
Master’s Thesis

Applying Probabilistic Graphical Models

and Deep Reinforcement Learning in a

Learning-Aware Application

Anna Saranti

Institute of Interactive Systems and Data Science,
Graz, University of Technology

Supervisor: Assoc. Prof. Dr. Andreas Holzinger

Graz, April 1, 2019

This page intentionally left blank

Masterarbeit
(Diese Arbeit ist in englischer Sprache verfasst)

Entwicklung von Probabilistischen

Graphischen Modellen und tiefen

Neuronalen Netzen für Bestärkendes

Lernen in einer Lernadaptiven

Applikation

Anna Saranti

Institute of Interactive Systems and Data Science,
Technische Universität Graz

Betreuer: Univ.-Doz. Mag.phil. Mag.rer.nat. Dr.phil. Ing. Andreas Holzinger

Graz, 1. April 2019

This page intentionally left blank

Abstract

Learning Analytics applications can be enhanced by the use of Machine Learning
methods, particularly by Probabilistic Graphical Models and Deep Reinforcement
Learning. This thesis addresses the research question of finding a possibility for
a qualitative change from informative tools, providing analytical reports to human
supervisors, to a learning-aware system with active intervention to the learning
process. The possibility as well as the degree of improvement of the learning process
through the combination of different artificial intelligence techniques are explored,
both basing on real data and programmatic simulations.

This thesis starts with the overview of existing student modelling tools using
Bayesian Networks. It continues with the description of the learning application
that not only provided the research data but also influenced the design decisions for
the Probabilistic Graphical Model suited to the problem purpose. The mathematical
equations that were derived for the efficient computation of the model’s parameters
as well as the insights about the students learning competence that emerged with
the application of inference on the model, complete the first thematic part of the
thesis.

In the second part, information contained in the Probabilistic Graphical Model
was used for a simulated decision-making process that improves the learning effi-
ciency. A Deep Neural Network trained asynchronously learns the descriptive fea-
tures of the model and proposes the next learning application’s action; thereby a
personalized suitable sequence is discovered. Explainable artificial intelligence meth-
ods are used to uncover and evaluate the criteria on which the learning strategy is
decided. The thesis concludes with the basic description of the programmed software
components and the planned future research.

Keywords

Probabilistic Graphical Models, Bayesian Networks, Deep Reinforcement Learning,
Learning Analytics, Learning-Aware Application

ÖSTAT classification

102019 Machine Learning

5

ACM classification

Machine Learning

6

Kurzfassung

Lernadaptive Applikationen können durch die Verwendung von Methoden des
Maschinellen Lernens erweitert werden, insbesondere durch Probabilistische Graphi-
sche Modelle und tiefe Neuronale Netze für Bestärkendes Lernen. Die Forschungsfra-
ge dieser Masterarbeit befasst sich mit der Suche nach einem Ansatz einer qualita-
tiven Veränderung von informativen Mitteln, die Analyseberichten an menschliche
Betreuer bereitstellen, zu einem lernfähigen System mit aktivem Eingriff in den
Lernprozess. Es werden sowohl die Möglichkeit als auch der Grad der Verbesse-
rung des Lernprozesses durch Kombination verschiedener Techniken der künstlichen
Intelligenz untersucht. Dies erfolgt auf Basis realer Daten als auch anhand program-
matischer Simulationen.

Diese Masterarbeit beginnt mit der Übersicht über vorhandene Studenten-
Modellierungstools, welche Bayes’sche Netze verwenden. Darauffolgend wird die
Lernanwendung beschrieben, welche nicht nur die Forschungsdaten lieferte, sondern
auch die Entwurfsentscheidungen für das auf diesen Problemzweck abgestimmte Pro-
babilistische Graphische Modell beeinflusste. Die mathematischen Gleichungen, die
zur effizienten Berechnung der Parameter des Modells abgeleitet wurden, sowie die
Erkenntnisse über die Lernkompetenz der Schüler, die sich aus der Anwendung von
Inferenz auf das Modell ergaben, vervollständigen den ersten thematischen Teil der
Arbeit.

In einem zweiten Teil wurden die im Probabilistischen Graphischen Modell ent-
haltenen Informationen für einen simulierten Entscheidungsprozess verwendet, wel-
cher die Lerneffizienz verbessert. Ein asynchron trainiertes tiefes Neuronales Netz
lernt die deskriptiven Merkmale des Modells und schlägt die nächste Aktion der
Lernanwendung vor. Auf diese Weise wird eine passende personalisierte Sequenz
entdeckt. Es werden Methoden, welche künstliche Intelligenz erklärbar machen, ver-
wendet, um Kriterien nach denen die Lernstrategie festgelegt wird aufzudecken und
zu evaluieren. Die Arbeit schließt mit einer kompakten Beschreibung der program-
mierten Softwarekomponenten sowie der geplanten zukünftigen Forschung ab.

Schlüsselwörter

Probabilistische Graphische Modelle, Bayes’sche Netze, Bestärkendes Lernen mit

7

tiefen Neuronalen Netzen, Analyse des Lernens, lernadaptives Applikation

ÖSTAT Klassifikation

102019 Machine Learning

ACM Klassifikation

Machine Learning

8

This page intentionally left blank

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz, April 1, 2019
Anna Saranti

9

This page intentionally left blank

10

Acknowledgements

Usually, this section is all about thanking people that helped the making of the
diploma thesis and the completion of the studies, but I would first and foremost like
to thank every person that posed difficulties in my life. They were very time- and
energy-consuming, but set off the charge for this studies and over the years helped
to maintain my determination and persistence.

The supervisor of this diploma thesis, Univ.-Doz. Mag.phil. Mag.rer.nat. Dr.phil.
Ing. Andreas Holzinger, has helped me enormously with his competence, excellent
technical support, and patience. It is he, as well as the Institute of Interactive Sys-
tems and Data Science as a whole, that I can’t thank enough for everything they’ve
taught me and the new job opportunities that emerged as a result of their teaching
activities.

A special mention needs also to be made for Priv.-Doz. Dipl.-Ing. Dr.techn.
Martin Ebner, head of the Educational Technology, whom I was privileged to work
for. His ideas, unique vision, decisiveness and support to this challenging work was
always there.

I dedicate this diploma thesis euqally to Dipl.-Ing. Behnam Taraghi BSc. and
Mag.rer.nat. Walther Nagler.

Anna Saranti
Graz, April 1, 2019

11

This page intentionally left blank

12

Table of Contents

1 Introduction 15

1.1 Previous Work . 16

1.2 Bayesian Student Models . 17

1.3 Research Question . 21

1.4 Outline . 23

2 Error types of one-digit multiplication and descriptive statistics 25

2.1 Cognitive misconceptions . 26

2.2 Error types of one-digit multiplication problems 27

2.3 Data of the “1x1 trainer” . 30

2.4 Data Analysis and Descriptive Statistics 31

2.5 Sequence of posed questions . 33

3 Probabilistic Graphical Model for

Learning Competence 37

3.1 Probabilistic Graphical Model for
Learning Competence . 38

3.2 Introduction to Probabilistical Graphical
Models . 39

3.3 Applications of probabilistic graphical models 42

3.4 Model Structure . 42

3.5 Learning the Model’s Parameters . 46

13

3.6 Learning the Model’s Parameters with batch Expectation-Maximization
(EM) . 49

3.6.1 Notation . 49

3.6.2 Expectation-Maximization (EM) algorithm 50

3.6.3 Analytical Solution of Expectation-Maximization (EM) for
the model of Learning Competence 52

3.7 Datasets . 56

3.8 Fractional Updating . 58

3.9 Evaluation of Parameter Learning . 61

4 Insights 63

4.1 Reasoning types in Probabilistic Graphical
Models . 63

4.2 Probability Queries . 64

4.2.1 Variable elimination in the Learning Competence Model . . . 65

4.3 Sampling of Answer . 68

4.4 Generative Model . 70

4.5 Similarity of Learning State among different questions 72

4.6 Other uses of the Learning Competence Model 73

5 Deep Reinforcement Learning and

Convolutional Neural Networks 75

5.1 Deep Reinforcement Learning and
Convolutional Neural Networks . 75

5.2 Applications of Reinforcement Learning 76

5.3 Formulation as a Markov Decision Problem 77

5.4 Computing the optimal Policy . 82

5.5 Tabular Q-Learning . 83

5.6 Methods for continuous state space 84

5.7 Artificial Neural Networks . 85

5.8 Deep Q-Network . 88

14

5.9 Asynchronous n-step Q-Learning . 90

5.10 Convolutional neural networks . 92

5.11 Applications of Convolutional Neural
Networks . 97

6 Evaluation 99

6.1 EvaluationSimulated . 99

6.1.1 Formulation of the problem 99

6.1.2 Concrete Architecture . 101

6.2 Visualisations . 104

6.2.1 Visualization of the filters . 105

6.2.2 Visualization of the starting input state 105

6.2.3 Visualization of the outputs of activations layers 105

6.2.4 Visualization of the input grid that maximizes the value of the
activation function of each filter 106

6.3 Reasoning of proposed sequences . 106

7 Software Engineering, Testing and

Quality 113

7.1 Python Libraries . 113

7.2 Files Hierarchy and Documentation 113

7.2.1 Directory and files hierarchy 113

7.3 Testing . 116

8 Conclusion 119

8.1 Conclusion . 119

8.2 Future Research . 120

References 120

List of Figures 133

15

List of Tables 137

16

1. Introduction

15

1.1 Previous Work

In general, Learning Analytics is said to be a key factor for the future of learning
(Siemens and d Baker (2012); Ebner et al. (2013a, 2015)). On the base of data anal-
yses, Learning Analytics strives to assist the learning process by giving educators a
deeper insight into learning processes and results. It must be stated that teachers
play an essential role in Learning Analytics. Including results of data analysis in-
dicating incidents, they are responsible for intervening in a pedagogical manner. A
related field of Learning Analytics is educational data mining. According to Romero
and Ventura (2010), educational data mining is a field that makes use of statistical,
machine-learning based, and data-mining algorithms applying to the different types
of educational data (Romero and Ventura (2010)). While educational data mining
targets on automatized learning activities, Learning Analytics helps and supports
educators practising their daily work.

The so called “1x1 trainer” 1 is a Learning Analytics application developed by
the department Educational Technology of Graz University of Technology. It uses
the benefits of both fields, Learning Analytics as well as educational data mining
(Ebner and Schön (2013); Ebner et al. (2013b); Schön et al. (2012)). The appli-
cation poses exercises to students from the multiplication table with one decimal
digit operands. The algorithm of the “1x1 trainer” adapts the sequence of questions
given subject to the students answers individually, in order to improve ones learning
progress. Furthermore, the algorithm itself needs to react adaptively to the changes
of the learning progress of a student. In that way, supports each pupil according
to the distinct learning progress over the whole period of learning with the appli-
cation. This underlying personalized adaptive learning algorithm points out weak
mathematical knowledge of single students and alerts teachers to intervene.

This thesis bases on previous work that used data gathered by the “1x1 trainer”.
Firstly, different mathematical questions were roughly classified according to the
learners’ answers. Questions were considered to be more difficult than others when
students needed more attempts to answer them (Taraghi et al. (2014a,c)). Some
specific questions could be identified difficult for the major part of the users. The
next step was to analyse the reasons of errors made. Therefore, wrongly answered

1https://schule.learninglab.tugraz.at/einmaleins/, Last accessed 17 March 2019

16

https://schule.learninglab.tugraz.at/einmaleins/

questions were divided into error types corresponding to the innate cognitive and
conceptual learning shortcomings of the users (Taraghi et al. (2015)). The “relative
difficulty” of those questions - 2× 3 seems to be simpler than 7× 8 - played no role
for the error type classification.

1.2 Bayesian Student Models

There is a plethora of learning applications that use probabilistic graphical models
(also called bayesian models/networks) to model student’s knowledge; most of them
belong to the category of intelligent tutoring systems (ITS) or adaptive educational
systems (AES). The main goal of an ITS is to provide personalized recommendations
according to the different learning styles whereas AES adapts the learning content
as well as its sequence according to the student’s profile (Schiaffino et al. (2008)).
As explained in the literature review by Chrysafiadi and Virvou (2013), there are
two classes of intelligent tutoring systems: Systems that make diagnosis with the
student’s knowledge, misconceptions, learning style or cognitive state, and systems
that plan a personalized strategy using diagnosis for each learner individually. Stu-
dent modelling is considered a subproblem of user modelling, which is of central
importance to ITS since otherwise each student is treated the same (Nouh et al.
(2006)).

Primarily, Bayesian networks are chosen because of their ability to model uncer-
tainty (Millán et al. (2000)) and, at the same time, to support a decision making
process. The user modelling goals of a bayesian network for knowledge modelling is
mainly to have an adaptive estimation of the knowledge itself, since it may increase
or decrease during the learning process (Brusilovsky and Millán (2007)). Since
scalar models and fuzzy logic approaches (Danaparamita and Gaol (2014)) have
lower precision, structural models are built with the assumption that the knowledge
is composed mainly by independent parts. On the other hand, bug/perturbation
models (Chrysafiadi and Virvou (2013)) represent errors and misconceptions of the
student. In this case, the Bayesian network is used to find the error that most prob-
ably caused the observable behavior (also called evidence) (Millán et al. (2000)),
which is called credit/blame assignment problem (Pardos et al. (2010)). Bayesian
networks can model the assumption that a wrongly answered question having two

17

potential causes is most probably caused by the one that is more prevalent, accord-
ing to the data provided so far. Sometimes, random slips or typos are included in the
model and do not rely on assumptions as for example: A wrongly answered question
does not necessarily mean that the student does not know a concept completely, or
a correctly answered one wasn’t a guess. The structure in both cases constitutes the
qualitative model; its definition uses domain knowledge and (optionally) data. The
parametrization is learned from the data during a training phase and constitutes
the quantitative model.

The reason for the creation of the model is in some cases to assist the teachers
of large classes that suffer from a high dropout rate (Xenos (2004)). A model
recognizes the student’s knowledge faster and more accurate (Millán et al. (2000)),
which is primarily beneficial when the class has a large number of students. In
other cases that are summed up in Brusilovsky and Peylo (2003), the goal is to
provide a personalized optimal sequence of the learning material or even to sequence
the curriculum according to the student’s individual needs. And yet, further cases
(Stacey et al. (2003); Stacey and Flynn (2003)) show that the learning application
that bases on the model provides long-term learning effects as opposed to traditional
methods. This was pointed out by a post-test that was made several weeks after
the learning sessions.

The issue of defining the prior beliefs, which consist the starting parameteriza-
tion, is often coupled with user clustering; demographics, longitudal data (Stacey
et al. (2003)), pre-tests (Goguadze et al. (2011b); Conati et al. (2002)), defining the
prior beliefs as well as the starting groupings (Brusilovsky and Millán (2007)) with
respect to the learners. In other cases, the teacher sets the prior beliefs from his/her
experience (Nouh et al. (2006)) or a uniform prior is used (Conati et al. (2002);
Pardos et al. (2010)). Another common characteristic is the definition of hidden
structural elements that represent unobservable entities, which must be estimated
from the observed ones. The design of the structure must take correct assumptions
into account, basing a solid theoretical background, or else the model will not behave
in a sound way (Millán et al. (2000)).

In the work of Millán et al. (2001), the researchers draw a parallel between
medical diagnosis systems and student’s knowledge diagnosis (Millán et al. (2010)).
The student answers a set of questions that can only be answered correctly, when

18

several concepts are known. In this case the knowledge of the concepts is the cause
of the answer. The noise in the process, for instance when a student knows the
concept but answers wrongly and vice versa a correct guess, is also modelled. The
initialization of the model parameters is made by teachers; afterwards the parameters
are learned from the data. The model is used to efficiently determine those concepts
the student knows less and the deductive proposal of the next question.

The “eTeacher” is a web-based education system (García et al. (2007); Schiaffino
et al. (2008)) that recognizes the learning style of a student according to the per-
formance in exams as well as the email, chat and messaging usage. The number of
different learning ways and their characteristics is the domain knowledge defining
the structure of the Bayesian network. The initialization of the parameters uses
in some cases uniform priors and in others priors defined by experts. After that
initial phase, the parameters are continuously learned from the behaviour of the
students. After identifying the learning style, a recommendation engine proposes
different ways to learn the same material to each student according to his or her
learning style.

“ANDES” is an ITS developed by Conati et al. (1997), which mainly focuses
on knowledge tracing but also on recognition of the learning plan of the user. The
students solve Newtonian physics problems with different possible solution paths
that define the Bayesian network’s structure. Since each action may belong to
different solution paths and the user does not provide its reasoning explicitly, the
credit assignment problem is to find and quantify the most likely solution an action
belongs to. This triggers personalized help instructions and hints in two cases:
when a wrong answer is given or when the model predicts that the answer might be
wrong. The parameters of the network change in an online manner while the student
is solving the problems. Firstly, the evaluation was made by simulating students
that have different knowledge profiles and measuring the accuracy of the predictions
made by the model. In a second step, a post-test was carried out to compare real
students having used “ANDES” to students who have not. Regression analysis was
used to recognize the correlation between the use of the program and the learning
gain (Bunt and Conati (2003)).

Specifically for mathematical problems there are several approaches that special-
ize in dealing with decimals misconceptions. In the work of Stacey et al. (2003);

19

Stacey and Flynn (2003) the misconceptions that define the structure of the model
are provided by two main factors: the domain knowledge and data of a Decimal Con-
ception Test (DCT) that students had to go through. Wrongly answered questions
provided by the students depend on their misconceptions. The researchers defined
the distinct misconception by computing which of them has the highest probabil-
ity according to the data. Although the model drives different question sequencing
strategies, some of the misconceptions were not correctly recognized. Therefore, the
researchers decided that the teacher and not the system should provide instructions.

Also, the research work of Goguadze concentrates on the modelling of decimals
misconceptions (Goguadze et al. (2011b,a)). The “AdaptErrEx” project selected the
most frequently occurring misconceptions and ordered them a taxonomy (higher and
lower level misconceptions), which is reflected in the dependencies of the Bayesian
network. As the previous application, a wrong answer may be caused by different
misconceptions. The prior beliefs are defined by a pre-test; the researchers assert
that sufficient training data diminish the role of the prior in the computation of
the posterior. This prior defines the typical/average student and then each user’s
parameters can be updated and individualized accordingly. One aspect that has not
been considered in this model yet, is the difficulty of each question: easy questions
will more likely be answered correctly than difficult ones, even if there is a high
probability of misconception.

Several student modelling models track the progress of knowledge through time
with Dynamic Bayesian Networks (DBN). The knowledge of the learner at each
time point can be considered to be dependent on the knowledge and (optionally)
the observed result of the interaction at the previous time point (Millán and Pérez-
De-La-Cruz (2002)). The project “LISTEN” (Chang et al. (2006)) represents the
hidden knowledge state of the student at each time point. The observable entities
are the tutor interventions and the student’s performance which are used to infer
the knowledge state. In the work of Käser et al. (2017) there is an overview and
comparison of Bayesian Knowledge Tracing (BKT), which is a technique for student
modelling using a Hidden Markov model (HMM) modelling and DBN for various
learning topics, such as number representation, mathematical operations, physics,
algebra and spelling. A HMM is a special case of a DBN, which, according to the
researchers, cannot represent dependencies that would lead to hierarchies of skills;

20

in these case DBNs create more adequate models.

All above described applications have a Bayesian network of the students model
at its architecture core. There are a number of other components that either sup-
port the teacher or the student. One of them, for example, is the visualization of
the model in the “VisMod” application (Zapata-Rivera and Greer (2004)), which is
displayed in (among other things) color and arrow intensity instead of number-filled
tables. This increases the readability of the model and enhances the tutor’s under-
standing. Gamification elements can also be found in “Maths Garden” (Klinkenberg
et al. (2011)), an application that lets users gain and loose points and coins depend-
ing on answering correctly or wrongly. A coaching component that provides feedback
and hints to refresh the memory can be found in “ANDES” ’s architecture (Bunt
and Conati (2003)). An overview about the design and architectural elements of
intelligent tutoring systems that have a Bayesian network as user model is provided
in the work of Gamboa and Fred (2002).

A detailed overview about intelligent techniques other than Bayesian networks,
such as recommender systems for the computation of the learning path as well as
clustering and classification for learner profiles that are used in e-learning systems,
is provided in Markowska-Kaczmar et al. (2010). Specifically in Brusilovsky and
Millán (2007), the demand for the most appropriate activity proposed - neither too
easy nor too difficult - can only be fulfilled, if the used model is both accurate and
adaptive.

1.3 Research Question

The main objective of this thesis is to answer the research question, whether Bayesian
networks can quantify the probability of defining misconceptions of one-digit mul-
tiplication problems or not. In order to answer this question a learning application
is developed that considers both, the difficulty of a question as well as the relative
importance of each misconception. Thus, the application focuses on the recognition
of the current learning status. Learning-aware applications maintain an adaptive
learning model that represents the knowledge of the learner/user with regard to the
learned topic. The application is expected to support individual learning needs and
abilities as well as considering common characteristics in the learning process of

21

different persons. The progress of the learning model itself will be used to transform
the learning application into an adaptive one; that may change the content and se-
quence of assessments constantly to improve the learning process and to maximize
the learning efforts.

Figure 1.1: Current report of “1x1 trainer” provided to the teachers. The
difficulty of the questions is color-encoded and several statistics
as the percentage of users that have answered correct or false and
the mean answering time is presented.

Figure 1.1 shows the current overall report of “1x1 trainer” that is accessible to
teachers. It contains information about the actual number as well as the proportion
of correct and wrong answers of each posed question. The color encoding helps
distinguishing four sets of questions with similar proportion of correct and wrong
answers. The implementation of the Bayesian model provides further insights to
detailed cognitive information that enriches the information content of the current
report. Furthermore, the new report can concentrate on individualized learning
status and can be updated in real time after each action of the student.

22

1.4 Outline

This thesis proposes a Bayesian model for the learning competence of students using
the “1x1 trainer” application. The first step is to specify the error types that are
relevant for this research; their detailed description is made in chapter 2. Data anal-
ysis (specifically descriptive statistics) is used to guide the necessary assumptions
about the modelled entities and their independences. Based on this information, the
structure of the model and its parametrization is defined. The personalized model
of each student and the method by which it adapts its parameters to new data is
described in chapter 3. The usage of the model and the insights that are provided
to the teachers in the form of an enhanced report are explained in chapter 4.

The Bayesian model can be used to predict the future behaviour of the student.
Therefore, there exists a possibility to create a learning-aware application that takes
that into account and adapts the posed learning content accordingly. The theoretical
basis of neural networks, deep reinforcement learning, and specially the architectures
applied to grid inputs are covered in chapter 5. With the use of a deep reinforcement
learning method in a simulated environment, the sequence of posed questions is
changed in a way that the learning goal is reached faster than with the current
application’s logic 6. The code organization, required libraries, installation guideline,
as well as testing framework information is in chapter 7. Finally, a conclusion about
future research and improvement possibilities is presented in the last chapter 8.

23

24

2. Error types of one-digit multiplication

and descriptive statistics

25

2.1 Cognitive misconceptions

Research based on cognitive neuroscience can contribute domain knowledge about
the influencing factors that cause errors in learning mathematics (Sousa (2008)).
Technologies and methods like brain scanning were used to find out, which brain
areas are active when performing specific mathematical problems. The first issue
that needs to be defined in order to build a learning model for basic mathematical
problems is, to indicate by what the causing factors are influenced. To figure out the
potential dependencies and independences between these factors is the next thing
to deal with before building their representative structure. One possible indication
of independent causes can be given by their different processing areas in the brain.

It is suggested that humans are born with numerosity (concept of quantity)
for numbers from 1 to 3; they developed number sense for their survival. Subitizing
(quantifying a group of ≤ 4 objects) is also something that does not require abstract
thinking. But as numbers get higher (more abstract), counting and putting numbers
into sequence becomes necessary for accomplishing basic mathematical operations.
Many errors occur from false estimations as well as comparison misunderstandings,
which in turn mainly arise from the (compressed) mental number line representation.
Arguably, one does not have intuition or a mental model about negative numbers,
fractions, and irrationals. Language, in particular number words, symbols and their
composition have an effect on number learning and processing abilities.

The most analysed basic mathematical operation (in regard to errors) is the
multiplication. It mainly requires memorization of the multiplication table, which
refers to long-term memory (rote learning), especially for big operands. In the
following answers 45, 54, 56, 58 of the question 6 × 9, associative memory rhymes
and patterns occur. Sometimes, interference with addition is apparent, as in the
example of: 2 × 3 = 5. The different step-wise strategies that learners use to
manage multiplication of big operands - by dividing them into simpler computations
and combining the partial results - also disclose their problems with other basic
mathematical operations.

One basic assumption of this thesis is that the error types of the wrongly an-
swered mathematical questions are in direct connection to all possible misunder-

26

standings and shortcomings in these areas. To help learners and teachers to deal
with these problems, a learning-aware application needs more than a statistical eval-
uation of the error types per question and per user as shown in 1.1. A probabilistic
graphical model can capture different types of dependencies with a complex struc-
ture and is adaptive by its construction. An accurate quantification of the (mentally
formed) reasons of the detected errors would provide a more informative policy in-
vention for their correction.

2.2 Error types of one-digit multiplication prob-

lems

The bug library (Chrysafiadi and Virvou (2013)) of the proposed learning compe-
tence model contains six error types: operand, intrusion, consistency, off-by, add/-
sub/div, and pattern. Any false answer that does not belong to one of those six
categories is assigned to the unclassified category. The description of the error types
is explained in detail in Taraghi et al. (2014b); a brief description follows here:

1. Operand error: It occurs, when the student mistakes at least one operand
for one of its neighbours (Campbell (1995)). In the implementation only a
neighbourhood of overall absolute distance of 2 from the correct operands was
considered. One example is the answer 48 to the question 7 × 8 since the
user may mistakenly multiplied 6 × 8. Research shows that this is the most
frequently occurred error, but it occurs with a different proportion in each
posed question (Campbell (1997)).

2. Operand intrusion (abbreviated intrusion) error: It happens, when the decades
digit and/or the unit digit of the result equals one of the two operands of the
posed question, for example 7× 8 = 78. It is argued by Campbell (1995) that
the two operands of the multiplication question are perceived as one number
by the student (the first operand corresponding to the decades digit and the
second to the unit digit).

3. Consistency: The student’s answer has either the unit digit or the decade
digit of the correct answer (Seidenberg and McClelland (1989); Domahs et al.

27

(2006)). For example, the answer 46 to the question 7 × 8 indicates that the
unit digit is correct, but the decades digit is false.

4. Off-by-±1, Off-by-±2 : It occurs, when the answer of the student deviates from
the correct one by ±1 or ±2, for example, when the answer of the question
5 ∗ 8 is one of the following: {38, 39, 41, 42}.

5. Add/Sub/Div: The student confuses the operation itself and performs for
example an addition instead of a multiplication; in that case the answer to
7× 8 is 15.

6. Pattern: The student mistakes the order of the digits of the result, for example,
question 7× 8 provides the answer 65 (the decades digit and the unit digit are
permuted).

7. Unclassified: Any answer that can not be matched to one of the above error
types.

All questions that have a correct answer with value smaller than 10 do not have
consistency error. These are: 1× 1, 1× 2, 2× 1, 1× 3, 3× 1, 1× 4, 4× 1,
1× 5, 5× 1, 1× 6, 6× 1, 1× 7, 7× 1, 1× 8, 8× 1, 1× 9, 9× 1, 2× 2, 2× 3,
2× 4, 3× 2, 3× 3, 4× 2.

One of the main reasons to use a probabilistic graphical model, is the fact that
a specific false answer can be classified to multiple error types. The identification
of the most probable error type causing a wrong answer is called credit assignment.
The table 2.1 shows the possible false answers classification for the question 7 × 8.
One can see that for example the answer 72 could occur because of an operand or
an intrusion error.

28

Error Type Answers

operand 40, 42, 48, 49, 54, 63, 64, 72
intrusion 18, 28, 38, 48, 58, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 88, 98
consistency 16, 26, 36, 46, 51, 52, 53, 54, 55, 57, 58, 59, 66, 76, 86, 96
off-by-±1/off-by-±2 54, 55, 57, 58
add/sub/div 1, 15
pattern 65
unclassified 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 20, 21, 22, 23, 24, 25, 27, 29, 30,

31, 32, 33, 34, 35, 37, 39, 41, 43, 44, 45, 47, 50, 60, 61, 62, 67,
69, 80, 81, 82, 83, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99

correct 56

Table 2.1: Answers for question 7× 8 listed by error types

Figure 2.1: Euler diagram of the error type’s answers of the question 7 × 8.
The area of each ellipse is proportional to the number of elements
in the corresponding error type’s answers set.

The difference in the number of answers caused by each error type is depicted
with an Euler Diagram in figure 2.1. All error types of the question 7 × 8 are
presented, except the unclassified error, which per definition does not contain any
common elements with other error types. The Euler diagram was created with the

29

library eulerr 1 of the language R 2; the area of each ellipse is proportional to the
number of elements in the corresponding set.

2.3 Data of the “1x1 trainer”

Figure 2.2: “1x1 trainer” application interface

The data that were used for building the model were provided from the “1x1 trainer”
application. The application is for both students and teachers. For this work it was
also used for a preliminary categorization of learners. Users of this application are
confronted with multiplication questions with both multiplicands being one-digit
integer numbers. The possible questions range from 1 × 1 up to 10 × 9 (a total of
90 questions) and are posed in a pre-specified order, which is briefly described in
2.5. The application does not provide any means of help or hints to the students
so far; the only feedback users get, is whether their answer is correct or not. It
is expected that by repeated use of the application the students will learn and get
better through exercise. But there is no individualisation that takes care of the
personal needs of the learning style and knowledge level of the users. Furthermore,
personal information such as age, gender, demographics, and educational level were
not collected.

1https://cran.r-project.org/web/packages/eulerr/index.html, Last accessed 17 March
2019

2 https://www.r-project.org/, Last accessed 17 March 2019

30

https://cran.r-project.org/web/packages/eulerr/index.html
https://www.r-project.org/

Figure 2.3: Example of the contents of the answers in a comma-separated file

The data were provided in a comma-separated file (.csv) as shown in 2.3 and
needed preprocessing. The answers that did not lie in the interval [0 − 100) were
considered invalid and were removed. Overall there were 1179720 question-answer
pairs with 1164786 valid. The number of unique users that gave at least one valid
answer is 9058. The file covers eight columns providing the user ID, session ID,
platform ID, date and time of the answer, as well as the reaction time of the student.
Along with the posed question and the provided answer, the ID of the result type as
one of {R, WR, W, WWR, WW, WWWR, WWW, WWWW}, whereas W means
“wrong” and R “right” is stored. The detailed description of the result type is shown
in Taraghi et al. (2014b) and is basically a way to quantify the relative difficulty of
each question by keeping the recent history of the user’s answering behaviour for
each question. This information and the reaction time was not used in the model.

2.4 Data Analysis and Descriptive Statistics

To help designing the probabilistic graphical model, some analysis steps were neces-
sary to be carried out with the data. The analysis and descriptive statistics (Freed-
man et al. (2007)) provides insights about the overall similarities and differences
between the students (Godsey (2017)).

31

Figure 2.4: Histogram of user activity. 98, 6% of the users have ≤ 1000 valid
answered questions.

Firstly, not every user has answered the same number of questions as shown
in figure 2.4. The vast majority of the users (98, 6%) have ≤ 1000 valid answered
questions. One user has answered 13228 times and therefore was removed from the
histogram to improve the readability of figure 2.4. For the training of the model,
the prior must have an equal amount of answers for each question. This does not
take the sequence of posed questions into consideration.

Secondly, for each question the proportion of wrong answers was computed and
depicted with a heatmap, whereas the x-axis is the first operand and the y-axis
the second (see figure 2.5). As it turned out, the most difficult question is 6 × 8
with 26.8% of wrong answers given. It must be advised to remember that not
all questions are posed the same number of times, because of the algorithm that
chooses the question sequence. Therefore the belief about the relative difficulty of
the questions has not an equal confidence for all the questions.

32

Figure 2.5: Relative difficulty of the questions measured by the proportion of
wrong answers.

2.5 Sequence of posed questions

The algorithm for the sequence of the posed questions is described in detail in
Schön et al. (2012), Kraja et al. (2017). The main goal is the individualization of
the learning path for each student in a way that the posed question is “appropriate”
to the current learning status; the question must be in a set of solvable but not
too easy questions. To achieve this, the application has to measure the difficulty
of the question in a non-personalized way and compare it to an estimation of the
learning competence of each user. The learning competence was not modelled by
a probabilistic model; it is described by a number that represents the degree of
learning competence, which is updated in real-time.

There is a list of requirements specifying the next posed question. For example,
a question that was posed at a specific point of time should not be repeated directly
after with high probability. The estimation of the initial learning competence of
each student is made with a pre-test containing two representative questions out
of the whole set of questions. The rules for the definition and adaptation of the
learning competence estimation are expressed by mathematical equations. The au-
thors characterize some adaptation formulas that they used at the beginning of their

33

research “volatile” and discovered new ones that provided a more stable estimation
of the learning competence.

Figure 2.6: Number of users that reach the learning goal in a specific number
of steps.

The learning goal of the application is reached when the student has answered
all questions correctly the last two times they were posed. The number of steps
that are needed to reach that state (terminal state) with the current algorithm is
depicted in the histogram of figure 2.6. The number of users that eventually reached
this state is 393.

34

Figure 2.7: Number of not provided valid answers per question.

Even in a dataset of this size, there were answers that were never provided by the
students. This influences the student model as it will be shown in chapter 3. Figure
2.7 indicates that the users provided almost all possible valid answers to questions
that are relatively more difficult (as depicted in figure 2.5). In the contrary students
explore less in relatively easier questions; this phenomenon stands out even more
because of the fact that those questions are posed more frequently.

35

36

3. Probabilistic Graphical Model for

Learning Competence

37

3.1 Probabilistic Graphical Model for

Learning Competence

The use of a learning-aware data-driven application cannot assume that the user’s
learning competence remains unchanged. In fact, the motivation behind the ap-
plication itself is at first to monitor it and then to influence it. Simple statistical
descriptions as the ones presented in the previous chapter 2.4 are not practical in
representing a continuous change and do not effectively capture the differences be-
tween the learning process of the users. Furthermore, the purpose is to choose
intelligent actions (also called “actionable information” (Barga et al. (2015))) based
on the data and this is not possible simply by one rigid and non-adaptive analysis
of the data.

The choice of a probabilistic graphical model has several benefits. Firstly, it
allows the representation of conditional dependencies (and independencies corre-
spondingly) in the graphical representation of the model of the data. Those are
assumed to be the same for all users and stay stable over the course of applica-
tion usage. Secondly, its parameters (that can be thought of as a configuration
or instance) are adaptive and change with each new data sample that is observed.
They may be a temporary snapshot description that characterizes the learning com-
petence but unlike the statistics there is an effective way to adapt those and not
recompute them from scratch each time the model confronts new data. Thirdly,
they’ve already been extensively used for decision problems (Barga et al. (2015);
Kochenderfer (2015)), which are the forefronts of reinforcement learning algorithms.

This chapter is structured as follows: the next section is a brief introduction to
probabilistic graphical models. All theoretical aspects that are necessary for under-
standing the model of student’s learning competence are presented; a thoroughly
analysis of the topic can be found in Koller and Friedman (2009), Barber (2012).
It is also assumed that basic knowledge about probability and in particular random
variables is also present; books on the topic are Bertsekas and Tsitsiklis (2008) as
well as Papoulis and Pillai (2002). Some preliminary knowledge on graphs is also a
prerequisite (Koller and Friedman (2009); Barber (2012)). The following subsections
describe the model’s structure as well as the reasons and the decision process for

38

choosing that structure is presented. After this is established, the algorithm that
learns the parameters for this particular model structure is analytically solved and
used for efficient learning of the models parameter values. When the learning of the
parameters is accomplished, the next step is the application of inference in proba-
bilistic queries which is the application of a particular function over the distribution
that extracts new insights from the learned model, such as for example the most
probable error type of a wrongly answered question for a particular user, which will
be described in the next chapter 4.

3.2 Introduction to Probabilistical Graphical

Models

Probabilistic Graphical Models are representations of joint probability distributions
over random variables that have probabilistic relationships expressed through a
graph. The random variables involved can be discrete which have categorical values
or continuous with real values. One simple example of a discrete random variable
is the one that models the toss of a coin which has two possible outcomes and its
represented by the Bernoulli distribution. A continuous random variable on the
other hand can be described for example by a Gaussian distribution. Some hybrid
models can contain both types of random variables (Kochenderfer (2015)). The
set of possible values that a random variable can take - sometimes also referred as
the possible outcomes of the experiment described by the random variable - is its
domain.

The random variables can be either visible or hidden. The visible ones have
outcomes that can be directly observed and their values are contained in the dataset.
The hidden variables are defined by human experts using the domain knowledge of
the problem, but their outcomes are not directly accessible. They usually represent
latent causes of visible random variables and can improve the accuracy and the
interpretability of the model (Koller and Friedman (2009)).

To specify the dependencies of the variables in general, one needs to specify
their direction, type and intensity. This is made with the use of graphs, which
provide the terminology and theory for understanding and reasoning about Prob-

39

abilistic Graphical Models. The nodes (also called vertices) of the graph represent
the random variables and the edges their dependencies, which can be directed or
undirected. Undirected models - also called Markov networks - on the other hand
represent symmetric probabilistic interactions where there is no dependency with
direction, only factors that represent the degree of the strength of the connection.
In both cases the graph must be a directed acyclic graph (DAG), otherwise circular
reasoning would be possible. These two categories are used in different applications
(see section 3.3). This thesis uses a directed model, therefore further information
about indirected models is out of scope and can be found in Koller and Friedman
(2009) as well as Barber (2012).

The joint distribution represented by the model is mathematically expressed by
the chain rule:

P (X1, X2, · · ·XN) =
N∏
n=1

P (Xn|ParentsG(Xn)) (3.1)

where ParentsG(Xn) denotes the parents of theXn random variable in the graph.
The P (Xn|ParentsG(Xn)) conditional distributions represent local probability mod-
els that have their own local likelihood and the estimation of their parameters can
be made individually. The equation 3.1 also expresses the factorization of the joint
distribution which is also apparent from its graphical representation. The value that
a random variable will take is in general dependent on the values of its parent(s)
random variable(s). The conditional probability distribution P (Xn|ParentsG(Xn))
of each value of the child variable is defined for each value of the parent variable.
In the case of discrete random variables, this can be represented by a table which
is called conditional probability table (abbreviated CPT); sometimes the two terms
are used interchangeably. The number of rows of each CPT equals the number
of combinations of all possible values of all parent variable(s) and the number of
columns equals the number of values of the child variable. If a random variable has
no parents in the graph, then the conditioning of 3.1 does not apply. Each row of a
CPT has values that sum up to 1.0.

The dependence and independence of the random variables involved is expressed
by the structure of the graph. Independence denotes a situation where knowing
about the value of one random variable does not add any new information about the

40

value of another. Two random variables X and Y are independent iff the equation
P (X, Y) = P (X)P (Y) holds. The related concept of conditional independence
describes the situation where knowledge about a particular random variable C turns
previously dependent variables A and B to independent:

P (A,B|C) = P (A|C)P (B|C) (3.2)

The equation 3.2 can be also expressed with the following notation: (A ⊥ B | C).
The graph structure of the model can be used to find which variables are condition-
ally independent, even in big complex graphs. In those cases the independence of
two random variables A and B is not conditioned on the knowledge of just one
variable, but a set of variables which can be denoted with C. The directional or
d-separation of A and B with regard to C is expressed analogously as (A ⊥ B | C).
The smallest set of nodes that d-separates a node from all others is called the Markov
blanket and can be computed from specific rules that apply to the structure of the
model’s graph. The detailed description of the rules that define direct and indirect
dependencies (ones that persist over intermediate nodes) are out of the scope of this
thesis; only the necessary conditional independences of the variables of the model
will be presented in 3.4.

The appropriate expression of conditional independences based on the assump-
tions greatly impacts the performance of the model. Since probabilistic graphical
models encode beliefs about phenomena, this can be also expressed by stating that
in case of independence the belief remains unchanged.

A large category of Bayesian networks that contain random variables that change
over time (for example a Markov chain) in a way that can be described by a station-
ary transition distribution are Dynamical Bayesian Networks (abbreviated DBN)
(Koller and Friedman (2009); Barber (2012)). The proposed Learning Competence
model’s parameters change over time as further questions are posed. The learning
competence of the student at a specific time point is dependent from the one in
the previous time point, but the transition is not stationary (unless one considers a
random variable as the process of questions selection included in the model). This
thesis takes another approach which will be thoroughly described in the following
sections.

41

3.3 Applications of probabilistic graphical models

Probabilistic graphical models are used as probabilistic reasoning systems that can
infer and quantify hidden factors, as diseases in medical diagnosis applications from
observed information such as illness symptoms (Shwe and Cooper (1991); Jaakkola
and Jordan (1999)). A bibliographical review on the use of Bayesian Networks used
in fault diagnosis is provided in (Godsey (2017)). In the broader field of undirected
probabilistic graphical models, conditional random fields (CRF) are used in image
segmentation, taking into account neighbouring properties of the pixels (He et al.
(2004)).

Baysian networks are also widely used for human cognition (Goodman et al.
(2016); Danks (2014); Lee and Wagenmakers (2013)) and psychometric modelling
(Levy and Mislevy (2016)). Recommender systems such as the Matchbox Recom-
mender of the Azure Machine Learning Studio (Stern et al. (2009)) uses a probabilis-
tic graphical model to find latent traits that are common to users and recommended
items.

3.4 Model Structure

Domain knowledge about the already described error types that are encountered in
one-digit multiplication, as described in the previous chapter 2, was used to define
the model. This is in accordance with the data-driven approach of model construc-
tion (Koller and Friedman (2009)) where the structure of the model is specified by
the designer and the parameters are learned from the data.

A question is either answered correctly or faulty. The student can make one of the
following errors: Operand, intrusion, consistency, off-by-±1 and off-by-±2, pattern,
confusion with addition, subtraction, division or an unclassified error (meaning none
of the above). Therefore a multinomial random variable called Learning Stateq -
individual for each question q was chosen to represent the proportion of each of these
misconceptions of the user, when he or she is answering a one-digit multiplication
question. The variable follows the categorical distribution:

42

p(x = k) = θk,
K∑
k=1

θk = 1 (3.3)

where the possible values are encoded as 1, ..., k. In this case the Learning Stateq

has eight possible outcomes and the domain of this random variable is
Val(Learning Stateq) = {operand, intrusion, consistency, pattern, confusion, un-
classified, correct} (meaning that 1 is the operand error, 2 the intrusion error and
so on). The Learning Stateq of a specific user can be described for example 5%
operand error, 4% consistency error and 91% correct answering (the rest possible
outcomes have 0%). This parametrization must be learned from the data.

In the previous chapter it is shown that a specific faulty answer may be classified
to more than one error types. Although in reality the model does not assume that
more than one error type created a particular answer, the model cannot know a
priori which error type was more prevalent and played the decisive role in choosing
the wrong answer. The Learning Stateq is hidden and the percent of each error
type is expected to be learned by the provided answers. Thereby, a dominant error
type (for a specific user) can be still discovered and weaken the belief that multiple
error types played a role for a specific faulty answer. In chapter 4 the inference of
the most probable error type (credit assignment problem) of a specific wrong answer
will be made after the learning of the parameters is completed.

As described in section 2.4, the proportion of correct and false answers is different
for each question. Even though each question is not posed the same number of
times and the belief about the possibility of correctly answering each question is
different, this was also taken into account. That means that although the error types
distribution is the same for every question, the probability of answering correctly is
not. Therefore, there are 90 random variables called CorrectnessofQuestion1×1

to CorrectnessofQuestion10×9 (abbreviated by Correctnessq) that have each
two possible outcomes. Therefore the Bernoulli distribution was chosen, which is
equivalent to a categorical distribution with a domain of two values:

P (x|θ) =

θ, if x = 0

1− θ, if x = 1
(3.4)

43

Each question has a distinct random variable, named accordingly as
AnsweringStateofQuestions1×1 to AnsweringStateofQuestions10×9 (abbrevi-
ated as Answersq), which is a child of the Learning Stateq random variable. The
arrows from the Learning Stateq to its children reflect the dependency of the an-
swer to a question from the misconception or correct understanding of the user. The
possible outcomes are all possible answers, as seen in the conditional probability ta-
bles of figure 3.1.

Figure 3.1: Conditional Probability Tables (CPT) of the learning competence
model. The parameters are uniformly initialized (uninformed
prior).

The conditional independence property of each Learning Competence model is
expressed by the following equation:

Answesq ⊥ Correctnessq|Learning Stateq (3.5)

As seen in figure 3.2, the Correctnessq random variables influences the
Learning Stateq and in turn Learning Stateq is a cause to the particular
Answersq random variable. The Learning Stateq and the Correctnessq are
inferred by the answers of the students in question q.

The joint probability distribution for each question q has the following factor-
ization:

44

Figure 3.2: The structure of all Probabilistic Graphical models for Learning
Competence. The shaded Answersq nodes are the ones that are
observed, whereas the Correctnessq, Learning Stateq random
variables remain unobserved.

P (Correctnessq,Learning Stateq,Answersq) =

P (Correctnessq) P (Learning Stateq|Correctnessq)

P (Answersq|Learning Stateq)

(3.6)

As discussed in the previous chapter, each error type can only produce a specific
subset of answers, so the others will have zero probability of occurring given this
particular error type. Every row of the conditional probability table has values that
sum to one and the last row has only one entry with probability 1.0 at the column
with the correct answer and 0.0 everywhere else. Figure 3.2 depicts the described
structure of learning competence models.

So the model needs to express the following procedure: First knowing if the ques-
tion is answered correctly; this is provided by the Correctnessq random variable.
If this is true then are no more steps to follow. In the case where the answer is false,
there must have been an error, which belongs to the hidden Learning Stateq. One
of the possible answers of this error, as seen and quantified by Answersq, will be the
actual answer of the user. This is a simplified description of the forward sampling
procedure that will be described in subsection 4.3.

The model reflects our belief about the overall learning competence of the user.
Its structure is considered to be the same for all users, but the conditional probability
values (entries in the conditional probability tables) will differ for each individual
user. Nevertheless, the model can also reveal similarities between the users, meaning
at this stage models that have similar parameter values.

45

3.5 Learning the Model’s Parameters

The students’ answers already gathered comprise the data set denoted by D =
{d[1], · · · , d[N]} where d[n] is one data sample (one question-answer pair). The goal
of parameter learning is the estimation of the densities of all random variables in
the model. It is assumed that the data samples D are independent and identically
distributed (i.i.d.). The joint probability distribution PM defined by the modelM
with parameters Θ is expressed by equation 3.6. The parameter learning’s goal is
to increase the likelihood of the data given the model: P (D|M) or equivalently the
log-likelihood: log P (D|M) with respect to the set of the parameters Θ of the model.
The likelihood expresses the probability of the data given a particular model; a model
that assigns a higher likelihood to the data D approximates the true distribution
(the one that has generated the data) better.

To initialize the parameters Θ one needs first to define their prior distribution,
which expresses our beliefs about them before seeing any data samples. For example:
our beliefs about the outcome of the toss of a coin can be that we will encounter
“heads” with probability around 50% and “tails” also with probability 50%. But if
we encounter a coin where 9 of 10 tosses the outcome is “heads”, we revise our belief
of a uniform distribution of the outcomes - we no longer believe that the coin is fair.
This revised belief is called posterior distribution and can be made after there was
at least one observation in one or more variables of the model. This observation is
called evidence. In case of new evidence the old posterior becomes the new prior.

In the case where there are two possible outcomes (as in the coin toss and the
Correctnessq random variables), the phenomenon is described by the Bernoulli
distribution 3.4. The prior of the Bernoulli distribution is the Beta distribution:

P (θ|a, b) = 1
B(a, b)θ

a−1(1− θ)b−1, a, b > 0, 0 ≤ θ ≤ 1 (3.7)

where a and b are the hyperparameters that represent the number of pseudo-
counts, meaning the number of times we’ve encountered each of the two outcomes
in previous experiments (or our belief about those outcomes in general). This is
the prior of each of the Correctnessq random variables. The normalization factor
B(a, b) 3.8 uses the Gamma function 3.9.

46

B(a, b) = Γ(a)Γ(b)
Γ(a+ b) (3.8)

Γ(x) =
∫ ∞

0
ux−1e−udu (3.9)

The Dirichlet distribution is the prior of the categorical distribution 3.3. Its
density is defined in equation 3.10.

Dirichlet(θ|α) = Γ(α0)
ΠK
k=1Γ(αk)

ΠK
k=1θ

αk−1
k (3.10)

where the Gamma distribution is defined by equation 3.9, θ = {θ1, · · · , θk} and
α = {α1, · · · , αk} . As in the Beta prior, the αk are the hyperparameters that
represent the number of pseudocounts of each possible outcome of the categorical
distribution. This is the prior of the Learning Stateq and of each row in the
Answersq Conditional Probability Table. The number of pseudocounts does not
need to be an integer.

In Bayesian parameter estimation the computation of the posterior distribution
with regard to the prior is computed with the Bayes rule 3.11:

posterior︷ ︸︸ ︷
P (Θ|D) =

likelihood︷ ︸︸ ︷
P (D|Θ)

prior︷ ︸︸ ︷
P (Θ)

P (D)︸ ︷︷ ︸
marginal likelihood

(3.11)

P (D|Θ) is the likelihood of the data given the parameters Θ and expresses the
probability that the current model (seen as a generative model) has created the data
D. The marginal likelihood is an integral over all possible values of the parameters
Θ and it is a normalising factor in equation 3.11:

P (D) =
∫

Θ
P (D|θ)P (θ)dθ (3.12)

As seen from the equation 3.11, the strength of our belief about the experiment,
before seeing data, influences the posterior distribution. Since there is no informa-
tion gathered other than the actual answers of the questions, there was no other
way to set the prior for each user than to take some data from the users and learn

47

the parameters from them. The initialization of the prior parameters of this first
training set is made uniformly (non-informative uniform prior). The dataset con-
tains users that answered a different number of questions because of the existing
sequencing algorithm. Once the parameters are learned from the dataset, the prior
of the individualized model of each user is initialized to these values (the posterior
of the first learning phase becomes the prior of the next).

Since the prior reflects the beliefs, a typical starting point for the prior is a
symmetric Dirichlet where all αk are equal to 1, for example for a six-sided dice:
Dirichlet(1, 1, 1, 1, 1, 1). The parameters in this case have the uniform distribution
(1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6). Another symmetric Dirichlet resulting in the same distribution is

the Dirichlet(100, 100, 100, 100, 100, 100) (in general every symmetric Dirichlet will
result in this distribution). Bayesian learning differentiates these two cases, because
in the second one more data will be necessary to make the parameters shift from
the uniform distribution. This characteristic applies to the Beta prior as well.

It can be shown (Koller and Friedman (2009)) that the posterior of the Dirich-
let distribution P (θ) = Dirichlet(a1, · · · , ak), after seeing M [k] outcomes of each
possible outcome k, is expressed by:

P (θ|D) = Dirichlet(a1 +M [1], · · · , ak +M [k]) (3.13)

In this case the posterior has the same form as the prior and it is called conjugate
prior. This property holds for the Beta and the Bernoulli distribution as well; the
Beta distribution is the conjugate prior of the Bernoulli distribution. By applying
the 3.13 equation, a big enough number of samples of each class can diminish the
influence of the prior and make our belief converge to the true distribution (Koller
and Friedman (2009)).

The uniform prior is a weak prior. That means that the data that will be used in
for the first informed prior will change the model’s parameters (that represent our
beliefs) a lot. After that, the model will have a stronger prior, which will need much
more data for its values to change substantially. The whole model (containing both
the prior and the posterior as random variables) is called meta-model. Learning the
parameters of this model is an inference task since the model has hidden random
variables (Kochenderfer (2015)).

48

Sparse data (zero-count problem) may create overfitting as well as the impression
that a specific outcome does not occur. The model of Learning Competence exhibits
this issue too; as seen in the previous chapter, the proportion of correctly answered
questions dominates with regard to the wrongly answered ones 2.4 and some an-
swers were never provided when specific questions were posed 2.5. The prior helps
tempering this problem (Murphy (2012)).

3.6 Learning the Model’s Parameters with batch

Expectation-Maximization (EM)

Bayesian parameter learning is applicable when all variables are visible; in that case
all components of the equation 3.11 are computable. The model of the learning
competence contains hidden variables, therefore the computation of the posterior of
each random variable cannot be made directly. In this case the method that is used
is expectation-maximization (abbreviated by EM). The concepts of prior, likelihood
and posterior that were described in the previous section are used in the description
of this method.

3.6.1 Notation

The entities that are necessary for the analytical solution for the computation of the
posterior distributions of all model’s variables are the following:

N : Number of all samples in dataset

n : One sample of N

M : Number of Correctnessq possible outcomes (M = 2)

µ : Index of Correctnessq outcome

wµ : Parameters of Correctnessq

K : Number of Learning Stateq possible error types and correct outcome (K = 8)

k : Index of Learning Stateq outcome (one error type out of K − 1 or correct)

πk|µ : Parameters of the Learning Stateq variable

Q : Number of Answersq random variables (90 in total)

49

q : Index of Answersq (one question of Q)

X : Number of all possible answers of each question (columns of conditional proba-
bility tables of Answers1×1 to
Answers10×9)

x : one answer out of X

xn : the answer of the n-th sample

θx|k : The parameters of the Correctnessq random variable

Θ : All current parameters of the model : (set of all wµ, πk|µ, θx|k).

Θold : All parameters of the previous EM iteration.

X : The set of all visible variables. In this model, they are all
Answersq variables.

Z : The set of all latent variables or hidden causes. In this model, they are all
Correctnessq and Learning Stateq variable.

3.6.2 Expectation-Maximization (EM) algorithm

The goal of the EM-Algorithm is to find appropriate values for all parameters Θ.
In general a better model will fit the data better, although it must not overfit.
The latent variables Correctnessq and Learning Stateq are not observed, so the
direct maximization of the likelihood P (X; Θ) of the data according to this model is
not possible; the observed data X (not to be confused with the number of possible
answers of each question X) is incomplete. Each iteration of the EM-algorithm
computes a different instantiation of the table CPDs.

By using marginalization:

P (X; Θ) =
∑
Z

P (X,Z; Θ) (3.14)

lnP (X; Θ) = ln
{∑
Z

P (X,Z; Θ)
}

(3.15)

If the complete data set {X,Z} were known, then it would be straightforward
to try to maximize the complete data log-likelihood. To avoid multiplication of very

50

Figure 3.3: Parameters of the Learning Competence Probabilistic Graphical
Model

small floating point numbers that can lead to zero, one can equivalently maximize
the log-likelihood function lnP (X; Θ).

The EM-Algorithm works iteratively and consists of four steps:

1. Initialization of all parameters to Θ0 of the complete dataset {X,Z} and set
Θ0 = Θold.

2. E-Step: Computation of the posterior distribution P (Z|X; Θold) of Z given
the visible variables and the previous parameters.

3. M-Step: Compute new Θ parameters by trying to maximize 3.17 the expected
value of the posterior distribution 3.16 over the latent variables Z:

Q(Θ,Θold) =
∑
Z

P (Z|X; Θold) lnP (X,Z; Θ) (3.16)

Θ = argmax
Θ

Q(Θ,Θold) (3.17)

4. Compute the incomplete data likelihood P (X; Θ) or equivalently the log-
likelihood lnP (X; Θ) 3.15. If the log-likelihood’s increase or the Θ param-
eters’ change is not significant compared to the previous iteration, then stop.
Else, set current Θ with the values computed in M-Step and return to E-Step.
The EM-algorithm is a “meta-algorithm” since it contains an inference in the
E-Step (Pfeffer (2016)). The iterative process is depicted in figure 3.4.

51

Figure 3.4: The iteration loop of the EM-algorithm

3.6.3 Analytical Solution of Expectation-Maximization (EM)

for the model of Learning Competence

The steps of the EM-algorithm are applied to the model of the Learning Competence
for the derivation of the analytical solution for the update of the parameters. We
apply those steps to the model of Learning Competence of each question q separately.
The equations in this subsection omit the subscript q; they apply to the model of
each question independently.

The equation 3.18 expresses the joint probability distribution equation 3.19 is
derived from:

P (X,Z; Θ) =
∏
n

∏
µ

∏
k

wµπk|µθxn|k (3.18)

lnP (X,Z; Θ) =
N∑
n=1

ln
 M∑
µ=1

K∑
k=1

wµπk|µθxn|k

 (3.19)

The expected value of the complete log-likelihood Q(Θ,Θold) is:

Q(Θ,Θold) = EP (Z|X;Θold) [lnP (X,Z; Θ)] =∑
Z

P (Z|X; Θold) lnP (X,Z; Θ) =

∑
n

∑
µ

∑
k

γ(z(n)
µk)

(
lnwµ + lnπk|µ + lnθxn|k

) (3.20)

The responsibility γ(z(n)
µk) of the hidden error cause or correct k for n−th sam-

ple coupled with the probability of the answer being answered correctly, can be
computed by using the Bayes rule and the factorization of the joint probability
distribution from equation 3.6:

52

γ(z(n)
µk) = P (z(n)

µk |x(n); Θold) ∝ P (x(n)|z(n)
µk ; Θold)P (z(n)

µk ; Θold) (3.21)

The values of all γ(z(n)
µk) values in equation 3.21 are provided up to a normal-

ization factor. Since γ(z(n)
µk) depends only on Θold, it can be considered a constant

in the process of maximization of Q. At the same time following constraints that
reflect the conditional probability rules must be fulfilled:

M∑
µ=1

wµ = 1 (3.22)

K∑
k=1

πk|µ = 1 (3.23)

X∑
x=1

θx|k = 1 (3.24)

The maximization of the complete log-likelihood Q(Θ,Θold) leads to the param-
eters of the model. The maximization process must also fulfil the constraints in
equations 3.22, 3.23, 3.24, which can be made with the use of Lagrange Multipliers.
The maximum of the following expression must be found:

Q(Θ,Θold) + λ

(∑
µ

wµ − 1
)

+
∑
µ

λµ

(∑
k

πk|µ − 1
)

+
∑
k

λk

(∑
x

θx|k − 1
)

(3.25)

First, the update of the parameters of a particular Correctnessq value wm|q,
is made from the data samples n′ that have as question q = qn′ ∈ [q1 · · · qQ] , and
answer m being either correct or wrong:

N ′∑
n′=1

γ(z(n′)
µk) 1

wm|q
+ λ

!= 0 ‖ · wm|q (3.26)

N ′∑
n′=1

γ(z(n′)
µk) + λwm|q

!= 0 ‖
M∑
m=1

(3.27)

53

M∑
m=1

N ′∑
n′=1

γ(z(n′)
µk) + λ

M∑
m=1

wm|q
!= 0 (3.28)

λ = −
M∑
m=1

N ′∑
n′=1

γ(z(n′)
µk) = −N ′ (3.29)

because :
M∑
m=1

γ(z(n′)
µk) = 1 (3.30)

wm|q =
∑N ′

n′=1 γ(z(n′)
µk)

N
(3.31)

Secondly, the maximization with respect to a particular πl ∈ [π1 · · · πK] is com-
puted. The derivative must be set to 0 and all parameters of the expression 3.25
not related to πl can be eliminated as constants. If the number of samples that are
answered wrongly is N ′, the following steps provide the analytical solution for the
update rule for any πk:

N ′∑
n′=1

γ(z(n′)
µk) 1

πl
+ λµ

!= 0 ‖ · πl (3.32)

N ′∑
n′=1

γ(z(n′)
µk) + λµπl

!= 0 ‖
K∑
k=1

(3.33)

N ′∑
n′=1

γ(z(n′)
µk) + λµ

K∑
k=1

πl
!= 0 (3.34)

λµ = −
K∑
k=1

N ′∑
n′=1

γ(z(n′)
µk) (3.35)

πk =
∑N ′

n′=1 γ(z(n′)
µk)∑K

k=1
∑N ′
n′=1 γ(z(n′)

µk)
(3.36)

Thirdly, the maximization with respect to θx|q,k, is performed in a similar manner.
The update of the parameters of a particular
Answersq value θx|q,k, is made from the data samples n′ that have as question
q = qn′ ∈ [q1 · · · qQ] , and answer x = xn′ ∈ [x1 · · ·xX]:

54

N ′∑
n′=1

γ(z(n′)
µk)
θx|k

+ λk
!= 0 ‖ · θx|k (3.37)

N ′∑
n′=1

γ(z(n′)
µk) + λkθx|k

!= 0 ‖
X∑
x=1

(3.38)

X∑
x=1

N ′∑
n′=1

γ(z(n′)
µk) + λk

X∑
x=1

θx|k
!= 0 (3.39)

λk = −
X∑
x=1

N ′∑
n′=1

γ(z(n′)
µk) (3.40)

θx|k =
∑N ′

n′=1 γ(z(n′)
µk)∑X

x=1
∑N ′
n′=1 γ(z(n′)

µk)
(3.41)

The steps of the EM-Algorithm for updating the parameters of this Bayesian
Model are as follows:

1. Initialization of all parameters Θ0. In this case that is the uniform prior as
discussed in section 3.5.

2. E-Step: Computation of γ(z(n)
µk) using equation 3.21

3. M-Step: Compute new Θ parameters wµ|q, πk and θx|k using equations 3.31,
3.36 and 3.41

4. Compute the likelihood P (X; Θ) or log-likelihood lnP (X; Θ):

P (Correctnessq,Answersq; Θ) =
P (Correctnessq,LearningStateq,Answersq; Θ)
P (LearningStateq|Correctnessq,Answersq; Θ)

P (Correctnessq; Θ)P (Correctnessq|LearningStateq; Θ)

(3.42)

If the likelihood or the parameters values do not converge, then set current Θ
with the values computed in M-Step and goto E-Step.

55

Figure 3.5 depicts the steps of the EM-algorithm updating procedure. The
dataset used for training is called training set. Its characteristics will be explained
in the next section 3.7.

Figure 3.5: Expectation-maximization training algorithm applied on the
training set. In the first step the uniform Dirichlet hyperpa-
rameters are used. Then alternating E- and M-steps bring the
parameters/log-likelihood convergence.

It is proven that the EM-algorithm increases the log-likelihood of the observed
data X at each iteration (Bishop (2006)):

lnP (X; Θ) ≥ lnP (X; Θold) (3.43)

The procedure of updating the log-likelihood in this manner is shown to guaran-
tee convergence to a stationary point, which can be a local minimum, local maximum
or saddle point. Fortunately, by initializing the iterations from different starting Θ0

and injecting small changes to the parameters, the local minima and saddle points
can be avoided (Koller and Friedman (2009)).

3.7 Datasets

The available data were divided into a training and test set, with a dataset containing
data from users that have answered all the questions at least one time (The number
of users that have answered all questions exactly once is 2218). The diagram in figure

56

3.6 describes the main computational blocks of the dataset splitting procedure. It
is important to emphasize that the same preprocessing steps described in chapters
2 and 3 are applied in both datasets.

Figure 3.6: Dataset splitting procedure: After the same data preprocessing
functionalities are applied to the whole dataset, the parameters
are defined by the training set only.

When a new student starts to use the application, it is assumed that he or she
will have some commonalities with the other users; these commonalities are already
captured in the learning competence model. The application does not have to start
from an agnostic point, nor to have questionnaires or time-consuming demographic
registration forms. The learning competence model is learned and can be updated
from that point on individually for each student depending on the provided answers.
The procedure is depicted in figure 3.7:

57

Figure 3.7: Handling a previously unseen user: the new data pass through
the standardized preprocessing module. The learning competence
model defined by the training set is used for modelling. After
the first question is answered, this model is updated individually
according to the answer(s) of this particular user.

The models’ parameters are computed by the EM-algorithm on the training data.
After 4 iterations the likelihood of the training set increases, but the likelihood of
the test set decreases, which consists an indication of overfitting, as described in the
section 3.9.

3.8 Fractional Updating

Since the learning application proposes questions continuously, it is important to
update the beliefs about the learning competence of the student as soon as an
answer is present. As new evidence is observed - in the form of answered questions -
the model shifts the value of the parameters to reflect the fact that the belief about
the learning competence of the user is changed.

With fractional updating (Jensen and Nielsen (2007)), the initialization and
updating of the parameters is made by means of the Dirichlet pseudocounts, which
are explained in section 3.5. The starting pseudocount number is set to 1.0 to express
a weak belief about the learning competence of the student. In this application, for
each question-answer pair, only one probabilistical graphical model needs to be
updated. The data sample only contains the value of the corresponding observed
variable Answersq. The update of the pseudocounts α is provided by equation:

58

αl+1
ijk = αlijk + P (Xi = k, ParentsG(Xi) = j|D) (3.44)

where the current joint probability of the updated variable and the value of its
parents are used to update the value of the pseudocounts, which may no longer be
an integer. D denotes the dataset of samples.

The fractional updating procedure can be explained by an example where a
student provides the wrong answer 42 to the question 8× 5. The probabilities start
with the following values:

wrong correct
1
2

1
2

operand intrusion consistency off-by add/sub/div pattern unclassified
1
7

1
7

1
7

1
7

1
7

1
7

1
7

· · · 42 · · ·

operand · · · 1
12 · · ·

intrusion · · · 0 · · ·

consistency · · · 1
17 · · ·

off-by · · · 1
4 · · ·

add/sub/div · · · 0 · · ·

pattern · · · 0 · · ·

unclassified · · · 0 · · ·

Table 3.1: Probabilistic graphical model of the question 8×5 where all condi-
tional probabilities (all rows of the conditional probability tables)
are set uniformly.

The corresponding pseudocounts start with the following values:

wrong correct

1 1

operand intrusion consistency off-by add/sub/div pattern unclassified

1 1 1 1 1 1 1

59

· · · 26 · · ·

operand · · · 1 · · ·

intrusion · · · 0 · · ·

consistency · · · 1 · · ·

off-by · · · 1 · · ·

add/sub/div · · · 0 · · ·

pattern · · · 0 · · ·

unclassified · · · 0 · · ·

Table 3.2: Probabilistic graphical model of the question 8× 5 where all pseu-
docounts are set to value 1.

There are three error types that can cause the answer 42. The weights for each
case, corresponding to the entity P (Xi = k, ParentsG(Xi) = j|D) of the equation
3.44, are computed as follows:
1
2

1
7

1
12/(

1
2

1
7

1
12 + 1

2
1
7

1
17 + 1

2
1
7

1
4) = 0.21259

1
2

1
7

1
17/(

1
2

1
7

1
12 + 1

2
1
7

1
17 + 1

2
1
7

1
4) = 0.15006

1
2

1
7

1
4//(

1
2

1
7

1
12 + 1

2
1
7

1
17 + 1

2
1
7

1
4) = 0.63776

The value of the updated pseudocounts of the operand, intrusion, and con-

sistency error types, are presented in the following table:
CQ8×5 LS8×5 AS8×5 pseudocounts probability

D8×5, 42, operand wrong operand 42 1 + 0.21259 0.151
D8×5, 42, consistency wrong consistency 42 1 + 0.15006 0.144
D8×5, 42, off−by wrong off-by 42 1 + 0.63776 0.205

The pseudocounts of the rest of the error types will remain to the value 1, so
the total sum of pseudocounts that will be used as normalization value is: 4 ×
1 + 1.21259 + 1.15006 + 1.63776 = 8.0004. The actual probabilities of the involved
error types are listed in the table above; the rest have the value 0.12499. The
pseudocounts of “wrong” are increased by +1, setting the probability of “wrong” to
2
3 and “correct” to 1

3 . The values of the Answers8x5 random variable are computed
accordingly.

This comprises a full iteration of the online EM-algorithm. In the next iteration,

60

the newly computed pseudocounts will play the role of the prior that needs updating.
Drawbacks and extensions of the fractional updating algorithm can be found in the
work of Jensen and Nielsen (2007) and are out of scope of this thesis.

3.9 Evaluation of Parameter Learning

The evaluation of the parameter learning EM-algorithm is firstly made by computing
the likelihood of a training set (see section 3.7) at each iteration. It is expected that
the likelihood is increasing monotonically and converging with increasing number of
iterations. As seen in figure 3.8, this also applies for the likelihood of the models as
a whole.

Figure 3.8: Evolution of the likelihood of the training set with respect to the
number of EM-iterations in the training set.

If the EM-algorithm is repeated for many iterations, the values of the parameters
will be adjusted too much to the training set, without being able to generalize to
the properties of the test set; an unseen user’s learning competence must be also
modelled sufficiently by the model. Figure 3.9 depicts the evolution of the likelihood
of the test set, with respect to the number of EM-iterations of the training set. The
likelihood of the test set decreases after 4 iterations; this is an indication of overfitting

61

Bishop (2006).

Figure 3.9: Evolution of the likelihood of the test set with respect to the
number of EM-iterations in the training set. The test set contains
1000 samples.

The expectation-maximization algorithm bases on the fact that all possible out-
comes of all questions present at least one sample of the dataset. This was not the
case in this application; the sufficient statistics condition was not fullfiled (Koller
and Friedman (2009), Murphy (2012)). Nevertheless, it has been shown that the
models performance is sufficient for practical purposes and that as new data are
gathered, this problem might be solved.

62

4. Insights

4.1 Reasoning types in Probabilistic Graphical

Models

After the model of a particular student is learned - by using the informed prior as
starting point and as evidence the answers he or she has given so far - a typical
application would be the prediction of the answer for a particular question. The
better and more accurate the model captures the learning competence of the stu-
dent, the better the performance of the predictions of the answers will be. In some
probabilistic modelling frameworks such as Figaro 1 the parameter learning part is
made by the offline component and the probability queries by the online component.

There are three types of reasoning one can make with probabilistic graphical
models: causal, evidential and explaining away. Causal reasoning (also called predic-
tion) consists of statements that start with the knowledge of the causes as evidence
and provide information about the effects. In our model this would be possible
if the Correctnessq and Learning Stateq were known: the computation of the
answer to a posed question would be accurately determinable. The direction of
causal reasoning in directed graphical models goes from parent to child variables
(“downstream”) in general and is used to predict future events.

Evidential reasoning (also called explanation) on the other hand has the op-
posite direction and involves situations where effects lead to the specification of
causes. This is the most important reasoning in our case because the answers of the
students provide the information to do evidential reasoning and learn the hidden
variables Correctnessq and Learning Stateq, which in turn can be used for causal

1https://www.cra.com/work/case-studies/figaro, Last accessed 17 March 2019

63

https://www.cra.com/work/case-studies/figaro

reasoning to predict the future answers of each student. The difference in causal
and evidential reasoning can be understood by considering the direction of time;
evidential reasoning infers the past probability distribution from the current set of
data whereas causal reasoning makes a prediction for the future given the data. The
great benefit of graphical models over statistics is that the same model is used for
both backward and forward reasoning (with respect to the perception of time).

Intercausal reasoning occurs when one random variable depends on two or more
parents. In this case, the observation of the value of one parent influences the belief
about the value of the other(s) (either strengthen or weaken). In this situation it
is said that one reason explains away the other. The learning competence model’s
structure does not contain such cases; further discussion about this reasoning type
can be found in Karkera (2014), Koller and Friedman (2009), Bishop (2006).

The upcoming sections proceed with an analytical implementation of probabilis-
tic queries, which is specific to the designed learning competence models. Personal-
ized insights computed by the latent explanations of wrong answers of each student
are made possible by exact and efficient inference as described in section 4.2.1. Fur-
thermore, the probability distributions of selected variables can be compared to
validate the assumptions on which the model itself is built, as well as quantitatively
verify learner’s hypotheses of the general student behaviour described in section 4.5.

4.2 Probability Queries

A conditional probability query P (Y |E = e) - also called probabilistic inference -
computes the posterior of the subset of random variables represented by Y (target
of query) given observations e of the subset of evidence variables denoted by E (of
course there may be a subset of variables Z in the model not belonging to either of
these two subsets). By using the Bayes rule, the conditional probability is written
as:

P (Y |E = e) = P (Y , e)
P (e) (4.1)

The MAP query, which is also called most probable explanation (MPE) (Koller
and Friedman (2009); Pfeffer (2016)), is a query that maximizes the posterior of the

64

joint distribution of a subset of random variables Y :

MAP(Y |E = e) = arg max
y

P (y, e) (4.2)

In the case of MAP Query the whole set of random variables is X = {Y ,E}. In
other words the MPE, after observing (clamping) a subset of variables, it computes
the most likely values of the rest of them jointly.

A slightly different query is the marginal MAP which is written as follows:

Marignal MAP(Y |E = e) = arg max
y

P (y|e) =

arg max
Y

∑
Z

P (Y ,Z|E = e)
(4.3)

which directly follows from the fact that X = {Y ,E,Z}.

The computation of the query result can be made with the variable elimination
algorithm, which is described in the following section 4.2.1; in this case, the exact
value of equation 4.1 is computed by dividing P (y, e) = ∑

w P (y, e, w) and P (e) =∑
y P (y, e). Alternatively, the the normalization of a vector containing all P (yk, e)

(where yk are all possible outcomes of the variables Y) so that it has sum that
equals to one, provides also the desired result. For more complex bayesian net-
works approximate inference algorithms are applied since exact inference is NP-hard
(Kochenderfer (2015)), but even those can be in the worst-case also NP-hard (Koller
and Friedman (2009)). The learning competence models are simple and the variable
elimination algorithm is fast enough.

4.2.1 Variable elimination in the Learning Competence Model

The probability query that is of relevance for the tutors is the probability of error
types regarded as causes of a specific wrong answer. The sum of products expres-
sion 4.4 computes the distribution of the Learning Stateq by means of the joint
distribution P (Cq,LSq,Aq):

65

P (LSq) =
∑

Cq,Aq

P (Cq,LSq,Aq) =
∑
Cq

P (Cq)P (LSq|Cq)
∑
Aq

P (Aq|LSq) (4.4)

Figure 4.1: Parameters of learning competence model of question 6 × 7 that
are relevant to the computation of the MAP query when the an-
swer is 40

The first step of the Variable Elimination algorithm, in case it is applied where
an evidence exists, is to compute the unnormalized joint distribution
P (C6×7,LS6×7,A6×7 = 40). For example, the faulty answer 40 for the question
6× 7 eliminates all cases for which the answer is not equal to 40; it can belong only
to two potential error types: consistency and off-by. The remaining rows of the joint
distribution - those containing the unnormalized proportion unequal to 0 are listed
in table 4.1. The computations use the corresponding parameters of the learning
competence model of question 6× 7 depicted in figure 4.1.

C6×7 LS6×7 A6×7 unnormalized proportions
wrong operand 40 0.158 · 0.336 · 0.035 = 1.85 · 10−3

wrong off-by 40 0.158 · 0.103 · 0.202 = 3.28 · 10−3

Table 4.1: Unnormalized joint distribution P (C6×7,LS6×7,A6×7 = 40)

The sum of the unnormalized proportions, 1.85 · 10−3 + 3.28 · 10−3 = 5.14 · 10−3

(which is the value of P (A6×7 = 40)), can be used to compute the normalized
probabilities of the causes of answer 40 as depicted in table 4.2.

66

C6×7 LS6×7 A6×7 normalized probabilities
wrong operand 40 1.85 · 10−3/5.14 · 10−3 = 0.36
wrong off-by 40 3.28 · 10−3/5.14 · 10−3 = 0.64

Table 4.2: Normalized joint distribution P (C6×7,LS6×7,A6×7 = 40)

The process eventually performs the following computation in equation 4.5,
which is in accordance to equation 4.1.

P (C6×7,LS6×7|A6×7 = 40) = P (C6×7,LS6×7,A6×7 = 40))
P (A6×7 = 40) (4.5)

The distributions Correctness6×7 and Learning State6×7 in the learning com-
petence model is as follows:

wrong correct

0.158 0.842

operand intrusion consistency off-by add/sub/div pattern unclassified

0.336 0.079 0.163 0.103 0.0014 0.072 0.243

Table 4.3: Learning State6×7 distribution of wrong answers in question 6×7
before the user answers 40

After observing 40, the Explanations probability distributions are as follows:

wrong

1.0
operand off-by

0.36 0.64

Table 4.4: Explanations distribution of wrong answers in question 6× 7 after
the user answers 40

The result of the MAP Query (most probable explanation) is the joint assign-
ment MAP(Correctness6×7,Learning State6×7) = (wrong, off-by). The result of
the Marginal MAP query over the Learning State6×7 only, states that the most
probable cause of the answer is the off-by error, as seen in figure 4.2.

This is an example of a case where the an error type has a higher probability
than another one in the P (Learning Stateq|Correctnessq = wrong) distribution,

67

Figure 4.2: Learning State6×7 and explanations distribution of question
6× 7 before and after the user answers 40

but the probability query could state that the most probable cause of a particular
answer is the second one.

The results of the probability queries depend on the parameters of the model,
which in turn are influenced by the prior distribution and the number of EM-
iterations.

4.3 Sampling of Answer

After the model parameters are learned, they can be used to predict the answer of
the student to a posed question. The predicted answers can be used to validate the
adequacy of the learned parameters. Two of them are implemented in the software
library that was used for the implementation of this thesis: Forward sampling and
Gibbs sampling (Pfeffer (2016); Koller and Friedman (2009)).

Forward sampling handles the random variables of the model in a topological or-
der; in the learning competence model’s case it is straightforward Correctnessq →
Learning Stateq → Answersq. Firstly, it samples a value from Correctnessq

and then uses the sampled answer c to choose the next probability distribution
P (Learning Stateq|Correctnessq = c) (which is a row in the Conditional Proba-
bility Table of Learning Stateq) to sample from, and so on. The set of the three

68

sampled values consist one sample. Figure 4.3 shows all possible outcomes of all
random variables in the learning competence model in a tree form. The chosen
sampling path is denoted with black arrows and all non-selected possibilities are
coloured gray. The resulting sample is the set (wrong, off-by, 39).

Figure 4.3: Tree of all possible paths in the forward sampling process of the
learning competence model of 8 × 5. The sampling path for the
sample (wrong, off-by, 39) is highlighted.

Gibbs sampling does not necessarily follow the topological ordering from the
parent random variables to the children. It starts by generating the initial sample
with the forward sampling process, but then it can proceed by sampling the random
variables in any order, constrained by the values of the previous and current sample.
Assuming that the initial sample is is (wrong, off-by, 39)(0) and the next variable
that will be sampled is Answers8×5, the value will be generated from the distribu-
tion P (Answers8×5|Learning State8×5 = off-by,Correctness8×5 = wrong). The
result of this sampling (for example 41), will be used in turn to constrain the sam-
pling of the next chosen variable Learning State8×5; the sample comes from the
P (Learning State8×5|Answers8×5 = 41,Correctness8×5) distribution and so on.

Gibbs sampling differs from forward sampling mostly in the fact that the sam-
pling process uses information about child random variables when sampling parent
random variables. In cases where sampling is used for estimating the posterior,
it is stated that with Gibbs sampling the approximated posterior will be closer to
the real posterior because of this characteristic (Koller and Friedman (2009)). The
initial state was randomly chosen. Unfortunately, at the time the Gibbs sampling

69

implementation of the used software library has a bug 2 so a comparison of the
results of forward and Gibbs sampling is not possible.

To measure the prediction performance of the learning competence model, the
metric that was used is similar to the Rank-N error metric (Lapin et al. (2016, 2015)).
For every question in the training dataset, N samples were generated. A counter is
increased, if the actually provided answer is not the list of sampled answers and the
error can be defined as the following fraction 4.6:

ErrorTopN = # Number of actual answers not in sampled list of length N
Number of answers in dataset (4.6)

The value of the metric for the uniform dataset is 0.062. Since the dataset is
unbalanced, in case where only faulty answered question are considered, setting the
value of Correctnessq = wrong and performing forward sampling gives a TopN

error of 0.7016.

Other sampling algorithms are used in cases where evidence is present, mainly for
estimating the posterior distribution after the evidence is observed. These include
forward, rejection and importance sampling as well as other MCMC sampling meth-
ods apart from Gibbs sampling. Those are out of scope for the needs of this thesis;
Pfeffer (2016) as well as Koller and Friedman (2009) provide detailed descriptions.

4.4 Generative Model

Another way that was used to verify the learned parameters is to use the probabilistic
model as a generative model (Pfeffer (2016); MacKay (2003)). As explained in the
previous section 4.3, there are processes that can generate samples from the learning
competence models. These samples are used to train another model, having the
same structure as the original one, with expectation-maximization as described in
the previous chapter 3.6.

The values of the parameters in the corresponding CPD tables should be similar
for the each two models; one being created by the training dataset and one from the

2https://github.com/pgmpy/pgmpy/issues/1017, Last accessed 17 March 2019

70

Figure 4.4: Generative Model

sampled dataset. The corresponding joint probability distributions were computed
and compared with the Bhattacharyya coefficient (Bhattacharyya (1943)), which is
a measure of dissimilarity between two distributions 4.7. For two discrete probability
distributions p and q that have the same domain X it is defined as follows:

BC(p, q) =
∑
x∈X

√
p(x)q(x) (4.7)

The distribution P (Learning Stateq|Correctnessq = wrong) of all questions
have the same 7 possible outcomes and can be represented as 7-dimensional vectors.
The Bhattacharyya coefficient measures the angle between the
(
√
p(1), · · ·

√
p(7)) and (

√
q(1), · · ·

√
q(7)) vectors; this geometric interpretation is in

accordance to the property 0 ≤ BC ≤ 1, which is derived by the Jensen’s inequality
(Cover and Thomas (2012)). Values close to 1 express similarity and values close to
0 express dissimilarity.

Other measures that can be used to measure the similarity or correspondingly the
dissimilarity of distributions are the Hellinger discrimination (also called Matusita
measure), chi-square (χ2) measure (Derpanis (2008)). The properties, relationships
between them, as well as their comparison and benefits of the Bhattacharyya coef-
ficient are thoroughly elaborated in Aherne et al. (1998).

71

4.5 Similarity of Learning State among different

questions

The design of the models structure assumes that the Correctnessq, the
Learning Stateq as well as the Answersq have parameters that are different
enough for each question q to be handled by a different graphical model each. After
training the set of models as described in the previous chapter 3.6.3, chapter 3.8, the
P (Learning Stateq|Correctnessq = wrong) distributions was used for comparing
different questions.

The pairwise similarity over all question pairs was computed and put into sorted
order. As explained in the previous section 4.4, the nearest distributions have Bhat-
tacharyya Coefficient near 1 and the most dissimilar near 0. The minimum coefficient
value is 0.452, which implies the minimum similarity or max dissimilarity within the
distributions (10× 6 with 3× 3). In general, the most similar questions are the ones
with swapped operands, as for example 6× 8 with 8× 6 have a similarity of 0.998.

Figure 4.5: Similarity of the P (Learning Stateq|Correctnessq = wrong)
distributions of all pairs of questions as measured with the of the
Bhattacharyya Coefficient 4.7.

72

4.6 Other uses of the Learning Competence Model

The learned probabilistic model can be used in a generative scheme where the learn-
ing application will sample the model to predict the answer of the student. There
are several algorithms that compute samples from the models with different char-
acteristics (Pfeffer (2016); Koller and Friedman (2009)). For this model, where the
dataset is highly unbalanced and the number of correctly answered questions is pre-
dominant, the metric to measure prediction performance should particularly take
this fact into account. Although this feature does not provide an insight per se, it
can be a starting point for other informative learning aspects. One aspect is ex-
plainable artificial intelligence (explainable AI), which combines Bayesian learning
approaches with classic logical approaches and ontologies, thereby making use of
re-traceability and transparency (Goebel et al. (2018)).

Even though the proposed research extends the capabilities of the current learn-
ing application considerably, it cannot answer the fundamental question: Which
should be the most appropriate question to be posed to the student. After the dif-
ferent learning competences are derived, the handling is delegated to the teacher,
not the application itself. Further considerations apply to whether the models of
learning competences that could be grouped together are the ones where the stu-
dents will have the same learning path till they’ve learned to answer all questions
correctly. The goal of this learning-aware application is not to group the learning
competences by similarity of their parameters (expressing the current situation), but
to find those that will lead to similar optimal learning paths. This learning-aware
application could benefit from an answer prediction component that accurately sim-
ulates students learning paths.

73

74

5. Deep Reinforcement Learning and

Convolutional Neural Networks

5.1 Deep Reinforcement Learning and

Convolutional Neural Networks

Agent:
Learning Aware Application

Environment:
Learner's Competence Model

Action: Posed Question

Reward

Updated State of
Learner's Competence Model

Figure 5.1: Agent, environment components and interaction of the learning-
aware application

To impact the learning of each user in an efficient manner, we first formulated the
problem using concepts of reinforcement learning. In a reinforcement learning setup,
as seen in figure 5.1, there are two main interacting counterparts: the agent and the
environment. The environment’s content can be described by its state, which can
be (at least partially) observed by the agent. On the other hand, the agent performs
some actions resulting some influence on the state of the environment. This change
of state is communicated back to the agent together with a value which is called
“reward” or “reinforcement” that designates whether this state change was beneficial
or not.

The usage of a learning application involves at least the user/learner and the
application itself. The learning status of the user is the environment and the learning

75

application is the agent, which is in constant search for reasonable and effective
actions that hopefully enhance the learning competence of the user. The learning
application is not composed by any pre-defined programming logic that computes
what to do next according to rules. In other words, it does not need to implement a
methodology; the requirements only need the description of the problem. With the
use of reinforcement learning and the interactions rewards, the learning application
will learn itself the best behaviour to bring the greatest benefit to the learner.

The reward can be a “positive” or “negative” feedback with respect to the goal
of the agent, which is to choose the actions that will return the greatest cumulative
reward in the long run. The reinforcement learning system can be designed in
such terms, that this occurs at the moment the environment reaches a desired state.
The learning process has a “trial-and-error” character, because it tries to improve its
estimation of the optimal state and action sequence by exploration, which allows the
choice of local suboptimal actions. This characteristic differentiates reinforcement
learning from both supervised and unsupervised learning; the process of learning is
neither supervised nor consists of finding patterns in the data.

Setting a numerical reward for a specific state change (that was triggered by a
particular action) needs careful considerations. Any choice of action influences the
upcoming states; it excludes some of them. It is crucial to understand that any
action at any given moment cannot be characterized only by its current reward, but
also by the rewards that will be returned from the future states, which are reachable
from the chosen one. Since reinforcement learning algorithms are not short-sighted,
it is preferable to endure a temporary negative reward if it eventually brings a long-
term benefit.

5.2 Applications of Reinforcement Learning

Reinforcement learning is already applied in different industries. It is used in au-
tonomous driving (Bojarski et al. (2016); Sallab et al. (2017); Zhu et al. (2018)) and
robotics (Kober et al. (2013); Amarjyoti (2017)) to carry out tasks without being
given explicit instructions. Choosing the right advertisement being presented to the
users in real-time is also an emerging business-case to prevent advertising fatigue
(Zhao et al. (2018)). Because users are confronted daily with many ads, the presen-

76

tation of relevant ads at the right place and moment is an important requirement.
Personalization of the content as well as the sending time of advertising e-mails
and push notifications can also be improved by reinforcement learning methods.
Software development companies use A/B testing, which is a simplified and more
short-term form of measuring the user’s acceptance of a new feature as soon as it
has been deployed. The financial sector is also using similar methods to increase
profits by consulting reinforcement learning techniques to reduce risks.

One of the most prominent applications of reinforcement learning that uses the
techniques described in this thesis is, playing of computer games, such as Backgam-
mon, Atari, and Go, successfully (Mnih et al. (2013); Pumperla and Ferguson (2018);
Silver et al. (2017)). Scientists have shown, that by applying reinforcement learning
techniques, computers can learn, how to choose good actions in order to play such
games even better than humans. What is important to note is, that the program
is not rule-based; the computer learns a good policy by playing several times (cor-
responding to episodes), with different game and score evolution, often exploring
actions that may have negative outcomes. At the end of this training phase, the
algorithm has learned a strategy that will be used in the following trials of the game
where the learned policy is exploited. At any given state of the game, the algorithm
will know, which action to choose. The given input is solely the pixel image of
each game state (comparable to the image a human player would perceive) and the
current score.

5.3 Formulation as a Markov Decision Problem

The state at each discrete time point t is represented by st. The whole probabilistic
graphical model of each user represents the belief of the agent over his or her overall
current learning status. The number of possible parametrizations of this model can
be infinite; each state is only subject to the constraint that the sum of each line of a
conditional probability table is one. The whole set is denoted by S, where all st ∈ S,
or by S+ if one denotes the inclusion of the terminal state (state in which the goal is
achieved) in the set. The actions are the posed questions at at a specific time point.
There is a set of |A| questions at each time step for every state A(st). Each action
results to an immediate numerical reward rt+1 ∈ R for the agent. The definition

77

and computation of each reward is done by the environment and has the form of a
reward function that typically has the previous state as its input, the applied action,
and the immediately next state. A schematic description of a small Markov decision
problem with three states, two actions, and two rewards is depicted in figure 5.2.

The Markov property, expressed in equation 5.1 states that the probability of the
transition from a particular state to another one through an action is not dependent
on past states and actions.

P (st+1|st, at) = P (st+1|st, at, st−1, at−1, · · ·) (5.1)

The state update can be deterministic or not; one example can be drawn from
robotics: the movement of a robot might not be precise and lead on to different
positions although the starting state and movement command can be the same.

The goal specification influences the definition of the reward function (also called
credit assignment problem). In our application the following considerations have
helped to choose the reward function: A question may enrich the knowledge of
a learner and furthermore, may help understanding as well as overcoming typical
errors of a particular user. The long-term goal of the application use is the correct
answering of all questions, as efficient as possible; this is essential for the design of
the reinforcement function. A wrongly answered question may contribute more to
the mathematical understanding than a correct answered one and, in that way, can
lead faster to the final state although the agent does not receive a greater reward.
This difference between short- and long-term benefit emphasizes the need for the
value function, which expresses the expectation an agent has about the accumulated
reward, it will begin to gather beginning from a specific state on. For the agent, the
value function is the one, its decisions are based on; whereas the reward function
helps to compute the value function. A state with a greater value than another
one is classified as being “better”; the agent must coordinate its actions towards
reaching it instead of the other.

The purpose of the learning-aware application using reinforcement learning is
to find/learn the optimal action/question for each learning competence of the user.
This is called “optimal policy”. There are many possible policies; each one denoted
by π spanning the policy space. In general, there can also be many optimal policies

78

π∗ with equal accumulated reward. The learning-aware application as an agent will
know the current overall learning competence of the user. Therefore, it will be able
to derive the best question to be posed. The result will be the optimal sequence of
the posed actions. Optimal in our case means, that the learner will reach the goal
of answering all questions correctly faster using the proposed sequence than by any
other question sequence.

To achieve this, the agent must learn and choose the policy that maximizes the
sum of discounted returns of the states (see equation 5.2) that the environment will
find itself. Assuming the number of posed questions is finite T , γ is the discount
rate where 0 ≤ γ ≤ 1, the expected discounted return is computed as follows:

Gt =
T−1∑
k=0

γkrt+k+1 = rt+1 + γGt+1 (5.2)

The discount factor is necessary for bounding the expected return in reinforce-
ment learning problems, where the interactions between agent and environment have
no end, meaning, they don’t stop even after reaching the terminal state. In the finite
case the return cannot grow indefinitely, but the discounting factor is still useful to
control the relative impact of future rewards with regard to immediate ones. As the
time steps k grow, the discounting factor’s powers get smaller, making the future
rewards less significant than the present ones. When γ is almost equal to zero,
immediate rewards are more important than future ones; this can prevent a really
high return, since it may exclude future higher rewards. On the contrary, a γ near
one makes the agent looking exactly for those greater rewards.

Our learning application falls into the category of episodic tasks, where an
episode follows a finite sequence of alternating actions/questions and changes over-
all learning competence of user until the final state in a finite number of steps is
achieved. For every state other than the final one, the reward is set to −1. The final
state can have a reward ≥ 0, so that the less steps reaching the final state needed,
the greater is the overall reward (so-called “Minimum Time to Goal” in Harmon
and Harmon (1997)).

To find the optimal policy, the agent may go through several policies, typically by
adjusting the probability of choosing each action given a particular state according to
its experience. There are several ways to find the optimal policy or an approximately

79

Figure 5.2: Markov Decision Process where State is the learning competence,
Actions are the posed Questions and the Rewards need to be
computed.

optimal policy systematically through different algorithms.

The algorithm does not need any past sequence information to compute the
reward; the current state and action that will lead to the next state are enough.
In fact, because of the Markov property, the agent has the opportunity to find the
optimal policy only by looking at the present state St and choosing the best actions,
ignoring every past situation. The algorithm can begin from any state and predict
the probabilities of the following states, try various actions, compute their rewards,
and compare them to find the optimal policy. Of course, the Markov property is
satisfied when the environment is the probabilistic graphical model; if one considers
the “true” mentally learning competence of the user as the “real” environment, then
the state is only approximately a Markov state, because there is no possibility at
the moment to have full access to the “true” state. Even so, this is a typical case
and it is still appropriate for the scope of this work.

The satisfaction of the Markov property by each state classifies our reinforce-
ment learning task as a Markov decision process (short MDP), whose dynamics are

80

largely specified by two components: First, the transition probability expressed by
P (st+1|st, at) and second, the element of an Markov decision process is the expected
value of the next reward E[rt+1|st = s, at = a, st+1 = s′], which is defined for every
possible state and influenced by the followed policy. Its value depends on the states
that will be faced after the current one and the expected rewards thereof. But as
explained previously, the expected immediate reward is not of primary importance;
the mathematical expression for all expected accumulated future rewards from a
particular state s or an action choice a is the value function and denoted by υπ(s)
and qπ(s, a) respectively. The state value function of a state under a particular
policy π is:

Vπ(s) = Eπ[Gt|St = s] = Eπ
[
T−1∑
k=0

γkrt+k+1|St = s

]
(5.3)

The state-action value function under a particular policy π evaluated at possible
each state-action pair as well as enabling the comparison of actions:

Qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ
[
T−1∑
k=0

γkrt+k+1|St = s, At = a

]
(5.4)

The constraint for the discount rate parameter is 0 < γ < 1. This parameter is
not just necessary for expressing the discounting of future rewards, but ensures that
the expected accumulated future rewards in problems with infinite steps are finite,
provided that the reward’s sequence acquired by following the states defined by the
policy are bounded. The expectation is used, because of the fact that the transitions
are non-deterministic. A small discount factor (near 0) can make the actor have a
behaviour that ignores long-term rewards for immediate ones, whereas the opposite
happens in case the discount factor is close to 1.

There are several extensions of MDPs for problems that cannot be expressed by
the means of MDP. The partially-observable Markov-Decision Process (POMDP)
deals with cases, where dynamics of the environment are not observable as it is
in this application. Although the Probabilistical Graphical Models do have hidden
states making the problem expressible in a POMDP manner, it was decided to
use the estimated parameters as information that represents the environment and
fulfils the properties of an MDP. Others are multi-agent MDPs, where many agents
interact simultaneously with the environment.

81

5.4 Computing the optimal policy

Defining the optimal policy is in direct connection with the computation of the value
function; once the value of each combination of state and action is computed, then
the trajectory is chosen on the basis of the expected value. A suboptimal policy
may contain optimally decided steps, but an optimal policy contains only optimal
actions on encountered states.

By substituting the value function of the next state s′ in 5.3 the Bellman equation
is derived:

Vπ(s) =
∑

a∈A(st)
P (a|s)

(∑
s′
P (s′|s, a)

(
r(s, a, s′) + γVπ(s′)

))
(5.5)

By examining the equation from the inner to the outer parenthesis one can see,
that the reward acquired from state s to state s′ through the action a is added to
the discounted value function of s′. This value is averaged by the probability of
the transition to s′ and the average over all reachable states is computed. In the
last step all possible actions that are possible from state s are summed over. The
value of the next state is also defined in a similar substitutional way; this provides
several possibilities for exact solving of these equations for all possible states or
approximations thereof.

The optimal policy provides for every state or state-action pair the optimal state-
value function and optimal action-value function respectively. This is formulated by
taking the maximum of the equations 5.3, 5.4 respectively and by using the Bellman
equation 5.5:

V∗(s) = max
π

υπ(s) = max
a∈A(st)

(∑
s′
P (s′|s, a)

(
r(s, a, s′) + γV∗(s′)

))
(5.6)

Q∗(s, a) = max
π

qπ(s, a) =
∑
s′
P (s′|s, a)

(
r(s, a, s′) + γmax

a′
Q∗(s′, a′)

)
(5.7)

This set of linear equations is straightforwardly solvable, because there is one lin-

82

ear equation with one unknown per state. The expected returns from a specific state
(onwards) is a function that needs the value of the following states as input. Those
are not yet computed; which means that the value function is defined recursively.

Reinforcement learning can be implemented by different algorithms (Sutton and
Barto (2018)). Value iteration computes the value function for each state, whereas
policy iteration goes through all policies, evaluates them according to their value and
progresses to discover the optimal one. There are many approximation algorithms
that can be incorporated for finding good policies, using for example Monte Carlo
methods. Explaining all those methods is out of the scope of this thesis, although
the selected algorithm and the reasons for its selection, are thoroughly covered.

5.5 Tabular Q-Learning

The Q-Learning algorithm is an online value based method that iteratively approx-
imates the optimal state-action value by letting the agent making several tries from
the start state to the terminal states and exploring different paths between those
states. By monitoring the rewards gathered in each state of each path, the agent
updates at each transition of each episode the Q-value of the state-action pair, which
is currently exhibited. The rewards are fixed and stored in a rewards matrix that has
row count equal to the number of states S+ and column count equal to the number
of all possible actions. A second Q-matrix with the same dimensions is initialized
with zeros (although even random initial values converge to the true Q-values) and
updated for each reached state as well as chosen action from that state by means
described in the following equation, which is directly derived from equation 5.7:

Q(s, a) = r(s, a, s′) + γ max
a∈A(s)

Q(s′, a) (5.8)

After a number of episodes, the Q-values matrix (short: Q-table) will converge
to the true Q-values of every pair of state and action. Q-learning has two phases:
The first phase where the Q-table is filled by training over many episodes and the
second one where the table is fixed and decisions are made to choose the best known
path from the start state to terminal state. Each state in each row can follow the
best next action by choosing the one with higher Q-value.

83

5.6 Methods for continuous state space

The computation of 5.7 is practical for problems with a small state space and number
of possible actions; it is infeasible for MDPs with a high number of states and actions,
as well as unsuitable for continuous state and/or action spaces.

Since the state is represented by the Bayesian network, it is a continuous vari-
able, meaning that the conditional probability tables contain floating point numbers.
There is an infinite number of states, therefore it is not possible to take every possi-
ble state into account or revisit states seen in the past (using a lookup table for the
computation of the value function is no longer possible/feasible). Although there are
similarities in the learning processes of students, this fact cannot be used, because
the model of their overall learning competence will never be exactly the same.

This situation is similar to the one in games; there are so many possible states,
that the problem of finding the optimal policy is intractable. Nevertheless, finding
a good policy is possible even when the algorithm confronts a strong opponent,
because the states that occur in practice are much smaller than the whole state
space. Therefore the reinforcement learning algorithm should produce good results
for states that are highly likely to occur during execution, even if the performance
of unlikely states becomes worse because of that.

This principle applies to our application too, since from our investigations in
probabilistic graphical models for students we know, that the vast majority of stu-
dents answer the posed questions correctly with a probability higher than 90%.
This, in combination with the fact that the Correctnesq, LearningStateq, and
Answersq random variables must sum to 1, reduces even more the number of states
our reinforcement learning algorithm will face during training as well as the execu-
tion phase.

There are several methods that can deal with continuous state spaces such as
dynamic programming for discretized state and action space (Sutton and Barto
(2018); Busoniu et al. (2010); Lazaric et al. (2008)). The recent approaches use
deep neural networks (called Deep Q-networks) that implement an approximation
of the model-free Q-Learning algorithm. Since approximation methods try to find a
non-linear mapping between the input states and the Q-Value of all possible actions,

84

the idea of using a deep neural network to learn this mapping is beneficial.

5.7 Artificial Neural Networks

The construction of artificial neural networks orients by the one of biological neurons.
Thus, they have a simplified architecture, components, and functionality of their
biological equivalent. The elementary component is the artificial neuron with its
bias part that computes the sum of a weighted combination of the input x̄ and
passes it through a non-linear function 5.9:

y = f(w1x1 + · · ·wnxn + b) = f(x̄ w̄ + b) (5.9)

Figure 5.3 depicts an artificial neuron. It is out of scope of this thesis to de-
scribe the structure and functionalities of a biological neuron; several introductory
resources to artificial intelligence (Aggarwal (2018); Patterson and Gibson (2017))
dedicate a substantial amount of material to describe the principles on which well-
established artificial neural network base their design.

x2 w2 Σ f

Activation
function

y

Output

x1 w1

... ...
xn wn

Weights

Bias
b

Inputs

Figure 5.3: Architecture of an artificial neuron and its principal components

The non-linear function f is called activation function and is chosen according
to the problem. It is necessary, because linear functions are not capable to deal with
non-linear problems. The most used functions are the sigmoid, hyperbolic tangent
(tanh), and the Rectifier Linear Unit (ReLU) 5.10, which counteract the vanish-
ing gradient problem (Aggarwal (2018)): If the input to the sigmoid or hyperbolic
tangent function is too small or too large, then the slope is small and the error

85

optimization method 5.7 is not proceeding optimally. Because of those reasons and
because of the fact that it is computationally faster, the ReLU and its variations
(like the Leaky ReLU) are an established choice of an activation function. Figure
5.4 depicts three of the most common activation functions.

f(x) = x+ = max(0, x) (5.10)

−6 −4 −2 0 2 4 6

0

2

4

tanh(x)
ex

1+ex

x+

Figure 5.4: Non-linear activation functions

A neural network is composed by many neurons organized in different architec-
tures. The simplest one groups many neurons together and organizes them in layers
so that the outputs of one layer can be the inputs of the following layers as depicted
in figure 5.5; which is called multi-layer perceptron architecture. The number of
layers as well as the number of neurons composing each layer are configurable; the
architectural decisions are influenced by the problem. The first layer, which has as
input the data, is called input layer. The last layer is the output layer and all layers
in-between are the hidden layers.

The weights of the neural network are learned according to the task. Primarily,
neural networks are used for supervised learning where the desired output values
of the network are known. Classification of the input data as well as regression
problems have a pre-defined target ŷ, which the network tries to approximate during
the training phase. The error of the neural network’s output and the target is E(x̄) =
y − ŷ. This value guides the learning of the weights w̄ over many input samples x̄
comprising the training dataset; the minimization of the loss function L = (y− ŷ)2 is

86

...
... ...

Input
layer

Hidden
layer

Ouput
layer

Figure 5.5: Dense neural network architecture, also called multi-layer percep-
tron architecture or simply feedforward dense network

made with backpropagation of the gradient of L with respect to the weights w̄. The
learning process of a neural network uses alternating feedforward phases (where the
input “passes through” the network to generate y) and the backpropagation phase
(where the error is used to adapt the weights). Each pair of those phases is called
an epoch and can use the whole training set (batch) or a randomly selected set of
it (stochastic).

As depicted in figure 5.5, all elements of each layer are used to compute the
elements of the next layer. Therefore, this architecture is also referred to as dense
or fully-connected. The output of each layer consists a feature that is transformed
from layer to layer. The weights are found by the gradient descent optimization
algorithm . Its implementation depends on both the neural network architecture as
well as the error function itself. For regression problems, the typical error function
is the mean squared error (MSE), whereas for classification it is the cross entropy.
The general idea is that starting with random weights, the optimization method
should change them in a way that the error is reduced. This happens by computing
the slope for all directions at a particular weight in the weight space. After choosing
the steepest one, the new weight will be on this direction, in a distance defined by
the step size or learning rate α of the algorithm. The weight update equation is :

87

wnew = wold − α
∂L

∂w̄
(5.11)

From all the descriptions above, it is apparent that there is a set of parameters,
which substantially influence the weight learning process. They need to be tuned
along with the learning of the weights. These parameters are called hyperparameters.
There are directives for their reasonable setting as well as necessary trial-and-error
procedures. Measures against overfitting, such as a random dropout of a proportion
of neurons at each epoch (Srivastava et al. (2014)), as well as regularization of the
weights, and early stopping of the training phase (Bishop (2006)), complete the
basic configuration spectrum of neural networks.

5.8 Deep Q-Network

A neural network can be used for function approximation of the optimal Q-function
(Trask (2017)). The input is a state representation, which for a computer game is
the image, and in our case, is the parameters of the probabilistic graphical model.
The number of outputs equals the number of possible actions, whereas their value
is the current prediction of the Q-value of that particular action. During training,
the output of the neural network is compared to a Q-value target that corresponds
to the Bellman equation. The mean squared error is back-propagated to adapt the
weights of the neural network and correct the prediction. In the end of the training
phase, the index of the network’s output node with the maximum value is used to
pick the proposed action.

The input of the neural network can be raw data representing the state st and/or
features thereof (Aggarwal (2018)), which can be overall denoted by xt. The number
of outputs of the network are |A| the approximated values Q(st, a), one for each
possible action a. The neural network computes the function Q(s, a; θ) where θ are
all the parameters of the network (weights denoted by w̄ in equation 5.10). Since
the number of possible states is infinite, the neural network is expected to be able to
recognize those states that are similar to known ones with an already computed good
policy. The effectiveness relies in two assumptions: First, the number of actually
encountered states is less than the number of possible states and second, similar

88

states will need similar good policies. The neural network enables to generalize
from encountered to unseen input states.

In this case, the deep neural network represents the information of the learning
competence of the student, which is necessary to decide the next best question
to be posed. It is not making the usual classification (supervised) or clustering
(unsupervised) of the input; instead, it learns a low-dimensional representation of
it to decide the optimal policy. The function f(x̄t, w, a) that is computed by the
neural network w.r.t. its learned parameters w̄ and the input x̄t, approximates the
true value Q(s, a; θ).

f(x̄t, w, a) = Q∗(s, a) ≈ Q(s, a; θ) (5.12)

Like the Q-Learning algorithm, the network does not have the value of the next
state; instead of performing the value evaluation and improvement phases, the Q-
value of the next state is estimated by using equation 5.8 with one-step lookahead.
The equation 5.12 is transformed to the following:

f(xt, w, a) = rt + γ max
a∈A(s)

f(xt+1, w, a) (5.13)

The value of f(xt+1, w, a) is taken from the output of the network and consists
the target (equivalent to ŷ). The loss function is expressed by 5.14:

Lt =
(
(rt + γ max

a∈A(s)
f(xt+1, w, a))− f(xt, w, at)

)2
(5.14)

The backpropagation algorithm implements the following weight update rule in
the network:

w̄ ← w̄ + α
(
(rt + γ max

a∈A(s)
f(xt+1, w, a))− f(xt, w, at)

)∂f(xt, w, at)
∂w̄

(5.15)

The Q-function is approximated by the neural network and can theoretically
take infinite time to converge. In contrast to the tabular Q-Learning, it does not
necessarily converge to the true action value function.

Variations of deep reinforcement learning include an experience replay memory,
which is a separate memory of training data randomly sampled to create a data

89

batch (Mnih et al. (2015); Schaul et al. (2015)), and the usage of two networks
(Wang et al. (2015); Van Hasselt et al. (2016)) as it is common in the actor-critic
methods (Sutton et al. (2000); Arulkumaran et al. (2017); Mnih et al. (2016)).
One of these variations, the asynchronous n-step Q-Learning algorithm, was chosen
for the purposes of this thesis. Enhanced performance was lately achieved by the
combination of several methods by the Rainbow method (Hessel et al. (2018)).

5.9 Asynchronous n-step Q-Learning

Deep Reinforcement Learning can be made even more efficient with the use of asyn-
chronous methods, as described in Mnih et al. (2016). The main idea is that the
deep Q-Network’s gradient is asynchronously updated by several agents that ex-
plore different environments in parallel threads (respectively also called workers).
The computations can use the CPU power, which is beneficial in this application
since the transition to the next state requires an update of one of the probabilistic
graphical models.

Each of the workers uses its own copy of the current state, but they all update
the same deep neural network with asynchronous gradient descent as well as using
its outputs for the choice of the next action. This algorithm has several benefits
compared with its non asynchronous counterpart described in the previous section.
It terminates faster and the updates of the neural network are not correlated since
each agent will be in a different sequence of states. That means, that there is no
need for experience replay memory 5.8, thereby reducing the memory footprint.

The pseudo-code of the 1-step Q-Learning is described in Mnih et al. (2016).
What is similar to the Deep Q-Network of the previous section is, that there are
two neural networks, but no replay memory in this case. The parameters of the
networks (θ and θ− correspondingly) are visible and changeable from all workers.
They are initialized with the same values together and the maximum number of
steps is defined Tmax.

The main loop of the algorithm is very similar to the one used in Deep Q-
Learning. For every current input state a forward pass of the first network is made.
The outputs of the network have the approximation of the Q-value of each possible

90

action Q(s, α; θ). These values are used to choose the next action by the ε-greedy
policy. That means that with probability ε the chosen action will be randomly
picked, or else the one with the maximum Q-value will be chosen. The action is a
question posed to the student; the answer to this question produces the change in
our belief of the learning competence of the user. Since the probabilistic graphical
model captures the current knowledge of the learner, the answer to the question
can be sampled from the model. The new state s′ is computed after an expectation-
maximization (EM) update and is used together with the reward for the computation
of the target:

y =

r

r + γmaxα′ Q(s′, α′; θ−)
(5.16)

The parameters of the network are updated as follows 5.17:

dθ ← dθ + ∂(y −Q(s, a; θ))
∂θ

(5.17)

The values of ε are not annealed as in the Deep Q-Network case. The end value of
ε of each thread is sampled uniformly from the set 0.01, 0.1, 0.5, thereby each thread
will have a different pace of exploitation-exploration, since they all start from the
value 1.0. The targets must be clipped in the [−1,+1] to avoid exploding gradient.

Apart from the γ parameter, there is the ε controlling the choice of the next
action in the first phase. In the first episodes the agent must be allowed to explore
enough states in order to make some estimation of the Q-value for them. The choice
of the actions may be set to chance. Towards the end of the phase - in the last
episodes - it may be more interesting to exploit stronger and refine the estimations
of those states found out to be good ones. The proportion of random actions is
controlled by the parameter 0.0 < ε < 1.0; the exploitation actions are chosen with
probability 1 − ε. The whole strategy is called ε-greedy, where the ε’s value is not
fix but is annealed over the course of the episodes.

The learning rate or step size λ is a number between 0.0 and 1.0 that regulates
the weight of the newly acquired information compared with the already stored
one. This parameter was chosen according to by observing the performance of the

91

network. As the training proceeds, the random actions became less and less and
particularly those threads with an ending ε value of 0.01 or 0.1 had a total number
of steps near to two times the number of questions. Since the vast majority of
the questions are answered correctly, the simulations with a good question sequence
have a total number of steps close to a sequence with all questions being immediately
answered correctly twice.

5.10 Convolutional neural networks

Machine learning models involve feature extraction as one of the crucial pre-processing
steps (Zheng and Casari (2018)). The input to the model is not necessarily the raw
data, but properties and mathematical transformations thereof, which are called
features. The performance of the models can be increased by the choice of an in-
formative feature; many standard software libraries like “scikit-learn” 1 provide the
importance of each feature after training. Therefore, one of the data scientist’s tasks
is to invent input features that are semantically relevant for the modelled domain.

Convolutional neural networks (CNN) manage to discover the necessary features
for the accomplishment of the required task themselves. Before them, the feature
that was used to provide information about boundaries of objects in the image
was the image gradient, which was computed by the subtraction of neighboring
pixel values (Zheng and Casari (2018)). Gradients can be computed in the horizon-
tal, vertical, or any other direction (from 0°to 360°degrees); their distribution over
each angle can be provided as an input to a machine learning model that makes
predictions based on those input features. Nevertheless, there were still design de-
cisions that data scientists had to make as the angle resolution and the size of the
neighbourhood. Furthermore, a feedforward neural network required unrolling the
two-dimensional image to a flat vector which does not promote the recognition of
the same shape in different positions. For example, if a rectangle is indicative for
identifying a car in the input image, one cannot expect it to appear always in the
exact same position and be mapped in to exactly the same neurons every time.

The convolution operation is usually applicable to two-dimensional inputs, but
it is also used for one-dimensional or three-dimensional inputs. Image processing

1https://scikit-learn.org/, Last accessed 17 March 2019

92

https://scikit-learn.org/

applications typically use three RGB (red, green, blue) channels, so in this case the
overall input is composed by three two-dimensional grids. In this respect, the input
can be composed by several two-dimensional elements consisting the channels or
depth of the input. Each of those elements will have different corresponding filter
components applied to it. Part of the filter structure is also a bias element, as in
dense neural networks, which is also learned during the training phase.

The discrete two-dimensional convolution is a linear transformation described by
the following equation 5.18:

(f ∗ g)[i, j] =
m∑
u=0

n∑
v=0

f [u, v]g[i− u, j − v] (5.18)

The f represents the input image and the g is a two-dimensional kernel (the op-
eration is symmetric thereby f and g can be interchanged). The goal of the training
is to learn the values of the kernel g; the process is the same as with feedforward
networks, but the weights have no longer vector form but are two dimensional fil-
ters, which are called kernels. In image processing there is a vast palette of known
kernels that, when convoluted with an input image, produce an output image with
a desired effect such as blurring (Gaussian filter) or edge detection (Sobel filter). It
is expected that the convolutional neural network will need to learn and use sev-
eral different kernels to solve the requested machine learning task, but even if its
architecture differ, the training process with gradient descent remains the same.

The kernel is multiplied with several parts (patches) of the image in a windowing
scheme that starts from the upper left side of the image continues column-wise; once
it reaches the last column of the image, it proceeds row-wise correspondingly in the
next row. The filter is aligned with the image and the dot product of its elements
with the image region is computed. The same procedure co-occurs to all input
channels, each of them with their own filter. All finished dot product results of all
channels at each position are aggregated to compute the value at the same position of
the sole output per filter, which is called feature map. The semantical interpretation
of this addition operation expresses the need for different learned patterns combined
together for the recognition of entities relevant to the task.

The number of possible alignments between the image and the learned filter is
configurable. The step of the sliding window is specified by the stride parameter; if

93

Figure 5.6: Input and output grid of a two dimensional convolution operation
with a kernel of size 3 × 3, zero padding, and stride 1. The kernel
itself is not shown in the figures. The left part depicts the first
operation whereas the right one the second, as the kernel slides
over parts of the input grid.

its set to 1, then the next alignment will be in the next pixel and there will be an
overlap between consecutive patches. To involve the edge pixels of the input image
as much as the middle ones in the computations, the image can be surrounded
(padded) by zeros prior to the computation of the dot product. This can keep
the size of the output image same to the size of the input image of each layer.
Finally, pooling is another nonlinear operation, which can be averaging, summing
or maximum, which can be applied on parts of the feature maps. Figure 5.7 shows
the max pooling operation with the maximum value in a neighbourhood of values
is selected; it also works in a windowed function as the convolution. The operation
performs subsampling on its input, whereas zero-padding contributes in retaining
the size of the feature maps. After that, the nonlinearity (ReLU in the newest
architectures, because of its accuracy and speed improvements Aggarwal (2018)) is
applied.

Figure 5.7: Max pooling operation: the input is split into four regions denoted
by the different colors. The maximum value of each region is kept
for the result of this operation.

94

The size of the feature map depends on those configurations, for example, if the
stride is higher, then the size of the resulting feature map is smaller. The number of
different filters also impacts the number of parameters of the network. In contrast
to the fully connected neural networks, not all possible inputs contribute to one
particular output. Thereby the model has fewer parameters compared to a dense
network. Figure 5.6 represents an operation on one input grid. An image will
typically have 3 channels; in this respect, each filter will be composed by 3 different
kernels (in other words, by as much channels as the input has). The number of
kernels equals the number of output grids.

The way convolution operations proceed influences the patterns they detect. The
filters have similar values for comparable patterns in the input, regardless of where
exactly the features are. Relating to this application it means, that a pattern in
relative difficulty of the questions or in the percentage of an error type in questions
with neighbouring operands will be detected by the same filter. The feature vector
is comprised by measurable characteristics (in images those are the shapes) that are
used in distinguishing the target. Bigger weights are given to patterns that appear
more often, because they are the most informative for the decision.

Figure 5.8: One-dimensional convolution operation and its parameters. The
number of weights and connections is lower than the one of the
corresponding fully connected network.

One characteristic that speaks for the convolution operation is the fact, that
input data often have similar values around a neighbourhood. Nevertheless, this is
not a hard requirement since there are successful applications where this property

95

does not apply strictly. The more deeper the layer in the network is, the more
elements of the input are indirectly used for the computation of the feature maps.
The area of the input that contributes to the computed value of a feature map
is called “receptive field”. Its size can be influenced by padding, strides, and the
pooling parameters.

The learned patterns of a densely connected neural network are based on the
whole image; every pixel value contributes to the output of each layer. The learned
patterns have global meaning and all pixels are necessary for its detection. On
the contrary, since the convolution operation is a computation involving an area of
the image, the patters are local and the detected pattern can be anywhere in the
image. The shared parameters, as seen in the simpler one-dimensional case 5.8,
contribute to translation equivariance. This fact ensures that a shift in the input
pattern towards a specific direction will be preserved in the feature map.

Deep CNNs learn patterns hierarchically and the depth of the network con-
tributes to their creation. The complex patterns that are learned in later layers
are compositions of simpler patterns learned in the first layers. In Aggarwal (2018)
the example of first layers detecting lines that in further layers are assembled to
shapes like hexagons, which then in the last layers are composed to a honeycomb,
describes the phenomenon in an exemplified way. Typical CNN architectures have
an increased number of filters in later layers compared to earlier ones.

As in dense neural networks, different architectures with different configurations
must be tried out to discover the one with the best performance. Typical filter
sizes are 3 × 3 and 5 × 5; the larger filters are usually found in the first layers of
the network. Smaller filter sizes result in larger feature maps and lower parameter
footprint. They also support the need for a deeper network, which in turn increases
the receptive field thereby capturing complex patterns in larger areas of the image.
Padding and small stride ensure that relevant information contributes equally and
also increases the size of the feature maps. Max pooling account for local invariance,
meaning that small input shifts do not influence the values of the feature maps; one
of the primary goals of this thesis was to prohibit this property.

96

5.11 Applications of Convolutional Neural

Networks

Convolutional neural networks are used extensively in image processing applications
(Patterson and Gibson (2017); Aggarwal (2018)). Along with image classification,
which is used for tasks in medical diagnosis and autonomous vehicles, object recog-
nition and localization are one of the main application fields used in industry (Zhao
et al. (2019)). Video processing is an obvious extension to three dimensional con-
volution operations, sometimes combined with recurrent neural networks. Different
tasks require different architectures (Springenberg et al. (2014)); for example, the
number of pooling layers or dense layers in the end of the network, but the basic
components remain the same. Popular architectures are the AlexNet, VGG Net,
GoogLeNet, and DeConvNet (Patterson and Gibson (2017); Buduma and Locascio
(2017); Canziani et al. (2016)). Natural language processing can also benefit from
CNNs, despite the fact that the importance of a word depends on its position in
a sentence (Zhang and Wallace (2015)). Recent advances in deep reinforcement
learning in the field of video games like Atari (Mnih et al. (2013)) use a prepro-
cessed image of the game as input to the Deep CNN. Board games like Go and chess
(Pumperla and Ferguson (2018)) encode their input state as a two-dimensional grid.
The network finds a favourable strategy to win the game supported by the features
found by the network.

97

98

6. Evaluation

6.1 Evaluation for the simulated case

6.1.1 Formulation of the problem

In the learning-aware application the Markov property, as described in equation 5.1,
is satisfied, because the probability of the next state is the probability of the answer
to the posed question. The transition probability P (st+1|st, at) of being at state st+1

from state st given the posed question at depends on the student’s answer and can
be computed by the equation 3.6. For each question there are 100 possible answers
that lead to 100 different learning competence states. The probabilistic graphical
model can provide this probability; assuming that it accurately represents the learn-
ing state, the probability of each answer of a particular question can be found by
probabilistic query and can be computed directly from the corresponding conditional
probability tables. Then, assuming this answer was given, our parameter-learning
algorithm can change our belief about the parameters of the overall learning state.
It can be regarded as a new training sample that helps to update the parameters of
the model and compute the next state st+1. The state transition model is also fully
formulated.

The starting state is the probabilistic graphical model of each user with its
currently learned parameters. The final state is the one where all questions were
answered correctly the last two times they were posed. This could result the choice
of only “easy” questions. Therefore, it is not enough to specify the terminal state
as the one where merely all Learning Stateq random variables have a probability
near 1 for the “correct” outcome.

Each question should be answered correctly at least two times, because an acci-

99

dental correct answering can be misleading. As seen in figure 6.1, a history of the
current answers of all questions must be kept. Each question can be posed different
number of times. If the last two answers of each question are answered correctly,
then the user has learned all questions correctly. The algorithm was tested first in
the trivial case where the user always answers the posed question correctly. That
means that the reinforcement algorithm’s proposal was to present each possible
question twice so that after training the terminal state would be reached after 180
steps.

Figure 6.1: Recent history of answering results: The last two times each ques-
tion was posed were answered correctly.

The architecture of the application is depicted in figure 6.2. The input of the
Deep Reinforcement Learning network is the current learning competence (which
is fully captured by the Probabilistic Graphical Models) and the recent history of
answering results. The outputs are the Q-values of the posed questions, which drive
the selection of the next question. Posing that question results in an answer, which
in turn updates the beliefs about the learning competence of the student and the
recent history of the results. This comprises the new input state being fed to the
network; the process is repeated until the terminal state is reached.

Figure 6.2: Architecture of the Deep Q-Network and its interaction with the
environment.

100

The training of the network was made by simulated interaction with the learned
learning competence model. This gave the opportunity to create the necessary
amount of artificial training data that current game-playing Deep Reinforcement
Learning algorithms use (with some exceptions, such as the AlphaGo, which partially
also uses data from games of human experts (Pumperla and Ferguson (2018))). The
answer to the proposed question was sampled with the method described in section
4.3.

The reward scheme currently used is not the one that was initially desired. The
“Minimum Time to Goal” encourages the fastest possible trajectory to the terminal
state. It gives −1 to all states except the last one (terminal), which has reward 0.
This “deprived” the gradients and the maximum Q-value was not increasing with
time. Game applications also use a different reward scheme where the reward is
defined by the score difference. If a game action increase the score, the reward is
positive; in the opposite situation it becomes negative. By the same means, a reward
scheme that worked successfully gives +1 to every correct answered question and
−1 to every wrongly answered one.

6.1.2 Concrete Architecture

All parameters of learning competence models consist the input of the deep Q-
Network. After analysing its properties in chapter 2 and 3 it is observable that
questions with similar operands have similar characteristics, such as the proportion
of wrong answers or the impact of a specific error type. There are certainly excep-
tions to this property, as for example the tie questions where both operands are the
same. But the same applies to images that are frequently used as an input to Deep
Reinforcement Learning networks basing on the convolution operation.

The Deep Reinforcement Learning network with its inputs and its outputs is
depicted in figure 6.3; this figure is a detailed zoom in the “Deep Q-Network CNN”
component of the figure 6.2. The input has nine channels; the first seven correspond
to each error type, the eighth contains the proportion of correct or wrong answers,
and the ninth an encoding of the recent history of the answered behavior. The array
of each channel has the size of 10× 9, which is the total number of posed questions.
The input does not have the same characteristics as an image. Nevertheless, there

101

Figure 6.3: Convolutional neural network’s detailed view of input and output

are examples in recent deep learning literature where, for example, the game state
is represented by a vector or a matrix (Pumperla and Ferguson (2018)) and is used
as an input to a CNN.

The input of the CNN is 9 × 10 × 9 for 10 × 9 = 90 questions. The CNN has
three layers with 200 filters each. The first layer has 200 filters of size 2× 2 with 9
elements each for the 9 input “channels” (operand, ..., history). The second layer
has 200 filters of size 3×3. Each of them has 200 elements, which equals the number
of outputs of the previous layer. The third layer has similarly 200 of size 4× 4 with
200 elements each. So although the input has 9 “channels”, the output of the first
layer has 200 “channels” and the same applies for the outputs of the second and
third layer. There is one fully connected layer with 10× 9× 200 = 18000 inputs and
90 outputs. The overall architecture is depicted in figure 6.5.

The activation function applied after each layer is the Rectified Linear Unit
(ReLU) (equation 5.10). There was no pooling to avoid subsampling and loss of in-
formation, as explained in section 5.10. For similar reasons and to keep the influence
of each error type in every question, the “same” padding scheme was used.

The total number of steps were two million, as seen in figure 6.6. The maximum

102

Figure 6.4: Graph of the two Convolutional Neural Networks in Tensor-
board (https://www.tensorflow.org/guide/summaries_and_
tensorboard, Last accessed 17 March 2019), the visualization
tool of tensorflow (https://www.tensorflow.org/, Last ac-
cessed 17 March 2019)

Q-value may take negative values in the first steps, but tendentiously grows into pos-
itive values over the course of the algorithm. After trying out several combinations
of the parameters and observing mostly the evolution of the maximum Q-value, the
chosen learning rate was set to the value 0.0001 and the γ parameter to 0.9.

The ε parameter is tendentiously decreasing with time - thereby allowing more
exploration in the first steps and more exploitation in the last ones - containing
randomness created by the different workers annihilation range: Each of the 8 work-
ers which work asynchronously picks a different ε annealing rate; 40% of them pick
anneal the value until 0.01, 30% until 0.1 and 30% until 0.5 Mnih et al. (2016).

The size of the CNN and particularly the number of filters is a hyperparameter,
as explained in 5.7. The sizes of the filters were chosen according to the principle
that they increase the deeper the model gets (section 5.10). Nevertheless, the exper-
imentation of different hyperparameters as well as their influence in the performance
of the task, is part of future work. By no means, the network is unique or optimal,

103

https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/

Figure 6.5: Convolutional neural network architecture. The input on the left
side is 9× 10× 9 and the output of the three layers have exactly
the same size.

but solves the problem effectively. It creates the base for further research.

6.2 Visualisations

Vizualization of the convolutional network elements are an important method to
gain insight in their comprehension of the problem as well as the means they encode
and process of the input information to fulfil the needs of the problem. There are
several techniques that can be used to plot the characteristics of the filters. Apart
from the visualization of the filters, the input states, this thesis uses two of them in
order to achieve the interpretability (Hall and Gill (2018); Chollet (2018); Holzinger
(2018a); Holzinger et al. (2017a,b); Holzinger (2018b)) of the decisions of the deep
neural network to a certain extent. The visualizations were made with the Python
library seaborn 1

1https://seaborn.pydata.org/, Last accessed 17 March 2019

104

https://seaborn.pydata.org/

Figure 6.6: Evolution of ε parameter and the maximum Q-value of the Rein-
forcement Learning algorithm during training steps 5.9

6.2.1 Visualization of the filters

Overall 200 × 9 = 1800 filter elements of the size 2 × 2, 200 × 200 = 40000 of size
3× 3 and 200× 200 = 40000 of size 4× 4 can be plotted.

6.2.2 Visualization of the starting input state

Figure 6.7 depicts the starting input state. Each of the nine elements of the figure
is one “channel” starting from the operand error until the encoding of the recent
history (two latest answers). Although not precisely quantified, the figures indicate
that nearby grid elements have usually similar values. The starting input state is
not each learner’s individual learning competence, but the learning competence of
the students in the training set.

6.2.3 Visualization of the outputs of activations layers

The output of each layer also provides insights about the information that “passes
through” it w.r.t. a particular input state. In image processing tasks, if the outputs
have a particular pattern that is recognizable, then the combination of the convo-
lution operation and the activation function’s effect on the input image is directly
interpretable.

The framework provides the functionality to create every possible state (any
valid probabilistic graphical model and recent history parameter) as well as to plot
the state itself and the corresponding outputs of the layers after a feedforward pass.

105

6.2.4 Visualization of the input grid that maximizes the

value of the activation function of each filter

Instead of trying out several input states and trying to recognize the functionality
of one filter by its output, which is the input information in a transformed form, it
is possible to begin with the filter and find out the input grid to which each filter
“responds” the most. In this context, maximum response means that the gradient
descent, as described in 5.7, searches for an input grid that maximizes the output
of the activation function (Chollet (2018)). The process applies gradient descent to
an input grid that is initialized as if it were a blank image.

The results of this method are depicted in figure 6.8. The state has 9 elements
ordered in a 3× 3 plot. Many of the filters of the first layer are simple and can be
interpreted. For example, the input state can be one where all operand errors have a
uniform value or an increasing one, as one proceeds from smaller to larger operands.
Although, there are some patterns that can be detected and the combination of the
patterns of the previous layer is reasonably detectable in some cases, currently there
is not a straightforward combination functionality that can be derived from those
images.

Also, it is observable in figure 6.8 that the detected grids are quite similar to
each other, although they represent different error types. The learning competence
state’s correctness and recent history (second to last and last subplot) are different
from the rest; in those images they appear similar. Some exceptions exist, as shown
in figure 6.9 where the history part stands out.

Future work must contain different methods, like sensitivity analysis and rele-
vance propagation providing different interpretations about the impact of each input
grid element in the output value (in this application: the question decision) (Bach
et al. (2015)).

6.3 Reasoning of proposed sequences

On average, the simulation that takes the wrong answers into account needs 192.72
steps to reach the terminal state, which is almost 12 more than in the case where

106

all provided answers are correct. Starting with the same input state, the proposed
sequences start almost the same as well as different episodes proceed quite similar.
Though, the wrongly answered questions do not happen at the same question index,
as seen in figure 6.10. That means that the trained network does not propose a
rigid sequence of questions, but adapts itself to the learning competence of the
user. A wrongly answered question (by the process of sampling) affects the next
posed question through the probabilistic graphical model; the recent history contents
change.

Overall, the episodes have some commonalities. The question sequences almost
always seem to start with the same questions. Nevertheless, the step at which the
first error happens as well as the question that was posed at it, effects the path
from that time on. In that means, a basic adaptation functionality is achieved.
The reinforcement learning algorithm contains an internal logic that gives different
priority to the actions of the agent, reacting to the behaviour of the environment.
Each student has some similarities with the others, but at the same time, is not
confronted with exactly the same learning sequence, regardless of his or her learning
competence.

Reoccurring patterns consist of posing the same question and then immediately
posing it again, so the proposed sequences are comprised mostly by pairs of the same
question posed next to each other. Although this is not always the case, several
episodes where a posed question is answered false for the second time, “send” this
question at the end of the episode. This is in accordance to the fact that the overall
return will be less affected by a question that has a higher probability to be answered
wrongly.

These effects are influenced by the degree of change of the probabilistic graphi-
cal model of the posed question and the fact that the input state does not change
immensely (as a result of the fractional EM-update) after the answer was sampled.
Although, one can detect some expected patterns in the reinforcement learning’s al-
gorithm logic, like encountering relatively easy questions in the beginning, or trying
out the same question twice, the criteria that turns the balance is not straightfor-
ward. As for example, in a chess game or the game of Go it is easier for humans
to reason the last steps of the strategy, than intermediate steps that may seem
surprising in general.

107

Figure 6.7: Visualisation of the input state: The first seven figures correspond
to the error types, the eighth to the correctness proportion, and
the last one to the history, which is initialized for all operand
combinations to zero. Compare the “correctness” type with the
figure 2.5 in chapter 2.

108

Figure 6.8: Input grid that maximizes the value of the activation function for
connected filters in the first, second, and third layer. The values
are normalized between 0.0 and 1.0.

Figure 6.9: Input grid that maximizes the value of the activation function
after filter number 63 (out of 200) of the first layer.

109

Figure 6.10: Starting sequences of different episodes, which are quite sim-
ilar although the answers are somewhat different. The com-
parison of the files is made by the program DiffMerge https:
//sourcegear.com/diffmerge/

110

https://sourcegear.com/diffmerge/
https://sourcegear.com/diffmerge/

Figure 6.11: Differing sequences of questions, because the simulated students
provided different answers somewhere on the line.

111

112

7. Software Engineering, Testing and

Quality

7.1 Python Libaries

The code was written in Python 3.5. The necessary libraries are:

• pgmpy: Library for the definition of the probabilistic graphical model, its sam-
pling and the probability queries 1

• matplotlib: Library for plotting 2

• tensorflow: Libary for neural networks 3

7.2 Files Hierarchy and Documentation

7.2.1 Directory and files hierarchy

1. Start.py: Main module.

2. InputData: Directory of input files

3. OutputData: Directory of output files, produced by the application - mostly
images

4. import_data

1https://github.com/pgmpy/pgmpy, Last accessed 17 March 2019
2https://matplotlib.org/, Last accessed 17 March 2019
3https://www.tensorflow.org/, Last accessed 17 March 2019

113

https://github.com/pgmpy/pgmpy
https://matplotlib.org/
https://www.tensorflow.org/

(a) csv_import.py: File containing the class that provides functionality
for the import and parsing of the information contained in the “Ques-
tions.csv” input file with the mapping from question identifiers to ques-
tion string format (for example "5x5").

(b) DataSet.py: Keeps a class with two lists that need to be kept in sync; one
containing the questions and one their corresponding answers comprising
the training and test set. Useful methods on both lists provide their
length, slicing, and shuffling.

(c) input_data_parser.py: Contains many methods providing statistics of
the dataset and performing preprocessing functionality. Phenomena, such
as answers that were never provided by any user (until now), were quan-
tified. The difference in application usage (how many answers does a
particular user answer) as well as how fast the terminal state is reached
with the current approach needed corresponding histogram plots. Pre-
processing steps described in chapter 2 as well as the training and test set
3.7 in chapter 3 are implemented in the methods contained in this file.

5. error_types

(a) error_types_classificator.py: Recognize all the error types to which
a particular answer belongs to according to the posed question (which can
be more than one, as explained in section 2.2).

(b) error_types_questions.py: Build up a map data structure that has
the questions as keys. The values comprise another map with keys the
error types and values the answers of this error type for that question.
This data structure builds up the Conditional Probability Tables (CPT)
described in sections 3.2 and 3.4.

6. pgm_em

(a) em_batch_learner.py Application of the batch version of the expectation-
maximization algorithm described in section 3.6 on the whole selected
training set. Plots that depict the increase of log likelihood with the
number of EM steps are called from the implemented methods.

114

(b) em_batch_updater.py All methods that compute the derived parameter
updates of the EM-algorithm described in section 3.6.3. The functional-
ities provided in this file are the ones needed in em_batch_learner.py

(c) em_fractional_learner.py Application of the fractional updating rules
of the expectation-maximization algorithm on the whole selected training
set, but only one sample at a time.

(d) em_fractional_updater.py All methods that compute the derived pa-
rameter updates of the EM-algorithm described in section 3.8.

(e) em_utils.py Utilities methods used mainly for computations for the EM-
algorithm, such as the check that the likelihood does not decrease with
the number of EM iterations.

(f) generative_model_multi.py Contains methods that use the learned
models as generative models which can be sampled. The sampled dataset
that is created from the generative models is used to learn the parameters
anew and shows that they are similar enough to the ones learned in the
first place.

(g) pgm_utils.py Utilities methods for the evaluation and comparison of the
probabilistic graphical models such as the Bhattacharyya coefficient, as
described in section 4.4.

(h) PGModel_Multi.py Definition of all probabilistic graphical models with
the use of the Python library pgmpy 7.1. The library provided the neces-
sary functionality for checking the consistency of the model, computing
the joint distribution, sampling methods and probabilistic queries, which
were necessary for all insights presented in chapter 4.

7. rl

(a) one_step_qlearning_la.py Training and evaluation methods of 1-step
Q-Learning algorithm, as described in section 5.9. The definition of the
convolutional neural network architecture, the number of parameters, and
the training and evaluation methods that produce the plots of chapter 6
are included.

115

(b) learning_aware_env.py Class representing the environment. Trans-
forms the learning competence to a state and triggers the state update,
the computation of the appropriate reward (depending on the state), and
the choice of next action.

(c) state_per_worker.py Holds the state of each worker in the reinforce-
ment learning model. It contains the parameters of the probabilistic
graphical models, the correctness percentage and the recent history of
the answering results

8. plots

• Plotting methods

9. tests

• Testing methods, described in the next section 7.3

The documentation of the code was made with Sphinx 4. The PEP 8 Style Guide
is followed 5.

7.3 Testing

Software testing in python is made with the use of the pytest framework 6 Pichara
and Pieringer (2017); Okken (2017). The expectation-maximization update rules,
as described in chapter 3, were tested with some examples and compared to nu-
merically computed results. But since the number of possible cases that must be
tried out is very large, property-based testing was used Nilsson (2009). The hypoth-
esis framework 7 gives the ability to write tests in an abstract manner, where the
concrete numerical values are generated automatically.

An extended description of property-based testing is out of scope of this thesis,
but the main idea is describing the properties of the function that is tested. By that
means, generating several numerical examples was proven to be very effective. The
fractional expectation-maximization update rule 3.8 has the following properties:

4http://www.sphinx-doc.org, Last accessed 17 March 2019
5https://www.python.org/dev/peps/pep-0008/, Last accessed 17 March 2019
6https://docs.pytest.org/, Last accessed 17 March 2019
7https://hypothesis.readthedocs.io/en/latest/, Last accessed 17 March 2019

116

http://www.sphinx-doc.org
https://www.python.org/dev/peps/pep-0008/
https://docs.pytest.org/
https://hypothesis.readthedocs.io/en/latest/

• The sum of each row of the conditional probability tables must equal to 1.0
after the update.

• Only one of the Answersq (namely the one that corresponds to the posed
question), as well as the corresponding Learning Stateq and Correctnessq

will change.

• A sampled answer can belong to one or more error types. The conditional prob-
ability of this answer will be increased in the Answersq conditional probability
table. Because the sum must remain 1.0, the conditional probabilities of the
other answers will be decreased after the update. Similarly, the error types
that could be responsible for this answer will have an increased conditional
probability in the Learning Stateq , whereas the rest conditional probabil-
ities will decrease. If the answer is wrong, then the belief that the student’s
ability to answer a question correctly will fall, and the Correctnessq will
change by the same means.

117

118

8. Conclusion

8.1 Conclusion

The answer to the research question of the possibility of personalization and im-
provement of the learning path as well as the method and the insights that are
inferred from that, were the main achieved goals of this thesis. There is a basic
methodology combining different machine learning methods for the achievement of
this goal that can be evaluated in the real-case and expanded according to the needs
of the learners and students. It can also be compared to current human and Learning
Analytics applications that contain other methods to achieve similar goals.

Data from learning applications provide valuable insights for students and su-
pervisors. The modelling component of each student is an entity that can be learned
adaptively with the use of a set of probabilistic graphical models. The commonalities
and differences between the students learning competence are quantified from their
answers and the answers of their peers without the need for further demographical
data. Even if an unknown student starts interacting with the learning application,
his or her learning competence will be informed already, but it will be able to be
updated immediately as the first answer is provided. The reporting methods can
depict the changing status. Predictive modelling can estimate the probable answer
to the next posed question.

But a learning aware application goes beyond modelling and reporting. Current
reinforcement learning systems decide and act on the basis of their internal models.
Although this cannot be even remotely compared to human tutoring, the insights are
valuable for indicating how far different question sequencing methods might affect
the learning capabilities of the students.

119

8.2 Future Research

Future work must deal primarily with the application of the learning-aware algo-
rithm to real student questionnaires and measuring its performance in the improve-
ment of the learning path of the users. A quantitative comparison with the previous
version of the application and a thorough analysis of the differences of their insights
about the personalization of learning is mandatory. Furthermore, one could con-
ceptualize an analogous application in other learning topics, which could even reach
the individual sequencing of a curriculum.

At the same time, since the framework’s architecture has room for improve-
ment itself and can use different CNN architectures in combination with other Deep
Reinforcement Learning algorithms, a further research question concerns the com-
monalities and differences between those methods. Explainability can play a crucial
role in this step; the reasons for the organization of learning as well as the decisive
insights may change human learning strategies in an analogous way as AlphaGo’s
playing strategies suggested different winning paths in the game Go (Pumperla and
Ferguson (2018)).

120

References

Aggarwal, C.C. [2018]. Neural Networks and Deep Learning: A Textbook. Springer
International Publishing.

Aherne, Frank J, Neil A Thacker, and Peter I Rockett [1998]. The Bhattacharyya
metric as an absolute similarity measure for frequency coded data. Kybernetika,
34(4), pages 363–368.

Amarjyoti, Smruti [2017]. Deep reinforcement learning for robotic manipulation-the
state of the art. arXiv preprint arXiv:1701.08878.

Arulkumaran, Kai, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath [2017]. A brief survey of deep reinforcement learning. arXiv preprint
arXiv:1708.05866.

Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek [2015]. On pixel-wise explanations
for non-linear classifier decisions by layer-wise relevance propagation. PloS one,
10(7), page e0130140.

Barber, David [2012]. Bayesian reasoning and machine learning. Cambridge Uni-
versity Press.

Barga, Roger, Valentine Fontama, Wee Hyong Tok, and Luis Cabrera-Cordon [2015].
Predictive analytics with Microsoft Azure machine learning. Springer.

Bertsekas, Dimitri P and John N Tsitsiklis [2008]. Introduction to probability. 2
Edition. Athena Scientific, Belmont, MA, USA.

121

Bhattacharyya, Anil [1943]. On a measure of divergence between two statistical
populations defined by their probability distributions. Bull. Calcutta Math. Soc.,
35, pages 99–109.

Bishop, Christopher [2006]. Pattern recognition and machine learning. Springer.

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. [2016]. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316.

Brusilovsky, Peter and Eva Millán [2007]. User models for adaptive hypermedia and
adaptive educational systems. In The adaptive web, pages 3–53. Springer.

Brusilovsky, Peter and Christoph Peylo [2003]. Adaptive and intelligent web-based
educational systems. International Journal of Artificial Intelligence in Education
(IJAIED), 13(2-4), pages 159–172.

Buduma, Nikhil and Nicholas Locascio [2017]. Fundamentals of deep learning: De-
signing next-generation machine intelligence algorithms. " O’Reilly Media, Inc.".

Bunt, Andrea and Cristina Conati [2003]. Probabilistic student modelling to improve
exploratory behaviour. User Modeling and User-Adapted Interaction, 13(3), pages
269–309.

Busoniu, Lucian, Robert Babuska, Bart De Schutter, and Damien Ernst [2010].
Reinforcement learning and dynamic programming using function approximators.
CRC press.

Campbell, Jamie ID [1995]. Mechanisms of simple addition and multiplication:
A modified network-interference theory and simulation. Mathematical cognition,
1(2), pages 121–164.

Campbell, Jamie ID [1997]. On the relation between skilled performance of sim-
ple division and multiplication. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 23(5), pages 1140–1159.

Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello [2016]. An analysis of deep
neural network models for practical applications. arXiv preprint arXiv:1605.07678.

122

Chang, Kai-min, Joseph Beck, Jack Mostow, and Albert Corbett [2006]. A bayes
net toolkit for student modeling in intelligent tutoring systems. In Proceedings of
the 8th International Conference on Intelligent Tutoring Systems, pages 104–113.
Springer.

Chollet, Francois [2018]. Deep learning with python. Manning Publications.

Chrysafiadi, Konstantina and Maria Virvou [2013]. Student modeling approaches:
A literature review for the last decade. Expert Systems with Applications, 40(11),
pages 4715–4729.

Conati, Cristina, Abigail Gertner, and Kurt Vanlehn [2002]. Using Bayesian net-
works to manage uncertainty in student modeling. User modeling and user-adapted
interaction, 12(4), pages 371–417.

Conati, Cristina, Abigail S Gertner, Kurt VanLehn, and Marek J Druzdzel [1997].
On-line student modeling for coached problem solving using Bayesian networks. In
User Modeling: Proceedings of the Sixth International Conference, UM97, pages
231–242. Springer, Vienna, Austria.

Cover, Thomas M and Joy A Thomas [2012]. Elements of information theory. John
Wiley & Sons.

Danaparamita, Muhammad and Ford Lumban Gaol [2014]. Comparing Student
Model Accuracy with Bayesian Network and Fuzzy Logic in Predicting Student
Knowledge Level. International Journal of Multimedia and Ubiquitous Engineer-
ing, 9(4), pages 109–120.

Danks, David [2014]. Unifying the mind: Cognitive representations as graphical
models. MIT Press.

Derpanis, Konstantinos G [2008]. The bhattacharyya measure. Mendeley Computer,
1(4), pages 1990–1992.

Domahs, Frank, Margarete Delazer, and Hans-Christoph Nuerk [2006]. What makes
multiplication facts difficult: Problem size or neighborhood consistency? Experi-
mental Psychology, 53(4), pages 275–282.

123

Ebner, Martin, Benedikt Neuhold, and Martin Schön [2013a]. Learning Analytics–
wie Datenanalyse helfen kann, das Lernen gezielt zu verbessern. In Wilbers, K. and
A. Hohenstein (Editors), Handbuch E-Learning-Expertenwissen aus Wissenschaft
und Praxis-Strategie, Instrumente, Fallstudien, 48, Erg.-Lfg Edition, pages 1–20.
Deutscher Wirtschaftsdienst (Wolters Kluwer Deutschland).

Ebner, Martin and Martin Schön [2013]. Why learning analytics in primary educa-
tion matters. Bulletin of the Technical Committee on Learning Technology, 15(2),
pages 14–17.

Ebner, Martin, Martin Schön, Behnam Taraghi, and Michael Steyre [2013b]. Teach-
ers Little Helper: Multi-Math-Coach. International Association for Development
of the Information Society.

Ebner, Martin, Behnam Taraghi, Anna Saranti, and Sandra Schön [2015]. Seven
features of smart learning analytics-lessons learned from four years of research
with learning analytics. eLearning papers, 40, pages 51–55.

Freedman, D., R. Pisani, and R. Purves [2007]. Statistics: Fourth International
Student Edition. W.W. Norton & Company.

Gamboa, Hugo and Ana Fred [2002]. Designing intelligent tutoring systems: a
bayesian approach. Enterprise information systems, 3, pages 452–458.

García, Patricio, Analía Amandi, Silvia Schiaffino, and Marcelo Campo [2007]. Eval-
uating Bayesian networks’ precision for detecting students’ learning styles. Com-
puters & Education, 49(3), pages 794–808.

Godsey, Brian [2017]. Think Like a Data Scientist. Manning Publications.

Goebel, Randy, Ajay Chander, Katharina Holzinger, Freddy Lecue, Zeynep Akata,
Simone Stumpf, Peter Kieseberg, and Andreas Holzinger [2018]. Explainable AI:
the new 42? In International Cross-Domain Conference for Machine Learning
and Knowledge Extraction, pages 295–303. Springer.

Goguadze, George, Sergey Sosnovsky, Seiji Isotani, and Bruce M McLaren [2011a].
Towards a bayesian student model for detecting decimal misconceptions. In Pro-
ceedings of the 19th International Conference on Computers in Education, pages
34–41. Chiang Mai, Thailand.

124

Goguadze, George, Sergey A Sosnovsky, Seiji Isotani, and Bruce MMcLaren [2011b].
Evaluating a Bayesian Student Model of Decimal Misconceptions. In Proceedings
of the 4th International Conference on Educational Data Mining, pages 301–306.
Citeseer.

Goodman, Noah D, Joshua B. Tenenbaum, and The ProbMods Contributors [2016].
Probabilistic Models of Cognition. http://probmods.org/v2. Accessed: 2018-8-
25.

Hall, Patrick and Navdeep Gill [2018]. Introduction to Machine Learning Inter-
pretability. O’Reilly Media, Incorporated.

Harmon, Mance E and Stephanie S Harmon [1997]. Reinforcement Learning: A
Tutorial. Technical Report, WRIGHT LAB WRIGHT-PATTERSON AFB OH.

He, Xuming, Richard S Zemel, and Miguel Á Carreira-Perpiñán [2004]. Multiscale
conditional random fields for image labeling. In Proceedings of the 2004 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2004.
CVPR 2004., volume 2, pages II–II. IEEE.

Hessel, Matteo, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver [2018].
Rainbow: Combining improvements in deep reinforcement learning. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Holzinger, Andreas [2018a]. Explainable AI (ex-AI). Informatik-Spektrum, 41(2),
pages 138–143.

Holzinger, Andreas [2018b]. From Machine Learning to Explainable AI. In 2018
World Symposium on Digital Intelligence for Systems and Machines (DISA),
pages 55–66. IEEE.

Holzinger, Andreas, Chris Biemann, Constantinos S Pattichis, and Douglas B Kell
[2017a]. What do we need to build explainable AI systems for the medical domain?
arXiv preprint arXiv:1712.09923.

Holzinger, Andreas, Bernd Malle, Peter Kieseberg, Peter M Roth, Heimo Müller,
Robert Reihs, and Kurt Zatloukal [2017b]. Towards the augmented pathologist:
Challenges of explainable-ai in digital pathology. arXiv preprint arXiv:1712.06657.

125

http://probmods.org/v2

Jaakkola, Tommi S and Michael I Jordan [1999]. Variational probabilistic inference
and the QMR-DT network. Journal of artificial intelligence research, 10, pages
291–322.

Jensen, Finn V and Thomas D Nielsen [2007]. Bayesian Networks and Decision
Graphs.

Karkera, Kiran R [2014]. Building probabilistic graphical models with Python. Packt
Publishing Ltd.

Käser, Tanja, Severin Klingler, Alexander G Schwing, and Markus Gross [2017].
Dynamic Bayesian networks for student modeling. IEEE Transactions on Learning
Technologies, 10(4), pages 450–462.

Klinkenberg, Sharon, Marthe Straatemeier, and Han LJ van der Maas [2011]. Com-
puter adaptive practice of maths ability using a new item response model for on
the fly ability and difficulty estimation. Computers & Education, 57(2), pages
1813–1824.

Kober, Jens, J Andrew Bagnell, and Jan Peters [2013]. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research, 32(11), pages
1238–1274.

Kochenderfer, Mykel J [2015]. Decision making under uncertainty: theory and ap-
plication. MIT Press.

Koller, Daphne and Nir Friedman [2009]. Probabilistic graphical models: principles
and techniques. MIT Press.

Kraja, Eltion, Behnam Taraghi, and Martin Ebner [2017]. The Multiplication Ta-
ble as an innovative Learning Analytics Application. In Proceedings of EdMedia:
World Conference on Educational Media and Technology, pages 810–820. Associ-
ation for the Advancement of Computing in Education (AACE).

Lapin, Maksim, Matthias Hein, and Bernt Schiele [2015]. Top-k multiclass SVM. In
Advances in Neural Information Processing Systems, pages 325–333.

126

Lapin, Maksim, Matthias Hein, and Bernt Schiele [2016]. Loss functions for top-k
error: Analysis and insights. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1468–1477.

Lazaric, Alessandro, Marcello Restelli, and Andrea Bonarini [2008]. Reinforcement
learning in continuous action spaces through sequential monte carlo methods. In
Advances in neural information processing systems, pages 833–840.

Lee, Michael D and Eric-Jan Wagenmakers [2013]. Bayesian cognitive modeling: A
practical course. Cambridge university press.

Levy, Roy and Robert J. Mislevy [2016]. Bayesian Psychometric Modelling. Taylor
& Francis Group, CRC Press.

MacKay, David JC [2003]. Information theory, inference and learning algorithms.
Cambridge university press.

Markowska-Kaczmar, Urszula, Halina Kwasnicka, and Mariusz Paradowski [2010].
Intelligent techniques in personalization of learning in e-learning systems. In Com-
putational Intelligence for Technology Enhanced Learning, pages 1–23. Springer.

Millán, Eva, John Mark Agosta, and José-Luis Pérez de la Cruz [2001]. Bayesian
student modeling and the problem of parameter specification. British Journal of
Educational Technology, 32(2), pages 171–181.

Millán, Eva, Tomasz Loboda, and Jose Luis Pérez-De-La-Cruz [2010]. Bayesian
networks for student model engineering. Computers & Education, 55(4), pages
1663–1683.

Millán, Eva and José Luis Pérez-De-La-Cruz [2002]. A Bayesian diagnostic algo-
rithm for student modeling and its evaluation. User Modeling and User-Adapted
Interaction, 12(2-3), pages 281–330.

Millán, Eva, Mónica Trella, José-Luis Pérez-de-la Cruz, and Ricardo Conejo [2000].
Using bayesian networks in computerized adaptive tests. In Computers and Edu-
cation in the 21st Century, pages 217–228. Springer.

Mnih, Volodymyr, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu [2016]. Asynchronous

127

methods for deep reinforcement learning. In Proceedings of the 33rd International
conference on machine learning, pages 1928–1937.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller [2013]. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. [2015]. Human-level control through deep reinforcement learning.
Nature, 518(7540), pages 529–533.

Murphy, Kevin P. [2012]. Machine Learning: A probabilistic perspective. MIT Press.

Nilsson, Rickard [2009]. ScalaCheck.

Nouh, Yaser, P. Karthikeyani, and R. Nadarajan [2006]. Intelligent tutoring system-
bayesian student model. In 1st International Conference on Digital Information
Management, pages 257–262. IEEE.

Okken, Brian [2017]. Python Testing with Pytest: Simple, Rapid, Effective, and
Scalable. Pragmatic Bookshelf.

Papoulis, Athanasios and S Unnikrishna Pillai [2002]. Probability, random variables,
and stochastic processes. 4 Edition. Tata McGraw-Hill Education.

Pardos, Zachary A, Neil T Heffernan, Brigham Anderson, and Cristina L Heffernan
[2010]. Using fine-grained skill models to fit student performance with Bayesian
networks. Handbook of educational data mining, pages 417–426.

Patterson, Josh and Adam Gibson [2017]. Deep Learning: A Practitioner’s Ap-
proach. " O’Reilly Media, Inc.".

Pfeffer, Avi [2016]. Practical Probabilistic Programming. Manning Publications.

Pichara, Karim and Christian Pieringer [2017]. Advanced Computer Programming
in Python. CreateSpace Independent Publishing Platform.

Pumperla, M. and K. Ferguson [2018]. Deep Learning and the Game of Go. Manning
Publications Company.

128

Romero, Cristóbal and Sebastián Ventura [2010]. Educational data mining: a review
of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 40(6), pages 601–618.

Sallab, Ahmad EL, Mohammed Abdou, Etienne Perot, and Senthil Yogamani [2017].
Deep reinforcement learning framework for autonomous driving. Electronic Imag-
ing, 2017(19), pages 70–76.

Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver [2015]. Prioritized
experience replay. arXiv preprint arXiv:1511.05952.

Schiaffino, Silvia, Patricio Garcia, and Analia Amandi [2008]. eTeacher: Providing
personalized assistance to e-learning students. Computers & Education, 51(4),
pages 1744–1754.

Schön, Martin, Martin Ebner, and Georg Kothmeier [2012]. It’s just about learn-
ing the multiplication table. In Buckingham Shum, Simon, Dragan Gasevic, and
Rebecca Ferguson (Editors), Proceedings of the 2nd international conference on
learning analytics and knowledge, pages 73–81. ACM, New York, NY, USA.

Seidenberg, Mark S and James L McClelland [1989]. A distributed, developmental
model of word recognition and naming. Psychological review, 96(4), pages 523–568.

Shwe, Michael and Gregory Cooper [1991]. An empirical analysis of likelihood-
weighting simulation on a large, multiply connected medical belief network. Com-
puters and Biomedical Research, 24(5), pages 453–475.

Siemens, George and Ryan SJ d Baker [2012]. Learning analytics and educational
data mining: towards communication and collaboration. In Proceedings of the
2nd international conference on learning analytics and knowledge, pages 252–254.
ACM.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. [2017]. Mastering the game of go without human knowledge. Nature,
550(7676), page 354.

Sousa, David A [2008]. How the brain learns mathematics. Corwin Press.

129

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Ried-
miller [2014]. Striving for simplicity: The all convolutional net. arXiv preprint
arXiv:1412.6806.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov [2014]. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1), pages 1929–1958.

Stacey, Kaye and Jennifer Flynn [2003]. Evaluating an adaptive computer system for
teaching about decimals: Two case studies. In AI-ED2003 Supplementary Proceed-
ings of the 11th International Conference on Artificial Intelligence in Education,
pages 454–460. Citeseer.

Stacey, Kaye, E Sonenberg, Ann Nicholson, Tal Boneh, and Vicki Steinle [2003].
A teaching model exploiting cognitive conflict driven by a Bayesian network. In
International Conference on User Modeling, pages 352–362. Springer.

Stern, David H, Ralf Herbrich, and Thore Graepel [2009]. Matchbox: large scale
online bayesian recommendations. In Proceedings of the 18th international con-
ference on World wide web, pages 111–120. ACM, New York, NY, USA.

Sutton, Richard S and Andrew G Barto [2018]. Reinforcement learning: Second
Edition. MIT Press.

Sutton, Richard S, David A McAllester, Satinder P Singh, and Yishay Mansour
[2000]. Policy gradient methods for reinforcement learning with function approxi-
mation. In Advances in neural information processing systems, pages 1057–1063.

Taraghi, Behnam, Martin Ebner, Anna Saranti, and Martin Schön [2014a]. On using
markov chain to evidence the learning structures and difficulty levels of one digit
multiplication. In Proceedings of the Fourth International Conference on Learning
Analytics And Knowledge, pages 68–72. ACM.

Taraghi, Behnam, Matthias Frey, Anna Saranti, Martin Ebner, Vinzent Müller, and
Arndt Großmann [2014b]. Determining the causing factors of errors for multi-
plication problems. In European Summit on Immersive Education, pages 27–38.
Springer.

130

Taraghi, Behnam, Anna Saranti, Martin Ebner, Vinzent Mueller, and Arndt Gross-
mann [2015]. Towards a Learning-Aware Application Guided by Hierarchical Clas-
sification of Learner Profiles. J. UCS, 21(1), pages 93–109.

Taraghi, Behnam, Anna Saranti, Martin Ebner, and Martin Schön [2014c]. Markov
chain and classification of difficulty levels enhances the learning path in one digit
multiplication. In International Conference on Learning and Collaboration Tech-
nologies, pages 322–333. Springer.

Trask, Andrew [2017]. Grokking deep learning. Manning.

Van Hasselt, Hado, Arthur Guez, and David Silver [2016]. Deep reinforcement
learning with double q-learning. In Thirtieth AAAI Conference on Artificial In-
telligence.

Wang, Ziyu, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Freitas [2015]. Dueling network architectures for deep reinforcement
learning. arXiv preprint arXiv:1511.06581.

Xenos, Michalis [2004]. Prediction and assessment of student behaviour in open and
distance education in computers using Bayesian networks. Computers & Educa-
tion, 43(4), pages 345–359.

Zapata-Rivera, Juan-Diego and Jim E Greer [2004]. Interacting with inspectable
bayesian student models. International Journal of Artificial Intelligence in Edu-
cation, 14(2), pages 127–163.

Zhang, Ye and Byron Wallace [2015]. A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification. arXiv preprint
arXiv:1510.03820.

Zhao, Jun, Guang Qiu, Ziyu Guan, Wei Zhao, and Xiaofei He [2018]. Deep rein-
forcement learning for sponsored search real-time bidding. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1021–1030. ACM.

Zhao, Zhong-Qiu, Peng Zheng, Shou-tao Xu, and Xindong Wu [2019]. Object de-
tection with deep learning: A review. IEEE transactions on neural networks and
learning systems.

131

Zheng, A. and A. Casari [2018]. Feature Engineering for Machine Learning: Prin-
ciples and Techniques for Data Scientists. O’Reilly Media.

Zhu, Meixin, Xuesong Wang, and Yinhai Wang [2018]. Human-like autonomous car-
following model with deep reinforcement learning. Transportation Research Part
C: Emerging Technologies, 97, pages 348–368.

132

List of Figures

1.1 Current report of “1x1 trainer” provided to the teachers. The diffi-
culty of the questions is color-encoded and several statistics as the
percentage of users that have answered correct or false and the mean
answering time is presented. 22

2.1 Euler diagram of the error type’s answers of the question 7× 8. The
area of each ellipse is proportional to the number of elements in the
corresponding error type’s answers set. 29

2.2 “1x1 trainer” application interface . 30

2.3 Example of the contents of the answers in a comma-separated file . . 31

2.4 Histogram of user activity. 98, 6% of the users have ≤ 1000 valid
answered questions. 32

2.5 Relative difficulty of the questions measured by the proportion of
wrong answers. 33

2.6 Number of users that reach the learning goal in a specific number of
steps. 34

2.7 Number of not provided valid answers per question. 35

3.1 Conditional Probability Tables (CPT) of the learning competence
model. The parameters are uniformly initialized (uninformed prior). . 44

3.2 The structure of all Probabilistic Graphical models for Learning Com-
petence. The shaded Answersq nodes are the ones that are observed,
whereas the Correctnessq, Learning Stateq random variables re-
main unobserved. 45

133

3.3 Parameters of the Learning Competence Probabilistic Graphical Model 51

3.4 The iteration loop of the EM-algorithm 52

3.5 Expectation-maximization training algorithm applied on the training
set. In the first step the uniform Dirichlet hyperparameters are used.
Then alternating E- and M-steps bring the parameters/log-likelihood
convergence. 56

3.6 Dataset splitting procedure: After the same data preprocessing func-
tionalities are applied to the whole dataset, the parameters are defined
by the training set only. 57

3.7 Handling a previously unseen user: the new data pass through the
standardized preprocessing module. The learning competence model
defined by the training set is used for modelling. After the first ques-
tion is answered, this model is updated individually according to the
answer(s) of this particular user. 58

3.8 Evolution of the likelihood of the training set with respect to the
number of EM-iterations in the training set. 61

3.9 Evolution of the likelihood of the test set with respect to the number
of EM-iterations in the training set. The test set contains 1000 samples. 62

4.1 Parameters of learning competence model of question 6× 7 that are
relevant to the computation of the MAP query when the answer is 40 66

4.2 Learning State6×7 and explanations distribution of question 6 × 7
before and after the user answers 40 68

4.3 Tree of all possible paths in the forward sampling process of the learn-
ing competence model of 8 × 5. The sampling path for the sample
(wrong, off-by, 39) is highlighted. 69

4.4 Generative Model . 71

4.5 Similarity of the P (Learning Stateq|Correctnessq = wrong) dis-
tributions of all pairs of questions as measured with the of the Bhat-
tacharyya Coefficient 4.7. 72

134

5.1 Agent, environment components and interaction of the learning-aware
application . 75

5.2 Markov Decision Process where State is the learning competence,
Actions are the posed Questions and the Rewards need to be computed. 80

5.3 Architecture of an artificial neuron and its principal components . . . 85

5.4 Non-linear activation functions . 86

5.5 Dense neural network architecture, also called multi-layer perceptron
architecture or simply feedforward dense network 87

5.6 Input and output grid of a two dimensional convolution operation
with a kernel of size 3× 3, zero padding, and stride 1. The kernel itself
is not shown in the figures. The left part depicts the first operation
whereas the right one the second, as the kernel slides over parts of
the input grid. 94

5.7 Max pooling operation: the input is split into four regions denoted
by the different colors. The maximum value of each region is kept for
the result of this operation. 94

5.8 One-dimensional convolution operation and its parameters. The num-
ber of weights and connections is lower than the one of the correspond-
ing fully connected network. 95

6.1 Recent history of answering results: The last two times each question
was posed were answered correctly. 100

6.2 Architecture of the Deep Q-Network and its interaction with the en-
vironment. 100

6.3 Convolutional neural network’s detailed view of input and output . . 102

6.4 Graph of the two Convolutional Neural Networks in Tensorboard
(https://www.tensorflow.org/guide/summaries_and_tensorboard,
Last accessed 17 March 2019), the visualization tool of tensorflow
(https://www.tensorflow.org/, Last accessed 17 March 2019) . . . 103

6.5 Convolutional neural network architecture. The input on the left side
is 9× 10× 9 and the output of the three layers have exactly the same
size. 104

135

https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/

6.6 Evolution of ε parameter and the maximum Q-value of the Reinforce-
ment Learning algorithm during training steps 5.9 105

6.7 short . 108

6.8 Input grid that maximizes the value of the activation function for
connected filters in the first, second, and third layer. The values are
normalized between 0.0 and 1.0. 109

6.9 Input grid that maximizes the value of the activation function after
filter number 63 (out of 200) of the first layer. 109

6.10 Starting sequences of different episodes, which are quite similar al-
though the answers are somewhat different. The comparison of the
files is made by the program DiffMerge https://sourcegear.com/

diffmerge/ . 110

6.11 Differing sequences of questions, because the simulated students pro-
vided different answers somewhere on the line. 111

136

https://sourcegear.com/diffmerge/
https://sourcegear.com/diffmerge/

List of Tables

2.1 Answers for question 7× 8 listed by error types 29

3.1 Probabilistic graphical model of the question 8 × 5 where all condi-
tional probabilities (all rows of the conditional probability tables) are
set uniformly. 59

3.2 Probabilistic graphical model of the question 8× 5 where all pseudo-
counts are set to value 1. 60

4.1 Unnormalized joint distribution P (C6×7,LS6×7,A6×7 = 40) 66

4.2 Normalized joint distribution P (C6×7,LS6×7,A6×7 = 40) 67

4.3 Learning State6×7 distribution of wrong answers in question 6 × 7
before the user answers 40 . 67

4.4 Explanations distribution of wrong answers in question 6 × 7 after
the user answers 40 . 67

137

138

	Introduction
	Previous Work
	Bayesian Student Models
	Research Question
	Outline

	Error types of one-digit multiplication and descriptive statistics
	Cognitive misconceptions
	Error types of one-digit multiplication problems
	Data of the ``1x1 trainer''
	Data Analysis and Descriptive Statistics
	Sequence of posed questions

	Probabilistic Graphical Model for Learning Competence
	Probabilistic Graphical Model for Learning Competence
	Introduction to Probabilistical Graphical Models
	Applications of probabilistic graphical models
	Model Structure
	Learning the Model's Parameters
	Learning the Model's Parameters with batch Expectation-Maximization (EM)
	Notation
	Expectation-Maximization (EM) algorithm
	Analytical Solution of Expectation-Maximization (EM) for the model of Learning Competence

	Datasets
	Fractional Updating
	Evaluation of Parameter Learning

	Insights
	Reasoning types in Probabilistic Graphical Models
	Probability Queries
	Variable elimination in the Learning Competence Model

	Sampling of Answer
	Generative Model
	Similarity of Learning State among different questions
	Other uses of the Learning Competence Model

	Deep Reinforcement Learning and Convolutional Neural Networks
	Deep Reinforcement Learning and Convolutional Neural Networks
	Applications of Reinforcement Learning
	Formulation as a Markov Decision Problem
	Computing the optimal Policy
	Tabular Q-Learning
	Methods for continuous state space
	Artificial Neural Networks
	Deep Q-Network
	Asynchronous n-step Q-Learning
	Convolutional neural networks
	Applications of Convolutional Neural Networks

	Evaluation
	EvaluationSimulated
	Formulation of the problem
	Concrete Architecture

	Visualisations
	Visualization of the filters
	Visualization of the starting input state
	Visualization of the outputs of activations layers
	Visualization of the input grid that maximizes the value of the activation function of each filter

	Reasoning of proposed sequences

	Software Engineering, Testing and Quality
	Python Libraries
	Files Hierarchy and Documentation
	Directory and files hierarchy

	Testing

	Conclusion
	Conclusion
	Future Research

	References
	List of Figures
	List of Tables

