x2

[
max

(
0,

d(D(x1), D(x2))

d(x1, x2)
−M′

)]
. (3.3)

M′ ≥ 0 is a small real constant, set to 0 for the experiments in the paper.
d(·, ·) denotes any metric, e.g., the l2 norm. The consistency term is added
with the weight λ2 set to 2, serving as regularizer. Wei et al. still suggest
five Discriminator updates per every Generator update, executed after each
other. They also added dropout layers and report an improved performance
on MNIST among others and claim that their method ensures a better
prevention of overfitting, especially if not much data is present. They support
that claim by reporting very good results of learning semi-supervised with
only 4000 instead of 10000 labels. The consistency term addition might
also be interesting for our approach, but it was too recent and not yet
acknowledged in the research world and is therefore left for future work.

3.3 Combinations of VAE and GAN

An interesting combination of the VAE and the GAN models was presented
by Larsen et al. [20]. The authors use the features of the GAN discriminator
as the metric for the VAE. Thus they learn their own similarity metric, which
outperforms the pixelwise error used by standard VAEs. The unsupervised
model proposed by them can encode, generate and compare samples from
the dataset due to its structure where parts are taken from VAEs and parts
from GANs. The Decoder of the VAE and the Generator of the GAN are
the same network, the Encoder is in front of it and the Discriminator after
it, which was adapted for this thesis. The authors suggest to replace the
VAE reconstruction loss (expected loglikelihood) with a reconstruction error
learned in the GAN discriminator. For this, they introduce a Gaussian
observation model for the lth layer of the Discriminator Dl(x).

p(Dl(x) | z) = N (Dl(x)|Dl(x̃), I) (3.4)
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where x̃ ∼ G(z) is sampled from the Generator.

With this, the VAE reconstruction error is rewritten as

LDl
ll = −Eq(z|x)[log p(Dl(x) | z)]. (3.5)

The whole loss function Lcombi is consisting of three terms: the standard
GAN loss Lgan, the latent loss term from the VAE loss Llatent, and the
replaced VAE error term LDl

ll . Adding them gives the loss

Lcombi = Llatent + L
Dl
ll + Lgan. (3.6)

They also show that semantically meaningful arithmetic options can be
applied in latent space to get an image with certain desired attributes or
missing certain attributes – e.g., adding glasses, a smile or a beard to a
face.

A mixture of both models is also presented in [23] where the goal is to
predict the pixel-wise flow in videos with a dual motion GAN. The primal
future-frame prediction and dual future-flow prediction enhance each other
by generating informative feedback signals. The future-flow prediction is
able to help infer realistic future-frames, while the future-frame prediction
in turn leads to realistic optical flows, working on making both synthesized
future frames and flows indistinguishable from reality. To handle natural
motion uncertainty in different pixel locations, a new probabilistic motion
encoder, based on VAEs, is used.

Some parts of that paper are reimplemented in this work, since no code was
made available by the authors even when directly requested. Analogously
to their paper we set up an Encoder and a time convolution before giving
the output of those to a GAN.

Another mixture, called adversarial autoencoder (AAE), is introduced in [25].
The authors propose a probabilistic autoencoder that uses the GAN model
to perform variational inference by matching the aggregated posterior of the
hidden code vector of the autoencoder with an arbitrary prior distribution.
Their applications include semi-supervised classification, disentangling style
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and content of images, unsupervised clustering, dimensionality reduction
and data visualization.

In 2018, Hou and Qiu [15] propose to improve VAE performance by apply-
ing deep feature consistency (DFC-VAE). They state that the VAE output
and input images should have similar features. They also add adversarial
training by feeding the output of the VAE to a discriminator, which accord-
ing to them helps to generate more natural and realistic images. They show
this with face generation and latent space manipulation with facial attribute
recognition features.

A network having similar goals and structure as this thesis is the FutureGAN
introduced by Aigner and Körner in 2018 [1]. They developed a multi-scale
GAN that is able to predict a sequence of future frames given a sequence
of past frames. By using progressively growing GANs the output frame
size is increased step by step. Their generator consists of an Encoder and
a Decoder part, and the input to the Encoder is a sequence of past frames.
3D convolutions are used to deal with spatial and temporal dependences
at once. The training is done with a WGAN gradient penalty loss, but on
top of that Aigner and Körner add an epsilon penalty term to prevent the
overall loss from drifting. Part of the experiments are conducted on the
moving MNIST dataset that was also used for our experiments on frame
prediction. They also use the same evaluation methods like us, namely MSE,
PSNR and SSIM.

Another paper describing a mixture of VAE and GAN is [32]. Their optimiza-
tion objective is a combination of the standard Discriminator equation and
the reconstruction loss from VAEs, preventing mode collapse for the learned
model. The authors replace the intractable likelihood of the variational
interference by a synthetic one and also substitute an implicit distribution
for the unknown posterior distribution. The synthetic likelihood and the
implicit distribution are learned by Discriminators.
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We know that generative models like GANs can generate images similar to
the ones provided in a dataset, that VAEs can encode an image to a vector
with fewer dimensions, and that a GAN Discriminator can distinguish
generated images from real images. In the following chapter it will be
demonstrated how all these advantages of the different models can be used
in a combined model.

The first section will deal with the available hardware and the choice of the
framework. It will be explained why the WGAN was chosen as basis model.
In parallel with implementing a combined model, the evaluation was built
to be able to judge the performance both qualitatively and quantitatively.
That is why the next section deals with testing.
The novel combined model will be built in steps – adding conditional
information as input first, then adding an Encoder, and finally adding a
time convolution layer. One attempt that did not bring the desired results is
to combine the losses of VAE and GAN in a way to learn both sharp images
and have a distribution close to the Gaussian one. All this is explained
in more detail in the last section, which is about the novel model named
EncGAN.
Finally we will point out how the developed model can be adapted to
different datasets.

4.1 Hardware and Framework

The hardware on which the computation was done is a computer running
Ubuntu 16.04 which has two NVIDIA supported GPUs: GeForce GTX 1070

Ti and GeForce GT 1030. There is 13 GB RAM available for computing.
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It was decided to use TensorFlow [36] as it is one of the most used frame-
works in Neural Networks research. TensorFlow has the advantage of being
widely in use since it is open source and actively developed, thus providing
many functions. Additionally it offers CUDA support, so the programs can
run fast on GPUs. There are existing GAN and VAE implementations in
TensorFlow, one of which was used as a base for our model.
TensorFlow is especially used by researchers applying Machine Learning
like Neural Networks. It supports defining CNNs in various languages,
including python. After creating a session and defining the graph, actual
values can be fed to the network. Many functions like crossentropy, SSIM
and even whole layers already exist, which helps developing learning mod-
els from scratch.

4.2 Choice of model basis

The code of this work is based on the improved WGAN code from https:

//github.com/igul222/improved_wgan_training, published as [12]. This
was chosen as basis as it is one of the state-of-the-art models and the loss
formulation is claimed to be stable.

A GAN (not an VAE) was chosen to build upon because GANs are claimed
to have a better output quality. Samples are supposed to look more realistic
and much less blurred in comparison to the output of VAEs. The WGAN
is one of the wider spread GAN networks and so it is expected to be more
tested and reliable than, for example, the original GAN or the DC-GAN.
WGANs are stable in training, and they do not show the undesired mode
collapse. We chose to work with the extension, the improved WGAN, which
uses a gradient penalty. The equation 2.15 was used as can be seen in listing
4.1. The improved WGAN is claimed to be more stable and easier to train
than the original WGAN.

Listing 4.1: Loss formulation of Wasserstein GAN with gradient penalty
import tensorflow as tf

fake_data = Generator(BATCH_SIZE)

disc_real = Discriminator(real_data)
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disc_fake = Discriminator(fake_data)

## Standard WGAN loss

gen_loss = -tf.reduce_mean(disc_fake)

disc_loss = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)

## Gradient penalty on Discriminator

alpha = tf.random_uniform(shape=[BATCH_SIZE,1], minval=0., maxval=1.)

interpolates = real_data + (alpha*(fake_data - real_data))

gradients = tf.gradients(Discriminator(interpolates),

[interpolates])[0]

slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), 1))

gradient_penalty = tf.reduce_mean((slopes-1.)**2)

disc_loss += LAMBDA*gradient_penalty

The network structure of the plain GAN can be seen in figure 4.1.

(a) Generator G

(b) Discriminator D

Figure 4.1: Implemented GAN network. G consists of a fully connected
layer in the beginning, followed by three convolutional layers. D
consists of three convolutional layers and a fully connected layer
at the end.

However, the improved WGAN code was completely refactored to only in-
clude the code parts needed (wgan-gp) and to use TensorFlows contrib.layers
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instead of creating all weights manually, thus making the code shorter
and more understandable. The way how to reuse the network weights was
reimplemented with the TensorFlow reuse Flag in the corresponding layers,
so no parameter dictionary was needed any longer.
The code was ported to python 3 from python 2 as well, because python
3 provides all recent standard library improvements, including NumPy
improvements.

Tensorboard summary functions like (partial) losses and image outputs were
added so the progress can be followed with Tensorboard as well. An au-
tomatic saving functionality was implemented and thus the possibility to
stop learning and continue with the same weights later was enabled. Addi-
tionally to the existing MNIST loading and usage, the loading of moving
MNIST was implemented. It includes six consecutive frames at a time to be
able to give up to five past frames as conditional input to the model.

4.3 Testing

The Discriminator training loss and validation loss are calculated every 100

iterations and are plotted over the iterations. The Generator and Discrimi-
nator training losses are also written in a file so that it is possible to keep
track of them. MSE, PSNR and SSIM are available in TensorFlow, so these
functions were used for the evaluation in the scope of this work. The batch
average value for all three is computed every 100 iterations, so the current
image quality can be assessed along with the performance. This also allows
to check if the network is learning what it is expected to learn. At the end
of the training all PSNR, MSE and SSIM values of the last batch are saved
so outliers can be identified.

In addition to that, the existing samples visualization was adapted to be-
ing able to show the condition – one or more past frames – and ground
truth – the future frame from the dataset – next to the generated sample.
Furthermore, an alternating gray background was added to distinguish the
different samples more easily, of which a example can be seen in figure
5.1.
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The code base also has an inception score implementation. However, it is not
working with the newer TensorFlow version that was used for this thesis.
As mentioned in section 2.5.2, the FID score computation is the most recent
measurement to compare the quality of different GANs. The FID should
only be used with more than 10000 training images, which are not available
for all datasets, thus no FID evaluation was used.

To complete the evaluation measures, a classfier is trained to evaluate the
accuracy of the generated images on MNIST. A simple neural network
consisting of two layers with 800 hidden units is used, since it does not
take long to train and already provides sufficiently good results on MNIST.
According to the ranking of Yann LeCun on http://yann.lecun.com/exdb/

mnist such a network should have about 2% error rate on the MNIST test
set, so the classifier is trained until it reaches at least 98% accuracy. The
classification of the generated digits is carried out at the end of the learning
phase and the accuracy is saved.

4.4 Building up EncGAN

The goal is to stepwise build a bigger model that can predict future frames
when past frames are provided as input, and that has elements of both the
GAN and the VAE model. We will present the development in three steps,
namely adding conditional information, adding an Encoder, and adding
time convolution. In addition, we attempted to combine losses of a standard
VAE and the improved WGAN to reach a more powerful loss, which did
not give the expected results. This will be explained in more detail in the
last section.

4.4.1 Adding conditional information

The first step was to provide additional conditional input to the WGAN.
The aim was to provide one or more past frames in their original size as
additional input to the networks, to make the model produce a future frame
of exactly that scene. This is most easily done with a conditional GAN
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(cGAN), since according to cGAN, one can input any additional information
to both Generator and Discriminator. So it was decided to input the last
frame as conditional information to both networks. To keep it as simple as
possible, concatenation was used for this conditional input. The noise is
concatenated with the conditional frame as an input for the Generator; the
generated or real frame respectively is concatenated with the conditional
frame to create the input for the Discriminator.

All images, both regular input and conditional frames, are handed to the
networks as flattened images. Some concatenations require to work on a
[batchsize, xdim, ydim, channel] shape, so a reshape can be done first.
[batchsize, xdim · ydim · channel] 7→ [batchsize, xdim, ydim, channel]

If the conditional information are labels, they are concatenated with the
noise at the Generator.
[batchsize, noisedim] 7→ [batchsize, noisedim + labeldim].

To add frames at the Generator in the cGAN, the flattened conditional
images of size (xdim · ydim · 1) are concatenated with the noise.
[batchsize, noisedim] 7→ [batchsize, noisedim + (xdim · ydim · 1)].

To add a frame as conditional information in the Discriminator, it is concate-
nated with the (real or fake) regular input image. Both frames are brought
into the shape [batchsize, xdim, ydim, 1]. Therefore, for MNIST and moving
MNIST, concatenation means to add a second dimension to the binary input
image.
[batchsize, xdim, ydim, 1] 7→ [batchsize, xdim, ydim, 2].

With the help of labels from the MNIST dataset different forms and positions
providing conditional information to the networks were tested. It was tested
if providing the label accelerates the learning and if the network is able to
produce the desired digit instead of a random one.
Providing the labels as digits or as one-hot vector did not make any dif-
ference in speed or accuracy. [9] suggests to provide the condition at a
later layer. However, when trying to provide the corresponding label to the
Discriminator before the fully connected layer, as seen in figure 4.2(b), it
led to the model not learning to output the corresponding digit, but any
digit similar to MNIST. Therefore giving the conditional information to
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the Discriminator in the beginning, as depicted in [27], was chosen for the
model of this thesis.

The Discriminator was found to learn faster when the conditional informa-
tion is provided more often. Providing only a one-hot vector (10 entries)
did not work well, but repeating the label information, e.g., as a second
dimension of the input image or as a padding to create a bigger image (from
28x28 to 32x32 = 240 entries), accelerates the learning.

So, at the Discriminator, the 10-dimensional label vector that represents the
digit is repeated 24 times. It thus forms a 240-dimensional vector that is
concatenated to the flattened 28x28 MNIST input image of the Discriminator,
resulting in a 32x32x1 matrix after reshaping.

(a) Condition in the beginning

(b) Condition at the end

Figure 4.2: cGAN structure. Discriminator D still consists of three convolu-
tional layers and a fully connected layer. It can get conditional
information in the input layer (a). It was tried to give conditional
information later, before the fully connected layer (b), but this
lead to the GAN not learning the correct labels anymore.
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(a) Generator G

(b) Discriminator D

Figure 4.3: The cGAN model for images of size 32x32. G consists of a fully
connected layer followed by three convolutional layers. D con-
sists of three convolutional layers and a fully connected layer
at the end. The conditional information is concatenated at the
input layer of both G and D.

[batchsize, 28 · 28 · 1] 7→ [batchsize, 28 · 28 · 1 + 240] 7→ [batchsize, 32, 32, 1].

The amount of conditional information provided at the Generator – a 10-
dimensional one-hot vector vs. a 60-dimensional repeated label vector – did
not make any difference, which causes us to claim that it is most important
that the Discriminator gets enough information at the right position. If the
Discriminator learns fast to distinguish the generated wrong digits from
real ones, it will lead to the Generator incorporating that information as
well.
To test the conditional GAN, a variant was developed that shows five images
of every MNIST digit to have a balance over all digits and an overview of
how far the learning has proceeded. The complete cGAN model with all its
layers is depicted in figure 4.3.
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4.4.2 Adding an Encoder

The second step is to include an Encoder, which will also be a network
consisting of convolutional layers. The Encoder will be implemented with a
layered structure similar to the Discriminator, mirroring the Generator. The
input is for now one image from the dataset, with the output of the Encoder
being provided to the Generator.
As explained in section 2.2.1, in the VAE the Decoder does an additional
sampling operation, leading to equation 2.11. The Encoders output is a
vector of means µ and a vector of standard deviations σ and therefore
the (noisy) z input for the Generator can be sampled from these Encoder
outputs. To ensure that the standard deviation σ that the Encoder provides
is positive we take e

σ
2 instead.

The whole model Encoder - Generator - Discriminator still needs conditional
input for the Discriminator. When providing the code computed by the
Encoder or the sampled z to the Discriminator, the model was not learning
properly. Providing the repeated label information to the Discriminator like
in the conditional GAN made it work. The developed model will be called
EncGAN from now on. Its rough structure can be seen in figure 4.4, and the
detailed layout of the layers in figure 4.5.

Figure 4.4: Structure of developed EncGAN. The model is a combination
of an Encoder, the sampling of VAE and the 2-player game of
GAN. It uses the gradient penalty GAN loss. For the Generator
loss the weights of the Encoder and the Generator are trained
together end-to-end.

With the Encoder in place, the GAN model can be tested against an analo-
gous VAE. The VAE is the same model without the Discriminator but using
the VAE loss from equations 2.7, 2.8 and 2.10 instead. It thus compares the
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(a) Encoder Enc

(b) Generator G

(c) Discriminator D

Figure 4.5: The EncGAN model for images of size 32x32. Enc consists of
three convolutional layers and two fully connected layers at the
end, producing µ and σ vectors. G samples its input from µ
and σ and consists of a fully connected layer followed by three
convolutional layers. D comprises three convolutional layers and
a fully connected layer at the end. D gets conditional information
concatenated at its input layer.

input frame provided to the Encoder with the output given by the Generator.
The corresponding code in TensorFlow can be seen in listing 4.2.
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Listing 4.2: Loss formulation of VAE
import tensorflow as tf

mean_data, sd_data = Encoder(real_data)

fake_data = Generator(BATCH_SIZE, mean=mean_data, sd=sd_data)

## Standard VAE loss

# reconstruction loss: pixel-wise L2 loss # MSE(fake - real)

img_loss = tf.reduce_sum(tf.squared_difference(fake_data,

real_data), 1)

# latent loss: KL(latent code, unit Gaussian) # closed form

latent_loss = -0.5 * tf.reduce_mean(1. + sd_data -

tf.square(mean_data) - tf.exp(sd_data), 1)

vae_loss = tf.reduce_mean(img_loss + latent_loss)

Moreover, a VAE+ model can be tested, predicting a future frame given one
past frame. The frame prediction can be set up by calculating the VAE loss
between the predicted frame and the ground truth next frame instead of
between the predicted frame and the provided input frame.

4.4.3 Adding time convolution

The last step is to add more frames as input. Different methods were
considered of how to bundle the information, using convTime without or
with feature convolutions. It was chosen to implement one convTime layer,
not multiple layers after each other. The place to put the time convolution
layer was chosen to be the same as in [23]. Figure 4.6 shows the placement
of the convTime layer in the model. Three different convTime layers V1, V2

and V3 were built into the EncGAN one by one to see if and how much the
results can be improved by any of them. The number of frames given to the
model was kept variable. Experiments were done with two, three and five
past frames.
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Figure 4.6: Structure of EncGAN with convTime. The Encoder is split in
two parts, first encoding each input frame separately, but with
shared weights. Here it is shown with three past input frame as
an example. The second part is the convTime layer, plus the fully
connected layers to compute mean and standard deviation.

4.4.4 Attempt to combine losses

It was tried not only to combine the structures of VAE and GAN, but also to
have a combined loss or at least parts of both losses to get the benefits of both
approaches. Different combinations were tried, e.g., to use the Discriminator
loss with the VAE loss LVAE, to use the Generator loss with the LVAE, or to
use the Generator loss with the MSE part of the VAE loss (Lrec).

Lcombi1 = c1 ·Discriminator loss + c2 · LVAE

Lcombi2 = c1 ·Generator loss + c2 · LVAE

Lcombi3 = c1 ·Generator loss + c2 · Lrec

The constants c1 and c2 were chosen to amplify the Discriminator or Gen-
erator loss respectively, because these losses are much smaller compared
to the VAE loss or the reconstruction loss. It was also tried to gradually
increase the influence of the Generator loss over the iterations, since it would
be plausible that it is easier to first learn to be close to the original image
with the help of the VAE loss and only later use the adversarial learning to
improve the image quality. Finally it was tried to optimize the combined
loss either with both Encoder and Generator parameters at the same time
or to optimize the parameters of Encoder and Generator after each other.
None of these attempts led to a recognizable digit output. The samples show
blurry blobs that average over all digits. That is why the idea to combine the
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losses in such a way was discarded and only the WGAN loss with gradient
penalty was used for the EncGAN.

4.5 Challenges with different datasets

Since MNIST is quite easy to learn with such a large architecture, another
dataset was tested as a continuation – moving MNIST. As presented in
section 2.3, the images of moving MNIST are 64x64 pixels, which meant
an additional challenge to generate bigger images. Thus, the first idea was
to insert an additional layer in Encoder, Generator and Discriminator. This
bigger architecture, however, proved to only work with the GAN model,
namely with the standard WGAN and the conditional version of it.
Those two models need much longer training to produce acceptable results
than on MNIST, and the finally obtained images do not look as good. The
results could not be improved by more training iterations. For the VAE and
the EncGAN the input images were downsampled to 32x32 pixels, so they
work as before, without additional layers.

To ensure the model is working properly with a new dataset, first GAN
and VAE should be tested to produce similar images to the dataset. After
that, the frame prediction can be tested. One past frame can be given to
the cGAN and the EncGAN as condition and they predict the future frame
from this single input image. It is evaluated by giving the Discriminator the
next frame of the dataset to compare the plausibility.
Since the classifier only works on MNIST – it can only classify one digit –
and in moving MNIST the two digits often overlap, it does not make sense
anymore to calculate the digit accuracy. However, PSNR, MSE and SSIM
can be evaluated on any dataset.
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Having the conditional models cGAN and EncGAN and the baseline net-
works GAN and VAE, the question is how much better the new ones
perform. Since GAN and VAE share network parts, and are also evaluated
on the same datasets, direct comparison is possible. This is done in the form
of samples as well as the quantitative results. The quantitative results are
shown in the tables 5.1, 5.2 and 5.3.

In the tables the different evaluation metrics are listed. SSIM, MSE and PSNR
are measured in comparison to the input image taken from the test set or
to the next frame taken from the dataset respectively. To revise, SSIM goes
from -1 to 1, the value 1 indicating two identical images. MSE is positive
but the lower the better, and PSNR is positive but the higher the better.
The MNIST table also includes inference time which means the time it takes
to generate 50 samples. It is measured in seconds.
For GANs the loss column in the tables show the Discriminator validation
loss which indicates how well the Discriminator has learned to distinguish
between real and fake images from the validation set. For VAE the loss
column represents the VAE loss as defined in section 2.2.1.
The classification score in the MNIST table represents how many digits
are correctly identified as corresponding to their input label by the MNIST
classifier.
For moving MNIST the subjective visual appearance of the samples was
added to the tables to have a better overview of the performance without
having to compare to the figures all the time.
The results printed in bold indicate the best value for that metric.

To be able to compare the results to other papers, some more parameter,
which stayed fixed for the experiments, are listed here. As suggested in
the improved WGAN paper [12], the gradient penalty parameter λ is set
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to 10 and in every iteration one Generator and five Discriminator updates
are done. The learning rate for the Adam optimizers was 0.0002 for all
presented results. Other learning rates were tried but did not give better
results.

MNIST is split in three parts: 50000 images training dataset, 10000 images
validation dataset and 10000 images test dataset. The batch size was chosen
to be 50. This means that for MNIST one epoch comprises 1000 iterations.
The dimension of the feature channel, which is called DIM in the figures in
section 4, is set to 10. The dimension of noise or sampled z vector respectively
was also chosen to be 10 for MNIST. This is sufficient to learn the digits
features.

The Moving MNIST dataset of 10000 images was also split in three parts:
7000 images training dataset, 2000 images validation dataset and 1000

images test dataset. The batch size was again chosen to be 50. This means
that for moving MNIST one epoch comprises 140 iterations. The dimension
of the feature channel DIM is empirically set to 64. The dimension of noise
or sampled z vector respectively was chosen to be 60 for moving MNIST.

5.1 Comparison VAE and GAN on MNIST

We will now compare the VAE against the improved WGAN, and also assess
the developed models cGAN and EncGAN. First, let us see the performance
of the standard models on the MNIST dataset. It can be seen in figure 5.1
how good the VAE and the WGAN are at generating samples from noise.
The VAE samples are blurrier, whereas the GAN generates sharper but
partly incomplete digits. The cGAN learns to produce the asked digits quite
well. The image quality difference between VAE and GAN is claimed to be
a consequence of using an MSE loss for the VAE loss directly. Incomplete
digits are claimed to be a consequence of the latent space not being covered
tightly.

How good the model is at reconstructing the input image (VAE), using
conditional information like labels (cGAN) or input images and labels
(EncGAN) can be seen in figure 5.2. It shows that the VAE is able to
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reconstruct MNIST images very well. The cGAN is able to generate sharp
digits corresponding to the label it received. Since its Generator input is
a label and not more information on the original image is provided, the
output image does not correlate with the image it is compared to at test
time. The left image is thus just there to show which digit the label belonged
to. On the contrary, the EncGAN learns to produce the shown digit, and
does reconstruct the input image, but not as much as the VAE does. The
EncGAN generates the same digit, but generalizes more to also remove or
include features seen at other images of that digit, e.g., it leaves out the
additional line of a seven.

(a) VAE (b) GAN (c) cGAN (ordered labels)

Figure 5.1: Samples produced by noise input for VAE, noise input for GAN,
and ordered label information for cGAN. The networks were
trained on the MNIST dataset for 5000 iterations.

(a) VAE recon. (b) cGAN (c) EncGAN

Figure 5.2: Samples of the VAE reconstructing input images, the cGAN
generating images corresponding to the provided labels, and the
EncGAN inferring the label information from the input image.
Trained on the MNIST test dataset for 5000 iterations.
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What can be read from the table 5.1 is that all architectures have similar
inference times on MNIST. As a side note, the training time is different,
since for instance for the VAE only one update step is performed per
iteration, whereas for all GAN variants there are one Generator and five
Discriminator updates per iteration. It is clear that VAE gives the best image
similarity scores in contrast to the GANs, because it tries to reconstruct the
given image and thus aims to produce the nearest approximation. That also
explains why the MNIST classifier shows the highest accuracy for the VAE,
since the output image is a reconstruction of a real MNIST image and not
completely newly generated. In contrast to that, the cGAN, which does not
even see the image, just the label, has the lowest image similarity scores, but
a higher classification accuracy than EncGAN, showing that the labels given
as condition are learned and used well. Finally, EncGAN, making use of
the image input, gives better similarity (SSIM) values and also better MSE
and PSNR values than cGAN. However, the values are still far from the
results of the VAE. This is because the EncGAN loss function is not aiming
at reconstructing the input, but at fooling the Discriminator to believe the
generated samples are taken from the dataset.

inf. time loss SSIM MSE PSNR classif.
GAN 0.0004 sec -0.5818 n.a. n.a. n.a. n.a.
cGAN 0.0005 sec -0.1567 0.2082 0.1048 9.9233 84%
EncGAN 0.0007 sec -0.3862 0.3718 0.0777 11.5734 82%
VAE recon. 0.0008 sec 15.4637 0.8053 0.0153 19.0292 92%

Table 5.1: Results on MNIST

5.2 Comparison VAE and GAN on moving MNIST

We are now moving on to see the performance of the different models on
the moving MNIST dataset.

It is visible in figure 5.3 that the GAN performs much better in image
generation from noise. The VAE samples are very blurry, the GAN gen-
erates sharper but partly incomplete digits. As mentioned above, the bad
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(a) VAE (b) GAN

Figure 5.3: Sampling from the VAE and the GAN is done by providing
Gaussian noise as input. Trained on the moving MNIST dataset
for 10000 iterations.

performance of the VAE in comparison to the GAN is believed to stem from
the VAE latent space not being covered tightly.

However, as demonstrated in figure 5.4, the VAE can reconstruct given input
images well. The VAE samples are still a bit blurry, but the reconstruction
looks much better than the image generation from noise.

The performance of using a past image as conditional information to predict
the future frame (VAE+, cGAN, EncGAN) can be seen in figure 5.5. Left
of the predicted frame (pred) the conditional past frame (t) is shown, and
to the right of the predicted frame the ground truth future frame (t+1)
from the dataset is displayed. It is visible that the VAE+ does not lead to
the desired result, since it is not able to produce sharp digits. The VAE+
just generates white blobs at the location of the digits from the previous
frame. With these, it still manages to obtain the best MSE and PSNR values,
as can be seen in table 5.2. However, it is obvious that the VAE is good
at reconstructing images, but not good at predicting the future. It is thus
not used for further experiments and not recommended to use for frame
prediction in any case.

None of the networks in figure 5.5 is able to produce completely correct
digits for all inputs. Comparing cGAN and EncGAN, the EncGAN produces
slightly sharper images. In table 5.2 we see that the SSIM value of cGAN is
higher, whereas MSE and PSNR of EncGAN are better.
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Figure 5.4: An example output of VAE with the goal to reconstruct the input
images from the 32x32 moving MNIST test dataset. The model
was trained for 50000 iterations.

loss SSIM MSE PSNR visual appearance
VAE recon. 6.2946 0.5179 0.0316 15.2287 +
VAE+ 21.1785 0.5041 0.0199 17.1428 –
cGAN -1.2369 0.5127 0.0338 14.8944 +
EncGAN -1.5284 0.5329 0.0312 15.2344 ++

Table 5.2: Results on moving MNIST

The EncGAN plots in figure 5.6 show that the different metrics improve a
lot in the beginning, and are quite stable in the later iterations, indicating
convergence of the learning. It is shown that SSIM, MSE and PSNR improve
in a similar manner, so they correlate.

In figure 5.7 the training and validation loss for the EncGAN are shown.
Both losses are from the Discriminator, but the training loss is evaluated on
the training dataset and the validation loss is computed every 100 iterations
on a validation dataset. The losses show a huge improvement in the first
thousand iterations, whereas the values oscillate around a stable value later.
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(a) VAE+ (b) cGAN (c) EncGAN

Figure 5.5: An example output of VAE+, cGAN and EncGAN trained on
the 32x32 moving MNIST test dataset for 10000 iterations.

(a) MSE (b) PSNR (c) SSIM

Figure 5.6: Tracking the learning of the EncGAN with one past input frame
on the moving MNIST test dataset over 10000 iterations. The
batch averages of MSE, PSNR and SSIM are computed every 100
iterations.

This demonstrates that the network has learned the critical features in the
beginning and can then only achieve minor improvements.

Furthermore, looking at the produced samples of cGAN and EncGAN over
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(a) D training loss (b) D validation loss

Figure 5.7: Tracking the loss of the EncGAN with one past input frame on
the moving MNIST test dataset over 10000 iterations.

the course of hundreds of iterations, it is visible that the EncGAN varies
the direction of the movement of the digits more than the cGAN. This
demonstrates the multimodality of the problem and the EncGANs ability to
generate diverse images.

It is also worth to mention that the GAN and cGAN do work with the full
resolution of 64x64. For that, an additional convolutional layer is added in
both Generator and Discriminator. The results can be seen in the appendix.
In contrast to that, the VAE and the EncGAN were both not able to generate
digits in the 64x64 setting for moving MNIST. It is assumed that the cause
is the Encoder, and that if a certain capacity is reached, the learning is not
working properly anymore. This is backed up by the VAE not being able to
learn to reconstruct RGB color images of size 32x32x3 from another dataset,
also exceeding the capacity with the color channels.

5.3 EncGAN with more time frames as input

To include more past time frames, the EncGAN was chosen as the baseline.
When giving more than one past frame as conditional input, there are two
different questions that need to be answered:
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1. How many past frames should be given as conditional input?
2. Which time processing layer should be used?

To find a solution to these problems, two comparisons are shown in this
section. The first one compares the output and metrics of a different number
of input frames, namely 2, 3 or 5 past frames as condition. The results can
be observed in figure 5.8 and in table 5.3.

In the figure, the two most recent past frames (t-1, t) are shown left of the
predicted image (pred) for all experiments with more than one past frame as
conditional input, whereas for the single frame as input only the single past
frame (t) is displayed.

Visibly, three frames give the best output image, whereas the quantitive
results point out that two past input frames are the best choice for the
frame prediction. Two input frames have a higher SSIM, a lower MSE score
and a higher PSNR value than three or five input frames, see table 5.3. All
experiments except 2 input frames result in worse image quality values than
the baseline that gets only a single frame. The measurements concerning
1 frame are slightly different than the ones shown in section 5.2 since the
evaluation was done on other test frames than before. In general, the model
outputs are quite blurry images of the bouncing numbers, and none of the
models predict the future frame as well as expected.

loss SSIM MSE PSNR visual appearance
1 frame -1.5007 0.5470 0.0324 15.1242 ∼
2 frames V1 -1.9290 0.5867 0.02779 15.8534 +
3 frames V1 -1.0653 0.5243 0.0333 15.0003 ++
5 frames V1 -2.9740 0.4522 0.0373 14.5094 ∼
3 frames V1 -1.0653 0.5243 0.0333 15.0003 ++
3 frames V2 -1.0577 0.5246 0.0332 14.9874 ++
3 frames V3 -1.1062 0.5210 0.0337 14.9106 ++

Table 5.3: Results on moving MNIST with time series input

To see the effect of the different convTime versions, for the following ex-
periments the number of past frames was fixed. Three past frames are
each passed through the Encoder independently and thus provided to the
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(a) 1 frame (b) 2 frames

(c) 3 frames (d) 5 frames

Figure 5.8: The EncGAN architecture is now equipped with an additional
convTime layer, getting 2, 3, or 5 past frames as input. In the top
left corner is the baseline that receives only a single input frame.
Trained on moving MNIST for 10000 iterations.
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convTime layer. The Discriminator gets only one past frame as conditional
information to know which digits are involved in the sequence.

(a) V1 (b) V2 (c) V3

Figure 5.9: Each of the three convTime layers is added to the EncGAN.
Trained on moving MNIST for 10000 iterations with 3 past
frames.

In figure 5.9 you can see the results of the different convTime versions, and
in table 5.3 there is the information on the convTime versions for three
past input frames (3 frames V1/V2/V3). It is striking that the feature space
convolution in connection with the time convolution (V3) does not help,
the samples from V3 do not look better than from the first two versions in
figure 5.9. Table 5.3 shows that all the tested convTime versions have very
similar image similarity values, namely a SSIM score of 0.52 and a MSE
value of 0.03. V1 reaches a better PSNR value of 15.0 compared to v3 with
14.9. This leads us to the conclusion that the computational overhead of
including the feature space in the convolutions is not needed.

To see the difference between using more past frames and using only a
single last frame, a direct comparison can be found in figure 5.10. The
network with 3 past frames as conditional input and V1 convTime layer
is used as the best result and compared to the baseline EncGAN with a
single conditional input image. The convTime layer makes the network
output sharper and produces more complete digits, so it can be seen as an
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(a) EncGAN (b) with convTime

Figure 5.10: The left model got 1 past frame, the right model got 3 past
frames and is equipped with the V1 convTime layer. Both net-
works are trained for 10000 iterations.

improvement. It indicates that convTime does give a benefit to the EncGAN
and should be used to get better results.
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This thesis is dealing with how to use a combination of an VAE and a GAN
model for frame prediction. Firstly, the results will be summarized and after
that possible future work will be pointed out.

6.1 Summary

A comparison between VAE and GAN was made, confirming literature that
VAEs are best at reconstructing the input, whereas GANs can generate new
sharp images with a similar style like the dataset provided to them. The
EncGAN model was developed by mixing the two generative models, or
more precisely by expanding a GAN by an Encoder before the Generator.
It was shown that this model gives sharp results as well, but its output
images are also more similar to the dataset than with the regular GAN. It
was pointed out that a generative model can be made to learn to produce
specific images – for instance including a certain digit or continuing the
motion of the last frames – by adding conditional input to the networks.
Using the VAE for frame prediction (VAE+) did not give satisfactory results.
The VAE model alone is not able to predict a sharp future frame. The
Encoder as a part of the VAE and the EncGAN also seems to be limiting
the image size, since using 32x32x3 or 64x64x1 images let the models stop
learning without having produced corresponding images. The benefit of
time series input, i.e., including more than one past frame, was investigated
and it turns out that it helps to generate a future frame in terms of visual
image quality.

Different datasets were applied to see how image generation works, how
conditional information can be made usable for the networks and how
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much the condition helps the learning. An architecture similar to the paper
[23] was reimplemented. Our model has a lower frame resolution and adds
conditional input to the Discriminator. It is unclear why the authors of the
dual model decided to only provide the produced frame or flow to the
Discriminator without any conditional information, making it impossible
for the Frame and Flow Discriminator to differentiate between a plausible
future frame/flow or just any plausible frame/flow similar to the dataset.

6.2 Future work

For future research it would be interesting to test the model on a real-world
video dataset, since the chosen moving MNIST dataset is synthesized. It
is expected that the frame prediction works similarly as in the presented
experiments. Additionally, the image quality for moving MNIST is not as
good as expected, thus it would be interesting to tune the networks more to
the used datasets to achieve better quality.

The dual architecture as described in paper [23] can be investigated further,
for instance how the authors manage to use a high frame resolution and if
a convLSTM layer gives better results for the EncGAN than our convTime
layer. It would be interesting to see if Optical Flow prediction is superior to
Frame prediction and if the dual model using both predictions to improve
on each other gives the best results as is claimed in the paper.

In general, a higher image resolution would be desirable, since it was not
reachable in the experiments done in the scope of this thesis. As mentioned
in the related works, there are some methods to gradually get to a higher
end resolution, e.g., progressively growing layers [1] or pyramidic upscaling
[5].

All in all, this work showed promising results with a conditional GAN
and an EncGAN model and it also demonstrates that there are still many
variants left to explore.
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Appendix

Figure 6.1: Samples of a GAN trained on the full resolution (64x64) moving
MNIST test dataset for 10000 iterations.

Figure 6.2: Samples of a cGAN trained on the full resolution (64x64) mov-
ing MNIST test dataset for 50000 iterations. The cGAN output
(middle) is trained to be a prediction of the next frame (right)
given the past frame (left).
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