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Introduction

Finite Mixture Models (FMMs)

Finite mixture models represent a suitable method to deal with heterogeneity in data.
They allow to find subgroups within a data set without a definite knowledge on the
membership of the groups. The underlying probabilistic clustering methodology allows
to detect distinct components along similar distributional shapes. This procedure en-
ables to provide a detailed statistical analysis on identified subgroups and to derive con-
clusions on the overall population. Mixture models are being applied in different fields
of research as they cover a broad range of different models. They comprise complex
distributional shapes allowing for different underlying distributions. Advanced mixture
models cover mixtures of regression models as, for example, the Generalized Linear
Model (GLM). While this model class has been widely studied and is constantly be-
ing extended, nonlinear regression was not emphasized within mixture models in the
past. As practical applications buttress the use of nonlinear regression functions, the
present work introduces the new model class of mixtures of Generalized Nonlinear Mod-
els (GNMs).

Generalized Nonlinear Models (GNMs)

A Generalized Nonlinear Model (GNM) comprises nonlinear regression in a flexible way
by embedding the classical nonlinear regression model within the exponential family
distribution. Nonlinear regression is strongly influenced by a specific problem which
impacts the parametrization of the regression function and the determination of the un-
derlying statistical distribution. The regression function has in general no standardized
form. It consists of arbitrary functional elements where the coefficients are linked to
predictors through a nonlinear functional relationship. Despite the variety of functional
forms, specific functions emerged as typical forms representing, for example, (biologi-
cal) growth processes. The classical nonlinear regression model is based on the normal
distribution. Due to the characteristics of specific applications, an extension to other dis-
tributions seems obvious. Therefore, an extension for the broad range of exponential
family distributions can be adopted which allows to apply well-known results derived
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from Generalized Linear Models. Fitting nonlinear regression functions depends in gen-
eral on numerical procedures where complex functional structures may provide numer-
ical problems. A crucial difficulty in the fitting process arises through the appropriate
choice of starting values which remains a necessary requirement within the framework
of mixture models for GNMs.

Implementation in R

The implementation of the new model class is provided within the statistical computing
environment R. The technical implementation of mixtures of GNMs builds on the effi-
cient package flexmix which was developed by Friedrich Leisch and Bettina Grün. The
package allows for possible extensions due to its modular framework. It covers a broad
repertoire on various models comprising the GLM, where mixtures of GNMs represent
a suitable extension. The implementation of mixtures of GNMs constitutes a key result
within the present work. Therefore, the procedure of extending flexmix is outlined in
detail. The implementation of the new model class is wrapped up in the new package
flexmixNL.

Structure of the present work

The objective of the present work is to give a coherent view on mixtures of GNMs by
presenting their construction in consecutive steps. Building on this, the theoretical back-
ground is technically implemented in R and subsequently applied to synthetic and real
data. The following paragraphs give a general overview on the content of the subsequent
chapters.

Chapter 1 outlines the construction and components of GNMs as an extension of the
well-known nonlinear regression model for the normal distribution. The exponential
family serves as the main distributional framework where special attention is given to
the mean and variance. While the modeling of the mean follows a nonlinear regression
function, the computation of the variance requires a proper estimation of the dispersion
parameter. Key results on the specifics of GNMs serve as basis for the subsequent chap-
ters.

Chapter 2 presents the construction of mixture models with GNMs as basic model class.
It outlines furthermore technical difficulties arising from the nonlinear functional struc-
ture within the mean function. Due to the complexity of their nature, mixture models
comprise a large amount of unknown parameters. The chapter presents a general deriva-
tion of the necessary parameters in order to fit a mixture of GNMs. Special focus is given
to the EM algorithm as the underlying fitting procedure. As the adequate choice of the
number of components remains a problem specific task, the chapter concludes with ap-
propriate model selection criteria.

Chapter 3 presents the technical framework in R as a special focus of the present work.
A main part of the thesis consists of the derivation of a fitting procedure for the new
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mixture model class. The package flexmix serves as the main base for the technical
implementation and incorporates an efficient EM algorithm for mixture models. The
chapter introduces an appropriate extension for mixtures of GNMs resulting in the new
package flexmixNL. The derivation of the new fitting approach is outlined in detail and
enables the fitting of arbitrary nonlinear regression functions. The current implemen-
tation allows for the normal and Gamma distribution and can be extended to further
members of the exponential family. The chapter presents furthermore two approaches
for the calculation of standard errors for the derived parameter estimates.

In order to underpin the statistical reliance of the derived results and the efficiency of the
new fitting approach, a Monte Carlo (MC) simulation study is performed. The detailed
procedure and the results are summarized in Chapter 4. In accordance to the specific sig-
moid pattern of nonlinear data structures, a synthetic data set with a typical decreasing
structure is chosen for the fitting. The simulation study is performed under a Gamma
distribution following the idea of fitting maximum values. Chapter 4 gives a detailed
overview on the setup and framework of the performed simulation study. It highlights
furthermore the limitations of the algorithm which occur due to numerical obstacles.
Main results outline the quality of the MC estimates for two different sample sizes.

Chapter 5 discusses applications of the new methodology for mixtures of GNMs to the
specific problem of gas flow modeling. Within the present thesis, the generalization of
the new mixture model class is provided for arbitrary nonlinear regression functions
within the framework of exponential family distributions. In this context, the mixing
of typical sigmoid gas flow curves is enabled. In order to assess the performance and
reliability of the new package, the implemented methods are applied to typical data ex-
hibiting a sigmoid decreasing pattern, where the new models succeed to identify definite
subgroups even for dense data structures.

Chapter 6 outlines the application of mixtures of GNMs to economic growth models.
The economic growth model arises from a nonlinear dependency structure between eco-
nomic factors motivating the use of nonlinear regression models. Within this aspect,
mixtures of GNMs face the occurring heterogeneity of economies by modeling the eco-
nomic state for different groups of countries.
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CHAPTER 1

Generalized Nonlinear Models

Introduction

The object of this chapter is to introduce a special class of statistical models linking the
well-known exponential family distributions to the group of nonlinear regression mod-
els. Nonlinear regression models have been widely explored in Bates and Watts (1988)
and Seber and Wild (2003). Their work represents the main literature on this topic.
Classical nonlinear regression analysis, as analyzed by Bates and Watts (1988) and Se-
ber and Wild (2003), builds on normally distributed and homoscedastic error terms.
Wei (1998) extends the classical nonlinear regression models by embedding them into
the framework of the linear exponential family similar to Generalized Linear Models
(GLMs). By addressing conceptual similarities to GLMs, well-known results from McCul-
lagh and Nelder (1989) can be adopted to the new model class. The resulting model
class is denoted as Generalized Nonlinear Models (GNMs) or Exponential Family Non-
linear Models (EFNMs) in literature and will provide a basis for further models in the
remaining work. Main reference is made to Wei (1998) representing the primary litera-
ture concerning GNMs within this work.

The classical nonlinear regression model builds a key part of the GNM and will be dis-
cussed in Section 1.1. The distributional framework is given by the linear exponential
family in Section 1.2 which gives also an overview on general aspects regarding the
Maximum Likelihood (ML) estimation. The estimation of the dispersion parameter is
outlined in Section 1.3 and completes the specification of the GNM. The final Section
1.4 concludes the chapter with the summarized model specifications of GNMs and re-
flects key assumptions for the subsequent analysis within the remaining work.
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1.1 Nonlinear Regression Models

While linear regression models comprise either constants and possibly products of re-
gression coefficients with explanatory variables, nonlinear regression models arise with
at least one nonlinear relationship between a regression coefficient and a predictor. The
non-linearity is given particularly in the regression coefficient leading to a nonlinear
combination of predictors. Typical examples for nonlinear terms build on exponential
or power functions. The fitting of nonlinear regression models is strongly related to it-
erative optimization techniques. The wide area of applications yields a diverse range of
possible nonlinear regression functions building on various relationship structures. Com-
mon functions are also summarized in Bates and Watts (1988, p. 329). All applications
share the property of a known functional relationship given by the nonlinear regression
function and the unknown regression coefficients as parameters of interest. The problem
specific and diverse nonlinear structure of the regression functions prohibits the deriva-
tion of an unified fitting procedure in order to obtain the regression coefficients. The
underlying iterative optimization methods are moreover problem specific and rely often
on modified Newton-Raphson and Gauss-Newton procedures. Disadvantages occur con-
cerning the convergence of the numerical procedures to desired solutions which is not
easy to establish.

Bates and Watts (1988, p. 33) define a nonlinear regression model as

E[yi] = h(xi,β), i = 1, . . . , n, xi ∈ Rm, β ∈ RP , (1.1)

where the additive error terms follow a normal distribution with zero mean and con-
stant variance. The vectors xi comprise explanatory variables and are considered as
fixed. The function h(xi,β) represents a nonlinear regression function and is in general
entirely known except for the regression coefficients β = (β1, . . . , βP )>. Graphical illus-
trations of a given data set and prior knowledge facilitate the choice and parametrization
of h(xi,β). As the use of the phrase nonlinear has been extended to topics beyond re-
gression functions in different literature, the following definition states its general use
in this work, see also Bates and Watts (1988, p. 32).

Definition 1.1 Nonlinear Function
The function h(xi,β) is nonlinear in the regression parameter vector β if at least one partial
derivative ∂h

∂βp
depends on βp for p = 1, . . . , P .

Unlike in linear regression models the dimensions of the vectors of explanatory vari-
ables xi and those of the regression coefficient vectors β do not necessarily coincide.
The regression coefficients and their meaning depend on the functional structure of the
relationship between responses and explanatory variables. The remaining task is given
by the appropriate and precise estimation of the regression coefficient vector β ∈ RP .
The usual fitting method used for nonlinear regression models is given by Nonlinear
Least Squares (NLS) based on minimizing the Residual Sum of Squares (RSS)

RSS(β) = ‖y − h(x,β)‖2. (1.2)
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The RSS is minimized for the regression parameter estimator β̂, i.e.

β̂ := arg min
β∈RP

RSS(β) = arg min
β∈RP

‖y − h(x,β)‖2.

The appearance of non-constant variances for the observations yi can be handled by
linear transformations or the use of Weighted Nonlinear Least Squares (WNLS) meth-
ods. Transforming nonlinear regression models with mean function (1.1) can eliminate
the heteroscedasticity by variance-stabilization or even establish a linear relationship
between the transformed variables. Checking whether the given nonlinear regression
model in Equation (1.1) can be transformed into a linear one is important as linear
regression models can be analytically solved and are easier to apply. The following well-
known model exemplifies such a transformation procedure.

Example 1.1 Michaelis-Menten Model, introduced by Bates and Watts (1988, p. 33)
The Michaelis-Menten model describes the mean rate of enzymatic reactions yi as a nonlin-
ear regression model depending on the concentration xi of a substrate given by the equation

E[yi] = h(xi,β) =
β0xi
β1 + xi

, i = 1, . . . , n, xi ∈ R. (1.3)

The regression coefficients consist of β = (β0, β1). The numerator in (1.3) represents the
maximum achievable reaction rate as upper asymptote. The regression coefficient β1 denotes
the specific concentration in substrate indicating half of the maximum achievable reaction
rate. The original nonlinear regression function (1.3) can be modified to

E[yi] =
1

1
β0

+ β1
β0

1
xi

=
1

β̃0 + β̃1
1
xi

abrogating the nonlinear model as the reciprocal mean function can be expressed as linear
regression model in the predictor x̃i = 1

xi
given by

g(µi) =
1

E[yi]
= β̃0 + β̃1x̃i. (1.4)

Equation (1.4) demonstrates the transformation of the original nonlinear Michealis-Menten
model into a linear regression model. The reciprocal mean reaction rate depends on the
reciprocal concentration in substrate x̃i but is linear in the regression coefficients β̃ =

(β̃0, β̃1)>.

As the previous example clearly demonstrates, a transformation of the nonlinear regres-
sion problem involves a change in the regression parameters as well. The original model
assigns often a specific meaning to the regression parameters with a certain scientific
or physical interpretation. A transformation abrogates these meanings and exacerbates
the final interpretation of the estimators which may be of less interest compared to the
original ones. For example, the original regression coefficient β1 relates to the concen-
tration in substrate indicating half of the maximum achievable reaction rate which is
again characterized by the regression coefficient β0. The transformed regression coeffi-
cients β̃ = (β̃0, β̃1)> do not allow any physical interpretation. A possible solution is to
re-transform the coefficients β̃, which can be obtained by estimation methods for linear
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regression models, and to interpret the original, or respectively re-transformed, coeffi-
cients. Particular caution is required concerning the error structure within such transfor-
mations. Bates and Watts (1988, p. 25) postulate the assumption of normally distributed
responses yi enabling the use of Least Squares (LS) methods which are known for their
tractability and mathematical advantages. According to the preconditions for the LS
method, efficient estimators can be derived based on homoscedastic responses resulting
from a constant variance for all yi. While transformations of nonlinear regression mod-
els result in the required linear functional form they may destruct the presumed error
structures. Conversely, a linearization of the nonlinear regression function may stabilize
the error variance but can possibly lead to undesirable dependency structures as Seber
and Wild (2003) explain. The difficulties encourage the use of efficient numerical ap-
proaches in order to fit the original nonlinear regression problem in Equation (1.1). As
Seber and Wild (2003, p. 5) stress, nonlinear regression models sometimes lead to better
interpretable regression parameters while they definitively complicate the calculus in the
background of the parameter estimation. Therefore it is necessary to provide numerical
techniques for the derivation of an accurate regression parameter estimator β̂. Potential
solutions and fitting techniques depend to a great extend on the specific parametrization
of Function (1.1). It is conceivable that complicated functions comprising several regres-
sion coefficients in a nonlinear term afford a higher level in fitting effort and analysis
than a regression function with one nonlinear regression coefficient. Use can be made
of occurring linear terms in Equation (1.1) which are denoted as conditionally linear pa-
rameters in Bates and Watts (1988, p. 36) as they can be estimated by linear regression
conditional on the remaining nonlinear regression coefficients. These considerations re-
flect the variety of potential approaches for obtaining solutions of nonlinear regression
models which can take various forms due to theoretical considerations regarding the
specific problem and the given data set.

1.2 Linear Exponential Family

According to Casella and Berger (2001, p. 111), the probability distribution for a (con-
tinuous or discrete) random variable y ∈ R belongs to the exponential family if its
probability density function (pdf) or probability mass function (pmf) can be expressed
as

f(y;θ) = h(y)c(θ) exp

(
s∑
i=1

wi(θ)ti(y)

)
. (1.5)

Expression (1.5) consists of the function h(y) ≥ 0 and real-valued functions t1(y), . . . , ts(y)

in y. The remaining functions, denoted as w1(θ), . . . , ws(θ), are real-valued functions
depending exclusively on the parameter vector θ ∈ Rd. Exponential families are widely
used in statistics due to advantageous statistical and mathematical properties as Casella
and Berger (2001, p. 112) explain. The exponential family comprises a big number of
distributions (continuous and discrete). The following theorem specifies the first two
moments of this family.
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Theorem 1.1 Casella and Berger (2001, Theorem 3.4.2)
For any random variable y with pdf or pmf as in Equation (1.5) the following holds for
j = 1, . . . , d,

E

[
s∑
i=1

∂wi(θ)

∂θj
ti(y)

]
= − ∂

∂θj
log c(θ),

Var

(
s∑
i=1

∂wi(θ)

∂θj
ti(y)

)
= − ∂2

∂θ2
j

log c(θ)− E

[
s∑
i=1

∂2wi(θ)

∂θ2
j

ti(y)

]
.

With reference to the number of terms s, Casella and Berger (2001) distinguish between
two different groups of exponential families. In the case of d < s with d denoting the
dimension of the natural parameter space Θ, the resulting exponential family is called a
curved exponential family. For s = d, the resulting family is denoted as a full exponential
family. It is on the other side impossible for the number of terms s to fall below the num-
ber of parameters d. s most often reduces to one term. The specific case of exponential
families with s = 1 is also known as linear exponential family and will be addressed in
more detail in the present work. Exponential family distributions with one term, respec-
tively s = 1, allow a modified representation of their pdf or pmf compared to the given
form in Equation (1.5) where a random variable y follows a distribution specified by the
pdf expressed as

f(y; θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
. (1.6)

b(·) and c(·, ·) are specified functions and θ represents the natural parameter with θ ∈
Θ ⊆ R. The dispersion parameter φ takes values within the subset Φ ⊆ R and is specified
by the dispersion function a(φ), occurring in (1.6), which is often simplified to

a(φ) = a · φ. (1.7)

It is common practice in literature to set the dispersion parameter equal to φ = σ2 which
is treated as nuisance parameter. The family of distributions with pdf as specified in
(1.6) comprising the previously discussed characteristics is called the linear exponential
family. The dispersion parameter φ is assumed to be known in (1.6). Wei (1998, p. 2)
suggests the phrase exponential family for distributions with pdf (1.6) regardless of φ
being known or unknown in accordance with general practice in literature.

The specification of the dispersion function in (1.7) enables the use of varying weights
for different observations. Expressing the weight parameter through a = w−1 leads to
the particular specification of the dispersion function given by

a(φ) =
φ

w
. (1.8)

McCullagh and Nelder (1989, p. 29) postulate that the weight parameters w in (1.8) re-
quire already available information in terms of known prior weights. Therefore the main
focus within computations reduces to the analysis of the global dispersion parameter φ.
Wei (1998, p. 12) introduces the notation weighted exponential family for distributions
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with dispersion function (1.8) and pdf

f(y; θ, φ) = exp

(
w
yθ − b(θ)

φ
+ c(y, φ/w)

)
. (1.9)

The weighted exponential family with specific weights for different observations denotes
a special and not very common case within the exponential family. Nevertheless, it will
be of high importance for further analysis in this thesis.

1.2.1 Members of the Exponential Family

The linear exponential family represents a commonly used group of distributions in
statistics. As previously mentioned, pdfs of the linear exponential family take the form
(1.6). The following examples show well-known members of this class of distributions
by transforming the specific pdfs to the mathematical form of (1.6).

Example 1.2 (Normal Distribution)
A random variable y ∼ N(µ, σ2) has the pdf f(y;µ, σ2) given by

f(y;µ, σ2) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
= exp

(
yµ− µ2/2

σ2
− y2

2σ2
− 1

2
log(2πσ2)

)
.

For θ = µ and φ = σ2 the resulting exponential family has the components

a(φ) = φ, b(θ) =
θ2

2
and c(y, φ) = − y

2

2φ
− 1

2
log(2πσ2).

Example 1.3 (Gamma Distribution)
A random variable y ∼ G(a, λ) has the pdf f(y; a, λ) given by

f(y; a, λ) = exp{−λy}λaya−1 1

Γ(a)
.

After re-parametrization of the mean µ = ν/λ and shape parameter ν = a the pdf takes
the form

f(y;µ, ν) = exp

(
−ν
µ
y

)(
ν

µ

)ν
yν−1 1

Γ(ν)

= exp

(
−ν
µ
y + ν log(ν)− ν log(µ) + (ν − 1) log(y)− log Γ(ν)

)
with µ, ν, y > 0. For θ = −1/µ and φ = 1/ν the resulting exponential family has the
components

a(φ) = φ, b(θ) = − log(−θ) and c(y, φ) =
1

φ
log

1

φ
+

(
1

φ
− 1

)
log y − log Γ

(
1

φ

)
.
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Example 1.4 (Poisson Distribution)
A random variable y ∼ P (µ) has the pmf f(y;µ) given by

f(y;µ) =
µy

y!
e−µ = exp (y logµ− µ− log y!) .

For θ = logµ and φ = 1 the resulting exponential family has the components

a(φ) = φ, b(θ) = exp (θ) and c(y, φ) = − log y!.

Example 1.5 (Binomial Distribution)
A random variable my ∼ Bin(m,π) has the pmf f(y;m,π) given by

f(y;m,π) =

(
m

my

)
πmy(1− π)m−my

= exp

(
log

(
m

my

)
+my log π +m(1− y) log(1− π)

)
= exp

(
y log π

1−π − log 1
1−π

1/m
+ log

(
m

my

))
, y = 0,

1

m
,

2

m
, . . . , 1.

For θ = log π
1−π and φ = 1 the resulting exponential family has the components

a(φ) = a · φ =
1

m
φ, b(θ) = log

1

1− π = log(1 + exp θ) and c(y, φ) = log

( 1
φ
y
φ

)
.

Further examples can be found in McCullagh and Nelder (1989).

The linear exponential family has advantageous technical properties which can be ap-
plied for the random variable y. A specific representation of the mean and variance of
y is given with the following derivation. As Casella and Berger (2001, pp. 335-339)
outline, the following equations hold for the linear exponential family,

E

[
∂ log f(y; θ, φ)

∂θ

]
= 0, (1.10)

Var

(
∂ log f(y; θ, φ)

∂θ

)
= E

[
∂ log f(y; θ, φ)

∂θ

]2

= E

[−∂2 log f(y; θ, φ)

∂θ2

]
. (1.11)

The expected value of the derivative of (1.6) with respect to the natural parameter θ,
using the simplification a(φ) = φ, results in the expression

E

[
∂ log f(y; θ)

∂θ

]
(1.6)
= E

[
y − b′(θ)

φ

]
=

1

φ
E[y − b′(θ)] !

= 0

which can be further advanced to the general expression for the expected value (also
mean) of y given by

E[y] = b′(θ) = µ. (1.12)

Equation (1.12) points out the functional relationship between the mean µ and natural
parameter. The terms b′ and b′′ refer to the first and second order derivatives of b(·) with
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respect to θ, respectively

b′(θ) :=
∂b(θ)

∂θ
, b′′(θ) :=

∂2b(θ)

∂θ2
.

The variance Equation (1.11) can be rearranged and advanced using (1.6) to

E

[
∂ log f(y; θ)

∂θ

]2

+ E

[
∂2 log f(y; θ)

∂θ2

]
(1.6)
=

Var(y)

φ2
+
−b′′(θ)
φ

!
= 0

enabling the following representation of the variance of y

Var(y) = φ · b′′(θ) = φ ·V(µ). (1.13)

Equation (1.13) outlines the decomposition of the variance of y into the dispersion pa-
rameter φ and the variance function V(µ), which relates the variance of y to its mean µ.
Typical variance functions are given in Example 1.6.

Example 1.6 (Variance Function)

1. For any random variable y ∼ N(µ, σ2) the variance function equals 1.

2. For any random variable y ∼ G(a, λ) with mean µ = ν/λ and shape parameter ν = a

the variance function is given by V(µ) = µ2.

3. For any random variable y ∼ P (µ) with mean µ the variance function is given by
V(µ) = µ.

4. For any random variable my ∼ Bin(m,π) with mean µ the variance function is given
by V(µ) = µ·(1−µ)

m .

For further examples reference is made to McCullagh and Nelder (1989).

1.2.2 Maximum Likelihood Estimation

This section outlines the general concept of the Maximum Likelihood (ML) estimation
for the linear exponential family and presents its key results. The work of Casella and
Berger (2001) serves as the main reference for deeper involvement for ML estimation.

Considering a vector y = (y1, . . . , yn)> where the n elements yi follow an exponential

family with yi
iid∼ f(yi; θi, φ) and natural parameter vector θ = (θ1, . . . , θn)>, then y

follows the joint pdf expressed as

f(y;θ, φ) =
n∏
i=1

f(yi; θi, φ)

(1.6)
=

n∏
i=1

exp

(
yiθi − b(θi)

φ
+ c(yi, φ)

)

= exp

(
n∑
i=1

yiθi − b(θi)
φ

+ c(yi, φ)

)
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= exp

(
y>θ − b∗(θ)

φ
+ c∗(y, φ)

)
(1.14)

with functional forms

b∗(θ) :=

n∑
i=1

b(θi) and c∗(y, φ) :=

n∑
i=1

c(yi, φ). (1.15)

As (1.14) clearly shows, the joint pdf of y takes again the general form of a linear expo-
nential family. Therefore the canonical parameter vector θ and the dispersion parameter
φ specify the distributional parameters. The dispersion parameter φ is in general treated
as a known scaling parameter in order to derive an estimator for θ. For this reason the
following proceeding will focus on the estimation of θ, whereas adequate computation
methods for φ will be discussed in the subsequent Section 1.3. The likelihood function
will be denoted as a function in the unknown distributional parameter vector θ for a
sample y ∈ Y ⊂ Rn as

L(θ;y, φ) = f(y;θ, φ) =

n∏
i=1

f(yi; θi, φ).

L(θ;y, φ) is a function in the distributional parameter θ corresponding in appearance
to the joint pdf f(y;θ, φ) in (1.14). The underlying concept of ML estimation aims to
choose those values for the model parameters for which the likelihood function attains
its maximum.

Definition 1.2 Maximum Likelihood Estimator (MLE), Casella and Berger (2001, p. 316)
The MLE of the parameter θ based on a sample y is given by θ̂ and corresponds to the
parameter value where L(θ;y, φ) attains its maximum.

Hence, searching for the MLE affords maximizing the likelihood function L(θ;y, φ) with
respect to θ. It is common practice to carry the maximization problem over to the loga-
rithmic likelihood function `(θ;y, φ) = logL(θ;y, φ) due to technical advantages within
the computation. The strictly monotone behavior of the logarithm on (0,∞) ensures
coinciding maxima of L(θ;y, φ) and `(θ;y, φ). The log-likelihood function is given by

`(θ;y, φ) = logL(θ;y, φ) = log
n∏
i=1

f(yi; θi, φ)

=
n∑
i=1

log f(yi; θi, φ)
(1.6)
=

n∑
i=1

(
yiθi − b(θi)

φ
+ c(yi, φ)

)
.

According to this usual practice, the analysis within this work focuses mainly on the
log-likelihood functions of the underlying statistical models. In order to obtain possible
maxima of `(·), the gradient of the log-likelihood with respect to θ, also denoted as score
function S(y;θ, φ), is analyzed. In order to obtain a maximum, first order conditions
imply the necessary condition

S(y; θ̂, φ)
!

= 0. (1.16)
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Casella and Berger (2001, p. 316) outline the difficulty of finding and verifying a global
maximum as a drawback of the ML estimation. Further problems arise if the maximum
is located on the boundary of the domain of the parameter space Θ which affords sep-
arate analysis. For complex models, Equation (1.16) obviates analytical solutions and
appropriate numerical approaches have to be found, which requires further analysis on
whether local or global maxima were derived.

The MLE θ̂ is asymptotically normally distributed with θ̂ ∼ N(θ∗, I(θ∗)−1), see Casella
and Berger (2001, p. 472), with the asymptotic variance given by the inverse of the
expected information I(θ∗) (also Fisher information). Therefore the Fisher information
can be used as an approach to compute the variance-covariance matrix of the derived
MLE θ̂. According to Casella and Berger (2001, p. 338), the Fisher information for linear
exponential families can be expressed as

I(θ) = −E

[
∂2`(θ;y, φ)

∂θ∂θ>

]
(1.6)
= E

[
S(y;θ, φ)S>(y;θ, φ)

]
. (1.17)

1.3 Dispersion Parameter

Section 1.2.2 outlines the ML estimation as an appropriate method in order to obtain the
estimate θ̂ for a fixed dispersion parameter φ. As the variance of the response y depends
also on the dispersion parameter in (1.13), its estimation is crucial for the complete
specification of GNMs. The dispersion parameter φ can be derived in a sequential step
to the fitting of θ̂. This section summarizes two approaches in order to obtain estimates
for the dispersion parameter φ̂.

1.3.1 Deviance

The deviance represents a measure for the goodness-of-fit of statistical models. It ba-
sically compares the fitted model to the so-called full model as McCullagh and Nelder
(1989, p. 33) outline. The latter matches the given data y exactly through n parameters
so that it yields the maximum likelihood achievable. The deviance will be denoted in de-
pendence of µ instead of θ which is common practice as McCullagh and Nelder (1989,
p. 33) point out. Therefore, µ̂ denotes the MLE for the unknown mean vector µ. The
deviance is constructed as twice the difference between the log-likelihood functions of
both models and takes the following form for members of the exponential family

D(y,µ)/φ = 2
(
`(θ, φ;y)µ=y − `(θ, φ;y)µ=µ̂

)
= 2

n∑
i=1

(
{yiθi − b(θi)}µ=y − {yiθi − b(θi)}µ=µ̂

)
/φ.

For the specific case of weighted exponential family distributions with pdf (1.9) and
dispersion parameter (1.8), McCullagh and Nelder (1989, p. 33) specify the deviance
function as

Dw(y;µ) = 2
n∑
i=1

wi
(
{yiθi − b(θi)}µ=y − {yiθi − b(θi)}µ=µ̂

)
. (1.18)
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The deviance D(·) is a function of the data only, while the scaled deviance D∗(·) repre-
sents a modified measure scaled by the dispersion parameter, as McCullagh and Nelder
(1989, p. 34) emphasize, respectively

D∗(y,µ) := D(y,µ)/φ.

An adequate estimator for the dispersion parameter is given by

φ̂ =
D(y, µ̂)

n− P ,

where P denotes the number of unknown parameters corresponding to the specifica-
tions of nonlinear regression models in Section 1.1.

The following list summarizes the deviance functions for the exemplary members of
exponential family distributions listed in Section 1.2.1.

Example 1.7 (Deviance)
Considering a statistical model with E[yi] = µi, the following distributional properties hold:

1. For a sample where yi ∼ N(µi, σ
2) the deviance function is given by

D(y,µ) =

n∑
i=1

(yi − µi)2.

2. For a sample where yi ∼ G(a, λi) with mean µi = ν/λi and shape parameter ν = a the
deviance takes the form

D(y,µ) = 2
n∑
i=1

(
− log

(
yi
µi

)
+

(yi − µi)
µi

)
.

3. For a sample where yi ∼ P (µi) with mean µi the deviance is given by

D(y,µ) = 2
n∑
i=1

(
yi log

(
yi
µi

)
− (yi − µi)

)
.

4. For a sample where myi ∼ Bin(m,πi) with mean µi the deviance is given by

D(y,µ) = 2
n∑
i=1

mi

(
yi log

(
yi
µi

)
+ (1− yi) log

(
1− yi
1− µi

))
.

1.3.2 Pearson Statistics

Wei (1998, p. 22) lists the use of the generalized Pearson X2 statistic as another suit-
able method in order to estimate the dispersion parameter φ within GNMs which was
also proposed by McCullagh and Nelder (1989, p. 358) and Smyth (2003). For given
responses yi, optional weights wi and fitted values µi the Pearson statistic is given by the
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sum

X2 =

n∑
i=1

wi
(yi − µ̂i)2

V(µ̂i)
. (1.19)

The dispersion parameter can be estimated by means of the Pearson statistics

φ̂ =
X2

n− P , (1.20)

corrected by the residual degrees of freedom (df) n − P . Equation (1.20) represents
the default estimator in statistical programs, particularly in R, as Smyth (2003, p. 123)
points out.

1.4 Model Specification

This section intends to reflect the previously discussed components of a GNM in order
to state the framework for the further work. The GNM consists basically of the following
three components.

Systematic Component: A GNM includes independent predictor variables xi by a non-
linear regression function in β as

g(µi) = h(xi,β), i = 1, . . . , n, β ∈ RP .

The regression function h(xi,β) models in general a known functional relationship
between the response yi and predictor variables xi. The nonlinear regression functions
complies with the specification in Section 1.1.

Link Function: Within GNMs the link function establishes a relationship between yi and
its mean µi through

µi = g−1(h(xi,β)), i = 1, . . . , n,

where g(·) represents a monotonic function and the function h(·) is in general nonlinear
as specified in the systematic component. The link function is previously defined ensur-
ing that the mean function maps into the set of plausible values of µi considering the
distributional properties. In the case of nonlinear regression functions the often prob-
lem specific nonlinear functional structure allows for specifications enabling a plausible
mapping domain. Therefore, the identity link can be used where the mean vector is di-
rectly modeled by the regression function given by g(µi) = µi for i = 1, . . . , n.

Stochastic Component: The random part of GNMs is defined by distributional proper-
ties of the response variable yi. The generalization of the response distribution to the
broad class of the exponential family is a key point in the theory of GLMs and can be
applied to GNMs. Whereas the assumption for the standard error term distribution is
normal, the class of GNMs allows to specify other distributions like Gamma or Pois-
son. The response follows the exponential family with pdf (1.6). Based on (1.10) and
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(1.11), the mean and variance are given by

E[yi] = µi, Var(yi) = φ ·V(µi), i = 1, . . . , n,

with dispersion parameter φ and variance function V(µi). This setup shows that GNMs
allow for modeling non-constant variances depending on the variance function V(µi).
Distributional properties are specified through the characteristics of the linear exponen-
tial family in Section 1.2 and the specifications for the dispersion parameter in Section
1.3.

In the scope of the remaining work, GNMs will serve as an important base for further
models. In particular, responses are assumed to stem from an exponential family with
nonlinear mean function µi(β). Further computations and analysis on GNMs will focus
particularly on the main parameter of interest β relating to the mean through the link
function. Within nonlinear regression models the fitted values range in general within
an adequate mapping domain due to the often problem specific functional structure.
Therefore, the link function is restricted to the identity link within the remaining work
which actually facilitates the handling of the subsequent mixture models. Consequently,
the mean function is modeled directly through µi(β) = h(xi,β). For reasons of com-
parability the pdf will be denoted as f(yi;µi(β), φ) following the scientific literature on
GNMs. A further focus of the remaining work lies on estimation methods for the disper-
sion parameter φ as necessary distributional parameters for GNMs and supplementary
information on the variability of the responses.
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CHAPTER 2

Finite Mixtures of Generalized Nonlinear Models

Introduction

A Finite Mixture Model (FMM) represents a highly accomodative statistical model which
gained strong interest in recent years. Due to their flexibility FMMs cover a large area of
application. They allow to model complex distributional shapes as well as evident group
structures in heterogeneous data sets. Complexity in distributional shapes is in general
driven by heterogeneous patterns which are attributed to latent classes. The assumption
on the existence of latent classes affords prior knowledge on their specifics as the fitting
of FMMs requires distributional assumptions. Latent classes yield to the assignment of
the data to distinct components which can be viewed as clusters. Pearson (1894) adapted
in a first report about FMMs a mixture of two heteroscedastic normal pdfs with different
means to a data set of crabs body lengths. Presuming the existence of two subgroups
in the data he was able to handle the skewed pdf properly by the resulting mixture dis-
tribution. The assumption on latent structures within a given population is an essential
feature that distinguishes FMMs from other statistical models like nonparametric mod-
els. The latter comprise distribution free fitting methods and functions with structures
that are highly data driven. Therefore nonparametric models may attach more weight
to specific data structures or outliers while the fitting of FMMs places emphasis on the
parametrization of a predefined distributional setup. FMMs are in general also referred
to as probability-based clustering methods.

Even though FMMs offer a high level of flexibility in modeling, they comprise various
components which afford an appropriate specification and in a further step accurate
estimation techniques. The general estimation method for the unknown parameters in
FMMs is the ML estimation. With the work of Dempster et al. (1977) a suitable and
computationally advantageous fitting method for FMMs was found in the EM algorithm.
Based on the likelihood function, the EM algorithm enabled an efficient computation as
it approached to solve the original problem as an incomplete data structure problem.
With the application of the EM algorithm to the fitting of FMMs the latter attracted in-
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creasing interest among statisticians in different fields. The fitting of FMMs still leads
to challenges which remain problem specific. The choice of the final number of com-
ponents in the FMM has impact on the computational results of the EM algorithm as
well as the selection of proper starting values. Nevertheless, the advantages of FMMs
clearly outbalance the challenges as the increased number of applications show. The
probability-based clustering by means of the EM algorithm enables the fitting of mix-
tures of regression models which have contributed to the gain in popularity of FMMs.
In this context, latent classes are assumed to exhibit specific functional structures which
are modeled by component specific mean regression functions. In the general model
the mixture components follow a specified distribution which will be restricted to the
exponential family in further analysis. Additionally, the underlying mean is assumed to
follow a specified nonlinear regression function.

The main objective of this chapter is to introduce the class of mixtures of GNMs (as
described in Chapter 1) which have not been investigated up to now as no previous
research on this topic is available. Furthermore, an implementation of these models was
provided in R and will be addressed in this work. Section 2.1 defines the associated
model specification and necessary terms for further analysis while Section 2.2 discusses
identifiability aspects. The general estimation method is based on ML estimation which
is outlined in Section 2.3. The subsequent Section 2.4 derives the estimation approach
of the EM algorithm. The computation of standard errors is outlined in Section 2.5 while
Section 2.6 introduces two well-known extensions of the EM algorithm. The final Section
2.7 comprises information criteria for the optimal choice of the number of components
within mixtures of GNMs.

2.1 Model Specification

Let y = (y1, . . . , yn)> be a random vector with independent but not necessarily identi-
cally distributed components yi. Each component is assumed to have a mixture distribu-
tion denoted by fM (·). The mixture distribution consists of K components each from an
exponential family. The K-component mixture distribution is given by its mixture pdf

fM (yi;µi(β),φ,π) =
K∑
k=1

πkf(yi;µi(βk), φk), i = 1 . . . , n (2.1)

with vectors of dispersion parameters φ = (φ1, . . . , φK)> and weight parameters π =

(π1, . . . , πK)>. The mixture distribution consists ofK single distributions which are often
referred to as components in literature. In fact, a mixture model with K < ∞ is also
known as Finite Mixture Model (FMM). The weights πk are often referred to as component
weights and follow the necessary conditions

0 ≤ πk ≤ 1 and
K∑
k=1

πk = 1, k = 1, . . . ,K,

in order to guarantee probabilistic properties of the mixture density function fM (·).
The component specific density functions are denoted by f(yi;µi(βk), φk) for each yi,
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i = 1, . . . , n. The component specific density functions stem in general from the same
parametric family with pdf as given in (1.6) and differ solely in the component specific
means µi(βk) and dispersion parameter φk for each component k = 1, . . . ,K. The mean
µi(βk) is modeled through the GNM

µi(βk) = g−1(hi(βk)) = g−1(h(xi,βk)), i = 1, . . . , n, (2.2)

with component specific regression coefficient vectors β = (β>1 , . . . ,β
>
K)> and for each

component βk = (βk1, . . . , βkP )>. The component specific parameters can vary between
all components, known as varying effects in literature, as Grün and Leisch (2006, p. 2)
point out, or some of them may be fixed over all components (fixed effects). Therefore,
it is also possible to allow for a variation between groups of components due to specific
knowledge of the problem, which corresponds to a nesting. While (2.2) models the
mean within each component, the general mean over all components k = 1, . . . ,K can
be derived from (2.1) as

µi(β) = E[yi] =
K∑
k=1

πkµi(βk), i = 1, . . . , n. (2.3)

The FMM with mixture pdf as given in (2.1) is fully specified through the component
weights, the component specific mean functions and the dispersion parameters. As Wei
(1998, p. 15) stresses, it is common in literature to analyze the statistical behavior of
the regression parameter βk directly since there is a mapping between the component
specific means µi(βk) and their regression coefficient vectors βk given by (2.2) for i =

1, . . . , n. For further discussion, all parameters will be pooled in one parameter vector

Ψ = (π1, . . . , πK−1,β
>
1 , . . . ,β

>
K , φ1, . . . , φK)> (2.4)

with component specific regression coefficients βk = (βk1, . . . , βkP )>. The parameter
vector (2.4) is of main interest in further calculations and comprises all occurring pa-
rameters in the FMM for the sake of clarity. The main goal of further analysis is to
compute suitable estimates for Ψ. This includes in particular the computation of estima-
tors for the component specific regression coefficients βk and dispersion parameters φk
for each component k = 1, . . . ,K for any given mixture of GNMs.

2.2 Identifiability

The identifiability of FMMs represents an important aspect in the theory about FMMs as
it has direct influence on the fitting procedures and the interpretation of the component
parameters. For K components with component specific pdfs f(yi;µi(βk), φk), the mix-
ture model (2.1) is determined through the parameter vector Ψ as specified in Equation
(2.4). Considering two mixture densities

fM (yi; Ψ) =
K∑
k=1

πkf(yi;µi(βk), φk) and fM (yi; Ψ
∗) =

K∗∑
k=1

π∗kf(yi;µi(β
∗
k), φ

∗
k)
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with parameter vectors Ψ,Ψ∗ ∈ Ω, the mixture model is not identifiable if for any two
distinct parameters Ψ 6= Ψ∗ the respective mixture distributions equal, respectively

fM (y; Ψ) ≡ fM (y; Ψ∗), y ∈ Y. (2.5)

Within the context of mixture models identifiability problems arising through the equiv-
alence (2.5) can be attributed to several reasons. The mixture distribution (2.1) is in
general invariant to the labeling of the components. Therefore, two parameter vectors
Ψ 6= Ψ∗ which differ solely in their components’ labeling yield to equal mixture distri-
butions. A K-component FMM is in general exposed to K! ways of arranging the com-
ponents yielding the same mixture distribution. The general interchangeability of the
components f(·) can be avoided by imposing a distinct restriction on the order of the
component labels by establishing a relationship between the components’ parameters
(πk,µ(βk), φk) for k = 1, . . . ,K. As Frühwirth-Schnatter (2006, p. 19) points out, FMMs
are identifiable concerning the interchangeability of their labels under a weak constraint
where the component specific parameters differ at least in one parameter. A possible ap-
proach deals with the ordering according to the size of the mixing proportions through
the condition

1. π1 < π2 < . . . < πK

which is appropriate for mixtures with different component sizes. Stricter constraints
may be given, for example, by ordering the component specific distribution parame-
ters (µ(βk), φk). Nevertheless, FMMs require a careful choice of component ordering
constraints. Frühwirth-Schnatter (2006, p. 19) draws attention to related difficulties
whereas a restriction on variances might involve the non-idenfiability of mixtures with
equal variances. Identifiability problems as specified in Equation (2.5) for two distinct
parameter vectors Ψ 6= Ψ∗ may also arise due to a potential overfitting. This situation
can be attributed to empty components or several equally parametrized components.
Requiring a different parametrization within the components rules out the possibility
of equal component pdfs. Similar to the ordering constraint, a weak inequality require-
ment may suffice for the identifiability of distinct components by imposing, for example,
a constraint on the component specific regression coefficients. As a suitable measure for
dealing with overfitting, Grün and Leisch (2008c) state the following necessary condi-
tions:

2. πk > 0 ∀k = 1, . . . ,K and

3. k 6= l⇒ βk 6= βl ∀ k, l = 1, . . . ,K.

Despite these considerations regarding the interchangeability of components and poten-
tial overfitting, FMMs may possibly remain non-identifiable. Generic identifiability has
been studied for different mixtures of several specific distributions apart from mixtures
of regression models. Teicher (1963) proved the identifiability for finite mixtures of the
univariate normal and Gamma distribution. These results were advanced for multivari-
ate cases and further distributions by Yakowitz and Spragins (1968) and Titterington
et al. (1985). Yakowitz and Spragins (1968, p. 210) showed that FMMs of a specific dis-
tributional family are identifiable if the members of the underlying distributional family
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are linearly independent over the field of real numbers. General identifiability results
were derived for the Gaussian, Gamma and Poisson distribution. Special cases comprise
mixtures of binomial distributions which are identifiable under a restriction on the num-
ber of components.

Identifiability of mixtures of regression models has been discussed by Wang et al. (1998),
Hennig (2000), Grün and Leisch (2008a,c) and Frühwirth-Schnatter (2006). The generic
identifiability of mixtures of normal regression models does not necessarily follow from
generic identifiability of mixtures of distributions as Hennig (2000, p. 276) and Frühwirth-
Schnatter (2006, p. 243) point out. Within the context of mixtures of linear regression
models, Hennig (2000) completed the requirement on the a full rank covariate matrix
X by further conditions. Therefore, regression parameters are identifiable if the number
of distinct hyperplanes generated by the covariates (exlcuding the intercept) exceeds the
number of clusters K. This is especially critical if the regression model includes categor-
ical variables or in the case of low variability of the explanatory variables, as Grün and
Leisch (2008a, p. 8) and Frühwirth-Schnatter (2006, p. 244) outline. Grün and Leisch
(2008a) generalized the identifiability results for the class of mixtures of GLMs.

Theorem 2.1 Identifiability of mixtures of GLMs, Grün and Leisch (2008a, p. 7)
The mixture model defined by

h(y;x,Ψ) =
N∏
t=1

[
K∑
k=1

πk
∏
i∈It

f(yi;µik, φk)

]
(2.6)

and
g−1(µik) = x>i βk (2.7)

is identifiable if the following conditions are fullfilled:

1. (a) ∃ Ĩ 6= ∅ : Ĩ ⊆ ⋃N
t=1 It : The mixture of distributions given by

∑K
k=1 πkf(yi;µik, φk)

is identifiable ∀ i ∈ Ĩ.

(b) q∗ > K with

q∗ :=
{
q : ∀ i∗ ∈ Ĩ : ∃Hj ∈ {H1, . . . ,Hq} : {xi : i ∈ It(i∗) ∩ Ĩ} ⊂ Hj ∧Hj ∈ HU

}
where HU is the set of H(α) := {x ∈ RU : α>x = 0} with α 6= 0.

2. The matrix X has full rank.

It comprises the set of indices from repeated observations with fixed component mem-
bership corresponding to individual t. The respective observations are given by (yt,xt) =

(yi,xi)i∈It . The present identifiability results on mixtures of GLMs can be adopted to
mixtures of GNMs only to a limited extent. A crucial difference arises through the substi-
tution of the mean function in (2.7) through a nonlinear regression function (1.3). The
fitting of GNMs depends strongly on the specification of the nonlinear mean function
(2.2) which is in general problem specific. The specification of the nonlinear functional
form affects the dimension of the regression coefficient vector and the quality of the nu-
merical fitting procedures. The latter might be complicated through arising colinearities
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within the optimization methods. Within mixtures of GNMs different starting values are
applied to the numerical fitting methods in order to detect possible multiple solutions. A
related identifiability aspect on general latent class models is given by the local identifi-
ability concept. As Kim and Lindsay (2015, p. 746) outline, local identifiability refers to
an open neighborhood of parameter estimates where every parameter of the respective
neighborhood generates an unique distribution. The verification of locally identifiable re-
gions is obtained by checking the Fisher information on the estimated parameters. Local
identifiability of parameter estimates depends on the non-singularity of the information
matrix as discussed in Allman et al. (2009) and Rothenberg (1971).

2.3 Maximum Likelihood Estimation

Let y ∈ Y be a random vector with mixture distribution as given in Section 2.1. The
unknown parameter vector Ψ in (2.4) specifies the FMM and has to be estimated. The
general method for finding an appropriate estimator Ψ̂ is the ML estimation. The like-
lihood function of the FMM corresponds to the joint pdf of the observed data vector
viewed as a function in the parameters. Based on the mixture pdf given in (2.1) the
likelihood function results in

L(Ψ;y) =
n∏
i=1

K∑
k=1

πkf(yi;µi(βk), φk). (2.8)

The likelihood function is assumed to be twice differentiable in the unknown parameter
vector Ψ. For the sake of clarity the component specific pdfs will be denoted as

fik := f(yi;µi(βk), φk)

for further analysis and i = 1, . . . , n and k = 1, . . . ,K. The corresponding log-likelihood
function takes the specific form

`(Ψ;y) =
n∑
i=1

log

{
K∑
k=1

πkfik

}
. (2.9)

In order to derive the ML estimator for the unknown parameter vector Ψ, the score
function of the log-likelihood function (2.9) has to fulfill the necessary condition

S(y; Ψ) =
∂`(Ψ;y)

∂Ψ

!
= 0. (2.10)

2.4 Expectation-Maximization (EM) Algorithm

The EM algorithm was introduced by Dempster et al. (1977) as an iterative computation
method for ML estimation. The iteration scheme is straightforward and general as it can
be applied to various statistical problems. Along to the original work of Dempster et al.
(1977), McLachlan and Krishnan (2008) represents a detailed source for the areas of
application as well as for different extensions of the EM algorithm.
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The log-likelihood function for mixtures of GNMs (2.9) turns out to be computationally
highly complex and time-expensive due to the need of extensive numerical methods. Be-
cause of its complexity the maximization of the likelihood function is difficult to provide
and may be solved iteratively. Therefore the EM algorithm is applied for an iterative com-
putation of the MLE Ψ̂. The algorithm is based on an incomplete-data structure problem
and applies repeatedly two steps until an appropriate result is reached. The incomplete-
data structure problem will be discussed in more detail in Section 2.4.1. Subsequent
sections present the derivation of the EM algorithm for FMMs of GNMs.

2.4.1 Incomplete-Data Structure Problem

The basic idea of the EM algorithm is to view the given data vector y ∈ Y as being
incomplete. The data vector y is also denoted as observable or incomplete data vector in
the context of the EM algorithm. As McLachlan and Peel (2000, p. 19) explain, y is as-
sumed to have an underlying mixture pdf (2.1) denoted by fM (y; Ψ) with the unknown
parameter vector Ψ ∈ Ω. Dempster et al. (1977, p. 15) made the assumption about the
existence of a finite set of unobservable variables associated to the vector y. Actually,
each observation yi is linked to K indicator variables zi1, . . . , ziK assigning the member-
ship of yi to the kth mixture component for k = 1, . . . ,K. The indicator variables are also
referred to as missing or hidden information within the framework of the EM algorithm.
Let zi ∈ Z = {0, 1}K denote the component label vectors with zi = (zi1, . . . , ziK)>

where all components equal to zero except one. Thus, zi realize in the set of binary
numbers as

zik =

{
1, if yi ∈ kth component,

0, if yi /∈ kth component,

assigned with the component weights πk as probabilities of occurrence for i = 1, . . . , n

and k = 1, . . . ,K. The component weights πk are viewed as the prior probability of
yi stemming from the kth component. Accordingly, the allocation of the component
memberships of yi is binomially distributed with probability πk for each component
k = 1, . . . ,K. Therefore the label vectors zi are multinomially distributed

zi
iid∼ MultK(1,π), i = 1, . . . , n,

with the component weights as event probabilities π = (π1, . . . , πK)>. Let yc denote the
data vector consisting of the augmented samples

yc = (y>, z>)>

defined on the set Yc = Y×Z. yc is also known as complete data vector in the context of
the EM algorithm. The pdf of yc is denoted by f c(yc; Ψ) with parameter vector Ψ. The
pdf of the complete vector yc represents the marginal distribution of the observable and
hidden information given by

f c(yc; Ψ) = f(y; Ψ) · g(yc|y; Ψ).
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Modifying the pdf of the complete data vector results in the following relationship of the
corresponding log-likelihood function

`c(Ψ;yc) = `(Ψ;y) + log g(yc|y; Ψ). (2.11)

The unobserved but complete log-likelihood function has the specific form

`c(Ψ;yc) =

n∑
i=1

log

{
K∏
k=1

(πkfik)
zik

}
=

n∑
i=1

K∑
k=1

zik log {πkfik}

=
n∑
i=1

K∑
k=1

zik {log πk + log fik} . (2.12)

2.4.2 Definitions of the EM Algorithm

Since the component label vectors cannot be observed, they represent missing or hidden
information and obviate a direct computation of the complete log-likelihood function
(2.12). The EM algorithm provides an indirect optimization of (2.12) by taking the con-
ditional expectation on observable information and providing an iterative maximization
with respect to the unknown parameter vector Ψ, as the following description shows.

Let Ψ(j) be the current estimate in the jth iteration. In the following E[·|y,Ψ(j)] de-
notes the expectation operator taking the current estimate Ψ(j) for Ψ in computations.
Rearranging (2.11) results in

`(Ψ;y) = `c(Ψ;yc)− log g(yc|y; Ψ). (2.13)

Let the following conventions hold for the expectations of the log-likelihood functions

Q(Ψ; Ψ(j)) := E[`c(Ψ;yc)|y,Ψ(j)],

H(Ψ; Ψ(j)) := E[log g(yc|y; Ψ)|y,Ψ(j)].

Therefore, the incomplete-data log-likelihood can be expressed as

`(Ψ;y) = Q(Ψ; Ψ(j))−H(Ψ; Ψ(j)). (2.14)

McLachlan and Krishnan (2008, p. 78) show that the EM algorithm guarantees an in-
crease of the incomplete data log-likelihood after every iteration step due to

`(Ψ(j+1);y)− `(Ψ(j);y) = Q(Ψ(j+1); Ψ(j))−Q(Ψ(j); Ψ(j))

+ H(Ψ(j); Ψ(j))−H(Ψ(j+1); Ψ(j)) ≥ 0.

For the iterative computation of a series of estimates Ψ(1), . . . ,Ψ(j),Ψ(j+1) the inequality

Q(Ψ(j+1); Ψ(j)) ≥ Q(Ψ(j); Ψ(j))

holds as Ψ(j+1) is chosen in order to maximize Q(Ψ; Ψ(j)).The remaining term is non-
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negative due to the the inequality

H(Ψ(j+1); Ψ(j))−H(Ψ(j); Ψ(j)) ≤ 0,

which is valid due to the Jensen inequality and the concavity of the logarithmic func-
tion, see also McLachlan and Krishnan (2008, p. 78). This result is equivalent with an
increasing log-likelihood function when updating the parameter vector Ψ,

`(Ψ(j+1);y) ≥ `(Ψ(j);y), ∀ j ≥ 0. (2.15)

These results prove the monotonicity and convergence of the sequence of estimators
provided by the EM algorithm if the likelihood is bounded above.

2.4.3 Expectation-Step

As the complete log-likelihood function `c(Ψ;yc) comprises unknown information, its
computation is provided by taking the conditional expectation given the observed data
y and a current estimate Ψ(j). Ψ(j) denotes the approximated value of the unknown
parameter vector Ψ after the jth EM iteration step. The expectation function of the
complete data log-likelihood Q(Ψ; Ψ(j)) results by substituting the unknown parameter
vector Ψ by its current estimate Ψ(j) in the computation of the log-likelihood function
`c(Ψ;yc). The expectation Q(Ψ; Ψ(j)) is given in the jth iteration as

Q(Ψ; Ψ(j)) = E

[
n∑
i=1

K∑
k=1

zik {log πk + log fik}
∣∣∣y,Ψ(j)

]

=

n∑
i=1

K∑
k=1

E
[
zik
∣∣yi,Ψ(j)

]
{log πk + log fik} .

The complete data log-likelihood `c(Ψ;yc) is linear in the classification indicators zik.
Therefore, the computation of the expectation Q(Ψ; Ψ(j)) affords in particular the calcu-
lation of the conditional expectation of zik given the observable data y and the current
estimate Ψ(j) in terms of

w
(j)
ik := E[zik = 1|yi,Ψ(j)] = P[zik = 1|yi,Ψ(j)] =

π
(j)
k f

(j)
ik∑K

l=1 π
(j)
l f

(j)
il

, (2.16)

for i = 1, . . . , n and k = 1, . . . ,K. Using result (2.16) for the computation of the condi-
tional expectation yields

Q(Ψ; Ψ(j))
(2.16)

=

n∑
i=1

K∑
k=1

w
(j)
ik {log πk + log fik} , j ≥ 0. (2.17)

The specific conditional expectation of the complete log-likelihood function given by
(2.17) serves as the objective function for the maximization within the EM algorithm.
McLachlan and Peel (2000, p. 20) denote the proportions wik as the posterior probabili-
ties for yi being drawn from the kth component.
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2.4.4 Maximization-Step

The Maximization (M)-step provides the subsequent approximation Ψ(j+1) of the un-
known parameter vector Ψ in the iteration step (j+1). Calculating the updated estimate
Ψ(j+1) requires the maximization of the underlying conditional expectation function
Q(Ψ; Ψ(j)) in (2.17) with respect to Ψ and subject to the condition

Q(Ψ(j+1); Ψ(j)) ≥ Q(Ψ; Ψ(j)), j ≥ 0.

As the complete specification of mixtures of GNMs requires the estimation of the com-
ponent weights, the component specific regression coefficients, in order to compute the
mean functions, and the component specific dispersion parameters, their estimation is
addressed separately within this section.

2.4.4.1 Component Weights

Considering the component weights or mixing proportions πk, the maximization of the
log-likelihood has to be provided subject to the condition

∑K
k=1 πk = 1. This constrained

maximization can be performed by including a Lagrangian multiplier λ. The Lagrangian
function will be denoted as Q̃ and is given by

Q̃(Ψ;λ; Ψ(j)) = Q(Ψ; Ψ(j))− λ
(

K∑
k=1

πk − 1

)
. (2.18)

The maximization of the unconstrained Lagrangian function Q̃ replaces the maximiza-
tion of the former likelihood function with constraints. Thus the estimates π̂k can be
derived by zeroing the derivative of (2.18) which results in the equation

∂Q̃(Ψ, λ; Ψ(j))

∂πk
=

n∑
i=1

w
(j)
ik

πk
− λ !

= 0 (2.19)

for the components k = 1, . . . ,K. The classification variables w(j)
ik as given in (2.16)

are also known as component proportions or posterior weights and denote the chance
of an observation yi belonging to the kth component as a proportion of the weighted
component density to the overall mixture density. Therefore, the following equation
holds for the mixing proportions

πk =
1

λ

n∑
i=1

w
(j)
ik .

The Lagrangian parameter λ maintains the component weights condition of summing
up to one in (2.18). In order to obtain λ̂, both sides are added up over all components
yielding

K∑
k=1

1

λ

n∑
i=1

w
(j)
ik =

K∑
k=1

πk = 1⇐⇒ λ̂ = n.
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The estimator for the Lagrangian parameter λ results in the total number of observations
n. Consequently, the component weights estimates π̂k are given by the mean value of the
classification data wik given in Equation (2.20) with λ = n. The respective component
weight estimator for the iteration step (j + 1) results in

π̂
(j+1)
k =

1

n

n∑
i=1

w
(j)
ik . (2.20)

2.4.4.2 Component Specific Regression Coefficients

The specification of the component specific pdfs affords the fitting of the component
specific mean functions and dispersion parameters. The aim of this section is to enable
the fitting of component specific mean functions through the estimation of the regres-
sion coefficient vectors βk for k = 1, . . . ,K. The dispersion parameters are treated as
fixed values. Within the EM algorithm, the parameter estimates β(j)

k are determined by
maximizing the conditional expectation function Q(Ψ; Ψ(j)) with respect to the regres-
sion coefficients. The resulting score function with respect to the component specific
regression coefficients βk = (βk1, . . . , βkP )> is given by

∂Q(Ψ; Ψ(j))

∂βkp
=

n∑
i=1

w
(j)
ik

∂ log fik
∂βkp

=

n∑
i=1

w
(j)
ik

∂ log fik
∂µik

∂µik
∂βkp

.

Replacing the component pdfs by their exponential family expression leads to

∂Q(Ψ; Ψ(j))

∂βkp

(1.6)
=

n∑
i=1

w
(j)
ik

yi − µik
φkV (µik)

∂µik
∂βkp

(2.21)

for the component specific regression coefficients with p = 1, . . . , P and k = 1, . . . ,K.
The β(j)

k can be obtained by the Iteratively Re-weighted Least Squares (IWLS) algorithm
which will be discussed in the subsequent section.

2.4.4.3 Iteratively Re-weighted Least Squares Algorithm

Within the EM algorithm, updating β(j)
k by the subsequent estimate β(j+1)

k affords in
general an iterative procedure. In the following, a general iteration scheme will be de-
rived for the fitting of β(j+1)

k which is suitable within mixtures of GNMs. As the fitting
procedure is being performed in the same way for the distinct components k = 1, . . . ,K,
the component specific labeling will be waived in the interest of greater clarity within the
subsequent derivation. The necessary iteration steps will be labeled by the control vari-
able t = 1, . . . , t∗ where t∗ denotes the last iteration step after reaching a predefined con-
vergence criteria. The related estimate β(t∗) represents the EM update through β(j+1) :=

β(t∗). The current estimate β(j) serves as initial value through β(0) := β(j) or rather
Ψ(0) := Ψ(j) where the component weights and dispersion parameters are presumed as
fixed. A suitable estimate for the regression coefficient vector β = (β1, . . . , βP )> can be
derived by applying the Fisher scoring method given the iteration step (t+ 1),

β(t+1) = β(t) + I
(
β(t)

)−1 ∂Q(Ψ; Ψ(0))

∂β

∣∣∣
β=β(t)

, t ≥ 0. (2.22)
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The scoring procedure affords an initial vector β(0) and the computation of the expected
information matrix I(·) with respect to the regression coefficient vector β. The negative
of the Hessian matrix represents the observed information matrix, respectively

I(β;y) := −∂
2 Q(Ψ; Ψ(0))

∂β∂β>
.

The expected value of the observed information matrix I(β;y) leads to the Fisher infor-
mation given by

I(β) := E [I(β;y)] = E

[
−∂

2 Q(Ψ; Ψ(0))

∂β∂β>

]
.

The application of the iteration procedure (2.22) with initial value β(0) generates a
sequence of estimates β(t) converging to the MLE. Thus the algorithm is stopped if a
predefined convergence criterion is reached. The component specific mean functions
are going to be denoted in further analysis as

µ := µ(β) = (µ1(β), . . . , µn(β))>,

with µi := µi(β), i = 1, . . . , n, for the sake of clarity. For mixtures of GNMs the score
functions with respect to the component specific regression coefficients βp are given by

∂Q(Ψ; Ψ(0))

∂βp
=

n∑
i=1

wi
∂ log fi
∂µi

∂µi
∂βp

(1.6)
(1.13)

=
n∑
i=1

wi
yi − µi
φV (µi)

∂µi
∂βp

=
n∑
i=1

w∗i (yi − µi)
∂µi
∂βp

for weights w∗i = wi(φV(µi))
−1 and p = 1, . . . , P . The corresponding matrix form is

given by

∂Q(Ψ; Ψ(0))

∂β
=

1

φ
J(β)>W (y − µ) (2.23)

with diagonal matrix W = diag(w∗1, . . . , w
∗
n) and the Jacobian matrix J(β) ∈ Rn×P

containing the partial derivatives

J(β) =

(
∂µ(β)

∂β1
, . . . ,

∂µ(β)

∂βP

)
.

The observed information can be obtained by computing the second derivative of the
expectation function (2.17) for mixtures of GNMs with respect to the regression coeffi-
cients vector. Taking the expectation yields the Fisher information, respectively

I(β) = −E

[
∂2 Q(Ψ; Ψ(0))

∂β∂β>

]
(2.23)

=
1

φ

[
J(β)>WJ(β)

]
, (2.24)

which can be inverted in order to derive the Fisher scoring iteration scheme (2.22). For
complex likelihood functions, as it is the case with mixtures of GNMs, using the expected
information instead of the observed information matrix leads to less calculation effort
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and a decrease in computational time. In fact, within the iteration it is not necessary to
explicitly compute the Hessian matrix.

Inverting the Fisher Information (2.24) leads to model-specific difficulties when dealing
with nonlinear functional structures for the component specific mean functions. Based
on the specific functional form of the regression function h(xi,β) in (2.2), a possibly
singular Jacobian matrix may occur in (2.24). Under these circumstances the matrix
product J(β)>WJ(β) is in general not invertible which complicates the use of the Fisher
scoring method in (2.22). Nevertheless, numerical solutions have been derived to deal
with these rank deficient matrices by replacing the nonexistent inverse matrices by ap-
propriate approaches. In connection with deriving roots of nonlinear equation systems,
Ben-Israel (1966, p. 95) proposed to substitute the inverse of the singular Jacobian ma-
trix by its generalized inverse matrix in the underlying Newton-Raphson algorithm. The
generalized inverse matrix, also known as pseudoinverse or the Moore-Penrose inverse
in literature, was derived by Penrose (1955) as a generalization of the inverse matrix
for singular and non-quadratic matrices. For a definition of a generalized inverse matrix,
reference is made to the Appendix. Applying the suggestion in Ben-Israel (1966, p. 95)
to the inverse of the Fisher information leads to the generalized inverse matrix product

I(β)−1 ≈ I(β)+ = φ
[
J(β)>WJ(β)

]+

and enables the use of the Fisher scoring (2.22). Substituting I(β)−1 by its generalized
inverse matrix I(β)+ yields to an iteration scheme. The resulting scoring method for
updating the component specific regression coefficient vector β is prescribed as

β(t+1) = β(t) +

[
1

φ
J
(
β(t)

)>
W (t)J

(
β(t)

)]+ 1

φ
J
(
β(t)

)>
W (t)

(
y − µ(t)

)
= β(t) +

[
J
(
β(t)

)>
W (t)J

(
β(t)

)]+

J
(
β(t)

)>
W (t)

(
y − µ(t)

)
=

[
J
(
β(t)

)>
W (t)J

(
β(t)

)]+

J
(
β(t)

)>
W (t)

[
J
(
β(t)

)
β(t) +

(
y − µ(t)

)]
=

[
J
(
β(t)

)>
W (t)J

(
β(t)

)]+

J
(
β(t)

)>
W (t)z∗(t) (2.25)

with µ(t) := µ(β(t)). The resulting iteration step (2.25) reflects the typical form of an
IWLS update. In each iteration step the new regression coefficient update β(t+1) depends
on the Jacobian matrix J(β(t)) and the adjusted dependent variables which are set as

z∗(t) := J
(
β(t)

)
β(t) +

(
y − µ(t)

)
. (2.26)

The iteration scheme comprises the two subsequent steps within each iteration t ≥ 0:

1. Update the adjusted dependent variables (2.26) for a current approximation β(t).

2. Obtain the regression coefficient vector β(t+1) as given in the IWLS iteration (2.25)
with the current adjusted variables and the approximation β(t).

The fitting procedure consists of subsequent repetitions of these two steps until a prede-
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fined convergence criterion is reached. In case of convergence, the regression coefficient
vector after the final iteration step β(t∗) is assigned as subsequent value within the EM
algorithm, respectively β(j+1) := β(t∗).

Example 2.1 (Normal Distribution)
For normally distributed components with φk = σ2

k the score equation with respect to the
regression coefficient vector is given by

∂Q(Ψ; Ψ(j))

∂βkp
=

n∑
i=1

w
(j)
ik

(yi − µik)
σ2
k

∂µik
∂βkp

.

Modifying the score equation leads to the WNLS approach, respectively

∂Q(Ψ; Ψ(j))

∂βkp
=

1

σ2
k

n∑
i=1

w
(j)
ik (yi − µik)

∂µik
∂βkp

.

Assuming a fixed dispersion parameter σ2
k for each component, yields also to the WNLS

problem by the weighted RSS

RSS(βk) := ‖W 1/2
k (y − µ(βk))‖2, (2.27)

with diagonal weight matrixWk = diag(w1k, . . . , wnk). The WNLS estimator satisfies β̂k :=

arg maxβk
RSS(βk). In order to derive β̂k, the RSS(βk) has to be minimized with respect

to βk and equated by zero, respectively

∂ RSS(βk)

∂βk
= 2J(βk)

>Wk(y − µ(βk))
!

= 0

corresponding to the score function in (2.23).

A well-known problem when fitting mixtures with underlying normal distribution is the
possibility of an occurring infinite likelihood as σ2

k → 0. Within this case one variance tends
to zero and causes estimation problems.

Example 2.2 (Gamma Distribution)
For Gamma distributed components with φk = ν−1

k and µk = −θ−1
k and V(µik) = µ2

ik the
score function results in

∂Q(Ψ; Ψ(j))

∂βkp
=

n∑
i=1

w
(j)
ik

νk
µ2
ik

(yi − µik)
∂µik
∂βkp

= νk

n∑
i=1

w
∗(j)
ik (yi − µik)

∂µik
∂βkp

.

According to (2.23) the weight matrix contains entries w∗(j)ik = w
(j)
ik /µ

2
ik.

For distributions with dispersion parameters differing from 1, φk is treated as fixed value
in (2.21) and thus in the IWLS procedure. Appropriate estimates for the components
dispersion parameters φk will be presented in the subsequent section.
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2.4.4.4 Component Specific Dispersion Parameters

In order to specify the component specific pdfs fik completely, the dispersion parameters
φk have to be estimated for each component k = 1, . . . ,K. The dispersion parameters
are allowed to differ through all components inducing heteroscedastic mixture models
but stay constant within a fixed component. The aim of this section is to conclude the
estimation of the unknown parameter vector Ψ by sketching an appropriate estimation
method for φk.

For members of the exponential family, the score function of (2.17) with respect to the
dispersion parameter is given by

∂Q(Ψ; Ψ(j))

∂φk
=

n∑
i=1

w
(j)
ik

∂ log fik
∂φk

=
n∑
i=1

w
(j)
ik

(
−yiθi − b(θi)

φ2
k

+
∂c(yi, φk)

∂φk

)
. (2.28)

Thus, the ML approach does not provide any general fitting method as the estimating
function depends in particular on the structure of the term c(yi, φk). Depending on the
underlying distribution, c(yi, φk) can take a complexity which cannot be handled by
analytical solutions. Moreover the meaning and interpretation of φk changes for different
distributions due to different choices of variance functions, as McCullagh and Nelder
(1989, p. 357) explain. As Section 1.2.1 showed, the Poisson and binomial distribution
have fixed φk = 1, while other distributions like the normal and Gamma distribution
certainly afford an appropriate estimation of the dispersion parameter. These practical
difficulties concerning (2.28) disable the derivation of a general MLE φ̂k for all members
of the exponential family and motivate the use of alternative estimation techniques as
presented in Section 1.3. The usual approach for estimating the dispersion parameter
for a non-tractable score function (2.28) is based on the deviance. Wei (1998, p. 21)
emphasizes its adequacy within GNMs. Equation (1.18) allows to embed the weight
components wik for the component specific dispersion parameters through wi = wik.
The final estimator for φk requires averaging over the component specific weights with
wik defined as in (2.16),

φk =
D∗w(y; µ̂k)∑n

i=1wik
,

where µ̂k := µ(β̂k) holds for k = 1, . . . ,K. Section 1.3 introduced the (weighted) Pear-
son statisticX2 (1.19) which is also convenient within FMMs. Including the classification
variables as weight components by wi := wik yields a modified Pearson statistics which
can be used as an estimator for the computation of the dispersion parameter in mixture
models. Within the EM algorithm, the estimation of the component specific dispersion
parameters is provided independently of the computation of the component weights π(j)

k

or the component specific regression coefficient vectors β(j)
k . Replacing the weight pa-

rameters by the posterior proportions obtained within the E-step (2.16), represents a
necessary step for the computation of φ(j)

k in the jth EM iteration step. Exemplary, nor-
mal and Gamma distributed components are mentioned as examples in the following.
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Example 2.3 (Normal Distribution)
For normally distributed components the dispersion parameter equals φk = σ2

k. The score
equation with respect to the dispersion parameter is given by

∂Q(Ψ; Ψ(j))

∂σ2
k

=
n∑
i=1

w
(j)
ik

(
(yi − µik)2

2σ4
k

− 1

2σ2
k

)

and enables the derivation of an analytical solution for σ̂2
k. Equating the score function to

zero leads to

σ̂
2 (j+1)
k =

∑n
i=1w

(j)
ik (yi − µ̂ik)2∑n
i=1w

(j)
ik

,

where µ̂ik corresponds to the fitted values provided by the component specific regression
function µi(β̂k) for observation yi.

Using the weighted deviance (1.18) enables the computation of the component specific
dispersion parameter for Gamma distributed components.

Example 2.4 (Gamma Distribution)
For Gamma distributed components, as defined in Example 1.3, the dispersion parameter
equals the reciprocal value of the shape φk = ν−1

k . The common approach to estimate the
dispersion parameter refers to the deviance for weighted exponential families as the score
function with respect to νk prohibits an analytical solution. The estimator for the dispersion
parameter is derived by

φ̂
(j+1)
k =

D∗w(y; µ̂k)∑n
i=1w

(j)
ik

=

∑n
i=1w

(j)
ik (− log(yi/µ̂ik) + (yi − µ̂ik)/µ̂ik)∑n

i=1w
(j)
ik

,

where µ̂ik corresponds to the fitted values provided by the component specific regression
function µi(β̂k) for observation yi. The estimator can be applied to heteroscedastic mixtures
of GNMs with underlying Gamma distributions.

2.4.5 Iteration Procedure and Convergence Aspects

The EM algorithm maximizes the conditional expectation of the complete log-likelihood
function given by Q(Ψ; Ψ(j)) with respect to the unknown parameter vector Ψ. Simul-
taneously, an increase in the incomplete log-likelihood function `(Ψ;y) is obtained as
the relation (2.15) holds. Technically, the EM algorithm applies iteratively the following
two steps for j ≥ 0.

Steps of the EM-Algorithm:

Expectation (E)-step:
Calculate the posterior probabilities w(j)

ik and the expectation of the complete log-
likelihood function Q(Ψ; Ψ(j)) for the current estimate Ψ(j).
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Maximization (M)-step:
Compute the subsequent update for the unknown parameter vector by

Ψ(j+1) = arg max
Ψ∈Ω

Q(Ψ; Ψ(j)).

The two steps are successively repeated until the absolute or relative changes of the
parameter vector reach a predefined limit of tolerance ε > 0, respectively

‖Ψ(j+1) −Ψ(j)‖ < ε.

Another considerations suggest to take the increase in the log-likelihood into account
for the stopping criterion. McLachlan and Krishnan (2008, p. 142) address the usual
EM algorithm stopping criteria as measures for its performance, but not immediately
for its convergence. Due to possible multimodality of the log-likelihood function for
FMMs, the convergence of the EM algorithm is, among other things, sensitive to starting
values. Converging iterations may indicate a lack in progress, but may not guarantee the
achievement of a maximum. Böhning et al. (1994) studied a more significant measure
of convergence given by the Aitken-acceleration based stopping criterion which can be
applied to estimates of the log-likelihood with linear order of convergence according to
Definition A.2. Let `(j) := `(Ψ(j);y) denote the approximated values of the log-likelihood
function (2.9) with estimates Ψ(j), j ≥ 0, for the unknown parameter vector Ψ in the jth
iteration of the EM algorithm. Let furthermore `∗ := `(Ψ∗;y) denote the log-likelihood
in the true parameter vector Ψ∗. According to Definition A.2, linear convergence of the
sequence Ψ(j) implies the relationship

|`∗ − `(j+1)| ≤ c|`∗ − `(j)|

in each iteration step j ≥ 0 with 0 < c < 1. Replacing `∗ by its approximation yields
under linear convergence the expression

|`(j+1) − `(j)| ≈ c|`(j) − `(j−1)| ≈ cj |`(1) − `(0)|. (2.29)

Böhning et al. (1994) point out the fact that a convergence measure concerning the
increase in log-likelihood functions does not necessarily imply that the estimate is close
to the log-likelihood evaluated at the real value `∗ = `(Ψ∗;y) in the case of c � 1. The
following limit value approximates the true value Ψ∗,

`∗ = lim
j→∞

`(j) ≈ `(0) +

∞∑
j=0

cj(`(1) − `(0)) = `(0) +
`(1) − `(0)

1− c .

The constant c can be estimated within each iteration j ≥ 0 according to (2.29) as

cj =
`(j+1) − `(j)
`(j) − `(j−1)

.
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The Aitken-accelerated estimate for the iteration step (j + 1) is denoted as

`
(j+1)
A = `(j) +

`(j+1) − `(j)
1− cj (2.30)

and can be applied to the EM algorithm as a stopping criterion. The criterion (2.30)
ensures the monotonicity related to the log-likelihood function `(j)A ≥ `(j). Böhning et al.
(1994) suggest to use (2.30) as the stopping criterion by checking the absolute difference

|`(j+1)
A − `(j)A | < ε.

2.4.6 Geometric Properties and Gradient-Based Methods

Lindsay (1983a) derived central theoretical results on the computation of the MLE for
an equivalent geometric problem of the mixture model with pdf (2.1). Therefore, the
derivation of the MLE is obtained by the optimization on the convex set of all probabil-
ity measures Ω̃. The algorithmic idea is to increase the likelihood function of a current
estimate P by the addition of a vertex Q. The addition is obtained by a convex com-
bination of the current estimate and the vertex through a step length factor α ∈ [0, 1].
The vertices are defined as measures with mass at K distinct elements θ1, . . . , θK for the
probabilities π = (π1, . . . , πK). The directional derivative Φ(·) is used to find a vertex
direction, respectively

Φ(P,Q) = lim
α→0

`((1− α)P + αQ)− `(P )

α
.

In case of a positive directional derivative for a vertex Q, the likelihood function can
be increased. Otherwise the current estimate is denoted as Nonparametric Maximum
Likelihood Estimator (NPMLE) for a flexible number of components K. The algorith-
mic procedure from Lindsay (1983a, p. 91) was advanced by Böhning et al. (1992)
who introduced the software program C.A.MAN (Computer Assisted Mixture Analysis).
Applications on the computation of the NPMLE were carried out to different distribu-
tions as the Poisson, exponential or normal distribution. The latter affords the separate
specification of the variance parameter as Böhning et al. (1992, p. 297) outline. Böhn-
ing et al. (1992, p. 293) emphasize the necessity of an adequate step length choice in
order to achieve monotonicity within the procedure. In contrast, the EM algorithm guar-
antees monotonicity as discussed in Section 2.4.2. For a fixed number of components
Lindsay (1983a, p. 92) and Böhning et al. (1992, p. 293) refer to the EM algorithm as
an appropriate estimation method. In order to improve convergence results, Böhning
(2003, p. 260) discusses the EM algorithm with a gradient function update. This ad-
vanced method provides monotonicity and convergence to a stationary point as outlined
in Böhning (2003, Theorem 1). Empirical evidence on the improvement was given by
the application of mixtures of exponential distributions.

As McLachlan and Peel (2000, p. 24) emphasize, the geometric analysis of mixture mod-
els provided by Lindsay (1983a) revealed useful results on the general theory of mixture
models where the MLE relates to a convex optimization problem. Nevertheless, the fit-
ting of mixtures of GNMs with pdf (2.1) depends highly on the functional relationship
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of the data which necessitates the inclusion of explanatory variables. Furthermore, the
related problems require a certain number of components due to particular specifics of
the underlying model or population. The identification of the mixture components fol-
lows in general a distributional shape which is driven by the nonlinear mean function
where particular attention will be given to problem specific variance structures allow-
ing for varying dispersion through the data sample and the components. Therefore, for
mixtures of GNMs the present analysis focuses on generalizations of already available
mixtures of regression models within the statistical environment R with the package
flexmix where the EM setup evolved as standard methodology.

2.5 Standard Errors

The previous sections give a detailed derivation of the parameter estimation for mix-
tures of GNMs. The fitted regression coefficient vector β̂k specifies the component spe-
cific mean function within the kth mixture component, whereas the estimate for the
dispersion parameter φ̂k gives information on the scattering of the data classified to the
kth component around the mean function for k = 1, . . . ,K. The component weights
estimates π̂k summarize the overall proportion of the final allocation of the data to the
kth component. Studying the quality of the derived mixture of GNMs implies the knowl-
edge on the accuracy of the derived parameter estimates, given through Ψ̂. In order to
draw conclusions from the fitted mixture of GNMs and assure reliable results, appropri-
ate quality measures for the parameter estimates are necessary which can be pictured
by standard errors. The derivation of standard errors for parameter estimates in FMMs
poses a major challenge. One approach to face this task is given by the Fisher infor-
mation as the originator for standard errors of MLEs in FMMs which will be denoted
as I(Ψ;y) in the following. As McLachlan and Peel (2000, S. 42) explain, the asymp-
totic covariance matrix of the MLE Ψ̂ equals to the inverse of the Fisher information,
respectively

Cov[Ψ̂] ≈ I(Ψ;y)−1.

The previous sections already indicate tedious computations and low tractability of the
log-likelihood function of mixtures of GNMs due to the complexity of the underlying mix-
ture pdf. As the computation of the Fisher information is generally demanding, I(Ψ;y)

is often approximated by the observed information matrix I(Ψ;y) where

I(Ψ;y) = −H(Ψ;y) = −∂
2`(Ψ;y)

∂Ψ∂Ψ>

holds. H(Ψ;y) denotes the Hessian matrix of the log-likelihood function (2.9) compris-
ing the second order derivatives with respect to the parameter vector Ψ. Based on these
considerations, the approximation of the asymptotic covariance matrix of the MLE Ψ̂ is
given by

Cov[Ψ̂] ≈ I(Ψ̂;y)−1.

The asymptotic standard errors will be further denoted as ASE(·) and can be approxi-
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mated through

ASE[Ψ̂r] ≈
√
I(Ψ̂;y)−1

rr , r = 1, . . . , d, (2.31)

where d denotes the number of unknown parameters pooled in Ψ̂ according to (2.4).
The key to the computation of standard errors of MLEs in FMMs is the computation of
the Hessian matrix H(Ψ̂;y). The covariance matrix results through its inversion. The
subsequent example outlines the Hessian matrix for a two-component mixture model.

Example 2.5 (Hessian Matrix for Two-Component Mixture Model of GNMs)
Consider a two-component mixture model with an underlying nonlinear regression function
specified by the regression coefficients β1 and β2 with pdf

fM (yi;µi(β),φ,π) = π1 · f(yi;µi(β1), φ1) + π2 · f(yi;µi(β2), φ2), i = 1, . . . , n.

The Hessian matrix for the log-likelihood function `(Ψ;y) is given by

H(Ψ;y) =



∂2`(Ψ;y)
∂π2

∂2`(Ψ;y)
∂π∂β1

∂2`(Ψ;y)
∂π∂β2

∂2`(Ψ;y)
∂π∂φ1

∂2`(Ψ;y)
∂π∂φ2

∂2`(Ψ;y)
∂β1∂π

∂2`(Ψ;y)
∂β2

1

∂2`(Ψ;y)
∂β1∂β2

∂2`(Ψ;y)
∂β1∂φ1

∂2`(Ψ;y)
∂β1∂φ2

∂2`(Ψ;y)
∂β2∂π

∂2`(Ψ;y)
∂β1∂β2

∂2`(Ψ;y)
∂β2

2

∂2`(Ψ;y)
∂β2∂φ1

∂2`(Ψ;y)
∂β2∂φ2

∂2`(Ψ;y)
∂φ1∂π

∂2`(Ψ;y)
∂φ1∂β1

∂2`(Ψ;y)
∂φ1∂β2

∂2`(Ψ;y)
∂φ21

∂2`(Ψ;y)
∂φ1∂φ2

∂2`(Ψ;y)
∂φ2∂π

∂2`(Ψ;y)
∂φ2∂β1

∂2`(Ψ;y)
∂φ2∂β2

∂2`(Ψ;y)
∂φ2∂φ1

∂2`(Ψ;y)
∂φ22


.

The asymptotic standard errors can be derived by evaluating H(Ψ̂;y)−1 in the MLE Ψ̂ as
given in (2.31).

Applications show difficulties in the computation of H(Ψ;y) if the log-likelihood `(Ψ;y)

is unbounded. As an example, McLachlan and Peel (2000, S. 94) point out that the like-
lihood of heteroscedastic normal mixtures tends to infinity if the component specific
variance tends to zero in at least one component. This possibility was previously out-
lined in Example 2.1. Another important aspect, when estimating standard errors within
FMMs, is given by the sample size and the component separation. McLachlan and Peel
(2000, S. 42) emphasize the importance of large sample sizes in order to obtain valid
and accurate standard errors. The discussed method produces reliable standard errors in
the case of a good separation of the mixture component means as Basford et al. (1997)
outline.

The inverse of the Fisher information matrix I(Ψ̂;y)−1 suits as an appropriate method to
obtain the asymptotic covariance matrix and thus the standard errors of the MLE Ψ̂. Fur-
thermore, the Fisher information is often replaced by the observed information matrix
I(Ψ̂;y) which equals the negative of the Hessian matrix. Nevertheless, the direct compu-
tation of the second order derivatives of the incomplete log-likelihood `(Ψ;y) turns out
remarkably difficult within FMMs. Applying the EM algorithm shifts these difficulties to
the complete-data log-likelihood `c(Ψ;yc) and its conditional expectation Q(Ψ; Ψ(j)).
In addition to these difficulties, the EM algorithm provides in fact no estimates for the
covariance matrix within its iteration scheme. McLachlan and Krishnan (2008, p. 105)
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take on this major disadvantage and discuss methods to obtain the covariance matrix
within the EM algorithm, mostly built on the observed information matrix.

2.5.1 Score Statistics and Missing Information

Let Sc(Ψ;yc) denote the score vector for the complete-data log-likelihood function
`c(Ψ;yc) with respect to the complete-data vector yc, respectively

Sc(Ψ;yc) =
∂`c(Ψ;yc)

∂Ψ
.

McLachlan and Krishnan (2008, pp. 95-96) highlight the relationship between the in-
complete data score vector S(Ψ;y) and the complete-data score vector by taking the
conditional expectation of the complete-data score as

S(Ψ;y) = E[Sc(Ψ;yc)|y,Ψ]. (2.32)

The observed information of the complete-data log-likelihood function is given by its
negative Hessian matrix, respectively

Ic(Ψ;yc) = −∂
2`c(Ψ;yc)

∂Ψ∂Ψ>
.

Taking up on the relationship of the log-likelihood functions in (2.13), differentiating
both sides two times with respect to the parameter vector Ψ yields the representation

I(Ψ;y) = Ic(Ψ;yc)− ∂2 log g(yc|y; Ψ)

∂Ψ∂Ψ>
. (2.33)

Taking the conditional expectation of Equation (2.33) results in

I(Ψ;y) = Ic(Ψ;y)− Im(Ψ;y). (2.34)

The first expression on the right sight of Equation (2.34), Ic(Ψ;y), corresponds to the
conditional expectation of the complete-data observed information given the incomplete-
data vector y, respectively

Ic(Ψ;y) = E[Ic(Ψ;yc)|y,Ψ]. (2.35)

The second term in (2.34) denotes the expected information matrix for Ψ conditional
on the missing-data vector,

Im(Ψ;y) = −E

[
∂2 log g(yc|y; Ψ)

∂Ψ∂Ψ>

∣∣∣y,Ψ] .
The expected information matrix Im(Ψ;y) is denoted as missing information as McLach-
lan and Krishnan (2008, p. 96) point out.
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2.5.2 Louis’ Method for Standard Error Computation

An important result for computing standard errors within the EM framework is given
by Louis (1982). Within the scope of his work, Louis (1982) presents a procedure for
extracting the observed information matrix I(Ψ̂;y) when using the EM algorithm for
ML fitting within missing information problems. The method requires particularly the
computation and the gradient or the second order derivatives of the complete-data
log-likelihood function. Louis (1982) derives an expression for the missing information
Im(Ψ;y) in terms of the complete-data log likelihood, as

Im(Ψ;y) = Cov(Sc(Ψ;yc)|y,Ψ)

= E
[
Sc(Ψ;yc)Sc(Ψ;yc)>

∣∣y,Ψ]
−E[Sc(Ψ;yc)|y,Ψ]E[Sc(Ψ;yc)>|y,Ψ]

(2.32)
= E

[
Sc(Ψ;yc)Sc(Ψ;yc)>

∣∣y,Ψ]− S(Ψ;y)S(Ψ;y)>. (2.36)

The problem of computing the second order derivative of the incomplete-data problem
is reduced to the computation of the first order derivatives of the complete-data log-
likelihood function used in the EM algorithm. Furthermore, the information matrix for
the missing information is solely based on the complete-data log-likelihood. Reformulat-
ing Equation (2.34) leads to

I(Ψ;y)
(2.36)

= Ic(Ψ;y)− E
[
Sc(Ψ;yc)Sc(Ψ;yc)>

∣∣y,Ψ]+ S(Ψ;yc)S(Ψ;y)>. (2.37)

Louis (1982) provides an essential contribution to the calculation of standard errors as
he proves that the observed information matrix I(Ψ;y) can be computed by means of
the conditional expectation of the first and second order derivatives of the complete-data
log-likelihood function.

2.6 Extensions of the EM Algorithm

The EM algorithm represents a popular method for iteratively maximizing complex log-
likelihood functions. The reformulation of a computationally tractable complete-data
log-likelihood function (2.12) represents its main advantage. Possible modifications of
the original EM algorithm aggravate in general its simple form. Additionally, the orig-
inal EM algorithm still comprises some practical difficulties particularly when dealing
with FMMs. Due to the multimodal characteristics of FMMs, the EM algorithm may con-
verge to local solutions and therefore afford further computations. It is recommended
to execute the algorithm repeatedly for different starting values in order to improve the
chance to obtain a global maximum. The EM algorithm is thus sensitive to the choice of
the starting values and may provide slow convergence. Different approaches for speed-
ing up the convergence of the EM algorithm have been introduced, as McLachlan and
Krishnan (2008, p. 105) summarize. The following two extensions indicate the speeding
up of the EM algorithm. Within this context, the original algorithm is modified which
results either in the CEM algorithm or the SEM algorithm.
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2.6.1 Classification-Expectation-Maximization (CEM) Algorithm

Celeux and Govaert (1992) introduce a general classification EM algorithm based on
a partitioning criterion. Unlike other extensions of the original EM algorithm, the CEM
algorithm represents a deterministic version of the EM algorithm. The basic idea builds
on finding the optimal partition for each observation yi where the partition corresponds
to the already defined components within FMMs, as outlined in Section 2.1. The obser-
vations yi are deterministically assigned to their optimal partition in every iteration step
based on an initial setting of K components P(0) = (P(0)

1 , . . . ,P(0)
K ). The deterministic

approach incorporates to replace the computation of the missing information

zi = (zi1, . . . , ziK)>

through a deterministic assignment of the missing information indicators. Therefore the
posterior probabilities w(j)

ik , resulting from the E-step for a current estimate Ψ(j), are
used to classify the observations into K components. Observation yi is assigned to the
respective component providing the maximum posterior weight. The CEM algorithm dif-
fers technically from the EM algorithm through a classification step between the already
introduced E- and M-steps.

Steps of CEM-Algorithm:

E-step:
Calculate the posterior probabilities w(j)

ik .

Classification (C)-step:
Assign each observation yi to that component with the highest posterior probability
w

(j)
ik ,

z
(j+1)
ik = arg max

l=1,...,K
w

(j)
il ∀i = 1, . . . , n =⇒ yi ∈ Pk

For equal values w(j)
il = w

(j)
ih , l 6= h, the smaller index min(h, l) is chosen.

M-step:
Compute the subsequent update for the unknown parameter vector by using the
classification indicators z(j+1)

ik from the C-step by

Ψ(j+1) = arg max
Ψ∈Ω

Q(Ψ; Ψ(j)).

2.6.2 Stochastic-Expectation-Maximization (SEM) Algorithm

Celeux and Diebolt (1985) present the SEM algorithm as an useful method for speeding
up the EM algorithm and handling intractable calculations within the E-step. In doing
so they replaced in general the computation of the E-step by a Monte Carlo (MC) simu-
lation. The main idea was to replace the missing data by already observable information
and the current estimate for the unknown parameter vector Ψ, as McLachlan and Krish-
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nan (2008, p. 227) explain. With the focus on the missing information

zi = (zi1, . . . , ziK)>

associated to each observation yi, they replaced the computation of the posterior weights
(2.16) by a simulation-based computation. The random vectors zi are assumed to be
multinomially distributed withK categories and the mixing proportions π = (π1, . . . , πK)>

as success probabilities according to the incomplete-data problem, as postulated in Sec-
tion 2.4.1. In the SEM algorithm the missing data vector zi is drawn from the current
conditional distribution of zi in order to be used for the calculation of the posterior prob-
abilities. This step assigns each observation yi to exactly one component k = 1, . . . ,K.

For each i = 1, . . . , n the parameter z(j)
ik is drawn from a multinomial distribution with

K categories and success probabilities given by the vector of component weights π. The
simulated values are used for further calculations in the M-step in the same way as the
deterministically classified data in the CEM algorithm.

Steps of SEM-Algorithm:

E-step:
Calculate the posterior probabilities w(j)

ik .

Stochastic (S)-step:
Draw for each observation yi a multinomially distributed classification vector z(j)

i

based on the current estimate of the mixing proportions π̂(j).

M-step:
Compute the subsequent update for the unknown parameter vector by using the
simulation-based posterior probabilities z(j)

ik by

Ψ(j+1) = arg max
Ψ∈Ω

Q(Ψ; Ψ(j)).

2.7 Number of Components

When applying FMMs, the choice of a suitable number of components K arises as a
fundamental question since the whole fitting procedure is carried out for a fixed K. In
this sense it is desirable to have decision making methods for a proper choice of the
right number K. Straightforward analysis suggests the number of modes as an indicator
for an appropriate number of components in a FMM but as some modes may not be
well separated, this method can distort the true number of components. In specific cases
prior knowledge on possible groups may be available and give an indication on a suitable
number of components in the underlying FMM. Furthermore, some data sets apply to
a known population comprising distinct groups which may correspond to the mixture
components. If none of these cases on prior knowledge occurs or the existence of further

42



CHAPTER 2. FINITE MIXTURES OF GENERALIZED NONLINEAR MODELS

components for latent groups is presumed, the final choice of K refers to appropriate
tests. Before addressing further discussion on the number of components, the order of a
FMM is defined.

Definition 2.1 Order of a Finite Mixture Model, see McLachlan and Peel (2000, p. 177)
The true order K0 of a FMM with mixture pdf

fM (y; Ψ) =

K∑
k=1

πkf(y;µ(βk), φk)

corresponds to the smallest K such that all mixture components f(y;µ(βk), φk) differ and
have nonzero component weights πk for k = 1, . . . ,K.

Definition 2.1 indicates to assess the number of components K as small as possible but
still compatible with the data set.

Approaches for tests on the number of components are based on the likelihood function.
A possibility to derive appropriate tests is to penalize the log-likelihood function by the
subtraction of a model-dependent penalization term as McLachlan and Peel (2000, p.
184) outline. The penalized log-likelihood can be expressed as

− 2`(Ψ̂;y) + 2C. (2.38)

The penalty term C measures the model complexity as it comprises often the total num-
ber of model parameters. The penalized log-likelihood in (2.38) represent the base for
information criteria on assessing the number of components in a FMM.

2.7.1 Model Selection Criteria

Based on the penalized log-likelihood function in (2.38), different model selection cri-
teria have been derived. These are used in order to determine the order in FMMs as
well as to choose between different models. Further analysis refers to the following of-
ten used information criteria in model selection regarding FMMs. For further discussions
reference is made to McLachlan and Peel (2000).

2.7.1.1 Akaike Information Criterion (AIC)

The Akaike Information Criterion sets the penalty term in (2.38) equal to the total num-
ber of parameters in the FMM, which is denoted by d. Therefore, it suggests to choose
the order K which minimizes

AIC = −2`(Ψ̂;y) + 2d (2.39)

with MLE Ψ̂. As McLachlan and Peel (2000, p. 203), outline the AIC is often applied to
FMMs although it unfortunately tends to overestimate the total number of components.
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2.7.1.2 Bayesian Information Criterion (BIC)

The Bayesian-based information criterion BIC can also be adapted to FMMs. The penalty
term in (2.38) equals twice the total number of parameters multiplied by the logarithm
of the sample size, that is

BIC = −2`(Ψ̂;y) + d log n. (2.40)

Compared to the AIC, the BIC proves as more reliable model selection criteria according
to McLachlan and Peel (2000, p. 209) despite some weaknesses.

2.7.1.3 Integrated Classification Likelihood (ICL) Criterion

In the context of the EM algorithm, classification-based information criteria have been
adapted for model comparison when dealing with FMMs. As the EM algorithm maxi-
mizes the expected complete-data log-likelihood `c(Ψ;yc), the main idea for classification-
based information criteria is to penalize its expectation Q(Ψ; Ψ∗) instead of the original
log-likelihood function. Ψ∗ denotes the MLE derived by the EM algorithm. The penalized
complete-data log-likelihood function is then given as

ICL = −2 Q(Ψ; Ψ∗) + 2C. (2.41)

with penalization term C. Taking the same penalization term as in the BIC leads to the
information criterion

ICL = −2 Q(Ψ; Ψ∗) + d log n. (2.42)

which is denoted as ICL-BIC criterion in McLachlan and Peel (2000, p. 217) but will
be later referred to as ICL criterion following Grün and Leisch (2008b, p. 6). Empirical
comparisons between different information criteria in McLachlan and Peel (2000, p.
220) show a reliable performance in choosing the correct number of components in
FMMs for the ICL.
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CHAPTER 3

Mixtures of Generalized Nonlinear Models in R

Introduction

The acronym R denotes mainly a programming language for statistical analysis and
graphics. It incorporates furthermore a software environment as open source project
(GNU) and is therefore freely available. R belongs also to the S language developed by
John Chambers. Its advanced version S4 plays an important role within this work and
will be addressed in more detail in the next section.

R is basically known for its various statistical modeling methods and its graphical ex-
ploration tools but can be applied to any kind of data analysis. The overall R design al-
lows for extensions and modifications of already available functionalities. The platform
Comprehensive R Archive Network (CRAN) provides a network for storing and exchang-
ing current packages and codes with access to databases containing available packages.
CRAN furthermore provides different manuals and documentations for R users. Users
contribute to the software system by distributing their own program codes as packages.
Main contributors form the international R core team include the initial R developers
Robert Gentleman and Ross Ihaka. The CRAN team maintains the R source code as well
as the CRAN platform.

The free software R has established itself to a frequently used programming language
within different fields of data analysis. The number of more than 12 900 currently avail-
able packages reflects its extent of popularity. The nature of these packages covers var-
ious disciplines. Due to its use for big data analysis, R ranks among the top 10 most
popular programming languages in recent years evaluated on Spectrum (2018).
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3.1 S4 Language in R

According to Venables and Ripley (2000), S declares a functional language with elemen-
tary commands consisting of expressions or assignments. The basic elements are objects.
For instance, objects serve as arguments and return values for functions. This buttress
the first observation about the S language according to Venables and Ripley (2000, p.
23):

“Everything in S is an object.”

In S, calculations are typically separated from results and outputs. Intermediate results
are stored as objects and can be printed as various summaries for the user at the end of
the program. The specific appearance and information content of outputs are determined
by classes. They serve as a framework for the structure of objects to which they are
assigned to. This completes the second observation about S:

“Every object has a class.”

The S language comprises the two object systems S3 and S4 which are supported by R.
While the concept of S3-programming is familiar to the majority of R users because of
its simplicity, S4 is less attractive due to a more formal and rigorous programming style.
The increasing complexity in S4 is due to a class-oriented programming style, compa-
rable to Object-Oriented Programming (OOP). The use of classes and their definitions
are essential in S4. Class definitions contain primary the definition and specification of
various slots in objects. Common characteristics of packages written in OOP are compli-
cated hierarchical structures due to a large number of class-linked objects. Hierarchical
structures indicate class inheritance. Therefore, inheriting classes take already defined
slots from their parent classes and contain information about the inheritance structure.
Computations on objects are provided by functions. A generic function represents an
overall definition of a function. It allows the selection of different methods according to
the class of the objects within function calls. Generic functions allow different compu-
tations depending on the transferred function arguments. Therefore methods serve as a
link between classes and functions. Generic functions contain by all means the function
arguments used by selected methods. The individual methods differ in their signature
due to a class assignment. The signature specifies the necessary and specific arguments
needed for the workflow and execution of the assigned methods. In general methods do
not belong to specific classes but to generic functions for which they are defined.

3.2 Generalized Nonlinear Models in R

Nonlinear regression analysis is emphasized by different fields of research as already
discussed in Section 1.1. Nevertheless, its realization is unbalanced as applications of
nonlinear regression models are often reduced to nonlinear least squares for normally
distributed responses given by the RSS in (2.27). For this reason, nonlinear regression
analysis has not been widely advanced regarding its implementation as it is the case
for linear regression models and its extensions, with special focus on GLMs. The aim
of this section is to give a general overview of the available functions and packages in
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R for nonlinear regression models based on the theoretical consideration mentioned in
Section 1.1.

According to the assumptions made in Section 1.1, nonlinear regression models require
a numerical fitting procedure for obtaining estimates for the regression coefficients. De-
ciding on an appropriate nonlinear regression function implies that no simpler model
with less regression coefficients fits the given data better. The different numerical ap-
proaches have in general the same problems in common. A proper choice of starting
values states often a necessary precondition in order to achieve convergence of the al-
gorithm. In practice, starting values are set by a heuristic choice and possibly close to
the true values. The decision may be based on previous graphical exploration of the
given data set or simply build on the meaning of the regression coefficients. Advanced
methods use precalculations based on grids for the regression coefficients for choosing
proper starting values. Taking all these steps into account may still lead to algorithms
converging to local optima. The user has still to provide a global optimal solution.

The following description distinguishes between two fitting commands in R. Since the
WNLS method has emerged as standard fitting procedure, the corresponding implemen-
tation in R will be addressed separately in Section 3.2.1 based on the detailed work of
Ritz and Streibig (2008). Section 3.2.2 relates to a fitting procedure based on the theo-
retical considerations on GNMs which are discussed in Chapter 1. The technical details
are provided by Turner and Firth (2018) who developed the respective package.

3.2.1 The Function nls() in R

Nonlinear regression analysis is basically provided by the function nls() in R. The func-
tion nls() is available within the standard package stats in R, see also R Core Team
(2018). Ritz and Streibig (2008) provide a detailed explanation of this function. They
furthermore demonstrate accompanying examples to serve for a better explanation of
the use of nls() for the fitting of nonlinear regression models. While Ritz and Streibig
(2008) cover the use of available methods in R, the theoretical concept and background
of nonlinear regression can be found in the standard literature like Bates and Watts
(1988) and Seber and Wild (2003).

The main command nls() for fitting nonlinear regression models comprises the input
arguments given in Table 3.1 which represents no closed list due to further optional
arguments. The commonly used nonlinear fitting function nls() relates the nonlinear
regression problem to a LS estimation, also known as the WNLS approach given in Ex-
ample 2.1. The WNLS algorithm corresponds to the weighted nls() procedure with
given weights as described in Ritz and Streibig (2008, p. 85). For solving the nonlinear
LS problem, nls() provides (three) different numerical approaches. The Gauss-Newton

method represents the default method for minimizing LS problems. Often nonlinear
regression models comprise linear regression coefficients, also known as conditionally
linear parameters, see Section 1.1 or Bates and Watts (1988, p. 36). nls() takes ad-
vantage of this fact by fitting the conditionally linear regression coefficients with the
well-known function for linear regression models lm(), as Ritz and Streibig (2008, p.
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Arguments Explanation/Functionality

formula: generic function for the nonlinear regression model formula
data: data frame containing predictor and response variables
start: list of starting values for the unknown regression coefficient vector

algorithm: default fitting method "Gauss-Newton", optional specifications
"plinear" and "port" available

control: manual settings for controlling estimation method, see Ritz and
Streibig (2008, p. 52)

trace: option for displaying intermediate estimates
weights: optional slot for weights, according to estimation problem (2.27)

Table 3.1: Arguments in nls()

41) explain. This reduces the numerical effort for fitting the remaining nonlinear regres-
sion coefficients. nls() contains an optional numerical fitting method based on these
conditions. It can be accessed by setting algorithm="plinear". Another optional algo-
rithm, specified by setting algorithm="port", enables the fitting of nonlinear regression
parameters with constrained regression coefficients. Ritz and Streibig (2008, p. 38) dis-
cuss additional arguments for nls(). Its detailed explanation goes beyond the scope of
this work. Special focus is placed on fitting methods for further distributional families as
the next section shows.

3.2.2 The Package gnm in R

Theoretical considerations emphasize the use of nonlinear regression models for dis-
tributional families beyond the normal distribution for the response. The basic model
class is given in Chapter 1 with reference to the main literature provided by Wei (1998).
Turner and Firth (2018) developed the corresponding package gnm in R with the pur-
pose of providing a framework for GNMs. With the appearance of this package, the reper-
toire of already existing packages and functions in R has been extended by a method for
fitting nonlinear regression models with responses stemming from the exponential fam-
ily.

For linear regression coefficients within nonlinear regression models, Turner and Firth
(2018) embedded the well-known procedures glm() and lm() as underlying fitting pro-
cedures. In fact, gnm was designed and inspired by the framework provided by glm()

regarding input arguments, return objects or the compatibility of different accessor func-
tions, see Turner and Firth (2018, p. 17). Therefore it can be viewed as its analogon
for fitting nonlinear models. The central fitting procedure is executed by the command
gnm() requiring the necessary arguments formula and family. It comprises further op-
tional arguments for controlling the underlying fitting procedure. Some of them are
summarized in Table 3.2.

The results based on gnm(), obtained by setting the distributional argument to fam-

ily="gaussian", coincide with those provided by the fitting procedure nls() for nor-
mally distributed responses which will be illustrated at a later point in this work. Accord-
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Arguments Explanation/Functionality

formula: nonlinear regression model formula
data: predictor and response variables combined in a data frame

family: specification of error distribution and link function
start: initialization of starting values as list for the unknown regression

parameters
tolerance: threshold as stopping criterion for numerical procedure, see

Turner and Firth (2018, p. 10)
iterMax: maximum number of total iterations

verbose/trace: indicator to print intermediate results during fitting procedure
trace: indicator whether or not to print intermediate results during fit-

ting procedure
weights: optional slot for weights

Table 3.2: Arguments in gnm()

ingly, gnm() extends the already known method nls() by allowing for further distribu-
tions specified by the argument family in the same way as the fitting procedure glm()

extends lm() for the class of GLMs. The package gnm offers a wide range of applica-
tions whose detailed explanation exceeds the scope of this work. The following section
focuses on the description of the necessary procedures for enabling the implementation
of mixtures of GNMs in R.

3.2.2.1 Specification of Nonlinear Functions in gnm

The package gnm provides predefined functions for nonlinear terms in order to specify
the nonlinear model formula. These functions are compatible with the generic function
formula in R. Turner and Firth (2018, p. 6) present a list of various mathematical func-
tions expressing simple mathematical relationships as well as a general specification of
symbolic functions. The symbolic specification of nonlinear functions affords the for-

mula as an object of the internal class "nonlin". The generic function formula includes
the regression function with the use of symbolic language as parsed arguments. Next to
predefined nonlinear functions it is possible to construct individual nonlinear terms as
part of the formula argument. Therefore, at least the following parts in Table 3.3 have
to be specified. Further arguments are also available but are not of major importance
within this work, see Turner and Firth (2018, p. 8) as reference for further details.

Arguments Explanation/Functionality

predictors: list of (possibly nonlinear) regression coefficients

variables: list comprising the symbolic expression for the explanatory variables

term: parsed form of functional relationship between predictors and
variables as input arguments, RHS of formula argument

Table 3.3: Arguments for symbolic functions of class "nonlin" in gnm()
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A further step attaches the three arguments in Table 3.3 as a list and denotes it as a
function. The function is assigned as object of class "nonlin" which is a well-defined
input argument for the fitting procedure gnm(). Despite their similarities, gnm() differs
crucially from glm() in the specification of the nonlinear regression function due to its
nonlinear terms.

3.2.2.2 Application: The Michaelis-Menten Model (Example 1.1 continuation)

Example 1.1 addresses the Michaelis-Menten model presented by Bates and Watts (1988,
p. 33). The Michaelis-Menten model serves as basic regression model in this section with
the aim to illustrate the previously discussed nonlinear procedures nls() and gnm(). Ac-
cording to Example 1.1, the Michaelis-Menten model is linearizable. Therefore a trans-
formation of the originally nonlinear problem yields the well-known linear regression
structure and enables the use of the fitting procedure glm(). The variable rate corre-
sponds to the enzymatic reactions y while variable conc relates to the concentration x
in Example 1.1.

Applying the nonlinear fitting command nls() to the Michaelis-Menten model requires
the command in the first line of Listing 3.1 and leads to estimates β̂ = (126.03; 17.08) in
lines 9 and 10.

1 > mm.1 = nls(rate ~ a*conc/(b+conc),data=L.minor , start=list(a=120,b=20))

2
3 > summary(mm.1)

4
5 Formula: rate ~ a * conc/(b + conc)

6
7 Parameters:

8 Estimate Std. Error t value Pr(>|t|)

9 a 126.033 7.173 17.570 2.18e-06 ***

10 b 17.079 2.953 5.784 0.00117 **

11 ---

12
13 Residual standard error: 6.25 on 6 degrees of freedom

14
15 Number of iterations to convergence: 7

16 Achieved convergence tolerance: 8.152e-06

Listing 3.1: Fitting the Michaelis-Menten model with nls()

In the following, the original nonlinear Michalis-Menten model is fitted utilizing the fit-
ting procedure gnm() for GNMs. The specification of the nonlinear regression function
is given in lines 3 to 10 of Listing 3.2 while it is assigned as object of class "nonlin"

in line 11. The fitting is provided by performing the function gnm() in lines 13 to 15.
A short overview on important results, provided by the function summary, yields to the
same results as in nls() for the regression coefficients. gnm() reports additional values
like the dispersion, deviance and the AIC in lines 33 to 36.

1 > library(gnm)

2
3 > mmm = function(x,predictors){

4 + list(predictors=list(a=1,b=1),
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5 + variables = list(substitute(x)),

6 + term = function(predictors , variables) {

7 + paste(predictors [1],"*",variables [1],"/(",predictors [2],"+",

8 + variables [1],")",sep="")

9 + })

10 + }

11 > class(mmm) ="nonlin"

12
13 > mm.3 = gnm(formula = rate ~ -1 + mmm(conc), data = L.minor ,

14 + start = c(a=120,b=20),

15 + family = gaussian(link = "identity"),trace=TRUE)

16
17 > summary(mm.3)

18
19 Call:

20 gnm(formula= rate ~ -1 + mmm(conc), family = gaussian(link = "identity"),

21 data = L.minor , start = c(a = 120, b = 20), trace = TRUE)

22
23 Deviance Residuals:

24 Min 1Q Median 3Q Max

25 -7.403 -4.663 -2.007 2.741 8.304

26
27 Coefficients:

28 Estimate Std. Error t value Pr(>|t|)

29 a 126.033 7.173 17.570 2.18e-06 ***

30 b 17.079 2.953 5.784 0.00117 **

31 ---

32
33 (Dispersion parameter for gaussian family taken to be 39.05885)

34
35 Residual deviance: 234.35 on 6 degrees of freedom

36 AIC: 55.722

37
38 Number of iterations: 10

Listing 3.2: Fitting the Michaelis-Menten model with gnm()

Example 1.1 transforms the original nonlinear model into a linear regression model
with modified regression coefficients β̃ = (β̃0, β̃1) = (β−1

0 , β1/β0). Executing the glm()

command provides the fitting of the linear regression model. The resulting regression
coefficients are given in lines 16 to 17 of Listing 3.3 as ˆ̃

β = (0.01, 0.14).

1 > mm.2 = glm(rate ~ I(1/conc), data=L.minor ,

2 + family=gaussian(link="inverse"))

3
4 > summary(mm.2)

5
6 Call:

7 glm(formula = rate ~ I(1/conc), family = gaussian(link = "inverse"),

8 data = L.minor)

9
10 Deviance Residuals:

11 Min 1Q Median 3Q Max

12 -7.403 -4.663 -2.007 2.741 8.304

13
14 Coefficients:

15 Estimate Std. Error t value Pr(>|t|)

16 (Intercept) 0.0079344 0.0004516 17.570 2.18e-06 ***

17 I(1/conc) 0.1355123 0.0173574 7.807 0.000233 ***

18 ---
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19
20 (Dispersion parameter for gaussian family taken to be 39.05854)

21
22 Null deviance: 9427.92 on 7 degrees of freedom

23 Residual deviance: 234.35 on 6 degrees of freedom

24 AIC: 55.722

25
26 Number of Fisher Scoring iterations: 7

Listing 3.3: Fitting the linearized Michaelis-Menten model with glm()

Re-transforming the fitted coefficients obtained by executing glm() enables a direct com-
parison to the regression coefficients fitted by nls() and gnm(). Therefore the regression
coefficients β̃ are transformed to their original form β = (β̃−1

0 , β̃1/β̃0) as shown in List-
ing 3.4. Comparing the regression coefficients fitted by nls(), glm() and gnm() shows
non-significant differences after the second decimal point due to different underlying
fitting methods. The results for the regression coefficients in lines 3, 5 and 8 of Listing
3.4 equal for all three models as well as the values for the log-likelihood functions and
the deviance.

1 > coef(mm.1); c(1/coef(mm.2)[1],coef(mm.2) [2]/coef(mm.2) [1]); coef(mm.3)

2 a b

3 126.03276 17.07899

4 (Intercept) I(1/conc)

5 126.03276 17.07899

6 Coefficients:

7 a b

8 126.03286 17.07904

9
10 > logLik(mm.1); logLik(mm.2); logLik(mm.3)

11 ’log Lik.’ -24.86106 (df=3)

12 ’log Lik.’ -24.86106 (df=3)

13 ’log Lik.’ -24.86106 (df=3)

14
15 > deviance(mm.1); deviance(mm.2); deviance(mm.3)

16 [1] 234.3531

17 [1] 234.3531

18 [1] 234.3531

Listing 3.4: Comparison of the estimates for the Michaelis-Menten model in R

3.3 Finite Mixture Models in R

When combing through the list of 12 930 available packages in R, mixture models appear
regularly. The majority of the underlying packages works with the normal distribution as
assumption. Exemplary, the package mclust deals with mixture modeling for normally
distributed data as well as the package mixture. For detailed information on the pack-
age mclust reference is made to Scrucca et al. (2016) whereas further information on
mixture is given by Browne et al. (2018), Browne and McNicholas (2014) and Celeux
and Govaert (1995). The package mixdist allows for fitting multimodal distributions for
grouped data, see also Macdonald and with contributions from Juan Du (2018). The
package mixtools enables analyzing and fitting mixture densities and mixtures of re-
gressions for linear dependence structures as denoted in Benaglia et al. (2009). Further
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extensions for the modeling of mixtures of regressions are provided by mixreg for linear
regression models including Gaussian mixture models as described by Turner (2018) and
extensions for censored data provided by CensMixReg, see also Sanchez et al. (2018).
Some extensions of FMMs already tend to generalize the distribution but with the fo-
cus on one specific distribution. Nonlinear regression models can be handled with the
package nlsmsn for mixtures of skew normal distributions allowing for skewness in the
data as Garay et al. (2013) outline. A noticeable group of packages deals with Bayesian
approaches and hierarchical structures or is designed for the analysis of gene expression
data. A complete list of available packages can be accessed online at the CRAN reposi-
tory given by CRAN (2018). A very popular package is given by flexmix which allows
for flexible mixture modeling of GLMs among other models. flexmix represents further-
more the main package of interest within this work due to its advantages which will be
addressed in the next section.

3.3.1 The Package flexmix in R

Following the idea of extensibility and flexibility, Bettina Grün and Friedrich Leisch de-
veloped the R package flexmix for dealing with FMMs. While previous packages mainly
covered specific mixture model cases flexmix is able to deal with model-based cluster-
ing as well as with mixtures of regressions. These represent a key aspect in flexmix as it
offers for the first time a model framework for mixtures of GLMs.

The following technical (implementation) details serve as explanation of the function-
ality and the structure of the package. The main explanations of the developers can be
found in Leisch (2004b), Grün and Leisch (2007) and Grün and Leisch (2008b).

3.3.1.1 Framework and Basic Commands

The package flexmix provides a broad toolkit for fitting mixture models in R. For the
last years the functionality has been extended covering efficient estimation techniques
for mixture models, model diagnostics and (appropriate) visualization techniques of the
results. The package structure is modular as it is based on the S4 class-oriented program-
ming language in R.

The main command for fitting FMMs is flexmix(). The fitting procedure is based on a
ML estimation through the EM algorithm as described in Section 2.4. flexmix() itself
contains an overall model formula and function calls specifying the component specific
models and the concomitant variable model as arguments as well as a fixed number of
components. The separate vector cluster represents a placeholder for the initial com-
ponent membership. If left empty, the default procedure determines a random labeling
to the predefined number of components as starting configuration. For different num-
bers of components the package offers the function stepFlexmix() enabling the user
to fit mixture models repeatedly with flexmix(). This procedure is of interest when
comparing fitted mixture models for different numbers of components and in order to
prevent choosing a local maximum by comparing different results. The user determines
the best result since the fitted models are stored in an object named models. The model
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Figure 3.1: UML class diagram for flexmix

comparison is possible through model selection criteria given by the AIC, BIC and ICL
whose determinations are provided in Section 2.7.1.
The flexmix package is based on the class structure given in the UML diagram in Figure
3.1. The return value is an object of a class "flexmix" and can be accessed through
the function flexmix(). As Leisch (2004b, p. 22) explains, the class "flexmix" extends
the class "FLXdist", also visible in Figure 3.1. It contains the fitted mixture by the EM
algorithm which is specified by an object of class "FLXcontrol". The user has impact on
the underlying EM algorithm by the class "FLXcontrol". As Figure 3.1 shows, "FLXcon-
trol" defines a list of parameters for the numerical calculation with the help of the slots
iter.max, verbose, minprior and tolerance. The slot iter.max specifies a cap for the
number of iterations for the EM algorithm whereas verbose serves as a trace method
for the results by printing the log-likelihood at every verbose-th step. The threshold for
removing prior probabilities, as proposed by Leisch (2004b, p. 4), is fixed by minprior.
The slot tolerance controls the increase of the log-likelihood function and the itera-
tion procedure stops if the convergence criterion falls below the given tolerance level.
Choosing from available variants of the EM algorithm is enabled by the slot classify.
Available methods are the original EM, the CEM and the SEM algorithm. The default
initialization in flexmix() is given by Listing 3.5.
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1 > new("FLXcontrol")

2 An object of class "FLXcontrol"

3 Slot "iter.max":

4 [1] 200

5
6 Slot "minprior":

7 [1] 0.05

8
9 Slot "tolerance":

10 [1] 1e-06

11
12 Slot "verbose":

13 [1] 0

14
15 Slot "classify":

16 [1] "auto"

17
18 Slot "nrep":

19 [1] 1

Listing 3.5: "FLXcontrol" default values

The package also provides functions in order to analyze the results of the fitting proce-
dure and for extracting important values of interest. For an object of the class "flexmix"
the default plot method plot() shows a visualization of the cluster structure in form of
a rootogram. Rootograms follow the style of histograms with one major difference: they
contain the square roots of the counts of posterior probabilities which emphasizes low
counts and lessens peak effects in the data. These effects outline the separation of the dif-
ferent clusters. Peaks close to one indicate a clear assignment to the specific component
and a good separation between the components. On the other hand, overlapping with
other components appears as mass in the center of a rootogram. Counts close to zero or
below a previously defined threshold occur frequently when fitting FMMs. flexmix ne-
glects them in order to avoid distortions in cluster analysis. The command posterior()

gives information about the posterior probabilities resulting through the EM algorithm
whereas cluster() shows the ultimate cluster assignment based on the maximum a
posteriori probability for each observation. For any object of the class "flexmix" the
command summary() provides further information about the cluster assignment. A ta-
ble of the cluster assignment summarizes the number of observations assigned to each
component as well as the overall number of observations with posterior probabilities
greater than a fixed threshold ε for every component. The ratio of these numbers results
in a measure for the quality of the cluster separation. Ratios close to one indicate a good
separation for a component as the majority of the points with positive a posteriori proba-
bility would be finally assigned to the respective component. flexmix provides different
model selection criteria which are also shown in the summary() output including the
MLEs, df, AIC, BIC and ICL. The estimated component specific parameters are extracted
by the command parameters() whereas summary(refit()) yields the corresponding
significance tests. Grün and Leisch (2008b, p. 16) point out that the implemented p-
values are approximations without any corrections.

"FLXM" represents the virtual parent class for different types of mixture models. This
class specifies the models using the slots in Table 3.4 as Leisch (2004b, p. 12) explains.
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Arguments Explanation/Functionality

fit: function in predictor x, response y and component weights w, re-
turns object FLXcomponent

name: model identifier, e.g. "FLXMRnlm"
formula: model formula, see formula in R

logLik: function in x, y, returning log-likelihood
predict: function in x predicting the mean given x

df: number of estimated parameters defining df
parameters: component specific regression coefficients and dispersion param-

eter
defineComponent: M-step driver function specifying object FLXcomponent with log-

Lik, predict, df and parameters

weighted: weight parameters
control: control parameters in "FLXcontrol"

Table 3.4: Arguments in "FLXM"

"FLXM" has the inheriting classes "FLXMC" and "FLXMR". "FLXMC" covers model-based
clustering and contains one additional slot for the distribution. "FLXMR" refers to mix-
tures of regression models and is of main interest in this work. Under the parent class
"FLXMR", the package flexmix offers already various regression models. The most im-
portant ones are GLMs specified by the class "FLXMRglm". While the prefix "FLXMR" in-
dicates mixture of regressions, "FLXMRglm" links to the clusterwise regression of GLMs.
The model specification affords response and predictor variables, the dependency struc-
ture and the distribution family. Based on the current package, the implemented distri-
bution families are Gaussian, Gamma, Poisson and binomial. "FLXMRglm" allows varying
effects between components which affords the component-wise estimation of regression
coefficients as well as the dispersion parameters.

3.3.2 The M-Step Driver for Mixtures of Generalized Linear Models

The key step in fitting the component specific parameters is the M-step as part of the EM
algorithm. As Leisch (2004b, p. 12) explains, flexmix allows the use of self-implemented
new driver functions. The denotation of these M-step driver functions is always accord-
ing to the specific model class. For example, the M-step driver function for mixtures of
GLMs is denoted by "FLXMRglm". The following source code shows the basic structure of
the M-step driver function "FLXMRglm" in flexmix.

1 FLXMRglm <- function(formula =.~.,

2 family=c("gaussian", "binomial", "poisson", "Gamma")

,

3 offset=NULL)

4 {

5 ...

6 z <- new("FLXMRglm", weighted=TRUE , formula=formula ,

7 name=paste("FLXMRglm", family , sep=":"), offset = offset ,

8 family=family , refit=glmrefit)

9 ...

10
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11 if(family =="gaussian"){

12 z@defineComponent <- function(para) {

13 predict <- function(x, ...) {

14 dotarg = list (...)

15 if("offset" %in% names(dotarg)) offset <- dotarg$offset

16 p <- x %*% para$coef

17 if (!is.null(offset)) p <- p + offset

18 p

19 }

20
21 logLik <- function(x, y, ...)

22 dnorm(y, mean=predict(x, ...), sd=para$sigma , log=TRUE)

23
24 new("FLXcomponent",

25 parameters=list(coef=para$coef , sigma=para$sigma),

26 logLik=logLik , predict=predict ,

27 df=para$df)

28 }

29
30 z@fit <- function(x, y, w, component){

31 fit <- lm.wfit(x, y, w=w, offset=offset)

32 z@defineComponent(para = list(coef = coef(fit), df = ncol(x)+1,

33 sigma = sqrt(sum(fit$weights *

34 fit$residuals ^2 /

35 mean(fit$weights)

)

36 /(nrow(x)-fit$rank))))

37 }

38 }

39 ...

40 }

Listing 3.6: M-step driver for mixtures of GLMs in flexmix (excerpt)

The functionality of the driver functions is technically based on internal functions and
follows a general scheme as the previous code extract on the M-step driver in Listing 3.6
shows. The following simplified explanations refer to the internal functions as well as
the sequence of their commands in a typical M-step driver function in flexmix with spe-
cific reference to "FLXMRglm". A return object z is constructed from the specific model
class, in the present case an object of class "FLXMRglm" for GLMs. Thus, z comprises
all slots given in Table 3.4 from the parent class "FLXM" plus additional slots offset

(from parent class "FLXMR"), family and refit. In order to enable a clear and struc-
tured explanation of the M-step driver functionality, the following description will solely
refer to the additional slots related to the fitting procedure, as a full explanation of the
underlying classes is beyond the scope of this work. Lines 6 to 8 in Listing 3.6 declare
the general slots formula, name and family for a GLM. Starting in line 11 the con-
struction of the remaining distributional based slots is illustrated for the specific case of
family="gaussian". The underlying mixture components are assumed to be normal dif-
fering only in the distributional parameters as discussed in Section 2.1. The expression
z@defineComponent assigns a slot containing the framework for the necessary return
values. It contains the function specifying the computation of the log-likelihood func-
tion, logLik(x,y), as well as the function for the computation of the predicted values
given x, denoted as predict(x). The computation of these values requires the regression
coefficients available from parameters and the variance parameter denoted as sigma.
The function logLik(x,y) returns the value of the log-likelihood function based on the
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fitted values evaluated by the function predict(x). The specification of a new object of
class "FLXcomponent" merges these two functions with placeholders for the model pa-
rameters parameters, sigma and the df. In line 30 a concrete fitting function is assigned
to the return object z by z@fit. The function is defined as fit(x,y,w,...) with a vector
w containing the component specific weight parameters corresponding to the proportions
wik in Section 2.4. The fitting function determines the estimates for the model parame-
ters parameters, sigma as well as df. These output values serve for the evaluation of the
already existing framework z@defineComponent. In the case of mixtures of GLMs, the
model parameter estimation is provided by the well-known functions lm.wfit() for nor-
mally distributed components or glm.fit() for the binomial, Poisson and gamma dis-
tribution. In a final step (line 32) the previously defined expression z@defineComponent

is evaluated by substituting the placeholders for the model parameters and the df by
the numerical values resulting by z@fit. An object of the class "FLXcomponent" stores
parameters, df, logLik, predict as final results.

As Leisch (2004b, p. 12) emphasizes, the command function flexmix() never operates
with model specific parameters as it simply performs the internal functions logLik(x,y)
and fit(x,y,w,...) which have the same form and structure for every available mix-
ture model in flexmix.

3.4 Extending flexmix for Mixtures of GNMs

The package flexmix provides a broad toolkit for mixtures of GLMs but it is not support-
ing the fitting of mixtures of nonlinear regressions. The implementation of mixtures of
GNMs represents a main achievement of this work. In particular, a new model class cov-
ering nonlinear regression models is implemented in the already existing infrastructure
of the package flexmix. The model specific parameters comprise the regression coeffi-
cients and dispersion parameters. Both parameter sets are assumed to vary over all com-
ponents. Although flexmix already covers a huge class of mixture models, these existing
models do not cover nonlinear modeling structures. On the other hand flexmix already
provides a broad toolkit for analyzing mixture models and a framework for fitting mix-
ture models which can be partly adapted to new model classes. For these reasons, the
implementation of mixtures of nonlinear regression models in flexmix is emphasized to
use already existing infrastructure and to extend the model class in a reasonable way.
Following are the main details on the extension and implementation of these models
which will be bundled in the package flexmixNL.

In order to fit nonlinear regression models, a new class "FLXMRnlm" is defined. As Fig-
ure 3.2 outlines, the new class "FLXMRnlm" is an inheriting class of "FLXMR". Therefore
"FLXMRnlm" inherits all slots from its parent class "FLXMR" and specifies additional slots
for the model formula, starting values and the distribution. As "FLXMR" does not con-
sider model specific details, an additional slot formula is defined for the model formula
in nonlinear regression models. Furthermore, as discussed in Section 1.1, fitting meth-
ods for nonlinear models provide numerical techniques which require the specification
of starting values. This information will be covered by the new slot start. Similarly to
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Figure 3.2: UML class diagram for "FLXM" in flexmixNL

mixtures of GLMs in flexmix which are covered by the class "FLXMRglm", the nonlinear
regression model will be available for different distributional families. Analogously, this
property is denoted by an additional slot family.

3.4.1 The M-Step Driver for Mixtures of Generalized Nonlinear Models

Crucial differences to already existing mixture models in flexmix emerge with the imple-
mentation of the M-step driver function for mixtures of nonlinear regression models. As
previously discussed, all M-step drivers are built on the framework of the fitting function
fit(x,y,...), the log-likelihood function logLik(x) and the function for predicting
values, predict(x). In the special case of nonlinear regression models, the parameter
estimation is in general provided by numerical techniques which depend on the func-
tional form of the regression function (given by the model formula) and the starting
values for the unknown model parameters. These properties lead to complications in
the M-step driver as the internal functions have to be adapted to establish the access
to the arguments of formula and the list of starting values, denoted by start. The fit-
ting of mixtures of nonlinear regression models requires model dependent fitting func-
tions in flexmix. In consideration of these properties, the internal functions are now
embedded in the M-step driver "FLXMRnlm" denoted as fit(x,y,w,formula,start)

and logLik(x,formula) compatible with the already existing notation of internal func-
tions in flexmix but with further input arguments. To keep a clean interface and struc-
ture in the M-step driver function, the parameter estimation in the fitting function
fit(x,y,w,formula,start) is in general outsourced in flexmixNL. In "FLXMRnlm" the
core fitting function for model parameters of mixtures of nonlinear regression models is
outsourced to a function denoted as nls.wfit for Gaussian mixture models and gnm.fit

for general GNMs. The functions return the required estimates of the model parameters
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in order to enable further calculations of the final results which are again stored in an
object of the class "FLXcomponent".

3.4.1.1 Gaussian Mixtures of Nonlinear Regression Models

The nonlinear regression model with an underlying normal distribution is the first avail-
able mixture model in "FLXMRnlm". The model can be accessed by setting the distribu-
tional parameter in the model specifications family="gaussian" as the following listing
shows.

1 flexmix(y ~ x,k = 2,model = list(FLXMRnlm (..., family = "gaussian" ,...)))

Listing 3.7: Function call flexmix() for Gaussian mixtures of GNMs

The M-step driver for objects of the class "FLXMRnlm", which is also denoted as FLXM-

Rnlm, is given in the next listing for the normal distribution.

1 FLXMRnlm <- function(formula = .~.,

2 family = c("gaussian", "Gamma"),

3 start = list(), offset = NULL)

4 {

5 ...

6 z <- new("FLXMRnlm", weighted = TRUE , formula = formula , start = start ,

7 name = paste("FLXMRnlm", family , sep=":"), offset = offset ,

8 family = family , refit = refit)

9
10 if(family =="gaussian"){

11 z@defineComponent <- function(para){

12 predict <- function(x, ...){

13 startEnv <- new.env(hash = FALSE , parent = environment(formula))

14 for (i in names(para$start)) assign(i, para$coef[[i]],

15 envir = startEnv)

16 p <- eval(formula [[3L]], startEnv)

17 p

18 }

19 logLik <- function(x, y, ...) dnorm(y, mean=predict(x, ...),

20 sd=para$sigma , log=TRUE)

21
22 new("FLXcomponent",

23 parameters=list(coef=para$coef , sigma=para$sigma),

24 logLik=logLik , predict=predict ,

25 df=para$df)

26 }

27 z@fit <- function(formula , start , x, y, w)

28 {

29 fit = nls.wfit(formula = formula , start = start ,

30 data = data.frame(data ,w))

31 z@defineComponent(para = list(coef = coef(fit),

32 start = as.list(start),

33 df = length(all.vars(formula))-1,

34 sigma = sqrt(sum(fit$weights *

35 fit$residuals ^2 /

36 mean(fit$weights)

)

37 /(fit$df.residuals))))

38 }

39 } ...

40 }

Listing 3.8: M-step driver for Gaussian mixtures of GNMs in flexmixNL (excerpt)
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In lines 6 to 8 a return object z is constructed from the specific model class "FLXMRnlm".
The slot name is set to FLXMRnlm:gaussian as family="gaussian" holds. z comprises
again all slots given in Table 3.4 from the parent class "FLXM" plus additional slots
offset (from parent class "FLXMR") as well as the slots family, formula and start.
The last two slots are model-specific as they afford knowledge about the nonlinear
model formula. Starting in line 10 the construction of the remaining slots defineCom-

ponent, logLik() and fit() is illustrated for the specific case of GNMs. The expres-
sion z@defineComponent shows already crucial differences compared to its construction
for GLMs. The computation of the fitted values, provided by predict(), requires the
RHS of the nonlinear model formula accessed by formula[[3L]]. This is evaluated at
the fitted values denoted by coef (labelled by start). Line 27 reveals another differ-
ence as the fitting function comprises further arguments formula and start given by
fit(formula,start,x,y,w). The necessity of these further arguments is explained by
the call of the outsourced fitting function in lines 29 and 30.

1 nls.wfit = function(formula , start , data = list(), control = list())

2 {

3 fit = nls(formula = formula , start = start , data = data ,

4 weights = as.vector(w))

5 ...

6 fit

7 }

Listing 3.9: Outsourced fitting function for Gaussian mixtures in flexmixNL

For mixtures of nonlinear regression models with normally distributed responses the
function nls() offers a suitable computational framework by setting the weight com-
ponents equal to the proportions wik according to the WNLS method in Example 2.1
(see also Section 2.4). Line 3 in Listing 3.9 performs the fitting procedure returning the
results to the control variable fit. Well-known accessor functions allow the extraction
of these results as, for example, coef(fit) for the regression coefficients. For a detailed
explanation of further accessor functions reference is made to Ritz and Streibig (2008).
Within the scope of flexmix() the outsourced fitting function nls.wfit() passes the
return values provided by nls() to the slot z@fit within the M-step driver FLXMRnlm.
These values enable the evaluation of z@defineComponent in a last step. The final model
parameters are again captioned by an object of the class "FLXcomponent".

3.4.1.2 Mixtures of Generalized Nonlinear Models

In the case of distributional assumptions other than the normal distribution the fitting
procedure nls() becomes inadequate. Theoretical considerations in Chapter 2 buttress
the use of an IWLS procedure for estimating the component specific regression coeffi-
cients. The previously discussed package gnm provides an appropriate fitting procedure
by means of its main function gnm(). Within the scope of flexmixNL, gnm() can be
embedded to enable a proper fitting of GNMs in mixture components. Similarly to the
previously shown Gaussian mixtures of nonlinear regressions, mixtures of GNMs are ac-
cessed by the following call, exemplary for the Gamma distribution.
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1 flexmix(y ~ x, k = 2, model = list(FLXMRnlm (..., family = "Gamma" ,...)))

Listing 3.10: Function call flexmix() for mixtures of GNMs with Gamma responses

The underlying M-step driver FLXMRnlm executes the GNM for the Gamma distribution.
All cases have a similar structure for the construction of z@defineComponent and z@fit.
They still remain different in the distributional parameters and the underlying fitting
procedures. In the case of Gamma distributed responses the outsourced fitting proce-
dure is denoted by gnm.wfit emerging in line 3 in the excerpt of the M-step driver
FLXMRnlm given in the subsequent listing.

1 z@fit <- function(formula , start , x, y, w)

2 {

3 fit = gnm.wfit(formula=formula , start = start ,data=data.frame(data ,w),

4 family = Gamma(link="identity"))

5 ...

6 }

Listing 3.11: Fitting function for Gamma mixtures in flexmixNL

The fitting function gnm.wfit performs the command gnm() for GNMs using the propor-
tions wik as weights components. The fitting of GNMs in flexmixNL is provided under
the identity link as specified in the general model framework in Section 1.4. Furthermore
the fitting procedure depends on the model formula as well as predefined starting values.

1 gnm.wfit = function(formula , start , x, y, w, ...)

2 {

3 fit = gnm(formula = formula ,family = Gamma(link = "identity"),

4 data = data , start = unlist(start), weights = as.vector(w),

5 tolerance = 1e-6, verbose = F, trace = F, checkLinear = T)

6 ...

7 fit

8 }

Listing 3.12: Outsourced fitting function for Gamma mixtures in flexmixNL

Line 3 performs the fitting procedure storing the results again in the control variable
denoted by fit. The subsequent sequence of steps equals to the already discussed case
of Gaussian mixtures of nonlinear regression models. Special attention is given to the
computation of specific distributional parameters necessary as arguments for logLik()
and predict() for the evaluation of the expression z@defineComponent.

3.5 Standard Errors

Drawing conclusions on the accuracy of the derived parameter estimates, given by the
vector Ψ̂, requires a statement on their variability. This section aims to present methods
in order to compute standard errors for these parameters based on the incomplete-data
log-likelihood function (2.9). The main emphasis lies in the introduction of the two
computation methods which are being used within the applications of the present work.
Information is also given regarding available results on standard errors in flexmix.
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3.5.1 Standard Errors in flexmix

The package flexmix provides the function refit() for additional information on the
parameter estimates. The output of the function refit() summarizes the provided esti-
mates, standard errors and significance tests. As Grün and Leisch (2008b, p. 8) explain,
numerical approaches are used in order to obtain an approximation for the standard
errors. The implemented function refit() involves the optimization function optim()

which is available in the standard package stats in R. Technically, the computation of the
Hessian matrix is provided by numerical optimization over the complete log-likelihood
function (2.17). The minimization is provided over the MLEs obtained by the EM al-
gorithm as starting values. In order to derive the Hessian matrix numerically, optim()
offers the optional setting hessian = TRUE. The standard errors are derived from the
negative of the computed Hessian matrix.

3.5.2 Exact Computation

The exact computation of standard errors for MLE refers to the analytical derivation of
the Hessian matrix for the incomplete-data log-likelihood function (2.9) as discussed in
Section 2.5. The derived standard errors will be denoted as SEex(·) in the following. The
standard errors stem from the evaluation of the inverted Hessian matrix in the MLE Ψ̂

which was obtained by the EM algorithm. The exact computation of the Hessian ma-
trix and the subsequent computation of the standard errors is difficult to generalize.
The form of the second order derivatives of the log-likelihood function (2.9) is highly
dependent on the functional form of the mean function. As the mean function stems
from nonlinear dependence structures, it is generally complicated to handle due to its
low mathematical tractability, in particular for mixtures of GNMs. For FMMs with a pre-
defined mean function and a fixed number of components the second order derivatives
can be derived symbolically for a mixture pdf of lower complexity. The statistical soft-
ware R includes methods for symbolical differentiation, as for example those provided
by Clausen and Sokol (2018). Clausen and Sokol (2018) developed a package Deriv in
order to derive symbolic differentiations from expressions enabled through the operator
D(). An exemplary approach to the computation of standard errors is given below.

Exact Computation of Standard Errors in R:

1. Define the mixture pdf (2.1) as symbolic function with the command expres-

sion().

2. Derive second order derivatives of the incomplete log-likelihood function (2.9)
with the help of the differentiation operator D().

3. Evaluate the inverse of the Hessian matrix in the MLE obtained by the EM algo-
rithm and extract the square roots in order to obtain standard errors SEex(·).

As SEex(·) relies on the exact derivation of the Hessian matrix, complex functional
shapes may lead to numerical difficulties in the computation due to collinearities. These
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challenges and specific results will be discussed by the means of applications in the sub-
sequent chapters.

3.5.3 Numerical Derivation

As the pdf of GNMs complies generally with an increasing complexity, an exact derivation
of the Hessian matrix may be too tedious or mathematically intractable. These cases af-
ford a numerical derivation of the Hessian matrix in order to obtain standard errors. The
numerically derived standard errors will be denoted as SEnum(·) in the following analy-
sis. There are different approaches on approximating the Hessian matrix numerically in
R. Gilbert and Varadhan (2016) provides the package numDeriv with the implemented
function hessian(). This work takes up on the use of the function hessian() which
has proven useful for the computation of complex functions. In order to obtain standard
errors for Ψ̂, the target function is set as the log-likelihood function (2.9). The key step,
in order to derive the numerical approximation provided by the command hessian(),
stems from the implemented function genD() in the same package. genD() basically ap-
proximates the second order derivatives with the central difference quotient. The specific
approach on the computation of standard errors SEnum(·) is given below.

Numeric Approximation of Standard Errors in R:

1. Define log-likelihood function (2.9) as function depending on the functional form
of the nonlinear mean function.

2. Approximate Hessian matrix with the function hessian() initialized with the
MLEs obtained by the EM algorithm.

3. Compute standard errors SEnum(·) by the inversion of the Hessian matrix and
root extraction.

The application of these methods of standard error computation will be carried out
within the subsequent chapters.
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CHAPTER 4

Monte Carlo Simulation Study for Two-Component Gamma Mixture

Models

Introduction

This section provides a Monte Carlo (MC) simulation study on the performance of the
fitting algorithm for mixtures of GNMs. The underlying fitting algorithm is bundled in
the package flexmixNL consisting of the new model class "FLMRnlm", as discussed in
Section 3.4. The main objective of this study is to obtain parameter estimates and ad-
equate standard errors in order to assess the algorithm’s performance and deliver esti-
mates with an acceptable precision. To get an impression of the algorithm’s functionality
and its sensitivity on the given data, the simulation study will be provided for different
synthetic data sets with different data sample sizes. Statements on the performance will
be derived based on specific measures. The key measures of interest are the obtained
parameter estimates and measures describing their variability. The models of interest
are restricted to GNMs with underlying Gamma distributions. The distributional speci-
fication is motivated by real world applications following in the subsequent chapter. An
essential aspect of the models will be given by the fitting of a nonlinear mean function.
With regard to a real world application, the nonlinear mean function will be restricted
to a sigmoid function of a predefined shape. The complexity and tedious tractability aris-
ing with the fitting of GNMs will be intensified by the overlapping of the components
and different levels of variability. A key aspect of the simulation study will be the repro-
ducing of an original configuration and the discrepancy of the estimated parameters to
the initial values under a randomly generated data sample. Emphasis is placed on the
identification of the distinct components referring to two differently parametrized mean
functions. Therefore, misclassification rates regarding the true cluster allocation of the
sample points are not a focus. As the main focus will be on obtaining appropriate pa-
rameter estimates for the components pdf, the framework of the FMM is held preferably
at low complexity level. For this reason, the number of components will be restricted to
K = 2.
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Section 4.1 presents the simulation setup for the present study. The MC simulations
afford a specification of the underlying GNM and the nonlinear mean function. The
data generation will be provided based on the specified presumptions. The subsequent
Section 4.2 summarizes all parameters of interest within the overall simulation study.
In order to retrace the fitting procedure, Section 4.3 discusses its sequence applied to
an exemplary data sample. The final Sections 4.4 and 4.5 discuss the results for two
different data sample sizes.

4.1 Simulation Setup

The simulation study is based on a two-component Gamma mixture model where the
specifications are given in the subsequent sections.

4.1.1 Model Specification

The two-component mixture distribution follows the pdf

fM (yi;µi(β),φ, π) = π · f(yi;µi(β1), φ1) + (1− π) · f(yi;µi(β2), φ2), (4.1)

where π denotes the component weight for the first component as discussed in Section
2.1 and i = 1, . . . , n. The specification of the two-component mixture model (4.1) affords
the fitting of the first component weight through π1 = π as the second results from π2 =

1− π1. In avoidance of problems arising through the interchangeability of components,
the two components will be ordered according to the sequence presented in Section 2.2
where the larger prior probability max π̂k, k = 1, 2, determines the first component. The
parameter vector φ comprises the component specific dispersion parameters φ1 and φ2.
The underlying components are furthermore specified by the means µi(β1) and µi(β2)

and follow a Gamma distribution with pdf

f(yi;µi(βk), νk) = exp

(
− νk
µi(βk)

yi

)(
νk

µi(βk)

)νk
yi
νk−1 1

Γ(νk)
, k = 1, 2,

where the shape parameters correspond to the reciprocal dispersion parameters through
νk = 1/φk and a non-negative mean function µi(βk) > 0 for responses yi > 0, i =

1, . . . , n. The specification of the mean function follows in the subsequent section.

4.1.2 Mean Function

The mean function states the central element in the simulation study as it influences
the performance of the fitting procedure predominantly. The scope of this analysis ad-
dresses a nonlinear regression function which complies with the specification for GNMs
as discussed in Chapter 1. The underlying mean function is inspired by a real world
application of gas transmission following the research provided by Friedl et al. (2012).
The functional structure models a decreasing consumption behavior by a sigmoid curve
in dependence of the outside temperature. The functional form is specified by the pa-
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rameter vector βk = (βk1, βk2, βk3, βk4)>, respectively through the relationship

µi(βk) := h(xi,βk) = βk4 +
βk1 − βk4

1 +
(

βk2
xi−40

)βk3 , k = 1, 2, (4.2)

with xi representing the explanatory variable for i = 1, . . . , n. The regression coeffi-
cients βk1 and βk4 state the upper and lower asymptotes for the kth component where
the consumption attains its maximum and minimum level. The remaining regression co-
efficients βk2 and βk3 affect the shape and curvature of the resulting sigmoid function
for the kth component. The regression coefficient analysis will be intensified at a later
time for the estimated values. The construction of the mean function in R follows the
discussion on the implementation of GNMs in R in Section 3.2.2 and is given in Listing
4.1.

1 > library(gnm)

2 > gas.1 = function(x,predictors){

3 + list(predictors=list(a=1,b=1,c=1,d=1),

4 + variables = list(substitute(x)),

5 + term = function(predictors , variables) {

6 + paste(predictors [4],"+(",predictors [1],"-",predictors [4],")/(",

7 + "1+(",predictors [2],"/(",variables ," -40","))^",

8 + predictors [3],")", sep="")

9 + })

10 + }

11 > class(gas.1) ="nonlin"

Listing 4.1: Specification of mean function with gnm

The nonlinear regression function is stored in the argument gas.1 which is specified
in dependence of the variable x as a placeholder for the explanatory variables and the
vector predictors comprising the regression coefficients following the specification in
gnm by Turner and Firth (2018). The specification of the functional form follows in lines
6 to 8 as sequence of character variables stored in the argument term.

4.1.3 Initial Configuration

The initial configuration of the mixture pdf in (4.1) and the mean function (4.2) will
serve as starting setup for the further data generation in order to run the simulation
study. The configuration of the two components is inspired by a real world situation
on gas consumption. The first component will be modeled for the purpose of industrial
facilities with a higher consumption rate and a greater component size. The other com-
ponent is ought to represent consumption with low-level descent behavior generated
by private households. Further setting parameters are the shape parameters ν1 and ν2

for the Gamma distributed components. Due to the mean dependence of the variance
for the Gamma distribution, the variability increases with higher mean values yielding
higher variability for the components representing the industrial consumption behavior.
The initial configuration of the two-component Gamma mixture model (4.1) is given in
the subsequent Table 4.1.
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Component πk βk1 βk2 βk3 βk4 νk

k = 1 0.6 58 000 −35.0 10.0 32 000 50.0

k = 2 0.4 34 000 −35.0 20.0 8 000 50.0

Table 4.1: Initial configuration for two-component Gamma mixture model

The component weights πk denote the probabilities of a data point yi, i = 1, . . . , n, lying
in the kth component. The parameter vector βk specifies the mean function as given
in (4.2). The clearly visible gap between the upper and lower asymptotes enables the
modeling of two different consumption levels by means of a mixture distribution. The
shaping parameter βk3 has significant influence on the decrease of the sigmoid mean
function (4.2) for k = 1, 2. A central assumption in the construction of the synthetic data
set states a continuous consumption level for the production facilities of the industrial
component. Therefore the given parameter specification in Table 4.1 allows for a sharper
decrease in consumption for the lower component.
The fitted results can be reproduced by setting the random seed equal to set.seed(17)

and iter.max = 100.

4.1.4 Data Generation

This section outlines the framework for the construction of the synthetic data set as basis
for the simulation study. The basic idea is to construct a randomly Gamma distributed
data vector y ∈ Rn following the mean function (4.2) with initial configuration as given
in Table 4.1. Predictor variables are given by the vector x ∈ Rn. The resulting data sam-
ples will be denoted as (x,y)(j) for the simulation runs j = 1, . . . , S and comply with
the criteria of GNMs where y follows a Gamma mixture model with pdf (4.1). The main
objective of this simulation process is to execute the fitting procedure presented in Sec-
tion 3.4 and to assess the performance. The data samples serve as initial configuration
for the fitting procedure which will be initialized by the starting values in Table 4.1. The
initial cluster assignment will be set randomly which is a default setting in flexmix (see
also Section 3.3.1). As previously discussed, the hypothetical data is inspired by a real
world application on gas flow. The predictor variable x describes the outside tempera-
ture which has a causal relation to the gas flow. For a reasonable assessment the range for
the predictor variables is set to the range Rtemp = [−10, 20]. In a first step, an equidistant
sequence of n numbers x = x1, . . . , xn is chosen as predictor variables. For the purpose
of constructing a two-component data sample, the sequence x is split into two sets with
samples sizes n1 and n2 where n = n1 + n2 holds. Technically, a sample with length n1,
denoted as xn1 , is taken from the sequence x as predictor subset for the first component.
The remaining set xn2 represents the predictor variables for the second component with
length n2 = n−n1. In a subsequent step, the component specific mean functions are eval-
uated in the predictor variables, respectively µ(xi,β1, ν1) for xi ∈ xn1 and µ(xi,β2, ν2)

for xi ∈ xn2 . Let G(ν1, λ1) and G(ν2, λ2) denote the underlying Gamma distributions
within pdf (4.1). According to Example 1.3 the component rates of the Gamma distribu-
tions correspond to λ1 = ν1/µi(β1) ∀xi ∈ xn1 and λ2 = ν2/µi(β2), ∀xi ∈ xn2 . The vector
y = (y1, . . . , yn)> is generated randomly using the predictor variables x = (x1, . . . , xn)>,
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the shape parameters ν1 and ν2 and the evaluated mean functions µi(β1), ∀xi ∈ xn1 ,
and µi(β2), ∀xi ∈ xn2 , according to the a mixture pdf of Gamma distributions (4.1).

The presented data generation procedure is carried out S = 1 000 times (simulation

runs) in order to provide the MC parameter estimate vectors Ψ̂
(j)

for j = 1, . . . , S.
Within this simulation study the sample sizes will be fixed as n = 500 or n = 1 000

where nk denotes the number of assigned data points to the kth component on condition
that

∑
k nk = n holds. Figure 4.1 illustrates exemplary data sets for the different sample

sizes.
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Figure 4.1: Simulated data (n = 1000 and n = 500)

4.2 Parameters of Interest and Measures of Algorithm Perfor-
mance

As the exploration of the new fitting procedure in Section 3.4 represents the main aim
of this simulation study, adequate criteria for the algorithm’s performance have to be
determined. The main measures are given by the derived parameter estimates and their
variability. In addition, overall performance measures as the number of iterations will be
assessed. This section summarizes all performance measures and parameters of interest.

4.2.1 Parameter Estimates

4.2.1.1 Regression Coefficients

The MLE for the regression coefficients, β̂k = (β̂k1, β̂k2, β̂k3, β̂k4)>, is derived through
the EM algorithm. In a subsequent step the standard errors SEex(β̂kp) and SEnum(β̂kp)

are derived separately through the methods presented in Section 3.5. Following up on
the parameter estimation and standard error computation, confidence intervals can be
derived as

(1− α)% CI(β̂kp) =
(
β̂kp ± z1−α/2 · SE∗(β̂kp)

)
(4.3)

where zα denotes the α quantile of the standard normal distribution and SE∗(·) refers to
the respective standard error (exact or numerical approach). For the overall MC simu-
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lation study the mean values of the fitted parameters and further estimates are derived.
The parameters of interest within the MC simulation for the regression coefficients are
given below.

MC Mean: Let β̄kp denote the mean value over all S simulations for the regression co-
efficients, respectively given by

β̄kp =
1

S

S∑
j=1

β̂
(j)
kp , (4.4)

for p = 1, 2, 3, 4, the components k = 1, 2 and j = 1, . . . , S.

MC Standard Deviation: The MC standard deviation is given as

SD(β̂kp) =

√√√√ 1

S − 1

S∑
j=1

(β̂
(j)
kp − β̄kp)2, (4.5)

for p = 1, 2, 3, 4, the components k = 1, 2 and j = 1, . . . , S.

MC Bias: The MC bias represents the systematic absolute deviation for the MC mean of
the true value and is given by

BIAS(β̂kp) = β̄kp − βkp, (4.6)

for p = 1, 2, 3, 4 and the components k = 1, 2.

Asymptotic Confidence Interval (ACI): An asymptotic confidence interval (ACI) will
be constructed with the MC mean of the parameter estimates and the respective
asymptotic standard error over all MC results. Exemplary, the ACI for the parame-
ter βkp is given by

(1− α)% ACI(βkp) ≈ (β̄kp ± z∗1−α/2 ·ASE∗(βkp)) (4.7)

where

ASE∗(β̂kp) =
1

S

S∑
j=1

SE∗(β̂
(j)
kp ) (4.8)

denotes the MC mean of the asymptotic standard errors of the regression coeffi-
cients for p = 1, 2, 3, 4 and components k = 1, 2 and j = 1, . . . , S.

4.2.1.2 Shape Parameters

The MLE for the shape parameters ν̂k will be derived through the estimation given in
Example 2.4 for the components k = 1, 2. The standard errors SEex(ν̂k) and SEnum(ν̂k)

will be derived according to Section 3.5 while the confidence intervals can be computed
according to the approach given in (4.3). Let ν̂(j)

k denote the estimate in the jth simu-
lation step. The computation of the MC mean ν̄k, deviation SD(ν̂k) and bias BIAS(ν̂k)

follows Equations (4.4), (4.5) and (4.6).
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4.2.1.3 Component Weights

The estimates for the component weights π̂1 and π̂2 = 1 − π̂1 will be derived through
the relation (2.20) as part of the EM algorithm. In a subsequent step the standard errors
SEex(π̂k) and SEnum(π̂k) will be derived separately as presented in Section 3.5 for the
components k = 1, 2. Confidence intervals can be derived according to (4.3). For the
overall MC simulation study the mean value of the fitted parameters π̂(j)

k and further
estimates are derived. Therefore the MC mean π̄k, deviation SD(π̂k) and bias BIAS(π̂k)

follow Equations (4.4), (4.5) and (4.6).

4.2.2 Measures of Algorithm Performance

In addition to the parameter estimates and their variability for the MC simulations fur-
ther criteria will be derived in order to examine the algorithm performance.

4.2.2.1 Convergence Rate

A general performance criterion is given by the convergence rate defined as the propor-
tion of the number of converged simulations to the overall number of simulations of the
MC study, respectively

converged trials

number of trials
.

Further distinction will be made between wrongly converged trials and trials converging
to the true values. Wrongly converged trials yield usually parameter estimates which
are not adequate for the specific problem. A detailed analysis on the handling of these
results is given in Section 4.3.1.

4.2.2.2 Coverage Rate

Another criterion for the algorithm performance is given by the coverage rate in order
to achieve an overall measure of quality for the parameter estimates and their standard
errors. The coverage rate is a measure for the degree of coverage of the confidence
intervals and the true parameter values. The coverage rate is given by the number of
times the respective confidence interval captures the true value given in Table 4.1 for
the parameter estimates. It is evident that the construction of the confidence interval is
highly depending on the standard errors of the related parameter estimates.

4.3 Fitting Procedure

Given a synthetic data sample set (x,y)(j), j = 1, . . . , S, the EM algorithm is applied in
order to fit the two-component Gamma mixture model (4.1). This requires the repeated
computation of the unknown parameter vector

Ψ(j) = (π
(j)
1 , β

(j)
11 , β

(j)
12 , β

(j)
13 , β

(j)
14 , β

(j)
21 , β

(j)
22 , β

(j)
23 , β

(j)
24 , ν

(j)
1 , ν

(j)
2 )>.

The fitting of the constructed data is provided in R through the package flexmixNL as
introduced in Section 3.4. The respective specification of the command flexmix() is
given in the listing below.
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1 > library(flexmixNL)

2 > model = flexmix(y ~ x, k = 2,

3 + model = FLXMRnlm(formula = formula , family="Gamma",

4 + start = list(list(a=58000 ,b=-35,c=10,d=32000) ,

5 + list(a=34000 ,b=-35,c=20,d=8000))))

Listing 4.2: Function call for nonlinear Gamma mixture model in flexmixNL

4.3.1 Assessment of Components

In order to provide the component specific analysis on the parameter estimates, a clear
allocation of the given data to the specific components is necessary. The theoretical com-
ponent specific regression functions for the synthetic data set are visualized in Figure
4.2. In the case of a convergent algorithm, ideally, the component specific regression
functions have a shape similar to those shown in Figure 4.2. The simulated data set, as
exemplary illustrated in Figure 4.1, shows a significant overlapping for increasing mean
values. This effect intends to increase the complexity when fitting the synthetic data set
in order to challenge the underlying fitting algorithm. It can be expected that this ran-
dom variability yields to slightly skewed regression functions in comparison to the initial
configuration given in Figure 4.2.

−10 0 10 20 30
0

10,000

20,000

30,000

40,000

50,000

60,000

dist1

span2 dist2

span1

Figure 4.2: Component specific regression functions (initial configuration)

The true component specific regression functions are similar in their shape and differ
mainly in their asymptotes. It may be challenging for the underlying EM algorithm to
distinguish between the two different components as the shape coefficients of their mean
functions βk3 differ just slightly, see also Table 4.1. These similarities may lead to unsuit-
able configurations as, for example, overlapping components or components exhibiting
a non-sigmoid shape. Technically, unfavorable results arise from wrongly converging fit-
ting methods which will be referred to as misfits. In order to obtain a proper selection
of correctly fitted data, misleading results have to be filtered. Therefore, two control
variables are defined to deal with misfits: dist1 and dist2 declaring the distance be-
tween the two upper asymptotes (dist1) and lower asymptotes (dist2). The span length
within components is measured by the control variables span1 and span2 where span1
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refers to the distance between the upper and lower asymptote in the upper component
while span2 measures the distance of the asymptotes within the second component as
sketched in Figure 4.2. The provided simulation study intends to reveal possible misfits
for the given constellation of components. The corresponding ranges assess rules for the
dropping of wrongly converged results:

dist1, dist2 ≤ 16 000 or span1, span2 ≤ 8 000

Results passing these requirements are considered within the present MC simulation
study.

4.3.2 Exemplary Application of the Fitting Procedure

This section briefly sketches the fitting procedure by means of an exemplary data set.
The fitting follows the discussion in Section 3.4. For a detailed discussion on available
functionalities in flexmix() reference is made to Section 3.3.1. The data set is fitted for
the nonlinear regression function (4.2) and Gamma mixture model (4.1) with K = 2

components and initial configuration as given in Table 4.1. The explicit execution of
the fitting procedure is given in Listing 4.2. The corresponding output recalls the fitting
function with all input parameters and displays the control variables for the underlying
EM algorithm and the final cluster sizes:

1 > model

2 Call:

3 flexmix(formula=y~x,data=data ,k=2,model=list(FLXMRnlm(formula=y ~

4 -1+gas.1(x),family="Gamma",start=list(list(a = 58000 , b = -35,

5 c = 10, d = 32000) ,list(a = 34000, b = -35, c = 20, d = 8000)))))

6
7 Cluster sizes:

8 1 2

9 546 454

10
11 convergence after 26 iterations

Listing 4.3: flexmix() output for nonlinear two-component Gamma mixture model

The resulting output indicates two fitted component and reveals the associated cluster
sizes in relation n1 : n2 = 546 : 454. The EM algorithm affords 26 iteration steps until
reaching an adequate convergence level for the approximated regression functions. A vi-
sualization of the synthetic data set with the final assignment to the components is given
in Figure 4.3. The allocation of the data to the two components can be distinguished by
the different colors. The fitted regression functions are added along the components.
The component specific parameter estimates and the corresponding standard errors are
displayed in Table 4.2.

The model selection criteria, as explained in Section 2.7.1, can be accessed using the
commands in Listing 4.4.

1 > AIC(model)

2 [1] 20702.97

3 > BIC(model)

4 [1] 20756.95

5 > ICL(model)
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Figure 4.3: Fitted two-component Gamma mixture model (n = 1000)

6 [1] 20801.6

Listing 4.4: Model selection criteria for exemplary fitting

The package flexmix provides the summary() command in order to obtain a summarized
result as discussed in Section 3.3.1. The output is given in the listing below.

1 > summary(model)

2 ...

3 prior size post >0 ratio

4 Comp.1 0.545 546 741 0.737

5 Comp.2 0.455 454 626 0.725

6 ...

Listing 4.5: summary() output in flexmix for exemplary fitting

The summary() output recalls the function call and displays furthermore the classifica-
tion of the sample to both components in the column size. It reveals that 546 data points
were classified to the first component whereas even 741 had a positive posterior proba-
bility of lying in this component. The ratio of this relationship results in 0.737 signifying
a good separation between both components. The rootogram serves as standard graphi-
cal visualization of the fitted model in flexmix. The corresponding command is given by
plot(model) while the graphics is illustrated by Figure 4.4. The rootogram underpins
the evident separation of the two components as the plotted histogram shows little mass
in the central area.
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Rootogram of posterior probabilities > 1e−04
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Figure 4.4: Rootogram for two-component Gamma mixture (n = 1000)
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4.3.3 Simulation Procedure

The simulation procedure can be summarized in the following iteration scheme:

Simulation procedure: For each simulation step j = 1, . . . , S

1. Create synthetic data sample (sample size n) (x,y)(j) for two-component
Gamma mixture with pdf (4.1) and sigmoid mean function (4.2) according
to Section 4.1.4.

2. Fit mixture model by estimating the parameter vector

Ψ(j) = (π
(j)
1 , β

(j)
11 , β

(j)
12 , β

(j)
13 , β

(j)
14 , β

(j)
21 , β

(j)
22 , β

(j)
23 , β

(j)
24 , ν

(j)
1 , ν

(j)
2 ).

according to Section 4.3.2.

3. Identify misfits as discussed in Section 4.3.1.

4. Compute standard errors

SEex(π̂
(j)
1 ), SEex(β̂

(j)
1p ),SEex(β̂

(j)
2p ), SEex(ν̂

(j)
1 ),SEex(ν̂

(j)
2 )

and

SEnum(π̂
(j)
1 ),SEnum(β̂

(j)
1p ),SEnum(β̂

(j)
2p ), SEnum(ν̂

(j)
1 ), SEnum(ν̂

(j)
2 )

for fitted parameters in Ψ̂
(j)

for p = 1, 2, 3, 4.

5. Repeat steps 1 to 4 for each simulation step j.

6. Compute MC parameters

β̄kp,SD(β̂kp),BIAS(β̂kp), ν̄k,SD(ν̂k),BIAS(ν̂k), π̄1,SD(π̂1),BIAS(π̂1)

and measures for algorithm performance as given in Section 4.2.

4.4 Simulation Results (Sample Size n = 1 000)

The following sections present the results provided by the simulation study for the sam-
ple size n = 1 000 and S = 1 000 simulation runs. They furthermore give a detailed
discussion on the obtained estimates and their quality.

The proportion of the trials converging to the accurate values (convergence rate) cor-
responds to 97% while 1% of the results were declared as misfits according to Section
4.3.1. Among the trials converging to the true values the number of iterations spans
between 18 and 99. The median and the mean number of iteration steps correspond to
22.
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4.4.1 Parameter Estimates

The two-component Gamma mixture model (4.1) with nonlinear mean function (4.2)
requires the estimation of the parameter vector Ψ. The subsequent sections discuss the
provided parameter estimates for both components.

4.4.1.1 First Component

The identification of the components follows by decreasing order of mixing propor-
tions π̂1 and π̂2. The parameter discussion within this subsection refers to the upper
component, as illustrated by the highlighted component in Figure 4.5 (blue color).

Figure 4.5: Component 1

In order to derive a statement on the statistical properties
of the estimators the derived parameter estimates and
the overall results of the MC study are discussed. Table
4.3 summarizes the MC results for the component spe-
cific parameters π1, ν1 and regression coefficient vector
β1 in direct comparison to the true values. The regres-
sion coefficients β11 and β14 show a non-significant bias
compared to the true values. Concerning the MC devia-
tion the regression coefficient estimates for β13 exhibit
the highest deviation taking into account the absolute
value of the true parameter β13 = 10. Figure 4.6 visu-
alizes empirical properties of the fitted regression coef-
ficients β̂(j)

11 , β̂(j)
12 , β̂(j)

13 and β̂
(j)
14 over all MC simulations

j = 1, . . . , S by means of histograms and box-plots. The figures yield insight to the vari-
ation of the parameter estimates. The solid red line marks the true values while the
dotted line gives the MC mean values of the parameter estimates from Table 4.3. As the
MC bias already ranges in smaller areas, the true and estimated values almost coincide
in the figures. The interquartile range (IQR), comprising the central 50% of the obtained
parameter estimates, varies almost symmetrically around the true values for β̂(j)

14 for
j = 1, . . . , S. The remaining parameter estimates exhibit a weak skewness which can be
attributed to the overlapping constellation of the two components. The parameter β12

contributes to the shape of the sigmoid mean function. Large deviations from the true
value β12 = −35 may induce significant changes in the regression function. The regres-
sion coefficient estimates β̂(j)

12 range between [−33.6;−36.9] with a moderate deviation
from the true value. The regression coefficients β̂(j)

13 and β̂
(j)
14 show tolerable ranges for

the variation over all MC results. The highest MC deviation in absolute values arises for
β̂

(j)
11 representing the upper asymptote with occurring outliers above 62 000 as visible

in Figure 4.6. The MC results tend to increase the span between the two asymptotes in
general as β̄11 exceeds the true value while β̄14 is slightly decreased compared to the
true value. This effect can be attributed to the initiated dense structure of the synthetic
data sets.
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4.4.1.3 Second Component

As the mixing proportions determine the identification of the components by decreasing
order, the lower component in the exemplary data sample is classified as the second
component with initial mixing proportion π2 = 0.4. Figure 4.7 displays the fitted com-
ponent colored in red.

Figure 4.7: Component 2

The fitted parameters comprise estimated values for the
mixing proportion π2, the regression coefficient vector β2

and the shape parameter ν2. Table 4.4 summarizes the
results of the overall MC study for the second compo-
nent. The results indicate smaller deviations and even
a smaller bias for the estimated parameters compared
to the first component. These effects can be attributed
to the smaller true values inducing a decreasing vari-
ability compared to the upper component. The MC de-
viation shows similar results compared to the first com-
ponent: the highest deviation arises for the regression
coefficients β21 and β24 due to their high absolute val-
ues.

Figure 4.8 illustrates the computed regression coefficients for the second component
β̂

(j)
21 , β̂(j)

22 , β̂(j)
23 and β̂(j)

24 over all MC simulations j = 1, . . . , S. The smaller deviations for
the regression coefficients of the second component are reflected in the smaller ranges
as illustrated in the histograms and box-plots of the parameter estimates. The regression
coefficients β̂(j)

21 , β̂(j)
22 and β̂

(j)
23 range almost symmetrically around the true values. The

MC means of the regression coefficients match the true values closely in the graphics
due to the small deviation which is also reflected in the MC bias given in Table 4.4. The
fitted regression coefficients β̂(j)

24 show a slight left-skewness with non-evident influence
on the shape of the regression function.
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4.4.1.5 Shape Parameters

The obtained estimates for the shape parameters over all MC simulations are illustrated
in Figure 4.9 through histograms and box-plots. As the original parameters for both
shapes coincide, the fitted values range almost within the same levels. The histogram
and box-plot of the fitted shape parameters ν̂(j)

1 for the first component are given by the
blue colored graphics while those for the second component ν̂(j)

2 appear in red color.
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Figure 4.9: Histograms and box-plots for fitted shape parameter estimates (n = 1000)

The MC means (dotted line) differ from the true values (full line). Due to the overlapping
of the synthetic data samples, as illustrated in Figure 4.1, the initial configuration of the
data set prevents an exact assignment to the true components. This effect increases the
shape parameters slightly so that the MC means of both components differ about +0.6

units from the true value 50.

4.4.1.6 Component Weights

The components weight estimates π̂(j)
1 and π̂

(j)
2 over all MC simulations are displayed

in Figure 4.10. As the results in Tables 4.3 and 4.4 already indicate, the MC mean val-
ues π̄1 and π̄2 match the true values very well. Due to the evident overlapping of the
components, data points may be assessed to the other components given a sufficient
deviation. This effect is highlighted in Figure 4.1 and pointed out in the rootogram for
the exemplary fitting of a data set in Figure 4.4. The variation of the computed compo-
nent weights is non-evident in the numerical values as the MC bias and deviation equal
almost zero for both component weight estimates in Tables 4.3 and 4.4.
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Figure 4.10: Histograms and box-plots for fitted prior weight estimates (n = 1000)

4.4.2 Standard Errors and Confidence Intervals

As the previous results on the parameter estimates already point out, the MC mean
values for the parameter estimates fit on average. These results are underpinned with
graphical illustrations for all simulated values. In order to achieve an impression on the
variability of the estimated parameters, the (asymptotic) standard errors as presented in
Section 2.5 are computed for all parameter estimates over all MC simulations. The MC
mean of those errors qualifies a statement on the variability of the final parameter es-
timates. The computation of asymptotic confidence intervals as given in Equation (4.7)
enables the estimation of standard errors for the MC means. A further measure of algo-
rithm performance is provided by the coverage rate which indicates the rate of the true
value lying in the computed asymptotic 95% or 99% confidence interval. A preferable
value is given by the level of the confidence interval.

4.4.2.1 First Component

Table 4.3 summarizes the mean errors, confidence intervals and coverage rates for the
parameter estimates of the upper component, also denoted as first component. The first
two rows True values and MC mean enable the comparison of the true values to the
results of the MC study. Table 4.3 comprises furthermore the MC results for standard
errors derived by exact computation, denoted as ASEex(·), and numerically computed
standard errors, denoted as ASEnum(·). The MC means of the standard errors indicate a
tolerable variability for both methods. The outlined confidence intervals are computed
on the MC mean of the parameter values and standard errors. The coverage rate results
over all MC simulations by checking if the asymptotic confidence intervals contain the
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true parameter value from Table 4.1. The results indicate satisfiable coverage rates over
all simulations.

4.4.2.2 Second Component

Table 4.4 summarizes the mean errors, confidence intervals and coverage rates for the
parameter estimates of the lower component (second component). Due to the nature of
the absolute values, the MC means of the standard errors indicate a smaller variability
compared to the first component. This can be attributed to evidently smaller mean values
for the lower component. The outlined confidence intervals are computed on the MC
mean of the parameter values and the asymptotic standard errors. The coverage rates
indicate satisfiable results for the second component.
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4.5 Simulation Results (Sample Size n = 500)

The following sections present the results provided by the simulation study for the sam-
ple size n = 500 and S = 1 000 simulation runs. The parameter estimates exhibit a
higher variability, as expected for decreasing sample sizes. A smaller data sample size
aggravates the fitting procedure as the specific nonlinear functional structure may not
be clearly defined and outlier become crucial in the fitting process. The algorithm faces
therefore higher demands concerning accuracy. In order to improve the fitting proce-
dure, the shape parameter for the first component is increased to ν1 = 55 within the
subsequent simulations. The remaining parameters from the initial configuration in Ta-
ble 4.1 stay unchanged as well as the random initial cluster assignment of the sample
points. The increase in complexity due to the challenging setup is reflected by a con-
vergence rate (converging trials) corresponding to 84%. The accurately converged trials
were identified according to the restrictions in Section 4.3.1 which indicated an ex-
clusion of 2% (misfits) of the fitted results. Among the accurately converged trials the
number of iterations spans between 16 and 44. The median and the mean number of
iteration steps correspond to 22. The following sections give an analogous discussion
on the provided estimates and their quality in order to address the sensitivity of the
algorithm’s performance to a smaller sample size.

4.5.1 Parameter Estimates

The subsequent sections discuss the provided parameter estimates and their quality for
the two-component Gamma mixture model (4.1) with nonlinear mean function (4.2)
and sample size n = 500.

4.5.1.1 First Component

The identification of the components follows by decreasing order of mixing proportions
π̂1 and π̂2 according to the specifications in Section 2.2. The parameter discussion within
this subsection refers to the upper component, as illustrated in Figure 4.11 (blue color).

Figure 4.11: Component 1

Table 4.3 summarizes the results of the MC study for
the component specific parameters π1, β1 and ν1 and
their true values. The results correspond in general to
those of the upper component for the large sample size
whereas the regression coefficients β11 and β14 show a
higher bias. Figure 4.12 visualizes the fitted regression
coefficients β̂(j)

11 , β̂(j)
12 , β̂(j)

13 and β̂
(j)
14 over all MC simula-

tions j = 1, . . . , S by means of histograms and box-plots.
Deviations from the previous results are given by slightly
broader ranges which can be attributed to the greater
variability induced by a smaller sample size.
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4.5.1.3 Second Component

The second and lower component arises through the initial mixing proportion π2 = 0.4.

Figure 4.13: Component 2

An illustration of the fitted component is emphasized by
the colored sample points given in Figure 4.13. The es-
timated parameters comprise the mixing proportion π2,
the regression coefficient vector β2 and the shape param-
eter ν2 and are given in Table 4.6. Figure 4.14 illustrates
the obtained regression coefficients for the second com-
ponent β̂(j)

21 , β̂(j)
22 , β̂(j)

23 and β̂
(j)
24 over all MC simulations

j = 1, . . . , S. The typical smaller ranges for the second
component are evident in the histograms and box-plots
in Figure 4.14. The MC means of the regression coeffi-
cients coincide graphically with the true values due to
the small deviation which is also reflected in the MC bias
of the estimates in Table 4.6. The MC means and graphics

show coherent results compared to the sample size n = 1 000.
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4.5.1.5 Shape Parameters

The estimated shape parameters differ from the previously discussed sample as the MC
deviation and bias have increased. This is reflected in the Figure 4.15 where the shape
parameters for both components over all MC simulations span a greater range. The
estimates ν̂(j)

1 are given through the blue-colored graphics for the first component while
the shape parameter estimates for the second component ν̂(j)

2 are red-colored for j =

1, . . . , S.

0
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40 50 60 70

Comp1: shape 1
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Figure 4.15: Histograms and box-plots for fitted shape parameter estimates (n = 500)

Due to the overlapping of the synthetic data samples, the MC means (dotted line) dif-
fer from the true values (full line). This effect indicates a smaller dispersion for both
components and a slight right-skewness.

4.5.1.6 Component Weights

Figure 4.16 illustrates the fitted component weights of the provided MC simulations
graphically. As the results in Tables 4.5 and 4.6 already indicate, the MC mean values π̄1

and π̄2 differ slightly from the true values. The upper component shows a slightly smaller
MC mean value compared to the true value which can be attributed to the overlapping
of the respective components.
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Figure 4.16: Histograms and box-plots for fitted prior weight estimates (n = 500)

4.5.2 Standard Errors and Confidence Intervals

The MC estimates for the sample size n = 500 fit again on average. These results are
underpinned with graphical illustrations for all fitted values. In order to express the
variability of the estimated parameters, the standard errors as presented in Section 2.5
are computed for all parameter estimates over all MC simulations. In contrast to the
previous discussion, the smaller sample size produces numerical difficulties computing
the standard errors through the exact derivation SEex(·) of the Hessian matrix as given in
Section 2.5. Therefore the results are shown for the numerically derived standard errors
SEnum(·) as discussed in Section 3.5. The MC mean of the standard errors states again
the asymptotic standard errors. A further measure of algorithm performance is given
again by the coverage rate. Tables 4.5 and 4.6 summarize the mean errors, confidence
intervals and coverage rates for the parameter estimates of the two components. The MC
means of the standard errors indicate a tolerable variability for the parameter estimates
and enable the computation of the confidence intervals. The computed coverage rates
show satisfying results.
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4.6 Conclusions

The present MC simulation study was performed in order to achieve an impression on the
functionality and performance of the new model class "FLXMRnlm" for fitting mixtures of
GNMs. For this purpose, a two-component Gamma mixture model was considered where
the mean followed a sigmoid regression function. Based on synthetic data sets, the fitting
algorithm was executed for different sample sizes in order to reveal sensitivities of the
underlying methods. The complexity increased with the large scattering of one compo-
nent and the random setting of the initial classification of the sample points. The derived
results for the component specific parameters are satisfactory as they fit on average and
show a manageable variability. The latter was assessed through the computation of stan-
dard errors based on the marginal log-likelihood function. Graphical visualizations of
the fitted values revealed also manageable deviations around the true values.

The simulation study revealed also technical limits and numeric obstacles which can be
related to the specifics of the nonlinearity of the underlying regression function and the
application of the EM algorithm. For one thing, the fitting of different sample sizes came
along with fitting problems. The fitting of mixtures of GNMs requires obviously at least
a clear shape of the functional structure in order to identify components along these
functions. The application of the Gamma distribution in combination with a sigmoid
regression function came along with colinearity when deriving the Hessian matrix of the
marginal log-likelihood function. Therefore, one method for computing standard errors
experienced numerical difficulties for the smaller data set. The application of the EM
algorithm for mixtures of GNM showed also the possibility of misfits by means of results
converging to wrong solutions which were not suitable in order to describe the nature
of the data set. A sensible initialization of the algorithm and the analysis of the derived
results remains a problem specific task when fitting mixtures of GNMs. Nonetheless, the
derived parameter estimates proved to be reliable due to satisfactory coverage rates over
all simulations runs and coherent MC simulation results for both sample sizes.
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CHAPTER 5

Modeling Gas Flow on Exits of Gas Transmission Networks

Introduction

The application of mixtures of GNMs is naturally related to real world applications based
on cross-sectional regression where the natural shape of the response exhibits a nonlin-
ear functional structure and heterogeneity due to latent groups. An appropriate applica-
tion is given by the modeling of gas flow which typically exhibits a nonlinear decreasing
consumption pattern subject to the outside temperature. Heterogeneity may appear due
to the non-constant variability of the pattern and possibly differing consumption lev-
els. The natural nonlinear shape of gas flow motivates the use of a sigmoid regression
function as basic framework for standard loading profiles. The latter enables the pre-
diction of gas consumption in gas transmission networks. Detailed research on their
functional structure is given by Hellwig (2003), BDEW et al. (1990) and Koch et al.
(2015). The current framework agreement on standard loading profiles can be accessed
on the web page of the Federal Association of the German Energy and Water Industries
(BDEW) through BDEW (2018). The application of the sigmoid function was also stud-
ied for the Austrian market provided by the study “Lastprofile nicht-leistungsgemessener
Kunden” by Almbauer (2008) and can be accessed on the web page of the AGCS Gas
Clearing and Settlement AG through AGCS (2018). The modeling of gas flow presents a
suitable application of the new model class of mixtures of GNMs. The main focus lies on
the application of the sigmoid mean function within mixture models which was primary
motivated by Friedl et al. (2012, p. 31).

Friedl et al. (2012) studied historical data of gas consumption in the gas supplier’s inter-
est with the aim to improve the gas supply and reduce operational costs. They included
daily mean temperatures and the information of working days and holidays as explana-
tory variables within their statistical analysis. The relationship between gas flow data
and the mean temperature appeared nonlinear in the specific form of sigmoid growth
models. Presuming an underlying growth function as smooth curve for the given data
Friedl et al. (2012) studied two different types of regression models: parametric sigmoid
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regression and a semi-parametric approach provided by penalized splines (P-splines). A
crucial criterion for a suitable model was the flawless gas supply prediction of extraor-
dinary negative temperatures denoted as design temperatures. Friedl et al. (2012) chose
the P-spline approach due to its flexibility and predictions of design temperatures. This
thesis presents new approaches in order to predict the demanded gas supply for design
temperatures. Therefore this research takes on the parametric nonlinear models used in
Friedl et al. (2012) which are capable of advancement in two ways. Since the authors
concentrated on the normal distribution for their statistical models, this distributional
assumption can be extended. Friedl et al. (2012, p. 31) furthermore emphasize the use of
flexmix for mixture models and presume improving results for mixtures of sigmoid mod-
els. The presented extensions in Section 3.4 enable the fitting of gas flow data through
mixtures of sigmoid regression models for the first time.

The objective of this research is to present mixtures of GNMs as a suitable semi-parametric
approach for modeling and predicting gas flow. The subsequent applications deal with
various gas flow patterns and present the functionality of the new fitting procedure for
mixtures of GNMs. The reliability of the results is underpinned by the computation of
standard errors. Special attention is given to predictions of gas flow for low tempera-
tures. These are outlined with the corresponding prediction intervals in order to picture
the inherent variability. Section 5.1 presents the model framework for the subsequent
applications comprising the sigmoid mean functions and the mixture models for the
normal and Gamma distribution. It furthermore outlines the corresponding fitting com-
mands in R and the specification of predictions within mixture models. Section 5.2 deals
with the work by Friedl et al. (2012) and extends the results by further models. A second
gas flow pattern is discussed in Section 5.3 demonstrating the advantages of the Gamma
distribution within the identification of evident consumer specific subgroups. Section 5.4
analyzes a gas flow data set with similar appearance to the synthetic data set used within
the simulation study in Chapter 4. The real world data represent a suitable complement
to the provided simulation study proving the adequacy of the new fitting method to real
data.

5.1 Model Framework

As Friedl et al. (2012) point out gas suppliers agree to use a nonlinear regression model,
particularly a sigmoid growth curve, as statistical model for gas flow and its predictions
for design temperatures. In the following research two models will be picked out of their
study in order to provide further analysis.

5.1.1 Sigmoid Mean Functions

The first regression model comprises four model parameters given by β := (β1, β2, β3, β4)

corresponding to the regression coefficients. The nonlinear regression function is given
through the sigmoid function

µi(β) = µ(xi,β) = β4 +
β1 − β4

1 +
(

β2
xi−40

)β3 , i = 1, . . . , n, (5.1)
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where the regression coefficients incorporate a physical meaning. Coefficients β1 and β4

describe upper and lower horizontal asymptotes of the sigmoid curve while β2 and β3

affect the shape and decrease of the curve with increasing temperature values. These
parameters can be interpreted according to the energy industry where the lower bound
β4 incorporates a constant share of energy (warm water supply or share energy). The
difference β1 − β4 indicates the decrease in gas consumption on cold days. The coeffi-
cient β2 measures the change in gas consumption due to cold periods while β3 refers
to the dependence on the heating period. For a detailed explanation of the coefficients’
physical meaning reference is made to the original paper by Friedl et al. (2012). The
predictor variables within the Model (5.1) are denoted as xi and consist within this the-
sis of maximum daily temperatures influencing the gas consumption. This thesis gives
particular attention to the distributional properties of the maximum gas flow data.

Gas consumption raises the question of the statistical significance of working days and
holidays as, for example, industrial consumers may exhibit a heterogeneous consump-
tion behavior depending on their working times. The available gas consumption data
allow for a classification between working days and holidays. Let the dummy variable di
denote whether or not observation xi relates to a working day or a holiday, respectively

di =

{
1, holiday

0, working day.

Holidays refer in general to non-working days which comprise Saturdays and Sundays
and, if available, public holidays. Including the working day component to the scope of
the sigmoid regression function (5.1) motivates the extension to the functional form

µi(β) = µ(xi,β) = β4 +
β1 − β4

1 +
(

β2
xi−40 + β5 · di

)β3 , i = 1, . . . , n, (5.2)

where the regression coefficient vector is now given by β := (β1, β2, β3, β4, β5). The
properties of the first four regression coefficients stay unchanged regarding their physical
meanings while β5 relates to an additional predictor variable within Model (5.2). The
nonlinear regression models (5.1) and (5.2) will also be denoted as model 1 and model
2 in the following.

5.1.1.1 Application Environment in R

Normal Distribution

The fitting of Model (5.1) is provided according to the procedures from Section 3.2.1. An
exemplary execution and the standard summary output in R is given in the listings below.

1 > m1 = nls(max.flow ~ d + I((a-d)/(1+(b/(temp -40))^(c))), data=data ,

2 + start=list(a=..,b=..,c=..,d=..))

Listing 5.1: Fitting command with nls() for Model (5.1)
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The response max.flow is fitted according to the given expression on the RHS in the
formula which corresponds to Model (5.1). The coefficients a,b,c,d correspond to the
regression coefficients β = (β1, β2, β3, β4) while temp denotes the predictor xi. The data
frame data comprises the response and predictor values. The parameter start necessi-
tates a list of starting values for the coefficients a,b,c,d. The fitted output provided by
nls() is stored in m1. The fitted parameters and the corresponding standard errors can
be accessed through the command summary(nls()).

The fitting of Model (5.2) in R can be performed similar to the previous procedure for
Model (5.1). Including a daily component affords primary a change in the formula of
the fitting function nls().

1 > m2 = nls(max.flow ~ d + I((a-d)/(1+(b/(temp -40)+dd*(day == 1))^(c))),

2 + data=data , start=list(a=..,b=-..,c=..,d=..,dd=..))

Listing 5.2: Fitting command with nls() for Model (5.2)

When using nls() the holiday indicator variable can be included as an additional coeffi-
cient given by dd to address the daily component as given on the RHS of the formula in
Listing 5.2. The remaining arguments stay the same as in the previous fitting of Model
(5.1). The output is stored in object m2. The fitted regression coefficients, their standard
errors and significance within the fitted model can be accessed using summary(nls()).

Gamma Distribution

The fitting of models (5.1) and (5.2) under a Gamma distribution can be provided by
the package gnm which was discussed in Section 3.2.2 in detail. The specification and
execution is given in the following listing.

1 > m3 = gnm(formula = max.flow ~ -1 + gas.1( temp), data= data ,

2 + start = c(a=..,b=..,c=..,d=..), family = Gamma(link="identity")

)

Listing 5.3: Fitting command with gnm() for Model (5.1)

The argument gas.1(temp) on the RHS of the model formula represents the mean func-
tion and is equivalent to the functional form already specified in Listing 4.1 correspond-
ing to Model (5.1). The mean function is specified for the predictor temp. The regression
coefficients β1, . . . , β4 are included in the specification by the variables a,b,c,d. The
R command gnm() requires starting values which are specified in the argument start
as vector. The underlying Gamma distribution is specified through setting the argument
family=Gamma() where the identity link is chosen as a general approach within non-
linear regression. The fitted values can be accessed by executing the command sum-

mary(gnm()).

The function gnm() provides the possibility of fitting Model (5.2) with a holiday indica-
tor. For this purpose the functional form of gas.1(temp) has to be modified including the
vector with the dummy variables. The new mean function is stored in gas.2(temp,day).
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The specification is given in the following listing.

1 > gas.2 = function(temp ,day ,predictors){

2 + list(predictors=list(a=1,b=1,c=1,d=1,dd=1),

3 + variables = list(substitute(temp),substitute(day)),

4 + term = function(predictors , variables) {

5 + paste(predictors [4],"+(",predictors [1],"-",predictors [4],")/(",

6 + "1+(",predictors [2],"/(",variables [1]," -40",")+",

7 + variables [2],"*", predictors [5],")^", predictors [3],")",

8 + sep="")

9 + })

10 + }

11 > class(gas.2) ="nonlin"

Listing 5.4: Specification of Model (5.2) with gnm

The function gas.2() is specified in dependence of two variables which are placeholders
for the predictors temp and day. The vector predictors (line 2) comprises the regres-
sion coefficients β = (β1, β2, β3, β4, β5). The specification of the functional form follows
in lines 4 to 8 as sequence of character variables stored in the argument term. The fitting
call is provided again by executing the command gnm().

1 > m4 = gnm(formula = max.flow ~ -1+gas.2(temp ,day),

2 + start=c(a=..,b=..,c=..,d=..,dd=..),family=Gamma(link="identity"))

Listing 5.5: Fitting command with gnm() for Model (5.2)

Analogous to the fitting of Model (5.1) the response max.flow is fitted according to the
mean function gas.2() on the RHS of the formula argument with predictors temp and
day. The required starting values are passed by a vector to the argument start while
the Gamma distribution and the identity link are specified by the argument family. The
coefficients can be accessed again by summary(gnm()).

5.1.2 Mixture Distributions

The subsequent applications relate to two-component and three-component mixture
models with the normal and Gamma as possible underlying component specific distribu-
tions. The specification of the mixture model requires the fitting of the related unknown
parameters by the EM algorithm.

5.1.2.1 Two-Component Mixture Model

Presuming a two-component mixture model yields the mixture density

fM (yi;µi(β),φ,π) = π1f(yi;µi(β1), φ1) + (1− π1)f(yi;µi(β2), φ2), (5.3)

where f(·) represents the univariate pdf and π1 the prior probability for the first mixture
component. The parameter vector Ψ summarizes all unknown parameters as

Ψ = (π1,β
>
1 ,β

>
2 , φ1, φ2)>,

where the dispersion parameters correspond to the variances as φ1 = σ2
1 and φ2 = σ2

2

in the case of a normal distribution. In the case of an underlying Gamma distribution
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Mod. Distr. Comp. π βk φk #Par.

M
od

el
(5

.1
)

N
or

m
al k=1 π1 β1 = (β11, β12, β13, β14) φ1 = σ1

2

11
k=2 β2 = (β21, β22, β23, β24) φ2 = σ2

2

G
am

m
a k=1 π1 β1 = (β11, β12, β13, β14) φ1 = ν1

−1

11
k=2 β2 = (β21, β22, β23, β24) φ2 = ν2

−1

M
od

el
(5

.2
)

N
or

m
al k=1 π1 β1 = (β11, β12, β13, β14, β15) φ1 = σ1

2

13
k=2 β2 = (β21, β22, β23, β24, β25) φ2 = σ2

2

G
am

m
a k=1 π1 β1 = (β11, β12, β13, β14, β15) φ1 = ν1

−1

13
k=2 β2 = (β21, β22, β23, β24, β25) φ2 = ν2

−1

Table 5.1: Parameters of interest for two-component mixture models

the dispersion parameters correspond to the reciprocal shape parameters through the
relation φ1 = ν−1

1 and φ2 = ν−1
2 . Table 5.1 outlines all unknown parameters within a

two-component mixture model of GNMs (5.3) for the mean functions (5.1) and (5.2).

5.1.2.2 Application Environment in R

All applications are carried out with the new model class "FLXMRnlm" wrapped up in the
package flexmixNL. The specific commands and the access of results in R will be out-
lined for demonstrative purposes within the present section. For detailed explanations
regarding the functionality of flexmix and flexmixNL reference is made to Chapter 3.
The reproducibility of the results is enabled through predefined starting values and a
fixed seed for the random number generation. These settings are outlined in the follow-
ing application specific sections.

The command for fitting a two-component mixture of GNMs with normally distributed
responses is given in Listing 5.6.

1 > library(flexmixNL)

2 > formula = max.flow ~ d + I((a-d)/(1+(b/(temp -40))^(c)))

3 > m1 = flexmix(max.flow ~ temp , k = 2, data = data ,

4 + model = list(FLXMRnlm(formula = formula , family="gaussian",

5 + start = list(list(a=..,b=..,c=..,d=..) ,..))))

Listing 5.6: Fitting command for two-component normal mixtures with flexmix()

The first line loads the package flexmixNL to enable the fitting of nonlinear mixture
models in R. The function flexmix() contains arguments designed for a formula ex-
pression, the number of components and the specific mixture model. The first formula
max.flow ~ temp serves as a placeholder which does not enter the computation of
GNMs in flexmixNL. The number of components k = 2 in the third line determines
a two-component mixture framework. Starting with the fourth code line the distribu-
tional and functional framework of the two-component mixture model is specified. The
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slot formula determines the mean function corresponding to the functional relationship
of Model (5.1) similar to the specification of single nonlinear regression. The output is
stored in m1. In the present setup the EM algorithm, as discussed in Section 2.4, requires
appropriate starting values for the regression coefficient vector β = (β1, β2, β3, β4). The
starting values are in general of considerable importance in order to achieve conver-
gence within the EM algorithm for mixture models. Arbitrary starting values may not
ensure convergence for the provided method which buttress the specification of start-
ing values sufficiently close to the true values. Within the new package flexmixNL for
mixtures of GNMs starting values have to be chosen for every component and every
regression coefficient separately. Technically, the starting values are included as input
data in the command flexmix() through the list start within the model specification
FLXMRnlm(..., start=list(...),...) for each component. In the particular case of
nonlinear regression models it is of special importance that starting values reflect at least
the rough shape of the real results. The fitting of mixture models with flexmix affords
furthermore an initial cluster assignment. The default assignment is randomly set.

The fitting of a two-component Gamma mixture model is executed through the com-
mand given in the following listing:

1 > formula = max.flow ~ -1 + gas.1( temp)

2 > m2 = flexmix(max.flow ~ temp , data = data , k = 2,

3 + model = list(FLXMRnlm(formula = formula , family="Gamma",

4 + start = list(list(a=..,b=..,c=..,d=..) ,..))))

Listing 5.7: Fitting command for two-component Gamma mixtures with flexmix()

The distributional specification is given by the argument family="Gamma". The func-
tional relationship is specified through the argument formula according to the prede-
fined framework within the package gnm.

Another important aspect within the EM approach is an appropriate choice of the num-
ber of components for the mixture of GNMs. The assumed number of components is
supposed to be reasonable for the given data. Special emphasis is given to identifica-
tion problems arising due to empty components or equally parametrized components as
discussed in Section 2.2. Nevertheless, an increasing number of components correlates
with an increasing fitting effort due to additional parameters. Weighing up the addi-
tional benefit of further components with the simultaneously increasing complexity of
the mixture model remains a problem specific task. Therefore regardless of the remain-
ing model specification the choice of the number of components represents a crucial
step when fitting mixture models. The specification of the number of components aims
at an explainable choice for the given data set and an adequate choice for the fitting
procedure. Statistically, the choice is underpinned by appropriate model selection crite-
ria such as those presented in Section 2.7.1 which can be accessed through the function
calls AIC(), BIC() and ICL().
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5.1.2.3 Three-Component Mixture Model

Presuming three mixture components yields the mixture density

fM (yi;µi(β),φ,π) = π1f(yi;µi(β1), φ1)+π2f(yi;µi(β2), φ2)+(1−π1−π2)f(yi;µi(β3), φ3).

The unknown parameter vector Ψ comprises therefore the following parameters,

Ψ = (π1, π2,β
>
1 ,β

>
2 ,β

>
3 , φ1, φ2, φ3)>.

The increase in model complexity is reflected in the summary of all parameters of in-
terest when fitting a three-component mixture model which are listed in Table 5.2 for
mean functions (5.1) and (5.2) and the normal and Gamma distribution.

Mod. Distr. Comp. π βk φk #Par.

M
od

el
(5

.1
)

N
or

m
al k=1 π1 β1 = (β11, β12, β13, β14) φ1 = σ1

2

17k=2 π2 β2 = (β21, β22, β23, β24) φ2 = σ2
2

k=3 β3 = (β31, β32, β33, β34) φ3 = σ3
2

G
am

m
a k=1 π1 β1 = (β11, β12, β13, β14) φ1 = ν1
−1

17k=2 π2 β2 = (β21, β22, β23, β24) φ2 = ν2
−1

k=3 β3 = (β31, β32, β33, β34) φ3 = ν3
−1

M
od

el
(5

.2
)

N
or

m
al k=1 π1 β1 = (β11, β12, β13, β14, β15) φ1 = σ1

2

20k=2 π2 β2 = (β21, β22, β23, β24, β25) φ2 = σ2
2

k=3 β3 = (β31, β32, β33, β34, β35) φ3 = σ3
2

G
am

m
a k=1 π1 β1 = (β11, β12, β13, β14, β15) φ1 = ν1

−1

20k=2 π2 β2 = (β21, β22, β23, β24, β25) φ2 = ν2
−1

k=3 β3 = (β31, β32, β33, β34, β35) φ3 = ν3
−1

Table 5.2: Parameters of interest for three-component mixture models

5.1.3 Predictions

A key aspect of the subsequent applications emerges by the uncertainty of gas flow for
low temperatures. The observations exhibit typically sparse data for low temperatures
whereas very low temperatures may occur even beyond the usual observation range for
outside temperatures of a specific time horizon. The use of mixtures of GNMs enables
the prediction of gas flow comprising individual differences in consumption levels within
the identified components. For this purpose, the expectation of the gas flow for a tem-
perature value xi conditional on the observed variables and the parameter vector Ψ is
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used, respectively

µMi (β) := E[yi|xi,Ψ] =
K∑
k=1

πkµi(βk), i = 1, . . . , n. (5.4)

Equation (5.4) expresses the forecast of gas flow by means of the K-component mixture
of mean functions µ(·) evaluated at the component specific distribution parameters βk
and weighted by the prior probabilities πk for k = 1, . . . ,K. The predictions are subject
to a specific level of uncertainty. Informative indications related to the accuracy of the
predictions can be expressed by confidence intervals. In order to assess the variability of
the mean predictions in subsequent applications, the corresponding confidence intervals
are constructed by the use of the Delta method. Thus, the variance of the mean function
µM (β̂) can be approximated by its gradient and the variance-covariance matrix of the
MLE β̂. The latter was discussed in Section 2.5 and can be approximated by the following
expression

Var(µMi (β̂)) ≈ ∇(µMi (β̂))>Cov[β̂]∇(µMi (β̂)),

where the gradient ∇(µMi (β̂)) ∈ RKP containing the derivatives is given by

∇(µMi (β)) =

(
∂µMi (β)

∂βkp

)
k=1,...,K;p=1,...,P

.

The corresponding confidence interval for µM (β̂) for the confidence level (1−α) can be
derived as

(1− α)% CI(µMi (β)) ≈
(
µMi (β̂)± z1−α/2 ·

√
Var(µMi (β̂))

)
(5.5)

where µMi (β̂) corresponds to the predicted value for temperature xi. Equations (5.4)
and (5.5) will be applied in the subsequent applications in order to predict gas flow for
low temperatures.
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5.2 Gas Flow Data 1

The given data relates to measured values from stations within a gas pipeline network
and stems from the study by Friedl et al. (2012). The data set consists of hourly gas
flow data for the period from January 2004 to June 2009 in degrees Celsius or centi-
grade (°C). The gas flow is measured in kilowatt hours per hour (kWh/h). Additional
information is given by mean daily temperatures from corresponding weather stations
as well as a working day indicator. The objective of the work by Friedl et al. (2012)
was to study the gas flow in dependence on the given air temperature. With a view to
maximize the transportation capacity through the pipelines Friedl et al. (2012) concen-
trated on the standardized daily maximum flows as responses within the used models.
An important aspect of their study was the analysis of the design temperature. The de-
sign temperature refers to the lowest temperature at which the gas supplier has the
obligation to supply gas without failure. In the case of the present data set design tem-
peratures range between −12 °C and −16 °C. As these temperatures rarely occur, less
observations for them are available and gas suppliers rely on predictions which empha-
sizes the importance of accurate statistical models. Figure 5.1 displays the data with the
typical decreasing pattern of gas flow in relation to the outdoor temperature.
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Figure 5.1: Gas flow data 1

Figure 5.1 shows a clear nonlinear dependence structure between the gas flow and the
outdoor temperature with considerable variation of the gas flow data. Furthermore, the
data appear to converge to a lower limit for temperature values exceeding 16 °C. This ef-
fect seems plausible as a minimum gas flow level can be assumed for warm temperatures.
At the negative end of the temperature scale the gas flow exhibits a visible variation with
evident outliers for below-average gas flow as well as high level of consumptions. The
present data sample exhibits sparse data for low temperatures. Considering the gas flow
prediction for these low temperatures it is therefore important to find a suitable non-
linear functional form which enables an adequate fitting of the gas flow. The data raise
furthermore the question of a suitable distribution comprising the variation structure.
The distinction between working days and holidays reveals two different subsets with a
similar pattern.
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5.2.1 Nonlinear Regression

The aim of this section is to explore the given gas flow data by nonlinear regression anal-
ysis and to present new approaches and new results for the problem of modeling gas flow
in transmission networks. The upcoming analysis draws on the selected parametric mod-
els (5.1) and (5.2). For comparative purposes to the original study the daily maximum
gas flow values will be standardized by the empirical mean of the maximal daily gas
flows. Due to the characteristics of the error term distribution of maximum values, the
existing research will be extended by the fitting of models (5.1) and (5.2) to the Gamma
distribution. The measure for the quality of the derived regression coefficients will be
given by the simultaneously computed standard errors and additional graphical visual-
izations of the fitted values. Model selection criteria are given by the information-based
criteria AIC and BIC. The key objective of this analysis is to explore the aforementioned
models and distributions in order to achieve the best model fit. Given these findings the
appropriate model will serve as base for the subsequent fitting with mixtures of GNMs.

5.2.1.1 Gaussian Distribution

Friedl et al. (2012) analyze the available data set on gas flow for different parametric
models with an underlying normal distribution. Therefore the mean function µ(β) and
the variance σ2 have to be estimated which affords the fitting of the regression coeffi-
cient vector β. The fitting of the models (5.1) and (5.2) was carried out with the help of
the function nls(). A discussion of the fitted parameters follows in the next subsections.
The fitted parameters are displayed in Table 5.3.

Model 1
The mean function attains its upper limit at β̂1 = 2.04 and the lower limit at β̂4 = 0.45.
The mean function decreases with shape parameters β̂2 = −32.8 and β̂3 = 6.6. The
corresponding standard errors in Table 5.3 show a small variability of the regression
coefficients proportionate to their sizes. Information on the statistical significance of the
coefficients is often given by the p-values which relate the standard errors to the fitted
coefficients and test the hypothesis that the regression parameter is zero. The present
results yield low p-values (<0.05) indicating statistical significance. As Ritz and Streibig
(2008) point out, the hypothesis tests may be of limited relevance for nonlinear regres-
sion models.

Model 2
Including the working day indicator moves the upper limit of the mean function towards
β̂1 = 2.05 while the lower limit is attained at β̂4 = 0.45. The mean function displays fur-
thermore a stronger decrease given by the shape parameters β̂2 = −34.1 and β̂3 = 6.3.
The regression coefficient β5 for the working day indicator results in β̂5 = −0.05. The
standard errors show a similar relationship in terms of the size ratio to the fitted coef-
ficients compared to the results for model (5.1). Within model (5.2) all five regression
coefficients yield again low p-values (<0.05) indicating statistical significance.
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5.2.1.2 Gamma Distribution

Friedl et al. (2012, p. 38) acknowledge the careful choice of the Gaussian error distribu-
tion when modeling maximal daily gas flow data. The error structure of maximum values
exhibits usually heavy-tails. The daily maximum gas flow requires an adequate distribu-
tion assumption taking into account for the heavy tail characteristics. Figure 5.2 displays
the Q-Q plot for the gas flow data compared to a theoretical normal distribution. The
figure shows an evident discrepancy between the shape of a normal distribution and
the empirical shape of the given data set. The present data sample exhibits evidently
heavier tails as the empirical quantiles spread significantly wider from the compared
(theoretical) normal distribution in the tails.
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Figure 5.2: Q-Q plot of the residuals for the fitted nonlinear model

In order to complement the graphical results the Jarque-Bera test provides a further
statement on the comparison to a potentially normal distribution. The Jarque-Bera test
tests the discrepancy of the underlying empirical distribution to a normal distribution
using the kurtosis and skewness. The null hypothesis states that the skewness and ex-
cess kurtosis correspond each to zero as it is the case within a normal distribution. The
Shapiro-Wilk test serves as another normal distributional test. It states the null hypothe-
sis that the given sample stems from a normal distribution. The Shapiro-Wilk as well as
the Jarque-Bera test both result in a p-value substantially smaller than 0.01 which leads
to a rejection of an underlying normal distribution for the residuals. The present graphi-
cal and inductive results encourage the use of a heavy-tail distribution for the modeling
of maximum gas flow. Based on these conclusions, the Gamma distribution will be used
for the fitting of the gas flow in the remaining section. For this purpose the mean func-
tion µ(β), including the regression coefficients β, and the shape parameter ν have to
be estimated. A special focus will be given to the prediction on design temperatures in
Section 5.2.4.

Model 1
Table 5.3 summarizes the fitted regression coefficients for both distributions. The results
for the Gamma distribution are shown on the right side. Differences to the normal distri-
bution appear primary in the upper asymptotes. The graphical visualizations for model
(5.1) in Figure 5.3 show a clear discrepancy between the modeling of the data for very
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low temperatures. While the normal distribution (blue color) yields an upper asymptote
β̂1 = 2.0 the Gamma distribution (red color) results in a significantly lower value of
β̂1 = 1.9. The coefficients β̂2 = −32 and β̂3 = 8 indicate only low differences in the
shapes of the both curves which is confirmed by the visualization of the results in Figure
5.3. The lower asymptotes of model (5.1) match very closely under the two distribu-
tions. Based on previously made distributional considerations it can be assumed that the
Gamma distribution yields more accurate results for the maximum values compared to
the normal distribution. Within the present example the use of the normal distribution
yields particularly to an over-estimation of the gas flow for design temperatures. Com-
paring the fitted log-likelihood functions and the thereof deduced information criteria
AIC and BIC assign the Gamma distribution a better model fit. Both information criteria
show lower values for the fitted model under a Gamma distribution as summarized in
Table 5.3. The decrease in β1 under a Gamma distribution appears as significant differ-
ence compared to the results from the original study by Friedl et al. (2012, p. 27).

Model 2
The fitted coefficient for the included working day indicator results in β̂5 = −0.05 and
resembles the result under a normal distribution. The coefficients influencing the de-
creasing behavior β̂2 and β̂3 show minor differences compared to those provided by
fitting model (5.1) under the same distribution. Again, all five coefficients are declared
as significant. Figure 5.3 outlines that the inclusion of a working day factor tends to shift
the upper asymptotes slightly higher for the normal distribution. The results indicate a
better fit of the Gamma distribution as the derived AIC and BIC result in lower values.
The inclusion of a working day indicator increases the model accuracy for both distribu-
tions.

Figure 5.3 displays the fitted mean functions for models (5.1) (left figure) and (5.2)
(right figure). The blue colored lines refer to results under a normal distribution while
red colored lines match fitted results under a Gamma distribution. The left figure shows
in general a high matching of the fitted mean function (5.1) under both distributions
except for the upper asymptote which is decreasing under a Gamma distribution. The
right figure vizualizes the fitted mean functions under model (5.2). The dotted lines
refer to the mean function arising from the gas flow on holidays while the solid lines
relate to working days. As expected, the gas flow exhibits a lower level on holidays.
Table 5.3 gives a tabular representation of the fitted regression coefficients for both
models and both distributions with the corresponding standard errors. It furthermore
displays the variance parameters, the log-Likelihood, the AIC and BIC for model com-
parative purposes.
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Fitted lines (Model 1)
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Figure 5.3: Fitted mean function for gas flow data 1 and models (5.1) and (5.2)

Distribution: Normal Gamma

Model: Model (5.1) Model (5.2) Model (5.1) Model (5.2)

β̂1 2.04 2.05 1.92 1.92

s.e.(β̂1) 0.03 0.03 0.03 0.03

β̂2 −32.78 −34.05 −31.99 −33.08

s.e.(β̂2) 0.23 0.24 0.23 0.24

β̂3 6.61 6.28 7.59 7.34

s.e.(β̂3) 0.22 0.20 0.23 0.21

β̂4 0.45 0.45 0.47 0.47

s.e.(β̂4) 0.01 0.01 0.01 0.01

β̂5 - −0.05 - −0.05

s.e.(β̂5) - 0.00 - 0.00

σ̂ 0.13 0.12 ν̂ 55.87 59.68

AIC −2 470 −2 673 −2 734 −2 868

BIC −2 442 −2 639 −2 706 −2 834

Table 5.3: Fitted coefficients, standard errors, information criteria and dispersion param-
eters for gas flow data 1 (nonlinear regression)

Friedl et al. (2012) emphasize the use of flexmix for generalized mixtures of sigmoid
models. The extension of flexmix as introduced in Section 3.4 enables the fitting of mix-
tures of nonlinear models. It will be applied to the gas flow data 1 within the following
section.
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5.2.2 Two-Component Mixtures of GNMs

The aim of this section is to apply mixtures of GNMs to gas flow data 1. The evident
heterogeneity for low temperatures in Figure 5.1 motivates the fitting of the data by
multiple regression functions. Building on the results from single nonlinear regression
in Section 5.2.1, a sigmoid function appears useful for modeling gas flow in general.
Therefore two-component mixture models with sigmoid functions (5.1) and (5.2) will be
applied to gas flow data 1. In order to explore the quality and performance of flexmixNL,
several simulation fittings will be performed for different starting configurations.

Section 5.2.2.1 presents the simulation setup while subsequent sections discuss the fitted
results for two-component mixture models in detail for the normal and Gamma distribu-
tion. Section 5.2.3 draws comparisons between the fitted models. Section 5.2.4 outlines
the predicted gas flow for design temperatures. Final conclusions summarize the main
results in Section 5.2.5.

5.2.2.1 Initial Configuration and the Number of Components

In the given gas flow data higher variability for lower temperatures motivates the use
of two components. Due to the decreasing pattern of gas flow with increasing tempera-
tures, the observations concentrate around a central curve with rare outliers. Therefore,
the following models presume two components which provide a similar global shape
except for the modeling of low temperatures where different predictions are expected.
Corresponding to the original paper Friedl et al. (2012), the normal distribution will be
used to fit the two-component Gaussian mixture model. The nonlinear regression analysis
results in the previous section buttress the use of the Gamma distribution. Therefore
also a two-component Gamma mixture model will be presented as a suitable extension
of the present research. In order to explore the accuracy and performance of the fitting
algorithm provided by flexmixNL, the given data set will be fitted several times with ran-
domly chosen starting values. The ranges for the starting values for the two-component
mixture models are given in Table 5.4. The initial starting values are selected uniformly
from the respective intervals.

Parameter βk1 βk2 βk3 βk4 βk5

Range [1.5; 2.5] [−45; −30] [6; 9] [0.4; 0.55] [−0.5; 0]

Table 5.4: Ranges for starting values for gas flow data 1

The regression coefficient representing the upper asymptote βk1 exhibits the highest
variability stemming from the largest interval in Table 5.4. Varying the upper asymptote
influences the height as well as the shape of the mean functions for k = 1, 2. As both
coefficients stem from the same ranges, the starting configuration for different compo-
nents may coincide or overlap. Figure 5.4 illustrates possible starting values for both
components graphically. Taking into account the very similar shapes of the regression
lines in Figure 5.4, the EM algorithm builds on a difficult starting position considering
the dense structure of the given data set. The fitted results can be reproduced by setting
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Figure 5.4: Starting configuration for gas flow data 1

the random seed equal to set.seed(2357) and tolerance=1e-05 for Gamma mixture
models. The present data set will be fitted 50 times for each model with randomly se-
lected starting values and the default initial cluster assignment in order to obtain an
overview on the quality of the results. Section 5.2.2.2 briefly summarizes the respective
results.

5.2.2.2 Simulation results

Applying the simulation setup in Section 5.2.2.1 provides estimates for all parameters
as listed in Table 5.4. Table 5.5 outlines the mean values of the point estimates and
dispersion parameters for the normal and Gamma distribution. Both distributions were
fitted 50 times for the two models (5.1) and (5.2) with randomly chosen starting val-
ues. The fitted components are ordered decreasing in terms of the prior weights π̂k for
k = 1, 2. The column mean displays the average of the fitted coefficients for each com-
ponent whereas column sd shows the standard deviations over the simulation results.
The results indicate stable fitting results as they point out minor deviations for both dis-
tributions. The simulation results in Table 5.6 for Model (5.2) show a similar positive
performance compared to the previous results due to minor deviations. The subsequent
sections display the fitting of each model under the two distributions in more detail.
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2-Component Gaussian 2-Component Gamma
mean sd mean sd

C
om

po
ne

nt
1 π̂1 0.79 0.00 0.81 0.04

β̂11 2.19 0.00 1.96 0.01

β̂12 −33.73 0.00 −32.07 0.11

β̂13 6.52 0.00 7.61 0.22

β̂14 0.45 0.00 0.47 0.00

σ̂1 0.09 0.00 ν̂1 98.32 2.34

C
om

po
ne

nt
2 β̂21 1.51 0.00 1.66 0.02

β̂22 −29.09 0.00 −31.00 0.30

β̂23 9.62 0.00 7.88 0.50

β̂24 0.49 0.00 0.49 0.00

σ̂2 0.20 0.00 ν̂2 19.11 6.04

Table 5.5: Simulation results for two-component mixtures with Model (5.1)

2-Component Gaussian 2-Component Gamma
mean sd mean sd

C
om

po
ne

nt
1 π̂1 0.81 0.00 0.82 0.00

β̂11 2.20 0.00 1.96 0.00

β̂12 −34.72 0.00 −33.02 0.00

β̂13 6.23 0.00 7.28 0.00

β̂14 0.45 0.00 0.47 0.00

β̂15 −0.04 0.00 −0.04 0.00

σ̂1 0.09 0.00 ν̂1 103.94 0.06

C
om

po
ne

nt
2 β̂21 1.53 0.00 1.66 0.00

β̂22 −30.76 0.00 −32.87 0.00

β̂23 8.83 0.00 7.89 0.00

β̂24 0.48 0.00 0.49 0.00

β̂25 −0.08 0.00 −0.09 0.00

σ̂2 0.19 0.00 ν̂2 20.69 0.02

Table 5.6: Simulation results for two-component mixtures with Model (5.2)
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5.2.2.3 Model 1

Table 5.7 summarizes the fitted coefficients for Model (5.1) for the normal and Gamma
distribution. Both mixture models identify a major component yielding a prior probabil-
ity about 0.8. The estimates for the upper asymptotes of the two components β̂11 and
β̂21 on the other hand show an evident difference when comparing the two different
distributions as they differ about 0.2 units. Considered individually, the mixture mod-
els exhibit the following effect: the coefficients with influence to the shapes of the both
decreasing curves are given by β̂12, β̂13 and β̂22, β̂23. As β̂13 and β̂23 do not differ con-
siderably for the two components of the Gamma mixture models the shape of the curves
is very similar. The normal mixture model exhibits a slightly varying shape in the mean
functions. For the normal distribution the component specific variability is given by the
deviations σ1 and σ2. The smaller deviation in the first component σ̂1 = 0.09 indicates
a concentration within a central component while the second component covers the re-
maining observations with greater variability as σ̂2 = 0.20. The variability of the fitted
values for the Gamma mixture model is given by the estimate shape parameters ν̂1 and
ν̂2 indicating also a significantly higher variability in the second component. Consider-
ing the distinction between working days and holidays indicates a larger gas flow on
working days for both distributions.
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Figure 5.5: Fitted two-component mixtures of normal (left) and Gamma (right) for
Model (5.1)

The fitted regression functions and assigned components are displayed in Figure 5.5.
As the fitted regression functions clearly show, the fitted mean at low temperatures dif-
fers significantly for the two distributions due to the discrepancy of the estimates for
the upper asymptote β̂11 and β̂21. The differences in the fitted values for the disper-
sion parameters (as evident in Table 5.7) indicate one central component comprising
the majority of the observations while the remaining component covers the observations
with higher variability. For Gamma distributed responses this effect is even intensified
due to the mean-dependent variance. The resulting nonlinear regression lines show sig-
nificant differences in the modeling of gas flow for low temperatures below 0 °C due
to the increasing variability. With increasing temperatures the gas flow and its vari-
ability decreases indicating similar shapes for the two components. The corresponding
rootogram in Figure 5.6 outlines the visualization of the component assignments for the
normal distribution. The rootograms indicate a moderate separation due to the dense
data structure. The rootogram in Figure 5.7 for the Gamma distribution shows a simi-
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lar pattern as for the mixture of normal distributions. An improvement in separation is
visible for the first component due to more mass near 1. The quality of the cluster assign-
ment can be derived from the information provided by the summary() function. Listings
5.8 and 5.9 are also informative on the component separation for the two-component
mixture models. They show four columns containing the component specific posterior
probabilities, the final cluster sizes and the overall number of observations assigned to
the specific component with a posterior probability greater than a predefined thresh-
old ε. The component sizes will be referred to as nnormal· for the normal distribution
and nGamma· for the Gamma distribution. The results show a similar assignment to the
two components comparing the normal and Gamma distribution. Small differences arise
through the slightly smaller first component for a normal distribution with component
size nnormal1 = 193 whereas the Gamma distribution yields nGamma1 = 200. The column
post>0 shows the number of observations with a positive posterior probability of lying
in the component. The results reveal a complete overlapping of the two components as
all 2008 observations appear in the first component with a posterior probability greater
zero and nnormal2 = 1980 observations or rather nGamma2 = 1994 in the second com-
ponent. In the case of a two-component mixture of Gaussian models both components
exhibit a moderate separation. Missing peaks at 1 and the visible mass in the center of
the rootogram in Figure 5.6 underpin this finding.
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Figure 5.6: Rootogram for two-component normal mixtures for Model (5.1)
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Figure 5.7: Rootogram for two-component Gamma mixtures for Model (5.1)
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1 > summary(mod1.n)

2 Call:

3 flexmix (...)

4 prior size post >0 ratio

5 Comp.1 0.219 193 2008 0.0961

6 Comp.2 0.781 1815 1980 0.9167

Listing 5.8: summary() output for two-
component Gaussian mixtures for Model
(5.1)

1 > summary(mod1.g)

2 Call:

3 flexmix (...)

4 prior size post >0 ratio

5 Comp.1 0.227 200 2008 0.0996

6 Comp.2 0.773 1808 1994 0.9067

Listing 5.9: summary()

for two-component Gamma mixtures for
Model (5.1)

5.2.2.4 Model 2

Including the working day effect for the fitting of gas flow data 1 requires the use of
Model (5.2) where βk5 represents the additional coefficient. Table 5.7 summarizes the
fitted coefficients for Model (5.2) for both distributions. The third column shows the
results for an underlying normal distribution. The inclusion of a working day effect re-
duces the variability in the second component for an underlying normal distribution. The
ranges of the sigmoid mean functions increase slightly as the upper asymptotes increase
for the normal distribution while the lower bounds decrease. The shape coefficients βk2

and βk3, k = 1, 2, do not exhibit significant changes compared to the model without
a working day indicator. The fourth column in Table 5.7 displays the fitted coefficients
for an underlying Gamma distribution. In contrast to the normal distribution, adding a
working day indicator to the Gamma components does not affect the dispersion signifi-
cantly. The upper and lower asymptotes exhibit a similar but weaker behavior compared
to the normal distribution in terms of an increased range for the sigmoid function. The
fitted coefficients influencing the shape exhibit no significant changes. The quality of
the final cluster assignment is provided again by executing the summary() function and
rootograms for the fitted mixture models with mean function (5.2).
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Figure 5.8: Fitted two-component mixtures of normal (left) and Gamma (right) for
Model (5.2)

The rootograms coincide with Figures 5.6 and 5.7. Listing 5.10 displays the posterior
probabilities for an underlying normal distribution. The greater component with poste-
rior 0.798 realizes in a final cluster size of nnormal2 = 1 828 while in total 1 982 obser-
vations show a posterior probability greater than a threshold ε. The smaller component
with cluster size nnormal1 = 180 covers the whole data set as the complete sample shows
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Rootogram of posterior probabilities > 1e−04
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Figure 5.9: Rootogram for two-component normal mixture for Model (5.2)

Rootogram of posterior probabilities > 1e−04
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Figure 5.10: Rootogram for two-component Gamma mixture for Model (5.2)

a positive posterior probability. Listing 5.11 and the rootogram display the results on the
cluster assignment for an underlying Gamma distribution where the same deductions as
in the previous analysis can be made.

1 > summary(mod2.n)

2 Call:

3 flexmix (...)

4 prior size post >0 ratio

5 Comp.1 0.202 180 2008 0.0896

6 Comp.2 0.798 1828 1982 0.9223

Listing 5.10:
summary() for two-component Gaussian
mixtures for Model (5.2)

1 > summary(mod2.g)

2 Call:

3 flexmix (...)

4 prior size post >0 ratio

5 Comp.1 0.192 157 2008 0.0782

6 Comp.2 0.808 1851 1995 0.9278

Listing 5.11: summary()

for two-component Gamma mixtures for
Model (5.2)

117



CHAPTER 5. MODELING GAS FLOW ON EXITS OF GAS TRANSMISSION NETWORKS

M
ea

n
fu

n
ct

io
n

:
M

od
el

(5
.1

)
M

od
el

(5
.2

)

M
ix

tu
re

m
od

el
:

2-
C

om
po

ne
nt

G
au

ss
ia

n
2-

C
om

po
ne

nt
G

am
m

a
2-

C
om

po
ne

nt
G

au
ss

ia
n

2-
C

om
po

ne
nt

G
am

m
a

R
es

u
lt

s:
M

ea
n

st
d.

er
r.

M
ea

n
st

d.
er

r.
M

ea
n

st
d.

er
r.

M
ea

n
st

d.
er

r.

Component1

π̂
1

0.
79

0.
03

0.
78

0.
07

0
.8

1
0.

0
4

0.
8
2

0.
0
7

β̂
1
1

2.
19

0.
04

1.
96

0.
04

2
.2

0
0.

0
3

1.
9
6

0.
0
4

β̂
1
2

−
3
3.

73
0.

25
−

32
.1

1
0.

27
−

34
.7

2
0.

2
6

−
3
3.

0
2

0.
2
9

β̂
1
3

6.
52

0.
19

7.
60

0.
27

6
.2

3
0.

1
7

7.
2
8

0.
2
5

β̂
1
4

0.
45

0.
01

0.
47

0.
01

0
.4

5
0.

0
1

0.
4
8

.0
1

β̂
1
5

-
-

-
-

−
0
.0

4
0.

0
0

−
0
.0

4
0.

0
1

σ̂
1

0.
09

0.
00

ν̂ 1
98
.3

4
11
.3

3
σ̂

1
0.

0
9

0.
0

ν̂ 1
1
0
3
.9

6
1
4.

0
6

Component2

β̂
2
1

1.
51

0.
05

1.
68

0.
14

1
.5

3
0.

0
6

1.
6
6

0.
1
3

β̂
2
2

−
2
9.

09
0.

47
−

31
.0

1
1.

08
−

30
.7

6
0.

6
9

−
3
2.

8
7

1.
3
5

β̂
2
3

9.
62

1.
41

7.
96

1.
35

8
.8

3
1.

3
8

7.
8
9

1.
4
3

β̂
2
4

0.
49

0.
04

0.
49

0.
02

0
.4

8
0.

0
4

0.
4
9

0.
0
2

β̂
2
5

-
-

-
-

−
0
.0

8
0.

0
2

−
0
.0

9
0.

0
3

σ̂
2

0.
20

0.
01

ν̂ 2
19
.1

1
3.

36
σ̂

2
0.

1
9

0.
0
1

ν̂ 2
2
0.

7
0

4.
3
3

A
IC

−
2

84
5

−
2

92
3

−
3

0
45

−
3

0
5
9

B
IC

−
2

7
83

−
2

86
1

−
2

97
2

−
2

9
8
6

IC
L

−
2

10
5

−
2

09
0

−
2

3
43

−
2

3
2
9

Ta
bl

e
5.

7:
Fi

tt
ed

co
ef

fic
ie

nt
s,

st
an

da
rd

er
ro

rs
,i

nf
or

m
at

io
n

cr
it

er
ia

an
d

di
sp

er
si

on
pa

ra
m

et
er

s
fo

r
ga

s
flo

w
da

ta
1

(t
w

o
co

m
po

ne
nt

s)

118



CHAPTER 5. MODELING GAS FLOW ON EXITS OF GAS TRANSMISSION NETWORKS

5.2.3 Model Comparison

As discussed in Section 2.7.1, the ICL has proven as a suitable criterion for the adequate
choice of the number of components within mixture models. Therefore the comparison
of the fitted mixture models through the well-known criteria AIC and BIC will be comple-
mented by means of the ICL for the underlying data in Figure 5.1. Figure 5.2.3 visualizes
the different outcomes for the fitted Models (5.1) and (5.2). Model (5.1) is referred to
as M1 while M2 corresponds to the mean function (5.2).
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Figure 5.11: AIC,BIC and ICL for fitted models for gas flow data 1

The direct comparison of the single nonlinear regression and the two-component mix-
ture models demonstrates an improvement in the model fit using the second mean func-
tion (5.2). That conclusion is underpinned by the already outlined statistical significance
of the working day indicator within the nonlinear regression model in Section 5.2.1.
The use of the Gamma distribution does not indicate a decisive improvement regarding
the mixture models while the single nonlinear regression results exhibit an evident im-
provement. As the use of the Gamma distribution is highly motivated due to the nature
of the present data it can be stated as the better statistical fit due to general considera-
tions. Drawing on the previous discussion, in the fitted Gamma mixture model the upper
asymptote is attained at a lower level preventing an over-estimation of the gas flow for
lower temperatures. A direct comparison of the predicted values for low temperatures is
given in the subsequent section.

5.2.4 Predictions of Gas Flow on Design Temperatures

An important aspect of the study provided by Friedl et al. (2012) was the accurate pre-
diction of gas flow for design temperatures ranging between −16 °C and −12 °C. In
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order to assess the necessary maximum gas demand even for design temperatures the
gas operator relies on predictions based on the available models. Within this subsection
special attention is given to the prediction of gas flow for design temperature for the
previously fitted Models (5.1) and (5.2). For this purpose discrepancies between the
normal and Gamma assumptions will be outlined. Table 5.8 displays the predicted gas
flow for the exemplary set of design temperature values −12 °C, −14 °C and −16 °C for
the fitted models. The gas flow for design temperature values within mixture models can
be predicted for the underlying mixture models as the overall mean over all components
according to Equation (2.3). The corresponding 95% prediction intervals are outlined
below the predicted values. The construction of the confidence interval follows Equation
(5.5).

The derived results in Table 5.8 give a clear evidence on the discrepancies between the
two distributions for all models. The predicted values are highly driven by the coeffi-
cients β1 representing the value where the fitted mean function attains its maximum.
The predicted gas flow for design temperatures under the fitted Gamma models is sys-
tematically lower compared to the normal distribution. This effect can be attributed
to the lower asymptotes under a Gamma distribution and matches the results on the
coefficients in Table 5.7. As a consequence and due to the shape of the fitted mean func-
tions, the predicted values under the Gamma distribution stabilize faster for decreasing
temperatures. Model (5.2) enables the distinction between working days and holidays.
Therefore under both distributions the predicted gas flow on holidays tends to decrease
compared to working days. Based on the computed predictions in Table 5.8 the lowest
gas flow is being predicted under the Model (5.2) for holidays under the Gamma dis-
tribution. The prediction of the highest gas flow is given with Model (5.2) restricted to
working days under the normal distribution. The use of two-component Gamma mixture
models decreases in general the predicted consumption level in direct comparison to the
predicted values for the nonlinear regression.

The particular modeling of heterogeneity outlined different consumer groups which con-
tribute to the general mean in accordance with their final mixing proportion. As the vari-
ability, particularly for lower temperatures, motivated the use of mixture models their
use can be seen as more appropriate. The predicted values for −12 °C range (after
re-scaling) between 34 MWh/h (Gamma mixture model on holidays) and 36 MWh/h
(normal mixture model on working days). In direct comparison to the original paper by
Friedl et al. (2012, p. 35), where the predicted values for −12 °C ranged between 39

MWh/h and 43 MWh/h, the application of mixture models decreases the predicted gas
flow.
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Design Temperatures: −12 °C −14 °C −16 °C

N
on

li
n

ea
r

re
gr

es
si

on

Model (5.1)

Normal
1.97 1.98 1.99

(1.92, 2.01) (1.94, 2.03) (1.94, 2.04)

Gamma
1.88 1.89 1.90

(1.83, 1.93) (1.84, 1.94) (1.84, 1.95)

Model (5.2)
(holiday)

Normal
1.95 1.97 1.99

(1.91, 1.99) (1.93, 2.01) (1.95, 2.03)

Gamma
1.87 1.88 1.89

(1.82, 1.91) (1.83, 1.93) (1.84, 1.94)

Model (5.2)
(working day)

Normal
1.99 2.01 2.02

(1.95, 2.04) (1.96, 2.05) (1.97, 2.07)

Gamma
1.89 1.90 1.90

(1.84, 1.94) (1.84, 1.95) (1.85, 1.96)

2-
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tu
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s

Model (5.1)

Normal
1.97 1.98 2.00

(1.93, 2.01) (1.94, 2.03) (1.95, 2.04)

Gamma
1.86 1.87 1.87

(1.81, 1.92) (1.81, 1.93) (1.82, 1.94)

Model (5.2)
(holiday)

Normal
1.96 1.98 2.00

(1.93, 2.00) (1.94, 2.02) (1.96, 2.04)

Gamma
1.86 1.87 1.88

(1.81, 1.91) (1.82, 1.92) (1.83, 1.93)

Model (5.2)
(working day)

Normal
1.99 2.01 2.02

(1.95, 2.03) (1.97, 2.05) (1.98, 2.07)

Gamma
1.88 1.89 1.89

(1.83, 1.93) (1.83, 1.94) (1.84, 1.95)

Table 5.8: Prediction of gas flow for design temperatures for gas flow data 1

5.2.5 Final Remarks

Friedl et al. (2012) modeled the gas flow for predefined statistical models in order to ob-
tain reliable predictions concerning the gas flow for design temperatures. For the choice
of two parametric models (5.1) and (5.2), Section 5.2.1 performed the refitting of the
nonlinear regression model for an underlying normal distribution and provided a further
model extension by applying a heavy-tail distribution. The presented analysis was able
to provide improving results for both models with an underlying Gamma distribution
compared to the already available results under a normal distribution. With a specific
focus on very low temperatures (design temperatures) gas owners refer to statistical
models in order to predict the necessary gas demand. Therefore the normal distribution
may lead to an over-fitting for the prediction of gas flow as it does not match the present
data appropriately. The Gamma distribution yields to significantly lower predictions for
the gas flow when focusing on design temperatures. Both models showed an improve-
ment in statistical significance when adding a working day factor to the models under

121



CHAPTER 5. MODELING GAS FLOW ON EXITS OF GAS TRANSMISSION NETWORKS

both distributions while Model (5.2) under a Gamma distribution proved to be the best
fit for the present data set.

As Friedl et al. (2012) emphasized the use of flexmix for generalized mixtures of sig-
moid models, the appropriate extension was introduced in Chapter 3.4. Mixtures of
GNMs were applied to the specific gas flow data 1 in Section 5.2.2. Within this con-
text, the present results were extended through the application of mixtures of GNMs
where both sigmoid regression functions (5.1) and (5.2) were taken into account. The
data motivates the use of mixture models as it exhibits evident heterogeneity for lower
temperatures. The present work applied two-component mixture models for the normal
and Gamma distribution. All models were successfully fitted by the underlying method-
ology from Section 3.4. According to the ICL as suitable model selection criterion, the
two-component mixture models comprising the working day indicator proved as the
most appropriate with the highest model accuracy. The two-component Gamma mixture
model comprising the working day indicator can be highlighted in particular considering
the available results and the specifics of the problem. The present work outlines a de-
crease in the predicted values with the use of mixture models. As mixture models allow
for the necessary flexibility to model heterogeneity in data, the decrease in predicted
values are driven by the specifics of the data. The presented results state a substantive
extension of the work in Friedl et al. (2012) proving the appropriateness of mixture
models for the present data.
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5.3 Gas Flow Data 2

The second data set refers to the gas flow of the market area West Austria (Tyrol and
Vorarlberg in Austria). The data is available on the website of the Austrian balance
group coordinators AGCS Gas Clearing and Settlement AG and can be accessed through
www.energymonitor.at. Considering gas flow data in general, AGCS provides gas flow
data for West and East Austria on quarter-hourly basis. The present analysis consid-
ers the time horizon between January 2013 and December 2017 which corresponds
to 1 553 observation days. In order to achieve a general conclusion on the maximum
transportation capacity for the specific period, the available data is reduced to the
maximum daily gas flow. The derived maxima are merged with the mean tempera-
tures from a measuring station in Vienna (Austria) which can be accessed on the web
page of the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) through https:

//www.zamg.ac.at/cms/de/klima/klimauebersichten/jahrbuch. The final data set is
visualized in Figure 5.12. The time series of the daily gas flow data is displayed on the
left, while its relationship to the outside temperature is given in the scatterplot on the
right.
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Figure 5.12: Gas flow data 2

The figure outlines a clear nonlinear functional relationship between the maximum daily
gas flow and the outside temperature. The present data exhibit the typical pattern for
gas flow by means of increasing variability for an increase in gas flow applicable to low
temperatures. This effect can be attributed to the natural shape of gas flow data. The
data range between 50 and 500 kWh/h. The graphical exploration of the data indicates
the use of an adequate distribution outlining the non-constant variability of the data.
In contrast to other gas flow patterns, this data set shows a heterogeneous consumption
for high temperatures which is usually explainable as a minimum constant energy share.
The present data reveal a clear separation in gas flow for high temperatures which indi-
cates two different consumption levels. A visualization of the data in Figure 5.13 displays
the consumption levels with distinction between holidays and working days in Austria
which can be considered as the main driver for the heterogeneity for high temperatures.
Figure 5.13 clearly outlines a lower consumption level on holidays (455 data points) on
the right with smaller variability compared to the pattern on working days. Based on this
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Figure 5.13: Gas flow data 2 with distinction working days (right) and holidays (left)

visualization, a reduced gas consumption on holidays can be concluded. The remaining
data can be attributed to the gas consumption on working days (1 098 data points) which
induces the variability and the higher constant consumption level. The higher compo-
nent containing the majority of the data points exhibits therefore a higher scattering and
a clearly higher variability in gas consumption for low temperatures below zero. Both
components comprise a significant variability which increases with decreasing outside
temperatures. Given these conclusions, the Gamma distribution appears as an adequate
choice for modeling the present mean dependent variation structure.

The main purpose of the subsequent analysis is to prove the adequacy of mixtures of
GNMs as a suitable statistical model for the present data set. Drawing on the fitted mod-
els, special focus will be given to the prediction of gas consumption for low temperatures
exceeding the available observed data. Representative design temperatures will be given
below −12 °C which is considered as convenient for the climate region. Technical and
methodological assumptions are presented in the subsequent section.

5.3.1 Two-Component Gamma Mixture Models

Due to the nature of the maximum daily gas flow and the increasing variability in de-
pendence of the outside temperature, the subsequent fitting of mixtures of GNMs will
focus on the Gamma distribution for the components. The fitting was also provided with
the use of a normal distribution for comparative analysis. The application of normal
components failed in the detection of two different minimum consumption levels due
to the underlying constant variance structure within the components. A brief discussion
on misfits and possible extensions is outsourced to Section 5.3.5. In order to achieve
conclusive predictions for design temperatures below −12 °C, a mixture of GNMs will be
applied to the data set. The derived model serves as a basic model class for the prediction
of gas consumption for design temperatures where the sigmoid mean function (5.1) will
be applied. As the graphical visualization in Figure 5.13 reveals, different consumption
levels are being observed on working days and holidays. Therefore, the present work
will address the adequacy of the sigmoid mean function including a holiday indicator by
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Figure 5.14: Starting configuration for gas flow data 2

means of Model (5.2).

5.3.1.1 Initial Configuration and Number of Components

In order to achieve reliable results, the data set will be fitted 50 times with randomly
chosen starting values. The starting values are uniformly selected from the ranges as
displayed in Table 5.9. Possible starting configurations are displayed in Figure 5.14. Due
to the various configurations and the strong overlapping of the two components, the per-
formance of the underlying EM algorithm is challenged. The initial cluster assignment is
randomly set (default in flexmix()). The simulation procedure is repeatable by setting
set.seed(2357) and max.iter=100 as control variables. Due to the two evident mini-
mum gas flow levels, the present study will focus in the beginning on two-component
mixture models. The number of components will be increased in a subsequent step.

Parameter βk1 βk2 βk3 βk4 βk5

Range [390; 530] [−35; −28] [4; 6] [65; 120] [0; 0.5]

Table 5.9: Ranges for starting values for gas flow data 2

The subsequent sections discuss the results of the application of two-component Gamma
mixture models to the present data set as displayed in Figure 5.12. The underlying
regression functions are given by Models (5.1) and (5.2).

5.3.1.2 Simulation Results

Table 5.10 summarizes the results of the fitting, based on randomly chosen starting val-
ues as defined in Table 5.9. The results are given by the mean values of the derived point
estimates and the corresponding standard deviation. The results refer to both sigmoid
regression functions through Model (5.1) and Model (5.2). The overall results indicate
reliable fitted values due to the manageable standard deviations. Considering the ap-
plication of Model (5.1), one misfit was excluded in order to avoid a bias in the final
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Model (5.1) Model (5.2)
mean sd mean sd

C
om

po
ne

nt
1 π̂1 0.66 0.00 0.52 0.00

β̂11 396.93 0.00 423.65 0.62

β̂12 −28.49 0.00 −30.22 0.04

β̂13 6.13 0.00 6.81 0.03

β̂14 110.72 0.00 116.50 0.07

β̂15 - - 0.08 0.00

ν̂1 63.36 0.02 93.40 1.68

C
om

po
ne

nt
2 β̂21 522.91 0.08 393.71 1.24

β̂22 −35.13 0.00 −26.31 0.08

β̂23 4.84 0.00 5.39 0.03

β̂24 69.04 0.00 68.44 0.02

β̂25 - - 0.22 0.00

ν̂2 42.49 0.02 35.92 0.49

Table 5.10: Simulation results for two-component Gamma mixtures with Models (5.1)
and (5.2)

results. The number of iterations ranges between 55 and 84 when fitting Model (5.1)
and between 19 and 40 for the second model including a working day indicator.

5.3.1.3 Model 1

Considering Model (5.1), the fitting procedure succeeds to reveal two components corre-
sponding to the evidently different consumption levels for higher temperatures. The two
fitted components appear moderately separated due to the dense data structure which
is underpinned by the rootogram in Figure 5.16. The centered mass in the rootogram
indicates overlapping observations for the two components. The higher component ex-
hibits a greater variability and comprises the majority of the data points which reflects
the original data structure as displayed in Figure 5.13. The results show that the gas
consumption on working days tends to exceed those on holidays for outside tempera-
tures above zero degrees Celsius. This relation twists for outside temperatures below
zero degrees Celsius where the consumption on working days stabilizes at 397 kWh/h,
while those on holidays increases to 523 kWh/h. This effect is clearly evident in the vi-
sualization of lower temperatures in Figure 5.15 (on the right). It furthermore reveals
that most of the data points lying in the lower temperature region are allocated to the
upper component with higher consumption levels and greater variability. Outliers above
450 kWh/h are allocated to the second component indicating the sharp increase to the
upper asymptote at 523 kWh/h.

5.3.1.4 Model 2

The two-component Gamma mixture with Model (5.2) includes the information on
working days and holidays for the gas flow data 2. The fitted components and mean
functions are displayed in Figure 5.17 where the dashed lines refer to the gas flow on
holidays. Similar to the application of Model (5.1), the fitted components succeed to
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Figure 5.15: Fitted two-component Gamma mixture for Model (5.1)

Rootogram of posterior probabilities > 1e−04
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Figure 5.16: Rootogram for two-component Gamma mixture for Model (5.1)
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Figure 5.17: Fitted two-component Gamma mixture for Model (5.2)

Rootogram of posterior probabilities > 1e−04

0

75

150

225

0.0 0.2 0.4 0.6 0.8 1.0

Comp. 1

0.0 0.2 0.4 0.6 0.8 1.0

Comp. 2

Figure 5.18: Rootogram for two-component Gamma mixture and Model (5.2)

model the two different minimum gas flow levels. The fitted mean functions show in-
tersections which can be attributed to the dense structure of the data and the different
shapes of the fitted curves. While the smaller component exhibits a more bellied shape
with smaller variability, it is also embedded in the greater component yielding a consid-
erable overlapping of the components. The rootogram in Figure 5.18 outlines a moderate
separation due to the evident overlapping. Nevertheless, the different component allo-
cation for the use of Model (5.2) results in a decrease of the upper asymptotes within
the mixture model. As a consequence, the predicted gas flow for design temperatures is
assumed to realize in smaller values compared to the use of Model (5.1).
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Model (5.1) Model (5.2)
mean s.e. mean s.e.

C
om

po
ne

nt
1 π̂1 0.66 0.04 0.52 0.04

β̂11 396.93 11.12 424.36 15.34

β̂12 −28.49 0.44 −30.28 0.60

β̂13 6.13 0.34 6.79 0.50

β̂14 110.72 2.13 116.43 1.82

β̂15 - - 0.08 0.01

ν̂1 63.34 4.55 91.29 12.72

C
om

po
ne

nt
2 β̂21 522.96 58.45 392.15 17.99

β̂22 −35.13 1.85 −26.21 0.75

β̂23 4.84 0.39 5.43 0.43

β̂24 69.04 2.97 68.45 3.16

β̂25 - - 0.22 0.02

ν̂2 42.50 4.26 36.50 3.53

AIC 15 628 16 326

BIC 15 687 15 245

ICL 16 300 16 326

Table 5.11: Fitted coefficients, standard errors, information criteria and dispersion pa-
rameters for gas flow data 2 (two components)

5.3.2 Three-Component Gamma Mixture Models

The two-component Gamma mixture models indicate already a good fit as they suc-
ceed to identify the two heterogeneous minimum consumption levels. They furthermore
reveal two components for the gas flow for low temperatures. As the first component
comprises the majority of the observations and exhibits still a considerable scattering,
the present section discusses the possible benefit of adding a third component in order
to deal with the remaining variability.

5.3.2.1 Simulation results

Table 5.12 displays the results for 49 simulation runs for the three-component Gamma
mixture model with Model (5.1). Within this context, the gas flow data 2 was fitted 50

times by uniformly chosen starting values stemming from the ranges in Table 5.9. One
fitting result was excluded due to noticeable deviations in the log-likelihood and the
ICL. The respective mixture model produced a splitting of the lower component whereas
the upper component is considered to comprise inherent variability. Applying Model
(5.1) yields satisfiable and stable results with major deviations in the upper and lower
asymptotes. All simulation runs identified three distinct components. The control vari-
ables remain unchanged compared to the fitting of the two-component mixture model
for reasons of comparability.
The results for the application of the three-component Gamma mixture models to Model
(5.2) is displayed in Table 5.12 on the right side. The results in Table 5.12 comprise
29 fitted mixture models with three identified components. The algorithm drops com-
ponents below the minimum prior threshold of 0.05 by default resulting in 12 fitted
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Model (5.1) Model (5.2)
mean sd mean sd

C
om

po
ne

nt
1 π̂1 0.47 0.02 0.55 0.02

β̂11 415.95 2.22 438.39 4.37

β̂12 −29.73 0.11 −30.85 0.35

β̂13 7.22 0.05 6.59 0.05

β̂14 116.29 0.25 115.69 0.47

β̂15 - - 0.07 0.00

ν̂1 110.13 3.85 98.44 2.36

C
om

po
ne

nt
2 π̂2 0.33 0.00 0.32 0.03

β̂21 522.36 2.06 364.50 4.43

β̂22 −35.53 0.06 −24.44 0.50

β̂23 4.89 0.01 6.80 0.07

β̂24 69.77 0.03 70.55 0.64

β̂25 - - 0.25 0.01

ν̂2 48.84 0.19 98.45 7.07

C
om

po
ne

nt
3 β̂31 340.83 3.47 552.77 36.90

β̂32 −24.43 0.26 −34.78 1.35

β̂33 6.40 0.08 3.64 0.81

β̂34 105.20 0.04 70.94 3.32

β̂35 - - 0.17 0.02

ν̂3 78.33 1.64 22.64 10.94

Table 5.12: Simulation results for three-component Gamma mixtures with Models (5.1)
and (5.2)

two-component mixture models. The remaining models reached the maximum num-
ber of iteration steps 200 which terminated the fitting procedure without convergence.
Compared to the three-component mixture models with Model (5.1), the inclusion of
a working day indicator allocates more sample points to the first component. Model
(5.2) aims in general to identify components with the information on working days and
holidays. On that account, the identification of three components appears challenging.
The smaller component exhibits higher deviations for the upper asymptote which can
be attributed to the remaining variability of the data. The results can be considered as
satisfiable as the point estimates in Table 5.12 show minor deviations.

5.3.2.2 Model 1

Figure 5.19 displays the gas flow data 2 colored by the component classification of the fit-
ted three-component Gamma mixture model with Model (5.1). The major advancement,
compared to the fitted components of the two-component mixture model, appears by the
splitting of the upper component into two subgroups. The latter identify the minimum
consumption level stemming from gas flow on working days. Both components diverge
for temperatures below 20 °C where one component exhibits a more bellied shape up to
an intersection at 7 °C. The further shapes show an evident discrepancy where the two
components attain their upper asymptotes at 418 kWh/h and 520 kWh/h. The lowest
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asymptote exhibits the same pattern as before within the two-component model where
it coincides roughly with the gas flow on holidays.
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Figure 5.19: Fitted three-component Gamma mixture for Model (5.1)

Rootogram of posterior probabilities > 1e−04
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Figure 5.20: Rootogram for three-component Gamma mixture and Model (5.1)

The fitted regression coefficients for the three-component mixture model for both mean
functions are shown in column mean in Table 5.13. The standard errors are given in the
columns std.err. For reasons of comparability, the model selection criteria AIC, BIC and
ICL are outlined for each model. A comparison of all fitted models is discussed in the
subsequent section.

5.3.2.3 Model 2

The fitted components and mean functions of the gas flow data 2 by a three-component
Gamma mixture and Model (5.2) are displayed in Figure 5.21. The addition of a third
component yields a decrease in variability of the already identified two-component mix-
ture model. The third component exhibits a linear pattern and high variability compris-
ing outliers, particularly evident for gas flow observations ranging between 1 °C and
22 °C. The rootogram in Figure 5.22 and Listings 5.12 and 5.13 indicate a moderate
separation.
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Figure 5.21: Fitted three-component Gamma mixture with Model (5.2) for working days
(left) and holidays (right)

Rootogram of posterior probabilities > 1e−04
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Figure 5.22: Rootogram for three-component Gamma mixture with Model (5.2)

1 > summary(m3.g)

2 prior size post >0 ratio

3 Comp.1 0.325 472 1517 0.3111

4 Comp.2 0.489 951 1487 0.6395

5 Comp.3 0.186 130 1442 0.0902

Listing 5.12: summary() output for three-
component mixture model and Model
(5.1)

1 > summary(m3.gd)

2 prior size post >0 ratio

3 Comp.1 0.134 53 1553 0.0341

4 Comp.2 0.537 1054 1515 0.6957

5 Comp.3 0.330 446 1484 0.3005

Listing 5.13: summary() output for three-
component mixture model and Model
(5.2)

5.3.3 Model Comparison

The present data set exhibits heterogeneous consumption structures for higher outside
temperatures where both mixture models motivate the use of two different components.
Simultaneously, the variability of the remaining observations initiates different compo-
nents for the gas flow above the minimum consumption levels. The statistical model
accuracy of the fitted mixture models can be compared by the AIC, BIC and ICL. Figure
5.23 displays the corresponding values for the fitted models.
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Model (5.1) Model (5.2)
mean std.err mean std.err

C
om

po
ne

nt
1 π̂1 0.46 0.07 0.53 0.04

β̂11 417.65 16.02 440.42 13.12

β̂12 −29.80 0.63 −31.03 0.48

β̂13 7.22 0.54 6.62 0.36

β̂14 116.34 2.18 115.95 1.64

β̂15 - - 0.07 0.01

ν̂1 111.58 16.21 100.25 10.11

C
om

po
ne

nt
2 π̂2 0.33 0.03 0.33 0.04

β̂21 519.51 63.11 367.18 9.88

β̂22 −35.47 1.95 −24.72 0.41

β̂23 4.90 0.40 6.84 0.37

β̂24 69.81 2.73 70.88 1.74

β̂25 - - 0.24 0.01

ν̂2 48.96 5.26 103.66 15.59

C
om

po
ne

nt
3 β̂31 342.72 16.21 544.30 228.57

β̂32 −24.56 0.96 −34.11 9.87

β̂33 6.35 0.74 3.32 1.17

β̂34 105.25 5.10 70.21 20.57

β̂35 - - 0.18 0.07

ν̂3 77.98 13.55 17.89 3.27

AIC 15 568 15 109

BIC 15 659 15 216

ICL 16 736 16 277

Table 5.13: Fitted coefficients, standard errors, information criteria and dispersion pa-
rameters for gas flow data 2 (three components)
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Figure 5.23: AIC, BIC and ICL for fitted models for gas flow data 2

The two-component mixture models result in similar values for the AIC, BIC and ICL.
The addition of a third component increases the model complexity through additional
distributional parameters while it yields a decrease in model accuracy considering the
model selection criteria. The three-component mixture for Model (5.2) results in a lower
ICL compared to Model (5.1) indicating a gain in model accuracy. Taking into consider-
ation the linear structure and high variability of the third component (Figure 5.21), the
latter comprises mainly outliers and does not exhibit the typical nonlinear shape for gas
flow. The same mixture with Model (5.1) identifies otherwise a third gas flow compo-
nent exhibiting a sigmoid shape. Therefore, the latter can be assumed to fit the shape of
the present data set in a more reasonable way.

5.3.4 Predictions of Gas Flow on Design Temperatures

A key aspect of modeling gas consumption in dependence of outside temperature is
given by the accurate prediction of gas flow for low temperatures. Within the present
data sample, as displayed in Figure 5.12, the gas flow attains temperatures up to a level
of about −10 °C. The fitted mean functions enable the prediction of gas flow for design
temperatures for low temperatures below the observed values. The predicted values for
the temperatures −12 °C, −14 °C and −16 °C are displayed in Table 5.14. In order to
assess the variability of the predicted values, the 95% confidence intervals are displayed
as additional information.
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Design Temperatures: −12 °C −14 °C −16 °C
2

C
om

po
n

en
ts Model (5.1) Gamma

414.9 418.9 422.1

(396.4, 433.5) (398.5, 439.2) (400.1, 444.0)

Model (5.2)

(holiday)
Gamma

377.0 381.3 385.0

(366.7, 387.9) (369.9, 392.8) (373.0, 396.9)

Model (5.2)

(working day)
Gamma

401.4 403.0 404.2

(387.6, 415.2) (388.6, 417.3) (389.3, 419.0)

3
C

om
po

n
en

ts Model (5.1) Gamma
412.5 416.1 419.0

(440.6, 384.5) (386.3, 445.9) (387.7, 450.4)

Model (5.2)

(holiday)
Gamma

387.5 392.3 396.4

(365.4, 409.6) (369.4, 415.3) (372.6, 420.2)

Model (5.2)

(working day)
Gamma

411.6 414.1 416.2

(382.8, 440.4) (383.5, 444.7) (383.8, 448.7)

Table 5.14: Prediction of gas flow for design temperatures for gas flow data 2

The predicted values exhibit differences up to 36 kWh/h. Large deviations in the pre-
dicted values arise in direct comparison between the application of Models (5.1) and
(5.2), restricted to holidays. While Model (5.1) yields predictions for gas flow about
422 kWh/h, Model (5.2) predicts a flow about 404 kWh/h on working days and 385

kWh/h on holidays for a daily mean temperature −16 °C. As previously outlined, Model
(5.2) attributes less importance to the outliers at the upper gas flow range. This effect
is reflected in the predicted values through significantly higher predictions with Model
(5.1). The addition of a third component yields opposite effects for the two different
mean functions. The three-component model yields a decrease in predicted gas flow
compared to the two-component model for mean function given by Model (5.1). The
same approach increases the predicted values for Model (5.2).

5.3.5 Final Remarks

The specific gas flow data 2 in Figure 5.12 exhibits the typical gas flow pattern by means
of an increasing variability for decreasing outside temperatures. It shows furthermore
the specifics of two minimum gas flow levels. The presented applications indicate that
the two-component Gamma mixture model succeeds to identify the evident heteroge-
neous structure. Alternative approaches comprise the application of the normal distribu-
tion for the components. The application of the two-component normal mixture model
fails to identify the two different levels of minimum gas flow for higher temperatures.
This misfitting can be attributed to the distributional property of constant variances
within normally distributed components. The Gamma distribution succeeds to model the
increasing variability in the present data set which proves as a suitable application for
the present model class. Building on the presented results, the two-component Gamma
mixture models show a better model accuracy compared to the three-component Gamma
mixture models for the gas flow data 2.
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5.4 Gas Flow Data 3

The third data set stems from an European gas distribution point available on the trans-
parency platform for European gas providers https://transparency.entsog.eu/ un-
der the Energy Identification Code (EIC) 27ZG-UVAL-CZ-PLZ. The website provides a
transparency platform for gas transmission and is supplied by the European Network
of Transmission System Operators for Gas (ENTSOG). The considered time span ranges
from September 2016 to September 2018. The corresponding data sample comprises
gas flow data on hourly basis which was reduced to the maximum daily gas flow for
the present analysis (757 points). The gas flow is measured in kilowatt hours per hour
(kWh/h). The available gas flow data was merged with the mean temperatures from
ZAMG (2018) from Austria in degrees Celsius (°C) which is considered as representative
for the climate region. The resulting daily gas flow data 3 is displayed in Figure 5.24 by
means of the time series and the scatterplot of the gas flow in dependence to the outside
temperature.
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Figure 5.24: Gas flow data 3

The scatterplot in Figure 5.24 (on the right) reveals two evident components in the
present data set. The main component, comprising the majority of the data points, ex-
hibits a nonlinear consumption level from 3 000 kWh/h to a maximum of 15 000 kWh/h.
Simultaneously, the data shows a second component exhibiting a higher consumption
level ranging from 7 000 kWh/h to 20 000 kWh/h. The two evident components ap-
pear as parallel bands with a low level of overlapping between them. The present data
structure resembles the synthetic data set in the simulation study in Chapter 4. The latter
aimed to simulate two different sized components representing heterogeneous consump-
tion levels, as for example, between private households and industrial customers. As the
fitting procedure obtained already satisfiable results for the synthetic data set, the appli-
cation to gas flow data 3 appears even more insightful on the performance of the new
algorithm. As supplementary information, the data set is visualized in dependence of
working days and holidays in Figure 5.25.
Therefore, the higher consumption level in Figure 5.24 may be attributed to the indus-
trial sector as it appears on working days (defined from Monday to Friday). As both com-
ponents share the same level of consumption given by the lower component, the daily
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Figure 5.25: Gas flow data 3 with distinction working days (right) and holidays (left)

indicator is not considered as a decisive variable in the mixture modeling. Exemplary,
the reduction of the data to working days reveals no structural change in the data which
exhibits still the same heterogeneity as visible in the original data set. The present data
are furthermore assumed to consist of two heterogeneous consumption groups where
the daily indicator does not provide a key information. Given the present heterogeneity
in the data, the use of a mixtures with Model (5.1) as mean function appears useful.
Therefore, the two components are fitted simultaneously ensuring component specific
consumption modeling given a joint mixture distribution.

5.4.1 Two-Component Mixtures of GNMs

The present data exhibit a considerable scattering even for very high temperatures where
other gas flow data converge to a so-called minimum consumption level. This effect
distorts the typical increase in variability for low temperatures and generates a band-like
structure in the present data. Based on these considerations, the subsequent analysis will
focus on two-component mixture models with components based on the normal and the
Gamma distribution and Model (5.1).

5.4.1.1 Initial Configuration and Number of Components

In order to achieve reliable results, the present data set will be fitted 50 times with ran-
domly selected starting values. The starting values stem from the ranges as displayed
in Table 5.9. Possible starting configurations are displayed in Figure 5.26. Due to the
various initial configurations, the performance of the underlying EM algorithm is chal-
lenged. The initial cluster assignment of the sample points is randomly set (default in
flexmix()). The simulation procedure is repeatable by setting set.seed(2357).

Parameter βk1 βk2 βk3 βk4

Range [10 000; 20 000] [−35; −28] [4; 10] [2 000; 8 000]

Table 5.15: Ranges for starting values for gas flow data 3
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Figure 5.26: Starting configuration for gas flow data 3

The subsequent sections discuss the fitted two-component mixture models for the gas
flow data 3 as displayed in Figure 5.24. The underlying distributions are given by the
normal and Gamma distribution while Model (5.1) specifies the mean function.

5.4.1.2 Simulation Results

Table 5.16 displays the results for the simulation runs through the mean values and stan-
dard deviations of the fitted point estimates. The fitted components are ordered in de-
creasing order with respect to the prior weights. The results for the normal and Gamma
distribution indicate similar results. The majority of the data points is attributed to the
lower component which exhibits a smaller variability compared to the upper compo-
nent. The upper component differs slightly in the shape of the mean function between
the two distributions. The Gamma distribution produces even broader ranges for the
upper component. Considering the diverse starting configurations in Figure 5.26, the
results are satisfactory and reliable due to the manageable standard deviations over all
fitted coefficients. The number of iterations ranges between 60 and 70 for the normal
distribution and between 30 and 39 for the Gamma distribution.

5.4.1.3 Two-Component Normal Mixture Model

The two-component mixture model with an underlying normal distribution identifies
two band-like components along Model (5.1) as mean function. The shapes of the two
mean functions exhibit a strong similarity while the upper component is still steeper and
slightly bellied. Additionally, the upper component exhibits a greater variability which
is underpinned by the differences in σ̂1 and σ̂2 in Table 5.17. Therefore, the upper com-
ponent comprises those values with higher gas flow levels as well as outliers compared
to the main (lower) component comprising the majority of the data points. The fitted
components are displayed in Figure 5.27 with the corresponding mean functions. The
observations are colored according to the final component allocation.
The fitted components reveal two different consumption levels for the overall tempera-
ture range. They are well-separated as the data exhibit a band-like structure and a low
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2-Component Gaussian 2-Component Gamma
mean sd mean sd

C
om

po
ne

nt
1 π̂1 0.75 0.00 0.74 0.00

β̂11 11 963.84 0.23 12 176.25 0.06

β̂12 −32.23 0.00 −32.30 0.00

β̂13 6.35 0.00 6.54 0.00

β̂14 3 020.60 0.10 2 982.68 0.03

σ̂1 916.97 0.23 ν̂1 42.88 0.01

C
om

po
ne

nt
2 β̂21 16 723.85 1.29 17 095.62 1.20

β̂22 −30.98 0.00 −31.30 0.00

β̂23 7.37 0.00 6.33 0.00

β̂24 7 883.43 0.86 7 511.06 0.10

σ̂2 1 852.22 1.22 ν̂2 26.12 0.03

Table 5.16: Simulation results for two-component mixtures with Model (5.1)
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Figure 5.27: Fitted two-component normal mixture for Model (5.1)

Rootogram of posterior probabilities > 1e−04
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Figure 5.28: Rootogram for fitted two-component normal mixture for Model (5.1)
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Figure 5.29: Fitted two-component Gamma mixture for Model (5.1)

overlapping between the two components. The rootogram in Figure 5.28 underpins the
conclusion on the separation where little mass is concentrated in the center of the scale.
It actually reveals a clear allocation to the components by means of concentrated mass
at zero and one. As the modeling of gas flow for design temperatures is of particular
interest, the respective temperatures are displayed separately in Figure 5.27 in the right
graphics. The predicted gas flow depends on the fitted mean functions and the prior
weights of the fitted components. A discussion on the prediction of gas flow for design
temperatures for gas flow data 3 is given in Section 5.4.3.

5.4.1.4 Two-Component Gamma Mixture Model

The two-component Gamma mixture model reveals two well separated components
for Model (5.1). The fitted components and mean functions are displayed in Figure
5.29 (colored according to final component allocation) and resemble those of the two-
component normal mixture model. The lower component comprises again the majority
of the data points and exhibits a lower variability compared to the upper component.
This conclusion is reflected by the fitted shape parameters ν̂1 and ν̂2 in Table 5.17. The
fitted components are well-separated and the rootogram corresponds in general to those
given by the two-component normal mixture model. The fitted coefficients and their
standard errors are displayed in Table 5.17.

5.4.2 Model Comparison

This section briefly summarizes the specifics of the fitted models for the gas flow data 3
as displayed in Figure 5.24. The fitted coefficients in Table 5.17 indicate very similar re-
sults for the use of the normal and the Gamma distribution due to the band-like structure
of the data. The fitted components for an underlying Gamma distribution reveal notice-
able greater ranges as the fitted coefficients for the upper asymptotes exceed those of
the normal distribution for both components. Taking into account the model selection
criteria, the latter attribute the two-component Gamma mixture model a significant gain
in accuracy as, for example, the ICL drops to 13 499 compared to the normal distribution
(ICL=13 607). Based on these conclusions, the two-component Gamma mixture model
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2-Component Gaussian 2-Component Gamma
mean s.e. mean s.e.

C
om

po
ne

nt
1 π̂1 0.75 0.04 0.74 0.03

β̂11 11 964.18 397.34 12 176.12 616.80

β̂12 −32.23 0.54 −32.30 0.80

β̂13 6.35 0.48 6.54 0.49

β̂14 3 020.74 99.94 2 982.61 57.41

σ̂1 917.31 45.85 ν̂1 42.91 3.44

C
om

po
ne

nt
2 β̂21 16 725.70 764.06 17 093.18 1 598.78

β̂22 −30.98 1.09 −31.30 2.02

β̂23 7.37 1.77 6.33 1.73

β̂24 7 884.68 449.15 7 510.86 383.63

σ̂2 1 850.46 209.02 ν̂2 26.07 4.46

AIC 13 511 13 386

BIC 13 562 13 437

ICL 13 607 13 499

Table 5.17: Fitted coefficients, standard errors, information criteria and dispersion pa-
rameters for gas flow data 3 (two components)

can be considered as the more appropriate model for the present gas flow data 3.

5.4.3 Predictions of Gas Flow on Design Temperatures

The previously discussed models succeed to describe the heterogeneous band-like struc-
ture of the present data set. The data was fitted for the normal and Gamma distribution
for Model (5.1). Both mixture models yield similar results for the fitted mean functions
whereas the two-component Gamma mixture model indicates a better statistical signifi-
cance. The two-component mixture models are suitable to compute predictions for gas
flow for low temperatures beyond the observed temperatures. The predicted values are
displayed in Table 5.18 and yield similar results for both distributions. As the Gamma
distribution attains slightly higher upper asymptotes for both components, the predicted
values exceed those for the normal distribution. Exemplary, the predicted gas flow for
−16 °C estimates about 13 215 kWh/h for the Gamma distribution whereas the normal
distribution yields a gas flow prediction about 12 952 kWh/h. The 95% confidence inter-
vals are furthermore wider for the Gamma distribution which can be attributed to the
higher standard errors for the respective coefficients.

5.4.4 Final Remarks

The present gas flow data 3, as displayed in Figure 5.24, exhibits the specific gas flow
pattern with two band-like structured components. The upper component includes less
data points while it exhibits a greater scattering compared to the lower component.
A similar gas flow pattern was considered in order to trial the performance of the new
fitting method for mixtures of GNMs by means of a simulation study in Chapter 4. There-
fore, synthetic data sets represented two consumption groups with different consump-
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Design Temperatures: -12 °C -14 °C -16 °C

2-
C

om
po

n
en

t
Model (5.1) Normal

12 820.4 12 894.7 12 951.9

(12 220.6,

13 420.2)

(12 266.3,

13 523.2)

(12 299.2,

13 604.6)

Model (5.1) Gamma
13 071.8 13 152.8 13 215.1

(12 112.6,

14 031.0)

(12 137.22,

14 168.3)

(12 153.0,

14 277.2)

Table 5.18: Prediction of gas flow for design temperatures for gas flow data 3

tion levels and sizes. The present gas flow data 3 correspond to real data which were
fitted by the sigmoid mean function given by Model (5.1) for the normal and Gamma
distribution. The evident band-like structure motivates the use of a two-component mix-
ture model in order to comprise the two different consumptions levels. Both mixture
models yield similar results regarding the fitted mean functions and the predicted gas
flow for design-temperatures. Considering an underlying Gamma distribution, the up-
per asymptotes of the components attain slightly higher values compared to those of a
normal distribution. The two-component Gamma mixture model proves furthermore as
the statistically more significant model due to well-known model selection criteria.
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5.5 Conclusions

The present Chapter discussed advanced applications for the modeling of gas flow by
means of mixtures of GNMs. Mixtures of GNMs add a certain degree of flexibility in the
modeling as they provide additional model parameters as well as an advanced distribu-
tional setting. Based on the work of Friedl et al. (2012), the nonlinear regression model
(5.1) with Gamma distributed responses appeared as an insightful extension of the al-
ready available results. The results indicate a suitable approach for the given data set
and the used sigmoid growth curve despite the dense structure of the data. Further com-
putations were made with an additional predictor variable denoting working days and
holidays which increased the model accuracy in general. The subsequent application of
the new class of mixtures of GNMs focused on the fitting of gas flow for two-component
mixture models. The two-component Gamma mixture model proved as a suitable model
for gas flow data. The application of mixtures of GNMs yields decreasing predicted val-
ues for design temperatures compared to the single nonlinear regression models. The
methodology was applied to several data sets exhibiting challenging component con-
figurations. Considering gas flow data 2, the algorithm enables to detect two different
components stemming from heterogeneous gas flow levels. Therefore, the Gamma dis-
tribution proved throughout as the more suitable distribution considering the natural
variability of gas flow. Within this context, Gamma mixtures succeed to identify even
distinct minimum consumption levels while the application of normal mixtures failed in
their identification. The methodology proved robust by the detection of three compo-
nents preserving the data structure of minimum consumption levels. Following the pat-
tern of the synthetic data set in the simulation study, gas flow data 3 exhibit a band-like
structure motivating the use of a two-component mixture model. Therefore, mixtures
of GNM proved as an appropriate method in order to detect the distinct gas flow levels.
The applications proved throughout robust to the challenge by randomly chosen starting
values. Nevertheless, special attention has to be drawn to a proper choice of the starting
values for the mixture components as they highly influence the convergence and the
results of the underlying EM algorithm.
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CHAPTER 6

Modeling Multiple Regimes in Economic Growth

Introduction

The present chapter gives a new approach to the well-known Solow model. Robert Merton
Solow und Trevor Swan developed the Solow model to describe the economic growth of
an economy by means of the production output as presented in Solow (1956) and Swan
(1956). The Cobb-Douglas function represents a key property and relates the produc-
tion output to predefined economic factors. An economy’s production output is typically
measured through the Gross Domestic Product (GDP). For reasons of comparability, the
GDP is divided by an economy’s population expressing the GDP per capita (per person).
The Solow model is often applied due to the possibility of adding arbitrary factors in or-
der to improve the model quality. Due to the mathematical tractability, the Solow model
has been widely studied and advanced. Extensions comprise advanced models with an
extended number on production factors. The related economic factors are often given
by the capital stock or the investment share of the economy, which can be considered as
important drivers of the GDP development. Typical production factors comprise also the
workshare performed by the related population of an economy. An obvious application
is given by the comparison of country specific development of the GDP in order to asses
the statistical value of predefined economic factors. The economic factors within the
Solow model may often differ for different countries producing an evident heterogene-
ity in cross-sectional comparisons of the GDP. This is especially the case when compar-
ing global data where, for example, developing countries exhibit exceptional patterns
in comparison to industrial countries. Another example for heterogeneity may be given
by exceptional drivers of the economic growth due to country-specific dominant indus-
tries as it is the case for the so-called oil countries. Due to differences in the economic
conditions, the technological knowledge represents an economic factor varying across
different (national) economies. This effect is driven by differences in resource endow-
ments, institutions or climate conditions as Mankiw et al. (1990, p. 410-411) point out.
These circumstances aggravate the modeling of the development of the GDP through
one coherent Solow model. Durlauf and Johnson (1995) follow therefore the approach
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of modeling the national GDP by means of regression trees enabling the modeling of het-
erogeneous subgroups. The separate modeling of subgroups represents a multiple regime
model for economic growth. Alfo et al. (2008) consider a mixture model approach by
modeling the economic growth through mixtures of linear regressions. In the following,
the standard approach for the Solow model will be discussed and applied to mixtures
of GNMs. While the research of Alfo et al. (2008) follows the approach to cluster the
present data into subgroups and apply different linear models, the present work aims to
model the original nonlinear function with mixtures of GNMs based on probabilistic clus-
tering through the EM algorithm (Section 2.4). The main focus of the present analysis
lies in the application of the new model class of mixtures of GNMs to the country-specific
economic growth model as an approach to deal with heterogeneous data.

The underlying regression function will be outlined in the subsequent Section 6.1. Sec-
tion 6.2 gives an overview on the underlying data set and underpins the use of mixture
models by discussing graphical visualizations of the data. The reliability of the fitted re-
sults will be challenged through different starting configurations where possible values
are discussed in Section 6.3. For comparative purposes, the data will be fitted by simple
nonlinear regression. The underlying approach is briefly outlined in Section 6.4. Section
6.5 discusses the central application by a two-component Gaussian mixture model and
highlights key results. Section 6.6 concludes the chapter with final remarks.

6.1 Solow Model with Human Capital Accumulation

The central measure of interest is the production or output of an economy when draw-
ing comparisons on cross-national levels. The underlying factor, measuring the country
specific economic growth, will be given by the logarithmic return of the GDP growth
for the period [0, t] which will be denoted as Yt. The standard Cobbs-Douglas production
function models the production output through the following relationship

Yt = Kα
t H

γ
t (AtLt)

1−α−γ , (6.1)

where Kt represents the capital, At the level of technology, Lt the labor and Ht the stock
of human capital, while 0 < α, γ < 1 holds. The labor and technology components are
assumed to follow an exponential growth process with exogenous rates n and g as given
in Mankiw et al. (1990, p. 409), respectively

Lt = L0 expnt and At = A0 exp gt. (6.2)

Therefore the number of effective units of laborAtLt grows at the rate n+g. All variables
are assumed to evolve in continuous time according to Durlauf and Johnson (1995).

Another important assumption stated within the Solow model is the convergence to the
steady state. This assumption is supported by diminishing returns inducing the economic
long-term growth rate to reach a steady state. As a necessary condition, α+ γ < 1 needs
to hold. Within the steady state, the production output per worker can be derived as
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log

(
Yt
Lt

)
− log

(
Y0

L0

)
= gt+ (1− exp(−λt)) · . . .(

Θ +
α

1− α− γ log

(
sK

n+ g + δ

)
+

γ

1− α− γ log

(
sH

n+ g + δ

)
− log

(
Y0

L0

))
, (6.3)

where Θ = 1/(1− α− γ) log(φ)− logA0 − gt holds and λ = (1− α− γ)(n+ g + δ) rep-
resents the country specific convergence rate towards the steady state model. According
to Mankiw et al. (1990, p. 410), g will be assumed as a constant value representing the
technological advancement. The parameter δ represents the depreciation rate and is also
assumed as a constant for all national economies. In contrast to these assumptions, the
parameter A0 represents a country specific technological endowment. The parameters
sK and sH denote the saving rates for the physical and the human capital, compliant
to Mankiw et al. (1990). Within the steady state, the GDP is influenced by the techno-
logical endowment. The aim of the present work is to examine if the present data obey
multiple regimes corresponding to Durlauf and Johnson (1995, p. 368) by means of dis-
tinct components following the nonlinear regression function (6.3). For this purpose, the
subsequent analysis considers a two-component mixture model of GNMs. The technical
derivation of the steady state function (6.3) is given in Appendix B. The subsequent
sections comprise the application of mixtures of GNMs with nonlinear regression func-
tion (6.3) and discuss the fitted results. The fitting is carried out with the new package
flexmixNL.

6.2 Country Data Set

In order to achieve comparability to the original study by Durlauf and Johnson (1995),
the present applications consider the original data set provided by Summers and Heston
(1988). This data set consists of economic variables for 121 countries for the period
from 1960 to 1985. As the authors expected the former oil countries not to exhibit the
standard growth process considering the GDP, these countries were excluded from the
statistical analysis. The authors furthermore omitted countries with populations less than
a million within specific applications in order to reduce measurement errors. Applying
these restrictions, reduces the country sample to 75 countries. Table 6.1 summarizes the
specific regression variables for the mean function (6.3).

Variable Explanation

log25: log-return of GDP per working member of population aged 15 - 64

IONY: GDP share devoted to investments sK (annual averages)

POPGRO: growth rate n of working age population (annual averages)

SCHOOL: working age population in secondary school sH (annual averages)

Table 6.1: Cross-country regression variables for time period 1960 - 1985

As Mankiw et al. (1990, p. 413) point out, the depreciation rate δ and advancement
in knowledge g is not expected to vary across countries. In order to match the original
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Figure 6.1: Cross-correlation for GDP growth and production factors

data, the value g + δ is chosen as 0.05 (derived from the United States economy as rep-
resentative values). Apart from that, the knowledge A0 is assumed to be unobservable
and can vary between different national economies. The economic factors in Table 6.1
will be considered within the present application in order to model the GDP growth. The
cross-correlation between the relevant economic factors is visualized in Figure 6.1. The
pairwise scatterplots in Figure 6.1 reveal an evident positive correlation between the log-
return of the GDP growth and the average logarithmic investment share. On the other
hand, the GDP growth is moderately negatively correlated with the population growth of
a national economy. The GDP growth exhibits also a moderate positive correlation with
the education level of the population. The scatterplot of the production factors reveals
also a positive correlation between the investment share and the education level of the
population. These effects can be explained in a plausible way: increasing investments
have a positive effect on the production output. Furthermore, the GDP per capita grows
in the case of a decreasing population growth rate. Consequently, an increase in eco-
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nomic growth can be achieved by decreasing the population growth within the present
model. Increasing population growth decreases in general the remaining economic fac-
tors. This effect can be attributed to the distribution of the same countries’ resources
to an increased population as Mankiw et al. (1990, p. 418) outline. The opposite effect
occurs for a decreasing population. The education level of the population influences the
production output directly in a positive way as it increases simultaneously the technical
advancement. These effects yield a positive cross-correlation between the log-return of
the GDP growth and the considered education level in Figure 6.1.

As the application of mixture models considers the underlying distribution of the re-
sponse log25, Figure 6.2 displays the empirical pdf of the modeled log-return of the eco-
nomic growth (GDP). The visualization shows an evident multimodal structure driven
by peaks at 0.2 and 0.7 and several countries exhibiting a higher GDP growth ranging
around 1.4. The subsequent analysis points out the fitting of the response by means of a
two-component Gaussian mixture model. A main focus within the mixture model will be
the dealing with the multimodality in dependence of the underlying regression function
(6.3). The distributional assumption will focus on the normal distribution following the
original analysis by Durlauf and Johnson (1995).
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Figure 6.2: Density function of GDP growth

6.3 Starting Configuration and Simulation

The response log25, as displayed in Figure 6.2, will be fitted according to the nonlinear
regression function (6.3). The explanatory variables comprise the countries’ investment
share (IONY), the population growth (POPGRO) and the education level (SCHOOL) as spec-
ified in Table 6.1. The regression function will be fitted through simple nonlinear regres-
sion and a two-component mixture of GNMs. The specification in R is given in Listing
6.1 where the functional structure is stored in the term eco.fct().
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1 > eco.fct = function(alpha ,gamma ,theta ,POPGRO ,IONY ,SCHOOL){

2 + 0.5 + (1-exp(-(1-alpha -gamma)*(( POPGRO + 5)/100)*25))*

3 + (theta + log((IONY/(POPGRO + 5))/100) * alpha/(1-alpha -gamma) +

4 + log(( SCHOOL/(POPGRO + 5))/100)*gamma/(1-alpha -gamma)-log(GDP60))}

Listing 6.1: Regression function for GDP growth model in R

The present data set, as displayed through the cross-relationships of the production fac-
tors in Figure 6.1, is challenging for the mixture model due to two aspects: The func-
tional relationship is based on multiple nonlinear dependency structures and it can be
assumed that the derived components exhibit a strong overlapping. In order to explore
the accuracy and performance of the fitting method provided by flexmixNL, the given
data set will be fitted several times with randomly chosen starting values. The ranges
for possible values were chosen to allow for a sufficient flexibility in modeling. They
comprise values around the fitted coefficients obtained by the single nonlinear regres-
sion assuming a coherent single steady state. Exemplary, the coefficients α and γ are
chosen to range between 0.01 and 0.6. According to Mankiw et al. (1990, p. 416), the
assumption α + γ < 1 is required in order to achieve convergence to steady state. The
ranges for the starting values for the two-component mixture models are given in Table
6.2. The variability of the derived coefficients will be addressed by the computation of
standard errors SEnum(·) following Section 3.5.

Parameter Θ α γ

Range [10; 20] [0.01; 0.60] [0.01; 0.60]

Table 6.2: Ranges for starting values

The starting values, stemming from the ranges in Table 6.2, will be applied to the simple
nonlinear regression model and to a two-component Gaussian mixture model. Fitting
the simple nonlinear regression model and the two-component mixture model 50 times
with randomly chosen starting values achieves the results as summarized in Table 6.3.
The fitting was controlled by setting a fixed seed set.seed(2357) and predefined classi-
fication vector comprising an alternating allocation to the two components for the data
sample.

6.4 Nonlinear Regression

The nonlinear mean function for modeling the production output is given by Equation
(6.3) compliant to the original problem from Mankiw et al. (1990). The fitting in R can
be provided with the function nls() as discussed in Section 3.2.1. The corresponding
command and output is given in Listing 6.2.

1 > nls1 <- nls(log(GDP85/GDP60) ~

2 + eco.fct(alpha ,gamma ,theta ,POPGRO ,IONY ,SCHOOL),

3 + data = durlauf ,

4 + start = list(theta=runif (1,10,20),

5 + alpha= runif (1 ,0.01 ,0.6),

6 + gamma = runif (1 ,0.01 ,0.6)))

7
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8 > nls1

9 Nonlinear regression model

10 model: log(GDP85/GDP60)~eco.fct(alpha ,gamma ,theta ,POPGRO ,IONY ,SCHOOL)

11 data: durlauf

12 theta alpha gamma

13 16.1161 0.4113 0.2507

14 residual sum -of-squares: 6.794

15
16 Number of iterations to convergence: 5

17 Achieved convergence tolerance: 9.186e-08

18
19 > summary(nls1)

20 ...

21 Parameters:

22 Estimate Std. Error t value Pr(>|t|)

23 theta 16.11607 0.76712 21.009 < 2e-16 ***

24 alpha 0.41125 0.05852 7.028 9.82e-10 ***

25 gamma 0.25074 0.04762 5.265 1.39e-06 ***

Listing 6.2: Nonlinear regression output for GDP growth model

Simple nonlinear regression yields the coefficient α̂ = 0.41. This equals the capital share
in income or investment share of the GDP. The coefficient γ̂ = 0.25 relates the produc-
tion output to the education level of the population or human capital. Both coefficients
are slightly different from those in the original study. This effect may be addressed to
the different underlying fitting methods where Mankiw et al. (1990) applied a restricted
regression. The corresponding standard errors are smaller compared to those in the
original study, which indicates a gain in accuracy for the derived results with nonlin-
ear regression analysis. All coefficients are classified as highly significant due to their
low p-values (<0.05). The subsequent section applies the regression model to a two-
component mixture model.

6.5 Two-Component Mixtures of GNMs

Due to the complex nonlinear functional relationship in Equation (6.3), a multiple clus-
ter assignment may be possible and plausible for specific countries. Considering the
sample size and in order to limit the complexity, the mixture modeling will build on
two components. Comparisons will be made to the simple nonlinear regression model.
Presuming two underlying distribution components yields the mixture density

fM (yi;µi(Θ, α, γ),φ,π) = π1f(yi;µi(Θ1, α1, γ1), φ1) + (1− π1)f(yi;µi(Θ2, α2, γ2), φ2)

(6.4)

where f(·) represents the pdf and π1 the probability for the first mixture component
with i = 1, . . . , n . The parameter vector Ψ summarizes all unknown parameters as

Ψ = (π1,Θ1, α1, γ1,Θ2, α2, γ2, φ1, φ2)>,

where the dispersion parameters correspond to the variances through φ1 = σ2
1 and

φ2 = σ2
2. The application of a two-component mixture of GNMs can be provided by

the command flexmix() with the package flexmixNL. The corresponding command
and output in R is given in Listing 6.3.
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1 > formula <- log25 ~ eco.fct(alpha ,gamma ,theta ,POPGRO ,IONY ,SCHOOL)

2 > flexfit <- flexmix(log25 ~ ..., k = 2, data = data ,

3 + model = list(FLXMRnlm(formula = formula ,

4 + family="gaussian",

5 + start = ...)))

6
7 > flexfit

8 ...

9 Cluster sizes:

10 1 2

11 67 8

12
13 convergence after 117 iterations

Listing 6.3: Fitting command and output for two-component normal mixture with Model
(6.3)

The two-component mixture model succeeds to uniquely determine two components.
These results were underpinned by a repeated refitting of the data with randomly cho-
sen starting values (50 times) as outlined in Section 6.3. The R output (line 11) outlines
the separation of a smaller component (8 countries) from a central component contain-
ing the majority of the countries (67 countries). The rootogram in Figure 6.3 and the
component ratios in Listing 6.4 indicate a moderate separation of the two components.

1 > summary(flexfit)

2 ...

3 prior size post >0 ratio

4 Comp.1 0.774 67 74 0.905

5 Comp.2 0.226 8 75 0.107

6
7 ’log Lik.’ -11.41643 (df=9)

8 AIC: 40.83285 BIC: 61.69025

Listing 6.4: summary() output for for two-component normal mixture and Model (6.3)

Figure 6.2 displays the multimodal structure of the kernel density of the response. A
graphical comparison to the density shapes of the two fitted components can be made
in the following way: Figure 6.4 visualizes the normal pdfs of the two fitted components
given by two subsets comprising 8 and 67 countries in direct comparison to the kernel
density of the data. For comparative purposes, the component specific pdfs are scaled
by their prior probabilities π̂1 and π̂2. Comparing the original kernel density to the fitted
two-component mixture distribution shows the following effect: The second component
comprises economies driving the multimodal structure with modes at 0.2 and 1.4. Taking
into consideration the visualizations in Figures 6.5, 6.6 and 6.7, the second component
shows a concentration in lower GDP returns, building on the first peak near 0.2, but
comprising also the two highest values given by Singapore and Hong Kong. The latter
can be considered as drivers of the second peak around 1.4 as displayed within the den-
sity function in Figure 6.4. Withdrawing these countries from the original data lowers
the multimodal structure and the heterogeneity which is clearly evident within the data.
Therefore, the first and central component represents an adjusted set of the original data
as the multimodal structure diminishes.
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The fitted coefficients and their standard errors are outlined in Table 6.3 summarizing
the results of the simple nonlinear regression and the two-component mixture model.
The present results outline the increasing importance of investment share within the first
component due to the increase in α̂ compared to the simple nonlinear regression model.
The population growth shows the opposite effect as γ̂ decreases even further compared
to the simple nonlinear regression. The second and smaller component exhibits the op-
posite effect. Due to its size, the second component is very sensitive to patterns of sin-
gle countries. Therefore, the coefficient α̂ relating the output to its average investment
share decreases more than a half while the coefficient for population growth γ̂ nearly
doubles. The decrease in investment share can be attributed to two effects: regarding
the investment share, Morocco is lagging behind the remaining countries within the sec-
ond component. As Figure 6.6 displays, the members of the second component range
at the upper end concerning the population growth. Due to the functional relationship
in Equation (6.3), the capital share is allocated to the country’s population where the
second component evidently ranges at the head of the data. The level of education states
a level for improvement in direct comparison to the other countries. Therefore, the im-
portance of the related coefficient γ̂ increases when regarding the country’s economic
growth within the second component.

Within the two-component mixture model, the coefficient Θ, representing the techno-
logical advancement, increases slightly for the first component while it decreases for the
second component compared to the results obtained by nonlinear regression. Country
members of the first component exhibit a decrease in the production output related to
the education level (γ̂) in addition to an increase in investment shares (α̂). Due to these
effects, it can be assumed that the theoretical convergence rate to steady state changes
for the two-component mixture model in direct comparison to the nonlinear regression
model applied to Equation (6.3). The functional relationship in Equation (6.3) enables
the computation of the convergence rate for each country’s economy for the two distinct
components. Table 6.4 displays the convergence rates to steady state for the first compo-
nent, whereas Table 6.5 shows the analogous values for the smaller second component.
The convergence rates resulting from the nonlinear regression model are denoted as λnls

while λmix refers to the respective component of the mixture model. The results give a
clear impression on the change in convergence rates. The significant decrease in capital
share through α̂ for the second component indicates a decrease in convergence to the
steady state. The first component shows the opposite effect. Due to the disappearance
of the countries allocated to the second component, the coefficient relating the GDP to
investments gains in value while the coefficient corresponding to the average population
growth decreases. As a result the country specific convergence rates accelerate.

A direct comparison between the nonlinear regression model and the two-component
mixture model is enabled through the model selection criteria AIC, BIC and ICL, as dis-
played in Table 6.3. The AIC values show a minor difference for the models. As the
higher number of parameters (9 instead of 4) increases the model complexity for the
two-component mixture model, an even higher log-likelihood yields a similar AIC due to
the penalization term (see Section 2.7.1). The BIC outlines a larger difference between
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2-Component Gaussian Nonlinear Regression
mean s.e. mean s.e.

C
om

p.
1

π̂1 0.77 0.16

Θ̂1 16.59 0.79 Θ̂ 16.12 0.77

α̂1 0.49 0.06 α̂ 0.41 0.06

γ̂1 0.19 0.05 γ̂ 0.25 0.05

σ̂1 0.21 0.04 σ̂ 0.31 -

C
om

p.
2

Θ̂2 15.34 2.87

α̂2 0.15 0.27

γ̂2 0.47 0.24

σ̂2 0.47 0.12

AIC 40.8 AIC 40.7

BIC 61.7 BIC 50.0

ICL 88.2

Table 6.3: Regression coefficients for economic growth model (6.3)
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Figure 6.3: Rootogram for two-component normal mixture model

the two models due to the consideration of the sample size within the penalization.
Drawing on the previous analysis, the two fitted components exhibit different drivers in
their economies’ growth. The direct comparison to the fitted nonlinear regression model
shows a different convergence behavior by means of an acceleration for the first com-
ponent and a deceleration for the economies of those countries classified to the second
component. Based on these considerations, it can be assumed that the mixture model is
more suitable in order to detect similar patterns in the economic growth development
through different economies.
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Figure 6.5: Cross-correlation GDP growth with investment share
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Figure 6.6: Cross-correlation GDP growth with country population growth
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Figure 6.7: Cross-correlation GDP growth with education level
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Country λnls λmix

1 Algeria 0.225 0.237
2 Botswana 0.243 0.256
3 Cameroon 0.210 0.222
4 Ethiopia 0.216 0.228
5 Ivory Coast 0.275 0.290
6 Kenya 0.249 0.262
7 Madagascar 0.213 0.225
8 Malawi 0.219 0.231
9 Mali 0.213 0.225

10 Nigeria 0.219 0.231
11 Senegal 0.216 0.228
12 South Africa 0.216 0.228
13 Tanzania 0.234 0.247
14 Tunisia 0.219 0.231
15 Zimbabwe 0.231 0.244
16 Bangladesh 0.225 0.237
17 Burma 0.198 0.209
18 Israel 0.231 0.244
19 Japan 0.183 0.194
20 Jordan 0.228 0.240
21 Rep. of Korea 0.228 0.240
22 Malaysia 0.243 0.256
23 Pakistan 0.237 0.250
24 Philippines 0.237 0.250
25 Sri Lanka 0.219 0.231
26 Syrian Arab. Rep. 0.237 0.250
27 Thailand 0.240 0.253
28 Austria 0.160 0.169
29 Belgium 0.163 0.172
30 Denmark 0.166 0.175
31 Finland 0.169 0.178
32 France 0.178 0.187
33 Germany 0.163 0.172
34 Greece 0.169 0.178

Country λnls λmix

35 Ireland 0.181 0.191
36 Italy 0.166 0.175
37 Netherlands 0.189 0.200
38 Norway 0.169 0.178
39 Portugal 0.166 0.175
40 Spain 0.178 0.187
41 Sweden 0.160 0.169
42 Switzerland 0.172 0.181
43 Turkey 0.222 0.234
44 United Kingdom 0.157 0.166
45 Canada 0.207 0.219
46 Costa Rica 0.252 0.265
47 Dominican Rep. 0.234 0.247
48 El Salvador 0.246 0.259
49 Guatemala 0.240 0.253
50 Haiti 0.186 0.197
51 Honduras 0.240 0.253
52 Mexico 0.246 0.259
53 Nicaragua 0.246 0.259
54 Panama 0.237 0.250
55 Trinidad Tobago 0.204 0.215
56 United States 0.192 0.203
57 Bolivia 0.219 0.231
58 Brazil 0.234 0.247
59 Colombia 0.237 0.250
60 Ecuador 0.231 0.244
61 Paraguay 0.228 0.240
62 Peru 0.234 0.247
63 Uruguay 0.166 0.175
64 Venezuela 0.260 0.275
65 Australia 0.207 0.219
66 Indonesia 0.204 0.215
67 New Zealand 0.198 0.209

Table 6.4: Convergence rates towards steady state (component 1)
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Country λnls λmix

1 Morocco 0.222 0.197
2 Zambia 0.228 0.202
3 Hong Kong 0.237 0.210
4 India 0.219 0.194
5 Singapore 0.225 0.199
6 Jamaica 0.195 0.173
7 Argentina 0.192 0.171
8 Chile 0.216 0.192

Table 6.5: Convergence rates towards steady state (component 2)

6.6 Conclusions

The present application gives a possible approach to the dealing with heterogeneity in
economic growth models by means of mixtures of GNMs. The well-known Solow model
allows to derive a nonlinear regression model for the modeling of the production output
(GDP) in functional dependence to economic variables like labor rates, the education
level of the population or the investment shares as main drivers. The nonlinear func-
tional structure arising therefrom states the underlying mean function, whereas the sep-
arate mixture components succeed to deal with occurring heterogeneity in supranational
data. As approaches for mixture models within economic growth applications have been
applied to mixtures of linear regression models, the new model class within flexmixNL
allows for the fitting of the underlying nonlinear regression model. Therefore, the orig-
inal nonlinear functional structure can be maintained. This has the advantage that the
original regression coefficients which comprise a specific econometric meaning within
the Solow model can be directly fitted. Therefore, the new model class represents a di-
rect approach for dealing with heterogeneity within economic growth models. The main
idea of modeling different subgroups within economic data (multiple regime) can be
realized by the use of mixture models. Applying the new model class to the original data
revealed two different components which differ in the main drivers of their economic
growth and subsequently in their convergence rates to steady state. An open question
remains the choice of the number of components which is strongly problem specific. A
direct comparison is enabled through model selection criteria. In the present analysis,
the fitting of two components showed an improvement in information regarding the
countries’ economies whereas the AIC values differed slightly between the two models
while the BIC value increases for the mixture model due to the increasing number of
parameters.

The derived results indicate the sensible use of mixture distributions in order to asses dif-
ferent economic subgroups. For the original data sample from Mankiw et al. (1990) the
application of two Gaussian components succeeds to manage the present heterogeneity
in a better way than the simple nonlinear regression, as it allows to distinguish between
country-specific economic growth patterns. As a smaller second component separated
countries with a lower GDP investment share average and an increase in GDP related
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to the education level of the population, the convergence rates towards the steady state
improved for the first component. The specific approach buttress the modeling of sub-
groups within the theory of steady state according to Solow (1956). Due to the sample
size, a further increase in the number of components was not prosecuted but may be
possible for similar data.
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Final Remarks

Major results of the present work comprise the introduction of the new model class
of mixtures of GNMs. As mixture models have already proven as an appropriate solu-
tion to address heterogeneity in data, the extension to nonlinear models increases their
flexibility even further. The present work outlined that the new model class given by
mixtures of GNMs handles specific problems in a direct manner as it does not require
adjustments like transformations regarding the mean functions. It enables furthermore
the fitting of arbitrary nonlinear regression functions where the component pdfs stem
from the exponential family. The original functional dependency structure can be ap-
plied where specific parameters are of considerable importance. This may be motivated
by their meaning or due to further interpretation of the problem. Numerical problems
represent an obstacle within the application of nonlinear regression which requires often
problem-specific knowledge. Possible solutions are therefore in general problem-specific
in an individual manner. The construction of mixtures of nonlinear models highlighted
the increasing complexity which comes along the embedding of nonlinear regression
within the framework of mixture models. In order to provide an opportunity to derive
a standardized fitting procedure, the overall problem was carried over to the EM algo-
rithm. The fitting of mixtures of GNMs was successfully implemented building on the
package flexmix in R. The implementation procedure was outlined in detail with partic-
ular emphasis on GNM specific modifications. Thereby the new fitting procedure takes
advantage of an efficient and well-established fitting methodology. Its value is reflected
in the currently broad number on available models in the repertoire of flexmix which is
now extended by the possibility of modeling nonlinear functional structures.

Dealing with heterogeneous data, where prior knowledge motivates the use if nonlin-
ear functional structures, is enabled through the new model class wrapped up in the
package flexmixNL. The new functionality is easy to apply and consistent to already
existing methods for nonlinear regression problems in R. The extension to the Gamma
distribution represents a key feature in the application of mixtures of GNMs. Embedding
the new model class in R enables to run applications with evident nonlinear dependency
structures. It allows currently for the fitting of normal and Gamma distributed variables
which enables the distinction between light- and heavy-tailed distributional patterns.
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The performance of the new fitting method was successfully challenged by an extensive
simulation study which underpinned the reliability of the derived values and revealed
also numerical limits. Within this context, divergent configurations have also been sub-
ject to a detailed analysis as well as the requirement of appropriate starting values in
order to achieve convergence and accurate results.

The mixtures of GNMs were applied to real data where the modeling of nonlinear func-
tional structures was motivated by prior knowledge. Particular emphasis was given to
the derived results and their interpretation within the context of the specific application.
Applying the methods to real data enabled the handling of heterogeneous subgroups
or components within different data structures, allowing to derive particular statements
on component specific characteristics. The applications produced positive and reliable
outcomes.

The present work introduced mixtures of GNMs as an advanced method for model-
ing heterogeneity for different subgroups. Mixtures of GNMs have proven as a reliable
method to comprise variability or diversity in data with nonlinear functional patterns.
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A Definitions

Definition A.1 Generalized Inverse Matrix (Penrose (1955))
For any matrix A ∈ Rn×m an unique matrix A+ ∈ Rm×n exists satisfying the four condi-
tions:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)> = AA+

4. (A+A)> = A+A

For a regular matrix A the general inverse matrix satisfies the previous conditions and the
relationship A+ = A−1 holds due to the uniqueness of the generalized inverse matrix A+.

Definition A.2 Order of Convergence (Atkinson (1989, p. 56))
A sequence of iterates xi with i ≥ 0 is said to converge to x∗ with order p ≥ 1 if

|x∗ − xi+1| ≤ c|x∗ − xi|p ∀ i ≥ 0, c > 0.

If p = 1 the sequence xi is said to converge linearly to x∗. The constant c is referred to as
rate of convergence and satisfies the condition 0 < c < 1.
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B Equilibrium or Steady State in the Solow Model

As outlined in Chapter 6, the Solow model represents an economic growth model by
means of the Gross Domestic Product (GDP). The latter will be denoted as Yt. The driving
factors of the economic growth are given by the capital Kt, the level of technology At,
the labor Lt and the stock of human capital Ht. Let the following be the analogous
quantities per effective unit of labor corresponding to Section 6.1,

yt :=
Yt
AtLt

, kt :=
Kt

AtLt
, ht :=

Ht

AtLt
.

Substituting the equations in (6.1) yields the corresponding production output per ef-
fective unit of labor, respectively

yt = kt
αht

γ . (B.1)

According to Mankiw et al. (1990, p. 410), the Solow model assumes that a constant
fraction s of the output yt is invested. Under the assumption of investments taken in the
amount of sK for physical capital and sH for human capital, with respect to s = sK+sH ,
the evolution of the economy follows therefore

∂kt
∂t

= sKyt − (n+ g + δ)k = sKk
αhγ − (n+ g + δ)k

∂ht
∂t

= sHyt − (n+ g + δ)h = sHk
αhγ − (n+ g + δ)h.

taking into account the growth rate of labour units n + g and the depreciation rate of
the capital δ. The evolution of kt and ht is assumed to converge to a steady state where
the Solow model reaches its equilibrium. According to Mankiw et al. (1990, p. 416), the
steady state equilibrium satisfies ∂k

∂t = 0 = ∂h
∂t , yielding the steady state levels

k∗ =

(
s1−γ
K sγH

n+ g + δ

)1/(1−α−γ)

and h∗ =

(
s1−α
H sαK

n+ g + δ

)1/(1−α−γ)

. (B.2)

The steady state level of income per worker follows from (B.1) through

y∗
(B.2)
= k∗αh∗γ =

(
s1−γ
K sγH

n+ g + δ

)α/(1−α−γ)(
s1−α
H sαK

n+ g + δ

)γ/(1−α−γ)

.

The derivation of an explicit function for the production output per capita results by sub-
stituting the variables representing the evolution of the economy in the original process
yielding

Yt
Lt

= Atk
α
t h

γ
t

(6.2)+(B.2)
= A0 exp(gt)

(
s1−γ
K sγH

n+ g + δ

)α/(1−α−γ)(
s1−α
H sαK

n+ g + δ

)γ/(1−α−γ)

.
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Taking the logarithm and rearranging the formula yields the expression

log

(
Yt
Lt

)
= logA0 + gt+

α

1− α− γ ((1− γ) log sK + γ log sH + log(n+ g + δ)) +

. . .
γ

1− α− γ ((1− α) log sH + α log sK + log(n+ g + δ))

= logA0 + gt+
α+ γ

1− α− γ log(n+ g + δ) +
α

1− α− γ log sK +

. . .
γ

1− α− γ log sH .

The Solow model allows for a statement on the speed of convergence to the steady state.
For the steady state level y∗ in the Solow model, the speed of convergence is denoted as
λ and the growth dynamics follows

∂yt
∂t

= λ(log y∗ − log yt) (B.3)

with λ = (n+ g + δ)(1− α− γ) according to Mankiw et al. (1990, p. 422). The solution
of (B.3) is given by

log yt = log y0 exp(−λt) + log y∗(1− exp(−λt))
log yt − log y0 = (1− exp(−λt))(log y∗ − log y0). (B.4)

Reformulating the expression on the left hand side in (B.4) yields

log yt − log y0 = log

(
Yt
Lt

)
− log

(
Y0

L0

)
− logAt + logA0

= log

(
Yt
Lt

)
− log

(
Y0

L0

)
− logA0 − gt+ logA0

= log

(
Yt
Lt

)
− log

(
Y0

L0

)
− gt (B.5)

and substituting (B.5) in (B.4) yields after rearrangement the economic growth function

log

(
Yt
Lt

)
− log

(
Y0

L0

)
= gt+ (1− exp(−λt))(log y∗ − log y0)

= gt+ (1− exp(−λt)) ·(
− logA0 +

α+ γ

1− α− γ log(n+ g + δ) +
α

1− α− γ log sK

. . .+
γ

1− α− γ log sH − log

(
Y0

L0

))
.

For further details on the Solow model reference is made to Mankiw et al. (1990) and
Solow (1956).

165



APPENDICES

C Packages in R

The following packages were used within the present work:

• Deriv (Version 3.8.5)

• doParallel (Version 1.0.11)

• flexmix (Version 2.3.14)

• foreach (Version 1.4.4)

• ggplot2 (Version 2.2.1)

• gnm (Version 1.0.8)

• MASS (Version 7.3.49)

• minpack.lm (Version 1.2.1)

• numDeriv (Version 2016.8.1)

• stringr (Version 1.3.0)
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