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Abstract

Reinforcement learning provides a rigorous theory for learning processes of biolog-

ical and arti�cial agents through trial-and-error interaction with environments. �e

goal of the agent is to maximize some notion of cumulative reward by exploring

possible actions to �nd and exploit good actions. In recent years, arti�cial neural

networks have been successfully applied to reinforcement learning by estimating

the value of actions in a given situation and choosing the best action therea�er. Na-

ture has evolved animals into e�cient learners, thus biologically plausible spiking

neural networks are an obvious alternative to arti�cial neural networks. However,

spiking neural networks have not found widespread application to reinforcement

learning so far due to lack of e�cient learning rules. �rough the extension of

backpropagation through time to spiking neural networks the e�cient optimization

of spiking neural networks for many tasks became possible. �e aim of this thesis is

to show that spiking neural networks can be used in state-of-the-art reinforcement

learning methods as drop-in replacement for arti�cial neural networks with mem-

ory capabilities. Furthermore we investigate the impact of recurrent connections in

the network and show that recurrent connections are not necessary to solve most

of the investigated environments. We compare the performance of agents using

spiking neural networks or arti�cial neural networks in an actor-critic se�ing on

benchmark tasks such as the Roboschool robotic environment suite.
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Kurzfassung
Reinforcement Learning (Vestärkendes Lernen) beschreibt jene Lernprozesse, die

ein Agent (sowohl biologisch als auch künstlich) in der Interaktion mit seiner

Umwelt durch Versuch und Irrtum durchläu�. Das Ziel des Agenten ist dabei die

langfristige Maximierung von Belohnungen, die er von seiner Umwelt erhält. Dafür

müssen möglichst viele verschiedene Aktionen ausprobiert werden, um jene mit

höchstmöglichem zukün�igen Ertrag zu entdecken und auszunutzen. In den letzten

Jahren wurden künstliche neuronale Netzwerke erfolgreich für das Reinforcement

Learning eingesetzt: Sie approximieren den Wert einer Aktion in einer bestimmten

Situation und wählen darau�in die bestmögliche. Gehirne höherer Lebewesen

wurden mi�els natürlicher Evolution zu e�zient lernenden Systemen geformt.

Daher sind biologisch plausible spikende (gepulste) neuronale Netzwerke eine na-

heliegende Alternative zu künstlichen neuronalen Netzwerken. Aufgrund fehlender

oder ine�zienter Lernalgorithmen sind spikende neuronale Netzwerke noch von

keiner besonderen Bedeutung für Reinforcement Learning. Durch die Erweiterung

von “backpropagation through time” wurde die e�ziente Optimierung spikender

neuronaler Netzwerke für viele Anwendungen möglich. In dieser Arbeit zeigen

wir die Anwendbarkeit spikender neuronaler Netzwerke in modernen Methoden

des Reinforcement Learnings als direkten Ersatz von künstlichen neuronalen Netz-

werken. Außerdem untersuchen wir den Ein�uss rekurrenter Verbindungen im

Netzwerk und zeigen, dass rekurrente Verbindungen für die meisten untersuch-

ten Umgebungen nicht notwendig sind. Schließlich werden anhand verschiedener

Experimente Agenten mit spikenden neuronalen Netzwerken und künstlichen neu-

ronalen Netzwerken in der simulierten Robotikumgebung Roboschool und dem

Cart-Pole Kontrollproblem verglichen.
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1 Introduction

Humans try to unravel the mysteries of rational thinking and acting at least since

the days of Aristotle in ancient Greece. Our wish of understanding intelligence and

the inner workings of human brains, the most advanced intelligent systems we

know of, in�uenced �elds such as cognitive sciences, mathematics, philosophy and

biology (Russell and Norvig, 2009).

Even today, a�er decades of focused research, we still do not have a uni�ed theory

of what intelligent systems are and how to build arti�cial general intelligence.

�ere are many systems that solve problems requiring narrow intelligence with

superhuman performance, such as the recent success of computers beating world-

class players in the game of Go (Silver et al., 2016). Arti�cial intelligence is now

one of the most active and best funded �elds of research; technology giants such as

Microso�, Google, Facebook, IBM, Intel and Baidu have keen interest in advancing

the state of the art.

When we think about traits or inherent properties of intelligence, one of the �rst

that come to mind include thinking and acting rationally, planning and learn-

ing from experience to reach goals. Many animals exhibit forms of reward-based

learning that reinforces or discourages certain behaviour based on pleasure or

pain following some action. Psychologists and biologists have studied this type of

learning and conditioning since �orndike, 1898. An animal or actor has to choose

actions based upon observations of the environment to maximize the cumulative

reward in the future. Typical supervised methods known from machine learning

1



1 Introduction

are not immediately suitable to model and solve these problems; there the goal is

approximating an unknown function by learning from correct examples of input

and output values. However, in this animal-like learning scenario there are no cor-

rect examples of behaviour to be learned from, just a form of reward is presented to

the actor a�er an action has been taken. �us, a separate �eld of machine learning

called reinforcement learning tries to formalize and solve these problems.

Naturally, the �elds of reinforcement learning and neuroscience are closely inter-

twined; both pro�ted from another and inspired new and fascinating ideas in both

�elds. For example, in recent years popular function approximation methods known

from supervised learning have been successfully applied to reinforcement learning:

Arti�cial neural networks (ANNs) were used to estimate whether observations

perceived by an actor will yield high expected cumulative reward in the future a�er

following some course of action. As image classi�cation and speech translation

workhorse ANNs have found widespread application. Circling back to biological

brains, we want to �nd out how spiking neural networks (SNNs) can solve these dif-

�cult tasks seemingly with ease. ANNs process real-valued data without a concept

of time; SNNs operate in continuous time by sending and receiving short pulses

encoding information. �is completely di�erent method of information transmis-

sion is highly energy-e�cient and inherently capable of processing temporal data.

�us spiking neural network models not only provide insights about the principles

of brain computation but also make the construction of neuromorphic hardware

possible. �is is not only interesting for low-power applications; large-scale neuro-

morphic hardware platforms may �nally allow simulating large mammalian brains

and �nd out how animals learn and process information.

In this work we set out to show that state-of-the-art reinforcement learning meth-

ods are not only compatible with spiking neuron networks but are able to perform

as well as arti�cial neural networks in this se�ing. �e problem of training is solved

using backpropagation through time, a gradient-based optimization technique that

has not been applicable to spiking neural networks until recently. Neither the

training method nor the network architecture proposed in this work are claimed

2



1 Introduction

to be biologically plausible. However, once trained, these spiking neural networks

could be used in neuromorphic hardware for scenarios described above. We show

experimentally, that spiking neural networks can solve current benchmark prob-

lems of reinforcement learning such as the Roboschool robotic environment as

well as classic control problems. Further, we �nd that recurrent connections de-

grade convergence speed and performance of SNNs for tasks where no memory is

necessary. Surprisingly, SNNs performed be�er than state-of-the-art ANN con�gu-

rations augmented with memory capabilities when applied to partially-observed

environments. To the best of our knowledge no previous work solved reinforcement

learning problems of this di�culty with spiking neural networks.

In Chapter 2 we introduce basic terminology and concepts of spiking neuron

models, arti�cial neural networks, backpropagation through time in spiking neural

networks and reinforcement learning. With this in place, we can put these individual

parts together to perform the experiments described in Chapter 4. Works related

to reinforcement learning with spiking neural networks are brie�y summarized

in Chapter 3 and the thesis is concluded in Chapter 5 with an outlook on future

work.

3



2 Background

�e aim of this chapter is to give an introductory overview of concepts and tools

necessary for the experiments conducted in later chapters. �is will include concepts

of theoretical nature such as basic introductions to spiking neuron models and

backpropagation.

In the following sections, the inner workings of the simple phenomenological

integrate-and-�re model of neurons will be introduced. �en, one of the primal

reasons for the success of arti�cial neural networks in the last decades, aptly named

backpropagation, will be reviewed. Building upon this we will discuss how we can

apply backpropagation to spiking neural networks, which has not been possible

until recently. �e next step will be to introduce the foundations of elementary

reinforcement learning concepts without covering biologically plausible ideas of

reinforcement learning in the brain. �is will lead up to recent reinforcement

learning algorithms such as proximal policy optimization (Schulman, Wolski, et al.,

2017).

2.1 Spiking Neuron Models

In this section several important notions of neuroscience will be introduced, includ-

ing mathematical abstractions and simpli�cations of biological neurons necessary

for simulation on computers.

4



2 Background

�ere are many good reasons for studying the brain and its inner workings in detail;

a non-exhaustive list may include points such as: philosophical questions regarding

the emergence of intelligence from biological building blocks communicating with

each other, biological and evolutionary aspects including the development of brains

from nerve cells, the computational architecture with which di�cult tasks such as

pa�ern recognition, planning, learning, abstraction and more are solved and last but

not least the energy e�ciency of the computations performed in the brain. Some

of these reasons led to a variety of recent advances in the �eld of neuromorphic

hardware design (Davies et al., 2018; Furber et al., 2014; Merolla et al., 2014) with

the goal of accurately simulating arti�cial brains with enough computing power

in silico to solve complex problems in an energy-e�cient manner that are very

di�cult to solve for computers with a von Neumann architecture.

2.1.1 Neuron structure

On an abstract level, neurons can be seen as tiny compute units with inputs, a

processing step and an output; this corresponds to a multivariate function. Each

part of the neuron has a speci�c purpose in terms of producing a function output

(Gerstner, Kistler, et al., 2014), a schematic illustration of a single neuron can be

seen in Figure 2.1.

Dendrites receive information from other neurons in the neural network. �ey

connect to the output terminals (axons) of other neurons via synapses and

relay the information to the cell body (soma).

Cell Bodies receive their input via synaptic connections either to input dendrites

or directly to their soma. Once a certain threshold value of cumulated inputs

is exceeded, a spike, also called action potential, is created in the axon hillock

and transmi�ed via the axon to other neurons. �is non-linear function of

thresholding is of key importance as the network would otherwise collapse

to a single linear function.

5



2 Background

Dendrites

Synapse

Axon

Fig. 2.1: Illustration of a single neuron. Neurons receive incoming information

via dendrites, process it in the cell body and relay the generated action

potentials to other neurons.
a
.

a
Mariana Ruiz Villarreal, 2007. Complete neuron cell diagram.

Public Domain, https://commons.wikimedia.org/wiki/File:Complete neuron cell diagram en.svg

Axons relay the action potentials generated in the soma to o�en more than 104

other neurons in the network.

Synapses are the connections between axons and dendrites, cell bodies or other

axons. Most of the synapses in the brain operate chemically, meaning they

use special messenger substances called neurotransmi�ers. Neurons operate

both chemically and electrically.

Myelin sheaths provide insulation to the axon “wire” and prevent losses in the

membrane potential.

Nodes of Ranvier regenerate action potentials. (Bear, Connors, and Paradiso,

2016; Gerstner, Kistler, et al., 2014).

�e aforementioned action potentials are generated by a complex biochemical

6
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2 Background

process which produces signals with the same distinct shape over and over again as

in Figure 2.2 on the right-hand side. In the brain, chemical and electrical processes

support each other for information transmission. �e cell membrane separates

�uids inside and outside of the cell from each other. �ese �uids have di�erent

concentrations of speci�c electrically charged ions, which cause the time-dependent

membrane potential u(t). Ions of importance for the membrane potential are sodium

(Na
+
), potassium (K

+
), calcium (Ca

2+
) and chloride (Cl

–
). Voltage-dependent ion

channels spread over the axon and the axon hillock allow passage of speci�c ions

between the �uid outside and inside of a neuron. Action potential generation is

caused by time-dependent conductance changes in the membrane; sodium in�ow

depolarizes the membrane (voltage increase) whereas potassium out�ow polarizes

the membrane (voltage decrease) as visualized on the le� side of Figure 2.2. Once

the threshold voltage # of the neuron has been passed, sodium channels open,

increasing the membrane potential. At a large membrane potential, the sodium

channels close and potassium channels open and the membrane potential decreases

again to the resting potential urest (the membrane potential without incoming

spikes). �is produces the distinct action potential shape. A very similar process

occurs for most synapses; instead of operating with voltage-gated ion channels, they

use neurotransmi�er-gated ion channels to transmit information (Bear, Connors,

and Paradiso, 2016).

Due to the �xed shape of action potentials the information transmi�ed from neuron

to neuron is not captured in the amplitude or the width of the spike but in the

relative time duration between spikes. �ey last usually for 1–2 ms, during this

time they cannot �re; this is called the absolute refractory period. A�er that, the

membrane voltage undershoots its resting state, called the relative refractory period,

making �ring again unlikely, but possible (Gerstner, Kistler, et al., 2014).

7



2 Background

#

u

urest t

t0
ureset

Fig. 2.2: Action potential generation of a neuron. Le�: �e chemical process by

which the action potential (voltage di�erence between inside and outside of

the cell membrane) changes
a
. Right: Once the threshold voltage has been

overcome by the input stimulus, the neuron produces a signal following

the shape of the dashed curve. Leaky integrate-and-�re neurons produce

a spike-event a�er reaching the threshold potential and immediately reset

the membrane voltage to a certain value. Adapted from Gerstner, Kistler,

et al., 2014.

a
Blausen.com sta�, 2014. Medical gallery of Blausen Medical 2014. WikiJournal of Medicine 1 (2).

CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=29452220
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2 Background

2.1.2 Leaky integrate-and-fire models

�e original phenomenological integrate-and-�re model (Lapicque, 1907) is the

foundation for many modern spiking neuron models. �e cell membrane was

described to be a simple circuit with a capacitor C and a resistor R in parallel, as

seen in Figure 2.3. Overall, the dynamic of the membrane potential u(t) between the

inside and the outside of the neuron was described with a single linear di�erential

equation

�m
du
dt

= −(u(t) − urest) + RI (t) (2.1)

where �m = RC is the membrane time constant. �e input current I (t) represents the

input the neuron receives from other neurons; it can be interpreted as the weighted

sum of all incoming action potentials of the neuron. �e spikes are weighted because

they can either increase or decrease the membrane potential of the receiving neuron.

Synapses that relay spikes increasing the membrane potential are called excitatory

synapses whereas synapses decreasing the membrane potential are called inhibitory

synapses. �e summation of the input spikes – in continuous time integration –

gives the integrate-and-�re model its name.

Until now, the dynamics of the membrane potential are only described until a spike

occurs; with just a single linear di�erential equation the entire action potential

shape cannot be modelled because the behaviour of the membrane potential is

di�erent a�er the neuron crosses the �ring threshold. �erefore we still need to

describe the action potential shape a�er the �ring threshold. Without introducing

another di�erential equation, we can abstract the concept of an action potential into

a single event in time that occurs immediately a�er crossing the �ring threshold.

�is means that we do not model the full action potential shape, just the membrane

potential before the spike. �e �nal missing piece is to have an external reset

mechanism that hard-resets the membrane potential to a �xed value ureset ≤ # that

will eventually decay back to the resting potential if no input is presented to the

9
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urest

C

R

u(t)

I (t)

Fig. 2.3: �e neuron membrane as a circuit. It consists of a parallel capacitor C and

a resistor R representing the capacitance and leakage resistance. Adapted

from Gerstner, Kistler, et al., 2014.

neuron.

Solving the di�erential equation under the assumptions that we have a constant

input current I (t) = I , no refractory period and a spike has been produced at t = 0
yields

u(t) − urest = − exp(−
t
�m) (urest + RI − ureset) + RI . (2.2)

Discretizing the di�erential equation for time intervals of width Δt , we can rewrite

the solution above in a discrete-time se�ing as

u(t + Δt) = (1 − �m)(urest + RI (t)) + �mu(t), (2.3)

�m = exp(−
Δt
�m) . (2.4)

Using equation 2.2 to simulate the membrane potential of a neuron with constant

input current I and with an external reset mechanism the membrane potential

develops as seen in Figure 2.2. If the input current is too low, the membrane potential

will saturate to a constant value without producing any spikes. However, if the

10
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threshold voltage has been passed, increasing the input current leads to an increase

in the spike frequency. �is non-linear behaviour creates the expressiveness of

the neural network. A nonlinear function called the recti�ed linear unit has been

proposed as a model for the �ring rate of cortical neurons (Hahnloser et al., 2000),

see Figure 2.4. In fact, it has become quite popular in the context of arti�cial neural

networks and will be further discussed in Section 2.2.

Obviously the simple integrate-and-�re model does not capture all details of real

biological neurons. A prominent short-coming is its missing ability to produce dif-

ferent spike pa�erns. Di�erent areas of the brain contain di�erent types of neurons

that evolved to produce a diverse range of spike pa�erns. �e leaky integrate-and-

�re model discussed so far is unable to produce distinct spike pa�erns for a constant

input current because the cell membrane is reset to ureset immediately a�er spiking.

�erefore no memory about the previous neuron state persists a�er this hard-reset.

�ere are several ways to circumvent this issue; one of the simplest and most

intuitive is to introduce a dynamic time-dependent threshold # (t). A�er each spike

z(t), the threshold slightly increases by some �xed amount � , if no spike occurs the

dynamic threshold # (t) will decay to some base threshold #0. �e dynamics of this

behaviour can be expressed as

�a
d#
dt

= −(# (t) − #0) + �z(t). (2.5)

Assuming the threshold at time t0 is # (t0) = #0, we can solve the di�erential equation

and model the behaviour of the dynamic threshold in continuous time as

# (t) = #0 + � (z(t) − exp(−
t − t0
�a ) z(t0)) . (2.6)

If the threshold at time t0 is not at the base threshold #0, then the result is

# (t) = #0 + �z(t) − exp(−
t − t0
�a ) (−# (t0) + #0 + �z(t0)) (2.7)

11



2 Background

In a discrete time se�ing, the result above can be rewri�en as

# (t + Δt) = (1 − �a)(#0 + �z(t)) + �a# (t) (2.8)

�a = exp(−
Δt
�a )

(2.9)

In combination with implementing a refractory period Δabs > 0 this model is

able to accurately predict the spike pa�ern of many biological neurons, even for

longer periods of time (Gerstner, Kistler, et al., 2014). Spike frequency adaptation

corresponds closely to the mechanism of dynamic thresholds. In Section 2.3 the

leaky integrate-and-�re model with dynamic threshold and refractoriness will be

revisited in a discrete-time se�ing suitable for simulation.

For the remainder of this thesis, we will keep to this simple neuron model. �is

means, that we will not cover many important biological aspects of neurons such

as models describing the full action potential shape, synapse models, plasticity and

many more. For a more in-depth analysis, please refer to Gerstner, Kistler, et al.,

2014.

12
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−4 −2 2 4

−2

−1

1

2

x

f (x) sigmoid

ReLU

tanh

Fig. 2.4: Common non-linear functions for ANNs. �e sigmoid function is de�ned

as sigmoid(x) = 1
1+exp(−x) , the Recti�ed Linear Unit function as ReLU(x) =

max(0, x) and the hyperbolic tangent as tanh(x) = ex−e−x
ex+e−x .

2.2 Artificial Neural Networks

In this section we will give a short introduction to arti�cial neural networks (ANN)

and the backpropagation algorithm that enabled the success of deeper neural

network architectures in �elds such as image classi�cation, language modelling,

machine translation and many more.

Arti�cial neural networks are a class of models suitable for various tasks such

as supervised learning, unsupervised learning and reinforcement learning. ANNs

can be seen as an mathematical abstraction of biological neurons, having similar

features: both receive some form of input, apply a non-linear transformation to the

input and propagate the output to other neurons. One of the most common types

of ANN, called feed-forward neural network, is completely stateless. Instead of

simulating neurons in a biologically plausible way, the computation of the output

is time-invariant and not dependent on the current state of the neuron. Figure 2.5

shows the structure of a simple feed-forward arti�cial neural network. It consists

of an input layer, one or more hidden layers and an output layer. Each hidden layer

applies a non-linear function �(z(l)) = a(l) to the linear function of the previous

13
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x1

x2

x3

�

�

�

�

y1

y2

W (1)
W (2)

HiddenInput Output

Fig. 2.5: Structure of an arti�cial neural network.

layer’s output z(l+1) =W (l)a(l) + b(l). A selection of common non-linear functions,

o�en referred to as activation functions, can be seen in Figure 2.4. Mathematically,

the network in Figure 2.5 can be represented as a function f (x , �) where x = a(1) is

the input vector and � = [W (1),W (2), b(1), b(2)] is the tensor holding the parameters

W (l), b(l) of layer l.

f (x , �) =W (2)�(W (1)x + b(1)) + b(2) (2.10)

2.2.1 Backpropagation

�e training setup of a neural network is intimately related to the class of the

problem we want to solve; for now, we will only consider supervised learning

problems. In this context, we have a training set X = {x1,… , xn} with known

ground-truth values Y ∗ = {y∗1,… , y∗n} of the function we want to approximate or

class we want to assign. �is allows the construction of loss functions (Y ,Y ∗) that

evaluates how well the models prediction Y = {yi | yi = f (xi , �)} �ts the ground
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truth Y ∗
. A common choice is the mean-squared-error loss

MSE =
1
n

n
∑
i=1

‖‖f (xi , �) − y
∗
i
‖‖
2
2 (2.11)

for regression, where n is the number of samples in the dataset. Formulating the

training of the neural network as optimization problem, we want to �nd a set of

parameters � ∗ such that

� ∗ = argmin
�

� (Y ,Y ∗). (2.12)

A popular method of solving these kinds of problems is to use gradient methods,

since the loss surface is usually non-convex (Beck, 2014; Bishop, 2006) and an

analytical solution is computationally infeasible or may not even exist. �e arguably

most commonly used gradient method today is gradient descent which updates the

parameters in an iterative manner giving

�k+1 = �k − �∇�k (Y ,Y ∗) (2.13)

as the new parameters under the condition that the step size � is chosen su�ciently

small enough to guarantee convergence to a local minimum and the loss function

is di�erentiable (Beck, 2014). Intuitively, this means that we will take small steps

on the loss surface in the direction of steepest descent towards some stationary

point where the gradient vanishes and the loss decreases.

�is leaves the problem of calculating the derivative ∇�k(Y ,Y ∗) with respect to

the parameters � for the data in the training set. All that is necessary is some basic

calculus and the chain rule of calculus. Starting with the last layer of the example

network in Figure 2.5, we will later generalize to arbitrary layers. �e most intuitive

way to perform this computation is to �rst visualize the computational graph of

the entire network, as seen in Figure 2.6; then it becomes obvious on how to apply
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+

+

b(2)
id

�
b(1)

W (1)

y

x
×

×
W (2)

z(2) a(2)

z(3) a(3)

Fig. 2.6: Computational graph of the 2-layer neural network from Fig. 2.5. Parame-

ters and input values are represented by ellipses whereas operations are

represented as rectangles. Nodes with “×” refer to the inner product ⟨⋅, ⋅⟩;

”id” refers to the identity operation.

the chain rule to obtain the derivatives

)
)W (2) =

)
)a(3)

)a(3)

)z(3)⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
� (3)

)z(3)

)W (2) , (2.14)

)
)b(2)

=
)
)a(3)

)a(3)

)z(3)⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
� (3)

)z(3)

)b(2)
(2.15)

�e next step is to realize that the computation of the gradients of W (2), b(2) with

respect to  share a common term we will call � (3). Not only can this term be

used for the computation of both parameter derivatives; it is also very useful for

computing gradients in earlier layers of the network:

)
)W (1) =

)
)a(3)

)a(3)

)z(3)
)z(3)

)a(2)
)a(2)

)z(2)
)z(2)

)W (1) (2.16)

= � (3)
)z(3)

)a(2)
)a(2)

)z(2)⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
� (2)

)z(2)

)W (1) (2.17)

= � (2)
)z(2)

)W (1) (2.18)
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)
)b(1)

= � (2)
)z(2)

)b(1)
(2.19)

Since all of the layers of the neural network are structured the same way, we can

take advantage of this and solve some of the partial derivatives for general neural

network architectures with L layers:

)z(l+1)

)a(l)
=W (l)T

(2.20)

)z(l+1)

)W (l) = a
(l)T

(2.21)

)z(l+1)

)b(l)
= 1 (2.22)

Using these results, we can now formulate generalized derivatives for the parame-

ters of the network using

� (l) =
⎧⎪⎪
⎨⎪⎪⎩

)
)a(l)

)a(l)
)z(l) if l = L

� (l+1)W (l)T )a(l)
)z(l) else

(2.23)

)
)W (l) = ∇W (l) = � (l+1)a(l)T (2.24)

)
)b(l)

= ∇b(l) = � (l+1). (2.25)

�e derivatives
)
)a(L) and

)a(l)
)z(l) depend on the choice of loss function and nonlinear

transformation, respectively, and cannot be reduced any further.

Considering common loss functions such as mean-squared-error loss, their output

is de�ned using the value a(L) of the network; the derivative of the weights
)
)W (l) also

depends on a(l). �e calculation of � (l) depends on
)a(l)
)z(l) . �us, in order to compute all

required partial derivatives to update the parameters of the network, it is necessary

to use all intermediary values a(l), z(l). �e straightforward way to compute and

store all these values is to evaluate the network; this is also referred to as the

forward-pass, because the evaluation starts with the �rst network layer and ends
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with the last one. A�er that, by using the intermediary values to calculate parameter

updates, the calculation of the partial derivatives starts at the last layer and ends at

the �rst layer – this is called the backward-pass. Applying the forward- and the

backward-pass together is called the backpropagation algorithm (Bishop, 2006) and

can be seen in Algorithm 1. In the listing, some abuse of notation is used to refer

to the derivatives of the parameters W (l), b(l) as ∇W (l),∇b(l) instead of ∇W (l),∇b(l)
for sake of readability. Furthermore, the derivatives

)
)a(l) ,

)a(l)
)z(l) have been replaced

with ∇(a(l), y∗),∇�(l)(z(l)).

One of the key factors of the success of backpropagation besides its simplicity

and formulation as a general optimization problem is its e�ciency. As seen in

Algorithm 1, it is clear that the gradient descent procedure is linear in its com-

putation cost in the number of parameters of the network and the number of

training samples. Both the forward and backward procedure use the elements

in the parameter tensor � once, thus having (|� |) computation time cost when

thinking of inner products as operations with per-element cost (1). �e overall

computational cost increases linearly with the number of training samples |X | and

the number of training iterations K . On modern GPUs, matrix operations can be

executed in parallel very e�ciently, reducing the training time of large data sets

considerably.

An alternative to the gradient descent method described above is called stochastic

gradient descent. Instead of iterating over the entire training set, small subsets

called minibatches are selected at random from the shu�ed training set and these

are processed alike standard gradient descent. �is has several advantages: First

of all, it inherently makes the gradient more noisy allowing the method to escape

local stationary points. Second, it usually converges faster if there is some amount

of redundancy in the training data. Many large datasets contain similar samples;

if the dataset gets shu�ed randomly or preferably according to the underlying

distribution of the data, performing updates on the minibatches instead of the full

training dataset produces similar e�ects. �us it is possible to perform more updates

in the same amount of time leading to much faster convergence.
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Algorithm 1 Backpropagation algorithm with gradient descent

1: procedure forward(x , �) ⊳ Calculates forward-pass for one sample

2: for l ← 1,… , L do
3: z(l+1) ←W (l)a(l) + b(l)
4: a(l+1) ← �(l+1)(z(l+1))
5: end for
6: return a, z
7: end procedure

8: procedure backward(a, z, y∗, �) ⊳ Calculates backward-pass for one sample

9: � (L) ← ∇�(L)(z(L)) ∇(a(L), y∗)
10: for l ← L − 1,… , 1 do
11: � (l) ← � (l+1)W (l)T∇�(l−1)(z(l))
12: end for
13: for l ← 1,… , L do
14: ∇W (l) ← � (l+1)a(l)T

15: ∇b(l) ← � (l+1)
16: end for
17: return ∇W ,∇b
18: end procedure

19: procedure gradient descent(X ,Y ∗, K , �)

20: initialize �
21: for k ← 1,… , K do
22: set ∇W ,∇b to 0
23: for i ← 1,… , |X | do
24: ai , zi ← forward(xi, �)
25: ∇Wi ,∇bi ← backward(ai , zi , y∗i , �)
26: ∇W ← ∇W + 1

|X |∇Wi

27: ∇b ← ∇b + 1
|X |∇bi

28: end for
29: W ←W − �∇W
30: b ← b − �∇b
31: end for
32: end procedure
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y

h

x x (t−1)

h(t−1) h(t)h(…) h(t+1) h(…)

x (t)

y(t−1)

x (t+1)

y(t+1)y(t)

Fig. 2.7: A recurrent neuron. �e input x and the last state of the neuron is pro-

cessed by a function f to produce the next state. From this new state,

the output y is derived. Le�: �e original recurrent version of the net-

work where the recurrent connection is delayed for one time step. Right:
�e unrolled version of the same neuron where the computation of the

next hidden state becomes clear. Adapted from Goodfellow, Bengio, and

Courville, 2016.

2.2.2 Backpropagation Through Time

Another important class of ANNs besides the feed-forward network is called re-

current neural network (RNN). As the name suggests, some parts of the output of

the neuron are used as input again; this is called the state of the neuron. Whereas

regular feed-forward networks are completely state-less, meaning that they do not

“remember” anything between two evaluations of di�erent input values, recurrent

neural networks can store or encode parts of the input they receive in their state.

�is can be useful for a wide variety of applications that require recalling the

occurrence or absence of certain observations such as words in sentences or the

tracking of objects in a scene. A graphical representation of this can be seen in

Figure 2.7 on the le�. Much like regular feed-forward networks, it still produces

output that could be passed on to other layers. �e functional dependence on the

previous state directly leads to a recursive de�nition of the state calculation and a
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sequence of state values where each element in the sequence depends only on its

immediate predecessor. Although the elements in the sequence do not necessarily

follow a certain temporal ordering, the element indices of the sequence are usually

referred to as time steps. �e sequence of states and their transition to follow-up

states can be seen in Figure 2.7 on the right-hand side. �is step-wise transitioning

from state to state up to a �xed length is called unrolling. A common de�nition of

the state (Goodfellow, Bengio, and Courville, 2016), also called hidden unit h, is

h(t+1) = f (h(t), x (t), �) (2.26)

where t refers to the t-th element in the sequence of states and input values and

f can be seen as a function akin to that of a feed-forward neural network as in

equation (2.10). One aspect to consider is that even if the input values x do not

follow a speci�c meaningful order on their own, the calculation of the state values

structures the input values in a sequence indirectly. If one thinks of the recurrent

neural network as a natural extension of the feed-forward network where the

previous state of the network is used as input again, we can immediately formalize

this relation as follows:

z(t) = bz +Whh(t−1) +Wxx (t) (2.27)

h(t) = �(z(t)) (2.28)

Here, the superscript notation ⋅(t) does not refer to the t-th layer in the feed-forward

network but to the time step t . �e last missing piece is the calculation of the

“visible” output value

y(t) = by +Wyh(t) (2.29)

�e relationship to the feed-forward network can be prominently seen in the formal

de�nition in equations (2.27) to (2.29). �is leaves the problem of a learning rule

for training this kind of arti�cial neural network. First, it is important to observe

21



2 Background

the structure of equation (2.26). �e parameter vector � does not depend on the

current time step t ; therefore the same parameters are used for all time steps in

the calculation. �is reduces the number of parameters considerably compared to

using di�erent � (t) for every time step.

�e relation of recurrent neural networks to feed-forward neural networks brings

the use of backpropagation as the choice of learning rule to mind at once. However,

in the feed-forward se�ing there is a clear structure of the network and how to apply

backpropagation with respect to the individual layers. �e process of unrolling

the computational graph as in Figure 2.8 for a certain chosen sequence length

gives a result very similar to that of a feed-forward network. Now, each time step

in the computational graph represents one “layer” of an equivalent feed-forward

network; for some �xed chosen unrolled sequence length the same backpropagation

algorithm can be applied to training the network.

�e trainable parameters Wh,Wx ,Wy , bz , by are used for all time steps in the com-

putational graph without allowing individual sets of parameters for certain time

steps; this is commonly referred to as parameter sharing (Goodfellow, Bengio, and

Courville, 2016). �is leads to a set of unique problems for recurrent neural networks

that is not immediately obvious. Considering Figure 2.8, during the computation

of z(t), we apply the weight Wh for each time step in the graph. Disregarding the

other elements of the computation of z(t) and the non-linear function � the state

is computed as h(t) = W t
hh(0). Repeated potentiation of the same weight matrix

will force all values towards 0 or ∞. In the literature, this problem is known as

the vanishing or exploding gradients problem. �e impact of this can be seen in

Algorithm 1 in line 11, where � (l) is calculated based onW (l)
. Several solutions exist

to address these issues somewhat successfully. A noteworthy example is gradient

clipping where the exploding gradient problem is solved by hard-rese�ing the

gradient to some threshold value if this values is exceeded.

Regular feed-forward networks do not su�er from the vanishing or exploding

gradient problem as much because they employ di�erent sets of weights in di�erent
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×
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×
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� +
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tanhx (t)

f (t)

ĥ(t)
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Fig. 2.9: Computational graph of the LSTM network. �e �lled green squares

represent a complete feed-forward layer with their own set of weights

and biases used in a linear function followed by the non-linear function

speci�ed in the label of the square. ĥ(t), i(t), f (t), o(t) refer to the state update,

the input gate, the forget gate and the output gate, respectively.

layers; thus the problem of repeated self-potentiation does not occur in this extreme

form. �e most prominent solution to both the vanishing and exploding gradient

problem for RNNs are gated recurrent neural networks such as the long short-

term memory (LSTM) network (Hochreiter and Schmidhuber, 1997). Observing the

behaviour of feed-forward networks, the idea is to adapt the �ow of information

such that the calculation of the state does not su�er the same repeated potentiation

of weights as regular RNNs. �is, in e�ect, produces the same behaviour as having

di�erent weights at each time step in the unrolled computational graph.

In Figure 2.9 an overview of the LSTM network can be seen. To modulate the �ow

of information dynamically depending on the previous state and the input, four

new separate feed-forward layers called gates are introduced. Each of these gates

serves a di�erent purpose and produces vectors that control each element of the

state vector independently. �e input gate i(t) controls how much of the state update

ĥ(t) actually gets added to the old state h(t−1) to create the new state h(t). �e forget

gate f (t) adjusts the amount of information that is kept from the old state for the

computation of the new state. �e output gate o(t) regulates what parts of the state
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processed by the hyperbolic tangent function make up the output of the LSTM

network.

�e sigmoid unit produces values in the range [0, 1] and intuitively is a suitable

function for controlling the amount of information �ow as gate; if it is zero no

information �ows, if it is one all information is kept. �e hyperbolic tangent used for

the state update ĥ(t) with range [−1, 1] adding to and subtracting from the current

state to compute the new state; a sigmoid function would not make sense. Both

the sigmoid and the hyperbolic tangent function are well-behaved functions with

regard to �rst- and second-order derivatives.

In this section we have argued that recurrent neural networks are good choices

when operating on sequences of data. In fact, spiking neural networks in the brain

can be seen as recurrent neural networks; in the brain there are no feedforward-only

layers of neurons similar to arti�cial neural networks. �us it is highly interesting

to explore approaches to extending backpropagation through time to spiking neural

networks to bene�t from the advantages of e�cient gradient descent optimization.

In the following section we will review a recent method of approximating the

derivative of spikes with respect to the membrane voltage of neurons.
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Fig. 2.10: Illustration of pseudoderivative of the spike function.

2.3 Backpropagation in SNNs

In Section 2.1 use cases for spiking neural networks such as neuromorphic hardware

and a generally be�er understanding of the mammalian brain have been motivated.

However, explicit strategies for training more biologically plausible neural network

models such as the leaky integrate-and-�re model were not mentioned. �ere is

a plethora of neuron models for describing neural dynamics; learning rules for

networks of biological neurons with varying degrees of complexity have been

proposed. Common choices of describing long term changes in the brain are spike-

time dependent plasticity (STDP) observed by Markram et al., 1997 or the Clopath

learning rule (Clopath et al., 2010).

In previous works, biologically plausible learning rules had severe drawbacks.

Either they were only suitable for a very small number of neurons, had very slow

convergence rates or worked only when applied to speci�c neuron models in

certain con�gurations. Although backpropagation and especially backpropagation

through time is not biologically plausible, the success of arti�cial neural networks

in combination with backpropagation make this method highly interesting for

spiking neural networks. Being able to accurately assign error contributions of

single neurons in a population is superior to local plasticity mechanisms. �e
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reason why backpropagation is not applicable to spiking neuron models such as

the integrate-and-�re model is that spikes are not di�erentiable. If we consider the

output behaviour of LIF neurons, their output z(t) = 0 everywhere except when the

membrane voltage u(t) reaches the �ring threshold # where z(t) = 1; it is clear that

this function is not di�erentiable. �us it has been proposed by Esser et al., 2016;

Courbariaux and Bengio, 2016 to approximate the derivative of the spike function

for binary neurons. �is idea has been extended to adaptive leaky integrate-and-�re

neurons by Bellec et al., 2018 where the derivative is given as

dz(t)
dū(t)

= �max{0, 1 − |ū(t)|} (2.30)

where ū(t) = u(t)−# (t)
# (t) is the normalized membrane potential. A dampening factor

� = 0.3 seems to be necessary to keep the training of recurrent spiking neural

networks stable. An illustration of the derivative is given in Figure 2.10. It smoothly

increases and decreases with ū(t), it is not linearly based on t alone.

With this in mind, we can put all previous sections on background information

together and train leaky integrate-and-�re neurons with backpropagation through

time in a reinforcement learning se�ing to solve interesting tasks. In the next

chapter, we will use this uni�ed framework to solve classic and state-of-the-art

benchmarks of reinforcement learning with spiking neural networks.
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Agent

Environment

Action At

St+1

Rt+1

State St Reward Rt

Fig. 2.11: Typical reinforcement learning problem. Given a state St and a reward

Rt determine the next action At . �is in turn leads to the new state St+1
and reward Rt+1. �e reward signal is a scalar whereas both the state and

the action can be vector-valued. Adapted from Su�on and Barto, 2018.

2.4 Reinforcement Learning

In the literature reinforcement learning is described as one of the three broad

categories of machine learning: supervised learning, unsupervised learning and

reinforcement learning (Su�on and Barto, 2018; Bishop, 2006; Goodfellow, Bengio,

and Courville, 2016). �ey di�er both in their goal and in the way the input data is

structured. In this section an introduction to basic reinforcement learning termi-

nology including an overview of the algorithm used for all experiments (Schulman,

Wolski, et al., 2017) will be given.

As discussed in Section 2.2 in the supervised learning paradigm the goal is to

train a model to map given input data to some known target value or target class

and achieve high accuracy on unseen test data. For the unsupervised learning

scenario, the training dataset does not contain any target values and the goal is

to �nd hidden structures or groups within the data. Reinforcement learning is

di�erent insofar that it does not contain target values for speci�c examples in

the training dataset; however a special signal, usually called a reward signal, is

given by the environment to an actor. Figure 2.11 shows the general setup of the
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reinforcement learning problem. Here the goal is to maximize the reward achieved

over all timesteps choosing optimal actions to reach subsequent states yielding

high rewards. �e di�culty lies in choosing actions such that the state space is

su�ciently explored to �nd states with high reward. An additional layer of di�culty

may arise from the structure of the reward signal; some problems might award

non-zero rewards only a�er many time steps. �us learning to choose good actions

is completely decoupled from the immediate reward received a�er taking the action.

�erefore the overarching goal is to balance exploring and exploiting good states

in order to maximize the long-term cumulative reward.

�e behaviour of the agent in the environment is described using a policy � . �is

policy can be seen as a function � (a | s) ∶  → (s), a ∈ (s), s ∈  mapping from

values in the state space  to values in the action space . Generally policies can

be stochastic or deterministic. States in  may include partial observations of the

environment or speci�c aspects of the actor in the environment and should only

include relevant information to solve the given problem. Examples are external

information such as the absolute position of the robot in the world or internal

information such as sensor readings like joint angles of extremities or camera

images. �us the state can be high-dimensional and di�cult to explore e�ciently.

Actions in  may also be high-dimensional and vector-valued; controlling multiple

actuated joints of a robotic platform in a continuous se�ing or choosing whether

to go le� or right in a discrete se�ing may be seen as simple examples. Choosing

a particular action transitions the environment into a new state, similar to the

sequence of states discussed in Section 2.2.2 this transition immediately gives a

notion of discrete timesteps.

In order to formalize the abstract description of the system described in Figure 2.11

some assumptions need to be made. From the study of probability theory the

concept of Markov chains and Markov processes come to mind, allowing to reason

about the future state of a dynamical system solely based upon its current state in

a probabilistic fashion. �is formalism can be directly applied to the problem of

reinforcement learning when taking the chosen action and the given reward into
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⋯ (ST , RT )(St+1, Rt+1) (St+2, Rt+2)St
At At+1 At+2 AT−1

Fig. 2.12: Trajectory of observed states. In the se�ing of this thesis, we will mostly

be concerned with the actually observed trajectory and return a�er the

agent reached a terminal state instead of the expected trajectory most

probable or pro�table before choosing an action.

account. In this extended de�nition, Markov chains are known as Markov decision

processes. Given a state St and an action At we want to know the probability of

future state St+1 and reward Rt+1 occurring. We will follow the notation of Su�on

and Barto, 2018 for the remainder of this section. �e dynamics of the Markov

decision process for random variables s, a, s′, r are given by

p(s′, r | s, a) = Pr{St = s′, Rt = r | St−1= s, At−1=a}, (2.31)

where

Pr{St = s′, Rt = r | St−1= st−1, At−1=at−1,… , S1= s1, A1=a1} (2.32)

= Pr{St = s′, Rt = r | St−1= st−1, At−1=at−1} (2.33)

ful�lling the Markov property. In practice it would be infeasible to store and process

all previous states for all new actions to be decided upon inde�nitely, especially

for continuous state spaces. �us it is reasonable to assume that the current state

should contain all the information necessary to make informed decisions. From

now on, we will mostly be concerned with the actual values of s, a, s′ and r taken

at time t , which are St , At , St+1 and Rt+1, respectively. �is chain is illustrated in

Figure 2.12.

Previously we de�ned our goal to maximize the cumulative reward in the long-term.

�is de�nition is fuzzy; it does not specify what long-term means. More formally we
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want to maximize the return Gt de�ned over an sequence of states called episode

Gt = Rt+1 +⋯ + RT (2.34)

where T is the length of the sequence. �is means that the agent acts in the

environment and produces a trajectory of states and rewards until termination of

the episode; this is visualized in Figure 2.12. More generally, for continuous tasks

where T can be in�nity, it is practical to discount future rewards

Gt = Rt+1 + 
Rt+2 + 
 2Rt+3 +⋯ (2.35)

=
∞
∑
k=0


 kRt+k+1 (2.36)

such that in�nite sums in the case T = ∞ have �nite values if 
 < 1 and the reward

sequence {R1,… , RT} is bounded. It allows to control how much emphasis is put

on future rewards; if potential rewards are too far in the future they might be less

relevant even for certain �nite tasks.

With this notion of return as the weighted sum of future rewards starting from a

certain time step t in a state s we can express the value of a state. �e value of a

state is given as

v� (s) = E� [Gt | St = s] (2.37)

which is the expected return of a state s and policy � when starting in state s and

following � for choosing future actions. �is concept can be extended to evaluate

state-action pairs (s, a) as

q� (s, a) = E� [Gt | St = s, At =a] (2.38)

where the expected return of state s a�er taking action a and subsequently following

policy � is considered (Su�on and Barto, 2018). For a small number of states, it

may be possible to continuously visit all states and keep accurate estimates of the
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value in lookup tables; for large continuous state spaces this is infeasible. �us

approximations of state values have to be made using parametrized functions

v̂(s, �v) ≈ v� (s) or q̂(s, a, �q) ≈ q� (s, a). Accurately estimating value functions is

essential for evaluating policies and improving them consistently. A popular choice

of function approximators are arti�cial neural networks (Mnih, Kavukcuoglu, et al.,

2015; Schulman, Levine, et al., 2015; Schulman, Wolski, et al., 2017; Hessel et al.,

2018; Espeholt et al., 2018).

A common extension of returns Gt is the idea of bootstrapping. Instead of �nishing

an episode until termination to get the full exact return, one may wish to update

parameters earlier to incorporate changes faster. To still get sensible information

about the future rewards of a state, the estimated value function is incorporated

into the return

Gt∶t+n = Rt+1 + 
Rt+2 +⋯ + 
 n−1Rt+n + 
 nv̂(St+n) (2.39)

to form the n-step return Gt∶t+n. �e n-step return can be directly used in the

de�nition of state-value (2.37) and action-value (2.38) functions.

�e goal of optimizing the parameters �v such that v̂(s, �v) ≈ v� (s) immediately

gives multiple choices of objective function that can be minimized, a default choice

is of course the sum of squared errors

v(�v) = ∑
s∈
(v� (s) − v̂(s, �v))2 . (2.40)

Obviously the true value of v� (s) is not known a priori, but noisy estimates based

on values observed by sampling a trajectory of states and returns can be made by

acting in the environment according to policy � . One choice of an noisy estimate

would be v� (s) ≈ Gt ; this is known as Monte Carlo sampling in reinforcement

learning literature. �is loss is then de�ned over the observed returns for all visited
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states during acting in the environment and can be wri�en as

v(�v) =
T
∑
t=0
(Gt − v̂(St , �v))2 . (2.41)

With the assumption that our choice of value function approximator is di�erentiable,

the plethora of non-linear optimization methods based on gradient information

is available (Beck, 2014); this has the advantages that convergence guarantees

can be made and the speed of convergence is usually faster. Similarly, it would

be convenient to use a parametrized di�erentiable policy � (a | s, �� ) instead of a

per-state policy � (a | s) discussed so far.

As discussed in Section 2.2.1 we want to optimize our parameters �� according to

an objective function (�� ) and forms of gradient descent are the method of choice

to solve this problem. According to the policy gradient theorem (Su�on, McAllester,

et al., 2000; Su�on and Barto, 2018), a good choice of objective function we want to

maximize is

(�� ) = v� (s0). (2.42)

�us, we need a di�erentiable value function v� in order to apply gradient ascent

steps

�k+1� = �k� + �∇v� (s0). (2.43)

�e policy gradient theorem states that asymptotic equality of ∇v� (s0) is given by

∇v� (s0) ≍ ∑
s
�(s)∑

a
∇� (a | s)q� (s, a) (2.44)

= E� [∑a
∇� (a | s)q� (s, a)] (2.45)

which is used in the REINFORCE algorithm (Williams, 1992) to update the policy
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parameters, where �(s) is the probability of state s occurring. At each environment

step (t) for training iteration k the update

�k,(t+1)� = �k,(t)� + �Gt∇ ln � (At | St , �k,(t)� ) (2.46)

is applied. With this, iterative updates of both the parametrized policy and value

function are possible.

Another common improvement on standard policy gradient methods is including a

baseline b(s) into the gradient ∇v� (s) as

∇v� (s0) ≍ ∑
s
�(s)∑

a
∇� (a | s) (q� (s, a) − b(s)) (2.47)

An intuitive choice of baseline b(s) is v̂(s); similarly to subtracting the mean value

from a set of data it puts emphasis on values above the baseline and vice versa.

Without the baseline, choosing an action from a set of similarly valued actions is

di�cult. �e di�erence A(St , At) = q� (St , At) − v̂(St , �v) is known as advantage in

the literature. Using bootstrapping whilst learning both policy and value function

parameters simultaneously in one update belongs to the class known as actor-critic

methods. �e update of n-step actor-critic methods looks as follows:

�k,(t+1)� = �k,(t)� + �A∇ ln � (At | St , �k,(t)� ) (2.48)

�is leaves the issue of choosing parametrized functions � (a | s, �� ) that are dif-

ferentiable and well-behaved. For discrete action spaces Su�on and Barto, 2018

suggest using a parametrized so�-max distribution

� (a | s, �� ) =
eℎ(s,a,�� )

∑b eℎ(s,b,�� )
(2.49)

with ℎ(s, a, �� ) being a di�erentiable function for given state-action pairs under the

given parametrization; examples for ℎ include arti�cial neural networks or spiking
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neural networks. In the continuous action space case, a common approach is to

learn the parameters of a chosen distribution such as a Gaussian distribution

� (a | s, �� ) =
1

� (s, �� )
√
2�

exp(−
(a − �(s, ��))2

2� (s, �� )2 ) (2.50)

where �� = [�� , �� ]T are the parameters to be learned. Much alike to ℎ(s, a, �� ),
�(s, ��) and � (s, �� ) are di�erentiable functions.

With this basic knowledge of policy gradient methods and actor-critic methods, a

brief overview of the proximal policy optimization (Schulman, Wolski, et al., 2017)

algorithm (PPO) will be given. �e main contribution of PPO is a new objective

function based on conservative policy iteration (Kakade and Langford, 2002) and

trust region policy optimization (Schulman, Levine, et al., 2015) suitable for general

stochastic policies. Conservative policy iteration (CPI) investigates a major issue of

standard policy gradient methods resulting in insu�cient exploration without a

large number of samples from the environment to estimate the gradient direction

and magnitude well.

�ey propose optimizing a di�erent objective function

CPI (�� ) = E�
old [

�� (At | St)
��

old
(At | St)

(q� (St , At) − v̂(St , �v))] = E�
old
[�A] (2.51)

where � = �� (At | St )
��

old

(At | St )
is known as the importance sampling ratio in the literature.

�is ratio is commonly used in o�-policy sampling, where the goal is to learn about

a target policy by behaving according to a di�erent but similar policy. �is means

that the behaviour policy at least sometimes needs to visit the same states as the

target policy. In the CPI se�ing, the target and behaviour policy are the current

and previous iterates of the same policy and the ratio describes how much the new

policy di�ers from the old one.

Schulman, Levine, et al., 2015 found that performing updates on this new objective

function without complicated constraints results in too large updates to the policy.
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Algorithm 2 Proximal Policy Optimization (PPO)

1: while termination condition not met do
2: for actor 1,… , N do
3: Sample with policy ��

old
for T steps from the environment

4: Compute the advantage A for all steps

5: end for
6: Optimize objective CLIP+v+H (�� ) for K epochs and minibatch size M
7: end while

In their newer work (Schulman, Wolski, et al., 2017), they limit the update by

clipping the importance sampling ratio to a "-bound

CLIP (�� ) = E�
old
[min (�A, clip(�, 1 − ", 1 + ")A)] . (2.52)

preventing changes to �� that move � too fast from 1; the closer �� is to ��
old

, the

closer it is to 1. �e advantage of this new structure is that it does not need explicit

constraints like trust region policy optimization.

When the policy objective (2.52) and the value function objective (2.40) get com-

bined, we get

CLIP+v+H (�� ) = E�
old [

CLIP (�� ) − c1v(�v) + c2H (� (St , �� ))] (2.53)

where H (��� ) is the entropy of policy � . Adding this entropy bonus was inspired

by Mnih, Badia, et al., 2016 and improves exploration. If the entropy is low, the

policy is close to deterministic; to force the agent to keep exploring the entropy

needs to be kept high. �e coe�cients c1, c2 are hyperparameters that need to be

tuned separately.

�e full PPO algorithm used for all experiments conducted during this thesis is

given as Algorithm 2. In this se�ing, M , N and T are hyperparameters that need to

be chosen separately. Each actor, typically one CPU core per actor with N cores in

total, samples experience from the environment for T steps under the current policy
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parametrization. �en the T -step return Gt∶T is used to calculate the advantage A
necessary for calculating the gradient of CLIP (�� ). �e termination condition may

be reaching a certain number of iterates, time steps or a pre-de�ned mean return.

37



3 Related Work

�e idea of trial-and-error learning in the brain dates back to �orndike, 1898 and

a whole body of research covering di�erent aspects of learning in animals has

been created. �e reward prediction error hypothesis of dopamine neuron activity

(Schultz, Dayan, and Montague, 1997) has many supporters among neuroscientists

and may be closely related to computational reinforcement learning. However, the

role and interplay of neurotransmi�ers and neuromodulators in the brain facilitating

reinforcement learning is not clear. �us, we do not consider broad or isolated

mechanisms describing general changes in synaptic e�cacy, even if there is strong

experimental evidence. Unsupervised Hebbian learning rules such as standard

spike-time dependent plasticity are without doubt of signi�cant importance, but

they lack treatment of reward signals. �erefore the focus will be on works that

have clear links to (computational) reinforcement learning that may not necessarily

be biologically plausible. Most of the works presented below are able to solve

simple reinforcement learning problems with small populations of spiking neurons

and training may take long. We will show, that populations of a few hundred

neurons can be trained successfully to solve more demanding benchmark tasks

found in the reinforcement learning literature. We are not aware of other research

groups solving reinforcement learning problems with spiking neural networks and

backpropagation-through-time at this level of performance.

Seung, 2003 proposes the existence of “hedonistic” stochastic synapses that are

modulated by a global reward signal that is the immediate e�ect of choosing a

particular action. He de�nes synapses as hedonistic if they adapt the probability
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of reliably releasing neurotransmi�ers upon depolarization based on the action

chosen previously. Similarly to the necessity of randomness in the process of evo-

lution, the unreliability of synapses is postulated essential to learning in the brain.

Integrate-and-�re neurons with hedonistic synapses estimate gradient learning in a

biologically plausible manner. �is gradient information is used in the REINFORCE

algorithm to solve problems such as the XOR task, where the XOR of two binary

numbers encoded as Poisson spike-trains is to be computed. Note that the prob-

ability of release of a neurotransmi�er is adapted, not the synaptic connectivity

itself.

A�er the development of the hedonistic synapse model, Xie and Seung, 2004 propose

a learning rule estimating the gradient of the expected reward with respect to the

synaptic weights. It is formulated under the assumption that all neurons in the

population follow a Poisson process where the �ring rates, not the individual spikes,

are a function of the input current. �is neural model greatly simpli�es neural

dynamics and is not physiologically plausible. �ey show experimentally, that this

learning rule is also applicable to integrate-and-�re neurons if they add white noise

to the input current all neurons receive. To justify this, they argue that near-Poisson

distributed spike pa�erns can arise naturally due to the background noise in the

brain.

A more general version of the learning rule developed by Xie and Seung, 2004 was

postulated by Florian, 2007. He bases his derivation of the learning rule on the

spike response model (Gerstner, Ritz, and Hemmen, 1993) and does not require

Poisson-distributed �ring rates. It is an extension of standard STDP and is called

reward-modulated STDP that is biologically plausible and has been con�rmed

experimentally in vivo later (Yagishita et al., 2014; Yang and Dani, 2014; Cassenaer

and Laurent, 2012). During experiments he solves the XOR task and show that

speci�c pa�erns encoded via �ring-rates can be learned. He also gives learning rules

that include eligibility traces allowing to solve reward-delayed problems and they

produce solutions with lower �ring rates. Using the same reinforcement learning

approach (Baxter and Bartle�, 2001) in a similar fashion, Baras and Meir, 2007
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also �nd update rules for synaptic weights and relate their �ndings to the BCM

plasticity rule (Bienenstock, Cooper, and Munro, 1982). Izhikevich and Desai, 2003

have shown that the BCM rule and the STDP rule are closely related and in certain

cases even identical. Yet another work very similar to the methods in this paragraph

was published in the same year by Farries and Fairhall, 2007.

An entirely di�erent set of approaches has been reviewed by Floreano, Dürr, and

Ma�iussi, 2008. �ey claim that neural evolution e�ciently solves both the problem

of network architecture search and learning rule design. However, most of the work

relates to conventional ANNs and not SNNs. Still, the fact that evolved architectures

solve tasks such as cart-pole and robot movement is highly interesting. In our work,

we focus on the same set of problems. �e work of Di Paolo, 2003 shows that

evolution and STDP can coexist to train a simulated 2D two-wheel robot to drive

towards a light source with only 6 neurons and two light sensors.

Urbanczik and Senn, 2009 show that including an additional population response sig-

nal into the previously discussed reward-modulated plasticity mechanisms improves

performance when increasing neuron population size. Previous works perform well

for small neural assemblies but decrease in performance when the number of neu-

rons in the network increases. �is is due to the credit assignment problem, where

the global reward signal is not informative enough to provide feedback to single

neurons on how to change. In contrast, the backpropagation algorithm discussed

with regard to arti�cial neural networks in Section 2.2.1 assigns a customized feed-

back signal to every unit in the network. With this in mind, the population response

signal increases the performance when the number of neurons is increased; without

it, the performance quickly degrades with increasing number of neurons. �ey

argue that this method can be seen as a form of gradient descent.

Implementing a full actor-critic system with spiking neural networks was �rst pre-

sented by Potjans, Morrison, and Diesmann, 2009. �ey address several important

issues: �e reward prediction error hypothesis of dopamine neuron activity (Schultz,

Dayan, and Montague, 1997) has been related to a method known in reinforcement
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learning literature as temporal di�erence learning. �e neuromodulator dopamine

can be seen as a temporal di�erence learning error �t = Rt+1 + 
v� (St+1) − v� (St)
that relates the successive value estimates through time. �ey �nd a biologically

plausible synaptic weight update rule based on this temporal di�erence reward

prediction error and propose a neural architecture consisting of an actor, a critic

and a population of neurons representing di�erent states. With this system they

succeeded in solving the well-known grid-world environment, where the actor has

to �nd positions of high reward and remember how to get to these positions from

random starting positions. Another work by Frémaux, Sprekeler, and Gerstner,

2013 follows a similar approach and also produces synaptic update rules for con-

tinuous time actor-critic temporal di�erence learning. However, they extend this

idea to continuous state and action spaces and their performances on the Morris

water-maze navigation task matches the performance of rats. �eir approach to

handling continuous state and action spaces by place cells only works well for small

spaces.

�is issue has been addressed by Legenstein, Wilbert, and Wisko�, 2010 by propos-

ing hierarchical slow feature analysis as a biologically plausible method of dimen-

sionality reduction. �e aim of slow feature analysis is to �nd a set of features

that vary slowly over time, have high information content and are uncorrelated.

Features such as position and identity of objects vary slowly over time, thus this

method seems well suited for real-world scenes. Arguably hierarchical information

processing is evident in many areas of the brain; experimental studies backing

this claim are given to justify the use of hierarchical slow feature analysis. �e

experiments have been conducted using linear neurons that resemble arti�cial

neural networks but model dendritic e�ects. With this, they solve tasks such as the

Morris water-maze using high-dimensional visual input; the scene is rendered as a

top-down view on the maze.

Karamanis, Zambrano, and Bohté, 2018 propose a novel multi-layer architecture for

implementing a SARSA-like temporal di�erence reinforcement learning algorithm

with working memory in spiking neural networks in continuous time. It consists of
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sensory, association, Q-value and action-readout layers connected in a feedforward

manner with error feedback connections. �is hierarchical design might potentially

allow dimensionality reduction, although this was not explored. �ey use a general

spike response model for their neuron populations and the synaptic weight update

rule is biologically plausible. Notably, the mean �ring rate of trained networks for

tasks where memory is necessary is usually below 20 Hz.

�e proximal policy optimization algorithm used for the experiments conducted in

this thesis has also been applied by Tieck et al., 2018 to solve robotic environments

in a spiking con�guration. �e environment they describe uses a model of a human

arm with six muscles where the task is to control the arm to reach a target position.

�ey use a liquid state machine as an input layer to transform the observations into

a high-dimensional space to make use of its inherent memory properties; this makes

liquid state machines or LSTMs highly suitable for processing partially observed

or sequential data. �is transformed input is passed on to ANN layers that act as

readout of the liquid state machine. Regular ANNs are used as parametrized policy

and value functions and are trained using gradient descent. �e remainder of the

con�guration is identical to the parameters suggested by Schulman, Wolski, et al.,

2017.

Of course the work of Bellec et al., 2018 is closely related to this thesis. �ey

proposed the long short-term memory spiking neural network (LSNN) model used

for all experiments conducted in this thesis involving spiking neural networks.

Furthermore they investigated the capabilities of LSNNs in a meta reinforcement

learning se�ing, where the task is learning to learn solving a family of similar tasks.

�eir tasks describe a 2D world where an agent is randomly placed in an arena and

has to locate a �xed target area. �is area is relocated a�er some episodes according

to an unknown distribution within the arena. Over the course of many episodes

the agent should remember the �xed position of the target area and subsequently

move towards the goal e�ciently.
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In this chapter we present the experiments conducted during this thesis and the

corresponding experiment setup including a description of the environments the

agent was trained in. We will further discuss the results obtained using spiking

neural networks and compare them with similar arti�cial neural network archi-

tectures employing feedforward networks. All experiments have been conducted

using the Ray reinforcement learning library (Liang et al., 2017) allowing distributed

computing and e�cient cluster usage.

4.1 Environments

In this section we will give a brief overview of the environments used. �is includes

reviews of the observation and action space, the reward structure and the task the

agent is intended to solve. Although the description of the observation and action

space are of no relevance for learning good policies, it allows the reader to be�er

understand how the actor behaves in the environment.

4.1.1 Cart-Pole

�e �rst environment is the well-known cart-pole task (Su�on and Barto, 2018)

which features both a small observation space and a small discrete action space.

It was mainly chosen for its simplicity allowing fast prototyping and testing of
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Fig. 4.1: �e well-known cart-pole environment. �e brown pole has to be balanced

on the black rectangle by either pushing the cart to the le� or to the right.

di�erent network architectures and hyperparameters. As seen in Figure 4.1 a pole is

a�ached with a joint to a cart moving on a track. �e task is to learn to balance the

pole such that it does not fall over. �ere are several conditions which terminate

the current episode:

1. �e pole angle exceeds ±12◦ measured from the upright position.

2. �e cart position exceeds ±2.4measured from the starting position. Otherwise,

the pole on the cart could stay balanced by inde�nitely pushing the cart in

one direction.

3. A�er 200 environment steps, the episode is considered solved and terminates.

�e observations given to the agent are four �oating-point numbers corresponding

to the cart position, the cart velocity, the pole angle and the pole velocity at the tip

of the pole. With this information, the agent needs to decide whether to choose

one of the two possible options for each environment step: To push the cart to

the le� or to the right with a �xed amount of force not known to the agent. For

each environment step, the agent receives a reward of +1, thus the maximal reward

equals the maximal episode length of 200. Overall, the environment is considered

solved, when the agent exceeds a mean reward of 195 averaged over 100 consecutive

episodes.
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4.1.2 Roboschool Hopper

�e second environment under consideration is the more recent 3D Roboschool

Hopper environment part of the OpenAI Gym suite (Plappert et al., 2018). �is

poses a more challenging task that is also used by state-of-the-art algorithms as

benchmark. �is is one of the main reasons this environment has been chosen; whilst

providing a reasonably small observation state size it also features a continuous

action space. A�er �nding suitable architectures and hyperparameters for the cart-

pole task these con�gurations are transferred to the new Hopper task. �is allows to

greatly reduce the necessary computation time for grid search to �nd good choices

of hyperparameters.

In this environment the task is to learn e�cient movement pa�erns used to propel

a unipedal robot forward as far as possible within a given amount of time without

falling over as seen in Figure 4.2. In theory, the Roboschool environment permits

specifying the direction the robot should travel to; this is used for environments

such as “Humanoid Flagrun” where a humanoid robot has to move towards a

randomly chosen target. In the Hopper environment, the target is �xed and the

robot cannot move freely in the environment; it just moves along an axis.

�e robot consists of four limbs joined with motors in hinge joints. Each of these

motors can be controlled by the agent issuing torque commands as actions for each

environment time step. Informally speaking, if the robot does not manage to use

its motors to keep an upright position, the episode terminates. More speci�cally,

if the centroid z-coordinate (the height of the body o� the ground) of the robot

falls below a threshold of 0.8 or the absolute pitch of the body (rotation along the

transverse axis) exceeds 1.0 the robot is considered to be fallen over and the episode

terminates.

�e actor receives 15 �oating-point values that directly correspond to the state of

the robot in the environment and could be measured by the robot itself. An overview
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Index Name Description

1 centroid z-coord. z-coordinate of the robot body centroid

2–3 angle Sine and cosine of the angle between robot and target

4–6 velocity Global robot velocity

7 roll Roll of robot body

8 pitch Pitch of robot body

9–10 thigh joint Relative angle position and speed of thigh joint

11–12 leg joint Relative angle position and speed of leg joint

13–14 foot joint Relative angle position and speed of foot joint

15 �oor contact 1.0 if the foot has contact with the �oor, else 0.0

Tab. 4.1: Description of hopper observation space. Names and description have

been devised by the author of this thesis based on the source code of the

Roboschool suite.

including a short description of each observation value can be seen in Table 4.1.

�e individual observations are clipped to the range [−5, 5] by the environment.

As mentioned earlier, the robot has three motors it can use to change its pose. By

carefully activating the motors in certain sequences, the robot can learn a hopping

motion suitable for locomotion. �ere may exist other movement pa�erns that

propel the robot forward, however in this very constrained se�ing hopping forward

is likely the best option.

�e reward structure for the Roboschool environments is rather complex. �e scalar

reward given a�er each time step is the sum of the values described in Table 4.2.

�e choice of the compound reward has severe implications. A valid policy allows

the robot to stand completely still and receive a cumulative reward of 1000 without

learning anything else. �is is an example of potentially bad reward signal design

that rewards exploiting sub-goals that do not directly contribute to solving the

designated task.
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Fig. 4.2: Sequence of images from a fully trained “Hopper”-robot propelling itself

forward as far as possible within a given amount of time.
a

a
Images have been extracted from video clips found on https://blog.openai.com/roboschool/.
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Name Description

alive bonus +1 if not fallen over, else −1
progress speed of the robot towards the target

electricity cost cost of using the motors depending

on joint speed and cost of running

current through motor even if there

is zero rotational speed

joints at limit cost if joints are close to their maximum

range of motion, give negative reward

to discourage stuck joints

Tab. 4.2: Description of hopper reward structure. Names and description have

been devised by the author of this thesis based on the source code of the

Roboschool suite.

4.2 Preprocessing

�is section describes the approach taken to transform the raw observation input

values into a more suitable form. �e problem with general �oating-point input is

that each of the observations has a di�erent range of possible values, i.e. the �oor

contact observation has values between 0 and 1 whereas the z-coordinate of the

global robot velocity has values between −5 and 5.

�e range of possible values for each observation is not known beforehand and is

not documented. �erefore it was necessary to experimentally extract these ranges

by using a non-spiking model such as an arti�cial feedforward network and record

all observations to determine the bounds. It is not su�cient to use a pre-trained

model to �nd the bounds for each observation; during training it is possible that

exploratory actions yield observations not produced by the fully trained model.

A�er the bounds of the observation space have been determined, it is possible to

encode �oating point values by passing them through a structure similar to a recep-

tive �eld. In this setup, the raw observation is presented to ! Gaussian functions
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G = [g1(x (t)i ),… , g!(x (t)i )]T spaced equally within the previously determined bounds.

�is process is visualized in Figure 4.3 for ! = 4. For our experiments ! is usually

in the range [20, 40]. Depending on the value of the input x (t)i at time step t , each

Gaussian function produces values between 0 and 1. �us for any given input, with

a su�cient number of Gaussian functions within the speci�ed bounds most remain

silent while only a few are active; this provides a sparse input representation.

Formally, the shape of the Gaussian function is given by

gj(x (t)i ) = a exp(−
(x (t)i − bj)2

2c2 ) (4.1)

with parameters

a = 1 (4.2)

bj = ol + (j − 1)
oℎ − ol
! − 1

(4.3)

c =
bj+1 − bj

2
√
−2 log ( 12)

(4.4)

where ol , oℎ describe the experimentally determined bounds for a single speci�c

observation value x (t)i part of the vector x (t). �is observation vector x (t) represents

the information the agent receives at time t . �e parameters a, bj , c describe the

height, center and width of the curve, respectively. For our purposes, a has been

chosen such that gj ∶ R → [0, 1], the positions bj of the Gaussian functions are

equally distributed in the range [ol , oℎ] and the width c has been chosen such that

at the point of overlap between two Gaussian functions the function value is
a
2 =

1
2 .

In the following section we will describe how these transformed values are used in

the spiking neural network.
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−4 −3 −2 −1 0 1 2 3 40

0.5

1

1.5

x (t)i

ol oℎ

Fig. 4.3: Non-linear transformation of SNN inputs. A scalar input value x (t)i , rep-

resented by the green line, gets processed by a vector-valued function

G = [g1(x (t)i ),… , g!(x (t)i )]T , where gj are Gaussian functions. Between de-

�ned bounds [ol , oℎ] the cumulative activation of all Gaussian functions gj
is roughly the same.

4.3 Network Architecture

In this section we describe the general spiking network architecture used as a model

in the reinforcement learning setup alongside the simulation details including

simulation time and general hyperparameters used.

�e network architecture mimics the usual se�ing of an arti�cial feedforward

network and can be seen in Figure 4.4. �e observations x (t)1 ,… , x (t)n from the envi-

ronment at time step t are preprocessed by the method described in Section 4.2.

�e preprocessed values are then fed into one or more layers of LIF neurons that

depending on the experiment have recurrent connections within the same layer.

In Section 2.1.2 we described the membrane voltage dynamics of a leaky integrate-
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and-�re neuron j as

uj(t + Δt) = (1 − �a)(urest + RIj(t)) + �auj(t) (4.5)

where I (t) is the input current. In our simulations, we de�ne the input current as

the weighted sum of observation input and recurrent spike-based input

Ij(t) =
n
∑
i

!
∑
k
w in

i,k,j gk(x
(t)
i ) + ∑

m∈Mj

wrec

j,m z(t)m (4.6)

where Mj is the index set of neurons m recurrently connected to neuron j. �is

is the formulation used for the �rst spiking layer; if multiple spiking layers are

used the observation input is replaced by the previous layers’ spiking output. �e

last layer of spiking neurons is connected to an arti�cial linear readout layer that

performs a linear transformation of the exponentially �ltered spike train with time

constant �f .

�e �nal output y (t)1 ,… y (t)k corresponds to the actions the actor should take for the

next environment step. �is depends on the action space of the environment; we

follow the common action selection methods presented in equations (2.49) and

(2.50) for discrete and continuous action spaces, respectively.

To be�er simulate the dynamics of a biological neural network considering the re-

current connections within the LIF layers, it is necessary to simulate the LIF neurons

for multiple internal discrete time steps within a single environment step. Addi-

tionally the output of the non-linear transformations G(xi) = [g1(x (t)i ),… , g!(x (t)i )]T

is only shown at the �rst internal time step to approximate the sparse �ring be-

haviour in the brain. At the last time step of the internal simulation the values of

the readout layer are used to determine the action the agent should take in the next

environment step. A visualization of this can be seen in Figure 4.5.

As discussed in Section 2.4 policy gradient methods provide a very general frame-

work suitable for optimizing general parameterized policies. Arti�cial neural net-

51



4 Experiments

G(x (t)1 )

...

y (t)2

G(x (t)2 )

y (t)1

x (t)1

R1

LIFm

x (t)2

...

...

Rk

LIF2LIF1

x (t)n

...

...

R2

y (t)k

G(x (t)n )

Fig. 4.4: Network architecture for all experiments. �e input x (t)i at time step t gets

transformed by a non-linear transformation G(x (t)i ) as seen in Figure 4.3.

�is produces a vector-valued output fed into the population of LIF neu-

rons arranged in one or more layers. �e output of the last layer of LIF

neurons is then processed by a linear readout layer. Bold arrows indicate

vector-valued output whereas thin arrows represent scalar-valued output.
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env. step t t + 1

LIF step

readout

input output

Fig. 4.5: Illustration of the computational process. �e input to the LIF neuron is

only available on the �rst time step whereas the output of the readout

layer should only be accessed during the last internal time step.

works are the default choice in many se�ings (Schulman, Wolski, et al., 2017) and

usually outperform linear policies. In this se�ing, it is only natural to extend policy

gradient methods such as proximal policy optimization to spiking policies. With

the network architecture described in this section spiking neural networks provide

a drop-in replacement for arti�cial neural networks. For all experiments conducted

in this thesis the proximal policy optimization algorithm will be used.

What remains to examine is the calculation of the loss function. Again, the suggested

objective for PPO consists of

CLIP+v+H+R(�� ) = E�
old [

CLIP (�� ) − c1v(�v) + c2H (��� ) + c3∑
j
(zj,t − f 0)

2

] (4.7)

where the additional term c3∑j (zj,t − f 0)
2

is a �ring rate regularization term where

zj,t is 1 if neuron j �red at time t . �e clipped conservative policy iteration loss

CLIP (�� ), the value function loss v(�v) and the entropy bonus H (��� ) remain

unchanged. By modifying the PPO objective we can incorporate additional sub-

objectives relevant for altering the behaviour of the spiking neural network such as

regularizing the mean �ring rate. Since the mean �ring rate of the neurons should

remain small, we can introduce a regularization objective that penalizes neurons

for deviating from a chosen target �ring rate f 0 = 10 Hz. �is not only enforces
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low �ring rates but also encourages neurons that would otherwise remain silent to

�re more. �e regularization is computed across many time steps to allow bursts of

activity and short periods of silence of each neuron.

�e hyperparameters used during the experiments are described individually for

each experiment in the following sections. �ey were partially adapted from Schul-

man, Wolski, et al., 2017 and partially obtained via grid search or random search.

Much emphasis has to be put on the fact that results for single trials of experiments

are not reliable; based on di�erent random number generator seeds used to initial-

ize weights in both the spiking and non-spiking networks the results vary greatly.

�erefore the experimental results had to be averaged over many trials to get an

estimate of the true performance. To keep the computational cost relatively low, the

each experiment was averaged over �ve trials. �is makes tuning hyperparameters

via grid search or random search very time consuming, even if computations are

performed on a cluster.

4.4 Experimental Results

In this section we present the experimental results obtained using the previously de-

scribed se�ings with proximal policy optimization. Depending on the environment

the actor operates in, the results are discussed separately.

As a rule of thumb, we aim for similarly sized spiking network con�gurations com-

pared to arti�cial feedforward network models found in the literature (Schulman,

Wolski, et al., 2017; Espeholt et al., 2018; Hessel et al., 2018; Horgan et al., 2018).

�us, networks with one to two layers of {64, 128, 256} neurons each are considered.

Additionally, most of the hyperparameters used in the literature can be directly

adapted for the spiking network con�guration; this allows direct comparison of

the performance and saves on computational time for hyperparameter search.
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4.4.1 Cart-Pole

�e cart-pole environment provides an excellent playground for experimenting

with di�erent network architectures and hyperparameter se�ings in a time-e�cient

manner. In Table 4.3 an overview of the hyperparameters used including the ranges

of possible values is given.

Figures 4.6 and 4.7 show the typical stages of training a spiking neural network

for the cart-pole task; the performance over episodes can be seen in Figure 4.8. A

similar learning curve can be produced for a 1-layer feedforward ANN. Although

�ring rate regularization is enabled in this experiment, some neurons remain silent

as can be seen in Figure 4.7 where a tradeo� between convergence and overall

�ring rate has to be made. Without �ring rate regularization the neurons will �re

almost immediately a�er leaving their refractory period.

To make the task more interesting, a new cart-pole task has been devised. To test

the memory capabilities of LSNNs and LSTMs, the velocity information of the

cart and the pole tip have been removed from the observations. �us, only the

absolute cart position and the pole angle are known to the agent. �e results of

this experiment can be seen in Figure 4.9. In this experiment, the one-layer spiking

neural network with recurrent connections outperformed the memory augmented

two-layer ANN with an LSTM a�ached; not only is the �nal SNN performance

be�er, it even converges fast to good solutions.

Overall, we can see that the LSNN performs at least as well as combinations of

ANN and LSTM for the cart-pole problem. Surprisingly, the spiking neural network

usually seems to learn the task about as fast as the corresponding ANN con�gu-

ration; however it seems that the convergence is not as smooth and the standard

deviation around the mean performance is usually larger for the SNN.
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Cart-Pole Hyperparameters

Name Range Chosen Value

G
en

er
al

Training batch size ≥ NT [1000, 4000] 2000

Sample batch size T [100, 200] 100

SGD batch size M [100, 400] 200

SGD epochs K [10, 20] 20

Learning rate [0.1, 0.0001] 0.001

PP
O

Number of Actors N [1, 10] 6

GAE parameter � [0.95, 1] 0.98

Discount 
 [0.9, 1] 0.99

Clipping " [0.1, 0.5] 0.2

KL coe�cient � [0.1, 0.5] 0.3

v̂ loss coe�cient c1 [0, 5] 1.0

entropy bonus coe�cient c2 [0, 1] 0.0

�ring rate coe�cient c3 [0, 100] 10

SN
N

NLT number of kernels ! [10, 40] 40

Show input for ⋅ steps [1, 10] 1

�reshold # [0.03, 0.05] 0.03

Number of internal SNN steps [1, 10] 8

RNN maximum sequence length [10, 20] 10

Exponential �lter �f [5, 30] 8

Tab. 4.3: Hyperparameters used for the cart-pole experiments. �e range indicates

values considered during grid search whereas the chosen value represents

the value found in the best-performing con�guration.
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Fig. 4.8: Performance of SNN (top) and ANN (bo�om) at cart-pole task over

episodes. �e black, blue and red lines correspond to the mean, mini-

mum and maximum performance over the episodes during a training step.

�e green area around the mean reward shows the standard deviation.

�e orange line over the SNN performance chart shows the mean �ring

rate of the neurons with the dual axis on the right side of the �gure.
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Fig. 4.9: Performance comparison of di�erent network architectures on the new

partially observed cart-pole environment. �e ANN con�gurations have

two feedforward layers of 64 neurons each, where one architecture addi-

tionally has a 64 unit LSTM layer a�ached. �e SNN architecture has one

layer of 128 recurrently connected neurons. �e hyperparameters corre-

spond to the chosen parameters in Table 4.3; each result is the average

of �ve experiment runs. One iteration corresponds to 2000 environment

steps.
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Fig. 4.10: Roboschool Hopper experiments with feedforward ANNs exploring im-

pact of additional non-linear input transformations with 20 Gaussian

functions. A two-layer ANN with 64 neurons in each layer performs

as well as a one-layer ANN with non-linear input transformation. �e

numbers in brackets in the legend indicates the number of neurons per

layer.

4.4.2 Roboschool Hopper

Since the cart-pole task can be considered as an introductory example of reinforce-

ment learning problems that can be solved readily, the more demanding Roboschool

environment suite allows to be�er compare the performance potential of spiking

neural networks and arti�cial neural networks. Again, an overview of the hyperpa-

rameters including ranges used during grid and random search and the �nal chosen

value are given in Table 4.4. �ese chosen values are used for all experiments. Only

the parameters under investigation are modi�ed, all the other parameters stay the
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same for all experiments to produce comparable results. �e following experiments

are conducted �ve times each and the mean performance including the standard

deviation is given in the �gures. As mentioned, this is due to the high variance of

possible results in the Hopper environment discussed in Section 4.1.2. �e training

batch size has been deliberately chosen to be large enough to produce good results

while keeping the overall computation time acceptable. Depending on the chosen

hyperparameters, one experiment run typically takes 12 to 36 hours to complete.

To provide a fair comparison to state-of-the-art results of PPO in combination

with regular feedforward ANNs the impact of using the same non-linear Gaussian

function input transformation as in the spiking network setup needs to be discussed.

�e higher number of weights seems to be bene�cial to the network and greatly

reduces the variance of results observed over multiple trials as seen in Figure 4.10.

Our two-layer ANN with 64 units per layer achieves be�er results than the same

architecture used by Schulman, Wolski, et al., 2017; this is due to the larger number

of environment steps sampled per training iteration.

�e next experiment inspects the impact of recurrent connections within one layer

of spiking neurons. In the literature feedforward ANNs are typically used for poli-

cies in reinforcement learning problems. In the Roboschool suite the observations

from the environment include temporal information about the state of the robot

in the scene, as seen in Table 4.1. �is information should be su�cient to choose

good next actions from an analytical perspective. Recurrent connections would

make sense if the problem requires memory such as in partially observed environ-

ments and environments that require very non-linear actions where the recurrent

spiking neural network projects the input in a high-dimensional space like a liquid

state machine (Maass, Natschläger, and Markram, 2002). In Figure 4.11 a direct

comparison of recurrent and feedforward spiking neural networks is shown. �e

number of weights in the feedforward se�ing is much lower, therefore it is to be

expected that the network converges faster. However, the recurrently connected

network achieves a performance close to that of the feedforward network in the
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Roboschool Hopper Hyperparameters

Name Range Chosen Value

G
en

er
al

Training batch size ≥ NT [5000, 320000] 160000

Sample batch size T [200, 1000] 1000

SGD batch size M [64, 32768] 16384

SGD epochs K [10, 30] 15

Learning rate [0.01, 0.0001] 0.001

PP
O

Number of Actors N [8, 16] 10

GAE parameter � [0.9, 0.99] 0.95

Discount 
 [0.8, 0.999] 0.995

Clipping " [0.1, 0.3] 0.2

KL coe�cient � [0.1, 5] 1.0

v̂ loss coe�cient c1 [0, 5] 1.0

entropy bonus coe�cient c2 [0, 1] 0.0

�ring rate coe�cient c3 [0, 100] 10

SN
N

NLT number of kernels ! [10, 40] 20

Show input for ⋅ steps [1, 10] 1

�reshold # [0.03, 0.05] 0.03

Number of internal SNN steps [1, 10] 8

RNN maximum sequence length [10, 20] 10

Exponential �lter �f [10, 30] 10

Tab. 4.4: Hyperparameters used for the Roboschool Hopper experiments. �e range

indicates values considered during grid search whereas the chosen value

represents the value found in the best-performing con�guration.
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Fig. 4.11: Roboschool Hopper experiments with one-layer SNN with 128 neurons

exploring the impact of recurrent connections for the performance. As

the observations from the environment contain su�cient information to

decide upon actions on a step-by-step basis, recurrent connections may

be a hindrance concerning convergence of the network due to the larger

number of weights.

end. �e standard deviation of the mean performance is rather low in both se�ings,

implying that the results are robust to di�erent initializations of the weights.

Another experiment investigates the in�uence of the training batch size on the

overall performance. As with most problems in supervised learning, a standard way

of improving performance is to increase the dataset size where available. In our

reinforcement learning scenario with simulated robotics, it is easy to generate more

training data simply by sampling from more o�en from the environment. However,

increasing the training set size not only signi�cantly increases computation cost

to update the policy but there are only diminishing incremental gains possible.
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Fig. 4.12: Roboschool Hopper experiments with 1-Layer SNN with 256 neurons

exploring the impact of the training batch size for the performance. �e

parameters were adapted directly from Schulman, Wolski, et al., 2017

and scaled according to the number of workers in use. It is clear that the

linearly scaling the training batch size by the number of workers only

serves as a rule of thumb; however, the impact of di�erent training batch

sizes is enormous.

Figure 4.12 shows the results of training the spiking network with di�erent training

batch sizes inspired by the hyperparameters chosen by Schulman, Wolski, et al., 2017.

�e training batch size is of utmost importance for achieving good performance

over many trials. As seen in Figure 4.12 even over �ve independent trials there was

no run where a the training batch size of 5120 environment steps produced mean

episode rewards above 1000.
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In this thesis we have investigated the applicability of spiking neural networks

to current reinforcement learning methods. We have devised several experiments

exploring di�erent aspects of spiking neural networks both in feed-forward and

recurrent con�gurations.

�e �rst group of experiments was performed in the classic cart-pole environment.

�ere we have shown that both ANN and SNN can solve the task within 1500

training episodes; surprisingly the SNN converges comparably fast to good solutions.

We have introduced a partially observed version of the cart-pole environment,

where the velocity of cart and pole are excluded. Here, a standard ANN performs

poorly compared to the SNN; once a LSTM network is a�ached to the ANN, its

performance approaches that of the SNN.

In the second experiment group, we investigated the performance of ANNs and

SNNs in the more demanding Roboschool Hopper environment with a four times

larger observation space and a continuous action space. �ere we found that the

preprocessing step used for the SNN is bene�cial to the ANN and improves its

performance due to an increased number of weights to be learned. We further

con�rmed our hypothesis that the observations given by the Hopper environment

contain su�cient temporal information to be solved without recurrent connections.

�e larger number of weights in the recurrent con�guration of the SNN reduces

convergence speed and the performance.

We have shown that the recent actor-critic method proximal policy optimization is

well suited to employ spiking neural networks for its parametrized policy and value
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function. In the Roboschool environment, the agent achieves good performance

compared to state-of-the-art arti�cial neural network architectures. In relation to

environments described in other works in Chapter 3 the Roboschool robotic suite

is more di�cult to solve. No previous works using spiking neural networks solved

problems of this di�culty to the best of our knowledge.

Exploring the hyperparameter space with a �ne-grained grid for the Roboschool

environment is computationally infeasible and would take months even on a cluster.

�is is mainly due to the fact that results are noisy and need to be averaged over

multiple trials to estimate the true performance of a speci�c hyperparameter se�ing.

�us random search in combination with hand-tuning was the only viable option to

�nd reasonable parameters comparably fast. �e number of environment samples

used for one training iteration is one of the most important hyperparameters besides

the learning rate of gradient descent. Without a large number of samples from the

environment, proximal policy optimization with spiking neural networks performs

poorly.

We want to point out that the spiking network architectures used in this work

are simple; more elaborate hierarchical networks similar to convolutional neural

networks could be investigated. Slow-feature analysis may be a biologically plau-

sible model for hierarchical abstraction of high-dimensional features. �is might

allow SNN-based agents to solve environments with visual input that are typically

more di�cult to solve and could bridge the gap to current state-of-the-art methods.

Another interesting method of �nding good architectures might involve evolution-

ary methods related to the work of Floreano, Dürr, and Ma�iussi, 2008 or newer

evolutionary approaches (Salimans et al., 2017). Another method that may not be

biologically plausible but produced outstanding results is an augmented random

search algorithm (Mania, Guy, and Recht, 2018). �ese approaches might be useful

for �nding be�er hyperparameters, new network architectures or distributions of

weights to initialize networks with, even if they might not be suitable to optimize

the network weights themselves.
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Florian, Răzvan (2007). “Reinforcement Learning �rough Modulation of Spike-

Timing-Dependent Synaptic Plasticity.” In: Neural Computation 19.6, pp. 1468–

1502 (cit. on p. 39).
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