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Abstract 

The aim of this thesis is to obtain thermal conductivities for several molecular crystals and 

subsequently, to establish structure-to-property relationships. The thermal conductivity is studied 

by means of lattice dynamics simulations. The phonon properties are obtained within the harmonic 

approximation and enter the Boltzman transport equation. Scattering processes among phonons are 

modeled using a phonon lifetime model, proposed by Bjerg et al., which relies on the material’s 

Grüneisen parameter. This approach yields the full thermal conductivity tensor and furthermore, 

the result is determined by the three quantities: phonon mode heat capacity, group velocity and 

phonon lifetime. This is an advantage because it allows to study the individual constituents and, 

thereby, to gain a deeper insight into the underlying physics. It was found, that for larger molecules, 

the component of the thermal conductivity perpendicular to the layers of the molecular crystal 

increases, leading to an increased anisotropy in thermal conductivity. Furthermore, the internal 

anharmonicity was found to decrease for larger molecules, due to the reduced number of interfaces 

between the densely packed layers. 

The materials investigated in this work are naphthalene, anthracene and pentacene, fluorene, 

biphenyl and polyparaphenylene. 
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1. Introduction 

Whenever two systems of different temperature are connected to each other, the system is not at 

thermodynamic equilibrium any more. Consequently, a flux of heat will be established to restore 

the system back to thermodynamic equilibrium. The rate at which heat transport from the hot to 

the cold side occurs is related to the temperature difference and to some material’s dependent 

property, the thermal conductivity. For small temperature gradients, this non-equilibrium process 

of heat transport can be described in a linearized way by Fourier’s Law: 

𝑗 = −𝜅∇𝑇 (1.1) 

The established heat flux j is linear proportional to the temperature gradient ∇𝑇. The proportionality 

factor κ is termed thermal conductivity and characterizes the material’s ability to transport heat. In 

essence, the formula is very similar to Ohm’s Law for electric currents or Fick’s Law of diffusion. 

If we stress the phonon picture, a temperature gradient indeed causes a concentration gradient of 

phonons, phonon diffusion restores the system to equilibrium. 

Why should one bother about thermal conductivity in the first place? One field where transport of 

heat is of main interest is thermoelectricity. This field has dragged attention from both academia 

and industry because of its potentially huge range of application. Providing electricity by 

consuming nothing but thermal energy, in best-case waste heat, could help to use less primary 

energy sources to reduce emission of greenhouse gasses. The efficiency of thermoelectricity in a 

material is expressed as the figure of merit 𝑍𝑇 = (𝜎𝛼2/𝜅)𝑇, which combines the key material 

properties, electrical conductivity 𝜎 and the Seebeck coeffiecient 𝛼. Consequently, ongoing 

research is aiming for materials with best trade-off between high electric conductivity and low 

thermal conductivity at the same time. For example, in single crystals of SnSe a figure of merit of 

2.6 at 923K was reported. This material shows very low thermal conductivity of 0.23 Wm-1K-1 at 

973K.1 

Other than thermoelectricity there are many applications that don’t seem to deal with thermal 

transport in the first place, however, for example in microelectronics thermal management is of 

utmost importance for proper operation. In devices, heat is generated by joule and recombination 

heating. To ensure stable device operation and prevent thermal runaway, the occurring heat has to 

be carried away sufficiently. Due to increasing power density and speed of integrated circuits, the 
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importance of thermal management is raised, thus thermal conductivity is a main constraint for 

material selection during the design process of a device.2 

In recent years organic semiconductors have seen various different applications like organic 

photovoltaics, OLED’s for displays and lighting as well as various sensor applications to name a 

few. Due to advances in chemical synthesis and process engineering organic semiconductors 

combine a huge functional variety with production routs, able to produce devices of all sizes on 

many different, even flexible substrates at competitive costs.3 Despite the importance, thermal 

transport properties have seen a lot less research interest than optical and electronic transport 

properties.4,5 

In solid state, thermal energy can be carried by electrons and quantized vibrations, phonons. The 

carriers travel at their group velocity until they scatter, which limits their mean free path and 

subsequently, limits thermal transport. In molecular crystals, electrons are localized at molecules 

in contrast to delocalized electrons in metals. Due to the lack of free electrons, the contribution of 

electrons to thermal transport is negligible in molecular crystals, leaving thermal transport over to 

phonons. Assuming a perfect single crystal without any defects and in the absence of free electrons, 

the only limitation to phonon transport arises from scattering among phonons. This consideration 

implies the temperature dependence of thermal conductivity to be T-1 at elevated temperatures. 

With lowering temperature, the number of thermally occupied phonons decreases, hence phonon-

phonon interactions are reduced leading to a peak in thermal conductivity. Further lowering 

temperature causes a rapid decrease in thermal conductivity which is attributed to the decreasing 

phonon heat capacity.6 In general, organic semiconductors show very low thermal conductivities 

in the range of 0.1-0.7 Wm-1K-1, comparable to amorphous solids.5 Exemplary values for some 

common organic semiconductors at room temperature are 0.185 Wm-1K-1 for P3HT7, 

0.62 Wm-1 K-1 for pentacene4, 0.24 Wm-1K-1 for TPD4, 0.5 Wm-1K-1 for Alq34 and 0.59 Wm-1K-1 

for Polyaniline (PANI)8. All thermal conductivity measurements were conducted on thin films. The 

lowest value of any organic semiconductor was found for PCBM, showing a thermal conductivity 

of 0.05-0.06 Wm-1K-1 at room temperature.9 An exceptionally high thermal conductivity was 

observed for Polyethylene single crystals exceeding 100 Wm-1K-1.10,11 

Molecular Crystals 

In general, molecular crystals are the crystalline bulk phase of organic molecules. Those molecules 

have a carbon backbone and can contain nearly all atoms from the periodic table. In the context of 
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this work, the meaning of organic molecules is narrowed to aromatic hydrocarbons because of their 

interesting electronic properties. In contrast to saturated hydrocarbons that are built from sp3 

hybridized carbon atoms, aromatic hydrocarbons contain a conjugated π-electron system. The pi-

electrons originate from sp2 hybridization, in which three sp2 hybrid-orbitals are formed from the 

2s orbital and two 2p orbitals. The resulting hybrid-orbitals are coplanar in the plane of the 

contributing p-orbitals and equally separated at an angle of 120° relative to each other. The 

remaining third p-orbital is oriented, perpendicular to the hybrid orbitals. The hybrid orbitals 

pointing at each other form so called σ-bonds and build the molecular skeleton. Due to the overlap 

of remaining p-orbitals, so called π-bonds are formed, leading to a delocalized electron density 

above and below the plane of the molecule. The conjugated π-electron system gives rise to many 

characteristic physical properties of molecular crystals. Most important is its effect on 

intermolecular interactions. Spatial fluctuations of π-electrons create a fluctuating dipole moment, 

which can induce a dipole in neighboring molecules. This in turn causes attractive forces 

proportional to the polarizability of the molecule. For short distances, so called van der Waals 

interactions increase rapidly and therefore favor a highly dense packing. Furthermore, van der 

Waals forces are rather weak compared to the covalent bonds within the molecule which has the 

effect, that molecules in solid phase are kept preserved as such almost entirely. Hence those 

materials are termed molecular crystals.12 

The presence of entire molecules as the basis of the unit cell has some important implications on 

the vibrational properties. One aspect is the usually much larger number of atoms in the unit cell, 

leading to much more eigenmodes. In return, this could potentially allow for more phonon 

scattering reducing the thermal conductivity after all. Another effect of molecules as 

crystallographic basis is the occurrence of external and internal modes.13 External modes, also 

termed intermolecular modes are oscillations, in which molecules move relative to each other and 

the molecules are not or only slightly distorted. Internal modes describe eigenmodes within the 

molecules, thus they are also referred to as intramolecular modes. Due to the difference in 

interaction strength between covalent bonds within the molecule and dispersion interactions 

between the molecules, external modes are of lower frequency compared to internal modes, 

however the separation might not always be present in the phonon band structure. Yet another issue 

of molecular crystals is anisotropic thermal transport. In the first place Neumann’s principle states, 

that physical properties must obey the symmetry operations of the crystal. Hardly any molecular 

crystals solidify in a cubic lattice. Therefore, thermal conductivity for those materials is expressed 
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as a tensor. This tensor must include symmetry operations of the constituting point group. In 

addition, a molecule’s distinct shape compared to spherical atoms as crystal basis, should increase 

the anisotropy in thermal transport furthermore.  

To cut a long story short, thermal conductivity is an important material’s property, relevant for 

many different applications but at the same time, knowledge about thermal transport is rather basic, 

especially for molecular crystals. To address this lack of understanding, the main objective of this 

thesis is to develop structure-to-property relationships for thermal transport in molecular crystals. 

More precisely, thermal transport will be modeled for a set of molecules (see Figure 1) that are 

chosen to answer the following questions: 

- How does the molecules torsional degree of freedom (DOF) affect thermal transport? 

- How does the overall size of the molecule affect thermal transport? 

To answer the first question, the materials naphthalene, fluorene and biphenyl were chosen. 

Naphthalene is built from two fused benzene rings, whereas fluorene and biphenyl incorporate two 

phenylene rings. In the case of fluorene, a methylene group is located at the ortho-positions of both 

rings, hence it is also referred to as 2,2’-Methylenebiphenyl. The phenylene rings of biphenyl are 

connected only by a single bond, representing the connection with the least resistance against 

torsion along the molecular axis. It is assumed, that the methylene group in fluorene increases this 

moment of resistance against torsion thus limiting the torsional DOF. If naphthalene is twisted 

along its molecular axis, the entire benzene rings are deformed which should result in the least 

torsional DOF. Considering the equation for undamped oscillation of a simple spring, 𝜔 = √𝑘 𝑚⁄  

with the spring constant k and the mass m, it can be concluded that an increased spring constant 

leads to higher frequency. As a consequence, the torsional eigenmodes of naphthalene should have 

the highest frequencies, followed by fluorene’s and biphenyl’s. How this affects then thermal 

transport is not known yet. 

The second research question sets the focus on the size of the constituting molecule which could 

have multiple effects. In the first place, larger molecules should show increased intermolecular 

coupling of the π-electron system. If the increased coupling makes up for the increased mass of 

larger molecules, higher maximum external frequencies were possible. In return, phonon dispersion 

and group velocities would increase. Another effect of larger molecules is the reduced number of 

interfaces between molecules. From naphthalene over anthracene to pentacene, fewer molecules 
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are required to fill a gap of given distance. Consequently, along the long molecular axis fewer 

interfaces appear for pentacene than there are for naphthalene. Polyparaphenylene will be an 

extreme situation, modelled as an infinite chain without interfaces along the chain direction. After 

all, interfaces should play an important role with respect to anisotropy in thermal transport. 

Figure 1: Materials under investigation, arranged to illustrate the variation in size (hor.) and 

torsional degree of freedom (vert.). Pictures were created using MolView14 

Modeling Approach 

The first step towards answering the aforementioned research questions is the choice of a suitable 

modeling methodology. This task always involves finding a balance between accuracy and 

computational effort, keeping in mind, that the computational resources are not unlimited. Specific 

to this work, the modeling method must be capable of calculating the full thermal conductivity 

tensor in order to investigate anisotropic behavior. Common theoretical methods to obtain thermal 

conductivity are based either on molecular dynamics or lattice dynamics or on a combination of 

both.15 Among these approaches, the Green-Kubo16,17 method (GK) and the non-equilibrium 

molecular dynamics (NEMD) are the most popular methods. The basis of the GK method is the 

general fluctuation-dissipation theorem by Kubo18 which allows to relate the thermal conductivity 

to the time required for instantaneous fluctuations in temperature to dissipate. In NEMD 
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simulations, the thermal conductivity is calculated from the ratio of a heat flux to a temperature 

gradient. Usually, the system is subjected to a heat flux, by adjusting the velocity of atoms in 

distinct hot and cold segments of the simulation cell.19,20 A temperature gradient will establish 

between those segments and once a steady-state is reached, thermal conductivity can be obtained 

from Fourier’s Law. Although this method is very intuitive, the result has to be converged with 

respect to the geometry of the simulation cell, namely the number of segments, respectively their 

size and the cross section of the simulation cell. Because Fourier’s Law is only applicable for linear 

response thermal conductivity must also be converged with respect to the magnitude of the applied 

heat flux. Unless the simulation cell is many times larger than the mean free path of phonons, the 

result has to be extrapolated to avoid finite-size effects.21 The problem of finite-size effects is also 

important for GK calculations and therefore has to be addressed. As a main advantage of the GK 

method over NEMD simulations the whole thermal conductivity tensor can be obtained from one 

simulation whereas the other approach can solve Fourier’s Law only in one dimension at once. 

However, GK calculations often require long simulation times to converge the correlation function 

to zero. Another common limitation to all molecular dynamics simulations is the treatment of 

atomic motion in terms of classical mechanics. Even if forces on atoms are obtained from first- 

principles calculations, atomic motion is calculated using Newton’s equations of motion. This can 

cause errors at low temperatures as a consequence of quantum effects.15 

Contrary to molecular dynamics, in lattice dynamics quantum effects are considered. The concept 

of lattice dynamics is used to calculate phonon properties which can be related to the thermal 

conductivity through the Boltzmann transport equation. For this approach the phonon frequencies 

with respect to momentum, i.e. the dispersion relation and the phonon lifetimes are required. The 

phonon dispersion relation is commonly obtained within the harmonic approximation, using either 

the concept of small displacements in real space22 or perturbation theory.23 A downside of this 

approximation is the fact, that phonons are considered decoupled and therefore don’t interact.24 

Consequently, the phonon lifetime within the harmonic approximation is infinite and has to be 

obtained in a different way. A possible overcoming is the use of additional molecular dynamics 

simulations to estimate the lifetimes.24,25 Another approach is anharmonic lattice dynamics, where 

phonon interactions are introduced as a perturbation to the harmonic solution to calculate the 

phonon lifetimes.24,26 However, this method requires a large computational effort which limits its 

applicability to small systems. As a computationally cheaper alternative also empirical models are 

used to estimate the phonon lifetime.27,28 
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For the purpose of finding relations between the structure of molecular crystals and their ability to 

transport heat, the concept of lattice dynamics seems to be more promising. This approach allows 

to analyze the ingredients required for the Boltzman transport equation individually. Possible 

bottlenecks to thermal transport can therefore be identified and related to the structure of the 

molecular crystal. 

The following work is structured into four chapters. In chapter 2, necessary theory to obtain the 

thermal conductivity is summarized starting with the derivation of the thermal conductivity tensor 

from the Boltzmann transport equation. Subsequently, lattice dynamics as well as the applied 

phonon lifetime model are explained in detail. The last part in this chapter then briefly introduces 

the applied quantum mechanical simulation tools, namely DFT and DFTB and the correction 

methods to account for van der Waals interactions accurately. To allow for reproducibility, chapter 

3 focuses on the applied workflow, providing input parameters and other computational details. 

The findings of this work are then presented in chapter 4, followed by a concluding discussion of 

the most important results in chapter 5. 
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2. Theory 

This chapter is intended to derive the expression for the thermal conductivity tensor within the 

chosen lattice dynamics approach. Subsequently, the ingredients to this equation are discussed, 

starting with harmonic quantities from lattice dynamics and then proceeding with anharmonic 

contribution in form of the phonon lifetime. Finally, this chapter will close with a brief introduction 

into first-principle simulations that were used in this work. 

2.1. Thermal Conductivity Tensor 

The following derivation of the thermal conductivity tensor is adapted from Festkörperphysik by 

Gross and Marx.29 It will be shown in detail how the BTE can be used to model phononic heat 

transport using the RTA. 

A crystalline solid, containing N atoms in its unit cell has 3N vibrational eigenmodes, which can 

be thermally occupied by phonons according to the Bose-Einstein-distribution: 

𝑓 =
1

𝑒ℏ𝜔 𝑘𝐵𝑇⁄ − 1
 (2.1) 

The average phonon occupation of an eigenmode depends on the eigenmode’s frequency and the 

temperature T. (cf. Figure 2 (left)) If an extended solid at an average temperature T0 is now 

subjected to a temperature gradient, the local phonon occupation will deviate from the previous 

equilibrium one f0=f(T0). At this point it should be emphasized, that the temperature gradient must 

be small enough, to allow for the assumption of constant temperature in a large enough region and, 

therefore, the use of statistics like the Bose-Einstein-distribution to characterize the phonon 

occupation in this region. Temperature deviation in neighboring regions relates to a deviation in 

phonon occupation, hence the phonon occupation is spatially dependent. In the first step towards 

thermal conductivity, the thermal flux will be expressed in terms of phonon properties. The general 

expression for the ith component of the heat flux reads 

𝑗𝑖 =
1

𝑉
∑ ℏ𝜔𝑓𝑣𝑔,𝑖

𝑞,𝑛

 (2.2) 

with 𝑣𝑔 = 𝜕𝜔 𝜕𝑞⁄ , the phonon group velocity. For better readability, here and in the following 

equations, the indices of wavevector q and phonon band n, for ω, f and vg are omitted. In thermal 

equilibrium with ∇𝑇 = 0, heat flux vanishes because of identical phonon occupation for positive 
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and negative q-values, as well as the fact, that the dispersion relation is symmetric, hence 𝑣𝑔,𝑖(𝑞) =

−𝑣𝑔,𝑖(−𝑞) and therefore the overall sum equals 0. In turn, a finite flux of heat establishes only, if 

f deviates from f0: 

𝑗𝑖 =
1

𝑉
∑ ℏ𝜔(𝑓 − 𝑓0)𝑣𝑔,𝑖

𝑞,𝑛

 (2.3) 

There are two reasons for a deviation in phonon occupation. The diffusion of phonon can be 

imbalanced, meaning that more phonons diffuse towards a region than away from it. Furthermore, 

the phonon occupation is altered by all kinds of interactions amongst colliding phonons. For the 

considered stationary case, the overall phonon occupation doesn’t change, hence 
𝑑𝑓

𝑑𝑡
=  0, thus, the 

BTE for no external forces reads: 

𝜕𝑓

𝜕𝑡
|

𝑑𝑖𝑓𝑓.
=

𝜕𝑓

𝜕𝑡
|

𝑐𝑜𝑙𝑙
 (2.4) 

The diffusion term on the left-hand side represents a system of noninteracting phonons. All possible 

mechanisms of interactions amongst phonons are accounted for in the right-hand side collision 

term.24 The diffusion of phonons is of course related to the phonon occupation, which depends on 

temperature. Therefore, the diffusion term must be related to the temperature gradient. Within the 

period Δt, all phonons will have traveled from their initial position 𝑥 − 𝑣𝑔∆𝑡 to position x, the 

diffusion term can therefore be written as: 

𝜕𝑓

𝜕𝑡
|

𝑑𝑖𝑓𝑓.
= lim

∆𝑡→0

1

∆𝑡
[𝑓(𝑥 − 𝑣𝑔∆𝑡) − 𝑓(𝑥)] = −𝑣𝑔

𝜕𝑓

𝜕𝑥
= −𝑣𝑔

𝜕𝑓0

𝜕𝑇

𝜕𝑇

𝜕𝑥
 (2.5) 

The fluctuations of the distribution function are assumed to be independent of temperature and thus 

the equilibrium distribution 𝑓0 can be considered instead of the local distribution 𝑓. The second 

source for changes in phonon occupation is scattering. Describing the interaction of particles 

thoroughly can be a difficult task, thus simplifications are necessary. In the relaxation time 

approximation, the collision term is considered to have the form: 

𝜕𝑓

𝜕𝑡
|

𝑐𝑜𝑙𝑙.
= −

𝑓 − 𝑓0

𝜏
 (2.6) 



10 

A deviation in phonon occupation is restored to equilibrium within a relaxation time τ. The collision 

terms magnitude, or in other words, the collision rate is proportional to the deviation in phonon 

occupation. 

Equations (2.5) and (2.6) can now be inserted into equation (2.3) which can then be compared to 

Fourier’s Law (cf. eq. (1.1)) to obtain the final equality, written in a general form with vg instead 

of vx: 

𝜅 =
1

𝑉
∑ ℏ𝜔

𝜕𝑓0

𝜕𝑇
𝑣𝑔

2∇𝑇𝜏

𝑞,𝑛

 (2.7) 

Finally, the specific heat can be expressed as the sum of phonon mode heat capacity, in the form: 

𝐶𝑉(𝑇) =
1

𝑉
∑ ℏ𝜔

𝜕𝑓0

𝜕𝑇
𝑞,𝑛

=
1

𝑉
∑ 𝐶𝑝ℎ(𝑞, 𝑛)

𝑞,𝑛

 (2.8) 

and identified in equation (2.7). For isotropic materials, thermal conductivity is a scalar, however, 

in most cases anisotropy plays a role and the thermal conductivity is represented as tensor κij. With 

this final step of identifying the mode heat capacity the thermal conductivity tensor derived using 

the BTE within the RTA reads as: 

𝜅𝑖𝑗 =
1

𝑉
∑ 𝐶𝑝ℎ(𝑞, 𝑛)𝑣𝑔,𝑛,𝑖(𝑞)

𝑞,𝑛

𝑣𝑔,𝑛,𝑗(𝑞)𝜏𝑛(𝑞) (2.9) 

The phonon mode heat capacity Cph(q,n) is the heat capacity contribution of one phonon mode, 

integrated over all frequencies it represents the phononic contribution to specific heat CV(T). In the 

expression of κ, Cph is the only temperature dependent part, acting as a filter function for phonon 

modes to contribute to thermal conductivity. Figure 2 illustrates the shape of this function, showing 

the frequency range for given temperatures. For comparison, also the Bose-Einstein distribution 

(cf. equ. (2.1)) is displayed along with the general univariate function for the phonon mode heat 

capacity, which is much broader than the occupation function. 
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Figure 2: Bose-Einstein distribution compared to the heat capacity function (cf. equ. (2.8)) in 

dependence of 𝑥 = ℏ𝜔 𝑘𝐵𝑇⁄   (left) and the phonon mode heat capacities for different temperatures 

(right). 

The ingredients necessary to calculate thermal conductivity from equ. (2.9) are the phonon band 

structure and the mode dependent relaxation times. The band structure provides wavevector 

dependent frequencies to calculate phonon mode heat capacities Cph. The group velocity vg is 

extracted as the first derivative with respect to the wavevector: 

𝑣𝑔,𝑛,𝑖(𝑞) =
𝜕𝜔𝑛(𝑞)

𝜕𝑞𝑖
 (2.10) 

In this work, the relaxation time is obtained from a phonon lifetime model, which will be discussed 

subsequently to the following section on harmonic lattice dynamics. 

2.2. Harmonic Lattice Dynamics 

Now that it has become clear what ingredients are necessary to calculate the thermal conductivity 

this section aims for a brief introduction on how to obtain the phonon dispersion relation, which 

provides two ingredients to thermal conductivity, the frequencies for the phonon mode heat 

capacities and the group velocities. To describe vibrations within a crystal, Newton’s equations of 

motion need to be solved for all atoms in the crystal.30 For a complex system with many atoms, 

this turns out to be a difficult task, thus approximations are necessary to simplify the procedure.  

A common approach to obtain the phonon dispersion relation is the concept of harmonic lattice 

dynamics. The interaction between atoms in a crystal can be of great variety and, therefore, the 

interaction potential can have a complex shape. Within the harmonic approximation, one assumes 

the interaction between atoms to be modelled as linear springs and, therefore, the interaction 

potential to be of parabolic shape. It shall not be omitted, that this simplification only holds true 
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for small deviations of the atom’s position around its equilibrium position. At room temperature, 

atoms’ displacements can be of the order of 10% of the lattice parameter.29 Consequently, the 

results obtained within harmonic approximation will show deviations at elevated temperatures. 

In the first step, the potential energy is Taylor expanded at its minimum with respect to the 

displacement 𝑢𝑖
𝑎(𝐴) of atom a in unit cell A towards cartesian direction i: 

𝐸(𝑟 + 𝑢) = 𝐸(𝑟) + ∑ ∑ ∑
𝜕𝐸

𝜕𝑢𝑖
𝑎(𝐴)

|
𝑟

𝑢𝑖
𝑎(𝐴)

𝐴𝑖𝑎

+
1

2
∑ ∑ ∑

𝜕2𝐸

𝜕𝑢𝑖
𝑎(𝐴)𝜕𝑢𝑗

𝑏(𝐵)
|

𝑟

𝑢𝑖
𝑎(𝐴)𝑢𝑗

𝑏(𝐵)

𝐴,𝐵𝑖,𝑗

…

𝑎,𝑏

 

(2.11) 

The 0th oder term represents the ground state energy which can be omitted for further discussion. 

The first derivative of energy with respect to a displacement is nothing else than the sum of forces 

acting on atom a. By the definition of equilibrium, those forces have to vanish and so does this 

term. In the harmonic approximation, the Taylor expansion is cut off after the second derivatives, 

and one obtains the harmonic potential. The second derivatives of the harmonic potential are 

referred to as force constants and relate the forces acting on atom a in unit cell A towards direction 

i upon displacement of atom b in unit cell B towards direction j: 

𝐶𝑖𝑗
𝑎𝑏(𝐴, 𝐵) =

𝜕2𝐸

𝜕𝑢𝑖
𝑎(𝐴)𝜕𝑢𝑗

𝑏(𝐵)
= −

𝜕𝐹𝑗
𝑏(𝐵)

𝜕𝑢𝑖
𝑎(𝐴)

 (2.12) 

The second equality represents the force F exerted on atom b in unit cell B towards direction j upon 

displacement of atom a in unit cell A towards direction i. The force constants must satisfy several 

requirements which arise from the isotropy of space and the point group symmetry. Due to 

translational invariance in a periodic structure, the interatomic force constants are only dependent 

on the difference between the unit cells. In other words, it is not necessary to have two indices A 

and B running over all possible unit cells. Instead a central unit cell 0 can be defined and the 

summation of interactions is performed for all periodic repetitions, B. Therefore, the force 

constants can be rewritten as: 

𝐶𝑖𝑗
𝑎𝑏(𝐴, 𝐵) = 𝐶𝑖𝑗

𝑎𝑏(0, 𝐵) (2.13) 

To obtain now the relation between the frequency and the wavevector of a phonon, the laws of 

classical mechanics can be applied. According to Newton, the forces upon interaction are in balance 
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with the inertial forces. To reduce the size of the resulting system of equations, the periodicity of 

the system can be utilized to apply a plane wave ansatz for the atoms’ displacements, similar to 

Bloch’s theorem: 

𝑢𝑖
𝑎(𝐴) =

1

√𝑚𝑎

𝜆𝑖
𝑎(𝑞)𝑒𝑖(𝑞𝑅𝐴−𝑤𝑡) (2.14) 

Here ma is the mass of atom a and 𝜆𝑖
𝑎 is the amplitude of the plane wave. In contrast to general 

plane waves, this one is only defined at the lattice points Ra. This ansatz is now inserted into 

Newton’s equations of motion to obtain a homogeneous system of linear equations. To solve this 

system, the so-called dynamical matrix D needs to be diagonalized. The entries of the dynamical 

matrix are of the form: 

𝐷𝑖𝑗
𝑎𝑏(𝑞) =

1

√𝑚𝑎𝑚𝑏

∑ 𝐶𝑖𝑗
𝑎𝑏(0, 𝐵)𝑒−𝑖𝑞𝑅𝐵

𝐵

 (2.15) 

The components of this matrix are the Fourier transform of all force constants between two atoms 

normalized by their masses. A crucial step in this approach is to converge the sum in equation 

(2.15) by considering a supercell, large enough for the present interactions to decay. Thus, force 

constants have decayed as well ensuring converging entries to the dynamical matrix. The phonon 

frequencies ωn(q) and eigenvectors en(q) can then be obtained for any wavevector q: 

𝜔𝑛
2(𝑞) = 𝑒𝑛(𝑞)𝑇𝐷(𝑞)𝑒𝑛(𝑞) (2.16) 

For badly converged force constants, the dynamical matrix can contain complex entries which in 

turn results in phonons of negative frequency, and therefore also negative energy. This is of course 

physically meaningless. 

2.3. Computation of Force Constants – FDM 

To compute force constants, the derivative of the energy with respect to the displacement of an 

atom is required. Within the method of finite differences, equation (2.12) can be used to obtain the 

finite difference quotient as an approximation to the real derivative. Every single atom in the central 

unit cell is displaced six times, towards all three cartesian directions for a positive and a negative 

increment (+/- x, +/-y, +/-z). In a system without any symmetries, 6N different displacement setups 

would be necessary to be calculated. In return, the symmetries inherent to the investigated systems 

decrease the computational effort, e.g. with 36 atoms in the unit cell, Naphthalene would require 



14 

216 different displacement setups, whereas considering symmetries the number of displacements 

is decreased to a 54. For every displacement setup with one atom being displaced, the occurring 

forces on all other atoms are calculated and the according force constants can be obtained. 

One crucial parameter of this approach is the magnitude of the atom displacement. The 

displacement must be small enough to stay within harmonic approximation whereas too small 

displacements would cause nothing else than numerical noise. For all investigated materials, the 

displacement was set to be 0.01Å, which is less than one percent of the usual bond distances of 

around 1-2Å. 

2.4. Phonon Lifetime Model 

Having discussed how the harmonic ingredients to thermal conductivity are obtained, this section 

focuses on the anharmonic contribution in the form of phonon lifetimes. In the harmonic 

approximation, phonons have an infinite lifetime because no interaction between phonons can be 

modelled. In real materials however, phonons can scatter with each other or at defects, impurities, 

grain boundaries and other interfaces. All those effects cannot be modelled without consideration 

of higher order terms of the potential energy. A straightforward idea would, therefore, be, not to 

use the harmonic approximation in which the Taylor expansion of the potential energy is truncated 

after the second order term, but rather to include at least the third order term. Applying Fermi’s 

golden rule then allows to calculate the phonon lifetimes analytically. However, compared to the 

second order force constants that were obtained by displacing one atom and calculating the 

occurring forces, third order force constants require the displacement of two atoms simultaneously. 

In return, the number of different displacement setups increases dramatically even after 

consideration of symmetries. Sticking again to Naphthalene as an example, the second order force 

constants require 54 different displacements, whereas the third order force constants need more 

than 90.000 different setups to be calculated. 

Due to the massive computational effort, this approach was dismissed in the present work. As an 

alternative, a phonon lifetime model was employed which was published by Bjerg et al.31. This 

model relies on the Grüneisen parameters as a measure for the internal anharmonicity. Before a 

further discussion of the phonon lifetime model, first the mode dependent Grüneisen parameter 

𝛾𝑛(𝑞) and then the mean squared Grüneisen parameter 〈𝛾2〉 will be explained briefly. The mode 

dependent Grüneisen parameter characterizes the relative change in phonon frequency 𝜔𝑛(𝑞) upon 

a change, either contraction or expansion, of the equilibrium volume V0 of the unit cell: 
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𝛾𝑛(𝑞) = −
𝑉0

𝜔𝑛(𝑞)

𝜕𝜔𝑛(𝑞)

𝜕𝑉
|

𝑉0

= −
𝑉0

2𝜔𝑛(𝑞)
⟨𝑒𝑛(𝑞)|𝑀(𝑞)|𝑒𝑛(𝑞)⟩ (2.17) 

𝑀(𝑞) =
𝜕𝐷(𝑞)

𝜕𝑉
|

𝑉0

≈
Δ𝐷(𝑞)

Δ𝑉
|

𝑉0

 (2.18) 

The first equality in equation (2.17) is the definition of the mode dependent Grüneisen parameter 

and the second equality is the way how the mode dependent Grüneisen parameters were calculated 

in this work. The dynamical Matrix (cf. equ. (2.15)) is obtained for three different volumes to 

construct a new matrix M (2.18), instead of calculating the frequency change for every mode at 

each desired q-point. 

Its use as measure of anharmonicity arises from the fact, that for a perfectly harmonic potential 

energy, the phonon frequencies would not depend on the volume of the unit cell and the Grüneisen 

parameters would vanish. Also, the Grüneisen parameters can approximately be related to the third 

derivatives of the potential energy as the phonon frequency is proportional to energy and 

𝜕𝑉 =  𝜕𝑥𝜕𝑦𝜕𝑧. 

The mean squared Grüneisen parameter is the averaged Grüneisen parameter, weighted by the 

phonon mode heat capacity. To prevent the cancelation of positive and negative Grüneisen 

parameters, they are squared: 

〈𝛾2〉 =
∑ 𝐶𝑝ℎ(𝑛, 𝑞)(𝛾𝑛(𝑞))

2
𝑛,𝑞

∑ 𝐶𝑝ℎ(𝑛, 𝑞)𝑛,𝑞
 (2.19) 

The present phonon lifetime model is obtained by comparing two earlier lifetime models 

considering a Debye model with three acoustic branches having the same speed of sound, 

relaxation time and Debye temperature. One model, proposed by Slack28, is based on the empirical 

finding for the relaxation time around the Debye temperature for the case of dominant three phonon 

scattering: 

𝜏𝑛
−1(𝑞) = 𝑝(〈𝛾2〉) 𝜔𝑛

2(𝑞)
𝑇

Θ
𝑒−Θ 3𝑇⁄  (2.20) 

The components of this equation are, 𝑝(〈𝛾2〉), an empirical fit function which depends on the mean 

squared Grüneisen parameter, the squared phonon frequency 𝜔𝑛
2(𝑞) with band index n and 
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wavevector q. T denotes the temperature and ϴ is a temperature scaling factor which corresponds 

to the Debye temperature for inorganic materials. 

A second model, also by Slack et al.32, based on the work of Leibfried and Schlömann for the 

thermal conductivity in noble gas crystals33 was compared to the thermal conductivity according 

to equation (2.9) within the Debye model to obtain the fitting function p: 

𝑝 =
1 − 0.514(〈𝛾2〉)−1 + 0.228(〈𝛾2〉)−1

0.0948

ℏ2〈𝛾2〉

𝑘𝐵Θ𝑀𝑉1 3⁄ 𝑠
 (2.21) 

Here M denotes the average atomic mass in the unit cell, V is the unit cell volume and the speed 

of sound is represented by s. In this work, the temperature scaling factor was calculated from the 

second moment of the phonon density of states: 

Θ = √
5ℏ2 ∫ 𝜔2𝑔(𝜔)𝑑𝜔

𝜈𝑐𝑢𝑡

0

3𝑘𝐵
2 ∫ 𝑔(𝜔)𝑑𝜔

𝜈𝑐𝑢𝑡

0

 (2.22) 

In their work, Bjerg et al. employed an additional scaling factor 𝑁−1 3⁄  to scale equation (2.22), 

with N the number of atoms in the unit cell. In contrast to the methodology proposed by Bjerg et 

al., the integral in equation (2.22) was truncated to a cutoff frequency νcut, which was defined as 

the maximum frequency of any of the acoustic bands. This choice is justified by the assumption, 

that the acoustic phonons are the main contributors to thermal transport.32 

According to the authors, the strengths of the lifetime model are, that the full phonon dispersion is 

considered, and no further fitting parameters are necessary. The second point is only partially 

complied as the model is based on earlier empirical models that do feature already determined 

fitting parameters which therefore also enter the present model, however, they were not changed 

or refitted within this thesis. One drawback of the used lifetime model is the simplified assumption 

of one generalized phonon lifetime which only depends on frequency. Due to the lack of directional 

dependence in this applied phonon lifetime model, anisotropy of the calculated thermal 

conductivities stems solely from the group velocities, which should be noted when discussing the 

results of this work. 

2.5. Quantum Mechanical Simulation Software 

As outlined in the previous section on lattice dynamics, the main ingredient required to calculate 

the phonon band structure are the forces acting on an atom while its position deviates from the 
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equilibrium position to a known extend. Within this work, quantum mechanical simulation 

software was used to perform total energy calculations, as the gradient of the total energy with 

respect to an atom’s position equals the force acting on the atom. Software tools used are based in 

density functional theory (DFT) and density-functional tight-binding theory (DFTB). Due to the 

importance of vdWs interactions for molecular crystals, additional correction-methods were 

applied in the form of the Tkatchenko-Scheffler method34 and the dispersion correction by Grimme 

et al. termed D335. In the following, the basics of those methods are discussed, starting with the 

foundations of DFT by showing the theorems of Hohenberg and Kohn and the Kohn-Sham 

equations, also mentioning functionals. The subsequent section then serves the purpose of briefly 

introducing the density-functional tight-binding formulism. The last subsection then is dedicated 

to the applied vdWs corrections. 

2.5.1. Density Functional Theory 

To obtain the total energy of a system of atoms one has to solve the Schrödinger equation. For a 

system containing N electrons, solving the Schrödinger equation is a 3N dimensional many-body 

problem.36 In the mid 1960’s, Hohenberg and Kohn37 could show, that the ground state energy is a 

unique functional of the electron density n(r), or in other words, the ground state wave function 

directly corresponds to the ground state electron density. Important about this finding is, that the 

electron density is a function in three dimensions only, compared to the 3N dimensionality of the 

Schrödinger equation. Furthermore, they could prove, that the true electron density corresponding 

to the solution of the Schrödinger equation is the one, which minimizes the energy functional. 

Further development by Kohn and Sham (KS) then led to a first framework of DFT, where the 

problem of solving Schrödinger’s equation is mapped onto an auxiliary system of noninteracting 

electrons affected by an effective potential. They suggested an energy functional of the form: 

𝐸𝐾𝑆 = 𝑇𝑆[𝑛(𝒓)] + ∫ 𝑉(𝒓)𝑛(𝒓)𝑑𝒓 +
1

2
∫

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓𝑑𝒓′ + 𝐸𝑋𝐶[𝑛(𝒓)] (2.23) 

where TS is the kinetic energy of a system of non-interacting electrons, V(r) is the external potential 

arising from the positively charged nuclei and the third term represents the Coulomb interaction 

between pairs of electrons, also denoted as Hartree potential VH(r).36 The term EXC, which 

characterizes the exchange and correlation energy, contains all quantum mechanical, many-body 

and self-interaction effects, which are not included in the other terms. In theory, if one could find 

an analytical description for the exchange-correlation energy, one could find the exact solution to 
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equation (2.23), however the true form of the exchange-correlation functional is not known and 

has to be approximated.38 

To find now the right electron density, Kohn and Sham39 could further demonstrate, that one simply 

has to solve one-particle Schrödinger equations of the form, 

[−
ℏ2

2𝑚
∇2 + 𝑉(𝒓) + 𝑉𝐻(𝒓) +

𝜕𝐸𝑋𝐶[𝑛(𝒓)]

𝜕𝑛(𝒓)
] 𝜓𝑖(𝒓) = 𝜖𝑖𝜓𝑖(𝒓) (2.24) 

where 𝜓𝑖 denotes the KS-orbitals. The electron density can then be calculated by summation of the 

occupied KS-orbitals: 

𝑛(𝒓) = ∑ 𝜓𝑖
∗(𝒓)𝜓𝑖(𝒓)

𝑁

𝑖

 (2.25) 

This scheme can now be solved in a self-consistent manner, called self-consistent-field (SCF) 

approach. First, an initial electron density n(r) is guessed which is used to calculate the effective 

potential to then solve the KS-equations. Now the actual electron density can be computed and 

compared to the initial guess. In case the two densities differ, the initial guess is updated, and the 

KS-equations are again solved. This cycle is repeated until the electron densities converge. If 

convergence was reached, the resulting electron density is the ground state electron density which 

can then be used to calculate the total energy. 

The last missing ingredient to this approach is the treatment of the exchange and correlation energy, 

the exchange-correlation functional. In their paper from 1965, Kohn and Sham used the so-called 

local density approximation (LDA) which relates this energy to the energy within a uniform 

electron gas of density n(r): 

𝐸𝑋𝐶
𝐿𝐷𝐴 = ∫ 𝑑𝒓 𝑛(𝒓)𝜖𝑋𝐶[𝑛(𝒓)] (2.26) 

Another type of approximation for the exchange-correlation energy additionally considers the 

gradient of the electron density, hence this type of functionals is called generalized gradient 

approximation, GGA. The functional used within this work, the PBE functional, proposed by 

Perdew, Burke and Ernzerhof, also belongs to the family of GGA’s.40 
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2.5.2. Density-Functional Tight-Binding 

For calculation of force constants, the Fourier series in equation (2.15) must converge, which 

requires super cells large enough for the occurring forces to decay. The computational costs to 

perform DFT calculations on such large super cells, that are built from already large unit cells, 

concerning the number of atoms, were too high for some materials and denied the use of DFT. As 

an alternative, density-functional tight-binding theory (DFTB) was applied. This method has 

shown reasonable accuracy compared to DFT41,42 with much lower computational expenses. 

Therefore, this approach is very well suited to study large systems. In this work the free software 

DFTB+43 was used, which is an implementation of the DFTB method. Currently, three evolutions 

of DFTB are available, the non-self-consistent DFTB144, the second-order DFTB245, which was 

originally referred to as SCC-DFTB and the most recent DFTB346 which is an extension to the 

third-order. In the following, the basics of DFTB are derived, however, only up to the second-order 

extension. The derivation is adapted from an article by Elstner and Seifert47, where the basic 

principles of DFTB are reviewed. 

Instead of the electron density as the main quantity, for DFTB a reference density n0 is assumed, 

perturbed by a density fluctuation 𝛿𝑛: 𝑛(𝒓) = 𝑛0(𝒓) + 𝛿𝑛(𝒓). Inserting this into the KS-equations 

and after expansion of the exchange-correlation energy functional up to the third order, the total 

energy reads: 

𝐸𝐷𝐹𝑇𝐵3[𝑛0 + 𝛿𝑛] =
1

2
∑

𝑍𝑎𝑍𝑏

𝑅𝑎𝑏
−

1

2
∬

𝑛0(𝑟)𝑛0(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′

𝑎𝑏

         

− ∫ 𝑉𝑋𝐶[𝑛0]𝑛0(𝑟)𝑑𝑟 + 𝐸𝑋𝐶[𝑛0] + ∑ 𝑛𝑖⟨𝜓𝑖|�̂�[𝑛0]|𝜓𝑖⟩

𝑖

+
1

2
∬ (

1

|𝑟 − 𝑟′|
+

𝛿2𝐸𝑋𝐶[𝑛]

𝛿𝑛(𝑟)𝛿𝑛(𝑟′)
|

𝑛0

) 𝛿𝑛(𝑟)𝛿𝑛(𝑟′)𝑑𝑟𝑑𝑟′

+
1

6
∭

𝛿3𝐸𝑋𝐶[𝑛]

𝛿𝑛(𝑟)𝛿𝑛(𝑟′)𝛿𝑛(𝑟′′)
|

𝑛0

𝛿𝑛(𝑟)𝛿𝑛(𝑟′)𝛿𝑛(𝑟′′)𝑑𝑟𝑑𝑟′𝑑𝑟′′

= 𝐸0[𝑛0] + 𝐸1[𝑛0, 𝛿𝑛] + 𝐸2[𝑛0, (𝛿𝑛)2] + 𝐸3[𝑛0, (𝛿𝑛)3] 

(2.27) 

The evolutions of DFTB mentioned above differ in the contributing terms and build up on top of 

each other in a successive manner. For the non-self-consistent DFTB1 method, the first two terms 

of equation XX, E0[n0] and E1 [n0,δn] are considered. As a basis of the DFTB approach, the KS-
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orbitals are constructed form the linear combination of atomic orbitals (LCAO) where the atomic 

orbitals are obtained from DFT calculations: 

𝜓𝑖 = ∑ 𝑐𝜇𝑖𝜓𝜇

𝜇

 (2.28) 

A minimal basis set restricted to the valence shell of the atoms is used, which requires an 

orthogonalization to the atoms core orbitals. As a consequence of the LCAO ansatz the general 

eigenvalue problem arises 

∑ 𝑐𝑣𝑖(𝐻𝜇𝑣
0 − 𝜖𝑖𝑆𝜇𝑣) = 0

𝑣

    𝑤𝑖𝑡ℎ 𝑣 ∈ 𝑏 𝑎𝑛𝑑 ∀𝑎, 𝜇 ∈ 𝑎 (2.29) 

where 𝐻𝜇𝑣
0  are the elements of the Hamiltonian matrix and 𝑆𝜇𝑣 are the elements of the overlap 

matrix, and a and b denote the different atoms. The Hamiltonian matrix elements are obtained 

within a two-center approximation directly from DFT calculations. According to47, pure atomic 

orbitals would be too diffuse for the chosen minimal basis set, hence an additional harmonic 

potential is applied for solving the atomic KS-equations, which results in ‘compressed’ atomic 

orbitals. For this reason, a confinement radius r0 has to be provided, which is usually chosen to be 

double the covalent radius of the atom.44 Also the electron density of the neutral atom is obtained 

in this way, therefore a confinement radius for the initial density 𝑟0
𝑑 has to be specified. Those two 

parameters have to obtained for every element. Having determined the atomic orbital basis and the 

initial density, the KS-equations can be solved leading to the electronic energy of the DFTB model 

𝐸1 = ∑ 𝑛𝑖 ∑ 𝑐𝜇
𝑖 𝑐𝑣

𝑖 𝐻𝜇𝑣
0 = ∑ 𝑛𝑖𝜖𝑖

𝑖𝜇𝑣𝑖

 (2.30) 

which equals the sum of occupied KS energies with ni representing the occupation number of KS 

orbital i. To determine the total energy, the term E0[n0] must be defined. Considering equation 

(2.27), this term accounts for the ‘double-counting’ in DFT and solely depends on the reference 

density n0, obtained from the superposition of neutral atomic densities. This implies, that E0 does 

not depend on the chemical environment, thus it can be obtained beforehand without limiting the 

transferability of the parameter. In DFTB, E0 is referred to as repulsive energy term and 

approximated by summing over pair potentials, determined either by comparing to DFT 

calculations or empirical data. Finally, the total energy of the non-self-consistent DFTB1 reads: 
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𝐸𝐷𝐹𝑇𝐵1 = ∑ 𝑛𝑖𝜖𝑖 +
1

2
∑ 𝑉𝑎𝑏

𝑟𝑒𝑝

𝑎𝑏𝑖

 (2.31) 

DFTB1 is a very efficient method, due to the use of a minimal basis set and furthermore, because 

the Hamilton matrix elements as well as the overlap matrix elements are precalculated and stored 

in so called Slater-Koster-files and don’t require calculation during the runtime. Additionally, the 

KS equations need to be solved once as this approach is non-self-consistent. Although many 

approximations are made within this method, it is still very well suited for systems with negligible 

charge transfer. 

For systems where charge transfer does play a role, the accuracy of DFTB1 is of course limited, 

which can only be omitted by using higher order terms of equation (2.27) and solving them 

iteratively. To start with, the density fluctuations δn are expressed as superposition of atomic 

contributions and the atomic-like density fluctuations undergo a multipole expansion, of which 

only the monopole term is kept. For evaluation of the second-order integral in equation (2.27), the 

charge density is modelled to decay exponentially. Finally, the second-order term can be stated 

𝐸2 =
1

2
∑ Δ𝑞𝑎Δ𝑞𝑏𝛾𝑎𝑏

𝑎𝑏

 (2.32) 

where Δqa denotes the partial charge at atom a and function γab takes care of the Coulomb and 

exchange-correlation interactions. Now the Hamilton matrix elements depend on the partial 

charges at the atoms, which in turn depend on the expansion coefficients of the LCAO ansatz. 

These equations require an iterative evaluation and the method is also called self-consistent-charge 

DFTB (SCC-DFTB). 

2.5.3. Van der Waals corrections 

Although much weaker than covalent bonds, van der Waals (vdW) interactions play an important 

role in molecular crystals. They are essential for the formation of organic solids and have a great 

effect on the crystal structure.48 Consequently, also properties that depend on the crystal structure, 

e.g. the phonon band structure we are interested in, are affected by the correct description of those 

interactions. Sadly, neither DFT nor DFTB account for dispersion interactions right away, 

however, there are several approaches to overcome this issue.34,35,49 In this work, two vdW 

corrections were used, TS and D3, and both are so called DFT-D approaches, where a dispersion 

energy contribution EDISP is added to the total energy EDFT: 
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𝐸𝐷𝐹𝑇−𝐷 = 𝐸𝐷𝐹𝑇 − 𝐸𝐷𝐼𝑆𝑃 (2.33) 

The dispersion energy is the sum of two-, in D3 also three-body energies. For pairwise interactions, 

this term is generally of the form 

𝐸𝐷𝐼𝑆𝑃 = 𝑠 ∑
𝐶𝐴𝐵

6

𝑟𝐴𝐵
6 𝑓𝑑𝑎𝑚𝑝(𝑟𝐴𝐵)

𝐴𝐵

 (2.34) 

where 𝑟𝐴𝐵 is the distance between atoms A and B, 𝐶𝐴𝐵
6  is a dispersion coefficient and fdamp(rAB) is 

a damping function necessary to omit double counting effects of correlation and avoid singularities 

at small interatomic distances. A scaling factor s is used globally, to adjust EDISP with respect to 

the used density functional. In the following, the two dispersion corrections will be discussed 

briefly. 

In TS, the aim is put on obtaining effective dispersion coefficients to account for the chemical 

environment. The starting point is the Casimir-Polder integral, which is used to express the relation 

between atomic polarizabilities and the dispersion coefficient. From there, an expression for 𝐶𝐴𝐵
6  

is derived, which relies only on homonuclear parameters. To account then for the chemical 

environment, the effective volume of an atom in a molecule is defined, making use of the direct 

relation between volume and polarizability by applying the Hirshfeld partitioning of the electron 

density. The obtained effective volume can then be compared to the value for the free atom to 

obtain the effective dispersion coefficient. Intermolecular dispersion coefficients, 𝐶𝑚𝑜𝑙
6 , can be 

obtained from summation over all atomic dispersion coefficients. Within TS, a Fermi-type damping 

function is utilized 

𝑓𝑑𝑎𝑚𝑝(𝑟𝐴𝐵, 𝑟𝐴𝐵
0 ) =

1

1 + exp [−𝑑 (
𝑟𝐴𝐵

𝑠𝑅𝑟𝐴𝐵
0 − 1)]

 
(2.35) 

with 𝑟𝐴𝐵
0 = 𝑟𝐴

0 + 𝑟𝐵
0 as the combined vdW radius. The steepness of the damping function is 

determined with parameter d, set to 20. Parameter 𝑠𝑅 is used to adjust the onset in terms of distance 

of the vdW correction for a certain exchange-correlation functional. To define the vdW radius, 

Tkatchenko and Scheffler again use the ratio between the effective and the free atomic volume. 

D3 also handles the description of vdW interactions in form of an additional energy contribution 

to the total energy of DFT, however, here also three-body terms are considered which will be 
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discussed shortly after showing how pairwise interactions are modelled. The first specialty of D3 

is, that the scaling factor s (cf. equ. (2.34)) is set to unity in order to preserve an exact asymptotic 

behavior of the interactions. Because of the missing scaling factor, higher order terms of 𝐶𝐴𝐵
𝑛  are 

required, which then can be scaled by 𝑠𝑛 to fit the vdW correction to the used density functional. 

In D3, an additional eighth-order term is used. Higher order terms were omitted due to 

computational instability while at the same time, not improving the accuracy of the method. The 

𝐶𝐴𝐵
6  are obtained from time-dependent DFT calculations solving the Casimir-Polder integral, 

whereas the higher order coefficients are obtained recursively. As a damping function, Grimme et 

al. choose an approach by Chai and Head-Gordon50 which reads 

𝑓𝑑𝑎𝑚𝑝,𝑛(𝑟𝐴𝐵) =
1

1 + 6 (
𝑟𝐴𝐵

𝑠𝑟,𝑛𝑟𝐴𝐵
0 )

−𝛼𝑛

 

 
(2.36) 

with 𝑠𝑟,𝑛 representing the order-dependent scaling factor of the cutoff radii 𝑟𝐴𝐵
0 , which determines 

the adaptation at small and medium distances of the correction to the specific density functional. 

The steepness of this damping functions is adjusted with 𝛼𝑛, set to 14 for the sixth-order and 16 

for eighth-order. The three-body term used in D3 is derived from third-order perturbation theory 

and reads 

𝐸𝐴𝐵𝐶 =
𝐶𝐴𝐵𝐶

9 (3 cos 𝜃𝑎 cos 𝜃𝑏 cos 𝜃𝑐 + 1)

(𝑟𝐴𝐵𝑟𝐵𝐶𝑟𝐶𝐴)3
 (2.37) 

with 𝜃𝐴, 𝜃𝑏 and 𝜃𝑐 denoting the internal angles of the triangle spanned by 𝑟𝐴𝐵, 𝑟𝐵𝐶 and 𝑟𝐶𝐴. 𝐶𝐴𝐵𝐶
9  is 

the triple-dipole constant which could be obtained from the Casimir-Polder integral in analogy to 

the dipole coefficient, however, due to the low contribution to the dispersion energy (<5-10%) the 

coefficient is obtained as the geometric mean of the 𝐶6-coefficients. Applying the analogous 

damping scheme as for the pairwise interactions completes the treatment of triple-dipole 

interactions. As a cutoff radius for both two- and three-body terms, the distance where the first-

order DFT interaction energy between two atoms equals a certain cutoff energy is taken. To account 

for the chemical environment, which is changed e.g. by the formation of covalent bonds, an 

approach employing a fractional coordination number (CN) is used. Roughly speaking, the distance 

between two atoms is compared to the covalent bond distance of those two atoms to decide whether 

the atoms are bonded or not. This counting is performed for all atoms in the system to calculate the 

CN. The dispersion coefficient of an atom in its certain chemical environment can then be obtained 
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from an interpolation scheme between precalculated values for the pairs of atoms, which are 

calculated for different CN. 

A recently published paper by Bedoya et al. shows, the importance of vdW correction methods to 

obtain vibrational properties comparable to experimental ones. Furthermore, it is shown, that the 

D3-method delivers a very accurate description of vdW interactions in molecular crystals 

concerning vibrational properties. However, it should also be mentioned, that for known lattice 

parameters, calculations using the PBE functional without any dispersion correction schemes also 

result in accurate vibrational properties.51 
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3. Workflow 

After having discussed the theory relevant to this work in the previous chapter, the current chapter 

is intended to show the steps necessary to obtain the thermal conductivity tensor. Moreover, this 

chapter aims to provide detailed information about the used software tools, input parameters and 

settings. The workflow to achieve thermal conductivities is depicted in Figure 3 showing the main 

steps as well as the used software. In the first step, input parameters and settings must be converged 

to give meaningful results. One of the most important steps for harmonic lattice dynamics is 

structure relaxation, which contains both, the optimization of lattice parameters, as well as the 

relaxation of atom positions inside the crystal structure. Residual forces on atoms must vanish and 

the structure must be at a minimum of the potential energy to obtain meaningful phonon properties. 

For the subsequent step of phonon calculation, which contains the creation and handling of 

displacement setups, construction and diagonalization of the dynamical matrix, as well as the 

postprocessing to access the phonon properties, the open source package phonopy was employed. 

Phonopy was, furthermore, used for the calculation of Grüneisen parameters. Thermal 

conductivities were then obtained according to the discussed lifetime model. 

B. Aradi, B. Hourahine, 

Th. Frauenheim. 

DFTB+, a sparse matrix-

based implementation of 

the DFTB method, J. Phys. 

Chem. A, 111 5678 (2007) 

PHONOPY 

Atsushi Togo, “First principles phonon 

calculations in materials science”, Atsushi Togo 

and Isao Tanaka, Scr. Mater., 108, 1-5 (2015) 

LIFETIME MODEL 
Bjerg et al., Phys. Rev. B, 89:024304, Jan 2014 

Figure 3: Flow chart illustrating the general workflow and the used software to obtain thermal 

conductivity. 
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Although there is only DFTB+ shown in Figure 3, total energy and force calculations for some 

materials were also performed with VASP, however, all results presented here were obtained using 

DFTB+. The reason to prefer DFTB+ over VASP will be explained in the first section of this 

chapter. Furthermore, a comparison of phonon properties obtained with both software packages is 

shown to confirm the quality of the more approximative tight-binding approach compared to DFT 

for the calculation of phonons. The second part of this chapter is dedicated to explaining the use of 

phonopy as well as the necessary steps to obtain phonon properties and Grüneisen parameters. The 

last section of this chapter will then deal with the required steps to calculate phonon lifetimes. 

Before the discussion on quantum mechanical simulation software starts, the source of the crystal 

structures shall be mentioned. Except for the structure of polyparaphenylene, all crystal structures 

were obtained from the Cambridge Structural Database52. For the materials biphenyl, fluroene, 

naphthalene, anthracene and pentacene the structures BIPHEN53, FLUREN0154, NAPHTA3155, 

ANTCEN1456 and PENCEN0457 were used, respectively. Finally, the crystal structure for 

polyparaphenylene was taken from a paper by C. Ambrosch-Draxl et al.58 

3.1. Quantum Mechanical Simulation Software 

At the beginning of this thesis, the first-principles density functional theory (DFT) software 

package VASP was considered because of the superior accuracy. Phonons were obtained for 

fluorene and naphthalene. For polyparaphenylene, DFT proved to be too expensive from a 

computational point of view. The computational effort was too large to perform calculations on a 

large enough supercell to converge force constants sufficiently and, therefore, to obtain meaningful 

phonon properties. Consequently, a different simulation approach had to be considered and finally, 

the tight-binding based program DFTB+59 was chosen, as it has shown reasonable accuracy 

compared to DFT at much lower computational cost. 

3.1.1. VASP 

VASP (ver. 5.4.1)60–63 was used employing the projector augmented wave method64 with the PBE 

functional40. To ensure proper results, the sampling density in the first Brillouin zone was 

converged to a difference in total energy of 1meV per atom. For fluorene and naphthalene  

Monkhorst-Pack65 grids with 2x1x3 and 2x3x2 k-points were sufficient. The second quantity that 

needed convergence testing was the cutoff energy of the plane wave basis set. Total energy 
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calculations were performed with cutoff energies up to 1200eV and a threshold of 1meV in energy 

difference per atom was applied. The chosen cutoff energy was 800eV for both materials. 

Although VASP offers the ability to relax lattice parameters and atom positions which is set by the 

INCAR-tag IBRION, the relaxation was performed using the GADGET tool (ver. 0.98_150717)66. 

This tool handles the geometry optimization while VASP is used for the electronic calculations. 

The use of internal coordinates instead of cartesian ones accelerates the process of relaxation 

considerably. For relaxation geometry, the allowed error in total energy was set to 

EDIFF = 1E-4 eV. To account for van der Waals interactions, the dispersion correction method of 

Tkatchenko and Scheffler (TS)34 was used. According to the VASP manual, the precision tag PREC 

was set to accurate for the relaxation. Due to its suitability for organic molecules, Lindh’s model 

hessian67 in conjunction with the Broyden-Fletcher-Goldfrab-Shanno (BFGS)68–71 optimization 

algorithm was used. As convergence criterium for forces, a threshold of 1meV/Å was chosen. 

For calculation of force constants, single point calculations were carried out by VASP. For this 

purpose, the EDIFF-tag was reduced to 1E-8 eV. 

3.1.2. DFTB+ 

DFTB+ (ver. 18.1)43 was used with the Slater-Koster file set 3ob-3-159. For all calculations, the 

self-consistent-charge (SCC) approach was used. Again, a preliminary convergence test 

concerning the sampling density in k-space was performed, with the breaking condition for the 

SCC cycles of 1e-5. This test resulted in Monkhorst-Pak65 k-grids 4x3x4, 2x2x2, 2x1x3, 2x3x2, 

2x3x2 and 2x2x1 for polyparaphenylene, biphenyl, fluorene, naphthalene, anthracene and 

pentacene, respectively. As a threshold, again 1meV in total energy difference was used. 

Concerning van der Waals interactions, two different dispersion correction methods were used with 

DFTB+, however, not for all materials both approaches were tested. For fluorene and naphthalene, 

relaxation and force constants calculation were performed using an implementation of TS72 and the 

D3-method by Grimme et al35. For the other materials, TS was discarded due to its computational 

effort because of slowly converging dispersion energies. Comparing computation times, D3 was 

faster than TS by a factor of 250 to 280 times for fluorene and naphthalene, respectively. As 

additional information, it shall be mentioned, that the TS-implementation was done in an unofficial 

release (r4465), and therefore, the large computational effort could be down to bad performance 

optimization. To use the implementation of the D3 dispersion correction, it is required to use the 
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DFTB3 Hamiltonian73. This improvement contains “an improved Coulomb interaction between 

atomic partial charges” and “the complete third-order expansion of the DFT total energy”73. For 

the use of DFTB3, the Hubbard derivatives for C = -0.1492 and H = -0.1857, and a damping factor 

𝜁 = 4.00, which controls the damping of short-range interactions, have to be provided. As a 

program default, a Becke-Johnson damping function was used with the following parameters: 

a1 = 0.5719, a2 = 3.6017, s6 = 1.00 and s8 = 0.5883. All quantities are given in atomic units. This 

setup of DFTB3+D3 was used to obtain the results presented in this work. 

Relaxations were performed using the implemented Conjugate Gradient method, applying a 

threshold of 5.1E-9 eV/Å (1E-10 Ha/Bohr) for the maximum force component and the Self-

consistent-charge-tolerance was lowered to 1E-10 e (1.602E-29 C). For all materials except 

pentacene, relaxation of lattice parameters and atom positions was performed separately, because 

a combined relaxation of both quantities led to large a computational effort and questionable results 

at the same time. However, for pentacene, this mixed-mode relaxation showed the best result 

compared to the step-by-step approach, concerning the total energy and the residual forces. 

The tight value for SCC-tolerance was kept for the calculation of force constant. 

3.1.3. VASP vs. DFTB+ 

Now, to underline the suitability of DFTB+ for calculation of vibrational properties, phonon 

properties of fluorene and naphthalene obtained with VASP and DFTB+ will be compared in the 

following. Before that, the lattice parameters obtained for fluorene and naphthalene using the 

above-mentioned approaches are compared (Table 1). For both materials, the VASP+TS method 

VASP+TS DFTB+TS DFTB3+D3 VASP+TS DFTB+TS DFTB3+D3

a / Å 8.223 7.985 7.911 8.052 7.791 7.500

b / Å 18.702 18.239 18.256 5.860 5.741 5.781

c / Å 5.524 5.432 5.426 8.616 8.416 8.409

α / ° 90.00 90.00 90.00 90.00 90.00 90.00

β / ° 90.00 90.00 90.00 123.89 123.97 124.64

γ / ° 90.00 90.00 90.00 90.00 90.00 90.00

NaphthaleneFluorene

Table 1: Comparison of lattice parameters obtained for fluroene and naphthalene using 

VASP+TS, DFTB+TS and DFTB3+D3-BJ. 
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results in the largest lattice parameters, which in turn should lead to eigenmodes of lower frequency 

compared to the DFTB approaches. The first vibrational property to compare, are the phonon 

eigenvectors at the Γ point. For this reason, a python script by Tomas Kamencek first seeks for 

similar eigenmodes and then calculates the dot product of according phonon eigenvectors. For 

perfect overlap, the dot product can reach a maximum value of one. Figure 4 shows the overlap of 

eigenvectors for phonons of fluorene. In the frequency range up to 100cm-1, all phonon 

eigenvectors are identical. At the full frequency range, phonon eigenvector overlap is still 

Figure 4: Comparison of phonon properties of fluorene at the Γ point obtained with VASP+TS 

and DFTB3+D3-BJ in terms of the dot product of eigenvectors. Phonon frequency ranges: 

0-100cm-1 (left) and 0-3200cm-1 (right) 

Figure 5: Comparison of phonon properties of naphthalene at the Γ point obtained with 

VASP+TS and DFTB3+D3-BJ in terms of the dot product of eigenvectors. Phonon frequency 

ranges: 0-100cm-1 (left) and 0-3200cm-1 (right) 
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acceptable, with more than half of the phonon modes showing identical eigenvectors. The same 

test was performed for the phonons of naphthalene, depicted in Figure 5. For this material, the 

obtained phonon eigenvectors are not as similar as for Fluorene. For the low frequency range up to 

100cm-1, only 2 out of 18 modes are not identical. At the full frequency range, the majority of 

phonons exhibit a dot product >0.94. In a second comparison, the phonon frequencies at the Γ point 

are shown as orange lines in the phonon density of states (DOS) (filled area). The compared 

simulation methods are VASP+TS, DFTB+TS and DFTB3+D3-BJ. The DOS was sampled within 

the first Brillouin zone on a 11x11x11 grid of q-points and a broadening of σ = 5cm-1 was used in 

all cases. For Fluorene (Figure 6), VASP+TS shows a pronounced first peak in the DOS compared 

to the other methods. In general, the agreement is better between VASP+TS and DFTB3+D3-BJ, 

than it is for DFTB+TS. Phonon frequencies obtained with DFTB+TS tend to be shifted towards 

higher frequencies. The situation for naphthalene (Figure 7) is similar, showing slight differences 

in the frequency range 0-100cm-1. For this system, the agreement between both DFTB+ approaches 

is better, both phonon DOS are slightly shifted towards higher frequencies than for VASP+TS, 

which is a result of the slightly smaller unit cells obtained from DFTB+ (see Table 1). 

Figure 6: Comparison of phonon frequencies (orange lines) at the Γ point obtained for 

fluorene using VASP+TS, DFTB+TS and DFTB3+D3-BJ on the frequency range 0-300cm-1 
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Furthermore, the band structures for fluorene and naphthalene were compared. For the calculation 

of the band structures, 101 sampling points between each high symmetry points were considered. 

A comparison of the band structures for the two discussed materials obtained with VASP+TS and 

DFTB3+D3-BJ can be found in Appendix A. 

3.2. Phonopy 

For the calculation of phonons, the open source package phonopy (ver. 1.11.14-r1)74 was used. 

Moreover, also the Grüneisen parameters were obtained with this program. Phonopy uses the finite 

differences method to obtain the derivatives of the potential energy with respect to the displacement 

of an atom according to section 2.3. The creation of supercells with one atom being displaced is 

done by phonopy via an interface to VASP. On the different displacement setups, single point 

calculations are performed to achieve the total energy and the forces acting on the not displaced 

atoms, which are extracted by phonopy to obtain the force constants. Phonon properties are finally 

calculated using a postprocessing step, after phonopy has created and diagonalized the dynamical 

matrix. As there is no interface to DFTB+, a script by Tomas Kamencek was used to convert the 

geometry file used by DFTB+ into a POSCAR file, used by VASP. After construction of 

Figure 7: Comparison of phonon frequencies (orange lines) at the Γ point obtained for 

naphthalene using VASP+TS, DFTB+TS and DFTB3+D3-BJ on the frequency range 

0-250cm-1 
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displacement setups, the VASP geometry file POSCAR was translated back to the geo.gen file 

required by DFTB+. 

As mentioned in section 2.3, depending on the symmetry inherent to the present structure, the 

number of different displacement setups varies. The accuracy applied to find the symmetries of the 

structure can be manually adapted with the command option --tolerance, which is by default 1e-5Å. 

This setting had to be adjusted when using VASP/GADGET for relaxation, not so for the use of 

DFTB+. For naphthalene (VASP+TS), the default tolerance setting gave 216 displacements, a 

lower value of 1e-3Å equaled 54 different setups. To obtain converged force constants, it was 

found, that the k-grid values could be used as factors for the according supercells. An exception to 

this rule of thumb made pentacene, where a 4x3x2 supercell was required for converging force 

constants. 

There are some important “seeting tags” to obtain physically meaningful results in phonopy. To 

enforce the sum rule for acoustic phonons, FC_SYMMETRY = .TRUE. is required. The group 

velocities, necessary for the calculation of the thermal conductivity are obtained by setting the 

GROUP_VELOCITY-tag. For this quantity, a nonsymmetric sampling mesh is required, which is 

imposed by MESH-SYMMETRY = .FALSE. Otherwise, one would not only need to weigh the 

properties according to their occurrence in the irreducible Brillouin zone, but also perform 

according symmetry operations.  

3.3. Phonon Lifetimes 

Phonon lifetimes were calculated in accordance with the lifetime model by Bjerg, discussed in 

section 2.4. Necessary ingredients to this model are a temperature scaling factor ϴ, the average 

atomic mass in the unit cell M, the volume of the unit cell V, the speed of sound s and the mean 

squared Grüneisen parameter 〈(𝛾2)〉 which are all present in equation (2.21). The temperature 

scaling factor was calculated according to equation (2.22) where the cutoff frequency νcut had to be 

chosen. In this work, the cutoff frequency was chosen to be the maximum frequency of any acoustic 

band. The average atomic mass and the unit cell volume could easily be extracted from the 

structural data. To obtain the speed of sound, group velocities were sampled on a dense, spherical 

mesh around Γ point. The velocity values were then averaged using a relation based in the Debye 

model: 
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To obtain the mode Grüneisen parameters according to (2.17) and (2.18), three dynamical matrixes 

corresponding to three different volumes are required. In the publication by Bjerg et al., the unit 

cell volume is modified and in a subsequent relaxation step, the lattice parameters are relaxed while 

keeping the modified unit cell volume constant. In contrast to that, in this work the unit cell’s 

volume was contracted/expanded isotropically, i.e. the lattice parameters were multiplied by the 

factor 0.997/1.003. In the following relaxation step, only the atomic positions were allowed to 

change while the lattice parameters were kept constant. Subsequently, force constants were 

calculated for those modified cells to construct the required dynamical matrixes. The mode 

Grüneisen parameters were calculated using phonopy. The mean squared Grüneisen parameter was 

then calculated according to equation (2.19). Errors occurring from this slightly changed workflow 

compared to the originally published procedure were considered to be negligible. The ingredients 

to and the phonon lifetimes for the investigated materials are shown in Table 4. 
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4. Results 

This section serves the purpose of presenting the results of this work that were obtained using the 

methods described in chapter 3. Prior to discussion of phonon properties, the obtained lattice 

parameters will be presented briefly because they are essential for phonon calculation. Like a music 

instrument, the size and shape do play an important role for the vibrations of the system, hence the 

crystal structures will be displayed as well. Harmonic phonon properties will be discussed 

subsequently, starting with the phonon density of states (Ph-DOS) to give an overview on the 

vibrational spectra of each material. The first harmonic ingredient to thermal conductivity is the 

phonon group velocity, which will be investigated with two different approaches. First, we will 

make use of the band structure, to access the phonon dispersion relation in a qualitative way and 

furthermore, to discuss anisotropy. In the next step, the group velocity is plotted against phonon 

frequency to allow for a quantitative comparison amongst the investigated materials. The second 

harmonic ingredient is the phonon mode heat capacity. To discuss the importance of the heat 

capacity for the calculation of thermal conductivity, the situation will be shown in an exemplary 

way for naphthalene. Before discussing then thermal conductivities, relevant quantities entering 

the phonon lifetime model and according phonon lifetimes are presented. The final subsection of 

this chapter will show the obtained thermal conductivities, their temperature dependence as well 

as their anisotropic behavior. 

4.1. Lattice Parameters and Crystal Structures 

The importance of lattice relaxation as preparation for phonon calculations has already been 

discussed in detail when the concept of lattice dynamics was introduced. Residual forces have to 

vanish to ensure that the system is at its equilibrium. Furthermore, changes of the crystal structure 

itself can have a big impact on phonon properties. A perfect example is the calculation of Grüneisen 

parameters. The unit cell is compressed and expanded by a small factor, however phonon properties 

like the frequency can vary tremendously (see Table 4). On the other hand, crystal structure itself 

depends on the applied quantum mechanical methodology and, particularly important for organic 

molecules, on the methods to account for dispersion forces.51 For those reasons, this subsection is 

intended to present the lattice parameters obtained from DFTB3+D3-BJ, as those crystal structures 

are the basis of the following results. Illustrations of the crystal structures are presented alongside 

the respective phonon band structures in subsection 4.3. 
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Table 2: Comparison of experimental and calculated lattice parameters. Where provided in the 

reference, experimental temperatures are given. ((1) unit cell was modified (b’=2*b), see text) 

Ab-initio codes produce results valid for a temperature of 0K. However, experiments to determine 

crystal structures are conducted at finite temperatures. Consequently, a comparison of calculated 

lattice parameters to experimental ones, as is shown in Table 2, is limited to a certain extent. 

Deviations are caused by the modeling approach and the thermal expansion, which was not 

investigated throughout this work. Although an in-depth comparison is denied by the 

aforementioned reasons, there are important aspects worth pointing out at this stage. 

The investigation of polyparaphenylene was started using a unit cell with lattice parameters 

according to experiment, containing two molecules inside. Each of those molecules was set up 

from two phenylene rings covalently bonded at the para-position. Experimental75,76 and 

computational58 studies on polyphenylenes indicate an interring torsion angle of 18°. However, for 

relaxations using the gadget-tool and VASP in conjunction with the TS dispersion correction 

Exp. DFTB3+D3 Exp. @ 295K DFTB3+D3 Exp. @ 295K DFTB3+D3

a / Å 7.623 7.782 8.120 7.507 8.475 7.911

b / Å 5.523 10.745
(1) 5.640 5.156 18.917 18.256

c / Å 8.701 8.672 9.470 9.195 5.717 5.426

α / ° 89.750 90.00 90.00 90.01 90.00 90.00

β / ° 107.626 106.98 95.40 90.52 90.00 90.00

γ / ° 90.101 90.00 90.00 90.01 90.00 90.00

Exp. @ 5K DFTB3+D3 Exp. @ 295K DFTB3+D3 Exp. @ 90K DFTB3+D3

a / Å 8.080 7.500 8.553 7.832 6.239 6.005

b / Å 5.933 5.781 6.016 5.750 7.636 7.091

c / Å 8.632 8.409 11.172 10.847 14.330 14.429

α / ° 90.00 90.00 90.00 90.00 76.98 77.43

β / ° 124.65 124.64 124.60 124.60 88.14 88.09

γ / ° 90.00 90.00 90.00 90.00 84.42 84.41

Biphenyl Fluorene

Naphthalene Anthracene Pentacene

Polyparaphenylene
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method this result could never be obtained. Instead, a coplanar orientation of the phenylene rings 

was obtained (see Figure 8 (left)). To constrain the structure, the unit cell was doubled towards 

lattice parameter b and two additional molecules were added to obtain a different crystal symmetry. 

Relaxation of this modified structure finally resulted in a nonplanar configuration with an interring 

torsion angle of 15.4° (VASP+TS using the gadget tool) (see Figure 8 (right)). Although the 

problem of planar phenylene rings had been resolved, the increased cell size drastically increased 

the computational cost for subsequent phonon calculations. Consequently, the largest supercell 

affordable had the dimensions 2x2x2, which was not large enough for interactions to decay 

properly, resulting in imaginary phonons with negative frequency. In the course of switching the 

quantum mechanical methodology from VASP to DFTB+ the modified unit cell of 

polyparaphenylene was retained. Changing the methodology to DFTB+ finally allowed for 

calculation of a large enough supercell (4x3x4) to obtain meaningful phonon properties. The initial 

unit cell was again investigated applying DFTB3+D3. Relaxations were performed for cells with 

imposed orthorhombic and monoclinic symmetry, however, the total energy per atom and residual 

forces were larger than for the modified cell. Thus, no phonon calculation was performed for those 

structures. 

Figure 8: Crystal structure of polyparaphenylene after relaxation: phenylene rings are 

coplanar in the initial unit cell (left), phenylene rings are angled for interring torsion angle of 

15.4° in the modified unit cell (right). 



  37 

Concerning the obtained angles of the crystal structures, there is good agreement between 

experiment and simulation over all, except for biphenyl. For this material, the relaxation algorithm 

resulted in a much smaller angle β = 90.52° instead of βexp = 95.4° (295K)53. For the other angles, 

the difference between measured and calculated values is smaller than 1%. 

It has already been mentioned, that the correct description of vdW interactions is crucial to obtain 

correct crystal structures and subsequently to calculate correct vibrational properties for molecular 

crystals (see sec. 2.5.3). Due to the importance of vdW interactions, dispersion energies in eV per 

molecule and per atom are listed in Table 3.  

Table 3: Dispersion energies of the investigated materials in eV per molcule and per atom. 

 

As expected, the dispersion energy per molecule for acenes increases with increasing molecular 

size, i.e. increasing number of atoms in the molecule. The dispersion energy per atom also increases 

because the ratio of hydrogen atoms to carbon atoms decreases from 0.8 for naphthalene to 0.63 

for pentacene. For biphenyl and polyparaphenylene the dispersion energies per atom are virtually 

the same differing by 1 meV. Fluorene exhibits the lowest dispersion energy per atom, which could 

be related to the methylene group denying a more densely packing, which would increase vdW 

interactions. 

4.2. Phonon Density of States 

One way to illustrate the vibrational properties of a system is by means of the phonon density of 

states. It displays the density of vibrational eigenstates of the system which can be occupied by 

phonons with respect to frequency. The peak heights relate to the number of vibrational eigenstates 

at a certain frequency. The phonon density of states was calculated on a grid of 11x11x11 q-points, 

which is sufficient in terms of convergence. Furthermore, the phonon density of states was 

normalized to the number of eigenmodes (3N, N … number of atoms) and a broadening of 1 and 

5 cm-1 was applied (see figure caption). For all materials the phonon density of states in Figure 9 

show vibrational states on a frequency range up to 1800 cm-1 (biphenyl ~ 1600 cm-1) and a peak of 

high intensity at 3000 cm-1. This peak is related to vibrations of the hydrogen atoms in which the 

bond between the hydrogen and carbon atoms is stretched. For the investigated materials, except 

Material PPP Biphenyl Fluorene Naphthalene Anthracene Pentacene

Edisp/molecule / eV 1.899 2.103 2.073 1.692 2.335 3.710

Edisp/atom / eV 0.095 0.096 0.090 0.094 0.097 0.103
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Fluorene, the hydrogen atoms are bonded to one carbon atom each, thus the strength of the bond is 

similar. Consequently, the vibrational eigenstates are in a very narrow frequency range which leads 

to the high intensity of this peak. For Fluorene, the phonon density of states shows a second, smaller 

peak at a slightly lower frequency (~2940 cm-1) which is related to vibrations of the two hydrogen 

atoms of the methylene group. Those atoms are weaker bonded than the aforementioned hydrogen 

atoms, which relates to a lower vibrational frequency. For the studied acenes, this hydrogen-peak 

is increasing with increasing size, which is attributed to the increasing number of hydrogen atoms 

overall leading to more vibrational eigenstates of similar frequency. According to the narrow width 

of the hydrogen peak, those phonons are only weakly dispersed, or in other words, they are strongly 

localized at the molecule with vanishing group velocity. Therefore, those phonons have a negligible 

contribution to thermal transport. In Figure 10 the phonon density of states is displayed on a 

frequency range from 0-500 cm-1. 
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Figure 9: Phonon density of states (Ph-DOS) of the investigated materials on  the full frequency 

range (σ=5cm-1) 
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Figure 10: Phonon density of states (DOS) of the investigated materials on the frequency range 

0-500cm-1 (σ=1cm-1) 
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4.3. Band Structures 

The following subsection will be used, to discuss the phonon band structures of the investigated 

materials. The band structure shows the dispersion of phonon bands, or in other words, it relates 

the phonon frequency to the wavevector q. Since q has three cartesian components a four-

dimensional plot would be necessary for representation. A more convenient illustration makes use 

of crystal symmetry. The phonon dispersion is obtained for wavevectors pointing along a path 

between high symmetry points of the first Brillouin zone. Therefore, the two-dimensional band 

structure allows the illustration of the phonon dispersion along different directions. This allows a 

qualitative investigation of the anisotropy of phonon band dispersion. 

In the following, the phonon band structures for the investigated materials are shown and discussed. 

The according Brillouin zones are displayed to relate the high symmetry points of the band structure 

to actual directions in reciprocal space. Alongside, the crystal structures are presented to finally 

relate the band structure to directions in real space. The selected paths along high symmetry points 

are adapted from Setyawan and Curtarolo.77 The plots of the Brillouin zones ( are reprinted from 

Computational Materials Science, 49, Setyawan and Curtarolo, High-throughput band structure 

caclculations: Challenges and tools, 299-312, 2010, with permission from Elsevier. 

Although eigenmodes in organic molecules can reach frequencies of up to around 3000 cm-1 the 

following band structures display the phonon dispersion relation for a lower frequency range. One 

reason for the importance of the low frequency region is the occupation of eigenmodes by thermal 

activation. Another argument to focus more on this low frequency region is group velocity. In 

general, optical phonons are less dispersed than acoustic ones, resulting in lower group velocities 

for the former ones and higher group velocities for the latter. Another important aspect is phonon 

scattering, which increases with phonon frequency. Therefore, it is less likely for high frequency 

phonons to contribute to thermal conduction at all, hence the upcoming discussion will focus on 

the frequency range from 0 to 300 cm-1. 

The last point to make before discussing the band structures is to mention the concept of external 

and internal modes as mentioned in the introduction. The forces present in an organic crystal are 

covalent bonds inside the molecules as well as dispersion forces between the non-polar molecules. 

Because of the strong forces within the molecule the frequencies of internal vibrations are higher 

than the frequencies of external modes. Generally, the number of eigenmodes is 3N, where N is 

the number of atoms in the unit cell. If one considers now a unit cell that contains m molecules 
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with n atoms per molecule, there are 3mn modes of which 6m are external and 3mn-6m are internal 

modes. In contrast to single atoms which only have three translational degrees of freedom, 

molecules have three rotational degrees of freedom additionally. For the materials 

polyparaphenylene and fluorene which contain 4 molecules in the unit cell, there are 24 external 

modes. The other materials all incorporate two molecules per unit cell equaling 12 external modes. 

Polyparaphenylene 

A remarkable aspect in the band structure of polyparaphenylene is the anisotropy of phonon 

dispersion. Phonon dispersion along paths Γ-Y, M1-A and X-H1 which are all parallel to b3, is very 

strong. Furthermore, b3 coincides with the direction of the covalently bonded polymer chains. 

Perpendicular to the polymer chain direction, Y-H, C-E and A-X, dispersion and therefore group 

velocity almost vanishes, resulting in localized phonons. For direction H-C and E-M1, phonon 

dispersion is intermediate.  

Another interesting aspect about PPP’s band structure is the band gap of at least 100cm-1 that occurs 

along the path Y-H-C-E-M1. This bandgap should limit three phonon processes because of energy 

Figure 11: Band structure of polyparaphenylene with c-centered monoclinic crystal structure. 
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conservation. Phonons of less than 150cm-1 cannot scatter into phonons at a frequency of 300cm-1. 

However, the flat bands, particularly along the path C-E, should ease phonon scattering as the 

constraint of conservation of wavevectors is less important for flat, almost parallel bands. 

Inspecting the path Γ-Y, at very low frequencies (even below 25cm-1) optical phonons are present. 

Those optical phonons show a translational motion along the molecular chain, similar to 

longitudinal acoustic phonons, however, the center of mass doesn’t change its location (in contrast 

to acoustic phonons). Due to the same symmetry of eigenmodes, those modes can hybridize. As a 

consequence of hybridization, avoided crossings occur. The stronger the coupling between two 

eigenmodes, the greater is the gap at the avoided crossing point. In the case of zero coupling phonon 

bands cross. Phonon hybridization can cause increased scattering, as has been shown by Wu Li et 

al78. Even slight hybridization of acoustic and optic phonons can decrease the lifetime of acoustic 

phonons a lot, hindering phonon transport. 

One important value for the applied phonon lifetime model is the maximum acoustic phonon 

frequency. For polyparaphenylene this value was found to be 59.7 cm-1 close to the Y-point. 

Figure 12: Crystal structure of polyparaphenylene82 (left) and the according 1. Brillouin zone77 

(right). The molecular chain is parallel to c in real space, which corresponds to direction b3 in 

reciprocal space. 
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Biphenyl (base-centered orthorhombic) 

 

Figure 13: Band structure of biphenyl with base-centered orthorhombic crystal strcuture. 

Tracing the longitudinal acoustic eigenmode (strongest dispersion of acoustic modes) along the 

path Γ-X (direction [110]), there is a beautiful example for phonon hybridization, which results in 

an avoided crossing and in return limits the maximum frequency of this branch. However, the trend 

of the eigenmode can be traced up to the Brillouin zone border. The same is true for the longitudinal 

acoustic mode along Γ-Y. Along the direction Γ-Z there no avoided crossings are present, the 

maximum acoustic frequency, however, is even lower compared to the other two cartesian 

directions. The maximum acoustic frequency is located close to the Y-point at 59.6cm-1. 

The dispersion of the bands is stronger for lower frequencies up to 175cm-1 compared to the 

localized phonons above. Many bands are degenerate at the high symmetry points, however they 

split up along the path between those points. This is particularly obvious for the path X-S-R-A. 

Between T-Y, no band splitting is present, and the bands are degenerate. 

The four localized modes, two at 200cm-1 and the other two around 250cm-1 are eigenmodes 

corresponding to in-plane and an out-of-plane bending motion, respectively. Those modes are of 
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particular interest for structure-to-property relationships and will be discussed later on (cf. section 

5.1). 

Figure 14: Crystal structure of biphenyl82 (left) and according 1. Brillouin zone77 (right). The 

molecules are slightly angled with respect to direction c which corresponds to b3 in reciprocal 

space. 
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Fluorene 

 

Figure 16: Crystal structure of fluorene (left) and the according 1. Brillouin zone (right). The 

molecules are oriented towards the c direction, which corresponds to the reciprocal direction 

b3. 

Figure 15: Band structure of Fluorene with orthorhombic crystal strcuture. 
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With four molecules per unit cell, the band structure of fluorene exhibits 24 external modes. They 

cover a frequency range up to roughly 125cm-1 at the Γ point with the lowest optical band starting 

below 25cm-1 at Γ. Avoided crossings play a role again, especially on the paths Γ-Y (direction b) 

and Γ-Z (direction c). The maximum acoustic frequency was found to be at 50cm-1 located close 

to the Y-point. Except for paths Γ-X, Γ-Y and Γ-Z, bands are comparably weak dispersed. Many 

of the bands are degenerate at high symmetry points as well as on the path between those points. 

The very flat band at around 225cm-1 characterizes in-plane bending modes, the bands just below 

300cm-1, show the dispersion of eigenmodes with an out-of-plane bending motion. 

Naphthalene 

 

Figure 17: Band structure of naphthalene with c-centered monoclinic crystal structure. 

The unit cell of naphthalene hosts two molecules and therefore the first 12 modes are considered 

external vibrations and range up to around 180cm-1, except for the high symmetry points E, M1 and 

A, where the frequency drops below 150cm-1. Dispersion of bands is low for most parts of the band 

structure, only path Γ – Y (direction normal to plane a-b, normal to molecular layer) shows 

considerable dispersion. Hybridization of the longitudinal acoustic band and a low frequency 
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optical phonon cause again an avoided crossing, limiting the maximum frequency of the acoustic 

band. The maximum acoustic frequency was found to be 70.7cm-1 close to the Z-point, which is 

not displayed in the band structure. An interesting feature of the band structure is the occurrence 

of degenerate bands along the path C-E-M1-A-X. All those 8 bands present are twofold degenerate 

and show no band splitting, which means, that those eigenmodes possess the same energy. 

 

Figure 18: Crystal structure of naphthalene82 (left) and the according 1. Brillouin zone77 

(right). The molecules are parallel to c in real space, which corresponds to direction b3 in 

reciprocal space. 



  49 

Anthracene 

 

Figure 20: Crystal structure of anthracene82 (left) and the according 1. Brillouin zone77 (right). 

The molecules are parallel to c in real space, which corresponds to direction b3 in reciprocal 

space. 

Figure 19: Band structure of anthracene with c-centered monoclinic crystal structure. 
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The band structure of anthracene is very similar to naphthalene’s. The external vibrations reach up 

to around 150cm-1, lower than for naphthalene. Also, the first optical band at Γ is located at a lower 

frequency. Again, along the path C-E-M1-A-X, bands are twofold degenerate without any band 

splitting. The maximum frequency of an acoustic phonon was found to be 63.0cm-1 at the D point. 

Pentacene 

Figure 21: Band structure of pentacene with triclinic crystal structure. 

In pentacene’s band structure, a lot more eigenmodes are present compared to naphthalene and 

anthracene which is related to the large number of atoms, 72, in the unit cell. Following the trend 

from naphthalene and anthracene of decreasing maximum external vibrations frequency, this 

material’s external vibrations range up to around 130 cm-1. Avoided crossings are again present in 

the low frequency region between acoustic and optical eigenmodes. Along direction Γ- X 

(direction a), avoided crossings between the three acoustic and first two optical modes are present. 

The longitudinal acoustic mode is affected by two avoided crossings resulting in two kinks in its 

dispersion. Towards point Y, the second and the third acoustic mode avoid a crossing, close to the 

border of the Brillouin zone. The three lowest lying optical modes are interfering with the 

transversal acoustic mode, limiting its dispersion and maximum frequency. An interesting feature 
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of this band structure is the very low frequency (12.38 cm-1) present at point L, corresponding to 

an energy of 1.5 meV. At the q-point (0.35, 0.35, 0) the two transvers acoustic modes cross, 

whereas crossings between the transvers and longitudinal modes are avoided. The strongest 

hybridization of eigenmodes, concerning the width of the gap at the crossing point occurs along 

the path Γ- Z (direction c). Close to Γ, the first two optical modes are avoiding a crossing, and 

thereby swap their dispersions. Increasing the distance from the Γ-point, the lower lying optical 

mode then interacts with the longitudinal acoustic mode limiting the maximum frequency 

drastically. After this avoided crossing, it looks like the optical mode is continuing the dispersion 

of the acoustic mode it hybridized with. For directions Γ – N and Γ – M, the band structure looks 

very similar concerning the low frequency region up to around 80 cm-1. Again, the lowest lying 

optical mode is interfering with the strongest dispersed acoustic bands and in succession, those 

bands are then interfering with the intermediate dispersed acoustic bands. After all, the maximum 

frequency of the acoustic modes in pentacene is again limited due to the interference with low lying 

optical bands. The maximum acoustic frequency was found to be 62.9 cm-1 at the X-point. 

 

Figure 22: Crystal structure of pentacene82 (left) and the according 1. Brillouin zone77 (right). 

The molecules are tilted within the layers, which are stacked in direction c, corresponding to 

direction b3 in reciprocal space. 
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4.4. Group Velocity 

As outlined in the theory part, the group velocity of phonons is one harmonic ingredients to thermal 

conductivity and furthermore, it enters calculation as a squared entity. In the previous section, the 

phonon band structures were used to discuss the directional dependence in the phonon dispersion, 

which relates directly to the group velocities, in a qualitative way. However, to compare the group 

velocities amongst the investigated materials, quantitative values are required. Therefore, the 

effective group velocities are plotted against frequency in Figure 23. 

Group velocities were calculated for all 3N phonons at frequency ν on a mesh of q-points within 

first Brillouin zone. For the materials biphenyl, naphthalene, anthracene and pentacene, the group 

velocity was obtained on q-grids of the size 33x33x33. Due to the large number of phonon modes 

in polyparaphenylene (240) and fluorene (276), less dense q-grids of the size 15x15x15 were taken. 

The effective group velocity was obtained from the three cartesian components. Please note, that 

for the speed of sound a different formalism was used to add the cartesian components (cf. equ. 

(3.1)). For this reason, the displayed group velocities are not meant to be compared to the speed of 

sound. 

It would be favorable to plot the group velocities for each phonon band separately, which requires 

the identification of phonon bands at each q-point. Phonopy can handle this identification by 

consideration of the phonon eigenvectors. Unfortunately, this procedure is available only for 

calculation of the phonon band structure along paths in reciprocal space. In the mesh-sampling 

mode, this procedure is not provided, thus, phonons are sorted according to their frequency. 

Moreover, to obtain a reliable phonon band identification a dense sampling grid is recommended, 

which is computationally unfeasible. Consequently, the group velocities could neither be assigned 

to certain bands, thus in Figure 23 group velocities of all bands are plotted in dependence of the 

phonon frequency. Group velocities are plotted on the frequency range between 0 and 2000 cm-1 

because of the absence of important features at higher frequencies. Between around 1750 and 

3000 cm-1 there are no phonon modes at all and the already mentioned hydrogen bond-stretching 

modes at around 3000 cm-1 are strongly localized, thus their contribution to thermal transport can 

be neglected. As unit for the group velocities THzÅ was used which is the default unit of phonopy. 

This unit might appear cumbersome; however, it eases the calculation of the mean free path for 

phonon lifetimes given in ps. Expressed in m/s, 1 THzÅ equals 100 m/s. 
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At a glance, polyparaphenylene clearly exhibits the highest group velocities followed by pentacene 

which shows group velocities up to 100 THzÅ. Maximum group velocity for both biphenyl and 

fluorene is around 60 THzÅ, naphthalene’s slightly exceeds 50 THzÅ and anthracene shows the 

lowest maximum group velocity of around 40 THzÅ. Common to all systems, group velocities are 

highest in the frequency region 0-200 cm-1. For naphthalene and anthracene this frequency region 

reaches up to around 250 cm-1. Compared to all other systems, the group velocities of 

polyparaphenylene are not vanishing even for high frequencies, except for a small frequency region 

around 1000 cm-1. In the case of biphenyl and fluorene, there are comparably low group velocities 

at elevated frequencies. The three acenes have a group velocity feature in common just below 

500 cm-1. Anthracene and pentacene exhibit a very similar behavior for the frequency region from 

200 to 1000 cm-1. To sum this up, except for polyparaphenylene, the distribution of group velocities 

with respect to frequency shows, that the main contribution to thermal conductivity will arise from 

low frequency phonons which show comparably high group velocities. For polyparaphenylene, the 

frequency region of contribution to thermal transport could potentially reach above 1000 cm-1. 
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Figure 23: Effective group velocities sampled within the first Brillouin zone, plotted 

against phonon frequency. Please notice the different scaling of the y-axis for 

polyparaphenylene. 
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4.5. Heat Capacity 

The second harmonic ingredient to be discussed is the phonon heat capacity. This is actually the 

only harmonic ingredient dependent on temperature. In chapter 2, the (cf. equ. (2.8)) phonon mode 

heat capacity was shown to be the first derivative of the Bose-Einstein distribution with respect to 

temperature. The function can be seen in Figure 2 for different temperatures. Its shape looks very 

much like the frequency response function of a lowpass. Basically, it also behaves like a lowpass 

filter; phonons up to a certain frequency or energy, dependent on temperature, can contribute to 

thermal transport. For high frequency phonons, the heat capacity vanishes. Hence, they cannot 

contribute to thermal transport. In Figure 24 the phonon heat capacity function at 300 K is plotted 

(red) as well as naphthalene’s DOS multiplied with the heat capacity function. The full width at 

half maximum (FWHM) for this temperature is around 620 cm-1. Therefore, considering the 

discussion on group velocities above, the heat capacity function is not the limiting factor for phonon 

mode contribution, unless very low temperatures are considered. 

Figure 24: Phonon DOS of naphthalene multiplied by the phonon mode heat capacity function 

4.6. Phonon Lifetime Model 

Now that the harmonic ingredients are discussed the last missing quantity to calculate thermal 

conductivities is the phonon lifetime. The phonon lifetimes are obtained from an empirical model, 

according to section 2.4 and 3.3. This has shown reasonable results for a wide variety of, however, 

inorganic materials. The core idea of the applied model is to correlate the phonon lifetimes to the 

Grüneisen parameter (cf. equ. (2.17)). To be more precise, the mean squared Grüneisen parameter 
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(MSGP) is used, calculated according to equation (2.19) in order to avoid canceling of Grüneisen 

values of opposing sign. Other quantities entering the phonon lifetime model are the temperature 

scaling factor ϴ, which depends on the cutoff frequency νcut (cf. equ.(2.22)), the unit cell volume, 

the average mass, and the speed of sound s. Except for the average mass and the unit cell volume 

all quantities entering the lifetime model are displayed in Table 4. 

Table 4: Input quantities to the used phonon lifetime model and the resulting lifetime factor τω2 for 

a temperature of 300K. 

 

The MSGPs for tested materials are ranging from 3.853 for PPP up to 6.048 for biphenyl. A higher 

value indicates more internal anharmonicity which results in shorter phonon lifetimes. Concerning 

this quantity, there is a trend obvious for the modelled acenes. With increasing size of the molecule, 

the MSGP decreases, meaning less internal anharmonicity for pentacene compared to naphthalene. 

This could be related to the decreasing number of interfaces between the densely packed layers 

with increasing length of the molecules. The same trend is apparent for cutoff frequency and 

temperature scaling factor whereas speed of sound increases drastically. Considering the strong 

dispersion in the band structure of polyparaphenylene, one could conclude that in this material the 

speed of sound should be the highest. However, the speed of sound is obtained as an average of all 

three acoustic bands (cf. equ. (3.1)). Although polyparaphenylene’s longitudinal acoustic 

eigenmode has a group velocity of around 14,000 m/s close to the Γ point, the transversal modes 

(2966 and 4077 m/s) lower the average a lot. This can be related to the strong covalent bonds along 

the polymer chain and the much weaker dispersion interactions acting perpendicular to it. In the 

case of pentacene, all three branches show group velocities exceeding 4300 m/s. 

The last quantity in Table 4, 𝜏 ∙ 𝜔2, can be obtained from rearranging equation (2.20). It is used to 

calculate the phonon lifetime for a certain frequency. Figure 25 illustrates the phonon lifetimes 

over a frequency range up to 100 cm-1, where they have already decreased to a magnitude of 10-3 ps. 

PPP Biphenyl Fluorene Naphthalene Anthracene Pentacene

MSGP / a.u. 3.853 6.048 4.119 5.088 4.436 3.899

νcut / cm
-1

59.71 59.71 50.03 70.72 65.71 62.93

ϴ* / K 75.42 73.51 60.75 88.578 79.349 76.8775

s / ms
-1 3830.1 3451.1 3238.5 2934.5 3007.6 4608.2

τω² / 10
12

 s
-1 33.841 13.272 16.801 18.977 20.619 40.421
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To set the phonon lifetime values into perspective, given the group velocities are on the order of 

101 THzÅ a mean free path on the order of the lattice parameters requires a minimum lifetime on 

the order of 10-1 ps. According to the graphs in Figure 25 these considerations narrow the frequency 

range for contribution to thermal transport to around 20 cm-1. The fact that for vanishing phonon 

frequencies the phonon lifetimes are diverging is canceled by vanishing group velocities at the Γ 

point. 

Figure 25: Phonon lifetimes in ps at 300K plotted versus frequency. 

4.7. Thermal Conductivity 

So far, all ingredients to calculate thermal conductivity have been discussed. The harmonic 

ingredients, heat capacity and group velocity, and the phonon lifetime as anharmonic contribution 

were shown. 

The contribution of phonons to thermal conductivity with respect to frequency is limited by the 

heat capacity function to around 600cm-1 at room temperature. Except for polyparaphenylene, the 

band structures show a reasonable phonon dispersion not for the entire frequency range but rather 
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for lower frequencies. The group velocity plots show the same trend of comparably high group 

velocities present up to around 200 to 250 cm-1, apart from polyparaphenylene. However, the 

phonon lifetimes restrict the contribution to thermal conductivity to very low frequencies. The 

contribution of each individual phonon mode to thermal conductivity is plotted as the green graph 

in Figure 26. It clearly shows the dominance of phonon lifetimes, as the contribution to thermal 

conductivity is limited to phonons of frequency below 100cm-1 apart from polyparaphenylene 

showing contribution of modes at around 150-200 cm-1 and pentacene, where phonons only up to 

around 50cm-1 contribute. To obtain the contribution to thermal conductivity of all phonons at a 

certain frequency the mode dependent contribution is multiplied with the phonon density of states 

(Figure 26 blue graph).  

Comparing the frequency range given in Figure 26 to the band structures one can conclude that the 

contribution to thermal conductivity mainly arises from acoustic eigenmodes which can be 

occupied at those low frequencies. Please mind, the graph shows a very steep gradient close to 

0 cm-1 because of the quickly growing phonon lifetime for low frequencies, however, contribution 

to thermal conductivity is not diverging because of vanishing group velocities at the Γ point. 
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Figure 26: Mode dependent phonon contribution to thermal conductivity (green) and its 

product with the phonon density of states (blue). The phonon density of states is plotted in black 

and filled. σ = 5 cm-1. 
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Within the used approach two contributions, the heat capacity and phonon lifetime are temperature 

dependent, however they affect kappa at different temperature regimes. The phonon model 

accounts for phonon-phonon scattering which is dominant at elevated temperatures. For 10K the 

FWHM of the heat capacity function is still 25cm-1, which is still the same frequency range for 

sufficiently large phonon lifetimes. The effects caused by heat capacity are therefore only relevant 

at even lower temperatures below 10K. For the tested materials thermal conductivities show 

temperature dependence up to around 200K and stay constant for higher temperatures. Figure 27 

illustrates the temperature dependence of the yy-component of the thermal conductivity tensor for 

the materials fluorene and polyparaphenylene. This trend is exhibited by the other investigated 

materials too and also valid for the other components of the thermal conductivity tensor but are 

omitted in Figure 27 to allow for a clear presentation. 

 

Figure 27: Temperature dependence of calculated thermal conductivites shown examplary for 

fluorene and polyparaphenylene. 

Since all the tested materials have crystal structures which are non-cubic, thermal conductivity as 

a property must obey Neumann’s principle. It states, that properties of a crystal must show the point 

group symmetry of the crystal structure. On top of that, the molecules forming organic crystals are 

not of spherical shape like atoms, but rather they are three dimensional objects adding an additional 
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component to anisotropic behavior due to anisotropic interactions. In Figure 28 the main 

components of the thermal conductivity tensor (xx, yy, zz) are plotted. All investigated materials 

are oriented in a way, that the components xx and yy represent the thermal conductivity within the 

molecular layers (in-plane). The zz component illustrates the thermal conductivity perpendicular 

to the layered structure (out-of-plane). 

 

Figure 28: Main components (xx, yy, zz) of the thermal conductivity tensor at 300K. 

For all materials the in-plane thermal conductivities (xx and yy components of the thermal 

conductivity tensor) are very similar and show negligible directional dependence. Furthermore, 

concerning the small molecules biphenyl, fluorene and naphthalene the out-of-plane and in-plane 

thermal conductivities are very similar too and do not show any directional dependence for the 

thermal conductivity. The other materials polyparaphenylene, anthracene and pentacene show a 

pronounced anisotropy with a drastically increased out-of-plane thermal conductivity. This 

behavior will be part of the following discussion. 

To assess the reliability of the employed approach, the obtained thermal conductivities should be 

compared to experimental data. Unfortunately, there is only few experimental data available. To 

the best of my knowledge, there are experimental values of the thermal conductivity only for 

biphenyl and naphthalene. The values for biphenyl range from 0.37 W/mK at 303 K to 0.29 W/mK 
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at 334 K79. Compared to the obtained value at 300 K the experimental value is around 4 times 

larger than the calculated one. For naphthalene the experimental value of 2.31 W/mK obtained by 

B. M. Mogilevskii and V. G. Surin (as cited in Slack, 1979)80 differs a lot compared to the 

calculated result, however, it should be noted that the thermal conductivity was measured just 

below the melting point (353 K)81. The agreement between calculated and experimental values is 

rather poor, which could probably be resolved by refitting of the phonon lifetime model. However, 

due to the lack of experimentally obtained thermal conductivities more elaborate methodologies to 

account for the phonon lifetimes would be required, to fit the phonon lifetime model. 

5. Discussion 

As a quick reminder, the main goals of this thesis were to model thermal transport in molecular 

crystals and subsequently, to establish structure-to-property relationships concerning thermal 

transport for this class of materials. So far, the theory and applied workflow to calculate the thermal 

conductivity have been discussed and the thermal conductivities and all the ingredients to it have 

been shown. Therefore, the focus of this chapter lies on discussing the calculated results to derive 

structure-to-property relationships. Figure 1 illustrates the investigated materials which were 

chosen to study the effects of the torsional degree of freedom (DOF) and varying molecular size. 

Already mentioned above, it should be noted that the anisotropy of the thermal conductivity in this 

work solely stems from the group velocities (see section 2.4). In the following, first the effects of 

different molecular size on thermal transport are discussed and subsequently, the influence of the 

torsional DOF on thermal conductivity is examined. 

5.1. Structure-to-property relationships: Size effects 

In Figure 28 the components of the thermal conductivity tensor are illustrated. This plot shows, 

that the ratio between out-of-plane and in-plane thermal conductivity changes dramatically with 

increasing size. This trend is present for the materials biphenyl and polyparaphenylene as well as 

for the three investigated acenes. 

For the smallest acene, naphthalene, all three components of the thermal conductivity tensor are 

very similar and don’t show a preferred direction for thermal transport. The slightly larger 

anthracene, containing three fused benzene rings, exhibits an out-of-plane thermal conductivity 

which is roughly double the in-plane conductivity. In the case of pentacene, the thermal 

conductivity normal to the layers of the crystal structure is more than 7 times larger than within the 
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layers. As the anisotropy of the thermal conductivity calculated according to the proposed 

methodology solely stems from the directional dependence of the group velocities, the present trend 

leads to the assumption, that for larger molecules the group velocities are higher and more confined 

along the molecule’s orientation. Furthermore, the MSGP characterizing the internal 

anharmonicity steadily decreases from naphthalene over anthracene to pentacene (see Table 4). 

With increasing size of the molecules, also the thickness of densely packed layers increases, which 

in return means, that for a given length, less molecular layers and also less interfaces between the 

layers are present. This leads to the conclusion, that a reduced number of interfaces between the 

layers reduces the internal anharmonicity. This relates then to increased phonon lifetimes and 

therefore the thermal conductivity is increased. 

Both aspects are also valid for the phenylenes, biphenyl and polyparaphenylene. Due to the stronger 

interactions of the covalent bonds along the polymer chain, the group velocities in 

polyparaphenylene are drastically higher than in biphenyl. In contrast to the acenes where the 

number of interfaces decreased with increasing molecular size, polyparaphenylene is modeled in 

this work as an infinite chain without any layers and therefore also no interfaces between them. 

Again, the MSGP of polyparaphenylene is a lot lower than for biphenyl, which leads to increased 

phonon lifetimes and thermal conductivity. 

5.2. Structure-to-property relationships: Effects of the torsional degree of 

freedom 

The second part of structure-to-property related research question is concerned about the torsional 

stiffness of the molecule and how this affects thermal conductivity. Judging the influence of this 

structural property on the thermal conductivity by comparing the results for naphthalene, fluorene 

and biphenyl, no clear trend is obvious. For further discussion, the eigenmodes and their symmetry 

at the Γ point were investigated. In Figure 27, the phonon DOS (mesh-sampling on 15x15x15 grid, 

broadening σ = 1 cm-1) is plotted over a frequency range up to 500 cm-1 and the frequencies at the 

Γ point of eigenmodes with either out-of-plane bending, twisting or in-plane bending symmetry 

are highlighted. As expected, according to the equation for undamped oscillation of a simple spring, 

𝜔 = √𝑘 𝑚⁄  with the spring constant k and the mass m, the structural differences in torsional and 

bending stiffness are visible in the phonon DOS. The additional methylene group in fluorene should 

increase the moment of resistance, thus increasing the frequencies of the considered modes. 

However, due to the increased mass of fluorene compared to biphenyl, the frequency shift is rather 
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small. Naphthalene on the other hand is even more lightweight than biphenyl and considering the 

increased moment of resistance against bending and torsion, the considered modes show a large 

shift in frequency. Especially the in-plane bending modes (violet lines) are of much higher 

frequency for naphthalene (377, 382 cm-1) compared to biphenyl (200, 211 cm-1) and fluorene 

(221, 226, 229 cm-1). The twisting modes (red lines) are of certainly higher frequency too (241, 

455, 465 cm-1) compared to biphenyl’s (141, 171 cm-1) and fluorene’s (168, 169, 174, 189 cm-1). 

Within the chosen modelling approach, the lifetimes for those frequencies are vanishing, thus they 

deny any contribution to the thermal conductivity. For further inspection of this issue, a more 

elaborate method to account for phonon lifetimes is required. A valid approach would be 

Figure 29: Phonon DOS with modes of special symmetry highlighted at the Γ point. 
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anharmonic lattice dynamics, which allows to calculate phonon lifetimes per mode. Considering 

this lifetime model, changes in torsional degree of freedom don’t affect the thermal conductivity.  
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Figure 31: Comparison of the band structure of naphthalene obtained with VASP+TS (orange) and 

DFTB+D3-BJ (blue) ...................................................................................................................... 77 
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APPENDIX A – Band structures: VASP+TS vs. DFTB3+D3-BJ 

Fluorene 

 

  

Figure 30: Comparison of the band structure of fluorene obtained with VASP+TS (orange) and 

DFTB+D3-BJ (blue) 
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Naphthalene 

 

Figure 31: Comparison of the band structure of naphthalene obtained with VASP+TS (orange) 

and DFTB+D3-BJ (blue) 


