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Abstract

Lung auscultation is an efficient and economic means to assess the state of the pulmonary organ.

Pathological changes of the lung are tightly connected to characteristic sounds, often enabling

fast and inexpensive diagnosis. To facilitate a more objective assessment of lung sounds for the

diagnosis of pulmonary diseases/conditions, digital recording and post-processing techniques using

computers have been a focus of intensive research over the past decades. In this thesis, we present a

holistic approach to computer-aided lung sound analysis. In particular, we focus on multi-channel

lung sound classification. We designed a lung sound recording device, conducted a clinical trial for

data collection, and developed classification frameworks with a focus on deep neural networks.

We present a 16-channel recording device for airflow-aware lung sound recording. To this end, we

developed a novel lung sound transducer and an appropriate attachment method realised as a foam

pad. Compared to common approaches, we improved the usability and robustness against air- and

body-borne noise. The device enables fast recording of lung sounds in noisy clinical environments

without impeding daily routines.

Using the developed device, we conducted a clinical trial to record a multi-channel lung sound

database. We included lung-healthy subjects and patients diagnosed with idiopathic pulmonary

fibrosis.

For the classification of the recorded data, we consider two approaches. In our first approach,

we present an event detection framework to detect adventitious sounds in lung sounds. In this

context, due to a large public available heart sound dataset, we first introduce a new methodology

for the segmentation of heart sounds. In particular, we propose an event detection approach with

deep recurrent neural networks and show state-of-the-art performance carefully evaluated on the

2016 PhysioNet/CinC Challenge dataset. We then applied the final setup to adventitious sound

and breathing phase detection in lung sounds. Our second approach for lung sound classification

provides a direct diagnosis of the underlying disease. For this, we present a frame-wise classi-

fication framework to process full breathing cycles of multi-channel lung sound recordings with

convolutional recurrent neural networks. The evaluation of both approaches on our multi-channel

lung sound database shows promising results for the diagnosis of idiopathic pulmonary fibrosis.
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Kurzfassung

Die Lungenauskultation ist eine effiziente und wirtschaftliche Möglichkeit den Zustand des Lungen-

organs zu beurteilen. Pathologische Veränderungen der Lunge sind eng mit charakteristischen

Geräuschen verbunden, die oft eine schnelle und kostengünstige Diagnose erlauben. Um eine objek-

tivere Beurteilung von Atemgeräuschen für die Diagnose pulmonaler Erkrankungen zu ermöglichen,

waren computerunterstützte Aufzeichnungs- und Nachbearbeitungstechniken in den letzten Jahr-

zehnten Gegenstand intensiver Forschung. In der vorliegenden Arbeit wird ein ganzheitlicher

Ansatz für die computerunterstützte Atemgeräuschanalyse, mit Fokus auf Klassifizierung von

Mehrkanal-Aufnahmen, präsentiert. Zu diesem Zweck wurde zuerst ein entsprechendes Aufnah-

megerät entwickelt, anschließend eine klinische Studie zur Datenerhebung durchgeführt, und darauf

aufbauend Klassifikationssysteme unter Verwendung von künstlichen neuronalen Netzen entwick-

elt.

Das entwickelte Aufnahmegerät für Atemgeräusche ermöglicht die Erfassung von 16-Kanal-

Aufnahmen über dem Rücken und eine simultane Atemflussaufzeichnung. Hierfür wurde ein

neuartiger Sensor und eine geeignete Anbringungsmethode in Form eines Schaumstoffpolsters ent-

wickelt. Im Vergleich zu herkömmlichen Ansätzen weist das Aufnahmegerät eine Verbesserung

der Benutzerfreundlichkeit und der Robustheit gegenüber Körper- und Umgebungsgeräuschen auf.

Das Gerät ermöglicht eine effiziente Erfassung von Atemgeräuschen, auch in lauten klinischen

Umgebungen.

Unter Verwendung des entwickelten Aufnahmegeräts wurde eine klinische Studie zur Erstellung

einer Mehrkanal-Atemgeräuschdatenbank durchgeführt. Diese Datenbank enthält Aufnahmen von

lungengesunden Teilnehmern und von Patienten mit idiopathischer Lungenfibrose.

Wir präsentieren zwei Ansätze zur Klassifizierung von Atemgeräuschen. Der erste Ansatz

beschäftigt sich mit der Detektion von pulmonalen Nebengeräuschen. Hierfür wurde zuerst eine

neue Methodik für die Segmentierung von Herztönen entwickelt, wobei ein Ansatz zur Ereignis-

erkennung mit tiefen rekurrenten neuronalen Netzen vorgestellt wird. Experimentell werden State-

of-the-Art-Ergebnisse auf dem PhysioNet/CinC Challenge-Datensatz von 2016 gezeigt. In einem

zweiten Schritt wurde das Klassifikationssystem erfolgreich zur Ereigniserkennung von Nebengeräu-

schen und Atemphasen in Atemgeräuschen angewandt. Der zweite Ansatz zur Klassifizierung von

Atemgeräuschen ist eine Methode zur direkten Diagnose der zugrunde liegenden Erkrankung. Das

Klassifikationssystem verarbeitet vollständige Atemzyklen von Mehrkanal-Atemgeräuschen mit

konvolutionellen rekurrenten neuronalen Netzen. Die Auswertung beider Klassifizierungsansätze

auf der Mehrkanal-Atemgeräuschdatenbank zeigt vielversprechende Ergebnisse für die Diagnose

von idiopathischer Lungenfibrose.
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A Holistic Approach to Multi-channel Lung Sound Classification

1
Introduction

Lung auscultation is a noninvasive and fast means to assess the state of the pulmonary organ.

However, traditional auscultation with a stethoscope has several disadvantages and limitations:

Trained experts are rare, it is subjective (i.e. diagnosis depends on the experience of the physician),

it cannot provide continuous monitoring, and a quiet environment is needed. Furthermore, the

characteristics of the sounds are in the low frequency range, where the human hearing has limited

sensitivity and is susceptible to noise artifacts [1]. Additionally, the intensity of the respiratory

signal affects the masking of adventitious sounds, e.g. deep breaths may mask more crackles than

superficial breaths [2]. Due to these facts, auscultation is simply used for a first screening of

patients, since physicians have to rely on objective techniques enabling a reliable diagnosis, such

as chest X-ray and computed tomography (CT) scan.

To facilitate a more objective assessment of lung sounds for the diagnosis of pulmonary dis-

eases/conditions, digital recording and post-processing techniques using computers have been a

focus of intensive research over the past decades [1–3]. Computational methods for the analysis

of lung sounds have overcome many limitations of human auscultation and offer advantages for

medical diagnosis, i.e. digital storage of lung sounds, monitoring of lung sounds in critical care

settings or during surgery, computer-supported analysis, evaluation of long-term changes caused

by certain diseases, and comparison among different sound recordings. Despite these advantages,

computational lung sound analysis (CLSA) has not yet been used as a major tool for diagnosis of

respiratory diseases [4].

Commercially available devices for lung sound recording are electronic stethoscopes. Compared

to traditional stethoscopes, their main advantages are signal amplification and noise reduction to

improve the listening experience [5]. They also allow for the sounds to be recorded and analysed

on a computer afterwards. For this reason, electronic stethoscopes are widely used in lung sound

research [6–8]. Other sensors include contact sensors or air-coupled microphones. The latter are

either microphones with custom designed couplers or microphones inserted into stethoscope rubber

tubes [9, 10]. Most research is performed on single-channel recordings, but some multi-channel

approaches also exist [1]. The first (and formerly commercially available) device for multi-channel

lung sound recording was the Stethographics STG 16 [11]. It enables 14-channel lung sound

recording on the posterior chest, with two additional channels for the trachea and heart locations.

Other multi-channel approaches found in the literature are a 14-channel device presented in [12]

and a 25-channel device used in [13].

Even though lung sound research is a very active area, publicly available lung sound recordings
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1 Introduction

are rare. According to [1], databases are either from online repositories [14, 15] or audio CDs

companioning books [16–18]. The first large public database for the purpose of the development

of classification algorithms was published in 2018 [19]. It contains 920 single-channel recordings

from 126 subjects, with a total of 6898 respiration cycles. However, to the best of our knowledge,

no publicly available multi-channel lung sound database exists.

Recently, research has been mainly focused on lung sound classification [1, 4]. The main task

is the detection or classification of adventitious sounds. This can be performed on three differ-

ent levels [1]: Detection and classification of adventitious sounds at a segment level (i.e. signal

window segments are generated, features are extracted, and with random segments of adventi-

tious and normal sounds classification is performed), classification at the event level (of man-

ually isolated events of adventitious and normal lung sounds), and event detection at record-

ing level. For this purpose, well established classifiers were widely applied, such as support

vector machines (SVMs) [20, 21], Gaussian mixture models (GMMs) [22, 23], multilayer percep-

trons (MLPs) [24,25], random forests [26], k-nearest neighbours algorithm (k-NN) [27,28], hidden

Markov models (HMMs) [7,8], and logistic regression [29]. Due to the recent success of deep learn-

ing in several audio applications, such as speech recognition [30] and acoustic event detection/scene

classification [31], it also found its way to lung sound classification [32–34].

Several reviews related to CLSA have been published in recent years [1–4,35,36]. The state-of-

the-art report in [2] concludes with the statement that it is necessary to find new markers to increase

the efficiency of decision aid algorithms. Similarly, the authors in [3] identified the need for further

research to promote its diagnostic utility in clinical settings. Most recently, a systematic review of

77 articles of automatic adventitious respiratory sound analysis was performed in [1]. The authors

provide a list of challenges for future activities: in particular, CLSA requires adventitious sound

monitoring as integral part for diagnosis, high accuracy algorithms (including feature extraction)

for adventitious sound detection and classification, careful evaluation in real-life scenarios, and a

portable easy-to-use device without the necessity of expert interaction. Furthermore, the review

in [4] concluded that machine learning techniques are required to improve the accuracy and to

promote the commercialisation as a product.

For a holistic view on lung sound classification, we identify several limitations. In the record-

ing stage, we observe a lack of signal quality. This can be due to a low signal-to-noise ratio

of typical sensors or the limitations of the rest of the recording hardware. Another reason is

the superimposition of air- and body-borne noise, due to unsuitable recording environments and

attachment methods. We also observe limitations regarding the measurement procedures. Single-

channel recording with successive measurements to cover the whole pulmonary organ can be very

time-consuming. Additionally, the breathing behaviour varies between successive recordings. This

makes the assessment of differences in lung sound characteristics and intensity difficult. Also,

airflow-unaware recording, i.e. ignoring the influence of airflow rate and breathing pattern on the

signal characteristics, renders lung sound analysis even more challenging. Due to all these limita-

tions, research regarding lung sound classification should highly benefit from a joint consideration

of recording hardware, computational methods, and clinical evaluation issues.

– 16 –



1.1 Research Questions and Objectives

1.1 Research Questions and Objectives

Traditional auscultation with a stethoscope is limited to a preliminary screening for lung diseases.

However, our vision is to enable a reliable, easy-to-use lung sound analysis and decision support

system for better assistance to patients and avoidance of diagnostic odysseys. It should enable a

non-invasive, early detection of lung diseases and reduce the unwanted exposure to radiation due

to X-rays or CT scans. Having this in mind, we pursue a holistic approach to multi-channel lung

sound classification, with the simplified framework illustrated in Figure 1.1. Our main objectives

and research questions are summarised as follows:

1. Multi-channel Lung Sound Recording Device: The aim is to develop a multi-channel lung

sound recording device suitable to record a lung sound database within a clinical trial.

Therefore, it should feature good usability and allow lung sounds to be recorded in real

clinical environments, i.e. without the need for a specific recording room. Furthermore, it

should fulfill the basic safety requirements for medical devices. The research questions in-

clude the development of a lung sound transducer and an appropriate attachment method.

For multi-channel recording, we must find suitable recording positions and define the number

of sensors needed. Furthermore, the influence of respiratory airflow on lung sounds has to be

investigated.

2. Lung Sound Database: The aim is to record a multi-channel lung sound corpus for lung-

healthy subjects and patients with selected lung diseases. This requires the design and

organisation of a clinical trial. Hence, several design aspects have to be considered, such as

suitability of subjects, the examination setting, and the measurement procedure itself.

3. Lung Sound Classification Frameworks: The aim is to develop classification frameworks for

lung sounds with a focus on deep neural networks. Two approaches should be considered:

(i) Event detection: A method to accurately detect acoustic events in lung sound recordings,

such as adventitious lung sounds and breathing phase events (i.e. inspiration/expiration). (ii)

Direct diagnosis of the underlying disease: A method to process multi-channel lung sound

recordings that provides a diagnosis as output.

Multi-channel
Lung Sound

Recording Device
Lung
Sound

Database

Classification
(Diagnosis)

Figure 1.1: Simplified overall lung sound analysis framework.
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1 Introduction

1.2 Organisation and Contributions

With the contributions summarised along the outline, this thesis is structured as follows.

• Chapter 2: We describe the human respiratory system and the characteristics of lung sounds

from an auscultation perspective.

• Chapter 3: We present a robust multi-channel lung sound recording device (MLSRD). It

enables 16-channel lung sound recording over the posterior chest and simultaneous airflow

recording. Compared to previous approaches, we improved the usability and the robustness

against air- and body-borne noise. We developed a novel lung sound transducer (LST)

and an appropriate attachment method realised as a foam pad. For analogue prefiltering,

preamplification, and digitization of the lung sound signal, we use a composition of low-

cost standard audio recording equipment. Furthermore, we developed a suitable recording

software. In simple experiments, we show the robustness of our MLSRD against ambient

noise, and demonstrate the achieved signal quality. The result is an MLSRD that enables

fast gathering of high-quality lung sound recordings in noisy clinical environments without

impeding the daily routines.

• Chapter 4: We investigate the effect of airflow rate on amplitude and regional distribution

of normal lung sounds. With our MLSRD, we record lung sounds over the posterior chest of

lung-healthy subjects at different airflow rates. We use acoustic thoracic images to discuss

the influence of the airflow rate on the regional distribution.

• Chapter 5: We conducted a clinical trial to record a multi-channel lung sound database

for lung-healthy and pathological subjects using our MLSRD. The considered diseases are

pneumothorax and idiopathic pulmonary fibrosis (IPF). This chapter contains the clinical

trial design, the description of lung diseases, and the resulting database.

• Chapter 6: We present several neural network architectures, such as MLPs, several recurrent

neural network (RNN) architectures, and convolutional neural networks (CNNs). Further-

more, we discuss some regularization methods for neural networks.

• Chapter 7: We present a method to accurately detect the state-sequence first heart sound (S1) -

systole - second heart sound (S2) - diastole, i.e. the positions of S1 and S2, in single-channel

heart sound recordings. We propose an event detection approach, without explicitly incorpo-

rating a priori information of the state duration. This renders it also applicable to recordings

with cardiac arrhythmia and extendable to the detection of extra heart sounds (third and

fourth heart sound), heart murmurs, as well as other acoustic events. We use data from

the 2016 PhysioNet/CinC Challenge, containing heart sound recordings and annotations of

the heart sound states. From the recordings, we extract spectral and envelope features and

investigate the performance of different deep recurrent neural network (DRNN) architectures

to detect the state-sequence. Our approach shows state-of-the-art performance carefully eval-

uated on the 2016 PhysioNet/CinC Challenge dataset.
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1.2 Organisation and Contributions

• Chapter 8: We present a method for event detection in single-channel lung sound recordings.

In particular, we evaluate the processing framework from Chapter 7 for the detection of

crackles and breathing phase events (inspiration/expiration). For our experiments, we use

the database presented in Chapter 5. The proposed method shows robustness regarding the

contamination of the lung sound recordings with noise, bowel sounds, and heart sounds.

• Chapter 9: We present an approach for multi-channel lung sound classification, exploiting

spectral, temporal and spatial information. In particular, we propose a frame-wise classi-

fication framework to process full breathing cycles of multi-channel lung sound recordings

with a convolutional recurrent neural network. From the lung sound recordings, we extract

spectrogram features and compare different deep neural network architectures for binary

classification, i.e. lung-healthy vs. IPF. In our experiments, we use the dataset from Chap-

ter 5. Our proposed classification framework with the convolutional recurrent neural network

outperforms the other networks and achieves an F-score of F1 ≈ 92%.

• Chapter 10: We conclude this thesis by summarising our main results and by highlighting the

main characteristics and advantages of our approach. Furthermore, we discuss open research

questions and future work.

• Chapter 11: List of publications arised during the course of my PhD studies.
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A Holistic Approach to Multi-channel Lung Sound Classification

2
Fundamentals of Respiratory Sounds

In this chapter, we give a short introduction to respiratory sounds, organised as follows. In Sec-

tion 2.1, we introduce the human respiratory system, including its function, the separation into

regions, and the mechanics of breathing. An introduction to respiratory sounds from a signal

characteristic prospective, including their diagnostic relevance, is then given in Section 2.2.

This chapter is largely adopted from “Computational Fluid and Particle Dynamics in the Human

Respiratory System”- Chapter 2: “The Human Respiratory System” [37], “Automatic Adventi-

tious Respiratory Sound Analysis: A Systematic Review” [1], and from “Fundamentals of Lung

Auscultation” [38].

2.1 The Human Respiratory System

Figure 2.1: The human respiratory system [39].
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2.1 The Human Respiratory System

2.1.1 Function

The human respiratory system consists of specific organs and structures (see Figure 2.1), which

are used to supply the body with oxygen and remove carbon dioxide. It transfers oxygen from

the external environment into the bloodstream, where the blood circulates it to the tissue cells.

During inhalation, oxygen first enters the nose and/or mouth and passes through the larynx and

the trachea to the two bronchi. Each bronchus splits into two bronchial tubes. These tubes divide

into plenty of small pathways within the lung, which end in the alveoli. There, oxygen (O2) is

exchanged in the lung capillaries for carbon dioxide (CO2). The air containing CO2 is then exhaled,

i.e. it returns to the bronchial pathways, the trachea and larynx, through the mouth and nose to

the external environment. The respiratory system also filters, warms, and humidifies the inhaled

air [37].

2.1.2 Separation of the Respiratory System into Regions

Two common separations of the respiratory system into regions are as follows [37]:

• Functional Separation:

◦ Conducting zone: The zone from the nose to the bronchioles conducts the inhaled air

to deep regions of the lungs.

◦ Respiratory zone: Gas is exchanged in the zone from the alveolar duct to the alveoli.

• Anatomical Separation:

◦ Upper respiratory tract : Contains the organs located outside of the chest cavity (thorax)

area, i.e. nose, pharynx, and larynx.

◦ Lower respiratory tract : Contains the organs located almost entirely within the chest

cavity, i.e. trachea, bronchi, bronchiole, alveolar duct, alveoli.

2.1.3 Mechanics of Breathing

The diaphragm plays a major role in the mechanics of breathing. This muscle separates the thoracic

cavity from the abdominal cavity. The act of breathing consists of the following two phases [37]:

• Inhalation (Inspiration):

During inhalation, the diaphragm contracts and descends. Muscles in the thorax pull the

anterior end of each rib upwards and outwards. This increases the volume within the thorax

and results in a pressure difference between the atmospheric air pressure and the inside of

the thorax (i.e. intrathoracic pressure) and the lungs (i.e. intrapulmonary pressure). This

leads to air flowing into the lungs. During normal breathing, the diaphragm contracts and

descends about 1 cm and during forced breathing, up to 10 cm.
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2 Fundamentals of Respiratory Sounds

• Exhalation (Expiration):

Air is exhaled with the return of the lungs and chest to their equilibrium position. Within

the thorax, the volume is reduced and the pressure increases. Due to this, air is released from

the lungs. The elastic recoil of the lung and chest walls is sufficient to return the thorax to

the equilibrium during normal breathing. For forceful breathing, additional muscles in the

thorax and abdomen are needed.

2.2 Respiratory Sounds

Respiratory sounds are generated by the respiratory system and are usually heard with auscul-

tation1. Other body sounds are heart sounds, abdomen/bowel sounds, and blood vessel sounds.

Respiratory sounds are categorised as normal or abnormal, with the latter being characteristic for

several lung diseases [1].

2.2.1 Normal Respiratory Sounds

The characteristics of normal respiratory sounds vary depending on the location where they are

heard or generated. The differences are in duration, pitch, and sound quality. Normal respiratory

sounds can be categorised as follows [1], with an overview presented in Table 2.1.

• Vesicular Sounds:

Vesicular sounds are heard over most of the lung fields. They are audible during the whole

inspiratory phase and during the early expiratory phase. Vesicular sounds from different

breathing cycles are separated with a pause, but there is no separation of the sounds between

inspiration and expiration within one cycle. The sounds are characterised as soft and non-

musical. They have a limited frequency range between 100-1000 Hz. Due to the low-pass

effect of the chest wall, there is a drop in energy after around 100-200 Hz. Sounds during

inspiration are higher-pitched than those during expiration. Also, the intensity is higher

during inspiration and it varies depending on the part of the chest [40,41].

• Bronchial Sounds:

Bronchial sounds are heard over the large airways near the second and third intercostal space.

They are present during the inspiratory and the expiratory phase. Unlike in vesicular sounds,

the bronchial sounds during expiration are present longer than during inspiration. This is

due to the origin of the sounds in larger airways. Between each cycle of breathing, there is a

short break. The sounds are characterised as high-pitched and tubular. Relative to vesicular

sounds, they are more hollow and higher-pitched. The sound intensity during expiration is

higher than during inspiration. The energy in the upper frequency range is higher than in

vesicular sounds [38,40].

1 Auscultation is the act of listening to body sounds with a stethoscope.
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2.2 Respiratory Sounds

• Broncho-vesicular Sounds:

Broncho-vesicular sounds are heard over the posterior chest between the scapulae and cen-

trally over the anterior chest. The inspiratory and expiratory durations are similar. The

characteristics of the sounds is between vesicular and bronchial sounds. This means they are

softer than bronchial sounds, but still have a tubular sound characteristic [42].

• Tracheal Sounds:

Tracheal sounds are heard over the trachea. The location for auscultation is the suprasternal

notch. The inspiratory and expiratory duration of tracheal sounds is similar and a distinct

gap is separating them. The sound is characterised as hollow and tubular. Turbulent airflow

through the pharynx and glottis is the origin of the sounds. Tracheal sounds have frequency

components up to 5000 Hz, with a drop in energy after around 800 Hz. In general, they have

a higher intensity than vesicular and bronchial sounds [38,40,43].

• Mouth Sounds:

Mouth sounds are heard from the mouth. They are not audible in healthy persons. Their

frequency range is from 200 to 2000 Hz, with an energy distribution similar to white noise [44].

Table 2.1: Normal breath sounds, adopted from Table 1* from [1].

Breath
Sounds

Location Range Pitch Quality Timing (I:E ratio) Pause

Vesicular Most of lung
fields

100-1000 Hz
Energy drop
at 200 Hz

Low Low-pass
filtered
noise
like Soft
Rustling
sound

During inspiration
and early expira-
tion (2:1 ratio)

Pause between
different breath
cycle

Broncho-
Vesicular

Between scapu-
lae on posterior
chest and center
part of anterior
chest

Intermediate
between Vesic-
ular and
Bronchial

Inter-
mediate

Intermediate
intensity

During both inspi-
ration and expira-
tion (1:1 ratio)

-

Bronchial Large airways
on chest near
second and
third inter-
costal space

Similar to Tra-
cheal

High Loud
Hollow

During both inspi-
ration and expira-
tion (1:2 ratio)

Short pause
between in-
spiration and
expiration
phase

Tracheal Suprasternal
notch on tra-
chea

100-5000 Hz
Energy drop
at 800 Hz

High Harsh
Very loud

During both inspi-
ration and expira-
tion (1:1 ratio)

Distinct pause
between inspi-
ration and expi-
ration phase

Mouth Mouth 200-2000 Hz
Low

High White-
noise like
Silent when
normal

- -

*https://doi.org/10.1371/journal.pone.0177926.t001

2.2.2 Abnormal Respiratory Sounds

Abnormalities in respiratory sounds during breathing can take the form of a decrease in sound

intensity, the presence of normal sounds in abnormal areas, or adventitious sounds [1].
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2 Fundamentals of Respiratory Sounds

Decrease in Sound Intensity

The most common abnormality is the decrease in sound intensity. This can be due to the following

two reasons [38]:

• Decreased sound energy at the site of generation:

A decrease in sound energy can result from a drop in inspiratory airflow, caused by:

◦ Poor cooperation of the patient (e.g. unwillingness to take a deep breath).

◦ Depression of the central nervous system (e.g. drug overdose).

◦ Blockage of the airways (e.g. by a foreign body or tumor).

◦ Narrowing due to obstructive airway diseases (e.g. asthma and chronic obstructive pul-

monary disease (COPD)).

The decrease in intensity can be

◦ permanent (e.g. emphysema) or

◦ reversible (e.g. asthma attack).

• Impaired transmission:

◦ Intrapulmonary factors:

– Disruption of the mechanical properties of the lung parenchyma (e.g. a combination

of hyperdistention and parenchymal destruction in emphysema).

– A medium with a different acoustic impedance than the normal parenchyma is found

between the source of sound generation and the stethoscope (e.g. collections of gas

or liquid in the pleural space - pneumothorax, hemothorax, and intrapulmonary

masses).

◦ Extrapulmonary factors:

– Obesity.

– Chest deformities.

– Abdominal distention due to ascites.

Presence of Normal Lung Sounds in Abnormal Areas

An example for the presence of normal lung sounds in abnormal areas is bronchial breathing.

Bronchial sounds are abnormal if they are heard over the peripheral areas of the lung. This can

be caused by the development of lung consolidation in pneumonia. The blocking of the embedded

airways due to inflammation or viscous secretions causes decreased lung sounds. However, in patent

airways the sound transmission is improved. This increases the expiratory component, resulting

in bronchial breathing [38].
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2.2 Respiratory Sounds

Adventitious Sounds

In some lung conditions, adventitious sounds are superimposed on normal breath sounds. The

characteristics of adventitious sounds are related to the underlying disease. Depending on the

duration, it is distinguished between continuous adventitious sounds (CAS) and discontinuous

adventitious sounds (DAS) as follows [1]. A short summary is also presented in Table 2.2.

• Continuous Adventitious Sounds (CAS):

CAS are adventitious sounds with a duration longer than 250 ms [45]. Due to the associated

condition and cause, they can be classified as follows:

◦ Wheeze and Rhonchi :

Wheeze and rhonchi have a musical sound with a frequency range between 100-1000 Hz.

They are sinusoid-like signals with up to three harmonic frequencies. Although cate-

gorised as CAS, they can be shorter than 250 ms, with minimum duration of 80 to

100 ms. Both sounds are audible during inspiration and/or expiration [38, 46, 47]. The

differences are as follows:

– Wheeze:

Wheezes are continuous sounds with a pitch higher than 400 Hz. They are caused

by airflow limitation due to airway narrowing. Related diseases are asthma, COPD,

or even a tumour [38,45,48].

– Rhonchi :

Rhonchi are continuous sounds with a maximal pitch of 200 Hz. The sound is

caused by thickening of mucus in the larger airways. Related diseases are COPD

and bronchitis [38, 45,49].

◦ Stridor :

Stridors sound sibilant and musical. They are similar as wheezes, but normally harsher

and louder. Their duration is longer than 250 ms and they have a pitch higher than

500 Hz. They can be heard during inspiration and expiration. Because stridors are

caused by turbulent airflow in the larynx or bronchial tree, they are more clearly heard

on the trachea. They are related to upper airway obstruction, like epiglottitis, croup,

and laryngeal oedema. Also a foreign body, like a tumour in the upper airways, can

cause stridors [38,50].

◦ Gasp:

Gasps are characterised as having a whoop-like sound. They are audible during inspi-

ration after a bout of coughing. The origin is fast movement of air in the respiratory

tract. They are related to pertussis, also known as whooping cough [51].

◦ Squawk :

Squawks are sometimes called short wheezes, because they are similar as lower-pitched

wheezes, but shorter in duration. Their character is a mix of musical and non-musical.

The pitch is around 200-300 Hz and they appear during inspiration. The origin of

the sounds is due to oscillation at the peripheral airways. They are associated with

hypersensitivity pneumonia and common pneumonia [38,40,52,53].
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2 Fundamentals of Respiratory Sounds

• Discontinuous Adventitious Sounds (DAS):

DAS have a duration shorter than 25 ms. Based on the source of sound generation, they can

be classified as follows [1]:

◦ Fine Crackles:

Fine crackles are characterised as explosive and non-musical. Their duration is around

5 ms and their pitch around 650 Hz. They appear only late during inspiration. Fine

crackles are generated with the explosive opening of the small airways. They appear in

pneumonia, congestive heart failure, and IPF [40,54,55].

◦ Coarse Crackle:

Compared to fine crackles, coarse crackles are low-pitched, with a frequency around

350 Hz and a duration of around 15 ms. They are audible mostly early during inspira-

tion, but also during expiration. The sounds are caused by air bubbles in large bronchi.

Related diseases are chronic bronchitis, bronchiectasis, and COPD [54].

◦ Pleural Rub:

Pleural rubs are characterised as non-musical and rhythmic. Their duration is around

15 ms and their pitch usually below 350 Hz. They are audible during inspiration and

expiration. Pleural rub is generated with the rubbing of the pleural membranes during

breathing. Related conditions are the inflammation of the pleural membrane or a pleural

tumor [38,40].

2.2.3 Usage of the Terms Breath Sounds, Adventitious Sounds, Lung Sounds

and Respiratory Sounds with Respect to the Anatomical Location

Figure 2.2 illustrates the connection of the terms breath sounds, adventitious sounds, lung sounds

and respiratory sounds. The distinction is based on the anatomical location of sound recording

and the composition of the sounds, i.e. with or without adventitious sounds [56].

Lung sounds

Respiratory sounds

Breath sounds Adventitious sounds

Trachea

Mouth
Chest wall

Trachea

Mouth
Chest wall

Figure 2.2: Connection of the terms breath sounds, adventitious sounds, lung sounds and respiratory
sounds [56].
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2.2 Respiratory Sounds

Table 2.2: Adventitious sounds and their characteristics, adopted from Table 2* from [1].

Types Continuity Duration Timing Pitch Quality Cause Disease
Associated

Wheeze Continuous > 80 ms Inspiratory,
Mostly
Expiratory,
Biphasic

High
(> 400 Hz)

Sibilant,
Musical

Airway nar-
rowing, airflow
limitation

Asthma,
COPD, For-
eign body

Rhonchi Continuous > 80 ms Inspiratory,
Mostly
Expiratory,
Biphasic

Low
(< 200 Hz)

Sibilant,
Musical

Secretion in
bronchial,
muchosal
thickening

Bronchitis,
COPD

Stridor Continuous > 250 ms Mostly In-
spiratory,
Expiratory,
Both

High
(> 500 Hz)

Sibilant,
Musical

Turbulent
airflow in lar-
ynx or lower
bronchial tree
(Upper airway
obstruction)

Epiglottitis,
foreign body,
croup, laryn-
geal oedema

Fine
Crackle

Discontin-
uous

± 5 ms Inspiratory
(late)

High
(650 Hz)

Non-
musical,
Explosive

Explosive
opening of
small airways

Pneumonia,
Congestive
heart failure,
Lung fibrosis

Coarse
Crackle

Discontin-
uous

± 15 ms Mostly In-
spiratory
(early),
Expiratory,
Both

Low
(350 Hz)

Non-
musical,
Explosive

Air bub-
ble in large
bronchi or
bronchiectatic
segments

Chronic
bronchitis,
bronchiectasis,
COPD

Pleural
Rub

Discontin-
uous

> 15 ms Biphasic Low
(< 350 Hz)

Non-
Musical,
Rhythmic

Pleural mem-
brane rubbing
against each
other

Inflammation
of lung mem-
brane, lung
tumour

Squawk Continuous ± 200 ms Inspiratory Low
(200—300 Hz)

Short Musi-
cal and non-
musical

Oscillation of
peripheral air-
ways

Hypersensitivity
pneumonia,
pneumonia

Gasp Continuous > 250 ms Inspiratory High Whoop Gasping for
breath

Whooping
cough

*https://doi.org/10.1371/journal.pone.0177926.t002
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A Holistic Approach to Multi-channel Lung Sound Classification

3
Multi-channel Lung Sound Recording Device

In this chapter, we present a robust multi-channel lung sound recording device (MLSRD). It en-

ables 16-channel lung sound recording over the posterior chest and simultaneous airflow recording.

We developed a novel LST and an appropriate attachment method realised as a foam pad, our so

called auscultation pad. Compared to previous approaches, the usability and robustness against

air- and body-borne noise is greatly improved.

This chapter is organised as follows. After a short introduction in Section 3.1, we present

our LST design and the auscultation pad in Section 3.2. Section 3.3 gives an overview on the

remaining components of the MLSRD. The achieved signal quality and the robustness against

ambient noise is discussed in Section 3.4. Section 3.5 describes the measurement procedure and

Section 3.6 provides information about the medical safety. We conclude this chapter in Section 3.7.

The main parts of this chapter were published in the conference proceedings of the 9th International

Conference on Biomedical Electronics and Devices 2016, as “A Robust Multichannel Lung Sound

Recording Device” [57]. As minor modifications, we changed some wordings, added some sentences

and figures, and inserted sections for signal level calibration and medical safety.

3.1 Introduction

Sensors applied to lung sound recording are contact sensors or air-coupled microphones. The latter

are either microphones with custom designed couplers or microphones inserted into stethoscope

rubber tubes [9, 10]. The most common recording technique employs air-coupled microphones

attached with self-adhesive tape. However, this approach lacks of sensitivity against body sounds

and ambient noise [58–60]. Moreover, for multi-channel usage the attachment of several LSTs with

self-adhesive tape results in a poor usability and increases the sensitivity to measurement errors.

To circumvent the afore-mentioned drawbacks, we introduce a robust MLSRD. It supports

to record a high quality lung sound database for multi-channel lung sound classification. To

obtain clean lung sound recordings, we focused on the recording stage and reduced post-processing.

Furthermore, it was important that the MLSRD is suitable to record lung sounds for a large

number of diseases. This is reflected in the distribution and position of the LSTs. Besides distinct

adventitious lung sounds [61], it should reliably allow the estimate of changes in amplitude of lung

sounds, which is necessary for the detection of, e.g. pneumothorax [62].

Based on the approach with air-coupled microphones [9], we developed a novel lung sound
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3.2 Multi-channel Recording Front-end

transducer to ensure a high signal quality. For the attachment of the LSTs, we designed a foam

pad similar to the Stethographics STG 16 [11]. It records lung sounds over the posterior chest

in supine position. We implemented the analog prefiltering, preamplification, and digitization

of the lung sound signal with a composition of standard audio recording equipment. The entire

MLSRD consists of the foam pad (auscultation pad) and a pneumotachograph, both working with

an appropriate recording software on a personal computer.

3.2 Multi-channel Recording Front-end

The core of our MLSRD is the auscultation pad. It is a foam pad with 16 LSTs distributed on its

surface. We adapted our LST design for this attachment method. In the following subsections, we

separately describe the LST design and the foam pad.

3.2.1 Lung Sound Transducer

We developed a novel LST according to the approach with air-coupled electret-condenser micro-

phones [9]. It is shown in Figure 3.1. We use a Littmann Classic II chest piece as coupler. We

inserted an electret-condenser microphone capsule (ECMC) in such a way that the stethoscope

chest piece is acting as a conical coupler between the microphone capsule and the human skin.

The depth of the conical coupler is d = 2.2 mm, and the width is w = 33 mm. Its shape corre-

sponds with the recommendations in [63, 64]. We used the diaphragm of the chest piece to cover

its opening. It prevents the filling of the coupler cavity with skin, and, thus, it ensures its acoustic

effect. This is important for varying contact pressure, and, therefore, it is relevant for our attach-

Sealing Ring

Diaphragm

Venting

Chest Piece

ECMC

Figure 3.1: Lung sound transducer consisting of an ECMC inserted in a Littmann Classic II chest piece.

ment method discussed in Section 3.2.2. The diaphragm further enables a convenient disinfection

of the LST, and it protects the ECMC from scratching body hair and dirt.

To allow static pressure equalization between the coupler chamber and the surrounding air,

we inserted a small vent into the chest piece. We used a thin-wall 23-g needle with a length of

l = 11.5 mm and with an inner diameter of d = 0.35 mm, according to the recommendations
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3 Multi-channel Lung Sound Recording Device

in [64]. As ECMC, we used the Primo EM172, which features a very high signal-to-noise ratio of

SNR = 80 dB and a sensitivity of −27 dB (re 1V/Pa). These specifications are distinctly better

than those of widely-used microphones, like the Sony ECM-44BPT [12] or the Sony ECM-77B [6],

which feature an SNR ≤ 64 dB.

3.2.2 Auscultation Pad

The attachment of the LST is crucial, because of its high sensitivity against air- and tissue-borne

sounds [58, 59]. Therefore, we developed a foam pad, the auscultation pad shown in Figure 3.2.

It consists of several foam layers and a cover of artificial leather. The topmost layers holds the

6cm

6cm 6cm

7cm

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3.2: 16-channel lung sound recording front-end.

LSTs. There is a small cavity beneath each LST to avoid increasing contact pressure due to

the underlying foam. Furthermore, the cavity prevents the foam from touching or even clogging

the venting of the LST. By using different kinds of foam, we designed a shape that adapts to

almost every physique. This construction provides a symmetric contact pressure with respect to

the spine. We arranged the LSTs on the surface of the auscultation pad with a fixed pattern,

which almost matches the one proposed in [12]. The pad enables a fast attachment of the LSTs on

the posterior chest by simply placing the auscultation pad under the back of the patient in supine

position. To further stabilize the patient, we extended the auscultation pad with two additional

pads, one for the head and another one for the buttocks, as shown in Figure 3.3. We are able to
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3.3 Multi-channel Lung Sound Recording Device

achieve a high robustness against air- and body-borne noise with an overall high lung sound signal

quality. Further details are presented in Section 3.4. The attenuation of ambient noise is due to

the surrounding foam. We achieve the robustness against body-borne noise due to the reliable

attachment and almost no movement of the back during breathing in the supine position. The

surrounding foam further protects the LST cable from body-borne noise. Another advantage is

the balanced audio connection from the auscultation pad to the microphone preamplifiers, which

reduces the susceptibility to external noise.

3.3 Multi-channel Lung Sound Recording Device

We use the auscultation pad as part of a mobile recording setup (Figure 3.3). The setup consists

of an equipment cart, which includes the recording hardware, two screens, a pneumotachograph,

and the pads. The following subsections contain some details about the remaining components.

Main Screen

Patient Screen

Auscultation Pad

Additional

Pads

Pneumotachograph

Figure 3.3: Mobile lung sound recording device containing the auscultation pad and the additional components.

3.3.1 Recording Hardware

We implemented the analogue prefiltering, preamplification, and digitization of the lung sound

signal with low-cost standard audio recording equipment. The composition of the appropriate

hardware fulfills the requirements of the computerised respiratory sound analysis (CORSA) guide-

lines [65].
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We use two SM Pro Audio EP84 8-channel microphone preamplifiers with the integrated ADAT

interface SM Pro Audio PR8IIA. In addition to high-pass filtering (cut-off frequency fc = 80 Hz,

with a slope of 18 dB/oct), preamplification, and analog-to-digital conversion of the LST signal,

the SM Pro Audio PR8IIA also provides the supply voltage (phantom power) for the ECMCs.

For the suitable operating voltage of the ECMCs, we further use AKG MPA VL phantom power

adapters. They convert the phantom power of 48V to the required 3V∼10V. The AKG MPA VL

phantom power adapter features a high-pass characteristic with a cut-off frequency of fc = 80 Hz

and a slope of 6 dB/oct. In a series-connection with the microphone preamplifier, an overall high-

pass characteristic with a slope of 24 dB/oct is achieved. The high-pass filters of the microphone

preamplifiers and the phantom power adapters are implemented as Bessel filters. Therefore, they

feature an approximately linear phase response. The two SM Pro Audio EP84 are connected with

an RME Fireface 800 audio interface. This represents a firewire multi-channel audio recording

device for a computer.

In short, for analogue prefiltering, we apply a Bessel high-pass with a cut-off frequency of

fc = 80 Hz and a slope of 24 dB/oct. For analog-to-digital conversion, we us a sampling fre-

quency of fs = 48 kHz and a resolution of 24 bit. Before storing, we resampled the audio files to

fs = 16 kHz, where an anti-aliasing low-pass with cut-off frequency of fc = 7.6 kHz is applied.

The high-pass filter is applied to reduce low-frequency distortion to the signal. Possible distor-

tions are heart sounds, muscle noise, external low-frequency noise, and noise due to changes in

contact pressure (caused by body or sensor motion) [65].

3.3.2 Airflow Recording - Pneumotachograph

The simultaneous recording of the velocity of respired air and the lung sounds makes the distinction

between inspiratory and expiratory phases possible. Furthermore, we almost reach a uniform lung

sound signal intensity profile by specifying the respiratory behaviour of the patient, resulting in a

high quality database. We use a Schiller SP 260 pneumotachograph connected via the USB port.

The sampling frequency for the airflow signal is fs = 400 Hz.

3.3.3 Recording Software

We developed a MATLAB graphical user interface (GUI) for the simultaneous recording of the

airflow signal and the lung sounds. We use Playrec [66] for the multi-channel recording of the lung

sound signals with MATLAB. For the flow signal, we read the serial port of the pneumotachograph.

Figure 3.4a shows the main screen of the software, illustrating the simultaneously recorded airflow

and the lung sounds. Figure 3.4b shows a patient screen to display the measured absolute value

of the air flow in real-time.
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(a) (b)

Figure 3.4: MATLAB GUI: a) shows the main screen with recordings of the airflow signal and the lung
sounds and b) the patient screen for real-time feedback for the airflow.

3.3.4 Signal Level Calibration

For the calibration of the recording device, we used a Brüel & Kjær sound calibrator Type 4231,

as depicted in Figure 3.5. For this purpose, we first detached the diaphragms of the LSTs. The

calibrator was then attached with a suitable adapter. We adjusted the microphone preamplifiers

of the LSTs to reach the same signal level for the sound calibrator signal, which is a sinusoidal

waveform with a frequency of f = 1 kHz and a sound pressure level of 94 dB.

(a) (b)

Figure 3.5: Calibration with a Brüel & Kjær sound calibrator Type 4231: a) shows the calibrator including
the adapter and b) its attachment to a LST.

– 33 –



3 Multi-channel Lung Sound Recording Device

3.4 Robustness and Signal Quality

In this section, we show the achieved signal quality by means of the signal-to-noise ratio (SNR)

and the frequency range of the recording setup. We further demonstrate the robustness against

ambient noise with a simple experiment.

3.4.1 Robustness Against Ambient Noise

The CORSA guidelines [67] recommend to have environmental condition with a background noise

level of preferably < 45 dBA during lung sound recordings. These requirements are not always

given in clinical settings.

We compared the performance of our auscultation pad in a noisy setting with the attachment-

method of the LST with self-adhesive tape [9]. The experiment took place in a small room. We

considered two measurement scenarios. In the first scenario, we centered the auscultation pad

on the floor with a (male) test person lying on it. In the second scenario, we placed a chair in

the center of the room, with the test person in a sitting position. With self-adhesive tape, we

attach an LST on the persons posterior chest, at the same position where it was attached with the

auscultation pad. The rest of the signal acquisition chain remained the same for both scenarios,

as introduced in Section 3.3. As noise sources, we used five loudspeakers, which played back white

Gaussian noise. The loudspeakers feature a flat frequency response from f = 80 Hz to f = 20 kHz.

We measured the A-weighted equivalent sound level for both scenarios at the position of the sensor

over 30 seconds with LAeq = 68 dB. During the recording of the LST signal, we instructed the test

person to hold his breath for 15 seconds and played back the white Gaussian noise.

Figure 3.6 shows the power spectral density (PSD) for the LST signal in both scenarios in

the relevant frequency range. We see a distinct attenuation compared to the attachment with

self-adhesive tape, starting above a frequency of f = 500 Hz. At a frequency of f ≈ 2 kHz the

difference is up to 50 dB.
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Figure 3.6: Attenuation of background noise of the auscultation pad compared to the attachment method of
lung sound transducers with self adhesive tape.
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3.4.2 Signal Quality

In Figure 3.7, we show the SNR of our recording setup by illustrating the spectral characteristics

of a vesicular lung sound of a healthy adult person. The blue line shows the spectral characteristics

during the inspiratory phase. The red line shows the background noise recorded at breath hold;

the frequency components in the low-frequency range are mainly caused by body movement and

heart sounds. We achieve a signal-to-noise ratio of up to SNR ≈ 40 dB in the relevant frequency

range. Due to the high SNR of the microphone, we observe in this vesicular lung sound recording

frequency components up to f ≈ 2.5 kHz.
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Figure 3.7: Spectral characteristics of normal breath sounds and background noise at breath hold, recorded
over the posterior chest of a healthy adult.

3.5 Measurement Procedure

The lung sounds are recorded in supine position on an examination table. The auscultation pad is

placed under the back of the subject. For the orientation of the subject on the pad, we use a defined

distance d between the 7th cervical (C7) vertebra and the topmost row of sensors, as illustrated

in Figure 3.8. The size of the lung varies depending on the subject’s physique. The different sized

lungs result in a scaling of the organ along the sensor grid towards C7. For small and thin subjects,

the lower and/or outer sensors can become irrelevant, i.e. not all sensors are needed to cover the

lung. During a measurement, the subject is instructed to lie quietly on the auscultation pad, to

hold the pneumotachograph with both hands, and to wear a nose clip. The breathing behaviour

is specified with a maximum airflow value. This value should be reached during inspiration with

a natural breathing behaviour during expiration. A real-time feedback for the airflow is provided

on the patient screen.
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d

Spine
Lung

C7

Figure 3.8: 16-channel lung sound recording front-end with illustrated position of the sensors over the lung.

3.6 Medical Safety

The basic safety requirements of the MLSRD according to European Standard (EN) 60601-

1/2006+A1/2013 has been verified by the European testing and certification body for medical

devices (No. 0636) at Graz University of Technology.

3.7 Conclusion

We developed a robust MLSRD, which reliably records high quality lung sounds. With simple

measurements, we successfully underline the robustness of our auscultation pad with respect to

ambient noise. Compared to the attachment of the LST with self-adhesive tape, we achieve an

attenuation of ambient noise of up to 50 dB in the relevant frequency range. Due to the high

signal-to-noise ratio of our LST’s microphone of SNR = 80 dB, we obtain a bandwidth of up to

f = 2500 Hz for vesicular lung sounds. Our MLSRD allows the recording of lung sounds in real

clinical settings without the need for postprocessing, e.g. signal denoising for background speech

removal.
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4
Impact of Airflow Rate on Normal Lung

Sounds

In this chapter, we investigate the effect of airflow rate on amplitude and regional distribution

of normal lung sounds. We analysed and evaluated the properties of multi-channel lung sound

recordings and the device itself, in order to provide information for the clinical trial design. This

includes information about the interpretability of decrease in lung sound intensity and the relevance

of airflow rate during data collection. Additionally, we gained experience on how to calibrate the

recording device, i.e. how to adjust the pre-amplifiers to avoid clipping of the audio signals.

This chapter is organised as follows. We give a short introduction in Section 4.1. Section 4.2

describes the data acquisition, the subjects and the recording material, the signal energy calcula-

tion, and the generation of acoustic thoracic images. Section 4.3 presents our observations for the

regional distribution and the lung sound amplitude for different airflow rates. In Section 4.4, we

discuss the results and conclude this chapter.

This chapter was published in the conference proceedings of the 10th Annual International confer-

ence on Bio-inspired Systems and Signal Processing 2017 under the title of “Impact of Airflow Rate

on Amplitude and Regional Distribution of Normal Lung Sounds” [68]. As minor modifications,

we changed some wordings, and added some sentences and a new figure.

4.1 Introduction

In auscultation, besides distinct findings like adventitious lung sounds, the lung sound intensity

is also used as a diagnostic marker. For example, physicians examine the differences in intensity

between left- and right-sided lung sounds at pneumothorax condition. Therefore, basic knowledge

about the regional distribution of normal lung sound intensity, as well as its dependence on airflow

rate is essential. Moreover, a good understanding of this dependence could render the pneumo-

tachograph dispensable for lung sound research, because airflow could be estimated directly from

lung sounds [69].

Several research groups previously investigated the effect of airflow rate on the amplitude and

the regional distribution of lung sound. Differing relationships were observed in [70], [71], [72],

and [73]. Recently, the authors in [74] showed the effect of airflow rate on vibration response imag-
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ing measurement in healthy lungs during expiration, but also discussed the relationship between

lung sound energy and airflow rate. The authors in [75] used a 5x5 microphone array and generated

respiratory acoustic thoracic images (RATHIs) to discuss the regional distribution of lung sounds,

by comparing its performance with clinical physicians. In [76], the authors further show RATHIs

at different airflow rates.

Within this chapter, we independently investigate the impact of airflow rate on amplitude and

regional distribution of normal lung sounds. For that, we recorded lung sounds on the posterior

chest of four lung-healthy male subjects with our 16-channel lung sound recording device (see

Chapter 3) at airflow rates of 0.3, 0.7, 1.0, 1.3 and 1.7 l/s during inspiration. In contrast to other

research groups, we recorded lung sounds in supine position. Another difference is the usage of

uncontaminated lung sound recordings, i.e. free of heart and other interfering sounds. By means

of acoustic thoracic images [77], we discuss the regional distribution of lung sounds depending on

airflow rate. To generate the surface acoustic thoracic images from the multiple lung sound signals,

we use 2D-interpolation. For each subject, we illustrate the acoustic thoracic images at the five

airflow rates independently.

4.2 Materials and Methods

4.2.1 Subjects and Material

At airflow rates of 0.3, 0.7, 1.0, 1.3 and 1.7 l/s, we recorded lung sounds over the posterior chest of

four lung-healthy subjects. The subjects held the pneumotachograph with both hands and wore a

nose clip. The subjects were instructed to breathe steadily during inspiration at the given airflow

rate and with natural breathing during expiration. The subjects were placed on the pad with a

defined distance d ≈ 7 cm between the 7th cervical vertebra (C7) and the center line of the topmost

row of sensors. Figure 4.1 shows examples of phonopneumograms (overlapping illustration of lung

sounds and airflow signals) for one subject, recorded with sensor 12 [69]. The recording material

of one subject consists of 16-channel lung sound recordings at five different airflow rates, with 4-8

breathing cycles within 30 seconds, respectively. The subjects were four male volunteers, with no

diagnosed lung diseases and with the following metadata: age (27, 27, 26, 27 years), weight (78,

75, 75, 75 kg) and height (1.8, 1.78, 1.89, 1.72 m).

Our multi-channel recording front-end is robust against ambient noise. However, in lung sound

recordings, interfering signals are caused by the heart, bowels, and body movement. These can

distort the signal energy values from lung sound signals. To ensure uncontaminated lung sound

recordings, we manually labeled the sections containing heart, bowel and other interfering sounds.
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Figure 4.1: Phonopneumograms of sensor 12 from one subject for different maximum inspiratory airflow
values (0.3, 0.7, 1.0, 1.3 and 1.7 l/s) [69].
Legend: – Lung Sound Recording; – Airflow of Pneumotachograph

4.2.2 Signal Energy Calculation

We applied a bandpass filter, with a lower cut-off frequency fL = 150 Hz and an upper cut-off

frequency fH = 250 Hz, to the 16 lung sound signals. To calculate the energy, we used a sliding

window with a length of 50 ms and an overlap of 75 %.

4.2.3 Acoustic Thoracic Images

To illustrate the regional distribution of the lung sound energy, we use acoustic thoracic images. We

generate the images for the left and the right hemithorax independently. In particular, we use the

energy signal of the left-sided (Sensors 3, 4, 7, 8, 11, 12, 15 and 16) and right-sided sensors (Sensors

1, 2, 5, 6, 9, 10, 13 and 14), respectively. To generate an acoustic thoracic image at a certain airflow

rate, we used the appropriate segments of the recording. We average the energy values of all the

uncontaminated segments, i.e. labeled as free of interfering sounds (cf. Section 4.2.1), where the

subjects reached the proper airflow rate. For the interpolation between the energy values, which

we obtained from the eight sensor signals, we use the biharmonic spline interpolation. This results

in grayscale acoustic thoracic images (cf. Figure 4.4). The white color indicates the minimum

value and the black color the maximum value.

– 39 –



4 Impact of Airflow Rate on Normal Lung Sounds

4.3 Results

4.3.1 Amplitude

Figure 4.2 shows the square root of the sound energy as a function of airflow rate for all of the

four subjects independently. We performed linear regression for the values from each subject

independently. The coefficients of determination are R2 = [0.98, 0.96, 0.99, 0.99] for Subject 1,

Subject 2, Subject 3, and Subject 4, respectively.
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Figure 4.2: Square root of the sound energy
√
E as a function of airflow rate for all four subjects.

Figure 4.3 shows the spectral characteristics (i.e. PSD) of the lung sounds at different airflow

rates, generated from the lung sound recording of Sensor 6 (see Figure 3.2) from Subject 1. With

increasing airflow rate the signal energy increases, resulting in a better SNR. The limiting factor

in the higher frequency range is the noise floor of the microphone. For an airflow rate of 0.3 l/s,

we observe frequency components up to f ≈ 1.2 kHz. For an airflow rate of 1.7 l/s, we observe

frequency components up to f ≈ 2.5 kHz.
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Figure 4.3: Spectral characteristics of the lung sounds at different airflow rates, generated from the lung sound
recording of Sensor 6 (see Figure 3.2) from Subject 1.
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4.3.2 Regional Distribution

Figure 4.4 shows the acoustic thoracic images of the four subjects, evaluated at five different airflow

rates. In each acoustic thoracic image, the white and black color indicate the lowest and highest

energy value of the respective recording. For an airflow rate of 0.3 l/s, we observe that most of the

energy is in the middle right area. Already for an airflow rate of 0.7 l/s, the lung sound energy

is higher towards the base of the lungs. Above an airflow rate of 0.7 l/s, the regional distribution

remains highly similar.

Subject 1

Subject 2

Subject 3

Subject 4

R L R L R L R L R L

R L R L R L R L R L

R L R L R L R L R L

R L R L R L R L R L

0.3 l/s 0.7 l/s 1.0 l/s 1.3 l/s 1.7 l/s

Figure 4.4: Acoustic thoracic images from four lung-healthy subjects, evaluated at five different airflow rates.
The orientation is indicated by the capital letters R (right hemithorax) and L (left hemithorax).

Table 4.1 shows the energy distribution over either left and right, or upper and lower hemithorax.

For this, we summed up the energy from the eight sensors over the respective hemithorax at the

different airflow values, respectively. We report the mean and standard deviation from the four

subjects. The signal energy over the left hemithorax is distinctly higher than over the right one.

This is further reflected in the acoustic thoracic images, especially above an airflow rate of 0.3 l/s.

We also observe that with increasing airflow rate the energy over the left hemithorax increases.

Regarding the ratio of the upper to lower hemithorax, for an airflow value of 0.3 l/s the energy in

the upper one is higher. With increasing airflow, the value for the lower hemithorax increases, but

for 1.7 l/s it decreases again.
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Table 4.1: Energy distribution over either left and right, or upper and lower hemithorax.

0.3 l/s 0.7 l/s 1.0 l/s 1.3 l/s 1.7 l/s

Left 53±8 % 62±9 % 59±3 % 62±3 % 65±7 %

Right 47±8 % 38±9 % 41±3 % 38±3 % 35±7 %

Upper 56±13 % 43±5 % 34±3 % 33±4 % 40±1 %

Lower 44±13 % 57±5 % 66±3 % 67±4 % 60±1 %

4.4 Discussion and Conclusion

To compare our findings with those in [74], we used a similar bandpass filter, with a lower cut-off

frequency fL = 150 Hz and an upper cut-off frequency fH = 250 Hz (see Section 4.2.2). Although

we lose important information from the signal in the higher frequency range, due to the dominance

of the signal energy in the low frequency range, a higher cut-off frequency fH would not have a

huge impact on the acoustic thoracic images. According to Figure 4.3 a bandpass filter with an

upper cut-off frequency of fH ≈ 600 Hz could be considered.

Our findings regarding amplitude and regional distribution of lung sounds correspond most

closely with those in [74], although we recorded the lung sounds in supine position. The authors

in [78] already observed that, compared with sitting, the supine position does not cause a sub-

stantial change in lung sound intensity. The authors in [76] also observed a constant regional

distribution for RATHIs at airflow rates of 1.0, 1.5 and 2.0 l/s. The authors in [74] showed the

same for Vibration Response Images at airflow rates of 1.0, 1.3 and 1.7 l/s. Regarding the relation-

ship between airflow rate and the square root of lung sound energy (see Section 4.3.1), the authors

in [74] achieved for linear regression a coefficient of determination of R2 = 0.95.

Limitations of our experiment are the small number of subjects and the lack of female subjects.

To conclude this chapter, we summarize our observations as follows. We observe a linear depen-

dence between airflow rate and lung sound amplitude. In our recordings, the signal energy from

lung sounds over the left hemithorax is distinctly higher than from those over the right one. Above

an airflow rate of 0.7 l/s, we observe a constant regional distribution for the lung sound energy.

Although we recorded lung sounds on the posterior chest in supine position instead of sitting, our

findings match most closely with those in [74].
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5
Clinical Trial -

Multi-channel Lung Sound Database

We conducted a clinical trial for the recording of a multi-channel lung sound database. The

clinical trial design is described in Section 5.1 and the considered lung diseases in Section 5.2. The

resulting database, which we used for our experiments in Chapter 8 and Chapter 9, is presented

in Section 5.3.

5.1 Clinical Trial

We performed a prospective monocentric medical device clinical trial. Details are presented in the

following subsections.

5.1.1 Inclusion Criteria, Exclusion Criteria, Proband and Patient Enrollment

The minimum age of participants was 18 years and the gender ratio was balanced. We included

non-smokers as well as smokers. Patients diagnosed with pneumothorax or IPF, and subjects

from the lung-healthy control group were included. The control group was allowed to have a

COPD lower or equal stage 2 according to the COPD GOLD criteria. Individuals with a body

mass index (BMI)>30, a thorax surgery, or intubated and tracheostomy patients were excluded

as prospective study candidates. Furthermore, in the control group, only individuals without

respiratory system diseases and without prescriptions of medication influencing the respiration

system were included. Pregnant and breastfeeding women were excluded.

Access to patients was granted by the Division of Thoracic and Hyperbaric Surgery and the

Division of Pulmonology at the Medical University of Graz (MUG).

5.1.2 Examination of a Subject

The examination workflow is illustrated in Figure 5.1. For the participation in the study, the

subjects had to give written and oral consent. During a first screening they were assigned to one

of the three groups2, i.e. to lung-healthy, pneumothorax, or IPF. Then, subject data was gathered,

2 Pathological subjects were diagnosed by a qualified physician before inclusion.
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including age, gender, height, weight, and BMI. Following this, several medical investigations3 were

carried out, such as blood pressure reading, pulse measurement, oxygen saturation measurement,

lung auscultation, and lung function testing. The last part of the screening was the anamnesis.

If the subject was still eligible for further participation, we continued with the study specific

interventions. This included the gathering of study data and the recording of lung sounds at

different airflow values over 30 seconds, respectively.

Informed Consent Screening Examination

Written and oral
consent

+
Signature of the
subject/patient

- Assignment to a group
- Gathering of subject data

- Differing examinations
- Spirometry
- Anamnesis

Gathering of
study data

+
Recording of
lung sounds

Figure 5.1: Examination workflow for the clinical trial.

5.1.3 Benefit and Risk Assessment

The risk associated with the clinical trial was very low. The measurement procedure caused ex-

tremely low inconvenience for the subjects. A physician was present during the entire examination.

For a detailed assessment of the risks related to our MLSRD, we performed a risk analysis dur-

ing the development process of the device. Furthermore, we implemented appropriate hardware

improvements to keep potential risks in an acceptable range. In general, the risk-benefit bal-

ance can be assessed positively due to the implemented precautions and the low potential risk of

complications associated with the recording procedure.

5.1.4 Statistical Methodology and Analysis

The task from a statistical point of view is the modeling of data. We want to distinguish between

normal and abnormal lung sounds using statistical models. To successfully approach this task, we

tried to collect adequate data. Several physiological features have a minor effect on lung sounds,

such as gender, subcutaneous fat layer, and age [79–81]. Although these impacts are small, we

considered the following groups:

• Uniform distribution of study participants over gender (male, female).

• Age is subdivided into three groups, i.e. 18 to 39 years, 40 to 59 years, and >60 years.

• Body mass index is categorised into three groups, i.e. BMI <20, 20 to <25, and 25 to <30.

3 Within this thesis, we consider only the acoustic signals for classification, i.e. only the lung sounds. For this
reason, we do not provide further details on the gathered data from the medical investigations.
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The combination of all groups results in 18 categories. We aimed to include two subjects per

category. Hence, the control group consists of 36 subjects. For the categories pneumothorax and

IPF, we aimed to record 10 patients per disease, respectively. Due to the influence of airflow rate on

the characteristics of lung sounds, we conducted several recordings at different airflow rate for each

subject. In total, we aimed to record data from 56 individuals. The number of subjects included in

the clinical trial is based on available resources and not on classical sample size considerations, i.e.

it is a realistic estimate of the number of recruitable patients. From a machine learning perspective,

the amount of data should be as large as possible to obtain well-performing models.

5.1.5 Documentation and Data Management

A screening and enrollment log was completed for all eligible and non-eligible subjects. A case

report form (CRF) was filled out and signed by the principal investigator or co-investigator after

inclusion of the subjects. All entries were checked by authorised personnel (i.e. Monitor).

5.1.6 Ethical and Legal Aspects

Informed consent of subjects: All subjects/patients had to give oral and written consent in

order to participate in the study.

Ethics and legal requirements: We ensured that the clinical trial was conducted in full con-

formance with the principles of the Declaration of Helsinki. Furthermore, the following guidelines

and laws were addressed:

• Austrian medical device act (as actual amended)

• Good clinical practice (EN ISO 14155)

• ICH-GCP guidelines

• Council Directive 93/42/EEC

Acknowledgment / approval of the clinical investigation: The clinical trial was approved

by the Ethics Committee of the Medical University of Graz (Reference number: 28-088 ex 15/16).

Insurance: The subjects were insured during their participation in the clinical trial according to

legal requirements.
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5.2 Considered Lung Diseases

5.2.1 Idiopathic Pulmonary Fibrosis

In IPF, scars are formed in the lung tissue. Early diagnosis and a timely therapy is crucial for a

successful treatment [82], i.e. any delay leads to a higher mortality rate [83]. According to [84],

the incidence of IPF appears to be on the rise, and prevalence is expected to increase with aging

population. Currently, CT scan is the gold standard for the diagnosis of pulmonary fibrosis.

In terms of auscultation, early markers are velcro crackles present in more than 80% of IPF

patients [82,85]. In particular, inspiratory fine (or velcro) crackles are heard over affected areas [38,

86]. Crackles appear first in the basal areas and with further progression of the disease also in the

upper areas of the lung [85]. The authors of [85] promote the assessment of velcro crackles by

lung auscultation as the only realistic means for early detection. The recent success to slow down

the disease progression renders this even more relevant.

5.2.2 Pneumothorax

A pneumothorax is a condition with an abnormal collection of air in the pleural space. The gold

standard for diagnosis of pneumothorax is currently the CT scan [87]. This is often replaced by

ultrasound. However, the diagnosis with lung X-ray carries the risk of an occult pneumothorax

resulting in high uncertainty of this examination modality [88].

The presence of a pneumothorax has significant impact on the characteristics of lung sounds,

since the resonance chamber within the hemithorax is altered [89]. Auscultatory findings are

subdued or absent lung sounds over the affected area [40].

5.3 Multi-channel Lung Sound Database

Due to recruitment problems, we were not able to fill all the categories as intended according to

Section 5.1.4. We included in total 24 subjects, i.e. 16 lung-healthy subjects, seven IPF patients,

and one pneumothorax patient. Due to just a single pneumothorax subjects, we excluded this

category from the final datasets. An overview on the clinical trial subjects is given in Table 5.1.

For the measurements, we defined the distance between the 7th cervical vertebra (C7) and the

center line of the topmost row of sensors as d ≈ 10 cm. Minor variations in favour of better sensor

attachment were possible. For each subject, we included 16-channel lung sound recordings at two

different maximum inspiratory airflow values. This results in two 16-channel lung sound recordings

at varying airflow rates for each of the 23 subjects, with several breathing cycles within 30 seconds,

respectively. During the measurements, we did not try to enforce having the same airflow values

for each subject, because this could have resulted in discomfort for some of the pathological ones.

Instead, the given maximum inspiratory airflow values were specified depending on the acceptability

of the subjects, ranging from shallow to deep breathing. We picked the included measurements by

having random airflow value above 0.5 l/s.
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Table 5.1: Subject and measurements contained in the multi-channel lung sound database [90].

Subject # Gender Age Height Weight BMI Category Max. Insp. Airflow [l/s]

1 male 27 178 78 24.6 lung-healthy 1.0 & 1.5

2 male 42 167 62 22.2 lung-healthy 1.0 & 1.3

3 male 26 189 75 21.0 lung-healthy 1.0 & 1.2

4 male 30 193 74 19.9 lung-healthy 1.2 & 1.5

5 male 27 173 85 28.4 lung-healthy 1.0 & 1.3

6 male 23 193 70 18.8 lung-healthy 0.6 & 1.0

7 male 41 180 97 29.9 lung-healthy 0.5 & 1.2

8 male 28 172 82 27.7 lung-healthy 0.5 & 1.0

9 male 53 180 80 24.7 lung-healthy 0.7 & 1.7

10 male 43 178 78 24.6 lung-healthy 1.5 & 2.0

11 female 30 166 58 21.0 lung-healthy 1.0 & 1.2

12 female 24 172 73 24.7 lung-healthy 0.7 & 1.3

13 female 27 172 56 18.9 lung-healthy 0.7 & 1.5

14 female 53 160 69 27.0 lung-healthy 0.5 & 0.7

15 female 30 160 50 19.5 lung-healthy 0.5 & 1.0

16 female 43 163 60 22.6 lung-healthy 1.2 & 1.5

17 male 76 184 92 27.2 IPF 0.8 & 1.0

18 male 60 175 82 26.8 IPF 1.0 & 2.0

19 male 79 175 75 24.5 IPF 1.0 & 1.2

20 male 74 187 83 23.7 IPF 1.0 & 1.2

21 male 71 178 80 25.2 IPF 0.7 & 0.8

22 male 74 169 74 25.9 IPF 0.7 & 1.0

23 female 76 158 53 21.2 IPF 0.5 & 1.0
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6
Deep Neural Networks

In this chapter, we provide some basics for Chapter 7, 8, and 9. In Section 6.1, we introduce sev-

eral deep neural network (DNN) architectures, such as MLPs, vanilla RNNs, long short-term

memory (LSTM) networks, gated recurrent units (GRUs), bidirectional recurrent neural net-

works (BiRNNs), and CNNs. Furthermore, in Section 6.2, we discuss some regularization methods

for neural networks, including virtual adversarial training (VAT), dropout, and noise injection.

Some parts of this chapter were published in the IEEE Transactions on Biomedical Engineering

in 2018 under the title of “Heart Sound Segmentation - An Event Detection Approach using Deep

Recurrent Neural Networks” [91]. Furthermore, some parts are also contained in the IEEE Journal

of Biomedical and Health Informatics (submitted 2019) under the title of “Multi-channel Lung

Sound Classification with Convolutional Recurrent Neural Networks” [90]. As minor modifications,

we changed some wordings, added some sentences, and updated the figures.

6.1 Neural Network Architectures

6.1.1 Multilayer Perceptrons

MLPs [92] are the simplest type of artificial neural networks. In an MLP, information flows forward

through the network, i.e. the output of the model is not fed back into itself. Equations (6.1-6.2)

describe the MLP mathematically.

hlf = g(Wl
xx

l
f + blh) (6.1)

yf = m(Wyh
L−1
f + by) (6.2)

It consists of several layers L, with l ∈ {1, ..., L − 1} being the index of the hidden layers. For a

frame-wise processing, f ∈ {1, ..., F} indicates the frame index, i.e. the processing at a certain time

step, with F being the number of frames. In a first step, the dot product Wl
xx

l
f and the bias term

blh are summed up, with xlf being the input vector and Wl
x the input weight matrix. Following

this, a non-linear function g(·) is applied to obtain the hidden states hlf , which are used as input

for the next hidden layer xl+1
f . The states of the last hidden layer hL−1

f are fed into the output

layer. According to Equation (6.2), the sum between the dot product Wyh
L−1
f and the bias term
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Figure 6.1: Flow graph of an MLP with two hidden layers.

by is computed, with Wy being the output weight matrix. With a non-linear function m(·) the

output yf is obtained. A deep MLP is formed by stacking several hidden layers. The network is

trained with back-propagation by using a differentiable cost function.

MLPs can be used to process sequential input, by classifying successive short time frames of the

sequence. In the simplest case, classification of the single frames happens independently from each

other. One exemplary approach to incorporate information of neighbouring frames would be an

appropriate feature extraction.

6.1.2 Recurrent Neural Networks

More suitable models to process sequential input and to learn long temporal dependencies within

the data are RNNs [93]. Several RNN architectures exist, including vanilla RNNs, LSTM net-

works [94, 95], and gated recurrent neural network (GRNN) [96,97]. In contrast to vanilla RNNs,

LSTMs and GRNNs can model longer temporal dependencies. GRNNs are simplifications of

LSTMs, which achieve comparable performance with less parameters.

Vanilla Recurrent Neural Network

The flow graph of a vanilla RNN hidden layer is shown in Figure 6.2. The output of a hidden

recurrent layers hlf is computed as

hlf = g(Wl
xx

l
f + Wl

hh
l
f−1 + blh). (6.3)

First of all, the dot product Wl
xx

l
f , the projected previous hidden state Wl

hh
l
f−1, and the bias

term blh are summed up. xlf is the input vector, hlf−1 the previous recurrent hidden state vector,

Wl
x the input weight matrix, and Wl

h the hidden weight matrix. The output of the hidden layer
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hlf is obtained with a non-linear function g(·). The output of the RNN is computed according to

Equation (6.2).

x

h

g

Wx Wh

bh

f

f

hf –1

Figure 6.2: Flow graph of a vanilla RNN hidden layer.

Long Short Term Memory Networks

LSTMs [94, 95] are temporal recurrent neural networks using memory cells to store temporal

information. In contrast to RNNs, LSTMs have memory cells, which store or erase their content

using input gates i or forget gates u. An additional output gate o is used to access this information.

Figure 6.3 shows the flow-graph of an LSTM layer.
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Figure 6.3: Flow graph of a LSTM hidden layer [98]. if , uf , and of are the input, forget and output states,
respectively. cf denote the memory cell and c̃f the new memory cell content.

In Equations (6.4-6.9), the network is described mathematically. The input states ilf are calcu-

lated by applying a sigmoid function σ to the sum of the dot-product of the input weight matrix

Wl
xi and the inputs xlf , the projected previous hidden states Wl

hih
l
f−1 and the bias vector bli of

layer l (cf. Equation 6.4). The forget states ulf (cf. Equation 6.5) and output states olf (cf. Equa-

tion 6.6) are computed in a similar way, except using individual forget matrices Wl
xu,W

l
hu and the

forget bias vector blu and output matrices Wl
xo,W

l
ho and the output bias vector blo, respectively.
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The new memory states c̃lf are obtained by applying a tanh activation function on the sum of

the projected inputs Wl
xcx

l
f , previous hidden memory states Wl

hch
l
f−1 and the bias vector blc in

Equation (6.7). The memory cell states clf are updated by the previous memory states clf−1 and

c̃lf (cf. Equation (6.8)), weighted by the forget states ulf and the input state ilf , respectively (�
denotes an element-wise product). The outputs hlf are computed with the current memory states

tanh(clf ) and the output states olf in Equation (6.9).

ilf = σ(Wl
xix

l
f + Wl

hih
l
f−1 + bli) (6.4)

ulf = σ(Wl
xux

l
f + Wl

huh
l
f−1 + blu) (6.5)

olf = σ(Wl
xox

l
f + Wl

hoh
l
f−1 + blo) (6.6)

c̃lf = tanh(Wl
xcx

l
f + Wl

hch
l
f−1 + blc) (6.7)

clf = ulf � clf−1 + ilf � c̃lf (6.8)

hlf = olf � tanh(clf ) (6.9)

In classical RNNs, the hidden activation is recomputed at each time-step (cf. Equation 6.3).

LSTMs are able to decide whether to keep or erase existing information with the help of their gates.

If LSTMs detect important features from an input sequence at early stage, they easily carry this

information over a long distance in time, hence, potentially capturing long-distance dependencies.

Gated Recurrent Unit

Gating mechanism in recurrent neural networks are GRUs [96, 97]. They have reset- and update-

gates, which are coupling static and temporal information. The flow graph for GRNN hidden layer

is shown in Figure 6.4. Equations (6.10-6.13) describe a GRNN hidden layer mathematically:

hlf = (1− zlf )� hlf−1 + zlf � h̃
l

f (6.10)

zlf = σ(Wl
xzx

l
f + Wl

hzh
l
f−1 + blz) (6.11)

h̃
l

f = g(Wl
xhx

l
f + Wl

hh(rlf � hlf−1) + blh) (6.12)

rlf = σ(Wl
xrx

l
f + Wl

hrh
l
f−1 + blr) (6.13)

In Equation (6.10), the output states hlf are computed by linearly interpolating between past

states hlf−1 and current information h̃
l

f , using the update-states zlf (� denotes an element-wise

product). The update-states zlf are computed in Equation (6.11) as a sigmoid function of the

weighted input xlf and the past hidden states hlf−1, with weights W and bias term b. The update-

gates z decide to renew the current state of the model. According to Equation 6.12, the states h̃
l

f

are computed by applying a non-linear function g(·) to the input and the previous hidden states

– 51 –



6 Deep Neural Networks

x

̀ ̀

r

+

z

1-

h

Wxz Whz Wxr WhrWxh

Whh

1-z

bz brbh

h~

g

f

f

h f

fff

f

–1

Figure 6.4: Flow graph of a GRNN hidden layer [91,98]. The reset and update states are rf and zf , and hf
and h̃f denote the activation and the candidate activation, respectively.

hlf−1. The reset state rlf is computed with a sigmoid function of the current input xlf and the past

states hlf−1 (cf. Equation (6.13)). It enables to delete the current state of the model, allowing to

forget the previously computed information. The output of the GRNN is computed according to

Equation (6.2).

Bidirectional Recurrent Neural Networks

Extensions of conventional RNNs are their bidirectional implementations [99]. In addition to past

information, BiRNNs exploit future information as well. This is achieved by processing data in

both directions with two separate hidden layers (see Figure 6.5). BiRNNs combined with GRNNs

are bidirectional gated recurrent neural networks (BiGRNNs) [30]. Due to simplicity, we explain

the extension to a bidirectional network just for the vanilla RNN.

Equations (6.14-6.16) describe a BiGRNN mathematically.

−→
h l
f = g(Wl

x
−→
h
xlf + Wl−→

h
−→
h

−→
h l
f−1 + bl−→

h
) (6.14)

←−
h l
f = g(Wl

x
←−
h
xlf + Wl←−

h
←−
h

←−
h l
f−1 + bl←−

h
) (6.15)

yf = m(W−→
h y

−→
h L−1
f + W←−

h y

←−
h L−1
f + by) (6.16)

g(·) and m(·) are non-linear functions, and W and b denote the weights and bias terms. The

forward hidden sequence
−→
h l
f is generated by processing the data in the forward layer from f = 1

to F . The backward hidden sequence
←−
h l
f is generated by processing the data in the backward

layer from f = F to 1. Both hidden sequences
−→
h l
f and

←−
h l
f are fed to the next hidden layer l + 1.

The hidden activations
−→
h L−1
f and

←−
h L−1
f of the last hidden layer L− 1 are fed to the output layer

(cf. Equation (6.16)).
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Figure 6.5: Bidirectional recurrent neural network [30].

6.1.3 Convolutional Neural Networks

CNNs are feedforward neural networks, which are used to process data that has a known grid-like

topology, such as time series (1-dimensional) and image data (2-dimensional) [92]. They are widely

applied in computer vision and audio processing [100].

CNNs consist of three different types of layers, i.e. convolutional layers, pooling layers, and fully-

connected layers. Figure 6.6 illustrates the convolutional layer and the pooling layer conceptually.

input
layer

N×N

convolutional
layer

(N-m+1)×(N-m+1)

subsampling
layer

N−m+1
n ×N−m+1

n

Figure 6.6: Schematic illustration of a convolutional layer (with K = 5 feature maps) and a subsampling
(pooling) layer.

We consider an N × N input layer (e.g. a grayscale image), followed by a convolutional layer.

The convolutional layer performs an image convolution of the input layer. An m × m kernel

(filter), with a stride of one, results in a feature map (i.e. convolutional layer output) with the

size (N − m + 1) × (N − m + 1). Zero padding beyond the borders of the input image can be

used to retain the original shape N ×N . Each convolutional layer consists of several feature maps

K. Equation 6.17 describes the operations to obtain the feature map k ∈ {1, ...,K} in layer l
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mathematically.

hklij = g(Wkl ∗Xl
ij + blk) (6.17)

A section of the input image Xl, with size m×m and position i, j ∈ {1, ..., N−m+1}, is convolved

with a kernel Wkl, and a bias term blk is added. The activation hklij is obtained after applying a

non-linear function g.

The convolutional layer can be followed by a subsampling layer, which replaces the output

of the convolutional layer at a certain location with a summary statistic of the nearby outputs.

Different pooling methods exist, such as max pooling, average pooling, and L2 norm pooling. In

max pooling the maximum output within a rectangular n× n neighborhood is obtained. Given a

previous layer with dimensions (N −m+ 1)× (N −m+ 1), the output of a max pooling layer is

a N−m+1
n × N−m+1

n layer. With pooling, the representations get approximately invariant to small

translations of the input [92].

After several convolutional and subsampling layers a fully-connected layer is used.

6.2 Regularization

Deep neural networks usually require many training samples. To prevent overfitting on small

datasets, we consider three different approaches for regularization to improve the ability of the

models to generalize to test data, i.e. virtual adversarial training, dropout, and noise injection.

6.2.1 Virtual Adversarial Training

VAT [101,102] is a regularization method that makes the model robust against adversarial pertur-

bations [103,104]. It promotes local smoothness of the posterior distribution p(yf |xf ) with respect

to xf . The posterior distribution, or more precisely the softmax activation of the network output

hlf , should vary minimally for small, bounded perturbations of the input xf . The adversarial

perturbation δf is determined on frame-level by maximizing the Kullback–Leibler (KL)-divergence

(·||·) of the posterior distribution for unperturbed and perturbed inputs, i.e.

δf = arg max
||δ||<ε

KL(p(y|xf )||p(y|xf + δ), (6.18)

where ε > 0 limits the maximum perturbation, i.e. the noisy input xf + δ lies within a radius ε

around xf . The smaller the KL(p(y|xf )||p(y|xf + δf ), the smoother the posterior distribution is

around xf . Instead of maximizing the conditional likelihood p(yf |xf ) of the model during training,

we maximize the regularized objective∑
f

log
(
p(yf |xf )

)
− λ

∑
f

KL(p(y|xf )||p(y|xf + δf )), (6.19)
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where the tradeoff parameter λ and the radius ε have to be selected on a validation set. For further

details regarding the implementation, we refer to [101]. Tunable parameters are the number of

iterations Ip, the radius ε, and the tradeoff parameter λ.

6.2.2 Dropout

The idea of dropout is to randomly drop units from the neural network during training [105]. In

this work, we consider input dropout applied on the hidden layers. Due to simplicity, we show

dropout just for the vanilla RNN. Equations (6.20-6.22) describe the feed-forward operation of

the network with dropout.

vl ∼ Bernoulli(p) (6.20)

x̃lf = vl � xlf (6.21)

hlf = g(Wl
xx̃

l
f + Wl

hh
l
f−1 + bl) (6.22)

For any hidden layer l ∈ {1, ..., L−1}, vl is a vector of independent Bernoulli random variables, each

having a probability p of being 1, with p = [p, p, ..., p]T . The vector vl is multiplied element-wise

with the inputs of the layer xlf , to create the thinned inputs x̃lf . The thinned inputs are then used

as inputs to the current layer. For training, the derivatives of the loss function are backpropagated

through the sub-network. For testing, the network is used without dropout and the weights are

scaled as Wl
x,test = pWl

x.

6.2.3 Noise Injection

Noise injection to the inputs of a neural network can be considered as a form of data augmen-

tation [92]. The authors in [106] showed that noise injection can be very effective if the noise

magnitude is carefully tuned. Dropout (see Section 6.2.2) can be considered as a process of con-

structing new inputs by using a particular type of noise [92]. We add zero mean Gaussian noise to

the inputs xf and the hidden units during training. Standard deviation and noise level are tuned.
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7
Excursion to Heart Sound Segmentation

Due to a large public available heart sound dataset, including appropriate labeling of events, we

made an excursion to heart sound segmentation to start the development of an event detection

framework. The idea is to apply the framework for event detection in lung sounds afterwards

(see Section 8). In the context of lung sound analysis, we consider heart sounds as noise. In our

MLSRD, we use a high-pass filter to remove the main components of disturbing heart sounds (cf.

Section 3.3.1). The dominant frequency range of lung sounds is between 150 Hz and 2 kHz and

that of heart sounds is below 150 Hz [4].

This chapter is organised as follows. After a short introduction in Section 7.1, we present the

proposed processing framework for heart sound segmentation in Section 7.2. We describe the heart

sound dataset in Section 7.3 and the feature extraction in Section 7.4. Before showing our experi-

ments and results in Section 7.6, we describe the evaluation metrics in Section 7.5. We discuss the

results and conclude this chapter in Section 7.7.

This chapter was published in the IEEE Transactions on Biomedical Engineering in 2018 under

the title “Heart Sound Segmentation - An Event Detection Approach using Deep Recurrent Neural

Networks” [91]. We made minor modifications regarding some wordings and figures.

7.1 Introduction

Computer-aided heart sound analysis can be considered as a twofold task: segmentation and

subsequent classification. The accurate segmentation of the fundamental heart sounds, or more

precisely of the state-sequence first heart sound (S1) - systole - second heart sound (S2) - diastole, is a

challenging task. In heart sound recordings of healthy adults, only S1 and S2 are present. However,

extra heart sounds (S3 and fourth heart sound (S4)) can occur during diastole, i.e. in the interval

S2-S1, and heart murmurs during systole, i.e. in the interval (S1-S2), and/or diastole, as shown in

Figure 7.1. Furthermore, the corruption by different noise sources (e.g. motion artefacts, ambient

noise) and other body sounds (e.g. lung sounds, cough sounds) renders the segmentation even

more challenging. According to [107], existing heart sound segmentation methods are classified

into four groups: envelope-based methods [108–113], feature based methods [114–120], machine

learning methods [121–127], and HMM methods4 [128–134]. The authors in [134] introduced a

4 We would rather include HMM methods in the machine learning category.
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logistic regression hidden semi-Markov model (LR-HSMM) to predict the most likely sequence of

states in the order of S1 - systole - S2 - diastole, using a priori information about expected durations

of the heart sound states. In experiments, they achieve an average F-score of F1 = 95.63 % on

an independent test set. Due to the significant improvement in comparison to other reported

methods in the literature, it is considered as the state-of-the-art method by the authors in [107].

A more extensive evaluation of the algorithm on the 2016 PhysioNet/CinC Challenge data [107] is

presented in [135]. The authors report an average F-score of F1 = 98.5 % for segmenting S1 and

systole intervals and F1 = 97.2 % for segmenting S2 and diastole intervals. They observe detection

errors especially in the situations of long heart cycles and irregular sinus rhythm. Also, the authors

in [127] point out that the LR-HSMM-method [134] may be unsuitable for the segmentation in

recordings with cardiac arrhythmia. Their main objective is to investigate if S1 and S2 can be

detected without using a priori information about the state duration. They propose a machine

learning approach with an MLP in combination with mel frequency cepstral coefficients (MFCCs)-

features for S1 and S2 heart sound recognition. Using the K-means algorithm, they cluster the

MFCC features into two groups to refine their representation and discriminative capability. The

refined features are then fed to an MLP. In experiments with a relatively small dataset, the

authors show that S1 and S2 can be detected with an accuracy of 91 %, outperforming well-known

classifiers such as k-NN, GMMs, logistic regression, and SVMs.

Within this chapter, we exploit spectral information and temporal dependencies of heart sounds

for heart sound segmentation. To this end, we propose an acoustic event detection approach with

deep recurrent neural networks (DRNNs) [97,98,136]. RNNs are suitable to process sequential input

of variable length, and learn temporal dependencies within the data [30, 137]. They are already

used for heart sound classification [138–140], but to the best of our knowledge, not specifically

for heart sound segmentation. Compared to the LR-HSMM-method [134], we do not directly

S1 S1 S1 S1 S1S2 S2 S2 S2

S1 S1 S1S2 S2 S2S3 S3 S3

S1 S1 S1 S1S2 S2 S2 S2Murmur Murmur Murmur Murmur

a)

b)

c)

Figure 7.1: Examples of heart sound recordings: a) cardiac arrhythmia, b) extra (third) heart sound S3,
and c) heart murmur (mitral valve prolapse). The marked events are first (S1), second (S2) and
third (S3) heart sounds and heart murmurs.
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incorporate a priori information about the state durations, because the model is capable of learning

the temporal dependencies itself. Furthermore, we are flexible regarding the order of occurring

states enabling to additionally model S3, S4 and heart murmurs. In acoustic event detection,

sound events are usually detected by onsets and offsets, defining the beginning and ending of a

particular event within an audio recording. It is differentiated between polyphonic and monophonic

event scenarios: In the first case, multiple events can occur at the same time, whereas in the

second case no overlapping events exist. Within this work, we consider heart sound segmentation

as a monophonic event scenario, although heart sound recordings can be contaminated with body

sounds and different noise sources, and therefore represent a polyphonic event scenario. DNNs

show a significant boost in performance when applied to acoustic event detection. In particular,

Gencoglu et al. [141] proposed an MLP architecture for acoustic event detection. Although MLPs

are powerful network architectures, they do not model temporal context explicitly. To account

for temporal structure, LSTM networks have been applied to acoustic keyword spotting [142] and

polyphonic sound event detection [143]. LSTM networks are DNNs capable of modeling temporal

dependencies. Performance in recognition comes at the expense of computational complexity and

the amount of labeled data, required for training. LSTMs have a relatively high model complexity

and parameter tuning is not always simple. A simplification of LSTMs are GRNNs, which have

fewer parameters, but achieve comparable performance. Due to this fact, we focus on GRNNs for

the accurate segmentation of fundamental heart sounds, or more precisely of the state-sequence

S1 - systole - S2 - diastole. GRNNs already show promising results for acoustic event detection [31].

To exploit future information as well, and not just information from the past, we also consider

bidirectional recurrent neural networks [99].

In particular, we extract spectral and envelope features from heart sounds and investigate the

performance of different DRNN architectures to detect the state-sequence, i.e. acoustic events. We

use data from the 2016 PhysioNet/CinC Challenge [107], containing heart sound recordings and

annotations of the heart sound states. Our main contributions and results are:

• We compare different recurrent neural network architectures.

• We evaluate BiGRNNs in combination with VAT, dropout and data augmentation for regu-

larization.

• We show state-of-the-art performance on the 2016 PhysioNet/CinC Challenge dataset.

7.2 Audio Processing Framework

Figure 7.2 shows the basic steps of our heart sound segmentation framework. Given the raw audio

data xt = [x1, . . . , xT ], we extract a sequence of feature frames xf ∈ RD, where f ∈ {1, ..., F}

feature
extraction DRNN arg max

x1 . . . xT x1 . . .xF ỹ1 . . . ỹF event-sequence

Figure 7.2: Heart sound segmentation framework.
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is the frame index, with F indicating the number of frames. These feature frames are processed

by a multi-label DRNN with a softmax output layer. The index of the maximum value (arg

max ) of the real-valued output vector ỹf determines the event class per frame, resulting in a

sequence of frame labels as output. Consecutive identical frame labels are grouped as one event. A

schematic illustration of the frame-wise single-channel lung sound processing framework is shown

in Figure 7.3.

single-channel heart
sound recordings
(anterior chest,
several seconds)

feature
extraction

input
layer

recurrent layers

output
layer

no signal
S1

systole

S2
diastole

Figure 7.3: Frame-wise single-channel heart sound processing framework with a recurrent neural network.

7.3 Material - Heart Sound Database

7.3.1 Heart Sound Database

For the experiments within this section, we use heart sounds from the 2016 PhysioNet/CinC

Challenge [107]. The dataset is a collection of several heart sound databases from different research

groups, obtained in different real-world clinical and nonclinical environments. It contains recordings

from normal subjects and pathological patients, which are grouped as follows: Normal control group

(Normal), murmurs related to mitral valve prolapse (MVP), innocent or benign murmurs (Benign),

aortic disease (AD), miscellaneous pathological conditions (MPCs), coronary artery disease (CAD),

mitral regurgitation (MR), aortic stenosis (AS), and pathological (Pathologic). The heart sounds

were recorded at the four common recording locations: aortic area, pulmonic area, tricuspid area,

and mitral area. Due to the fact that the database is a collection of several small databases

from different research groups, the recordings vary regarding several aspects: recording hardware,

recording locations, data quality, and patient types as well as methods for identifying gold standard

diagnoses. For further details, we refer to [107].

The training set includes data from six databases, with a total of 3153 heart sound recordings

from 764 subjects/patients (see Table 7.1). The recordings are sampled with fs = 2 kHz and vary

in length between 5 s and just over 120 s. The dataset is unbalanced, i.e. the number of normal

recordings differ from that of abnormal recordings. Besides a binary diagnosis (-1=normal, 1=ab-

normal) for each heart sound recording, the challenge dataset further provides annotations for the

heart sound states (S1, systole, S2, diastole). The annotations were generated with the LR-HSMM-

based segmentation algorithm [134] (trained on PhysioNet (PN)-training-a) and further manually
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7 Excursion to Heart Sound Segmentation

Table 7.1: Summary of the dataset (Training data from the 2016 PhysioNet/CinC Challenge) [107].

Challenge set # Patients # Recordings # Beats

PN-training-a 121 409 14559

PN-training-b 106 490 3353

PN-training-c 31 31 1808

PN-training-d 38 55 853

PN-training-e 356 2054 59593

PN-training-f 112 114 4260

Total 764 3153 84426

corrected. The annotations solely generated with the segmentation algorithm and those generated

with the segmentation algorithm and subsequent hand correction, are accessible separately. In total

84426 beats were annotated in the PN-training set (after hand correction).

Because the reference annotations for the four heart sound states were not available for heart

sound recordings marked with unsure (=low signal quality), we excluded these recordings. We

further excluded areas labeled as noisy (labels: ’(N’, ’N)’ ) by setting the respective areas of the

signal to zero (no signal). Table 7.2 shows the resulting number of recordings and beats.

Table 7.2: Summary of the dataset (Training data from the 2016 PhysioNet/CinC Challenge) [107] after
excluding areas labeled as noisy (labels: ’(N’, ’N)’) and files marked as unsure.

Challenge set # Recordings # Beats

PN-training-a 392 14559

PN-training-b 368 3353

PN-training-c 27 1808

PN-training-d 52 853

PN-training-e 1926 59567

PN-training-f 109 4260

Total 2874 84400

7.3.2 Training, Validation, and Test Data

Due to the fact that the original test set from the PhysioNet/CinC Challenge 2016 is not publicly

available so far, we generated a new test-, validation- and training-set out of the original Phys-

ioNet (PN)-training set (see Section 7.3.1). In the test set, we put exclusively PN-training-a and

some recordings from PN-training-b and PN-training-e. For the recordings from PN-training-b

and PN-training-e, we ensured their exclusivity in terms of subject affiliation, i.e. each subject is

either only in the training set or the test set. We selected all recordings from the same subject with

increasing ’Subject ID’ (for PN-training-b) and increasing ’Raw record’ name (for PN-training-e).

This additional information is provided by the online appendix of the database. The resulting test

set contains 764 recordings with 21116 beats in total. From the remaining recordings, we randomly

selected 210 recordings (6135 beats) for the validation set and 1900 recordings (57149 beats) for
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7 Excursion to Heart Sound Segmentation

the training set. Details about the splitting are shown in Table 7.3.

The best way to prevent overfitting in neural networks is to train on more data. Therefore,

we augment the training data by using various audio transformations from SoX [144], similar

as in [145]. We consider the following two transformations to slightly modify the heart sound

recordings:

• Pitch: Change the audio pitch without changing tempo.

• Tempo: Change the audio playback speed but not its pitch.

We modify the recordings from the training set with a pitch shift of ± a semitone, i.e. a fundamental

frequency of 50 Hz varies with approximately ±3 Hz. We modify the time-scale of the recordings

with ±10 %. In total, we get an augmented dataset consisting of 9500 recordings and 285745 beats,

as shown in Table 7.4.

Table 7.4: Augmented training set.

Effect Parameters # Recordings # Beats

Clean 1900 57149

Pitch +semitone 1900 57149

Pitch -semitone 1900 57149

Tempo +10% 1900 57149

Tempo -10% 1900 57149

Total 9500 285745

7.3.3 Labeling

Based on the hand-corrected annotations, we generated the labeling for the state sequence S1 -

systole - S2 - diastole. Due to the shift of 20 ms in our frame-wise processing framework (see Sec-

tion 7.4), we generated a label for each frame from the annotation information. In addition to

the state labeling, we further added the label no signal, for areas with absent signal due to zero-

padding. Figure 7.4 shows an example of a phonocardiogram (PCG) with the five labels.

no signal S1 S1 S1S2 S2 S2sys sys sysdia dia

Figure 7.4: Example of a PCG showing the five possible labels: no signal, first heart sound (S1), systole (sys),
second heart sound (S2), and diastole (dia).
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7.4 Feature Extraction

7.4 Feature Extraction

We resampled the heart sound recordings to a sampling frequency of fs = 1 kHz and removed

direct current (DC) offset with a high-pass filter with a cut-off frequency of fc = 10 Hz (relevant

for PN-training e). We zero-padded the recordings according to the longest one in each set.

For the spectral features, we preprocessed all recordings with a short-time Fourier transform

(STFT) using a Hamming window with window-size 80 ms (=̂ 80 samples) and 75 % overlap (=̂

frame-shifts of 20 ms or 20 samples). To exploit the spectral information of the heart sounds, we

consider the following two types of features:

• Spectrogram: We extract 41-bin log magnitude spectrograms.

• MFCCs: MFCCs are used as features in various acoustic pattern recognition tasks, including

heart sound classification [107] and heart sound segmentation [127].

We extract 20 static MFCC coefficients, 20 delta MFCC coefficients (∆) and 20 acceleration

MFCC coefficients (∆2). This results in a 60-bin vector per frame. We use 20 mel bands

within a frequency range of 0-500 Hz. The width used to calculate the delta and acceleration

MFCC coefficients is 9 frames.

Furthermore, similar as for the LR-HSMM-method [134], we extract feature vectors for 20 ms-

frames with the following features:

• Envelope features [134]: Homomorphic envelope, Hilbert envelope, wavelet envelope and

power spectral density.

All features were normalised to zero-mean unit variance using the training corpus.

7.5 Evaluation Metrics

We perform an event-based evaluation of the results. We define an event as correctly detected if

its temporal position overlaps with the one of an identically labeled event in the hand annotated

ground truth. We allow a tolerance for the temporal onset and offset of ±40 ms (=̂ ±two frame-

shifts of 20 ms), respectively. We determine for all heart sound recordings:

• True positives (TP): Events, where system output and ground truth have a temporal overlap;

• False positives (FP): The ground truth indicates no event that the system outputs;

• False negatives (FN ): The ground truth indicates an event that is not recognised by the

system;

We evaluate the performance of the segmentation algorithm using Precision (Equation 7.1),

Sensitivity (Equation 7.2), and F-score (Equation 7.3). The F-score should be large. For a more

detailed description of the metrics, we refer to [146].

P+ =
TP

TP + FP
(7.1)
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7 Excursion to Heart Sound Segmentation

Se =
TP

TP + FN
(7.2)

F1 = 2 · P+ · Se
P+ + Se

(7.3)

7.6 Experiments and Results

For the experiments5, we built a single multi-label classification system. We initialize the models

with orthogonal weights [147] and use a softmax output gate as output layer. For optimizing the

cross-entropy error (CEE) objective, we use Adam [148]. We perform early stopping, where we

train each model for 200 epochs and use the parameter setting that causes the smallest validation

error for the evaluation of the model. The reported scores are the average values over the events

S1, systole, S2, and diastole. In addition to the average values, we report the scores for each event

independently on the test set for the best setup. The reported scores are results of the validation

set, except for the evaluation of the final setup on the test set in Section 7.6.6.

7.6.1 Comparison of GRNN Network Size

We initiate our experiments with finding an appropriate network size by using GRNNs and MFCC

features. We use rectifier activations for the gated recurrent units. Figure 7.5 shows the results

with varying number of neurons per hidden layer and varying number of hidden layers per model.

For a 2-hidden layer GRNN, we achieved the best score of F1 = 93.5 % with 400 neurons/layer.

For a GRNN with hidden layers of 200 neurons, we achieved the best score of F1 = 93.2% with 4

hidden layers. Due to the small difference regarding the F-score, we choose a network size in favor

of faster training. For the subsequent experiments, we fix the model size to 2 hidden layers, and

200 neurons per layer.

100 200 300 400 500

neurons/layer

92.4

92.6

92.8

93.0

93.2

93.4

93.6

F
-S

co
re

(a) Comparing network size

2 3 4 5 6

layers

92.4

92.6

92.8

93.0

93.2

93.4

93.6

F
-S

co
re

(b) Comparing network depth

Figure 7.5: Comparison of network size: (a) shows the F-scores for a GRNN using {2, ..., 6} hidden layer of
200 neurons. (b) shows the F-score for a GRNN with two hidden layer using {100, 200, ..., 500}
neurons per layer.

5 We conducted experiments using Python with Theano, and CUDA for GPU computing.
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7.6.2 Comparison of GRNN Activation Functions

Table 7.5 shows the results for different activation functions. In particular, we use sigmoid, tanh,

and rectifier non-linearities. Again, we use (2 hidden layer, 200 neurons per layer) GRNNs and

MFCC features. Rectifier functions achieve the best average score, i.e. F1 = 93.0 %. This is

consistent with the literature [149].

Table 7.5: Comparing different activation functions using GRNNs.

Model Features Activation P+(%) Se(%) F1(%)

GRNN MFCCs sigmoid 91.4 92.1 91.7

GRNN MFCCs tanh 92.4 93.3 92.8

GRNN MFCCs rectifier 92.2 93.8 93.0

7.6.3 Comparison of RNN Architectures

Table 7.6 shows the results for different RNN architectures. We compare different models, i.e.

RNNs, LSTMs, GRNNs, and their bidirectional versions, using MFCC features. The model size

for the conventional models is 2 hidden layers and 200 neurons per layer. For the bidirectional

models, we use 2 hidden layers and 100 neurons for the forward and backward layers, respectively.

The bidirectional long short-term memory (BiLSTM) slightly outperforms the other models, by

achieving an average F -Score of F1 = 94.1 %. Due to the small difference between the BiLSTM

and the BiGRNN, we choose the less complex BiGRNN for the subsequent experiments.

Table 7.6: Comparison of different recurrent neural networks architectures using MFCC features.

Model Features P+(%) Se(%) F1(%)

RNN MFCCs 90.2 93.1 91.6

LSTM MFCCs 91.8 93.3 92.5

GRNN MFCCs 92.2 93.8 93.0

BiRNN MFCCs 91.8 94.5 93.1

BiLSTM MFCCs 93.5 94.8 94.1

BiGRNN MFCCs 92.8 94.5 93.7

7.6.4 Comparison of BiGRNN Input Features

Table 7.7 shows the results for BiGRNNs with MFCCs, spectrograms, envelope features, and their

combinations. Best results are obtained with spectrograms, envelope features, and their combina-

tion. The envelope features already show promising results in combination with the LR-HSMMs-

method. For this reason, and with the assumption that spectrograms render the segmentation

more robust against artefacts, we use the combination of spectrogram and envelope features for

the subsequent experiments.
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7 Excursion to Heart Sound Segmentation

Table 7.7: Comparison of MFCCs, spectrogram, and envelope features.

Model Features P+(%) Se(%) F1(%)

BiGRNNs MFCCs 92.8 94.5 93.7

BiGRNNs Spectrogram 95.0 95.7 95.4

BiGRNNs Envelope 95.0 95.9 95.4

BiGRNNs MFCCs + Envelope 93.7 94.6 94.2

BiGRNNs Spectrogram + Envelope 94.9 95.8 95.4

7.6.5 Comparison of Different Regularizers

Table 7.8 shows the results using a BiGRNN with different regularization approaches. For dropout,

we dropped units in the hidden layers during training with a probability of p = 0.1. This value

achieved the best results among p ∈ {0.1, 0.5, 0.7, 0.9}. For VAT, we used the parameter setting

of λ = 0.1, ε = 0.1, and Ip = 1. For noise injection (cf. Section 6.2.3), we added zero mean

Gaussian noise with standard deviation σ = 0.025 and magnitudem = 0.25. For data augmentation

with audio transformations, we used the augmented training set for training (see Table 7.4). All

regularization methods, except for data augmentation with audio transformations, improved the

F-score. In particular, with dropout, we achieve the best result of F1 = 96.1 %.

Table 7.8: Comparison of different regularization methods.

Model Regularizer Parameters P+(%) Se(%) F1(%)

BiGRNN - - 94.9 95.8 95.4

BiGRNN VAT λ = 0.1,
ε = 0.1,
Ip = 1

95.3 96.1 95.7

BiGRNN Dropout p = 0.1 95.8 96.3 96.1

BiGRNN Noise
Injection

σ = 0.025,
m = 0.25

95.4 95.8 95.7

BiGRNN Audio Transformations - 95.0 95.7 95.4

7.6.6 Evaluation of the Final Setup on the Test Set

Table 7.9 shows the results for the best setup (i.e. BiGRNN, 2 hidden layers, 200 neurons per layer,

rectifier activations, spectrogram+envelope features, dropout regularization) evaluated on the test

set. In addition to the metrics from the previous sections, we report in detail the numbers of

reference states Nref (ground truth), system states Nsys (BiGRNN-method), true positives NTP ,

false negatives NFN , and false positives NFP for each event, respectively.
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Table 7.9: Detailed results per event evaluated with the final setup on the test set.

Event Nref Nsys NTP NFN NFP P+(%) Se(%) F1(%)

S1 21115 21271 20659 456 612 97.1 97.8 97.5

Systole 21200 21453 20267 933 1186 94.5 95.6 95.0

S2 21073 21229 20102 971 1127 94.7 95.4 95.0

Diastole 21385 21758 20283 1102 1475 93.2 94.8 94.0

Average 94.9 95.9 95.4

7.6.7 Comparison with the LR-HSMM-method

For this experiment, we remove recordings from the training and test set containing areas with no

signal, because the LR-HSMM is limited to the detection of four events in the order of S1 - systole -

S2 - diastole. This results in 1810 recordings for the training set and 744 recordings for the test

set.

For the LR-HSMM, we preprocess the recordings with resampling to fs = 1 kHz and high-pass

filtering with a cut-off frequency of fc = 10 Hz (cf. Section 7.4). We process the audio signals with

frames of 20 ms. We train the LR-HSMM by using the four feature types provided: homomorphic

envelogram, Hilbert envelope, wavelet envelope, and PSD [134].

Table 7.10 shows the results achieved with the BiGRNN (final setup) compared with the LR-HSMM

method.

Figure 7.6 shows eight examples of automatically segmented heart sound recordings (snippets

of four seconds each). In each subfigure, we show the hand annotated ground truth (GT), the

segmentation with the LR-HSMM method and the segmentation with the BiGRNN. We show

five recordings from PN-Training-a (Figure 7.6a to 7.6e), two recording from PN-Training-b (Fig-

ure 7.6f and 7.6g), and one recording from PN-Training-e (Figure 7.6h). For the visualization, we

normalised each heart sound recording according to its maximum amplitude.

7.7 Discussion and Conclusion

In our experiments, we compare vanilla RNNs, LSTMs, GRNNs, and their bidirectional imple-

mentations, with BiGRNNs outperforming the rest. In subsequent experiments, we find the final

setup using spectrogram and envelope features with a regularized BiGRNN. The network consists

of 2 hidden layers with 200 neurons each and rectifier activations (except for the last layer). Reg-

ularization with dropout achieves the best result. Data augmentation with audio transformations

does not result in any improvement.

In Section 7.6.7, we compare our proposed method with the state-of-the-art, the LR-HSMM-

method. The BiGRNN-method performs on par with the LR-HSMM-method with an overall

F-score of F1 = 95.6 % (cf. Table 7.10). We have to remark that this is not a completely fair

comparison, because the ground truth annotations, although trained on less data (i.e. PN-training-

a) and manually corrected, were generated with the LR-HSMM-method. This may introduce bias
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7.7 Discussion and Conclusion

towards the LR-HSMM-method. Furthermore, the hand annotated ground truth is not always

correct (cf. Figure 7.6a and 7.6h), also being in favor of the LR-HSMM-method and in general

causing distortion in the scores.

Table 7.10 shows detailed results for the test data in terms of PN-training sets and diseases.

We observe that the BiGRNN-method outperforms the LR-HSMM-method for PN-training-a and

PN-training-e, but performs worse for PN-training-b. Regarding the diseases in PN-training-a,

only for MVP the BiGRNN-method outperforms the LR-HSMM-method, and for benign murmurs

(Benign) both methods perform on par. For PN-training-b, the LR-HSMM-method outperforms

the BiGRNN-method for normal and CAD recordings. For normal recordings of PN-training-e,

the BiGRNN-method outperforms the LR-HSMM-method. The LR-HSMM-method is distinctly

better than the BiGRNN-method for the two recordings of CAD in PN-training-e.

The 2016 PhysioNet/CinC Challenge data does not provide any labeling for cardiac arrhythmia.

According to [150], mitral valve prolapse is a source of arrhythmias. We refer to the results

reported for MVP, with the BiGRNN-method (F1 = 93.4 %) outperforming the LR-HSMM-method

(F1 = 91.4 %). Moreover, we visually inspected all test recordings of MVP and found 20 recordings

with cardiac arrhythmia. On this selected set of recordings the BiGRNN-method (F1 = 87.2 %)

outperforms the LR-HSMM-method (F1 = 75.7 %). An example for cardiac arrhythmia for MVP

is shown in Figure 7.6e.

The examples in Figure 7.6 illustrate some observations for both segmentation methods, and

also for the ground truth annotations. Figure 7.6b and 7.6c show examples, where both meth-

ods perform well. In Figure 7.6d, we observe that the LR-HSMM-method skips every second S2,

and detects every second S1 as S2. Figure 7.6g shows some segmentation errors for the BiGRNN

method. Figure 7.6a, 7.6h and 7.6f are examples, where the ground truth labeling is partially

incorrect. In Figure 7.6h, we further observe that both methods achieve partially incorrect seg-

mentation results. Figure 7.6e shows an example for the failure of the LR-HSMM method for

irregularity of the temporal occurrence of the events.

In our experiments, the proposed BiGRNN-method achieves performance on par with the

LR-HSMM-method. We successfully show state-of-the-art performance without directly incor-

porating a priori information of the state durations. The proposed method is easily extendable

to the detection of extra heart sounds (third and fourth heart sound), heart murmurs, as well

as other acoustic events. However, this would require appropriate training data, i.e. heart sound

recordings containing the additional events and their proper labeling. In a practical sense, our

method features further advantages. Without preprocessing, it can easily handle absence of the

signal, noise, and irregularity of the temporal occurrence of the events (like in cardiac arrhythmia).

The proposed method represents a general solution for the detection of different kinds of events

in heart sound recordings. The method is easily extendable to the detection of extra heart sounds

(third and fourth heart sound), heart murmurs, as well as other acoustic events. This, however,

requires appropriate training data with thorough labeling of the events and further experiments.

– 69 –



7 Excursion to Heart Sound Segmentation

GT

LR-HSMM

BiGRNN

(a) a0072.wav - MPC

GT

LR-HSMM

BiGRNN

(b) a0076.wav - Benign

GT

LR-HSMM

BiGRNN

(c) a0104.wav - MVP

GT

LR-HSMM

BiGRNN

(d) a0231.wav - Normal

GT

LR-HSMM

BiGRNN

(e) a0326.wav - MVP

GT

LR-HSMM

BiGRNN

(f) b0267.wav - CAD

GT

LR-HSMM

BiGRNN

(g) b0401.wav - Normal

GT

LR-HSMM

BiGRNN

(h) e01069.wav - Normal

Figure 7.6: Legend: � S1; � systole; � S2; � diastole.
Examples of automatically segmented heart sound recordings (snippets of four seconds each) from
the test set. In each subfigure, the first plot corresponds to the hand annotated GT, the second to
the LR-HSMM method and the third to the proposed method (BiGRNN).
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8
Event Detection in Lung Sounds

In this chapter, we apply the framework from Chapter 7 to lung sounds. In particular, we use it

for the detection of crackles and breathing phase events in single-channel lung sound recordings.

We organised this chapter as follows. A short introduction is given in Section 8.1. Adopted

from Section 7.2, we present the proposed event detection method in Section 8.2. We describe

the data acquisition and the recording material in Section 8.3. Experimental results are shown in

Section 8.6. We discuss the results and conclude this chapter in Section 8.7.

This chapter was published in the proceedings of the 40th Annual Conference of the IEEE Engi-

neering in Medicine and Biology Society 2018 under the title of “Crackle and Breathing Phase

Detection in Lung Sounds with Deep Bidirectional Gated Recurrent Neural Networks” [151]. As

minor modifications, we changed some wordings and added a new figure.

8.1 Introduction

For adventitious sound detection, the temporal position of the event within the breathing phase is of

interest. Therefore, besides the detection of the adventitious sound itself, breathing phase detection

(BPD) is also needed. In lung sound research, BPD is usually accomplished with information

gained by simultaneous airflow measurement [152]. This, however, is inconvenient for long term

monitoring [153] or not feasible due to hardware limitations (e.g. electronic stethoscopes). Existing

approaches for acoustic BPD are limited to defined recording locations, by either using tracheal

sounds [153] or a combination of tracheal sounds and lung sounds [154,155]. Approaches for crackle

detection are threshold-based classifiers [156, 157] or machine learning methods, using algorithms

like SVMs, k-NN, and MLP [158]. Based on the current state-of-the-art, we face several challenges:

(i) We seek for a unified solution for both crackle and breathing phase detection. (ii) We aim to be

robust against disturbing sound sources. (iii) We seek for robustness in terms of recording position,

since lung sounds characteristics vary with the recording location over the chest.

To this end, we introduce an event detection approach with GRNNs [96, 97] for crackle and

breathing phase detection in single-channel lung sound recordings. In particular, for the first time,

we propose a multi-label classification system with BiGRNNs, using spectral features. With the

proposed method, we exploit spectral information and temporal dependencies of the lung sounds.

We use lung sound recordings from lung-healthy subjects and patients with IPF (cf. Section 5.3).
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8 Event Detection in Lung Sounds

Due to the limitations from our data, we focus on crackle detection, although our proposed method

is generally applicable to the detection of all kinds of adventitious sounds. In experiments, we

report event based metrics and visualise examples of automatically detected breathing phases and

crackles in lung sound recordings.

8.2 Audio Processing Framework

The essential steps of the event detection framework are shown in Figure 8.1. Given a raw single-

channel lung sound recording xt = [x1, . . . , xT ] in the time domain, we extract a sequence of feature

frames xf ∈ RD, where D is the dimension of the feature vector and f ∈ {1, ..., F} is the frame

index, with F indicating the number of frames.

feature
extraction BiGRNN arg max

x1 . . . xT x1 . . .xF ỹ1 . . . ỹF label sequence

Figure 8.1: Event detection framework.

These feature frames are processed by a multi-label BiGRNN with a softmax output layer.

The index of the maximum value of the real-valued output vector ỹf determines the event class

per frame, resulting in a sequence of frame labels as output. Consecutive identical frame labels

are grouped as one event. A schematic illustration of the frame-wise single-channel lung sound

processing framework is shown in Figure 8.2.

16-channel lung
sound recordings
(posterior chest,
30 seconds each)

feature
extraction

input
layer

recurrent layers

output
layer

normal

crackle

inspiration

expiration

Figure 8.2: Frame-wise single-channel lung sound processing framework with a recurrent neural network.
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8.3 Material - Lung Sound Recordings

8.3.1 Lung Sound Recordings

We used a subset6 of the recordings from our multi-channel lung sound database from Section 5.3.

Table 8.1 shows the resulting list of subjects. It contains ten lung-healthy subjects and five with

IPF in an advanced stage. For each subject, we used 16-channel lung sound recordings at two

different airflow rates, with 3-8 breathing cycles within 30 seconds, respectively. This results in 32

single-channel recordings of 30 seconds per subject and 480 single-channel recordings in total, at

varying airflow rates and recording positions.

Table 8.1: Subjects list for the event detection dataset, including given maximum inspiratory airflow values
during the measurements.

Subject # Gender Age Height Weight BMI Category Max. Insp. Airflow [l/s]

1 male 27 178 78 24.6 lung-healthy 1.0 & 1.5

2 male 42 167 62 22.2 lung-healthy 1.0 & 1.3

3 male 26 189 75 21.0 lung-healthy 1.0 & 1.2

4 male 30 193 74 19.9 lung-healthy 1.2 & 1.5

5 male 27 173 85 28.4 lung-healthy 1.0 & 1.3

6 male 23 193 70 18.8 lung-healthy 0.6 & 1.0

7 male 41 180 97 29.9 lung-healthy 0.5 & 1.2

8 male 28 172 82 27.7 lung-healthy 0.5 & 1.0

9 male 53 180 80 24.7 lung-healthy 0.7 & 1.7

12 female 24 172 73 24.7 lung-healthy 0.7 & 1.3

17 male 76 184 92 27.2 IPF 0.8 & 1.0

18 male 60 175 82 26.8 IPF 1.0 & 2.0

19 male 79 175 75 24.5 IPF 1.0 & 1.2

20 male 74 187 83 23.7 IPF 1.0 & 1.2

23 female 76 158 53 21.2 IPF 0.5 & 1.0

8.3.2 Annotation of Acoustic Events

In all lung sound recordings, we annotated the temporal onset and offset positions of the events

inspiration, expiration, and crackles. We labeled crackles by grouping consecutive crackles as one

event and manually annotating their temporal position, i.e. this was not just done for a whole

multi-channel recording once, but for each of the 16 recordings individually. We generated the

labels for the breathing phases using the airflow signal. Firstly, we smoothed the airflow signal

by lowpass filtering (cut-off frequency fc = 3 Hz). The zero-crossing positions of the airflow signal

provided the onset positions of the breathing phases. The sign of the signal values indicated the

breathing phase label. Table 8.2 gives an overview on the number of subjects, recordings and

events in the dataset.

Characteristic adventitious sounds for IPF are mid to late inspiratory crackles [38,86]. Figure 8.3

shows one example of a 16-channel lung sound recording related to IPF. The sensors are numbered

6 At the time of writing of the underlying conference paper, this was the amount of data available.
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Table 8.2: Number of subjects, recordings and events in the dataset.

# Subjects # Recordings # Events

Healthy IPF Inspiration Expiration Crackles

10 5 480 4656 4720 1339

according to the pattern on the recording device (cf. Figure 3.2). In each recording, the temporal

onset and offset positions of inspiratory crackles (grouped consecutive crackles) are marked. Strong

crackles can be observed in basal areas (bottom rows) and weaker or no crackles in apical areas

(top rows).

(a) Sensor 1 (b) Sensor 2 (c) Sensor 3 (d) Sensor 4

(e) Sensor 5 (f) Sensor 6 (g) Sensor 7 (h) Sensor 8

(i) Sensor 9 (j) Sensor 10 (k) Sensor 11 (l) Sensor 12

(m) Sensor 13 (n) Sensor 14 (o) Sensor 15 (p) Sensor 16

Figure 8.3: Example of a 16-channel lung sound recording (one full breathing cycles) from a subject with
IPF. In each subfigure, the temporal positions of the manually annotated consecutive crackles are
marked.

8.4 Feature Extraction

We process the lung sound recordings with a sampling frequency of fs = 16 kHz. All recordings are

processed with a STFT using a Hamming window using a window-size of 32 ms (=̂ 512 samples)

and 12 ms overlap (=̂ frame-shifts of 20 ms). To exploit the spectral information of the lung sounds,

similar as in [31], we extract the following types of features:
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• MFCCs: We extract 20 static coefficients, 20 delta coefficients (∆), and 20 acceleration

coefficients (∆2). We use 40 mel bands within a frequency range of 0-8000 Hz. The width

used to calculate the delta and acceleration coefficients is 9 frames. This results in a 60-bin

vector xf per frame.

• Spectrogram: We extract 257-bin log magnitude spectrograms.

8.5 Evaluation Metrics

We perform an event-based evaluation of the results [146]. An event is defined as correctly detected,

if its temporal position overlaps with the one of an identically labeled event in the ground truth.

We allow a tolerance for the temporal onset and offset of ±0.5 s, respectively. For all lung sound

recordings, we determine:

• True positives (TP): Events, where system output and ground truth have a temporal overlap;

• False positives (FP): The ground truth indicates no event but the system recognises an event;

• False negatives (FN ): The ground truth indicates an event that is not recognised by the

system.

We use Precision (Equation 7.1), Sensitivity (Equation 7.2), and F-score (Equation 7.3) to evaluate

the performance of the event detection algorithm.

8.6 Experiments and Discussion

We build a single multi-label classification system for our experiments7. We use a BiGRNN (cf.

Section 6.1.2) consisting of two hidden layers with 100 neurons for the forward and backward layers,

respectively. The output layer is split into two softmax layers, one for the outputs normal and

crackle, the other one for inspiration and expiration. The activation functions in the hidden layers

are rectifier non-linearities. We initialise the models with orthogonal weights [147]. For optimizing

the CEE objective, we use Adam [148]. We use dropout [105] for regularization, applied to the

hidden layers with a dropout probability of p = 0.5.

Table 8.3: Dataset splitting in terms of subjects and diseases for one fold of 5-fold cross-validation.

Dataset # Subjects # Recordings

Healthy IPF

Training 7 3 320

Validation 1 1 64

Test 2 1 96

Total 10 5 480

7 We conducted experiments using Python with Theano, and Compute Unified Device Architecture (CUDA) for
graphics processing unit (GPU) computing.
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Due to few data samples, we use 5-fold cross-validation, with the splitting of the dataset shown

in Table 8.3. We assign each subject exclusively to either training, validation, or test set. For

each fold, we apply early stopping, i.e. we train each model for 100 epochs and use the parameter

setting that causes the smallest validation error to process the test set data.

Table 8.4 shows the results for MFCCs and spectrogram features for each event. We report the

micro-average of the scores from the five folds, evaluated on the test set. For all events MFCCs

outperform spectrogram features in terms of the F-score.

Table 8.4: Results per event for MFCCs and spectrogram features.

Event Feature P+(%) Se(%) F1(%)

Inspiration MFCCs 83.7 90.5 87.0

Spectrogram 86.6 86.7 86.7

Expiration MFCCs 81.4 88.1 84.6

Spectrogram 82.9 83.9 83.4

Crackles MFCCs 72.6 71.5 72.1

Spectrogram 71.6 65.6 68.5

Figure 8.4 shows examples of automatically detected events in a 16-channel lung sound recording

(two breathing cycles) from a subject with IPF. The sensor positions correspond with the pattern

from the recording device (see Figure 3.2). In each subfigure, we show the GT and the detected

events with the BiGRNN. We normalised each of the depicted lung sound recordings according to

its maximum amplitude. We observe loud crackles in the basal area (bottom rows) and weaker or

no crackles in the apical area (top rows).

8.7 Discussion and Conclusion

In general, we observe for the event detection robustness regarding the contamination of the lung

sound recordings with noise, bowel, and heart sounds. In some recordings with shallow breathing,

no or weak lung sounds are audible in the lowest sensor row (Sensors 13 to 16), which results in

failure of our method, especially affecting the performance of breathing phase detection. For the

automatic detection of crackles, we observe sensitivity to the manual labeling accuracy, i.e. some

crackles are detected although not distinctly identified in the manual labeling (cf. Figure 8.4 -

Sensor 4). Furthermore, some crackle events are automatically detected in lung-healthy subjects,

which are present, but not manually annotated, because not related to IPF. Despite the low

number of data samples used in our experiments, the results are encouraging.
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9
Multi-channel Lung Sound Classification

In this chapter, we present an approach for multi-channel lung sound classification, exploiting

spectral, temporal, and spatial information. In particular, we propose a frame-wise classification

framework to process full breathing cycles of multi-channel lung sound recordings with a convolu-

tional recurrent neural network.

This chapter is structured as follows. After a short introduction in Section 9.1, we present our

proposed multi-channel classification framework in Section 9.2. The evaluation metrics used in our

experiments are described in Section 9.4. The experimental setup and the results are presented in

Section 9.5. Finally, we discuss our findings and conclude this chapter in Section 9.6.

This chapter is submitted for publication in the IEEE Journal of Biomedical and Health Informatics

under the title of “Multi-channel Lung Sound Classification with Convolutional Recurrent Neural

Networks” [90]. As minor modifications, we changed some wordings and added a new figure.

9.1 Introduction

Several approaches to multi-channel lung sound classification exist. Because of the lack of a publicly

available multi-channel lung sound database, research groups record lung sounds independently

with different recording setups, i.e. differing in design, and number and position of sensors. A

first approach to multi-channel lung sound analysis was the STG16 [159]. It enables 14-channel

lung sound recording on the posterior chest, with two additional channels for the locations trachea

and heart. Algorithms enable the detection and localization of different adventitious sounds.

Another multi-channel recording device with 14-channel lung sound recording on the posterior

chest, however with a different sensor arrangement than the STG16 [159], is presented in [12].

The authors of [12] explore a useful methodology for the classification of the three-class structure

(healthy-obstructive-restrictive) in [160]. They model 14-channel pulmonary sound data using a

second order vector autoregressive (VAR) model, and feed the estimated model parameter to SVM

and GMM classifiers. A 25-channel lung sound recording device is used in [13], with a 5× 5 sensor

array attached on the posterior chest. The authors assess different parameterization techniques for

multi-channel lung sounds for two-class classification (normal versus abnormal), such as PSD, the

eigenvalues of the covariance matrix, the univariate autoregressive (UAR), and the multivariate

autoregressive (MAR). Those methods are applied to construct feature vectors used as input to a
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9.2 Audio Processing Framework

supervised multilayer neural network.

In this chapter, we focus on the classification of isolated (multi-channel) lung sound recordings

with one full breathing cycle each, where we exploit spectral, temporal, and spatial information

of lung sounds. The fixed pattern for the LST arrangement of our recording front-end results in

varying recording positions depending on the subject’s physique. Therefore, we present a multi-

channel lung sound classification framework, which renders exact recording positions dispensable.

Inspired from computer vision, we propose a classification approach with CNNs [100], which we

combine with RNNs [30,137], resulting in a convolutional recurrent neural network (CRNN) [161,

162]. As already described in Section 7.1, RNNs are suitable architectures to process sequential

input of variable length and learn temporal dependencies within the data. Another powerful

neural network architecture are CNNs [100]. They are widely applied to audio classification tasks,

including lung sound classification [33, 34]. Convolutional neural networks can be used as feature

extractors by directly applying them to raw audio waveforms [145,163]. Another approach is their

usage after feature extraction, i.e. by processing spectrograms [161]. Our main contributions and

results can be summarised as follows:

• We introduce a suitable architecture with CRNNs to multi-channel lung sound classification.

• We present experimental results, where we compare different neural network architectures

for classification.

9.2 Audio Processing Framework

The proposed classification framework processes multi-channel lung sound recordings of one breath-

ing cycle each.

9.2.1 Basic Processing Framework

The essential steps of our lung sound classification framework are shown in Figure 9.1. Given a

raw single-channel lung sound recording xt = [x1, . . . , xT ] in time domain, we extract a sequence

of feature frames xf ∈ RD, where D is the dimension of the feature vector. For multi-channel

processing, we stack the feature vectors of the single channels to one feature vector.

These feature frames are processed by a multi-label (i.e. three classes: healthy, pathological, no

signal) DNN with a softmax output layer. The real-valued output vectors ỹf for all frames F are

summed up to ỹsum. The maximum value in ỹsum determines the final class, where the class no

signal is ignored.

feature
extraction DNN sum arg max

x1 . . .xT x1 . . .xF ỹ1 . . . ỹF ỹsum class

Figure 9.1: Multi-channel classification framework.
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9 Multi-channel Lung Sound Classification

For the feature extraction, we process the lung sound recordings with a sampling frequency of

fs = 16 kHz. Due to convenience for the processing with the DNN, we zero-padded the recordings

according to the longest one in each set. All recordings are processed with a STFT using a

Hamming window with a window-size of 32 ms (=̂ 512 samples) and 12 ms overlap (=̂ frame-shifts

of 20 ms). To exploit spectral information of the lung sounds, we extract 257-bin log magnitude

spectrograms [91,151]. The stacking of the individual feature vectors results in a 4112-dimensional

feature vector. A schematic illustration of the basic frame-wise multi-channel lung sound processing

framework with a multilayer perceptron or a recurrent neural network is shown in Figure 9.2.

16-channel lung
sound recordings
(posterior chest,

one breathing cycle)

feature
extraction

input
layer

recurrent or
multilayerperceptron layers

output
layer

no signal

healty

pathological

Figure 9.2: Basic frame-wise multi-channel lung sound processing framework with a multilayer perceptron or
a recurrent neural network.

9.2.2 Extension with Convolutional Front-end

Our recording front-end features a fixed pattern for the LST arrangement (cf. Figure 3.2), resulting

in varying recording positions depending on the subject’s physique. Inspired from image processing,

we propose an approach with convolutional neural networks to render exact recording positions

dispensable.

Figure 9.3 shows the multi-channel lung sound processing framework with a recurrent neural

network and a convolutional front-end, i.e. a CRNN. Compared to the basic processing framework

(cf. Section 9.2.1), where the feature vectors of the 16-channel lung sounds are simply stacked to

achieve one feature vector as input, we take the two-dimensional arrangement of the sensors into

account. In each step, the feature frames of the 16 channels are combined in a 4x4 grid according

to the sensor arrangement (cf. Figure 3.2), with the depth of the input ’image’ corresponding to

the dimension of the feature vector D = 257. At each time step, the input image is processed with

convolutional layers and a subsampling layer, followed by (fully connected) recurrent layers, and

the output layer. For the (fully connected) recurrent layers, we use a BiGRNN. Therefore, we

call this architecture a convolutional bidirectional gated recurrent neural network (ConvBiGRNN).

The first convolutional layer performs a dimensionality reduction with an 1 × 1 kernel [164]. In

the second convolutional layer, a 3 × 3 kernel with stride and padding of one is used. After that,

subsampling could be applied to reduce the information to four regions on the posterior chest

(upper left, upper right, lower left, lower right). We determine the size of the network, the number

of feature maps, and the subsampling experimentally in Section 9.5.
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Figure 9.3: Frame-wise multi-channel lung sound processing framework with a recurrent neural network and
a convolutional neural network front-end.

9.3 Material - Lung Sound Recordings

9.3.1 Lung Sound Recordings

We used all of the recordings from our multi-channel lung sound database from Section 5.3. The

dataset is summarised in Table 5.1. For each subject, we include 16-channel lung sound recordings

at two different airflow rates. This results in two 16-channel lung sound recordings at varying airflow

rates for each of the 23 subjects, with several breathing cycles within 30 seconds, respectively.

From all recordings, we extracted full breathing cycles by means of the airflow signal (cf. Fig-

ure 9.4). We smoothed the airflow signal with a low-pass filter (cut-off frequency fc = 3 Hz). With

the zero-crossing positions of the airflow signal, we determine the onset positions of the breathing

phase. The sign of the signal values enables the distinction between inspiration and expiration. Ta-

ble 9.1 gives an overview on the number of breathing cycles, and thus on the number of recordings

(of one full breathing cycle) used in our experiments.

Table 9.1: Number of subjects and recordings of one full breathing cycle.

# Subjects # Breathing Cycles

Healthy IPF Healthy IPF Total

16 7 252 135 387

Figure 9.4 shows two examples of lung sound recordings, one from a lung-healthy subject (a)

and one from a patient diagnosed with IPF (b). Depicted are one full breathing cycle of the audio

waveform, the simultaneous airflow recording (lower plot), and the corresponding spectogram (up-

per plot), respectively. Both recordings are from the basal left lung area, i.e. from sensor 16 (cf.

Figure 3.2). In (b), the inspiratory crackles related to IPF are marked. In the corresponding spec-

trogram, the intensity in the higher frequency range (above ≈ 2 kHz) is notable, when compared

to (a).
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Figure 9.4: Two examples of lung sound recordings (one full breathing cycle each), one from a lung-healthy
subject (a) and one from a patient diagnosed with IPF (b). In (b), the temporal position of
consecutive crackles are marked with a gray box.

9.4 Evaluation Metrics

We perform a breathing cycle-wise evaluation of the results. For all lung sound recordings, we

determine:

• True positives (TP): correctly classified as pathological;

• False positives (FP): falsely classified as pathological;

• False negatives (FN ): falsely classified as healthy.

We evaluate the performance of the classification algorithms using Precision (Equation 7.1),

Sensitivity (Equation 7.2), and F-score (Equation 7.3). Precision P+ provides information about

how many of the recordings labeled as pathological are actually true. Sensitivity (or Recall) Se

provides information about how many of the pathological recordings are actually labeled as such.

Due to the uneven class distribution, we use the F-score F1 as an overall performance measure.

9.5 Experimental Setup and Results

We compare two different neural network architectures used within the basic processing framework

from Section 9.2.1. As a baseline system, we use an MLP. As a second model, we choose a

BiGRNN, similar as in Chapter 7 and Chapter 8. Furthermore, we compare the results with the

ConvBiGRNN from Section 9.2.2.

For all three networks, we determine the optimal network size with grid search, i.e. we select the

architecture resulting in the highest F-score on the validation set8.

8 We conducted experiments using Python with Theano, and CUDA for GPU computing.
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The activation functions g(·) in the convolutional layer and in the hidden layers of the MLP and

the BiGRNN are rectifier non-linearities. We initialize the models with orthogonal weights [147].

For regularization, we add a dropout layer [91, 105] with a dropout probably of p = 0.5 after

every hidden layer of the MLP and after every hidden recurrent layer of the BiGRNN and the

ConvBiGRNN. We optimize the CEE objective with Adam [148].

Due to few data samples, we use 7-fold cross-validation, with the recordings of each IPF subject

appearing once in the test set. The splitting of the dataset is shown in Table 9.2. Each subject is

assigned to either training, validation, or test set. We train the models for 400 epochs and apply

early stopping, i.e. we use the parameter setting that causes the smallest validation error to process

the test set data.

Table 9.2: Dataset split in terms of subjects and diseases for one fold of 7-fold cross-validation.

Dataset # Subjects

Healthy IPF

Test 2 1

Validation 2 1

Training 12 5

Total 16 7

9.5.1 Multilayer Perceptron Size

We compared combinations of network widths of {100, 200, 300, 400} neurons per layer and network

depths of {1, 2, 3, 4} hidden layers. The best network size is shown in Table 9.3.

Table 9.3: Multilayer perceptron size.

Model Layer Type Properties

MLP 0 input layer 4112x1 feature vector

1 hidden layer 300 neurons

2 output layer softmax

9.5.2 Bidirectional Gated Recurrent Neural Network Size

We compared combinations of network widths of {100, 200, 300, 400} neurons per layer and network

depths of {1, 2, 3, 4} hidden layers. One half of the number of neurons in each layer is used for

the forward layer and the other half for the backward layer. The best network size is shown in

Table 9.4.
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Table 9.4: Bidirectional gated recurrent neural network size.

Model Layer Type Properties

BiGRNN 0 input layer 4112x1 feature vector

1 hidden layer forward+backward, 200 neurons each

2 hidden layer forward+backward, 200 neurons each

3 hidden layer forward+backward, 200 neurons each

4 hidden layer forward+backward, 200 neurons each

5 output softmax

9.5.3 Convolutional Bidirectional Gated Recurrent Neural Network Size

We used the BiGRNN specified in Table 9.4 and combined it with a CNN front-end to obtain

the ConvBiGRNN. We compared combinations of different numbers of feature maps for the first

convolutional layer {10, 20, 30, 40, 50, 60, 70, 80, 90} and the second convolutional layer {10,

20, 30, 40, 50, 60, 70, 80, 90}. Details about the architecture are shown in Table 9.5. In the

first convolutional layer, we use 1× 1 kernels to reduce the dimension of the input. In the second

convolutional layer, we use a 3×3 kernel with stride and padding of one. No subsampling (pooling)

is applied.

Table 9.5: Convolutional bidirectional gated recurrent neural network size.

Model Layer Type Properties

Conv- 0 input layer 4x4x257 image shape (see Figure 9.3)

BiGRNN 1 convolutional 30 feature maps, 1x1 kernel

3 convolutional 30 feature maps, 3x3 kernel

4 subsampling not applied

5 hidden layer forward+backward, 200 neurons each

6 hidden layer forward+backward, 200 neurons each

7 hidden layer forward+backward, 200 neurons each

8 hidden layer forward+backward, 200 neurons each

9 output softmax

9.5.4 Comparison of the Three Neural Network Architectures

Table 9.6 shows the results for the different architectures. The reported scores are the micro-

average values from the seven folds, evaluated on the test set. The ConvBiGRNN achieves the

best results with F1 = 92.4%.

Table 9.6: Comparison of different neural networks architectures. Micro-average values from the seven folds
evaluated on the test set.

Model P+(%) Se(%) F1(%)

MLP 75.0 37.8 50.2

BiGRNN 93.1 80.0 86.1

ConvBiGRNN 100.0 85.9 92.4
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9.6 Discussion and Conclusion

In our experiments, we compare different neural network architectures for multi-channel lung sound

classification. Firstly, we determine a suitable network size for each architecture using grid search.

We compare the architectures of the MLP, the BiGRNN, and the ConvBiGRNN, with the latter

outperforming the rest.

As described in Section 5.2.1, adventitious sounds caused by IPF are inspiratory fine (or velcro)

crackles heard over affected areas [38,86]. Because adventitious sounds are superimposed on normal

lung sounds, healthy and pathological recordings mainly differ during inspiration and no distinct

difference during expiration can be observed. Within our classification framework, this renders

it quite challenging for the MLP, because each frame is classified independent from neighbouring

ones. From the three models, the MLP shows the worst performance in terms of F-score (see

Table 9.6). Furthermore, it is notable that the Sensitivity is very low. The BiGRNN and the

ConvBiGRNN show distinctly better performance. Due to the stacking of the feature vectors of

the individual channels within the basic processing framework, the dimension D of the resulting

feature vector is relatively high. The convolutional front-end reduces the dimension of the feature

vectors of the individual channels by using 1×1 kernels in the first layer. The ConvBiGRNN is able

to outperform the BiGRNN with F1 = 92.4%. It achieves a Precision of P+ = 100.0%, meaning

that all recordings labeled as pathological are actually recognised. The Sensitivity Se = 85.9% is

in an acceptable range.

From a medical point of view, we present an approach for the diagnostic analysis of IPF. Crack-

les are not specific for IPF, they can also be heard in healthy subjects and can be associated with

other diseases, such as congestive heart failure (CHF), COPD, bronchiectasis, and pneumonia [85].

Still, there are notable differences in the temporal occurrence and the characteristics of the crack-

les. Crackles in IPF appear only during inspiration. Compared to the fine crackles of IPF, those

related to CHF and pneumonia are higher in frequency. Another difference, observed by the au-

thors of [165], is that crackles related to IPF are transmitted over a smaller area of the chest than

those of CHF and pneumonia. Therefore, multi-channel lung sound analysis provides useful infor-

mation. Because a misinterpretation of crackles could lead to inappropriate therapy [165], further

experiments, including the mentioned diseases, are needed to evaluate if an accurate distinction is

possible. Furthermore, the inclusion of metadata should be considered for the classification.

The proposed system enables to decide whether IPF is present or not, but no information about

affected areas is provided. The event detection approach presented in Chapter 8 provides infor-

mation about the temporal occurrence of crackles in the individual sensors and the affected areas.

Similar to auscultation by a physician, this can be considered as an intermediate step to detect

markers related to the disease. This could be implemented in a two-stage-system: First, adventi-

tious sounds are detected in each channel and, based on the occurring events, the multi-channel

recording is classified as normal or pathological. The advantage of the processing framework

presented in Section 9.2 is that the complete information from the breathing cycle is taken into

account, including the multi-channel information. More information than just the presence or ab-

sence of crackles is used. This makes the system more robust against bowel sounds, heart sounds,

artefacts, non pathological crackles, and missing or detached sensors. Another advantage is the
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applicability to diagnose any other lung disease that causes characteristic changes in lung sounds

by simply providing appropriate training material.

The classification framework has to cope with several challenges. For thin and/or small subjects,

the lowest sensor row and outer sensors of the MLSRD can become irrelevant. For a short torso,

the sensors from the lowest row are located over the abdomen and contain mainly bowel sounds.

For thin subjects (BMI<20), it is possible that outer sensors are detached. For both cases, we

make no distinction in the processing compared to recordings with all sensors fully attached over

the lung. Other challenges are the presence of crackles in lung healthy subjects and in general the

presence of bowel sound, which mask the lung sounds. Low frequency noise and heart sounds are,

to a great extent, already filtered out in the recording stage with the analogue high-pass filter with

a cut-off frequency of fc = 80 Hz.

As already stated by the authors in [13], the comparison with other attempts to classify lung

sounds is difficult, due to the differences in investigated pulmonary pathology, the type of classifica-

tion scheme, and the data acquisition. Regarding all the mentioned aspects, their work represents

the most similar one from literature. As initially mentioned, they use a 25-channel lung sound

recording device with a 5 × 5 sensor arrangement over the posterior chest. They assess different

parameterization techniques for multi-channel lung sounds, which are applied to construct feature

vectors used as input to a neural network. For binary classification of healthy vs. interstitial

lung diseases (comprising idiopathic pulmonary fibrosis), the parameterization with the univariate

autoregressive model results in a classification accuracy of 75% and 93% for healthy subjects and

patients with interstitial lung diseases, respectively. A three-class structure for multi-channel lung

sound classification is presented in [160]. The three classes are healthy, obstructive, and restrictive,

with the latter referring to interstitial lung diseases. The authors model 14-channel lung sounds

using a second order 250-point VAR model, and feed the estimated model parameter to SVM and

GMM classifiers with various classifier configurations. A hierarchical GMM classifier, which first

performs a classification of healthy vs. pathological and subsequently, in the pathological class, of

obstructive vs. restrictive, achieves a classification rate of 85%. In the first stage, the sensitivity

and the specificity are both 90%.

One limitation of our study is the small number of pathological subjects used in the experi-

ments. We addressed this problem by using cross-validation. Another limitation is the age dif-

ference between healthy and pathological subjects, i.e. healthy subjects are much younger than

the pathological ones. However, according to [79], the subject’s age is not relevant for automated

lung auscultation. Although the authors observe age-determined changes of normal lung sounds,

these are too small to be clinically relevant. Therefore, the lack of healthy elderly subjects in our

database should not be too relevant for the validity of our results.

The proposed method represents a general solution for multi-channel lung sound classification.

To evaluate the full potential of our proposed method, further experiments are needed. Therefore,

data from various obstructive and restrictive lung disease has to be recorded, and a multiclass

classification problem has to be solved.
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Conclusion

In this thesis, we present a holistic approach to multi-channel lung sound analysis. We started

from scratch with the development of a multi-channel lung sound recording device. Within a

clinical trial, we recorded a lung sound database for lung-healthy subjects and patients diagnosed

with idiopathic pulmonary fibrosis (IPF). In terms of lung sound classification, we present several

approaches with deep neural networks, applied for event detection and direct diagnosis of the

underlying disease. In this context, we also made an excursion to heart sound segmentation.

With respect to recording hardware, we present a 16-channel solution for airflow-aware lung

sound analysis. The device records lung sounds over the posterior chest in supine position. Due

to the lung sound transducer (LST) design and the attachment method, i.e. the auscultation pad,

we achieve robustness in terms of air- and body-borne noise. This allows its usage in real clinical

settings, i.e. there is no need for a controlled recording environment. Additionally, the high signal-

to-noise ratio of the LST microphone extends the considered frequency range for normal lung

sounds towards higher frequency components.

In terms of a multi-channel lung sound database, we present a clinical trial design for data

recording and the resulting database. In particular, we recorded lung sounds from 16 lung-healthy

subjects and 7 patients diagnosed with IPF at several airflow rates. The recording device was

successfully applied for data collection in real clinical settings and the measurement procedure was

accepted by the clinical trial subjects.

With regard to heart sound segmentation, we present an event detection approach with deep

recurrent neural networks to detect the state sequence S1 - systole - S2 - diastole. Compared to the

logistic regression hidden semi-Markov model (LR-HSMM)-method, we do not directly incorporate

a priori information about the state durations, because the model is capable of learning the tempo-

ral dependencies itself. This renders it also applicable to recordings with cardiac arrhythmia and

extendable to the detection of extra heart sounds (third and fourth heart sound), heart murmurs,

as well as other acoustic events. In experiments, we show state-of-the-art performance on the 2016

PhysioNet/CinC Challenge dataset.

In terms of event detection in lung sounds, we adapted the heart sound segmentation framework

to detect crackles and breathing phase events in single-channel lung sound recordings. Although the

framework is limited to single-channel processing, in combination with our multi-channel record-

ings, useful spatial information is provided, i.e. affected areas are identified by the presence of

adventitious sounds in specific sensors and their location. In our experiments, we demonstrate this

for recordings related to IPF.
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For multi-channel classification, we present an approach to exploit spectral, temporal, and spatial

information, which also renders exact recording positions unnecessary. In particular, we propose

a frame-wise classification framework to process full breathing cycles with convolutional recurrent

neural networks. In contrast to our event detection approach, a direct diagnosis of the underlying

disease is provided. In our experiments, we achieve F1 ≈ 92% for the diagnosis/classification of

IPF. The system shows robustness against bowel sounds, heart sounds, artefacts, non pathological

crackles, and missing or detached sensors.

With our joint consideration of hardware, computational methods, and clinical evaluation issues,

we present a significant step forward in computational lung sound analysis (CLSA). Focusing on all

three aspects avoids the shift of deficiencies from one to the other domains. The main characteristics

and advantages of our approach can be summarised as follows:

• Fast measurement procedure.

• Robust recording stage to eliminate the need for denoising or signal enhancement.

• Robust classification algorithms with no need for exact recording positions.

• General solution, i.e. our approach is applicable for the detection of all kinds of adventitious

sounds and for the diagnosis of several lung diseases, given appropriate training material.

Future Work

Our holistic approach leaves room for improvement and many research questions unanswered.

Some are listed in the following:

• Multi-channel lung sound recording device:

◦ Design of customised hardware for preamplification and analog-to-digital conversion of

the LST signal.

• Multi-channel Lung Sound Database:

◦ Data collection within a large-scale clinical trial with many subjects.

◦ Recording of data for various obstructive and restrictive lung diseases.

• Multi-channel Lung Sound Classification:

◦ Consideration of metadata of the subjects in addition to lung sound recordings.

◦ Experiments to discriminate diseases causing similar adventitious sounds, e.g. for IPF,

pneumonia, and congestive heart failure (CHF).

◦ Extension of the single-channel event detection framework to multi-channel processing.

◦ Experiments with other neural network architectures.

◦ Investigation of unsupervised machine learning algorithms.

◦ Comparison of various feature types.
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A
Abbreviations

AAE acoustic airflow estimation

AD aortic disease

ADAT Alesis Digital Audio Tape

AGES Austrian Agency for Health and Food Safety

ANN artificial neural network

AS aortic stenosis

BiGRNN bidirectional gated recurrent neural network

BiLSTM bidirectional long short-term memory

BiRNN bidirectional recurrent neural network

BMI body mass index

BPD breathing phase detection

CAD coronary artery disease

CAS continuous adventitious sounds

CHF congestive heart failure

CEE cross-entropy error

CinC Computing in Cardiology

CLSA computational lung sound analysis

ConvBiGRNN convolutional bidirectional gated recurrent neural network

COPD chronic obstructive pulmonary disease

CORSA computerised respiratory sound analysis

CRF case report form

CT computed tomography

CUDA Compute Unified Device Architecture

CNN convolutional neural network

CRNN convolutional recurrent neural network

DAS discontinuous adventitious sounds

DC direct current

DNN deep neural network

DRNN deep recurrent neural network

ECMC electret-condenser microphone capsule

EEC European Economic Community

EN European Standard
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FNN feedforward neural network

GCP Good Clinical Practice

GMM Gaussian mixture model

GPU graphics processing unit

GRNN gated recurrent neural network

GRU gated recurrent unit

GT ground truth

GUI graphical user interface

HMM hidden Markov model

ICH International Council for Harmonisation of Technical Requirements for

Pharmaceuticals for Human Use

IPF idiopathic pulmonary fibrosis

ISO International Organization for Standardization

k-NN k-nearest neighbours algorithm

KL Kullback–Leibler

LFCC linear frequency cepstral coefficient

LR-HSMM logistic regression hidden semi-Markov model

LST lung sound transducer

LSTM long short-term memory

MAR multivariate autoregressive

MFCC mel frequency cepstral coefficient

MLP multilayer perceptron

MLSRD multi-channel lung sound recording device

MPC miscellaneous pathological condition

MR mitral regurgitation

MSE mean squared error

MUG Medical University of Graz

MVP mitral valve prolapse

PCG phonocardiogram

PN PhysioNet

PSD power spectral density

RATHI respiratory acoustic thoracic image

RNN recurrent neural network

S1 first heart sound

S2 second heart sound

S3 third heart sound

S4 fourth heart sound

SNR signal-to-noise ratio

STFT short-time Fourier transform

SVM support vector machine

UAR univariate autoregressive
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A Abbreviations

USB Universal Serial Bus

VAR vector autoregressive

VAT virtual adversarial training
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B
Symbols

t time index

T number of samples (time domain)

xt audio recording in the time domain

l layer index

L number of layers

f frame index (or frequency)

F number of frames

i input gate

u forget gate

r reset gate

o output gate

z update gate

c memory cell

c̃ new memory cell content

xlf input vector

yf output vector

Wl
x input weight matrix

Wy output weight matrix

Wl
h hidden weight matrix

Wl
xi input weight matrix of input gate

Wl
hi hidden weight matrix of input gate

Wl
xu input weight matrix of forget gate

Wl
hu hidden weight matrix of forget gate

Wl
xr input weight matrix of reset gate

Wl
hr hidden weight matrix of reset gate

Wl
xo input weight matrix of output gate

Wl
ho hidden weight matrix of output gate

Wl
xc input weight matrix of memory cell

Wl
hc hidden weight matrix of memory cell

blh hidden bias vector

by output bias vector

blu bias vector of forget gate
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B Symbols

blr bias vector of reset gate

blo bias vector of output gate

blc bias vector of memory cell

hlf hidden states vector

ilf input states vector

ulf forget states vector

rlf reset states vector

olf output states vector

clf memory cell states vector

c̃lf new memory states vector

zf update states vector

h̃f candidate activation vector
−→
h l
f forward hidden sequence states vector

←−
h l
f backward hidden sequence states vector

g(·) non-linear function

m(·) non-linear function

σ(·) sigmoid function

� element-wise product operator

N width and height of a 2-dimensional image

m dimension of kernel

K number of feature maps

k index of feature map

Xl
i,j section of input image

i, j position indexes

Wkl kernel matrix

blk bias term

hklij feature map (activation)

n pooling dimension

p(yf |xf ) posterior distribution

δf adversarial perturbation

(·||·) Kullback-Leibler (KL)-divergence

ε limit for maximum perturbation

Ip number of iterations

λ tradeoff parameter

Wl
x,test scaled weights during testing with dropout

vl vector of independent Bernoulli random variables

p probability

x̃lf thinned input vector

∗ convolution operator

fc cut-off frequency

fs sampling frequency
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f frequency (or frame index)

LAeq A-weighted equivalent sound level

d distance

fL lower cut-off frequency

fH upper cut-off frequency

R2 coefficient of determination

Tw duration of window

M number of filter banks

C number of cepstral coefficients

fs,new new sampling frequency (after downsampling)

D dimension of the feature vector

RD set of real numbers

TP true positives

FP false positives

FN false negatives

P+ Precision

Se Sensitivity

F1 F-score

Nref number of reference states

Nsys number of system states

NTP number of true positives

NFN number of false negatives

NFP number of false positives

∆ delta coefficients

∆2 acceleration coefficients

ỹf real-valued output vector

ỹsum sum over all frames F of real-valued output vector
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